Sample records for hells canyon complex

  1. Mercury cycling in the Hells Canyon Complex of the Snake River, Idaho and Oregon

    USGS Publications Warehouse

    Clark, Gregory M.; Naymik, Jesse; Krabbenhoft, David P.; Eagles-Smith, Collin A.; Aiken, George R.; Marvin-DiPasquale, Mark C.; Harris, Reed C.; Myers, Ralph

    2016-07-11

    The Hells Canyon Complex (HCC) is a hydroelectric project built and operated by the Idaho Power Company (IPC) that consists of three dams on the Snake River along the Oregon and Idaho border (fig. 1). The dams have resulted in the creation of Brownlee, Oxbow, and Hells Canyon Reservoirs, which have a combined storage capacity of more than 1.5 million acre-feet and span about 90 miles of the Snake River. The Snake River upstream of and through the HCC historically has been impaired by water-quality issues related to excessive contributions of nutrients, algae, sediment, and other pollutants. In addition, historical data collected since the 1960s from the Snake River and tributaries near the HCC have documented high concentrations of mercury in fish tissue and sediment (Harris and Beals, 2013). Data collected from more recent investigations within the HCC continue to indicate elevated concentrations of mercury and methylmercury in the water column, bottom sediments, and biota (Clark and Maret, 1998; Essig, 2010; Fosness and others, 2013). As a result, Brownlee and Hells Canyon Reservoirs are listed as impaired for mercury by the State of Idaho, and the Snake River from the Oregon and Idaho border through the HCC downstream to the Oregon and Washington border is listed as impaired for mercury by the State of Oregon.

  2. Mineral Resources of the Hells Canyon Study Area, Wallowa County, Oregon, and Idaho and Adams Counties, Idaho

    USGS Publications Warehouse

    Simmons, George C.; Gualtieri, James L.; Close, Terry J.; Federspiel, Francis E.; Leszcykowski, Andrew M.

    2007-01-01

    Field studies supporting the evaluation of the mineral potential of the Hells Canyon study area were carried out by the U.S. Geological Survey and the U.S. Bureau of Mines in 1974-76 and 1979. The study area includes (1) the Hells Canyon Wilderness; (2) parts of the Snake River, Rapid River, and West Fork Rapid River Wild and Scenic Rivers; (3) lands included in the second Roadless Area Review and Evaluation (RARE II); and (4) part of the Hells Canyon National Recreation Area. The survey is one of a series of studies to appraise the suitability of the area for inclusion in the National Wilderness Preservation System as required by the Wilderness Act of 1964. The spectacular and mineralized area covers nearly 950 mi2 (2,460 km2) in northeast Oregon and west-central Idaho at the junction of the Northern Rocky Mountains and the Columbia Plateau.

  3. Identifying and Quantifying Sources of Fall Chinook Salmon Spawning Gravel to the Snake River in Hells Canyon

    NASA Astrophysics Data System (ADS)

    Welcker, C. W.; Burke, M.

    2015-12-01

    The Snake River in Hells Canyon supports a growing population of spawning Fall Chinook Salmon (Oncorhynchus tshawytscha) immediately downstream of the Hells Canyon Complex (HCC) of hydroelectric dams for the last 60 years. The long-term survival of this salmon run depends on the input of spawning gravel (25-150 mm) from local tributaries balancing the losses of spawning gravel through attrition and export out of the reach between the HCC and the Salmon River confluence. We are working to quantify the gravel input of these local tributaries at different time-scales and put this into the context of historical supply and transport. Long-term total sediment production rates of these tributaries estimated through various methods have varied by over 2 orders of magnitude, but we have recently completed 10Be work to constrain these estimates. We are measuring the change in storage of Fall Chinook spawning-size gravel through repeat multibeam echosounder surveys of the riverbed. The limited amount of repeat data collected to date has shown complex patterns of change in the riverbed. One possible driver of this complexity is the episodic and spatially variable nature of sediment inputs from these tributaries. We are attempting to quantify the frequency of the debris flows or floods capable of transporting spawning gravel through digitizing historic imagery of the last 60 years to determine the recurrence interval. We are measuring the magnitude of these events by surveying tributary fans pre and post-event to measure the sediment volume and particle size produced by specific events. These floods and debris flows are driven by extreme rainfall or snowmelt events, so we have also reconstructed historical meteorological conditions to identify the triggering conditions for transport, and identify the areas where snowmelt or rainfall is the more likely trigger. We are currently testing whether the unique bedrock geology of Hells Canyon can be used as a tracer to identify the source areas and downstream transport of sediment in the canyon. While the HCC has trapped gravel transported from the Snake River immediately upstream, this input has been quite low due to particle attrition across long transport distances and low transport capacity of the reach just upstream of the HCC.

  4. Exhumation Across Hells Canyon and the Arc-continent Boundary of Idaho-Oregon

    NASA Astrophysics Data System (ADS)

    Kahn, M.; Fayon, A. K.; Tikoff, B.

    2015-12-01

    Hells Canyon is located along the Idaho-Oregon border. It is proximal to the Salmon River suture zone, the Cretaceous-age western margin of North America that juxtaposes accreted terranes to the west and cratonic North America to the east. We applied (U-Th)/He zircon and apatite thermochronometry to samples along an EW transect across Hells Canyon. (U-Th)/He zircon and apatite ages record the time at which rocks cool below ~ 200 and 60 °C, respectively, providing information on both the timing and rate at which rocks cooled. Samples were collected with respect to structural position relative to the basal Columbia River basalt flow (Imnaha), dated at ~ 17.4 Ma, with most samples taken <100 m below the contact. Given that all localities were at the Earth's surface - and thus cooled below 60˚C - at ~ 17.4 Ma, the variation in obtained ages are assessed relative to this common datum. The easternmost sites were taken on the western margin of the Idaho batholith at Lava Buttes, ID at ~2,700 m elevation: The (U-Th)/He zircon and apatite ages are 64.9±4.6 Ma and 53.8±4.9 Ma, respectively. The westernmost sites occur in the Wallowa Mountains, Oregon, where the base of the Imnaha flow exists at ~3,000 m: The (U-Th)/He zircon and apatite ages are 136.2±42.8 Ma and 21.7±10.0 Ma. Additionally, the basal basalt contact occurs at ~900 m and ~600 m at the bottom of the Salmon River Canyon and Hells Canyon respectively. The (U-Th)/He zircon and apatite ages are 73.1±14.6 Ma and 20.0±7.4 Ma, respectively, for the Salmon River Canyon and 88.6±2.4 Ma and 3.4±0.6 Ma, respectively, for Hells Canyon. The data indicate that: 1) The western Wallowa (accreted) terrane cooled below ~200 °C prior to the formation of the Idaho batholith; 2) The western side of the Idaho batholith shows a rapid and consistent cooling between ~200 °C and ~60 °C in the Paleogene; and 3) Samples at low elevation in Hells Canyon cooled below 60˚C in the Pliocene, which requires reburial of the rocks after deposition of the basal portions of the Miocene Columbia River basalts. The young cooling age in Hells Canyon is consistent with recent geomorphological studies constraining incision rates.

  5. Visual resource inventory and Imnaha Valley study: Hells Canyon National Recreation Area

    Treesearch

    David H. Blau; Michael C. Bowie; Frank Hunsaker

    1979-01-01

    Hells Canyon National Recreation Area was established by an Act of Congress in December 1975. At that time, the U.S. Forest Service, which administers most of the land included, was given the responsibility of developing a Comprehensive Management Plan for the NRA within five years. In order to minimize future visual degradation, the Forest Service planning team for...

  6. Seismic profile analysis of sediment deposits in Brownlee and Hells Canyon Reservoirs near Cambridge, Idaho

    USGS Publications Warehouse

    Flocks, James; Kelso, Kyle; Fosness, Ryan; Welcker, Chris

    2014-01-01

    The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center, in cooperation with the USGS Idaho Water Science Center and the Idaho Power Company, collected high-resolution seismic reflection data in the Brownlee and Hells Canyon Reservoirs, in March of 2013.These reservoirs are located along the Snake River, and were constructed in 1958 (Brownlee) and 1967 (Hells Canyon). The purpose of the survey was to gain a better understanding of sediment accumulation within the reservoirs since their construction. The chirp system used in the survey was an EdgeTech Geo-Star Full Spectrum Sub-Bottom (FSSB) system coupled with an SB-424 towfish with a frequency range of 4 to 24 kHz. Approximately 325 kilometers of chirp data were collected, with water depths ranging from 0-90 meters. These reservoirs are characterized by very steep rock valley walls, very low flow rates, and minimal sediment input into the system. Sediments deposited in the reservoirs are characterized as highly fluid clays. Since the acoustic signal was not able to penetrate the rock substrate, only the thin veneer of these recent deposits were imaged. Results from the seismic survey indicate that throughout both of the Brownlee and Hells Canyon reservoirs the accumulation of sediments ranged from 0 to 2.5 m, with an average of 0.5 m. Areas of above average sediment accumulation may be related to lower slope, longer flooding history, and proximity to fluvial sources.

  7. Archive of digital chirp subbottom profile data collected during USGS Cruise 13GFP01, Brownlee Dam and Hells Canyon Reservoir, Idaho and Oregon, 2013

    USGS Publications Warehouse

    Forde, Arnell S.; Dadisman, Shawn V.; Flocks, James G.; Fosness, Ryan L.; Welcker, Chris; Kelso, Kyle W.

    2014-01-01

    From March 16 - 31, 2013, the U.S. Geological Survey in cooperation with the Idaho Power Company conducted a geophysical survey to investigate sediment deposits and long-term sediment transport within the Snake River from Brownlee Dam to Hells Canyon Reservoir, along the Idaho and Oregon border; this effort will help the USGS to better understand geologic processes. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Gained (showing a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansions of acronyms and abbreviations used in this report.

  8. Effects of Climatic Variability and Change on Upland Vegetation in the Blue Mountains [Chapter 6].

    Treesearch

    Becky K. Kerns; David C. Powell; Sabine Mellmann-Brown; Gunnar Carnwath; John Kim

    2017-01-01

    The Blue Mountains ecoregion (BME) extends from the Ochoco Mountains in central Oregon to Hells Canyon of the Snake River in extreme northeastern Oregon and adjacent Idaho, and then north to the deeply carved canyons and basalt rimrock of southeastern Washington (see fig. 1.1 in chapter 1). The BME consists of a series of mountain ranges occurring in a southwest to...

  9. 36 CFR 292.48 - Grazing activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... RECREATION AREAS Hells Canyon National Recreation Area-Federal Lands § 292.48 Grazing activities. The... and located to minimize their impact on scenic, cultural, fish and wildlife, and other resources in... conditions which protect and conserve riparian areas. ...

  10. 76 FR 22670 - Black Hills National Forest, Hell Canyon Ranger District, South Dakota, Vestal Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... landscape condition that reduces the potential for high severity wildfire adjacent to the at-risk community... density of pine trees and create a mosaic of structural stages across the landscape. Both commercial...

  11. Analyzing the Impacts of Dams on Riparian Ecosystems: A Review of Research Strategies and Their Relevance to the Snake River Through Hells Canyon

    PubMed Central

    Braatne, Jeffrey H.; Goater, Lori A.; Blair, Charles L.

    2007-01-01

    River damming provides a dominant human impact on river environments worldwide, and while local impacts of reservoir flooding are immediate, subsequent ecological impacts downstream can be extensive. In this article, we assess seven research strategies for analyzing the impacts of dams and river flow regulation on riparian ecosystems. These include spatial comparisons of (1) upstream versus downstream reaches, (2) progressive downstream patterns, or (3) the dammed river versus an adjacent free-flowing or differently regulated river(s). Temporal comparisons consider (4) pre- versus post-dam, or (5) sequential post-dam conditions. However, spatial comparisons are complicated by the fact that dams are not randomly located, and temporal comparisons are commonly limited by sparse historic information. As a result, comparative approaches are often correlative and vulnerable to confounding factors. To complement these analyses, (6) flow or sediment modifications can be implemented to test causal associations. Finally, (7) process-based modeling represents a predictive approach incorporating hydrogeomorphic processes and their biological consequences. In a case study of Hells Canyon, the upstream versus downstream comparison is confounded by a dramatic geomorphic transition. Comparison of the multiple reaches below the dams should be useful, and the comparison of Snake River with the adjacent free-flowing Salmon River may provide the strongest spatial comparison. A pre- versus post-dam comparison would provide the most direct study approach, but pre-dam information is limited to historic reports and archival photographs. We conclude that multiple study approaches are essential to provide confident interpretations of ecological impacts downstream from dams, and propose a comprehensive study for Hells Canyon that integrates multiple research strategies. PMID:18043964

  12. Geologic Map of Part of the Uinkaret Volcanic Field, Mohave County, Northwestern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Hamblin, W. Kenneth; Wellmeyer, Jessica L.; Dudash, Stephanie L.

    2001-01-01

    The geologic map of part of the Uinkaret Volcanic Field is one product of a cooperative project between the U.S. Geological Survey, the National Park Service, and the Bureau of Land Management to provide geologic information about this part of the Grand Canyon-Parashant Canyon National Monument of Arizona. The Uinkaret Volcanic Field is a unique part of western Grand Canyon where volcanic rocks have preserved the geomorphic development of the landscape. Most of the Grand Canyon, and parts of adjacent plateaus have already been mapped. This map completes one of the remaining areas where uniform quality geologic mapping was needed. A few dozen volcanoes and lava flows within the Grand Canyon are not included in the map area, but their geologic significance to Grand Canyon development is documented by Hamblin (1994) and mapped by Billingsley and Huntoon (1983) and Wenrich and others (1997). The geologic information in this report may be useful to resource managers of the Bureau of Land Management for range management, biological, archaeological, and flood control programs. The map area lies within the Shivwits, Uinkaret, and Kanab Plateaus, which are subplateaus of the Colorado Plateaus physiographic province (Billingsley and others, 1997), and is part of the Arizona Strip north of the Colorado River. The nearest settlement is Colorado City, Arizona, about 58 km (36 mi) north of the map area (fig. 1). Elevations range from about 2,447 m (8,029 ft) at Mount Trumbull, in the northwest quarter of the map area, to about 732 m (2,400 ft) in Cove Canyon, in the southeast quarter of the map area. Vehicle access is via the Toroweap and Mount Trumbull dirt roads (fig. 1). Unimproved dirt roads traverse other parts of the area except in designated wilderness. Extra fuel, two spare tires, and extra food and water are highly recommended for travelers in this remote area. The U.S. Bureau of Land Management, Arizona Strip Field Office, St. George, Utah manages most of the area. In addition, there are 12 sections belonging to the State of Arizona, about 12 sections are private land, and several sections are within the Grand Canyon National Park and Lake Mead National Recreational Area (U.S. Department of the Interior, 1993). The private land is in Potato Valley and Lake Valley, southwest and west of Mount Trumbull, and in Whitmore Canyon and Toroweap (Tuweap) Valley. Portions of the Sawmill Mountains, Mount Logan, and Mount Trumbull areas were originally established as part of the Dixie National Forest in 1904. In 1924, Dixie National Forest land became part of the Kaibab National Forest. Then on February 13, 1974, management of this part of the Kaibab National Forest was transferred to the Bureau of Land Management, Arizona Strip Field Office (personal commun. Becky Hammond, Bureau of Land Management, 1997). Mount Logan and part of the Sawmill Mountains are now designated as the Mount Logan Wilderness Area, and Mount Trumbull is designated as the Mount Trumbull Wilderness Area. Most of the map area is now part of the new Grand Canyon-Parashant Canyon National Monument established January 11, 2000. Lower elevations within Hells Hollow, Whitmore Canyon, Toroweap Valley, and Cove Canyon support a sparse growth of sagebrush, cactus, grass, and a variety of desert shrubs. Sagebrush, grass, cactus, cliffrose bush, pinion pine, and juniper trees thrive at elevations above 1,830 m (6,000 ft). Ponderosa pine and oak forests thrive at higher elevations in the Mount Trumbull and Mount Logan areas. Surface runoff within the map area drains south towards the Colorado River through Hells Hole, Hollow, Whitmore Canyon, Toroweap Valley, and Cove Canyon. Upper Toroweap Valley, upper Hells Hollow, and Whitmore Canyon are part of the physiographic area of Grand Canyon, but are not within Grand Canyon National Park (Billingsley and others, 1997). As of January 11, 2000, these areas are now part of the new Grand Canyon-Parashant

  13. 36 CFR 292.47 - Mining activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Mining activities. 292.47 Section 292.47 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE NATIONAL RECREATION AREAS Hells Canyon National Recreation Area-Federal Lands § 292.47 Mining activities. (a) Other...

  14. 36 CFR 292.47 - Mining activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Mining activities. 292.47 Section 292.47 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE NATIONAL RECREATION AREAS Hells Canyon National Recreation Area-Federal Lands § 292.47 Mining activities. (a) Other...

  15. 36 CFR 292.47 - Mining activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Mining activities. 292.47 Section 292.47 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE NATIONAL RECREATION AREAS Hells Canyon National Recreation Area-Federal Lands § 292.47 Mining activities. (a) Other...

  16. 36 CFR 292.47 - Mining activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Mining activities. 292.47 Section 292.47 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE NATIONAL RECREATION AREAS Hells Canyon National Recreation Area-Federal Lands § 292.47 Mining activities. (a) Other...

  17. 40 CFR 81.425 - Oregon.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Oregon. 81.425 Section 81.425... Visibility Is an Important Value § 81.425 Oregon. Area name Acreage Public Law establishing Federal land... Hells Canyon Wilderness, 192,700 acres overall, of which 108,900 acres are in Oregon, and 83,800 acres...

  18. 40 CFR 81.425 - Oregon.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Oregon. 81.425 Section 81.425... Visibility Is an Important Value § 81.425 Oregon. Area name Acreage Public Law establishing Federal land... Hells Canyon Wilderness, 192,700 acres overall, of which 108,900 acres are in Oregon, and 83,800 acres...

  19. 40 CFR 81.425 - Oregon.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Oregon. 81.425 Section 81.425... Visibility Is an Important Value § 81.425 Oregon. Area name Acreage Public Law establishing Federal land... Hells Canyon Wilderness, 192,700 acres overall, of which 108,900 acres are in Oregon, and 83,800 acres...

  20. 40 CFR 81.425 - Oregon.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Oregon. 81.425 Section 81.425... Visibility Is an Important Value § 81.425 Oregon. Area name Acreage Public Law establishing Federal land... Hells Canyon Wilderness, 192,700 acres overall, of which 108,900 acres are in Oregon, and 83,800 acres...

  1. 40 CFR 81.425 - Oregon.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Oregon. 81.425 Section 81.425... Visibility Is an Important Value § 81.425 Oregon. Area name Acreage Public Law establishing Federal land... Hells Canyon Wilderness, 192,700 acres overall, of which 108,900 acres are in Oregon, and 83,800 acres...

  2. 36 CFR 292.47 - Mining activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Mining activities. 292.47... RECREATION AREAS Hells Canyon National Recreation Area-Federal Lands § 292.47 Mining activities. (a) Other Lands. The standards and guidelines of this section apply to mining activities in the Other Lands...

  3. 36 CFR 292.44 - Use of motorized and mechanical equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Use of motorized and mechanical equipment. 292.44 Section 292.44 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE NATIONAL RECREATION AREAS Hells Canyon National Recreation Area-Federal Lands § 292.44 Use of...

  4. 36 CFR 292.44 - Use of motorized and mechanical equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Use of motorized and mechanical equipment. 292.44 Section 292.44 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE NATIONAL RECREATION AREAS Hells Canyon National Recreation Area-Federal Lands § 292.44 Use of...

  5. 36 CFR 292.44 - Use of motorized and mechanical equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Use of motorized and mechanical equipment. 292.44 Section 292.44 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE NATIONAL RECREATION AREAS Hells Canyon National Recreation Area-Federal Lands § 292.44 Use of...

  6. 36 CFR 292.24 - Determination of compliance and noncompliance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... land is assigned (§ 292.23); (ii) The use of development that exists or that is proposed for the property; (iii) A statement as to whether a change in the land category assignment will be necessary to..., DEPARTMENT OF AGRICULTURE NATIONAL RECREATION AREAS Hells Canyon National Recreation Area-Private Lands § 292...

  7. 36 CFR 292.40 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... amended (89 Stat. 1117, 16 U.S.C. 460gg et seq.). (b) Scope. Management of National Forest System lands... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Purpose and scope. 292.40... RECREATION AREAS Hells Canyon National Recreation Area-Federal Lands § 292.40 Purpose and scope. (a) Purpose...

  8. 36 CFR 292.40 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... amended (89 Stat. 1117, 16 U.S.C. 460gg et seq.). (b) Scope. Management of National Forest System lands... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Purpose and scope. 292.40... RECREATION AREAS Hells Canyon National Recreation Area-Federal Lands § 292.40 Purpose and scope. (a) Purpose...

  9. 36 CFR 292.40 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... amended (89 Stat. 1117, 16 U.S.C. 460gg et seq.). (b) Scope. Management of National Forest System lands... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Purpose and scope. 292.40... RECREATION AREAS Hells Canyon National Recreation Area-Federal Lands § 292.40 Purpose and scope. (a) Purpose...

  10. 36 CFR 292.40 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... amended (89 Stat. 1117, 16 U.S.C. 460gg et seq.). (b) Scope. Management of National Forest System lands... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Purpose and scope. 292.40... RECREATION AREAS Hells Canyon National Recreation Area-Federal Lands § 292.40 Purpose and scope. (a) Purpose...

  11. 36 CFR 292.40 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... amended (89 Stat. 1117, 16 U.S.C. 460gg et seq.). (b) Scope. Management of National Forest System lands... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Purpose and scope. 292.40... RECREATION AREAS Hells Canyon National Recreation Area-Federal Lands § 292.40 Purpose and scope. (a) Purpose...

  12. 78 FR 73186 - Wallowa-Whitman National Forests, Oregon; Lower Imnaha Rangeland Analysis

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ... Creek, Cow Creek, and a portion of the Snake River watersheds of the Hells Canyon National Recreation... associated watersheds downstream of the Imnaha River Bridge ``Cow Creek Bridge'', and watersheds from Deep... allotments: Cow Creek, Lone Pine, Rhodes Creek, and Toomey, all of which are in Wallowa County, Oregon. This...

  13. Anthropogenic Impacts of Recreational Use on Sandbars in Hells Canyon on the Snake River, Idaho

    NASA Astrophysics Data System (ADS)

    Morehead, M. D.

    2014-12-01

    Sandbars along large rivers are important cultural, recreational, and natural resources. In modern, historic and prehistoric times the sandbars have been used for camping, hunting, fishing and recreational activities. Sandbars are a dynamic geomorphic unit of the river system that stores and exchanges sand with the main river channel. Both natural and anthropogenic changes to river systems affect the size, shape and dynamics of sandbars. During high spring flows, the Snake River can resupply and build the sand bars. During the lower flows of the summer and fall the sand is redistributed to lower levels by natural and anthropogenic forces, where it can be remobilized by the river and exported from the bar. During the summer and fall high use season many people camp and recreate on the bars and redistribute the sand. This study utilizes change detection from repeat high resolution terrestrial LiDAR scanning surveys to study the impacts humans have on the sandbars in Hells Canyon. Nearly a decade of annual LiDAR and Bathymetric surveys were used to place these recreational impacts into the context of overall sandbar dynamics.

  14. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...

  15. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...

  16. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...

  17. Hells Canyon to the Bitterroot front: A transect from the accretionary margin eastward across the Idaho batholith

    USGS Publications Warehouse

    Lewis, Reed S.; Smith, Keegan L.; Gaschnig, Richard M.; LaMaskin, Todd A.; Lund, Karen; Gray, Keith D.; Tikoff, Basil; Stetson-Lee, Tor; Moore, Nicholas

    2014-01-01

    This field guide covers geology across north-central Idaho from the Snake River in the west across the Bitterroot Mountains to the east to near Missoula, Montana. The regional geology includes a much-modified Mesozoic accretionary boundary along the western side of Idaho across which allochthonous Permian to Cretaceous arc complexes of the Blue Mountains province to the west are juxtaposed against autochthonous Mesoproterozoic and Neoproterozoic North American metasedimentary assemblages intruded by Cretaceous and Paleogene plutons to the east. The accretionary boundary turns sharply near Orofino, Idaho, from north-trending in the south to west-trending, forming the Syringa embayment, then disappears westward under Miocene cover rocks of the Columbia River Basalt Group. The Coolwater culmination east of the Syringa embayment exposes allochthonous rocks well east of an ideal steep suture. North and east of it is the Bitterroot lobe of the Idaho batholith, which intruded Precambrian continental crust in the Cretaceous and Paleocene to form one of the classical North American Cordilleran batholiths. Eocene Challis plutons, products of the Tertiary western U.S. ignimbrite flare-up, intrude those batholith rocks. This guide describes the geology in three separate road logs: (1) The Wallowa terrane of the Blue Mountains province from White Bird, Idaho, west into Hells Canyon and faults that complicate the story; (2) the Mesozoic accretionary boundary from White Bird to the South Fork Clearwater River east of Grangeville and then north to Kooskia, Idaho; and (3) the bend in the accretionary boundary, the Coolwater culmination, and the Bitterroot lobe of the Idaho batholith along Highway 12 east from near Lewiston, Idaho, to Lolo, Montana.

  18. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring/summer chinook salmon Fall chinook salmon Hells Canyon 17060101 17060101 Imnaha 17060102 17060102 Lower...

  19. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring/summer chinook salmon Fall chinook salmon Hells Canyon 17060101 17060101 Imnaha 17060102 17060102 Lower...

  20. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring/summer chinook salmon Fall chinook salmon Hells Canyon 17060101 17060101 Imnaha 17060102 17060102 Lower...

  1. Historical and current perspectives on fish assemblages of the Snake River, Idaho and Wyoming

    USGS Publications Warehouse

    Maret, T.R.; Mebane, C.A.

    2005-01-01

    The Snake River is the tenth longest river in the United States, extending 1,667 km from its origin in Yellowstone National Park in western Wyoming to its union with the Columbia River at Pasco, Washington. Historically, the main-stem Snake River upstream from the Hells Canyon Complex supported at least 26 native fish species, including anadromous stocks of Chinook salmon Oncorhynchus tshawytscha, steelhead O. mykiss, Pacific lamprey Lampetra tridentata, and white sturgeon Acipenser transmontanus. Of these anadromous species, only the white sturgeon remains in the Snake River between the Hells Canyon Complex and Shoshone Falls. Today, much of the Snake River has been transformed into a river with numerous impoundments and flow diversions, increased pollutant loads, and elevated water temperatures. Current (1993-2002) fish assemblage collections from 15 sites along the Snake River and Henrys Fork contained 35 fish species, including 16 alien species. Many of these alien species such as catfish (Ictaluridae), carp (Cyprinidae), and sunfish (Centrarchidae) are adapted for warmwater impounded habitats. Currently, the Snake River supports 19 native species. An index of biotic integrity (IBI), developed to evaluate large rivers in the Northwest, was used to evaluate recent (1993-2002) fish collections from the Snake River and Henrys Fork in southern Idaho and western Wyoming. Index of biotic integrity site scores and component metrics revealed a decline in biotic integrity from upstream to downstream in both the Snake River and Henrys Fork. Two distinct groups of sites were evident that correspond to a range of IBI scores-an upper Snake River and Henrys Fork group with relatively high biotic integrity (mean IBI scores of 46-84) and a lower Snake River group with low biotic integrity (mean IBI scores of 10-29). Sites located in the lower Snake River exhibited fish assemblages that reflect poor-quality habitat where coldwater and sensitive species are rare or absent, and where tolerant, less desirable species predominate. Increases in percentages of agricultural land, total number of diversions, and number of constructed channels were strongly associated with these decreasing IBI scores.

  2. The Black Canyon of the Gunnison: Today and Yesterday

    USGS Publications Warehouse

    Hansen, Wallace R.

    1965-01-01

    Since the early visit of Captain John William Gunnison in the middle of the last century, the Black Canyon of the Gunnison has stirred mixed apprehension and wonder in the hearts of its viewers. It ranks high among the more awesome gorges of North America. Many great western canyons are as well remembered for their brightly colored walls as for their airy depths. Not so the Black Canyon. Though it is assuredly not black, the dark-gray tones of its walls and the hazy shadows of its gloomy depths join together to make its name well deserved. Its name conveys an impression, not a picture. After the first emotional impact of the canyon, the same questions come to the minds of most reflective viewers and in about the following order: How deep is the Black Canyon, how wide, how does it compare with other canyons, what are the rocks, how did it form, and how long did it take? Several western canyons exceed the Black Canyon in overall size. Some are longer; some are deeper; some are narrower; and a few have walls as steep. But no other canyon in North American combines the depth, narrowness, sheerness, and somber countenance of the Black Canyon. In many places the Black Canyon is as deep as it is wide. Between The Narrows and Chasm View in the Black Canyon of the Gunnison National Monument (fig. 15) it is much deeper than wide. Average depth in the monument is about 2,000 feet, ranging from a maximum of about 2,700 feet, north of Warner Point (which also is the greatest depth anywhere in the canyon), to a minimum of about 1,750 feet at The Narrows. The stretch of canyon between Pulpit Rock and Chasm View, including The Narrows, though the shallowest in the monument, is also the narrowest, has some of the steepest walls, and is, therefore, among the most impressive segments of the canyon (fig. 3). Profiles of several well-known western canyons are shown in figure 1. Deepest of these by far is Hells Canyon of the Snake, on the Idaho-Oregon border. Clearly, it dwarfs the Black Canyon in the immensity of its void, though its flaring walls lack the alarming verticality of the Black Canyon. Arizona's Grand Canyon of the Colorado is acknowledged as the greatest of them all; it is not as deep as Hells Canyon, but it is wider, longer, more rugged, and far more colorful. Its depth is two to three times that of the Black Canyon. Zion Canyon, Utah, combines depth, sheerness, serenity, and color in a chasm that ranges from capacious to extremely narrow. Its Narrows have a depth-to-width ratio unmatched by any other major American canyon. California's Yosemite Valley, in a setting of sylvan verdure, is unique among the gorges shown in profile in figure 1 in being the only glacial trough; its monolithic walls bear witness to the abrasive power of moving ice. Few cliffs in the world match the splendor of its El Capitan. Lodore Canyon, on the Green River in Dinosaur National Monument, Colorado, is best known, perhaps, for its noisy splashy rapids, first made famous by John Wesley Powell. Lodore Canyon also features towering cliffs of deep-red quartzite. Grand Canyon of the Yellowstone River, Wyoming, is noted for its great waterfalls, dashing river, and bright coloration. The Royal Gorge of the Arkansas River, Colorado, features the 'world's highest suspension bridge'. The profiles shown in figure 1 afford some basis for comparing one canyon with another. They cannot abstract in two dimensions the overall impression that each canyon makes. Color, vegetation, outcrop habit, vantage point, season of year, length of visit - even the roar of the river or lack thereof - all contribute to this highly personal effect. For a river of its size, the Gunnison has an unusually steep gradient through the Black Canyon. The river falls about 2,150 feet from the head of the canyon at Sapinero to the mouth at its junction with North Fork - a distance of about 50 miles and an average rate of fall of about 43 feet per mile. By comparison, the Green

  3. Formation of Ground Truth Databases and Related Studies and Regional Seismic Monitoring Research

    DTIC Science & Technology

    2006-06-01

    denoted by black circles) and those derived by the combined use of both IRIS and revised IDC for all 70 Chinese events. Arrows point towards the...IRIS data provide a large number of additional Lg amvals. Figure 45. Differences in epicentral location between the original REB (denoted by black ...Washington, USA Haystack Fork , Wyoming, USA Hells Canyon, Colorado, USA Hiawatha Road, Colorado, USA Hockley, Texas, USA Hailey, Idaho, USA Honiara

  4. The Irrigation Effect: How River Regulation Can Promote Some Riparian Vegetation.

    PubMed

    Gill, Karen M; Goater, Lori A; Braatne, Jeffrey H; Rood, Stewart B

    2018-04-01

    River regulation impacts riparian ecosystems by altering the hydrogeomorphic conditions that support streamside vegetation. Obligate riparian plants are often negatively impacted since they are ecological specialists with particular instream flow requirements. Conversely, facultative riparian plants are generalists and may be less vulnerable to river regulation, and could benefit from augmented flows that reduce drought stress during hot and dry periods. To consider this 'irrigation effect' we studied the facultative shrub, netleaf hackberry (Celtis reticulata), the predominant riparian plant along the Hells Canyon corridor of the Snake River, Idaho, USA, where dams produce hydropeaking, diurnal flow variation. Inventories of 235 cross-sectional transects revealed that hackberry was uncommon upstream from the reservoirs, sparse along the reservoir with seasonal draw-down and common along two reservoirs with stabilized water levels. Along the Snake River downstream, hackberry occurred in fairly continuous, dense bands along the high water line. In contrast, hackberry was sparsely scattered along the free-flowing Salmon River, where sandbar willow (Salix exigua), an obligate riparian shrub, was abundant. Below the confluence of the Snake and Salmon rivers, the abundance and distribution of hackberry were intermediate between the two upstream reaches. Thus, river regulation apparently benefited hackberry along the Snake River through Hells Canyon, probably due to diurnal pulsing that wets the riparian margin. We predict similar benefits for some other facultative riparian plants along other regulated rivers with hydropeaking during warm and dry intervals. To analyze the ecological impacts of hydropeaking we recommend assessing daily maxima, as well as daily mean river flows.

