Sample records for helium radiation damage

  1. Modeling and Measuring the Effects of Radiation Damage Annealing on Helium Diffusion Kinetics in Apatite

    NASA Astrophysics Data System (ADS)

    Willett, C. D.; Fox, M.; Shuster, D. L.

    2016-12-01

    Understanding helium diffusion kinetics in apatite is critical for the accurate interpretation of (U-Th)/He thermochronometric data. This problem is complicated by the observation that helium diffusivity is not a simple function of temperature, but may evolve as a function of damage to the apatite crystal lattice resulting from alpha recoil. This `radiation damage' increases as a function of the amount of radiometric parent products, or effective uranium concentration, and time, but decreases due to thermal annealing of damage, necessitating a detailed understanding of radiation damage production and annealing in cases of burial heating over geologic timescales. Published observations [1,2] suggest that annealing rates of damage caused by alpha recoil and fission tracks in apatite differ. Existing models, however, assume the diffusion kinetics resulting from the two sources of damage are identical [3], demonstrating the need for further investigation of these damage sources. We present modeling and experimental work designed to interrogate the effects of radiation damage and its annealing on helium diffusion kinetics in apatite. Using previously published results [4] that investigated the effects of annealing temperature and duration on measured helium diffusivity, we fit a set of functions that are then integrated into a numerical model that tracks the evolution of radiation damage and apparent (U-Th)/He age. We compare the results of this model calibration to existing models [3]. In addition, we present data from two suites of diffusion experiments. The first suite, intended to test the published methodology and results, uses Durango apatite, while the second uses Sierran (CA) granite as a first test to determine if apatite of varying chemistry and age responds differently to the thermal annealing of radiation damage. Ultimately, the updated model and experimental results will benefit the interpretation of the effects of radiation damage accumulation and

  2. Influence of Au ions irradiation damage on helium implanted tungsten

    NASA Astrophysics Data System (ADS)

    Kong, Fanhang; Qu, Miao; Yan, Sha; Cao, Xingzhong; Peng, Shixiang; Zhang, Ailin; Xue, Jianming; Wang, Yugang; Zhang, Peng; Wang, Baoyi

    2017-10-01

    The damages of implanted helium ions together with energetic neutrons in tungsten is concerned under the background of nuclear fusion related materials research. Helium is lowly soluble in tungsten and has high binding energy with vacancy. In present work, noble metal Au ions were used to study the synergistic effect of radiation damage and helium implantation. Nano indenter and the Doppler broaden energy spectrum of positron annihilation analysis measurements were used to research the synergy of radiation damage and helium implantation in tungsten. In the helium fluence range of 4.8 × 1015 cm-2-4.8 × 1016 cm-2, vacancies played a role of trappers only at the very beginning of bubble nucleation. The size and density is not determined by vacancies, but the effective capture radius between helium bubbles and scattered helium atoms. Vacancies were occupied by helium bubbles even at the lowest helium fluence, leaving dislocations and helium bubbles co-exist in tungsten materials.

  3. Effects of helium concentration and radiation temperature on interaction of helium atoms with displacement cascades in bcc iron

    NASA Astrophysics Data System (ADS)

    Gao, Chan; Tian, Dongfeng; Li, Maosheng; Qian, Dazhi

    2018-03-01

    In fusion applications, helium, implanted or created by transmutation, plays an important role in the response of reduced-activation ferritic/martensitic steels to neutron radiation damage. The effects of helium concentration and radiation temperature on interaction of interstitial helium atoms with displacement cascades have been studied in Fe-He system using molecular dynamics with recently developed Fe-He potential. Results indicate that interstitial helium atoms produce no additional defects at peak time and promote recombination of Frenkel pairs at lower helium concentrations, but suppress recombination of Frenkel pairs at larger helium concentrations. Moreover, large helium concentrations promote the production of defects at the end of cascades. The number of substitutional helium atoms increases with helium concentration at peak time and the end of cascades, but the number of substitutional helium atoms at peak time is smaller than that at the end of displacement cascades. High radiation temperatures promote the production at peak time and the recombination of defects at the end of cascades. The number of substitutional helium atoms increases with radiation temperature, but that at peak time is smaller than that at the end of cascades.

  4. Empirical constraints on the effects of radiation damage on helium diffusion in zircon

    NASA Astrophysics Data System (ADS)

    Anderson, Alyssa J.; Hodges, Kip V.; van Soest, Matthijs C.

    2017-12-01

    In this study, we empirically evaluate the impact of radiation damage on zircon (U-Th)/He closure temperatures for a suite of zircon crystals from the slowly cooled McClure Mountain syenite of south-central Colorado, USA. We present new zircon, titanite, and apatite conventional (U-Th)/He dates, zircon laser ablation (U-Th)/He and U-Pb dates, and zircon Raman spectra for crystals from the syenite. Titanite and apatite (U-Th)/He dates range from 447 to 523 Ma and 88.0 to 138.9 Ma, respectively, and display no clear correlation between (U-Th)/He date and effective uranium concentration. Conventional zircon (U-Th)/He dates range from 230.3 to 474 Ma, while laser ablation zircon (U-Th)/He dates show even greater dispersion, ranging from 5.31 to 520 Ma. Dates from both zircon (U-Th)/He datasets decrease with increasing alpha dose, indicating that most of the dispersion can be attributed to radiation damage. Alpha dose values for the dated zircon crystals range from effectively zero to 2.15 × 1019 α /g, spanning the complete damage spectrum. We use an independently constrained thermal model to empirically assign a closure temperature to each dated zircon grain. If we assume that this thermal model is robust, the zircon radiation damage accumulation and annealing model of Guenthner et al. (2013) does not accurately predict closure temperatures for many of the analyzed zircon crystals. Raman maps of the zircons dated by laser ablation document complex radiation damage zoning, sometimes revealing crystalline zones in grains with alpha dose values suggestive of amorphous material. Such zoning likely resulted in heterogeneous intra-crystalline helium diffusion and may help explain some of the discrepancies between our empirical findings and the Guenthner et al. (2013) model predictions. Because U-Th zoning is a common feature in zircon, radiation damage zoning is likely to be a concern for most ancient, slowly cooled zircon (U-Th)/He datasets. Whenever possible, multiple

  5. The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite

    NASA Astrophysics Data System (ADS)

    Shuster, David L.; Farley, Kenneth A.

    2009-01-01

    Recent work [Shuster D. L., Flowers R. M. and Farley K. A. (2006) The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet. Sci. Lett.249(3-4), 148-161] revealing a correlation between radiogenic 4He concentration and He diffusivity in natural apatites suggests that helium migration is retarded by radiation-induced damage to the crystal structure. If so, the He diffusion kinetics of an apatite is an evolving function of time and the effective uranium concentration in a cooling sample, a fact which must be considered when interpreting apatite (U-Th)/He ages. Here we report the results of experiments designed to investigate and quantify this phenomenon by determining He diffusivities in apatites after systematically adding or removing radiation damage. Radiation damage was added to a suite of synthetic and natural apatites by exposure to between 1 and 100 h of neutron irradiation in a nuclear reactor. The samples were then irradiated with a 220 MeV proton beam and the resulting spallogenic 3He used as a diffusant in step-heating diffusion experiments. In every sample, irradiation increased the activation energy ( E a) and the frequency factor ( D o/ a2) of diffusion and yielded a higher He closure temperature ( T c) than the starting material. For example, 100 h in the reactor caused the He closure temperature to increase by as much as 36 °C. For a given neutron fluence the magnitude of increase in closure temperature scales negatively with the initial closure temperature. This is consistent with a logarithmic response in which the neutron damage is additive to the initial damage present. In detail, the irradiations introduce correlated increases in E a and ln( D o/a 2) that lie on the same array as found in natural apatites. This strongly suggests that neutron-induced damage mimics the damage produced by U and Th decay in natural apatites. To investigate the potential consequences of annealing of radiation damage, samples of

  6. Influence of displacement damage on deuterium and helium retention in austenitic and ferritic-martensitic alloys considered for ADS service

    NASA Astrophysics Data System (ADS)

    Voyevodin, V. N.; Karpov, S. A.; Kopanets, I. E.; Ruzhytskyi, V. V.; Tolstolutskaya, G. D.; Garner, F. A.

    2016-01-01

    The behavior of ion-implanted hydrogen (deuterium) and helium in austenitic 18Cr10NiTi stainless steel, EI-852 ferritic steel and ferritic/martensitic steel EP-450 and their interaction with displacement damage were investigated. Energetic argon irradiation was used to produce displacement damage and bubble formation to simulate nuclear power environments. The influence of damage morphology and the features of radiation-induced defects on deuterium and helium trapping in structural alloys was studied using ion implantation, the nuclear reaction D(3He,p)4He, thermal desorption spectrometry and transmission electron microscopy. It was found in the case of helium irradiation that various kinds of helium-radiation defect complexes are formed in the implanted layer that lead to a more complicated spectra of thermal desorption. Additional small changes in the helium spectra after irradiation with argon ions to a dose of ≤25 dpa show that the binding energy of helium with these traps is weakly dependent on the displacement damage. It was established that retention of deuterium in ferritic and ferritic-martensitic alloys is three times less than in austenitic steel at damage of ∼1 dpa. The retention of deuterium in steels is strongly enhanced by presence of radiation damages created by argon ion irradiation, with a shift in the hydrogen release temperature interval of 200 K to higher temperature. At elevated temperatures of irradiation the efficiency of deuterium trapping is reduced by two orders of magnitude.

  7. Helium vs. Proton Induced Displacement Damage in Electronic Materials

    NASA Technical Reports Server (NTRS)

    Ringo, Sawnese; Barghouty, A. F.

    2010-01-01

    In this project, the specific effects of displacement damage due to the passage of protons and helium nuclei on some typical electronic materials will be evaluated and contrasted. As the electronic material absorbs the energetic proton and helium momentum, degradation of performance occurs, eventually leading to overall failure. Helium nuclei traveling at the same speed as protons are expected to impart more to the material displacement damage; due to the larger mass, and thus momentum, of helium nuclei compared to protons. Damage due to displacement of atoms in their crystalline structure can change the physical properties and hence performance of the electronic materials.

  8. Helium Bubble Injection Solution To The Cavitation Damage At The Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, M. W.; Ruggles, A. E.

    2009-03-10

    The Spallation Neutron Source (SNS) is one of the largest science projects in the United States, with total cost near 1.4 Billion Dollars. The limiting factor of the facility had always been assumed to be the lifetime of the target window due to radiation damage. After further investigation, the lifetime of the target was determined not to be limited by radiation damage but by cavitation damage. The cavitation damage derives from pressure waves caused by the beam energy deposition. Vapor bubbles form when low to negative pressures occur in the mercury near the stainless steel target window due to wavemore » interaction with the structure. Collapse of these bubbles can focus wave energy in small liquid jets that erode the window surface. Compressibility of the mercury can be enhanced to reduce the amplitude of the pressure wave caused by the beam energy deposition. To enhance compressibility, small (10 to 30 micron diameter) gas bubbles could be injected into the bulk of the mercury. Solubility and diffusivity parameters of inert gas in mercury are required for a complete mechanical simulation and engineering of these strategies. Using current theoretical models, one obtains a theoretical Henry coefficient of helium in mercury on the order of 3.9E15 Pa-molHg/molHe at 300 K. This low solubility was confirmed by a direct, offline experimental method. Mercury was charged with helium and any pressure change was recorded. Any pressure change was attributed to gas going into solution. Therefore, with the sensitivity of the experiment, a lower limit of 9E12 Pa-molHg/molHe was placed on the mercury-helium system. These values guarantee a stable bubble lifetime needed within the SNS mercury target to mitigate cavitation issues.« less

  9. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model

    NASA Astrophysics Data System (ADS)

    Flowers, Rebecca M.; Ketcham, Richard A.; Shuster, David L.; Farley, Kenneth A.

    2009-04-01

    Helium diffusion from apatite is a sensitive function of the volume fraction of radiation damage to the crystal, a quantity that varies over the lifetime of the apatite. Using recently published laboratory data we develop and investigate a new kinetic model, the radiation damage accumulation and annealing model (RDAAM), that adopts the effective fission-track density as a proxy for accumulated radiation damage. This proxy incorporates creation of crystal damage proportional to α-production from U and Th decay, and the elimination of that damage governed by the kinetics of fission-track annealing. The RDAAM is a version of the helium trapping model (HeTM; Shuster D. L., Flowers R. M. and Farley K. A. (2006) The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet. Sci. Lett.249, 148-161), calibrated by helium diffusion data in natural and partially annealed apatites. The chief limitation of the HeTM, now addressed by RDAAM, is its use of He concentration as the radiation damage proxy for circumstances in which radiation damage and He are not accumulated and lost proportionately from the crystal. By incorporating the RDAAM into the HeFTy computer program, we explore its implications for apatite (U-Th)/He thermochronometry. We show how (U-Th)/He dates predicted from the model are sensitive to both effective U concentration (eU) and details of the temperature history. The RDAAM predicts an effective He closure temperature of 62 °C for a 28 ppm eU apatite of 60 μm radius that experienced a 10 °C/Ma monotonic cooling rate; this is 8 °C lower than the 70 °C effective closure temperature predicted using commonly assumed Durango diffusion kinetics. Use of the RDAAM is most important for accurate interpretation of (U-Th)/He data for apatite suites that experienced moderate to slow monotonic cooling (1-0.1 °C/Ma), prolonged residence in the helium partial retention zone, or a duration at temperatures appropriate for radiation

  10. A helium-based model for the effects of radiation damage annealing on helium diffusion kinetics in apatite

    NASA Astrophysics Data System (ADS)

    Willett, Chelsea D.; Fox, Matthew; Shuster, David L.

    2017-11-01

    Widely used to study surface processes and the development of topography through geologic time, (U-Th)/He thermochronometry in apatite depends on a quantitative description of the kinetics of 4He diffusion across a range of temperatures, timescales, and geologic scenarios. Empirical observations demonstrate that He diffusivity in apatite is not solely a function of temperature, but also depends on damage to the crystal structure from radioactive decay processes. Commonly-used models accounting for the influence of thermal annealing of radiation damage on He diffusivity assume the net effects evolve in proportion to the rate of fission track annealing, although the majority of radiation damage results from α-recoil. While existing models adequately quantify the net effects of damage annealing in many geologic scenarios, experimental work suggests different annealing rates for the two damage types. Here, we introduce an alpha-damage annealing model (ADAM) that is independent of fission track annealing kinetics, and directly quantifies the influence of thermal annealing on He diffusivity in apatite. We present an empirical fit to diffusion kinetics data and incorporate this fit into a model that tracks the competing effects of radiation damage accumulation and annealing on He diffusivity in apatite through geologic time. Using time-temperature paths to illustrate differences between models, we highlight the influence of damage annealing on data interpretation. In certain, but not all, geologic scenarios, the interpretation of low-temperature thermochronometric data can be strongly influenced by which model of radiation damage annealing is assumed. In particular, geologic scenarios involving 1-2 km of sedimentary burial are especially sensitive to the assumed rate of annealing and its influence on He diffusivity. In cases such as basement rocks in Grand Canyon and the Canadian Shield, (U-Th)/He ages predicted from the ADAM can differ by hundreds of Ma from those

  11. Interrogating the Effects of Radiation Damage Annealing on Helium Diffusion Kinetics in Apatite

    NASA Astrophysics Data System (ADS)

    Willett, C. D.; Fox, M.; Shuster, D. L.

    2015-12-01

    Apatite (U-Th)/He thermochronology is commonly used to study landscape evolution and potential links between climate, erosion and tectonics. The technique relies on a quantitative understanding of (i) helium diffusion kinetics in apatite, (ii) an evolving 4He concentration, (iii) accumulating damage to the crystal lattice caused by radioactive decay[1], and (iv) the thermal annealing of such damage[2],[3], which are each functions of both time and temperature. Uncertainty in existing models of helium diffusion kinetics has resulted in conflicting conclusions, especially in settings involving burial heating through geologic time. The effects of alpha recoil damage annealing are currently assumed to follow the kinetics of fission track annealing (e.g., reference [3]), although this assumption is difficult to fully validate. Here, we present results of modeling exercises and a suite of experiments designed to interrogate the effects of damage annealing on He diffusivity in apatite that are independent of empirical calibrations of fission track annealing. We use the existing experimental results for Durango apatite[2] to develop and calibrate a new function that predicts the effects of annealing temperature and duration on measured diffusivity. We also present a suite of experiments conducted on apatite from Sierra Nevada, CA granite to establish whether apatites with different chemical compositions have the same behavior as Durango apatite. Crystals were heated under vacuum to temperatures between 250 and 500°C for 1, 10, or 100 hours. The samples were then irradiated with ~220 MeV protons to produce spallogenic 3He, the diffusant then used in step-heating diffusion experiments. We compare the results of these experiments and model calibrations to existing models. Citations: [1]Shuster, D., Flowers R., and Farley K., (2006), EPSL 249(3-4), 148-161; [2]Shuster, D. and Farley, K., (2009), GCA 73 (1), 6183-6196; [3]Flowers, R., Ketcham, R., Shuster, D. and Farley, K

  12. Method and means of reducing erosion of components of plasma devices exposed to helium and hydrogen isotope radiation

    DOEpatents

    Kaminsky, Manfred S.; Das, Santosh K.; Rossing, Thomas D.

    1977-01-25

    Surfaces of components of plasma devices exposed to radiation by atoms or ions of helium or isotopes of hydrogen can be protected from damage due to blistering by shielding the surfaces with a structure formed by sintering a powder of aluminum or beryllium and its oxide or by coating the surfaces with such a sintered metal powder.

  13. Cavity evolution at grain boundaries as a function of radiation damage and thermal conditions in nanocrystalline nickel

    DOE PAGES

    Muntifering, Brittany; Blair, Sarah Jane; Gong, Cajer; ...

    2015-12-30

    Enhanced radiation tolerance of nanostructured metals is attributed to the high density of interfaces that can absorb radiation-induced defects. Here, cavity evolution mechanisms during cascade damage, helium implantation, and annealing of nanocrystalline nickel are characterized via in situ transmission electron microscopy (TEM). Films subjected to self-ion irradiation followed by helium implantation developed evenly distributed cavity structures, whereas films exposed in the reversed order developed cavities preferentially distributed along grain boundaries. Post-irradiation annealing and orientation mapping demonstrated uniform cavity growth in the nanocrystalline structure, and cavities spanning multiple grains. Furthermore, these mechanisms suggest limited ability to reduce swelling, despite the stabilitymore » of the nanostructure.« less

  14. Radiation damage calculations for the SINQ Target 5

    NASA Astrophysics Data System (ADS)

    Wechsler, Monroe S.; Lu, Wei; Dai, Yong

    2003-03-01

    Calculations are underway of radiation damage (production of displacements, helium, and hydrogen) at Target 5 of the SINQ spallation neutron source at the Paul Scherrer Institute in Switzerland. The target is bombarded by 575-MeV protons, and the spallation-neutron-producing target material is liquid lead. The calculations employ the Monte Carlo code MCNPX (version 2.3.0). The peak proton and neutron fluxes at the aluminum-alloy entrance window are determined to be about 1.9E14 protons/cm2s per mA of incident proton current and 2.4E13 neutrons/cm2s per mA. For a beam exposure of 10 Ahr, the peak damage sustained at the entrance window due to protons and neutrons combined is calculated to be 7.8 dpa, 2000 appmHe, and 4000 appmH. The significance of the damage results for the entrance window and components within Target 5 will be discussed.

  15. Synchrotron Radiation Damage Mechanism of X-Ray Mask Membranes Irradiated in Helium Environment

    NASA Astrophysics Data System (ADS)

    Arakawa, Tomiyuki; Okuyama, Hiroshi; Okada, Koichi; Nagasawa, Hiroyuki; Syoki, Tsutomu; Yamaguchi, Yoh-ichi

    1992-12-01

    The mechanism of X-ray mask membrane displacement induced by synchrotron radiation (SR) has been discussed. Silicon nitride (SiN) and silicon carbide (SiC) membranes were irradiated by SR in a 1 atm helium ambient. SR-induced displacement for both membranes was 25-97 nm (σ). Oxygen concentration in both SiN and SiC was below 0.01 in O/Si atomic ratio. Although an increase in dangling bond density of SiN was observed, no remarkable increase in spin density was detected in SiC. Moreover, the most important finding was that thin oxides were grown on the membrane surface after SR irradiation. From these results, it is considered that the oxide growth on SiC membrane surfaces, and both the oxide growth and the increase of dangling bond density in SiN play an important role in the SR-induced displacement for the X-ray mask membranes.

  16. Optical diagnostics with radiation trapping effect in low density and low temperature helium plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Wonwook, E-mail: wwlee@kaeri.re.kr; Kwon, Duck-Hee; Park, Kyungdeuk

    2016-06-15

    Low density (n{sub e} < 10{sup 11 }cm{sup −3}) and low temperature (T{sub e} < 10 eV) helium plasma was generated by hot filament discharge. Electron temperature and density of neutral helium plasma were measured by Langmuir probe and were determined by line intensity ratio method using optical emission spectroscopy with population modelings. Simple corona model and collisional-radiative (CR) model without consideration for radiation trapping effect are applied. In addition, CR model taking into account the radiation trapping effect (RTE) is adopted. The change of single line intensity ratio as a function of electron temperature and density were investigated when the RTE is included and excluded.more » The changes of multi line intensity ratios as a function of electron temperature were scanned for various radiative-excitation rate coefficients from the ground state and the helium gas pressures related with the RTE. Our CR modeling with RTE results in fairly better agreement of the spectroscopic diagnostics for the plasma temperature or density with the Langmuir probe measurements for various helium gas pressures than corona modeling and CR modeling without RTE.« less

  17. Assessing the Effects of Radiation Damage on Ni-base Alloys for the Prometheus Space Reactor System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. Angeliu

    2006-01-19

    Ni-base alloys were considered for the Prometheus space reactor pressure vessel with operational parameters of {approx}900 K for 15 years and fluences up to 160 x 10{sup 20} n/cm{sup 2} (E > 0.1 MeV). This paper reviews the effects of irradiation on the behavior of Ni-base alloys and shows that radiation-induced swelling and creep are minor considerations compared to significant embrittlement with neutron ,exposure. While the mechanism responsible for radiation-induced embrittlement is not fully understood, it is likely a combination of helium embrittlement and solute segregation that can be highly dependent on the alloy composition and exposure conditions. Transmutation calculationsmore » show that detrimental helium levels would be expected at the end of life for the inner safety rod vessel (thimble) and possibly the outer pressure vessel, primarily from high energy (E > 1 MeV) n,{alpha} reactions with {sup 58}Ni. Helium from {sup 10}B is significant only for the outer vessel due to the proximity of the outer vessel to the Be0 control elements. Recommendations for further assessments of the material behavior and methods to minimize the effects of radiation damage through alloy design are provided.« less

  18. Hydrogen-Helium shock Radiation tests for Saturn Entry Probes

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.

    2016-01-01

    This paper describes the measurement of shock layer radiation in Hydrogen/Helium mixtures representative of that encountered by probes entering the Saturn atmosphere. Normal shock waves are measured in Hydrogen-Helium mixtures (89:11% by volume) at freestream pressures between 13-66 Pa (0.1-0.5 Torr) and velocities from 20-30 km/s. Radiance is quantified from the Vacuum Ultraviolet through Near Infrared. An induction time of several centimeters is observed where electron density and radiance remain well below equilibrium. Radiance is observed in front of the shock layer, the characteristics of which match the expected diffusion length of Hydrogen.

  19. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Thermally induced optical damage to barium-sodium niobate crystals

    NASA Astrophysics Data System (ADS)

    Baryshev, S. A.; Goncharova, I. F.; Konvisar, P. G.; Kuznetsov, V. A.

    1990-06-01

    Thermally induced optical damage (TIOD) was observed in undoped barium-sodium niobate (BSN) crystals as a result of changes in their temperature. This damage was deduced from the behavior of YAG:Nd3+ laser radiation when a BSN crystal was inserted in the resonator and also using a helium-neon laser probe beam. The experimental results were satisfactorily explained by the familiar pyroelectric model of TIOD and, in the crystals studied, an inhomogeneity of the conductivity rather than an inhomogeneity of the pyroelectric constant played the main role.

  20. Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.

    The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons). This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes thismore » species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.« less

  1. Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy

    DOE PAGES

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; ...

    2015-06-24

    The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons). This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes thismore » species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.« less

  2. Helium accumulation and bubble formation in FeCoNiCr alloy under high fluence He+ implantation

    NASA Astrophysics Data System (ADS)

    Chen, Da; Tong, Y.; Li, H.; Wang, J.; Zhao, Y. L.; Hu, Alice; Kai, J. J.

    2018-04-01

    Face-centered cubic (FCC) high-entropy alloys (HEA), as emerging alloys with equal-molar or near equal-molar constituents, show a promising radiation damage resistance under heavy ion bombardment, making them potential for structural material application in next-generation nuclear reactors, but the accumulation of light helium ions, a product of nuclear fission reaction, has not been studied. The present work experimentally studied the helium accumulation and bubble formation at implantation temperatures of 523 K, 573 K and 673 K in a homogenized FCC FeCoNiCr HEA, a HEA showing excellent radiation damage resistance under heavy ion irradiation. The size and population density of helium bubbles in FeCoNiCr samples were quantitatively analyzed through transmission electron microscopy (TEM), and the helium content existing in bubbles were estimated from a high-pressure Equation of State (EOS). We found that the helium diffusion in such condition was dominated by the self-interstitial/He replacement mechanism, and the corresponding activation energy in FeCoNiCr is comparable with the vacancy migration energy in Ni and austenitic stainless steel but only 14.3%, 31.4% and 51.4% of the accumulated helium precipitated into helium bubbles at 523 K, 573 K and 673 K, respectively, smaller than the pure Ni case. Importantly, the small bubble size suggested that FeCoNiCr HEA has a high resistance of helium bubble formation compared with Ni and steels.

  3. Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage

    DOE PAGES

    Cheaito, Ramez; Gorham, Caroline S.; Carnegie Mellon Univ., Pittsburgh, PA; ...

    2015-05-01

    The progressive build up of displacement damage and fission products inside different systems and components of a nuclear reactor can lead to significant defect formation, degradation, and damage of the constituent materials. This structural modification can highly influence the thermal transport mechanisms and various mechanical properties of solids. In this paper we demonstrate the use of time-domain thermoreflectance (TDTR), a non-destructive method capable of measuring the thermal transport in material systems from nano to bulk scales, to study the effect of radiation damage and the subsequent changes in the thermal properties of materials. We use TDTR to show that displacementmore » damage from ion irradiation can significantly reduce the thermal conductivity of Optimized ZIRLO, a material used as fuel cladding in several current nuclear reactors. We find that the thermal conductivity of copper-niobium nanostructured multilayers does not change with helium ion irradiation doses of up to 10 15 cm -2 and ion energy of 200 keV suggesting that these structures can be used and radiation tolerant materials in nuclear reactors. We compare the effect of ion doses and ion beam energies on the measured thermal conductivity of bulk silicon. Results demonstrate that TDTR thermal measurements can be used to quantify depth dependent damage.« less

  4. Helium bubbles aggravated defects production in self-irradiated copper

    NASA Astrophysics Data System (ADS)

    Wu, FengChao; Zhu, YinBo; Wu, Qiang; Li, XinZhu; Wang, Pei; Wu, HengAn

    2017-12-01

    Under the environment of high radiation, materials used in fission and fusion reactors will internally accumulate numerous lattice defects and bubbles. With extensive studies focused on bubble resolution under irradiation, the mutually effects between helium bubbles and displacement cascades in irradiated materials remain unaddressed. Therefore, the defects production and microstructure evolution under self-irradiation events in vicinity of helium bubbles are investigated by preforming large scale molecular dynamics simulations in single-crystal copper. When subjected to displacement cascades, distinguished bubble resolution categories dependent on bubble size are observed. With the existence of bubbles, radiation damage is aggravated with the increasing bubble size, represented as the promotion of point defects and dislocations. The atomic mechanisms of heterogeneous dislocation structures are attributed to different helium-vacancy cluster modes, transforming from the resolved gas trapped with vacancies to the biased absorption of vacancies by the over-pressured bubble. In both cases, helium impedes the recombination of point defects, leading to the accelerated formation of interstitial loops. The results and insight obtained here might contribute to understand the underlying mechanism of transmutant solute on the long-term evolution of irradiated materials.

  5. Helium ion microscopy of graphene: beam damage, image quality and edge contrast

    NASA Astrophysics Data System (ADS)

    Fox, D.; Zhou, Y. B.; O'Neill, A.; Kumar, S.; Wang, J. J.; Coleman, J. N.; Duesberg, G. S.; Donegan, J. F.; Zhang, H. Z.

    2013-08-01

    A study to analyse beam damage, image quality and edge contrast in the helium ion microscope (HIM) has been undertaken. The sample investigated was graphene. Raman spectroscopy was used to quantify the disorder that can be introduced into the graphene as a function of helium ion dose. The effects of the dose on both freestanding and supported graphene were compared. These doses were then correlated directly to image quality by imaging graphene flakes at high magnification. It was found that a high magnification image with a good signal to noise ratio will introduce very significant sample damage. A safe imaging dose of the order of 1013 He+ cm-2 was established, with both graphene samples becoming highly defective at doses over 5 × 1014 He+ cm-2. The edge contrast of a freestanding graphene flake imaged in the HIM was then compared with the contrast of the same flake observed in a scanning electron microscope and a transmission electron microscope. Very strong edge sensitivity was observed in the HIM. This enhanced edge sensitivity over the other techniques investigated makes the HIM a powerful nanoscale dimensional metrology tool, with the capability of both fabricating and imaging features with sub-nanometre resolution.

  6. Surface-structure dependence of healing radiation-damage mechanism in nanoporous tungsten

    NASA Astrophysics Data System (ADS)

    Duan, Guohua; Li, Xiangyan; Sun, Jingjing; Hao, Congyu; Xu, Yichun; Zhang, Yange; Liu, Wei; Liu, C. S.

    2018-01-01

    Under nuclear fusion environments, displacement damage in tungsten (W) is usually caused by neutrons irradiation through producing large quantities of vacancies (Vs) and self-interstitial atoms (SIAs). These defects not only affect the mechanical properties of W, but also act as the trap sites for implanted hydrogen isotopes and helium. Nano-porous (NP) W with a high fraction of free surfaces has been developed to mitigate the radiation damage. However, the mechanism of the surface reducing defects accumulation is not well understood. By using multi-scale simulation methods, we investigated the interaction of the SIA and V with different surfaces on across length and time scales. We found that, at a typical operation temperature of 1000 K, surface (1 1 0) preferentially heals radiation damage of W compared with surface (1 0 0) and boundary (3 1 0). On surface (1 1 0), the diffusion barrier for the SIA is only 0.68 eV. The annihilation of the SIA-V happens via the coupled motion of the V segregation towards the surface from the bulk and the two-dimensional diffusion of the SIA on the surface. Such mechanism makes the surface (1 1 0) owe better healing capability. On surface (1 0 0), the diffusion energy barrier for the SIA is 2.48 eV, higher than the diffusion energy barrier of the V in bulk. The annihilation of the SIA-V occurs via the V segregation and recombination. The SIA was found to migrate one-dimensionally along a boundary (3 1 0) with a barrier of 0.21 eV, leading to a lower healing efficiency in the boundary. This study suggested that the on-surface process plays an important role in healing radiation damage of NP W in addition to surface-enhanced diffusion and annihilation near the surface. A certain surface structure renders nano-structured W more radiation-tolerant.

  7. Radiation damage to macromolecules: kill or cure?

    PubMed

    Garman, Elspeth F; Weik, Martin

    2015-03-01

    Radiation damage induced by X-ray beams during macromolecular diffraction experiments remains an issue of concern in structural biology. While advances in our understanding of this phenomenon, driven in part by a series of workshops in this area, undoubtedly have been and are still being made, there are still questions to be answered. Eight papers in this volume give a flavour of ongoing investigations, addressing various issues. These range over: a proposed new metric derived from atomic B-factors for identifying potentially damaged amino acid residues, a study of the relative damage susceptibility of protein and DNA in a DNA/protein complex, a report of an indication of specific radiation damage to a protein determined from data collected using an X-ray free-electron laser (FEL), an account of the challenges in FEL raw diffraction data analysis, an exploration of the possibilities of using radiation damage induced phasing to solve structures using FELs, simulations of radiation damage as a function of FEL temporal pulse profiles, results on the influence of radiation damage during scanning X-ray diffraction measurements and, lastly, consideration of strategies for minimizing radiation damage during SAXS experiments. In this short introduction, these contributions are briefly placed in the context of other current work on radiation damage in the field.

  8. A review of helium-hydrogen synergistic effects in radiation damage observed in fusion energy steels and an interaction model to guide future understanding

    NASA Astrophysics Data System (ADS)

    Marian, Jaime; Hoang, Tuan; Fluss, Michael; Hsiung, Luke L.

    2015-07-01

    Under fusion reactor conditions, large quantities of irradiation defects and transmutation gases are produced per unit time by neutrons, resulting in accelerated degradation of structural candidate ferritic (F) and ferritic/martensitic (F/M) steels. Due to the lack of a suitable fusion neutron testing facility, we must rely on high-dose-rate ion-beam experiments and present-day crude modeling estimates. Of particular interest is the possibility of synergistic (positive feedback) effects on materials properties due to the simultaneous action of He, H, and displacement damage (dpa) during operation. In this paper we discuss the state-of-the-art in terms of the experimental understanding of synergistic effects and carry out simulations of triple-species irradiation under ion-beam conditions using first-of-its-kind modeling techniques. Although, state-of-the-art modeling and simulation is not sufficiently well developed to shed light on the experimental uncertainties, we are able to conclude that it is not clear whether synergistic effects, the evidence of which is still not conclusive, will ultimately play a critical role in material performance under fusion energy conditions. We review here some of the evidence for the synergistic effects of hydrogen in the presence of helium and displacement damage, and also include some recent data from our research. While the experimental results to date suggest possible mechanisms for the observed synergistic effects, it is only with more advanced modeling that we can hope to understand the details underlying the experimental observations. By employing modeling and simulation we propose an interaction model that is qualitatively consistent with experimental observations of dpa/He/H irradiation behavior. Our modeling, the results of which should be helpful to researchers going forward, points to gaps and voids in the current understanding of triple ion-beam irradiation effects (displacement damage produced simultaneously with

  9. Energy Distribution of Electrons in Radiation Induced-Helium Plasmas. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lo, R. H.

    1972-01-01

    Energy distribution of high energy electrons as they slow down and thermalize in a gaseous medium is studied. The energy distribution in the entire energy range from source energies down is studied analytically. A helium medium in which primary electrons are created by the passage of heavy-charged particles from nuclear reactions is emphasized. A radiation-induced plasma is of interest in a variety of applications, such as radiation pumped lasers and gaseous core nuclear reactors.

  10. Softening due to Grain Boundary Cavity Formation and its Competition with Hardening in Helium Implanted Nanocrystalline Tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, W. Streit; Gentile, Jonathan M.; El-Atwani, Osman

    The unique ability of grain boundaries to act as effective sinks for radiation damage plays a significant role in nanocrystalline materials due to their large interfacial area per unit volume. Leveraging this mechanism in the design of tungsten as a plasma-facing material provides a potential pathway for enhancing its radiation tolerance under fusion-relevant conditions. In this study, we explore the impact of defect microstructures on the mechanical behavior of helium ion implanted nanocrystalline tungsten through nanoindentation. Softening was apparent across all implantation temperatures and attributed to bubble/cavity loaded grain boundaries suppressing the activation barrier for the onset of plasticity viamore » grain boundary mediated dislocation nucleation. An increase in fluence placed cavity induced grain boundary softening in competition with hardening from intragranular defect loop damage, thus signaling a new transition in the mechanical behavior of helium implanted nanocrystalline tungsten.« less

  11. Softening due to Grain Boundary Cavity Formation and its Competition with Hardening in Helium Implanted Nanocrystalline Tungsten

    DOE PAGES

    Cunningham, W. Streit; Gentile, Jonathan M.; El-Atwani, Osman; ...

    2018-02-13

    The unique ability of grain boundaries to act as effective sinks for radiation damage plays a significant role in nanocrystalline materials due to their large interfacial area per unit volume. Leveraging this mechanism in the design of tungsten as a plasma-facing material provides a potential pathway for enhancing its radiation tolerance under fusion-relevant conditions. In this study, we explore the impact of defect microstructures on the mechanical behavior of helium ion implanted nanocrystalline tungsten through nanoindentation. Softening was apparent across all implantation temperatures and attributed to bubble/cavity loaded grain boundaries suppressing the activation barrier for the onset of plasticity viamore » grain boundary mediated dislocation nucleation. An increase in fluence placed cavity induced grain boundary softening in competition with hardening from intragranular defect loop damage, thus signaling a new transition in the mechanical behavior of helium implanted nanocrystalline tungsten.« less

  12. Thermal annealing of natural, radiation-damaged pyrochlore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zietlow, Peter; Beirau, Tobias; Mihailova, Boriana

    Abstract Radiation damage in minerals is caused by the α-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400–1000 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia [6.4 wt% Th, 23.1·10

  13. Positron and nanoindentation study of helium implanted high chromium ODS steels

    NASA Astrophysics Data System (ADS)

    Veternikova, Jana Simeg; Fides, Martin; Degmova, Jarmila; Sojak, Stanislav; Petriska, Martin; Slugen, Vladimir

    2017-12-01

    Three oxide dispersion strengthened (ODS) steels with different chromium content (MA 956, MA 957 and ODM 751) were studied as candidate materials for new nuclear reactors in term of their radiation stability. The radiation damage was experimentally simulated by helium ion implantation with energy of ions up to 500 keV. The study was focused on surface and sub-surface structural change due to the ion implantation observed by mostly non-destructive techniques: positron annihilation lifetime spectroscopy and nanoindentation. The applied techniques demonstrated the best radiation stability of the steel ODM 751. Blistering effect occurred due to high implantation dose (mostly in MA 956) was studied in details.

  14. MD simulations of phase stability of PuGa alloys: Effects of primary radiation defects and helium bubbles

    DOE PAGES

    Dremov, V. V.; Sapozhnikov, F. A.; Ionov, G. V.; ...

    2013-05-14

    We present classical molecular dynamics (MD) with Modified Embedded Atom Model (MEAM) simulations to investigate the role of primary radiation defects and radiogenic helium as factors affecting the phase stability of PuGa alloys in cooling–heating cycles at ambient pressure. The models of PuGa alloys equilibrated at ambient conditions were subjected to cooling–heating cycles in which they were initially cooled down to 100 K and then heated up to 500 K at ambient pressure. The rate of temperature change in the cycles was 10 K/ns. The simulations showed that the initial FCC phase of PuGa alloys undergo polymorphous transition in coolingmore » to a lower symmetry α'-phase. All the alloys undergo direct and reverse polymorphous transitions in the cooling–heating cycles. The alloys containing vacancies shift in both transitions to lower temperatures relative to the defect-free alloys. The radiogenic helium has much less effect on the phase stability compared to that of primary radiation defects (in spite of the fact that helium concentration is twice of that for the primary radiation defects). Lastly, this computational result agrees with experimental data on unconventional stabilization mechanism of PuGa alloys.« less

  15. DNA damage and repair after high LET radiation

    NASA Astrophysics Data System (ADS)

    O'Neill, Peter; Cucinotta, Francis; Anderson, Jennifer

    Predictions from biophysical models of interactions of radiation tracks with cellular DNA indicate that clustered DNA damage sites, defined as two or more lesions formed within one or two helical turns of the DNA by passage of a single radiation track, are formed in mammalian cells. These complex DNA damage sites are regarded as a signature of ionizing radiation exposure particularly as the likelihood of clustered damage sites arising endogenously is low. For instance, it was predicted from biophysical modelling that 30-40% of low LET-induced double strand breaks (DSB), a form of clustered damage, are complex with the yield increasing to >90% for high LET radiation, consistent with the reduced reparability of DSB with increasing ionization density of the radiation. The question arises whether the increased biological effects such as mutagenesis, carcinogenesis and lethality is in part related to DNA damage complexity and/or spatial distribution of the damage sites, which may lead to small DNA fragments. With particle radiation it is also important to consider not only delta-rays which may cause clustered damaged sites and may be highly mutagenic but the non-random spatial distribution of DSB which may lead to deletions. In this overview I will concentrate on the molecular aspects of the variation of the complexity of DNA damage on radiation quality and the challenges this complexity presents the DNA damage repair pathways. I will draw on data from micro-irradiations which indicate that the repair of DSBs by non-homologous end joining is highly regulated with pathway choice and kinetics of repair dependent on the chemical complexity of the DSB. In summary the aim is to emphasis the link between the spatial distribution of energy deposition events related to the track, the molecular products formed and the consequence of damage complexity contributing to biological effects and to present some of the outstanding molecular challenges with particle radiation.

  16. Radiation Damage Workshop

    NASA Technical Reports Server (NTRS)

    Stella, P. M.

    1984-01-01

    The availability of data regarding the radiation behavior of GaAs and silicon solar cells is discussed as well as efforts to provide sufficient information. Other materials are considered too immature for reasonable radiation evaluation. The lack of concern over the possible catastrophic radiation degradation in cascade cells is a potentially serious problem. Lithium counterdoping shows potential for removing damage in irradiated P-type material, although initial efficiencies are not comparable to current state of the art. The possibility of refining the lithium doping method to maintain high initial efficiencies and combining it with radiation tolerant structures such as thin BSF cells or vertical junction cells could provide a substantial improvement in EOL efficiencies. Laser annealing of junctions, either those formed ion implantation or diffusion, may not only improve initial cell performance but might also reduce the radiation degradation rate.

  17. Undulator Radiation Damage Experience at LCLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuhn, H. D.; Field, C.; Mao, S.

    2015-01-06

    The SLAC National Accelerator Laboratory has been running the Linac Coherent Light Source (LCLS), the first x-ray Free Electron Laser since 2009. Undulator magnet damage from radiation, produced by the electron beam traveling through the 133-m long straight vacuum tube, has been and is a concern. A damage measurement experiment has been performed in 2007 in order to obtain dose versus damage calibrations. Radiation reduction and detection devices have been integrated into the LCLS undulator system. The accumulated radiation dose rate was continuously monitored and recorded. In addition, undulator segments have been routinely removed from the beamline to be checkedmore » for magnetic (50 ppm, rms) and mechanic (about 0.25 µm, rms) changes. A reduction in strength of the undulator segments is being observed, at a level, which is now clearly above the noise. Recently, potential sources for the observed integrated radiation levels have been investigated. The paper discusses the results of these investigation as well as comparison between observed damage and measured dose accumulations and discusses, briefly, strategies for the new LCLS-II upgrade, which will be operating at more than 300 times larger beam rate.« less

  18. Backgrounds, radiation damage, and spacecraft orbits

    NASA Astrophysics Data System (ADS)

    Grant, Catherine E.; Miller, Eric D.; Bautz, Mark W.

    2017-08-01

    The scientific utility of any space-based observatory can be limited by the on-orbit charged particle background and the radiation-induced damage. All existing and proposed missions have had to make choices about orbit selection, trading off the radiation environment against other factors. We present simulations from ESA’s SPace ENVironment Information System (SPENVIS) of the radiation environment for spacecraft in a variety of orbits, from Low Earth Orbit (LEO) at multiple inclinations to High Earth Orbit (HEO) to Earth-Sun L2 orbit. We summarize how different orbits change the charged particle background and the radiation damage to the instrument. We also discuss the limitations of SPENVIS simulations, particularly outside the Earth’s trapped radiation and point to new resources attempting to address those limitations.

  19. Interplay of space radiation and microgravity in DNA damage and DNA damage response.

    PubMed

    Moreno-Villanueva, María; Wong, Michael; Lu, Tao; Zhang, Ye; Wu, Honglu

    2017-01-01

    In space, multiple unique environmental factors, particularly microgravity and space radiation, pose constant threat to the DNA integrity of living organisms. Specifically, space radiation can cause damage to DNA directly, through the interaction of charged particles with the DNA molecules themselves, or indirectly through the production of free radicals. Although organisms have evolved strategies on Earth to confront such damage, space environmental conditions, especially microgravity, can impact DNA repair resulting in accumulation of severe DNA lesions. Ultimately these lesions, namely double strand breaks, chromosome aberrations, micronucleus formation, or mutations, can increase the risk for adverse health effects, such as cancer. How spaceflight factors affect DNA damage and the DNA damage response has been investigated since the early days of the human space program. Over the years, these experiments have been conducted either in space or using ground-based analogs. This review summarizes the evidence for DNA damage induction by space radiation and/or microgravity as well as spaceflight-related impacts on the DNA damage response. The review also discusses the conflicting results from studies aimed at addressing the question of potential synergies between microgravity and radiation with regard to DNA damage and cellular repair processes. We conclude that further experiments need to be performed in the true space environment in order to address this critical question.

  20. [Mechanisms of electromagnetic radiation damaging male reproduction].

    PubMed

    Xue, Lei; Chen, Hao-Yu; Wang, Shui-Ming

    2012-08-01

    More and more evidence from over 50 years of researches on the effects of electromagnetic radiation on male reproduction show that a certain dose of electromagnetic radiation obviously damages male reproduction, particularly the structure and function of spermatogenic cells. The mechanisms of the injury may be associated with energy dysmetabolism, lipid peroxidation, abnormal expressions of apoptosis-related genes and proteins, and DNA damage.

  1. A novel method for computing effective diffusivity: Application to helium implanted α-Fe thin films

    NASA Astrophysics Data System (ADS)

    Dunn, Aaron; Agudo-Merida, Laura; Martin-Bragado, Ignacio; McPhie, Mathieu; Cherkaoui, Mohammed; Capolungo, Laurent

    2014-05-01

    The effective diffusivity of helium in thin iron films is quantified using spatially resolved stochastic cluster dynamics and object kinetic Monte Carlo simulations. The roles of total displacement dose (in DPA), damage rate, helium to DPA ratio, layer thickness, and damage type (cascade damage vs Frenkel pair implantation) on effective He diffusivity are investigated. Helium diffusivity is found to decrease with increasing total damage and decreasing damage rate. Arrhenius plots show strongly increased helium diffusivity at high temperatures, high total implantation, and low implantation rates due to decreased vacancy and vacancy cluster concentrations. At low temperatures, effective diffusivity is weakly dependent on foil thickness while at high temperatures, narrower foils prevent defect accumulation by releasing all defects at the free surfaces. Helium to DPA ratio is not shown to strongly change helium diffusivity in the range of irradiation conditions simulated. Frenkel pair implantation is shown to cause higher effective diffusivity and more complex diffusion mechanisms than cascade implantation. The results of these simulations indicate that the differences in damage rates between implantation experiments and fission or fusion environments may result in differences in the final microstructure.

  2. [Tanning lamp radiation-induced photochemical retinal damage].

    PubMed

    Volkov, V V; Kharitonova, N N; Mal'tsev, D S

    2014-01-01

    On the basis of original clinical research a rare case of bilateral retinal damage due to tanning lamp radiation exposure is presented. Along with significant decrease of visual acuity and light sensitivity of central visual field as well as color vision impairment, bilateral macular dystrophy was found during an ophthalmoscopy and confirmed by optical coherent tomography and fluorescent angiography. Intensive retinoprotective, vascular, and antioxidant therapy was effective and led to functional improvement and stabilization of the pathologic process associated with photochemical retinal damage. A brief review of literature compares mechanisms of retinal damage by either short or long-wave near visible radiation.

  3. Periodic annealing of radiation damage in GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Loo, R. Y.; Knechtli, R. C.; Kamath, G. S.

    1980-01-01

    Continuous annealing of GaAs solar cells is compared with periodic annealing to determine their relative effectiveness in minimizing proton radiation damage. It is concluded that continuous annealing of the cells in space at 150 C can effectively reduce the proton radiation damage to the GaAs solar cells. Periodic annealing is most effective if it can be initiated at relatively low fluences (approximating continuous annealing), especially if low temperatures of less than 200 C are to be used. If annealing is started only after the fluence of the damaging protons has accumulated to a high value 10 to the 11th power sq/pcm), effective annealing is still possible at relatively high temperatures. Finally, since electron radiation damage anneals even more easily than proton radiation damage, substantial improvements in GaAs solar cell life can be achieved by incorporating the proper annealing capabilities in solar panels for practical space missions where both electron and proton radiation damage have to be minimized.

  4. Radiation damage limits to XPCS studies of protein dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vodnala, Preeti, E-mail: preeti.vodnala@gmail.com; Karunaratne, Nuwan; Lurio, Laurence

    2016-07-27

    The limitations to x-ray photon correlation spectroscopy (XPCS) imposed by radiation damage have been evaluated for suspensions of alpha crystallin. We find that the threshold for radiation damage to the measured protein diffusion rate is significantly lower than the threshold for damage to the protein structure. We provide damage thresholds beyond which the measured diffusion coeffcients have been modified using both XPCS and dynamic light scattering (DLS).

  5. DNA Damage Signals and Space Radiation Risk

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  6. Combined effects of radiation damage and He accumulation on bubble nucleation in Gd2Ti2O7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Caitlin A.; Patel, Maulik K.; Aguiar, Jeffery A.

    2016-10-01

    Pyrochlores have long been considered as host phases for long-term immobilization of radioactive waste nuclides that would undergo ..alpha..-decay for hundreds of thousands of years. This work utilizes ion-beam irradiations to examine the combined effects of radiation damage and He accumulation on bubble formation in Gd2Ti2O7 over relevant waste-form timescales. Helium bubbles are not observed in pre-damaged Gd2Ti2O7 implanted with 2 x 1016 He/cm2, even after post-implantation irradiations with 7 MeV Au3+ at 300, 500, and 700 K. However, He bubbles with average diameters of 1.5 nm and 2.1 nm are observed in pre-damaged (amorphous) Gd2Ti2O7 and pristine Gd2Ti2O7, respectively,more » after implantation of 2 x 1017 He/cm2. The critical He concentration for bubble nucleation in Gd2Ti2O7 is estimated to be 6 at.% He.« less

  7. Chemical Protection Against Radiation Damage

    ERIC Educational Resources Information Center

    Campaigne, Ernest

    1969-01-01

    Discusses potential war time and medical uses for chemical compounds giving protection against radiation damage. Describes compounds known to protect, research aimed at discovering such compounds, and problems of toxicity. (EB)

  8. Radiation damage to nucleoprotein complexes in macromolecular crystallography

    DOE PAGES

    Bury, Charles; Garman, Elspeth F.; Ginn, Helen Mary; ...

    2015-01-30

    Significant progress has been made in macromolecular crystallography over recent years in both the understanding and mitigation of X-ray induced radiation damage when collecting diffraction data from crystalline proteins. Despite the large field that is productively engaged in the study of radiation chemistry of nucleic acids, particularly of DNA, there are currently very few X-ray crystallographic studies on radiation damage mechanisms in nucleic acids. Quantitative comparison of damage to protein and DNA crystals separately is challenging, but many of the issues are circumvented by studying pre-formed biological nucleoprotein complexes where direct comparison of each component can be made under themore » same controlled conditions. A model protein–DNA complex C.Esp1396I is employed to investigate specific damage mechanisms for protein and DNA in a biologically relevant complex over a large dose range (2.07–44.63 MGy). In order to allow a quantitative analysis of radiation damage sites from a complex series of macromolecular diffraction data, a computational method has been developed that is generally applicable to the field. Typical specific damage was observed for both the protein on particular amino acids and for the DNA on, for example, the cleavage of base-sugar N 1—C and sugar-phosphate C—O bonds. Strikingly the DNA component was determined to be far more resistant to specific damage than the protein for the investigated dose range. We observed the protein at low doses and found that they were susceptible to radiation damage while the DNA was far more resistant, damage only being observed at significantly higher doses.« less

  9. Raman study of radiation-damaged zircon under hydrostatic compression

    NASA Astrophysics Data System (ADS)

    Nasdala, Lutz; Miletich, Ronald; Ruschel, Katja; Váczi, Tamás

    2008-12-01

    Pressure-induced changes of Raman band parameters of four natural, gem-quality zircon samples with different degrees of self-irradiation damage, and synthetic ZrSiO4 without radiation damage, have been studied under hydrostatic compression in a diamond anvil cell up to ~10 GPa. Radiation-damaged zircon shows similar up-shifts of internal SiO4 stretching modes at elevated pressures as non-damaged ZrSiO4. Only minor changes of band-widths were observed in all cases. This makes it possible to estimate the degree of radiation damage from the width of the ν3(SiO4) band of zircon inclusions in situ, almost independent from potential “fossilized pressures” or compressive strain acting on the inclusions. An application is the non-destructive analysis of gemstones such as corundum or spinel: broadened Raman bands are a reliable indicator of self-irradiation damage in zircon inclusions, whose presence allows one to exclude artificial color enhancement by high-temperature treatment of the specimen.

  10. A study of the effect of helium concentration and displacement damage on the microstructure of helium ion irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Harrison, R. W.; Greaves, G.; Hinks, J. A.; Donnelly, S. E.

    2017-11-01

    Transmission electron microscopy (TEM) with in-situ He ion irradiation has been used to examine the damage microstructure of W when varying the helium concentration to displacement damage ratio, irradiation temperature and total dose. Irradiations employed 15, 60 or 85 keV He ions, at temperatures between 500 and 1000 °C up to doses of ∼3.0 DPA. Once nucleated and grown to an observable size in the TEM, bubble diameter as a function of irradiation dose did not measurably increase at irradiation temperatures of 500 °C between 1.0 and 3.0 DPA; this is attributed to the low mobility of vacancies and He/vacancy complexes at these temperatures. Bubble diameter increased slightly for irradiation temperatures of 750 °C and rapidly increased when irradiated at 1000 °C. Dislocation loops were observed at irradiation temperatures of 500 and 750 °C and no loops were observed at 1000 °C. Burgers vectors of the dislocations were determined to be b = ±½<111> type only and both vacancy and interstitial loops were observed. The proportion of interstitial loops increased with He-appm/DPA ratio and this is attributed to the concomitant increase in bubble areal density, which reduces the vacancy flux for both the growth of vacancy-type loops and the annihilation of interstitial clusters.

  11. Measurement of radiation damage on an epoxy-based optical glue

    NASA Astrophysics Data System (ADS)

    Huang, H. C.; Peng, K. C.; Sahu, S. K.; Ueno, K.; Chang, Y. H.; Wang, C. H.; Hou, W. S.

    1997-02-01

    We measured the radiation damage on an optical glue called Eccobond-24, which is a candidate for CsI and BGO crystal calorimeters of the BELLE detector of the KEK B-factory. Absorption spectrophotometry in the range 300-800 nm was used to monitor the radiation damage. The maximum equivalent dose was 1.64 Mrad. The glue shows effects of damage, but is acceptable for the radiation level in the above-mentioned experiment.

  12. Effects of radiation upon the light-sensing elements of the retina as characterized by scanning electron microscopy

    NASA Technical Reports Server (NTRS)

    Malachowski, M. J.; Tobias, C. A.; Leith, J. T.

    1977-01-01

    A model system using Necturus maculosus, the common mudpuppy, was established for evaluating effects of radiation upon the light-sensing elements of the retina. Accelerated heavy ions of helium and neon from the Berkeley Bevalac were used. A number of criteria were chosen to characterize radiation damage by observing morphological changes with the scanning electron microscope. The studies indicated retina sensitivity to high-LET (neon) particles at radiation levels below 10 rads (7 particles per visual element) whereas no significant effects were seen from fast helium ions below 50 rads.

  13. Opportunities for nutritional amelioration of radiation-induced cellular damage

    NASA Technical Reports Server (NTRS)

    Turner, Nancy D.; Braby, Leslie A.; Ford, John; Lupton, Joanne R.

    2002-01-01

    The closed environment and limited evasive capabilities inherent in space flight cause astronauts to be exposed to many potential harmful agents (chemical contaminants in the environment and cosmic radiation exposure). Current power systems used to achieve space flight are prohibitively expensive for supporting the weight requirements to fully shield astronauts from cosmic radiation. Therefore, radiation poses a major, currently unresolvable risk for astronauts, especially for long-duration space flights. The major detrimental radiation effects that are of primary concern for long-duration space flights are damage to the lens of the eye, damage to the immune system, damage to the central nervous system, and cancer. In addition to the direct damage to biological molecules in cells, radiation exposure induces oxidative damage. Many natural antioxidants, whether consumed before or after radiation exposure, are able to confer some level of radioprotection. In addition to achieving beneficial effects from long-known antioxidants such as vitamins E and C and folic acid, some protection is conferred by several recently discovered antioxidant molecules, such as flavonoids, epigallocatechin, and other polyphenols. Somewhat counterintuitive is the protection provided by diets containing elevated levels of omega-3 polyunsaturated fatty acids, considering they are thought to be prone to peroxidation. Even with the information we have at our disposal, it will be difficult to predict the types of dietary modifications that can best reduce the risk of radiation exposure to astronauts, those living on Earth, or those enduring diagnostic or therapeutic radiation exposure. Much more work must be done in humans, whether on Earth or, preferably, in space, before we are able to make concrete recommendations.

  14. RNA protects a nucleoprotein complex against radiation damage.

    PubMed

    Bury, Charles S; McGeehan, John E; Antson, Alfred A; Carmichael, Ian; Gerstel, Markus; Shevtsov, Mikhail B; Garman, Elspeth F

    2016-05-01

    Radiation damage during macromolecular X-ray crystallographic data collection is still the main impediment for many macromolecular structure determinations. Even when an eventual model results from the crystallographic pipeline, the manifestations of radiation-induced structural and conformation changes, the so-called specific damage, within crystalline macromolecules can lead to false interpretations of biological mechanisms. Although this has been well characterized within protein crystals, far less is known about specific damage effects within the larger class of nucleoprotein complexes. Here, a methodology has been developed whereby per-atom density changes could be quantified with increasing dose over a wide (1.3-25.0 MGy) range and at higher resolution (1.98 Å) than the previous systematic specific damage study on a protein-DNA complex. Specific damage manifestations were determined within the large trp RNA-binding attenuation protein (TRAP) bound to a single-stranded RNA that forms a belt around the protein. Over a large dose range, the RNA was found to be far less susceptible to radiation-induced chemical changes than the protein. The availability of two TRAP molecules in the asymmetric unit, of which only one contained bound RNA, allowed a controlled investigation into the exact role of RNA binding in protein specific damage susceptibility. The 11-fold symmetry within each TRAP ring permitted statistically significant analysis of the Glu and Asp damage patterns, with RNA binding unexpectedly being observed to protect these otherwise highly sensitive residues within the 11 RNA-binding pockets distributed around the outside of the protein molecule. Additionally, the method enabled a quantification of the reduction in radiation-induced Lys and Phe disordering upon RNA binding directly from the electron density.

  15. Thermal desorption spectroscopy of high fluence irradiated ultrafine and nanocrystalline tungsten: helium trapping and desorption correlated with morphology

    NASA Astrophysics Data System (ADS)

    El-Atwani, O.; Taylor, C. N.; Frishkoff, J.; Harlow, W.; Esquivel, E.; Maloy, S. A.; Taheri, M. L.

    2018-01-01

    Microstructural changes due to displacement damage and helium desorption are two phenomena that occur in tungsten plasma facing materials in fusion reactors. Nanocrystalline metals are being investigated as radiation tolerant materials that can mitigate these microstructural changes and better trap helium along their grain boundaries. Here, we investigate the performance of three tungsten grades (nanocrystalline, ultrafine and ITER grade tungsten), exposed to a high fluence of 4 keV helium at both RT and 773 K, during a thermal desorption spectroscopy (TDS) experiment. An investigation of the microstructure in pre-and post-TDS sample sets was performed. The amount of desorbed helium was shown to be highest in the ITER grade tungsten and lowest in the nanocrystalline tungsten. Correlating the desorption spectra and the microstructure (grain boundaries decorated with nanopores and crack formation) and comparing with previous literature on coarse grained tungsten samples at similar irradiation and TDS conditions, revealed the importance of grain boundaries in trapping helium and limiting helium desorption up to a high temperature of 1350 K in agreement with transmission electron microscopy studies on helium irradiated tungsten which showed preferential and large facetted bubble formation along the grain boundaries in the nanocrystalline tungsten grade.

  16. Radiative cooling in shock-heated hydrogen-helium plasmas. [for planetary entry probe heat shields

    NASA Technical Reports Server (NTRS)

    Poon, P. T. Y.; Stickford, G. H., Jr.

    1978-01-01

    Axial and off-axis radiative cooling of cylindrical shock-heated hydrogen-helium plasmas is investigated theoretically and experimentally. The coupled fluid dynamic-radiative transfer equations are solved by a combination of approximation techniques aimed at simplifying the computation of the flux divergence term, namely, the quasi-isothermal approximation and the exponential approximation developed for the solid angle integration. The accuracy of the approximation schemes has been assessed and found acceptable for applying the methods to the rapid computation of the radiatively coupled flow problem. Radiative cooling experiments were conducted in a 6-inch annular arc accelerator shock tube (ANAA) for an initial pressure of 1 torr and shock speeds from 35 to 45 Km/sec. The results indicate that the lateral cooling is small compared with the axial cooling, and that better agreement is achieved between the data and the theoretical results by inclusion of the lateral temperature gradient.

  17. RNA protects a nucleoprotein complex against radiation damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bury, Charles S.; McGeehan, John E.; Antson, Alfred A.

    Radiation damage during macromolecular X-ray crystallographic data collection is still the main impediment for many macromolecular structure determinations. Even when an eventual model results from the crystallographic pipeline, the manifestations of radiation-induced structural and conformation changes, the so-called specific damage, within crystalline macromolecules can lead to false interpretations of biological mechanisms. Although this has been well characterized within protein crystals, far less is known about specific damage effects within the larger class of nucleoprotein complexes. We developed a methodology whereby per-atom density changes could be quantified with increasing dose over a wide (1.3–25.0 MGy) range and at higher resolution (1.98more » Å) than the previous systematic specific damage study on a protein–DNA complex. Specific damage manifestations were determined within the largetrpRNA-binding attenuation protein (TRAP) bound to a single-stranded RNA that forms a belt around the protein. Over a large dose range, the RNA was found to be far less susceptible to radiation-induced chemical changes than the protein. The availability of two TRAP molecules in the asymmetric unit, of which only one contained bound RNA, allowed a controlled investigation into the exact role of RNA binding in protein specific damage susceptibility. The 11-fold symmetry within each TRAP ring permitted statistically significant analysis of the Glu and Asp damage patterns, with RNA binding unexpectedly being observed to protect these otherwise highly sensitive residues within the 11 RNA-binding pockets distributed around the outside of the protein molecule. In addition, the method enabled a quantification of the reduction in radiation-induced Lys and Phe disordering upon RNA binding directly from the electron density.« less

  18. RNA protects a nucleoprotein complex against radiation damage

    DOE PAGES

    Bury, Charles S.; McGeehan, John E.; Antson, Alfred A.; ...

    2016-04-26

    Radiation damage during macromolecular X-ray crystallographic data collection is still the main impediment for many macromolecular structure determinations. Even when an eventual model results from the crystallographic pipeline, the manifestations of radiation-induced structural and conformation changes, the so-called specific damage, within crystalline macromolecules can lead to false interpretations of biological mechanisms. Although this has been well characterized within protein crystals, far less is known about specific damage effects within the larger class of nucleoprotein complexes. We developed a methodology whereby per-atom density changes could be quantified with increasing dose over a wide (1.3–25.0 MGy) range and at higher resolution (1.98more » Å) than the previous systematic specific damage study on a protein–DNA complex. Specific damage manifestations were determined within the largetrpRNA-binding attenuation protein (TRAP) bound to a single-stranded RNA that forms a belt around the protein. Over a large dose range, the RNA was found to be far less susceptible to radiation-induced chemical changes than the protein. The availability of two TRAP molecules in the asymmetric unit, of which only one contained bound RNA, allowed a controlled investigation into the exact role of RNA binding in protein specific damage susceptibility. The 11-fold symmetry within each TRAP ring permitted statistically significant analysis of the Glu and Asp damage patterns, with RNA binding unexpectedly being observed to protect these otherwise highly sensitive residues within the 11 RNA-binding pockets distributed around the outside of the protein molecule. In addition, the method enabled a quantification of the reduction in radiation-induced Lys and Phe disordering upon RNA binding directly from the electron density.« less

  19. Time scales of radiation damage decay in four optical materials

    NASA Astrophysics Data System (ADS)

    Grupp, Frank; Geis, Norbert; Katterloher, Reinhard; Bender, Ralf

    2017-09-01

    In the framework of the qualification campaigns for the near infrared spectrometer and photometer instrument (NISP) on board the ESA/EUCLID satellite six optical materials where characterized with respect to their transmission losses after a radiation dose representing the mission exposure to high energy particles in the outer Lagrange point L2. Data was taken between 500 and 2000nm on six 25mm thick coated probes. Thickness and coating being representative for the NISP flight configuration. With this paper we present results owing up the radiation damage shown in [1]. We where able to follow up the decay of the radiation damage over almost one year under ambient conditions. This allows us to distinguish between curing effects that happen on different time-scales. As for some of the materials no radiation damage and thus no curing was detected, all materials that showed significant radiation damage in the measured passband showed two clearly distinguished time scales of curing. Up to 70% of the transmission losses cured on half decay time scales of several tens of days, while the rest of the damage cures on time scales of years.

  20. Acoustic properties of supersonic helium/air jets at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Mclaughlin, Dennis K.; Barron, W. D.; Vaddempudi, Appa R.

    1992-01-01

    Experiments have been performed with the objective of developing a greater understanding of the physics of hot supersonic jet noise. Cold helium/air jets are used to easily and inexpensively simulate the low densities of hot air jets. The experiments are conducted at low Reynolds numbers in order to facilitate study of the large-scale turbulent structures (instability waves) that cause most of the radiated noise. Experiments have been performed on Mach 1.5 and 2.1 jets of pure air, pure helium and 10 percent helium by mass. Helium/air jets are shown to radiate more noise than pure air jets due to the increased exit velocity. Microphone spectra are usually dominated by a single spectral component at a predictable frequency. Increasing the jet's helium concentration is shown to increase the dominant frequency. The helium concentration in the test chamber is determined by calculating the speed of sound from the measured phase difference between two microphone signals. Bleeding outside air into the test chamber controls the accumulation of helium so that the hot jet simulation remains valid. The measured variation in the peak radiated noise frequency is in good agreement with the predictions of the hot jet noise theory of Tam et al.

  1. Radiation damage free ghost diffraction with atomic resolution

    DOE PAGES

    Li, Zheng; Medvedev, Nikita; Chapman, Henry N.; ...

    2017-12-21

    The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less

  2. Radiation damage free ghost diffraction with atomic resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zheng; Medvedev, Nikita; Chapman, Henry N.

    The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less

  3. Spectrum of complex DNA damages depends on the incident radiation

    NASA Astrophysics Data System (ADS)

    Hada, M.; Sutherland, B.

    Ionizing radiation induces clustered DNA damages in DNA-two or more abasic sites oxidized bases and strand breaks on opposite DNA strands within a few helical turns Clustered damages are considered to be difficult to repair and therefore potentially lethal and mutagenic damages Although induction of single strand breaks and isolated lesions has been studied extensively little is known of factors affecting induction of clusters other than double strand breaks DSB The aim of the present study was to determine whether the type of incident radiation could affect yield or spectra of specific clusters Genomic T7 DNA a simple 40 kbp linear blunt-ended molecule was irradiated in non-scavenging buffer conditions with Fe 970 MeV n Ti 980 MeV n C 293 MeV n Si 586 MeV n ions or protons 1 GeV n at the NASA Space Radiation Laboratory or with 100 kVp X-rays Irradiated DNA was treated with homogeneous Fpg or Nfo proteins or without enzyme treatment for DSB quantitation then electrophoresed in neutral agarose gels DSB Fpg-OxyPurine clusters and Nfo-Abasic clusters were quantified by number average length analysis The results show that the yields of all these complex damages depend on the incident radiation Although LETs are similar protons induced twice as many DSBs than did X-rays Further the spectrum of damage also depends on the radiation The yield damage Mbp Gy of all damages decreased with increasing linear energy transfer LET of the radiation The relative frequencies of DSBs to Abasic- and OxyBase clusters were higher

  4. Thermal desorption spectroscopy of high fluence irradiated ultrafine and nanocrystalline tungsten: helium trapping and desorption correlated with morphology

    DOE PAGES

    El-Atwani, Osman; Taylor, Chase N.; Frishkoff, James; ...