  5. Habitat quality of historic Snake River fall Chinook salmon spawning locations and implications for incubation survival: part 1, substrate quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanrahan, Timothy P.; Geist, David R.; Arntzen, Evan V.

    2005-07-01

    We evaluated substrate quality at two historic fall Chinook salmon (Oncorhynchus tshawytscha) spawning sites in the Snake River, Idaho, USA. The primary objective of this evaluation was to measure sediment permeability within these areas to determine the potential quality of the habitat in the event that anadromous salmonids are reintroduced to the upper Snake River. Riverbed sediments within the two sites in the upper Snake River were sampled using freeze cores and hydraulic slug tests. Sediment grain size distributions at both sites were typical of gravel-bed rivers with the surface layer coarser than the underlying substrate, suggesting the riverbed surfacemore » was armored. Despite the armored nature of the bed, the size of the largest material present on the riverbed surface was well within the size limit of material capable of being excavated by spawning fall Chinook salmon. The percentage of fines was low, suggesting good quality substrate for incubating salmon embryos. Geometric mean particle sizes found in this study compared to a 55% to 80% survival to emergence based on literature values. Hydraulic slug tests showed moderate to high hydraulic conductivity and were comparable to values from current fall Chinook salmon spawning areas in the Hells Canyon Reach of the Snake River and the Hanford Reach of the Columbia River. Predicted estimates of mean egg survival at both sites (48% and 74%) equaled or exceeded estimates from fall Chinook salmon spawning areas in the Hells Canyon Reach and the Hanford Reach.« less

  6. The Irrigation Effect: How River Regulation Can Promote Some Riparian Vegetation

    NASA Astrophysics Data System (ADS)

    Gill, Karen M.; Goater, Lori A.; Braatne, Jeffrey H.; Rood, Stewart B.

    2018-04-01

    River regulation impacts riparian ecosystems by altering the hydrogeomorphic conditions that support streamside vegetation. Obligate riparian plants are often negatively impacted since they are ecological specialists with particular instream flow requirements. Conversely, facultative riparian plants are generalists and may be less vulnerable to river regulation, and could benefit from augmented flows that reduce drought stress during hot and dry periods. To consider this `irrigation effect' we studied the facultative shrub, netleaf hackberry ( Celtis reticulata), the predominant riparian plant along the Hells Canyon corridor of the Snake River, Idaho, USA, where dams produce hydropeaking, diurnal flow variation. Inventories of 235 cross-sectional transects revealed that hackberry was uncommon upstream from the reservoirs, sparse along the reservoir with seasonal draw-down and common along two reservoirs with stabilized water levels. Along the Snake River downstream, hackberry occurred in fairly continuous, dense bands along the high water line. In contrast, hackberry was sparsely scattered along the free-flowing Salmon River, where sandbar willow ( Salix exigua), an obligate riparian shrub, was abundant. Below the confluence of the Snake and Salmon rivers, the abundance and distribution of hackberry were intermediate between the two upstream reaches. Thus, river regulation apparently benefited hackberry along the Snake River through Hells Canyon, probably due to diurnal pulsing that wets the riparian margin. We predict similar benefits for some other facultative riparian plants along other regulated rivers with hydropeaking during warm and dry intervals. To analyze the ecological impacts of hydropeaking we recommend assessing daily maxima, as well as daily mean river flows.

  7. Geomorphology of the Burnt River, eastern Oregon, USA: Topographic adjustments to tectonic and dynamic deformation

    NASA Astrophysics Data System (ADS)

    Morriss, Matthew Connor; Wegmann, Karl W.

    2017-02-01

    Eastern Oregon contains the deepest gorge in North America, where the Snake River cuts vertically down 2300 m. This deep gorge is known as Hells Canyon. A landscape containing such a topographic feature is likely undergoing relatively recent deformation. Study of the Burnt River, a tributary to the Snake River at the upstream end of Hells Canyon, yields data on active river incision in eastern Oregon, indicating that Quaternary faults are a first order control on regional landscape development. Through 1:24,000-scale geologic mapping, a 500,000-year record of fluvial incision along the Burnt River was constructed and is chronologically anchored by optically stimulated luminescence dating and tephrochronology analyses. A conceptual model of fluvial terrace formation was developed using these ages and likely applies to other non-glaciated catchments in eastern Oregon. Mapped terraces, inferred to have formed during glacial-interglacial cycles, provide constraints on rates of incision of the Burnt River. Incision through these terraces indicates that the Burnt River is down-cutting at 0.15 to 0.57 m kyr- 1. This incision appears to reflect a combination of local base-level adjustments tied to movement along the newly mapped Durkee fault and regional base-level control imposed by the downcutting of the Snake River. Deformation of terraces as young as 38.7 ± 5.1 ka indicates Quaternary activity along the Durkee fault, and when combined with topographic metrics (slope, relief, hypsometry, and stream-steepness), reveals a landscape in disequilibrium. Longer wavelength lithospheric dynamics (delamination and crustal foundering) that initiated in the Miocene may also be responsible for continued regional deformation of the Earth's surface.

  8. Review of paleomagnetic data from the Klamath Mountains, Blue Mountains, and Sierra Nevada; Implications for paleogeographic reconstructions

    USGS Publications Warehouse

    Mankinen, Edward A.; Irwin, William P.

    1990-01-01

    Paleomagnetic studies of the Klamath Mountains, Blue Mountains, Sierra Nevada, and northwestern Nevada pertain mostly to Jurassic and Cretaceous rocks, but some data also are available for Permian and Triassic rocks of the region. Large vertical-axis rotations are indicated for rocks in many of the terranes, but few studies show statistically significant latitudinal displacements. The most complete paleomagnetic record is from the Eastern Klamath terrane, which shows large post-Triassic clockwise rotations and virtual cessation of rotation by Early Cretaceous time, when accretion to the continent was completed. Data from Permian strata of the Eastern Klamath terrane indicate no paleolatitude anomaly, in contrast to preliminary results from coeval strata of Hells Canyon in the Blue Mountains region, which are suggestive of some southward movement. If these Hells Canyon results are confirmed, some of the terranes in these two regions must have been traveling on separate plates during late Paleozoic time. Data from Triassic and younger strata in the Blue Mountains region indicate paleolatitudes that are concordant with North America. Results from Triassic rocks of the Koipato Formation in west-central Nevada also indicate southward transport, but when this movement ceased is unknown. The Nevadan orogeny may have occurred in the Sierra Nevada during Jurassic accretion of the ophiolitic and volcanic-arc terranes of that province to the continent, whereas what has been considered to be the same orogeny in the Klamath Mountains may have occurred before accretion. Using the concordance of observed and expected paleomagnetic directions as a guide, the allochthonous Sierra Nevada, Klamath Mountains, and Blue Mountains composite terranes seem to have accreted to the continent sequentially from south to north.

  9. Geomorphic Change Detection and Quantification Using LiDAR, SONAR and RTK-GPS of Sandbars along the Snake River in Hells Canyon

    NASA Astrophysics Data System (ADS)

    Morehead, M. D.; Wilson, T.; Butler, M.; Seal, N.

    2012-12-01

    Sediment depletion downstream of large dams causes long-term geomorphic change along a river reach. Short- and long-term, natural and human-altered discharge patterns cause additional geomorphic change. Annual high-resolution, topobathymetry data are being collected on sandbars to track patterns of geomorphic and volumetric change through time. The sandbars are located along the Hells Canyon reach of the Snake River on the Oregon/Idaho border. The bars are downstream of a number of dams that have cut off the upstream source of sand to the Hells Canyon reach. We are combining LiDAR data for above water areas, multibeam SONAR data for below water areas and RTK-GPS data for the water/land interface and densely vegetated areas. Idaho Power has installed and surveyed a control point network to allow accurate positioning of the data and aligning of the various data sets. Data densities are a few points per square meter with the RTK-GPS, tens of points per square meter with the SONAR, and up to hundreds of points per square meter with the ground-based LiDAR. Automated and manual methods are being used to clean the point cloud data. A number of techniques are being used to convert the point clouds to grids, typically utilizing a unique technique for each data type (GPS, LiDAR, and SONAR). Surface roughness data are being used to determine the edges of the sand region, especially in the underwater area where we do not have visual confirmation of the boundary. After the different data types are gridded, they are combined to create seamless surfaces which are then analyzed. The morphologies of the central crest and the back channel of the sandbars are changing between years. In years with higher than average spring flows, the central crest of the sandbars increases in elevation and the back channels deepen. In years with moderate and low spring flows, the height of the crests decline and the back channels fill in. The flattening of the sandbars is attributed to natural redistribution processes and anthropogenic use. The cut-banks behind the sandbars have typically not retreated during the study period (8 years). Volumetric differences show that the cut/fill patterns are consistent over large areas of each bar. The annual morphologic changes are consistent among the sampled bars. The time series is just starting to be long enough to assess long-term trends in bar volume and morphology as opposed to inter-annual variability. The increased availability of high-density SONAR and LiDAR data has substantially aided our efforts to detect and quantify geomorphic change along the Snake River. The data editing and analysis techniques for these high-density data sets are advancing rapidly. Improvements in error analysis and within grid cell data proprieties are being developed to document the accuracy of the results and determine other morphological properties.

  10. Vegetation Description, Rare Plant Inventory, and Vegetation Monitoring for Craig Mountain, Idaho.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mancuso, Michael; Moseley, Robert

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston,more » Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals.« less

  11. Effects of a test flood on fishes of the Colorado River in Grand Canyon, Arizona

    USGS Publications Warehouse

    Valdez, R.A.; Hoffnagle, T.L.; McIvor, C.C.; McKinney, T.; Leibfried, W.C.

    2001-01-01

    A beach/habitat-building flow (i.e., test flood) of 1274 m3/s, released from Glen Canyon Dam down the Colorado River through Grand Canyon, had little effect on distribution, abundance, or movement of native fishes, and only short-term effects on densities of some nonnative species Shoreline and backwater catch rates of native fishes, including juvenile humpback chub (Gila cypha), flannelmouth suckers (Catostomus latipinnis), and bluehead suckers (C. discobolus), and all ages of speckled dace (Rhinichthys osculus), were not significantly different before and after the flood. Annual spring spawning migrations of flannelmouth suckers into the Paria River and endangered humpback chub into the Little Colorado River (LCR) took place during and after the flood, indicating no impediment to fish migrations. Pre-spawning adults staged in large slack water pools formed at the mouths of these tributaries during the flood. Net movement and habitat used by nine radio-tagged adult humpback chub during the flood were not significantly different from prior observations. Diet composition of adult humpback chub varied, but total biomass did not differ significantly before, during, and after the flood, indicating opportunistic feeding for a larger array of available food items displaced by the flood. Numbers of nonnative rainbow trout (Oncorhynchus mykiss) <152 mm total length decreased by ???8% in electrofishing samples from the dam tailwaters (0-25 km downstream of the dam) during the flood. Increased catch rates in the vicinity of the LCR (125 km downstream of the dam) and Hell's Hollow (314 km downstream of the dam) suggest that these young trout were displaced downstream by the flood, although displacement distance was unknown since some fish could have originated from local populations associated with intervening tributaries. Abundance, catch rate, body condition, and diet of adult rainbow trout in the dam tailwaters were not significantly affected by the flood, and the flood did not detrimentally affect spawning success; catch of young-of-year increased by 20% in summer following the flood. Post-flood catch rates of nonnative fathead minnows (Pimephales promelas) in shorelines and backwaters, and plains killifish (Fundulus zebrinus) in backwaters decreased in the vicinity of the LCR, and fathead minnows increased near Hell's Hollow, suggesting that the flood displaced this nonnative species. Densities of rainbow trout and fathead minnows recovered to pre-flood levels eight months after the flood by reinvasion from tributaries and reproduction in backwaters. We concluded that the flood was of insufficient magnitude to substantially reduce populations of nonnative fishes, but that similar managed floods can disadvantage alien predators and competitors and enhance survival of native fishes.

  12. Environmental and human impact on the sedimentary dynamic in the Rhone Delta subaquatic canyons (France-Switzerland)

    NASA Astrophysics Data System (ADS)

    Arantegui, A.; Corella, J. P.; Loizeau, J. L.; Anselmetti, F. S.; Girardclos, S.

    2012-04-01

    Deltas are very sensitive environments and highly vulnerable to variations in water discharge and the amount of suspended sediment load provided by the delta-forming currents. Human activities in the watershed, such as building of dams and irrigation ditches, or river bed deviations, may affect the discharge regime and sediment input, thus affecting delta growth. Underwater currents create deeply incised canyons cutting into the delta lobes. Understanding the sedimentary processes in these subaquatic canyons is crucial to reconstruct the fluvial evolution and human impact on deltaic environments and to carry out a geological risk assessment related to mass movements, which may affect underwater structures and civil infractructure. Recently acquired high-resolution multibeam bathymetry on the Rhone Delta in Lake Geneva (Sastre et al. 2010) revealed the complexity of the underwater morphology formed by active and inactive canyons first described by Forel (1892). In order to unravel the sedimentary processes and sedimentary evolution in these canyons, 27 sediment cores were retrieved in the distal part of each canyon and in the canyon floor/levee complex of the active canyon. Geophysical, sedimentological, geochemical and radiometric dating techniques were applied to analyse these cores. Preliminary data show that only the canyon originating at the current river mouth is active nowadays, while the others remain inactive since engineering works in the watershed occurred, confirming Sastre et al. (2010). However, alternating hemipelagic and turbiditic deposits on the easternmost canyons, evidence underflow processes during the last decades as well. Two canyons, which are located close to the Rhone river mouth, correspond to particularly interesting deeply incised crevasse channels formed when the underwater current broke through the outer bend of a meander in the proximal northern levee. In these canyons, turbidites occur in the sediment record indicating ongoing sediment dynamics during whether extreme flood events or mass-movements due to deltaic scarp failures. The active canyon shows a classic turbiditic system with frequent spillover processes in the canyon floor/levee complex. Geotechnical measurements, a decrease in the frequency of turbidites and a fining upward sequence along the levee suggest that erosion dominates sedimentation in the canyon floor, while sedimentation dominates in the rapid levee building-up process, with sedimentation rates that exceed 3cm/yr in the proximal areas. Therefore, mechanisms controlling the sedimentary evolution on the active canyon result in a complex interplay between erosion and sedimentation. Further research will provide a detailed evaluation of the human impact on sedimentary dynamic in the Rhone Delta subaquatic canyons.

  13. An ATPase-deficient variant of the SNF2 family member HELLS shows altered dynamics at pericentromeric heterochromatin.

    PubMed

    Lungu, Cristiana; Muegge, Kathrin; Jeltsch, Albert; Jurkowska, Renata Z

    2015-05-22

    The HELLS (helicase, lymphoid specific, also known as lymphoid-specific helicase) protein is related to the SNF2 (sucrose non-fermentable 2) family of chromatin remodeling ATPases. It is required for efficient DNA methylation in mammals, particularly at heterochromatin-located repetitive sequences. In this study, we investigated the interaction of HELLS with chromatin and used an ATPase-deficient HELLS variant to address the role of ATP hydrolysis in this process. Chromatin fractionation experiments demonstrated that, in the absence of the ATPase activity, HELLS is retained at the nuclear matrix compartment, defined in part by lamin B1. Microscopy studies revealed a stronger association of the ATPase-deficient mutant with heterochromatin. These results were further supported by fluorescence recovery after photobleaching measurements, which showed that, at heterochromatic sites, wild-type HELLS is very dynamic, with a recovery half-time of 0.8s and a mobile protein fraction of 61%. In contrast, the ATPase-deficient mutant displayed 4.5-s recovery half-time and a reduction in the mobile fraction to 30%. We also present evidence suggesting that, in addition to the ATPase activity, a functional H3K9me3 signaling pathway contributes to an efficient release of HELLS from pericentromeric chromatin. Overall, our results show that a functional ATPase activity is not required for the recruitment of HELLS to heterochromatin, but it is important for the release of the enzyme from these sites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Politicians, Patriots and Plotters: Unlikely Debates Occasioned by Maximilian Hell's Venus Transit Expedition of 1769

    NASA Astrophysics Data System (ADS)

    Kontler, Laszlo

    2013-05-01

    This paper discusses the cultural and political contexts and reception of the most important by-product of Maximilian Hell's famous Venus transit expedition of 1768-69, the Demonstratio. Idioma Ungarorum et Lapponum idem esse (1770) by Hell's associate Janos Sajnovics. Now considered a landmark in Finno-Ugrian linguistics, the Demonstratio addressed an academic subject that was at that time almost destined to be caught up in an ideological battlefield defined by the shifting relationship between the Habsburg government, the Society of Jesus, and the Hungarian nobility. The "enlightened absolutist" policies of the former aimed at consolidating the Habsburg monarchy as an empire, at the expense of privileged groups, including religious orders as well as the noble estates. In the situation created by the 1773 suppression of the Jesuit order (a signal of declining patronage from the dynasty), the growing preoccupation on the part of ex-Jesuits like Hell and Sajnovics with "things Hungarian" could have been part of an attempt to re-situate themselves on the Central European map of learning. At the same time, the founding document of this interest, the Demonstratio, evoked violent protests from the other target of Habsburg policies, the Hungarian nobility, because its basic assumptions - the kinship of the Hungarian and the Sami (Lappian) language - potentially undermined the noble ideology of social exclusiveness, established on the alleged "Scythian" ancestry of Hungarians. By exploring the complex motives, intentions, reactions and responses of the chief agents in this story, it is possible to highlight the extra-scientific constraints and facilitators for the practice of knowledge in late eighteenth century Central Europe.

  15. Archeological and Historic Cultural Resources Inventory for a Proposed Flood Control Project at Grafton, Walsh County, North Dakota.

    DTIC Science & Technology

    1983-10-01

    types such as the Alberta, Plainview, Scotts Aluff, Eden Valley and Hell Gap ( Plano Complex) . A private collector from Sheyenne, North Dakota--on the...Grafton) (Michlovic 1979). An apparently early type point of the Plano Complex (Alberta point) was found net: the Manitoba community of Manitou (Pettipas...with the DL-S Burial Complex include miniature, smooth mortuary vessels, sometimes decorated with incised thunderbird designs and/or raised lizzards or

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Mark C.; Ketchum, Sarah

    Noxious weeds threaten fish and wildlife habitat by contributing to increased sedimentation rates, diminishing riparian structure and function, and reducing forage quality and quantity. Wallowa Resources Wallowa Canyonlands Partnership (WCP) protects the unique ecological and economic values of the Hells Canyon grasslands along lower Joseph Creek, the lower Grande Ronde and Imnaha Rivers from invasion and degradation by noxious weeds using Integrated Weed Management techniques. Objectives of this grant were to inventory and map high priority weeds, coordinate treatment of those weeds, release and monitor bio-control agents, educate the public as to the dangers of noxious weeds and how tomore » deal with them, and restore lands to productive plant communities after treatment. With collaborative help from partners, WCP inventoried {approx} 215,000 upland acres and 52.2 miles of riparian habitat, released bio-controls at 23 sites, and educated the public through posters, weed profiles, newspaper articles, and radio advertisements. Additionally, WCP used other sources of funding to finance the treatment of 1,802 acres during the course of this grant.« less

  17. Archeological and Historic Cultural Resources Inventory for a Proposed Flood Control Project at Grafton, Walsh County, North Dakota.

    DTIC Science & Technology

    1983-10-01

    possibly Midland (Folsom Complex) , and a var iet- f point types such as the Alberta, Plainview, Scotts Bluff, Eden Valley anj Hell Gap ( Plano Complex). A...Red River Valley near Glyndon, Minnesota (south and slightly east of Grafton) (Michlovic 1979). An apparently early type point of the Plano Complex... incised thunderbird designs and/or raised lizzards or salamanders; welk shell (marine snail) masks/gorgets; "cigar holder-shaped" tubular pipes; and

  18. Earth Observations taken by the Expedition 18 Crew

    NASA Image and Video Library

    2008-10-24

    ISS018-E-005321 (24 Oct. 2008) --- The Hell's Half Acre Lava Field in Idaho is featured in this image photographed by an Expedition 18 crewmember on the International Space Station. Located in eastern Idaho, the Hell's Half Acre Lava Field is the easternmost large field associated with the Snake River Plain that arcs across the center of the state. The abundant lava flows and other volcanic rocks of the Snake River Plain are thought to be the result of southwest passage of the North American tectonic plate over a fixed mantle plume or "hotspot". According to scientists, Volcanism attributed to the hotspot began approximately 15 million years ago in the western portion of the Plain, with lava fields becoming younger to the east -- with lavas erupted approximately 4,100 years ago, Hell's Half Acre is one of the youngest lava fields. Today, the center of hotspot volcanism is located in Yellowstone National Park and feeds the extensive geyser system there. Portions of the Hell's Half Acre Lava Field are designated as a National Natural Landmark and Wilderness Study Area. This detailed photograph illustrates the forbidding landscape of the basaltic lava field -- the complex ridge patterns of the black to grey-green flow surfaces, comprised of ropy pahoehoe and blocky A a lava, are clearly visible. Regions of tan soil surrounded by lava are known as kipukas -- these "islands" are windows onto the older underlaying soil surface as they were never covered by lava. The kipukas are used for agriculture (both crops and grazing) -- several green fields are visible to the northwest of Interstate Highway 15 (right). Light to dark mottling visible in the kipukas is most likely due to variations in moisture and disturbance by agricultural activities.

  19. Geochronologic and paleomagnetic evidence defining the relationship between the Miocene Hiko and Racer Canyon tuffs, eccentric outflow lobes from the Caliente caldera complex, southeastern Great Basin, USA

    USGS Publications Warehouse

    Gromme, S.; Deino, A.M.; Best, M.G.; Hudson, M.R.

    1997-01-01

    Outflow sheets of the Hiko tuff and the Racer Canyon tuff, which together extend over approximately 16000 km2 around the Caliente caldera complex in southeastern Nevada, have long been considered to be products of simultaneous or near-simultaneous eruptions from inset calderas in the west and east ends, respectively, of the caldera complex. New high-precision 40Ar/39Ar geochronology and paleomagnetic data demonstrate that emplacement of the uppermost part of the Racer Canyon tuff at 18.33??0.03 Ma was nearly synchronous with emplacement of the single outflow cooling unit of the much larger overlying Hiko tuff at 18.32??0.04 Ma. Based on comparison with the geomagnetic polarity time scale derived from the sea-floor spreading record, we conclude that emplacement of the first of several outflow cooling units of the Racer Canyon tuff commenced approximately 0.5 m.y. earlier. Only one paleomagnetic polarity is found in the Hiko tuff, but at least two paleomagnetic reversals have been found in the Racer Canyon tuff. The two formations overlap in only one place, at and near Panaca Summit northeast of the center of the Caliente caldera complex; here the Hiko tuff is stratigraphically above the Racer Canyon tuff. This study demonstrates the power of combining 40Ar/39Ar and paleomagnetic data in conjunction with phenocryst compositional modes to resolve problematic stratigraphic correlations in complex ash-flow sequences where use of one method alone might not eliminate ambiguities.

  20. Origin, transport and burial of organic matter in the Whittard Canyon, North East Atlantic

    NASA Astrophysics Data System (ADS)

    Kershaw, C. E.

    2016-02-01

    Submarine canyons, large and complex topographic features commonly found at all continental margins, are usually considered efficient conduits of material to the deep sea that can also harbour varied and well developed ecosystems. Recent work from canyons of the Portuguese margin have revealed a highly heterogeneous environment home to diverse habitats, highlighting the significance of submarine canyons and the need for a more comprehensive understanding of the processes within them. Submarine environments are influenced by the variability of the oceanographic and biogeochemical regimes and the interaction with complex topography. The purpose of this research is to examine the provenance, transportation, burial potential and ecological function of sedimentary organic matter at targeted sites of the Whittard submarine canyon (Celtic Sea, North East Atlantic), one of the largest ( 100 km across, down to 4500 m depth) most complex topographic features in the North Western European Margin, and home to an array of diverse benthic ecosystems. Sediment cores down to 50 cm were collected during three surveys in 2013, 2014 and 2015 at various depths across different channels and sedimentological and biogeochemical analyses have begun. Preliminary results have provided a glimpse of the distinct energy regime of the different canyon channels and differing carbon concentrations, emphasizing the complexity of the system. The project aims to elucidate the significance of the Whittard system in marine biogeochemical cycling and deep-sea ecosystem functioning, through further mineralogical and chemical characterization.

  1. Petrologic evolution of divergent peralkaline magmas from the Silent Canyon caldera complex, southwestern Nevada volcanic field

    USGS Publications Warehouse

    Sawyer, D.A.; Sargent, K.A.

    1989-01-01

    The Silent Canyon volcanic center consists of a buried Miocene peralkaline caldera complex and outlying peralkaline lava domes. Two widespread ash flow sheets, the Tub Spring and overlying Grouse Canyon members of the Miocene Belted Range Tuff, were erupted from the caldera complex and have volumes of 60-100 km3 and 200 km3, respectively. Eruption of the ash flows was preceded by widespread extrusion of precaldera comendite domes and was followed by extrusion of postcollapse peralkaline lavas and tuffs within and outside the caldera complex. Lava flows and tuffs were also deposited between the two major ash flow sheets. Rocks of the Silent Canyon center vary significantly in silica content and peralkalinity. Weakly peralkaline silicic comendites (PI 1.0-1.1) are the most abundant precaldera lavas. Postcollapse lavas range from trachyte to silicic comendite; some have anomalous light rare earth element (LREE) enrichments. Silent Canyon rocks follow a common petrologic evolution from trachyte to low-silica comendite; above 73% SiO2, compositions of the moderately peralkaline comendites diverge from those of the weakly peralkaline silicic comendites. The development of divergent peralkaline magmas, toward both pantelleritic and weakly peralkaline compositions, is unusual in a single volcanic center. -from Authors

  2. Evolution and Submarine Landslide Potential of Monterey Canyon Head, Offshore Central California

    NASA Astrophysics Data System (ADS)

    Maier, K. L.; Johnson, S. Y.; Hart, P. E.; Hartwell, S. R.

    2016-12-01

    Monterey Canyon, offshore central California, incises the shelf from near the shoreline to 30 km seaward where axial water depths approach 2,000 m. It is one of the world's most studied submarine canyons, yet debate continues concerning its age, formation, and associated geologic hazards. To address these issues, the USGS, with partial support from the California Seafloor Mapping Program, collected hundreds of kilometers of high-resolution, mini-sparker, single-channel (2009 and 2011 surveys) and multichannel (2015 survey) seismic-reflection profiles near the canyon head. The seismic data were combined with multibeam bathymetry to generate a geologic map of the proximal canyon, which delineates numerous faults and compound submarine landslide headwall scarps (covering up to 4 km2) along canyon walls. Seismic-reflection data reveal a massive ( 100 km2 lateral extent) paleochannel cut-and-fill complex underlying the proximal canyon. These subsurface cut-and-fill deposits span both sides of the relatively narrow modern canyon head, crop out in canyon walls, and incise into Purisima Formation (late Miocene and Pliocene) bedrock to depths of up to 0.3 s two-way travel time ( 240 m) below the modern shelf. We propose that the paleochannel complex represents previous locations of a migrating canyon head, and attribute its origin to multiple alternating cycles of fluvial and submarine canyon erosion and deposition linked to fluctuating sea levels. Thus, the canyon head imaged in modern bathymetry is a relatively young feature, perhaps forming in the last 20,000 years of sea-level rise. The paleocanyon deposits are significantly less consolidated than bedrock in deeper canyon walls, and therefore, are probably more prone to submarine landsliding. Nearby mapped faults occur within the active, distributed, San Andreas fault system, and earthquake-generated strong ground motions are likely triggers for past and future submarine landslides and potential associated tsunamis.

  3. Environmental Assessment for the Installation of New Urban Operation Complex Targets and Unmanned Aerial Vehicle Targets for the Nevada Test and Training Range

    DTIC Science & Technology

    2006-09-01

    NTTR. The proposed target areas were selected due to topographic requirements for the targets. A canyon area would provide narrow ravines and...south end of the canyon (rim level) exists through R-76. An access road would be developed that extends from the mouth of the canyon south 1.8 to...buildings to represent barracks would be placed off and along the roads. A simulated fence would cross the mouth of the canyon at the north end. The

  4. Horizontal Advection and Mixing of Pollutants in the Urban Atmospheric Environment

    NASA Astrophysics Data System (ADS)

    Magnusson, S. P.; Entekhabi, D.; Britter, R.; Norford, L.; Fernando, H. J.

    2013-12-01

    Although urban air quality and its impacts on the public health have long been studied, the increasing urbanization is raising concerns on how to better control and mitigate these health impacts. A necessary element in predicting exposure levels is fundamental understanding of flow and dispersion in urban canyons. The complex topology of building structures and roads requires the resolution of turbulence phenomena within urban canyons. The use of dense and low porosity construction material can lead to rapid heating in response to direct solar exposure due to large thermal mass. Hence thermal and buoyancy effects may be as important as mechanically-forced or shear-induced flows. In this study, the transport of pollutants within the urban environment, as well as the thermal and advection effects, are investigated. The focus is on the horizontal transport or the advection effects within the urban environment. With increased urbanization and larger and more spread cities, concern about how the upstream air quality situation can affect downstream areas. The study also examines the release and the dispersion of hazardous material. Due to the variety and complexity of urban areas around the world, the urban environment is simplified into adjacent two-dimensional urban street canyons. Pollutants are released inside each canyon. Computational Fluid Dynamics (CFD) simulations are applied to evaluate and quantify the flow rate out of each canyon and also the exchange of pollutants between the canyons. Imagine a row of ten adjacent urban street canyons of aspect ratio 1 with horizontal flow perpendicular to it as shown in the attached figure. C is the concentration of pollutants. The first digit indicates in what canyon the pollutant is released and the second digit indicates the location of that pollutant. For example, C3,4 is the concentration of pollutant released inside canyon 3 measured in canyon 4. The same amount of pollution is released inside the ten street canyons. Some amount of the released material in each canyon is transported to its downstream canyons. For example if the most downstream canyon (number 10) is considered, pollutants released inside its upstream canyons are transported to it. For the neutral case (density of air and pollutants is the same), preliminary simulations show that the pollution concentration in the tenth canyon increases by 50% due to its nine upstream canyons. Also in the tenth canyon C9,10/C10,10 is equal to 10%. More simulations are being performed for canyons of various aspect ratios and density differences between the air and the pollutants. Accidental release of hazardous materials or chemical attacks can lead to necessary evacuation of people from cities. Knowing the spread of pollutants and particles within the urban environment can be crucial for engineers working on evacuation plans for cities. The ten adjacent canyons. Material is released inside each canyon.

  5. Geology and geomorphology of the Lower Deschutes River Canyon, Oregon.

    Treesearch

    Robin A. Beebee; Jim E. O' Connor; Gordon E. Grant

    2002-01-01

    This field guide is designed for geologists floating the approximately 80 kilometers (50 miles) of the Deschutes River from the Pelton-Round Butte Dam Complex west of Madras to Maupin, Oregon. The first section of the guide is a geologic timeline tracing the formation of the units that compose the canyon walls and the incision of the present canyon. The second section...

  6. Native and nonnative fish populations of the Colorado River are food limited--evidence from new food web analyses

    USGS Publications Warehouse

    Kennedy, Theodore A.; Cross, Wyatt F.; Hall, Robert O.; Baxter, Colden V.; Rosi-Marshall, Emma J.

    2013-01-01

    Fish populations in the Colorado River downstream from Glen Canyon Dam appear to be limited by the availability of high-quality invertebrate prey. Midge and blackfly production is low and nonnative rainbow trout in Glen Canyon and native fishes in Grand Canyon consume virtually all of the midge and blackfly biomass that is produced annually. In Glen Canyon, the invertebrate assemblage is dominated by nonnative New Zealand mudsnails, the food web has a simple structure, and transfers of energy from the base of the web (algae) to the top of the web (rainbow trout) are inefficient. The food webs in Grand Canyon are more complex relative to Glen Canyon, because, on average, each species in the web is involved in more interactions and feeding connections. Based on theory and on studies from other ecosystems, the structure and organization of Grand Canyon food webs should make them more stable and less susceptible to large changes following perturbations of the flow regime relative to food webs in Glen Canyon. In support of this hypothesis, Grand Canyon food webs were much less affected by a 2008 controlled flood relative to the food web in Glen Canyon.

  7. Coastal currents and mass transport of surface sediments over the shelf regions of Monterey Bay, California

    USGS Publications Warehouse

    Wolf, S.C.

    1970-01-01

    In Monterey Bay, the highest concentrations of medium and fine sands occur nearshore between ten and thirty fathoms. Silt and clay accumulate in greater depths. Contours of median diameter roughly parallel the isobaths. Fine-grained materials are supplied to the bay region from erosion of cliffs which partly surround Monterey Bay, from sediment laden river discharge, and from continual reworking of widespread Pleistocene and Recent sea floor sediments. These sediments in turn are picked up by coastal currents and distributed over the shelf regions by present day current regimes. Studies of bottom currents over the shelf regions and in Monterey Canyon have revealed patterns which vary with seasonal changes. Current patterns during August and September exhibit remarkable symmetry about the axis of Monterey Submarine Canyon. Central Shelf currents north and south of Monterey Canyon flowed northwest at an average rate of 0.2 knots and south at 0.3 knots respectively. On the North Shelf between January and March currents flowed east to southeast at 0.3-0.5 knots with mirror image patterns above the South Shelf during the same period. Irregular current flow in the canyon indicates a complex current structure with frequent shifts in counterclockwise and clockwise direction over very short periods of time. Bottom topography of the canyon complex often causes localization of canyon currents. One particular observation at a depth of 51 fathoms indicated up-canyon flow at a rate of 0.2 knots. Most of the observed currents are related to seasonal variations, upwelling, ocean swell patterns, and to changes in the California and Davidson currents. Changes in current regimes are reflected in the patterns of sediment distribution and transport. Sediment transport is chiefly parallel to the isobaths, particularly on the North and South Shelf regions. Complex dispersal patterns are observed near Monterey Canyon and Moss Landing Harbor jetties. Longshore currents move sediments southward except near Monterey Canyon which acts as a physiographic barrier and the extreme southern end of the bay where currents are non persistent. Some sediments are also transported offshore by rip currents and other agencies and deposited in deeper, quieter waters. Supply of sediments to the canyon head results in over-filling and steepening with subsequent mass movement of sediments seaward followed by deposition in channels and on the broad deep sea fan. ?? 1970.

  8. Ecological Functioning in Two Mid-Atlantic Bight Submarine Canyons: Macrofauna Community Trends and the Role of Canyon Specific Processes

    NASA Astrophysics Data System (ADS)

    Robertson, C.; Bourque, J. R.; Davies, A. J.; Duineveld, G.; Mienis, F.; Brooke, S.; Ross, S. W.; Demopoulos, A. W.

    2016-02-01

    Submarine canyons are complex systems, acting as major conduits of organic matter along continental shelves and promoting gradients in food resources, turbidity flows, habitat heterogeneity, and areas of sediment resuspension and deposition. In the western North Atlantic, a large multidisciplinary program was conducted in two major Mid-Atlantic Bight (MAB) canyons (Baltimore and Norfolk canyons). This Atlantic Deepwater Canyons project was funded by BOEM, NOAA, and USGS. Here we investigate the `canyon effect' on benthic ecosystem ecology and functioning of two canyon systems by defining canyon specific processes influencing MAB shelf benthic community trends. Sediment cores were collected in 2012 and 2013 with a NIOZ box corer along the main axes ( 180-1200m) of Baltimore and Norfolk Canyon and at comparable depths on the adjacent continental slope. Whole community macrofaunal (>300 μm) abundance and biomass data provided insight into community trends across depth and biogeochemical gradients by coupling diversity metrics and biological trait analyses with sediment biogeochemistry and hydrodynamic data. The canyons exhibited clear differences in sediment profiles, hydrodynamic regimes and enrichment depocenters as well as significantly distinct infauna communities. Interestingly, both canyons showed bimodal distributions in abundances and diversity of infauna and a shallowing of species maxima which was not present on adjacent slopes. We hypothesize that physical canyon processes are important regulators in the depth of observed species maxima and community functioning on the MAB shelf, on local and regional scales. Unique sediment dynamics, organic enrichment, and hydrographic conditions were significant factors in structuring benthic community differences in MAB canyons The study provides a complete benthic infaunal appraisal of two canyon systems in the western Atlantic, incorporating biogeochemistry and oceanography to increase our understanding of canyon ecosystem ecology and provide baseline information on canyon functioning.

  9. Martian canyons and African rifts: Structural comparisons and implications

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    1978-01-01

    The resistant parts of the canyon walls of the Martian rift complex Valled Marineris were used to infer an earlier, less eroded reconstruction of the major roughs. The individual canyons were then compared with individual rifts of East Africa. When measured in units of planetary radius, Martian canyons show a distribution of lengths nearly identical to those in Africa, both for individual rifts and for compound rift systems. A common mechanism which scales with planetary radius is suggested. Martian canyons are significantly wider than African rifts. The overall pattern of the rift systems of Africa and Mars are quite different in that the African systems are composed of numerous small faults with highly variable trend. On Mars the trends are less variable; individual scarps are straighter for longer than on earth. This is probably due to the difference in tectonic histories of the two planets: the complex history of the earth and the resulting complicated basement structures influence the development of new rifts. The basement and lithosphere of Mars are inferred to be simple, reflecting a relatively inactive tectonic history prior to the formation of the canyonlands.

  10. Geomorphology and Sediment Stability of a Segment of the U.S. Continental Slope off New Jersey.

    PubMed

    Robb, J M; Hampson, J C; Twichell, D C

    1981-02-27

    The morphology of complex deposits of Pleistocene sediments covering the upper continental slope between Lindenkohl Canyon and South Toms Canyon results from both depositional and erosional processes. Small slump or slide features were detected primarily on the flanks of canyons or valleys and were observed to occur only within Pleistocene-aged sediments. Eocene to Miocene sediments are exposed over much of the mid- and lower slope in this area.

  11. Major-element geochemistry of the Silent Canyon-Black Mountain peralkaline volcanic centers, northwestern Nevada Test Site: applications to an assessment of renewed volcanism

    USGS Publications Warehouse

    Crowe, Bruce M.; Sargent, Kenneth A.

    1979-01-01

    The Silent Canyon and Black Mountain volcanic centers are located in the northern part of the Nevada Test Site. The Silent Canyon volcanic center is a buried cauldron complex of Miocene age (13-15 m.y.). Black Mountain volcanic center is an elliptical-shaped cauldron complex of late Miocene age. The lavas and tuffs of the two centers comprise a subalkaline-peralkaline association. Rock types range from quartz normative subalkaline trachyte and rhyolite to peralkaline comendite. The Gold Flat Member of the Thirsty Canyon Tuff (Black Mountain) is a pantellerite. The major-element geochemistry of the Black Mountain-Silent Canyon volcanic centers differs in the total range and distribution of Si02, contents, the degree of peralkalinity (molecular Na2O+K2O>Al2O3) and in the values of total iron and alumina through the range of rock types. These differences indicate that the suites were unrelated and evolved from differing magma bodies. The Black Mountain volcanic cycle represents a renewed phase of volcanism following cessation of the Timber Mountain-Silent Canyon volcanic cycles. Consequently, there is a small but numerically incalculable probability of recurrence of Black Mountain-type volcanism within the Nevada Test Site region. This represents a potential risk with respect to deep geologic storage of high-level radioactive waste at the Nevada Test Site.

  12. Ventilation Processes in a Three-Dimensional Street Canyon

    NASA Astrophysics Data System (ADS)

    Nosek, Štěpán; Kukačka, Libor; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk

    2016-05-01

    The ventilation processes in three different street canyons of variable roof geometry were investigated in a wind tunnel using a ground-level line source. All three street canyons were part of an urban-type array formed by courtyard-type buildings with pitched roofs. A constant roof height was used in the first case, while a variable roof height along the leeward or windward walls was simulated in the two other cases. All street-canyon models were exposed to a neutrally stratified flow with two approaching wind directions, perpendicular and oblique. The complexity of the flow and dispersion within the canyons of variable roof height was demonstrated for both wind directions. The relative pollutant removals and spatially-averaged concentrations within the canyons revealed that the model with constant roof height has higher re-emissions than models with variable roof heights. The nomenclature for the ventilation processes according to quadrant analysis of the pollutant flux was introduced. The venting of polluted air (positive fluctuations of both concentration and velocity) from the canyon increased when the wind direction changed from perpendicular to oblique, irrespective of the studied canyon model. Strong correlations (>0.5) between coherent structures and ventilation processes were found at roof level, irrespective of the canyon model and wind direction. This supports the idea that sweep and ejection events of momentum bring clean air in and detrain the polluted air from the street canyon, respectively.

  13. A Laboratory model for the flow in urban street canyons induced by bottom heating

    NASA Astrophysics Data System (ADS)

    Liu, Huizhi; Liang, Bin; Zhu, Fengrong; Zhang, Boyin; Sang, Jianguo

    2003-07-01

    Water tank experiments are carried out to investigate the convection flow induced by bottom heating and the effects of the ambient wind on the flow in non-symmetrical urban street canyons based on the PIV (Particle Image Visualization) technique. Fluid experiments show that with calm ambient wind, the flows in the street canyon are completely driven by thermal force, and the convection can reach the upper atmosphere of the street canyon. Horizontal and vertical motions also appear above the roofs of the buildings. These are the conditions which favor the exchange of momentum and air mass between the street canyon and its environment. More than two vortices are induced by the convection, and the complex circulation pattern will vary with time in a wider street canyon. However, in a narrow street canyon, just one vortex appears. With a light ambient wind, the bottom heating and the associated convection result in just one main vortex. As the ambient wind speed increases, the vortex becomes more organized and its center shifts closer to the leeward building.

  14. Composition, Distribution and Abundance of Anthropogenic Marine Debris in Northwest Atlantic Submarine Canyons

    NASA Astrophysics Data System (ADS)

    Heyl, T. P.; Nizinski, M. S.; Kinlan, B. P.; Shank, T. M.

    2016-02-01

    Submarine canyons are important productive habitats in the deep-sea, as well as downslope conduits for transporting sediment and organic material that enhances local and regional species diversity, including species and ecosystems vulnerable to anthropogenic activities. In 2012 and 2013, we documented and characterized deep-sea coral and sponge ecosystems in virtually unexplored northeast and mid-Atlantic canyons using WHOI's TowCam towed imaging system on the FSV Bigelow. Specifically, thirty-eight digital image TowCam surveys were completed in 10 canyons, with more than 91,000 images documenting not only deep-sea coral and sponge ecosystems and habitat features, but also anthropogenic debris. Canyons surveyed cover most of the latitudinal range of the northeast US region and include Toms Canyon complex, Ryan, Veatch, Gilbert, Powell, and Munson canyons. Each of these canyon hosted debris across depths of 550 to 2100m, consisting mostly of fisheries equipment, including fishing lines, traps, and nets. Potentially-land-based debris (e.g., plastic bags and magazines) was also present in all canyons surveyed. These substrates likely enhance colonization and often served as habitat for specific sessile and mobile species. Comparisons of debris in these canyons revealed depth-related differences, likely due to offshore extent of fishing activities, and will be compared to density and abundances of other deep-sea environments. The occurrence of anthropogenic debris on Northeast US canyon floors suggests major sources via transport ship and fishing-related activities and perhaps the rapid transport of debris through near-shore zones and entrainment in bottom currents.

  15. Variability of CO2 concentrations and fluxes in and above an urban street canyon

    NASA Astrophysics Data System (ADS)

    Lietzke, Björn; Vogt, Roland

    2013-08-01

    The variability of CO2 concentrations and fluxes in dense urban environments is high due to the inherent heterogeneity of these complex areas and their spatio-temporally variable anthropogenic sources. With a focus on micro- to local-scale CO2-exchange processes, measurements were conducted in a street canyon in the city of Basel, Switzerland in 2010. CO2 fluxes were sampled at the top of the canyon (19 m) and at 39 m while vertical CO2 concentration profiles were measured in the center and at a wall of the canyon. CO2 concentration distributions in the street canyon and exchange processes with the layers above show, apart from expected general diurnal patterns due mixing layer heights, a strong dependence on wind direction relative to the canyon. As a consequence of the resulting corkscrew-like canyon vortex, accumulation of CO2 inside the canyon is modulated with distinct distribution patterns. The evaluation of diurnal traffic data provides good explanations for the vertical and horizontal differences in CO2-distribution inside the canyon. Diurnal flux characteristics at the top of the canyon can almost solely be explained with traffic density expressed by the strong linear dependence. Even the diurnal course of the flux at 39 m shows a remarkable relationship to traffic density for east wind conditions while, for west wind situations, a change toward source areas with lower emissions leads to a reduced flux.

  16. Investigating a dynamic gas hydrate system in disequilibrium in the Danube Delta, Black Sea

    NASA Astrophysics Data System (ADS)

    Hillman, Jess; Bialas, Joerg; Klaucke, Ingo; Feldman, Howard; Drexler, Tina

    2017-04-01

    Gas hydrates are known to be extensive across the Danube Delta, as indicated by the presence of bottom simulating reflections (BSRs). The shelf break in this region is characterised by several incised submarine canyons, the largest of which is the Viteaz Canyon, and numerous slope failures. BSRs often coincide with submarine landslides, and it has been proposed that hydrates may play a role in triggering, or facilitating such events. This study focuses on a seafloor canyon (the S2 Canyon) to the north-east of the main Viteaz Canyon, where geophysical survey data and sediment cores were acquired in 2014. Active venting from the seafloor is known to be occurring at this site as multiple flares were been imaged in the water column. The location of these flares coincides with a significant slope failure adjacent to the canyon, and some can be correlated to subsurface gas chimneys, indicating a complex 'plumbing system' of gas migration pathways. This site is of particular interest as the 'present-day' BSR imaged in seismic data is not at equilibrium with the present-day seafloor conditions. Using high resolution 2D seismic data, a P-cable 3D seismic volume and ocean bottom seismometer data we investigate potential gas migration pathways and the complex gas hydrate system in the vicinity of the S2 Canyon. In addition, we use stratigraphic interpretation based on regional 2D seismic lines to constrain the relative ages of the channel levee systems. Through detailed mapping of the BSR, possible paleo-seafloor surfaces and gas migration features we are able to provide estimates of equilibrium conditions for the hydrate system, and examine the controlling factors affecting gas migration pathways and hydrate formation. The results of this study provide new insight into a geologically complex setting with a dynamic hydrate system. Characterising the hydrate system here may help to explain why it is in disequilibrium with the present day seafloor, and provide a better understanding of any potential implications for slope stability in the future as the hydrate system moves towards equilibrium.

  17. The modern Kaoping transient fan offshore SW Taiwan: Morphotectonics and development

    NASA Astrophysics Data System (ADS)

    Hsiung, Kan-Hsi; Yu, Ho-Shing; Chiang, Cheng-Shing

    2018-01-01

    Using bathymetry and seismic reflection profiles, this study examined and determined the transient nature of the Kaoping Fan located in the topographically complex slope offshore southwest Taiwan. Kaoping Fan is located west of the lower reach of the Kaoping Canyon at the lower Kaoping Slope, ranging from 2,200 to 3,000 m water depth, and has a relatively small areal extent restricted in the topographic lows confined by structural highs due to mud diapiric uplifting and thrust faulting. Kaoping Fan shows an asymmetrical triangular fan-shaped bathymetric feature elongated in an NW-SE direction but with a strong skew toward the east. The fan deposits consist of three main seismic facies: layered high-amplitude reflections in the upper section and stratified, parallel to sub-parallel low-amplitude reflections with variable continuity and channel fill facies in the lower section. In the absence of ground-truthing from core data, the seismic patterns suggest that the Kaoping Fan recorded the onset of channelized and over-bank deposits in the lower part and layered turbidite facies in the upper part subsequently. The development of the Kaoping Fan can be divided into three stages in terms of canyon activities and fan-feeding processes. Initially, Kaoping Fan was mainly fed by a point sediment source at the apex of the fan. Secondly, Kaoping Fan was maintained as a slope fan, mainly fed laterally by over-spilled sediments from the canyon. Finally, the Kaoping Canyon completely passes through the Kaoping Fan and supplies over-spilled sediments laterally, forming a transient fan with canyon incision and sediment by-passing. The accumulation of sediments and the growth of Kaoping Fan are primarily controlled by inherited complex paleo-topography and the evolution of Kaoping Canyon. The sediment delivery system of Kaoping Fan is characterized by lateral supply of over-spilling sediment flows and sediments bypassing to and beyond the base of slope. The Kaoping Fan together with the ponded Fangliao Fan in the topographically complex Kaoping Slope can be used as a type model for evaluating the topographic effects on the development of submarine fans on complex slopes in general.

  18. With Dante in Hell on 9/11: "That Day We Read No Further"

    ERIC Educational Resources Information Center

    Rosenstein, Roy

    2015-01-01

    In this article, Roy Rosenstein shares the events that occurred during his first day of teaching the Dante and Medieval Culture course in the fall semester of 2001 at the American University of Paris (AUP). On, September 11, 2001, immediately following Rosenstein's opening statement of "Welcome to hell," the class was alerted to the…

  19. HELLS HOLE ROADLESS AREA, ARIZONA AND NEW MEXICO.

    USGS Publications Warehouse

    Ratte, James C.; Briggs, John P.

    1984-01-01

    The Hells Hole Roadless Area encompasses about 50 sq mi along the Arizona-New Mexico State line. The area was studied and the southeastern part was determined to have a probable mineral-resource potential for the discovery of base- or precious-metal deposits related to igneous intrusions of middle to late Tertiary age. There also is a probable resource potential for porphyry copper mineralization of Laramide age beneath the Tertiary volcanic rocks that cover the area. There is little promise for the occurrence of energy resources in the area. Additional geochemical and petrological studies of the rocks of the Hells Hole volcanic center and modeling of geophysical anomalies are necessary to adequately appraise the mineral-resource potential of the area.

  20. Occurrence of submarine canyons, sediment waves and mass movements along the northern continental slope of the South China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Hongjun; Zhan, Wenhuan; Li, Liqing; Wen, Ming-ming

    2017-07-01

    In this study, we reveal a series of newly discovered submarine canyons, sediment waves, and mass movements on a flat and smooth seafloor using high-resolution, multi-beam bathymetry and shallow seismic surveys along the northern slope of the South China Sea. We also describe their geomorphology and seismic stratigraphy characteristics in detail. These canyons display U-shaped cross sections and are roughly elongated in the NNW-SSE direction; they are typically 8-25 km long, 1.2-7 km wide, and form incisions up to 175 m into Pliocene-Quaternary slope deposits at water depths of 400-1000 m. Slide complexes and the sediment wave field are oriented in the NE-SW direction and cover areas of approximately 1790 and 926 km2, respectively. Debris/turbidity flows are present within these canyons and along their lower slopes. Detailed analysis of seismic facies indicates the presence of six seismic facies, in which Cenozoic strata located above the acoustic basement in the study area can be roughly subdivided into three sequences (1-3), which are separated by regional unconformities (Tg, T4, and T3). By combining these data with the regional geological setting and the results of previous studies, we are able to determine the genetic mechanisms used to create these canyons, sediment wave field, and mass movements. For example, frontally confined slide complexes could have been influenced by high sedimentation rates and high pore pressures. A series of very large subaqueous sediment waves, which record wavelengths of 1.4-2 km and wave heights of 30-50 m, were likely produced by interactions between internal solitary waves and along-slope bottom (contour) currents. Canyons were likely initially created by landslides and then widened laterally by the processes of downcutting, headward erosion, and active bottom currents and debris/turbidity flows on canyon floors. We therefore propose a three-dimensional model to describe the development of these mass movements, the sediment wave field, and canyons. The four stages of this model include a stable stage, followed by the failure of the slope, and subsequent formations of the sediment wave field and canyons.

  1. Rocks, resolution, and the record at the terrestrial K/T boundary, eastern Montana and western North Dakota

    NASA Technical Reports Server (NTRS)

    Fastovsky, D. E.

    1988-01-01

    Reconstructions of mass extinction events are based upon faunal patterns, reconstructed from numerical and diversity data ultimately derived from rocks. It follows that geological complexity must not be subsumed in the desire to establish patterns. This is exemplified at the Terrestrial Cretaceous-Tertiary (K/T) boundary in eastern Montana and western North Dakota, where there are represented all of the major indicators of the terrestrial K/T transition: dinosaurian and non-dinosaurian vertebrate faunas, pollen, a megaflora, iridium, and shocked quartz. It is the patterns of these indicators that shape ideas about the terrestrial K/T transition. In eastern Montana and western North Dakota, the K/T transition is represented lithostratigraphically by the Cretaceous Hell Creek Formation, and the Tertiary Tullock Formation. Both of these are the result of aggrading, meandering, fluvial systems, a fact that has important consequences for interpretations of fossils they contain. Direct consequences of the fluvial depositional environments are: facies are lenticular, interfingering, and laterally discontinuous; the occurrence of fossils in the Hell Creek and Tullock formations is facies-dependent; and the K/T sequence in eastern Montana and western North Dakota is incomplete, as indicated by repetitive erosional contacts and soil successions. The significance for faunal patterns of lenticular facies, facies-dependent preservation, and incompleteness is discussed. A project attempting to reconstruct vertebrate evolution in a reproducible manner in Hell Creek-type sediments must be based upon a reliable scale of correlations, given the lenticular nature of the deposits, and a recognition of the fact that disparate facies are not comparable in terms of either numbers of preserved vertebrates or depositional rates.

  2. Partly standing internal tides in a dendritic submarine canyon observed by an ocean glider

    NASA Astrophysics Data System (ADS)

    Hall, Rob A.; Aslam, Tahmeena; Huvenne, Veerle A. I.

    2017-08-01

    An autonomous ocean glider is used to make the first direct measurements of internal tides within Whittard Canyon, a large, dendritic submarine canyon system that incises the Celtic Sea continental slope and a site of high benthic biodiversity. This is the first time a glider has been used for targeted observations of internal tides in a submarine canyon. Vertical isopycnal displacement observations at different stations fit a one-dimensional model of partly standing semidiurnal internal tides - comprised of a major, incident wave propagating up the canyon limbs and a minor wave reflected back down-canyon by steep, supercritical bathymetry near the canyon heads. The up-canyon internal tide energy flux in the primary study limb decreases from 9.2 to 2.0 kW m-1 over 28 km (a dissipation rate of 1 - 2.5 ×10-7 Wkg-1), comparable to elevated energy fluxes and internal tide driven mixing measured in other canyon systems. Within Whittard Canyon, enhanced mixing is inferred from collapsed temperature-salinity curves and weakened dissolved oxygen concentration gradients near the canyon heads. It has previously been hypothesised that internal tides impact benthic fauna through elevated near-bottom current velocities and particle resuspension. In support of this, we infer order 20 cm s-1 near-bottom current velocities in the canyon and observe high concentrations of suspended particulate matter. The glider observations are also used to estimate a 1 °C temperature range and 12 μmol kg-1 dissolved oxygen concentration range, experienced twice a day by organisms on the canyon walls, due to the presence of internal tides. This study highlights how a well-designed glider mission, incorporating a series of tide-resolving stations at key locations, can be used to understand internal tide dynamics in a region of complex topography, a sampling strategy that is applicable to continental shelves and slopes worldwide.

  3. The Silent Canyon caldera complex: a three-dimensional model based on drill-hole stratigraphy and gravity inversion

    USGS Publications Warehouse

    McKee, Edwin H.; Hildenbrand, Thomas G.; Anderson, Megan L.; Rowley, Peter D.; Sawyer, David A.

    1999-01-01

    The structural framework of Pahute Mesa, Nevada, is dominated by the Silent Canyon caldera complex, a buried, multiple collapse caldera complex. Using the boundary surface between low density Tertiary volcanogenic rocks and denser granitic and weakly metamorphosed sedimentary rocks (basement) as the outer fault surfaces for the modeled collapse caldera complex, it is postulated that the caldera complex collapsed on steeply- dipping arcuate faults two, possibly three, times following eruption of at least two major ash-flow tuffs. The caldera and most of its eruptive products are now deeply buried below the surface of Pahute Mesa. Relatively low-density rocks in the caldera complex produce one of the largest gravity lows in the western conterminous United States. Gravity modeling defines a steep sided, cup-shaped depression as much as 6,000 meters (19,800 feet) deep that is surrounded and floored by denser rocks. The steeply dipping surface located between the low-density basin fill and the higher density external rocks is considered to be the surface of the ring faults of the multiple calderas. Extrapolation of this surface upward to the outer, or topographic rim, of the Silent Canyon caldera complex defines the upper part of the caldera collapse structure. Rock units within and outside the Silent Canyon caldera complex are combined into seven hydrostratigraphic units based on their predominant hydrologic characteristics. The caldera structures and other faults on Pahute Mesa are used with the seven hydrostratigraphic units to make a three-dimensional geologic model of Pahute Mesa using the "EarthVision" (Dynamic Graphics, Inc.) modeling computer program. This method allows graphic representation of the geometry of the rocks and produces computer generated cross sections, isopach maps, and three-dimensional oriented diagrams. These products have been created to aid in visualizing and modeling the ground-water flow system beneath Pahute Mesa.

  4. Tiffany Diamonds and Classical Music as Influences on the Performance of "Don Juan in Hell".

    ERIC Educational Resources Information Center

    Johnson, Jim

    This paper analyzes Paul Gregory's 1951 production of "Don Juan in Hell," now considered to be a seminal work in the development of professional and educational readers theatre. The paper contends that the production, which presented a nondramatic work without the usual emphasis on design and spectacle, forced a reexamination of the role…

  5. Escape from Management Hell: 12 Tales of Horror, Humor, and Heroism.

    ERIC Educational Resources Information Center

    Gilbreath, Robert D.

    This book offers a set of stories in which corporate executives demonstrate the folly and futility of their own business practices. In the stories, 12 executives are trying to escape from a hell of their own making. The tales provide insights into the management woes with which people at all levels deal on a daily basis. Topics include: the…

  6. Quaternary geology and geomorphology of the lower Deschutes River Canyon, Oregon.

    Treesearch

    Jim E. O' Connor; Janet H. Curran; Robin A. Beebee; Gordon E. Grant; Andrei Sarna-Wojcicki

    2003-01-01

    The morphology of the Deschutes River canyon downstream of the Pelton-Round Butte dam complex is the product of the regional geologic history, the composition of the geologic units that compose the valley walls, and Quaternary processes and events. Geologic units within the valley walls and regional deformation patterns control overall valley morphology. Valley bottom...

  7. Nutrient Enrichment Effects on Benthic Biodiversity by the Mississippi River and Submarine Canyon of the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Wei, C.; Rowe, G. T.

    2008-12-01

    Biodiversity is measured by (1) α diversity: number of species in relation to a standardized number of individual within a define habitat; (2) β diversity: compositional change or turnover of species between two or more spatial units; and (3) γ diversity: total number of species in a large geographic area. The pattern of biodiversity is usually driven by various physico-chemical conditions. In the deep sea, a cross-isobath parabolic diversity pattern has been well-documented for benthic macrofauna and the cause has been attributed to a dynamic equilibrium between population growth and competition exclusion along a gradient of declining food resources with depth (Rex 1981). Both nutrient-enriched (dominated by opportunistic species) and oligotrophic conditions (slow growth rate) could depress diversity, while the highest diversity can be reached by competitive equilibrium within communities at intermediate resource conditions. In the Gulf of Mexico (GoM), the discharge of Mississippi River can enhance the organic flux to the seafloor adjacent to the mouth of Mississippi River and Mississippi Canyon. The goal of this study was to test Rex's (1981) dynamic equilibrium model between depth-transects that were exposed to different levels of organic enrichment. Four treatments contrasted along the upper slope (250m to 1500m) included (1) Mississippi Canyon (active canyon), (2) De Soto Canyon (inactive canyon), (3) central slope transect (in proximity to Mississippi Canyon), and (4) the west and east slope transects (away from the influence of the Mississippi River). SeaWifs satellite data confirmed that the head of Mississippi Canyon experience highest surface primary production and export POC flux. The lowest α diversity of benthic macrofauna (collecting between 2000 and 2002) was observed at the head of the Mississippi Canyon where γ diversity was relatively high. This suggested that the canyon head was dominated by opportunistic species due the high POC flux but were still able to maintain a large number of species due the physical complexity of the canyon. The change of β diversity was nominal within the Mississippi and De Soto Canyon transects, suggesting that the faunal composition was more homogenous within the canyon than outside of canyon.

  8. Interview: Professor Helle Neergaard, President of the European Council for Small Business and Entrepreneurship, on the Nature of Creativity, Innovation and Entrepreneurship

    ERIC Educational Resources Information Center

    Industry and Higher Education, 2015

    2015-01-01

    On August 13, 2014, Rita G. Klapper conducted a Skype interview with Helle Neergaard. Neergaard is not only President of the European Council for Small Business and Entrepreneurship, but also Docent at the Hanken School of Economics, and Professor at iCARE, Department of Business Administration, School of Business and Social Sciences, University…

  9. Defining biological assemblages (biotopes) of conservation interest in the submarine canyons of the South West Approaches (offshore United Kingdom) for use in marine habitat mapping

    NASA Astrophysics Data System (ADS)

    Davies, Jaime S.; Howell, Kerry L.; Stewart, Heather A.; Guinan, Janine; Golding, Neil

    2014-06-01

    In 2007, the upper part of a submarine canyon system located in water depths between 138 and 1165 m in the South West (SW) Approaches (North East Atlantic Ocean) was surveyed over a 2 week period. High-resolution multibeam echosounder data covering 1106 km2, and 44 ground-truthing video and image transects were acquired to characterise the biological assemblages of the canyons. The SW Approaches is an area of complex terrain, and intensive ground-truthing revealed the canyons to be dominated by soft sediment assemblages. A combination of multivariate analysis of seabed photographs (184-1059 m) and visual assessment of video ground-truthing identified 12 megabenthic assemblages (biotopes) at an appropriate scale to act as mapping units. Of these biotopes, 5 adhered to current definitions of habitats of conservation concern, 4 of which were classed as Vulnerable Marine Ecosystems. Some of the biotopes correspond to descriptions of communities from other megahabitat features (for example the continental shelf and seamounts), although it appears that the canyons host modified versions, possibly due to the inferred high rates of sedimentation in the canyons. Other biotopes described appear to be unique to canyon features, particularly the sea pen biotope consisting of Kophobelemnon stelliferum and cerianthids.