    2017-11-09

    Here, microstructural changes due to displacement damage and helium desorption are two phenomena that occur in tungsten plasma facing materials in fusion reactors. Nanocrystalline metals are being investigated as radiation tolerant materials that can mitigate these microstructural changes and better trap helium along their grain boundaries. Here, we investigate the performance of three tungsten grades (nanocrystalline, ultrafine and ITER grade tungsten), exposed to a high fluence of 4 keV helium at both RT and 773 K, during a thermal desorption spectroscopy (TDS) experiment. An investigation of the microstructure in pre-and post-TDS sample sets was performed. The amount of desorbed heliummore » was shown to be highest in the ITER grade tungsten and lowest in the nanocrystalline tungsten. Correlating the desorption spectra and the microstructure (grain boundaries decorated with nanopores and crack formation) and comparing with previous literature on coarse grained tungsten samples at similar irradiation and TDS conditions, revealed the importance of grain boundaries in trapping helium and limiting helium desorption up to a high temperature of 1350 K in agreement with transmission electron microscopy studies on helium irradiated tungsten which showed preferential and large facetted bubble formation along the grain boundaries in the nanocrystalline tungsten grade.« less

  5. Radiation and Thermal Ageing of Nuclear Waste Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, William J

    2014-01-01

    The radioactive decay of fission products and actinides incorporated into nuclear waste glass leads to self-heating and self-radiation effects that may affect the stability, structure and performance of the glass in a closed system. Short-lived fission products cause significant self-heating for the first 600 years. Alpha decay of the actinides leads to self-radiation damage that can be significant after a few hundred years, and over the long time periods of geologic disposal, the accumulation of helium and radiation damage from alpha decay may lead to swelling, microstructural evolution and changes in mechanical properties. Four decades of research on the behaviormore » of nuclear waste glass are reviewed.« less

  6. Soft X-Ray Microscopy Radiation Damage On Fixed Cells Investigated With Synchrotron Radiation FTIR Microscopy.

    PubMed

    Gianoncelli, A; Vaccari, L; Kourousias, G; Cassese, D; Bedolla, D E; Kenig, S; Storici, P; Lazzarino, M; Kiskinova, M

    2015-05-14

    Radiation damage of biological samples remains a limiting factor in high resolution X-ray microscopy (XRM). Several studies have attempted to evaluate the extent and the effects of radiation damage, proposing strategies to minimise or prevent it. The present work aims to assess the impact of soft X-rays on formalin fixed cells on a systematic manner. The novelty of this approach resides on investigating the radiation damage not only with XRM, as often reported in relevant literature on the topic, but by coupling it with two additional independent non-destructive microscopy methods: Atomic Force Microscopy (AFM) and FTIR Microscopy (FTIRM). Human Embryonic Kidney 293 cells were exposed to different radiation doses at 1 keV. In order to reveal possible morphological and biochemical changes, the irradiated cells were systematically analysed with AFM and FTIRM before and after. Results reveal that while cell morphology is not substantially affected, cellular biochemical profile changes significantly and progressively when increasing dose, resulting in a severe breakdown of the covalent bonding network. This information impacts most soft XRM studies on fixed cells and adds an in-depth understanding of the radiation damage for developing better prevention strategies.

  7. Soft X-Ray Microscopy Radiation Damage On Fixed Cells Investigated With Synchrotron Radiation FTIR Microscopy

    PubMed Central

    Gianoncelli, A.; Vaccari, L.; Kourousias, G.; Cassese, D.; Bedolla, D. E.; Kenig, S.; Storici, P.; Lazzarino, M.; Kiskinova, M.

    2015-01-01

    Radiation damage of biological samples remains a limiting factor in high resolution X-ray microscopy (XRM). Several studies have attempted to evaluate the extent and the effects of radiation damage, proposing strategies to minimise or prevent it. The present work aims to assess the impact of soft X-rays on formalin fixed cells on a systematic manner. The novelty of this approach resides on investigating the radiation damage not only with XRM, as often reported in relevant literature on the topic, but by coupling it with two additional independent non-destructive microscopy methods: Atomic Force Microscopy (AFM) and FTIR Microscopy (FTIRM). Human Embryonic Kidney 293 cells were exposed to different radiation doses at 1 keV. In order to reveal possible morphological and biochemical changes, the irradiated cells were systematically analysed with AFM and FTIRM before and after. Results reveal that while cell morphology is not substantially affected, cellular biochemical profile changes significantly and progressively when increasing dose, resulting in a severe breakdown of the covalent bonding network. This information impacts most soft XRM studies on fixed cells and adds an in-depth understanding of the radiation damage for developing better prevention strategies. PMID:25974639

  8. Helium self-trapping and diffusion behaviors in deformed 316L stainless steel exposed to high flux and low energy helium plasma

    NASA Astrophysics Data System (ADS)

    Gong, Yihao; Jin, Shuoxue; Zhu, Te; Cheng, Long; Cao, Xingzhong; You, Li; Lu, Guanghong; Guo, Liping; Wang, Baoyi

    2018-04-01

    A large number of dislocation networks were introduced in to 316L stainless steel by cold rolling. Subsequently, low energy (40 eV) helium ions were implanted by exposing the steel to helium plasma. Thermal desorption and positron annihilation spectroscopy were used to study the behavior of helium in the presence of dislocations, with emphasis on helium self-trapping and migration behaviors. Helium desorption behaviour from different helium trapping states was measured by the thermal desorption spectroscopy. Most of the helium desorbed from the He m V n clusters, and the corresponding desorption peak is located at ~650 K. The desorption peak from helium-dislocation clusters (He m D) is at approximately 805 K. The effect of annealing on the defect evolution was investigated by positron annihilation spectroscopy. For the specimen exposed to helium plasma without displacement damage, the increment of S parameter meant the existence of helium self-trapping behavior (He m V n ). Helium atoms could diffuse two to three orders of magnitude deeper than the implantation depth calculated by SRIM. The diffusing helium atoms were gradually trapped by dislocation lines and formed He m D. Elevated temperatures enhance the self-trapping behavior and cause helium atoms to dissociate/desorb from the He m V n clusters, increasing the S parameters at 473-673 K. The gradual recovery of vacancies in the He m V n clusters decreased the S parameter above 673 K.

  9. UV Radiation Damage and Bacterial DNA Repair Systems

    ERIC Educational Resources Information Center

    Zion, Michal; Guy, Daniel; Yarom, Ruth; Slesak, Michaela

    2006-01-01

    This paper reports on a simple hands-on laboratory procedure for high school students in studying both radiation damage and DNA repair systems in bacteria. The sensitivity to ultra-violet (UV) radiation of both "Escherichia coli" and "Serratia marcescens" is tested by radiating them for varying time periods. Two growth temperatures are used in…

  10. Simulation of radiation damage in minerals by sequential ion irradiations

    NASA Astrophysics Data System (ADS)

    Nakasuga, W. M.; Li, W.; Ewing, R. C.

    2015-12-01

    Radiation effects due to α-decay of U and Th and spontaneous fission of 238U control the production and recovery of the radiation-induced structure of minerals, as well as the diffusion of elements through the mineral host. However, details of how the damage microstructure is produced and annealed remain unknown. Our recent ion beam experiments demonstrate that ionizing radiation from the α-particle recovers the damage structure. Thus, the damage structure is not only the result of the thermal hisotry of the sample, but also of the complex interaction between ionizing and ballistic damage mechanisms. By combining ion irradiations with transmission electron microscopy (TEM), we have simulated the damage produced by α-decay and fission. The α-particle induced annealing has been simulated by in situ TEM observation of consecutive ion-irradiations: i.) 1 MeV Kr2+ (simulating 70 keV α-recoils induced damage), ii.) followed by 400 keV He+ (simulating 4.5 MeV α-particle induced annealing). Thus, in addition to the well-established effects of thermal annealing, the α-particle annealing effects, as evidenced by partical recrystallization of the originally, fully-amorphous apatite upon the α-particle irriadations, should also be considered when evaluating diffusion and release of elements, such as He. In addition, the fission track annealing has been simulated by a new sample preparation method that allows for direct observation of radiation damage recovery at each point along the length of latent tracks created by 80 MeV Xe ions (a typical fission fragment). The initial, rapid reduction in etched track length during isothermal annealing is explained by the rapid annealing of those sections of the track with smaller diameters, as observed directly by in situ TEM. In summary, the atomic-scale investigation of radiation damage in minerals is critical to understanding of the influence of raidation damage on diffusion and kinetics that are fundamental to geochronology.

  11. Electronic effects in high-energy radiation damage in tungsten

    DOE PAGES

    Zarkadoula, Eva; Duffy, Dorothy M.; Nordlund, Kai; ...

    2015-03-13

    Even though the effects of the electronic excitations during high-energy radiation damage processes are not currently understood, it is shown that their role in the interaction of radiation with matter is important. We perform molecular dynamics simulations of high-energy collision cascades in bcc-tungsten using the coupled two-temperature molecular dynamics (2T-MD) model that incorporates both the effects of electronic stopping and electron–phonon interaction. We compare the combination of these effects on the induced damage with only the effect of electronic stopping, and conclude in several novel insights. In the 2T-MD model, the electron–phonon coupling results in less damage production in themore » molten region and in faster relaxation of the damage at short times. We show these two effects lead to a significantly smaller amount of the final damage at longer times.« less

  12. Imperfection and radiation damage in protein crystals studied with coherent radiation

    PubMed Central

    Nave, Colin; Sutton, Geoff; Evans, Gwyndaf; Owen, Robin; Rau, Christoph; Robinson, Ian; Stuart, David Ian

    2016-01-01

    Fringes and speckles occur within diffraction spots when a crystal is illuminated with coherent radiation during X-ray diffraction. The additional information in these features provides insight into the imperfections in the crystal at the sub-micrometre scale. In addition, these features can provide more accurate intensity measurements (e.g. by model-based profile fitting), detwinning (by distinguishing the various components), phasing (by exploiting sampling of the molecular transform) and refinement (by distinguishing regions with different unit-cell parameters). In order to exploit these potential benefits, the features due to coherent diffraction have to be recorded and any change due to radiation damage properly modelled. Initial results from recording coherent diffraction at cryotemperatures from polyhedrin crystals of approximately 2 µm in size are described. These measurements allowed information about the type of crystal imperfections to be obtained at the sub-micrometre level, together with the changes due to radiation damage. PMID:26698068

  13. DNA Damage by Ionizing Radiation: Tandem Double Lesions by Charged Particles

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Wang, Dunyou; Dateo, Christopher E.

    2005-01-01

    Oxidative damages by ionizing radiation are the source of radiation-induced carcinogenesis, damage to the central nervous system, lowering of the immune response, as well as other radiation-induced damages to human health. Monte Carlo track simulations and kinetic modeling of radiation damages to the DNA employ available molecular and cellular data to simulate the biological effect of high and low LET radiation io the DNA. While the simulations predict single and double strand breaks and base damages, so far all complex lesions are the result of stochastic coincidence from independent processes. Tandem double lesions have not yet been taken into account. Unlike the standard double lesions that are produced by two separate attacks by charged particles or radicals, tandem double lesions are produced by one single attack. The standard double lesions dominate at the high dosage regime. On the other hand, tandem double lesions do not depend on stochastic coincidences and become important at the low dosage regime of particular interest to NASA. Tandem double lesions by hydroxyl radical attack of guanine in isolated DNA have been reported at a dosage of radiation as low as 10 Gy. The formation of two tandem base lesions was found to be linear with the applied doses, a characteristic of tandem lesions. However, tandem double lesions from attack by a charged particle have not been reported.

  14. Radiation effects in structural materials of spallation targets

    NASA Astrophysics Data System (ADS)

    Jung, P.

    2002-02-01

    Effects of radiation damage by protons and neutrons in structural materials of spallation neutron sources are reviewed. Effects of atomic displacements, defect mobility and transmutation products, especially hydrogen and helium, on physical and mechanical properties are discussed. The most promising candidate materials (austenitic stainless steels, ferritic/martensitic steels and refractory alloys) are compared, and needed investigations are identified.

  15. ­­­Experimental Quantifications of Radiation Damage Annealing and Helium Diffusion Kinetics in Apatite

    NASA Astrophysics Data System (ADS)

    Willett, C. D.; Shuster, D. L.

    2017-12-01

    (U-Th)/He thermochronology in apatite requires a quantitative description of He diffusivity as a function of temperature and through geologic time. Although variability in diffusion kinetics across a range of natural apatite samples has revealed that higher concentrations of alpha-recoil radiation damage correlates with lower He diffusivity (i.e., at a given temperature, [1]), only one published study has experimentally quantified the effects of annealing for a single apatite specimen (Durango apatite, [2]). Although these effects have been incorporated into now widely applied numerical models, underlying assumptions in these models—in particular, that He diffusivity in all apatite crystals responds with the same rate of damage annealing—have been called into question, and further evaluation is warranted (e.g., [3], [4]). Here, we will describe a suite of experiments conducted on apatite from a single hand sample of granite from Sierra Nevada, CA as well as Durango apatite, to establish whether these two apatites with different chemical compositions and thermal pasts exhibit the same response to annealing conditions. Crystals from both samples were heated under vacuum to temperatures between 220 and 500 °C for 1, 10, 100 or 1000 hours. The samples were then irradiated with 220 MeV protons to produce spallation 3He, the diffusant used in subsequent step-heating degassing experiments. Our preliminary results indicate different minima in closure temperatures of 55 oC and 65 oC for the Durango and Sierra apatite, respectively, when exposed to sufficiently high temperatures (>350 oC) for durations > 1 hour, yet similar transitions from low diffusivities at T <200 oC (and higher activation energy, Ea) to higher diffusivity (lower Ea) across a range of experimental annealing temperatures and durations. We will interpret these results with a new model framework for describing the effects of annealing on diffusivity, and will discuss potential implications of our

  16. Solar wind radiation damage effects in lunar material

    NASA Technical Reports Server (NTRS)

    Hapke, B.; Cohen, A. J.; Cassidy, W. A.

    1971-01-01

    The research on solar wind radiation damage and other effects in lunar samples which was conducted to understand the optical properties of lunar materials is reported. Papers presented include: solar radiation effects in lunar samples, albedo of the moon, radiation effects in lunar crystalline rocks, valence states of 3rd transition elements in Apollo 11 and 12 rocks, and trace ferric iron in lunar and meteoritic titanaugites.

  17. Non-Thermal Electromagnetic Radiation Damage to Lens Epithelium

    PubMed Central

    Bormusov, Elvira; P.Andley, Usha; Sharon, Naomi; Schächter, Levi; Lahav, Assaf; Dovrat, Ahuva

    2008-01-01

    High frequency microwave electromagnetic radiation from mobile phones and other modern devices has the potential to damage eye tissues, but its effect on the lens epithelium is unknown at present. The objective of this study was to investigate the non-thermal effects of high frequency microwave electromagnetic radiation (1.1GHz, 2.22 mW) on the eye lens epithelium in situ. Bovine lenses were incubated in organ culture at 35°C for 10-15 days. A novel computer-controlled microwave source was used to investigate the effects of microwave radiation on the lenses. 58 lenses were used in this study. The lenses were divided into four groups: (1) Control lenses incubated in organ culture for 10 to15 days. (2) Electromagnetic radiation exposure group treated with 1.1 GHz, 2.22 mW microwave radiation for 90 cycles of 50 minutes irradiation followed by 10 minutes pause and cultured up to 10 days. (3) Electromagnetic radiation exposure group treated as group 2 with 192 cycles of radiation and cultured for 15 days. (4) Lenses exposed to 39.5ºC for 2 hours 3 times with 24 hours interval after each treatment beginning on the second day of the culture and cultured for 11 days. During the culture period, lens optical quality was followed daily by a computer-operated scanning laser beam. At the end of the culture period, control and treated lenses were analyzed morphologically and by assessment of the lens epithelial ATPase activity. Exposure to 1.1 GHz, 2.22 mW microwaves caused a reversible decrease in lens optical quality accompanied by irreversible morphological and biochemical damage to the lens epithelial cell layer. The effect of the electromagnetic radiation on the lens epithelium was remarkably different from those of conductive heat. The results of this investigation showed that electromagnetic fields from microwave radiation have a negative impact on the eye lens. The lens damage by electromagnetic fields was distinctly different from that caused by conductive heat. PMID

  18. Damage pattern as a function of radiation quality and other factors.

    PubMed

    Burkart, W; Jung, T; Frasch, G

    1999-01-01

    An understanding of damage pattern in critical cellular structures such as DNA is an important prerequisite for a mechanistic assessment of primary radiation damage, its possible repair, and the propagation of residual changes in somatic and germ cells as potential contributors to disease or ageing. Important quantitative insights have been made recently on the distribution in time and space of critical lesions from direct and indirect action of ionizing radiation on mammalian cells. When compared to damage from chemicals or from spontaneous degradation, e.g. depurination or base deamination in DNA, the potential of even low-LET radiation to create local hot spots of damage from single particle tracks is of utmost importance. This has important repercussions on inferences from critical biological effects at high dose and dose rate exposure situations to health risks at chronic, low-level exposures as experienced in environmental and controlled occupational settings. About 10,000 DNA lesions per human cell nucleus and day from spontaneous degradation and chemical attack cause no apparent effect, but a dose of 4 Gy translating into a similar number of direct and indirect DNA breaks induces acute lethality. Therefore, single lesions cannot explain the high efficiency of ionizing radiation in the induction of mutation, transformation and loss of proliferative capacity. Clustered damage leading to poorly repairable double-strand breaks or even more complex local DNA degradation, correlates better with fixed damage and critical biological endpoints. A comparison with other physical, chemical and biological agents indicates that ionizing radiation is indeed set apart from these by its unique micro- and nano-dosimetric traits. Only a few other agents such as bleomycin have a similar potential to cause complex damage from single events. However, in view of the multi-stage mechanism of carcinogenesis, it is still an open question whether dose-effect linearity for complex

  19. Studying Radiation Damage in Structural Materials by Using Ion Accelerators

    NASA Astrophysics Data System (ADS)

    Hosemann, Peter

    2011-02-01

    Radiation damage in structural materials is of major concern and a limiting factor for a wide range of engineering and scientific applications, including nuclear power production, medical applications, or components for scientific radiation sources. The usefulness of these applications is largely limited by the damage a material can sustain in the extreme environments of radiation, temperature, stress, and fatigue, over long periods of time. Although a wide range of materials has been extensively studied in nuclear reactors and neutron spallation sources since the beginning of the nuclear age, ion beam irradiations using particle accelerators are a more cost-effective alternative to study radiation damage in materials in a rather short period of time, allowing researchers to gain fundamental insights into the damage processes and to estimate the property changes due to irradiation. However, the comparison of results gained from ion beam irradiation, large-scale neutron irradiation, and a variety of experimental setups is not straightforward, and several effects have to be taken into account. It is the intention of this article to introduce the reader to the basic phenomena taking place and to point out the differences between classic reactor irradiations and ion irradiations. It will also provide an assessment of how accelerator-based ion beam irradiation is used today to gain insight into the damage in structural materials for large-scale engineering applications.

  20. Identifying and managing radiation damage during in situ transmission x-ray microscopy of Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Nelson, Johanna; Yang, Yuan; Misra, Sumohan; Andrews, Joy C.; Cui, Yi; Toney, Michael F.

    2013-09-01

    Radiation damage is a topic typically sidestepped in formal discussions of characterization techniques utilizing ionizing radiation. Nevertheless, such damage is critical to consider when planning and performing experiments requiring large radiation doses or radiation sensitive samples. High resolution, in situ transmission X-ray microscopy of Li-ion batteries involves both large X-ray doses and radiation sensitive samples. To successfully identify changes over time solely due to an applied current, the effects of radiation damage must be identified and avoided. Although radiation damage is often significantly sample and instrument dependent, the general procedure to identify and minimize damage is transferable. Here we outline our method of determining and managing the radiation damage observed in lithium sulfur batteries during in situ X-ray imaging on the transmission X-ray microscope at Stanford Synchrotron Radiation Lightsource.

  1. Online Simulation of Radiation Track Structure Project

    NASA Technical Reports Server (NTRS)

    Plante, Ianik

    2015-01-01

    Space radiation comprises protons, helium and high charged and energy (HZE) particles. High-energy particles are a concern for human space flight, because they are no known options for shielding astronauts from them. When these ions interact with matter, they damage molecules and create radiolytic species. The pattern of energy deposition and positions of the radiolytic species, called radiation track structure, is highly dependent on the charge and energy of the ion. The radiolytic species damage biological molecules, which may lead to several long-term health effects such as cancer. Because of the importance of heavy ions, the radiation community is very interested in the interaction of HZE particles with DNA, notably with regards to the track structure. A desktop program named RITRACKS was developed to simulate radiation track structure. The goal of this project is to create a web interface to allow registered internal users to use RITRACKS remotely.

  2. Modelling radiation damage to ESA's Gaia satellite CCDs

    NASA Astrophysics Data System (ADS)

    Seabroke, George; Holland, Andrew; Cropper, Mark

    2008-07-01

    The Gaia satellite is a high-precision astrometry, photometry and spectroscopic ESA cornerstone mission, currently scheduled for launch in late 2011. Its primary science drivers are the composition, formation and evolution of the Galaxy. Gaia will not achieve its scientific requirements without detailed calibration and correction for radiation damage. Microscopic models of Gaia's CCDs are being developed to simulate the effect of radiation damage, charge trapping, which causes charge transfer inefficiency. The key to calculating the probability of a photoelectron being captured by a trap is the 3D electron density within each CCD pixel. However, this has not been physically modelled for Gaia CCD pixels. In this paper, the first of a series, we motivate the need for such specialised 3D device modelling and outline how its future results will fit into Gaia's overall radiation calibration strategy.

  3. Experimental study of the effects of helium-neon laser radiation on repair of injured tendon

    NASA Astrophysics Data System (ADS)

    Xu, Yong-Qing; Li, Zhu-Yi; Weng, Long-Jiang; An, Mei; Li, Kai-Yun; Chen, Shao-Rong; Wang, Jian-Xin; Lu, Yu

    1993-03-01

    Despite extensive research into the biology of tendon healing, predictably restoring normal function to a digit after a flexor tendon laceration remains one of the most difficult problems facing the hand surgeon. The challenge of simultaneously achieving tendon healing while minimizing the peritendinous scar formation, which limits tendon gliding, has captured the attention of investigators for many years. It has been said that low-power density helium-neon laser radiation had effects on anti-inflammation, detumescence, progressive wound healing, and reducing intestinal adhesions. This experimental study aims at whether helium-neon laser can reduce injured tendon adhesions and improve functional recovery of the injured tendon. Fifty white Leghorn hens were used. Ten were randomly assigned as a normal control group, the other forty were used in the operation. After anesthetizing them with Amytal, a half of the profundus tendons of the second and third foretoes on both sides of the feet were cut. Postoperatively, the hens moved freely in the cages. One side of the toes operated on were randomly chosen as a treatment group, the other side served as an untreated control group. The injured tendon toes in the treatment group were irradiated for twenty minutes daily with a fiber light needle of helium-neon laser therapeutic apparatus (wavelength, 6328 angstroms) at a constant power density of 12.74 mW/cm2, the first exposure taking place 24 hours after the operation. The longest course of treatment was 3 weeks. The control group was not irradiated. At 3 days, 1, 2, 3, and 5 weeks after surgery, 8 hens were sacrificed and their tendons were examined. The experimental results: (1) active, passive flexion and tendon gliding functional recovery were significantly better in the treatment group (p < 0.01); (2) width and thickness of the tendon at the cut site were significantly smaller in the treatment group (p < 0.01); (3) degrees of tendon adhesions were significantly lighter

  4. Helium diffusion in the sun

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Pinsonneault, M. H.

    1992-01-01

    We calculate improved standard solar models using the new Livermore (OPAL) opacity tables, an accurate (exportable) nuclear energy generation routine which takes account of recent measurements and analyses, and the recent Anders-Grevesse determination of heavy element abundances. We also evaluate directly the effect of the diffusion of helium with respect to hydrogen on the calculated neutrino fluxes, on the primordial solar helium abundance, and on the depth of the convective zone. Helium diffusion increases the predicted event rates by about 0.8 SNU, or 11 percent of the total rate, in the chlorine solar neutrino experiment, by about 3.5 SNU, or 3 percent, in the gallium solar neutrino experiments, and by about 12 percent in the Kamiokande and SNO solar neutrino experiments. The best standard solar model including helium diffusion and the most accurate nuclear parameters, element abundances, and radiative opacity predicts a value of 8.0 SNU +/- 3.0 SNU for the C1-37 experiment and 132 +21/-17 SNU for the Ga - 71 experiment, where the uncertainties include 3 sigma errors for all measured input parameters.

  5. Damage-tolerant nanotwinned metals with nanovoids under radiation environments

    PubMed Central

    Chen, Y.; Yu, K Y.; Liu, Y.; Shao, S.; Wang, H.; Kirk, M. A.; Wang, J.; Zhang, X.

    2015-01-01

    Material performance in extreme radiation environments is central to the design of future nuclear reactors. Radiation induces significant damage in the form of dislocation loops and voids in irradiated materials, and continuous radiation often leads to void growth and subsequent void swelling in metals with low stacking fault energy. Here we show that by using in situ heavy ion irradiation in a transmission electron microscope, pre-introduced nanovoids in nanotwinned Cu efficiently absorb radiation-induced defects accompanied by gradual elimination of nanovoids, enhancing radiation tolerance of Cu. In situ studies and atomistic simulations reveal that such remarkable self-healing capability stems from high density of coherent and incoherent twin boundaries that rapidly capture and transport point defects and dislocation loops to nanovoids, which act as storage bins for interstitial loops. This study describes a counterintuitive yet significant concept: deliberate introduction of nanovoids in conjunction with nanotwins enables unprecedented damage tolerance in metallic materials. PMID:25906997

  6. Damage-tolerant nanotwinned metals with nanovoids under radiation environments.

    PubMed

    Chen, Y; Yu, K Y; Liu, Y; Shao, S; Wang, H; Kirk, M A; Wang, J; Zhang, X

    2015-04-24

    Material performance in extreme radiation environments is central to the design of future nuclear reactors. Radiation induces significant damage in the form of dislocation loops and voids in irradiated materials, and continuous radiation often leads to void growth and subsequent void swelling in metals with low stacking fault energy. Here we show that by using in situ heavy ion irradiation in a transmission electron microscope, pre-introduced nanovoids in nanotwinned Cu efficiently absorb radiation-induced defects accompanied by gradual elimination of nanovoids, enhancing radiation tolerance of Cu. In situ studies and atomistic simulations reveal that such remarkable self-healing capability stems from high density of coherent and incoherent twin boundaries that rapidly capture and transport point defects and dislocation loops to nanovoids, which act as storage bins for interstitial loops. This study describes a counterintuitive yet significant concept: deliberate introduction of nanovoids in conjunction with nanotwins enables unprecedented damage tolerance in metallic materials.

  7. Damage-tolerant nanotwinned metals with nanovoids under radiation environments

    DOE PAGES

    Chen, Y.; Yu, K. Y.; Liu, Y.; ...

    2015-04-24

    Material performance in extreme radiation environments is central to the design of future nuclear reactors. Radiation induces significant damage in the form of dislocation loops and voids in irradiated materials, and continuous radiation often leads to void growth and subsequent void swelling in metals with low stacking fault energy. Here we show that by using in situ heavy ion irradiation in a transmission electron microscope, pre-introduced nanovoids in nanotwinned Cu efficiently absorb radiation-induced defects accompanied by gradual elimination of nanovoids, enhancing radiation tolerance of Cu. In situ studies and atomistic simulations reveal that such remarkable self-healing capability stems from highmore » density of coherent and incoherent twin boundaries that rapidly capture and transport point defects and dislocation loops to nanovoids, which act as storage bins for interstitial loops. This study describes a counterintuitive yet significant concept: deliberate introduction of nanovoids in conjunction with nanotwins enables unprecedented damage tolerance in metallic materials.« less

  8. Low-dose environmental radiation, DNA damage, and cancer: the possible contribution of psychological factors.

    PubMed

    Cwikel, Julie G; Gidron, Yori; Quastel, Michael

    2010-01-01

    Radiation causes DNA damage, increases risk of cancer, and is associated with psychological stress responses. This article proposes an evidence-based integrative model in which psychological factors could interact with radiation by either augmenting or moderating the adverse effects of radiation on DNA integrity and eventual tumorigenesis. Based on a review of the literature, we demonstrate the following: (1) the effects of low-dose radiation exposures on DNA integrity and on tumorigenesis; (2) the effects of low-dose radiation exposure on psychological distress; (3) the relationship between psychological factors and DNA damage; and (4) the possibility that psychological stress augments and that psychological resource variables moderate radiation-induced DNA damage and risk of cancer. The additional contribution of psychological processes to radiation-DNA damage-cancer relationships needs further study, and if verified, has clinical implications.

  9. Structural changes of Ti3SiC2 induced by helium irradiation with different doses

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Su, Ranran; Shi, Liqun; O'Connor, Daryl J.; Wen, Haiming

    2018-03-01

    In this study, the microstructure changes of Ti3SiC2 MAX phase material induced by helium irradiation and evolution with a sequence of different helium irradiation doses of 5 × 1015, 1 × 1016, 5 × 1016 and 1 × 1017 cm-2 at room temperature (RT) were characterized with grazing incidence X-ray diffraction (GIXRD) and Raman spectra analysis. The irradiation damage process of Ti3SiC2 can be roughly divided into three stages according to the level of helium irradiation dose: (1) for a low damage dose, only crystal and damaged Ti3SiC2 exit; (2) at a higher irradiation dose, there is some damaged TiC phase additionally; (3) with a much higher irradiation dose, crystal TiC phase could be found inside the samples as well. Moreover, the 450 °C 5 × 1016 cm-2 helium irradiation on Ti3SiC2 has confirmed that Ti3SiC2 has much higher irradiation tolerance at higher temperature, which implies that Ti3SiC2 could be a potential future structural and fuel coating material working at high temperature environments.

  10. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis.

    PubMed

    Mavragani, Ifigeneia V; Nikitaki, Zacharenia; Souli, Maria P; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy; Georgakilas, Alexandros G

    2017-07-18

    Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15-20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent "danger" signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.

  11. Measurements of DNA Damage and Repair in Bacillus anthracis Sterne Spores by UV Radiation

    DTIC Science & Technology

    2014-09-18

    MEASUREMENTS OF DNA DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION...AFIT-ENP-T-14-S-01 MEASUREMENTS OF DNA DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION THESIS Presented to the... DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION Chelsea C. Marcum, BS Approved

  12. Effect of Rosiglitazone on Radiation Damage in Bone Marrow Hemopoiesis

    NASA Astrophysics Data System (ADS)

    Benkő, Klára; Pintye, Éva; Szabó, Boglárka; Géresi, Krisztina; Megyeri, Attila; Benkő, Ilona

    2008-12-01

    To study radiobiological effects and drugs, which can modify radiation injury, has an importance if we would like to avoid harmful effects of radiation due to emergency situations or treat patients with malignant diseases by radiotherapy. During the long treatment schedules patients may be treated by not only anticancer but many other drugs because of accompanying diseases. These drugs may also modify radiobiological effects. Rosiglitazone pre-treatment proved to be myeloprotective and accelerated recovery of 5-fluorouracil-damaged bone marrow in our previous experiments. Our new studies are designed to evaluate whether rosiglitazone has similar beneficial effects in radiation-damaged hemopoiesis. Bone marrow damage was precipitated by total body irradiation (TBI) using single increasing doses (2-10 Gy) of γ—irradiation in groups of mice. Lethality was well correlated with damage in hemopoiesis measured by cellularity of bone marrow (LD50 values were 4.8 and 5.3 gray respectively). Rosiglitazone, an insulin-sensitizing drug, had no significant effect on bone marrow cellularity. Insulin resistance associated with obesity or diabetes mellitus type 2 is intensively growing among cancer patients requiring some kind of radiotherapy. Therefore it is important to know whether drugs used for their therapy can modify radiation effects.

  13. Electron beam induced radiation damage in the catalyst layer of a proton exchange membrane fuel cell.

    PubMed

    He, Qianping; Chen, Jihua; Keffer, David J; Joy, David C

    2014-01-01

    Electron microscopy is an essential tool for the evaluation of microstructure and properties of the catalyst layer (CL) of proton exchange membrane fuel cells (PEMFCs). However, electron microscopy has one unavoidable drawback, which is radiation damage. Samples suffer temporary or permanent change of the surface or bulk structure under radiation damage, which can cause ambiguity in the characterization of the sample. To better understand the mechanism of radiation damage of CL samples and to be able to separate the morphological features intrinsic to the material from the consequences of electron radiation damage, a series of experiments based on high-angle annular dark-field-scanning transmission scanning microscope (HAADF-STEM), energy filtering transmission scanning microscope (EFTEM), and electron energy loss spectrum (EELS) are conducted. It is observed that for thin samples (0.3-1 times λ), increasing the incident beam energy can mitigate the radiation damage. Platinum nanoparticles in the CL sample facilitate the radiation damage. The radiation damage of the catalyst sample starts from the interface of Pt/C or defective thin edge and primarily occurs in the form of mass loss accompanied by atomic displacement and edge curl. These results provide important insights on the mechanism of CL radiation damage. Possible strategies of mitigating the radiation damage are provided. © 2013 Wiley Periodicals, Inc.

  14. Chronic intermittent hypobaric hypoxia attenuates radiation induced heart damage in rats.

    PubMed

    Wang, Jun; Wu, Yajing; Yuan, Fang; Liu, Yixian; Wang, Xuefeng; Cao, Feng; Zhang, Yi; Wang, Sheng

    2016-09-01

    Radiation-induced heart damage (RIHD) is becoming an increasing concern for patients and clinicians due to the use of radiotherapy for thoracic tumor. Chronic intermittent hypobaric hypoxia (CIHH) preconditioning has been documented to exert a cardioprotective effect. Here we hypothesized that CIHH was capable of attenuating functional and structural damage in a rat model of RIHD. Male adult Sprague-Dawley rats were randomly divided into 4 groups: control, radiation, CIHH and CIHH plus radiation. Cardiac function was measured using Langendorff perfusion in in vitro rat hearts. Cardiac fibrosis, oxidative stress and endoplasmic reticulum stress (ERS) was assessed by quantitative analysis of protein expression. No significant difference between any two groups was observed in baseline cardiac function as assessed by left ventricular end diastolic pressure (LVEDP), left ventricular developing pressure (LVDP) and the derivative of left ventricular pressure (±LVdp/dt). When challenged by ischemia/reperfusion, LVEDP was increased but LVDP and ±LVdp/dt was decreased significantly in radiation group compared with controls, accompanied by an enlarged infarct size and decreased coronary flow. Importantly, CIHH dramatically improved radiation-induced damage of cardiac function and blunted radiation-induced cardiac fibrosis in the perivascular and interstitial area. Furthermore, CIHH abrogated radiation-induced increase in malondialdehyde and enhanced total superoxide dismutase activity, as well as downregulated expression levels of ERS markers like GRP78 and CHOP. CIHH pretreatment alleviated radiation-induced damage of cardiac function and fibrosis. Such a protective effect was closely associated with suppression of oxidative stress and ERS responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Photoprotection beyond ultraviolet radiation--effective sun protection has to include protection against infrared A radiation-induced skin damage.

    PubMed

    Schroeder, P; Calles, C; Benesova, T; Macaluso, F; Krutmann, J

    2010-01-01

    Solar radiation is well known to damage human skin, for example by causing premature skin ageing (i.e. photoageing). We have recently learned that this damage does not result from ultraviolet (UV) radiation alone, but also from longer wavelengths, in particular near-infrared radiation (IRA radiation, 760-1,440 nm). IRA radiation accounts for more than one third of the solar energy that reaches human skin. While infrared radiation of longer wavelengths (IRB and IRC) does not penetrate deeply into the skin, more than 65% of the shorter wavelength (IRA) reaches the dermis. IRA radiation has been demonstrated to alter the collagen equilibrium of the dermal extracellular matrix in at least two ways: (a) by leading to an increased expression of the collagen-degrading enzyme matrix metalloproteinase 1, and (b) by decreasing the de novo synthesis of the collagen itself. IRA radiation exposure therefore induces similar biological effects to UV radiation, but the underlying mechanisms are substantially different, specifically, the cellular response to IRA irradiation involves the mitochondrial electron transport chain. Effective sun protection requires specific strategies to prevent IRA radiation-induced skin damage. 2010 S. Karger AG, Basel.

  16. Modelling and Holographic Visualization of Space Radiation-Induced DNA Damage

    NASA Technical Reports Server (NTRS)

    Plante, Ianik

    2017-01-01

    Space radiation is composed by a mixture of ions of different energies. Among these, heavy inos are of particular importance because their health effects are poorly understood. In. the recent years, a software named RITRACKS (Relativistic Ion Tracks) was developed to simulate the detailed radiation track structure, several DNA models and DNA damage. As the DNA structure is complex due to packing, it is difficult to the damage using a regular computer screen.

  17. Gallium arsenide solar cell radiation damage study

    NASA Technical Reports Server (NTRS)

    Maurer, R. H.; Herbert, G. A.; Kinnison, J. D.; Meulenberg, A.

    1989-01-01

    A thorough analysis has been made of electron- and proton- damaged GaAs solar cells suitable for use in space. It is found that, although some electrical parametric data and spectral response data are quite similar, the type of damage due to the two types of radiation is different. An I-V analysis model shows that electrons damage the bulk of the cell and its currents relatively more, while protons damage the junction of the cell and its voltages more. It is suggested that multiple defects due to protons in a strong field region such as a p/n junction cause the greater degradation in cell voltage, whereas the individual point defects in the quasi-neutral minority-carrier-diffusion regions due to electrons cause the greater degradation in cell current and spectral response.

  18. Nonuniform radiation damage in permanent magnet quadrupoles.

    PubMed

    Danly, C R; Merrill, F E; Barlow, D; Mariam, F G

    2014-08-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  19. Modeling Space Radiation with Radiomimetic Agent Bleomycin

    NASA Technical Reports Server (NTRS)

    Lu, Tao

    2017-01-01

    Space radiation consists of proton and helium from solar particle events (SPE) and high energy heavy ions from galactic cosmic ray (GCR). This mixture of radiation with particles at different energy levels has different effects on biological systems. Currently, majority studies of radiation effects on human were based on single-source radiation due to the limitation of available method to model effects of space radiation on living organisms. While NASA Space Radiation Laboratory is working on advanced switches to make it possible to have a mixed field radiation with particles of different energies, the radiation source will be limited. Development of an easily available experimental model for studying effects of mixed field radiation could greatly speed up our progress in our understanding the molecular mechanisms of damage and responses from exposure to space radiation, and facilitate the discovery of protection and countermeasures against space radiation, which is critical for the mission to Mars. Bleomycin, a radiomimetic agent, has been widely used to study radiation induced DNA damage and cellular responses. Previously, bleomycin was often compared to low low Linear Energy Transfer (LET) gamma radiation without defined characteristics. Our recent work demonstrated that bleomycin could induce complex clustered DNA damage in human fibroblasts that is similar to DNA damage induced by high LET radiation. These type of DNA damage is difficult to repair and can be visualized by gamma-H2Ax staining weeks after the initial insult. The survival ratio between early and late plating of human fibroblasts after bleomycin treatment is between low LET and high LET radiation. Our results suggest that bleomycin induces DNA damage and other cellular stresses resembling those resulted from mixed field radiation with both low and high LET particles. We hypothesize that bleomycin could be used to mimic space radiation in biological systems. Potential advantages and limitations of

  20. Visualizing the Search for Radiation-damaged DNA Bases in Real Time.

    PubMed

    Lee, Andrea J; Wallace, Susan S

    2016-11-01

    The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.

  1. Visualizing the search for radiation-damaged DNA bases in real time

    NASA Astrophysics Data System (ADS)

    Lee, Andrea J.; Wallace, Susan S.

    2016-11-01

    The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.

  2. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis

    PubMed Central

    Mavragani, Ifigeneia V.; Nikitaki, Zacharenia; Souli, Maria P.; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy

    2017-01-01

    Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair. PMID:28718816

  3. Conformational variation of proteins at room temperature is not dominated by radiation damage

    DOE PAGES

    Russi, Silvia; González, Ana; Kenner, Lillian R.; ...

    2017-01-01

    Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature havemore » not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins ( T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 10 7 Gy at 100 K and 10 5 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. Lastly, this analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite

  4. Conformational variation of proteins at room temperature is not dominated by radiation damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russi, Silvia; González, Ana; Kenner, Lillian R.

    Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature havemore » not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins ( T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 10 7 Gy at 100 K and 10 5 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. Lastly, this analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite

  5. Low-power-laser therapy used in tendon damage

    NASA Astrophysics Data System (ADS)

    Strupinska, Ewa

    1996-03-01

    The following paper covers evaluation of low-power laser therapy results in chronic Achilles tendon damage and external Epicondylalia (tennis elbow). Fifty patients with Achilles damage (18 women and 32 men, age average 30, 24 plus or minus 10, 39 years) and fifty patients having external Epicondyalgiae (31 women and 19 men, age average 44, 36 plus or minus 10, 88 years) have been examined. The patients were irradiated by semiconductor infrared laser wavelength 904 nm separately or together with helium-neon laser wavelength 632.8 nm. The results of therapy have been based on the patient's interviews and examinations of patients as well as on the Laitinen pain questionnaire. The results prove analgesic effects in usage of low- power laser radiation therapy can be obtained.

  6. Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation

    NASA Technical Reports Server (NTRS)

    Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan

    2002-01-01

    Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.

  7. Clustered DNA damages induced by high and low LET radiation, including heavy ions

    NASA Technical Reports Server (NTRS)

    Sutherland, B. M.; Bennett, P. V.; Schenk, H.; Sidorkina, O.; Laval, J.; Trunk, J.; Monteleone, D.; Sutherland, J.; Lowenstein, D. I. (Principal Investigator)

    2001-01-01

    Clustered DNA damages--here defined as two or more lesions (strand breaks, oxidized purines, oxidized pyrimidines or abasic sites) within a few helical turns--have been postulated as difficult to repair accurately, and thus highly significant biological lesions. Further, attempted repair of clusters may produce double strand breaks (DSBs). However, until recently, there was no way to measure ionizing radiation-induced clustered damages, except DSB. We recently described an approach for measuring classes of clustered damages (oxidized purine clusters, oxidized pyrimidine clusters, abasic clusters, along with DSB). We showed that ionizing radiation (gamma rays and Fe ions, 1 GeV/amu) does induce such clusters in genomic DNA in solution and in human cells. These studies also showed that each damage cluster results from one radiation hit (and its track), thus indicating that they can be induced by very low doses of radiation, i.e. two independent hits are not required for cluster induction. Further, among all complex damages, double strand breaks comprise--at most-- 20%, with the other clustered damages being at least 80%.

  8. Future Radiation Damage in Space due to South Atlantic Anomaly

    NASA Technical Reports Server (NTRS)

    Heirtzler, J. R.

    1999-01-01

    Predictions of radiation damage for Low Earth Orbit (LEO) satellites now use semi-empirical models developed from prior satellite data. From these models it is clear that the low field strength of the South Atlantic Anomaly (SAA) controls where the maximum radiation damage occurs. One may make an estimate of future radiation damage to LEO spacecraft if one can predict the future of the SAA. Although reliable maps of the geomagnetic field strength and its secular change have only been made in the last few decades, certain geomagnetic observatories in South America and Africa have recorded the geomagnetic field for a much longer time. These observatories show that the present geomagnetic field change has persisted for more than 100 years. In spite of the fact that a few observatories have shown sudden changes in secular variation, those around the SAA have shown a stable secular variation. Assuming that this will continue for the next 50 to 100 years one can show that the SAA will expand to cover most of the South Atlantic Ocean and will become much weaker. This will greatly intensify the radiation hazard in LEO, put significant new limitations on radiation-hardened hardware, severely restrict the length of time that humans can remain in orbit, and materially change the configuration of the radiation belts.

  9. GUI to Facilitate Research on Biological Damage from Radiation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Frances A.; Ponomarev, Artem Lvovich

    2010-01-01

    A graphical-user-interface (GUI) computer program has been developed to facilitate research on the damage caused by highly energetic particles and photons impinging on living organisms. The program brings together, into one computational workspace, computer codes that have been developed over the years, plus codes that will be developed during the foreseeable future, to address diverse aspects of radiation damage. These include codes that implement radiation-track models, codes for biophysical models of breakage of deoxyribonucleic acid (DNA) by radiation, pattern-recognition programs for extracting quantitative information from biological assays, and image-processing programs that aid visualization of DNA breaks. The radiation-track models are based on transport models of interactions of radiation with matter and solution of the Boltzmann transport equation by use of both theoretical and numerical models. The biophysical models of breakage of DNA by radiation include biopolymer coarse-grained and atomistic models of DNA, stochastic- process models of deposition of energy, and Markov-based probabilistic models of placement of double-strand breaks in DNA. The program is designed for use in the NT, 95, 98, 2000, ME, and XP variants of the Windows operating system.

  10. Effects of displacement damage and helium production rates on the nucleation and growth of helium bubbles - Positron annihilation spectroscopy aspects

    NASA Astrophysics Data System (ADS)

    Krsjak, Vladimir; Degmova, Jarmila; Sojak, Stanislav; Slugen, Vladimir

    2018-02-01

    Fe-12 wt% Cr model alloy samples were implanted by 250 keV He2+ ions to three different fluencies (3 × 1017, 9 × 1017 and 1.5 × 1018 cm-2) at T < 100 °C. In a depth profile manner, the implantation impact according to defined peak profile was investigated using variable energy slow positrons, with the primary focus on the 2-13 dpa region. The obtained data were compared to published data on Optifer IX steel samples [1] irradiated in the frame of a two-years irradiation program of the Swiss Spallation Neutron Source. Bi-modal defect distribution represented by two defect components in positron lifetime spectrum reveals two distinct helium bubbles growth mechanisms. While at the lower helium production rate of the spallation environment, the bubbles grow primarily by migration and coalescence, at the high production rates of helium in the implanted samples, the results indicate this growth is driven by Ostwald ripening mechanism. A competitive growth process via emission of interstitial atoms (clusters) is discussed in terms of low-temperature He implantations.

  11. DNA damage in cells exhibiting radiation-induced genomic instability

    DOE PAGES

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less

  12. Helium-Shrouded Planets Artist Concept

    NASA Image and Video Library

    2015-06-11

    Planets having atmospheres rich in helium may be common in our galaxy, according to a new theory based on data from NASA's Spitzer Space Telescope. These planets would be around the mass of Neptune, or lighter, and would orbit close to their stars, basking in their searing heat. According to the new theory, radiation from the stars would boil off hydrogen in the planets' atmospheres. Both hydrogen and helium are common ingredients of gas planets like these. Hydrogen is lighter than helium and thus more likely to escape. After billions of years of losing hydrogen, the planet's atmosphere would become enriched with helium. Scientists predict the planets would appear covered in white or gray clouds. This is in contrast to our own Neptune, which is blue due to the presence of methane. Methane absorbs the color red, leaving blue. Neptune is far from our sun and hasn't lost its hydrogen. The hydrogen bonds with carbon to form methane. This artist's concept depicts a proposed helium-atmosphere planet called GJ 436b, which was found by Spitzer to lack in methane -- a first clue about its lack of hydrogen. The planet orbits every 2.6 days around its star, which is cooler than our sun and thus appears more yellow-orange in color. http://photojournal.jpl.nasa.gov/catalog/PIA19344

  13. Radiation-Induced Liver Damage: Correlation of Histopathology with Hepatobiliary Magnetic Resonance Imaging, a Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidensticker, Max, E-mail: max.seidensticker@med.ovgu.de; Burak, Miroslaw; Kalinski, Thomas

    PurposeRadiotherapy of liver malignancies shows promising results (radioembolization, stereotactic irradiation, interstitial brachytherapy). Regardless of the route of application, a certain amount of nontumorous liver parenchyma will be collaterally damaged by radiation. The functional reserve may be significantly reduced with an impact on further treatment planning. Monitoring of radiation-induced liver damage by imaging is neither established nor validated. We performed an analysis to correlate the histopathological presence of radiation-induced liver damage with functional magnetic resonance imaging (MRI) utilizing hepatobiliary contrast media (Gd-BOPTA).MethodsPatients undergoing local high-dose-rate brachytherapy for whom a follow-up hepatobiliary MRI within 120 days after radiotherapy as well as an evaluablemore » liver biopsy from radiation-exposed liver tissue within 7 days before MRI were retrospectively identified. Planning computed tomography (CT)/dosimetry was merged to the CT-documentation of the liver biopsy and to the MRI. Presence/absence of radiation-induced liver damage (histopathology) and Gd-BOPTA uptake (MRI) as well as the dose applied during brachytherapy at the site of tissue sampling was determined.ResultsFourteen biopsies from eight patients were evaluated. In all cases with histopathological evidence of radiation-induced liver damage (n = 11), no uptake of Gd-BOPTA was seen. In the remaining three, cases no radiation-induced liver damage but Gd-BOPTA uptake was seen. Presence of radiation-induced liver damage and absence of Gd-BOPTA uptake was correlated with a former high-dose exposition.ConclusionsAbsence of hepatobiliary MRI contrast media uptake in radiation-exposed liver parenchyma may indicate radiation-induced liver damage. Confirmatory studies are warranted.« less

  14. Understanding radiation damage on sub-cellular scale using RADAMOL simulation tool

    NASA Astrophysics Data System (ADS)

    Štěpán, Václav; Davídková, Marie

    2016-11-01

    We present an overview of the biophysical model RADAMOL developed as a Monte Carlo simulation tool for physical, physico-chemical and chemical stages of ionizing radiation action. Direct and indirect radiation damage by 10 keV electrons, and protons and alpha particles with energies from 1 MeV up to 30 MeV to a free DNA oligomer or DNA in the complex with lac repressor protein is analyzed. The role of radiation type and energy, oxygen concentration and DNA interaction with proteins on yields and distributions of primary biomolecular damage is demonstrated and discussed.

  15. Effects of different levels of vitamin C on UV radiation-induced DNA damage

    NASA Astrophysics Data System (ADS)

    Zhou, Dianfeng; Heng, Hang; Ji, Kang; Ke, Weizhong

    2005-05-01

    The Raman spectra of DNA in different levels of vitamin C with 10- and 30-min ultraviolet (UV) radiations were reported. The intensity of UV radiation was 18.68 W/m2. The experimental results proved that vitamin C could alone prevent UV radiation from damaging DNA, but the effects depended on the concentration of vitamin C. When the concentration of vitamin C was about 0.08-0.4 mmol/L, vitamin C decreased UV radiation-induced DNA's damage. When the concentration of vitamin C exceeded 0.4 mmol/L, vitamin C accelerated DNA's damage instead. Maybe the reason is that when DNA in aqueous solution is radiated by UV, free radicals come into being, and vitamin C can scavenge free radicals, so vitamin C in lower concentration can protect DNA. The quantity of free radicals is finite, when vitamin C is superfluous, free radicals have been scavenged absolutely and vitamin C is residual. Vitamin C is a strong reductant. When the mixture of DNA and residual vitamin C is radiated by UV, vitamin C reacts with DNA. The more residual vitamin C and the longer time of UV radiation, the more DNA is damaged.

  16. Mechanical property changes induced in structural alloys by neutron irradiations with different helium to displacement ratios*1

    NASA Astrophysics Data System (ADS)

    Mansur, L. K.; Grossbeck, M. L.

    1988-07-01

    Effects of helium on mechanical properties of irradiated structural materials are reviewed. In particular, variations in response to the ratio of helium to displacement damage serve as the focus. Ductility in creep and tensile tests is emphasized. A variety of early work has led to the current concentration on helium effects for fusion reactor materials applications. A battery of techniques has been developed by which the helium to displacement ratio can be varied. Our main discussion is devoted to the techniques of spectral tailoring and isotopic alloying currently of interest for mixed-spectrum reactors. Theoretical models of physical mechanisms by which helium interacts with displacement damage have been developed in terms of hardening to dislocation motion and grain boundary cavitation. Austenitic stainless steels, ferritic/martensitic steels and vanadium alloys are considered. In each case, work at low strain rates, where the main problems may lie, at the helium to displacement ratios appropriate to fusion reactor materials is lacking. Recent experimental evidence suggests that both in-reactor and high helium results may differ substantially from post-irradiation or low helium results. It is suggested that work in these areas is especially needed.

  17. Investigation of radiation damage tolerance in interface-containing metallic nano structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greer, Julia R.

    The proposed work seeks to conduct a basic study by applying experimental and computational methods to obtain quantitative influence of helium sink strength and proximity on He bubble nucleation and growth in He-irradiated nano-scale metallic structures, and the ensuing deformation mechanisms and mechanical properties. We utilized a combination of nano-scale in-situ tension and compression experiments on low-energy He-irradiated samples combined with site-specific microstructural characterization and modeling efforts. We also investigated the mechanical deformation of nano-architected materials, i.e. nanolattices which are comprised of 3-dimensional interwoven networks of hollow tubes, with the wall thickness in the nanometer range. This systematic approach willmore » provide us with critical information for identifying key factors that govern He bubble nucleation and growth upon irradiation as a function of both sink strength and sink proximity through an experimentally-confirmed physical understanding. As an outgrowth of these efforts, we performed irradiations with self-ions (Ni 2+) on Ni-Al-Zr metallic glass nanolattices to assess their resilience against radiation damage rather than He-ion implantation. We focused our attention on studying individual bcc/fcc interfaces within a single nano structure (nano-pillar or a hollow tube): a single Fe (bcc)-Cu (fcc) boundary per pillar oriented perpendicular to the pillar axes, as well as pure bcc and fcc nano structures. Additional interfaces of interest include bcc/bcc and metal/metallic glass all within a single nano-structure volume. The model material systems are: (1) pure single crystalline Fe and Cu, (2) a single Fe (bcc)-Cu (fcc) boundary per nano structure (3) a single metal–metallic glass, all oriented non-parallel to the loading direction so that their fracture strength can be tested. A nano-fabrication approach, which involves e-beam lithography and templated electroplating, as well as two

  18. Multiscale approach to the physics of radiation damage with ions

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Solov'yov, Andrey V.

    2013-04-01

    We review a multiscale approach to the physics of ion-beam cancer therapy, an approach suggested in order to understand the interplay of a large number of phenomena involved in radiation damage scenario occurring on a range of temporal, spatial, and energy scales. We briefly overview its history and present the current stage of its development. The differences of the multiscale approach from other methods of understanding and assessment of radiation damage are discussed as well as its relationship to other branches of physics, chemistry and biology.

  19. Low dose radiation damage effects in silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Wiącek, P.; Dąbrowski, W.

    2016-11-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  20. How to Make a Helium Atmosphere

    NASA Image and Video Library

    2015-06-11

    This diagram illustrates how hypothetical helium atmospheres might form. These would be on planets about the mass of Neptune, or smaller, which orbit tightly to their stars, whipping around in just days. They are thought to have cores of water or rock, surrounded by thick atmospheres of gas. Radiation from their nearby stars would boil off hydrogen and helium, but because hydrogen is lighter, more hydrogen would escape. It's also possible that planetary bodies, such as asteroids, could impact the planet, sending hydrogen out into space. Over time, the atmospheres would become enriched in helium. With less hydrogen in the planets' atmospheres, the concentration of methane and water would go down. Both water and methane consist in part of hydrogen. Eventually, billions of years later (a "Gyr" equals one billion years), the abundances of the water and methane would be greatly reduced. Since hydrogen would not be abundant, the carbon would be forced to pair with oxygen, forming carbon monoxide. NASA's Spitzer Space Telescope observed a proposed helium planet, GJ 436b, with these traits: it lacks methane, and appears to contain carbon monoxide. Future observations are needed to detect helium itself in the atmospheres of these planets, and confirm this theory. http://photojournal.jpl.nasa.gov/catalog/PIA19345

  1. Use of Displacement Damage Dose in an Engineering Model of GaAs Solar Cell Radiation Damage

    NASA Technical Reports Server (NTRS)

    Morton, T. L.; Chock, R.; Long, K. J.; Bailey, S.; Messenger, S. R.; Walters, R. J.; Summers, G. P.

    2005-01-01

    Current methods for calculating damage to solar cells are well documented in the GaAs Solar Cell Radiation Handbook (JPL 96-9). An alternative, the displacement damage dose (D(sub d)) method, has been developed by Summers, et al. This method is currently being implemented in the SAVANT computer program.

  2. Delayed repair of radiation induced clustered DNA damage: Friend or foe?

    PubMed Central

    Eccles, Laura J.; O’Neill, Peter; Lomax, Martine E.

    2011-01-01

    A signature of ionizing radiation exposure is the induction of DNA clustered damaged sites, defined as two or more lesions within one to two helical turns of DNA by passage of a single radiation track. Clustered damage is made up of double strand breaks (DSB) with associated base lesions or abasic (AP) sites, and non-DSB clusters comprised of base lesions, AP sites and single strand breaks. This review will concentrate on the experimental findings of the processing of non-DSB clustered damaged sites. It has been shown that non-DSB clustered damaged sites compromise the base excision repair pathway leading to the lifetime extension of the lesions within the cluster, compared to isolated lesions, thus the likelihood that the lesions persist to replication and induce mutation is increased. In addition certain non-DSB clustered damaged sites are processed within the cell to form additional DSB. The use of E. coli to demonstrate that clustering of DNA lesions is the major cause of the detrimental consequences of ionizing radiation is also discussed. The delayed repair of non-DSB clustered damaged sites in humans can be seen as a “friend”, leading to cell killing in tumour cells or as a “foe”, resulting in the formation of mutations and genetic instability in normal tissue. PMID:21130102

  3. Computer simulation of radiation damage in gallium arsenide

    NASA Technical Reports Server (NTRS)

    Stith, John J.; Davenport, James C.; Copeland, Randolph L.

    1989-01-01

    A version of the binary-collision simulation code MARLOWE was used to study the spatial characteristics of radiation damage in proton and electron irradiated gallium arsenide. Comparisons made with the experimental results proved to be encouraging.

  4. Specific chemical and structural damage to proteins produced by synchrotron radiation.

    PubMed

    Weik, M; Ravelli, R B; Kryger, G; McSweeney, S; Raves, M L; Harel, M; Gros, P; Silman, I; Kroon, J; Sussman, J L

    2000-01-18

    Radiation damage is an inherent problem in x-ray crystallography. It usually is presumed to be nonspecific and manifested as a gradual decay in the overall quality of data obtained for a given crystal as data collection proceeds. Based on third-generation synchrotron x-ray data, collected at cryogenic temperatures, we show for the enzymes Torpedo californica acetylcholinesterase and hen egg white lysozyme that synchrotron radiation also can cause highly specific damage. Disulfide bridges break, and carboxyl groups of acidic residues lose their definition. Highly exposed carboxyls, and those in the active site of both enzymes, appear particularly susceptible. The catalytic triad residue, His-440, in acetylcholinesterase, also appears to be much more sensitive to radiation damage than other histidine residues. Our findings have direct practical implications for routine x-ray data collection at high-energy synchrotron sources. Furthermore, they provide a direct approach for studying the radiation chemistry of proteins and nucleic acids at a detailed, structural level and also may yield information concerning putative "weak links" in a given biological macromolecule, which may be of structural and functional significance.

  5. Radiation damage in WC studied with MD simulations

    NASA Astrophysics Data System (ADS)

    Träskelin, P.; Björkas, C.; Juslin, N.; Vörtler, K.; Nordlund, K.

    2007-04-01

    Studying radiation damage in tungsten carbide (WC) is of importance due to its applications in fusion reactors. We have used molecular dynamics to study both deuterium induced sputtering and modification of WC surfaces and collision cascades in bulk WC. For collision cascades in bulk WC we note a massive recombination and major elemental asymmetry for the damage. Studying the erosion of WC surfaces, we find that C can erode through swift chemical sputtering, while W does not sputter more easily than from pure W. The amorphization of the surface and the D-content due to the D bombardment is important for the damage production and sputtering process.

  6. The use of the SRIM code for calculation of radiation damage induced by neutrons

    NASA Astrophysics Data System (ADS)

    Mohammadi, A.; Hamidi, S.; Asadabad, Mohsen Asadi

    2017-12-01

    Materials subjected to neutron irradiation will being evolve to structural changes by the displacement cascades initiated by nuclear reaction. This study discusses a methodology to compute primary knock-on atoms or PKAs information that lead to radiation damage. A program AMTRACK has been developed for assessing of the PKAs information. This software determines the specifications of recoil atoms (using PTRAC card of MCNPX code) and also the kinematics of interactions. The deterministic method was used for verification of the results of (MCNPX+AMTRACK). The SRIM (formely TRIM) code is capable to compute neutron radiation damage. The PKAs information was extracted by AMTRACK program, which can be used as an input of SRIM codes for systematic analysis of primary radiation damage. Then the Bushehr Nuclear Power Plant (BNPP) radiation damage on reactor pressure vessel is calculated.

  7. DNA damage induced by the direct effect of radiation

    NASA Astrophysics Data System (ADS)

    Yokoya, A.; Shikazono, N.; Fujii, K.; Urushibara, A.; Akamatsu, K.; Watanabe, R.

    2008-10-01

    We have studied the nature of DNA damage induced by the direct effect of radiation. The yields of single- (SSB) and double-strand breaks (DSB), base lesions and clustered damage were measured using the agarose gel electrophoresis method after exposing to various kinds of radiations to a simple model DNA molecule, fully hydrated closed-circular plasmid DNA (pUC18). The yield of SSB does not show significant dependence on linear energy transfer (LET) values. On the other hand, the yields of base lesions revealed by enzymatic probes, endonuclease III (Nth) and formamidopyrimidine DNA glycosylase (Fpg), which excise base lesions and leave a nick at the damage site, strongly depend on LET values. Soft X-ray photon (150 kVp) irradiation gives a maximum yield of the base lesions detected by the enzymatic probes as SSB and clustered damage, which is composed of one base lesion and proximate other base lesions or SSBs. The clustered damage is visualized as an enzymatically induced DSB. The yields of the enzymatically additional damages strikingly decrease with increasing levels of LET. These results suggest that in higher LET regions, the repair enzymes used as probes are compromised because of the dense damage clustering. The studies using simple plasmid DNA as a irradiation sample, however, have a technical difficulty to detect multiple SSBs in a plasmid DNA. To detect the additional SSBs induced in opposite strand of the first SSB, we have also developed a novel technique of DNA-denaturation assay. This allows us to detect multiply induced SSBs in both strand of DNA, but not induced DSB.

  8. Advances in prevention of radiation damage to visceral and solid organs in patients requiring radiation therapy of the trunk.

    PubMed

    Ritter, E F; Lee, C G; Tyler, D; Ferraro, F; Whiddon, C; Rudner, A M; Scully, S

    1997-02-01

    As a part of multimodality therapy, many patients with tumors of the trunk receive radiation therapy. The major morbidity of this therapy is often secondary to incidental radiation damage to tissues adjacent to treatment areas. We detail our use of saline breast implants placed in polyglycolic acid mesh sheets to displace visceral and solid organs away from the radiation field. Analysis of CT scans and dose volume histograms reveal that this technique successfully displaces uninvolved organs away from the radiation fields, thereby minimizing the radiation dose to such organs and tissues. We believe this is a safe and efficacious method to prevent radiation damage to visceral and solid organs adjacent to trunk tumor sites.

  9. PREFACE: Radiation Damage in Biomolecular Systems (RADAM07)

    NASA Astrophysics Data System (ADS)

    McGuigan, Kevin G.

    2008-03-01

    The annual meeting of the COST P9 Action `Radiation damage in biomolecular systems' took place from 19-22 June 2007 in the Royal College of Surgeons in Ireland, in Dublin. The conference was structured into 5 Working Group sessions: Electrons and biomolecular interactions Ions and biomolecular interactions Radiation in physiological environments Theoretical developments for radiation damage Track structure in cells Each of the five working groups presented two sessions of invited talks. Professor Ron Chesser of Texas Tech University, USA gave a riveting plenary talk on `Mechanisms of Adaptive Radiation Responses in Mammals at Chernobyl' and the implications his work has on the Linear-No Threshold model of radiation damage. In addition, this was the first RADAM meeting to take place after the Alexander Litvenenko affair and we were fortunate to have one of the leading scientists involved in the European response Professor Herwig Paretzke of GSF-Institut für Strahlenschutz, Neuherberg, Germany, available to speak. The remaining contributions were presented in the poster session. A total of 72 scientific contributions (32 oral, 40 poster), presented by 97 participants from 22 different countries, gave an overview on the current progress in the 5 different subfields. A 1-day pre-conference `Early Researcher Tutorial Workshop' on the same topic kicked off on 19 June attended by more than 40 postgrads, postdocs and senior researchers. Twenty papers, based on these reports, are included in this volume of Journal of Physics: Conference Series. All the contributions in this volume were fully refereed, and they represent a sample of the courses, invited talks and contributed talks presented during RADAM07. The interdisciplinary RADAM07 conference brought together researchers from a variety of different fields with a common interest in biomolecular radiation damage. This is reflected by the disparate backgrounds of the authors of the papers presented in these proceedings

  10. Radiation damage of the HEAO C-1 germanium detectors

    NASA Technical Reports Server (NTRS)

    Mahoney, W. A.; Ling, J. C.; Jacobson, A. S.

    1981-01-01

    The effects of radiation damage from proton bombardment of the four HEAO C-1 high purity germanium detectors have been measured and compared to predictions. Because of the presence of numerous gamma-ray lines in the detector background spectra and because of the relatively long exposure time of the HEAO 3 satellite to cosmic-ray and trapped protons, it has been possible to measure both the energy and time dependence of radiation damage. After 100 d in orbit, each of the four detectors has been exposed to approximately 3 x 10 to the 7th protons/sq cm, and the average energy resolution at 1460 keV had degraded from 3.2 keV fwhm to 8.6 keV fwhm. The lines were all broadened to the low energy side although the line profile was different for each of the four detectors. The damage-related contribution to the degradation in energy resolution was found to be linear in energy and proton influence.

  11. Neutral helium beam probe

    NASA Astrophysics Data System (ADS)

    Karim, Rezwanul

    1999-10-01

    This article discusses the development of a code where diagnostic neutral helium beam can be used as a probe. The code solves numerically the evolution of the population densities of helium atoms at their several different energy levels as the beam propagates through the plasma. The collisional radiative model has been utilized in this numerical calculation. The spatial dependence of the metastable states of neutral helium atom, as obtained in this numerical analysis, offers a possible diagnostic tool for tokamak plasma. The spatial evolution for several hypothetical plasma conditions was tested. Simulation routines were also run with the plasma parameters (density and temperature profiles) similar to a shot in the Princeton beta experiment modified (PBX-M) tokamak and a shot in Tokamak Fusion Test Reactor tokamak. A comparison between the simulation result and the experimentally obtained data (for each of these two shots) is presented. A good correlation in such comparisons for a number of such shots can establish the accurateness and usefulness of this probe. The result can possibly be extended for other plasma machines and for various plasma conditions in those machines.

  12. Protecting the radiation-damaged skin from friction: a mini review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herst, Patries M

    2014-06-15

    Radiation-induced skin reactions are an unavoidable side effect of external beam radiation therapy, particularly in areas prone to friction and excess moisture such as the axilla, head and neck region, perineum and skin folds. Clinical studies investigating interventions for preventing or managing these reactions have largely focussed on formulations with moisturising, anti-inflammatory, anti-microbial and wound healing properties. However, none of these interventions has emerged as a consistent candidate for best practice. Much less emphasis has been placed on evaluating ways to protect the radiation-damaged skin from friction and excess moisture. This mini review analyses the clinical evidence for barrier productsmore » that form a protective layer by adhering very closely to the skin folds and do not cause further trauma to the radiation-damaged skin upon removal. A database search identified only two types of barrier products that fitted these criteria and these were tested in two case series and six controlled clinical trials. Friction protection was most effective when the interventions were used from the start of treatment and continued for several weeks after completion of treatment. Soft silicone dressings (Mepilex Lite and Mepitel Film) and Cavilon No Sting Barrier Film, but not Cavilon Moisturizing Barrier Cream, decreased skin reaction severity, most likely due to differences in formulation and skin build-up properties. It seems that prophylactic use of friction protection of areas at risk could be a worthwhile addition to routine care of radiation-damaged skin.« less

  13. Protecting the radiation-damaged skin from friction: a mini review

    PubMed Central

    Herst, Patries M

    2014-01-01

    Radiation-induced skin reactions are an unavoidable side effect of external beam radiation therapy, particularly in areas prone to friction and excess moisture such as the axilla, head and neck region, perineum and skin folds. Clinical studies investigating interventions for preventing or managing these reactions have largely focussed on formulations with moisturising, anti-inflammatory, anti-microbial and wound healing properties. However, none of these interventions has emerged as a consistent candidate for best practice. Much less emphasis has been placed on evaluating ways to protect the radiation-damaged skin from friction and excess moisture. This mini review analyses the clinical evidence for barrier products that form a protective layer by adhering very closely to the skin folds and do not cause further trauma to the radiation-damaged skin upon removal. A database search identified only two types of barrier products that fitted these criteria and these were tested in two case series and six controlled clinical trials. Friction protection was most effective when the interventions were used from the start of treatment and continued for several weeks after completion of treatment. Soft silicone dressings (Mepilex Lite and Mepitel Film) and Cavilon No Sting Barrier Film, but not Cavilon Moisturizing Barrier Cream, decreased skin reaction severity, most likely due to differences in formulation and skin build-up properties. It seems that prophylactic use of friction protection of areas at risk could be a worthwhile addition to routine care of radiation-damaged skin. PMID:26229646

  14. NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit, E-mail: thomas.golding@astro.uio.no, E-mail: mats.carlsson@astro.uio.no, E-mail: jorrit.leenaarts@astro.su.se

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamicmore » equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.« less

  15. Radiation Damage in Si Diodes from Short, Intense Ion Pulses

    NASA Astrophysics Data System (ADS)

    de Leon, S. J.; Ludewigt, B. A.; Persaud, A.; Seidl, P. A.; Schenkel, T.