  10. Addressing scale dependence in roughness and morphometric statistics derived from point cloud data.

    NASA Astrophysics Data System (ADS)

    Buscombe, D.; Wheaton, J. M.; Hensleigh, J.; Grams, P. E.; Welcker, C. W.; Anderson, K.; Kaplinski, M. A.

    2015-12-01

    The heights of natural surfaces can be measured with such spatial density that almost the entire spectrum of physical roughness scales can be characterized, down to the morphological form and grain scales. With an ability to measure 'microtopography' comes a demand for analytical/computational tools for spatially explicit statistical characterization of surface roughness. Detrended standard deviation of surface heights is a popular means to create continuous maps of roughness from point cloud data, using moving windows and reporting window-centered statistics of variations from a trend surface. If 'roughness' is the statistical variation in the distribution of relief of a surface, then 'texture' is the frequency of change and spatial arrangement of roughness. The variance in surface height as a function of frequency obeys a power law. In consequence, roughness is dependent on the window size through which it is examined, which has a number of potential disadvantages: 1) the choice of window size becomes crucial, and obstructs comparisons between data; 2) if windows are large relative to multiple roughness scales, it is harder to discriminate between those scales; 3) if roughness is not scaled by the texture length scale, information on the spacing and clustering of roughness `elements' can be lost; and 4) such practice is not amenable to models describing the scattering of light and sound from rough natural surfaces. We discuss the relationship between roughness and texture. Some useful parameters which scale vertical roughness to characteristic horizontal length scales are suggested, with examples of bathymetric point clouds obtained using multibeam from two contrasting riverbeds, namely those of the Colorado River in Grand Canyon, and the Snake River in Hells Canyon. Such work, aside from automated texture characterization and texture segmentation, roughness and grain size calculation, might also be useful for feature detection and classification from point clouds.

  11. Explosion Source Model Development in Support of Seismic Monitoring Technologies: Apparent Explosion Moment and Prospects for Moment-Based Yield Estimation

    DTIC Science & Technology

    2010-09-01

    and R. G. Warren (1994). A geophysical-geological transect of the Silent Canyon  caldera complex, Pahute Mesa, Nevada, J. Geophys. Res. 99: 4323–4339...Velocity structure of Silent Canyon caldera , Nevada Test Site, Bull.  Seismol. Soc. Am. 77: 597–613. 2010 Monitoring Research Review: Ground-Based

  12. Explosion Source Models for Seismic Monitoring at High Frequencies: Quantification of the Damage Source and Further Validation of Models

    DTIC Science & Technology

    2011-09-01

    24. Ferguson, J. F., A. H. Cogbill, and R. G. Warren (1994). A geophysical-geological transect of the Silent Canyon caldera complex, Pahute Mesa...and L. R. Johnson (1987). Velocity structure of Silent Canyon caldera , Nevada Test Site, Bull. Seismol. Soc. Am. 77: 597–613. Murphy J. R. (1996

  13. Bahía de Banderas, Mexico: Morphology, Magnetic Anomalies and Shallow Structure

    NASA Astrophysics Data System (ADS)

    Mortera Gutiérrez, Carlos A.; Bandy, William L.; Ponce Núñez, Francisco; Pérez Calderón, Daniel A.

    2016-10-01

    The Bahía de Banderas lies within a tectonically complex area at the northern end of the Middle America Trench. The structure, morphology, subsurface geology and tectonic history of the bay are essential for unraveling the complex tectonic processes occurring in this area. With this focus, marine geophysical data (multi-beam bathymetry, high resolution seismic reflection and total field magnetic data) were collected within the bay and adjacent areas during four campaigns aboard the B.O. EL PUMA conducted in 2006 and 2009. These data image the detailed morphology of, and sedimentation patterns within, the Banderas Canyon (a prominent submarine canyon situated on the south side of the bay) as well as the shallow subsurface structure of the northern part of the bay and the submarine Marietas Ridge, which bounds the bay to the west. We find that the Marietas Ridge is presently a transtensional feature; the course of the Banderas Canyon is controlled by extensive turbidite fan sedimentation in its eastern extremity and by structural lineaments to the west; the canyon floor is filled by sediments and exhibits almost no evidence for recent tectonic movements; the southern canyon wall is quite steep and a few sediments are deposited as submarine fans at the base of the southern wall; and extensive turbidite fans form the lower part of the northern canyon wall, producing a gently sloping lower northern wall. We find no evidence for a regional east-west striking lineament between the bay and the Middle America Trench, which casts doubts on the previous assertion that the Banderas Canyon is unequivocally related to the presence of a regional half-graben. Finally, a N71°E oriented normal fault offsets the seafloor reflector by 15 m within the central part of the bay, suggesting that the bay is currently being subjected to NNW-SSE extension.

  14. Encapsulating Moral Dilemma through Short Story: Challenging Pre-Service Teachers to Critically Think about the Student/Teacher Personality and Leadership Dynamic

    ERIC Educational Resources Information Center

    Lennon, Sean M.

    2007-01-01

    Pre-service teachers and education students in three different classes (N = 53) were directed to read a short story by Mark Twain titled "Heaven or Hell?" written within a compilation of short stories late in his career. The story, "Heaven or Hell?" illustrates a koan, or an unanswerable moral or ethical dilemma. The students,…

  15. "A Heaven of Hell, a Hell of Heaven": "His Dark Materials," Inverted Theology, and the End of Philip Pullman's Authority

    ERIC Educational Resources Information Center

    Padley, Jonathan; Padley, Kenneth

    2006-01-01

    This article argues that Philip Pullman's "His Dark Materials" may be read as a series which attempts to assault the Christian doctrine of God. We believe that this demonstrably accords with Pullman's personal views, and that, through his story, he seeks to foster such views in his readership. However, the accuracy of his attack falls short of its…

  16. Twenty years of change on campsites in the backcountry of Grand Canyon National Park

    Treesearch

    David N. Cole; Pam Foti; Mathieu Brown

    2008-01-01

    This article draws on three separate research and monitoring studies to describe 20-year trends in the number and condition of campsites in the backcountry of Grand Canyon National Park. Results are used to assess the effectiveness of a complex and innovative management program, adopted in 1983, that sought to concentrate use on designated campsites in popular places...

  17. Investigating Mars: Tithonium Chasma

    NASA Image and Video Library

    2018-02-12

    In this VIS image a complex region of multiple overlapping landslide deposits fills most the the frame. The very top layer has the lobate edges and radial surface grooves of a low volume slide. It appears to be the top of a complex layering of materials. It is possible that all the lower layers are landslides as well. Whether the layers formed very close in time of over thousands of years can not be determined in the image. Tithonium Chasma has numerous large landslide deposits. The resistant material of the plateau surface forms the linear ridges of the canyon wall. Large landslides have changed the walls and floor of the canyon. A landslide is a failure of slope due to gravity. They initiate due to several reasons. A lower layer of poorly cemented/resistant material may have been eroded, undermining the wall above which then collapses; earth quake seismic waves can cause the slope to collapse; and even an impact event near the canyon wall can cause collapse. As millions of tons of material fall and slide down slope a scalloped cavity forms at the upper part where the slope failure occurred. At the material speeds downhill it will pick up more of the underlying slope, increasing the volume of material entrained into the landslide. Whereas some landslides spread across the canyon floor forming lobate deposits, very large volume slope failures will completely fill the canyon floor in a large complex region of chaotic blocks. Tithonium Chasma is at the western end of Valles Marineris. Valles Marineris is over 4000 kilometers long, wider than the United States. Tithonium Chasma is almost 810 kilometers long (499 miles), 50 kilometers wide and over 6 kilometers deep. In comparison, the Grand Canyon in Arizona is about 175 kilometers long, 30 kilometers wide, and only 2 kilometers deep. The canyons of Valles Marineris were formed by extensive fracturing and pulling apart of the crust during the uplift of the vast Tharsis plateau. Landslides have enlarged the canyon walls and created deposits on the canyon floor. Weathering of the surface and influx of dust and sand have modified the canyon floor, both creating and modifying layered materials. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 19200 Latitude: -4.54491 Longitude: 272.164 Instrument: VIS Captured: 2006-04-13 04:51

  18. White Sturgeon Management Plan in the Snake River between Lower Granite and Hells Canyon Dams; Nez Perce Tribe, 1997-2005 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nez Perce Tribe Resources Management Staff,

    White sturgeon in the Hells Canyon reach (HCR) of the Snake River are of cultural importance to the Nez Perce Tribe. However, subsistence and ceremonial fishing opportunities have been severely limited as a result of low numbers of white sturgeon in the HCR. Hydrosystem development in the Columbia River Basin has depressed numbers and productivity of white sturgeon in the HCR by isolating fish in impounded reaches of the basin, restricting access to optimal rearing habitats, reducing the anadromous forage base, and modifying early life-history habitats. Consequently, a proactive management plan is needed to mitigate for the loss of whitemore » sturgeon production in the HCR, and to identify and implement feasible measures that will restore and rebuild the white sturgeon population to a level that sustains viability and can support an annual harvest. This comprehensive and adaptive management plan describes the goals, objectives, strategies, actions, and expected evaluative timeframes for restoring the white sturgeon population in the HCR. The goal of this plan, which is to maintain a viable, persistent population that can support a sustainable fishery, is supported by the following objectives: (1) a natural, stable age structure comprising both juveniles and a broad spectrum of spawning age-classes; (2) stable or increasing numbers of both juveniles and adults; (3) consistent levels of average recruitment to ensure future contribution to reproductive potential; (4) stable genetic diversity comparable to current levels; (5) a minimum level of abundance of 2,500 adults to minimize extinction risk; and (6) provision of an annual sustainable harvest of 5 kg/ha. To achieve management objectives, potential mitigative actions were developed by a Biological Risk Assessment Team (BRAT). Identified strategies and actions included enhancing growth and survival rates by restoring anadromous fish runs and increasing passage opportunities for white sturgeon, reducing mortality rates of early life stages by modifying flows in the HCR, reducing mortality imposed by the catch and release fishery, augmenting natural production through translocation or hatchery releases, and assessing detrimental effects of contaminants on reproductive potential. These proposed actions were evaluated by assessing their relative potential to affect population growth rate and by determining the feasibility of their execution, including a realistic timeframe (short-term, mid-term, long-term) for their implementation and evaluation. A multi-pronged approach for management was decided upon whereby various actions will be implemented and evaluated under different timeframes. Priority management actions include: Action I- Produce juvenile white sturgeon in a hatchery and release into the management area; Action G- Collect juvenile white sturgeon from other populations in the Snake or Columbia rivers and release them into the management area; and Action D- Restore white sturgeon passage upriver and downriver at Lower Snake and Idaho Power dams. An integral part of this approach is the continual monitoring of performance measures to assess the progressive response of the population to implemented actions, to evaluate the actions efficacy toward achieving objectives, and to refine and redirect strategies if warranted.« less

  19. Biological control of yellow starthistle (Centaurea solstitialis) in the Salmon River Canyon of Idaho

    Treesearch

    Jennifer L. Birdsall; George P. Markin

    2010-01-01

    Yellow starthistle is an invasive, annual, spiny forb that, for the past 30 yr has been steadily advancing up the Salmon River Canyon in west central Idaho. In 1994, a decision was made to attempt to manage yellow starthistle by establishing a complex of biological control agents in a containment zone where the weed was most dense. Between 1995 and 1997, six species of...

  20. Tilted middle Tertiary ash-flow calderas and subjacent granitic plutons, southern Stillwater Range, Nevada: cross sections of an Oligocene igneous center

    USGS Publications Warehouse

    John, D.A.

    1995-01-01

    Steeply tilted late Oligocene caldera systems in the Stillwater caldera complex record a number of unusual features including extreme thickness of caldera-related deposits, lack of evidence for structural doming of the calderas and preservation of vertical compositional zoning in the plutonic rocks. The Stillwater caldera complex comprises three partly overlapping ash-flow calderas and subjacent plutonic rocks that were steeply tilted during early Miocene extension. The Job Canyon caldera, the oldest (ca. 29-28 Ma) caldera, consists of two structural blocks. The 25 to 23 Ma Poco Canyon and Elevenmile Canyon calderas and underlying Freeman Creek pluton overlap in time and space with each other. Caldera collapse occurred mostly along subvertical ring-fracture faults that penetrated to depths of >5 km and were repeatedly active during eruption of ash-flow tuffs. The calderas collapsed as large piston-like blocks, and there is no evidence for chaotic collapse. Preserved parts of caldera floors are relatively flat surfaces several kilometers across. -from Author

  1. Inquiry Response Security Issues with CGI Scripting and JAVA Implementations

    DTIC Science & Technology

    1998-03-26

    that looks like this? nobody@nowhere.com;mail badguys@hell.orgc/etc/ passwd ; Now the open0 statement will evaluate the following command: /usr/lib...sendmail nobody@nowhere.com; mail badguys@hell.orgdetc/ passwd Unintentionally, open0 has mailed the contents of the system password file to the remote...functions outside of the script. For example, the following URL requests a copy of /etc/ passwd from the server machine: http://www.odci.gov/cgi-bin

  2. Biotechnology patent challenged: ex-colleague seeks share of the credit.

    PubMed

    Budiansky, Stephen

    1982-11-25

    Dr. Robert Helling, supported by the University of Michigan, has decided to press a claim to co-ownership of two Cohen-Boyer genetic engineering patents assigned to Stanford and the University of California. This decision will likely delay further the issuing of the second patent, tentatively rejected by the Patent Office in part on the basis of Helling's unresolved role. It may also increase pressure for a re-examination of the first patent issued in 1980.

  3. Chapter 12. Canyons microbiology studies

    USGS Publications Warehouse

    Kellogg, Christina A.; Lawler, Stephanie N.

    2017-01-01

    Off the eastern coast of the United States, several deep canyons cut through the continental shelf, acting like funnels to move sediment from the shelf out to the deep seafloor. Exposed rock outcrops and ledges along the walls of these canyons provide important habitat for deepsea corals and sponges. Although a few scientific expeditions have visited these canyons in the 1970s (Hecker and Blechschmidt 1979, Hecker et al. 1980), their purpose was mainly to map the contours and capture photographs of the bottom using manned submersibles and towed cameras. Our knowledge of the biodiversity in these complex ecosystems is limited; we know little about the macrofauna (e.g., fishes, crabs, sponges, and deepsea corals) and even less about the microbiota.The research described in this report was conducted from 2011 to 2015 as part of the Bureau of Ocean Energy Management (BOEM) study, entitled “Atlantic Deepwater Canyons” study. This work used molecular and microbiological techniques to examine the microbial ecology and diversity associated with Baltimore and Norfolk canyons. Specifically, this work focused on the microbial ecology of four species of octocorals (Acanthogorgia aspera, Anthothela grandiflora, Paramuricea placomus, and Primnoa resedaeformis), the microbial diversity in sediments within and outside the canyons, and a settling plate experiment designed to characterize microbial biofilm formation on a variety of hard substrates.

  4. Study on the wind field and pollutant dispersion in street canyons using a stable numerical method.

    PubMed

    Xia, Ji-Yang; Leung, Dennis Y C

    2005-01-01

    A stable finite element method for the time dependent Navier-Stokes equations was used for studying the wind flow and pollutant dispersion within street canyons. A three-step fractional method was used to solve the velocity field and the pressure field separately from the governing equations. The Streamline Upwind Petrov-Galerkin (SUPG) method was used to get stable numerical results. Numerical oscillation was minimized and satisfactory results can be obtained for flows at high Reynolds numbers. Simulating the flow over a square cylinder within a wide range of Reynolds numbers validates the wind field model. The Strouhal numbers obtained from the numerical simulation had a good agreement with those obtained from experiment. The wind field model developed in the present study is applied to simulate more complex flow phenomena in street canyons with two different building configurations. The results indicated that the flow at rooftop of buildings might not be assumed parallel to the ground as some numerical modelers did. A counter-clockwise rotating vortex may be found in street canyons with an inflow from the left to right. In addition, increasing building height can increase velocity fluctuations in the street canyon under certain circumstances, which facilitate pollutant dispersion. At high Reynolds numbers, the flow regimes in street canyons do not change with inflow velocity.

  5. Influence of topographic complexity on solar insolation estimates for the Colorado River, Grand Canyon, AZ

    USGS Publications Warehouse

    Yard, M.D.; Bennett, G.E.; Mietz, S.N.; Coggins, L.G.; Stevens, L.E.; Hueftle, S.; Blinn, D.W.

    2005-01-01

    Rugged topography along the Colorado River in Glen and Grand Canyons, exemplifies features common to canyon-bound streams and rivers of the arid southwest. Physical relief influences regulated river systems, especially those that are altered, and have become partially reliant on aquatic primary production. We measured and modeled instantaneous solar flux in a topographically complex environment to determine where differences in daily, seasonal and annual solar insolation occurred in this river system. At a system-wide scale, topographic complexity generates a spatial and temporal mosaic of varying solar insolation. This solar variation is a predictable consequence of channel orientation, geomorphology, elevation angles and viewshed. Modeled estimates for clear conditions corresponded closely with observed measurements for both instantaneous photosynthetic photon flux density (PPFD: ??mol m-2 s-1) and daily insolation levels (relative error 2.3%, CI ??0.45, S.D. 0.3, n = 29,813). Mean annual daily insolation levels system-wide were estimated to be 36 mol m-2 d -1 (17.5 S.D.), and seasonally varied on average from 13.4-57.4 mol m-2 d-1, for winter and summer, respectively. In comparison to identical areas lacking topographic effect (idealized plane), mean daily insolation levels were reduced by 22% during summer, and as much as 53% during winter. Depending on outlying topography, canyon bound regions having east-west (EW) orientations had higher seasonal variation, averaging from 8.1 to 61.4 mol m-2 d-1, for winter and summer, respectively. For EW orientations, 70% of mid-channel sites were obscured from direct incidence during part of the year; and of these sites, average diffuse light conditions persisted for 19.3% of the year (70.5 days), and extended upwards to 194 days. This predictive model has provided an initial quantitative step to estimate and determine the importance of autotrophic production for this ecosystem, as well as a broader application for other canyon systems. ?? 2004 Published by Elsevier B.V.

  6. The Confluence of Gangis and Eos Chasmas (5-12 deg S, 31-41 deg W): Geologic, Hydrologic, and Exobiologic Considerations for Landing Site at the East End of Valles Marineris

    NASA Technical Reports Server (NTRS)

    George, J. A.; Clifford, S. M.

    1999-01-01

    Over its 3,500 km length, Valles Marineris exhibits an enormous range of geologic and environmental diversity. At its western end, the canyon is dominated by the tectonic complex of Noctis Labyrinthus; while in the east it grades into an extensive region of chaos where scoured channels and streamlined islands provide evidence of catastrophic floods that spilled into the northern plains. In the central portion of the system, debris derived from the massive interior layered deposits of Candor and Ophir Chasmas spills into the central trough. In other areas, 6 km-deep exposures of Hesperian and Noachian-age canyon wall stratigraphy have collapsed in massive landslides that extend many tens of kilometers across the canyon floor. Ejecta from interior craters, aeolian sediments, and possible volcanics emanating from structurally controlled vents along the base of the scarps, further contribute to the canyon's geologic complexity. Following the initial rifting that gave birth to Valles Marineris, water appears to have been a principal agent in the canyon's geomorphic development an agent whose significance is given added weight by its potential role in both sustaining and preserving evidence of past life. In this regard, the interior layered deposits of Candor, Ophir, and Hebes Chasmas, have been identified as possible lucustrine sediments that may have been laid down in long-standing ice-covered lakes. The potential survival and growth of native organisms in such an environment, or in the aquifers whose disruption gave birth to the chaotic terrain and outflow channels to the north and east of the canyon, raises the possibility that fossil indicators of life may be present in the local sediment and rock. Because of the enormous distances over which these diverse environments occur, identifying a single landing site that maximizes the opportunity for scientific return is not a simple task. However, given the fluvial history and narrow geometry of the canyon, the presence of a single exit at its eastern end provides an opportunity for sampling that appears unequaled elsewhere in the system.

  7. The Confluence of Gangis and Eos Chasmas (5-12 deg S, 31-41 deg W): Geologic, Hydrologic, and Exobiologic Considerations for Landing Site at the East End of Valles Marineris

    NASA Astrophysics Data System (ADS)

    George, J. A.; Clifford, S. M.

    1999-06-01

    Over its 3,500 km length, Valles Marineris exhibits an enormous range of geologic and environmental diversity. At its western end, the canyon is dominated by the tectonic complex of Noctis Labyrinthus; while in the east it grades into an extensive region of chaos where scoured channels and streamlined islands provide evidence of catastrophic floods that spilled into the northern plains. In the central portion of the system, debris derived from the massive interior layered deposits of Candor and Ophir Chasmas spills into the central trough. In other areas, 6 km-deep exposures of Hesperian and Noachian-age canyon wall stratigraphy have collapsed in massive landslides that extend many tens of kilometers across the canyon floor. Ejecta from interior craters, aeolian sediments, and possible volcanics emanating from structurally controlled vents along the base of the scarps, further contribute to the canyon's geologic complexity. Following the initial rifting that gave birth to Valles Marineris, water appears to have been a principal agent in the canyon's geomorphic development an agent whose significance is given added weight by its potential role in both sustaining and preserving evidence of past life. In this regard, the interior layered deposits of Candor, Ophir, and Hebes Chasmas, have been identified as possible lucustrine sediments that may have been laid down in long-standing ice-covered lakes. The potential survival and growth of native organisms in such an environment, or in the aquifers whose disruption gave birth to the chaotic terrain and outflow channels to the north and east of the canyon, raises the possibility that fossil indicators of life may be present in the local sediment and rock. Because of the enormous distances over which these diverse environments occur, identifying a single landing site that maximizes the opportunity for scientific return is not a simple task. However, given the fluvial history and narrow geometry of the canyon, the presence of a single exit at its eastern end provides an opportunity for sampling that appears unequaled elsewhere in the system.

  8. Dinosaur Census Reveals Abundant Tyrannosaurus and Rare Ontogenetic Stages in the Upper Cretaceous Hell Creek Formation (Maastrichtian), Montana, USA

    PubMed Central

    Horner, John R.; Goodwin, Mark B.; Myhrvold, Nathan

    2011-01-01

    Background A dinosaur census recorded during the Hell Creek Project (1999–2009) incorporates multiple lines of evidence from geography, taphohistory, stratigraphy, phylogeny and ontogeny to investigate the relative abundance of large dinosaurs preserved in the Upper Cretaceous Hell Creek Formation of northeastern Montana, USA. Overall, the dinosaur skeletal assemblages in the Hell Creek Formation (excluding lag-influenced records) consist primarily of subadult or small adult size individuals. Small juveniles and large adults are both extremely rare, whereas subadult individuals are relatively common. We propose that mature individuals of at least some dinosaur taxa either lived in a separate geographic locale analogous to younger individuals inhabiting an upland environment where sedimentation rates were relatively less, or these taxa experienced high mortality before reaching terminal size where late stage and often extreme cranial morphology is expressed. Methodology/Principal Findings Tyrannosaurus skeletons are as abundant as Edmontosaurus, an herbivore, in the upper Hell Creek Formation and nearly twice as common in the lower third of the formation. Smaller, predatory dinosaurs (e.g., Troodon and dromaeosaurids) are primarily represented by teeth found in microvertebrate localities and their skeletons or identifiable lag specimens were conspicuously absent. This relative abundance suggests Tyrannosaurus was not a typical predator and likely benefited from much wider food choice opportunities than exclusively live prey and/or specific taxa. Tyrannosaurus adults may not have competed with Tyrannosaurus juveniles if the potential for selecting carrion increased with size during ontogeny. Conclusions/Significance Triceratops is the most common dinosaur and isolated skulls contribute to a significant portion of this census. Associated specimens of Triceratops consisting of both cranial and postcranial elements remain relatively rare. This rarity may be explained by a historical collecting bias influenced by facies and taphonomic factors. The limited discovery of postcranial elements may also depend on how extensive a fossil quarry is expanded after a skull is collected. PMID:21347420

  9. Surprise and opportunity for learning in Grand Canyon: the Glen Canyon Dam Adaptive Management Program

    USGS Publications Warehouse

    Melis, Theodore S.; Walters, Carl; Korman, Josh

    2015-01-01

    With a focus on resources of the Colorado River ecosystem below Glen Canyon Dam, the Glen Canyon Dam Adaptive Management Program has included a variety of experimental policy tests, ranging from manipulation of water releases from the dam to removal of non-native fish within Grand Canyon National Park. None of these field-scale experiments has yet produced unambiguous results in terms of management prescriptions. But there has been adaptive learning, mostly from unanticipated or surprising resource responses relative to predictions from ecosystem modeling. Surprise learning opportunities may often be viewed with dismay by some stakeholders who might not be clear about the purpose of science and modeling in adaptive management. However, the experimental results from the Glen Canyon Dam program actually represent scientific successes in terms of revealing new opportunities for developing better river management policies. A new long-term experimental management planning process for Glen Canyon Dam operations, started in 2011 by the U.S. Department of the Interior, provides an opportunity to refocus management objectives, identify and evaluate key uncertainties about the influence of dam releases, and refine monitoring for learning over the next several decades. Adaptive learning since 1995 is critical input to this long-term planning effort. Embracing uncertainty and surprise outcomes revealed by monitoring and ecosystem modeling will likely continue the advancement of resource objectives below the dam, and may also promote efficient learning in other complex programs.

  10. Investigating Mars: Tithonium Chasma

    NASA Image and Video Library

    2018-02-15

    In this VIS image a complex region of multiple overlapping landslide deposits fills most the the frame. In the center of the image the top layer has the lobate edges and radial surface grooves of a low volume slide. It appears to be the top of a complex layering of materials, It is possible that all the lower layers are landslides as well. At the top of the image are a series of smaller lobate shaped landslide deposits Whether the layers formed very close in time of over thousands of years can not be determined in the image. Tithonium Chasma has numerous large landslide deposits. The resistant material of the plateau surface forms the linear ridges of the canyon wall. Large landslides have changed the walls and floor of the canyon. A landslide is a failure of slope due to gravity. They initiate due to several reasons. A lower layer of poorly cemented/resistant material may have been eroded, undermining the wall above which then collapses; earth quake seismic waves can cause the slope to collapse; and even an impact event near the canyon wall can cause collapse. As millions of tons of material fall and slide down slope a scalloped cavity forms at the upper part where the slope failure occurred. At the material speeds downhill it will pick up more of the underlying slope, increasing the volume of material entrained into the landslide. Whereas some landslides spread across the canyon floor forming lobate deposits, very large volume slope failures will completely fill the canyon floor in a large complex region of chaotic blocks. Tithonium Chasma is at the western end of Valles Marineris. Valles Marineris is over 4000 kilometers long, wider than the United States. Tithonium Chasma is almost 810 kilometers long (499 miles), 50 kilometers wide and over 6 kilometers deep. In comparison, the Grand Canyon in Arizona is about 175 kilometers long, 30 kilometers wide, and only 2 kilometers deep. The canyons of Valles Marineris were formed by extensive fracturing and pulling apart of the crust during the uplift of the vast Tharsis plateau. Landslides have enlarged the canyon walls and created deposits on the canyon floor. Weathering of the surface and influx of dust and sand have modified the canyon floor, both creating and modifying layered materials. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 35746 Latitude: -4.47838 Longitude: 272.133 Instrument: VIS Captured: 2010-01-04 14:22 https://photojournal.jpl.nasa.gov/catalog/PIA22275

  11. Upper Miocene-Pliocene provenance evolution of the Central Canyon in northwestern South China Sea

    NASA Astrophysics Data System (ADS)

    Cui, Yuchi; Shao, Lei; Qiao, Peijun; Pei, Jianxiang; Zhang, Daojun; Tran, Huyen

    2018-06-01

    Provenance studies of the Central Canyon, Qiongdongnan Basin has provided significant insights into paleographic and sedimentology research of the South China Sea (SCS). A suite of geochemical approaches mainly including rare earth elemental (REE) analysis and detrital zircon U-Pb dating has been systematically applied to the "source-to-sink" system involving our upper Miocene-Pliocene Central Canyon sediments and surrounding potential source areas. Based on samples tracing the entire course of the Central Canyon, REE distribution patterns indicate that the western channel was generally characterized by positive Eu anomalies in larger proportion, in contrast to the dominance of negative values of its eastern side during late Miocene-Pliocene. Additionally, for the whole canyon and farther regions of Qiongdongnan Basin, the number of samples bearing negative Eu anomalies tended to increase within younger geological strata. On the other hand, U-Pb geochronology results suggest a wide Proterozoic to Mesozoic age range with peak complexity in Yanshanian, Indosinian, Caledonian and Jinningian periods. However in detail, age combination of most western samples displayed older-age signatures than the eastern. To make it more evidently, western boreholes of the Central Canyon are mainly characterized with confined Indosinian and Caledonian clusters which show great comparability with mafic-to-ultramafic source of Kontum Massif of Central Vietnam, while eastern samples largely bear with distinguishable Yanshanian and Indosinian peaks which more resemble with Hainan Island. Based on geochemistry and geochronology analyses, two significant suppliers and sedimentary infilling processes are generated: (1) the Indosinian collision orogenic belt in central-northern Vietnam, Indochina has ever played significant role in Central Canyon sedimentary evolution, (2) Hainan Island once as a typical provenance restricted within eastern Central Canyon, has been enlarging its influence into the whole channel, even into the farther western regions of Qiongdongnan Basin.

  12. Generation and analyses of human synthetic antibody libraries and their application for protein microarrays.

    PubMed

    Säll, Anna; Walle, Maria; Wingren, Christer; Müller, Susanne; Nyman, Tomas; Vala, Andrea; Ohlin, Mats; Borrebaeck, Carl A K; Persson, Helena

    2016-10-01

    Antibody-based proteomics offers distinct advantages in the analysis of complex samples for discovery and validation of biomarkers associated with disease. However, its large-scale implementation requires tools and technologies that allow development of suitable antibody or antibody fragments in a high-throughput manner. To address this we designed and constructed two human synthetic antibody fragment (scFv) libraries denoted HelL-11 and HelL-13. By the use of phage display technology, in total 466 unique scFv antibodies specific for 114 different antigens were generated. The specificities of these antibodies were analyzed in a variety of immunochemical assays and a subset was further evaluated for functionality in protein microarray applications. This high-throughput approach demonstrates the ability to rapidly generate a wealth of reagents not only for proteome research, but potentially also for diagnostics and therapeutics. In addition, this work provides a great example on how a synthetic approach can be used to optimize library designs. By having precise control of the diversity introduced into the antigen-binding sites, synthetic libraries offer increased understanding of how different diversity contributes to antibody binding reactivity and stability, thereby providing the key to future library optimization. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Long-Distance Free Fall

    NASA Astrophysics Data System (ADS)

    Gallant, Joseph

    1999-04-01

    One of the goals of physics education is to instill a sense of wonder in our students. We hope our natural curiosity will rub off on them and that they will apply the critical thinking skills we teach them to other aspects of their lives outside the classroom. As an example of this, consider the situation described in Milton's epic poem ``Paradise Lost''. Milton wrote that when the devil was cast out of heaven, he fell for nine days before landing in hell. In Milton's universe, hell is a separate place from Earth, but many people place hell at the center of the Earth. Based on these ideas, we can apply Newton's laws of motion to calculate the distance from heaven to Earth. This exercise is an example of the kind of intellectual exercise a physicist (or a physics student) might carry out when confronted with such information. We apply the basic principles of physics to a situation described in work of literature while making no attempt to validate or refute any philosophy, theology or ideology.

  14. Genome-wide DNA methylation patterns in LSH mutant reveals de-repression of repeat elements and redundant epigenetic silencing pathways

    PubMed Central

    Yu, Weishi; McIntosh, Carl; Lister, Ryan; Zhu, Iris; Han, Yixing; Ren, Jianke; Landsman, David; Lee, Eunice; Briones, Victorino; Terashima, Minoru; Leighty, Robert; Ecker, Joseph R.