    2017-10-01

    The Neutralized Drift Compression Experiment (NDCX-II) at Berkeley Lab is an induction accelerator studying the effects that concentrated ion beams have on various materials. Charged particle radiation damage was the focus of this research - we have characterized a series of Si diodes using an electrometer and calibrated the diodes response using an 241Am alpha source, both before and after exposing the diodes to 1 MeV He ions in the accelerator. The key part here is that the high intensity pulses from NDCX-II (>1010 ions/cm2 per pulse in <20 ns) enabled a systematic study of dose-rate effects. An example of a dose-rate effect in Si diodes is increased accumulation of defects due to damage from ions that bombard them in a short pulse. This accumulated damage leads to a reduction in the charge collection efficiency and an increase in leakage current. Testing dose-rate effects in Si diodes and other semiconductors is a crucial step in designing sustainable instruments that can encounter high doses of radiation, such as high intensity accelerators, fusion energy experiments and space applications and results from short pulses can inform models of radiation damage evolution. This work was supported by the Office of Science of the US Department of Energy under contract DE-AC0205CH11231.

  16. Thermophysicochemical Reaction of ZrCo-Hydrogen-Helium System

    NASA Astrophysics Data System (ADS)

    Jung, Kwangjin; Kang, Hee-Seok; Yun, Sei-Hun; Chung, Hongsuk

    2017-11-01

    Nuclear fusion energy, which is clean and infinite, has been studied for more than half a century. Efforts are in progress worldwide for the demonstration and validation of nuclear fusion energy. Korea has been developing hydrogen isotope storage and delivery system (SDS) technologies including a basic scientific study on a hydrogen storage medium. An SDS bed, which is a key component of the SDS, is used for storing hydrogen isotopes in a metal hydride form and supplying them to a tokamak. Thermophysicochemical properties of the ZrCo-H2-He system are investigated for the practical utilization of a hydriding alloy system. The hydriding reaction, in which ZrCoHx is composed as ZrCo absorbing hydrogen, is exothermic. The dehydriding reaction, in which ZrCoHx decomposes into ZrCo and hydrogen, is endothermic. The heat generated through the hydriding reaction interrupts the hydriding progress. The heat loss by a dehydriding reaction impedes the dehydriding progress. The tritium decay product, helium-3, covers the ZrCo and keeps the hydrogen from contact with ZrCo in the SDS bed. In this study, we designed and fabricated a ZrCo bed and its performance test rig. The helium blanketing effect on a ZrCo hydrogen reaction with 0 % to 20 % helium content in a gaseous phase and a helium blanket removal method were studied experimentally. In addition, the volumetric flow rates and temperature at the beginning of a ZrCo hydrogen reaction in a hydrogen or helium atmosphere, and the cooling of the SDS bed by radiation only and by both radiation and natural convection related to the reuse cycle, were obtained.

  17. UV and ionizing radiations induced DNA damage, differences and similarities

    NASA Astrophysics Data System (ADS)

    Ravanat, Jean-Luc; Douki, Thierry

    2016-11-01

    Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.

  18. Evaluation of defect formation in helium irradiated Y2O3 doped W-Ti alloys by positron annihilation and nanoindentation

    NASA Astrophysics Data System (ADS)

    Richter, Asta; Anwand, Wolfgang; Chen, Chun-Liang; Böttger, Roman

    2017-10-01

    Helium implanted tungsten-titanium ODS alloys are investigated using positron annihilation spectroscopy and nanoindentation. Titanium reduces the brittleness of the tungsten alloy, which is manufactured by mechanical alloying. The addition of Y2O3 nanoparticles increases the mechanical properties at elevated temperature and enhances irradiation resistance. Helium ion implantation was applied to simulate irradiation effects on these materials. The irradiation was performed using a 500 kV He ion implanter at fluences around 5 × 1015 cm-2 for a series of samples both at room temperature and at 600 °C. The microstructure and mechanical properties of the pristine and irradiated W-Ti-ODS alloy are compared with respect to the titanium and Y2O3 content. Radiation damage is studied by positron annihilation spectroscopy analyzing the lifetime and the Doppler broadening. Three types of helium-vacancy defects were detected after helium irradiation in the W-Ti-ODS alloy: small defects with high helium-to-vacancy ratio (low S parameter) for room temperature irradiation, larger open volume defects with low helium-to-vacancy ratio (high S parameter) at the surface and He-vacancy complexes pinned at nanoparticles deeper in the material for implantation at 600 °C. Defect induced hardness was studied by nanoindentation. A drastic hardness increase is observed after He ion irradiation both for room temperature and elevated irradiation temperature of 600 °C. The Ti alloyed tungsten-ODS is more affected by the hardness increase after irradiation compared to the pure W-ODS alloy.

  19. Atomic-scale mechanisms of helium bubble hardening in iron

    DOE PAGES

    Osetskiy, Yury N.; Stoller, Roger E.

    2015-06-03

    Generation of helium due to (n,α) transmutation reactions changes the response of structural materials to neutron irradiation. The whole process of radiation damage evolution is affected by He accumulation and leads to significant changes in the material s properties. A population of nanometric He-filled bubbles affects mechanical properties and the impact can be quite significant because of their high density. Understanding how these basic mechanisms affect mechanical properties is necessary for predicting radiation effects. In this paper we present an extensive study of the interactions between a moving edge dislocation and bubbles using atomic-scale modeling. We focus on the effectmore » of He bubble size and He concentration inside bubbles. Thus, we found that ability of bubbles to act as an obstacle to dislocation motion is close to that of voids when the He-to-vacancy ratio is in the range from 0 to 1. A few simulations made at higher He contents demonstrated that the interaction mechanism is changed for over-pressurized bubbles and they become weaker obstacles. The results are discussed in light of post-irradiation materials testing.« less

  20. Radioresistance of GGG Sequences to Prompt Strand Break Formation from Direct-Type Radiation Damage

    PubMed Central

    Black, Paul J.; Miller, Adam S.; Hayes, Jeffrey J.

    2016-01-01

    Purpose As humans, we are constantly exposed to ionizing radiation from natural, man-made and cosmic sources which can damage DNA, leading to deleterious effects including cancer incidence. In this work we introduce a method to monitor strand breaks resulting from damage due to the direct effect of ionizing radiation and provide evidence for sequence-dependent effects leading to strand breaks. Materials and methods To analyze only DNA strand breaks caused by radiation damage due to the direct effect of ionizing radiation, we combined an established technique to generate dehydrated DNA samples with a technique to analyze single strand breaks on short oligonucleotide sequences via denaturing gel electrophoresis. Results We find that direct damage primarily results in a reduced number of strand breaks in guanine triplet regions (GGG) when compared to isolated guanine (G) bases with identical flanking base context. In addition, we observe strand break behavior possibly indicative of protection of guanine bases when flanked by pyrimidines, and sensitization of guanine to strand break when flanked by adenine (A) bases in both isolated G and GGG cases. Conclusions These observations provide insight into the strand break behavior in GGG regions damaged via the direct effect of ionizing radiation. In addition, this could be indicative of DNA sequences that are naturally more susceptible to strand break due to the direct effect of ionizing radiation. PMID:27349757

  1. Mitochondria regulate DNA damage and genomic instability induced by high LET radiation

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Davidson, Mercy M.; Hei, Tom K.

    2014-04-01

    High linear energy transfer (LET) radiation including α particles and heavy ions is the major type of radiation found in space and is considered a potential health risk for astronauts. Even though the chance that these high LET particles traversing through the cytoplasm of cells is higher than that through the nuclei, the contribution of targeted cytoplasmic irradiation to the induction of genomic instability and other chromosomal damages induced by high LET radiation is not known. In the present study, we investigated whether mitochondria are the potential cytoplasmic target of high LET radiation in mediating cellular damage using a mitochondrial DNA (mtDNA) depleted (ρ0) human small airway epithelial (SAE) cell model and a precision charged particle microbeam with a beam width of merely one micron. Targeted cytoplasmic irradiation by high LET α particles induced DNA oxidative damage and double strand breaks in wild type ρ+ SAE cells. Furthermore, there was a significant increase in autophagy and micronuclei, which is an indication of genomic instability, together with the activation of nuclear factor kappa-B (NF-κB) and mitochondrial inducible nitric oxide synthase (iNOS) signaling pathways in ρ+ SAE cells. In contrast, ρ0 SAE cells exhibited a significantly lower response to these same endpoints examined after cytoplasmic irradiation with high LET α particles. The results indicate that mitochondria are essential in mediating cytoplasmic radiation induced genotoxic damage in mammalian cells. Furthermore, the findings may shed some light in the design of countermeasures for space radiation.

  2. Comparison of Carbon Dioxide and Helium as Fire Extinguishing Agents for Spacecraft

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman; Son, Youngjin; Ronney, Paul D.

    2004-01-01

    The effects of radiation heat transfer in microgravity compared to convection heat transfer in earth gravity for opposed-flow (downward) over thermally-thick fuel using low density foam fuel were investigated. Microgravity experiments on flame spread over thermally-thick fuels were conducted using foam fuels to obtain low density and thermal conductivity, and thus large flame spread rate compared to dense fuels such as PMMA. And thereby valid microgravity results were obtained even in 2.2 second drop-tower experiments not to mention for the longer duration tests in Zero Gravity Facility. Contrast to the conventional understanding, it was found that steady flame spread can occur over thick fuels in quiescent microgravity environments, especially when radiatively-active diluent gases such as CO2 were employed. This is proposed to result from radiative heat transfer from the flame to the fuel surface, which could lead to steady spread even when the amount of the heat transfer via conduction from the flame to the fuel bed is negligible. Radiative effects are more significant at microgravity conditions because the flame is thicker and thus the volume of radiating combustion products is larger as well. These results suggested that helium may be a better inert or extinguishment agent on both a mass and a mole bases at microgravity even though CO2 is much better on a mole bases at earth gravity, and these are relevant to studies of fire safety in manned spacecraft, particularly the International Space Station that uses CO2 fire extinguishers. CO2 may not be as effective as an extinguishing agent at microgravity as it is at earth gravity in some conditions because of the differences in spread mechanisms between the two cases. In particular, the difference between conduction-dominated heat transport to the fuel bed at earth gravity and radiation-dominated heat transport at microgravity indicates that radiatively-inert diluent such as helium could be preferable in

  3. Comparison of Carbon Dioxide and Helium as Fire Extinguishing Agents for Spacecraft

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman; Son, Youngjin; Ronney, Paul D.

    2004-01-01

    The effects of radiation heat transfer in microgravity compared to convection heat transfer in earth gravity for opposed-flow (downward) over thermally-thick fuel using low density foam fuel were investigated. Microgravity experiments on flame spread over thermally-thick fuels were conducted using foam fuels to obtain low density and thermal conductivity, and thus large flame spread rate compared to dense fuels such as PMMA. And thereby valid microgravity results were obtained even in 2.2 second drop-tower experiments not to mention for the longer duration tests in Zero Gravity Facility. Contrast to the conventional understanding, it was found that steady flame spread can occur over thick fuels in quiescent microgravity environments, especially when radiatively-active diluent gases such as CO2 were employed. This is proposed to result from radiative heat transfer from the flame to the fuel surface, which could lead to steady spread even when the amount of the heat transfer via conduction from the flame to the fuel bed is negligible. Radiative effects are more significant at microgravity conditions because the flame is thicker and thus the volume of radiating combustion products is larger as well. These results suggested that helium may be a better inert or extinguishment agent on both a mass and a mole bases at microgravity even though CO2 is much better on a mole bases at earth gravity, and these are relevant to studies of fire safety in manned spacecraft, particularly the International Space Station that uses CO2 fire extinguishers. CO2 may not be as effective as an extinguishing agent at g as it is at earth gravity in some conditions because of the differences in spread mechanisms between the two cases. In particular, the difference between conduction-dominated heat transport to the fuel bed at earth gravity and radiation-dominated heat transport at g indicates that radiatively-inert diluent such as helium could be preferable in g applications. Helium may be a

  4. Detection of significant differences between absorption spectra of neutral helium and low temperature photoionized helium plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.

    2013-11-15

    In this work, spectral investigations of photoionized He plasmas were performed. The photoionized plasmas were created by irradiation of helium stream, with intense pulses from laser-plasma extreme ultraviolet (EUV) source. The EUV source was based on a double-stream Xe/Ne gas-puff target irradiated with 10 ns/10 J Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region below 20 nm, however, spectrally integrated intensity at longer wavelengths was also significant. The EUV radiation was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. The long-wavelength part of the EUVmore » radiation was used for backlighting of the photoionized plasmas to obtain absorption spectra. Both emission and absorption spectra in the EUV range were investigated. Significant differences between absorption spectra acquired for neutral helium and low temperature photoionized plasmas were demonstrated for the first time. Strong increase of intensities and spectral widths of absorption lines, together with a red shift of the K-edge, was shown.« less

  5. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation

    NASA Technical Reports Server (NTRS)

    Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)

    2000-01-01

    Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.

  6. Correlation of Particle-Induced Displacement Damage in Silicon

    NASA Astrophysics Data System (ADS)

    Summers, G. P.; Burke, E. A.; Dale, C. J.; Wolicki, E. A.; Marshall, P. W.; Gehlhausen, M. A.

    1987-12-01

    Correlation is made between the effects of displacement damage caused in several types of silicon bipolar transistors by protons, deuterons, helium ions, and by 1 MeV equivalent neutrons. These measurements are compared to calculations of the nonionizing energy deposition in silicon as a function of particle type and energy. Measurements were made of displacement damage factors for 2N2222A and 2N2907A switching transistors, and for 2N3055, 2N6678, and 2N6547 power transistors, as a function of collector current using 3.7 - 175 MeV protons, 4.3 - 37 MeV deuterons, and 16.8 - 65 MeV helium ions. Long term ionization effects on the value of the displacement damage factors were taken into account. In calculating the energy dependence of the nonionizing energy deposition, Rutherford, nuclear elastic, and nuclear inelastic interactions, and Lindhard energy partition were considered. The main conclusions of the work are as follows: 1) The ratio of the displacement damage factors for a given charged particle to the 1 MeV equivalent neutron damage factor, as a function of energy, falls on a common curve which is independent of collector current. 2) Deuterons of a given energy are about twice as damaging as protons and helium ions are about eighteen times as damaging as protons.

  7. DNA damage and repair in plants under ultraviolet and ionizing radiations.

    PubMed

    Gill, Sarvajeet S; Anjum, Naser A; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315-400 nm; UV-B, 280-315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH(•)) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context.

  8. DNA Damage and Repair in Plants under Ultraviolet and Ionizing Radiations

    PubMed Central

    Gill, Sarvajeet S.; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315–400 nm; UV-B, 280–315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH•) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context. PMID:25729769

  9. Radiation Damage Workshop report. [solar cells

    NASA Technical Reports Server (NTRS)

    Rahilly, W. P.

    1980-01-01

    The starting material, cell design/geometry, and cell processing/fabrication for silicon and gallium arsenide solar cells are addressed with reference to radiation damage. In general, it is concluded that diagnostic sensitivities and material purities are basic to making significant gains in end-of-life performance and thermal annealability. Further, GaAs material characterization is so sketchy that a well defined program to evaluate such material for solar cell application is needed to maximize GaAs cell technology benefits.

  10. A Cryogen Recycler with Pulse Tube Cryocooler for Recondensing Helium and Nitrogen

    NASA Astrophysics Data System (ADS)

    Wang, C.; Lichtenwalter, B.

    2015-12-01

    We have developed a cryogen recycler using a 4 K pulse tube cryocooler for recondensing helium and nitrogen in a NMR magnet. The liquid helium cooled NMR magnet has a liquid nitrogen cooled radiation shield. The magnet boils off 0.84 L/day of liquid helium and 6 L/day of liquid nitrogen. The recycler is designed with both a liquid helium return tube and a liquid nitrogen return tube, which are inserted into the fill ports of liquid helium and nitrogen. Therefore the recycler forms closed loops for helium and nitrogen. A two-stage 4 K pulse tube cryocooler, Cryomech model PT407 (0.7W at 4.2 K), is selected for the recycler. The recycler was first tested with a Cryomech's test cryostat and resulted in the capacities of recondensing 8.2 L/day of nitrogen and liquefying 4 L/day of helium from room temperature gas. The recycler has been installed in the NMR magnet at University of Sydney since August, 2014 and continuously maintains a zero boil off for helium and nitrogen.

  11. Superfluid helium leak sealant study

    NASA Technical Reports Server (NTRS)

    Vorreiter, J. W.

    1981-01-01

    Twenty-one leak specimens were fabricated in the ends of stainless steel and aluminum tubes. Eighteen of these tubes were coated with a copolymer material to seal the leak. The other three specimens were left uncoated and served as control specimens. All 21 tubes were cold shocked in liquid helium 50 times and then the leak rate was measured while the tubes were submerged in superfluid helium at 1.7 K. During the cold shocks two of the coated specimens were mechanically damaged and eliminated from the test program. Of the remaining 16 coated specimens one suffered a total coating failure and resulting high leak rate. Another three of the coated specimens suffered partial coating failures. The leak rates of the uncoated specimens were also measured and reported. The significance of various leak rates is discussed in view of the infrared astronomical satellite (IRAS) Dewar performance.

  12. Radiation track, DNA damage and response—a review

    NASA Astrophysics Data System (ADS)

    Nikjoo, H.; Emfietzoglou, D.; Liamsuwan, T.; Taleei, R.; Liljequist, D.; Uehara, S.

    2016-11-01

    The purpose of this paper has been to review the current status and progress of the field of radiation biophysics, and draw attention to the fact that physics, in general, and radiation physics in particular, with the aid of mathematical modeling, can help elucidate biological mechanisms and cancer therapies. We hypothesize that concepts of condensed-matter physics along with the new genomic knowledge and technologies and mechanistic mathematical modeling in conjunction with advances in experimental DNA (Deoxyrinonucleic acid molecule) repair and cell signaling have now provided us with unprecedented opportunities in radiation biophysics to address problems in targeted cancer therapy, and genetic risk estimation in humans. Obviously, one is not dealing with ‘low-hanging fruit’, but it will be a major scientific achievement if it becomes possible to state, in another decade or so, that we can link mechanistically the stages between the initial radiation-induced DNA damage; in particular, at doses of radiation less than 2 Gy and with structural changes in genomic DNA as a precursor to cell inactivation and/or mutations leading to genetic diseases. The paper presents recent development in the physics of radiation track structure contained in the computer code system KURBUC, in particular for low-energy electrons in the condensed phase of water for which we provide a comprehensive discussion of the dielectric response function approach. The state-of-the-art in the simulation of proton and carbon ion tracks in the Bragg peak region is also presented. The paper presents a critical discussion of the models used for elastic scattering, and the validity of the trajectory approach in low-electron transport. Brief discussions of mechanistic and quantitative aspects of microdosimetry, DNA damage and DNA repair are also included as developed by the authors’ work.

  13. Localized defects in radiation-damaged zircon

    PubMed

    Rios; Malcherek; Salje; Domeneghetti

    2000-12-01

    The crystal structure of a radiation-damaged natural zircon, ZrSiO(4) (alpha-decay radiation dose is ca 1.8 x 10(18) alpha-decay events g(-1)), has been determined. The anisotropic unit-cell swelling observed in the early stages of the amorphization process (0.17% along the a axis and 0.62% along the c axis compared with the undamaged material) is a consequence of the anisotropy of the expansion of ZrO(8) polyhedra. Larger anisotropic displacement parameters were found for Zr and O atoms, indicating that the distortion produced by alpha particle-induced localized defects mainly affects the ZrO(8) unit. The overall shape of SiO(4) tetrahedra remains essentially undistorted, while Si-O bonds are found to lengthen by 0.43%.

  14. Melatonin Role in Ameliorating Radiation-induced Skin Damage: From Theory to Practice (A Review of Literature).

    PubMed

    Abbaszadeh, A; Haddadi, G H; Haddadi, Z

    2017-06-01

    Normal skin is composed of epidermis and dermis. Skin is susceptible to radiation damage because it is a continuously renewing organ containing rapidly proliferating mature cells. Radiation burn is a damage to the skin or other biological tissues caused by exposure to radiofrequency energy or ionizing radiation. Acute skin reaction is the most frequently occurring side effect of radiation therapy. Generally, any chemical/biological agent given before or at the time of irradiation to prevent or ameliorate damage to normal tissues is called a radioprotector. Melatonin is a highly lipophilic substance that easily penetrates organic membranes and therefore is able to protect important intracellular structures including mitochondria and DNA against oxidative damage directly at the sites where such a kind of damage would occur. Melatonin leads to an increase in the molecular level of some important antioxidative enzymes such as superoxide, dismotase and glutation-peroxidase, and also a reduction in synthetic activity of nitric oxide. There is a large body of evidence which proves the efficacy of Melatonin in ameliorating UV and X ray-induced skin damage. We propose that, in the future, Melatonin would improve the therapeutic ratio in radiation oncology and ameliorate skin damage more effectively when administered in optimal and non-toxic doses.

  15. Melatonin Role in Ameliorating Radiation-induced Skin Damage: From Theory to Practice (A Review of Literature)

    PubMed Central

    Abbaszadeh, A.; Haddadi, G.H.; Haddadi, Z.

    2017-01-01

    Normal skin is composed of epidermis and dermis. Skin is susceptible to radiation damage because it is a continuously renewing organ containing rapidly proliferating mature cells. Radiation burn is a damage to the skin or other biological tissues caused by exposure to radiofrequency energy or ionizing radiation. Acute skin reaction is the most frequently occurring side effect of radiation therapy. Generally, any chemical/biological agent given before or at the time of irradiation to prevent or ameliorate damage to normal tissues is called a radioprotector. Melatonin is a highly lipophilic substance that easily penetrates organic membranes and therefore is able to protect important intracellular structures including mitochondria and DNA against oxidative damage directly at the sites where such a kind of damage would occur. Melatonin leads to an increase in the molecular level of some important antioxidative enzymes such as superoxide, dismotase and glutation-peroxidase, and also a reduction in synthetic activity of nitric oxide. There is a large body of evidence which proves the efficacy of Melatonin in ameliorating UV and X ray-induced skin damage. We propose that, in the future, Melatonin would improve the therapeutic ratio in radiation oncology and ameliorate skin damage more effectively when administered in optimal and non-toxic doses. PMID:28580334

  16. Formation of Triplet Positron-helium Bound State by Stripping of Positronium Atoms in Collision with Ground State Helium

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2006-01-01

    Formation of triplet positron-helium bound state by stripping of positronium atoms in collision with ground state helium JOSEPH DI RlENZI, College of Notre Dame of Maryland, RICHARD J. DRACHMAN, NASA/Goddard Space Flight Center - The system consisting of a positron and a helium atom in the triplet state e(+)He(S-3)(sup e) was conjectured long ago to be stable [1]. Its stability has recently been established rigorously [2], and the values of the energies of dissociation into the ground states of Ps and He(+) have also been reported [3] and [4]. We have evaluated the cross-section for this system formed by radiative attachment of a positron in triplet He state and found it to be small [5]. The mechanism of production suggested here should result in a larger cross-section (of atomic size) which we are determining using the Born approximation with simplified initial and final wave functions.

  17. Feasibility of OCT to detect radiation-induced esophageal damage in small animal models (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jelvehgaran, Pouya; Alderliesten, Tanja; Salguero, Javier; Borst, Gerben; Song, Ji-Ying; van Leeuwen, Ton G.; de Boer, Johannes F.; de Bruin, Daniel M.; van Herk, Marcel B.

    2016-03-01

    Lung cancer survival is poor and radiotherapy patients often suffer serious treatment side effects. The esophagus is particularly sensitive leading to reduced food intake or even fistula formation. Only few direct techniques exist to measure radiation-induced esophageal damage, for which knowledge is needed to improve the balance between risk of tumor recurrence and complications. Optical coherence tomography (OCT) is a minimally-invasive imaging technique that obtains cross-sectional, high-resolution (1-10µm) images and is capable of scanning the esophageal wall up to 2-3mm depth. In this study we investigated the feasibility of OCT to detect esophageal radiation damage in mice. In total 30 mice were included in 4 study groups (1 main and 3 control groups). Mice underwent cone-beam CT imaging for initial setup assessment and dose planning followed by single-fraction dose delivery of 4, 10, 16, and 20Gy on 5mm spots, spaced 10mm apart. Mice were repeatedly imaged using OCT: pre-irradiation and up to 3 months post-irradiation. The control groups received either OCT only, irradiation only, or were sham-operated. We used histopathology as gold standard for radiation-induced damage diagnosis. The study showed edema in both the main and OCT-only groups. Furthermore, radiation-induced damage was primarily found in the highest dose region (distal esophagus). Based on the histopathology reports we were able to identify the radiation-induced damage in the OCT images as a change in tissue scattering related to the type of induced damage. This finding indicates the feasibility and thereby the potentially promising role of OCT in radiation-induced esophageal damage assessment.

  18. The effect of space radiation on the induction of chromosome damage

    NASA Technical Reports Server (NTRS)

    George, K.; Wu, H.; Willingham, V.; Cucinotta, F. A.

    2001-01-01

    To obtain information on the cytogenetic damage caused by space radiation, chromosome exchanges in lymphocytes from crewmembers of long-term Mir missions, and a shorter duration shuttle mission, were examined using fluorescence in situ hybridization. A significant increase in chromosomal aberrations was observed after the long duration flights. The ratio of aberrations identified as complex was higher post-flight for some crewmembers, which is thought to be an indication of exposure to high-LET radiation. Ground-based studies have shown that the frequency of aberrations measured post-flight could be influenced by a mitotic delay in cells damaged by high-LET radiation and this effect could lower biological dose estimates. To counteract this effect, prematurely condensed chromosome (PCC) spreads were collected. Frequencies of aberrations in PCC were compared with those in metaphase spreads.

  19. Neovascular glaucoma after helium ion irradiation for uveal melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, M.K.; Char, D.H.; Castro, J.L.

    1986-02-01

    Neovascular glaucoma developed in 22 of 169 uveal melanoma patients treated with helium ion irradiation. Most patients had large melanomas; no eyes containing small melanomas developed anterior segment neovascularization. The mean onset of glaucoma was 14.1 months (range, 7-31 months). The incidence of anterior segment neovascularization increased with radiation dosage; there was an approximately three-fold increase at 80 GyE versus 60 GyE of helium ion radiation (23% vs. 8.5%) (P less than 0.05). Neovascular glaucoma occurred more commonly in larger tumors; the incidence was not affected by tumor location, presence of subretinal fluid, nor rate of tumor regression. Fifty-three percentmore » of patients had some response with intraocular pressures of 21 mmHg or less to a combination of antiglaucoma treatments.« less

  20. Electron microscopy observations of radiation damage in irradiated and annealed tungsten

    NASA Astrophysics Data System (ADS)

    Grzonka, J.; Ciupiński, Ł.; Smalc-Koziorowska, J.; Ogorodnikova, O. V.; Mayer, M.; Kurzydłowski, K. J.

    2014-12-01

    In the present work tungsten samples were irradiated with W6+ ions with a kinetic energy of 20 MeV in order to simulate radiation damage by fast neutrons. Two samples with cumulative damage of 2.3 and 6.36 displacements per atom were produced. The scanning transmission electron microscopy investigations were carried out in order to determine structure changes resulting from the irradiation. The evolution of the damage with post implantation annealing in the temperature range 673-1100 K was also assessed. Damage profiles were studied at cross-sections. Scanning transmission electron microscopy studies of the lamellae after annealing revealed aggregation of defects and rearrangement as well as partial healing of dislocations at higher temperatures. The results confirm the higher density of radiation-induced dislocations in the near surface area of the sample (1.8 * 1014 m-2) in comparison with a deeper damage area (1.5 * 1014 m-2). Significant decrease of dislocation density was observed after annealing with a concurrent growth of dislocation loops. Transmission electron microscopy analyses show that the dislocation loops are perfect dislocations with the Burgers vectors of b = ½[ 1 1 1].

  1. Electron Radiation Damage of (alga) As-gaas Solar Cells

    NASA Technical Reports Server (NTRS)

    Loo, R.; Kamath, G. S.; Knechtli, R.

    1979-01-01

    Solar cells (2 cm by 2 cm (AlGa) As-GaAs cells) were fabricated and then subjected to irradiation at normal incidence by electrons. The influence of junction depth and n-type buffer layer doping level on the cell's resistance to radiation damage was investigated. The study shows that (1) a 0.3 micrometer deep junction results in lower damage to the cells than does a 0.5 micrometer junction, and (2) lowering the n buffer layer doping density does not improve the radiation resistance of the cell. Rather, lowering the doping density decreases the solar cell's open circuit voltage. Some preliminary thermal annealing experiments in vacuum were performed on the (AlGa)As-GaAs solar cells damaged by 1-MeV electron irradiation. The results show that cell performance can be expected to partially recover at 200 C with more rapid and complete recovery occurring at higher temperature. For a 0.5hr anneal at 400 C, 90% of the initial power is recovered. The characteristics of the (AlGa)As-GaAs cells both before and after irradiation are described.

  2. Evolution Models of Helium White Dwarf–Main-sequence Star Merger Remnants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xianfei; Bi, Shaolan; Hall, Philip D.

    It is predicted that orbital decay by gravitational-wave radiation and tidal interaction will cause some close binary stars to merge within a Hubble time. The merger of a helium-core white dwarf with a main-sequence (MS) star can produce a red giant branch star that has a low-mass hydrogen envelope when helium is ignited and thus become a hot subdwarf. Because detailed calculations have not been made, we compute post-merger models with a stellar evolution code. We find the evolutionary paths available to merger remnants and find the pre-merger conditions that lead to the formation of hot subdwarfs. We find thatmore » some such mergers result in the formation of stars with intermediate helium-rich surfaces. These stars later develop helium-poor surfaces owing to diffusion. Combining our results with a model population and comparing to observed stars, we find that some observed intermediate helium-rich hot subdwarfs can be explained as the remnants of the mergers of helium-core white dwarfs with low-mass MS stars.« less

  3. Helium in the eroding atmosphere of an exoplanet.

    PubMed

    Spake, J J; Sing, D K; Evans, T M; Oklopčić, A; Bourrier, V; Kreidberg, L; Rackham, B V; Irwin, J; Ehrenreich, D; Wyttenbach, A; Wakeford, H R; Zhou, Y; Chubb, K L; Nikolov, N; Goyal, J M; Henry, G W; Williamson, M H; Blumenthal, S; Anderson, D R; Hellier, C; Charbonneau, D; Udry, S; Madhusudhan, N

    2018-05-01

    Helium is the second-most abundant element in the Universe after hydrogen and is one of the main constituents of gas-giant planets in our Solar System. Early theoretical models predicted helium to be among the most readily detectable species in the atmospheres of exoplanets, especially in extended and escaping atmospheres 1 . Searches for helium, however, have hitherto been unsuccessful 2 . Here we report observations of helium on an exoplanet, at a confidence level of 4.5 standard deviations. We measured the near-infrared transmission spectrum of the warm gas giant 3 WASP-107b and identified the narrow absorption feature of excited metastable helium at 10,833 angstroms. The amplitude of the feature, in transit depth, is 0.049 ± 0.011 per cent in a bandpass of 98 angstroms, which is more than five times greater than what could be caused by nominal stellar chromospheric activity. This large absorption signal suggests that WASP-107b has an extended atmosphere that is eroding at a total rate of 10 10 to 3 × 10 11 grams per second (0.1-4 per cent of its total mass per billion years), and may have a comet-like tail of gas shaped by radiation pressure.

  4. Helium in the eroding atmosphere of an exoplanet

    NASA Astrophysics Data System (ADS)

    Spake, J. J.; Sing, D. K.; Evans, T. M.; Oklopčić, A.; Bourrier, V.; Kreidberg, L.; Rackham, B. V.; Irwin, J.; Ehrenreich, D.; Wyttenbach, A.; Wakeford, H. R.; Zhou, Y.; Chubb, K. L.; Nikolov, N.; Goyal, J. M.; Henry, G. W.; Williamson, M. H.; Blumenthal, S.; Anderson, D. R.; Hellier, C.; Charbonneau, D.; Udry, S.; Madhusudhan, N.

    2018-05-01

    Helium is the second-most abundant element in the Universe after hydrogen and is one of the main constituents of gas-giant planets in our Solar System. Early theoretical models predicted helium to be among the most readily detectable species in the atmospheres of exoplanets, especially in extended and escaping atmospheres1. Searches for helium, however, have hitherto been unsuccessful2. Here we report observations of helium on an exoplanet, at a confidence level of 4.5 standard deviations. We measured the near-infrared transmission spectrum of the warm gas giant3 WASP-107b and identified the narrow absorption feature of excited metastable helium at 10,833 angstroms. The amplitude of the feature, in transit depth, is 0.049 ± 0.011 per cent in a bandpass of 98 angstroms, which is more than five times greater than what could be caused by nominal stellar chromospheric activity. This large absorption signal suggests that WASP-107b has an extended atmosphere that is eroding at a total rate of 1010 to 3 × 1011 grams per second (0.1-4 per cent of its total mass per billion years), and may have a comet-like tail of gas shaped by radiation pressure.

  5. SWCX Emission from the Helium Focusing Cone - Preliminary Results

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Kuntz, K. D.; Collier, M. R.

    2008-01-01

    Preliminary results from an XMM-Newton campaign to study solar wind charge exchange (SWCX) emission from the heliospheric focusing cone of interstellar helium are presented. The detections of enhanced O VII and O VIII emission from the cone are at the 2(sigma) and 4(sigma) levels. The solar wind charge exchange (SWCX) emission in the heliosphere not associated with distinct objects (e.g., comets and planets including exospheric material in and near Earth s magnetosheath) is proportional to the flux of the solar wind and the space density of neutral material. The neutral material originates in the interstellar medium (ISM) and passes through the solar system due to the relative motion of the Sun and the ISM. The flow of the neutral material through the solar system is strongly perturbed by the Sun both by gravity and by radiation pressure. Because of the relative radiative scattering cross sections and the effect of solar gravitation the density of interstellar hydrogen near the Sun is reduced while interstellar helium is gravitationally focused. This creates a helium focusing cone downstream of the Sun [e.g., 1, and references therein].

  6. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources.

    PubMed

    Loch, R A; Sobierajski, R; Louis, E; Bosgra, J; Bijkerk, F

    2012-12-17

    The single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly used multilayer optics and propose new material combinations selected for a high damage threshold. Our study demonstrates that the damage thresholds of multilayer optics can vary over a large range of incidence fluences and can be as high as several hundreds of mJ/cm(2). This strongly suggests that multilayer mirrors are serious candidates for damage resistant optics. Especially, multilayer optics based on Li(2)O spacers are very promising for use in current and future short-wavelength radiation sources.

  7. Radiation-Induced Damage to Nucleic Acid Constituents

    NASA Astrophysics Data System (ADS)

    Kim, Heasook

    The objective of this research was to identify the primary free radical species produced by ionizing radiation in DNA. The ultimate goal would be to use these data obtained from model compounds to analyze radiation-induced damage in DNA itself. The different single crystals were studied in detail. The first was the sodium salt of guanosine-3 ^':5^' -cyclic monophosphate (cyclic GMP). The results of studies on crystals irradiated at 4.2^ circK distinguished two species. One of these species exhibited a non-exchangeable proton coupling that was characterized by ENDOR spectroscopy and shown to be sigma proton. The spin density on C8 was deduced from the ENDOR hyperfine coupling tensor and found to be 0.15. The second species also exhibited a non-exchangeable sigma proton coupling and a beta proton coupling. The spin densities on C8 and N9 were deduced from ENDOR measurements to be 0.09 and 0.36. The former is attributed to the oxidation product and the latter to the primary reduction product. These products are respectively the guanine cation and anion. The second single crystal studied was a sodium salt of 2^'-deoxyguanosine -5^'-monophosphate tetrahydrate. The ESR and ENDOR spectra obtained from this crystal after x-irradiation at 4.2^circK were complex and the paramagnetic species were tentatively identified as ionic species. The third DNA model compound studied was thymidine. Single crystal of thymidine were irradiated at 1.6^ circK and at 4.2^circ K. The lower temperature preserved a more primitive stage of the radiation damage process. ENDOR measurements distinguished three paramagnetic species. The most interesting component of the paramagnetic absorption in crystals irradiated at 1.6^circK is attributed to trapped electron. These electrons are stabilized by the electrostatic fields generated by hydroxy dipoles. The hyperfine couplings between the trapped electron and the proton of these polar groups were deduced from ENDOR measurements. The ESR and ENDOR

  8. Helium-ion-induced human cataractogenesis

    NASA Technical Reports Server (NTRS)

    Blakely, E. A.; Daftari, I. K.; Meecham, W. J.; Alonso, L. C.; Collier, J. M.; Kroll, S. M.; Gillette, E. L.; Lee, A. C.; Lett, J. T.; Cox, A. B.

    1994-01-01

    Retrospective and ongoing analyses of clinical records from 347 primary intraocular melanoman patients treated with helium ions at Lawrence Berkeley Laboratory (LBL) will allow examination of the exposure-response data for human cataract; which is a complication of the therapy from incidental exposure of the lens. Direct particle beam traversal of at least a portion of the lens usually is unavoidable in treatment of posterior intraocular tumors. The precise treatment planned for each patient permits quantitative assessment of the lenticular dose and its radiation quality. We are reporting our preliminary results on the development of helium-ion-induced lens opacifications and cataracts in 54 of these patients who had 10% or less of their lens in the treatment field. We believe these studies will be relevant to estimating the human risk for cataract in space flight.

  9. Diffusion of radiogenic helium in natural uranium oxides

    NASA Astrophysics Data System (ADS)

    Roudil, Danièle; Bonhoure, Jessica; Pik, Raphaël; Cuney, Michel; Jégou, Christophe; Gauthier-Lafaye, F.

    2008-08-01

    The issue of nuclear waste management - and especially spent fuel disposal - demands further research on the long-term behavior of helium and its impact on physical changes in UO 2 and (U,Pu)O 2 matrices subjected to self-irradiation. Helium produced by radioactive decay of the actinides concentrates in the grains or is trapped at the grain boundaries. Various scenarios can be considered, and can have a significant effect on the radionuclide source terms that will be accessible to water after the canisters have been breached. Helium production and matrix damage is generally simulated by external irradiation or with actinide-doped materials. A natural uranium oxide sample was studied to acquire data on the behavior of radiogenic helium and its diffusion under self-irradiation in spent fuel. The sample from the Pen Ar Ran deposit in the Vendée region of France dated at 320 ± 9 million of years was selected for its simple geological history, making it a suitable natural analog of spent fuel under repository conditions during the initial period in a closed system not subject to mass transfer with the surrounding environment. Helium outgassing measured by mass spectrometry to determine the He diffusion coefficients through the ore shows that: (i) a maximum of 5% (2.1% on average) of the helium produced during the last 320 Ma in this natural analog was conserved, (ii) about 33% of the residual helium is occluded in the matrix and vacancy defects (about 10 -5 mol g -1) and 67% in bubbles that were analyzed by HRTEM. A similar distribution has been observed in spent fuel and in (U 0.9,Pu 0.1)O 2. The results obtained for the natural Pen Ar Ran sample can be applied by analogy to spent fuel, especially in terms of the apparent solubility limit and the formation, characteristics and behavior of the helium bubbles.

  10. Prediction and measurement of radiation damage to CMOS devices on board spacecraft

    NASA Technical Reports Server (NTRS)

    Cliff, R. A.; Danchenko, V.; Stassinopoulos, E. G.; Sing, M.; Brucker, G. J.; Ohanian, R. S.

    1976-01-01

    The initial results obtained from the Complementary Metal Oxide Semiconductors Radiation Effects Measurement experiment are presented. Predictions of radiation damage to C-MOS devices are based on standard environment models and computational techniques. A comparison of the shifts in CMOS threshold potentials, that is, those measured in space to those obtained from the on the ground simulation experiment with Co 60, indicated that the measured space damage is greater than predicted by a factor of two for shields thicker than 100 mils (2.54 mm), but agrees well with predictions for the thinner shields.

  11. Study of helium transfer technology for STICCR: Fluid management

    NASA Technical Reports Server (NTRS)

    Frank, D. J.; Yuan, S. W. K.; Grove, R. K.; Lheureux, J. M.

    1987-01-01

    The Space Infrared Telescope Facility (SIRTF) is a long life cryogenically cooled space based telescope for infrared astronomy from 2 to 700 microns currently under study and planned for launch in the mid 90's. SIRTF will operate as a multi-user facility, initially carrying 3 instruments at the focal plane. It will be cooled to below 2 K by superfluid liquid helium to achieve radiometric sensitivity limited only by the statistical fluctuations in the natural infrared background radiation over most of its spectral range. The lifetime of the mission will be limited by the lifetime of the liquid helium supply, and is currently baselined to be 2 years. Candidates are reviewed for a liquid management device to be used in the resupply of liquid helium, and for the selection of an appropriate candidate.

  12. Ultraviolet Radiations: Skin Defense-Damage Mechanism.

    PubMed

    Mohania, Dheeraj; Chandel, Shikha; Kumar, Parveen; Verma, Vivek; Digvijay, Kumar; Tripathi, Deepika; Choudhury, Khushboo; Mitten, Sandeep Kumar; Shah, Dilip

    2017-01-01

    UV-radiations are the invisible part of light spectra having a wavelength between visible rays and X-rays. Based on wavelength, UV rays are subdivided into UV-A (320-400 nm), UV-B (280-320 nm) and UV-C (200-280 nm). Ultraviolet rays can have both harmful and beneficial effects. UV-C has the property of ionization thus acting as a strong mutagen, which can cause immune-mediated disease and cancer in adverse cases. Numbers of genetic factors have been identified in human involved in inducing skin cancer from UV-radiations. Certain heredity diseases have been found susceptible to UV-induced skin cancer. UV radiations activate the cutaneous immune system, which led to an inflammatory response by different mechanisms. The first line of defense mechanism against UV radiation is melanin (an epidermal pigment), and UV absorbing pigment of skin, which dissipate UV radiation as heat. Cell surface death receptor (e.g. Fas) of keratinocytes responds to UV-induced injury and elicits apoptosis to avoid malignant transformation. In addition to the formation of photo-dimers in the genome, UV also can induce mutation by generating ROS and nucleotides are highly susceptible to these free radical injuries. Melanocortin 1 receptor (MC1R) has been known to be implicated in different UV-induced damages such as pigmentation, adaptive tanning, and skin cancer. UV-B induces the formation of pre-vitamin D3 in the epidermal layer of skin. UV-induced tans act as a photoprotection by providing a sun protection factor (SPF) of 3-4 and epidermal hyperplasia. There is a need to prevent the harmful effects and harness the useful effects of UV radiations.

  13. Radiation damage in polymer films from grazing-incidence X-ray scattering measurements

    DOE PAGES

    Vaselabadi, Saeed Ahmadi; Shakarisaz, David; Ruchhoeft, Paul; ...

    2016-02-16

    Grazing-incidence X-ray scattering (GIXS) is widely used to analyze the crystallinity and nanoscale structure in thin polymer films. However, ionizing radiation will generate free radicals that initiate cross-linking and/or chain scission, and structural damage will impact the ordering kinetics, thermodynamics, and crystallinity in many polymers. We report a simple methodology to screen for beam damage that is based on lithographic principles: films are exposed to patterns of x-ray radiation, and changes in polymer structure are revealed by immersing the film in a solvent that dissolves the shortest chains. The experiments are implemented with high throughput using the standard beam linemore » instrumentation and a typical GIXS configuration. The extent of damage (at a fixed radiation dose) depends on a range of intrinsic material properties and experimental variables, including the polymer chemistry and molecular weight, exposure environment, film thickness, and angle of incidence. The solubility switch for common polymers is detected within 10-60 sec at ambient temperature, and we verified that this first indication of damage corresponds with the onset of network formation in glassy polystyrene and a loss of crystallinity in polyalkylthiophenes. Therefore, grazing-incidence x-ray patterning offers an efficient approach to determine the appropriate data acquisition times for any GIXS experiment.« less

  14. Discovering mechanisms relevant for radiation damage evolution

    DOE PAGES

    Uberuaga, Blas Pedro; Martinez, Enrique Saez; Perez, Danny; ...

    2018-02-22

    he response of a material to irradiation is a consequence of the kinetic evolution of defects produced during energetic damage events. Thus, accurate predictions of radiation damage evolution require knowing the atomic scale mechanisms associated with those defects. Atomistic simulations are a key tool in providing insight into the types of mechanisms possible. Further, by extending the time scale beyond what is achievable with conventional molecular dynamics, even greater insight can be obtained. Here, we provide examples in which such simulations have revealed new kinetic mechanisms that were not obvious before performing the simulations. We also demonstrate, through the couplingmore » with higher level models, how those mechanisms impact experimental observables in irradiated materials. Lastly, we discuss the importance of these types of simulations in the context of predicting material behavior.« less

  15. Discovering mechanisms relevant for radiation damage evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uberuaga, Blas Pedro; Martinez, Enrique Saez; Perez, Danny

    he response of a material to irradiation is a consequence of the kinetic evolution of defects produced during energetic damage events. Thus, accurate predictions of radiation damage evolution require knowing the atomic scale mechanisms associated with those defects. Atomistic simulations are a key tool in providing insight into the types of mechanisms possible. Further, by extending the time scale beyond what is achievable with conventional molecular dynamics, even greater insight can be obtained. Here, we provide examples in which such simulations have revealed new kinetic mechanisms that were not obvious before performing the simulations. We also demonstrate, through the couplingmore » with higher level models, how those mechanisms impact experimental observables in irradiated materials. Lastly, we discuss the importance of these types of simulations in the context of predicting material behavior.« less

  16. Radiation damage effects on the optical properties of plastic scintillators

    NASA Astrophysics Data System (ADS)

    Jivan, H.; Mdhluli, J. E.; Sideras-Haddad, E.; Mellado, B.; Erasmus, R.; Madhuku, M.

    2017-10-01

    We report on the radiation damage to the optical properties of plastic scintillators following irradiation using a 6 MeV proton beam produced by the 6 MV tandem accelerator of iThemba LABS, Gauteng. A comparative is drawn between polyvinyl toluene based commercial scintillators EJ200, EJ208, EJ260 and BC408 as well as polystyrene based scintillator UPS923A and scintillators manufactured for the Tile Calorimeter. Results on the proton induced damage indicate a reduction in the light output and transmission capability of the plastics. Scintillators containing a larger Stokes shift, i.e. EJ260 and EJ208 exhibit the most radiation hardness. The EJ208 is recommended as a candidate to be considered for the replacement of Gap scintillators in the Tile Calorimeter for the 2018 upgrade.

  17. Energetic helium particles trapped in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Chen, Jiasheng; Guzik, T. Gregory; Sang, Yeming; Wefel, John P.; Cooper, John F.

    1994-01-01

    High energy (approximately 40-100 MeV/nucleon) geomagnetically trapped helium nuclei have been measured, for the first time, by the ONR-604 instrument during the 1990/1991 Combined Release and Radiation Effects Satellite (CRRES) mission. The helium events observed at L less than 2.3 have a pitch angle distribution peaking perpendicular to the local magnetic field and are contained in peaks located at L = 1.2 and 1.9. The events in each peak can be characterized by power law energy spectra with indices of 10.0 +/- 0.7 for L = 1.9-2.3 and 6.8 +/- 1.0 for L = 1.15-1.3, before the large storm of 24 March 1991. CRRES was active during solar maximum when the anomalous component is excluded from the inner heliosphere, making it unlikely that the observed events derived from the anomalous component. The trapped helium counting rates decrease gradually with time indicating that these high energy ions were not injected by flares during the 1990/91 mission. Flare injection prior to mid-1990 may account for the highest energy particles, while solar wind injection during magnetic storms and subsequent acceleration could account for the helium at lower energies.

  18. Myocardial correlates of helium-cold induction and maintenance of hypothermia.

    NASA Technical Reports Server (NTRS)

    Anderson, G. L.; Prewitt, R., Jr.; Musacchia, X. J.

    1971-01-01

    Hypothermia was induced in the golden hamster Mesocricetus auratus, using the helium-cold method. The first group of hamsters was sacrificed immediately after induction to rectal temperature 7 C, a second group was sacrificed after being maintained at a body temperature of 7 C for 18-24 hr, and a third group consisted of unexposed controls. The hearts were excised and the ventricles analyzed for hypoxic damage, glycogen, and catecholamines. In the short-term hypothermic animals, resting tension was increased while peak isometric tension, generated tension after 10 min of anoxic exposure, glycogen, and catecholamines were all reduced. All of the functional parameters recovered in the long-term hypothermic group, while glycogen and catecholamines showed a trend toward recovery. It is concluded that myocardial hypoxia develops during induction into hypothermia when using the helium-cold method. This effect is reversible and hypoxic damage does not increase as the hypothermic exposure is prolonged.

  19. Modeling radiation damage to pixel sensors in the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Ducourthial, A.

    2018-03-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC) . As the closest detector component to the interaction point, these detectors will be subject to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC) [1], the innermost layers will receive a fluence in excess of 1015 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is essential in order to make accurate predictions for current and future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects on the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside early studies with LHC Run 2 proton-proton collision data.

  20. Radiation damage and sensitization effects on thermoluminescence of LiF:Mg,Ti (TLD-700)

    NASA Astrophysics Data System (ADS)

    Farag, M. A.; Sadek, A. M.; Shousha, Hany. A.; El-Hagg, A. A.; Atta, M. R.; Kitis, G.

    2017-09-01

    The radiation damage effects and enhancement the thermoluminescence (TL) efficiency of LiF:Mg,Ti (TLD-700)dosimeters via sensitization method were discussed. Attempts to eliminate the effects of damage and sensitization were made using different types of annealing processes. The results showed that after irradiating the dosimeters with dose > 250 Gy of 60Co gamma source, damage effects were observed. The sensitivity of the total area under the curve was decreased by a factor of ∼0.5 after irradiation at a pre-test dose of 2 kGy. However, the effects of radiation damage on each glow-peak are different. The glow-peak 2 was the only peak that was not affected by the high-dose irradiation. It has been shown that the degree of the radiation damage effect is related to the maximum dose-response function, f(D)max of the glow-peak. In general, significant radiation damage effects were observed for the glow-peaks of high f(D)max . Post-irradiation anneal at 280 °C for 30 min causes dramatic effects on the shape of the glow-curve and as well as on the sensitivity of the dosimeters. An increasing by a factor of ∼35 in the sensitivity of the total area under the curve was observed at a pre-test dose of 2 kGy. Improving the sensitivity of peak 7 by a factor of∼22 was the dominant factor in increasing the sensitivity of the dosimeters. On the other hand, an increasing by factors of ∼2.5 and ∼4 was found for peaks 2 and 5 respectively. On the other hand, a decreasing by a factor ∼0.5 was observed for peaks 3 and 4. At pre-test dose levels >250 Gy, a very strange and high intensity tail was observed in the high-temperature region of the glow-curves. The readout anneal was not enough to remove this tail. While, the furnace anneal could eliminate the sensitization effects but not the radiation damage effects on the sensitivity of the dosimeters.

  1. Simulations of radiation-damaged 3D detectors for the Super-LHC

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Pellegrini, G.; Fleta, C.; Bates, R.; O'Shea, V.; Parkes, C.; Tartoni, N.

    2008-07-01

    Future high-luminosity colliders, such as the Super-LHC at CERN, will require pixel detectors capable of withstanding extremely high radiation damage. In this article, the performances of various 3D detector structures are simulated with up to 1×1016 1 MeV- neq/cm2 radiation damage. The simulations show that 3D detectors have higher collection efficiency and lower depletion voltages than planar detectors due to their small electrode spacing. When designing a 3D detector with a large pixel size, such as an ATLAS sensor, different electrode column layouts are possible. Using a small number of n+ readout electrodes per pixel leads to higher depletion voltages and lower collection efficiency, due to the larger electrode spacing. Conversely, using more electrodes increases both the insensitive volume occupied by the electrode columns and the capacitive noise. Overall, the best performance after 1×1016 1 MeV- neq/cm2 damage is achieved by using 4-6 n+ electrodes per pixel.

  2. The influence of neutron radiation damage on the optical properties of plastic scintillator UPS 923A

    NASA Astrophysics Data System (ADS)

    Mthembu, Skhathisomusa; Davydov, Yuri; Baranov, Vladimir; Mellado Garcia, Bruce; Mdhluli, Joyful; Sideras-Haddad, Elias

    2017-09-01

    Plastic scintillators are vital in the reconstruction of hadronic particle energy and tracks resulting from the collision of high energy particles in the Large Hadron Collider (LHC) at CERN. These plastic scintillators are exposed to harsh radiation environments and are susceptible to radiation damage. The effects of radiation damage on the transmittance, luminescence and light yield of Ukraine polystyrene-based scintillator UPS 923A were studied. Samples were irradiated with fast neutrons, of varying energies and fluences, using the IBR-2 reactor FLNP (Frank Laboratory for Nuclear Problems) at the Joint Institute for Nuclear Research. Results show a small change in the transmittance of the higher energy visible spectrum, and a noticeable change in the light yield of the samples as a result of the damage. There is no change observed on the luminescence as a result of radiation damage at studied fluences. The doses and uences of the neutrons shall be increased and changes in optical properties as a result of the radiation shall be further studied.

  3. DNA damage by various radiations

    NASA Astrophysics Data System (ADS)

    Hasegawa, K.; Yoshioka, H.; Yoshioka, H.

    1997-01-01

    In an attempt to shed light on the influence of tritiated water on DNA we have investigated the post-irradiation damage with a simple plasmid DNA, pBR322 and pUC18. The survival of covalently closed circular (CCC) DNA form was directly followed by agarose gel electrophoresis. The survival percentage of DNA in tritiated water was almost the same as with the irradiation with X-rays at the same absorbed dose. For irradiation with γ-rays, on the other hand, the decay rate was larger than those observed with both tritiated water and X-rays. The percentages of breakage for DNA in tritiated water, X-rays and γ-rays were found to be 34, 38 and 33% at 100 Gy of absorbed dose. The effect of dose rate was not observed for irradiation with tritiated water, X-rays and γ-rays. In order to study protection of DNA against radiation, we investigated the protecting effect of tea catechin which is the main component of (-)-epigallocatechin gallate (EGCg). The protection mechanism for DNA against radiation-induced scission has been studied using ESR spin-trapping method.

  4. The RaDIATE High-Energy Proton Materials Irradiation Experiment at the Brookhaven Linac Isotope Producer Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammigan, Kavin; et al.

    The RaDIATE collaboration (Radiation Damage In Accelerator Target Environments) was founded in 2012 to bring together the high-energy accelerator target and nuclear materials communities to address the challenging issue of radiation damage effects in beam-intercepting materials. Success of current and future high intensity accelerator target facilities requires a fundamental understanding of these effects including measurement of materials property data. Toward this goal, the RaDIATE collaboration organized and carried out a materials irradiation run at the Brookhaven Linac Isotope Producer facility (BLIP). The experiment utilized a 181 MeV proton beam to irradiate several capsules, each containing many candidate material samples formore » various accelerator components. Materials included various grades/alloys of beryllium, graphite, silicon, iridium, titanium, TZM, CuCrZr, and aluminum. Attainable peak damage from an 8-week irradiation run ranges from 0.03 DPA (Be) to 7 DPA (Ir). Helium production is expected to range from 5 appm/DPA (Ir) to 3,000 appm/DPA (Be). The motivation, experimental parameters, as well as the post-irradiation examination plans of this experiment are described.« less

  5. Cryogenic filter method produces super-pure helium and helium isotopes

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.

    1964-01-01

    Helium is purified when cooled in a low pressure environment until it becomes superfluid. The liquid helium is then filtered through iron oxide particles. Heating, cooling and filtering processes continue until the purified liquid helium is heated to a gas.

  6. RADIATION DAMAGE IN REACTOR MATERIALS. Proceedings of the Symposium on Radiation Damage in Solids and Reactor Materials Held in Venice, 7-11 May 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1964-10-31

    Thirty papers and 3 reviews of papers and panel discussions presented at the Symposium on Radiation Damage in Solids and Reactor Materials are given. Eighteen papers were previously abstracted for NSA. Separate abstracts were prepared for the remaining 15 papers. (M.C.G.)

  7. Crystal structure and density of helium to 232 kbar

    NASA Technical Reports Server (NTRS)

    Mao, H. K.; Wu, Y.; Jephcoat, A. P.; Hemley, R. J.; Bell, P. M.; Bassett, W. A.

    1988-01-01

    The properties of helium and hydrogen at high pressure are topics of great interest to the understanding of planetary interiors. These materials constitute 95 percent of the entire solar system. A technique was presented for the measurement of X-ray diffraction from single-crystals of low-Z condenses gases in a diamond-anvil cell at high pressure. The first such single-crystal X-ray diffraction measurements on solid hydrogen to 26.5 GPa were presented. The application of this technique to the problem of the crystal structure, equation of state, and phase diagram of solid helium is reported. Crucial for X-ray diffraction studies of these materials is the use of a synchrotron radiation source which provides high brillance, narrow collimation of the incident and diffracted X-ray beams to reduce the background noise, and energy-dispersive diffraction techniques with polychromatic (white) radiation, which provides high detection efficiency.

  8. Radiation Physics for Space and High Altitude Air Travel

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Goldhagen, P.; Saganti, P.; Shavers, M. R.; McKay, Gordon A. (Technical Monitor)

    2000-01-01

    Galactic cosmic rays (GCR) are of extra-solar origin consisting of high-energy hydrogen, helium, and heavy ions. The GCR are modified by physical processes as they traverse through the solar system, spacecraft shielding, atmospheres, and tissues producing copious amounts of secondary radiation including fragmentation products, neutrons, mesons, and muons. We discuss physical models and measurements relevant for estimating biological risks in space and high-altitude air travel. Ambient and internal spacecraft computational models for the International Space Station and a Mars mission are discussed. Risk assessment is traditionally based on linear addition of components. We discuss alternative models that include stochastic treatments of columnar damage by heavy ion tracks and multi-cellular damage following nuclear fragmentation in tissue.

  9. Damage in a Thin Metal Film by High-Power Terahertz Radiation.

    PubMed

    Agranat, M B; Chefonov, O V; Ovchinnikov, A V; Ashitkov, S I; Fortov, V E; Kondratenko, P S

    2018-02-23

    We report on the experimental observation of high-power terahertz-radiation-induced damage in a thin aluminum film with a thickness less than a terahertz skin depth. Damage in a thin metal film produced by a single terahertz pulse is observed for the first time. The damage mechanism induced by a single terahertz pulse could be attributed to thermal expansion of the film causing debonding of the film from the substrate, film cracking, and ablation. The damage pattern induced by multiple terahertz pulses at fluences below the damage threshold is quite different from that observed in single-pulse experiments. The observed damage pattern resembles an array of microcracks elongated perpendicular to the in-plane field direction. A mechanism related to microcracks' generation and based on a new phenomenon of electrostriction in thin metal films is proposed.

  10. Damage in a Thin Metal Film by High-Power Terahertz Radiation

    NASA Astrophysics Data System (ADS)

    Agranat, M. B.; Chefonov, O. V.; Ovchinnikov, A. V.; Ashitkov, S. I.; Fortov, V. E.; Kondratenko, P. S.

    2018-02-01

    We report on the experimental observation of high-power terahertz-radiation-induced damage in a thin aluminum film with a thickness less than a terahertz skin depth. Damage in a thin metal film produced by a single terahertz pulse is observed for the first time. The damage mechanism induced by a single terahertz pulse could be attributed to thermal expansion of the film causing debonding of the film from the substrate, film cracking, and ablation. The damage pattern induced by multiple terahertz pulses at fluences below the damage threshold is quite different from that observed in single-pulse experiments. The observed damage pattern resembles an array of microcracks elongated perpendicular to the in-plane field direction. A mechanism related to microcracks' generation and based on a new phenomenon of electrostriction in thin metal films is proposed.

  11. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  12. The Future of the South Atlantic Anomaly and Implications for Radiation Damage in Space

    NASA Technical Reports Server (NTRS)

    Heirtzler, J. R.; Smith, David E. (Technical Monitor)

    2000-01-01

    South Atlantic Anomaly of the geomagnetic field plays a dominant role in where radiation damage occurs in near Earth orbits. The historic and recent variations of the geomagnetic field in the South Atlantic are used to estimate the extent of the South Atlantic Anomaly until the year 2000. This projection indicates that radiation damage to spacecraft and humans in space will greatly increase and cover a much larger geographic area than present.

  13. Radiation damage characterization in reactor pressure vessel steels with nonlinear ultrasound

    NASA Astrophysics Data System (ADS)

    Matlack, K. H.; Kim, J.-Y.; Wall, J. J.; Qu, J.; Jacobs, L. J.

    2014-02-01

    Nuclear generation currently accounts for roughly 20% of the US baseload power generation. Yet, many US nuclear plants are entering their first period of life extension and older plants are currently undergoing assessment of technical basis to operate beyond 60 years. This means that critical components, such as the reactor pressure vessel (RPV), will be exposed to higher levels of radiation than they were originally intended to withstand. Radiation damage in reactor pressure vessel steels causes microstructural changes such as vacancy clusters, precipitates, dislocations, and interstitial loops that leave the material in an embrittled state. The development of a nondestructive evaluation technique to characterize the effect of radiation exposure on the properties of the RPV would allow estimation of the remaining integrity of the RPV with time. Recent research has shown that nonlinear ultrasound is sensitive to radiation damage. The physical effect monitored by nonlinear ultrasonic techniques is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave, arising from the interaction of the ultrasonic wave with microstructural features such as dislocations, precipitates, and their combinations. Current findings relating the measured acoustic nonlinearity parameter to increasing levels of neutron fluence for different representative RPV materials are presented.

  14. Photoelectron imaging of doped helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Neumark, Daniel

    2008-03-01

    Photoelectron images of helium nanodroplets doped with Kr and Ne atoms are reported. The images and resulting photoelectron spectra were obtained using tunable synchrotron radiation to ionize the droplets. Droplets were excited at 21.6 eV, corresponding to a strong droplet electronic excitation. The rare gas dopant is then ionized via a Penning excitation transfer process. The electron kinetic energy distributions reflect complex ionization and electron escape dynamics.

  15. Radiation-damage-induced phasing: a case study using UV irradiation with light-emitting diodes.

    PubMed

    de Sanctis, Daniele; Zubieta, Chloe; Felisaz, Franck; Caserotto, Hugo; Nanao, Max H

    2016-03-01

    Exposure to X-rays, high-intensity visible light or ultraviolet radiation results in alterations to protein structure such as the breakage of disulfide bonds, the loss of electron density at electron-rich centres and the movement of side chains. These specific changes can be exploited in order to obtain phase information. Here, a case study using insulin to illustrate each step of the radiation-damage-induced phasing (RIP) method is presented. Unlike a traditional X-ray-induced damage step, specific damage is introduced via ultraviolet light-emitting diodes (UV-LEDs). In contrast to UV lasers, UV-LEDs have the advantages of small size, low cost and relative ease of use.

  16. Accurate calculation of dynamic Stark shifts and depopulation rates of Rydberg energy levels induced by blackbody radiation. Hydrogen, helium, and alkali-metal atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farley, J.W.; Wing, W.H.

    1981-05-01

    A highly excited (Rydberg) atom bathed in blackbody radiation is perturbed in two ways. A dynamic Stark shift is induced by the off-resonant components of the blackbody radiation. Additionally, electric-dipole transitions to other atomic energy levels are induced by the resonant components of the blackbody radiation. This depopulation effect shortens the Rydberg-state lifetime, thereby broadening the energy level. Calculations of these two effects in many states of hydrogen, helium, and the alkali-metal atoms Li, Na, K, Rb, and Cs are presented for T = 300 K. Contributions from the entire blackbody spectrum and from both discrete and continuous perturbing statesmore » are included. The accuracy is considerably greater than that of previous estimates.« less

  17. Effects of the pulse width on the reactive species production and DNA damage in cancer cells exposed to atmospheric pressure microsecond-pulsed helium plasma jets

    NASA Astrophysics Data System (ADS)

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Kang, Tae Hong; Chung, T. H.

    2017-08-01

    Plasma-liquid and plasma-cell interactions were investigated using an atmospheric pressure dc microsecond-pulsed helium plasma jet. We investigated the effects of the electrical parameters such as applied voltage and pulse width (determined by the pulse frequency and duty ratio) on the production of reactive species in the gas/liquid phases and on the DNA damage responses in the cancer cells. The densities of reactive species including OH radicals were estimated inside the plasma-treated liquids using a chemical probe method, and the nitrite concentration was detected by Griess assay. Importantly, the more concentration of OH resulted in the more DNA base oxidation and breaks in human lung cancer A549 cells. The data are very suggestive that there is strong correlation between the production of OH in the plasmas/liquids and the DNA damage.

  18. Radiation damage study of thin YAG:Ce scintillator using low-energy protons

    NASA Astrophysics Data System (ADS)

    Novotný, P.; Linhart, V.

    2017-07-01

    Radiation hardness of a 50 μ m thin YAG:Ce scintillator in a form of dependence of a signal efficiency on 3.1 MeV proton fluence was measured and analysed using X-ray beam. The signal efficiency is a ratio of signals given by a CCD chip after and before radiation damage. The CCD chip was placed outside the primary beam because of its protection from damage which could be caused by radiation. Using simplified assumptions, the 3.1 MeV proton fluences were recalculated to: ṡ 150 MeV proton fluences with intention to estimate radiation damage of this sample under conditions at proton therapy centres during medical treatment, ṡ 150 MeV proton doses with intention to give a chance to compare radiation hardness of the studied sample with radiation hardness of other detectors used in medical physics, ṡ 1 MeV neutron equivalent fluences with intention to compare radiation hardness of the studied sample with properties of position sensitive silicon and diamond detectors used in nuclear and particle physics. The following results of our research were obtained. The signal efficiency of the studied sample varies slightly (± 3%) up to 3.1 MeV proton fluence of c. (4 - 8) × 1014 cm-2. This limit is equivalent to 150 MeV proton fluence of (5 - 9) × 1016 cm-2, 150 MeV proton dose of (350 - 600) kGy and 1 MeV neutron fluence of (1 - 2) × 1016 cm-2. Beyond the limit, the signal efficiency goes gradually down. Fifty percent decrease in the signal efficiency is reached around 3.1 MeV fluence of (1 - 2) × 1016 cm-2 which is equivalent to 150 MeV proton fluence of around 2 × 1018 cm-2, 150 MeV proton dose of around 15 MGy and 1 MeV neutron equivalent fluence of (4 - 8) × 1017 cm-2. In contrast with position sensitive silicon and diamond radiation detectors, the studied sample has at least two order of magnitude greater radiation resistance. Therefore, YAG:Ce scintillator is a suitable material for monitoring of primary beams of particles of ionizing radiation.

  19. Equation of state of fluid helium at high temperatures and densities

    NASA Astrophysics Data System (ADS)

    Cai, Lingcang; Chen, Qifeng; Gu, Yunjun; Zhang, Ying; Zhou, Xianming; Jing, Fuqian

    2005-03-01

    Hugoniot curves and shock temperatures of gas helium with initial temperature 293 K and three initial pressures 0.6, 1.2, and 5.0 MPa were measured up to 15000 K using a two-stage light-gas gun and transient radiation pyrometer. It was found that the calculated Hugoniot EOS of gas helium at the same initial pressure using Saha equation with Debye-Hückel correction was in good agreement with the experimental data. The curve of the calculated shock wave velocity with the particle velocity of gas helium which is shocked from the initial pressure 5 MPa and temperature 293 K, i.e., the D ≈ u relation, D= C 0+λ u ( u<10 km/s, λ=1.32) in a low pressure region, is approximately parallel with the fitted D ≈ u (λ=1.36) of liquid helium from the experimental data of Nellis et al. Our calculations show that the Hugoniot parameter λ is independent of the initial density p{in0}. The D≈ u curves of gas helium will transfer to another one and approach a limiting value of compression when their temperature elevates to about 18000 K and the ionization degree of the shocked gas helium reaches 10-3.

  20. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposur...

  1. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENNTIAL FLUORESENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposures...

  2. A thermochemical model of radiation damage and annealing applied to GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Conway, E. J.; Walker, G. H.; Heinbockel, J. H.

    1981-01-01

    Calculations of the equilibrium conditions for continuous radiation damage and thermal annealing are reported. The calculations are based on a thermochemical model developed to analyze the incorporation of point imperfections in GaAs, and modified by introducing the radiation to produce native lattice defects rather than high-temperature and arsenic atmospheric pressure. The concentration of a set of defects, including vacancies, divacancies, and impurity vacancy complexes, are calculated as a function of temperature. Minority carrier lifetimes, short circuit current, and efficiency are deduced for a range of equilibrium temperatures. The results indicate that GaAs solar cells could have a mission life which is not greatly limited by radiation damage.

  3. Channeling STIM analysis of radiation damage in single crystal diamond membrane

    NASA Astrophysics Data System (ADS)

    Sudić, I.; Cosic, D.; Ditalia Tchernij, S.; Olivero, P.; Pomorski, M.; Skukan, N.; Jakšić, M.

    2017-08-01

    The use of focused ion beam transmission channeling patterns to monitor the damage creation process in thin diamond single crystal membrane is described. A 0.8 MeV proton beam from the Ruđer Bošković Institute nuclear microprobe was used to perform Channeling Scanning Transmission Ion Microscopy (CSTIM) measurements. CSTIM was used instead of RBS channeling because of (several orders of magnitude) lower damage done to the sample during the measurements. Damage was introduced in selected areas by 15 MeV carbon beam in range of fluences 3·1015-2·1017 ions/cm2. Contrary to Ion Beam Induced Charge (IBIC), CSTIM is shown to be sensitive to the large fluences of ion beam radiation. Complementary studies of both IBIC and CSTIM are presented to show that very high fluence range can be covered by these two microprobe techniques, providing much wider information about the diamond radiation hardness. In addition micro Raman measurements were performed and the height of the GR 1 peak was correlated to the ion beam fluence.