    2014-01-01

    Cytosine methylation is critical in mammalian development and plays a role in diverse biologic processes such as genomic imprinting, X chromosome inactivation, and silencing of repeat elements. Several factors regulate DNA methylation in early embryogenesis, but their precise role in the establishment of DNA methylation at a given site remains unclear. We have generated a comprehensive methylation map in fibroblasts derived from the murine DNA methylation mutant Hells−/− (helicase, lymphoid specific, also known as LSH). It has been previously shown that HELLS can influence de novo methylation of retroviral sequences and endogenous genes. Here, we describe that HELLS controls cytosine methylation in a nuclear compartment that is in part defined by lamin B1 attachment regions. Despite widespread loss of cytosine methylation at regulatory sequences, including promoter regions of protein-coding genes and noncoding RNA genes, overall relative transcript abundance levels in the absence of HELLS are similar to those in wild-type cells. A subset of promoter regions shows increases of the histone modification H3K27me3, suggesting redundancy of epigenetic silencing mechanisms. Furthermore, HELLS modulates CG methylation at all classes of repeat elements and is critical for repression of a subset of repeat elements. Overall, we provide a detailed analysis of gene expression changes in relation to DNA methylation alterations, which contributes to our understanding of the biological role of cytosine methylation. PMID:25170028

  15. Paleozoic carbonate buildup (reef) inventory, central and southeastern Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacson, P.E.

    1987-08-01

    Knowledge of central and southeastern Idaho's Paleozoic rocks to date suggest that three styles of buildup (reef) complexes occur in Late Devonian, Mississippian, and Pennsylvanian-Permian time. The Late Devonian Jefferson Formation has stromatoporoid and coral (both rugosan and tabulate) organisms effecting a buildup in the Grandview Canyon vicinity; Early Mississippian Waulsortian-type mud mounds occur in the Lodgepole formation of southeastern Idaho; there are Late Mississippian Waulsortian-type mounds in the Surrett Canyon Formation of the Lost River Range; and cyclic Pennsylvanian-Permian algal and hydrozoan buildups occur in the Juniper gulch Member of the Snaky Canyon Formation in the Arco Hills andmore » Lemhi Range. Late Devonian (Frasnian) carbonates of the Jefferson formation show buildup development on deep ramp sediments.« less

  16. The Influence of Roof Material on Diurnal Urban Canyon Breathing

    NASA Astrophysics Data System (ADS)

    Abuhegazy, Mohamed; Yaghoobian, Neda

    2017-11-01

    Improvements in building energy use, air quality in urban canyons and in general urban microclimates require understanding the complex interaction between urban morphology, materials, climate, and inflow conditions. Review of the literature indicates that despite a long history of valuable urban microclimate studies, more comprehensive approaches are needed to address energy, and heat and flow transport in urban areas. In this study, a more comprehensive simulation of the diurnally varying street canyon flow and associated heat transport is numerically investigated, using Large-eddy Simulation (LES). We use computational modeling to examine the impact of diurnal variation of the heat fluxes from urban surfaces on the air flow and temperature distribution in street canyons with a focus on the role of roof materials and their temperature footprints. A detailed building energy model with a three-dimensional raster-type geometry provides urban surface heat fluxes as thermal boundary conditions for the LES to determine the key aero-thermodynamic factors that affect urban street ventilation.

  17. Characterizing local traffic contributions to particulate air pollution in street canyons using mobile monitoring techniques

    NASA Astrophysics Data System (ADS)

    Zwack, Leonard M.; Paciorek, Christopher J.; Spengler, John D.; Levy, Jonathan I.

    2011-05-01

    Traffic within urban street canyons can contribute significantly to ambient concentrations of particulate air pollution. In these settings, it is challenging to separate within-canyon source contributions from urban and regional background concentrations given the highly variable and complex emissions and dispersion characteristics. In this study, we used continuous mobile monitoring of traffic-related particulate air pollutants to assess the contribution to concentrations, above background, of traffic in the street canyons of midtown Manhattan. Concentrations of both ultrafine particles (UFP) and fine particles (PM 2.5) were measured at street level using portable instruments. Statistical modeling techniques accounting for autocorrelation were used to investigate the presence of spatial heterogeneity of pollutant concentrations as well as to quantify the contribution of within-canyon traffic sources. Measurements were also made within Central Park, to examine the impact of offsets from major roadways in this urban environment. On average, an approximate 11% increase in concentrations of UFP and 8% increase in concentrations of PM 2.5 over urban background was estimated during high-traffic periods in street canyons as opposed to low traffic periods. Estimates were 8% and 5%, respectively, after accounting for temporal autocorrelation. Within Central Park, concentrations were 40% higher than background (5% after accounting for temporal autocorrelation) within the first 100 m from the nearest roadway for UFP, with a smaller but statistically significant increase for PM 2.5. Our findings demonstrate the viability of a mobile monitoring protocol coupled with spatiotemporal modeling techniques in characterizing local source contributions in a setting with street canyons.

  18. Crossing fitness canyons by a finite population

    NASA Astrophysics Data System (ADS)

    Saakian, David B.; Bratus, Alexander S.; Hu, Chin-Kun

    2017-06-01

    We consider the Wright-Fisher model of the finite population evolution on a fitness landscape defined in the sequence space by a path of nearly neutral mutations. We study a specific structure of the fitness landscape: One of the intermediate mutations on the mutation path results in either a large fitness value (climbing up a fitness hill) or a low fitness value (crossing a fitness canyon), the rest of the mutations besides the last one are neutral, and the last sequence has much higher fitness than any intermediate sequence. We derive analytical formulas for the first arrival time of the mutant with two point mutations. For the first arrival problem for the further mutants in the case of canyon crossing, we analytically deduce how the mean first arrival time scales with the population size and fitness difference. The location of the canyon on the path of sequences has a crucial role. If the canyon is at the beginning of the path, then it significantly prolongs the first arrival time; otherwise it just slightly changes it. Furthermore, the fitness hill at the beginning of the path strongly prolongs the arrival time period; however, the hill located near the end of the path shortens it. We optimize the first arrival time by applying a nonzero selection to the intermediate sequences. We extend our results and provide a scaling for the valley crossing time via the depth of the canyon and population size in the case of a fitness canyon at the first position. Our approach is useful for understanding some complex evolution systems, e.g., the evolution of cancer.

  19. Archaeogenomic evidence reveals prehistoric matrilineal dynasty.

    PubMed

    Kennett, Douglas J; Plog, Stephen; George, Richard J; Culleton, Brendan J; Watson, Adam S; Skoglund, Pontus; Rohland, Nadin; Mallick, Swapan; Stewardson, Kristin; Kistler, Logan; LeBlanc, Steven A; Whiteley, Peter M; Reich, David; Perry, George H

    2017-02-21

    For societies with writing systems, hereditary leadership is documented as one of the hallmarks of early political complexity and governance. In contrast, it is unknown whether hereditary succession played a role in the early formation of prehistoric complex societies that lacked writing. Here we use an archaeogenomic approach to identify an elite matriline that persisted between 800 and 1130 CE in Chaco Canyon, the centre of an expansive prehistoric complex society in the Southwestern United States. We show that nine individuals buried in an elite crypt at Pueblo Bonito, the largest structure in the canyon, have identical mitochondrial genomes. Analyses of nuclear genome data from six samples with the highest DNA preservation demonstrate mother-daughter and grandmother-grandson relationships, evidence for a multigenerational matrilineal descent group. Together, these results demonstrate the persistence of an elite matriline in Chaco for ∼330 years.

  20. Archaeogenomic evidence reveals prehistoric matrilineal dynasty

    PubMed Central

    Kennett, Douglas J.; Plog, Stephen; George, Richard J.; Culleton, Brendan J.; Watson, Adam S.; Skoglund, Pontus; Rohland, Nadin; Mallick, Swapan; Stewardson, Kristin; Kistler, Logan; LeBlanc, Steven A.; Whiteley, Peter M.; Reich, David; Perry, George H.

    2017-01-01

    For societies with writing systems, hereditary leadership is documented as one of the hallmarks of early political complexity and governance. In contrast, it is unknown whether hereditary succession played a role in the early formation of prehistoric complex societies that lacked writing. Here we use an archaeogenomic approach to identify an elite matriline that persisted between 800 and 1130 CE in Chaco Canyon, the centre of an expansive prehistoric complex society in the Southwestern United States. We show that nine individuals buried in an elite crypt at Pueblo Bonito, the largest structure in the canyon, have identical mitochondrial genomes. Analyses of nuclear genome data from six samples with the highest DNA preservation demonstrate mother–daughter and grandmother–grandson relationships, evidence for a multigenerational matrilineal descent group. Together, these results demonstrate the persistence of an elite matriline in Chaco for ∼330 years. PMID:28221340

  1. Middle Jurassic incised valley fill (eolian/estuarine) and nearshore marine petroleum reservoirs, Powder River Basin

    USGS Publications Warehouse

    Ahlbrandt, T.S.; Fox, J.E.

    1997-01-01

    Paleovalleys incised into the Triassic Spearfish Formation (Chugwater equivalent) are filled with a vertical sequence of eolian, estuarine, and marine sandstones of the Middle Jurassic (Bathonian age) Canyon Springs Sandstone Member of the Sundance Formation. An outcrop exemplifying this is located at Red Canyon in the southern Black Hills, Fall River County, South Dakota. These paleovalleys locally have more than 300 ft of relief and are as much as several miles wide. Because they slope in a westerly direction, and Jurassic seas transgressed into the area from the west there was greater marine-influence and more stratigraphic complexity in the subsurface, to the west, as compared to the Black Hills outcrops. In the subsurface two distinctive reservoir sandstone beds within the Canyon Springs Sandstone Member fill the paleovalleys. These are the eolian lower Canyon Springs unit (LCS) and the estuarine upper Canyon Springs unit (UCS), separated by the marine "Limestone Marker" and estuarine "Brown Shale". The LCS and UCS contain significant proven hydrocarbon reservoirs in Wyoming (about 500 MMBO in-place in 9 fields, 188 MMBO produced through 1993) and are prospective in western South Dakota, western Nebraska and northern Colorado. Also prospective is the Callovian-age Hulett Sandstone Member which consists of multiple prograding shoreface to foreshore parasequences, as interpreted from the Red Canyon locality. Petrographic, outcrop and subsurface studies demonstrate the viability of both the Canyon Springs Sandstone and Hulett Sandstone members as superior hydrocarbon reservoirs in both stratigraphic and structural traps. Examples of fields with hydrocarbon production from the Canyon Springs in paleovalleys include Lance Creek field (56 MMBO produced) and the more recently discovered Red Bird field (300 MBO produced), both in Niobrara County, Wyoming. At Red Bird field the primary exploration target was the Pennsylvanian "Leo sands" of the Minnelusa Formation, and production from the Canyon Springs was not anticipated. Canyon Springs reservoirs are easily bypassed because they are relatively unconsolidated, underpressured, low-resistivity, and difficult to evaluate from petrophysics, drill-stem tests, or well cuttings.

  2. Imported fire ants: the ants from hell!

    PubMed

    Freeman, T M

    1994-01-01

    Imported fire ants may certainly be considered the ANTS FROM HELL! This review focuses on both the interesting entomology of fire ants and the important medical characteristics of fire ant stings. They sting and they kill; they destroy; they mate in mid-air; and we may not be able to stop them. However, although they inject extremely potent venom, individuals can prevent secondary infections by leaving the so-called pustules alone and not opening them. Individuals who suffer systemic reactions may receive adequate treatment with the whole body extract immunotherapy.

  3. Episodic sediment-discharge events in Cascade Springs, southern Black Hills, South Dakota

    USGS Publications Warehouse

    Hayes, Timothy Scott

    1999-01-01

    Cascade Springs is a group of artesian springs in the southern Black Hills, South Dakota, with collective flow of about 19.6 cubic feet per second. Beginning on February 28, 1992, a large discharge of red suspended sediment was observed from two of the six known discharge points. Similar events during 1906-07 and 1969 were documented by local residents and newspaper accounts. Mineralogic and grain-size analyses were performed to identify probable subsurface sources of the sediment. Geochemical modeling was performed to evaluate the geochemical evolution of water discharged from Cascade Springs. Interpretations of results provide a perspective on the role of artesian springs in the regional geohydrologic framework. X-ray diffraction mineralogic analyses of the clay fraction of the suspended sediment were compared to analyses of clay-fraction samples taken from nine geologic units at and stratigraphically below the spring-discharge points. Ongoing development of a subsurface breccia pipe(s) in the upper Minnelusa Formation and/or Opeche Shale was identified as a likely source of the suspended sediment; thus, exposed breccia pipes in lower Hell Canyon were examined. Upper Minnelusa Formation breccia pipes in lower Hell Canyon occur in clusters similar to the discrete discharge points of Cascade Springs. Grain-size analyses showed that breccia masses lack clay fractions and have coarser distributions than the wall rocks, which indicates that the red, fine-grained fractions have been carried out as suspended sediment. These findings support the hypothesis that many breccia pipes were formed as throats of abandoned artesian springs. Geochemical modeling was used to test whether geochemical evolution of ground water is consistent with this hypothesis. The evolution of water at Cascade Springs could not be suitably simulated using only upgradient water from the Minnelusa aquifer. A suitable model involved dissolution of anhydrite accompanied by dedolomitization in the upper Minnelusa Formation, which is caused by upward leakage of relatively fresh water from the Madison aquifer. The anhydrite dissolution and dedolomitization account for the net removal of minerals that would lead to breccia pipe formation by gravitational collapse. Breccia pipes in the lower Minnelusa Formation are uncommon; however, networks of interconnected breccia layers and breccia dikes are common. These networks, along with vertical fractures and faults, are likely pathways for transmitting upward leakage from the Madison aquifer. It is concluded that suspended sediment discharged at Cascade Springs probably results from episodic collapse brecciation that is caused by subsurface dissolution of anhydrite beds and cements of the upper Minnelusa Formation, accompanied by replacement of dolomite by calcite. It is further concluded that many breccia pipes probably are the throats of artesian springs that have been abandoned and exposed by erosion. The locations of artesian spring-discharge points probably have been shifting outwards from the center of the Black Hills uplift, essentially keeping pace with regional erosion over geologic time. Thus, artesian springflow probably is a factor in controlling water levels in the Madison and Minnelusa aquifers, with hydraulic head declining over geologic time, in response to development of new discharge points. Development of breccia pipes as throats of artesian springs would greatly enhance vertical hydraulic conductivity in the immediate vicinity of spring-discharge points. Horizontal hydraulic conductivity in the Minnelusa Formation also may be enhanced by dissolution processes related to upward leakage from the Madison aquifer. Potential processes could include dissolution resulting from leakage in the vicinity of breccia pipes that are abandoned spring throats, active spring discharge, development of subsurface breccias with no visible surface expression or spring discharge, as well as general areal leakage

  4. Limitations on K-T mass extinction theories based upon the vertebrate record

    NASA Technical Reports Server (NTRS)

    Archibald, J. David; Bryant, Laurie J.

    1988-01-01

    Theories of extinction are only as good as the patterns of extinction that they purport to explain. Often such patterns are ignored. For the terminal Cretaceous events, different groups of organisms in different environments show different patterns of extinction that to date cannot be explained by a single causal mechanism. Several patterns of extinction (and/or preservational bias) can be observed for the various groups of vertebrates from the uppermost Cretaceous Hell Creek Formation and lower Paleocene Tullock Formation in eastern Montana. The taxonomic level at which the percentage of survivals (or extinctions) is calculated will have an effect upon the perception of faunal turnover. In addition to the better known mammals and better publicized dinosaurs, there are almost 60 additional species of reptiles, birds, amphibians, and fish in the HELL Creek Formation. Simple arithmetic suggests only 33 percent survival of these vertebrates from the Hell Creek Fm. into the Tullock Fm. A more critical examination of the data shows that almost all Hell Creek species not found in the Tullock are represented in one of the following categories; extremely rare forms, elasmobranch fish that underwent rapid speciation taxa that although not known or rare in the Tullock, are found elsewhere. Each of the categories is largely the result of the following biases: taphonomy, ecological differences, taxonomic artifact paleogeography. The two most important factors appear to be the possible taphonomic biases and the taxonomic artifacts. The extinction patterns among the vertebrates do not appear to be attributable to any single cause, catastrophic or otherwise.

  5. Benthic foraminiferal response to sedimentary disturbance in the Capbreton canyon (Bay of Biscay, NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Duros, P.; Silva Jacinto, R.; Dennielou, B.; Schmidt, S.; Martinez Lamas, R.; Gautier, E.; Roubi, A.; Gayet, N.

    2017-02-01

    Living (Rose Bengal stained) and dead benthic foraminifera were investigated at 6 deep-sea sites sampled in the Capbreton canyon area (Bay of Biscay, France). Three sites were located along the canyon axis at 301 m, 983 m and 1478 m and 3 stations were positioned on adjacent terraces at 251 m, 894 m and 1454 m. Sedimentary features indicate that frequent sedimentary disturbances of different magnitudes occur along the Capbreton canyon axis and adjacent terraces. Such environmental conditions cause the presence of very particular benthic environments. Along the 6 studied sites, different foraminiferal responses to various sedimentary patterns are observed revealing the complexity of this canyon environment. Some sites (Gitan 3 (canyon axis), Gitan 5 (canyon axis) and Gitan 6 (terrace)) are characterized by moderate to low standing stocks and low diversity and are mainly dominated by pioneer taxa such as Fursenkoina brady, Reophax dentaliniformis and Technitella melo suggesting a recent response to turbidite deposits recorded at these sites. Others sites (Gitan 1 and Gitan 2) show extremely high standing stocks and are mainly dominated by the opportunistic Bolivina subaenariensis and Bulimina marginata. Such faunal characteristics belonging to a more advanced stage of ecosystem colonization indicates strongly food-enriched sediment but extremely unstable conditions. Moderate standing stocks and diverse assemblage composed of species such as Uvigerina mediterranea and U. peregrina has only been observed at the terrace site Gitan 4. More stable sedimentary conditions recorded at this terrace seem to be suitable to the development of a dense and diverse foraminiferal community. Numerous neritic allochtonous species were observed in the dead foraminiferal fauna. These allochthonous species mainly originate from shelf areas (<60 m).

  6. Three-Dimensional Mapping of Air Flow at an Urban Canyon Intersection

    NASA Astrophysics Data System (ADS)

    Carpentieri, Matteo; Robins, Alan G.; Baldi, Sandro

    2009-11-01

    In this experimental work both qualitative (flow visualisation) and quantitative (laser Doppler anemometry) methods were applied in a wind tunnel in order to describe the complex three-dimensional flow field in a real environment (a street canyon intersection). The main aim was an examination of the mean flow, turbulence and flow pathlines characterising a complex three-dimensional urban location. The experiments highlighted the complexity of the observed flows, particularly in the upwind region of the intersection. In this complex and realistic situation some details of the upwind flow, such as the presence of two tall towers, play an important role in defining the flow field within the intersection, particularly at roof level. This effect is likely to have a strong influence on the mass exchange mechanism between the canopy flow and the air aloft, and therefore the distribution of pollutants. This strong interaction between the flows inside and outside the urban canopy is currently neglected in most state-of-the-art local scale dispersion models.

  7. Comprehensive investigation of submarine slide zones and mass movements at the northern continental slope of South China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Hongjun; Liang, Jin; Gong, Yuehua

    2018-02-01

    Multi-beam bathymetry and seismic sequence surveys in the northern slope of the South China Sea reveal detailed geomorphology and seismic stratigraphy characteristics of canyons, gullies, and mass movements. Modern canyons and gullies are roughly elongated NNW-SSW with U-shaped cross sections at water depths of 400-1000 m. Mass movements include slide complexes, slide scars, and debris/turbidity flows. Slide complexes and slide scars are oriented in the NE-SW direction and cover an area of about 1790 and 926 km2, respectively. The debris/turbidity flows developed along the lower slope. A detailed facies analysis suggests that four seismic facies exist, and the late Cenozoic stratigraphy above the acoustic basement can be roughly subdivided into three sequences separated by regional unconformities in the study area. The occurrence of gas hydrates is marked by seismic velocity anomalies, bottom-simulating reflectors, gas chimneys, and pockmarks in the study area. Seismic observations suggest that modern canyons and mass movements formed around the transition between the last glacial period and the current interglacial period. The possible existence and dissociation of gas hydrates and the regional tectonic setting may trigger instability and mass movements on the seafloor. Canyons may be the final result of gas hydrate dissociation. Our study aims to contribute new information that is applicable to engineering construction required for deep-water petroleum exploration and gas hydrate surveys along any marginal sea.

  8. Resolving the Timing of Events Around the Cretaceous-Paleogene Boundary

    NASA Astrophysics Data System (ADS)

    Sprain, Courtney Jean

    Despite decades of study, the exact cause of the Cretaceous-Paleogene boundary (KPB) mass extinction remains contentious. Hypothesized scenarios center around two main environmental perturbations: voluminous (>10 6 km3) volcanic eruptions from the Deccan Traps in modern-day India, and the large impact recorded by the Chicxulub crater. The impact hypothesis has gained broad support, bolstered by the discoveries of iridium anomalies, shocked quartz, and spherules at the KPB worldwide, which are contemporaneous with the Chicxulub impact structure. However, evidence for protracted extinctions, particularly in non-marine settings, and paleoenvironmental change associated with climatic swings before the KPB, challenge the notion that the impact was the sole cause of the KPB mass extinction. Despite forty years of study, the relative importance of each of these events is unclear, and one key inhibitor is insufficient resolution of existing geochronology. In this dissertation, I present work developing a high-precision global chronologic framework for the KPB that outlines the temporal sequence of biotic changes (both within the terrestrial and marine realms), climatic changes, and proposed perturbations (i.e. impact, volcanic eruptions) using 40Ar/39Ar geochronology and paleomagnetism. This work is focused on two major areas of study: 1) refining the timing and tempo of terrestrial ecosystem change around the KPB, and 2) calibrating the geomagnetic polarity timescale, and particularly the timing and duration of magnetic polarity chron C29r (the KPB falls about halfway into C29r). First I develop a high-precision chronostratigraphic framework for fluvial sediments within the Hell Creek region, in NE Montana, which is one of the best-studied terrestrial KPB sections worldwide. For this work I dated 15 tephra deposits with +/- 30 ka precision using 40Ar/ 39Ar geochronology, ranging in time from 300 ka before the KPB to 1 Ma after. By tying these results to paleontological records, this work is able to constrain the timing of terrestrial faunal decline and recovery in addition to calibrating late Cretaceous and early Paleocene North American Land Mammal Ages biostratigraphy. To aid in global correlation, I next sought to calibrate the timing and duration of C29r. However, based on discrepancies noticed between a calculated duration for C29r, from new dates collected as part of this dissertation and previously published magnetostratigraphy for the Hell Creek region, and the duration provided within the Geologic Time Scale 2012, it became clear that reliability of sediments from the Hell Creek as paleomagnetic recorders was suspect. To test this claim, a complete characterization of the rock magnetic properties of sediments from the Hell Creek region was undertaken. To aid characterization, a new test to determine the presence of intermediate composition titanohematite (Fe2-yTiyO3; 0.5 ≤ y ≤ 0.7) was developed. Results from rock magnetic characterization show that sediments from the Hell Creek should be reliable paleomagnetic recorders, so long as care is taken to remove goethite (a secondary mineral that previous magnetostratigraphic studies in the Hell Creek did not remove), and to avoid samples that have been heated above 200ºC. With the knowledge that sediments from the Hell Creek region are reliable magnetic recorders, I collected 14 new magnetostratigraphic sections, and 18 new high-precision 40Ar/39Ar dates which together provide constraints on the timing and duration of chron C29r, at unprecedented precision. This work enables correlation of our record in the Hell Creek to other KPB records around the globe, in addition to providing a test of the Paleocene astrochronologic timescale.

  9. 3D modeling of seismic waves propagation in the Israeli continental shelf: soft sediments, buried canyons and their effects.

    NASA Astrophysics Data System (ADS)

    Tsesarsky, M.; Volk, O.; Shani-Kadmiel, S.; Gvirtzman, Z.

    2016-12-01

    Sedimentary wedges underlay many coastal areas, specifically along passive continental margins. Although a large portion of the world`s population is concentrated along coastal areas, relatively few studies investigated the seismic hazard related to internal structure of these wedges. This is particularly important, when the passive margin is located in proximity to active plate boundaries. Sedimentry wedges have low angles compared to fault bounded basins, hence commonly treated using 1D methods. In various locations the sedimentary wedges are transected by deep buried canyons typically filled with sediments softer than their surrounding bedrock. Such structures are found is the Mediterranean coast of Israel. Here, a sedimentary wedge and buried canyons underlay some of the country's most densely populated regions. Seismic sources can be found both at sea and on land at epicentral distances ranging from 50 to 200 km. Although this region has a proven seismic record, it has, like many other parts of the world, limited instrumental coverage and long return periods. This makes assessment of ground motions in a future earthquake difficult and highlights the importance of non-instrumental methods. We employ numerical modeling (SW4 FD code) to study seismic ground motions and their amplification atop the sedimentary wedge and canyons. This goal is a part of a larger objective aiming at developing a systematic approach for distinction between individual contributions of basin structures to the highly complex overall basin response. We show that the sedimentary wedge and buried canyon both exhibit a unique response and modeling them as one-dimensional structures could significantly underestimate seismic hazard. The sedimentary wedge exhibit amplification ratios, relative to a horizontally layered model, up to a factor of 2. This is mainly due to the amplification of Rayleigh waves traveling into the wedge from its thin side. The buried canyon structure shows a simple, "easy to use" response with considerably high PGV values and amplification ratios of up to 3 along its axis. This response is due to a geometrical focusing effect caused by the convex shape of the canyon's floor. The canyon's response is significant even where the canyon is buried deep under the surface.

  10. Describing the development of submarine canyons using stream-power erosion laws

    NASA Astrophysics Data System (ADS)

    Mitchell, N. C.

    2004-12-01

    The problem of how turbidity currents erode their beds is important for understanding how canyons develop, but is complex because flow power also varies as a result of incorporation and deposition of the current's suspended load. In some canyons where the total sedimentary mass passing through the canyon has been much larger than the excavated mass, the loads of the eroding currents changed little during passage down-canyon. Canyon morphology can then potentially reveal how gradient and other factors affect erosion rate, illustrated here with two datasets from tectonically active margins. The first dataset is from Tenryu Canyon off Japan, which was entrenched by up to 1200 m by steepening of the Tokai accretionary prism. Incision depth and channel gradient S data [Soh and Tokuyama, 2002] suggest an erosion law in which incision rate E~S0.8, which is remarkably similar to laws for detachment-limited erosion of river beds. In the second dataset, folds of the Barbados prism have created knickpoints [Huyghe et al., 2004]. Numerical modeling reveals that the knickpoints have partly smoothed out, a property of transport-limited erosion, but primarily have translated, a property of detachment-limited erosion. This mixed style of knickpoint development has also been inferred from some bedrock eroding streams on land. If scaling arguments for erosion with flow velocity apply here [Hancock et al., 1998], the inferred dependence of erosion rate on gradient implies that plucking and shear failure rather than abrasion are the main mechanisms in these channels. Hancock, G.S., Anderson, R.S., and Whipple, K.X., 1998, Beyond power: bedrock river incision process and form, in Tinkler, K.J., and Wohl, E.E., eds., Rivers over rock: Fluvial processes in bedrock channels, American Geophysical Union Monogr. 107: p. 35-60. Huyghe, P., M. Foata, E. Deville, and the Caramba Working Group, Channel profiles through the active thrust front of the southern Barbados prism, Geology, 32, 429-432, 2004. Soh, W., and H. Tokuyama, Rejuvination of submarine canyon associated with ridge subduction, Tenryu Canyon, off Tokai, central Japan, Mar. Geol., 187, 203-230, 2002.

  11. A footnote on the prehistory of interpretation of stellar colours

    NASA Astrophysics Data System (ADS)

    Brosche, P.

    2001-10-01

    Father Maximilian Hell S.J. (1720-92) was one of the first astronomers to formulate a theory of aurorae. This paper speculates on the possibility that Hell somehow could have associated his theory with the colours of stars, possibly by assuming that in some stellar atmospheres frozen particles are prevailing whereas in other stellar atmospheres water droplets dominate; the first would be more white-yellow, the others could show all colours of the rainbow. Our main point consists in the fact that somebody had seen and recorded colours of stars as an intrinsic phenomenon which called for an explanation.

  12. Ultrafine particles dispersion modeling in a street canyon: development and evaluation of a composite lattice Boltzmann model.

    PubMed

    Habilomatis, George; Chaloulakou, Archontoula

    2013-10-01

    Recently, a branch of particulate matter research concerns on ultrafine particles found in the urban environment, which originate, to a significant extent, from traffic sources. In urban street canyons, dispersion of ultrafine particles affects pedestrian's short term exposure and resident's long term exposure as well. The aim of the present work is the development and the evaluation of a composite lattice Boltzmann model to study the dispersion of ultrafine particles, in urban street canyon microenvironment. The proposed model has the potential to penetrate into the physics of this complex system. In order to evaluate the model performance against suitable experimental data, ultrafine particles levels have been monitored on an hourly basis for a period of 35 days, in a street canyon, in Athens area. The results of the comparative analysis are quite satisfactory. Furthermore, our modeled results are in a good agreement with the results of other computational and experimental studies. This work is a first attempt to study the dispersion of an air pollutant by application of the lattice Boltzmann method. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Evaluation of the thermal structure in an urban street canyon: field measurements and model simulation

    NASA Astrophysics Data System (ADS)

    Giovannini, L.; de Franceschi, M.; Zardi, D.

    2009-04-01

    The results of a research project, aiming at providing tools and criteria to evaluate the temperature field inside an urban street canyon, are presented. Temperature measurements have been carried out, both in summertime and in wintertime, inside a North-South oriented urban canyon in the city of Trento (Italy) in the Alps, with sensors placed at various heights on the front of buildings flanking the street and on top of traffic lights in the middle of the canyon. The results have been analyzed in comparison with data from an automated weather station placed close to the street canyon, at 33 m above ground level and taken as a reference for the above roof-top level. During sunny days a well defined cycle was identified in the daily evolution of air temperature measured by the sensors inside the urban canyon, which was primarily influenced by direct solar radiation. As expected, during the morning the East-facing sensors warmed up faster than the other ones, while in the afternoon the West-facing instruments were the warmest. In most cases the air temperature inside the canyon was higher than above roof level, with differences depending on weather conditions and hour of the day. The dataset allowed to characterize the microclimate of the urban canopy layer and provided a basis for testing the ability of a simple numerical model to simulate the thermal structure inside the urban canyon. The model displays the following characteristics: assignment of distinct surface types (road, walls and roofs), in order to better simulate their physical properties; computation of radiative exchanges inside the canyon based on view factors between the different surfaces and explicitly treating both the solar reflections and the shadows; storage heat flux simulated by means of the heat conduction equation. The model requires as input the geometry parameters of the street and the values of meteorological variables measured above roof level. The main outputs are the heat fluxes determined by the surface energy balance (road, building fronts), the surface temperatures and the average air temperature inside the urban canyon. The comparison between the results of the model and the measurements made during the field experiments displays a good agreement, with an average error of 0.3-0.4 °C on the evaluation of the mean air temperature inside the street canyon. This result is remarkable, especially considering the low level of complexity of the numerical code and the simplifying assumptions made.

  14. Internet: road to heaven or hell for the clinical laboratory?

    PubMed

    Chou, D

    1996-05-01

    The Internet started as a research project by the Department of Defense Advanced Research Projects Agency for networking computers. Ironically, the networking project now predominantly supports human rather than computer communications. The Internet's growth, estimated at 20% per month, has been fueled by commercial and public perception that it will become an important medium for merchandising, marketing, and advertising. For the clinical laboratory, the Internet provides high-speed communications through e-mail and allows the retrieval of important information held in repositories. All this capability comes at a price, including the need to manage a complex technology and the risk of instrusions on patient privacy.

  15. Stratigraphic architecture and depositional history of lower Miocene, Planulina Zone, Southern Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gates, B.C.; Galloway, W.E.