  4. Study of terahertz-radiation-induced DNA damage in human blood leukocytes

    NASA Astrophysics Data System (ADS)

    Angeluts, A. A.; Gapeyev, A. B.; Esaulkov, M. N.; Kosareva, O. G.; Matyunin, S. N.; Nazarov, M. M.; Pashovkin, T. N.; Solyankin, P. M.; Cherkasova, O. P.; Shkurinov, A. P.

    2014-03-01

    We have carried out the studies aimed at assessing the effect of terahertz radiation on DNA molecules in human blood leukocytes. Genotoxic testing of terahertz radiation was performed in three different oscillation regimes, the blood leukocytes from healthy donors being irradiated for 20 minutes with the mean intensity of 8 - 200 μW cm-2 within the frequency range of 0.1 - 6.5 THz. Using the comet assay it is shown that in the selected regimes such radiation does not induce a direct DNA damage in viable human blood leukocytes.

  5. Bragg coherent diffraction imaging and metrics for radiation damage in protein micro-crystallography.

    PubMed

    Coughlan, H D; Darmanin, C; Kirkwood, H J; Phillips, N W; Hoxley, D; Clark, J N; Vine, D J; Hofmann, F; Harder, R J; Maxey, E; Abbey, B

    2017-01-01

    The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals (Helliwell, 1984). Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to the diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. A possible mechanism to account for these observations is proposed.

  6. Bragg coherent diffraction imaging and metrics for radiation damage in protein micro-crystallography

    DOE PAGES

    Coughlan, H. D.; Darmanin, C.; Kirkwood, H. J.; ...

    2017-01-01

    The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals. Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to themore » diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. As a result, a possible mechanism to account for these observations is proposed.« less

  7. Bragg coherent diffraction imaging and metrics for radiation damage in protein micro-crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughlan, H. D.; Darmanin, C.; Kirkwood, H. J.

    The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals. Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to themore » diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. As a result, a possible mechanism to account for these observations is proposed.« less

  8. Radiation damage of all-silica fibers in the UV region

    NASA Astrophysics Data System (ADS)

    Gombert, Joerg; Ziegler, M.; Assmus, J.; Klein, Karl-Friedrich; Nelson, Gary W.; Clarkin, James P.; Pross, H.; Kiefer, J.

    1999-04-01

    Since several years, UVI-fibers having higher solarization- resistance are well known stimulating new fiber-optic applications in the UV-region below 250 nm. Besides the description of the improved transmission properties of UV- light from different UV-sources, the mechanisms of improvement have been discussed in detail. The UV-defects, mainly the E'- center with the UV-absorption band around 215 nm, were passivated by using hydrogen-doping. Besides DUV-light, ionizing radiation like Gamma-radiation or X-rays can create similar defects in the UV-region. In the past, the radiation- damage in the UV-region was studied on silica bulk samples: again, E'-centers were generated. Up to now, no UV- transmission through a 1 m long fiber during or after Gamma- radiation had been observed. However, the hydrogen in the UVI- fibers behaves the same for Gamma-irradiation, leading to a passivation of the radiation-induced defects and an improved transmission in the UV-C region below 250 nm. On this report, the influence of total dose and fiber diameter on the UV- damage after irradiation will be described and discussed. In addition, we will include annealing studies, with and without UV-light. Based on our results, the standard process of Gamma- sterilization with a total dose of approx. 2 Mrad can be used for UVI-fibers resulting in a good UV-transmission below 320 nm. Excimer-laser light at 308 nm (XeCl) and 248 nm (KrF) and deuterium-lamp light with the full spectrum starting at 200 nm can also be transmitted.

  9. Early and Late Damages in Chromosome 3 of Human Lymphocytes After Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Sunagawa, Mayumi; Mangala, Lingegowda; Zhang, Ye; Kahdim, Munira; Wilson, Bobby; Cucinotta, Francis A.; Wu, Honglu

    2011-01-01

    Tumor formation in humans or animals is a multi-step process. An early stage of cancer development is believed to be genomic instability (GI) which accelerates the mutation rate in the descendants of the cells surviving radiation exposure. GI is defined as elevated or persistent genetic damages occurring many generations after the cells are exposed. While early studies have demonstrated radiation-induced GI in several cell types as detected in endpoints such as mutation, apoptosis and damages in chromosomes, the dependence of GI on the quality of radiation remains uncertain. To investigate GI in human lymphocytes induced by both low- and high-LET radiation, we initially exposed white blood cells collected from healthy subjects to gamma rays in vitro, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis post irradiation and at several intervals during the culture period. Among a number of biological endpoints planned for the project, the multi-color banding fluorescent in situ hybridization (mBAND) allows identification of inversions that were expected to be stable. We present here early and late chromosome aberrations detected with mBAND in chromosome 3 after gamma exposure. Comparison of chromosome damages in between human lymphocytes and human epithelial cells is also discussed

  10. On the radiation damage characterization of candidate first wall materials in a fusion reactor using various molten salts

    NASA Astrophysics Data System (ADS)

    Übeyli, Mustafa

    2006-12-01

    Evaluating radiation damage characteristics of structural materials considered to be used in fusion reactors is very crucial. In fusion reactors, the highest material damage occurs in the first wall because it will be exposed to the highest neutron, gamma ray and charged particle currents produced in the fusion chamber. This damage reduces the lifetime of the first wall material and leads to frequent replacement of this material during the reactor operation period. In order to decrease operational cost of a fusion reactor, lifetime of the first wall material should be extended to reactor's lifetime. Using a protective flowing liquid wall between the plasma and first wall can decrease the radiation damage on first wall and extend its lifetime to the reactor's lifetime. In this study, radiation damage characterization of various low activation materials used as first wall material in a magnetic fusion reactor blanket using a liquid wall was made. Various coolants (Flibe, Flibe + 4% mol ThF 4, Flibe + 8% mol ThF 4, Li 20Sn 80) were used to investigate their effect on the radiation damage of first wall materials. Calculations were carried out by using the code Scale4.3 to solve Boltzmann neutron transport equation. Numerical results brought out that the ferritic steel with Flibe based coolants showed the best performance with respect to radiation damage.

  11. Stability of Radiation Induced Chromosome Damage in Human Peripheral Blood Lymphocytes

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; George, K.; Willingham, V.

    2006-01-01

    Chromosome damage in an individual's peripheral blood lymphocytes can be an indicator of radiation exposure and this data can be used to evaluate dose after accidental or occupational exposure. Evidence suggests that the yield of chromosome damage in lymphocytes is also a relevant biomarker of cancer risk in humans that reflects individual cancer susceptibility. It follows that biomonitoring studies can be used to uncover subjects who are particularly susceptible to radiation damage and therefore at higher risk of cancer. Translocations and other stable aberrations are commonly believed to persist in peripheral blood cells for many years after exposure, and it has been suggested that translocations can be used for assessing retrospective radiation doses or chronic exposures. However, recent investigations suggest that translocations might not always persist indefinitely. We measured chromosome aberrations in the blood lymphocytes of six astronauts before their respective missions of approximately 3 to 6 months onboard the international space station, and again at various intervals up to 5 years after flight. In samples collected a few days after return to earth, the yield of chromosome translocations had significantly increased compared with preflight values, and results indicate that biodosimetry estimates lie within the range expected from physical dosimetry. However, for five of the astronauts, follow up analysis revealed a temporal decline in translocations with half-lives ranging from 10 to 58 months. The yield of exchanges remained unchanged for the sixth astronaut during an observation period of 5 months post-flight. These results may indicate complications with the use of stable aberrations for retrospective dose reconstruction and could affect cancer risk predictions that are estimated from yields of chromosome damage obtained shortly after exposure.

  12. Radiation Damage in XFEL: Case study from the oxygen-evolving complex of Photosystem II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amin, Muhamed; Badawi, Ashraf; Obayya, S. S.

    Structural changes induced by radiation damage in X-ray crystallography hinder the ability to understand the structure/function relationship in chemical reactions. Serial femtosecond crystallography overcomes this problem by exposing the sample to very short and intense laser pulse leading to measurement before destruction. Here we use molecular modeling to map the radiation damage during the 10–50 fs to the intensity, the energy and the time duration of the laser pulse on the oxygen-evolving complex (OEC) of photosystem II. In the model, the nuclei move classically in a fully quantum potential created by electron density under the effect of strong laser pulsemore » in the Ehrenfest dynamics regime. The results show that the Mn-Mn and Mn-Ca distances are less affected by radiation damage due to the their heavy masses, while one μ-oxo bridge (O5) moves significantly. The radiation damage may induce conformational changes of the water ligands but only bond elongation for the amino acids ligands. These effects are relatively intensity independent from 10 16 to 10 17 W/cm 2, but changes increase dramatically if the beam intensity is increased to 10 18 W/cm 2. Finally, in addition, the self amplified spontaneous emission (SASE) nature of the laser beam does not affect the dynamics of the ions.« less

  13. Mesenchymal stromal cell derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells

    PubMed Central

    Wen, Sicheng; Dooner, Mark; Cheng, Yan; Papa, Elaine; Del Tatto, Michael; Pereira, Mandy; Deng, Yanhui; Goldberg, Laura; Aliotta, Jason; Chatterjee, Devasis; Stewart, Connor; Carpanetto, Andrea; Collino, Federica; Bruno, Stefania; Camussi, Giovanni; Quesenberry, Peter

    2016-01-01

    Mesenchymal stromal cells (MSC) have been shown to reverse radiation damage to marrow stem cells. We have evaluated the capacity of MSC-derived extracellular vesicles (MSC-EVs) to mitigate radiation injury to marrow stem cells at 4 hours to 7 days after irradiation. Significant restoration of marrow stem cell engraftment at 4, 24 and 168 hours post-irradiation by exposure to MSC-EVs was observed at 3 weeks to 9 months after transplant and further confirmed by secondary engraftment. Intravenous injection of MSC-EVs to 500cGy exposed mice led to partial recovery of peripheral blood counts and restoration of the engraftment of marrow. The murine hematopoietic cell line, FDC-P1 exposed to 500 cGy, showed reversal of growth inhibition, DNA damage and apoptosis on exposure to murine or human MSC-EVs. Both murine and human MSC-EVs reverse radiation damage to murine marrow cells and stimulate normal murine marrow stem cell/progenitors to proliferate. A preparation with both exosomes and microvesicles was found to be superior to either microvesicles or exosomes alone. Biologic activity was seen in freshly isolated vesicles and in vesicles stored for up to 6 months in 10% DMSO at −80°C. These studies indicate that MSC-EVs can reverse radiation damage to bone marrow stem cells. PMID:27150009

  14. Radiation Damage in XFEL: Case study from the oxygen-evolving complex of Photosystem II

    DOE PAGES

    Amin, Muhamed; Badawi, Ashraf; Obayya, S. S.

    2016-11-09

    Structural changes induced by radiation damage in X-ray crystallography hinder the ability to understand the structure/function relationship in chemical reactions. Serial femtosecond crystallography overcomes this problem by exposing the sample to very short and intense laser pulse leading to measurement before destruction. Here we use molecular modeling to map the radiation damage during the 10–50 fs to the intensity, the energy and the time duration of the laser pulse on the oxygen-evolving complex (OEC) of photosystem II. In the model, the nuclei move classically in a fully quantum potential created by electron density under the effect of strong laser pulsemore » in the Ehrenfest dynamics regime. The results show that the Mn-Mn and Mn-Ca distances are less affected by radiation damage due to the their heavy masses, while one μ-oxo bridge (O5) moves significantly. The radiation damage may induce conformational changes of the water ligands but only bond elongation for the amino acids ligands. These effects are relatively intensity independent from 10 16 to 10 17 W/cm 2, but changes increase dramatically if the beam intensity is increased to 10 18 W/cm 2. Finally, in addition, the self amplified spontaneous emission (SASE) nature of the laser beam does not affect the dynamics of the ions.« less

  15. CALCULATED REGENERATOR PERFORMANCE AT 4 K WITH HELIUM-4 AND HELIUM-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radebaugh, Ray; Huang Yonghua; O'Gallagher, Agnes

    2008-03-16

    The helium-4 working fluid in regenerative cryocoolers operating with the cold end near 4 K deviates considerably from an ideal gas. As a result, losses in the regenerator, given by the time-averaged enthalpy flux, are increased and are strong functions of the operating pressure and temperature. Helium-3, with its lower boiling point, behaves somewhat closer to an ideal gas in this low temperature range and can reduce the losses in 4 K regenerators. An analytical model is used to find the fluid properties that strongly influence the regenerator losses as well as the gross refrigeration power. The thermodynamic and transportmore » properties of helium-3 were incorporated into the latest NIST regenerator numerical model, known as REGEN3.3, which was used to model regenerator performance with either helium-4 or helium-3. With this model we show how the use of helium-3 in place of helium-4 can improve the performance of 4 K regenerative cryocoolers. The effects of operating pressure, warm-end temperature, and frequency on regenerators with helium-4 and helium-3 are investigated and compared. The results are used to find optimum operating conditions. The frequency range investigated varies from 1 Hz to 30 Hz, with particular emphasis on higher frequencies.« less

  16. Inactivation of NADPH oxidases NOX4 and NOX5 protects human primary fibroblasts from ionizing radiation-induced DNA damage.

    PubMed

    Weyemi, Urbain; Redon, Christophe E; Aziz, Towqir; Choudhuri, Rohini; Maeda, Daisuke; Parekh, Palak R; Bonner, Michael Y; Arbiser, Jack L; Bonner, William M

    2015-03-01

    Human exposure to ionizing radiation from medical procedures has increased sharply in the last three decades. Recent epidemiological studies suggest a direct relationship between exposure to ionizing radiation and health problems, including cancer incidence. Therefore, minimizing the impact of radiation exposure in patients has become a priority in the development of future clinical practices. Crucial players in radiation-induced DNA damage include reactive oxygen species (ROS), but the sources of these have remained elusive. To the best of our knowledge, we show here for the first time that two members of the ROS-generating NADPH oxidase family (NOXs), NOX4 and NOX5, are involved in radiation-induced DNA damage. Depleting these two NOXs in human primary fibroblasts resulted in reduced levels of DNA damage as measured by levels of radiation-induced foci, a marker of DNA double-strand breaks (DSBs) and the comet assay coupled with increased cell survival. NOX involvement was substantiated with fulvene-5, a NOXs-specific inhibitor. Moreover, fulvene-5 mitigated radiation-induced DNA damage in human peripheral blood mononuclear cells ex vivo. Our results provide evidence that the inactivation of NOXs protects cells from radiation-induced DNA damage and cell death. These findings suggest that NOXs inhibition may be considered as a future pharmacological target to help minimize the negative effects of radiation exposure for millions of patients each year.

  17. Inactivation of NADPH Oxidases NOX4 and NOX5 Protects Human Primary Fibroblasts from Ionizing Radiation-Induced DNA Damage

    PubMed Central

    Weyemi, Urbain; Redon, Christophe E.; Aziz, Towqir; Choudhuri, Rohini; Maeda, Daisuke; Parekh, Palak R.; Bonner, Michael Y.; Arbiser, Jack L.; Bonner, William M.

    2015-01-01

    Human exposure to ionizing radiation from medical procedures has increased sharply in the last three decades. Recent epidemiological studies suggest a direct relationship between exposure to ionizing radiation and health problems, including cancer incidence. Therefore, minimizing the impact of radiation exposure in patients has become a priority in the development of future clinical practices. Crucial players in radiation-induced DNA damage include reactive oxygen species (ROS), but the sources of these have remained elusive. To the best of our knowledge, we show here for the first time that two members of the ROS-generating NADPH oxidase family (NOXs), NOX4 and NOX5, are involved in radiation-induced DNA damage. Depleting these two NOXs in human primary fibroblasts resulted in reduced levels of DNA damage as measured by levels of radiation-induced foci, a marker of DNA double-strand breaks (DSBs) and the comet assay coupled with increased cell survival. NOX involvement was substantiated with fulvene-5, a NOXs-specific inhibitor. Moreover, fulvene-5 mitigated radiation-induced DNA damage in human peripheral blood mononuclear cells ex vivo. Our results provide evidence that the inactivation of NOXs protects cells from radiation-induced DNA damage and cell death. These findings suggest that NOXs inhibition may be considered as a future pharmacological target to help minimize the negative effects of radiation exposure for millions of patients each year. PMID:25706776

  18. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hai Bo; Yang Zhenhua; Shangguan Lei

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after,more » or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.« less

  19. Evaluation of γ-radiation-induced DNA damage in two species of bivalves and their relative sensitivity using comet assay.

    PubMed

    Praveen Kumar, M K; Shyama, S K; Sonaye, B S; Naik, U Roshini; Kadam, S B; Bipin, P D; D'costa, A; Chaubey, R C

    2014-05-01

    Ionizing radiation is known to induce genetic damage in diverse groups of organisms. Under accidental situations, large quantities of radioactive elements get released into the environment and radiation emitted from these radionuclides may adversely affect both the man and the non-human biota. The present study is aimed (a) to know the genotoxic effect of gamma radiation on aquatic fauna employing two species of selected bivalves, (b) to evaluate the possible use of 'Comet assay' for detecting genetic damage in haemocytes of bivalves as a biomarker for environmental biomonitoring and also (c) to compare the relative sensitivity of two species of bivalves viz. Paphia malabarica and Meretrix casta to gamma radiation. The comet assays was optimized and validated using different concentrations (18, 32 and 56 mg/L) of ethyl methanesulfonate (EMS), a direct-acting reference genotoxic agent, to which the bivalves were exposed for various times (24, 48 and 72 h). Bivalves were irradiated (single acute exposure) with 5 different doses (viz. 2, 4, 6, 8 and 10 Gy) of gamma radiation and their genotoxic effects on the haemocytes were studied using the comet assay. Haemolymph was collected from the adductor muscle at 24, 48 and 72 h of both EMS-exposed and irradiated bivalves and comet assay was carried out using standard protocol. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA damage at different concentrations of EMS and all the doses of gamma radiation as compared to controls in both bivalve species. This showed a dose-dependent increase of genetic damage induced in bivalves by EMS as well as gamma radiation. Further, the highest DNA damage was observed at 24h. The damage gradually decreased with time, i.e. was smaller at 48 and 72 h than at 24h post irradiation in both species of bivalves. This may indicate repair of the damaged DNA and/or loss of heavily damaged cells as the post irradiation time advanced. The present study

  20. Comparing simulations and test data of a radiation damaged CCD for the Euclid mission

    NASA Astrophysics Data System (ADS)

    Skottfelt, Jesper; Hall, David; Gow, Jason; Murray, Neil; Holland, Andrew; Prod'homme, Thibaut

    2016-07-01

    The radiation damage effects from the harsh radiative environment outside the Earth's atmosphere can be a cause for concern for most space missions. With the science goals becoming ever more demanding, the requirements on the precision of the instruments on board these missions also increases, and it is therefore important to investigate how the radiation induced damage affects the Charge-Coupled Devices (CCDs) that most of these instruments rely on. The primary goal of the Euclid mission is to study the nature of dark matter and dark energy using weak lensing and baryonic acoustic oscillation techniques. The weak lensing technique depends on very precise shape measurements of distant galaxies obtained by a large CCD array. It is anticipated that over the 6 year nominal lifetime of mission, the CCDs will be degraded to an extent that these measurements will not be possible unless the radiation damage effects are corrected. We have therefore created a Monte Carlo model that simulates the physical processes taking place when transferring signal through a radiation damaged CCD. The software is based on Shockley-Read-Hall theory, and is made to mimic the physical properties in the CCD as close as possible. The code runs on a single electrode level and takes charge cloud size and density, three dimensional trap position, and multi-level clocking into account. A key element of the model is that it takes device specific simulations of electron density as a direct input, thereby avoiding to make any analytical assumptions about the size and density of the charge cloud. This paper illustrates how test data and simulated data can be compared in order to further our understanding of the positions and properties of the individual radiation-induced traps.

  1. Extreme ultraviolet spectroscopy of low pressure helium microwave driven discharges

    NASA Astrophysics Data System (ADS)

    Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Alves, Luis Lemos

    2016-09-01

    Surface wave driven discharges are reliable plasma sources that can produce high levels of vacuum and extreme ultraviolet radiation (VUV and EUV). The richness of the emission spectrum makes this type of discharge a possible alternative source in EUV/VUV radiation assisted applications. However, due to challenging experimental requirements, publications concerning EUV radiation emitted by microwave plasmas are scarce and a deeper understanding of the main mechanisms governing the emission of radiation in this spectral range is required. To this end, the EUV radiation emitted by helium microwave driven plasmas operating at 2.45 GHz has been studied for low pressure conditions. Spectral lines from excited helium atoms and ions were detected via emission spectroscopy in the EUV/VUV regions. Novel data concerning the spectral lines observed in the 23 - 33 nm wavelength range and their intensity behaviour with variation of the discharge operational conditions are presented. The intensity of all the spectral emissions strongly increases with the microwave power delivered to the plasma up to 400 W. Furthermore, the intensity of all the ion spectral emissions in the EUV range decreases by nearly one order of magnitude as the pressure was raised from 0.2 to 0.5 mbar. Work funded by FCT - Fundacao para a Ciencia e a Tecnologia, under Project UID/FIS/50010/2013 and grant SFRH/BD/52412/2013 (PD-F APPLAuSE).

  2. Assessment of rat optic nerve damage due to microbeam radiation therapy in the treatment of glioblastomas.

    PubMed

    Mohamed, A; Worobec, S; Schultke, E

    2008-01-01

    Glioblastomas are the most common and aggressive subtype of human primary brain tumors. Due to their uncontrolled cellular proliferation, intense invasion, and lack of apoptosis, they are extremely difficult to treat. Currently, different approaches such as surgery, chemotherapy and radiation therapy have been employed as possible treatments however thus far; these treatments are not curative. Currently, microbeam radiation therapy (MRT) is being trialed in animal models of malignant brain tumors (rats) to aid in treatment. Some of the protocols tested have been shown to significantly increase survival rates. However, due to the high x-ray doses uses in MRT, the surrounding tissue of the targeted Glioblastomas may be irreversibly damaged. In previous studies, lens damage and clouding of the cornea have been observed in microbeam exposed eyes. However, to date no studies have assessed optic nerve damage. Therefore, this study examines the potential rat optic nerve damage following exposure to microbeam radiation therapy in the treatment of Glioblastomas. Although there appears to be no significant damage to the optic nerve, slight inflammation was observed within the extra ocular muscle.

  3. Longitudinal diffusion tensor magnetic resonance imaging study of radiation-induced white matter damage in a rat model.

    PubMed

    Wang, Silun; Wu, Ed X; Qiu, Deqiang; Leung, Lucullus H T; Lau, Ho-Fai; Khong, Pek-Lan

    2009-02-01

    Radiation-induced white matter (WM) damage is a major side effect of whole brain irradiation among childhood cancer survivors. We evaluate longitudinally the diffusion characteristics of the late radiation-induced WM damage in a rat model after 25 and 30 Gy irradiation to the hemibrain at 8 time points from 2 to 48 weeks postradiation. We hypothesize that diffusion tensor magnetic resonance imaging (DTI) indices including fractional anisotropy (FA), trace, axial diffusivity (lambda(//)), and radial diffusivity (lambda( perpendicular)) can accurately detect and monitor the histopathologic changes of radiation-induced WM damage, measured at the EC, and that these changes are dose and time dependent. Results showed a progressive reduction of FA, which was driven by reduction in lambda(//) from 4 to 40 weeks postradiation, and an increase in lambda( perpendicular) with return to baseline in lambda(//) at 48 weeks postradiation. Histologic evaluation of irradiated WM showed reactive astrogliosis from 4 weeks postradiation with reversal at 36 weeks, and demyelination, axonal degeneration, and necrosis at 48 weeks postradiation. Moreover, changes in lambda(//) correlated with reactive astrogliosis (P < 0.01) and lambda( perpendicular) correlated with demyelination (P < 0.01). Higher radiation dose (30 Gy) induced earlier and more severe histologic changes than lower radiation dose (25 Gy), and these differences were reflected by the magnitude of changes in lambda(//) and lambda( perpendicular). DTI indices reflected the histopathologic changes of WM damage and our results support the use of DTI as a biomarker to noninvasively monitor radiation-induced WM damage.

  4. Argon laser phototherapy could eliminate the damage effects induced by the ionizing radiation "gamma radiation" in irradiated rabbits.

    PubMed

    Abdul-Aziz, Karolin Kamel; Tuorkey, M J

    2010-04-02

    The ionizing radiations could be taken in considerate as an integral part in our life, since, living organisms are actually exposed to a constant shower of ionizing radiations whether from the natural or artificial resources. The radio-protective efficiency of several chemicals has been confirmed in animal trails, whereas, due to their accumulative toxicity, their clinical utility is limited. Therefore, we aimed in the present work to investigate the possibility of using argon laser to recuperate the damaged tissues due to exposing to the ionizing radiation. The rabbits were used in this study, and they were designed as control, gamma irradiated, laser, and gamma plus laser groups. Lipid peroxidation, reduced glutathione (GSH), glutathione peroxidase (GSH-Px) and glucose-6-phosphate dehydrogenase (G-6-PD) in blood and liver were evaluated. As well as, the level of protein thiol was evaluated in the plasma among each group. Results of this study revealed the potential therapeutic performance of the treatment by laser argon to decline the damaging effect of the ionized radiation whether at systematic or local levels. In conclusion, argon laser therapy appears propitious protective effect against the hazard effects of gamma radiation. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Superfluid-helium-cooled rocket-borne far-infrared radiometer.

    PubMed

    Blair, A G; Edeskuty, F; Hiebert, R D; Jones, D M; Shipley, J P; Williamson, K D

    1971-05-01

    A far-infrared radiometer, cooled to 1.6 K by superfluid helium, has been flown in a Terrier-Sandhawk rocket. The instrument was designed to measure night-sky radiation in three wavelength passbands between 6 mm and 0.1 mm at altitudes between 120 km and 350 km. A failure in the rocket nose cone separation system prevented the measurement of this radiation, but the performance of the instrument during flight was generally satisfactory. Design features and operational characteristics of the cryogenic, optical, detection, and electronic systems are presented.

  6. Roles of oxidative stress in synchrotron radiation X-ray-induced testicular damage of rodents

    PubMed Central

    Ma, Yingxin; Nie, Hui; Sheng, Caibin; Chen, Heyu; Wang, Ban; Liu, Tengyuan; Shao, Jiaxiang; He, Xin; Zhang, Tingting; Zheng, Chaobo; Xia, Weiliang; Ying, Weihai

    2012-01-01

    Synchrotron radiation (SR) X-ray has characteristic properties such as coherence and high photon flux, which has excellent potential for its applications in medical imaging and cancer treatment. However, there is little information regarding the mechanisms underlying the damaging effects of SR X-ray on biological tissues. Oxidative stress plays an important role in the tissue damage induced by conventional X-ray, while the role of oxidative stress in the tissue injury induced by SR X-ray remains unknown. In this study we used the male gonads of rats as a model to study the roles of oxidative stress in SR X-ray-induced tissue damage. Exposures of the testes to SR X-ray at various radiation doses did not significantly increase the lipid peroxidation of the tissues, assessed at one day after the irradiation. No significant decreases in the levels of GSH or total antioxidation capacity were found in the SR X-ray-irradiated testes. However, the SR X-ray at 40 Gy induced a marked increase in phosphorylated H2AX – a marker of double-strand DNA damage, which was significantly decreased by the antioxidant N-acetyl cysteine (NAC). NAC also attenuated the SR X-ray-induced decreases in the cell layer number of seminiferous tubules. Collectively, our observations have provided the first characterization of SR X-ray-induced oxidative damage of biological tissues: SR X-ray at high doses can induce DNA damage and certain tissue damage during the acute phase of the irradiation, at least partially by generating oxidative stress. However, SR X-ray of various radiation doses did not increase lipid peroxidation. PMID:22837810

  7. Methodology trends on gamma and electron radiation damage simulation studies in solids under high fluency irradiation environments

    NASA Astrophysics Data System (ADS)

    Cruz Inclán, Carlos M.; González Lazo, Eduardo; Rodríguez Rodríguez, Arturo; Guzmán Martínez, Fernando; Abreu Alfonso, Yamiel; Piñera Hernández, Ibrahin; Leyva Fabelo, Antonio

    2017-09-01

    The present work deals with the numerical simulation of gamma and electron radiation damage processes under high brightness and radiation particle fluency on regard to two new radiation induced atom displacement processes, which concern with both, the Monte Carlo Method based numerical simulation of the occurrence of atom displacement process as a result of gamma and electron interactions and transport in a solid matrix and the atom displacement threshold energies calculated by Molecular Dynamic methodologies. The two new radiation damage processes here considered in the framework of high brightness and particle fluency irradiation conditions are: 1) The radiation induced atom displacement processes due to a single primary knockout atom excitation in a defective target crystal matrix increasing its defect concentrations (vacancies, interstitials and Frenkel pairs) as a result of a severe and progressive material radiation damage and 2) The occurrence of atom displacements related to multiple primary knockout atom excitations for the same or different atomic species in an perfect target crystal matrix due to subsequent electron elastic atomic scattering in the same atomic neighborhood during a crystal lattice relaxation time. In the present work a review numeral simulation attempts of these two new radiation damage processes are presented, starting from the former developed algorithms and codes for Monte Carlo simulation of atom displacements induced by electron and gamma in

  8. The interaction of melanin with ionizing and UVC radiations: Characterization of thymine damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huselton, C.A.

    1988-01-01

    These studies were undertaken to determine whether melanin could protect DNA against the harmful effects of ionizing or UVC radiations. A simple, in vitro, model system was developed to evaluate eumelanin (Sigma melanin) as a radioprotector of solutions of 0.1 mM thymine or thymidine exposed to 570Gy of ionizing radiation. Sigma melanin was compared to several amino acids, other biomolecules or to other forms of melanin. To investigate the role of melanin as a passive screen of UVC radiation, melanotic (I{sub 3}), amelanotic (AMEL) cells (both derived from a Cloudman S91 melanoma) and non-melanotic (EMT6) cells were labelled with radioactivemore » dTHd and exposed to 0, 1, 5 or 10KJ/m{sup 2} of UVC. The DNA was extracted; the bases hydrolyzed with concentrated HCl. Thymine bases were separated by reverse phase HPLC. No difference in dimer content was observed between I{sub 3} and AMEL cells, but EMT6 cells had nearly twice the amount of dimer. Overall thymine degradation was more pronounced in I{sub 3} cells than in the other two cell lines, due to the production of non-dimer thymine damage. This damage was identified as thymine glycol by HPLC and mass spectrometry. Melanin, upon exposure to UVC, appears to enhance thymine damage by producing oxidative damage.« less

  9. Radiation damage and radioprotectants: new concepts in the era of molecular medicine

    PubMed Central

    Koukourakis, M I

    2012-01-01

    Exposure to ionising radiation results in mutagenesis and cell death, and the clinical manifestations depend on the dose and the involved body area. Reducing carcinogenesis in patients treated with radiotherapy, exposed to diagnostic radiation or who are in certain professional groups is mandatory. The prevention or treatment of early and late radiotherapy effects would improve quality of life and increase cancer curability by intensifying therapies. Experimental and clinical data have given rise to new concepts and a large pool of chemical and molecular agents that could be effective in the protection and treatment of radiation damage. To date, amifostine is the only drug recommended as an effective radioprotectant. This review identifies five distinct types of radiation damage (I, cellular depletion; II, reactive gene activation; III, tissue disorganisation; IV, stochastic effects; V, bystander effects) and classifies the radioprotective agents into five relevant categories (A, protectants against all types of radiation effects; B, death pathway modulators; C, blockers of inflammation, chemotaxis and autocrine/paracrine pathways; D, antimutagenic keepers of genomic integrity; E, agents that block bystander effects). The necessity of establishing and funding central committees that guide systematic clinical research into evaluating the novel agents revealed in the era of molecular medicine is stressed. PMID:22294702

  10. Heavy ion linear accelerator for radiation damage studies of materials

    NASA Astrophysics Data System (ADS)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for 238U50+ and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

  11. Heavy ion linear accelerator for radiation damage studies of materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response ofmore » the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for U-238(50+) and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.« less

  12. A simple model of space radiation damage in GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Stith, J. J.; Stock, L. V.

    1983-01-01

    A simple model is derived for the radiation damage of shallow junction gallium arsenide (GaAs) solar cells. Reasonable agreement is found between the model and specific experimental studies of radiation effects with electron and proton beams. In particular, the extreme sensitivity of the cell to protons stopping near the cell junction is predicted by the model. The equivalent fluence concept is of questionable validity for monoenergetic proton beams. Angular factors are quite important in establishing the cell sensitivity to incident particle types and energies. A fluence of isotropic incidence 1 MeV electrons (assuming infinite backing) is equivalent to four times the fluence of normal incidence 1 MeV electrons. Spectral factors common to the space radiations are considered, and cover glass thickness required to minimize the initial damage for a typical cell configuration is calculated. Rough equivalence between the geosynchronous environment and an equivalent 1 MeV electron fluence (normal incidence) is established.

  13. Molecular dynamics study of radiation damage and microstructure evolution of zigzag single-walled carbon nanotubes under carbon ion incidence

    NASA Astrophysics Data System (ADS)

    Li, Huan; Tang, Xiaobin; Chen, Feida; Huang, Hai; Liu, Jian; Chen, Da

    2016-07-01

    The radiation damage and microstructure evolution of different zigzag single-walled carbon nanotubes (SWCNTs) were investigated under incident carbon ion by molecular dynamics (MD) simulations. The radiation damage of SWCNTs under incident carbon ion with energy ranging from 25 eV to 1 keV at 300 K showed many differences at different incident sites, and the defect production increased to the maximum value with the increase in incident ion energy, and slightly decreased but stayed fairly stable within the majority of the energy range. The maximum damage of SWCNTs appeared when the incident ion energy reached 200 eV and the level of damage was directly proportional to incident ion fluence. The radiation damage was also studied at 100 K and 700 K and the defect production decreased distinctly with rising temperature because radiation-induced defects would anneal and recombine by saturating dangling bonds and reconstructing carbon network at the higher temperature. Furthermore, the stability of a large-diameter tube surpassed that of a thin one under the same radiation environments.

  14. Tritium Decay Helium-3 Effects in Tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, M.; Merrill, B. J.

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructuralmore » evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible

  15. Variable-Temperature Cryostat For Radiation-Damage Testing Of Germanium Detectors

    NASA Technical Reports Server (NTRS)

    Floyd, Samuel R.; Puc, Bernard P.

    1992-01-01

    Variable-temperature cryostats developed to study radiation damage to, and annealing of, germanium gamma-ray detectors. Two styles: one accommodates large single detector and one accommodates two medium-sized detectors. New cryostats allow complete testing of large-volume germanium gamma-ray detectors without breaking cryostat vacuum and removing detectors for annealing.

  16. Radiation damage of biomolecules (RADAM) database development: current status

    NASA Astrophysics Data System (ADS)

    Denifl, S.; Garcia, G.; Huber, B. A.; Marinković, B. P.; Mason, N.; Postler, J.; Rabus, H.; Rixon, G.; Solov'yov, A. V.; Suraud, E.; Yakubovich, A. V.

    2013-06-01

    Ion beam therapy offers the possibility of excellent dose localization for treatment of malignant tumours, minimizing radiation damage in normal tissue, while maximizing cell killing within the tumour. However, as the underlying dependent physical, chemical and biological processes are too complex to treat them on a purely analytical level, most of our current and future understanding will rely on computer simulations, based on mathematical equations, algorithms and last, but not least, on the available atomic and molecular data. The viability of the simulated output and the success of any computer simulation will be determined by these data, which are treated as the input variables in each computer simulation performed. The radiation research community lacks a complete database for the cross sections of all the different processes involved in ion beam induced damage: ionization and excitation cross sections for ions with liquid water and biological molecules, all the possible electron - medium interactions, dielectric response data, electron attachment to biomolecules etc. In this paper we discuss current progress in the creation of such a database, outline the roadmap of the project and review plans for the exploitation of such a database in future simulations.

  17. Expected radiation damage of reverse-type APDs for the Astro-H mission

    NASA Astrophysics Data System (ADS)

    Kataoka, J.; Saito, T.; Yoshino, M.; Mizoma, H.; Nakamori, T.; Yatsu, Y.; Ishikawa, Y.; Matsunaga, Y.; Tajima, H.; Kokubun, M.; Edwards, P. G.

    2012-06-01

    Scheduled for launch in 2014, Astro-H is the sixth Japanese X-ray astronomy satellite mission. More than 60 silicon avalanche photodiodes (Si-APDs; hereafter APDs) will be used to read out BGO scintillators, which are implemented to generate a veto signal to reduce background contamination for the hard X-ray imager (HXI) and a soft gamma-ray detector (SGD). To date, however, APDs have rarely been used in space experiments. Moreover, strict environmental tests are necessary to guarantee APD performance for missions expected to extend beyond five years. The radiation hardness of APDs, as for most semiconductors, is particularly crucial, since radiation in the space environment is severe. In this paper, we present the results of radiation tests conducted on reverse-type APDs (provided by Hamamatsu Photonics) irradiated by gamma rays (60Co) and 150 MeV protons. We show that, even under the same 100 Gy dose, high energy protons can cause displacement (bulk) damage in the depletion region and possibly change the activation energy, whereas gamma-ray irradiation is less prone to cause damage, because ionization damage dominates only the surface region. We also present quantitative guidance on how to estimate APD noise deterioration over a range of temperatures and radiation doses. As a practical example, we discuss the expected degradation of the BGO energy threshold for the generation of veto signals, following several years of Astro-H operation in Low Earth Orbit (LEO), and directly compare it to experimental results obtained using a small BGO crystal.

  18. Radiative properties of molecular nitrogen ions produced by helium Penning ionization and argon effects

    NASA Technical Reports Server (NTRS)

    Miller, George, III; Song, Kyo-Dong

    1994-01-01

    The development of hypersonic aerospace vehicles requires a better understanding on the thermal and chemical nonequilibrium kinetics of participating species in shock layers. The computational fluid dynamic (CFD) codes developed for such flowfields overestimate the radiation in the spectral region of 300 - 600 nm. A speculation for this overestimation is that inclusion of Ar, CO2, and H2O at the upper atmosphere flight region makes a significant impact on radiative kinetics of molecular nitrogen ions. To define the effects of minority species on the radiative kinetics of N2(+), an experimental setup was made by using the helium Penning ionization. The vibrational and rotational temperature were measured by mapping the vibrational and rotational distributions of N2(+) emission with high spectroscopic resolution and absolute intensity measurements. Measured vibrational temperatures were in the range from 18,000 to 36,000 K, and rotational temperatures were in the range from 300 to 370 K. The irradiance of 391.44 nm line and rotational and vibrational temperatures were analyzed to define argon and CO2 effects on the N2(+) emission. When Ar or CO2 is injected with N2, the rotational temperature did not change. The irradiances were reduced by 34 percent and 78 percent for the 50 percent of mixture of Ar and CO2, respectively. The vibrational temperatures were increased by 24.1 percent and 82.9 percent for the 50 percent of mixture of Ar and CO2, respectively. It appears that there are no significant effects from small concentrations of Ar and CO2 at the upper atmosphere flight region.

  19. Nanocrystal ghosting: Extensive radiation damage in MgO induced by low-energy electrons

    NASA Astrophysics Data System (ADS)

    Frankenfield, Zackery; Kane, Kenneth; Sawyer, William H.

    2017-03-01

    We report direct evidence of extensive radiation damage in MgO nanocrystals due to intense bombardment (2 × 10 electrons/nm sec) by electrons with beam energies between 60 keV and 120 keV. Based upon a minimum intensity necessary to produce the observed damage, we present an explanation based on the Knotek-Feibelman process.

  20. Closure of laryngotracheal cavity and tracheostomy for intractable aspiration secondary to radiation encephalopathy or radiation damage of cranial nerve after radiotherapy of nasopharyngeal carcinoma.

    PubMed

    Qu, Shenhong; Su, Zhengzhong; He, Xiaoguang; Li, Min; Li, Tianying

    2006-09-01

    Closure of the laryngotracheal cavity and tracheostomy is especially suitable for intractable aspiration secondary to radiation encephalopathy or damage of cranial nerve after radiation for nasopharyngeal carcinoma (NPC). To investigate the clinical value, technique, indications and contraindications of closure of the laryngotracheal cavity and tracheostomy for intractable aspiration secondary to radiation encephalopathy (REP) or radiation damage of cranial nerve after radiotherapy of NPC. Thirty patients, suffering from intractable aspiration secondary to radiotherapy for nasopharyngeal carcinoma, were treated with closure of the laryngotracheal cavity and tracheostomy and were observed for at least 1 year. Intractable aspiration and dyspnea were completely eradicated in all patients. The quality of their life was greatly improved.

  1. Novel Double-Hit Model of Radiation and Hyperoxia-Induced Oxidative Cell Damage Relevant to Space Travel.

    PubMed

    Pietrofesa, Ralph A; Velalopoulou, Anastasia; Lehman, Stacey L; Arguiri, Evguenia; Solomides, Pantelis; Koch, Cameron J; Mishra, Om P; Koumenis, Constantinos; Goodwin, Thomas J; Christofidou-Solomidou, Melpo

    2016-06-16

    Spaceflight occasionally requires multiple extravehicular activities (EVA) that potentially subject astronauts to repeated changes in ambient oxygen superimposed on those of space radiation exposure. We thus developed a novel in vitro model system to test lung cell damage following repeated exposure to radiation and hyperoxia. Non-tumorigenic murine alveolar type II epithelial cells (C10) were exposed to >95% O₂ for 8 h only (O₂), 0.25 Gy ionizing γ-radiation (IR) only, or a double-hit combination of both challenges (O₂ + IR) followed by 16 h of normoxia (ambient air containing 21% O₂ and 5% CO₂) (1 cycle = 24 h, 2 cycles = 48 h). Cell survival, DNA damage, apoptosis, and indicators of oxidative stress were evaluated after 1 and 2 cycles of exposure. We observed a significant (p < 0.05) decrease in cell survival across all challenge conditions along with an increase in DNA damage, determined by Comet analysis and H2AX phosphorylation, and apoptosis, determined by Annexin-V staining, relative to cells unexposed to hyperoxia or radiation. DNA damage (GADD45α and cleaved-PARP), apoptotic (cleaved caspase-3 and BAX), and antioxidant (HO-1 and Nqo1) proteins were increased following radiation and hyperoxia exposure after 1 and 2 cycles of exposure. Importantly, exposure to combination challenge O₂ + IR exacerbated cell death and DNA damage compared to individual exposures O₂ or IR alone. Additionally levels of cell cycle proteins phospho-p53 and p21 were significantly increased, while levels of CDK1 and Cyclin B1 were decreased at both time points for all exposure groups. Similarly, proteins involved in cell cycle arrest was more profoundly changed with the combination challenges as compared to each stressor alone. These results correlate with a significant 4- to 6-fold increase in the ratio of cells in G2/G1 after 2 cycles of exposure to hyperoxic conditions. We have characterized a novel in vitro model of double-hit, low-level radiation and hyperoxia

  2. Dose-rate effect of ultrashort electron beam radiation on DNA damage and repair in vitro.

    PubMed

    Babayan, Nelly; Hovhannisyan, Galina; Grigoryan, Bagrat; Grigoryan, Ruzanna; Sarkisyan, Natalia; Tsakanova, Gohar; Haroutiunian, Samvel; Aroutiounian, Rouben

    2017-11-01

    Laser-generated electron beams are distinguished from conventional accelerated particles by ultrashort beam pulses in the femtoseconds to picoseconds duration range, and their application may elucidate primary radiobiological effects. The aim of the present study was to determine the dose-rate effect of laser-generated ultrashort pulses of 4 MeV electron beam radiation on DNA damage and repair in human cells. The dose rate was increased via changing the pulse repetition frequency, without increasing the electron energy. The human chronic myeloid leukemia K-562 cell line was used to estimate the DNA damage and repair after irradiation, via the comet assay. A distribution analysis of the DNA damage was performed. The same mean level of initial DNA damages was observed at low (3.6 Gy/min) and high (36 Gy/min) dose-rate irradiation. In the case of low-dose-rate irradiation, the detected DNA damages were completely repairable, whereas the high-dose-rate irradiation demonstrated a lower level of reparability. The distribution analysis of initial DNA damages after high-dose-rate irradiation revealed a shift towards higher amounts of damage and a broadening in distribution. Thus, increasing the dose rate via changing the pulse frequency of ultrafast electrons leads to an increase in the complexity of DNA damages, with a consequent decrease in their reparability. Since the application of an ultrashort pulsed electron beam permits us to describe the primary radiobiological effects, it can be assumed that the observed dose-rate effect on DNA damage/repair is mainly caused by primary lesions appearing at the moment of irradiation. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  3. Helium-Recycling Plant

    NASA Technical Reports Server (NTRS)

    Cook, Joseph

    1996-01-01

    Proposed system recovers and stores helium gas for reuse. Maintains helium at 99.99-percent purity, preventing water vapor from atmosphere or lubricating oil from pumps from contaminating gas. System takes in gas at nearly constant low back pressure near atmospheric pressure; introduces little or no back pressure into source of helium. Concept also extended to recycling of other gases.

  4. Correlation of particle-induced displacement damage in silicon

    NASA Astrophysics Data System (ADS)

    Summers, G. P.; Dale, C. J.; Burke, E. A.; Wolicki, E. A.; Marshall, P. W.

    1987-12-01

    The effects of displacement damage caused in several types of silicon bipolar transistors by protons, deuterons, helium ions, and by 1-MeV-equivalent neutrons are considered. Measurements are compared to calculations of the nonionizing energy deposition in silicon as a function of particle type and energy. Measurements were made of displacement damage factors for 2N2222A and 2N2907A switching transistors, and for 2N3055, 2N6678, and 2N6547 power transistors, as a function of collector current using 3.7-175-MeV protons, 4.3-37-MeV deuterons, and 16.8-65-MeV helium ions. Long-term ionization effects on the value of the displacement damage factors were taken into account. In calculating the energy dependence of the nonionizing energy deposition, Rutherford, nuclear elastic, and nuclear inelastic interactions, and Lindhard energy partition were considered.

  5. IBA studies of helium mobility in nuclear materials revisited

    NASA Astrophysics Data System (ADS)

    Trocellier, P.; Agarwal, S.; Miro, S.; Vaubaillon, S.; Leprêtre, F.; Serruys, Y.

    2015-12-01

    The aim of this paper is to point out and to discuss some features extracted from the study of helium migration in nuclear materials performed during the last fifteen years using ion beam analysis (IBA) measurements. The first part of this paper is devoted to a brief description of the two main IBA methods used, i.e. deuteron induced nuclear reaction for 3He depth profiling and high-energy heavy-ion induced elastic recoil detection analysis for 4He measurement. In the second part, we provide an overview of the different studies carried out on model nuclear waste matrices and model nuclear reactor structure materials in order to illustrate and discuss specific results in terms of key influence parameters in relation with thermal or radiation activated migration of helium. Finally, we show that among the key parameters we have investigated as able to influence the height of the helium migration barrier, the following can be considered as pertinent: the experimental conditions used to introduce helium (implanted ion energy and implantation fluence), the grain size of the matrix, the lattice cell volume, the Young's modulus, the ionicity degree of the chemical bond between the transition metal atom M and the non-metal atom X, and the width of the band gap.

  6. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation

    PubMed Central

    Zhang, Xurui; Ye, Caiyong; Sun, Fang; Wei, Wenjun; Hu, Burong; Wang, Jufang

    2016-01-01

    Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92–1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research. PMID:27187621

  7. Depletion layer recombination effects on the radiation damage hardness of gallium arsenide cells

    NASA Technical Reports Server (NTRS)

    Garlick, G. F. J.

    1985-01-01

    The significant effect of junction depletion layer recombination on the efficiency of windowed GaAs cells was demonstrated. The effect becomes more pronounced as radiation damage occurs. The depletion is considered for 1 MeV electron fluences up to 10 to the 16th power e/sq m. The cell modeling separates damage in emitter and base or buffer layers using different damage coefficients is reported. The lower coefficient for the emitter predicts less loss of performance at fluences greater than 10 to the 15th power e/sq cm. A method for obtaining information on junction recombination effects as damage proceeds is described; this enables a more complete diagnosis of damage to be made.

  8. Radioprotection in depressed metabolic states: The physiology of helium-cold hypothermia

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.

    1973-01-01

    The use of hypothermia as a means of radiation protection was studied on a variety of mammals exposed to 80% helium-20% oxygen atmospheres at low ambient temperatures. Results show that the LD for normothermic animals significantly increased compared with hypothermic animals; similar results were obtained for hibernating mammalians. Pre-exposure of animals to cold temperatures increased their ability to withstand radiation levels close to LD sub 50.

  9. Infrared response measurements on radiation-damaged Si/Li/ detectors.

    NASA Technical Reports Server (NTRS)

    Sher, A. H.; Liu, Y. M.; Keery, W. J.

    1972-01-01

    The improved infrared response (IRR) technique has been used to qualitatively compare radiation effects on Si(Li) detectors with energy levels reported for silicon in the literature. Measurements have been made on five commercial silicon detectors and one fabricated in-house, both before and after irradiation with fast neutrons, 1.9-MeV protons, and 1.6-MeV electrons. Effects dependent upon the extent of radiation damage have been observed. It seems likely that the photo-EMF, or photo-voltage, effect is the basic mechanism for the observation of IRR in p-i-n diodes with a wide i-region. Experimental characteristics of the IRR measurement are in agreement with those of the photovoltage effect.

  10. Investigation of non-uniform radiation damage observed in the ZEUS Beam Pipe Calorimeter at HERA

    NASA Astrophysics Data System (ADS)

    Bohnet, I.; Fricke, U.; Surrow, B.; Wick, K.

    1999-08-01

    The ZEUS Beam Pipe Calorimeter (BPC) is a small tungsten/scintillator sampling calorimeter. It is positioned at a distance of approximately 4 cm from the HERA beams and approximately 3 m from the interaction point. The accumulated doses measured at the front side of the BPC during the HERA runs 1995, 1996 and 1997 were 12 kGy, 11 kGy and 2.5 kGy, respectively. The radiation dose influenced the optical components of the BPC. The degradation of some of the scintillators due to radiation damage has been examined using different monitoring systems. A simulation code was developed which describes quantitatively the effects of non-uniform radiation damage. The following report describes the radiation monitoring, the effects on the scintillator material and the impact on the energy linearity of the BPC.

  11. Radiation Tolerant Interfaces: Influence of Local Stoichiometry at the Misfit Dislocation on Radiation Damage Resistance of Metal/Oxide Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shutthanandan, Vaithiyalingam; Choudhury, Samrat; Manandhar, Sandeep

    The interaction of radiation with materials controls the performance, reliability, and safety of many structures in nuclear power systems. Revolutionary improvements in radiation damage resistance may be attainable if methods can be found to manipulate interface properties to give optimal interface stability and point defect recombination capability. To understand how variations in interface properties such as misfit dislocation density and local chemistry affect radiation-induced defect absorption and recombination, a model system of metallic Cr xV 1-x (0 ≤ x ≤ 1) epitaxial films deposited on MgO(001) single crystal substrates has been explored in this paper. By controlling film composition, themore » lattice mismatch between the film and MgO is adjusted to vary the misfit dislocation density at the metal/oxide interface. The stability of these interfaces under various irradiation conditions is studied experimentally and theoretically. The results indicate that, unlike at metal/metal interfaces, the misfit dislocation density does not dominate radiation damage tolerance at metal/oxide interfaces. Rather, the stoichiometry and the location of the misfit dislocation extra half-plane (in the metal or the oxide) drive radiation-induced defect behavior. Finally, together, these results demonstrate the sensitivity of defect recombination to interfacial chemistry and provide new avenues for engineering radiation-tolerant nanomaterials for next-generation nuclear power plants.« less

  12. Radiation Tolerant Interfaces: Influence of Local Stoichiometry at the Misfit Dislocation on Radiation Damage Resistance of Metal/Oxide Interfaces

    DOE PAGES

    Shutthanandan, Vaithiyalingam; Choudhury, Samrat; Manandhar, Sandeep; ...

    2017-04-24

    The interaction of radiation with materials controls the performance, reliability, and safety of many structures in nuclear power systems. Revolutionary improvements in radiation damage resistance may be attainable if methods can be found to manipulate interface properties to give optimal interface stability and point defect recombination capability. To understand how variations in interface properties such as misfit dislocation density and local chemistry affect radiation-induced defect absorption and recombination, a model system of metallic Cr xV 1-x (0 ≤ x ≤ 1) epitaxial films deposited on MgO(001) single crystal substrates has been explored in this paper. By controlling film composition, themore » lattice mismatch between the film and MgO is adjusted to vary the misfit dislocation density at the metal/oxide interface. The stability of these interfaces under various irradiation conditions is studied experimentally and theoretically. The results indicate that, unlike at metal/metal interfaces, the misfit dislocation density does not dominate radiation damage tolerance at metal/oxide interfaces. Rather, the stoichiometry and the location of the misfit dislocation extra half-plane (in the metal or the oxide) drive radiation-induced defect behavior. Finally, together, these results demonstrate the sensitivity of defect recombination to interfacial chemistry and provide new avenues for engineering radiation-tolerant nanomaterials for next-generation nuclear power plants.« less

  13. TGF-.beta. antagonists as mitigators of radiation-induced tissue damage

    DOEpatents

    Barcellos-Hoff, Mary H.

    1997-01-01

    A method for treating tissue damage caused by radiation is described by use of a TGF-.beta. antagonist, such as an anti-TGF-.beta. antibody or a TGF-.beta. latency associated protein. It is administered not more than a week after exposure, and is particularly useful in mitigating the side effects of breast cancer therapy.

  14. TGF-{beta} antagonists as mitigators of radiation-induced tissue damage

    DOEpatents

    Barcellos-Hoff, M.H.

    1997-04-01

    A method for treating tissue damage caused by radiation is described by use of a TGF-{beta} antagonist, such as an anti-TGF-{beta} antibody or a TGF-{beta} latency associated protein. It is administered not more than a week after exposure, and is particularly useful in mitigating the side effects of breast cancer therapy.

  15. Recent Advances in Understanding Radiation Damage in Reactor Cavity Concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosseel, Thomas M; Field, Kevin G; Le Pape, Yann

    License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has resulted in a renewed focus on long-term aging of materials at nuclear power plants (NPPs) including concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis, jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Nuclear Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete (Graves et al., (2014)). Much of the historical mechanical performance data of irradiated concrete (Hilsdorf et al., (1978)) does not accurately reflectmore » typical radiation conditions in NPPs or conditions out to 60 or 80 years of radiation exposure (Kontani et al., (2011)). To address these potential gaps in the knowledge base, the Electric Power Research Institute and Oak Ridge National Laboratory, are working to better understand radiation damage as a degradation mechanism. This paper outlines recent progress toward: 1) assessing the radiation environment in concrete biological shields and defining the upper bound of the neutron and gamma dose levels expected in the biological shield for extended operation, and estimating adsorbed dose, 2) evaluating opportunities to harvest and test irradiated concrete from international NPPs, 3) evaluating opportunities to irradiate prototypical concrete and its components under accelerated neutron and gamma dose levels to establish conservative bounds and inform damage models, 4) developing improved models to enhance the understanding of the effects of radiation on concrete and 5) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge including developing cooperative test programs to improve confidence in data obtained from various concretes and from accelerated irradiation experiments.« less

  16. Radiation Damage In Reactor Cavity Concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G; Le Pape, Yann; Naus, Dan J

    License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has established a renewed focus on long-term aging of nuclear generating stations materials, and recently, on concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis (EMDA), jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete. Much of the historical mechanical performance data of irradiated concrete does not accurately reflect typical radiation conditions in NPPs or conditions out tomore » 60 or 80 years of radiation exposure. To address these potential gaps in the knowledge base, The Electric Power Research Institute and Oak Ridge National Laboratory are working to disposition radiation damage as a degradation mechanism. This paper outlines the research program within this pathway including: (i) defining the upper bound of the neutron and gamma dose levels expected in the biological shield concrete for extended operation (80 years of operation and beyond), (ii) determining the effects of neutron and gamma irradiation as well as extended time at temperature on concrete, (iii) evaluating opportunities to irradiate prototypical concrete under accelerated neutron and gamma dose levels to establish a conservative bound and share data obtained from different flux, temperature, and fluence levels, (iv) evaluating opportunities to harvest and test irradiated concrete from international NPPs, (v) developing cooperative test programs to improve confidence in the results from the various concretes and research reactors, (vi) furthering the understanding of the effects of radiation on concrete (see companion paper) and (vii) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge.« less

  17. Research progress in radiation detectors, pattern recognition programs, and radiation damage determination in DNA

    NASA Technical Reports Server (NTRS)

    Baily, N. A.

    1973-01-01

    The radiological implications of statistical variations in energy deposition by ionizing radiation were investigated in the conduct of the following experiments: (1) study of the production of secondary particles generated by the passage of the primary radiation through bone and muscle; (2) the study of the ratio of nonreparable to reparable damage in DNA as a function of different energy deposition patterns generated by X rays versus heavy fast charged particles; (3) the use of electronic radiography systems for direct fluoroscopic tomography and for the synthesis of multiple planes and; (4) the determination of the characteristics of systems response to split fields having different contrast levels, and of minimum detectable contrast levels between the halves under realistic clinical situations.

  18. Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts

    NASA Technical Reports Server (NTRS)

    George, K.; Cucinotta, F. A.

    2008-01-01

    Cytogenetic analysis of astronauts blood lymphocytes provides a direct in vivo measurement of space radiation damage, which takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. We present our latest analyses of chromosome damage in astronauts blood lymphocytes assessed by fluorescence in situ hybridization (FISH) chromosome painting and collected at various times beginning directly after return from space to several years after flight. Dose was derived from frequencies of chromosome exchanges using preflight calibration curves, and the Relative Biological Effect (RBE) was estimated by comparison with individually measured physically absorbed doses. Values for average RBE were compared to the average quality factor (Q), from direct measurements of the lineal energy spectra using a tissue-equivalent proportional counter (TEPC) and radiation transport codes. Results prove that cytogenetic biodosimetry analyses on blood collected within a week or two of return from space provides a reliable estimate of equivalent radiation dose and risk after protracted exposure to space radiation of a few months or more. However, data collected several months or years after flight suggests that the yield of chromosome translocations may decline with time after the mission, indicating that retrospective doses may be more difficult to estimate. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from one crewmember, who has participated in two separate long-duration space missions and has been followed up for over 10 years, provide limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.

  19. Amelioration of radiation-induced hematopoietic and gastrointestinal damage by Ex-RAD® in mice

    PubMed Central

    Ghosh, Sanchita P.; Kulkarni, Shilpa; Perkins, Michael W.; Hieber, Kevin; Pessu, Roli L.; Gambles, Kristen; Maniar, Manoj; Kao, Tzu-Cheg; Seed, Thomas M.; Kumar, K. Sree

    2012-01-01

    The aim of the present study was to assess recovery from hematopoietic and gastrointestinal damage by Ex-RAD®, also known as ON01210.Na (4-carboxystyryl-4-chlorobenzylsulfone, sodium salt), after total body radiation. In our previous study, we reported that Ex-RAD, a small-molecule radioprotectant, enhances survival of mice exposed to gamma radiation, and prevents radiation-induced apoptosis as measured by the inhibition of radiation-induced protein 53 (p53) expression in cultured cells. We have expanded this study to determine best effective dose, dose-reduction factor (DRF), hematological and gastrointestinal protection, and in vivo inhibition of p53 signaling. A total of 500 mg/kg of Ex-RAD administered at 24 h and 15 min before radiation resulted in a DRF of 1.16. Ex-RAD ameliorated radiation-induced hematopoietic damage as monitored by the accelerated recovery of peripheral blood cells, and protection of granulocyte macrophage colony-forming units (GM-CFU) in bone marrow. Western blot analysis on spleen indicated that Ex-RAD treatment inhibited p53 phosphorylation. Ex-RAD treatment reduces terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay (TUNEL)-positive cells in jejunum compared with vehicle-treated mice after radiation injury. Finally, Ex-RAD preserved intestinal crypt cells compared with the vehicle control at 13 and 14 Gy. The results demonstrated that Ex-RAD ameliorates radiation-induced peripheral blood cell depletion, promotes bone marrow recovery, reduces p53 signaling in spleen and protects intestine from radiation injury. PMID:22843617

  20. The role of nickel in radiation damage of ferritic alloys

    DOE PAGES

    Osetsky, Y.; Anento, Napoleon; Serra, Anna; ...

    2014-11-26

    According to modern theory, damage evolution under neutron irradiation depends on the fraction of self-interstitial atoms (SIAs) produced in the form of one-dimensional glissile clusters. These clusters, having a low interaction cross-section with other defects, are absorbed mainly by grain boundaries and dislocations, creating the so-called production bias. It is known empirically that the addition of certain alloying elements influences many radiation effects, including swelling; however, the mechanisms are unknown in many cases. In this study, we report the results of an extensive multi-technique atomistic level modeling study of SIA clusters mobility in body-centered cubic Fe–Ni alloys. We have foundmore » that Ni interacts strongly with the periphery of clusters, affecting their mobility. The total effect is defined by the number of Ni atoms interacting with the cluster at the same time and can be significant, even in low-Ni alloys. Thus a 1 nm (37SIAs) cluster is practically immobile at T < 500 K in the Fe–0.8 at.% Ni alloy. Increasing cluster size and Ni content enhances cluster immobilization. Finally, this effect should have quite broad consequences in void swelling, matrix damage accumulation and radiation induced hardening and the results obtained help to better understand and predict the effects of radiation in Fe–Ni ferritic alloys.« less

  1. Hypothermia modulates the DNA damage response to ionizing radiation in human peripheral blood lymphocytes.

    PubMed

    Lisowska, Halina; Cheng, Lei; Sollazzo, Alice; Lundholm, Lovisa; Wegierek-Ciuk, Aneta; Sommer, Sylwester; Lankoff, Anna; Wojcik, Andrzej

    2018-06-01

    Low temperature at exposure has been shown to act in a radioprotective manner at the level of cytogenetic damage. It was suggested to be due to an effective transformation of DNA damage to chromosomal damage at low temperature. The purpose of the study was to analyze the kinetics of aberration formation during the first hours after exposing human peripheral blood lymphocytes to ionizing radiation at 0.8 °C and 37 °C. To this end, we applied the technique of premature chromosome condensation. In addition, DNA damage response was analyzed by measuring the levels of phosphorylated DNA damage responsive proteins ATM, DNA-PK and p53 and mRNA levels of the radiation-responsive genes BBC3, FDXR, GADD45A, XPC, MDM2 and CDKN1A. A consistently lower frequency of chromosomal breaks was observed in cells exposed at 0.8 °C as compared to 37 °C already after 30 minutes postexposure. This effect was accompanied by elevated levels of phosphorylated ATM and DNA-PK proteins and a reduced immediate level of phosphorylated p53 and of the responsive genes. Low temperature at exposure appears to promote DNA repair leading to reduced transformation of DNA damage to chromosomal aberrations.

  2. Some experience with arc-heater simulation of outer planet entry radiation

    NASA Technical Reports Server (NTRS)

    Wells, W. L.; Snow, W. L.

    1980-01-01

    An electric arc heater was operated at 800 amperes and 100,000 pa (1 atm) with hydrogen, helium, and two mixtures of hydrogen and helium. A VUV-scanning monochromator was used to record the spectra from an end view while a second spectrometer was used to determine the plasma temperature using hydrogen continuum radiation at 562 nm. Except for pure helium, the plasma temperature was found to be too low to produce significant helium radiation, and the measured spectra were primarily the hydrogen spectra with the highest intensity in the pure hydrogen case. A radiation computer code was used to compute the spectra for comparison to the measurements and to extend the study to simulation of outer planet entry radiation. Conductive cooling prevented ablation of phenolic carbon material samples mounted inside the arc heater during a cursory attempt to produce radiation absorption by ablation gases.

  3. Reduction in Susceptibility of MOS Devices to Radiation- and Electrically-Induced Defects

    DTIC Science & Technology

    2012-05-01

    current density of 150 nA/cm2 for a time varying between 5 and 60 sec. Following implantation , the PMMA was etched off, and circular Al dots (2.67 x 10...calculations showing location of He ions implanted at 5.2 keV through 70 nm of PMMA on 35.6 nm SiO2. We have done TRIM calculations for energies...Instability (NBTI) and to radiation damage could be reduced. To that end, two techniques were attempted. In the first attempt, helium ions were implanted

  4. In situ TEM observation of alpha-particle induced annealing of radiation damage in Durango apatite.

    PubMed

    Li, Weixing; Shen, Yahui; Zhou, Yueqing; Nan, Shuai; Chen, Chien-Hung; Ewing, Rodney C

    2017-10-26

    A major issue in thermochronology and U-Th-Pb dating is the effect of radiation damage, created by α-recoils from α-decay events, on the diffusion of radiogenic elements (e.g., He and Pb) in host mineral. Up until now, thermal events have been considered as the only source of energy for the recovery of radiation-damage. However, irradiation, such as from the α-particle of the α-decay event, can itself induce damage recovery. Quantification of radiation-induced recovery caused by α-particles during α-decay events has not been possible, as the recovery process at the atomic-scale has been difficult to observe. Here we present details of the dynamics of the amorphous-to-crystalline transition process during α-particle irradiations using in situ transmission electron microscopy (TEM) and consecutive ion-irradiations: 1 MeV Kr 2+ (simulating α-recoil damage), followed by 400 keV He + (simulating α-particle annealing). Upon the He + irradiation, partial recrystallization of the original, fully-amorphous Durango apatite was clearly evident and quantified based on the gradual appearance of new crystalline domains in TEM images and new diffraction maxima in selected area electron diffraction patterns. Thus, α-particle induced annealing occurs and must be considered in models of α-decay event damage and its effect on the diffusion of radiogenic elements in geochronology and thermochronology.

  5. Enhanced Radiation-tolerant Oxide Dispersion Strengthened Steel and its Microstructure Evolution under Helium-implantation and Heavy-ion Irradiation

    PubMed Central

    Lu, Chenyang; Lu, Zheng; Wang, Xu; Xie, Rui; Li, Zhengyuan; Higgins, Michael; Liu, Chunming; Gao, Fei; Wang, Lumin

    2017-01-01

    The world eagerly needs cleanly-generated electricity in the future. Fusion reactor is one of the most ideal energy resources to defeat the environmental degradation caused by the consumption of traditional fossil energy. To meet the design requirements of fusion reactor, the development of the structural materials which can sustain the elevated temperature, high helium concentration and extreme radiation environments is the biggest challenge for the entire material society. Oxide dispersion strengthened steel is one of the most popular candidate materials for the first wall/blanket applications in fusion reactor. In this paper, we evaluate the radiation tolerance of a 9Cr ODS steel developed in China. Compared with Ferritic/Martensitic steel, this ODS steel demonstrated a significantly higher swelling resistance under ion irradiation at 460 °C to 188 displacements per atom. The role of oxides and grain boundaries on void swelling has been explored. The results indicated that the distribution of higher density and finer size of nano oxides will lead a better swelling resistance for ODS alloy. The original pyrochlore-structured Y2Ti2O7 particles dissolved gradually while fine Y-Ti-O nano clusters reprecipitated in the matrix during irradiation. The enhanced radiation tolerance is attributed to the reduced oxide size and the increased oxide density. PMID:28079191

  6. Radiation and process-induced damage in Ga2O3

    NASA Astrophysics Data System (ADS)

    Pearton, S. J.; Yang, Jiancheng; Ren, F.; Yang, G.; Kim, Jihyun; Stavola, M.; Kuramata, A.

    2018-02-01

    Ga2O3 is gaining attention for high breakdown electronics. The β-polymorph is air-stable, has a wide bandgap ( 4.6 eV) and is available in both bulk and epitaxial form. Different types of power diodes and transistors fabricated on Ga2O3 have shown impressive performance. Etching processes for Ga2O3 are needed for patterning for mesa isolation, threshold adjustment in transistors, thinning of nano-belts and selective area contact formation. Electrical damage in the near-surface region was found through barrier height changes of Schottky diodes on the etched surface. The damage is created by energetic ion bombardment, but may also consist of changes to near-surface stoichiometry through loss of lattice elements or deposition of etch residues. Annealing at 450°C removes this damage. We also discuss recent results on damage introduction by proton and electron irradiation. In this case, the carrier removal rates are found to be similar to those reported for GaN under similar conditions of dose and energy of the radiation.

  7. OBJECT KINETIC MONTE CARLO SIMULATIONS OF RADIATION DAMAGE ACCUMULATION IN TUNGSTEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandipati, Giridhar; Setyawan, Wahyu; Roche, Kenneth J.

    2016-09-01

    The objective of this work is to understand the accumulation of radiation damage created by primary knock-on atoms (PKAs) of various energies, at 300 K and for a dose rate of 10-4 dpa/s in bulk tungsten using the object kinetic Monte Carlo (OKMC) method.

  8. Pitch angle distributions of geomagnetically trapped MeV helium ions during quiet times

    NASA Technical Reports Server (NTRS)

    Fritz, T. A.; Spjeldvik, W. N.

    1982-01-01

    It is noted that during geomagnetically quiet conditions, energetic radiation belt helium ion fluxes at MeV energies have been found to exhibit characteristic radial profiles and large pitch angle anisotropies. Compiling data from many experiments, a systematic dependence of this anisotropy with helium ion energy is deduced. Provided a certain approximation holds for the observed pitch angle distributions, an empirical relation is deduced involving the helium ion energy. The range of the total ion energy here is 0.59-9 MeV (148-2250 keV per nucleon). These values are obtained for L shells in the range where L is approximately 2 to 5. The results are compared with theoretical expectations, and a qualitative explanation for the observed trend is suggested.

  9. Cell damage caused by ultraviolet B radiation in the desert cyanobacterium Phormidium tenue and its recovery process.

    PubMed

    Wang, Gaohong; Deng, Songqiang; Liu, Jiafeng; Ye, Chaoran; Zhou, Xiangjun; Chen, Lanzhou

    2017-10-01

    Phormidium tenue, a cyanobacterium that grows in the topsoil of biological soil crusts (BSCs), has the highest recovery rate among desert crust cyanobacteria after exposure to ultraviolet B (UV-B) radiation. However, the mechanism underlying its recovery process is unclear. To address this issue, we measured chlorophyll a fluorescence, generation of reactive oxygen species (ROS), lipid peroxidation, and repair of DNA breakage in P. tenue following exposure to UV-B. We found that UV-B radiation at all doses tested reduced photosynthesis and induced cell damage in P. tenue. However, P. tenue responded to UV-B radiation by rapidly reducing photosynthetic activity, which protects the cell by leaking less ROS. Antioxidant enzymes, DNA damage repair systems, and UV absorbing pigments were then induced to mitigate the damage caused by UV-B radiation. The addition of exogenous antioxidant chemicals ascorbate and N-acetylcysteine also mitigated the harmful effects caused by UV-B radiation and enhanced the recovery process. These chemicals could aid in the resistance of P. tenue to the exposure of intense UV-B radiation in desertified areas when inoculated onto the sand surface to form artificial algal crusts. Copyright © 2017. Published by Elsevier Inc.

  10. Dye-Assisted Laser Skin Closure with Pulsed Radiation: An In Vitro Study of Weld Strength and Thermal Damage

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Walsh, Joseph T.

    1998-10-01

    Previous laser skin welding studies have used continuous wave delivery of radiation. However, heat diffusion during irradiation prevents strong welds from being achieved without creating large zones of thermal damage. Previously published results indicate that a thermal damage zone in skin greater than 200 micrometers may prevent normal wound healing. We proposed that both strong welds and minimal thermal damage can be achieved by introducing a dye and delivering the radiation in a series of sufficiently short pulses. Two-cm-long incisions were made in guinea pig skin, in vitro. India ink and egg white (albumin) were applied to the wound edges to enhance radiation absorption and to close the wound, respectively. Continuous wave (cw), 1.06 micrometers , Nd:yttrium-aluminum-garnet laser radiation was scanned over the weld producing approximately 100 ms pulses. The cooling time between scans and the number of scans was varied. The thermal damage zone at the weld edges was measured using a transmission polarizing light microscope. The tensile strength of the welds was measured using a tensiometer. For pulsed welding and long cooling times between pulses (8 s), weld strengths of 2.4 +/- 0.9 kg/cm2 were measured, and lateral thermal damage at the epidermis was limited to 500 +/- 150 micrometers . With cw welding, comparable weld strengths produced 2700 +/- 300 micrometers of lateral thermal damage. The cw weld strengths were only 0.6 +/- 0.3 kg/cm2 for thermal damage zones comparable to pulsed welding.

  11. Genetic changes in mammalian cells transformed by helium ions

    NASA Astrophysics Data System (ADS)

    Durante, M.; Grossi, G.; Yang, T. C.; Roots, R.

    Midterm Syrian Hamster embryo (SHE) cells were employed to study high LET-radiation induced tumorigenesis. Normal SHE cells (secondary passage) were irradiated with accelerated helium ions at an incident energy of 22 MeV/u (9-10 keV/μm). Transformed clones were isolated after growth in soft agar of cells obtained from the foci of the initial monolayer plated postirradiation. To study the progression process of malignant transformation, the transformed clones were followed by monolayer subculturing for prolonged periods of time. Subsequently, neoplasia tests in nude mice were done. In this work, however, we have focused on karyotypic changes in the banding patterns of the chromosomes during the early part of the progressive process of cell transformation for helium ion-induced transformed cells.

  12. RADIATION DAMAGE TO THE BRAIN--A NEW SYNDROME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rider, W.D.

    1963-06-01

    Three cases of postirradiation brain damage considered to be a new clinical and pathological entity are described. Three women were irradiated for tumors in and around the left middle ear. Treatment plans and isodose distributions show that a maximum tissue dose of about 5500 rad of Co/sup 60/ gamma radiation was delivered to each patient. The treatment time was approximates 1 month, but the fractionation was different. In the first case there were 20, the second 27, and the third 16 fractions. The clinical course was similar. Clinical examination showed gross cerebellar ataxia, horizontal nystagmus, and Romberg's sign. In themore » first case there was also paralysis of the 6th cranial nerve and an extensor plantar response. The first patient died four weeks after the onset of symptoms, while the other two started to show signs of recovery after four weeks, made a complete recovery in about 8-8 weeks, and are alive and well six years later. An autopsy on the first patient showed disseminsted demyelination in a patchy fashion. Plaques were found in the white matter of the cerebrum, cerebellum, and brain stem, where the dose was highest, but there were lesions on the opposite side also where the dose was much lower. There was only a minor degree of blood vessel change, and it was of an early kind, unlike the more commonly seen fibrinoid necrosis of arterial walls. Secondiy, passing through the areas of demyelination were normal neurons and axons. Around the plaques, astrocytic proliferation and clasmatodendrosis were seen, and around this a wall of microglial cells. It was considered that radiation might have invoked an allergic or autoimmune response. In view of the very marked similarity, it is not unreasonable to assume that all 3 patients had similar pathological processes and that some, as yet unknown, factor permitted two to live and allowed one to die. The points of difference from previously defined syndrome are as follows: the latent period between

  13. DETECTION OF LOW DOSE RADIATION-AND CHEMICALLY-INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAYS

    EPA Science Inventory

    Rapid, sensitive and simple assays for radiation- and chemically-induced DNA damage can be of significant benefit to a number of fields including radiation biology, clinical research, and environmental monitoring. Although temperature-induced DNA strand separation has been use...

  14. Facilities for studing radiation damage in nonmetals during irradiation

    NASA Astrophysics Data System (ADS)

    Levy, P. W.

    1984-08-01

    Two facilities were developed for making optical absorption, luminescence and other measurements on a single sample before, during and after irradiation. One facility uses Co-60 gamma rays and the other 0.5 to 3 MeV electrons from an accelerator. Optical relays function as spectrophotometers, luminescence detectors, etc. All radiation sensitive components are outside of walk-in irradiation chambers; all measurement control and data recording is computerized. Irradiations are made at controlled temperatures between 5 K and 900 C. The materials studied include glasses, quartz, alkali halides (especially natural rock salt), organic crystals, etc. As determined from color center measurements the damage formation rate in all materials studied at 25 C or above is strongly temperature dependent. The defect concentration during irradiation is usually much greater than that measured after irradiation. The fraction of defects annealing after irradiation and the annealing rate usually increases as the irradiation temperature increases. The completed studies demonstrate that, in most cases, the extent of maximum damage and the damage formation and annealing kinetics can be determined only by making measurements during irradiation.

  15. Novel Double-Hit Model of Radiation and Hyperoxia-Induced Oxidative Cell Damage Relevant to Space Travel

    PubMed Central

    Pietrofesa, Ralph A.; Velalopoulou, Anastasia; Lehman, Stacey L.; Arguiri, Evguenia; Solomides, Pantelis; Koch, Cameron J.; Mishra, Om P.; Koumenis, Constantinos; Goodwin, Thomas J.; Christofidou-Solomidou, Melpo

    2016-01-01

    Spaceflight occasionally requires multiple extravehicular activities (EVA) that potentially subject astronauts to repeated changes in ambient oxygen superimposed on those of space radiation exposure. We thus developed a novel in vitro model system to test lung cell damage following repeated exposure to radiation and hyperoxia. Non-tumorigenic murine alveolar type II epithelial cells (C10) were exposed to >95% O2 for 8 h only (O2), 0.25 Gy ionizing γ-radiation (IR) only, or a double-hit combination of both challenges (O2 + IR) followed by 16 h of normoxia (ambient air containing 21% O2 and 5% CO2) (1 cycle = 24 h, 2 cycles = 48 h). Cell survival, DNA damage, apoptosis, and indicators of oxidative stress were evaluated after 1 and 2 cycles of exposure. We observed a significant (p < 0.05) decrease in cell survival across all challenge conditions along with an increase in DNA damage, determined by Comet analysis and H2AX phosphorylation, and apoptosis, determined by Annexin-V staining, relative to cells unexposed to hyperoxia or radiation. DNA damage (GADD45α and cleaved-PARP), apoptotic (cleaved caspase-3 and BAX), and antioxidant (HO-1 and Nqo1) proteins were increased following radiation and hyperoxia exposure after 1 and 2 cycles of exposure. Importantly, exposure to combination challenge O2 + IR exacerbated cell death and DNA damage compared to individual exposures O2 or IR alone. Additionally levels of cell cycle proteins phospho-p53 and p21 were significantly increased, while levels of CDK1 and Cyclin B1 were decreased at both time points for all exposure groups. Similarly, proteins involved in cell cycle arrest was more profoundly changed with the combination challenges as compared to each stressor alone. These results correlate with a significant 4- to 6-fold increase in the ratio of cells in G2/G1 after 2 cycles of exposure to hyperoxic conditions. We have characterized a novel in vitro model of double-hit, low-level radiation and hyperoxia exposure that

  16. Effects of radiation damage on the silicon lattice

    NASA Technical Reports Server (NTRS)

    Dumas, Katherine A.; Lowry, Lynn; Russo, O. Louis

    1987-01-01

    Silicon was irradiated with both proton and electron particle beams in order to investigate changes in the structural and optical properties of the lattice as a result of the radiation damage. Lattice expansions occurred when large strain fields (+0.34 percent) developed after 1- and 3-MeV proton bombardment. The strain was a factor of three less after 1-MeV electron irradiation. Average increases of approximately 22 meV in the 3.46-eV interband energy gap and 14 meV in the Lorentz broadening parameter were measured after the electron irradiation.

  17. REC-2006-A Fractionated Extract of Podophyllum hexandrum Protects Cellular DNA from Radiation-Induced Damage by Reducing the Initial Damage and Enhancing Its Repair In Vivo.

    PubMed

    Chaudhary, Pankaj; Shukla, Sandeep Kumar; Sharma, Rakesh Kumar

    2011-01-01

    Podophyllum hexandrum, a perennial herb commonly known as the Himalayan May Apple, is well known in Indian and Chinese traditional systems of medicine. P. hexandrum has been widely used for the treatment of venereal warts, skin infections, bacterial and viral infections, and different cancers of the brain, lung and bladder. This study aimed at elucidating the effect of REC-2006, a bioactive fractionated extract from the rhizome of P. hexandrum, on the kinetics of induction and repair of radiation-induced DNA damage in murine thymocytes in vivo. We evaluated its effect on non-specific radiation-induced DNA damage by the alkaline halo assay in terms of relative nuclear spreading factor (RNSF) and gene-specific radiation-induced DNA damage via semi-quantitative polymerase chain reaction. Whole body exposure of animals with gamma rays (10 Gy) caused a significant amount of DNA damage in thymocytes (RNSF values 17.7 ± 0.47, 12.96 ± 1.64 and 3.3 ± 0.014) and a reduction in the amplification of β-globin gene to 0, 28 and 43% at 0, 15 and 60 min, respectively. Administrating REC-2006 at a radioprotective concentration (15 mg kg(-1) body weight) 1 h before irradiation resulted in time-dependent reduction of DNA damage evident as a decrease in RNSF values 6.156 ± 0.576, 1.647 ± 0.534 and 0.496 ± 0.012, and an increase in β-globin gene amplification 36, 95 and 99%, at 0, 15 and 60 min, respectively. REC-2006 scavenged radiation-induced hydroxyl radicals in a dose-dependent manner stabilized DPPH free radicals and also inhibited superoxide anions. Various polyphenols and flavonoides present in REC-2006 might contribute to scavenging of radiation-induced free radicals, thereby preventing DNA damage and stimulating its repair.

  18. Nuclear aggregates of polyamines in a radiation-induced DNA damage model.

    PubMed

    Iacomino, Giuseppe; Picariello, Gianluca; Stillitano, Ilaria; D'Agostino, Luciano

    2014-02-01

    Polyamines (PA) are believed to protect DNA minimizing the effect of radiation damage either by inducing DNA compaction and aggregation or acting as scavengers of free radicals. Using an in vitro pDNA double strand breakage assay based on gel electrophoretic mobility, we compared the protective capability of PA against γ-radiation with that of compounds generated by the supramolecular self-assembly of nuclear polyamines and phosphates, named Nuclear Aggregates of Polyamines (NAPs). Both unassembled PA and in vitro produced NAPs (ivNAPs) were ineffective in conferring pDNA protection at the sub-mM concentration. Single PA showed an appreciable protective effect only at high (mM) concentrations. However, concentrations of spermine (4+) within a critical range (0.481 mM) induced pDNA precipitation, an event that was not observed with NAPs-pDNA interaction. We conclude that the interaction of individual PA is ineffective to assure DNA protection, simultaneously preserving the flexibility and charge density of the double strand. Furthermore, data obtained by testing polyamine and ivNAPS with the current radiation-induced DNA damage model support the concept that PA-phosphate aggregates are the only forms through which PA interact with DNA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Synthetic Secoisolariciresinol Diglucoside (LGM2605) Protects Human Lung in an Ex Vivo Model of Proton Radiation Damage.

    PubMed

    Velalopoulou, Anastasia; Chatterjee, Shampa; Pietrofesa, Ralph A; Koziol-White, Cynthia; Panettieri, Reynold A; Lin, Liyong; Tuttle, Stephen; Berman, Abigail; Koumenis, Constantinos; Christofidou-Solomidou, Melpo

    2017-11-25

    Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS), pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung.

  20. Synthetic Secoisolariciresinol Diglucoside (LGM2605) Protects Human Lung in an Ex Vivo Model of Proton Radiation Damage

    PubMed Central

    Velalopoulou, Anastasia; Chatterjee, Shampa; Pietrofesa, Ralph A.; Koziol-White, Cynthia; Panettieri, Reynold A.; Lin, Liyong; Tuttle, Stephen; Berman, Abigail; Koumenis, Constantinos; Christofidou-Solomidou, Melpo

    2017-01-01

    Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS), pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung. PMID:29186841

  1. [Blocking 1800 MHz mobile phone radiation-induced reactive oxygen species production and DNA damage in lens epithelial cells by noise magnetic fields].

    PubMed

    Wu, Wei; Yao, Ke; Wang, Kai-jun; Lu, De-qiang; He, Ji-liang; Xu, Li-hong; Sun, Wen-jun

    2008-01-01

    To investigate whether the exposure to the electromagnetic noise can block reactive oxygen species (ROS) production and DNA damage of lens epithelial cells induced by 1800 MHz mobile phone radiation. The DCFH-DA method and comet assay were used respectively to detect the intracellular ROS and DNA damage of cultured human lens epithelial cells induced by 4 W/kg 1800 MHz mobile phone radiation or/and 2 muT electromagnetic noise for 24 h intermittently. 1800 MHz mobile phone radiation at 4 W/kg for 24 h increased intracellular ROS and DNA damage significantly (P<0.05). However, the ROS level and DNA damage of mobile phone radiation plus noise group were not significant enhanced (P>0.05) as compared to sham exposure group. Electromagnetic noise can block intracellular ROS production and DNA damage of human lens epithelial cells induced by 1800 MHz mobile phone radiation.

  2. Repair of clustered DNA damage caused by high LET radiation in human fibroblasts

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Lobrich, M.; Cooper, P. K.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    It has recently been demonstrated experimentally that DNA damage induced by high LET radiation in mammalian cells is non-randomly distributed along the DNA molecule in the form of clusters of various sizes. The sizes of such clusters range from a few base-pairs to at least 200 kilobase-pairs. The high biological efficiency of high LET radiation for induction of relevant biological endpoints is probably a consequence of this clustering, although the exact mechanisms by which the clustering affects the biological outcome is not known. We discuss here results for induction and repair of base damage, single-strand breaks and double-strand breaks for low and high LET radiations. These results are discussed in the context of clustering. Of particular interest is to determine how clustering at different scales affects overall rejoining and fidelity of rejoining of DNA double-strand breaks. However, existing methods for measuring repair of DNA strand breaks are unable to resolve breaks that are close together in a cluster. This causes problems in interpretation of current results from high LET radiation and will require new methods to be developed.

  3. How Magnetotactic Bacteria Respond to Radiation Induced Stress and Damage: Comparative Genomics Evidences for Evolutionary Adaptation

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Pan, Y.

    2015-12-01

    Solar radiation and galactic cosmic radiation is believed to be major restriction factors influencing survival and evolution of life. On planet earth, geomagnetic field along with atmosphere protect living beings from the harmful radiation. During a geomagnetic reversal or excursion, however, the efflux of charged particles on earth surface would increase as the shielding effect of magnetic field decrease. The stratospheric ozone can also be partially stripped away by solar wind when the strength of the field is weak, leading to an increasing ultraviolet radiation penetration to the earth surface. However, studies on the mechanism of radiation induced stress and damage are focused only on bacteria that have no response to magnetic field. This study was motivated by the need to fill the gap upon knowledge of that on magnetic field sensitive microorganism. Magnetotactic bacteria (MTB) are a group of microbes that are able to synthesis intracellular nano-sized magnetic particles (named magnetosomes). These chain-arranged magnetosomes help MTB sense and swim along the magnetic field to find their optimal living environment efficiently. In this paper, in silico prediction of stress and damage repair genes in response to different radiation were carried out on the complete genome of four nonmagnetotactic and four magnetotactic spirilla. In silico analyses of the genomes of magnetic field sensitive and non-sensitive spirilla revealed: 1) all strains contain genes for regulate responses superoxide and peroxide stress, DNA pyrimidine dimer and string breaks; 2) non-magnetotactic spirilla have more genes dealing with oxidative stress, while magnetotactic spirilla may benefit from magnetotaxis by swimming into oxic-anoxic zone away from oxidative stress and direct radiation damage; yet, the lipid hydroperoxide peroxidase gene in MTB may be responsible for possible ROS generated by the membrane enveloped magnetite magnetosome; 3) magnetotactic spirilla possess SOS rec

  4. Ideal sinks are not always ideal. Radiation damage accumulation in nanocomposites

    DOE PAGES

    Uberuaga, Blas Pedro; Choudhury, Samrat; Caro, Alfredo

    2014-11-27

    Designing radiation tolerant materials is one of the primary challenges associated with advanced nuclear energy systems. One attractive route that has received much attention world-wide is to introduce a high density of sinks, often in the form of interfaces or secondary phases. Here, we develop a simple model of such nanocomposites and examine the ramifications of various factors on the overall radiation stability of the material. In particular, we determine how the distribution of secondary phases, the relative sink strength of those phases, and the irradiation temperature influence the radiation tolerance of the matrix. We find that the best scenariomore » is one in which the sinks have intermediate strength, transiently trapping defects before releasing them back into the matrix.This provides new insight into the optimal properties of nanocomposites for radiation damage environments.« less

  5. Designing Radiation Resistance in Materials for Fusion Energy

    NASA Astrophysics Data System (ADS)

    Zinkle, S. J.; Snead, L. L.

    2014-07-01

    Proposed fusion and advanced (Generation IV) fission energy systems require high-performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (nonstructural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials in which vacancies are immobile at the design operating temperatures, or engineer materials with high sink densities for point defect recombination. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced-activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion-strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.

  6. Role of Oxidative Damage in Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Alwood, Joshua S.; Limoli, Charles L.; Globus, Ruth K.

    2014-01-01

    During prolonged spaceflight, astronauts are exposed to both microgravity and space radiation, and are at risk for increased skeletal fragility due to bone loss. Evidence from rodent experiments demonstrates that both microgravity and ionizing radiation can cause bone loss due to increased bone-resorbing osteoclasts and decreased bone-forming osteoblasts, although the underlying molecular mechanisms for these changes are not fully understood. We hypothesized that excess reactive oxidative species (ROS), produced by conditions that simulate spaceflight, alter the tight balance between osteoclast and osteoblast activities, leading to accelerated skeletal remodeling and culminating in bone loss. To test this, we used the MCAT mouse model; these transgenic mice over-express the human catalase gene targeted to mitochondria, the major organelle contributing free radicals. Catalase is an anti-oxidant that converts reactive species, hydrogen peroxide into water and oxygen. This animal model was selected as it displays extended lifespan, reduced cardiovascular disease and reduced central nervous system radio-sensitivity, consistent with elevated anti-oxidant activity conferred by the transgene. We reasoned that mice overexpressing catalase in mitochondria of osteoblast and osteoclast lineage cells would be protected from the bone loss caused by simulated spaceflight. Over-expression of human catalase localized to mitochondria caused various skeletal phenotypic changes compared to WT mice; this includes greater bone length, decreased cortical bone area and moment of inertia, and indications of altered microarchitecture. These findings indicate mitochondrial ROS are important for normal bone-remodeling and skeletal integrity. Catalase over-expression did not fully protect skeletal tissue from structural decrements caused by simulated spaceflight; however there was significant protection in terms of cellular oxidative damage (MDA levels) to the skeletal tissue. Furthermore, we

  7. Radiation Tolerant Interfaces: Influence of Local Stoichiometry at the Misfit Dislocation on Radiation Damage Resistance of Metal/Oxide Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shutthanandan, Vaithiyalingam; Choudhury, Samrat; Manandhar, Sandeep

    To understand how variations in interface properties such as misfit-dislocation density and local chemistry affect radiation-induced defect absorption and recombination, we have explored a model system of CrxV1-x alloy epitaxial films deposited on MgO single crystals. By controlling film composition, the lattice mismatch with MgO was adjusted so that the misfit-dislocation density varies at the interface. These interfaces were exposed to irradiation and in situ results show that the film with a semi-coherent interface (Cr) withstands irradiation while V film, which has similar semi-coherent interface like Cr, showed the largest damage. Theoretical calculations indicate that, unlike at metal/metal interfaces, themore » misfit dislocation density does not dominate radiation damage tolerance at metal/oxide interfaces. Rather, the stoichiometry, and the precise location of the misfit-dislocation density relative to the interface, drives defect behavior. Together, these results demonstrate the sensitivity of defect recombination to interfacial chemistry and provide new avenues for engineering radiation-tolerant nanomaterials.« less

  8. Radiation damage evaluation on concrete within a facility for Selective Production of Exotic Species (SPES Project), Italy.

    PubMed

    Pomaro, B; Salomoni, V A; Gramegna, F; Prete, G; Majorana, C E

    2011-10-30

    Concrete is commonly used as a biological shield against nuclear radiation. As long as, in the design of nuclear facilities, its load carrying capacity is required together with its shielding properties, changes in the mechanical properties due to nuclear radiation are of particular significance and may have to be taken into account in such circumstances. The study presented here allows for reaching first evidences on the behavior of concrete when exposed to nuclear radiation in order to evaluate the consequent effect on the mechanical field, by means of a proper definition of the radiation damage, strictly connected with the strength properties of the building material. Experimental evidences on the decay of the mechanical modulus of concrete have allowed for implementing the required damage law within a 3D F.E. research code which accounts for the coupling among moisture, heat transfer and the mechanical field in concrete treated as a fully coupled porous medium. The development of the damage front in a concrete shielding wall is analyzed under neutron radiation and results within the wall thickness are reported for long-term radiation spans and several concrete mixtures in order to discuss the resulting shielding properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. High-energy proton radiation damage of high-purity germanium detectors

    NASA Technical Reports Server (NTRS)

    Pehl, R. H.; Varnell, L. S.; Metzger, A. E.

    1978-01-01

    Quantitative studies of radiation damage in high-purity germanium gamma-ray detectors due to high-energy charged particles have been carried out; two 1.0 cm thick planar detectors were irradiated by 6 GeV/c protons. Under proton bombardment, degradation in the energy resolution was found to begin below 7 x 10 to the 7th protons/sq cm and increased proportionately in both detectors until the experiment was terminated at a total flux of 5.7 x 10 to the 8th protons/sq cm, equivalent to about a six year exposure to cosmic-ray protons in space. At the end of the irradiation, the FWHM resolution measured at 1332 keV stood at 8.5 and 13.6 keV, with both detectors of only marginal utility as a spectrometer due to the severe tailing caused by charge trapping. Annealing these detectors after proton damage was found to be much easier than after neutron damage.

  10. Radiation damage in protein crystals examined under various conditions by different methods.

    PubMed

    Garman, Elspeth F; Nave, Colin

    2009-03-01

    Investigation of radiation damage in protein crystals has progressed in several directions over the past couple of years. There have been improvements in the basic procedures such as calibration of the incident X-ray intensity and calculation of the dose likely to be deposited in a crystal of known size and composition with this intensity. There has been increased emphasis on using additional techniques such as optical, Raman or X-ray spectroscopy to complement X-ray diffraction. Apparent discrepancies between the results of different techniques can be explained by the fact that they are sensitive to different length scales or to changes in the electronic state rather than to movement of atoms. Investigations have been carried out at room temperature as well as cryo-temperatures and, in both cases, with the introduction of potential scavenger molecules. These and other studies are leading to an overall description of the changes which can occur when a protein crystal is irradiated with X-rays at both cryo- and room temperatures. Results from crystallographic and spectroscopic radiation-damage experiments can be reconciled with other studies in the field of radiation physics and chemistry.

  11. Testing the role of molecular physics in dissipative divertor operations through helium plasmas at DIII-D

    DOE PAGES

    Canik, John M.; Briesemeister, Alexis R.; McLean, Adam G.; ...

    2017-05-10

    Recent experiments in DIII-D helium plasmas are examined to resolve the role of atomic and molecular physics in major discrepancies between experiment and modeling of dissipative divertor operation. Helium operation removes the complicated molecular processes of deuterium plasmas that are a prime candidate for the inability of standard fluid models to reproduce dissipative divertor operation, primarily the consistent under-prediction of radiated power. Modeling of these experiments shows that the full divertor radiation can be accounted for, but only if measures are taken to ensure that the model reproduces the measured divertor density. Relying on upstream measurements instead results in amore » lower divertor density and radiation than is measured, indicating a need for improved modeling of the connection between the diverter and the upstream scrape-off layer. Furthermore, these results show that fluid models are able to quantitatively describe the divertor-region plasma, including radiative losses, and indicate that efforts to improve the fidelity of the molecular deuterium models are likely to help resolve the discrepancy in radiation for deuterium plasmas.« less

  12. Anisotropic mechanical properties of zircon and the effect of radiation damage

    NASA Astrophysics Data System (ADS)

    Beirau, Tobias; Nix, William D.; Bismayer, Ulrich; Boatner, Lynn A.; Isaacson, Scott G.; Ewing, Rodney C.

    2016-10-01

    This study provides new insights into the relationship between radiation-dose-dependent structural damage due to natural U and Th impurities and the anisotropic mechanical properties (Poisson's ratio, elastic modulus and hardness) of zircon. Natural zircon samples from Sri Lanka (see Muarakami et al. in Am Mineral 76:1510-1532, 1991) and synthetic samples, covering a dose range of zero up to 6.8 × 1018 α-decays/g, have been studied by nanoindentation. Measurements along the [100] crystallographic direction and calculations, based on elastic stiffness constants determined by Özkan (J Appl Phys 47:4772-4779, 1976), revealed a general radiation-induced decrease in stiffness (~54 %) and hardness (~48 %) and an increase in the Poisson's ratio (~54 %) with increasing dose. Additional indentations on selected samples along the [001] allowed one to follow the amorphization process to the point that the mechanical properties are isotropic. This work shows that the radiation-dose-dependent changes of the mechanical properties of zircon can be directly correlated with the amorphous fraction as determined by previous investigations with local and global probes (Ríos et al. in J Phys Condens Matter 12:2401-2412, 2000a; Farnan and Salje in J Appl Phys 89:2084-2090, 2001; Zhang and Salje in J Phys Condens Matter 13:3057-3071, 2001). The excellent agreement, revealed by the different methods, indicates a large influence of structural and even local phenomena on the macroscopic mechanical properties. Therefore, this study indicates the importance of acquiring better knowledge about the mechanical long-term stability of radiation-damaged materials.

  13. REC-2006—A Fractionated Extract of Podophyllum hexandrum Protects Cellular DNA from Radiation-Induced Damage by Reducing the Initial Damage and Enhancing Its Repair In Vivo

    PubMed Central

    Chaudhary, Pankaj; Shukla, Sandeep Kumar; Sharma, Rakesh Kumar

    2011-01-01

    Podophyllum hexandrum, a perennial herb commonly known as the Himalayan May Apple, is well known in Indian and Chinese traditional systems of medicine. P. hexandrum has been widely used for the treatment of venereal warts, skin infections, bacterial and viral infections, and different cancers of the brain, lung and bladder. This study aimed at elucidating the effect of REC-2006, a bioactive fractionated extract from the rhizome of P. hexandrum, on the kinetics of induction and repair of radiation-induced DNA damage in murine thymocytes in vivo. We evaluated its effect on non-specific radiation-induced DNA damage by the alkaline halo assay in terms of relative nuclear spreading factor (RNSF) and gene-specific radiation-induced DNA damage via semi-quantitative polymerase chain reaction. Whole body exposure of animals with gamma rays (10 Gy) caused a significant amount of DNA damage in thymocytes (RNSF values 17.7 ± 0.47, 12.96 ± 1.64 and 3.3 ± 0.014) and a reduction in the amplification of β-globin gene to 0, 28 and 43% at 0, 15 and 60 min, respectively. Administrating REC-2006 at a radioprotective concentration (15 mg kg−1 body weight) 1 h before irradiation resulted in time-dependent reduction of DNA damage evident as a decrease in RNSF values 6.156 ± 0.576, 1.647 ± 0.534 and 0.496 ± 0.012, and an increase in β-globin gene amplification 36, 95 and 99%, at 0, 15 and 60 min, respectively. REC-2006 scavenged radiation-induced hydroxyl radicals in a dose-dependent manner stabilized DPPH free radicals and also inhibited superoxide anions. Various polyphenols and flavonoides present in REC-2006 might contribute to scavenging of radiation-induced free radicals, thereby preventing DNA damage and stimulating its repair. PMID:20008078

  14. Factors influencing heterogeneity of radiation-induced DNA-damage measured by the alkaline comet assay.

    PubMed

    Seidel, Clemens; Lautenschläger, Christine; Dunst, Jürgen; Müller, Arndt-Christian

    2012-04-20

    To investigate whether different conditions of DNA structure and radiation treatment could modify heterogeneity of response. Additionally to study variance as a potential parameter of heterogeneity for radiosensitivity testing. Two-hundred leukocytes per sample of healthy donors were split into four groups. I: Intact chromatin structure; II: Nucleoids of histone-depleted DNA; III: Nucleoids of histone-depleted DNA with 90 mM DMSO as antioxidant. Response to single (I-III) and twice (IV) irradiation with 4 Gy and repair kinetics were evaluated using %Tail-DNA. Heterogeneity of DNA damage was determined by calculation of variance of DNA-damage (V) and mean variance (Mvar), mutual comparisons were done by one-way analysis of variance (ANOVA). Heterogeneity of initial DNA-damage (I, 0 min repair) increased without histones (II). Absence of histones was balanced by addition of antioxidants (III). Repair reduced heterogeneity of all samples (with and without irradiation). However double irradiation plus repair led to a higher level of heterogeneity distinguishable from single irradiation and repair in intact cells. Increase of mean DNA damage was associated with a similarly elevated variance of DNA damage (r = +0.88). Heterogeneity of DNA-damage can be modified by histone level, antioxidant concentration, repair and radiation dose and was positively correlated with DNA damage. Experimental conditions might be optimized by reducing scatter of comet assay data by repair and antioxidants, potentially allowing better discrimination of small differences. Amount of heterogeneity measured by variance might be an additional useful parameter to characterize radiosensitivity.

  15. Factors influencing heterogeneity of radiation-induced DNA-damage measured by the alkaline comet assay

    PubMed Central

    2012-01-01

    Background To investigate whether different conditions of DNA structure and radiation treatment could modify heterogeneity of response. Additionally to study variance as a potential parameter of heterogeneity for radiosensitivity testing. Methods Two-hundred leukocytes per sample of healthy donors were split into four groups. I: Intact chromatin structure; II: Nucleoids of histone-depleted DNA; III: Nucleoids of histone-depleted DNA with 90 mM DMSO as antioxidant. Response to single (I-III) and twice (IV) irradiation with 4 Gy and repair kinetics were evaluated using %Tail-DNA. Heterogeneity of DNA damage was determined by calculation of variance of DNA-damage (V) and mean variance (Mvar), mutual comparisons were done by one-way analysis of variance (ANOVA). Results Heterogeneity of initial DNA-damage (I, 0 min repair) increased without histones (II). Absence of histones was balanced by addition of antioxidants (III). Repair reduced heterogeneity of all samples (with and without irradiation). However double irradiation plus repair led to a higher level of heterogeneity distinguishable from single irradiation and repair in intact cells. Increase of mean DNA damage was associated with a similarly elevated variance of DNA damage (r = +0.88). Conclusions Heterogeneity of DNA-damage can be modified by histone level, antioxidant concentration, repair and radiation dose and was positively correlated with DNA damage. Experimental conditions might be optimized by reducing scatter of comet assay data by repair and antioxidants, potentially allowing better discrimination of small differences. Amount of heterogeneity measured by variance might be an additional useful parameter to characterize radiosensitivity. PMID:22520045

  16. Alpha-Recoil Damage Annealing Effecfs on Zircon Crystallinity and He Diffusivity: Improving Damage-Diffusivity Models

    NASA Astrophysics Data System (ADS)

    Thurston, O. G.; Guenthner, W.; Garver, J. I.

    2017-12-01

    The effects of radiation damage on He diffusion in zircon has been a major research focus in thermochronology over the past decade. In the zircon-He system, alpha-recoil damage effects He diffusivity in two ways: a decrease in He diffusivity at low radiation damage levels, and an increase in He diffusivity at high radiation damage levels. The radiation damage accumulation process within zircon is well understood; however, the kinetics of annealing of alpha-recoil damage at geologic timescales as they pertain to damage-diffusivity models, and for metamict zircon (i.e. transition from crystalline to amorphous glass via damage accumulation), has not been well constrained. This study aims to develop a more complete model that describes the annealing kinetics for zircon grains with a broad range of pre-annealing, alpha-induced radiation damage. A suite of zircon grains from the Lucerne pluton, ME were chosen for this study due to their simple thermal history (monotonic cooling), notable range of effective uranium (eU, eU = [U] +0.235*[Th]) (15 - 34,239 ppm eU), and large range of radiation damage as measured by Raman shift from crystalline (>1005 cm-1) to metamict (<1000 cm-1). The zircon grains selected represent the full range of eU and radiation damage present in the pluton. The zircon grains were first mapped for overall crystallinity using Raman spectroscopy, then annealed at different time-temperature (t-T) schedules from 1 hr to 24 hrs at temperatures ranging from 700-1100 °C, followed by remapping with Raman spectroscopy to track the total Raman shift for each t-T step. The temperature window selected is at the "roll-over" point established in prior studies (Zhang et al., 2000), at which most laboratory annealing occurs. Our data show that high radiation damage zircon grains show larger Raman shifts than low radiation damage zircon grains when exposed to the same t-T step. The high damage zircon grains typically show a Raman shift of 4 cm-1 toward crystalline

  17. A portable helium sniffer

    USGS Publications Warehouse

    Friedman, Irving; Denton, E.H.

    1976-01-01

    A portable helium sniffer has been developed for field use. The instrument is mounted in a four-wheel-drive pickup truck and can detect 50 parts per billion of helium in soil gas. The usefulness of helium sniffing in soil is being investigated as a prospecting tool in gas, oil, uranium, and geothermal prospecting as well as in earthquake prediction.

  18. Utilizing the Deep Space Gateway to Characterize DNA Damage Due to Space Radiation and Repair Mechanisms

    NASA Astrophysics Data System (ADS)

    Zea, L.; Niederwieser, T.; Anthony, J.; Stodieck, L.

    2018-02-01

    The radiation environment experienced in the Deep Space Gateway enables the interrogation of DNA damage and repair mechanisms, which may serve to determine the likelihood and consequence of the high radiation risk to prolonged human presence beyond LEO.

  19. Seabuckthron (Hippophae rhamnoides L.) leaf extract ameliorates the gamma radiation mediated DNA damage and hepatic alterations.

    PubMed

    Khan, Amitava; Manna, Krishnendu; Chinchubose; Das, Dipesh Kr; Sinha, Mahuya; Kesh, Swaraj Bandhu; Das, Ujjal; Dey, Rakhi Sharma; Banerji, Asoke; Dey, Sanjit

    2014-10-01

    In vitro assessment showed that H. rhamnoides (HrLE) extract possessed free radical scavenging activities and can protect gamma (gamma) radiation induced supercoiled DNA damage. For in vivo study, Swiss albino mice were administered with HrLE (30 mg/kg body weight) for 15 consecutive days before exposing them to a single dose of 5 Gy of beta radiation. HrLE significantly prevented the radiation induced genomic DNA damage indicated as a significant reduction in the comet parameters. The lipid peroxidation, liver function enzymes, expression of phosphorylated NFkappaB (p65) and IkappaBalpha increased whereas the endogenous antioxidants diminished upon radiation exposure compared to control. Pretreatment of HrLE extract ameliorated these changes. Based on the present results it can be concluded that H. rhamnoides possess a potential preventive element in planned and accidental nuclear exposures.

  20. Radiation Damage Formation And Annealing In Mg-Implanted GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, Sean; Kelly, Michael J.; Yan, John

    2005-06-30

    We have implanted GaN with Mg ions over an energy range of 200keV to 1MeV at substrate temperatures of -150 (cold) and +300 deg. C (hot). The radiation damage formation in GaN was increased for cold implants when compared to samples implanted at elevated temperatures. The increase in damage formation is due to a reduction in the dynamic defect annealing during ion irradiation. The dopant stopping in the solid also depends upon the implant temperature. For a fixed implant energy and dose, Mg ions have a shorter range in GaN for cold implants when compared to hot implants which ismore » caused by the increase in scattering centres (disorder)« less

  1. Helium in inert matrix dispersion fuels

    NASA Astrophysics Data System (ADS)

    van Veen, A.; Konings, R. J. M.; Fedorov, A. V.

    2003-07-01

    The behaviour of helium, an important decay product in the transmutation chains of actinides, in dispersion-type inert matrix fuels is discussed. A phenomenological description of its accumulation and release in CERCER and CERMET fuel is given. A summary of recent He-implantation studies with inert matrix metal oxides (ZrO 2, MgAl 2O 4, MgO and Al 2O 3) is presented. A general picture is that for high helium concentrations helium and vacancy defects form helium clusters which convert into over-pressurized bubbles. At elevated temperature helium is released from the bubbles. On some occasions thermal stable nano-cavities or nano-pores remain. On the basis of these results the consequences for helium induced swelling and helium storage in oxide matrices kept at 800-1000 °C will be discussed. In addition, results of He-implantation studies for metal matrices (W, Mo, Nb and V alloys) will be presented. Introduction of helium in metals at elevated temperatures leads to clustering of helium to bubbles. When operational temperatures are higher than 0.5 melting temperature, swelling and helium embrittlement might occur.

  2. Cavitation in flowing superfluid helium

    NASA Technical Reports Server (NTRS)

    Daney, D. E.

    1988-01-01

    Flowing superfluid helium cavitates much more readily than normal liquid helium, and there is a marked difference in the cavitation behavior of the two fluids as the lambda point is traversed. Examples of cavitation in a turbine meter and centrifugal pump are given, together with measurements of the cavitation strength of flowing superfluid helium. The unusual cavitation behavior of superfluid helium is attributed to its immense thermal conductivity .

  3. Modulatory action of α-tocopherol on erythrocyte membrane adenosine triphosphatase against radiation damage in oral cancer.

    PubMed

    Chitra, Subramaniam; Shyamaladevi, Chennam Srinivasulu

    2011-03-01

    To investigate the possible effects of α-tocopherol on erythrocyte membrane adenosine triphosphatases against radiation damage in oral cancer patients. Adenosine triphosphatase activities were analysed in oral cancer patients before and after radiotherapy (at a dosage of 6000 cGY in five fractions per week for a period of six weeks) and after supplemented with α-tocopherol (400 IU per day for entire period of radiotherapy). The membrane bound enzymes such as Na(+)/K(+)-ATPase, Ca(2+)-ATPase, Mg(2+)-ATPase and some trace elements were altered in oral cancer patients before and after radiotherapy. Supplemented with α-tocopherol modulates the erythrocyte membrane which is damaged by radiotherapy which suggests that α-tocopherol protects the erythrocyte membrane from radiation damage in oral cancer patients.

  4. The use of displacement damage dose to correlate degradation in solar cells exposed to different radiations

    NASA Technical Reports Server (NTRS)

    Summers, Geoffrey P.; Burke, Edward A.; Shapiro, Philip; Statler, Richard; Messenger, Scott R.; Walters, Robert J.

    1994-01-01

    It has been found useful in the past to use the concept of 'equivalent fluence' to compare the radiation response of different solar cell technologies. Results are usually given in terms of an equivalent 1 MeV electron or an equivalent 10 MeV proton fluence. To specify cell response in a complex space-radiation environment in terms of an equivalent fluence, it is necessary to measure damage coefficients for a number of representative electron and proton energies. However, at the last Photovoltaic Specialist Conference we showed that nonionizing energy loss (NIEL) could be used to correlate damage coefficients for protons, using measurements for GaAs as an example. This correlation means that damage coefficients for all proton energies except near threshold can be predicted from a measurement made at one particular energy. NIEL is the exact equivalent for displacement damage of linear energy transfer (LET) for ionization energy loss. The use of NIEL in this way leads naturally to the concept of 10 MeV equivalent proton fluence. The situation for electron damage is more complex, however. It is shown that the concept of 'displacement damage dose' gives a more general way of unifying damage coefficients. It follows that 1 MeV electron equivalent fluence is a special case of a more general quantity for unifying electron damage coefficients which we call the 'effective 1 MeV electron equivalent dose'.

  5. Does prolonged radiofrequency radiation emitted from Wi-Fi devices induce DNA damage in various tissues of rats?

    PubMed

    Akdag, Mehmet Zulkuf; Dasdag, Suleyman; Canturk, Fazile; Karabulut, Derya; Caner, Yusuf; Adalier, Nur

    2016-09-01

    Wireless internet (Wi-Fi) providers have become essential in our daily lives, as wireless technology is evolving at a dizzying pace. Although there are different frequency generators, one of the most commonly used Wi-Fi devices are 2.4GHz frequency generators. These devices are heavily used in all areas of life but the effect of radiofrequency (RF) radiation emission on users is generally ignored. Yet, an increasing share of the public expresses concern on this issue. Therefore, this study intends to respond to the growing public concern. The purpose of this study is to reveal whether long term exposure of 2.4GHz frequency RF radiation will cause DNA damage of different tissues such as brain, kidney, liver, and skin tissue and testicular tissues of rats. The study was conducted on 16 adult male Wistar-Albino rats. The rats in the experimental group (n=8) were exposed to 2.4GHz frequency radiation for over a year. The rats in the sham control group (n=8) were subjected to the same experimental conditions except the Wi-Fi generator was turned off. After the exposure period was complete the possible DNA damage on the rat's brain, liver, kidney, skin, and testicular tissues was detected through the single cell gel electrophoresis assay (comet) method. The amount of DNA damage was measured as percentage tail DNA value. Based on the DNA damage results determined by the single cell gel electrophoresis (Comet) method, it was found that the% tail DNA values of the brain, kidney, liver, and skin tissues of the rats in the experimental group increased more than those in the control group. The increase of the DNA damage in all tissues was not significant (p>0.05). However the increase of the DNA damage in rat testes tissue was significant (p<0.01). In conclusion, long-term exposure to 2.4GHz RF radiation (Wi-Fi) does not cause DNA damage of the organs investigated in this study except testes. The results of this study indicated that testes are more sensitive organ to RF

  6. Effects of ionizing radiation on bio-active plant extracts useful for preventing oxidative damages.

    PubMed

    Mulinacci, Nadia; Valletta, Alessio; Pasqualetti, Valentina; Innocenti, Marzia; Giuliani, Camilla; Bellumori, Maria; De Angelis, Giulia; Carnevale, Alessia; Locato, Vittoria; Di Venanzio, Cristina; De Gara, Laura; Pasqua, Gabriella

    2018-04-02

    Humans are exposed to ionizing radiations in medical radiodiagnosis and radiotherapy that cause oxidative damages and degenerative diseases. Airplane pilots, and even more astronauts, are exposed to a variety of potentially harmful factors, including cosmic radiations. Among the phytochemicals, phenols are particularly efficient in countering the oxidative stress. In the present study, different extracts obtained from plant food, plant by-products and dietary supplements, have been compared for their antioxidant properties before and after irradiation of 140 cGy, a dose absorbed during a hypothetical stay of three years in the space. All the dry extracts, characterized in terms of vitamin C and phenolic content, remained chemically unaltered and maintained their antioxidant capability after irradiation. Our results suggest the potential use of these extracts as nutraceuticals to protect humans from oxidative damages, even when these extracts must be stored in an environment exposed to cosmic radiations as in a space station.

  7. TEM observations of radiation damage in tungsten irradiated by 20 MeV W ions

    NASA Astrophysics Data System (ADS)

    Ciupiński, Ł.; Ogorodnikova, O. V.; Płociński, T.; Andrzejczuk, M.; Rasiński, M.; Mayer, M.; Kurzydłowski, K. J.

    2013-12-01

    Polycrystalline, recrystallized W targets were subjected to implantation with 20 MeV W6+ ions in order to simulate radiation damage caused by fusion neutrons. Three samples with cumulative damage of 0.01, 0.1 and 0.89 dpa were produced. The near-surface zone of each sample has been analyzed by transmission electron microscopy (TEM). To this end, lamellae oriented perpendicularly to the targets implanted surface were milled out using focused ion beam (FIB). A reference lamella from non-irradiated, recrystallized W target was also prepared to estimate the damage introduced during FIB processing. TEM studies revealed a complex microstructure of the damaged zones as well as its evolution with cumulative damage level. The experimentally observed damage depth agrees very well with the one calculated using the Stopping and Range of Ions in Matter (SRIM) software.

  8. Development of a transferline connecting a helium liquefier coldbox and a liquid helium Dewar

    NASA Astrophysics Data System (ADS)

    Menon, Rajendran S.; Rane, Tejas; Chakravarty, Anindya; Joemon, V.

    2017-02-01

    A helium liquefier with demonstrated capacity of 32 1/hr has been developed by BARC. Mumbai. A transferline for two way flow of helium between the helium liquefier coldbox and receiver Dewar has been developed in-house at BARC. Further, a functionally similar, but structurally improved transferline has been developed through a local fabricator. This paper describes and discusses issues related to the development of these cryogenic transferlines. The developed transferlines have been tested with a flow of liquid nitrogen and successfully utilised later in the helium liquefier plant.

  9. Integrated molecular analysis indicates undetectable change in DNA damage in mice after continuous irradiation at ~ 400-fold natural background radiation.

    PubMed

    Olipitz, Werner; Wiktor-Brown, Dominika; Shuga, Joe; Pang, Bo; McFaline, Jose; Lonkar, Pallavi; Thomas, Aline; Mutamba, James T; Greenberger, Joel S; Samson, Leona D; Dedon, Peter C; Yanch, Jacquelyn C; Engelward, Bevin P

    2012-08-01

    In the event of a nuclear accident, people are exposed to elevated levels of continuous low dose-rate radiation. Nevertheless, most of the literature describes the biological effects of acute radiation. DNA damage and mutations are well established for their carcinogenic effects. We assessed several key markers of DNA damage and DNA damage responses in mice exposed to low dose-rate radiation to reveal potential genotoxic effects associated with low dose-rate radiation. We studied low dose-rate radiation using a variable low dose-rate irradiator consisting of flood phantoms filled with 125Iodine-containing buffer. Mice were exposed to 0.0002 cGy/min (~ 400-fold background radiation) continuously over 5 weeks. We assessed base lesions, micronuclei, homologous recombination (HR; using fluorescent yellow direct repeat mice), and transcript levels for several radiation-sensitive genes. We did not observe any changes in the levels of the DNA nucleobase damage products hypoxanthine, 8-oxo-7,8-dihydroguanine, 1,N6-ethenoadenine, or 3,N4-ethenocytosine above background levels under low dose-rate conditions. The micronucleus assay revealed no evidence that low dose-rate radiation induced DNA fragmentation, and there was no evidence of double strand break-induced HR. Furthermore, low dose-rate radiation did not induce Cdkn1a, Gadd45a, Mdm2, Atm, or Dbd2. Importantly, the same total dose, when delivered acutely, induced micronuclei and transcriptional responses. These results demonstrate in an in vivo animal model that lowering the dose-rate suppresses the potentially deleterious impact of radiation and calls attention to the need for a deeper understanding of the biological impact of low dose-rate radiation.

  10. Evaluation of basal DNA damage and oxidative stress in Wistar rat leukocytes after exposure to microwave radiation.

    PubMed

    Garaj-Vrhovac, Vera; Gajski, Goran; Trosić, Ivancica; Pavicić, Ivan

    2009-05-17

    The aim of this study was to assess whether microwave-induced DNA damage is basal or it is also generated through reactive oxygen species (ROS) formation. After having irradiated Wistar rats with 915MHz microwave radiation, we assessed different DNA alterations in peripheral leukocytes using standard and formamidopyrimidine DNA-glycosylase (Fpg)-modified comet assay. The first is a sensitive tool for detecting primary DNA damage, and the second is much more specific for detecting oxidative damage. The animals were irradiated for 1h a day for 2 weeks at a field power density of 2.4W/m(2), and the whole-body average specific absorption rate (SAR) of 0.6W/kg. Both the standard and the Fpg-modified comet assay detected increased DNA damage in blood leukocytes of the exposed rats. The significant increase in Fpg-detected DNA damage in the exposed rats suggests that oxidative stress is likely to be responsible. DNA damage detected by the standard comet assay indicates that some other mechanisms may also be involved. In addition, both methods served proved sensitive enough to measure basal and oxidative DNA damage after long-term exposure to 915MHz microwave radiation in vivo.

  11. An Assessment of Helium Evolution from Helium-Saturated Propellant Depressurization in Space

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich N.; Best, Frederick; Wong, Tony; Kurwitz, Cable; McConnaughey, H. (Technical Monitor)

    2001-01-01

    Helium evolution from the transfer of helium-saturated propellant in space is quantified to assess its impacts from creating two-phase gas/liquid flow from the supply tank, gas injection into the receiving tank, and liquid discharge from the receiving tank. Propellant transfer takes place between two similar tanks whose maximum storage capacity is approximately 2.55 cubic meters each. The maximum on-orbit propellants transfer capability is 9000 lbm (fuel and oxidizer). The transfer line is approximately 1.27 cm in diameter and 6096 cm in length and comprised of the fluid interconnect system (FICS), the orbiter propellant transfer system (OPTS), and the International Space Station (ISS) propulsion module (ISSPM). The propellant transfer rate begins at approximately 11 liter per minute (lpm) and subsequently drops to approximately 0.5 lpm. The tank nominal operating pressure is approximately 1827 kPa (absolute). The line pressure drops for Monomethy1hydrazine (MMH) and Nitrogen tetroxide (NTO) at 11.3 lpm are approximately 202 kPa and 302 kPa, respectively. The pressure-drop results are based on a single-phase flow. The receiving tank is required to vent from approximately 1827 kPa to a lower pressure to affect propellant transfer. These pressure-drop scenarios cause the helium-saturated propellants to release excess helium. For tank ullage venting, the maximum volumes of helium evolved at tank pressure are approximately 0.5 ft3 for MMH and 2 ft3 for NTO. In microgravity environment, due to lack of body force, the helium evolution from a liquid body acts to propel it, which influences its fluid dynamics. For propellant transfer, the volume fractions of helium evolved at line pressure are 0.1% by volume for MMH and 0.6 % by volume for NTO at 11.3 lpm. The void fraction of helium evolved varies as an approximate second order power function of flow rate.

  12. [Pulse-modulated Electromagnetic Radiation of Extremely High Frequencies Protects Cellular DNA against Damaging Effect of Physico-Chemical Factors in vitro].

    PubMed

    Gapeyev, A B; Lukyanova, N A

    2015-01-01

    Using a comet assay technique, we investigated protective effects of. extremely high frequency electromagnetic radiation in combination with the damaging effect of X-ray irradiation, the effect of damaging agents hydrogen peroxide and methyl methanesulfonate on DNA in mouse whole blood leukocytes. It was shown that the preliminary exposure of the cells to low intensity pulse-modulated electromagnetic radiation (42.2 GHz, 0.1 mW/cm2, 20-min exposure, modulation frequencies of 1 and 16 Hz) caused protective effects decreasing the DNA damage by 20-45%. The efficacy of pulse-modulated electromagnetic radiation depended on the type of genotoxic agent and increased in a row methyl methanesulfonate--X-rays--hydrogen peroxide. Continuous electromagnetic radiation was ineffective. The mechanisms of protective effects may be connected with an induction of the adaptive response by nanomolar concentrations of reactive oxygen species formed by pulse-modulated electromagnetic radiation.

  13. Thermal annealing of radiation damage in CMOS ICs in the temperature range -140 C to +375 C

    NASA Technical Reports Server (NTRS)

    Danchenko, V.; Fang, P. H.; Brashears, S. S.

    1982-01-01

    Annealing of radiation damage was investigated in the commercial, Z- and J-processes of the RCA CD4007A ICs in the temperature range from -140 C to +375 C. Tempering curves were analyzed for activation energies of thermal annealing, following irradiation at -140 C. It was found that at -140 C, the radiation-induced shifts in the threshold potentials were similar for all three processes. The radiation hardness of the Z- and J-process is primarily due to rapid annealing of radiation damage at room temperature. In the region -140 to 20 C, no dopant-dependent charge trapping is seen, similar to that observed at higher temperatures. In the unbiased Z-process n-channels, after 1 MeV electron irradiation, considerable negative charge remains in the gate oxide.

  14. Influence of complex impurity centres on radiation damage in wide-gap metal oxides

    NASA Astrophysics Data System (ADS)

    Lushchik, A.; Lushchik, Ch.; Popov, A. I.; Schwartz, K.; Shablonin, E.; Vasil'chenko, E.

    2016-05-01

    Different mechanisms of radiation damage of wide-gap metal oxides as well as a dual influence of impurity ions on the efficiency of radiation damage have been considered on the example of binary ionic MgO and complex ionic-covalent Lu3Al5O12 single crystals. Particular emphasis has been placed on irradiation with ∼2 GeV heavy ions (197Au, 209Bi, 238U, fluence of 1012 ions/cm2) providing extremely high density of electronic excitations within ion tracks. Besides knock-out mechanism for Frenkel pair formation, the additional mechanism through the collapse of mobile discrete breathers at certain lattice places (e.g., complex impurity centres) leads to the creation of complex defects that involve a large number of host atoms. The experimental manifestations of the radiation creation of intrinsic and impurity antisite defects (Lu|Al or Ce|Al - a heavy ion in a wrong cation site) have been detected in LuAG and LuAG:Ce3+ single crystals. Light doping of LuAG causes a small enhancement of radiation resistance, while pair impurity centres (for instance, Ce|Lu-Ce|Al or Cr3+-Cr3+ in MgO) are formed with a rise of impurity concentration. These complex impurity centres as well as radiation-induced intrinsic antisite defects (Lu|Al strongly interacting with Lu in a regular site) tentatively serve as the places for breathers collapse, thus decreasing the material resistance against dense irradiation.

  15. Wavelength dependence of biological damage induced by UV radiation on bacteria.

    PubMed

    Santos, Ana L; Oliveira, Vanessa; Baptista, Inês; Henriques, Isabel; Gomes, Newton C M; Almeida, Adelaide; Correia, António; Cunha, Ângela

    2013-01-01

    The biological effects of UV radiation of different wavelengths (UVA, UVB and UVC) were assessed in nine bacterial isolates displaying different UV sensitivities. Biological effects (survival and activity) and molecular markers of oxidative stress [DNA strand breakage (DSB), generation of reactive oxygen species (ROS), oxidative damage to proteins and lipids, and the activity of antioxidant enzymes catalase and superoxide dismutase] were quantified and statistically analyzed in order to identify the major determinants of cell inactivation under the different spectral regions. Survival and activity followed a clear wavelength dependence, being highest under UVA and lowest under UVC. The generation of ROS, as well as protein and lipid oxidation, followed the same pattern. DNA damage (DSB) showed the inverse trend. Multiple stepwise regression analysis revealed that survival under UVA, UVB and UVC wavelengths was best explained by DSB, oxidative damage to lipids, and intracellular ROS levels, respectively.

  16. Identification of conserved pathways of DNA-damage response and radiation protection by genome-wide RNAi.

    PubMed

    van Haaften, Gijs; Romeijn, Ron; Pothof, Joris; Koole, Wouter; Mullenders, Leon H F; Pastink, Albert; Plasterk, Ronald H A; Tijsterman, Marcel

    2006-07-11

    Ionizing radiation is extremely harmful for human cells, and DNA double-strand breaks (DSBs) are considered to be the main cytotoxic lesions induced. Improper processing of DSBs contributes to tumorigenesis, and mutations in DSB response genes underlie several inherited disorders characterized by cancer predisposition. Here, we performed a comprehensive screen for genes that protect animal cells against ionizing radiation. A total of 45 C. elegans genes were identified in a genome-wide RNA interference screen for increased sensitivity to ionizing radiation in germ cells. These genes include orthologs of well-known human cancer predisposition genes as well as novel genes, including human disease genes not previously linked to defective DNA-damage responses. Knockdown of eleven genes also impaired radiation-induced cell-cycle arrest, and seven genes were essential for apoptosis upon exposure to irradiation. The gene set was further clustered on the basis of increased sensitivity to DNA-damaging cancer drugs cisplatin and camptothecin. Almost all genes are conserved across animal phylogeny, and their relevance for humans was directly demonstrated by showing that their knockdown in human cells results in radiation sensitivity, indicating that this set of genes is important for future cancer profiling and drug development.

  17. New Modeling Approaches to Study DNA Damage by the Direct and Indirect Effects of Ionizing Radiation

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2012-01-01

    DNA is damaged both by the direct and indirect effects of radiation. In the direct effect, the DNA itself is ionized, whereas the indirect effect involves the radiolysis of the water molecules surrounding the DNA and the subsequent reaction of the DNA with radical products. While this problem has been studied for many years, many unknowns still exist. To study this problem, we have developed the computer code RITRACKS [1], which simulates the radiation track structure for heavy ions and electrons, calculating all energy deposition events and the coordinates of all species produced by the water radiolysis. In this work, we plan to simulate DNA damage by using the crystal structure of a nucleosome and calculations performed by RITRACKS. The energy deposition events are used to calculate the dose deposited in nanovolumes [2] and therefore can be used to simulate the direct effect of the radiation. Using the positions of the radiolytic species with a radiation chemistry code [3] it will be possible to simulate DNA damage by indirect effect. The simulation results can be compared with results from previous calculations such as the frequencies of simple and complex strand breaks [4] and with newer experimental data using surrogate markers of DNA double ]strand breaks such as . ]H2AX foci [5].

  18. Radiation damage and annealing of lithium-doped silicon solar cells

    NASA Technical Reports Server (NTRS)

    Statler, R. L.

    1971-01-01

    Evidence has been presented that a lithium-diffused crucible-grown silicon solar cell can be made with better efficiency than the flight-quality n p 10 ohms-cm solar cell. When this lithium cell is exposed to a continuous radiation evironment at 60 C (electron spectrum from gamma rays) it has a higher power output than the N/P cell after a fluence equivalent to 1 MeV. A comparison of annealing of proton- and electron-damage in this lithium cell reveals a decidedly faster rate of recovery and higher level of recoverable power from the proton effects. Therefore, the lithium cell shows a good potential for many space missions where the proton flux is a significant fraction of the radiation field to be encountered.

  19. Helium ion beam imaging for image guided ion radiotherapy.

    PubMed

    Martišíková, M; Gehrke, T; Berke, S; Aricò, G; Jäkel, O

    2018-06-14

    Ion beam radiotherapy provides potential for increased dose conformation to the target volume. To translate it into a clinical advantage, it is necessary to guarantee a precise alignment of the actual internal patient geometry with the treatment beam. This is in particular challenging for inter- and intrafractional variations, including movement. Ion beams have the potential for a high sensitivity imaging of the patient geometry. However, the research on suitable imaging methods is not conclusive yet. Here we summarize the research activities within the "Clinical research group heavy ion therapy" funded by the DFG (KFO214). Our aim was to develop a method for the visualization of a 1 mm thickness difference with a spatial resolution of about 1 mm at clinically applicable doses. We designed and built a dedicated system prototype for ion radiography using exclusively the pixelated semiconductor technology Timepix developed at CERN. Helium ions were chosen as imaging radiation due to their decreased scattering in comparison to protons, and lower damaging potential compared to carbon ions. The data acquisition procedure and a dedicated information processing algorithm were established. The performance of the method was evaluated at the ion beam therapy facility HIT in Germany with geometrical phantoms. The quality of the images was quantified by contrast-to-noise ratio (CNR) and spatial resolution (SR) considering the imaging dose. Using the unique method for single ion identification, degradation of the images due to the inherent contamination of the outgoing beam with light secondary fragments (hydrogen) was avoided. We demonstrated experimentally that the developed data processing increases the CNR by 350%. Consideration of the measured ion track directions improved the SR by 150%. Compared to proton radiographs at the same dose, helium radiographs exhibited 50% higher SR (0.56 ± 0.04lp/mm vs. 0.37 ± 0.02lp/mm) at a comparable CNR in the middle of the

  20. Study of the radiation damage effect on Titanium metastable beta alloy by high intensity proton beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishida, Taku; Wakai, E.; Hagiwara, M.

    Here, a foil of a metastable β Titanium alloy Ti-15V-3Cr-3Sn-3Al was irradiated at the J-PARC neutrino experimental facility with 1.4 × 10 20 30 GeV protons at low temperature (100–130°C at most), and microstructural characterization and hardness testing were conducted as an initial study on the radiation damage effects of Titanium alloy by the high energy proton beam exposure. Expected radiation damage at the beam center is about 0.06–0.12 displacement per atom. A high density (> 10 23 m –3) of a nanometer-sized precipitate was observed by TEM studies, which would be identified as martensite α-phase and athermal ω-phase formedmore » during the solution-treatment process to fabricate metastable β alloy. They did not appear to change substantially after irradiation with protons. In the irradiated specimen, we could not identify an obvious signature of radiation damage distributed along the proton beam profile. Very small, nanometer-scale black dots were present at a low density in the most highly irradiated region, and may be small dislocation loops formed during irradiation. The micro-indentation test indicated that the radiation exposure led to tiny increase in Vickers micro-hardness of ΔH V= 20 at beam center. Atom probe tomography reveals compositional fluctuations that reach a maximum amplitude of 10 at% Ti within a space of < 5 nm both before and after irradiation, which may also indicate presence of rich precipitates. These experimental results suggest this specific β alloy may exhibit radiation damage resistance due to the existence of a high density of nano-scale precipitates, but further studies with higher exposure are required to explore this possibility.« less

  1. Study of the radiation damage effect on Titanium metastable beta alloy by high intensity proton beam

    DOE PAGES

    Ishida, Taku; Wakai, E.; Hagiwara, M.; ...

    2018-04-26

    Here, a foil of a metastable β Titanium alloy Ti-15V-3Cr-3Sn-3Al was irradiated at the J-PARC neutrino experimental facility with 1.4 × 10 20 30 GeV protons at low temperature (100–130°C at most), and microstructural characterization and hardness testing were conducted as an initial study on the radiation damage effects of Titanium alloy by the high energy proton beam exposure. Expected radiation damage at the beam center is about 0.06–0.12 displacement per atom. A high density (> 10 23 m –3) of a nanometer-sized precipitate was observed by TEM studies, which would be identified as martensite α-phase and athermal ω-phase formedmore » during the solution-treatment process to fabricate metastable β alloy. They did not appear to change substantially after irradiation with protons. In the irradiated specimen, we could not identify an obvious signature of radiation damage distributed along the proton beam profile. Very small, nanometer-scale black dots were present at a low density in the most highly irradiated region, and may be small dislocation loops formed during irradiation. The micro-indentation test indicated that the radiation exposure led to tiny increase in Vickers micro-hardness of ΔH V= 20 at beam center. Atom probe tomography reveals compositional fluctuations that reach a maximum amplitude of 10 at% Ti within a space of < 5 nm both before and after irradiation, which may also indicate presence of rich precipitates. These experimental results suggest this specific β alloy may exhibit radiation damage resistance due to the existence of a high density of nano-scale precipitates, but further studies with higher exposure are required to explore this possibility.« less

  2. OBJECT KINETIC MONTE CARLO SIMULATIONS OF RADIATION DAMAGE IN BULK TUNGSTEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.

    2015-09-22

    We used our recently developed lattice based OKMC code; KSOME [1] to carryout simulations of radiation damage in bulk W. We study the effect of dimensionality of self interstitial atom (SIA) diffusion i.e. 1D versus 3D on the defect accumulation during irradiation with a primary knock-on atom (PKA) energy of 100 keV at 300 K for the dose rates of 10-5 and 10-6 dpa/s. As expected 3D SIA diffusion significantly reduces damage accumulation due to increased probability of recombination events. In addition, dose rate, over the limited range examined here, appears to have no effect in both cases of SIAmore » diffusion.« less

  3. Dose-rate plays a significant role in synchrotron radiation X-ray-induced damage of rodent testes.

    PubMed

    Chen, Heyu; Wang, Ban; Wang, Caixia; Cao, Wei; Zhang, Jie; Ma, Yingxin; Hong, Yunyi; Fu, Shen; Wu, Fan; Ying, Weihai

    2016-01-01

    Synchrotron radiation (SR) X-ray has significant potential for applications in medical imaging and cancer treatment. However, the mechanisms underlying SR X-ray-induced tissue damage remain unclear. Previous studies on regular X-ray-induced tissue damage have suggested that dose-rate could affect radiation damage. Because SR X-ray has exceedingly high dose-rate compared to regular X-ray, it remains to be determined if dose-rate may affect SR X-ray-induced tissue damage. We used rodent testes as a model to investigate the role of dose-rate in SR X-ray-induced tissue damage. One day after SR X-ray irradiation, we determined the effects of the irradiation of the same dosage at two different dose-rates, 0.11 Gy/s and 1.1 Gy/s, on TUNEL signals, caspase-3 activation and DNA double-strand breaks (DSBs) of the testes. Compared to those produced by the irradiation at 0.11 Gy/s, irradiation at 1.1 Gy/s produced higher levels of DSBs, TUNEL signals, and caspase-3 activation in the testes. Our study has provided the first evidence suggesting that dose-rate could be a significant factor in SR X-ray-induced tissue damage, which may establish a valuable base for utilizing this factor to manipulate the tissue damage in SR X-ray-based medical applications.

  4. Dose-rate plays a significant role in synchrotron radiation X-ray-induced damage of rodent testes

    PubMed Central

    Chen, Heyu; Wang, Ban; Wang, Caixia; Cao, Wei; Zhang, Jie; Ma, Yingxin; Hong, Yunyi; Fu, Shen; Wu, Fan; Ying, Weihai

    2016-01-01

    Synchrotron radiation (SR) X-ray has significant potential for applications in medical imaging and cancer treatment. However, the mechanisms underlying SR X-ray-induced tissue damage remain unclear. Previous studies on regular X-ray-induced tissue damage have suggested that dose-rate could affect radiation damage. Because SR X-ray has exceedingly high dose-rate compared to regular X-ray, it remains to be determined if dose-rate may affect SR X-ray-induced tissue damage. We used rodent testes as a model to investigate the role of dose-rate in SR X-ray-induced tissue damage. One day after SR X-ray irradiation, we determined the effects of the irradiation of the same dosage at two different dose-rates, 0.11 Gy/s and 1.1 Gy/s, on TUNEL signals, caspase-3 activation and DNA double-strand breaks (DSBs) of the testes. Compared to those produced by the irradiation at 0.11 Gy/s, irradiation at 1.1 Gy/s produced higher levels of DSBs, TUNEL signals, and caspase-3 activation in the testes. Our study has provided the first evidence suggesting that dose-rate could be a significant factor in SR X-ray-induced tissue damage, which may establish a valuable base for utilizing this factor to manipulate the tissue damage in SR X-ray-based medical applications. PMID:28078052

  5. Role of connexin43 and ATP in long-range bystander radiation damage and oncogenesis in vivo.

    PubMed

    Mancuso, M; Pasquali, E; Leonardi, S; Rebessi, S; Tanori, M; Giardullo, P; Borra, F; Pazzaglia, S; Naus, C C; Di Majo, V; Saran, A

    2011-11-10

    Ionizing radiation is a genotoxic agent and human carcinogen. Recent work has questioned long-held dogmas by showing that cancer-associated genetic alterations occur in cells and tissues not directly exposed to radiation, questioning the robustness of the current system of radiation risk assessment. In vitro, diverse mechanisms involving secreted soluble factors, gap junction intercellular communication (GJIC) and oxidative metabolism are proposed to mediate these indirect effects. In vivo, the mechanisms behind long-range 'bystander' responses remain largely unknown. Here, we investigate the role of GJIC in propagating radiation stress signals in vivo, and in mediating radiation-associated bystander tumorigenesis in mouse central nervous system using a mouse model in which intercellular communication is downregulated by targeted deletion of the connexin43 (Cx43) gene. We show that GJIC is critical for transmission of oncogenic radiation damage to the non-targeted cerebellum, and that a mechanism involving adenosine triphosphate release and upregulation of Cx43, the major GJIC constituent, regulates transduction of oncogenic damage to unirradiated tissues in vivo. Our data provide a novel hypothesis for transduction of distant bystander effects and suggest that the highly branched nervous system, similar to the vascular network, has an important role.