    1988-01-01

    The Planulina zone is a wedge of clastic sediment positioned between the Anahuac shale below and the Oakville sandstone interval above. Planulna sediments were deposited on an erosional surface, during a general rise in the sea level, and formed a retrogradational wedge. Within the study area, the Planulina zone consists of two large depositional complexes: the Mud Lake complex in west Cameron Parish, Louisiana, and the East Cameron complex in east Cameron Parish. The lowermost depositional sequence in the East Cameron complex is preserved in a network of submarine canyons that were eroded into the upper slope. Framework sands weremore » deposited in channel systems confined to the axis of the canyons, and the sands are encased in marine shale containing benthonic foraminifera indicative of an upper to middle slope paleoenvironment. Two younger depositional sequences overlie the submarine canyon facies and were deposited by deltaic systems that prograded basinward. A zone of expansion extends east to west through the Planulina interval and is named the ''Planulina flexure.'' The flexure is a large fault located at the relict shelf edge and soles out downdip inn the Anahuac shale. Several thousand feet of sediment downthrown on the flexure is equivalent to several hundred feet upthrown, and the flexure represented the boundary dividing updip deltaic processes from downdip slope processes during the beginning of Planulina deposition. The Planulina depositional history and stratigraphic architecture are directly related to the displacement along the flexure and the structural deformation of the underlying Anahuac shale.« less

  16. Hudson Canyon Offshore New York and New Jersey: Active Circular Depressions, Fans, Ravines, Methane Discharge and Water Masses

    NASA Astrophysics Data System (ADS)

    Rona, P. A.; Guida, V.; Scranton, M. I.; Gong, D.; Haag, S.; Macelloni, L.; Simonetti, A.; James, J.; Diercks, A.; Asper, V. L.

    2009-12-01

    We investigated Hudson Canyon from where it begins at the seaward edge of the continental shelf (water depth 100 m) to ~30 km seaward (100-700 m) using high-resolution bathymetry (AUV Eagle Ray; ISE Explorer; EM2000 sonar) and standard oceanographic methods. We find features and processes that create varied distinctive habitats in submarine canyons on passive continental margins, as follows: 1)Sediment conduit: The initial 10 km- long section of the canyon head connects with cross-shelf sediment transport and is smoothed by sediment accumulation indicating that it is presently inactive as a sediment conduit, in contrast to its active role during prior intervals of lowered sea level. 2)Circular depressions: A population of circular depressions with diameters from 50 to 400 m, rim-to-floor relief up to 20 m increasing directly with diameter, flat rough floors and steep walls (15-25 degrees) occur in sediment near the base of both walls of the canyon. The number of circular depressions increases with water depth with one at 325 m in the initial 10 km-long NW-SE section of the canyon, two at 350 m in the next 10 km N-S section, and nineteen at 300 to 500 m at the SW wall of the next 10 km NW-SE section. The sharp shape of the depressions suggests that they are actively forming. Larger circular depressions (diameter <800 m) exhibit different characteristics. 3)Methane chemistry: A methane anomaly (50 nmol) ten times background was measured in August 2008 in the near-bottom water column adjacent to one of the two circular depressions in the middle canyon section. In August 2009 water samples were recovered at other circular depressions and are being analyzed to test for methane discharge. We suggest that the circular depressions are gas release-collapse features possibly produced by dissociation of underlying gas hydrates. 4)Fans and ravines: Sediment fans with intervening ravines about 1 km apart extend orthogonal to the canyon axis down the two walls of the canyon in the second and third sections. 5)Hydrography: A dynamic system of multiple layers of inter-leaved shelf (cold, fresh) and slope (warm, salty) water masses was observed in the canyon head in summers 2007, 2008 and 2009 and found to produce shifting fronts and strong currents. Dynamic interactions between the hydrography and different terrains create a wide range of habitat conditions in the canyon critical for biodiversity. Enhanced shelf-slope exchange of water masses facilitated by the complex canyon topography may influence adjacent shelf circulation, and impact ecosystems including commercial fish stocks well beyond the canyon. We thank NOAA National Marine Fisheries Service(NMFS), National Institute of Science and Technology (NIUST), and National Undersea Research Program (NURP) for support.

  17. Geomorphology, acoustic backscatter, and processes in Santa Monica Bay from multibeam mapping.

    PubMed

    Gardner, James V; Dartnell, Peter; Mayer, Larry A; Hughes Clarke, John E

    2003-01-01

    Santa Monica Bay was mapped in 1996 using a high-resolution multibeam system, providing the first substantial update of the submarine geomorphology since the initial compilation by Shepard and Emery [(1941) Geol. Soc. Amer. Spec. Paper 31]. The multibeam mapping generated not only high-resolution bathymetry, but also coregistered, calibrated acoustic backscatter at 95 kHz. The geomorphology has been subdivided into six provinces; shelf, marginal plateau, submarine canyon, basin slope, apron, and basin. The dimensions, gradients, and backscatter characteristics of each province is described and related to a combination of tectonics, climate, sea level, and sediment supply. Fluctuations of eustatic sea level have had a profound effect on the area; by periodically eroding the surface of Santa Monica plateau, extending the mouth of the Los Angeles River to various locations along the shelf break, and by connecting submarine canyons to rivers. A wetter glacial climate undoubtedly generated more sediment to the rivers that then transported the increased sediment load to the low-stand coastline and canyon heads. The trends of Santa Monica Canyon and several bathymetric highs suggest a complex tectonic stress field that has controlled the various segments. There is no geomorphic evidence to suggest Redondo Canyon is fault controlled. The San Pedro fault can be extended more than 30 km to the northwest by the alignment of a series of bathymetric highs and abrupt changes in direction of channel thalwegs.

  18. Geologic map and digital database of the Apache Canyon 7.5' quadrangle, Ventura and Kern counties, California

    USGS Publications Warehouse

    Stone, Paul; Cossette, P.M.

    2000-01-01

    The Apache Canyon 7.5-minute quadrangle is located in southwestern California about 55 km northeast of Santa Barbara and 65 km southwest of Bakersfield. This report presents the results of a geologic mapping investigation of the Apache Canyon quadrangle that was carried out in 1997-1999 as part of the U.S. Geological Survey's Southern California Areal Mapping Project. This quadrangle was chosen for study because it is in an area of complex, incompletely understood Cenozoic stratigraphy and structure of potential importance for regional tectonic interpretations, particularly those involving the San Andreas fault located just northwest of the quadrangle and the Big Pine fault about 10 km to the south. In addition, the quadrangle is notable for its well-exposed sequences of folded Neogene nonmarine strata including the Caliente Formation of Miocene age from which previous workers have collected and described several biostratigraphically significant land-mammal fossil assemblages. During the present study, these strata were mapped in detail throughout the quadrangle to provide an improved framework for possible future paleontologic investigations. The Apache Canyon quadrangle is in the eastern part of the Cuyama 30-minute by 60-minute quadrangle and is largely part of an erosionally dissected terrain known as the Cuyama badlands at the east end of Cuyama Valley. Most of the Apache Canyon quadrangle consists of public lands in the Los Padres National Forest.

  19. Impact of height and shape of building roof on air quality in urban street canyons

    NASA Astrophysics Data System (ADS)

    Yassin, Mohamed F.

    2011-09-01

    A building's roof shape and roof height play an important role in determining pollutant concentrations from vehicle emissions and its complex flow patterns within urban street canyons. The impact of the roof shape and height on wind flow and dispersion of gaseous pollutants from vehicle exhaust within urban canyons were investigated numerically using a Computational Fluid Dynamics (CFD) model. Two-dimensional flow and dispersion of gaseous pollutants were analyzed using standard κ- ɛ turbulence model, which was numerically solved based on Reynolds Averaged Navier-Stokes (RANS) equations. The diffusion fields in the urban canyons were examined with three roof heights ( Z H/ H = 0.17, 0.33 and 0.5) and five roof shapes: (1) flat-shaped roof, (2) slanted-shaped roof, (3) downwind wedge-shaped roof, (4) upwind wedge-shaped roof, and (5) trapezoid-shaped roof. The numerical model was validated against the wind tunnels results in order to optimize the turbulence model. The numerical simulations agreed reasonably with the wind tunnel results. The results obtained indicated that the pollutant concentration increased as the roof height decreases. It also decreased with the slanted and trapezoid-shaped roofs but increased with the flat-shaped roof. The pollutant concentration distributions simulated in the present work, indicated that the variability of the roof shapes and roof heights of the buildings are important factors for estimating air quality within urban canyons.

  20. Using large-scale flow experiments to rehabilitate Colorado River ecosystem function in Grand Canyon: Basis for an adaptive climate-resilient strategy: Chapter 17

    USGS Publications Warehouse

    Melis, Theodore S.; Pine, William E.; Korman, Josh; Yard, Michael D.; Jain, Shaleen; Pulwarty, Roger S.; Miller, Kathleen; Hamlet, Alan F.; Kenney, Douglas S.; Redmond, Kelly T.

    2016-01-01

    Adaptive management of Glen Canyon Dam is improving downstream resources of the Colorado River in Glen Canyon National Recreation Area and Grand Canyon National Park. The Glen Canyon Dam Adaptive Management Program (AMP), a federal advisory committee of 25 members with diverse special interests tasked to advise the U.S. Department of the Interior), was established in 1997 in response to the 1992 Grand Canyon Protection Act. Adaptive management assumes that ecosystem responses to management policies are inherently complex and unpredictable, but that understanding and management can be improved through monitoring. Best known for its high-flow experiments intended to benefit physical and biological resources by simulating one aspect of pre-dam conditions—floods, the AMP promotes collaboration among tribal, recreation, hydropower, environmental, water and other natural resource management interests. Monitoring has shown that high flow experiments move limited new tributary sand inputs below the dam from the bottom of the Colorado River to shorelines; rebuilding eroded sandbars that support camping areas and other natural and cultural resources. Spring-timed high flows have also been shown to stimulate aquatic productivity by disturbing the river bed below the dam in Glen Canyon. Understanding about how nonnative tailwater rainbow trout (Oncorhynchus mykiss), and downstream endangered humpback chub (Gila cypha) respond to dam operations has also increased, but this learning has mostly posed “surprise” adaptation opportunities to managers. Since reoperation of the dam to Modified Low Fluctuating Flows in 1996, rainbow trout now benefit from more stable daily flows and high spring releases, but possibly at a risk to humpback chub and other native fishes downstream. In contrast, humpback chub have so far proven robust to all flows, and native fish have increased under the combination of warmer river temperatures associated with reduced storage in Lake Powell, and a system-wide reduction in trout from 2000-06, possibly due to several years of natural reproduction under limited food supply. Uncertainties about dam operations and ecosystem responses remain, including how native and nonnative fish will interact and respond to possible increased river temperatures under drier basin conditions. Ongoing assessment of operating policies by the AMP’s diverse stakeholders represents a major commitment to the river’s valued resources, while surprise learning opportunities can also help identify a resilient climate-change strategy for co-managing nonnative and endangered native fish, sandbar habitats and other river resources in a region with already complex and ever-increasing water demands.

  1. This is How it Was...: In Four Parts

    NASA Astrophysics Data System (ADS)

    Kogan, Ilya

    The following sections are included: * Part I - End of Childhood * Chapter 1 - A Thousand Years Before Our Era. June 15, 1941 * Chapter 2 - Farewell Childhood! August 18, 1941 * Chapter 3 - And They Came, Scourged By the Sun… Germans August 1941-June 1942 * Chapter 4 - Hell. Third Month in Hell. June 17, 1942 - October 31, 1942 * Chapter 5 - Third Day of the New Era. Policeman. November 3, 1942 * Chapter 6 - Happy Holiday, My Son! November 7, 1942 * Chapter 7 - My Dear Grachiki! November 13, 1942 * Chapter 8 - Mikhailovna and Pronya. Kettle. March 1943 * Chapter 9 - The Last… * Part II - Stalingrad * Part III - Glazov * Part IV - Kaddish

  2. Ionisation in ultra-cool, cloud forming extrasolar planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Helling, Christiane; the LEAP Team

    2015-04-01

    Transit spectroscopy provides evidence that extrasolare planets are covered in clouds, a finding that has been forecast by cloud model simulations 15 years ago. Atmospheres are strongly affected by clouds through their large opacity and their chemical activity. Cloud formation models allow to predict cloud particle sizes, their chemical composition and the composition of the remaining atmospheric gas (Woitke & Helling 2004, A&A 414; Helling & Woitke 2006, A&A 455), for example, as input for radiative transfer codes like Drift-Phoenix (Witte et al. 2009; A&A 506). These cloud particles are charged and can discharge, for example in form of lighting (Helling et al. 2013, ApJ 767; Bailey et al. 2014, ApJ 784). Earth observations demonstrate that lighting effects not only the local chemistry but also the electron budget of the atmosphere. This talk will present our work on cloud formation modelling and ionisation processes in cloud forming atmospheres. An hierarchy of ionisation processes leads to a vertically inhomogenously ionised atmosphere which has implications for planetary mass loss and global circulation pattern of planetary atmospheres. Processes involved, like Cosmic Ray ionisation, do also activate the local chemistry such that large hydrocarbon molecules form (Rimmer et al. 2014, IJAsB 13).

  3. Establishing a link between vehicular PM sources and PM measurements in urban street canyons.

    PubMed

    Eisner, Alfred D; Richmond-Bryant, Jennifer; Wiener, Russell W; Hahn, Intaek; Drake-Richman, Zora E; Ellenson, William D

    2009-12-01

    The Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) study, conducted in Brooklyn, NY, USA, in 2005, was designed with multiple goals in mind, two of which were contaminant source characterization and street canyon transport and dispersion monitoring. In the portion of the study described here, synchronized wind velocity and azimuth as well as particulate matter (PM) concentrations at multiple locations along 33rd Street were used to determine the feasibility of using traffic emissions in a complex urban topography as a sole tracer for studying urban contaminant transport. We demonstrate in this paper that it is possible to link downwind concentrations of contaminants in an urban street canyon to the vehicular traffic cycle using Eigen-frequency analysis. In addition, multivariable circular histograms are used to establish directional frequency maxima for wind velocity and contaminant concentration.

  4. Tracer Flux Balance at an Urban Canyon Intersection

    NASA Astrophysics Data System (ADS)

    Carpentieri, Matteo; Robins, Alan G.

    2010-05-01

    Despite their importance for pollutant dispersion in urban areas, the special features of dispersion at street intersections are rarely taken into account by operational air quality models. Several previous studies have demonstrated the complex flow patterns that occur at street intersections, even with simple geometry. This study presents results from wind-tunnel experiments on a reduced scale model of a complex but realistic urban intersection, located in central London. Tracer concentration measurements were used to derive three-dimensional maps of the concentration field within the intersection. In combination with a previous study (Carpentieri et al., Boundary-Layer Meteorol 133:277-296, 2009) where the velocity field was measured in the same model, a methodology for the calculation of the mean tracer flux balance at the intersection was developed and applied. The calculation highlighted several limitations of current state-of-the-art canyon dispersion models, arising mainly from the complex geometry of the intersection. Despite its limitations, the proposed methodology could be further developed in order to derive, assess and implement street intersection dispersion models for complex urban areas.

  5. Sorting of Terrestrial and Marine Organic Matter along a Marginal Submarine Canyon: Radiocarbon and Biomarker Signatures of Surface Sediments

    NASA Astrophysics Data System (ADS)

    Close, H. G.; Doherty, S.; Campbell, P.; McCarthy, M. D.; Prouty, N.

    2016-02-01

    Submarine canyons are incised features of many continental margins that can have significant influence on the hydrodynamic distribution of sediments and organic matter (OM) eroded and deposited from the continents. Baltimore Canyon, on the U.S. mid-Atlantic margin, contains a complex set of sedimentary processes that simultaneously create unique benthic habitats and control the deposition of OM. Along the canyon axis, loci of net erosion, net deposition, and intense winnowing each host diverse faunal assemblages and varying mixtures of sedimentary OM derived both from production in the overlying water column and from mobilized sediments. Bioavailable components of this deposited OM sustain benthic communities, while recalcitrant components can contribute to long-term carbon burial in the deep sea. Here we probe in detail the terrestrial versus marine origins of OM along a transect of Baltimore Canyon, as well as its bioavailability for benthic fauna, in order to explore how canyon-specific sediment dynamics might emplace a functional sorting of OM from shelf to open ocean. Determining the provenance of sedimentary OM is a continual challenge: commonly-measured bulk geochemical properties often provide insufficient information to distinguish end-member sources. We present a novel approach to separate functional classes of OM and investigate sources and degradative pathways of OM in Baltimore Canyon. In combination with bulk geochemical characteristics, surface sediments from water depths of 200-1200 meters were sequentially extracted (solvent-extracted, acid-hydrolyzed, and demineralized) to separate pools containing different prevalence of terrigenous, marine, and recalcitrant OM. Each class was analyzed for biomarker distributions; amino acid content, 13C signatures, and degradation indicators; bulk carbon and nitrogen isotopes; and radiocarbon content in order to characterize potential end-member sources within the mixture, as well as their age profiles. These geochemical properties were contextualized with accompanying sedimentological and ecological data. Results highlight the importance of coastal proximity, canyon morphology, and local hydrodynamics in determining the bioavailability of benthic organic matter and its potential for long-term carbon burial.

  6. Demersal fish distribution and habitat use within and near Baltimore and Norfolk Canyons, U.S. Middle Atlantic Slope

    USGS Publications Warehouse

    Ross, Steve W.; Rhode, Mike; Quattrini, Andrea M.

    2015-01-01

    Numerous submarine canyons along the United States middle Atlantic continental margin support enhanced productivity, diverse and unique habitats, active fisheries, and are vulnerable to various anthropogenic disturbances. During two cruises (15 Aug–2 Oct 2012 and 30 Apr–27 May 2013), Baltimore and Norfolk canyons and nearby areas (including two cold seeps) were intensively surveyed to determine demersal fish distributions and habitat associations. Overall, 34 ROV dives (234–1612 m) resulted in 295 h of bottom video observations and numerous collections. These data were supplemented by 40, 30-min bottom trawl samples. Fish observations were assigned to five general habitat designations: 1) sand-mud (flat), 2) sloping sand-mud with burrows, 3) low profile gravel, rock, boulder, 4) high profile, canyon walls, rocks or ridges, and 5) seep-mixed hard and soft substrata, the later subdivided into seven habitats based on amounts of dead mussel and rock cover. The influence of corals, sponges and live mussels (seeps only) on fish distributions was also investigated. Both canyon areas supported abundant and diverse fish communities and exhibited a wide range of habitats, including extensive areas of deep-sea corals and sponges and two nearby methane seeps (380–430 m, 1455–1610 m). All methods combined yielded a total of 123 species of fishes, 12 of which are either new records for this region or have new range data. Depth was a major factor that separated the fish faunas into two zones with a boundary around 1400 m. Fishes defining the deeper zone included Lycodes sp.,Dicrolene introniger, Gaidropsaurus ensis, Hydrolagus affinis, Antimora rostrata, andAldrovandia sp. Fishes in the deep zone did not exhibit strong habitat affinities, despite the presence of a quite rugged, extensive methane seep. We propose that habitat specificity decreases with increasing depth. Fishes in the shallower zone, characterized by Laemonema sp., Phycis chesteri, Nezumia bairdii, Brosme brosme, and Helicolenus dactylopterus, exhibited a variety of habitat use patterns. In general, fish assemblages in the soft substrata areas (dominated by P. chesteri, N. bairdii, Glyptocephalus cynoglossus, Lophius americanus, Merluccius albidus) were different from those in more complex habitats (dominated by Laemonema spp., Hoplostethus spp., B. brosme,Benthocometes robustus, L. americanus, Dysommina rugosa). Although, when present, the dense coral and sponge cover did not statistically affect general fish assemblage patterns in hard bottom habitats, these sessile organisms markedly increased habitat complexity, and some fish species exhibited close association with them. Fish species compositions in the two canyons were not substantially different from the surrounding slopes. However, the diversity of habitats within both the canyons and seeps exerted an important influence on assemblage structure. At least for some species (e.g., B. brosme) canyon and seep environments may be a refuge from intensive bottom fishing activities. We frequently observed evidence of commercial and recreational fishing activity (lost gear on bottom and fishing boats in the area) throughout the canyons and some resulting habitat damage. Conservation measures for the unique and more vulnerable areas (seep and coral habitats) have recently been approved.

  7. Comprehensive Evaluation of Fast-Response, Reynolds-Averaged Navier–Stokes, and Large-Eddy Simulation Methods Against High-Spatial-Resolution Wind-Tunnel Data in Step-Down Street Canyons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayati, Arash Nemati; Stoll, Rob; Kim, J. J.

    Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier–Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in themore » street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (H d/H u) and street canyon-width to building-width aspect ratio (S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Ultimately, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. But, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon.« less

  8. Comprehensive Evaluation of Fast-Response, Reynolds-Averaged Navier–Stokes, and Large-Eddy Simulation Methods Against High-Spatial-Resolution Wind-Tunnel Data in Step-Down Street Canyons

    DOE PAGES

    Hayati, Arash Nemati; Stoll, Rob; Kim, J. J.; ...

    2017-05-18

    Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier–Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in themore » street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (H d/H u) and street canyon-width to building-width aspect ratio (S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Ultimately, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. But, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon.« less

  9. Deciphering the Temporal and Spatial Complexity in Submarine Canyons in Antarctica: the Role of Mixed Layer Depth in Regulating Primary Production

    NASA Astrophysics Data System (ADS)

    Carvalho, F.; Kohut, J. T.; Schofield, O.; Oliver, M. J.; Gorbunov, M. Y.

    2016-02-01

    There is a high spatial and temporal variability in the biophysical processes regulating primary productivity in submarine canyons in the West Antarctic Peninsula (WAP). WAP canyon heads are considered biological "hotspots" by providing predictable food resource and driving penguin foraging locations. Because the physiology and composition of the phytoplankton blooms and the physical mechanisms driving them aren't well understood, we aim to characterize the dynamics of the spring phytoplankton bloom at the head of a canyon in the WAP. A 6-year record of Slocum glider deployments is analyzed, corresponding to over 16,000 water column profiles. The mixed layer depth (MLD), determined by the maximum of the buoyancy frequency criteria, was found to be the MLD definition with the highest ecological relevance. The same holds true for other regions in Antarctica such as the Ross and Amundsen Seas. A FIRe sensor on a glider was used to evaluate physiological responses of phytoplankton to canyon dynamics using fluorescence kinetics. Initial results show a spatial influence, with increased photosynthetic efficiencies found at the canyon head. The strongest signal was the seasonal cycle. The shoaling of the MLD in early January results in increased chlorophyll a concentrations and as MLD deepens in mid season due to wind forcing, phytoplankton concentrations decrease, likely due to decreased light availability. A consistent secondary peak in chlorophyll matches a shoaling in MLD later in the growth season. A steady warming and increase in salinity of the MLD is seen throughout the season. Spatial differences were recorded at the head of the canyon and result from the local circulation. Shallower MLD found on the northern region are consistent with a fresher surface ocean (coastal influence) and increased chlorophyll concentrations. The southern region is thought to be more oceanic influenced as intrusions of warm deep water (mUCDW) to the upper water column were recorded regularly there.

  10. Comprehensive Evaluation of Fast-Response, Reynolds-Averaged Navier-Stokes, and Large-Eddy Simulation Methods Against High-Spatial-Resolution Wind-Tunnel Data in Step-Down Street Canyons

    NASA Astrophysics Data System (ADS)

    Hayati, Arash Nemati; Stoll, Rob; Kim, J. J.; Harman, Todd; Nelson, Matthew A.; Brown, Michael J.; Pardyjak, Eric R.

    2017-08-01

    Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier-Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in the street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (H_d/H_u) and street canyon-width to building-width aspect ratio ( S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Overall, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. However, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon.

  11. Benthic prokaryotic community dynamics along the Ardencaple Canyon, Western Greenland Sea

    NASA Astrophysics Data System (ADS)

    Quéric, Nadia-Valérie; Soltwedel, Thomas

    2012-07-01

    The Ardencaple Canyon, emanating from the Eastern Greenland continental rise over a distance of about 200 km towards the Greenland Basin, was investigated to determine the effect of enhanced down-slope transport mechanisms on deep-sea benthic prokaryotic communities. The concentration of viable bacterial cells (Live/Dead®BacLight) and prokaryotic incorporation rates (3H-thymidine, 14C-leucine) increased with increasing distance from the continental shelf. Multidimensional scaling (MDS) results from terminal restriction fragment length polymorphism (T-RFLP) analysis indicated a spatial coherence between the benthic bacterial community structure, prokaryotic incorporation rates, water content, protein concentration and the total organic matter in the sediments. The community complexity in sediments at 4-5 cm depth was lower in the central parts of the channel compared with the northern and the southern levees, while richness in surface sediments of all stations was similar. Lacking any clear indications for a recent mass sediment transport or funneled shelf drainage flows, high similarities between bacterial assemblages in sediments along the canyon course may thus be governed by a combination of an ice-edge induced particle flux, episodic down-slope and canyon-guided transport mechanisms.

  12. Assessment of Hazards Associated with the Bluegill Landslide, South-Central Idaho

    USGS Publications Warehouse

    Ellis, William L.; Schuster, Robert L.; Schulz, William H.

    2004-01-01

    The Bluegill landslide, located in south-central Idaho, is part of a larger landslide complex that forms an area the Salmon Falls Creek drainage named Sinking Canyon Recent movement of the Bluegill landslide, apparently beginning sometime in late 1998 or early 1999, has caused a 4.5 ha area of the canyon rim to drop as much as 8 m and move horizontally several meters into the canyon. Upward movement of the toe of the landslide in the bottom of canyon has created a dam that impounds a lake approximately 2 km in length. The landslide is on public administered by the U.S. Bureau of Land Management (BLM). As part of ongoing efforts to address possible public safety concerns, the BLM requested that the U.S. Geological Survey (USGS) conduct a preliminary hazard assessment of the landslide, examine possible mitigation options, and identify alternatives for further study and monitoring of the landslide. This report presents the findings of that assessment based on a field reconnaissance of the landslide on September 24, 2003, a review of data and information provided by BLM and researchers from Idaho State University, and information collected from other sources.

  13. Transport of a Power Plant Tracer Plume over Grand Canyon National Park.

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Bornstein, Robert; Lindsey, Charles G.

    1999-08-01

    Meteorological and air-quality data, as well as surface tracer concentration values, were collected during 1990 to assess the impacts of Navajo Generating Station (NGS) emissions on Grand Canyon National Park (GCNP) air quality. These data have been used in the present investigation to determine between direct and indirect transport routes taken by the NGS plume to produce measured high-tracer concentration events at GCNP.The meteorological data were used as input into a three-dimensional mass-consistent wind model, whose output was used as input into a horizontal forward-trajectory model. Calculated polluted air locations were compared with observed surface-tracer concentration values.Results show that complex-terrain features affect local wind-flow patterns during winter in the Grand Canyon area. Local channeling, decoupled canyon winds, and slope and valley flows dominate in the region when synoptic systems are weak. Direct NGS plume transport to GCNP occurs with northeasterly plume-height winds, while indirect transport to the park is caused by wind direction shifts associated with passing synoptic systems. Calculated polluted airmass positions along the modeled streak lines match measured surface-tracer observations in both space and time.

  14. The Pleistocene eruptive history of Mount St. Helens, Washington, from 300,000 to 12,800 years before present: Chapter 28 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Clynne, Michael A.; Calvert, Andrew T.; Wolfe, Edward W.; Evarts, Russell C.; Fleck, Robert J.; Lanphere, Marvin A.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Preliminary petrographic analysis of these older rocks suggests that the volcano’s magmatic system was simpler during the Ape Canyon stage than during subsequent stages and that the magmatic system has evolved from relatively simple to more complex as the volcano matured. Compositional cycles as envisioned by C.A. Hopson and W.G. Melson for the Spirit Lake stage probably did not occur during the Ape Canyon stage but developed later during the Cougar and Swift Creek stages.

  15. Continental slope morphology in northern Gulf of Mexico mapped with long-range (GLORIA) side-scan data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGregor, B.A.; Garrison, L.E.; Kenyon, N.H.

    1985-02-01

    GLORIA II long-range side-scan data provide a mosaic of the continental slope in the northern Gulf of Mexico, seaward of the Texas-Louisiana coast. A swath as wide as 30 km and a 10% overlap of the data between parallel track lines provide a continuous picture of the complex slope morphology, which is largely controlled by salt deformation. Morphologic features range from piercement structures approximately 2 km in diameter to basins as much as 30 km across. The GLORIA data delineate the East Breaks submarine slide, where surface lineations are suggestive of deformation features. High-resolution 10 kHz seismic-reflection profiles indicate thatmore » the very irregular surface on the slide has a relief of 10 m. The 3 types of intraslope basins (blocked canyon, interdomal, and collapse) described by A.H. Bouma can be identified on the GLORIA data. The walls of Gyre basin, an example of a blocked canyon, have what are interpreted to be gullies, which are commonly associated with submarine canyons. Another basin downslope has similar gully-like features on the walls, which suggest that it may have been part of the original canyon system. Although many canyon-like features direct the movement of sediment downslope, the present data show that all conduits end in closed basins. No system of basins can be shown to transport sediment across the entire slope between the Mississippi Canyon and the East Breaks slide. Small-scale slumps, which can be identified on the flanks of some of the diapiric structures, also contribute sediments to basins such as Gyre basin.« less

  16. Geology of an Ordovician stratiform base-metal deposit in the Long Canyon Area, Blaine County, Idaho

    USGS Publications Warehouse

    Otto, B.R.; Zieg, G.A.

    2003-01-01

    In the Long Canyon area, Blaine County, Idaho, a strati-form base-metal-bearing gossan is exposed within a complexly folded and faulted sequence of Ordovician strata. The gossan horizon in graptolitic mudrock suggests preservation of bedded sulfides that were deposited by an Ordovician subaqueous hydrothermal system. Abrupt thickness changes and geochemi-cal zoning in the metal-bearing strata suggest that the gossan is near the source of the hydrothermal system. Ordovician sedimentary rocks at Long Canyon represent a coarsening-upward section that was deposited below wave base in a submarine depositional environment. The lowest exposed rocks represent deposition in a starved, euxinic basin and over-lying strata represent a prograding clastic wedge of terrigenous and calcareous detritus. The metalliferous strata are between these two types of strata. Strata at Long Canyon have been deformed by two periods of thrust faulting, at least three periods of normal faulting, and two periods of folding. Tertiary extensional faulting formed five subhorizontal structural plates. These low-angle fault-bounded plates truncate Sevier-age and possibly Antler-age thrust faults. The presence of gossan-bearing strata in the four upper plates suggests that there was only minor, although locally complex, stratigraphic displacement and rotation. The lack of correlative strata in the lowest plate suggests the displacement was greater than 2000 ft. The metalliferous strata were exposed to surface weathering, oxidation, and erosion prior to and during deposition of the Eocene Challis Volcanic Group. The orientations of erosional canyons formed during this early period of exposure were related to the orientations of Sevier-age thrust faults, and stream-channel gravel was deposited in the canyons. During this and subsequent intervals of exposure, sulfidic strata were oxi-dized to a minimum depth of 700 ft.

  17. Analysis of local scale tree-atmosphere interaction on pollutant concentration in idealized street canyons and application to a real urban junction

    NASA Astrophysics Data System (ADS)

    Buccolieri, Riccardo; Salim, Salim Mohamed; Leo, Laura Sandra; Di Sabatino, Silvana; Chan, Andrew; Ielpo, Pierina; de Gennaro, Gianluigi; Gromke, Christof

    2011-03-01

    This paper first discusses the aerodynamic effects of trees on local scale flow and pollutant concentration in idealized street canyon configurations by means of laboratory experiments and Computational Fluid Dynamics (CFD). These analyses are then used as a reference modelling study for the extension a the neighbourhood scale by investigating a real urban junction of a medium size city in southern Italy. A comparison with previous investigations shows that street-level concentrations crucially depend on the wind direction and street canyon aspect ratio W/H (with W and H the width and the height of buildings, respectively) rather than on tree crown porosity and stand density. It is usually assumed in the literature that larger concentrations are associated with perpendicular approaching wind. In this study, we demonstrate that while for tree-free street canyons under inclined wind directions the larger the aspect ratio the lower the street-level concentration, in presence of trees the expected reduction of street-level concentration with aspect ratio is less pronounced. Observations made for the idealized street canyons are re-interpreted in real case scenario focusing on the neighbourhood scale in proximity of a complex urban junction formed by street canyons of similar aspect ratios as those investigated in the laboratory. The aim is to show the combined influence of building morphology and vegetation on flow and dispersion and to assess the effect of vegetation on local concentration levels. To this aim, CFD simulations for two typical winter/spring days show that trees contribute to alter the local flow and act to trap pollutants. This preliminary study indicates that failing to account for the presence of vegetation, as typically practiced in most operational dispersion models, would result in non-negligible errors in the predictions.