  6. Helium recovery and purification at CHMFL

    NASA Astrophysics Data System (ADS)

    Li, J.; Meng, Q.; Ouyang, Z.; Shi, L.; Ai, X.; Chen, X.

    2017-02-01

    Currently, rising demand and declining reserves of helium have led to dramatic increases in the helium price. The High Magnetic Field Laboratory of Chinese Academy of Sciences (CHMFL) has made efforts since its foundation to increase the percentage of helium recovered. The piping network connects all the helium experimental facilities to the recovery system, and even exhaust ports of pressure relief valves and vacuum pumps are also connected. In each year, about 30,000 cubic meters helium gas is recovered. The recovery gas is purified, liquefied and supplied to the users again. This paper will provide details about the helium recovery and purification system at CHMFL, including system flowchart, components, problems and solutions.

  7. Development of a feed monitor system for a helium-cooled Michelson intererometer for the Spacelab

    NASA Technical Reports Server (NTRS)

    Essenwanger, P.

    1980-01-01

    A Michelson interferometer feed monitor system developed for Spacelab is described. The device is helium cooled and is to be used to measure far infrared radiation sources in space. Performance data and development sequence are presented.

  8. Radiation Damage Effects in Far Ultraviolet Filters and Substrates

    NASA Technical Reports Server (NTRS)

    Keffer, Charles E.; Torr, Marsha R.; Zukic, Muamer; Spann, James F.; Torr, Douglas G.; Kim, Jongmin

    1993-01-01

    New advances in VUV thin film filter technology have been made using filter designs with multilayers of materials such as Al2O3, BaF2, CaF2, HfO2, LaF3, MgF2, and SiO2. Our immediate application for these filters will be in an imaging system to be flown on a satellite where a 2 X 9 R(sub E) orbit will expose the instrument to approximately 275 krads of radiation. In view of the fact that no previous studies have been made on potential radiation damage of these materials in the thin film format, we report on such an assessment here. Transmittances and reflectances of BaF2, CaF2, HfO2, LaF3, MgF2, and SiO2 thin films on MgF2 substrates, Al2O3 thin films on fused silica substrates, uncoated fused silica and MgF2, and four multilayer filters made from these materials were measured from 120 nm to 180 nm before and after irradiation by 250 krads from a Co-60 gamma radiation source. No radiation-induced losses in transmittance or reflectance occurred in this wavelength range. Additional postradiation measurements from 160 nm to 300 nm indicated a 3 - 5% radiation-induced absorption near 260 nm in some of the samples with MgF2 substrates. From these measurements it is concluded that far ultraviolet filters made from the materials tested should experience less that 5% change from exposure to up to 250 krads of high energy radiation in space applications.

  9. Radiation damage caused by cold neutrons in boron doped CMOS active pixel sensors

    NASA Astrophysics Data System (ADS)

    Linnik, B.; Bus, T.; Deveaux, M.; Doering, D.; Kudejova, P.; Wagner, F. M.; Yazgili, A.; Stroth, J.

    2017-05-01

    CMOS Monolithic Active Pixel Sensors (MAPS) are considered as an emerging technology in the field of charged particle tracking. They will be used in the vertex detectors of experiments like STAR, CBM and ALICE and are considered for the ILC and the tracker of ATLAS. In those applications, the sensors are exposed to sizeable radiation doses. While the tolerance of MAPS to ionizing radiation and fast hadrons is well known, the damage caused by low energy neutrons was not studied so far. Those slow neutrons may initiate nuclear fission of 10B dopants found in the B-doped silicon active medium of MAPS. This effect was expected to create an unknown amount of radiation damage beyond the predictions of the NIEL (Non Ionizing Energy Loss) model for pure silicon. We estimate the impact of this effect by calculating the additional NIEL created by this fission. Moreover, we show first measured data for CMOS sensors which were irradiated with cold neutrons. The empirical results contradict the prediction of the updated NIEL model both, qualitatively and quantitatively: the sensors irradiated with slow neutrons show an unexpected and strong acceptor removal, which is not observed in sensors irradiated with MeV neutrons.

  10. The Efficacy of Nardostachys Jatamansi Against The Radiation Induced Haematological Damage In Rats

    PubMed Central

    Gowda, Damodara K M; Shetty, Lathika; A P, Krishna; Kumari, Suchetha N; Sanjeev, Ganesh; P, Naveen

    2013-01-01

    Introduction: Radiation is increasingly being used for medical purposes and it is an established weapon in the diagnosis and the therapy of cancer. An exposure to 1-2 Gys causes the NVD (Nausea, vomiting, diarrhoea) syndrome, whereas an exposure to 2-6 Gys causes the haematopoietic syndrome. The aim of the present study was to investigate the protective effect of the Nardostachys jatamansi root extract (NJE) on the radiation induced haematological damage in rats. Materials and Methods: EBR was performed at the Microtron Centre, Mangalore University, India. Rats were treated with NJE once daily for 15 days before and after the irradiation. After the irradiation, blood was collected for determining the peripheral blood counts (RBC and WBC), haemoglobin, the platelet count and the packed cell volume (PCV) at 6 hours, 12 hours, 24 hours, 48 hours and 5, 10 and 15 days post irradiation. The data was analyzed by one way ANOVA, followed by the Tukey’s test for multiple comparisons. Result: NJE provided protection against the radiation induced haematological disorders. The rats treated with NJE exhibited a time dependent significant elevation in all the haematological parameters which were studied and its modulation upto the near normal level was recorded. Conclusion: From this study, we concluded that, NJE provides protection by modulating the radiation induced damage on the haematopoietic system. PMID:23905085

  11. Protection of radiation induced DNA and membrane damages by total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst.

    PubMed

    Smina, T P; Maurya, D K; Devasagayam, T P A; Janardhanan, K K

    2015-05-25

    The total triterpenes isolated from the fruiting bodies of Ganoderma lucidum was examined for its potential to prevent γ-radiation induced membrane damage in rat liver mitochondria and microsomes. The effects of total triterpenes on γ-radiation-induced DNA strand breaks in pBR 322 plasmid DNA in vitro and human peripheral blood lymphocytes ex vivo were evaluated. The protective effect of total triterpenes against γ-radiation-induced micronuclei formations in mice bone marrow cells in vivo were also evaluated. The results indicated the significant effectiveness of Ganoderma triterpenes in protecting the DNA and membrane damages consequent to the hazardous effects of radiation. The findings suggest the potential use of Ganoderma triterpenes in radio therapy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Tritium trick

    NASA Technical Reports Server (NTRS)

    Green, W. V.; Zukas, E. G.; Eash, D. T.

    1971-01-01

    Large controlled amounts of helium in uniform concentration in thick samples can be obtained through the radioactive decay of dissolved tritium gas to He3. The term, tritium trick, applies to the case when helium, added by this method, is used to simulate (n,alpha) production of helium in simulated hard flux radiation damage studies.

  13. In situ radiation test of silicon and diamond detectors operating in superfluid helium and developed for beam loss monitoring

    NASA Astrophysics Data System (ADS)

    Kurfürst, C.; Dehning, B.; Sapinski, M.; Bartosik, M. R.; Eisel, T.; Fabjan, C.; Rementeria, C. A.; Griesmayer, E.; Eremin, V.; Verbitskaya, E.; Zabrodskii, A.; Fadeeva, N.; Tuboltsev, Y.; Eremin, I.; Egorov, N.; Härkönen, J.; Luukka, P.; Tuominen, E.

    2015-05-01

    As a result of the foreseen increase in the luminosity of the Large Hadron Collider, the discrimination between the collision products and possible magnet quench-provoking beam losses of the primary proton beams is becoming more critical for safe accelerator operation. We report the results of ongoing research efforts targeting the upgrading of the monitoring system by exploiting Beam Loss Monitor detectors based on semiconductors located as close as possible to the superconducting coils of the triplet magnets. In practice, this means that the detectors will have to be immersed in superfluid helium inside the cold mass and operate at 1.9 K. Additionally, the monitoring system is expected to survive 20 years of LHC operation, resulting in an estimated radiation fluence of 1×1016 proton/cm2, which corresponds to a dose of about 2 MGy. In this study, we monitored the signal degradation during the in situ irradiation when silicon and single-crystal diamond detectors were situated in the liquid/superfluid helium and the dependences of the collected charge on fluence and bias voltage were obtained. It is shown that diamond and silicon detectors can operate at 1.9 K after 1×1016 p/cm2 irradiation required for application as BLMs, while the rate of the signal degradation was larger in silicon detectors than in the diamond ones. For Si detectors this rate was controlled mainly by the operational mode, being larger at forward bias voltage.

  14. Helium cluster isolation spectroscopy

    NASA Astrophysics Data System (ADS)

    Higgins, John Paul

    Clusters of helium, each containing ~103- 104 atoms, are produced in a molecular beam and are doped with alkali metal atoms (Li, Na, and K) and large organic molecules. Electronic spectroscopy in the visible and UV regions of the spectrum is carried out on the dopant species. Since large helium clusters are liquid and attain an equilibrium internal temperature of 0.4 K, they interact weakly with atoms or molecules absorbed on their surface or resident inside the cluster. The spectra that are obtained are characterized by small frequency shifts from the positions of the gas phase transitions, narrow lines, and cold vibrational temperatures. Alkali atoms aggregate on the helium cluster surface to form dimers and trimers. The spectra of singlet alkali dimers exhibit the presence of elementary excitations in the superfluid helium cluster matrix. It is found that preparation of the alkali molecules on the surface of helium clusters leads to the preferential formation of high-spin, van der Waals bound, triplet dimers and quartet trimers. Four bound-bound and two bound-free transitions are observed in the triplet manifold of the alkali dimers. The quartet trimers serve as an ideal system for the study of a simple unimolecular reaction in the cold helium cluster environment. Analysis of the lowest quartet state provides valuable insight into three-body forces in a van der Waals trimer. The wide range of atomic and molecular systems studied in this thesis constitutes a preliminary step in the development of helium cluster isolation spectroscopy, a hybrid technique combining the advantages of high resolution spectroscopy with the synthetic, low temperature environment of matrices.

  15. Use of near infrared femtosecond lasers as sub-micron radiation microbeam for cell DNA damage and repair studies.

    PubMed

    Botchway, S W; Reynolds, P; Parker, A W; O'Neill, P

    2010-01-01

    Laser induced radiation microbeam technology for radiobiology research is undergoing rapid growth because of the increased availability and ease of use of femtosecond laser sources. The main processes involved are multiphoton absorption and/or plasma formation. The high peak powers these lasers generate make them ideal tools for depositing sub-micrometer size radiant energy within a region of a living cell nucleus to activate ionising and/or photochemically driven processes. The technique allows questions relating to the effects of low doses of radiation, the propagation and treatment of deoxyribonucleic acid (DNA) damage and repair in individual live cells as well as non-targeted cell to cell effects to be addressed. This mini-review focuses on the use of near infrared (NIR) ca. 800nm radiation to induce damage that is radically different from the early and subsequent ultraviolet microbeam techniques. Ultrafast pulsed NIR instrumentation has many benefits including the ability to eliminate issues of unspecific UV absorption by the many materials prevalent within cells. The multiphoton interaction volume also permits energy deposition beyond the diffraction limit. Work has established that the fundamental process of the damage induced by the ultrashort laser pulses is different to those induced from continuous wave light sources. Pioneering work has demonstrated that NIR laser microbeam radiation can mimic ionising radiation via multiphoton absorption within the 3D femtolitre volume of the highly focused Gaussian beam. This light-matter interaction phenomenon provides a novel optical microbeam probe for mimicking both complex ionising and UV radiation-type cell damage including double strand breaks (DSBs) and base damage. A further advantage of the pulsed laser technique is that it provides further scope for time-resolved experiments. Recently the NIR laser microbeam technique has been used to investigate the recruitment of repair proteins to the sub

  16. Report on the Study of Radiation Damage in Calcium Fluoride and Magnesium Fluoride Crystals for use in Excimer Laser Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1999-10-04

    A study was performed to investigate the effects of radiation damage in calcium fluoride and magnesium fluoride crystals caused by gamma rays and UV photons from excimer lasers. The purpose was to study and correlate the damage caused by these two different mechanisms in various types of material used for fabricating optical elements in high power excimer lasers and lens systems of lithography tools. These optical systems are easily damaged by the laser itself, and it is necessary to use only the most radiation resistant materials for certain key elements. It was found that a clear correlation exists between the,more » radiation induced damage caused by high energy gamma rays and that produced by UV photons from the excimer laser. This correlation allows a simple procedure to be developed to select the most radiation resistant material at the ingot level, which would be later used to fabricate various components of the optical system. This avoids incurring the additional cost of fabricating actual optical elements with material that would later be damaged under prolonged use. The result of this screening procedure can result in a considerable savings in the overall cost of the lens and laser system.« less

  17. Multi-scale simulation of radiation damage accumulation and subsequent hardening in neutron-irradiated α-Fe

    DOE PAGES

    Dunn, Aaron; Dingreville, Remi; Capolungo, Laurent

    2015-11-27

    A hierarchical methodology is introduced to predict the effects of radiation damage and irradiation conditions on the yield stress and internal stress heterogeneity developments in polycrystalline α-Fe. Simulations of defect accumulation under displacement cascade damage conditions are performed using spatially resolved stochastic cluster dynamics. The resulting void and dislocation loop concentrations and average sizes are then input into a crystal plasticity formulation that accounts for the change in critical resolved shear stress due to the presence of radiation induced defects. The simulated polycrystalline tensile tests show a good match to experimental hardening data over a wide range of irradiation doses.more » With this capability, stress heterogeneity development and the effect of dose rate on hardening is investigated. The model predicts increased hardening at higher dose rates for low total doses. By contrast, at doses above 10 –2 dpa when cascade overlap becomes significant, the model does not predict significantly different hardening for different dose rates. In conclusion, the development of such a model enables simulation of radiation damage accumulation and associated hardening without relying on experimental data as an input under a wide range of irradiation conditions such as dose, dose rate, and temperature.« less

  18. 30 CFR 256.11 - Helium.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the manner required by the United States to such plants or reduction works as the United States may provide. (c) The extraction of helium shall not cause a reduction in the value of the lessee's gas or any... necessary for the extraction of helium. The extraction of helium shall not cause substantial delays in the...

  19. 30 CFR 256.11 - Helium.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Delivery shall be made in the manner required by the United States to such plants or reduction works as the United States may provide. (c) The extraction of helium shall not cause a reduction in the value of the... and other equipment necessary for the extraction of helium. The extraction of helium shall not cause...

  20. Radiation damage in room-temperature data acquisition with the PILATUS 6M pixel detector.

    PubMed

    Rajendran, Chitra; Dworkowski, Florian S N; Wang, Meitian; Schulze-Briese, Clemens

    2011-05-01

    The first study of room-temperature macromolecular crystallography data acquisition with a silicon pixel detector is presented, where the data are collected in continuous sample rotation mode, with millisecond read-out time and no read-out noise. Several successive datasets were collected sequentially from single test crystals of thaumatin and insulin. The dose rate ranged between ∼ 1320 Gy s(-1) and ∼ 8420 Gy s(-1) with corresponding frame rates between 1.565 Hz and 12.5 Hz. The data were analysed for global radiation damage. A previously unreported negative dose-rate effect is observed in the indicators of global radiation damage, which showed an approximately 75% decrease in D(1/2) at sixfold higher dose rate. The integrated intensity decreases in an exponential manner. Sample heating that could give rise to the enhanced radiation sensitivity at higher dose rate is investigated by collecting data between crystal temperatures of 298 K and 353 K. UV-Vis spectroscopy is used to demonstrate that disulfide radicals and trapped electrons do not accumulate at high dose rates in continuous data collection.

  1. Evaluation of DNA damage induced by gamma radiation in gill and muscle tissues of Cyprinus carpio and their relative sensitivity.

    PubMed

    M K, Praveen Kumar; Shyama, Soorambail K; D'Costa, Avelyno; Kadam, Samit B; Sonaye, Bhagatsingh Harisingh; Chaubey, Ramesh Chandra

    2017-10-01

    The effect of radiation on the aquatic environment is of major concern in recent years. Limited data is available on the genotoxicity of gamma radiation on different tissues of aquatic organisms. Hence, the present investigation was carried out to study the DNA damage induced by gamma radiation in the gill and muscle tissues and their relative sensitivity using the comet assay in the freshwater teleost fish, common carp (Cyprinus carpio). The comet assay was optimized and validated in common carp using cyclophosphamide (CP), a reference genotoxic agent. The fish were exposed (acute) to various doses of gamma radiation (2, 4, 6, 8 and 10Gy) and samplings (gill and muscle tissue) were done at regular intervals (24, 48 and 72h) to assess the DNA damage. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA for all doses of gamma radiation in both tissues. We also observed a dose-related increase and a time-dependent decrease of DNA damage. In comparison, DNA damage showed different sensitivity among the tissues at different doses. This shows that a particular dose may have different effects on different tissues which could be due to physiological factors of the particular tissue. Our study also suggests that the gills and muscle of fish are sensitive and reliable tissues for evaluating the genotoxic effects of reference and environmental agents, using the comet assay. Copyright © 2017. Published by Elsevier Inc.

  2. Protective Effect of Pyruvate Against Radiation-Induced Damage in Collagenized Tissues

    NASA Technical Reports Server (NTRS)

    Griko, Y. V.; Yan, Xiaoli

    2016-01-01

    Exposure to high doses of ionizing radiation produces both acute and late effects on the collagenized tissues and have profound effects on wound healing. Because of the crucial practical importance for new radioprotective agents, our study has been focused on evaluation of the efficacy of non-toxic naturally occurring compounds to protect tissue integrity against high-dose gamma radiation. Here, we demonstrate that molecular integrity of collagen may serve as a sensitive biological marker for quantitative evaluation of molecular damage to collagenized tissue and efficacy of radioprotective agents. Increasing doses of gamma radiation (0-50kGy) result in progressive destruction of the native collagen fibrils, which provide a structural framework, strength, and proper milieu for the regenerating tissue. The strategy used in this study involved the thermodynamic specification of all structural changes in collagenized matrix of skin, aortic heart valve, and bone tissue induced by different doses and conditions of g-irradiation. This study describes a simple biophysical approach utilizing the Differential Scanning Calorimetry (DSC) to characterize the structural resistance of the aortic valve matrix exposed to different doses of g-irradiation. It allows us to identify the specific response of each constituent as well as to determine the influence of the different treatments on the characteristic parameters of protein structure. We found that pyruvate, a substance that naturally occurs in the body, provide significant protection (up to 80%) from biochemical and biomechanical damage to the collagenized tissue through the effective targeting of reactive oxygen species. The recently discovered role of pyruvate in the cell antioxidant defense to O2 oxidation, and its essential constituency in the daily human diet, indicate that the administration of pyruvate-based radioprotective formulations may provide safe and effective protection from deleterious effects of ionizing

  3. Effect of high power CO2 and Yb:YAG laser radiation on the characteristics of TIG arc in atmospherical pressure argon and helium

    NASA Astrophysics Data System (ADS)

    Wu, Shikai; Xiao, Rongshi

    2015-04-01

    The effects of laser radiation on the characteristics of the DC tungsten inert gas (TIG) arc were investigated by applying a high power slab CO2 laser and a Yb:YAG disc laser. Experiment results reveal that the arc voltage-current curve shifts downwards, the arc column expands, and the arc temperature rises while the high power CO2 laser beam vertically interacts with the TIG arc in argon. With the increase of the laser power, the voltage-current curve of the arc shifts downwards more significantly, and the closer the laser beam impingement on the arc to the cathode, the more the decrease in arc voltage. Moreover, the arc column expansion and the arc temperature rise occur mainly in the region between the laser beam incident position and the anode. However, the arc characteristics hardly change in the cases of the CO2 laser-helium arc and YAG laser-arc interactions. The reason is that the inverse Bremsstrahlung absorption coefficients are greatly different due to the different electron densities of the argon and helium arcs and the different wave lengths of CO2 and YAG lasers.

  4. A new hand-held microfluidic cytometer for evaluating irradiation damage by analysis of the damaged cells distribution.

    PubMed

    Wang, Junsheng; Fan, Zhiqiang; Zhao, Yile; Song, Younan; Chu, Hui; Song, Wendong; Song, Yongxin; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2016-03-17

    Space radiation brings uneven damages to cells. The detection of the distribution of cell damage plays a very important role in radiation medicine and the related research. In this paper, a new hand-held microfluidic flow cytometer was developed to evaluate the degree of radiation damage of cells. The device we propose overcomes the shortcomings (e.g., large volume and high cost) of commercial flow cytometers and can evaluate the radiation damage of cells accurately and quickly with potential for onsite applications. The distribution of radiation-damaged cells is analyzed by a simultaneous detection of immunofluorescence intensity of γ-H2AX and resistance pulse sensor (RPS) signal. The γ-H2AX fluorescence intensity provides information of the degree of radiation damage in cells. The ratio of the number of cells with γ-H2AX fluorescence signals to the total numbers of cells detected by RPS indicates the percentage of the cells that are damaged by radiation. The comparison experiment between the developed hand-held microfluidic flow cytometer and a commercial confocal microscope indicates a consistent and comparable detection performance.

  5. A new hand-held microfluidic cytometer for evaluating irradiation damage by analysis of the damaged cells distribution

    NASA Astrophysics Data System (ADS)

    Wang, Junsheng; Fan, Zhiqiang; Zhao, Yile; Song, Younan; Chu, Hui; Song, Wendong; Song, Yongxin; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2016-03-01

    Space radiation brings uneven damages to cells. The detection of the distribution of cell damage plays a very important role in radiation medicine and the related research. In this paper, a new hand-held microfluidic flow cytometer was developed to evaluate the degree of radiation damage of cells. The device we propose overcomes the shortcomings (e.g., large volume and high cost) of commercial flow cytometers and can evaluate the radiation damage of cells accurately and quickly with potential for onsite applications. The distribution of radiation-damaged cells is analyzed by a simultaneous detection of immunofluorescence intensity of γ-H2AX and resistance pulse sensor (RPS) signal. The γ-H2AX fluorescence intensity provides information of the degree of radiation damage in cells. The ratio of the number of cells with γ-H2AX fluorescence signals to the total numbers of cells detected by RPS indicates the percentage of the cells that are damaged by radiation. The comparison experiment between the developed hand-held microfluidic flow cytometer and a commercial confocal microscope indicates a consistent and comparable detection performance.

  6. 3He NMR studies on helium-pyrrole, helium-indole, and helium-carbazole systems: a new tool for following chemistry of heterocyclic compounds.

    PubMed

    Radula-Janik, Klaudia; Kupka, Teobald

    2015-02-01

    The (3)He nuclear magnetic shieldings were calculated for free helium atom and He-pyrrole, He-indole, and He-carbazole complexes. Several levels of theory, including Hartree-Fock (HF), Second-order Møller-Plesset Perturbation Theory (MP2), and Density Functional Theory (DFT) (VSXC, M062X, APFD, BHandHLYP, and mPW1PW91), combined with polarization-consistent pcS-2 and aug-pcS-2 basis sets were employed. Gauge-including atomic orbital (GIAO) calculated (3)He nuclear magnetic shieldings reproduced accurately previously reported theoretical values for helium gas. (3)He nuclear magnetic shieldings and energy changes as result of single helium atom approaching to the five-membered ring of pyrrole, indole, and carbazole were tested. It was observed that (3)He NMR parameters of single helium atom, calculated at various levels of theory (HF, MP2, and DFT) are sensitive to the presence of heteroatomic rings. The helium atom was insensitive to the studied molecules at distances above 5 Å. Our results, obtained with BHandHLYP method, predicted fairly accurately the He-pyrrole plane separation of 3.15 Å (close to 3.24 Å, calculated by MP2) and yielded a sizable (3)He NMR chemical shift (about -1.5 ppm). The changes of calculated nucleus-independent chemical shifts (NICS) with the distance above the rings showed a very similar pattern to helium-3 NMR chemical shift. The ring currents above the five-membered rings were seen by helium magnetic probe to about 5 Å above the ring planes verified by the calculated NICS index. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Repair of Ultraviolet Radiation Damage in Sensitive Mutants of Micrococcus radiodurans

    PubMed Central

    Moseley, B. E. B.

    1969-01-01

    Various aspects of the repair of ultraviolet (UV) radiation-induced damage were compared in wild-type Micrococcus radiodurans and two UV-sensitive mutants. Unlike the wild type, the mutants are more sensitive to radiation at 265 nm than at 280 nm. The delay in deoxyribonucleic acid (DNA) synthesis following exposure to UV is about seven times as long in the mutants as in the wild type. All three strains excise UV-induced pyrimidine dimers from their DNA, although the rate at which cytosine-thymine dimers are excised is slower in the mutants. The three strains also mend the single-strand breaks that appear in the irradiated DNA as a result of dimer excision, although the process is less efficient in the mutants. It is suggested that the increased sensitivity of the mutants to UV radiation may be caused by a partial defect in the second step of dimer excision. PMID:5773016

  8. The Effect of High-Dose Ionizing Radiation on the Astrobiological Model Lichen Circinaria gyrosa

    NASA Astrophysics Data System (ADS)

    de la Torre, Rosa; Zélia Miller, Ana; Cubero, Beatriz; Martín-Cerezo, M. Luisa; Raguse, Marina; Meeßen, Joachim

    2017-02-01

    The lichen Circinaria gyrosa is an astrobiological model defined by its high capacity of resistance to space conditions and to a simulated martian environment. Therefore, it became part of the currently operated BIOMEX experiment on board the International Space Station and the recent STARLIFE campaign to study the effects of four types of space-relevant ionizing radiation. The samples were irradiated with helium and iron ions at doses up to 2 kGy, with X-rays at doses up to 5 kGy and with γ rays at doses from 6 to 113 kGy. Results on C. gyrosa's resistance to simulated space ionizing radiation and its post-irradiation viability were obtained by (i) chlorophyll a fluorescence of photosystem II (PSII), (ii) epifluorescence microscopy, (iii) confocal laser scanning microscopy (CLSM), and (iv) field emission scanning electron microscopy (FESEM). Results of photosynthetic activity and epifluorescence show no significant changes up to a dose of 1 kGy (helium ions), 2 kGy (iron ions), 5 kGy (X-rays) - the maximum doses applied for those radiation qualities - as well as a dose of 6 kGy of γ irradiation, which was the lowest dose applied for this low linear energy transfer (LET) radiation. Significant damage in a dose-related manner was observed only at much higher doses of γ irradiation (up to 113 kGy). These data corroborate the findings of the parallel STARLIFE studies on the effects of ionizing radiation on the lichen Circinaria gyrosa, its isolated photobiont, and the lichen Xanthoria elegans.

  9. Detection of Low Level Microwave Radiation Induced Deoxyribonucleic Acid Damage Vis-à-vis Genotoxicity in Brain of Fischer Rats

    PubMed Central

    Deshmukh, Pravin Suryakantrao; Megha, Kanu; Banerjee, Basu Dev; Ahmed, Rafat Sultana; Chandna, Sudhir; Abegaonkar, Mahesh Pandurang; Tripathi, Ashok Kumar

    2013-01-01

    Background: Non-ionizing radiofrequency radiation has been increasingly used in industry, commerce, medicine and especially in mobile phone technology and has become a matter of serious concern in present time. Objective: The present study was designed to investigate the possible deoxyribonucleic acid (DNA) damaging effects of low-level microwave radiation in brain of Fischer rats. Materials and Methods: Experiments were performed on male Fischer rats exposed to microwave radiation for 30 days at three different frequencies: 900, 1800 and 2450 MHz. Animals were divided into 4 groups: Group I (Sham exposed): Animals not exposed to microwave radiation but kept under same conditions as that of other groups, Group II: Animals exposed to microwave radiation at frequency 900 MHz at specific absorption rate (SAR) 5.953 × 10−4 W/kg, Group III: Animals exposed to 1800 MHz at SAR 5.835 × 10−4 W/kg and Group IV: Animals exposed to 2450 MHz at SAR 6.672 × 10−4 W/kg. At the end of the exposure period animals were sacrificed immediately and DNA damage in brain tissue was assessed using alkaline comet assay. Results: In the present study, we demonstrated DNA damaging effects of low level microwave radiation in brain. Conclusion: We concluded that low SAR microwave radiation exposure at these frequencies may induce DNA strand breaks in brain tissue. PMID:23833433

  10. Oxidative Lung Damage Resulting from Repeated Exposure to Radiation and Hyperoxia Associated with Space Exploration.

    PubMed

    Pietrofesa, Ralph A; Turowski, Jason B; Arguiri, Evguenia; Milovanova, Tatyana N; Solomides, Charalambos C; Thom, Stephen R; Christofidou-Solomidou, Melpo

    2013-09-30

    Spaceflight missions may require crewmembers to conduct Extravehicular Activities (EVA) for repair, maintenance or scientific purposes. Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours (5-8 hours), and may be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health and therefore, pose a threat to the success of the mission. We have developed a murine model of combined, hyperoxia and radiation exposure (double-hit) in the context of evaluating countermeasures to oxidative lung damage associated with space flight. In the current study, our objective was to characterize the early and chronic effects of repeated single and double-hit challenge on lung tissue using a novel murine model of repeated exposure to low-level total body radiation and hyperoxia. This is the first study of its kind evaluating lung damage relevant to space exploration in a rodent model. Mouse cohorts (n=5-15/group) were exposed to repeated: a) normoxia; b) >95% O 2 (O 2 ); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O 2 and IR (O 2 +IR) given 3 times per week for 4 weeks. Lungs were evaluated for oxidative damage, active TGFβ1 levels, cell apoptosis, inflammation, injury, and fibrosis at 1, 2, 4, 8, 12, 16, and 20 weeks post-initiation of exposure. Mouse cohorts exposed to all challenge conditions displayed decreased bodyweight compared to untreated controls at 4 and 8 weeks post-challenge initiation. Chronic oxidative lung damage to lipids (malondialdehyde levels), DNA (TUNEL, cleaved Caspase 3, cleaved PARP positivity) leading to apoptotic cell death and to proteins (nitrotyrosine levels) was elevated all treatment groups. Importantly, significant systemic oxidative stress was also noted at the late phase in mouse plasma, BAL fluid, and urine. Importantly, however, late

  11. Oxidative Lung Damage Resulting from Repeated Exposure to Radiation and Hyperoxia Associated with Space Exploration

    PubMed Central

    Pietrofesa, Ralph A; Turowski, Jason B; Arguiri, Evguenia; Milovanova, Tatyana N; Solomides, Charalambos C; Thom, Stephen R; Christofidou-Solomidou, Melpo

    2013-01-01

    Background Spaceflight missions may require crewmembers to conduct Extravehicular Activities (EVA) for repair, maintenance or scientific purposes. Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours (5-8 hours), and may be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health and therefore, pose a threat to the success of the mission. We have developed a murine model of combined, hyperoxia and radiation exposure (double-hit) in the context of evaluating countermeasures to oxidative lung damage associated with space flight. In the current study, our objective was to characterize the early and chronic effects of repeated single and double-hit challenge on lung tissue using a novel murine model of repeated exposure to low-level total body radiation and hyperoxia. This is the first study of its kind evaluating lung damage relevant to space exploration in a rodent model. Methods Mouse cohorts (n=5-15/group) were exposed to repeated: a) normoxia; b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) given 3 times per week for 4 weeks. Lungs were evaluated for oxidative damage, active TGFβ1 levels, cell apoptosis, inflammation, injury, and fibrosis at 1, 2, 4, 8, 12, 16, and 20 weeks post-initiation of exposure. Results Mouse cohorts exposed to all challenge conditions displayed decreased bodyweight compared to untreated controls at 4 and 8 weeks post-challenge initiation. Chronic oxidative lung damage to lipids (malondialdehyde levels), DNA (TUNEL, cleaved Caspase 3, cleaved PARP positivity) leading to apoptotic cell death and to proteins (nitrotyrosine levels) was elevated all treatment groups. Importantly, significant systemic oxidative stress was also noted at the late phase in mouse plasma, BAL fluid, and urine. Importantly

  12. Imaging of radiation damage using complementary field ion microscopy and atom probe tomography.

    PubMed

    Dagan, Michal; Hanna, Luke R; Xu, Alan; Roberts, Steve G; Smith, George D W; Gault, Baptiste; Edmondson, Philip D; Bagot, Paul A J; Moody, Michael P

    2015-12-01

    Radiation damage in tungsten and a tungsten-tantalum alloy, both of relevance to nuclear fusion research, has been characterized using a combination of field ion microscopy (FIM) imaging and atom probe tomography (APT). While APT provides 3D analytical imaging with sub-nanometer resolution, FIM is capable of imaging the arrangements of single atoms on a crystal lattice and has the potential to provide insights into radiation induced crystal damage, all the way down to its smallest manifestation--a single vacancy. This paper demonstrates the strength of combining these characterization techniques. In ion implanted tungsten, it was found that atomic scale lattice damage is best imaged using FIM. In certain cases, APT reveals an identifiable imprint in the data via the segregation of solute and impurities and trajectory aberrations. In a W-5at%Ta alloy, a combined APT-FIM study was able to determine the atomic distribution of tantalum inside the tungsten matrix. An indirect method was implemented to identify tantalum atoms inside the tungsten matrix in FIM images. By tracing irregularities in the evaporation sequence of atoms imaged with FIM, this method enables the benefit of FIM's atomic resolution in chemical distinction between the two species. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Ionization and excitation in cool giant stars. I - Hydrogen and helium

    NASA Technical Reports Server (NTRS)

    Luttermoser, Donald G.; Johnson, Hollis R.

    1992-01-01

    The influence that non-LTE radiative transfer has on the electron density, ionization equilibrium, and excitation equilibrium in model atmospheres representative of both oxygen-rich and carbon-rich red giant stars is demonstrated. The radiative transfer and statistical equilibrium equations are solved self-consistently for H, H(-), H2, He I, C I, C II, Na I, Mg I, Mg II, Ca I, and Ca II in a plane-parallel static medium. Calculations are made for both radiative-equilibrium model photospheres alone and model photospheres with attached chromospheric models as determined semiempirically with IUE spectra of g Her (M6 III) and TX Psc (C6, 2). The excitation and ionization results for hydrogen and helium are reported.

  14. Effects of soft X-ray radiation damage on paraffin-embedded rat tissues supported on ultralene: a chemical perspective.

    PubMed

    Bedolla, Diana E; Mantuano, Andrea; Pickler, Arissa; Mota, Carla Lemos; Braz, Delson; Salata, Camila; Almeida, Carlos Eduardo; Birarda, Giovanni; Vaccari, Lisa; Barroso, Regina Cély; Gianoncelli, Alessandra

    2018-05-01

    Radiation damage is an important aspect to be considered when analysing biological samples with X-ray techniques as it can induce chemical and structural changes in the specimens. This work aims to provide new insights into the soft X-ray induced radiation damage of the complete sample, including not only the biological tissue itself but also the substrate and embedding medium, and the tissue fixation procedure. Sample preparation and handling involves an unavoidable interaction with the sample matrix and could play an important role in the radiation-damage mechanism. To understand the influence of sample preparation and handling on radiation damage, the effects of soft X-ray exposure at different doses on ultralene, paraffin and on paraffin-embedded rat tissues were studied using Fourier-transform infrared (FTIR) microspectroscopy and X-ray microscopy. Tissues were preserved with three different commonly used fixatives: formalin, glutaraldehyde and Karnovsky. FTIR results showed that ultralene and paraffin undergo a dose-dependent degradation of their vibrational profiles, consistent with radiation-induced oxidative damage. In addition, formalin fixative has been shown to improve the preservation of the secondary structure of proteins in tissues compared with both glutaraldehyde and Karnovsky fixation. However, conclusive considerations cannot be drawn on the optimal fixation protocol because of the interference introduced by both substrate and embedding medium in the spectral regions specific to tissue lipids, nucleic acids and carbohydrates. Notably, despite the detected alterations affecting the chemical architecture of the sample as a whole, composed of tissue, substrate and embedding medium, the structural morphology of the tissues at the micrometre scale is essentially preserved even at the highest exposure dose.

  15. Covariances for the 56Fe radiation damage cross sections

    NASA Astrophysics Data System (ADS)

    Simakov, Stanislav P.; Koning, Arjan; Konobeyev, Alexander Yu.

    2017-09-01

    The energy-energy and reaction-reaction covariance matrices were calculated for the n + 56Fe damage cross-sections by Total Monte Carlo method using the TENDL-2013 random files. They were represented in the ENDF-6 format and added to the unperturbed evaluation file. The uncertainties for the spectrum averaged radiation quantities in the representative fission, fusion and spallation facilities were first time assessed as 5-25%. Additional 5 to 20% have to be added to the atom displacement rate uncertainties to account for accuracy of the primary defects simulation in materials. The reaction-reaction correlation were shown to be 1% or less.

  16. Investigations of antioxidant-mediated protection and mitigation of radiation-induced DNA damage and lipid peroxidation in murine skin.

    PubMed

    Jelveh, Salomeh; Kaspler, Pavel; Bhogal, Nirmal; Mahmood, Javed; Lindsay, Patricia E; Okunieff, Paul; Doctrow, Susan R; Bristow, Robert G; Hill, Richard P

    2013-08-01

    Radioprotection and mitigation effects of the antioxidants, Eukarion (EUK)-207, curcumin, and the curcumin analogs D12 and D68, on radiation-induced DNA damage or lipid peroxidation in murine skin were investigated. These antioxidants were studied because they have been previously reported to protect or mitigate against radiation-induced skin reactions. DNA damage was assessed using two different assays. A cytokinesis-blocked micronucleus (MN) assay was performed on primary skin fibroblasts harvested from the skin of C3H/HeJ male mice 1 day, 1 week and 4 weeks after 5 Gy or 10 Gy irradiation. Local skin or whole body irradiation (100 kVp X-rays or caesium (Cs)-137 γ-rays respectively) was performed. DNA damage was further quantified in keratinocytes by immunofluorescence staining of γ-histone 2AX (γ-H2AX) foci in formalin-fixed skin harvested 1 hour or 1 day post-whole body irradiation. Radiation-induced lipid peroxidation in the skin was investigated at the same time points as the MN assay by measuring malondialdehyde (MDA) with a Thiobarbituric acid reactive substances (TBARS) assay. None of the studied antioxidants showed significant mitigation of skin DNA damage induced by local irradiation. However, when EUK-207 or curcumin were delivered before irradiation they provided some protection against DNA damage. In contrast, all the studied antioxidants demonstrated significant mitigating and protecting effects on radiation-induced lipid peroxidation at one or more of the three time points after local skin irradiation. Our results show no evidence for mitigation of DNA damage by the antioxidants studied in contrast to mitigation of lipid peroxidation. Since these agents have been reported to mitigate skin reactions following irradiation, the data suggest that changes in lipid peroxidation levels in skin may reflect developing skin reactions better than residual post-irradiation DNA damage in skin cells. Further direct comparison studies are required to confirm

  17. Effect of implanted helium on tensile properties and hardness of 9% Cr martensitic stainless steels

    NASA Astrophysics Data System (ADS)

    Jung, P.; Henry, J.; Chen, J.; Brachet, J.-C.

    2003-05-01

    Hundred micrometer thick specimens of 9% Cr martensitic steels EM10 and T91 were homogeneously implanted with He 4 to concentrations up to 0.5 at.% at temperatures from 150 to 550 °C. The specimens were tensile tested at room temperature and at the respective implantation temperatures. Subsequently the fracture surfaces were analysed by scanning electron microscopy and some of the specimens were examined in an instrumented hardness tester. The implanted helium caused hardening and embrittlement which both increased with increasing helium content and with decreasing implantation temperature. Fracture surfaces showed intergranular brittle appearance with virtually no necking at the highest implantation doses, when implanted below 250 °C. The present tensile results can be scaled to tensile data after irradiation in spallation sources on the basis of helium content but not on displacement damage. An interpretation of this finding by microstructural examination is given in a companion paper [J. Nucl. Mater., these Proceedings].

  18. Lung injury induced by secondhand smoke exposure detected with hyperpolarized helium-3 diffusion MR.

    PubMed

    Wang, Chengbo; Mugler, John P; de Lange, Eduard E; Patrie, James T; Mata, Jaime F; Altes, Talissa A

    2014-01-01

    To determine whether helium-3 diffusion MR can detect the changes in the lungs of healthy nonsmoking individuals who were regularly exposed to secondhand smoke. Three groups were studied (age: 59 ± 9 years): 23 smokers, 37 exposure-to-secondhand-smoke subjects, and 29 control subjects. We measured helium-3 diffusion values at diffusion times from 0.23 to 1.97 s. One-way analysis of variance revealed that the mean area under the helium-3 diffusion curves (ADC AUC) of the smokers was significantly elevated compared with the controls and to the exposure-to-secondhand-smoke subjects (P < 0.001 both). No difference between the mean ADC AUC of the exposure-to-secondhand-smoke subjects and that of the controls was found (P = 0.115). However, application of a receiver operator characteristic-derived rule to classify subjects as either a "control" or a "smoker," based on ADC AUC, revealed that 30% (11/37) of the exposure-to-secondhand subjects were classified as "smokers" indicating an elevation of the ADC AUC. Using helium-3 diffusion MR, elevated ADC values were detected in 30% of nonsmoking healthy subjects who had been regularly exposed to secondhand smoke, supporting the concept that, in susceptible individuals, secondhand smoke causes mild lung damage. Copyright © 2013 Wiley Periodicals, Inc.

  19. Effect of GSTM1 and GSTT1 Polymorphisms on Genetic Damage in Humans Populations Exposed to Radiation From Mobile Towers.

    PubMed

    Gulati, Sachin; Yadav, Anita; Kumar, Neeraj; Kanupriya; Aggarwal, Neeraj K; Kumar, Rajesh; Gupta, Ranjan

    2016-04-01

    All over the world, people have been debating about associated health risks due to radiation from mobile phones and mobile towers. The carcinogenicity of this nonionizing radiation has been the greatest health concern associated with mobile towers exposure until recently. The objective of our study was to evaluate the genetic damage caused by radiation from mobile towers and to find an association between genetic polymorphism of GSTM1 and GSTT1 genes and DNA damage. In our study, 116 persons exposed to radiation from mobile towers and 106 control subjects were genotyped for polymorphisms in the GSTM1 and GSTT1 genes by multiplex polymerase chain reaction method. DNA damage in peripheral blood lymphocytes was determined using alkaline comet assay in terms of tail moment (TM) value and micronucleus assay in buccal cells (BMN). There was a significant increase in BMN frequency and TM value in exposed subjects (3.65 ± 2.44 and 6.63 ± 2.32) compared with control subjects (1.23 ± 0.97 and 0.26 ± 0.27). However, there was no association of GSTM1 and GSTT1 polymorphisms with the level of DNA damage in both exposed and control groups.

  20. Debris- and radiation-induced damage effects on EUV nanolithography source collector mirror optics performance

    NASA Astrophysics Data System (ADS)

    Allain, J. P.; Nieto, M.; Hendricks, M.; Harilal, S. S.; Hassanein, A.

    2007-05-01

    Exposure of collector mirrors facing the hot, dense pinch plasma in plasma-based EUV light sources to debris (fast ions, neutrals, off-band radiation, droplets) remains one of the highest critical issues of source component lifetime and commercial feasibility of nanolithography at 13.5-nm. Typical radiators used at 13.5-nm include Xe and Sn. Fast particles emerging from the pinch region of the lamp are known to induce serious damage to nearby collector mirrors. Candidate collector configurations include either multi-layer mirrors (MLM) or single-layer mirrors (SLM) used at grazing incidence. Studies at Argonne have focused on understanding the underlying mechanisms that hinder collector mirror performance at 13.5-nm under fast Sn or Xe exposure. This is possible by a new state-of-the-art in-situ EUV reflectometry system that measures real time relative EUV reflectivity (15-degree incidence and 13.5-nm) variation during fast particle exposure. Intense EUV light and off-band radiation is also known to contribute to mirror damage. For example offband radiation can couple to the mirror and induce heating affecting the mirror's surface properties. In addition, intense EUV light can partially photo-ionize background gas (e.g., Ar or He) used for mitigation in the source device. This can lead to local weakly ionized plasma creating a sheath and accelerating charged gas particles to the mirror surface and inducing sputtering. In this paper we study several aspects of debris and radiation-induced damage to candidate EUVL source collector optics materials. The first study concerns the use of IMD simulations to study the effect of surface roughness on EUV reflectivity. The second studies the effect of fast particles on MLM reflectivity at 13.5-nm. And lastly the third studies the effect of multiple energetic sources with thermal Sn on 13.5-nm reflectivity. These studies focus on conditions that simulate the EUVL source environment in a controlled way.

  1. Measurement of high-voltage and radiation-damage limitations to advanced solar array performance

    NASA Technical Reports Server (NTRS)

    Guidice, D. A.; Severance, P. S.; Keinhardt, K. C.

    1991-01-01

    A description is given of the reconfigured Photovoltaic Array Space Power (PASP) Plus experiment: its objectives, solar-array complement, and diagnostic sensors. Results from a successful spaceflight will lead to a better understanding of high-voltage and radiation-damage limitations in the operation of new-technology solar arrays.

  2. Helium release during shale deformation: Experimental validation

    DOE PAGES

    Bauer, Stephen J.; Gardner, W. Payton; Heath, Jason E.

    2016-07-01

    This paper describes initial experimental results of helium tracer release monitoring during deformation of shale. Naturally occurring radiogenic 4He is present in high concentration in most shales. During rock deformation, accumulated helium could be released as fractures are created and new transport pathways are created. We present the results of an experimental study in which confined reservoir shale samples, cored parallel and perpendicular to bedding, which were initially saturated with helium to simulate reservoir conditions, are subjected to triaxial compressive deformation. During the deformation experiment, differential stress, axial, and radial strains are systematically tracked. Release of helium is dynamically measuredmore » using a helium mass spectrometer leak detector. Helium released during deformation is observable at the laboratory scale and the release is tightly coupled to the shale deformation. These first measurements of dynamic helium release from rocks undergoing deformation show that helium provides information on the evolution of microstructure as a function of changes in stress and strain.« less

  3. Influence of radiation damage on ruby as a pressure gauge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuster, B.; GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstr. 1, 64291 Darmstadt; Weikusat, C.

    2010-11-01

    This study tackles the question if ruby crystals, irradiated with energetic heavy ions, can still be used as reliable pressure sensors. The problem is linked to novel irradiation experiments, exposing pressurized samples to swift heavy-ion beams. In order to test and quantify a possible influence of radiation damage on the laser-induced fluorescence lines of ruby (Al{sub 2}O{sub 3}:Cr{sup 3+}), small crystals were exposed to different heavy ions (Xe, Au, and U) with kinetic energies of several giga-electron volt at ambient as well as high-pressure conditions. With increasing fluence (ions/cm{sup 2}), the R{sub 1} and R{sub 2} lines shift both tomore » lower wavelengths which leads to an underestimation of the pressure. An empirical correction term {epsilon} is proposed to include the irradiation damage effect into the commonly employed ruby calibration scale.« less

  4. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    PubMed

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (p<0.05). Whereas, levels of reduced glutathione (GSH) and superoxide dismutase (SOD) were found significantly decreased in microwave exposed groups (p<0.05). A significant increase in levels of pro-inflammatory cytokines (IL-2, IL-6, TNF-α, and IFN-γ) was observed in microwave exposed animal (p<0.05). Furthermore, significant DNA damage was also observed in microwave exposed groups as compared to their corresponding values in sham exposed group (p<0.05). In conclusion, the present study suggests that low intensity microwave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect

  5. Pravastatin reduces radiation-induced damage in normal tissues.

    PubMed

    Doi, Hiroshi; Matsumoto, Seiji; Odawara, Soichi; Shikata, Toshiyuki; Kitajima, Kazuhiro; Tanooka, Masao; Takada, Yasuhiro; Tsujimura, Tohru; Kamikonya, Norihiko; Hirota, Shozo

    2017-05-01

    Pravastatin is an inhibitor of 3-hydroxy-3-methyl- glutaryl-coenzyme A reductase that has been reported to have therapeutic applications in a range of inflammatory conditions. The aim of the present study was to assess the radioprotective effects of pravastatin in an experimental animal model. Mice were divided into two groups: The control group received ionizing radiation with no prior medication, while the pravastatin group received pravastatin prior to ionizing radiation. Pravastatin was administered orally at 30 mg/kg body weight in drinking water at 24 and 4 h before irradiation. Intestinal crypt epithelial cell survival and the incidence of apoptosis in the intestine and lung were measured post-irradiation. The effect of pravastatin on intestinal DNA damage was determined by immunohistochemistry. Finally, the effect of pravastatin on tumor response to radiotherapy was examined in a mouse mesothelioma xenograft model. Pravastatin increased the number of viable intestinal crypts and this effect was statistically significant in the ileum (P<0.0001). The pravastatin group showed significantly lower apoptotic indices in all examined parts of the intestine (P<0.0001) and tended to show reduced apoptosis in the lung. Pravastatin reduced the intestinal expression of ataxia-telangiectasia mutated and gamma-H2AX after irradiation. No apparent pravastatin-related differences were observed in the response of xenograft tumors to irradiation. In conclusion, pravastatin had radioprotective effects on the intestine and lung and reduced radiation-induced DNA double-strand breaks. Pravastatin may increase the therapeutic index of radiotherapy.

  6. Nitric oxide alleviates oxidative damage induced by enhanced ultraviolet-B radiation in cyanobacterium.

    PubMed

    Xue, Lingui; Li, Shiweng; Sheng, Hongmei; Feng, Huyuan; Xu, Shijian; An, Lizhe

    2007-10-01

    To study the role of nitric oxide (NO) on enhanced ultraviolet-B (UV-B) radiation (280-320 nm)-induced damage of Cyanobacterium, the growth, pigment content, and antioxidative activity of Spirulina platensis-794 cells were investigated under enhanced UV-B radiation and under different chemical treatments with or without UV-B radiation for 6 h. The changes in chlorophyll-a, malondialdehyde content, and biomass confirmed that 0.5 mM: sodium nitroprusside (SNP), a donor of nitric oxide (NO), could markedly alleviate the damage caused by enhanced UV-B. Specifically, the biomass and the chlorophyll-a content in S. platensis-794 cells decreased 40% and 42%, respectively under enhanced UV-B stress alone, but they only decreased 10% and 18% in the cells treated with UV-B irradiation and 0.5 mM: SNP. Further experiments suggested that NO treatment significantly increased the activities of superoxide dismutase (SOD) and catalase (CAT), and decreased the accumulation of O (2)(-) in enhanced UV-B-irradiated cells. SOD and CAT activity increased 0.95- and 6.73-fold, respectively. The accumulation of reduced glutathione (GSH) increased during treatment with 0.5 mM: SNP in normal S. platensis cells, but SNP treatment could inhibit the increase of GSH in enhanced UV-B-stressed S. platensis cells. Thus, these results suggest that NO can strongly alleviate oxidative damage caused by UV-B stress by increasing the activities of SOD, peroxidase, CAT, and the accumulation of GSH, and by eliminating O (2)(-) in S. platensis-794 cells. In addition, the difference of NO origin between plants and cyanobacteria are discussed.

  7. The influence of parotid gland sparing on radiation damages of dental hard tissues.

    PubMed

    Hey, Jeremias; Seidel, Johannes; Schweyen, Ramona; Paelecke-Habermann, Yvonne; Vordermark, Dirk; Gernhardt, Christian; Kuhnt, Thomas

    2013-07-01

    The aim of the present study was to evaluate whether radiation damage on dental hard tissue depends on the mean irradiation dose the spared parotid gland is subjected to or on stimulated whole salivary flow rate. Between June 2002 and October 2008, 70 patients with neck and cancer curatively irradiated were included in this study. All patients underwent dental treatment referring to the guidelines and recommendations of the German Society of Dental, Oral and Craniomandibular Sciences prior, during, and after radiotherapy (RT). During the follow-up period of 24 months, damages on dental hard tissues were classified according to the RTOG/EORTC guidelines. The mean doses (D(mean)) during spared parotid gland RT were determined. Stimulated whole saliva secretion flow rates (SFR) were measured before RT and 1, 6, 12, 24 months after RT. Thirty patients showed no carious lesions (group A), 18 patients developed sporadic carious lesions (group B), and 22 patients developed general carious lesions (group C). Group A patients received a D mean of 21.2 ± 11.04 Gy. Group B patients received a D(mean) of 26.5 ± 11.59 Gy and group C patients received a D(mean) of 33.9 ± 9.93 Gy, respectively. The D(mean) of group A was significantly lower than the D(mean) of group C (p < 0.001). Additionally, the mean SFR 6 months after RT of group A was significantly higher than the mean SFR of group C (p < 0.01). Irradiation damage on dental hard tissue correlates with increased mean irradiation doses as well as decreased salivary flow rates. Parotid gland sparing resulting in a dose below 20 Gy reduces radiation damage on dental hard tissues, and therefore, the dose may act as a predictor for the damage to be expected.

  8. Application of photo-magnetic therapy for treatment of skin radiation damage in rats.

    PubMed

    Simonova-Pushkar, L I; Gertman, V Z; Bilogurova, L V

    2014-09-01

    To improve methods of prevention and treatment of local radiation injury to the skin using the photomagnetic therapy. Materials and methods. Study was conducted on 60 male Wistar rats with 180-200 g bodyweight. The femoral area right hind limb of rats was locally irradiated by X-ray unit at a dose of 80.0 Gy. Exposed animals were divided into 2 groups: control and experimental. The rats of the experimental group received 2 courses of photo-magnetic therapy on the irradiated skin. The observations were carried out for 60 days. Methods - clinical, histological and statistical. Results. Local irradiation of rat skin causes the development of radiation ulcers in 60-70 % of the animals with the destruction of the structure in all layers of the skin. Spontaneous healing of radiation ulcer lasts at least two months with no complete skin recovery. Photo-magnetic therapy applied immediately after irradiation resulted in two-folddecrease of frequency of radiation ulcer incidence, accelerated the complete healing for 3 weeks and to ameliorated their progress. Histological examination showed that the photo-magnetic therapy reduced the extent of damage to all layers of the skin with restoration of epidermis and dermis structure and reduced the degree of inflammatory and destructive processes in the dermis. Conclusions. Photo-magnetic therapy produces a significant positive treatment effect by significantly reducing the inflammatory and destructive processes in all layers of the skin, stimulates the blood flow recovery in damaged tissue both with fibroblast proliferation and synthesis activation of native collagen fibers and other components of connective tissue, so almost a month accelerates ulcer healing radiation. L. I. Simonova-Pushkar, V. Z. Gertman, L. V. Bilogurova.

  9. Preliminary Optical Diagnostics of an Helium Plasma Formed with Inductively Coupled Plasma Torch (ICP-T64) and a Non Transferred Arc Plasma Torch

    NASA Astrophysics Data System (ADS)

    Vacher, D.; Menecier, S.; Dudeck, M.; Katsonis, K.; Berenguer, C.

    2012-12-01

    Gazeous planets of solar system are mainly composed of helium and hydrogen (respectively about 14 and 86%), with traces of oxygen, carbon, nitrogen, argon, xenon, neon, methane, ammonia and water. The sun itself is composed mainly of hydrogen and helium. In the future purpose of exploring those kind of atmosphere with probes (Juice project or solar orbiter for instance), current authors propose to study such plasma composition, especially to investigate on their radiative properties. For preliminary study, only helium plasma has been producted at atmospheric pressure using two facilities available at LAEPT: an ICP torch and a non-transferred arc plasma torch (NTAPT). Helium spectra obtained are characterized and compared.

  10. Critical Landau Velocity in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Brauer, Nils B.; Smolarek, Szymon; Loginov, Evgeniy; Mateo, David; Hernando, Alberto; Pi, Marti; Barranco, Manuel; Buma, Wybren J.; Drabbels, Marcel

    2013-10-01

    The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective excitations of the helium atoms in the liquid. In the present work we determine to what extent this concept can still be applied to nanometer-scale, finite size helium systems. To this end, atoms and molecules embedded in helium nanodroplets of various sizes are accelerated out of the droplets by means of optical excitation, and the speed distributions of the ejected particles are determined. The measurements reveal the existence of a critical velocity in these systems, even for nanodroplets consisting of only a thousand helium atoms. Accompanying theoretical simulations based on a time-dependent density functional description of the helium confirm and further elucidate this experimental finding.

  11. Fungal beta glucan protects radiation induced DNA damage in human lymphocytes.

    PubMed

    Pillai, Thulasi G; Maurya, Dharmendra K; Salvi, Veena P; Janardhanan, Krishnankutty K; Nair, Cherupally K K

    2014-02-01

    Ganoderma lucidum (Ling Zhi), a basidiomycete white rot macrofungus has been used extensively for therapeutic use in China, Japan, Korea and other Asian countries for 2,000 years. The present study is an attempt to investigate its DNA protecting property in human lymphocytes. Beta glucan (BG) was isolated by standard procedure and the structure and composition were studied by infrared radiation (IR) and nuclear magnetic resonance (NMR) spectroscopy, gel filtration chromatography and paper chromatography. The radioprotective properties of BG isolated from the macro fungi Ganoderma lucidum was assessed by single cell gel electrophoresis (comet assay). Human lymphocytes were exposed to 0, 1, 2 and 4 Gy gamma radiation in the presence and absence of BG. The comet parameters were reduced by BG. The results indicate that the BG of G. lucidum possessed significant radioprotective activity with DNA repairing ability and antioxidant activity as the suggestive mechanism. The findings suggest the potential use of this mushroom for the prevention of radiation induced cellular damages.

  12. Mechanism of Radiation Damage Reduction in Equiatomic Multicomponent Single Phase Alloys.

    PubMed

    Granberg, F; Nordlund, K; Ullah, Mohammad W; Jin, K; Lu, C; Bei, H; Wang, L M; Djurabekova, F; Weber, W J; Zhang, Y

    2016-04-01

    Recently a new class of metal alloys, of single-phase multicomponent composition at roughly equal atomic concentrations ("equiatomic"), have been shown to exhibit promising mechanical, magnetic, and corrosion resistance properties, in particular, at high temperatures. These features make them potential candidates for components of next-generation nuclear reactors and other high-radiation environments that will involve high temperatures combined with corrosive environments and extreme radiation exposure. In spite of a wide range of recent studies of many important properties of these alloys, their radiation tolerance at high doses remains unexplored. In this work, a combination of experimental and modeling efforts reveals a substantial reduction of damage accumulation under prolonged irradiation in single-phase NiFe and NiCoCr alloys compared to elemental Ni. This effect is explained by reduced dislocation mobility, which leads to slower growth of large dislocation structures. Moreover, there is no observable phase separation, ordering, or amorphization, pointing to a high phase stability of this class of alloys.

  13. Mechanism of Radiation Damage Reduction in Equiatomic Multicomponent Single Phase Alloys

    NASA Astrophysics Data System (ADS)

    Granberg, F.; Nordlund, K.; Ullah, Mohammad W.; Jin, K.; Lu, C.; Bei, H.; Wang, L. M.; Djurabekova, F.; Weber, W. J.; Zhang, Y.

    2016-04-01

    Recently a new class of metal alloys, of single-phase multicomponent composition at roughly equal atomic concentrations ("equiatomic"), have been shown to exhibit promising mechanical, magnetic, and corrosion resistance properties, in particular, at high temperatures. These features make them potential candidates for components of next-generation nuclear reactors and other high-radiation environments that will involve high temperatures combined with corrosive environments and extreme radiation exposure. In spite of a wide range of recent studies of many important properties of these alloys, their radiation tolerance at high doses remains unexplored. In this work, a combination of experimental and modeling efforts reveals a substantial reduction of damage accumulation under prolonged irradiation in single-phase NiFe and NiCoCr alloys compared to elemental Ni. This effect is explained by reduced dislocation mobility, which leads to slower growth of large dislocation structures. Moreover, there is no observable phase separation, ordering, or amorphization, pointing to a high phase stability of this class of alloys.

  14. Radiation-Induced Cytogenetic Damage as a Predictor of Cancer Risk for Protons and Fe Ions

    NASA Technical Reports Server (NTRS)

    Williams, Jerry R.

    1999-01-01

    We have successfully completed the series of experiments planned for year 1 and the first part of year 2 measuring the induction of chromosome aberrations induced in multiple cell types by three model space radiations: Fe-ions, protons and photons. Most of these data have now been compiled and a significant part subjected to detailed data analyses, although continuing data analysis is an important part of our current and future efforts. These analyses are directed toward defining the patterns of chromosomal damage induction by the three radiations and the extent to which such patterns are dependent on the type of cell irradiated. Our studies show significant differences, both quantitatively and qualitatively, between response of different cell types to these radiations however there is an overall pattern that characterizes each type of radiation in most cell lines. Thus our data identifies general dose-response patterns for each radiation for induction of multiple types of chromosomal aberrations but also identifies significant differences in response between some cell types. Specifically, we observe significant resistance for induction of aberrations in rat mammary epithelial cells when they are irradiated in vivo and assayed in vitro. Further, we have observed some remarkable differences in susceptibility to certain radiation-induced aberrations in cells whose genome has been modulated for two cancer- relevant genes, TP53 and CDKNIA. This data, if confirmed, may represent the first evidence of gene-specific differences in cellular metabolism of damage induced by densely-ionizing radiation that confers substantial sensitivity to protons compared to photons.

  15. Helium-induced hardening effect in polycrystalline tungsten

    NASA Astrophysics Data System (ADS)

    Kong, Fanhang; Qu, Miao; Yan, Sha; Zhang, Ailin; Peng, Shixiang; Xue, Jianming; Wang, Yugang

    2017-09-01

    In this paper, helium induced hardening effect of tungsten was investigated. 50 keV He2+ ions at fluences vary from 5 × 1015 cm-2 to 5 × 1017 cm-2 were implanted into polycrystalline tungsten at RT to create helium bubble-rich layers near the surface. The microstructure and mechanical properties of the irradiated specimens were studied by TEM and nano-indentor. Helium bubble rich layers are formed in near surface region, and the layers become thicker with the rise of fluences. Helium bubbles in the area of helium concentration peak are found to grow up, while the bubble density is almost unchanged. Obvious hardening effect is induced by helium implantation in tungsten. Micro hardness increases rapidly with the fluence firstly, and more slowly when the fluence is above 5 × 1016 cm-2. The hardening effect of tungsten can be attributed to helium bubbles, which is found to be in agreement with the Bacon-Orowan stress formula. The growing diameter is the major factor rather than helium bubbles density (voids distance) in the process of helium implantation at fluences below 5 × 1017 cm-2.

  16. Low helium flux from the mantle inferred from simulations of oceanic helium isotope data

    NASA Astrophysics Data System (ADS)

    Bianchi, Daniele; Sarmiento, Jorge L.; Gnanadesikan, Anand; Key, Robert M.; Schlosser, Peter; Newton, Robert

    2010-09-01

    The high 3He/ 4He isotopic ratio of oceanic helium relative to the atmosphere has long been recognized as the signature of mantle 3He outgassing from the Earth's interior. The outgassing flux of helium is frequently used to normalize estimates of chemical fluxes of elements from the solid Earth, and provides a strong constraint to models of mantle degassing. Here we use a suite of ocean general circulation models and helium isotope data obtained by the World Ocean Circulation Experiment to constrain the flux of helium from the mantle to the oceans. Our results suggest that the currently accepted flux is overestimated by a factor of 2. We show that a flux of 527 ± 102 mol year - 1 is required for ocean general circulation models that produce distributions of ocean ventilation tracers such as radiocarbon and chlorofluorocarbons that match observations. This new estimate calls for a reevaluation of the degassing fluxes of elements that are currently tied to the helium fluxes, including noble gases and carbon dioxide.

  17. Dose dependence of helium bubble formation in nano-engineered SiC at 700 °C

    DOE PAGES

    Chen, Chien -Hung; Zhang, Yanwen; Wang, Yongqiang; ...

    2016-02-03

    Knowledge of radiation-induced helium bubble nucleation and growth in SiC is essential for applications in fusion and fission environments. Here we report the evolution of microstructure in nano-engineered (NE) 3C SiC, pre-implanted with helium, under heavy ion irradiation at 700 °C up to doses of 30 displacements per atom (dpa). Elastic recoil detection analysis confirms that the as-implanted helium depth profile does not change under irradiation to 30 dpa at 700 °C. While the helium bubble size distribution becomes narrower with increasing dose, the average size of bubbles remains unchanged and the density of bubbles increases somewhat with dose. Thesemore » results are consistent with a long helium bubble incubation process under continued irradiation at 700 °C up to 30 dpa, similar to that reported under dual and triple beam irradiation at much higher temperatures. The formation of bubbles at this low temperature is enhanced by the nano-layered stacking fault structure in the NE SiC, which enhances point defect mobility parallel to the stacking faults. Here, this stacking fault structure is stable at 700 °C up to 30 dpa and suppresses the formation of dislocation loops normally observed under these irradiation conditions.« less

  18. 21 CFR 868.1640 - Helium gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Helium gas analyzer. 868.1640 Section 868.1640...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1640 Helium gas analyzer. (a) Identification. A helium gas analyzer is a device intended to measure the concentration of helium in a gas...

  19. 21 CFR 868.1640 - Helium gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Helium gas analyzer. 868.1640 Section 868.1640...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1640 Helium gas analyzer. (a) Identification. A helium gas analyzer is a device intended to measure the concentration of helium in a gas...

  20. Damage to DNA caused by UV-B radiation in the desert cyanobacterium Scytonema javanicum and the effects of exogenous chemicals on the process.

    PubMed

    Wang, Gaohong; Deng, Songqiang; Li, Cheng; Liu, Yongding; Chen, Lanzhou; Hu, Chaozhen

    2012-07-01

    Radiation with UV-B increased the damage to DNA in Scytonema javanicum, a desert-dwelling soil microorganism, and the level of damage varied with the intensity of UV-B radiation and duration of exposure. Production of reactive oxygen species (ROS) also increased because of the radiation. Different exogenous chemicals (ascorbate acid, ASC; N-acetylcysteine, NAC; glyphosate, GPS; and 2-methyl-4-chlorophenoxyacetic acid, MCPA-Na) differed in their effect on the extent of DNA damage and ROS production: whereas NAC and ASC protected the DNA from damage and resulted in reduced ROS production, the herbicides (GPS and MCPA-Na) increased the extent of damage, lowered the rate of photosynthesis, and differed in their effect on ROS production. The chemicals probably have different mechanisms to exercise their effects: NAC and ASC probably function as antioxidant agents or as precursors of other antioxidant molecules that protect the DNA and photosynthetic apparatus directly from the ROS produced as a result of UV-B radiation, and GPS and MCPA-Na probably disrupt the normal metabolism in S. javanicum to induce the leaking of ROS into the photosynthetic electron transfer pathway following UV-B radiation, and thereby damage the DNA. Such mechanisms have serious implications for the use of environment-friendly herbicides, which, because they can destroy DNA, may prove harmful to soil microorganisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Silymarin Protects Epidermal Keratinocytes from Ultraviolet Radiation-Induced Apoptosis and DNA Damage by Nucleotide Excision Repair Mechanism

    PubMed Central

    Katiyar, Santosh K.; Mantena, Sudheer K.; Meeran, Syed M.

    2011-01-01

    Solar ultraviolet (UV) radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum), inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK) with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs) and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER) genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells. PMID:21731736

  2. Concerted action of Nrf2-ARE pathway, MRN complex, HMGB1 and inflammatory cytokines - Implication in modification of radiation damage

    PubMed Central

    Anuranjani; Bala, Madhu

    2014-01-01

    Whole body exposure to low linear energy transfer (LET) ionizing radiations (IRs) damages vital intracellular bio-molecules leading to multiple cellular and tissue injuries as well as pathophysiologies such as inflammation, immunosuppression etc. Nearly 70% of damage is caused indirectly by radiolysis of intracellular water leading to formation of reactive oxygen species (ROS) and free radicals and producing a state of oxidative stress. The damage is also caused by direct ionization of biomolecules. The type of radiation injuries is dependent on the absorbed radiation dose. Sub-lethal IR dose produces more of DNA base damages, whereas higher doses produce more DNA single strand break (SSBs), and double strand breaks (DSBs). The Nrf2-ARE pathway is an important oxidative stress regulating pathway. The DNA DSBs repair regulated by MRN complex, immunomodulation and inflammation regulated by HMGB1 and various types of cytokines are some of the key pathways which interact with each other in a complex manner and modify the radiation response. Because the majority of radiation damage is via oxidative stress, it is essential to gain in depth understanding of the mechanisms of Nrf2-ARE pathway and understand its interactions with MRN complex, HMGB1 and cytokines to increase our understanding on the radiation responses. Such information is of tremendous help in development of medical radiation countermeasures, radioprotective drugs and therapeutics. Till date no approved and safe countermeasure is available for human use. This study reviews the Nrf2-ARE pathway and its crosstalk with MRN-complex, HMGB1 and cytokines (TNF-a, IL-6, IFN-? etc.). An attempt is also made to review the modification of some of these pathways in presence of selected antioxidant radioprotective compounds or herbal extracts. PMID:25009785

  3. G2 Chromatid Damage and Repair Kinetics in Normal Human Fibroblast Cells Exposed to Low-or High-LET Radiation

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Ito, H.; Uno, T.; Saito, M.; Yamamoto, S.; Furusawa, Y.; Durante, M.; George, K.; Wu, H.; Cucinotta, F. A.