  18. Early procurement of scarlet macaws and the emergence of social complexity in Chaco Canyon, NM.

    PubMed

    Watson, Adam S; Plog, Stephen; Culleton, Brendan J; Gilman, Patricia A; LeBlanc, Steven A; Whiteley, Peter M; Claramunt, Santiago; Kennett, Douglas J

    2015-07-07

    High-precision accelerator mass spectrometer (AMS) (14)C dates of scarlet macaw (Ara macao) skeletal remains provide the first direct evidence from Chaco Canyon in northwestern New Mexico that these Neotropical birds were procured from Mesoamerica by Pueblo people as early as ∼ A.D. 900-975. Chaco was a prominent prehistoric Pueblo center with a dense concentration of multistoried great houses constructed from the 9th through early 12th centuries. At the best known great house of Pueblo Bonito, unusual burial crypts and significant quantities of exotic and symbolically important materials, including scarlet macaws, turquoise, marine shell, and cacao, suggest societal complexity unprecedented elsewhere in the Puebloan world. Scarlet macaws are known markers of social and political status among the Pueblos. New AMS (14)C-dated scarlet macaw remains from Pueblo Bonito demonstrate that these birds were acquired persistently from Mesoamerica between A.D. 900 and 1150. Most of the macaws date before the hypothesized apogeal Chacoan period (A.D. 1040-1110) to which they are commonly attributed. The 10th century acquisition of these birds is consistent with the hypothesis that more formalized status hierarchies developed with significant connections to Mesoamerica before the post-A.D. 1040 architectural florescence in Chaco Canyon.

  19. Early procurement of scarlet macaws and the emergence of social complexity in Chaco Canyon, NM

    PubMed Central

    Watson, Adam S.; Plog, Stephen; Culleton, Brendan J.; Gilman, Patricia A.; LeBlanc, Steven A.; Whiteley, Peter M.; Claramunt, Santiago; Kennett, Douglas J.

    2015-01-01

    High-precision accelerator mass spectrometer (AMS) 14C dates of scarlet macaw (Ara macao) skeletal remains provide the first direct evidence from Chaco Canyon in northwestern New Mexico that these Neotropical birds were procured from Mesoamerica by Pueblo people as early as ∼A.D. 900–975. Chaco was a prominent prehistoric Pueblo center with a dense concentration of multistoried great houses constructed from the 9th through early 12th centuries. At the best known great house of Pueblo Bonito, unusual burial crypts and significant quantities of exotic and symbolically important materials, including scarlet macaws, turquoise, marine shell, and cacao, suggest societal complexity unprecedented elsewhere in the Puebloan world. Scarlet macaws are known markers of social and political status among the Pueblos. New AMS 14C-dated scarlet macaw remains from Pueblo Bonito demonstrate that these birds were acquired persistently from Mesoamerica between A.D. 900 and 1150. Most of the macaws date before the hypothesized apogeal Chacoan period (A.D. 1040–1110) to which they are commonly attributed. The 10th century acquisition of these birds is consistent with the hypothesis that more formalized status hierarchies developed with significant connections to Mesoamerica before the post-A.D. 1040 architectural florescence in Chaco Canyon. PMID:26100874

  20. Sexual and reproductive behaviour of Drosophila melanogaster from a microclimatically interslope differentiated population of "Evolution Canyon" (Mount Carmel, Israel).

    PubMed

    Iliadi, K; Iliadi, N; Rashkovetsky, E; Minkov, I; Nevo, E; Korol, A

    2001-11-22

    The strong microscale interslope environmental differences in "Evolution Canyon" provide an excellent natural model for sympatric speciation. Our previous studies revealed significant slope-specific differences for a fitness complex of Drosophila. This complex involved either adaptation traits (tolerance to high temperature, different viability and longevity pattern) or behavioural differentiation, manifested in habitat choice and non-random mating. This remarkable differentiation has evolved despite a very small interslope distance (a few hundred metres only). Our hypothesis is that strong interslope microclimatic contrast caused differential selection for fitness-related traits accompanied by behavioural differentiation and reinforced by some sexual isolation, which started incipient speciation. Here we describe the results of a systematic analysis of sexual behaviour in a non-choice situation and several reproductive parameters of D. melanogaster populations from the opposite slopes of "Evolution Canyon". The evidence indicates that: (i) mate choice derives from differences in mating propensity and discrimination; (ii) females from the milder north-facing slope discriminate strongly against males of the opposite slope; (iii) both sexes of the south-facing slope display distinct reproductive and behavioural patterns with females showing increased fecundity, shorter time before remating and relatively higher receptivity, and males showing higher mating propensity. These patterns represent adaptive life strategies contributing to higher fitness.

  1. Investigating Mars: Tithonium Chasma

    NASA Image and Video Library

    2018-02-14

    This VIS image of Tithonium Chasma shows the canyon wall at the top of the frame and the cliff face of the opposite side of the canyon at the bottom of the image. Most of the floor has been covered with the deposits of large volume landslides. Near the top-right portion of the canyon wall several smaller lobate landslide deposits are visible. Tithonium Chasma has numerous large landslide deposits. The resistant material of the plateau surface forms the linear ridges of the canyon wall. Large landslides have changed the walls and floor of the canyon. A landslide is a failure of slope due to gravity. They initiate due to several reasons. A lower layer of poorly cemented/resistant material may have been eroded, undermining the wall above which then collapses; earth quake seismic waves can cause the slope to collapse; and even an impact event near the canyon wall can cause collapse. As millions of tons of material fall and slide down slope a scalloped cavity forms at the upper part where the slope failure occurred. At the material speeds downhill it will pick up more of the underlying slope, increasing the volume of material entrained into the landslide. Whereas some landslides spread across the canyon floor forming lobate deposits, very large volume slope failures will completely fill the canyon floor in a large complex region of chaotic blocks. Tithonium Chasma is at the western end of Valles Marineris. Valles Marineris is over 4000 kilometers long, wider than the United States. Tithonium Chasma is almost 810 kilometers long (499 miles), 50 kilometers wide and over 6 kilometers deep. In comparison, the Grand Canyon in Arizona is about 175 kilometers long, 30 kilometers wide, and only 2 kilometers deep. The canyons of Valles Marineris were formed by extensive fracturing and pulling apart of the crust during the uplift of the vast Tharsis plateau. Landslides have enlarged the canyon walls and created deposits on the canyon floor. Weathering of the surface and influx of dust and sand have modified the canyon floor, both creating and modifying layered materials. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 26775 Latitude: -4.54217 Longitude: 274.121 Instrument: VIS Captured: 2007-12-27 21:24 https://photojournal.jpl.nasa.gov/catalog/PIA22274

  2. 2011 Los Alamos National Laboratory Riparian Inventory Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norris, Elizabeth J.; Hansen, Leslie A.; Hathcock, Charles D.

    A total length of 36.7 kilometers of riparian habitat were inventoried within LANL boundaries between 2007 and 2011. The following canyons and lengths of riparian habitat were surveyed and inventoried between 2007 and 2011. Water Canyon (9,669 m), Los Alamos Canyon (7,131 m), Pajarito Canyon (6,009 m), Mortandad Canyon (3,110 m), Two-Mile Canyon (2,680 m), Sandia Canyon (2,181 m), Three-Mile Canyon (1,883 m), Canyon de Valle (1,835 m), Ancho Canyon (1,143 m), Canada del Buey (700 m), Sandia Canyon (221 m), DP Canyon (159 m) and Chaquehui Canyon (50 m). Effluent Canyon, Fence Canyon and Potrillo Canyon were surveyed butmore » no areas of riparian habitat were found. Stretches of inventoried riparian habitat were classified for prioritization of treatment, if any was recommended. High priority sites included stretches of Mortandad Canyon, LA Canyon, Pajarito Canyon, Two-Mile Canyon, Sandia Canyon and Water Canyon. Recommended treatment for high priority sites includes placement of objects into the stream channel to encourage sediment deposition, elimination of channel incision, and to expand and slow water flow across the floodplain. Additional stretches were classified as lower priority, and, for other sites it was recommended that feral cattle and exotic plants be removed to aid in riparian habitat recovery. In June 2011 the Las Conchas Wildfire burned over 150,000 acres of land in the Jemez Mountains and surrounding areas. The watersheds above LA Canyon, Water Canyon and Pajarito Canyon were burned in the Las Conchas Wildfire and flooding and habitat alteration were observed in these canyon bottoms (Wright 2011). Post fire status of lower priority areas may change to higher priority for some of the sites surveyed prior to the Las Conchas Wildfire, due to changes in vegetation cover in the adjacent upland watershed.« less

  3. California State Waters Map Series--Hueneme Canyon and vicinity, California

    USGS Publications Warehouse

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Krigsman, Lisa M.; Endris, Charles A.; Clahan, Kevin B.; Sliter, Ray W.; Wong, Florence L.; Yoklavich, Mary M.; Normark, William R.

    2012-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Hueneme Canyon and vicinity map area lies within the eastern Santa Barbara Channel region of the Southern California Bight. The area is part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation - at least 90° - since the early Miocene has been proposed for the Western Transverse Ranges, and the region is presently undergoing north-south shortening. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area, which is offshore of the Oxnard plain and west of and along the trend of the south flank of the Santa Monica Mountains, lies at the east end of the Santa Barbara littoral cell, characterized by west-to-east littoral transport of sediment derived mainly from coastal watersheds. The Hueneme Canyon and vicinity map area in California's State Waters is characterized by two major physiographic features: (1) the nearshore continental shelf, and (2) the Hueneme and Mugu Submarine Canyon system, which, in the map area, includes Hueneme Canyon and parts of three smaller, unnamed headless canyons incised into the shelf southeast of Hueneme Canyon. The shelf is underlain by tens of meters of interbedded upper Quaternary shelf, estuarine, and fluvial deposits that formed as sea level fluctuated in the last several hundred thousand years. Hueneme Canyon extends about 15 km offshore from its canyon head near the dredged navigation channel of the Port of Hueneme. The canyon is relatively deep (about 150 m at the California's State Waters limit) and steep (canyon flanks as steep as 25° to 30°). Historically, Hueneme Canyon functioned as the eastern termination of the Santa Barbara littoral cell by trapping all eastward littoral drift, not only feeding the large Hueneme submarine fan but acting as the major conduit of sediment to the deep Santa Monica Basin; however, recent dredging programs needed to maintain Channel Islands Harbor and the Port of Hueneme have moved the nearshore sediment trapped by jetties and breakwaters to an area southeast of the Hueneme Canyon head. Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft sediment and isolated areas of rocky habitat that support kelp-forest communities nearshore and rocky-reef communities in deep water. The potential marine benthic habitat types mapped in the Hueneme Canyon and vicinity map area are related directly to the geomorphology and sedimentary processes that are the result of its Quaternary geologic history. The two basic megahabitats in the map area are Shelf (continental shelf) and Flank (continental slope). The flat seafloor of the continental shelf in the Hueneme Canyon and vicinity map area is dynamic, as indicated by mobile sand sheets and coarser grained scour depressions. The active Hueneme Canyon provides considerable relief to the continental shelf in the map area, and its irregular morphology of eroded walls, landslide scarps, and deposits and gullies provide promising habitat for groundfish, crabs, shrimp, and other marine benthic organisms. Most invertebrates observed in the map area during camera ground-truth field operations are found on the edge of Hueneme Canyon, which may be an important area of recruitment and retention to other invertebrates and fishes. The smaller, more subtle, nonactive headless canyons located primarily on the continental slope also offer relief that provides habitat for groundfish and other organisms.

  4. Crustal Fractures of Ophir Planum

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 29 April 2002) The Science This THEMIS image covers a tract of plateau territory called Ophir Planum. The most obvious features in this scene are the fractures (ranging from 1 to 5 km wide) running from the upper left to lower right. Localized rifting and deep-seated tension fracturing of the crust probably formed these cracks. The wall rock displayed in the upper part of the cliffs appears to be layered. The southwest-facing wall of the largest and uppermost fracture has classic spur and gully topography. This type of topography is created by differing amounts of erosion. Also seen in this image are some scattered impact craters and some dark wind streaks in the lower right. The Ophir Planum plateau separates two separate smaller canyon systems, not visible in this image, (Candor Chasma to the north and Melas Chasma to the south) in the Valles Marineris canyon complex. The whole Valles Marineris canyon system extends some 4,000 km across the equatorial realms of Mars. For comparison, this would stretch from New York City to San Francisco. The Story Plateaus and spurs might make you think of cowboys on the open plain. 'Spurs' in this context, however, are simply ridges that can be seen on the side of the southwest-facing wall of the large fracture that splits the terrain. Gullies stretch down this slope as well. Both of these features are caused by erosion, which is a mild force of change compared to whatever tension cracked the crust and ripped apart the land. The wall rock displayed in the upper part of the cliffs appears to be layered, suggesting that different kinds of rocks and minerals can be found in each banded zone. The Ophir Planum plateau separates two separate canyon systems in the Valles Marineris complex, the largest canyon in the solar system. If Valles Marineris were on Earth, it would stretch from New York City all the way to San Francisco. That will give you some idea of the geological forces that have acted upon the planet over time. Look for scattered impact craters and some dark wind streaks in the deep dark terrain (lower right) as well.

  5. Investigating Mars: Tithonium Chasma

    NASA Image and Video Library

    2018-02-13

    This VIS image of Tithonium Chasma shows the canyon wall at the top of the frame, a series of landslide deposits in the middle, and an eroded mound of materials at the bottom. The mound has been eroded, most likely by wind action. Tithonium Chasma has numerous large landslide deposits. The resistant material of the plateau surface forms the linear ridges of the canyon wall. Large landslides have changed the walls and floor of the canyon. A landslide is a failure of slope due to gravity. They initiate due to several reasons. A lower layer of poorly cemented/resistant material may have been eroded, undermining the wall above which then collapses; earth quake seismic waves can cause the slope to collapse; and even an impact event near the canyon wall can cause collapse. As millions of tons of material fall and slide down slope a scalloped cavity forms at the upper part where the slope failure occurred. At the material speeds downhill it will pick up more of the underlying slope, increasing the volume of material entrained into the landslide. Whereas some landslides spread across the canyon floor forming lobate deposits, very large volume slope failures will completely fill the canyon floor in a large complex region of chaotic blocks. Tithonium Chasma is at the western end of Valles Marineris. Valles Marineris is over 4000 kilometers long, wider than the United States. Tithonium Chasma is almost 810 kilometers long (499 miles), 50 kilometers wide and over 6 kilometers deep. In comparison, the Grand Canyon in Arizona is about 175 kilometers long, 30 kilometers wide, and only 2 kilometers deep. The canyons of Valles Marineris were formed by extensive fracturing and pulling apart of the crust during the uplift of the vast Tharsis plateau. Landslides have enlarged the canyon walls and created deposits on the canyon floor. Weathering of the surface and influx of dust and sand have modified the canyon floor, both creating and modifying layered materials. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 25964 Latitude: -4.26209 Longitude: 270.721 Instrument: VIS Captured: 2007-10-22 02:44 https://photojournal.jpl.nasa.gov/catalog/PIA22273

  6. Investigating Mars: Tithonium Chasma

    NASA Image and Video Library

    2018-02-09

    Tithonium Chasma has numerous large landslide deposits. The resistant material of the plateau surface forms the linear ridges of the canyon wall. Large landslides have changed the walls and floor of the canyon. A landslide is a failure of slope due to gravity. They initiate due to several reasons. A lower layer of poorly cemented/resistant material may have been eroded, undermining the wall above which then collapses; earth quake seismic waves can cause the slope to collapse; and even an impact event near the canyon wall can cause collapse. As millions of tons of material fall and slide down slope a scalloped cavity forms at the upper part where the slope failure occurred. At the material speeds downhill it will pick up more of the underlying slope, increasing the volume of material entrained into the landslide. Whereas some landslides spread across the canyon floor forming lobate deposits, very large volume slope failures will completely fill the canyon floor in a large complex region of chaotic blocks. This VIS image shows the result of this type of landslide. Tithonium Chasma is at the western end of Valles Marineris. Valles Marineris is over 4000 kilometers long, wider than the United States. Tithonium Chasma is almost 810 kilometers long (499 miles), 50 kilometers wide and over 6 kilometers deep. In comparison, the Grand Canyon in Arizona is about 175 kilometers long, 30 kilometers wide, and only 2 kilometers deep. The canyons of Valles Marineris were formed by extensive fracturing and pulling apart of the crust during the uplift of the vast Tharsis plateau. Landslides have enlarged the canyon walls and created deposits on the canyon floor. Weathering of the surface and influx of dust and sand have modified the canyon floor, both creating and modifying layered materials. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 18239 Latitude: -4.4678 Longitude: 273.788 Instrument: VIS Captured: 2006-01-24 01:55 https://photojournal.jpl.nasa.gov/catalog/PIA22271

  7. Ensonifying Change: Repeat Ultra-High-Resolution Surveys in Monterey Canyon before and after Passage of a Turbidity Current

    NASA Astrophysics Data System (ADS)

    Wolfson-Schwehr, M.; Paull, C. K.; Caress, D. W.; Carvajal, C.; Thomas, H. J.; Maier, K. L.; Parsons, D. R.; Simmons, S.

    2017-12-01

    Turbidity currents are one of the primary means of global sediment transport, yet our understanding of how they interact with the seafloor is hindered by the limited number of direct measurements. The Coordinated Canyon Experiment (CCE; October 2015 - April 2017) has made great strides in addressing this issue by providing direct measurements of turbidity currents and detailed observations of the resulting seafloor change in Monterey Canyon, offshore California. Here we focus on a section of the canyon at 1850-m water depth, where a Seafloor Instrument Node (SIN) recorded passage of three turbidity currents using a range of sensors, including three upward-looking acoustic Doppler current profilers. The fastest event at this site had a maximum velocity of 2.8 m/s, and dragged the 430-Kg SIN 26 m down-canyon. Repeat mapping surveys were conducted four times during the CCE, utilizing a prototype ultra-high-resolution mapping system mounted on the ROV Doc Ricketts. The survey platform hosts a 400-kHz Reson 7125 multibeam sonar, a 3DatDepth SL1 subsea LiDAR, two stereo color cameras, and a Kearfott SeaDevil INS. At a survey altitude of 2.5 m above the bed, the system provides remarkable 5-cm resolution multibeam bathymetry, 1-cm resolution LiDAR bathymetry, and 2-mm resolution photomosaics, and can cover a 100-m2 survey area. Surveys of the SIN site prior to and after the fastest event show areas of net deposition/erosion of 60 cm and 20 cm, respectively. Net deposition occurred in the topographic lows between bedforms, while erosion was focused on the bedform crests. At the end of the experiment, transects of sediment cores were taken by ROV within areas of net deposition. The cores show a variety of sedimentary facies, including muds, sands, gravel, and organic rich layers. Gravel layers have sharp erosive bases. The repeat surveys document the dynamic nature of flute-like scours as the flow events erode and deposit material along the canyon floor, as well as the evolution of scours between events. While the scours may represent a small component of sediment transport within the canyon, their multi-generational structure indicates a complex interaction of scour processes along the canyon bed. These data provide a new means to understanding the detailed changes in canyon floor morphology and sedimentology at the event scale.

  8. Tectonic control and mass-wasting processes along S. Vicente Canyon (SW Iberia): evidences from multibeam bathymetry and seismic reflection data

    NASA Astrophysics Data System (ADS)

    Valadares, V.; Roque, C.; Terrinha, P.

    2009-04-01

    The S. Vicente Canyon is located in the Gulf of Cadiz (GoC), in the Northwest Atlantic Ocean, offshore SW Iberia. The GoC is located between the Straits of Gibraltar (5°W) and the Gorringe Bank (12°W) and 34°N and 38°N. It is situated in a complex geodynamic setting at the Eastern tip of the Azores-Gibraltar fracture zone, part of the convergent plate boundary between Northwest Africa and Southwest Eurasia. There are several evidences for active tectonics, moderate seismic activity and some events of high magnitude for earthquakes and tsunamis (like the 1755 and 1969 events). The canyon lies between two of the most prominent faults in the GoC: the Marquês de Pombal and the Horseshoe thrust faults. Since the 1990's nineteen multibeam swath bathymetry surveys were carried out in the Gulf of Cadiz and a compilation of the data was produced adding up to more than 180.000km2. This 100m cellsize compilation allowed a detailed analysis of the seafloor of the GoC including the South and Western Portuguese margins and is in the junction point between these two margins that the S. Vicente Canyon (SVC) is located. The bathymetry data here presented is derived from the MATESPRO survey from 2004, the first large multibeam swath bathymetry survey in the area. The canyon has a general staircase-like shape with the upper and lower parts trending NE-SW and the middle sector with an NNE-SSW direction. The SVC head lies very close to the shore, at depths shallower than 70m and runs towards the Horseshoe Abyssal Plain (HAP) at around 4900m depth. It extends for more than 120km (larger than any other submarine canyon on the GoC) and can reach up to 20 km in width. The walls are steep and frequently affected by mass wasting scars and also strongly incised by minor contributories valleys. A major kink is present where the canyon diverts about 60° from its upper course, as well as several minor ones and some knickpoints are also identifiable across its entire track. Across its length the morphology changes: the SE side is the steepest for the upper and deepest parts, whilst for the intermediate sector the NW wall is steeper. Its head has an amphitheater shape due to the pattern defined by its minor contributories as a result of slumps and slides and therefore appears to be retreating upslope in the direction of the shore. Reflectivity imagery derived from the multibeam probe shows high reflectance throughout the whole of the S. Vicente Canyon thalweg indicating that the canyon and its sedimentary transport are active in present times. The HAP also shows a relatively high backscatter response, probably related to the abundant turbidite deposits whose coarse sedimentary load was partially carried by the SVC. Inspection of several multichannel seismic profiles revealed that the two major structures that are more closely located to the canyon present a polyphase and complex history. The Marquês de Pombal Thrust (MPT), located to the NW of the SVC, reveals an extensional activity during continental break-up in the Mesozoic. The compressive episodes started in the Eocene/Oligocene (and extended until present times) and were followed by other compressive events, the more relevant ones in the Late Miocene. The Horseshoe Thrust Fault, located SE of the deepest section of the canyon, revealed no major extensional events and shows a compressional history somewhat similar to the previously described MPT. These events and the compressive history is related with the relative movement between Africa and Iberia and the tectonic plate boundary convergence. The compressive episodes and fault activity during the Miocene have led to the uplift of this sector of the margin, causing major erosion onshore, redistributing sediments and leading to the submarine incision and canyon formation after the Miocene, more precisely in Lower Pliocene times.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCollum, L.B.; Buchanan, J.P.; McCollum, M.B.

    The Antler orogeny is a textbook example of a Paleozoic mountain building and crustal shortening event in western North America. A relatively complex geologic history of the type Antler at Battle Mountain, Nevada, is interpreted as distinct thrust plates of Lower Cambrian Scott Canyon Formation, Upper Cambrian Harmony Sandstone, and Ordovician Valmy Formation, overlain unconformably by the Middle Pennsylvanian Battle Formation. Mississippian crustal deformation and emplacement of the Roberts Mountain thrust have previously been thought to characterize the Antler orogen. Detailed sedimentology studies of the Scott Canyon and Harmony, and the relationship with the overlying Battle Formation at the typemore » section of the Antler orogeny, cast doubt on the previously accepted geologic history. The Scott Canyon is an interbedded sequence of pillow basalts, Late Devonian radiolarian cherts, and mudstone debris flows with numerous limestone olistoliths, many containing undescribed archaeocyathid fauna. The contact of the Harmony with the Battle Formation appears channeled, but otherwise conformable, and the Battle has been interpreted as an alluvial fan facies. The paleoenvironmental interpretation of these sediments is that the Scott Canyon was deposited upon a Late Devonian active continental margin setting, with prograding fan deposits of the Harmony Sandstone, overlain by Middle Pennsylvanian fanglomerates of the Battle Formation. This conformable sequence appears to preclude any major uplift within the type Antler orogen.« less

  10. Mapping the True 3D Morphology of Deep-Sea Canyons

    NASA Astrophysics Data System (ADS)

    Huvenne, V. A.; Masson, D.; Tyler, P. A.; Huehnerbach, V.

    2010-12-01

    The importance of submarine canyons as ecosystem hotspots and sediment transport pathways has been recognised for decades (e.g. Heezen et al., 1955; Vetter & Dayton, 1998). However, studying canyon systems in detail is a challenge, because of the complexity and steepness of the terrain. Acoustic surveys are hampered by side-echoes, while the high slope angles cause most types of sampling equipment, deployed from surface vessels, to fail. Ship-borne bathymetric surveys tend to represent the canyon topography in an overly smoothed way as a result of their limited resolution in deep water compared to the scale of the terrain variability. Moreover, it is clear that overhanging cliffs cannot be mapped correctly with traditional, downward looking multibeam echosounders. The increasing availability of underwater vehicles, however, opens new opportunities. During summer 2009, we mapped several submarine canyon habitats in detail, using the UK deep-water Remotely Operated Vehicle (ROV) ISIS. In particular, we developed a new methodology to map vertical cliffs and overhangs by placing the high-resolution Simrad SM2000 multibeam system of the ROV in a forward-looking position rather than in the traditional downward-looking configuration. The cliff morphology was then mapped by moving the ROV laterally in parallel passes at different depths. Repeating this approach at different distances from the cliff face, we obtained maps of varying resolution and extent. The low resolution maps provide an overview of the general geological framework, while individual strata and faunal colonies can be recognised on the highest resolution maps. Using point-cloud models, we combined the ship-borne bathymetry with the ROV-based data, in order to obtain a true 3D seabed morphology of the canyon study site, which can be used for fly-throughs, geomorphological analysis or habitat mapping. With this approach, we could visualise the spatial structure and density distribution of a unique and previously unknown cold-water coral reef, formed as a hanging garden under a 1600 m long and 120 m high overhanging wall, at 1350 m water depth in the Whittard Canyon, NE Atlantic margin. Heezen, B.C., Ewing, M. and Menzies, R. (1955). The influence of submarine turbidity currents on abyssal productivity. Oikos, 6, 170-182. Vetter, E.W. & Dayton, P.K. (1998). Macrofaunal communities within and adjacent to a detritus-rich submarine canyon system. Deep-Sea Research II, 45, 25-54.

  11. Is Canyon Width a Diagnostic Indicator of the Discharge of Megafloods on Earth and Mars?

    NASA Astrophysics Data System (ADS)

    Lapotre, M. G.; Lamb, M. P.

    2013-12-01

    On Earth, large floods have carved steep-walled and amphitheater-headed canyons from the Pleistocene (e.g. Box Canyon, ID) through the Holocene (e.g. Asbyrgi Canyon, Iceland), to historic times (e.g. Canyon Lake Gorge, TX). The geologic record on Mars suggests that similar floods have carved canyons by waterfall retreat about 3.5 billion years ago, when the red planet was wetter and possibly warmer. We currently lack robust paleo-hydraulic tools to reconstruct the discharge of ancient floods, especially on Mars where sediment sizes are obscured from observation. To address this issue, we hypothesize that the width of canyon escarpment is controlled by the hydraulics of the canyon-carving flood due to focusing of the flood into the canyon head. We compiled field data from multiple canyons and floods on Earth and Mars and show that there is a correlation between estimated flood discharge and canyon headwall width. To explore what sets this relationship, we identified five important parameters using dimensional analysis: the Froude number, the ratio of backwater length to canyon length, the ratio of backwater length to flood width, the ratio of canyon width to flood width, and the topographic slope upstream of the canyon. We used the hydraulic numerical modeling suite ANUGA to simulate overland flow over different canyon geometries and flood parameters to systematically explore the relative bed shear stresses along the canyon rim as a metric for flow focusing. Results show that canyons that exceed a certain length, scaling with the hydraulic backwater length, have shear stresses at their heads that are significantly higher than near the canyon mouth. Shear stresses along the rim of the canyon sidewalls are limited, in comparison to stresses along the canyon head, when the flood width is of the order of the backwater length. Flow focusing only occurs for subcritical flow. Together, these results suggest that canyons may only grow from a perturbation that is large enough to instigate flow focusing. Once canyon growth is initiated, the equilibrium width of canyons may arise from the competition between the cross-stream backwater effects along the canyon sidewalls, which promote widening of the escarpment, and the geometry of the canyon flood system, which promote a drying of the canyon sidewalls. These results show promise for a new paleohydraulic tool to infer discharges of ancient floods on Earth and Mars.

  12. Origin of Florida Canyon and the role of spring sapping on the formation of submarine box canyons

    USGS Publications Warehouse

    Paull, Charles K.; Spiess, Fred N.; Curray, Joseph R.; Twichell, David C.

    1990-01-01

    Florida Canyon, one of a series of major submarine canyons on the southwestern edge of the Florida Platform, was surveyed using GLORIA, SeaBeam, and Deep-Tow technologies, and it was directly observed during three DSRV Alvin dives. Florida Canyon exhibits two distinct morphologies: a broad V-shaped upper canyon and a deeply entrenched, flat-floored, U-shaped lower canyon. The flat- floored lower canyon extends 20 km into the Florida Platform from the abyssal Gulf. The lower canyon ends abruptly at an ∼3 km in diameter semicircular headwall that rises 750 m with a >60° slope angle to the foot of the upper canyon. The sides of the lower canyon are less steep than its headwall and are characterized by straight faces that occur along preferred orientations and indicate a strong joint control. The upper canyon is characterized by a gently sloping, straight V-shaped central valley cut into a broad terrace. The flat floor of the upper canyon continues as terraces along the upper walls of the lower canyon. On the flanks of the upper canyon, there are five >50-m-deep, >0.5-km-wide, closed sink-hole-like depressions which indicate subsurface dissolution within the platform. The origin of the lower canyon is difficult to explain with traditional models of submarine canyon formation by external physical processes. The movement of ground water, probably with high salinities and reduced compounds along regional joints, may have focused the corrosive force of submarine spring sapping at the head of the lower canyon to produce the canyon's present shape.

  13. LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, C.

    2012-02-03

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate.more » Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign. H Canyon plans to commence conversion of plutonium metal to low-fired plutonium oxide in 2012 for eventual use in the Mixed Oxide Fuel (MOX) Facility. The flowsheet includes sequential operations of metal dissolution, ion exchange, elution, oxalate precipitation, filtration, and calcination. All processes beyond dissolution will occur in HB-Line. The filtration step produces an aqueous filtrate that may have as much as 4 M nitric acid and 0.15 M oxalate. The oxalate needs to be removed from the stream to prevent possible downstream precipitation of residual plutonium when the solution is processed in H Canyon. In addition, sending the oxalate to the waste tank farm is undesirable. This report addresses the processing options for destroying the oxalate in existing H Canyon equipment.« less

  14. The Fish Canyon magma body, San Juan volcanic field, Colorado: Rejuvenation and eruption of an upper-crustal batholith

    USGS Publications Warehouse

    Bachmann, Olivier; Dungan, M.A.; Lipman, P.W.