    2004-01-01

    Radiation-induced chromosome damage can be measured in interphase using the Premature Chromosome Condensation (PCC) technique. With the introduction of a new PCC technique using the potent phosphatase inhibitor calyculin-A, chromosomes can be condensed within five minutes, and it is now possible to examine the early damage induced by radiation. Using this method, it has been shown that high-LET radiation induces a higher frequency of chromatid breaks and a much higher frequency of isochromatid breaks than low-LET radiation. The kinetics of chromatid break rejoining consists of two exponential components representing a rapid and a slow time constant, which appears to be similar for low- and high- LET radiations. However, after high-LET radiation exposures, the rejoining process for isochromatid breaks influences the repair kinetics of chromatid-type breaks, and this plays an important role in the assessment of chromatid break rejoining in the G2 phase of the cell cycle.

  4. Radiation-induced effects on the mechanical properties of natural ZrSiO4: double cascade-overlap damage accumulation

    NASA Astrophysics Data System (ADS)

    Beirau, Tobias; Nix, William D.; Pöllmann, Herbert; Ewing, Rodney C.

    2018-05-01

    Several different models are known to describe the structure-dependent radiation-induced damage accumulation process in materials (e.g. Gibbons Proc IEEE 60:1062-1096, 1972; Weber Nuc Instr Met Phys Res B 166-167:98-106, 2000). In the literature, two different models of damage accumulation due to α-decay events in natural ZrSiO4 (zircon) have been described. The direct impact damage accumulation model is based on amorphization occurring directly within the collision cascade. However, the double cascade-overlap damage accumulation model predicts that amorphization will only occur due to the overlap of disordered domains within the cascade. By analyzing the dose-dependent evolution of mechanical properties (i.e., Poisson's ratios, compliance constants, elastic modulus, and hardness) as a measure of the increasing amorphization, we provide support for the double cascade-overlap damage accumulation model. We found no evidence to support the direct impact damage accumulation model. Additionally, the amount of radiation damage could be related to an anisotropic-to-isotropic transition of the Poisson's ratio for stress along and perpendicular to the four-fold c-axis and of the related compliance constants of natural U- and Th-bearing zircon. The isotropification occurs in the dose range between 3.1 × and 6.3 × 1018 α-decays/g.

  5. Radiation-induced effects on the mechanical properties of natural ZrSiO4: double cascade-overlap damage accumulation

    NASA Astrophysics Data System (ADS)

    Beirau, Tobias; Nix, William D.; Pöllmann, Herbert; Ewing, Rodney C.

    2017-11-01

    Several different models are known to describe the structure-dependent radiation-induced damage accumulation process in materials (e.g. Gibbons Proc IEEE 60:1062-1096, 1972; Weber Nuc Instr Met Phys Res B 166-167:98-106, 2000). In the literature, two different models of damage accumulation due to α-decay events in natural ZrSiO4 (zircon) have been described. The direct impact damage accumulation model is based on amorphization occurring directly within the collision cascade. However, the double cascade-overlap damage accumulation model predicts that amorphization will only occur due to the overlap of disordered domains within the cascade. By analyzing the dose-dependent evolution of mechanical properties (i.e., Poisson's ratios, compliance constants, elastic modulus, and hardness) as a measure of the increasing amorphization, we provide support for the double cascade-overlap damage accumulation model. We found no evidence to support the direct impact damage accumulation model. Additionally, the amount of radiation damage could be related to an anisotropic-to-isotropic transition of the Poisson's ratio for stress along and perpendicular to the four-fold c-axis and of the related compliance constants of natural U- and Th-bearing zircon. The isotropification occurs in the dose range between 3.1 × and 6.3 × 1018 α-decays/g.

  6. Radiation-induced DNA damage and the relative biological effectiveness of 18F-FDG in wild-type mice

    DOE PAGES

    Taylor, Kristina; Lemon, Jennifer A.; Boreham, Douglas R.

    2014-05-28

    Clinically, the most commonly used positron emission tomography (PET) radiotracer is the glucose analog 2-[ 18F] fluoro-2-deoxy-d-glucose ( 18F-FDG), however little research has been conducted on the biological effects of 18F-FDG injections. The induction and repair of DNA damage and the relative biological effectiveness (RBE) of radiation from 18F-FDG relative to 662 keV γ-rays were investigated. The study also assessed whether low-dose radiation exposure from 18F-FDG was capable of inducing an adaptive response. DNA damage to the bone marrow erythroblast population was measured using micronucleus formation and lymphocyte γH2A.X levels. To test the RBE of 18F-FDG, mice were injected withmore » a range of activities of 18F-FDG (0–14.80 MBq) or irradiated with Cs-137 γ-rays (0–100 mGy). The adaptive response was investigated 24 h after the 18F-FDG injection by 1 Gy in vivo challenge doses for micronucleated reticulocyte (MN-RET) formation or 1, 2 and 4 Gy in vitro challenges doses for γH2A.X formation. A significant increase in MN-RET formation above controls occurred following injection activities of 3.70, 7.40 or 14.80 MBq (P < 0.001) which correspond to bone marrow doses of ~35, 75 and 150 mGy, respectively. Per unit dose, the Cs-137 radiation exposure induced significantly more damage than the 18F-FDG injections (RBE = 0.79 ± 0.04). A 20% reduction in γH2A.X fluorescence was observed in mice injected with a prior adapting low dose of 14.80 MBq 18F-FDG relative to controls (P < 0.019). A 0.74 MBq 18F-FDG injection, which gives mice a dose approximately equal to a typical human PET scan, did not cause a significant increase in DNA damage nor did it generate an adaptive response. Typical 18F-FDG injection activities used in small animal imaging (14.80 MBq) resulted in a decrease in DNA damage, as measured by γH2A.X formation, below spontaneous levels observed in control mice. Lastly, the 18F-FDG RBE was <1.0, indicating that the mixed radiation quality

  7. Radiation-induced DNA damage and the relative biological effectiveness of 18F-FDG in wild-type mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Kristina; Lemon, Jennifer A.; Boreham, Douglas R.

    Clinically, the most commonly used positron emission tomography (PET) radiotracer is the glucose analog 2-[ 18F] fluoro-2-deoxy-d-glucose ( 18F-FDG), however little research has been conducted on the biological effects of 18F-FDG injections. The induction and repair of DNA damage and the relative biological effectiveness (RBE) of radiation from 18F-FDG relative to 662 keV γ-rays were investigated. The study also assessed whether low-dose radiation exposure from 18F-FDG was capable of inducing an adaptive response. DNA damage to the bone marrow erythroblast population was measured using micronucleus formation and lymphocyte γH2A.X levels. To test the RBE of 18F-FDG, mice were injected withmore » a range of activities of 18F-FDG (0–14.80 MBq) or irradiated with Cs-137 γ-rays (0–100 mGy). The adaptive response was investigated 24 h after the 18F-FDG injection by 1 Gy in vivo challenge doses for micronucleated reticulocyte (MN-RET) formation or 1, 2 and 4 Gy in vitro challenges doses for γH2A.X formation. A significant increase in MN-RET formation above controls occurred following injection activities of 3.70, 7.40 or 14.80 MBq (P < 0.001) which correspond to bone marrow doses of ~35, 75 and 150 mGy, respectively. Per unit dose, the Cs-137 radiation exposure induced significantly more damage than the 18F-FDG injections (RBE = 0.79 ± 0.04). A 20% reduction in γH2A.X fluorescence was observed in mice injected with a prior adapting low dose of 14.80 MBq 18F-FDG relative to controls (P < 0.019). A 0.74 MBq 18F-FDG injection, which gives mice a dose approximately equal to a typical human PET scan, did not cause a significant increase in DNA damage nor did it generate an adaptive response. Typical 18F-FDG injection activities used in small animal imaging (14.80 MBq) resulted in a decrease in DNA damage, as measured by γH2A.X formation, below spontaneous levels observed in control mice. Lastly, the 18F-FDG RBE was <1.0, indicating that the mixed radiation quality

  8. The EUV Helium Spectrum in the Quiet Sun: A By-Product of Coronal Emission?

    NASA Technical Reports Server (NTRS)

    Andretta, Vincenzo; DelZanna, Giulio; Jordan, Stuart D.; Oegerle, William (Technical Monitor)

    2002-01-01

    In this paper we test one of the mechanisms proposed to explain the intensities and other observed properties of the solar helium spectrum, and in particular of its Extreme-Ultraviolet (EUV) resonance lines. The so-called Photoionisation-Recombination (P-R) mechanism involves photoionisation of helium atoms and ions by EUV coronal radiation, followed by recombination cascades. We present calibrated measurements of EUV flux obtained with the two CDS spectrometers on board SOHO, in quiescent solar regions. We were able to obtain an essentially complete estimate of the total photoionizing flux in the wavelength range below 504 A (the photoionisation threshold for He(I)), as well as simultaneous measurements with the same instruments of the intensities of the strongest EUV helium lines: He(II) lambda304, He(I) lambda584, and He(I) lambda537. We find that there are not enough EUV photons to account for the observed helium line intensities. More specifically, we conclude that He(II) intensities cannot be explained by the P-R mechanism. Our results, however, leave open the possibility that the He(I) spectrum could be formed by the P-R mechanism, with the He(II) lambda304 line as a significant photoionizating source.

  9. Pharmacological Activation of the EDA/EDAR Signaling Pathway Restores Salivary Gland Function following Radiation-Induced Damage

    PubMed Central

    Hill, Grace; Headon, Denis; Harris, Zoey I.; Huttner, Kenneth; Limesand, Kirsten H.

    2014-01-01

    Radiotherapy of head and neck cancers often results in collateral damage to adjacent salivary glands associated with clinically significant hyposalivation and xerostomia. Due to the reduced capacity of salivary glands to regenerate, hyposalivation is treated by substitution with artificial saliva, rather than through functional restoration of the glands. During embryogenesis, the ectodysplasin/ectodysplasin receptor (EDA/EDAR) signaling pathway is a critical element in the development and growth of salivary glands. We have assessed the effects of pharmacological activation of this pathway in a mouse model of radiation-induced salivary gland dysfunction. We report that post-irradiation administration of an EDAR-agonist monoclonal antibody (mAbEDAR1) normalizes function of radiation damaged adult salivary glands as determined by stimulated salivary flow rates. In addition, salivary gland structure and homeostasis is restored to pre-irradiation levels. These results suggest that transient activation of pathways involved in salivary gland development could facilitate regeneration and restoration of function following damage. PMID:25409170

  10. Double-detonation Sub-Chandrasekhar Supernovae: Synthetic Observables for Minimum Helium Shell Mass Models

    NASA Astrophysics Data System (ADS)

    Kromer, M.; Sim, S. A.; Fink, M.; Röpke, F. K.; Seitenzahl, I. R.; Hillebrandt, W.

    2010-08-01

    In the double-detonation scenario for Type Ia supernovae, it is suggested that a detonation initiates in a shell of helium-rich material accreted from a companion star by a sub-Chandrasekhar-mass white dwarf. This shell detonation drives a shock front into the carbon-oxygen white dwarf that triggers a secondary detonation in the core. The core detonation results in a complete disruption of the white dwarf. Earlier studies concluded that this scenario has difficulties in accounting for the observed properties of Type Ia supernovae since the explosion ejecta are surrounded by the products of explosive helium burning in the shell. Recently, however, it was proposed that detonations might be possible for much less massive helium shells than previously assumed (Bildsten et al.). Moreover, it was shown that even detonations of these minimum helium shell masses robustly trigger detonations of the carbon-oxygen core (Fink et al.). Therefore, it is possible that the impact of the helium layer on observables is less than previously thought. Here, we present time-dependent multi-wavelength radiative transfer calculations for models with minimum helium shell mass and derive synthetic observables for both the optical and γ-ray spectral regions. These differ strongly from those found in earlier simulations of sub-Chandrasekhar-mass explosions in which more massive helium shells were considered. Our models predict light curves that cover both the range of brightnesses and the rise and decline times of observed Type Ia supernovae. However, their colors and spectra do not match the observations. In particular, their B - V colors are generally too red. We show that this discrepancy is mainly due to the composition of the burning products of the helium shell of the Fink et al. models which contain significant amounts of titanium and chromium. Using a toy model, we also show that the burning products of the helium shell depend crucially on its initial composition. This leads us to

  11. Helium runaways in white dwarfs

    NASA Technical Reports Server (NTRS)

    Taam, R. E.

    1979-01-01

    The long term evolution of an accreting carbon white dwarf was studied from the onset of accretion to the ignition of helium. The variations in the details of the helium shell flash examined with respect to variations in mass accretion rate. For intermediate rates the helium flash is potentially explosive whereas for high rates the shell flash is relatively weak. The results are discussed in the context of the long term evolution of novae.

  12. Image dissector photocathode solar damage test program. [solar radiation shielding using a fast optical lens

    NASA Technical Reports Server (NTRS)

    Smith, R. A.

    1977-01-01

    Image dissector sensors of the same type which will be used in the NASA shuttle star tracker were used in a series of tests directed towards obtaining solar radiation/time damage criteria. Data were evaluated to determine the predicted level of operability of the star tracker if tube damage became a reality. During the test series a technique for reducing the solar damage effect was conceived and verified. The damage concepts are outlined and the test methods and data obtained which were used for verification of the technique's feasibility are presented. The ability to operate an image dissector sensor with the solar image focussed on the photocathode by a fast optical lens under certain conditions is feasible and the elimination of a mechanical protection device is possible.

  13. Atomistic simulations of the effect of embedded hydrogen and helium on the tensile properties of monocrystalline and nanocrystalline tungsten

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Kecskes, Laszlo J.; Zhu, Kaigui; Wei, Qiuming

    2016-12-01

    Uniaxial tensile properties of monocrystalline tungsten (MC-W) and nanocrystalline tungsten (NC-W) with embedded hydrogen and helium atoms have been investigated using molecular dynamics (MD) simulations in the context of radiation damage evolution. Different strain rates have been imposed to investigate the strain rate sensitivity (SRS) of the samples. Results show that the plastic deformation processes of MC-W and NC-W are dominated by different mechanisms, namely dislocation-based for MC-W and grain boundary-based activities for NC-W, respectively. For MC-W, the SRS increases and a transition appears in the deformation mechanism with increasing embedded atom concentration. However, no obvious embedded atom concentration dependence of the SRS has been observed for NC-W. Instead, in the latter case, the embedded atoms facilitate GB sliding and intergranular fracture. Additionally, a strong strain enhanced He cluster growth has been observed. The corresponding underlying mechanisms are discussed.

  14. Ab initio Investigation of Helium in Vanadium Oxide Nanoclusters

    NASA Astrophysics Data System (ADS)

    Danielson, Thomas; Tea, Eric; Hin, Celine

    Nanostructured ferritic alloys (NFAs) are strong candidate materials for the next generation of fission reactors and future fusion reactors. They are characterized by a large number density of oxide nanoclusters dispersed throughout a BCC iron matrix, where current oxide nanoclusters are primarily comprised of Y-Ti-O compounds. The oxide nanoclusters provide the alloy with high resistance to neutron irradiation, high yield strength and high creep strength at the elevated temperatures of a reactor environment. In addition, the oxide nanoclusters serve as trapping sites for transmutation product helium providing substantially increased resistance to catastrophic cracking and embrittlement. Although the mechanical properties and radiation resistance of the existing NFAs is promising, the problem of forming large scale reactor components continues to present a formidable challenge due to the high hardness and unpredictable fracture behavior of the alloys. An alternative alloy has been previously proposed and fabricated where vanadium is added in order to form vanadium oxide nanoclusters that serve as deflection sites for crack propagation. Although experiments have shown evidence that the fracture behavior of the alloys is improved, it is unknown whether or not the vanadium oxide nanoclusters are effective trapping sites for helium. We present results obtained using density functional theory investigating the thermodynamic stability of helium with the vanadium oxide matrix to make a comparison of trapping effectiveness to traditional Y-Ti-O compounds.

  15. Origin of reverse annealing in radiation-damaged silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.

    1980-01-01

    The paper employs relative defect concentrations, energy levels, capture cross sections, and minority carrier diffusion lengths in order to identify the defect responsible for the reverse annealing observed in a radiation damaged n(+)/p silicon solar cell. It is reported that the responsible defect, with the energy level at +0.30 eV, has been tentatively identified as boron-oxygen-vacancy complex. In conclusion, it is shown that removal of this defect could result in significant cell recovery when annealing at temperatures well below the currently required 400 C.

  16. Modifying effect of dynamic space flight factors on radiation damage of air-dry seeds of Crepis capillaris (L) Wallr.

    PubMed

    Vaulina, E N; Kostina, L N

    1975-01-01

    The influence of dynamic factors (vibration and linear acceleration) on the rate of chromosome aberrations in Crepis capillaris was studied. The vibrational process simulated was similar in its characteristics to that occurring at the launch of spaceships. In combination with linear acceleration it caused a statistically significant increase in the rate of chromosome aberrations compared with the control (R=7.70). The dynamic factors modified the effect of radiation damage induced by acute gamma-irradiation (3 krad). Pre-radiation treatment with vibration and acceleration on the seeds caused a significant decrease (R=10.23) of the effect of radiation damage, from 15.57% to 9.74%. The post-radiation treatment of C. capillaris seeds with the dynamic factors did not change the rate of chromosome aberrations significantly (from 15.57% to 15.90%).

  17. Paramagnetic Attraction of Impurity-Helium Solids

    NASA Technical Reports Server (NTRS)

    Bernard, E. P.; Boltnev, R. E.; Khmelenko, V. V.; Lee, D. M.

    2003-01-01

    Impurity-helium solids are formed when a mixture of impurity and helium gases enters a volume of superfluid helium. Typical choices of impurity gas are hydrogen deuteride, deuterium, nitrogen, neon and argon, or a mixture of these. These solids consist of individual impurity atoms and molecules as well as clusters of impurity atoms and molecules covered with layers of solidified helium. The clusters have an imperfect crystalline structure and diameters ranging up to 90 angstroms, depending somewhat on the choice of impurity. Immediately following formation the clusters aggregate into loosely connected porous solids that are submerged in and completely permeated by the liquid helium. Im-He solids are extremely effective at stabilizing high concentrations of free radicals, which can be introduced by applying a high power RF dis- charge to the impurity gas mixture just before it strikes the super fluid helium. Average concentrations of 10(exp 19) nitrogen atoms/cc and 5 x 10(exp 18) deuterium atoms/cc can be achieved this way. It shows a typical sample formed from a mixture of atomic and molecular hydrogen and deuterium. It shows typical sample formed from atomic and molecular nitrogen. Much of the stability of Im-He solids is attributed to their very large surface area to volume ratio and their permeation by super fluid helium. Heat resulting from a chance meeting and recombination of free radicals is quickly dissipated by the super fluid helium instead of thermally promoting the diffusion of other nearby free radicals.

  18. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    PubMed Central

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G.

    2013-01-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. PMID:23523584

  19. Optical nanoscopy of high T c cuprate nanoconstriction devices patterned by helium ion beams

    DOE PAGES

    Gozar, Adrian; Litombe, N. E.; Hoffman, Jennifer E.; ...

    2017-02-06

    Helium ion beams (HIB) focused to subnanometer scales have emerged as powerful tools for high-resolution imaging as well as nanoscale lithography, ion milling, or deposition. Quantifying irradiation effects is an essential step toward reliable device fabrication, but most of the depth profiling information is provided by computer simulations rather than the experiment. Here, we demonstrate the use of atomic force microscopy (AFM) combined with scanning near-field optical microscopy (SNOM) to provide three-dimensional (3D) dielectric characterization of high-temperature superconductor devices fabricated by HIB. By imaging the infrared dielectric response obtained from light demodulation at multiple harmonics of the AFM tapping frequency,more » we find that amorphization caused by the nominally 0.5 nm HIB extends throughout the entire 26.5 nm thickness of the cuprate film and by ~500 nm laterally. This unexpectedly widespread damage in morphology and electronic structure can be attributed to a helium depth distribution substantially modified by the internal device interfaces. Lastly, our study introduces AFM-SNOM as a quantitative tomographic technique for noninvasive 3D characterization of irradiation damage in a wide variety of nanoscale devices.« less

  20. Persistence of Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts

    NASA Technical Reports Server (NTRS)

    George, Kerry; Cucinotta, Francis A.

    2008-01-01

    Cytogenetic damage in astronaut's peripheral blood lymphocytes is a useful in vivo marker of space radiation induced damage. Moreover, if radiation induced chromosome translocations persist in peripheral blood lymphocytes for many years, as has been assumed, they could potentially be used to measure retrospective doses or prolonged low dose rate exposures. However, as more data becomes available, evidence suggests that the yield of translocations may decline with time after exposure, at least in the case of space radiation exposures. We present our latest follow-up measurements of chromosome aberrations in astronauts blood lymphocytes assessed by FISH painting and collected a various times beginning directly after return from space to several years after flight. For most individuals the analysis of individual time-courses for translocations revealed a temporal decline of yields with different half-lives. Since the level of stable aberrations depends on the interplay between natural loss of circulating T-lymphocytes and replenishment from the stem or progenitor cells, the differences in the rates of decay could be explained by inter-individual variation in lymphocyte turn over. Biodosimetry estimates derived from cytogenetic analysis of samples collected a few days after return to earth lie within the range expected from physical dosimetry. However, a temporal decline in yields may indicate complications with the use of stable aberrations for retrospective dose reconstruction, and the differences in the decay time may reflect individual variability in risk from space radiation exposure. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from one crewmember who has participated in two separate long-duration space missions and has been followed up for over 10 years provides limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.

  1. Scavenging and antioxidant properties of different grape cultivars against ionizing radiation-induced liver damage ex vivo.

    PubMed

    Singha, Indrani; Das, Subir Kumar

    2016-04-01

    Ionizing radiation (IR) has become an integral part of the modern medicine--both for diagnosis as well as therapy. However, normal tissues or even distant cells also suffer IR-induced free radical insult. It may be more damaging in longer term than direct radiation exposure. Antioxidants provide protection against IR-induced damage. Grapes are the richest source of antioxidants. Here, we assessed the scavenging properties of four grape (Vitis vinifera) cultivars, namely Flame seedless (Black), Kishmish chorni (Black with reddish brown), Red globe (Red) and Thompson seedless mutant (Green), and also evaluated their protective action against γ-radiation-induced oxidative stress in liver tissue ex vivo. The scavenging abilities of grape seeds [2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC₅₀ = 0.008 ± 0.001 mg/mL), hydrogen peroxide (IC₅₀ = 0.49 to 0.8 mg/mL), hydroxyl radicals (IC₅₀ = 0.08 ± 0.008 mg/mL), and nitric oxide (IC₅₀ = 0.8 ± 0.08 mg/mL)] were higher than that of skin or pulp. Gamma (γ) radiation exposure to sliced liver tissues ex vivo from goat, @ 6 Gy significantly (P < 0.001) decreased reduced glutathione (GSH) content by 21.2% and also activities of catalase, glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione s-transferase (GST) by 49.5, 66.0, 70.3, 73.6%, respectively. However, it increased thiobarbituric acid reactive substances (TBARS) by 2.04-fold and nitric oxide level by 48.6% compared to untreated group. Further increase in doses (10 or 16 Gy) of γ-radiation correspondingly decreased GSH content and enzyme activities, and increased TBARS and nitric oxide levels. Grape extract treatment prior to ionizing radiation exposure ameliorated theses effects at varying extent. The seed extracts exhibited strong antioxidant potential compared to skin or pulp extracts of different grape cultivars against oxidative damage by ionizing radiation (6 Gy, 10 Gy and 16 Gy) in sliced liver tissues ex vivo. Grape extracts at

  2. Ultraviolet Radiation-Induced Skin Aging: The Role of DNA Damage and Oxidative Stress in Epidermal Stem Cell Damage Mediated Skin Aging

    PubMed Central

    Panich, Uraiwan; Sittithumcharee, Gunya; Rathviboon, Natwarath

    2016-01-01

    Skin is the largest human organ. Skin continually reconstructs itself to ensure its viability, integrity, and ability to provide protection for the body. Some areas of skin are continuously exposed to a variety of environmental stressors that can inflict direct and indirect damage to skin cell DNA. Skin homeostasis is maintained by mesenchymal stem cells in inner layer dermis and epidermal stem cells (ESCs) in the outer layer epidermis. Reduction of skin stem cell number and function has been linked to impaired skin homeostasis (e.g., skin premature aging and skin cancers). Skin stem cells, with self-renewal capability and multipotency, are frequently affected by environment. Ultraviolet radiation (UVR), a major cause of stem cell DNA damage, can contribute to depletion of stem cells (ESCs and mesenchymal stem cells) and damage of stem cell niche, eventually leading to photoinduced skin aging. In this review, we discuss the role of UV-induced DNA damage and oxidative stress in the skin stem cell aging in order to gain insights into the pathogenesis and develop a way to reduce photoaging of skin cells. PMID:27148370

  3. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costes, Sylvain V; Chiolo, Irene; Pluth, Janice M.

    2009-09-15

    DNA damage sensing proteins have been shown to localize to the sites of DSB within seconds to minutes following ionizing radiation (IR) exposure, resulting in the formation of microscopically visible nuclear domains referred to as radiation-induced foci (RIF). This review characterizes the spatio-temporal properties of RIF at physiological doses, minutes to hours following exposure to ionizing radiation, and it proposes a model describing RIF formation and resolution as a function of radiation quality and nuclear densities. Discussion is limited to RIF formed by three interrelated proteins ATM (Ataxia telangiectasia mutated), 53BP1 (p53 binding protein 1) and ?H2AX (phosphorylated variant histonemore » H2AX). Early post-IR, we propose that RIF mark chromatin reorganization, leading to a local nuclear scaffold rigid enough to keep broken DNA from diffusing away, but open enough to allow the repair machinery. We review data indicating clear kinetic and physical differences between RIF emerging from dense and uncondensed regions of the nucleus. At later time post-IR, we propose that persistent RIF observed days following exposure to ionizing radiation are nuclear ?scars? marking permanent disruption of the chromatin architecture. When DNA damage is resolved, such chromatin modifications should not necessarily lead to growth arrest and it has been shown that persistent RIF can replicate during mitosis. Thus, heritable persistent RIF spanning over tens of Mbp may affect the transcriptome of a large progeny of cells. This opens the door for a non DNA mutation-based mechanism of radiation-induced phenotypes.« less

  4. Taurine Protects Mouse Spermatocytes from Ionizing Radiation-Induced Damage Through Activation of Nrf2/HO-1 Signaling.

    PubMed

    Yang, Wenjun; Huang, Jinfeng; Xiao, Bang; Liu, Yan; Zhu, Yiqing; Wang, Fang; Sun, Shuhan

    2017-01-01

    The increasing prevalence of ionizing radiation exposure has inevitably raised public concern over the potential detrimental effects of ionizing radiation on male reproductive system function. The detection of drug candidates to prevent reproductive system from damage caused by ionizing radiation is urgent. We aimed to investigate the protective role of taurine on the injury of mouse spermatocyte-derived cells (GC-2) subjected to ionizing radiation. mouse spermatocytes (GC-2 cells) were exposed to ionizing radiation with or without treatment of Taurine. The effect of ionizing radiation and Taurine treatment on GC-2 cells were evaluated by cell viability assay (CCK8), cell cycle and apoptosis. The relative protein abundance change was determined by Western blotting. The siRNA was used to explore whether Nrf2 signaling was involved in the cytoprotection of Taurine. Taurine significantly inhibited the decrease of cell viability, percentage of apoptotic cells and cell cycle arrest induced by ionizing radiation. Western blot analysis showed that taurine significantly limited the ionizing radiation-induced down-regulation of CyclinB1 and CDK1, and suppressed activation of Fas/FasL system pathway. In addition, taurine treatment significantly increased the expression of Nrf2 and HO-1 in GC-2 cells exposed to ionizing radiation, two components in antioxidant pathway. The above cytoprotection of Taurine was blocked by siNrf2. Our results demonstrate that taurine has the potential to effectively protect GC-2 cells from ionizing radiation- triggered damage via upregulation of Nrf2/HO-1 signaling. © 2017 The Author(s). Published by S. Karger AG, Basel.

  5. Effects of ozone oxidative preconditioning on radiation-induced organ damage in rats

    PubMed Central

    Gultekin, Fatma Ayca; Bakkal, Bekir Hakan; Guven, Berrak; Tasdoven, Ilhan; Bektas, Sibel; Can, Murat; Comert, Mustafa

    2013-01-01

    Because radiation-induced cellular damage is attributed primarily to harmful effects of free radicals, molecules with direct free radical scavenging properties are particularly promising as radioprotectors. It has been demonstrated that controlled ozone administration may promote an adaptation to oxidative stress, preventing the damage induced by reactive oxygen species. Thus, we hypothesized that ozone would ameliorate oxidative damage caused by total body irradiation (TBI) with a single dose of 6 Gy in rat liver and ileum tissues. Rats were randomly divided into groups as follows: control group; saline-treated and irradiated (IR) groups; and ozone oxidative preconditioning (OOP) and IR groups. Animals were exposed to TBI after a 5-day intraperitoneal pretreatment with either saline or ozone (1 mg/kg/day). They were decapitated at either 6 h or 72 h after TBI. Plasma, liver and ileum samples were obtained. Serum AST, ALT and TNF-α levels were elevated in the IR groups compared with the control group and were decreased after treatment with OOP. TBI resulted in a significant increase in the levels of MDA in the liver and ileal tissues and a decrease of SOD activities. The results demonstrated that the levels of MDA liver and ileal tissues in irradiated rats that were pretreated with ozone were significantly decreased, while SOD activities were significantly increased. OOP reversed all histopathological alterations induced by irradiation. In conclusion, data obtained from this study indicated that ozone could increase the endogenous antioxidant defense mechanism in rats and there by protect the animals from radiation-induced organ toxicity. PMID:22915786

  6. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    NASA Astrophysics Data System (ADS)

    Wady, P. T.; Draude, A.; Shubeita, S. M.; Smith, A. D.; Mason, N.; Pimblott, S. M.; Jimenez-Melero, E.

    2016-01-01

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (<100 μA) and heavy ion (≈10 μA) beams produced by a 5 MV tandem ion accelerator. The dedicated beam line for radiation damage studies comprises: (1) beam diagnosis and focusing optical components, (2) a scanning and slit system that allows uniform irradiation of a sample area of 0.5-6 cm2, and (3) a sample stage designed to be able to monitor in-situ the sample temperature, current deposited on the sample, and the gamma spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr-25Ni-Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  7. Superfluid helium on orbit transfer (SHOOT)

    NASA Technical Reports Server (NTRS)

    Dipirro, Michael J.

    1987-01-01

    A number of space flight experiments and entire facilities require superfluid helium as a coolant. Among these are the Space Infrared Telescope Facility (SIRTF), the Large Deployable Reflector (LDR), the Advanced X-ray Astrophysics Facility (AXAF), the Particle Astrophysics Magnet Facility (PAMF or Astromag), and perhaps even a future Hubble Space Telescope (HST) instrument. Because these systems are required to have long operational lifetimes, a means to replenish the liquid helium, which is exhausted in the cooling process, is required. The most efficient method of replenishment is to refill the helium dewars on orbit with superfluid helium (liquid helium below 2.17 Kelvin). To develop and prove the technology required for this liquid helium refill, a program of ground and flight testing was begun. The flight demonstration is baselined as a two flight program. The first, described in this paper, will prove the concepts involved at both the component and system level. The second flight will demonstrate active astronaut involvement and semi-automated operation. The current target date for the first launch is early 1991.

  8. TU-CD-BRB-05: Radiation Damage Signature of White Matter Fiber Bundles Using Diffusion Tensor Imaging (DTI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, T; Chapman, C; Lawrence, T

    2015-06-15

    Purpose: To develop an automated and scalable approach and identify temporal, spatial and dosimetric patterns of radiation damage of white matter (WM) fibers following partial brain irradiation. Methods: An automated and scalable approach was developed to extract DTI features of 22 major WM fibers from 33 patients with low-grade/benign tumors treated by radiation therapy (RT). DTI scans of the patients were performed pre-RT, 3- and 6-week during RT, and 1, 6 and 18 months after RT. The automated tractography analysis was applied to 198 datasets as: (1) intra-subject registration of longitudinal DTI, (2) spatial normalization of individual-patient DTI to themore » Johns Hopkins WM Atlas, (3) automatic fiber tracking regulated by the WM Atlas, and (4) segmentation of WM into 22 major tract profiles. Longitudinal percentage changes in fractional anisotropy (FA), and mean, axial and radial diffusivity (MD/AD/RD) of each tract from pre-RT were quantified and correlated to 95%, 90% and 80% percentiles of doses and mean doses received by the tract. Heatmaps were used to identify clusters of significant correlation and reveal temporal, spatial and dosimetric signatures of WM damage. A multivariate linear regression was further carried out to determine influence of clinical factors. Results: Of 22 tracts, AD/MD changes in 12 tracts had significant correlation with doses, especially at 6 and 18 months post-RT, indicating progressive radiation damage after RT. Most interestingly, the DTI-index changes in the elongated tracts were associated with received maximum doses, suggesting a serial-structure behavior; while short association fibers were affected by mean doses, indicating a parallel-structure response. Conclusion: Using an automated DTI-tractography analysis of whole brain WM fibers, we reveal complex radiation damage patterns of WM fibers. Damage in WM fibers that play an important role in the neural network could be associated with late neurocognitive function

  9. Neutron radiation damage studies in the structural materials of a 500 MWe fast breeder reactor using DPA cross-sections from ENDF / B-VII.1

    NASA Astrophysics Data System (ADS)

    Saha, Uttiyoarnab; Devan, K.; Bachchan, Abhitab; Pandikumar, G.; Ganesan, S.

    2018-04-01

    The radiation damage in the structural materials of a 500 MWe Indian prototype fast breeder reactor (PFBR) is re-assessed by computing the neutron displacement per atom (dpa) cross-sections from the recent nuclear data library evaluated by the USA, ENDF / B-VII.1, wherein revisions were taken place in the new evaluations of basic nuclear data because of using the state-of-the-art neutron cross-section experiments, nuclear model-based predictions and modern data evaluation techniques. An indigenous computer code, computation of radiation damage (CRaD), is developed at our centre to compute primary-knock-on atom (PKA) spectra and displacement cross-sections of materials both in point-wise and any chosen group structure from the evaluated nuclear data libraries. The new radiation damage model, athermal recombination-corrected displacement per atom (arc-dpa), developed based on molecular dynamics simulations is also incorporated in our study. This work is the result of our earlier initiatives to overcome some of the limitations experienced while using codes like RECOIL, SPECTER and NJOY 2016, to estimate radiation damage. Agreement of CRaD results with other codes and ASTM standard for Fe dpa cross-section is found good. The present estimate of total dpa in D-9 steel of PFBR necessitates renormalisation of experimental correlations of dpa and radiation damage to ensure consistency of damage prediction with ENDF / B-VII.1 library.

  10. Soft X-ray radiation damage in EM-CCDs used for Resonant Inelastic X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Gopinath, D.; Soman, M.; Holland, A.; Keelan, J.; Hall, D.; Holland, K.; Colebrook, D.

    2018-02-01

    Advancement in synchrotron and free electron laser facilities means that X-ray beams with higher intensity than ever before are being created. The high brilliance of the X-ray beam, as well as the ability to use a range of X-ray energies, means that they can be used in a wide range of applications. One such application is Resonant Inelastic X-ray Scattering (RIXS). RIXS uses the intense and tuneable X-ray beams in order to investigate the electronic structure of materials. The photons are focused onto a sample material and the scattered X-ray beam is diffracted off a high resolution grating to disperse the X-ray energies onto a position sensitive detector. Whilst several factors affect the total system energy resolution, the performance of RIXS experiments can be limited by the spatial resolution of the detector used. Electron-Multiplying CCDs (EM-CCDs) at high gain in combination with centroiding of the photon charge cloud across several detector pixels can lead to sub-pixel spatial resolution of 2-3 μm. X-ray radiation can cause damage to CCDs through ionisation damage resulting in increases in dark current and/or a shift in flat band voltage. Understanding the effect of radiation damage on EM-CCDs is important in order to predict lifetime as well as the change in performance over time. Two CCD-97s were taken to PTB at BESSY II and irradiated with large doses of soft X-rays in order to probe the front and back surfaces of the device. The dark current was shown to decay over time with two different exponential components to it. This paper will discuss the use of EM-CCDs for readout of RIXS spectrometers, and limitations on spatial resolution, together with any limitations on instrument use which may arise from X-ray-induced radiation damage.

  11. Radiation damage in a micron-sized protein crystal studied via reciprocal space mapping and Bragg coherent diffractive imaging.

    PubMed

    Coughlan, H D; Darmanin, C; Phillips, N W; Hofmann, F; Clark, J N; Harder, R J; Vine, D J; Abbey, B

    2015-07-01

    For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources.

  12. Radiation damage in a micron-sized protein crystal studied via reciprocal space mapping and Bragg coherent diffractive imaging

    PubMed Central

    Coughlan, H. D.; Darmanin, C.; Phillips, N. W.; Hofmann, F.; Clark, J. N.; Harder, R. J.; Vine, D. J.; Abbey, B.

    2015-01-01

    For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources. PMID:26798804

  13. Radiation damage in a micron-sized protein crystal studied via reciprocal space mapping and Bragg coherent diffractive imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughlan, H. D.; Darmanin, C.; Phillips, N. W.

    For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources.

  14. Radiation damage in a micron-sized protein crystal studied via reciprocal space mapping and Bragg coherent diffractive imaging

    DOE PAGES

    Coughlan, H. D.; Darmanin, C.; Phillips, N. W.; ...

    2015-04-29

    For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources.

  15. Extract of Xylopia aethiopica (Annonaceae) protects against gamma-radiation induced testicular damage in Wistar rats.

    PubMed

    Adaramoye, Oluwatosin Adekunle; Adedara, Isaac Adegboyega; Popoola, Bosede; Farombi, Ebenezer Olatunde

    2010-01-01

    Ionizing radiation is an important environmental risk factor and, a major therapeutic agent for cancer treatment. This study was designed to evaluate the protective effect of extract of Xylopia aethiopica (XA) on gamma-radiation-induced testicular damage in rats. Vitamin C (VC) served as the reference antioxidant during the study. The study consists of 4 groups of 11 rats each. Group I received corn oil (vehicle), groups II and IV were pretreated with XA (250 mg/kg) and VC (250mg/kg) for 6 weeks before and 8 weeks after exposure to gamma-radiation; group III was exposed to a single dose of gamma-radiation (5 Gy). Biochemical analysis revealed that gamma-irradiation caused a significant increase (p < .05) in serum and testicular lipid peroxidation (LPO) levels by 217% and 221%, respectively. Irradiated rats had markedly decreased testicular catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), and reduced glutathione (GSH) levels. Irradiation resulted in 59% and 40% decreases in spermatozoa motility and live/dead sperm count, respectively, and a 161% increase in total sperm abnormalities. Histologically, testes of the irradiated rats showed extensive degenerative changes in the seminiferous tubules and defoliation of spermatocytes. Supplementation of XA and VC reversed the adverse effects of gamma-radiation on biochemical and histological indices of the rats. These findings demonstrated that Xylopia aethiopica has a protective effect by inhibiting oxidative damage in testes of irradiated rats.

  16. Fungal beta glucan protects radiation induced DNA damage in human lymphocytes

    PubMed Central

    Maurya, Dharmendra K.; Salvi, Veena P.; Janardhanan, Krishnankutty K; Nair, Cherupally K. K.

    2014-01-01

    Background Ganoderma lucidum (Ling Zhi), a basidiomycete white rot macrofungus has been used extensively for therapeutic use in China, Japan, Korea and other Asian countries for 2,000 years. The present study is an attempt to investigate its DNA protecting property in human lymphocytes. Materials and methods Beta glucan (BG) was isolated by standard procedure and the structure and composition were studied by infrared radiation (IR) and nuclear magnetic resonance (NMR) spectroscopy, gel filtration chromatography and paper chromatography. The radioprotective properties of BG isolated from the macro fungi Ganoderma lucidum was assessed by single cell gel electrophoresis (comet assay). Human lymphocytes were exposed to 0, 1, 2 and 4 Gy gamma radiation in the presence and absence of BG. Results The comet parameters were reduced by BG. The results indicate that the BG of G. lucidum possessed significant radioprotective activity with DNA repairing ability and antioxidant activity as the suggestive mechanism. Conclusions The findings suggest the potential use of this mushroom for the prevention of radiation induced cellular damages. PMID:25332989

  17. Mechanism of Radiation Damage Reduction in Equiatomic Multicomponent Single Phase Alloys

    DOE PAGES

    Granberg, F.; Nordlund, K.; Ullah, Mohammad W.; ...

    2016-04-01

    Recently a new class of metal alloys, of single-phase multicomponent composition at roughly equal atomic concentrations (“equiatomic”), have been shown to exhibit promising mechanical, magnetic, and corrosion resistance properties, in particular, at high temperatures. These features make them potential candidates for components of next-generation nuclear reactors and other high-radiation environments that will involve high temperatures combined with corrosive environments and extreme radiation exposure. In spite of a wide range of recent studies of many important properties of these alloys, their radiation tolerance at high doses remains unexplored. In this work, a combination of experimental and modeling efforts reveals a substantialmore » reduction of damage accumulation under prolonged irradiation in single-phase NiFe and NiCoCr alloys compared to elemental Ni. This effect is explained by reduced dislocation mobility, which leads to slower growth of large dislocation structures. Finally and moreover, there is no observable phase separation, ordering, or amorphization, pointing to a high phase stability of this class of alloys.« less

  18. Shock-adiabatic to quasi-isentropic compression of warm dense helium up to 150 GPa

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Chen, Q. F.; Gu, Y. J.; Li, J. T.; Li, Z. G.; Li, C. J.; Chen, Z. Y.

    2017-06-01

    Multiple reverberation compression can achieve higher pressure, higher temperature, but lower entropy. It is available to provide an important validation for the elaborate and wider planetary models and simulate the inertial confinement fusion capsule implosion process. In the work, we have developed the thermodynamic and optical properties of helium from shock-adiabatic to quasi-isentropic compression by means of a multiple reverberation technique. By this technique, the initial dense gaseous helium was compressed to high pressure and high temperature and entered the warm dense matter (WDM) region. The experimental equation of state (EOS) of WDM helium in the pressure-density-temperature (P-ρ -T) range of 1 -150 GPa , 0.1 -1.1 g c m-3 , and 4600-24 000 K were measured. The optical radiations emanating from the WDM helium were recorded, and the particle velocity profiles detecting from the sample/window interface were obtained successfully up to 10 times compression. The optical radiation results imply that dense He has become rather opaque after the 2nd compression with a density of about 0.3 g c m-3 and a temperature of about 1 eV. The opaque states of helium under multiple compression were analyzed by the particle velocity measurements. The multiple compression technique could efficiently enhanced the density and the compressibility, and our multiple compression ratios (ηi=ρi/ρ0,i =1 -10 ) of helium are greatly improved from 3.5 to 43 based on initial precompressed density (ρ0) . For the relative compression ratio (ηi'=ρi/ρi -1) , it increases with pressure in the lower density regime and reversely decreases in the higher density regime, and a turning point occurs at the 3rd and 4th compression states under the different loading conditions. This nonmonotonic evolution of the compression is controlled by two factors, where the excitation of internal degrees of freedom results in the increasing compressibility and the repulsive interactions between the

  19. Backscattered helium spectroscopy in the helium ion microscope: Principles, resolution and applications

    NASA Astrophysics Data System (ADS)

    van Gastel, R.; Hlawacek, G.; Dutta, S.; Poelsema, B.

    2015-02-01

    We demonstrate the possibilities and limitations for microstructure characterization using backscattered particles from a sharply focused helium ion beam. The interaction of helium ions with matter enables the imaging, spectroscopic characterization, as well as the nanometer scale modification of samples. The contrast that is seen in helium ion microscopy (HIM) images differs from that in scanning electron microscopy (SEM) and is generally a result of the higher surface sensitivity of the method. It allows, for instance, a much better visualization of low-Z materials as a result of the small secondary electron escape depth. However, the same differences in beam interaction that give HIM an edge over other imaging techniques, also impose limitations for spectroscopic applications using backscattered particles. Here we quantify those limitations and discuss opportunities to further improve the technique.

  20. The Flaxseed-Derived Lignan Phenolic Secoisolariciresinol Diglucoside (SDG) Protects Non-Malignant Lung Cells from Radiation Damage

    PubMed Central

    Velalopoulou, Anastasia; Tyagi, Sonia; Pietrofesa, Ralph A.; Arguiri, Evguenia; Christofidou-Solomidou, Melpo

    2015-01-01

    Plant phenolic compounds are common dietary antioxidants that possess antioxidant and anti-inflammatory properties. Flaxseed (FS) has been reported to be radioprotective in murine models of oxidative lung damage. Flaxseed’s protective properties are attributed to its main biphenolic lignan, secoisolariciresinol diglucoside (SDG). SDG is a free radical scavenger, shown in cell free systems to protect DNA from radiation-induced damage. The objective of this study was to investigate the in vitro radioprotective efficacy of SDG in murine lung cells. Protection against irradiation (IR)-induced DNA double and single strand breaks was assessed by γ-H2AX labeling and alkaline comet assay, respectively. The role of SDG in modulating the levels of cytoprotective enzymes was evaluated by qPCR and confirmed by Western blotting. Additionally, effects of SDG on clonogenic survival of irradiated cells were evaluated. SDG protected cells from IR-induced death and ameliorated DNA damage by reducing mean comet tail length and percentage of γ-H2AX positive cells. Importantly, SDG significantly increased gene and protein levels of antioxidant HO-1, GSTM1 and NQO1. Our results identify the potent radioprotective properties of the synthetic biphenolic SDG, preventing DNA damage and enhancing the antioxidant capacity of normal lung cells; thus, rendering SDG a potential radioprotector against radiation exposure. PMID:26703588

  1. The Flaxseed-Derived Lignan Phenolic Secoisolariciresinol Diglucoside (SDG) Protects Non-Malignant Lung Cells from Radiation Damage.

    PubMed

    Velalopoulou, Anastasia; Tyagi, Sonia; Pietrofesa, Ralph A; Arguiri, Evguenia; Christofidou-Solomidou, Melpo

    2015-12-22

    Plant phenolic compounds are common dietary antioxidants that possess antioxidant and anti-inflammatory properties. Flaxseed (FS) has been reported to be radioprotective in murine models of oxidative lung damage. Flaxseed's protective properties are attributed to its main biphenolic lignan, secoisolariciresinol diglucoside (SDG). SDG is a free radical scavenger, shown in cell free systems to protect DNA from radiation-induced damage. The objective of this study was to investigate the in vitro radioprotective efficacy of SDG in murine lung cells. Protection against irradiation (IR)-induced DNA double and single strand breaks was assessed by γ-H2AX labeling and alkaline comet assay, respectively. The role of SDG in modulating the levels of cytoprotective enzymes was evaluated by qPCR and confirmed by Western blotting. Additionally, effects of SDG on clonogenic survival of irradiated cells were evaluated. SDG protected cells from IR-induced death and ameliorated DNA damage by reducing mean comet tail length and percentage of γ-H2AX positive cells. Importantly, SDG significantly increased gene and protein levels of antioxidant HO-1, GSTM1 and NQO1. Our results identify the potent radioprotective properties of the synthetic biphenolic SDG, preventing DNA damage and enhancing the antioxidant capacity of normal lung cells; thus, rendering SDG a potential radioprotector against radiation exposure.

  2. Radiation damage-He diffusivity models applied to deep-time thermochronology: Zircon and titanite (U-Th)/He datasets from cratonic settings

    NASA Astrophysics Data System (ADS)

    Guenthner, W.; DeLucia, M. S.; Marshak, S.; Reiners, P. W.; Drake, H.; Thomson, S.; Ault, A. K.; Tillberg, M.

    2017-12-01

    Advances in understanding the effects of radiation damage on He diffusion in uranium-bearing accessory minerals have shown the utility of damage-diffusivity models for interpreting datasets from geologic settings with long-term, low-temperature thermal histories. Craton interiors preserve a billion-year record of long-term, long-wavelength vertical motions of the lithosphere. Prior thermochronologic work in these settings has focused on radiation damage models used in conjunction with apatite (U-Th)/He dates to constrain Phanerozoic thermal histories. Owing to the more complex damage-diffusivity relationship in zircon, the zircon (U-Th)/He system yields both higher and, in some cases, lower temperature sensitivities than the apatite system, and this greater range in turn allows researchers to access deeper time (i.e., Proterozoic) segments of craton time-temperature histories. Here, we show two examples of this approach by focusing on zircon (U-Th)/He datasets from 1.8 Ga granitoids of the Fennoscandian Shield in southeastern Sweden, and 1.4 Ga granites and rhyolites of the Ozark Plateau in southeastern Missouri. In the Ozark dataset, the zircon (U-Th)/He data, combined with a damage-diffusivity model, predict negative correlations between date and effective uranium (eU) concentration (a measurement proportional to radiation damage) from thermal histories that include an episode of Proterozoic cooling (interpreted as exhumation) following reheating (interpreted as burial) to temperature of 260°C at 850-680 Ma. In the Fennoscandian Shield, a similar damage model-based approach yields time-temperature constraints with burial to 217°C between 944 Ma and 851 Ma, followed by exhumation from 850 to 500 Ma, and burial to 154°C between 366 Ma and 224 Ma. Our Fennoscandian Shield samples also include titanite (U-Th)/He dates that span a wide range (945-160 Ma) and are negatively correlated with eU concentration, analogous to our zircon He dataset. These results support

  3. Significant Suppression of CT Radiation-Induced DNA Damage in Normal Human Cells by the PrC-210 Radioprotector.

    PubMed

    Jermusek, Frank; Benedict, Chelsea; Dreischmeier, Emma; Brand, Michael; Uder, Michael; Jeffery, Justin J; Ranallo, Frank N; Fahl, William E

    2018-05-21

    While computed tomography (CT) is now commonly used and considered to be clinically valuable, significant DNA double-strand breaks (γ-H2AX foci) in white blood cells from adult and pediatric CT patients have been frequently reported. In this study to determine whether γ-H2AX foci and X-ray-induced naked DNA damage are suppressed by administration of the PrC-210 radioprotector, human blood samples were irradiated in a CT scanner at 50-150 mGy with or without PrC-210, and γ-H2AX foci were scored. X-ray-induced naked DNA damage was also studied, and the DNA protective efficacy of PrC-210 was compared against 12 other common "antioxidants." PrC-210 reduced CT radiation-induced γ-H2AX foci in white blood cells to near background ( P < 0.0001) at radiation doses of 50-150 mGy. PrC-210 was most effective among the 13 "antioxidants" in reducing naked DNA X-ray damage, and its addition at 30 s before an • OH pulse reduced to background the • OH insult that otherwise induced >95% DNA damage. A systemic PrC-210 dose known to confer 100% survival in irradiated mice had no discernible effect on micro-CT image signal-to-noise ratio and CT image integrity. PrC-210 suppressed DNA damage to background or near background in each of these assay systems, thus supporting its development as a radioprotector for humans in multiple radiation exposure settings.

  4. He diffusion in zircon: Observations from (U-Th)/He age suites and 4He diffusion experiments and implications for radiation damage and anisotropic effects

    NASA Astrophysics Data System (ADS)

    Guenthner, W. R.; Reiners, P. W.

    2009-12-01

    Despite widespread use of zircon (U-Th)/He thermochronometry in many geologic applications, our understanding of the kinetics of He diffusion in this system is rudimentary. Previous studies have shown that both radiation damage and crystallographic anisotropy may strongly influence diffusion kinetics and ages. We present observations of zircon He ages from multiple single-grain analyses from both detrital and bedrock suites from a wide variety of locations, showing relationships consistent with effects arising from the interaction of radiation damage and anisotropy. Individual zircons in each suite have experienced the same post-depositional or exhumational t-T history but grains appear to have experienced differential He loss that is correlated with effective uranium (eU) content, a proxy for the relative extent of radiation damage within each suite. Several suites of zircons heated to partial resetting upon burial or that have experienced slow cooling show positive correlations between age and eU. Examples of partially reset detrital samples include Cretaceous Sevier foreland basin sandstones buried to ~6-8 km depth, with ages ranging from 88-309 Ma across an eU range of 215-1453 ppm, and Apennines and Olympics greywackes heated to >~120 °C, showing similar trends. Some slowly-cooled bedrock samples also show positive age-eU correlations, suggesting increasing closure temperature with higher extents of radiation damage. Conversely, zircons from cratonal bedrock samples with high levels of radiation damage—measured as accumulated alpha dosage (in this case >~10^18 α/g)—generally show negative age-eU correlations. We interpret these contrasting age-eU relationships as a manifestation of the interaction of radiation damage and anisotropic diffusion: at low damage, He diffusivity is relatively high and preferentially through c-axis-parallel channels. As suggested by Farley (2007), however, with increasing damage, channels are progressively blocked and He

  5. Commercial helium reserves, continental rifting and volcanism

    NASA Astrophysics Data System (ADS)

    Ballentine, C. J.; Barry, P. H.; Hillegonds, D.; Fontijn, K.; Bluett, J.; Abraham-James, T.; Danabalan, D.; Gluyas, J.; Brennwald, M. S.; Pluess, B.; Seneshens, D.; Sherwood Lollar, B.

    2017-12-01

    Helium has many industrial applications, but notably provides the unique cooling medium for superconducting magnets in medical MRI scanners and high energy beam lines. In 2013 the global supply chainfailed to meet demand causing significant concern - the `Liquid Helium Crisis' [1]. The 2017 closure of Quatar borders, a major helium supplier, is likely to further disrupt helium supply, and accentuates the urgent need to diversify supply. Helium is found in very few natural gas reservoirs that have focused 4He produced by the dispersed decay (a-particle) of U and Th in the crust. We show here, using the example of the Rukwa section of the Tanzanian East African Rift, how continental rifting and local volcanism provides the combination of processes required to generate helium reserves. The ancient continental crust provides the source of 4He. Rifting and associated magmatism provides the tectonic and thermal mechanism to mobilise deep fluid circulation, focusing flow to the near surface along major basement faults. Helium-rich springs in the Tanzanian Great Rift Valley were first identified in the 1950's[2]. The isotopic compositions and major element chemistry of the gases from springs and seeps are consistent with their release from the crystalline basement during rifting [3]. Within the Rukwa Rift Valley, helium seeps occur in the vicinity of trapping structures that have the potential to store significant reserves of helium [3]. Soil gas surveys over 6 prospective trapping structures (1m depth, n=1486) show helium anomalies in 5 out of the 6 at levels similar to those observed over a known helium-rich gas reservoir at 1200m depth (7% He - Harley Dome, Utah). Detailed macroseep gas compositions collected over two days (n=17) at one site allows us to distinguish shallow gas contributions and shows the deep gas to contain between 8-10% helium, significantly increasing resource estimates based on uncorrected values (1.8-4.2%)[2,3]. The remainder of the deep gas is

  6. Development and Dissemination of a Nationwide Helium Database for a National Assessment of Helium Resources.

    NASA Astrophysics Data System (ADS)

    Brennan, S. T.; East, J. A., II; Garrity, C. P.

    2015-12-01

    In 2013, Congress passed the Helium Stewardship Act requiring the U.S. Geological Survey (USGS) to undertake a national helium gas resource assessment to determine the nation's helium resources. An important initial component necessary to complete this assessment was the development of a comprehensive database of Helium (He) concentrations from petroleum exploration wells. Because Helium is often used as the carrier gas for compositional analyses for commercial and exploratory oil and gas wells, this limits the available helium concentration data. A literature search in peer-reviewed publications, state geologic survey databases, USGS energy geochemical databases, and the Bureau of Land Management databases provided approximately 16,000 data points from wells that had measurable He concentrations in the gas composition analyses. The data from these wells includes, date of sample collection, American Petroleum Institute well number, formation name, field name, depth of sample collection, and location. The gas compositional analyses, some performed as far back as 1934, do not all have the same level of precision and accuracy, therefore the date of the analysis is critical to the assessment as it indicates the relative amount of uncertainty in the analytical results. Non-proprietary data was used to create a GIS based interactive web interface that allows users to visualize, inspect, interact, and download our most current He data. The user can click on individual locations to see the available data at that location, as well as zoom in and out on a data density map. Concentrations on the map range from .04 mol% (lowest concentration of economic value) to 12% (highest naturally occurring values). This visual interface will allow users to develop a rapid appreciation of the areas with the highest potential for high helium concentrations within oil and gas fields.

  7. Radiation damage effects in far-ultraviolet filters, thin films, and substrates.

    PubMed

    Keffer, C E; Torr, M R; Zukic, M; Spann, J F; Torr, D G; Kim, J

    1994-09-01

    Advances in vacuum ultraviolet thin-film filter technology have been made through the use of filter designs with multilayers of materials such as Al(2)O(3), BaF(2), CaF(2), HfO(2), LaF(3), MgF(2), and SiO(2). Our immediate application for these filters will be in an imaging system to be flown on a satellite where a 2 × 9 R(E) orbit will expose the instrument to approximately 250 krad of radiation. Because to our knowledge no previous studies have been made on the potential radiation damage of these materials in the thin-film format, we report on such an assessment here. Transmittances and reflectances of BaF(2), CaF(2), HfO(2), MgF(2), and SiO(2) thin films on MgF(2) substrates, Al(2)O(3) thin films on fused-silica substrates, uncoated fused silica and MgF(2), and four multilayer filters made from these materials were measured from 120 to 180 nm beforeand after irradiation by 250 krad from a (60)Co gamma radiation source. No radiation-induced losses in transmittance or reflectance occurred in this wavelength range. Additional postradiation measurements from 160 to 300 nm indicates 2-5% radiation-induced absorption near 260 nm in some of the samples with MgF(2) substrates. From these measurements we conclude that far-ultraviolet filters made from the materials tested should experience less than 5% change from exposure to up to 250 krad of high-energy radiation in space applications.

  8. Neutron induced radiation damage of plastic scintillators for the upgrade of the Tile Calorimeter of the ATLAS detector.

    NASA Astrophysics Data System (ADS)

    Mdhluli, J. E.; Jivan, H.; Erasmus, R.; Davydov, Yu I.; Baranov, V.; Mthembu, S.; Mellado, B.; Sideras-Haddad, E.; Solovyanov, O.; Sandrock, C.; Peter, G.; Tlou, S.; Khanye, N.; Tjale, B.

    2017-07-01

    With the prediction that the plastic scintillators in the gap region of the Tile Calorimeter will sustain a significantly large amount of radiation damage during the HL-LHC run time, the current plastic scintillators will need to be replaced during the phase 2 upgrade in 2018. The scintillators in the gap region were exposed to a radiation environment of up to 10 kGy/year during the first run of data taking and with the luminosity being increased by a factor of 10, the radiation environment will be extremely harsh. We report on the radiation damage to the optical properties of plastic scintillators following irradiation using a neutron beam of the IBR-2 pulsed reactor in Joint Institute for Nuclear Research (JINR), Dubna. A comparison is drawn between polyvinyl toluene based commercial scintillators EJ200, EJ208 and EJ260 as well as polystyrene based scintillator from Kharkov. The samples were subjected to irradiation with high energy neutrons and a flux density range of 1 × 106-7.7 × 106. Light transmission, Raman spectroscopy, fluorescence spectroscopy and light yield testing was performed to characterize the damage induced in the samples. Preliminary results from the tests done indicate a minute change in the optical properties of the scintillators with further studies underway to gain a better understanding of the interaction between neutrons with plastic scintillators.

  9. Photo-electron emission directly in superfluid helium

    NASA Astrophysics Data System (ADS)

    Zavyalov, V. V.; Pyurbeeva, E. B.; Khaldeev, S. I.

    2018-03-01

    Despite the fact that electron transport in condensed helium has been studied for over half a century [1], observations of new intriguing effects still appear [2]. Alas, the traditional methods of injecting electrons into condensed helium (radioactive-sources, electrical discharge or field emission) lead to generation of helium ions, recombination of which is accompanied by emergence of a large number of excitations. As a result, interpretation of such experiments is not simple and sometimes may be questionable. In this respect, photoelectron emitters, which operate with energies substantially smaller than the ionization energy of helium, are preferable. However, immersion of the photocathode into condensed helium suppresses electron emission. Nevertheless, we managed to achieve electron currents (>20 fA) with the In photocathode immersed directly in liquid superfluid helium. The UV light (λ=254 nm) was guided to the photocathode through a two-meter long Al-covered quartz optical fiber.

  10. How to make Raman-inactive helium visible in Raman spectra of tritium-helium gas mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schloesser, M.; Pakari, O.; Rupp, S.

    2015-03-15

    Raman spectroscopy, a powerful method for the quantitative compositional analysis of molecular gases, e.g. mixtures of hydrogen isotopologues, is not able to detect monoatomic species like helium. This deficit can be overcome by using radioluminescence emission from helium atoms induced by β-electrons from tritium decay. We present theoretical considerations and combined Raman/radioluminescence spectra. Furthermore, we discuss the linearity of the method together with validation measurements for determining the pressure dependence. Finally, we conclude how this technique can be used for samples of helium with traces of tritium, and vice versa. (authors)

  11. STAT, Wingless, and Nurf-38 determine the accuracy of regeneration after radiation damage in Drosophila.

    PubMed

    Verghese, Shilpi; Su, Tin Tin

    2017-10-01

    We report here a study of regeneration in Drosophila larval wing imaginal discs after damage by ionizing radiation. We detected faithful regeneration that restored a wing disc and abnormal regeneration that produced an extra wing disc. We describe a sequence of changes in cell number, location and fate that occur to produce an ectopic disc. We identified a group of cells that not only participate in ectopic disc formation but also recruit others to do so. STAT92E (Drosophila STAT3/5) and Nurf-38, which encodes a member of the Nucleosome Remodeling Factor complex, oppose each other in these cells to modulate the frequency of ectopic disc growth. The picture that emerges is one in which activities like STAT increase after radiation damage and fulfill essential roles in rebuilding the tissue. But such activities must be kept in check so that one and only one wing disc is regenerated.

  12. Characterizing single isolated radiation-damage events from molecular dynamics via virtual diffraction methods

    NASA Astrophysics Data System (ADS)

    Stewart, J. A.; Brookman, G.; Price, P.; Franco, M.; Ji, W.; Hattar, K.; Dingreville, R.

    2018-04-01

    The evolution and characterization of single-isolated-ion-strikes are investigated by combining atomistic simulations with selected-area electron diffraction (SAED) patterns generated from these simulations. Five molecular dynamics simulations are performed for a single 20 keV primary knock-on atom in bulk crystalline Si. The resulting cascade damage is characterized in two complementary ways. First, the individual cascade events are conventionally quantified through the evolution of the number of defects and the atomic (volumetric) strain associated with these defect structures. These results show that (i) the radiation damage produced is consistent with the Norgett, Robinson, and Torrens model of damage production and (ii) there is a net positive volumetric strain associated with the cascade structures. Second, virtual SAED patterns are generated for the resulting cascade-damaged structures along several zone axes. The analysis of the corresponding diffraction patterns shows the SAED spots approximately doubling in size, on average, due to broadening induced by the defect structures. Furthermore, the SAED spots are observed to exhibit an average radial outward shift between 0.33% and 0.87% depending on the zone axis. This characterization approach, as utilized here, is a preliminary investigation in developing methodologies and opportunities to link experimental observations with atomistic simulations to elucidate microstructural damage states.

  13. LOX Tank Helium Removal for Propellant Scavenging

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2009-01-01

    System studies have shown a significant advantage to reusing the hydrogen and oxygen left in these tanks after landing on the Moon in fuel cells to generate power and water for surface systems. However in the current lander concepts, the helium used to pressurize the oxygen tank can substantially degrade fuel cell power and water output by covering the reacting surface with inert gas. This presentation documents an experimental investigation of methods to remove the helium pressurant while minimizing the amount of the oxygen lost. This investigation demonstrated that significant quantities of Helium (greater than 90% mole fraction) remain in the tank after draining. Although a single vent cycle reduced the helium quantity, large amounts of helium remained. Cyclic venting appeared to be more effective. Three vent cycles were sufficient to reduce the helium to small (less than 0.2%) quantities. Two vent cycles may be sufficient since once the tank has been brought up to pressure after the second vent cycle the helium concentration has been reduced to the less than 0.2% level. The re-pressurization process seemed to contribute to diluting helium. This is as expected since in order to raise the pressure liquid oxygen must be evaporated. Estimated liquid oxygen loss is on the order of 82 pounds (assuming the third vent cycle is not required).

  14. Irradiation creep and precipitation in a ferritic ODS steel under helium implantation

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jung, P.; Pouchon, M. A.; Rebac, T.; Hoffelner, W.

    2008-02-01

    Ferritic oxide dispersion strengthened (ODS) steel, PM2000, has been homogeneously implanted with helium under uniaxial tensile stresses from 20 to 250 MPa to maximum doses of about 0.75 dpa (3000 ppm He) with displacement damage rates of 5.5 × 10 -6 dpa/s at temperatures of 573, 673 and 773 K. Straining of a miniaturized dog-bone specimen under helium implantation was monitored by linear variable displacement transformer (LVDT) and meanwhile by their resistance also measured by four-pole technique. Creep compliance was almost constant at 5.7 × 10 -6 dpa -1 MPa -1 for temperatures below 673 K and increased to 18 × 10 -6 dpa -1 MPa -1 at 773 K. The resistivity of PM2000 samples decreased with dose and showed a tendency to saturation. Subsequent transmission electron microscopy observations indicated the formation of ordered Fe 3- xCr xAl precipitates during implantation. Correlations between the microstructure and resistivity are discussed.

  15. Global helium particle balance in LHD

    NASA Astrophysics Data System (ADS)

    Motojima, G.; Masuzaki, S.; Tokitani, M.; Kasahara, H.; Yoshimura, Y.; Kobayashi, M.; Sakamoto, R.; Morisaki, T.; Miyazawa, J.; Akiyama, T.; Ohno, N.; Mutoh, T.; Yamada, H.; LHD Experiment Group

    2015-08-01

    Global helium particle balance in long-pulse discharges is analyzed for the first time in the Large Helical Device (LHD) with the plasma-facing components of the first wall and the divertor tiles composed of stainless steel and carbon, respectively. During the 2-min discharge sustained by ion cyclotron resonance heating (ICRH) and electron cyclotron heating (ECH), helium is observed to be highly retained in the wall (regarded as both the first wall and the divertor tiles). Almost all (about 96%) puffed helium particles (1.3 × 1022 He) are absorbed in the wall near the end of the discharge. Even though a dynamic retention is eliminated, 56% is still absorbed. The analysis is also applied to longer pulse discharges over 40 min by ICRH and ECH, indicating that the helium wall retention is dynamically changed in time. At the initial phase of the discharge, a mechanism for adsorbing helium other than dynamical retention is invoked.

  16. Dynamic Simulation of a Helium Liquefier

    NASA Astrophysics Data System (ADS)

    Maekawa, R.; Ooba, K.; Nobutoki, M.; Mito, T.

    2004-06-01

    Dynamic behavior of a helium liquefier has been studied in detail with a Cryogenic Process REal-time SimulaTor (C-PREST) at the National Institute for Fusion Science (NIFS). The C-PREST is being developed to integrate large-scale helium cryogenic plant design, operation and maintenance for optimum process establishment. As a first step of simulations of cooldown to 4.5 K with the helium liquefier model is conducted, which provides a plant-process validation platform. The helium liquefier consists of seven heat exchangers, a liquid-nitrogen (LN2) precooler, two expansion turbines and a liquid-helium (LHe) reservoir. Process simulations are fulfilled with sequence programs, which were implemented with C-PREST based on an existing liquefier operation. The interactions of a JT valve, a JT-bypass valve and a reservoir-return valve have been dynamically simulated. The paper discusses various aspects of refrigeration process simulation, including its difficulties such as a balance between complexity of the adopted models and CPU time.

  17. Helium as a Dynamical Tracer in the Thermosphere

    NASA Astrophysics Data System (ADS)

    Thayer, J. P.; Liu, X.; Wang, W.; Burns, A. G.

    2014-12-01

    Helium has been a missing constituent in current thermosphere general circulation models. Although typically a minor gas relative to the more abundant major gasses, its unique properties of being chemically inert and light make it an excellent tracer of thermosphere dynamics. Studying helium can help simplify understanding of transport effects. This understanding can then be projected to other gasses whose overall structure and behavior are complex but, by contrasting with helium, can be evaluated for its transport dependencies. The dynamical influences on composition impact estimates of thermosphere mass density, where helium during solar minima can have a direct contribution, as well as ionosphere electron density. Furthermore, helium estimates in the upper thermosphere during solar minima have not been observed since the 1976 minimum. Indirect estimates of helium in the upper thermosphere during the recent extreme solar minimum indicates winter-time helium concentrations exceeded NRL-MSISE00 estimates by 30%-70% during periods of quiet geomagnetic activity. For times of active geomagnetic conditions, helium concentrations near ~450 km altitude are estimated to decrease while oxygen concentrations increase. An investigation of the altitude structure in thermosphere mass density storm-time perturbations reveal the important effects of composition change with maximum perturbation occurring near the He/O transition region and a much weaker maximum occurring near the O/N2 transition region. However, evaluating helium behavior and its role as a dynamical tracer is not straightforward and model development is necessary to adequately establish the connection to specific dynamical processes. Fortunately recent efforts have led to the implementation of helium modules in the NCAR TIEGCM and TIME-GCM. In this invited talk, the simulated helium behavior and structure will be shown to reproduce observations (such as the wintertime helium bulge and storm-time response) and its

  18. Helium Evolution from the Transfer of Helium Saturated Propellant in Space

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich N.

    2000-01-01

    Helium evolution from the transfer of helium saturated propellant in space is quantified to determine its impact from creating a two-phase mixture in the transfer line. The transfer line is approximately 1/2 inch in diameter and 2400 inches in length comprised of the Fluid Interconnect System (FICS), the Orbiter Propellant Transfer System (OPTS) and the International Space Station (ISS) Propulsion Module (ISSPM). The propellant transfer rate is approximately two to three gallons per minute, and the supply tank pressure is maintained at approximately 250 psig.

  19. High efficiency pump for space helium transfer

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael G.; Swift, Walter L.; Sixsmith, Herbert

    1991-01-01

    A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space.

  20. Helium induced fine structure in the electronic spectra of anthracene derivatives doped into superfluid helium nanodroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pentlehner, D.; Slenczka, A., E-mail: alkwin.slenczka@chemie.uni-regensburg.de

    2015-01-07

    Electronic spectra of organic molecules doped into superfluid helium nanodroplets show characteristic features induced by the helium environment. Besides a solvent induced shift of the electronic transition frequency, in many cases, a spectral fine structure can be resolved for electronic and vibronic transitions which goes beyond the expected feature of a zero phonon line accompanied by a phonon wing as known from matrix isolation spectroscopy. The spectral shape of the zero phonon line and the helium induced phonon wing depends strongly on the dopant species. Phonon wings, for example, are reported ranging from single or multiple sharp transitions to broadmore » (Δν > 100 cm{sup −1}) diffuse signals. Despite the large number of example spectra in the literature, a quantitative understanding of the helium induced fine structure of the zero phonon line and the phonon wing is missing. Our approach is a systematic investigation of related molecular compounds, which may help to shed light on this key feature of microsolvation in superfluid helium droplets. This paper is part of a comparative study of the helium induced fine structure observed in electronic spectra of anthracene derivatives with particular emphasis on a spectrally sharp multiplet splitting at the electronic origin. In addition to previously discussed species, 9-cyanoanthracene and 9-chloroanthracene will be presented in this study for the first time.« less

  1. A new helium gas bearing turboexpander

    NASA Astrophysics Data System (ADS)

    Xiong, L. Y.; Chen, C. Z.; Liu, L. Q.; Hou, Y.; Wang, J.; Lin, M. F.

    2002-05-01

    A new helium gas bearing turboexpander of a helium refrigeration system used for space environment simulation experiments is described in this paper. The main design parameters and construction type of some key parts are presented. An improved calculation of thermodynamic efficiency and instability speed of this turboexpander has been obtained by a multiple objects optimization program. Experiments of examining mechanical and thermodynamic performance have been repeatedly conducted in the laboratory by using air at ambient and liquid nitrogen temperature, respectively. In order to predict the helium turboexpander performance, a similarity principles study has been developed. According to the laboratory and on-the-spot experiments, the mechanical and thermodynamic performances of this helium turboexpander are excellent.

  2. Nanofabrication with a helium ion microscope

    NASA Astrophysics Data System (ADS)

    Maas, Diederik; van Veldhoven, Emile; Chen, Ping; Sidorkin, Vadim; Salemink, Huub; van der Drift, Emile..; Alkemade, Paul

    2010-03-01

    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valuable signal for high-resolution imaging as well as a mechanism for very precise nanofabrication. The low proximity effects, due to the low yield of backscattered ions and the confinement of the forward scattered ions into a narrow cone, enable patterning of ultra-dense sub-10 nm structures. This paper presents various nanofabrication results obtained with direct-write, with scanning helium ion beam lithography, and with helium ion beam induced deposition.

  3. Comparing simulations and test data of a radiation damaged charge-coupled device for the Euclid mission

    NASA Astrophysics Data System (ADS)

    Skottfelt, Jesper; Hall, David J.; Gow, Jason P. D.; Murray, Neil J.; Holland, Andrew D.; Prod'homme, Thibaut

    2017-04-01

    The visible imager instrument on board the Euclid mission is a weak-lensing experiment that depends on very precise shape measurements of distant galaxies obtained by a large charge-coupled device (CCD) array. Due to the harsh radiative environment outside the Earth's atmosphere, it is anticipated that the CCDs over the mission lifetime will be degraded to an extent that these measurements will be possible only through the correction of radiation damage effects. We have therefore created a Monte Carlo model that simulates the physical processes taking place when transferring signals through a radiation-damaged CCD. The software is based on Shockley-Read-Hall theory and is made to mimic the physical properties in the CCD as closely as possible. The code runs on a single electrode level and takes the three-dimensional trap position, potential structure of the pixel, and multilevel clocking into account. A key element of the model is that it also takes device specific simulations of electron density as a direct input, thereby avoiding making any analytical assumptions about the size and density of the charge cloud. This paper illustrates how test data and simulated data can be compared in order to further our understanding of the positions and properties of the individual radiation-induced traps.

  4. Memory impairment, oxidative damage and apoptosis induced by space radiation: ameliorative potential of alpha-lipoic acid.

    PubMed

    Manda, Kailash; Ueno, Megumi; Anzai, Kazunori

    2008-03-05

    Exposure to high-energy particle radiation (HZE) may cause oxidative stress and cognitive impairment in the same manner that seen in aged mice. This phenomenon has raised the concerns about the safety of an extended manned mission into deep space where a significant portion of the radiation burden would come from HZE particle radiation. The present study aimed at investigating the role of alpha-lipoic acid against space radiation-induced oxidative stress and antioxidant status in cerebellum and its correlation with cognitive dysfunction. We observed spontaneous motor activities and spatial memory task of mice using pyroelectric infrared sensor and programmed video tracking system, respectively. Whole body irradiation of mice with high-LET (56)Fe beams (500 MeV/nucleon, 1.5 Gy) substantially impaired the reference memory at 30 day post-irradiation; however, no significant effect was observed on motor activities of mice. Acute intraperitoneal treatment of mice with alpha-lipoic acid prior to irradiation significantly attenuated such memory dysfunction. Radiation-induced apoptotic damage in cerebellum was examined using a neuronal-specific terminal deoxynucleotidyl transferase-mediated nick end-labeling method (NeuroTACS). Radiation-induced apoptotic and necrotic cell death of granule cells and Purkinje cells were inhibited significantly by alpha-lipoic acid pretreatment. Alpha-lipoic acid pretreatment exerted a very high magnitude of protection against radiation-induced augmentation of DNA damage (comet tail movement and serum 8-OHdG), lipid proxidation products (MDA+HAE) and protein carbonyls in mice cerebellum. Further, radiation-induced decline of non-protein sulfhydryl (NP-SH) contents of cerebellum and plasma ferric reducing power (FRAP) was also inhibited by alpha-lipoic acid pre-treatment. Results clearly indicate that alpha-lipoic acid is a potent neuroprotective antioxidant. Moreover, present finding also support the idea suggesting the cerebellar

  5. Radiation damage by light- and heavy-ion bombardment of single-crystal LiNbO₃

    DOE PAGES

    Huang, Hsu-Cheng; Zhang, Lihua; Malladi, Girish; ...

    2015-04-14

    In this work, a battery of analytical methods including in situ RBS/C, confocal micro-Raman, TEM/STEM, EDS, AFM, and optical microscopy were used to provide a comparative investigation of light- and heavy-ion radiation damage in single-crystal LiNbO₃. High (~MeV) and low (~100s keV) ion energies, corresponding to different stopping power mechanisms, were used and their associated damage events were observed. In addition, sequential irradiation of both ion species was also performed and their cumulative depth-dependent damage was determined. It was found that the contribution from electronic stopping by high-energy heavy ions gave rise to a lower critical fluence for damage formationmore » than for the case of low-energy irradiation. Such energy-dependent critical fluence of heavy-ion irradiation is two to three orders of magnitude smaller than that for the case of light-ion damage. In addition, materials amorphization and collision cascades were seen for heavy-ion irradiation, while for light ion, crystallinity remained at the highest fluence used in the experiment. The irradiation-induced damage is characterized by the formation of defect clusters, elastic strain, surface deformation, as well as change in elemental composition. In particular, the presence of nanometric-scale damage pockets results in increased RBS/C backscattered signal and the appearance of normally forbidden Raman phonon modes. The location of the highest density of damage is in good agreement with SRIM calculations. (author)« less

  6. Radiation damage by light- and heavy-ion bombardment of single-crystal LiNbO₃

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hsu-Cheng; Zhang, Lihua; Malladi, Girish

    In this work, a battery of analytical methods including in situ RBS/C, confocal micro-Raman, TEM/STEM, EDS, AFM, and optical microscopy were used to provide a comparative investigation of light- and heavy-ion radiation damage in single-crystal LiNbO₃. High (~MeV) and low (~100s keV) ion energies, corresponding to different stopping power mechanisms, were used and their associated damage events were observed. In addition, sequential irradiation of both ion species was also performed and their cumulative depth-dependent damage was determined. It was found that the contribution from electronic stopping by high-energy heavy ions gave rise to a lower critical fluence for damage formationmore » than for the case of low-energy irradiation. Such energy-dependent critical fluence of heavy-ion irradiation is two to three orders of magnitude smaller than that for the case of light-ion damage. In addition, materials amorphization and collision cascades were seen for heavy-ion irradiation, while for light ion, crystallinity remained at the highest fluence used in the experiment. The irradiation-induced damage is characterized by the formation of defect clusters, elastic strain, surface deformation, as well as change in elemental composition. In particular, the presence of nanometric-scale damage pockets results in increased RBS/C backscattered signal and the appearance of normally forbidden Raman phonon modes. The location of the highest density of damage is in good agreement with SRIM calculations. (author)« less

  7. Proton radiation damage experiment on P-Channel CCD for an X-ray CCD camera onboard the ASTRO-H satellite

    NASA Astrophysics Data System (ADS)

    Mori, Koji; Nishioka, Yusuke; Ohura, Satoshi; Koura, Yoshiaki; Yamauchi, Makoto; Nakajima, Hiroshi; Ueda, Shutaro; Kan, Hiroaki; Anabuki, Naohisa; Nagino, Ryo; Hayashida, Kiyoshi; Tsunemi, Hiroshi; Kohmura, Takayoshi; Ikeda, Shoma; Murakami, Hiroshi; Ozaki, Masanobu; Dotani, Tadayasu; Maeda, Yukie; Sagara, Kenshi

    2013-12-01

    We report on a proton radiation damage experiment on P-channel CCD newly developed for an X-ray CCD camera onboard the ASTRO-H satellite. The device was exposed up to 109 protons cm-2 at 6.7 MeV. The charge transfer inefficiency (CTI) was measured as a function of radiation dose. In comparison with the CTI currently measured in the CCD camera onboard the Suzaku satellite for 6 years, we confirmed that the new type of P-channel CCD is radiation tolerant enough for space use. We also confirmed that a charge-injection technique and lowering the operating temperature efficiently work to reduce the CTI for our device. A comparison with other P-channel CCD experiments is also discussed. We performed a proton radiation damage experiment on a new P-channel CCD. The device was exposed up to 109 protons cm-2 at 6.7 MeV. We confirmed that it is radiation tolerant enough for space use. We confirmed that a charge-injection technique reduces the CTI. We confirmed that lowering the operating temperature also reduces the CTI.

  8. Acoustic radiation force impulse (ARFI) elastography for detection of renal damage in children.

    PubMed

    Göya, Cemil; Hamidi, Cihad; Ece, Aydın; Okur, Mehmet Hanifi; Taşdemir, Bekir; Çetinçakmak, Mehmet Güli; Hattapoğlu, Salih; Teke, Memik; Şahin, Cahit

    2015-01-01

    Acoustic radiation force impulse (ARFI) imaging is a promising method for noninvasive evaluation of the renal parenchyma. To investigate the contribution of ARFI quantitative US elastography for the detection of renal damage in kidneys with and without vesicoureteral reflux (VUR). One hundred seventy-six kidneys of 88 children (46 male, 42 female) who had been referred for voiding cystourethrography and 20 healthy controls were prospectively investigated. Patients were assessed according to severity of renal damage on dimercaptosuccinic acid (DMSA) scintigraphy. Ninety-eight age- and gender-matched healthy children constituted the control group. Quantitative shear wave velocity (SWV) measurements were performed in the upper and lower poles and in the interpolar region of each kidney. DMSA scintigraphy was performed in 62 children (124 kidneys). Comparisons of SWV values of kidneys with and without renal damage and/or VUR were done. Significantly higher SWV values were found in non-damaged kidneys. Severely damaged kidneys had the lowest SWV values (P < 0.001). High-grade (grade V-IV) refluxing kidneys had the lowest SWV values, while non-refluxing kidneys had the highest values (P < 0.05). Significant negative correlations were found between the mean quantitative US elastography values and DMSA scarring score (r = -0.788, P < 0.001) and VUR grade (r = -0.634, P < 0.001). SWV values of the control kidneys were significantly higher than those of damaged kidneys (P < 0.05). Our findings suggest decreasing SWV of renal units with increasing grades of vesicoureteric reflux, increasing DMSA-assessed renal damage and decreasing DMSA-assessed differential function.

  9. Qualification and implementation of line ratio spectroscopy on helium as plasma edge diagnostic at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Griener, M.; Muñoz Burgos, J. M.; Cavedon, M.; Birkenmeier, G.; Dux, R.; Kurzan, B.; Schmitz, O.; Sieglin, B.; Stroth, U.; Viezzer, E.; Wolfrum, E.; the ASDEX Upgrade Team

    2018-02-01

    A new thermal helium beam diagnostic has been implemented as plasma edge diagnostic at the ASDEX Upgrade (AUG) tokamak. The helium beam is built to measure the electron density n e and temperature T e simultaneously with high spatial and temporal resolution in order to investigate steady-state as well as fast transport processes in the plasma edge region. For the thermal helium beam emission line ratio spectroscopy, neutral helium is locally injected into the plasma by a piezo valve. This enabled the measurement of the line resolved emission intensities of seven He I lines for different plasma scenarios in AUG. The different line ratios can be used together with a collisional-radiative model (CRM) to reconstruct the underlying electron temperature and density. Ratios from the same spin species are used for the electron density reconstruction, whereas spin mixed ratios are sensitive to electron temperature changes. The different line ratios as well as different CRMs are tested for their suitability for diagnostic applications. Furthermore their consistency in calculating identical parameters is validated and the resulting profiles are compared to other available diagnostics at AUG.

  10. Irradiation creep and microstructural changes in an advanced ODS ferritic steel during helium implantation under stress

    NASA Astrophysics Data System (ADS)

    Chen, J.; Pouchon, M. A.; Kimura, A.; Jung, P.; Hoffelner, W.

    2009-04-01

    An advanced oxide dispersion strengthened (ODS) ferritic steel with very fine oxide particles has been homogeneously implanted with helium under uniaxial tensile stresses from 20 to 250 MPa to a maximum dose of about 0.38 dpa (1650 appm-He) with displacement damage rates of 4.4 × 10 -6 dpa/s at temperatures of 573 and 773 K. The samples were in the form of miniaturized dog-bones, where during the helium implantation the straining and the electrical resistance were monitored simultaneously. Creep compliances were measured to be 4.0 × 10 -6 and 11 × 10 -6 dpa -1 MPa -1 at 573 and 773 K, respectively. The resistivity of ODS steel samples decreased with dose, indicating segregation and/or precipitation. Evolution of microstructure during helium implantation was studied in detail by TEM. The effects of ODS particle size on irradiation creep and microstructural changes was investigated by comparing the results from the present advanced ODS (K1) to a commercial ODS ferritic steels (PM2000) with much bigger oxide particles.

  11. Space Photovoltaic Research and Technology 1983. High Efficiency, Radiation Damage, and Blanket Technology

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This three day conference, sixth in a series that began in 1974, was held at the NASA Lewis Research Center on October 18-20, 1983. The conference provided a forum for the discussion of space photovoltaic systems, their research status, and program goals. Papers were presented and workshops were held in a variety of technology areas, including basic cell research, advanced blanket technology, and radiation damage.

  12. Radiation-damage-assisted ferroelectric domain structuring in magnesium-doped lithium niobate

    NASA Astrophysics Data System (ADS)

    Jentjens, L.; Peithmann, K.; Maier, K.; Steigerwald, H.; Jungk, T.

    2009-06-01

    Irradiation of 5% magnesium-doped lithium niobate crystals (LiNbO3:Mg) with high-energy, low-mass 3He ions, which are transmitted through the crystal, changes the domain reversal properties of the material. This enables easier domain engineering compared to non-irradiated material and assists the formation of small-sized periodically poled domains in LiNbO3:Mg. Periodic domain structures exhibiting a width of ≈520 nm are obtained in radiation-damaged sections of the crystals. The ferroelectric poling behavior between irradiated and non-treated material is compared.

  13. NEUTRON RADIATION DAMAGE IN CCD CAMERAS AT JOINT EUROPEAN TORUS (JET).

    PubMed

    Milocco, Alberto; Conroy, Sean; Popovichev, Sergey; Sergienko, Gennady; Huber, Alexander

    2017-10-26

    The neutron and gamma radiations in large fusion reactors are responsible for damage to charged couple device (CCD) cameras deployed for applied diagnostics. Based on the ASTM guide E722-09, the 'equivalent 1 MeV neutron fluence in silicon' was calculated for a set of CCD cameras at the Joint European Torus. Such evaluations would be useful to good practice in the operation of the video systems. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Previous design restraints and radiation damage effects of low energy particles

    NASA Technical Reports Server (NTRS)

    Trainor, J. H.

    1972-01-01

    Spacecraft design fluences and damage by low energy electrons and protons are summarized. For electron energies 5 MeV, the design fluence is 10 to the 11th power electrons/sq cm; for energies 5 MeV, the integral spectrum is assumed to go as 1/E sq. The design fluences for proton energies 30 MeV is 1.5 x 10 to the 9th power protons/sq cm; for energies 100 MeV, it is 5 x 10 to the 14th power protons/sq cm. The radioisotope thermoelectric generator gamma and neutron radiation constraints are listed. Damage due to electron energies 0.5 MeV and proton energies 10 MeV are summarized for effects on spacecraft thermal surfaces, reflective surfaces, and refractive materials. The high frequency noise figure for field effect transistors may increase markedly, and another effect is the buildup of charge on insulating surfaces, resulting in large electric fields.

  15. Proton and helium ion radiotherapy for meningioma tumors: a Monte Carlo-based treatment planning comparison.

    PubMed

    Tessonnier, Thomas; Mairani, Andrea; Chen, Wenjing; Sala, Paola; Cerutti, Francesco; Ferrari, Alfredo; Haberer, Thomas; Debus, Jürgen; Parodi, Katia

    2018-01-09

    Due to their favorable physical and biological properties, helium ion beams are increasingly considered a promising alternative to proton beams for radiation therapy. Hence, this work aims at comparing in-silico the treatment of brain and ocular meningiomas with protons and helium ions, using for the first time a dedicated Monte Carlo (MC) based treatment planning engine (MCTP) thoroughly validated both in terms of physical and biological models. Starting from clinical treatment plans of four patients undergoing proton therapy with a fixed relative biological effectiveness (RBE) of 1.1 and a fraction dose of 1.8 Gy(RBE), new treatment plans were optimized with MCTP for both protons (with variable and fixed RBE) and helium ions (with variable RBE) under the same constraints derived from the initial clinical plans. The resulting dose distributions were dosimetrically compared in terms of dose volume histograms (DVH) parameters for the planning target volume (PTV) and the organs at risk (OARs), as well as dose difference maps. In most of the cases helium ion plans provided a similar PTV coverage as protons with a consistent trend of superior OAR sparing. The latter finding was attributed to the ability of helium ions to offer sharper distal and lateral dose fall-offs, as well as a more favorable differential RBE variation in target and normal tissue. Although more studies are needed to investigate the clinical potential of helium ions for different tumour entities, the results of this work based on an experimentally validated MC engine support the promise of this modality with state-of-the-art pencil beam scanning delivery, especially in case of tumours growing in close proximity of multiple OARs such as meningiomas.

  16. Molecular dynamics modeling of helium bubbles in austenitic steels

    NASA Astrophysics Data System (ADS)

    Jelea, A.

    2018-06-01

    The austenitic steel devices from pressurized water reactors are continuously subjected to neutron irradiation that produces crystalline point defects and helium atoms in the steel matrix. These species evolve into large defects such as dislocation loops and helium filled bubbles. This paper analyzes, through molecular dynamics simulations with recently developed interatomic potentials, the impact of the helium/steel interface on the helium behavior in nanosize bubbles trapped in an austenitic steel matrix. It is shown that the repulsive helium-steel interactions induce higher pressures in the bubble compared to bulk helium at the same temperature and average density. A new equation of state for helium is proposed in order to take into account these interface effects.

  17. The adsorption of helium atoms on coronene cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurzthaler, Thomas; Rasul, Bilal; Kuhn, Martin

    2016-08-14

    We report the first experimental study of the attachment of multiple foreign atoms to a cationic polycyclic aromatic hydrocarbon (PAH). The chosen PAH was coronene, C{sub 24}H{sub 12}, which was added to liquid helium nanodroplets and then subjected to electron bombardment. Using mass spectrometry, coronene cations decorated with helium atoms were clearly seen and the spectrum shows peaks with anomalously high intensities (“magic number” peaks), which represent ion-helium complexes with added stability. The data suggest the formation of a rigid helium layer consisting of 38 helium atoms that completely cover both faces of the coronene ion. Additional magic numbers canmore » be seen for the further addition of 3 and 6 helium atoms, which are thought to attach to the edge of the coronene. The observation of magic numbers for the addition of 38 and 44 helium atoms is in good agreement with a recent path integral Monte Carlo prediction for helium atoms on neutral coronene. An understanding of how atoms and molecules attach to PAH ions is important for a number of reasons including the potential role such complexes might play in the chemistry of the interstellar medium.« less

  18. Helium sell-off risks future supply

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2010-03-01

    The US must stop selling off its helium reserves so that the country has enough of the gas to meet the needs of researchers and medical programmes, warns a report by the National Academy of Sciences (NAS). The report, entitled "Selling the Nation's Helium Reserve", says that failure to halt the sale of helium could lead to a drop in supply of the gas, which is vital for research into magnetic resonance imaging (MRI) techniques and low-temperature physics.

  19. Approximating the Helium Wavefunction in Positronium-Helium Scattering

    NASA Technical Reports Server (NTRS)

    DiRienzi, Joseph; Drachman, Richard J.

    2003-01-01

    In the Kohn variational treatment of the positronium- hydrogen scattering problem the scattering wave function is approximated by an expansion in some appropriate basis set, but the target and projectile wave functions are known exactly. In the positronium-helium case, however, a difficulty immediately arises in that the wave function of the helium target atom is not known exactly, and there are several ways to deal with the associated eigenvalue in formulating the variational scattering equations to be solved. In this work we will use the Kohn variational principle in the static exchange approximation to d e t e e the zero-energy scattering length for the Ps-He system, using a suite of approximate target functions. The results we obtain will be compared with each other and with corresponding values found by other approximation techniques.

  20. Radiation-Induced Damage and Recovery of Ultra-Nanocrystalline Diamond: Toward Applications in Harsh Environments

    DOE PAGES

    Martin, Aiden A.; Filevich, Jorge; Straw, Marcus; ...

    2017-10-23

    Ultra-nanocrystalline diamond (UNCD) is increasingly being used in the fabrication of devices and coatings due to its excellent tribological properties, corrosion resistance, and biocompatibility. Here in this work, we study its response to irradiation with kiloelectronvolt electrons as a controlled model for extreme ionizing environments. Real time Raman spectroscopy reveals that the radiation-damage mechanism entails dehydrogenation of UNCD grain boundaries, and we show that the damage can be recovered by annealing at 883 K. Lastly, our results have significant practical implications for the implementation of UNCD in extreme environment applications, and indicate that the films can be used as radiationmore » sensors.« less

  1. Radiation-Induced Damage and Recovery of Ultra-Nanocrystalline Diamond: Toward Applications in Harsh Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Aiden A.; Filevich, Jorge; Straw, Marcus

    Ultra-nanocrystalline diamond (UNCD) is increasingly being used in the fabrication of devices and coatings due to its excellent tribological properties, corrosion resistance, and biocompatibility. Here in this work, we study its response to irradiation with kiloelectronvolt electrons as a controlled model for extreme ionizing environments. Real time Raman spectroscopy reveals that the radiation-damage mechanism entails dehydrogenation of UNCD grain boundaries, and we show that the damage can be recovered by annealing at 883 K. Lastly, our results have significant practical implications for the implementation of UNCD in extreme environment applications, and indicate that the films can be used as radiationmore » sensors.« less

  2. Ultraviolet radiation effects on the infrared damage rate of a thermal control coating

    NASA Technical Reports Server (NTRS)

    Bass, J. A.

    1972-01-01

    The effects of ultraviolet radiation on the infrared reflectance of ZnO silicone white thermal coatings were investigated. Narrow band ultraviolet radiation for wavelengths in the 2200A to 3500A range by a monochromator and a high pressure, 150-W Eimac xenon lamp. The sample was irradiated while in a vacuum of at least 0.000001 torr, and infrared reflectance was measured in situ with a spectroreflectometer at 19,500A. Reflectance degradation was studied as a function of wavelength, time, intensity, and dose. Damage was wavelength dependent at constant exposure, but no maximum was evident above the shortest wavelength investigated here. The degradation rate at constant intensity was an exponential function of time and varies with intensity.

  3. Commissioning of a new helium pipeline

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, participants cut the lines to helium-filled balloons. From left, they are Center Director Roy Bridges; Michael Butchko, president, SGS; Pierre Dufour, president and CEO, Air Liquide America Corporation; David Herst, director, Delta IV Launch Sites; Pamela Gillespie, executive administrator, office of Congressman Dave Weldon; and Col. Samuel Dick, representative of the 45th Space Wing. The nine-mile-long buried pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. It will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS), and Ramon Lugo, acting executive director, JPMO.

  4. Commissioning of a new helium pipeline

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, participants watch as helium-filled balloons take to the sky after their lines were cut. From left, they are Center Director Roy Bridges; Michael Butchko, president, SGS; Pierre Dufour, president and CEO, Air Liquide America Corporation; David Herst, director, Delta IV Launch Sites; Pamela Gillespie, executive administrator, office of Congressman Dave Weldon; and Col. Samuel Dick, representative of the 45th Space Wing. The nine-mile-long buried pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. It will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS), and Ramon Lugo, acting executive director, JPMO.

  5. Transparent Helium in Stripped Envelope Supernovae

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.; Morozova, Viktoriya S.

    2014-09-01

    Using simple arguments based on photometric light curves and velocity evolution, we propose that some stripped envelope supernovae (SNe) show signs that a significant fraction of their helium is effectively transparent. The main pieces of evidence are the relatively low velocities with little velocity evolution, as are expected deep inside an exploding star, along with temperatures that are too low to ionize helium. This means that the helium should not contribute to the shaping of the main SN light curve, and thus the total helium mass may be difficult to measure from simple light curve modeling. Conversely, such modeling may be more useful for constraining the mass of the carbon/oxygen core of the SN progenitor. Other stripped envelope SNe show higher velocities and larger velocity gradients, which require an additional opacity source (perhaps the mixing of heavier elements or radioactive nickel) to prevent the helium from being transparent. We discuss ways in which similar analysis can provide insights into the differences and similarities between SNe Ib and Ic, which will lead to a better understanding of their respective formation mechanisms.

  6. The optical effect of a semiconductor laser on protecting wheat from UV-B radiation damage.

    PubMed

    Qiu, Zong-Bo; Zhu, Xin-Jun; Li, Fang-Min; Liu, Xiao; Yue, Ming

    2007-07-01

    Lasers have been widely used in the field of biology along with the development of laser technology, but the mechanism of the bio-effect of lasers is not explicit. The objective of this paper was to test the optical effect of a laser on protecting wheat from UV-B damage. A patent instrument was employed to emit semiconductor laser (wavelength 650 nm) and incoherent red light, which was transformed from the semiconductor laser. The wavelength, power and lightfleck diameter of the incoherent red light are the same as those of the semiconductor laser. The semiconductor laser (wavelength 650 nm, power density 3.97 mW mm(-2)) and incoherent red light (wavelength 650 nm, power density 3.97 mW mm(-2)) directly irradiated the embryo of wheat seeds for 3 min respectively, and when the seedlings were 12-day-old they were irradiated by UV-B radiation (10.08 kJ m(-2)) for 12 h in the dark. Changes in the concentration of malondialdehyde (MDA), hydrogen peroxide (H(2)O(2)), glutathione (GSH), ascorbate (AsA), carotenoids (CAR), the production rate of superoxide radical (O(2)(-)), the activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) and the growth parameters of seedlings (plant height, leaf area and fresh weight) were measured to test the optical effect of the laser. The results showed that the incoherent red light treatment could not enhance the activities of SOD, POD and CAT and the concentration of AsA and CAR. When the plant cells were irradiated by UV-B, the incoherent red light treatment could not eliminate active oxygen and prevent lipid peroxidation in wheat. The results also clearly demonstrate that the plant DNA was damaged by UV-B radiation and semiconductor laser irradiance had the capability to protect plants from UV-B-induced DNA damage, while the incoherent red light could not. This is the first investigation reporting the optical effect of a semiconductor laser on protecting wheat from UV-B radiation damage.

  7. Analytical studies into radiation-induced starch damage in black and white peppers

    NASA Astrophysics Data System (ADS)

    Sharif, M. M.; Farkas, J.

    1993-07-01

    Temperature dependency of the apparent viscosity of heat-gelatinized suspensions of untreated and irradiated pepper samples has been investigated. There was a close linear correlation between the logaritm of "fluidity" /reciprocal of the apparent viscosity) and the reciprocal absolute temperature of the measurement. The slope of the regression line(the temperature dependence of fluidity) increased with the radiation dose. Gelatinization thermograms of aqueous suspensions of ground pepper samples were obtained by differential scanning calorimetry. Temperature characteristics of heat-gelatinization endotherms showed no significant differences between untreated and irradiated samples. A colorimetric method for damaged starch, the estimation of reducing power, and the alcohol-induced turbidity of aqueous extracts showed statistically significant increases of starch damage at doses higher than 4 kGy. These indices of starch-depolymerization have been changed less dramatically by irradiation than the apparent viscosity of the heat-gelatinized suspensions.

  8. Characterizing single isolated radiation-damage events from molecular dynamics via virtual diffraction methods

    DOE PAGES

    Stewart, James A.; Brookman, G.; Price, Patrick Michael; ...

    2018-04-25

    In this study, the evolution and characterization of single-isolated-ion-strikes are investigated by combining atomistic simulations with selected-area electron diffraction (SAED) patterns generated from these simulations. Five molecular dynamics simulations are performed for a single 20 keV primary knock-on atom in bulk crystalline Si. The resulting cascade damage is characterized in two complementary ways. First, the individual cascade events are conventionally quantified through the evolution of the number of defects and the atomic (volumetric) strain associated with these defect structures. These results show that (i) the radiation damage produced is consistent with the Norgett, Robinson, and Torrens model of damage productionmore » and (ii) there is a net positive volumetric strain associated with the cascade structures. Second, virtual SAED patterns are generated for the resulting cascade-damaged structures along several zone axes. The analysis of the corresponding diffraction patterns shows the SAED spots approximately doubling in size, on average, due to broadening induced by the defect structures. Furthermore, the SAED spots are observed to exhibit an average radial outward shift between 0.33% and 0.87% depending on the zone axis. Finally, this characterization approach, as utilized here, is a preliminary investigation in developing methodologies and opportunities to link experimental observations with atomistic simulations to elucidate microstructural damage states.« less

  9. Characterizing single isolated radiation-damage events from molecular dynamics via virtual diffraction methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, James A.; Brookman, G.; Price, Patrick Michael

    In this study, the evolution and characterization of single-isolated-ion-strikes are investigated by combining atomistic simulations with selected-area electron diffraction (SAED) patterns generated from these simulations. Five molecular dynamics simulations are performed for a single 20 keV primary knock-on atom in bulk crystalline Si. The resulting cascade damage is characterized in two complementary ways. First, the individual cascade events are conventionally quantified through the evolution of the number of defects and the atomic (volumetric) strain associated with these defect structures. These results show that (i) the radiation damage produced is consistent with the Norgett, Robinson, and Torrens model of damage productionmore » and (ii) there is a net positive volumetric strain associated with the cascade structures. Second, virtual SAED patterns are generated for the resulting cascade-damaged structures along several zone axes. The analysis of the corresponding diffraction patterns shows the SAED spots approximately doubling in size, on average, due to broadening induced by the defect structures. Furthermore, the SAED spots are observed to exhibit an average radial outward shift between 0.33% and 0.87% depending on the zone axis. Finally, this characterization approach, as utilized here, is a preliminary investigation in developing methodologies and opportunities to link experimental observations with atomistic simulations to elucidate microstructural damage states.« less

  10. A Generalized Approach to Model the Spectra and Radiation Dose Rate of Solar Particle Events on the Surface of Mars

    NASA Astrophysics Data System (ADS)

    Guo, Jingnan; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; McDole, Thoren; Kühl, Patrick; Appel, Jan C.; Matthiä, Daniel; Krauss, Johannes; Köhler, Jan

    2018-01-01

    For future human missions to Mars, it is important to study the surface radiation environment during extreme and elevated conditions. In the long term, it is mainly galactic cosmic rays (GCRs) modulated by solar activity that contribute to the radiation on the surface of Mars, but intense solar energetic particle (SEP) events may induce acute health effects. Such events may enhance the radiation level significantly and should be detected as immediately as possible to prevent severe damage to humans and equipment. However, the energetic particle environment on the Martian surface is significantly different from that in deep space due to the influence of the Martian atmosphere. Depending on the intensity and shape of the original solar particle spectra, as well as particle types, the surface spectra may induce entirely different radiation effects. In order to give immediate and accurate alerts while avoiding unnecessary ones, it is important to model and well understand the atmospheric effect on the incoming SEPs, including both protons and helium ions. In this paper, we have developed a generalized approach to quickly model the surface response of any given incoming proton/helium ion spectra and have applied it to a set of historical large solar events, thus providing insights into the possible variety of surface radiation environments that may be induced during SEP events. Based on the statistical study of more than 30 significant solar events, we have obtained an empirical model for estimating the surface dose rate directly from the intensities of a power-law SEP spectra.

  11. Stereo x-ray photogrammetry applied for prevention of sigmoid-colon damage caused by radiation from intrauterine sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuipers, T.

    1982-06-01

    Radiation therapy of cervix carcinoma is applied in this Institute by means of modified Stockholm method in combination with external beam irradiation. In 1968, parametrial portals were replaced by large planeparallel opposed fields extending cranially to LIII/LIV with central shielding in order to avoid overdosage in the area of intracavitary treatment. This resulted in a marked increased incidence of serere sigmoid-colon radiation lesions from 0.25% to 4%; predominantly in Stage I and II patients. Therefore two measures have been introduced: beginning in 1972 measures were taken to prevent the cranial displacement of the uterus during intracavitary treatment in order tomore » avoid shortening the distance between the radioactive sources and the sigmoid-colon; from 1973 stereo X ray photogrammetry (SRM) was applied for dose determinations at points of the sigmoid-colon, which were seen to be located close to the applicator. When SRM data indicated that a high dose at the sigmoid-colon might occur, treatment modifications enabled prevention of radiation damage. Change of position of the applicator was the first to be considered. In the last seven years no surgical intervention had to be performed because of a sigmoid-colon lesion resulting from an unexpected high radiation dose delivered by intrauterine sources. The local recurrence rate was not increased following treatment modifications for prevention of sigmoid-colon radiation damage.« less

  12. Neutron Radiation Damage Estimation in the Core Structure Base Metal of RSG GAS

    NASA Astrophysics Data System (ADS)

    Santa, S. A.; Suwoto

    2018-02-01

    Radiation damage in core structure of the Indonesian RGS GAS multi purpose reactor resulting from the reaction of fast and thermal neutrons with core material structure was investigated for the first time after almost 30 years in operation. The aim is to analyze the degradation level of the critical components of the RSG GAS reactor so that the remaining life of its component can be estimated. Evaluation results of critical components remaining life will be used as data ccompleteness for submission of reactor operating permit extension. Material damage analysis due to neutron radiation is performed for the core structure components made of AlMg3 material and bolts reinforcement of core structure made of SUS304. Material damage evaluation was done on Al and Fe as base metal of AlMg3 and SUS304, respectively. Neutron fluences are evaluated based on the assumption that neutron flux calculations of U3Si8-Al equilibrium core which is operated on power rated of 15 MW. Calculation result using SRAC2006 code of CITATION module shows the maximum total neutron flux and flux >0.1 MeV are 2.537E+14 n/cm2/s and 3.376E+13 n/cm2/s, respectively. It was located at CIP core center close to the fuel element. After operating up to the end of #89 core formation, the total neutron fluence and fluence >0.1 MeV were achieved 9.063E+22 and 1.269E+22 n/cm2, respectively. Those are related to material damage of Al and Fe as much as 17.91 and 10.06 dpa, respectively. Referring to the life time of Al-1100 material irradiated in the neutron field with thermal flux/total flux=1.7 which capable of accepting material damage up to 250 dpa, it was concluded that RSG GAS reactor core structure underwent 7.16% of its operating life span. It means that core structure of RSG GAS reactor is still capable to receive the total neutron fluence of 9.637E+22 n/cm2 or fluence >0.1 MeV of 5.672E+22 n/cm2.

  13. Quantitation of Radiation Induced Deletion and Recombination Events Associated with Repeated DNA Sequences

    NASA Technical Reports Server (NTRS)

    Sinden, Richard R.

    1999-01-01

    Manned exploration of space exposes the explorers to a complex and novel radiation environment. The galactic cosmic ray and trapped belt radiation (predominantly proton) components of this environment are relatively constant, and the variations with the solar cycle are well understood and predictable. The level of radiation encountered in low earth orbits is determined by several factors, including altitude, inclination of orbit with respect to the equator, and spacecraft shielding. At higher altitudes, and on a Mars mission, the level of radiation exposure will increase significantly. A significant fraction of the dose may be delivered by solar particle events which vary dramatically in dose rate and incident particle spectrum. High-LET radiation is of particular concern. High-LET radiation, a component of galactic cosmic rays (GCR), is comprised of a variety of charged particles of various energies (10 MeV/n to 10 GeV/n), including about 87% photons, 12% helium ions, and heavy ions (including iron). These high energy particles can cause significant damage to target cells. The different particle types and energies result in different patterns of energy deposition at the molecular and cellular level in a primary target cell. They can also cause significant damage to other, nearby cells as a result of secondary particles. Protons, for instance produce secondaries that include photons, neutrons, pions, heavy particles, as well as gamma rays. Heavy ions deposit energy in a "track" in which the magnitude of the damage varies as the particle loses energy. Heavy ions produce secondary delta rays, or electrons. The distribution of damage through tissue is described by a Bragg curve which will be characteristic for different energies. Needless to say there are differences in the RBE of protons and a particles. High-LET heavy ions are particularly damaging to cells as they do continual damage throughout their track. Differences in these energy deposition patterns can

  14. Analytical modeling of helium turbomachinery using FORTRAN 77

    NASA Astrophysics Data System (ADS)

    Balaji, Purushotham

    Advanced Generation IV modular reactors, including Very High Temperature Reactors (VHTRs), utilize helium as the working fluid, with a potential for high efficiency power production utilizing helium turbomachinery. Helium is chemically inert and nonradioactive which makes the gas ideal for a nuclear power-plant environment where radioactive leaks are a high concern. These properties of helium gas helps to increase the safety features as well as to decrease the aging process of plant components. The lack of sufficient helium turbomachinery data has made it difficult to study the vital role played by the gas turbine components of these VHTR powered cycles. Therefore, this research work focuses on predicting the performance of helium compressors. A FORTRAN77 program is developed to simulate helium compressor operation, including surge line prediction. The resulting design point and off design performance data can be used to develop compressor map files readable by Numerical Propulsion Simulation Software (NPSS). This multi-physics simulation software that was developed for propulsion system analysis has found applications in simulating power-plant cycles.

  15. Helium heater design for the helium direct cycle component test facility. [for gas-cooled nuclear reactor power plant

    NASA Technical Reports Server (NTRS)

    Larson, V. R.; Gunn, S. V.; Lee, J. C.

    1975-01-01

    The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.

  16. Radiation damage in a-SiO 2 exposed to intense positron pulses

    NASA Astrophysics Data System (ADS)

    Cassidy, D. B.; Mills, A. P.

    2007-08-01

    In addition to its numerous technological applications amorphous silica (a-SiO 2) is also well suited to the creation and study of exotic atoms such as positronium (Ps) and muonium. In particular, a dense Ps gas may be created by implanting an intense positron pulse into a porous a-SiO 2 sample. However, such positron pulses can constitute a significant dose of radiation, which may damage the sample. We have observed a reduction in the amount of Ps formed in a thin film of porous a-SiO 2 following irradiation by intense positron pulses, indicating the creation of paramagnetic centers. The data show that the primary effect of the irradiation is the inhibition of Ps formation, with no significant change in the subsequent Ps lifetime, from which we deduce that damage centers are created primarily in the bulk material and not on the internal surfaces of the pores, where they would be accessible to the long-lived Ps. We find that the damage is reversible, and that the system may be returned to its original state by heating to 700 K. The implications of these results for experiments with dense Ps in porous materials are discussed.

  17. A superfluid helium system for an LST IR experiment

    NASA Technical Reports Server (NTRS)

    Breckenridge, R. W., Jr.; Moore, R. W., Jr.

    1975-01-01

    The results are presented of a study program directed toward evaluating the problems associated with cooling an LST instrument to 2 K for a year by using superfluid helium as the cooling means. The results include the parametric analysis of systems using helium only, and systems using helium plus a shield cryogen. A baseline system, using helium only is described. The baseline system is sized for an instrument heat leak of 50 mw. It contains 71 Kg of superfluid helium and has a total, filled weight of 217 Kg. A brief assessment of the technical problems associated with a long life, spaceborne superfluid helium storage system is also made. It is concluded that a one year life, superfluid helium cooling system is feasible, pending experimental verification of a suitable low g vent system.

  18. Disruption mitigation with high-pressure helium gas injection on EAST tokamak

    NASA Astrophysics Data System (ADS)

    Chen, D. L.; Shen, B.; Granetz, R. S.; Qian, J. P.; Zhuang, H. D.; Zeng, L.; Duan, Y.; Shi, T.; Wang, H.; Sun, Y.; Xiao, B. J.

    2018-03-01

    High pressure noble gas injection is a promising technique to mitigate the effect of disruptions in tokamaks. In this paper, results of mitigation experiments with low-Z massive gas injection (helium) on the EAST tokamak are reported. A fast valve has been developed and successfully implemented on EAST, with valve response time  ⩽150 μs, capable of injecting up to 7 × 1022 particles, corresponding to 300 times the plasma inventory. Different amounts of helium gas were injected into stable plasmas in the preliminary experiments. It is seen that a small amount of helium gas (N_He≃ N_plasma ) can not terminate a discharge, but can trigger MHD activity. Injection of 40 times the plasma inventory impurity (N_He≃ 40× N_plasma ) can effectively radiate away part of the thermal energy and make the electron density increase rapidly. The mitigation result is that the current quench time and vertical displacement can both be reduced significantly, without resulting in significantly higher loop voltage. This also reduces the risk of runaway electron generation. As the amount of injected impurity gas increases, the gas penetration time decreases slowly and asymptotes to (˜7 ms). In addition, the impurity gas jet has also been injected into VDEs, which are more challenging to mitigate that stable plasmas.

  19. Ferulic acid (FA) abrogates γ-radiation induced oxidative stress and DNA damage by up-regulating nuclear translocation of Nrf2 and activation of NHEJ pathway.

    PubMed

    Das, Ujjal; Manna, Krishnendu; Khan, Amitava; Sinha, Mahuya; Biswas, Sushobhan; Sengupta, Aaveri; Chakraborty, Anindita; Dey, Sanjit

    2017-01-01

    The present study was aimed to evaluate the radioprotective effect of ferulic acid (FA), a naturally occurring plant flavonoid in terms of DNA damage and damage related alterations of repair pathways by gamma radiation. FA was administered at a dose of 50 mg/kg body weight for five consecutive days prior to exposing the swiss albino mice to a single dose of 10 Gy gamma radiation. Ionising radiation induces oxidative damage manifested by decreased expression of Cu, Zn-SOD (SOD stands for super oxide dismutase), Mn-SOD and catalase. Gamma radiation promulgated reactive oxygen species (ROS) mediated DNA damage and modified repair pathways. ROS enhanced nuclear translocation of p53, activated ATM (ataxia telangiectasia-mutated protein), increased expression of GADD45a (growth arrest and DNA-damage-inducible protein) gene and inactivated Non homologous end joining (NHEJ) repair pathway. The comet formation in irradiated mice peripheral blood mononuclear cells (PBMC) reiterated the DNA damage in IR exposed groups. FA pretreatment significantly prevented the comet formation and regulated the nuclear translocation of p53, inhibited ATM activation and expression of GADD45a gene. FA promoted the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and activated NHEJ repair pathway to overcome ROS mediated oxidative stress and DNA damage. Therefore, the current study stated that FA can challenge the oxidative stress by (i) inducing nuclear translocation of Nrf2, (ii) scavenging ROS, and (iii) activating NHEJ DNA repair process.

  20. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cakmak G.; Miller L.; Zorlu, F.

    2012-03-03

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH{submore » 2} groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH{sub 3} groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems.« less

  1. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: an FTIR microspectroscopic imaging study.

    PubMed

    Cakmak, Gulgun; Miller, Lisa M; Zorlu, Faruk; Severcan, Feride

    2012-04-15

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH(2) groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH(3) groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Evaluating experimental molecular physics studies of radiation damage in DNA*

    NASA Astrophysics Data System (ADS)

    Śmiałek, Małgorzata A.

    2016-11-01

    The field of Atomic and Molecular Physics (AMP) is a mature field exploring the spectroscopy, excitation, ionisation of atoms and molecules in all three phases. Understanding of the spectroscopy and collisional dynamics of AMP has been fundamental to the development and application of quantum mechanics and is applied across a broad range of disparate disciplines including atmospheric sciences, astrochemistry, combustion and environmental science, and in central to core technologies such as semiconductor fabrications, nanotechnology and plasma processing. In recent years the molecular physics also started significantly contributing to the area of the radiation damage at molecular level and thus cancer therapy improvement through both experimental and theoretical advances, developing new damage measurement and analysis techniques. It is therefore worth to summarise and highlight the most prominent findings from the AMP community that contribute towards better understanding of the fundamental processes in biologically-relevant systems as well as to comment on the experimental challenges that were met for more complex investigation targets. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic, B. Sivaraman.

  3. Thermal desorption behavior of helium in aged titanium tritide films

    NASA Astrophysics Data System (ADS)

    Cheng, G. J.; Shi, L. Q.; Zhou, X. S.; Liang, J. H.; Wang, W. D.; Long, X. G.; Yang, B. F.; Peng, S. M.

    2015-11-01

    The desorption behavior of helium in TiT(1.5∼1.8)-x3Hex film samples (x = 0.0022-0.22) was investigated by thermal desorption technique in vacuum condition in this paper. The thermal helium desorption spectrometry (THDS) of aging titanium tritide films prepared by electron beam evaporation revealed that, depending on the decayed 3He concentration in the samples, there are more than four states of helium existing in the films. The divided four zones in THDS based on helium states represent respectively: (1) the mobile single helium atoms with low activation energy in all aging samples resulted from the interstitial sites or dissociated from interstitial clusters, loops and dislocations, (2) helium bubbles inside the grain lattices, (3) helium bubbles in the grain boundaries and interconnected networks of dislocations in the helium concentration of 3Hegen/Ti > 0.0094, and (4) helium bubbles near or linked to the film surface by interconnected channel for later aging stage with 3Hegen/Ti > 0.18. The proportion of helium desorption in each zone was estimated, and dissociated energies of helium for different trapping states were given.

  4. Sonic Helium Detectors in the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Bossert, R. J.

    2006-04-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years.

  5. Nuclear radiation interference and damage effects in charged particle experiments for extended space missions.

    NASA Technical Reports Server (NTRS)

    Trainor, J. H.; Teegarden, B. J.

    1971-01-01

    Demonstration that meaningful galactic and solar cosmic radiation measurements can be carried out on deep space missions. The radioisotopic thermoelectric generators (RTGs) which must be used as a source of power and perhaps of heat are a problem, but with proper separation from the experiments, with orientation, and with some shielding the damage effects can be reduced to an acceptable level. The Pioneer spacecraft are crucial in that they are targeted at the heart of Jupiter's radiation belts, and should supply the details of those belts. The subsequent Grand Tour opportunities can be selected for those periods which result in larger distances of closest approach to Jupiter if necessary.

  6. Advanced helium magnetometer for space applications

    NASA Technical Reports Server (NTRS)

    Slocum, Robert E.

    1987-01-01

    The goal of this effort was demonstration of the concepts for an advanced helium magnetometer which meets the demands of future NASA earth orbiting, interplanetary, solar, and interstellar missions. The technical effort focused on optical pumping of helium with tunable solid state lasers. We were able to demonstrate the concept of a laser pumped helium magnetometer with improved accuracy, low power, and sensitivity of the order of 1 pT. A number of technical approaches were investigated for building a solid state laser tunable to the helium absorption line at 1083 nm. The laser selected was an Nd-doped LNA crystal pumped by a diode laser. Two laboratory versions of the lanthanum neodymium hexa-aluminate (LNA) laser were fabricated and used to conduct optical pumping experiments in helium and demonstrate laser pumped magnetometer concepts for both the low field vector mode and the scalar mode of operation. A digital resonance spectrometer was designed and built in order to evaluate the helium resonance signals and observe scalar magnetometer operation. The results indicate that the laser pumped sensor in the VHM mode is 45 times more sensitive than a lamp pumped sensor for identical system noise levels. A study was made of typical laser pumped resonance signals in the conventional magnetic resonance mode. The laser pumped sensor was operated as a scalar magnetometer, and it is concluded that magnetometers with 1 pT sensitivity can be achieved with the use of laser pumping and stable laser pump sources.

  7. Dissecting the Molecular Mechanism of Ionizing Radiation-Induced Tissue Damage in the Feather Follicle

    PubMed Central

    Chen, Xi; Liao, Chunyan; Chu, Qiqi; Zhou, Guixuan; Lin, Xiang; Li, Xiaobo; Lu, Haijie; Xu, Benhua; Yue, Zhicao

    2014-01-01

    Ionizing radiation (IR) is a common therapeutic agent in cancer therapy. It damages normal tissue and causes side effects including dermatitis and mucositis. Here we use the feather follicle as a model to investigate the mechanism of IR-induced tissue damage, because any perturbation of feather growth will be clearly recorded in its regular yet complex morphology. We find that IR induces defects in feather formation in a dose-dependent manner. No abnormality was observed at 5 Gy. A transient, reversible perturbation of feather growth was induced at 10 Gy, leading to defects in the feather structure. This perturbation became irreversible at 20 Gy. Molecular and cellular analysis revealed P53 activation, DNA damage and repair, cell cycle arrest and apoptosis in the pathobiology. IR also induces patterning defects in feather formation, with disrupted branching morphogenesis. This perturbation is mediated by cytokine production and Stat1 activation, as manipulation of cytokine levels or ectopic Stat1 over-expression also led to irregular feather branching. Furthermore, AG-490, a chemical inhibitor of Stat1 signaling, can partially rescue IR-induced tissue damage. Our results suggest that the feather follicle could serve as a useful model to address the in vivo impact of the many mechanisms of IR-induced tissue damage. PMID:24586618

  8. CCD radiation damage in ESA Cosmic Visions missions: assessment and mitigation

    NASA Astrophysics Data System (ADS)

    Lumb, David H.

    2009-08-01

    Charge Coupled Device (CCD) imagers have been widely used in space-borne astronomical instruments. A frequent concern has been the radiation damage effects on the CCD charge transfer properties. We review some methods for assessing the Charge Transfer Inefficiency (CTI) in CCDs. Techniques to minimise degradation using background charge injection and p-channel CCD architectures are discussed. A critical review of the claims for p-channel architectures is presented. The performance advantage for p-channel CCD performance is shown to be lower than claimed previously. Finally we present some projections for the performance in the context of some future ESA missions.

  9. LRO-LAMP Observations of Lunar Exospheric Helium

    NASA Astrophysics Data System (ADS)

    Grava, Cesare; Retherford, Kurt D.; Hurley, Dana M.; Feldman, Paul D.; Gladstone, Randy; Greathouse, Thomas K.; Cook, Jason C.; Stern, Alan; Pryor, Wayne R.; Halekas, Jasper S.; Kaufmann, David E.

    2015-11-01

    We present results from Lunar Reconnaissance Orbiter’s (LRO) UV spectrograph LAMP (Lyman-Alpha Mapping Project) campaign to study the lunar atmosphere. Two kinds of off-nadir maneuvers (lateral rolls and pitches towards and opposite the direction of motion of LRO) were performed to search for resonantly scattering species, increasing the illuminated line-of-sight (and hence the signal from atoms resonantly scattering the solar photons) compared to previously reported LAMP “twilight observations” [Cook & Stern, 2014]. Helium was the only element distinguishable on a daily basis, and we present latitudinal profiles of its line-of-sight column density in December 2013. We compared the helium line-of-sight column densities with solar wind alpha particle fluxes measured from the ARTEMIS (Acceleration, Reconnection, Turbulence, & Electrodynamics of Moon’s Interaction with the Sun) twin spacecraft. Our data show a correlation with the solar wind alpha particle flux, confirming that the solar wind is the main source of the lunar helium, but not with a 1:1 relationship. Assuming that the lunar soil is saturated with helium atoms, our results suggest that not all of the incident alpha particles are converted to thermalized helium, allowing for a non-negligible fraction (~50 %) to escape as suprathermal helium or simply backscattered from the lunar surface. We also support the finding by Benna et al. [2015] and Hurley et al. [2015], that a non-zero contribution from endogenic helium, coming from radioactive decay of 232Th and 238U within the mantle, is present, and is estimated to be (4.5±1.2) x 106 He atoms cm-2 s-1. Finally, we compare LAMP-derived helium surface density with the one recorded by the mass spectrometer LACE (Lunar Atmospheric Composition Experiment) deployed on the lunar surface during the Apollo 17 mission, finding good agreement between the two measurements. These LRO off-nadir maneuvers allow LAMP to provide unique coverage of local solar time and

  10. The principal phenolic and alcoholic components of wine protect human lymphocytes against hydrogen peroxide- and ionizing radiation-induced DNA damage in vitro.

    PubMed

    Greenrod, William; Fenech, Michael

    2003-03-01

    We have tested the hypothesis that the alcoholic and phenolic components of wine are protective against the DNA-damaging and cytotoxic effects of hydrogen peroxide and gamma-radiation in vitro. The components of wine tested were ethanol, glycerol, a mixture of the phenolic compounds catechin and caffeic acid and tartaric acid, all at concentrations that were 2.5 or 10.0% of the concentration in a typical Australian white wine (Riesling). These components were tested individually or combined as a mixture and compared to a white wine stripped of polyphenols, as well as a Hanks balanced salt solution control, which was the diluent for the wine components. The effect of the components was tested in lymphocytes, using the cytokinesis-block micronucleus assay, after 30 min incubation in plasma or whole blood for the hydrogen peroxide or gamma-radiation challenge, respectively. The results obtained showed that ethanol, glycerol, the catechin-caffeic acid mixture, the mixture of all components and the stripped white wine significantly reduced the DNA-damaging effects of hydrogen peroxide and gamma-radiation (P = 0.043-0.001, ANOVA). The strongest protective effect against DNA damage by gamma-irradiation was observed for the catechin-caffeic acid mixture and the mixture of all components (30 and 32% reduction, respectively). These two treatments as well as ethanol produced the strongest protective effects against DNA damage by hydrogen peroxide (24, 25 and 18%, respectively). The protection provided by the mixture did not account for the expected additive protective effects of the individual components. Ethanol was the only component that significantly increased baseline DNA damage rate, however, this effect was negated in the mixture. In conclusion, our results suggest that the main phenolic and alcoholic components of wine can reduce the DNA-damaging effects of two important oxidants, i.e. hydrogen peroxide and ionizing radiation, in this physiologically relevant in vitro

  11. Long term radiological features of radiation-induced lung damage.

    PubMed

    Veiga, Catarina; Landau, David; McClelland, Jamie R; Ledermann, Jonathan A; Hawkes, David; Janes, Sam M; Devaraj, Anand

    2018-02-01

    To describe the radiological findings of radiation-induced lung damage (RILD) present on CT imaging of lung cancer patients 12 months after radical chemoradiation. Baseline and 12-month CT scans of 33 patients were reviewed from a phase I/II clinical trial of isotoxic chemoradiation (IDEAL CRT). CT findings were scored in three categories derived from eleven sub-categories: (1) parenchymal change, defined as the presence of consolidation, ground-glass opacities (GGOs), traction bronchiectasis and/or reticulation; (2) lung volume reduction, identified through reduction in lung height and/or distortions in fissures, diaphragm, anterior junction line and major airways anatomy, and (3) pleural changes, either thickening and/or effusion. Six patients were excluded from the analysis due to anatomical changes caused by partial lung collapse and abscess. All remaining 27 patients had radiological evidence of lung damage. The three categories, parenchymal change, shrinkage and pleural change were present in 100%, 96% and 82% respectively. All patients had at least two categories of change present and 72% all three. GGOs, reticulation and traction bronchiectasis were present in 44%, 52% and 37% of patients. Parenchymal change, lung shrinkage and pleural change are present in a high proportion of patients and are frequently identified in RILD. GGOs, reticulation and traction bronchiectasis are common at 12 months but not diagnostic. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Anisotropic mechanical properties of zircon and the effect of radiation damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beirau, Tobias; Nix, William D.; Bismayer, Ulrich

    2016-06-02

    Our study provides new insights into the relationship between radiation-dose-dependent structural damage, due to natural U and Th impurities, and the anisotropic mechanical properties (Poisson s ratio, elastic modulus and hardness) of zircon. Natural zircon samples from Sri Lanka (see Muarakami et al. 1991) and synthetic samples, covering a dose range of zero up to 6.8 x 10 18 -decays/g, have been studied by nanoindentation. Measurements along the [100] crystallographic direction and calculations, based on elastic stiffness constants determined by zkan (1976), revealed a general radiation-induced decrease in stiffness (~ 54 %) and hardness (~ 48 %) and an increasemore » of the Poisson s ratio (~ 54 %) with increasing dose. Additional indentations on selected samples along the [001] allowed one to follow the amorphization process to the point that the mechanical properties are isotropic. This work shows that the radiation-dose-dependent changes of the mechanical properties of zircon can be directly correlated with the amorphous fraction as determined by previous investigations with local and global probes (Rios et al. 2000a; Farnan and Salje 2001; Zhang and Salje 2001). This agreement, revealed by the different methods, indicates a huge influence of structural and even local phenomena on the macroscopic mechanical properties.« less

  13. A helium P-Cygni profile in RR Lyrae stars?

    NASA Astrophysics Data System (ADS)

    Gillet, D.; Sefyani, F. L.; Benhida, A.; Fabas, N.; Mathias, P.; Benkhaldoun, Z.; Daassou, A.

    2016-03-01

    Context. Until 2006, helium emission lines had never been observed in RR Lyrae stars. For the first time, a pre-maximum helium emission in 11 RRab stars was observed during rising light (around the pulsation phase 0.92) and the reappearance of helium emission near maximum light (phase 0.0) in one RRab star: RV Oct. This post-maximum emission has been only observed in the He I λ5875.66 (D3) line. Its intensity is very weak, and its profile mimics a P-Cygni profile with the emission peak centered at the laboratory wavelength. The physical explanation for this unexpected line profile has not been proposed yet. Aims: Using new observations of RR Lyr, we investigate the physical origin of the presence of a P-Cygni profile in the He I λ5875.66 (D3) line. Methods: High-resolution spectra of RR Lyr, collected with a spectrograph eShel/C14 at the Oukaïmeden Observatory (Morocco) in 2013, were analyzed to understand the origin of the observed P-Cygni profile at D3. Results: When the shock intensity is moderate, helium emission cannot be produced in the shock wake, and consequently, the two consecutive helium emissions (pre- and post-maximum light emissions) are not observed. This is the most frequent case. When the shock intensity becomes high enough, a pre-maximum He I emission first occurs, which can be followed by the appearance of a P-Cygni profile if the shock intensity is still strong in the high atmosphere. The observation of a P-Cygni profile means that the shock wave is already detached from the photosphere. It is shown that the shock strongly first decelerates between the pulsation phases 0.90 and 1.04 from 130 km s-1 to 60 km s-1, probably before accelerating again to 80 km s-1 near phase 1.30. Conclusions: The presence of the P-Cygni profile seems to be a natural consequence of the large extension of the expanding atmosphere, which is induced by strong (radiative) shock waves propagating toward the high atmosphere. This kind of P-Cygni profile has already been

  14. Oxidative damage in response to natural levels of UV-B radiation in larvae of the tropical sea urchin Tripneustes gratilla.

    PubMed

    Lister, Kathryn Naomi; Lamare, Miles D; Burritt, David J

    2010-01-01

    To assess the effects of UV radiation (280-400nm) on development, oxidative damage and antioxidant defence in larvae of the tropical sea urchin Tripneustes gratilla, a field experiment was conducted at two depths in Aitutaki, Cook Islands (18.85°S, 159.75°E) in May 2008. Compared with field controls (larvae shielded from UV-R but exposed to VIS-radiation), UV-B exposure resulted in developmental abnormality and increases in oxidative damage to proteins (but not lipids) in embryos of T. gratilla held at 1m depth. Results also indicated that larvae had the capacity to increase the activities of protective antioxidant enzymes when exposed to UV-B. The same trends in oxidative damage and antioxidant defence were observed for embryos held at 4m, although the differences were smaller and more variable. In contrast to UV-B exposure, larvae exposed to UV-A only showed no significant increases in abnormality or oxidative damage to lipids and proteins compared with field controls. This was true at both experimental depths. Furthermore, exposure to UV-A did not cause a significant increase in the activities of antioxidants. This study indicates that oxidative stress is an important response of tropical sea urchin larvae to exposure to UV radiation. © 2010 The Authors. Journal Compilation. The American Society of Photobiology.

  15. Laser induced fluorescence spectroscopy of the Ca dimer deposited on helium and mixed helium/xenon clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaveau, Marc-André; Pothier, Christophe; Briant, Marc

    2014-12-09

    We study how the laser induced fluorescence spectroscopy of the calcium dimer deposited on pure helium clusters is modified by the addition of xenon atoms. In the wavelength range between 365 and 385 nm, the Ca dimer is excited from its ground state up to two excited electronic states leading to its photodissociation in Ca({sup 1}P)+Ca({sup 1}S): this process is monitored by recording the Ca({sup 1}P) fluorescence at 422.7nm. One of these electronic states of Ca{sub 2} is a diexcited one correlating to the Ca(4s4p{sup 3}P(+Ca(4s3d{sup 3}D), the other one is a repulsive state correlating to the Ca(4s4p1P)+Ca(4s21S) asymptote, accountingmore » for the dissociation of Ca{sub 2} and the observation of the subsequent Ca({sup 1}P) emission. On pure helium clusters, the fluorescence exhibits the calcium atomic resonance line Ca({sup 1}S←{sup 1}P) at 422.7 nm (23652 cm{sup −1}) assigned to ejected calcium, and a narrow red sided band corresponding to calcium that remains solvated on the helium cluster. When adding xenon atoms to the helium clusters, the intensity of these two features decreases and a new spectral band appears on the red side of calcium resonance line; the intensity and the red shift of this component increase along with the xenon quantity deposited on the helium cluster: it is assigned to the emission of Ca({sup 1}P) associated with the small xenon aggregate embedded inside the helium cluster.« less

  16. A review of helium–hydrogen synergistic effects in radiation damage observed in fusion energy steels and an interaction model to guide future understanding

    DOE PAGES

    Marian, Jaime; Hoang, Tuan; Fluss, Michael; ...

    2014-12-29

    Here, under fusion reactor conditions, large quantities of irradiation defects and transmutation gases are produced per unit time by neutrons, resulting in accelerated degradation of structural candidate ferritic (F) and ferritic/martensitic (F/M) steels. Due to the lack of a suitable fusion neutron testing facility, we must rely on high-dose-rate ion-beam experiments and present-day crude modeling estimates. Of particular interest is the possibility of synergistic (positive feedback) effects on materials properties due to the simultaneous action of He, H, and displacement damage (dpa) during operation. In this paper we discuss the state-of-the-art in terms of the experimental understanding of synergistic effectsmore » and carry out simulations of triple-species irradiation under ion-beam conditions using first-of-its-kind modeling techniques. Although, state-of-the-art modeling and simulation is not sufficiently well developed to shed light on the experimental uncertainties, we are able to conclude that it is not clear whether synergistic effects, the evidence of which is still not conclusive, will ultimately play a critical role in material performance under fusion energy conditions. We review here some of the evidence for the synergistic effects of hydrogen in the presence of helium and displacement damage, and also include some recent data from our research. While the experimental results to date suggest possible mechanisms for the observed synergistic effects, it is only with more advanced modeling that we can hope to understand the details underlying the experimental observations. By employing modeling and simulation we propose an interaction model that is qualitatively consistent with experimental observations of dpa/He/H irradiation behavior. Our modeling, the results of which should be helpful to researchers going forward, points to gaps and voids in the current understanding of triple ion-beam irradiation effects (displacement damage produced

  17. Commissioning of a new helium pipeline

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Center Director Roy Bridges addresses the audience at the commissioning of a new high-pressure helium pipeline at Kennedy Space Center that will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. The nine-mile- long buried pipeline will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS); Col. Samuel Dick, representative of the 45th Space Wing; Ramon Lugo, acting executive director, JPMO; David Herst, director, Delta IV Launch Sites; Pierre Dufour, president and CEO, Air Liquide America Corporation; and Michael Butchko, president, SGS.

  18. Cooling-capacity characteristics of Helium-4 JT cryocoolers

    NASA Astrophysics Data System (ADS)

    Wang, Y. L.; Liu, D. L.; Gan, Z. H.; Guo, Y. X.; Shen, Y. W.; Chen, S. F.

    2017-12-01

    Cooling capacity of a Helium-4 JT cryocooler may be achieved at a temperature higher than liquid helium temperature. The latent cooling capacity, which should be obtained at liquid helium temperature, is defined as a special part of cooling capacity. With the thermodynamic analysis on steady working conditions of a Helium-4 JT cryocooler, its cooling capacity and temperature characteristics are presented systematically. The effects of precooling temperature and high pressure on the cooling capacity and latent cooling capacity are illustrated. Furthermore, the JT cryocoolers using hydrogen and neon as the working fluids are also discussed. It is shown that helium JT cryocooler has a special cooling capacity characteristic which does not exist in JT cryocoolers using other pure working fluids.

  19. [Local application of dimethyl sulfoxide at different concentrations to the prevention of radiation-induced damages in patient with cancer of the cervix uteri].

    PubMed

    Neklasova, N Iu; Sharinov, G M; Vinokurov, V L; Skrynditsa, G M

    2006-01-01

    to study the efficacy of dimethyl sulfoxide ((DMSO) at different concentrations in preventing radiation-induced rectal and urinary bladder damages in patients with cervix uteri cancer (CUC). combined radiation therapy (RT) was performed in 807 patients with CUC. In the control group (n = 221), RT was made, without applying radio-modified agents. An hour prior to a session of intracavitary irradiation, 10% DMSO solution was instilled into the rectum and urinary bladder in 113 patients and applications of metronidazole (MN) dissolved in 100% DSMO were made in 473 patients. Teleradiotherapy was performed, by using megavolt irradiation sources in the conventional fractionation mode; the total focal dose (TFD) was increased up to 40-46 Gy. Intracavitary irradiation was carried out on "AGAT-V" and "AGAT-VU" devices once weekly; the single focal dose in point A was 7 Gy; TFD was 49-56 Gy. 10% DMSO instillations reduced the incidence of late radiation-induced damages to the rectum and urinary bladder. In the control group, the incidence of these conditions was 19.0 and 9.5%, respectively; with the use of 10% DMSO, that was 8.8 and 7.1%. Applications of MN dissolved in 100% DMSO reduced the incidence of late radiation-induced damages to 1.7%. Local application of DMSO is a method for preventing late radiation-induced damages to the rectum and urinary bladder in patients with CUC. When the concentration of DMSO is increased, its preventive effect increases.

  20. Temperature Dependence of Irradiation Damage to Polythene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TODD, G.; WILD, G. A.

    1963-07-13

    Comparison of measurements of radiation damage to polythene exposed to a 4.3-Mev linear accelerator and in a reactor led to the conclusion that radiation damage of polythene is temperature dependent. Applications of radiation in raising or lowering the elastic modulus of polythene are suggested. (C.H.)