    2002-01-01

    More than 5000 km3 of nearly compositionally homogeneous crystalrich dacite (~68 wt % SiO2: ~45% Pl + Kfs + Qtz + Hbl + Bt + Spn + Mag + Ilm + Ap + Zrn + Po) erupted from the Fish Canyon magma body during three phases: (1) the pre-caldera Pagosa Peak Dacite (an unusual poorly fragmented pyroclastic deposit, ~ 200 km3); (2) the syn-collapse Fish Canyon Tuff (one of the largest known ignimbrites, ~ 5000 km3); (3) the post-collapse Nutras Creek Dacite (a volumetrically minor lava). The late evolution of the Fish Canyon magma is characterized by rejuvenation of a near-solidus upper-crustal intrusive body (mainly crystal mush) of batholithic dimensions. The necessary thermal input was supplied by a shallow intrusion of more mafic magma represented at the surface by sparse andesitic enclaves in late-erupted Fish Canyon Tuff and by the post-caldera Huerto Andesite. The solidified margins of this intrusion are represented by holocrystalline xenoliths with Fish Canyon mineralogy and mineral chemistry and widely dispersed partially remelted polymineralic aggregates, but dehydration melting was not an important mechanism in the rejuvenation of the Fish Canyon magma. Underlying mafic magma may have evolved H2O-F-S-Cl-rich fluids that fluxed melting in the overlying crystal mush. Manifestations of the late up-temperature magma evolution are: (1) resorbed quartz, as well as feldspars displaying a wide spectrum of textures indicative of both resorption and growth, including Rapakivi textures and reverse growth zoning (An27-28 to An32-33) at the margins of many plagioclase phenocrysts; (2) high Sr, Ba, and Eu contents in the high-SiO2 rhyolite matrix glass, which are inconsistent with extreme fractional crystallization of feldspar; (3) oscillatory and reverse growth zoning toward the margins of many euhedral hornblende phenocrysts (rimward increases from ~5??5-6 to 7??7-8??5 wt % Al2O3). Homogeneity in magma composition at the chamber-wide scale, contrasting with extreme textural and chemical complexities at the centimeter-millimeter scale, is consistent with a dynamic environment, wherein crystals with a variety of growth and resorption histories were juxtaposed shortly before eruption by convective currents.

  15. Discovery of two new large submarine canyons in the Bering Sea

    USGS Publications Warehouse

    Carlson, P.R.; Karl, Herman A.

    1984-01-01

    The Beringian continental margin is incised by some of the world's largest submarine canyons. Two newly discovered canyons, St. Matthew and Middle, are hereby added to the roster of Bering Sea canyons. Although these canyons are smaller and not cut back into the Bering shelf like the five very large canyons, they are nonetheless comparable in size to most of the canyons that have been cut into the U.S. eastern continental margin and much larger than the well-known southern California canyons. Both igneous and sedimentary rocks of Eocene to Pliocene age have been dredged from the walls of St. Matthew and Middle Canyons as well as from the walls of several of the other Beringian margin canyons, thus suggesting a late Tertiary to Quaternary genesis of the canyons. We speculate that the ancestral Yukon and possibly Anadyr Rivers were instrumental in initiating the canyon-cutting processes, but that, due to restrictions imposed by island and subsea bedrock barriers, cutting of the two newly discovered canyons may have begun later and been slower than for the other five canyons. ?? 1984.

  16. Mean and turbulent flow statistics in a trellised agricultural canopy

    USDA-ARS?s Scientific Manuscript database

    The architecture of a trellised agricultural canopy presents many similarities to homogeneous plant canopies, windbreaks, and urban canopies including street canyons. Compared to these other canopies, trellised canopies (e.g. vineyard) present an interesting, complex, two-dimensional environment tha...

  17. Turbulence and Air Exchange in a Two-Dimensional Urban Street Canyon Between Gable Roof Buildings

    NASA Astrophysics Data System (ADS)

    Garau, Michela; Badas, Maria Grazia; Ferrari, Simone; Seoni, Alessandro; Querzoli, Giorgio

    2018-04-01

    We experimentally investigate the effect of a typical building covering: the gable roof, on the flow and air exchange in urban canyons. In general, the morphology of the urban canopy is very varied and complex, depending on a large number of factors, such as building arrangement, or the morphology of the terrain. Therefore we focus on a simple, prototypal shape, the two-dimensional canyon, with the aim of elucidating some fundamental phenomena driving the street-canyon ventilation. Experiments are performed in a water channel, over an array of identical prismatic obstacles representing an idealized urban canopy. The aspect ratio, i.e. canyon-width to building-height ratio, ranges from 1 to 6. Gable roof buildings with 1:1 pitch are compared with flat roofed buildings. Velocity is measured using a particle-image-velocimetry technique with flow dynamics discussed in terms of mean flow and second- and third-order statistical moments of the velocity. The ventilation is interpreted by means of a simple well-mixed box model and the outflow rate and mean residence time are computed. Results show that gable roofs tend to delay the transition from the skimming-flow to the wake-interference regime and promote the development of a deeper and more turbulent roughness layer. The presence of a gable roof significantly increases the momentum flux, especially for high packing density. The air exchange is improved compared to the flat roof buildings, and the beneficial effect is more significant for narrow canyons. Accordingly, for unit aspect ratio gable roofs reduce the mean residence time by a factor of 0.37 compared to flat roofs, whereas the decrease is only by a factor of 0.9 at the largest aspect ratio. Data analysis indicates that, for flat roof buildings, the mean residence time increases by 30% when the aspect ratio is decreased from 6 to 2, whereas this parameter is only weakly dependent on aspect ratio in the case of gable roofs.

  18. The Morpho-Acoustic Structure of Sakarya Canyon, Southwestern Black Sea

    NASA Astrophysics Data System (ADS)

    Nasıf, Aslıhan; Dondurur, Derman

    2017-04-01

    In this study, Black Sea outlet of Sakarya River in the western Black Sea continental margin is analyzed using a total of 1400 km multichannel seismics, Chirp sub-bottom profiler and multibeam bathymetric datasets. Three scientific cruises between 2012 and 2016 have been conducted in the area to map and reveal the morphological structure of the Sakarya Canyon along the southwestern Black Sea margin. The Western Black Sea Turkey coastal area is also home to many active canyons. These canyons extend from deep shallow shelf areas of about 100 m to deep water depths of 1800-2000 m. The largest and most active of the Western Black Sea canyons is the Sakarya Canyon, which is located at the exit of the Sakarya River. Research on submarine canyons are important for military submarine operations, positioning of marine engineering structures and understanding the sedimentology, ecological and oceanographic functions of canyons. The canyon systems observed on continental slopes lead to the most convenient sedimentary transportation from the shelf platform. The dataset from study area was analyzed to identify the acoustic structure of Sakarya Canyon, the morphology of which is not widely known. Bathymetric data shows that the canyon consists of two separate canyon heads in the shallow continental shelf to the south, both of which coalesce at 867 m water depth. This meandering canyon then deepens along the continental slope towards to north. Another wide canyon from west, named as Kefken Canyon, then conjoins this main canyon at approximately 1000 m water depths to form the deeper structure of the modern Sakarya Canyon. In the distal parts, canyon gets wider and wider, and its thalweg becomes significantly flat eroded by the present day activity of small scale turbidity channels. Multichannel seismic data indicate that the Sakarya Canyon was formed by the activity of hyperphycnal flows and also clearly show the extensive sediment erosion along the canyon.

  19. Water-quality conditions near the confluence of the Snake and Boise Rivers, Canyon County, Idaho

    USGS Publications Warehouse

    Wood, Molly S.; Etheridge, Alexandra

    2011-01-01

    Total Maximum Daily Loads (TMDLs) have been established under authority of the Federal Clean Water Act for the Snake River-Hells Canyon reach, on the border of Idaho and Oregon, to improve water quality and preserve beneficial uses such as public consumption, recreation, and aquatic habitat. The TMDL sets targets for seasonal average and annual maximum concentrations of chlorophyll-a at 14 and 30 micrograms per liter, respectively. To attain these conditions, the maximum total phosphorus concentration at the mouth of the Boise River in Idaho, a tributary to the Snake River, has been set at 0.07 milligrams per liter. However, interactions among chlorophyll-a, nutrients, and other key water-quality parameters that may affect beneficial uses in the Snake and Boise Rivers are unknown. In addition, contributions of nutrients and chlorophyll-a loads from the Boise River to the Snake River have not been fully characterized. To evaluate seasonal trends and relations among nutrients and other water-quality parameters in the Boise and Snake Rivers, a comprehensive monitoring program was conducted near their confluence in water years (WY) 2009 and 2010. The study also provided information on the relative contribution of nutrient and sediment loads from the Boise River to the Snake River, which has an effect on water-quality conditions in downstream reservoirs. State and site-specific water-quality standards, in addition to those that relate to the Snake River-Hells Canyon TMDL, have been established to protect beneficial uses in both rivers. Measured water-quality conditions in WY2009 and WY2010 exceeded these targets at one or more sites for the following constituents: water temperature, total phosphorus concentrations, total phosphorus loads, dissolved oxygen concentration, pH, and chlorophyll-a concentrations (WY2009 only). All measured total phosphorus concentrations in the Boise River near Parma exceeded the seasonal target of 0.07 milligram per liter. Data collected during the study show seasonal differences in all measured parameters. In particular, surprisingly high concentrations of chlorophyll-a were measured at all three main study sites in winter and early spring, likely due to changes in algal populations. Discharge conditions and dissolved orthophosphorus concentrations are key drivers for chlorophyll-a on a seasonal and annual basis on the Snake River. Discharge conditions and upstream periphyton growth are most likely the key drivers for chlorophyll-a in the Boise River. Phytoplankton growth is not limited or driven by nutrient availability in the Boise River. Lower discharges and minimal substrate disturbance in WY2010 in comparison with WY2009 may have caused prolonged and increased periphyton and macrophyte growth and a reduced amount of sloughed algae in suspension in the summer of WY2010. Chlorophyll-a measured in samples commonly is used as an indicator of sestonic algae biomass, but chlorophyll-a concentrations and fluorescence may not be the most appropriate surrogates for algae growth, eutrophication, and associated effects on beneficial uses. Assessment of the effects of algae growth on beneficial uses should evaluate not only sestonic algae, but also benthic algae and macrophytes. Alternatively, continuous monitoring of dissolved oxygen detects the influence of aquatic plant respiration for all types of algae and macrophytes and is likely a more direct measure of effects on beneficial uses such as aquatic habitat. Most measured water-quality parameters in the Snake River were statistically different upstream and downstream of the confluence with the Boise River. Higher concentrations and loads were measured at the downstream site (Snake River at Nyssa) than the upstream site (Snake River near Adrian) for total phosphorus, dissolved orthophosphorus, total nitrogen, dissolved nitrite and nitrate, suspended sediment, and turbidity. Higher dissolved oxygen concentrations and pH were measured at the upstream site (Snake River near Adrian) than the downstream site (Snake River at Nyssa). Contributions from the Boise River measured at Parma do not constitute all of the increase in nutrient and sediment loads in the Snake River between the upstream and downstream sites. Surrogate models were developed using a combination of continuously monitored variables to estimate concentrations of nutrients and suspended sediment when samples were not possible. The surrogate models explained from 66 to 95 percent of the variability in nutrient and suspended sediment concentrations, depending on the site and model. Although the surrogate models could not always represent event-based changes in modeled parameters, they generally were successful in representing seasonal and annual patterns. Over a longer period, the surrogate models could be a useful tool for measuring compliance with state and site-specific water-quality standards and TMDL targets, for representing daily and seasonal variability in constituents, and for assessing effects of phosphorus reduction measures within the watershed.

  20. Preliminary geologic map of Black Canyon and surrounding region, Nevada and Arizona

    USGS Publications Warehouse

    Felger, Tracey J.; Beard, L. Sue; Anderson, Zachary W.; Fleck, Robert J.; Wooden, Joseph L.; Seixas, Gustav B.

    2014-01-01

    Thermal springs in Black Canyon of the Colorado River, downstream of Hoover Dam, are important recreational, ecological, and scenic features of the Lake Mead National Recreation Area. This report presents the results from a U.S. Geological Survey study of the geologic framework of the springs. The study was conducted in cooperation with the National Park Service and funded by both the National Park Service and National Cooperative Geologic Mapping Program of the U.S. Geological Survey. The report has two parts: A, a 1:48,000-scale geologic map created from existing geologic maps and augmented by new geologic mapping and geochronology; and B, an interpretive report that presents results based on a collection of fault kinematic data near springs within Black Canyon and construction of 1:100,000-scale geologic cross sections that extend across the western Lake Mead region. Exposures in Black Canyon are mostly of Miocene volcanic rocks, underlain by crystalline basement composed of Miocene plutonic rocks or Proterozoic metamorphic rocks. The rocks are variably tilted and highly faulted. Faults strike northwest to northeast and include normal and strike-slip faults. Spring discharge occurs along faults intruded by dacite dikes and plugs; weeping walls and seeps extend away from the faults in highly fractured rock or relatively porous volcanic breccias, or both. Results of kinematic analysis of fault data collected along tributaries to the Colorado River indicate two episodes of deformation, consistent with earlier studies. The earlier episode formed during east-northeast-directed extension, and the later during east-southeast-directed extension. At the northern end of the study area, pre-existing fault blocks that formed during the first episode were rotated counterclockwise along the left-lateral Lake Mead Fault System. The resulting fault pattern forms a complex arrangement that provides both barriers and pathways for groundwater movement within and around Black Canyon. Regional cross sections in this report show that thick Paleozoic carbonate aquifer rocks of east-central Nevada do not extend into the Black Canyon area and generally are terminated to the south at a major tectonic boundary defined by the northeast-striking Lake Mead Fault System and the northwest-striking Las Vegas Valley shear zone. Faults to the west of Black Canyon strike dominantly north-south and form a complicated pattern that may inhibit easterly groundwater movement from Eldorado Valley. To the east of Black Canyon, crystalline Proterozoic rocks locally overlain by Tertiary volcanic rocks in the Black Mountains are bounded by steep north-south normal faults. These faults may also inhibit westerly groundwater movement from Detrital Valley toward Black Canyon. Finally, the cross sections show clearly that Proterozoic basement rocks and (or) Tertiary plutonic rocks are shallow in the Black Canyon area (at the surface to a few hundred meters depth) and are cut by several major faults that discharge most of the springs in the Black Canyon. Therefore, the faults most likely provide groundwater pathways to sufficient depths that the groundwater is heated to the observed temperatures of up to 55 °C.

  1. Geologic framework of thermal springs, Black Canyon, Nevada and Arizona

    USGS Publications Warehouse

    Beard, L. Sue; Anderson, Zachary W.; Felger, Tracey J.; Seixas, Gustav B.

    2014-01-01

    Thermal springs in Black Canyon of the Colorado River, downstream of Hoover Dam, are important recreational, ecological, and scenic features of the Lake Mead National Recreation Area. This report presents the results from a U.S. Geological Survey study of the geologic framework of the springs. The study was conducted in cooperation with the National Park Service and funded by both the National Park Service and National Cooperative Geologic Mapping Program of the U.S. Geological Survey. The report has two parts: A, a 1:48,000-scale geologic map created from existing geologic maps and augmented by new geologic mapping and geochronology; and B, an interpretive report that presents results based on a collection of fault kinematic data near springs within Black Canyon and construction of 1:100,000-scale geologic cross sections that extend across the western Lake Mead region. Exposures in Black Canyon are mostly of Miocene volcanic rocks, underlain by crystalline basement composed of Miocene plutonic rocks or Proterozoic metamorphic rocks. The rocks are variably tilted and highly faulted. Faults strike northwest to northeast and include normal and strike-slip faults. Spring discharge occurs along faults intruded by dacite dikes and plugs; weeping walls and seeps extend away from the faults in highly fractured rock or relatively porous volcanic breccias, or both. Results of kinematic analysis of fault data collected along tributaries to the Colorado River indicate two episodes of deformation, consistent with earlier studies. The earlier episode formed during east-northeast-directed extension, and the later during east-southeast-directed extension. At the northern end of the study area, pre-existing fault blocks that formed during the first episode were rotated counterclockwise along the left-lateral Lake Mead Fault System. The resulting fault pattern forms a complex arrangement that provides both barriers and pathways for groundwater movement within and around Black Canyon. Regional cross sections in this report show that thick Paleozoic carbonate aquifer rocks of east-central Nevada do not extend into the Black Canyon area and generally are terminated to the south at a major tectonic boundary defined by the northeast-striking Lake Mead Fault System and the northwest-striking Las Vegas Valley shear zone. Faults to the west of Black Canyon strike dominantly north-south and form a complicated pattern that may inhibit easterly groundwater movement from Eldorado Valley. To the east of Black Canyon, crystalline Proterozoic rocks locally overlain by Tertiary volcanic rocks in the Black Mountains are bounded by steep north-south normal faults. These faults may also inhibit westerly groundwater movement from Detrital Valley toward Black Canyon. Finally, the cross sections show clearly that Proterozoic basement rocks and (or) Tertiary plutonic rocks are shallow in the Black Canyon area (at the surface to a few hundred meters depth) and are cut by several major faults that discharge most of the springs in the Black Canyon. Therefore, the faults most likely provide groundwater pathways to sufficient depths that the groundwater is heated to the observed temperatures of up to 55 °C.

  2. Wintertime Boundary Layer Structure in the Grand Canyon.

    NASA Astrophysics Data System (ADS)

    Whiteman, C. David; Zhong, Shiyuan; Bian, Xindi

    1999-08-01

    Wintertime temperature profiles in the Grand Canyon exhibit a neutral to isothermal stratification during both daytime and nighttime, with only rare instances of actual temperature inversions. The canyon warms during daytime and cools during nighttime more or less uniformly through the canyon's entire depth. This weak stability and temperature structure evolution differ from other Rocky Mountain valleys, which develop strong nocturnal inversions and exhibit convective and stable boundary layers that grow upward from the valley floor. Mechanisms that may be responsible for the different behavior of the Grand Canyon are discussed, including the possibility that the canyon atmosphere is frequently mixed to near-neutral stratification when cold air drains into the top of the canyon from the nearby snow-covered Kaibab Plateau. Another feature of canyon temperature profiles is the sharp inversions that often form near the canyon rims. These are generally produced when warm air is advected over the canyon in advance of passing synoptic-scale ridges.Wintertime winds in the main canyon are not classical diurnal along-valley wind systems. Rather, they are driven along the canyon axis by the horizontal synoptic-scale pressure gradient that is superimposed along the canyon's axis by passing synoptic-scale weather disturbances. They may thus bring winds into the canyon from either end at any time of day.The implications of the observed canyon boundary layer structure for air pollution dispersion are discussed.

  3. Geomorphic characterization of four shelf-sourced submarine canyons along the U.S. Mid-Atlantic continental margin

    USGS Publications Warehouse

    Obelcz, Jeffrey; Brothers, Daniel S.; Chaytor, Jason D.; ten Brink, Uri S.; Ross, Steve W.; Brooke, Sandra

    2013-01-01

    Shelf-sourced submarine canyons are common features of continental margins and are fundamental to deep-sea sedimentary systems. Despite their geomorphic and geologic significance, relatively few passive margin shelf-breaching canyons worldwide have been mapped using modern geophysical methods. Between 2007 and 2012 a series of geophysical surveys was conducted across four major canyons of the US Mid-Atlantic margin: Wilmington, Baltimore, Washington, and Norfolk canyons. More than 5700 km2 of high-resolution multibeam bathymetry and 890 line-km of sub-bottom CHIRP profiles were collected along the outer shelf and uppermost slope (depths of 80-1200 m). The data allowed us to compare and contrast the fine-scale morphology of each canyon system. The canyons have marked differences in the morphology and orientation of canyon heads, steepness and density of sidewall gullies, and the character of the continental shelf surrounding canyon rims. Down-canyon axial profiles for Washington, Baltimore and Wilmington canyons have linear shapes, and each canyon thalweg exhibits morphological evidence for recent, relatively small-scale sediment transport. For example, Washington Canyon displays extremely steep wall gradients and contains ~100 m wide, 5–10 m deep, v-shaped incisions down the canyon axis, suggesting modern or recent sediment transport. In contrast, the convex axial thalweg profile, the absence of thalweg incision, and evidence for sediment infilling at the canyon head, suggest that depositional processes strongly influence Norfolk Canyon during the current sea-level high-stand. The north walls of Wilmington, Washington and Norfolk canyons are steeper than the south walls due to differential erosion, though the underlying cause for this asymmetry is not clear. Furthermore, we speculate that most of the geomorphic features observed within the canyons (e.g., terraces, tributary canyons, gullies, and hanging valleys) were formed during the Pleistocene, and show only subtle modification by Holocene processes active during the present sea-level high-stand.

  4. Hydraulics of outburst floods spilling over a steep-walled canyon: Implications for paleo-discharges on Mars

    NASA Astrophysics Data System (ADS)

    Lapotre, Mathieu; Lamb, Michael

    2013-04-01

    Canyons carved by outburst floods are common landforms on Earth and Mars. These canyons are generally found in fractured basalts and jointed sedimentary rocks. Flood-carved canyons commonly have steep headwalls and a roughly constant width, and are often thought to have formed from upstream headwall propagation due to waterfall erosion. Because morphology is readily available from satellite imagery, these canyons offer a unique opportunity to quantify the discharge of rare, catastrophic paleo-floods on Earth and Mars. However, mechanistic relationships that relate canyon size to flood discharge have yet to be developed. We propose that the width of a canyon headwall in fractured rock is set by the spatial distribution of erosion around the rim of the canyon, which is controlled by the distribution of shear stresses induced by the overflowing water as it is focused into the canyon head. We test this hypothesis by performing a series of numerical simulations of flood-water focusing using ANUGA Hydro, a 2D-depth averaged, fully turbulent, hydraulic numerical modeling suite allowing for Froude-number transitions. The numerical simulations were designed to explore five dimensionless variables: the aspect ratio of the canyon (length normalized by width), the canyon width to flood-water width ratio, the canyon width to normal-flow depth ratio, the Froude number, and the topographic gradient upstream of the canyon. Preliminary results show that flow focusing leads to increased shear stresses at the canyon head compared to the sides of the canyon for subcritical floods and higher canyon aspect ratios. This suggests that proto-canyons start growing from a topographic defect in all directions until they reach a critical length for the side walls to dry. Once this critical length is attained, canyons focus most of the flood waters into their heads, and propagate upstream only, maintaining roughly constant widths. Preliminary results suggest that canyon width may be used to reconstruct the discharge of paleo-flood events on Mars and Earth.

  5. Wind-Flow Patterns in the Grand Canyon as Revealed by Doppler Lidar.

    NASA Astrophysics Data System (ADS)

    Banta, Robert M.; Darby, Lisa S.; Kaufmann, Pirmin; Levinson, David H.; Zhu, Cui-Juan

    1999-08-01

    Many interesting flow patterns were found in the Grand Canyon by a scanning Doppler lidar deployed to the south rim during the 1990 Wintertime Visibility Study. Three are analyzed in this study: 1) flow reversal in the canyon, where the flow in the canyon was in the opposite direction from the flow above the canyon rim; 2) under strong, gusty flow from the southwest, the flow inside and above the canyon was from a similar direction and coupled; and 3) under light large-scale ambient flow, the lidar found evidence of local, thermally forced up- and down-canyon winds in the bottom of the canyon.On the days with flow reversal in the canyon, the strongest in-canyon flow response was found for days with northwesterly flow and a strong inversion at the canyon rim. The aerosol backscatter profiles were well mixed within the canyon but poorly mixed across the rim because of the inversion. The gusty southwest flow days showed strong evidence of vertical mixing across the rim both in the momentum and in the aerosol backscatter profiles, as one would expect in turbulent flow. The days with light ambient flow showed poor vertical mixing even inside the canyon, where the jet of down-canyon flow in the bottom of the canyon at night was often either cleaner or dirtier than the air in the upper portions of the canyon. In a case study presented, the light ambient flow regime ended with an intrusion of polluted, gusty, southwesterly flow. The polluted, high-backscatter air took several hours to mix into the upper parts of the canyon. An example is also given of high-backscatter air in the upper portions of the canyon being mixed rapidly down into a jet of cleaner air in the bottom of the canyon in just a few minutes.

  6. Investigating Mars: Tithonium Chasma

    NASA Image and Video Library

    2018-02-16

    In this VIS image of Tithonium Chasma both sides of the chasma are visible. In this narrow and deep part of the chasma exist both large, chaotic block landslide deposits with smaller lobate shaped landslide deposits on top. Tithonium Chasma has numerous large landslide deposits. The resistant material of the plateau surface forms the linear ridges of the canyon wall. Large landslides have changed the walls and floor of the canyon. A landslide is a failure of slope due to gravity. They initiate due to several reasons. A lower layer of poorly cemented/resistant material may have been eroded, undermining the wall above which then collapses; earth quake seismic waves can cause the slope to collapse; and even an impact event near the canyon wall can cause collapse. As millions of tons of material fall and slide down slope a scalloped cavity forms at the upper part where the slope failure occurred. At the material speeds downhill it will pick up more of the underlying slope, increasing the volume of material entrained into the landslide. Whereas some landslides spread across the canyon floor forming lobate deposits, very large volume slope failures will completely fill the canyon floor in a large complex region of chaotic blocks. Tithonium Chasma is at the western end of Valles Marineris. Valles Marineris is over 4000 kilometers long, wider than the United States. Tithonium Chasma is almost 810 kilometers long (499 miles), 50 kilometers wide and over 6 kilometers deep. In comparison, the Grand Canyon in Arizona is about 175 kilometers long, 30 kilometers wide, and only 2 kilometers deep. The canyons of Valles Marineris were formed by extensive fracturing and pulling apart of the crust during the uplift of the vast Tharsis plateau. Landslides have enlarged the canyon walls and created deposits on the canyon floor. Weathering of the surface and influx of dust and sand have modified the canyon floor, both creating and modifying layered materials. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 36058 Latitude: -4.39265 Longitude: 272.557 Instrument: VIS Captured: 2010-01-30 06:55 https://photojournal.jpl.nasa.gov/catalog/PIA22276

  7. Investigating Mars: Ius Chasma

    NASA Image and Video Library

    2018-02-20

    Continuing eastward along Ius Chasma, this section of the canyon floor has been completely filled by blocky deposits from large volume landslides. A landslide is a failure of slope due to gravity. They initiate due to several reasons. A lower layer of poorly cemented/resistant material may have been eroded, undermining the wall above which then collapses; earth quake seismic waves can cause the slope to collapse; and even an impact event near the canyon wall can cause collapse. As millions of tons of material fall and slide down slope a scalloped cavity forms at the upper part where the slope failure occurred. At the material speeds downhill it will pick up more of the underlying slope, increasing the volume of material entrained into the landslide. Whereas some landslides spread across the canyon floor forming lobate deposits, very large volume slope failures will completely fill the canyon floor in a large complex region of chaotic blocks. Ius Chasma is at the western end of Valles Marineris, south of Tithonium Chasma. Valles Marineris is over 4000 kilometers long, wider than the United States. Ius Chasma is almost 850 kilometers long (528 miles), 120 kilometers wide and over 8 kilometers deep. In comparison, the Grand Canyon in Arizona is about 175 kilometers long, 30 kilometers wide, and only 2 kilometers deep. The canyons of Valles Marineris were formed by extensive fracturing and pulling apart of the crust during the uplift of the vast Tharsis plateau. Landslides have enlarged the canyon walls and created deposits on the canyon floor. Weathering of the surface and influx of dust and sand have modified the canyon floor, both creating and modifying layered materials. There are many features that indicate flowing and standing water played a part in the chasma formation. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 17041 Latitude: -6.50422 Longitude: 272.124 Instrument: VIS Captured: 2005-10-17 10:40 https://photojournal.jpl.nasa.gov/catalog/PIA22278

  8. Hydraulic Reconstructions of Outburst Floods on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Lapotre, M. G. A.; Lamb, M. P.

    2014-12-01

    Large outburst floods on Earth and Mars have carved bedrock canyons in basalt that often have steep sidewalls and amphitheater heads, suggesting erosion by waterfall retreat and block toppling. Two paleohydraulic methods are typically used to reconstruct flood discharges. The first is based on the discharge required to move sediment, which requires rare grain-size data and is necessarily a lower bound. The second assumes bedrock canyons are entirely inundated, which likely greatly overestimates the discharge of canyon carving floods. Here we explore a third hypothesis that canyon width is an indicator of flood discharge. For example, we expect that for large floods relative to the canyon width, the canyon will tend to widen as water spills over and erodes the canyon sidewalls. In contrast, small floods, relative to the canyon size will tend to focus flow into the canyon head, resulting in a narrowing canyon. To test this hypothesis, we need data on how outburst floods focus water into canyons across a wide range of canyon and flood sizes. To fill this data gap, we performed a series of numerical simulations solving the 2D depth-averaged shallow water equations for turbulent flow. We analyzed the effect of five non-dimensional parameters on the shear stress and discharge distributions around head and sidewalls of canyons of different sizes. The Froude number of the flood has the greatest effect on the distribution of shear stresses and discharges around the canyon rim; higher Froude numbers lead to less convergence of the flow towards the canyon, and thus to lower shear stresses (and discharges) on the sides of the canyon. Simulation results show that canyons of constant width were likely carved by floods within a relatively narrow range of discharges. The range of discharges is sensitive to the Froude number and size of blocks that are toppled at the canyon head, both of which can be estimated from field and remotely sensed data. Example applications on Earth and Mars show that our flood reconstructions yield canyon-carving discharges larger than inferred from incipient motion thresholds, and often dramatically smaller than inferred from assuming complete canyon inundation.

  9. Interpretation of sea-floor processes in Gulf of Mexico using GLORIA side-scan sonar system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGregor, B.A.; Kenyon, N.H.; Rothwell, R.G.

    1986-09-01

    The extensive deformation of the continental slope seaward of Texas and Louisiana by salt tectonics has resulted in a complex pattern of basins and salt-dome highs. One continuous meandering channel was identified in this part of the gulf, extending from the shelf edge to the Sigsbee abyssal plain. Bottom currents have reworked the sediments in this channel's levees seaward of the Sigsbee Escarpment, the seaward edge of the salt front, suggesting that this channel may no longer be actively transporting sediment. Talus appears to lie along the base of the Sigsbee Escarpment, suggesting that erosion and deposition are occurring alongmore » this front. Three other discontinuous channel systems can be identified on the mosaic and appear to be contributing sediments to the deep gulf. Fans related to these channel systems are present seaward of the Rio Grande, the Mississippi Canyon, and the Desoto Canyon areas. Three major submarine slides were mapped: the East Breaks slide in the northwestern gulf, a slide in the Mississippi Canyon and fan area of the central gulf, and a slide in the Desoto Canyon area in the northeastern gulf. The areal extent of these slide and debris-flow deposits (ranging from 6000 to 50,000 km/sup 2/) suggests that mass wasting is an important process in distributing sediments in the Gulf of Mexico.« less

  10. Mineral resources of the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas, Carbon Emery, and Grand counties, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cashion, W.B.; Kilburn, J.E.; Barton, H.N.

    1990-09-01

    This paper reports on the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas which include 242,000 acres, 33,690 acres, and 23,140 acres. Coal deposits underlie all three study areas. Coal zones in the Blackhawk and Nelsen formations have identified bituminous coal resources of 22 million short tons in the Desolation Canyon Study Area, 6.3 million short tons in the Turtle Canyon Study Area, and 45 million short tons in the Floy Canyon Study Area. In-place inferred oil shale resources are estimated to contain 60 million barrels in the northern part of the Desolation Canyon area. Minor occurrences ofmore » uranium have been found in the southeastern part of the Desolation Canyon area and in the western part of the Floy Canyon area. Mineral resource potential for the study areas is estimated to be for coal, high for all areas, for oil and gas, high for the northern tract of the Desolation Canyon area and moderate for all other tracts, for bituminous sandstone, high for the northern part of the Desolation Canyon area, and low for all other tracts, for oil shale, low in all areas, for uranium, moderate for the Floy Canyon area and the southeastern part of the Desolation Canyon area and low for the remainder of the areas, for metals other than uranium, bentonite, zeolites, and geothermal energy, low in all areas, and for coal-bed methane unknown in all three areas.« less

  11. Aquatic macroinvertebrates and water quality of Sandia Canyon, Los Alamos National Laboratory, December 1992--October 1993. Status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cross, S.

    1994-09-01

    In the summer of 1990, an accidental spill from the TA-3 Power Plant Environment Tank released more than 3,785 liters of sulfuric acid into upper Sandia Canyon. The Biological Resource Evaluation Team (BRET) of EM-8 at Los Alamos National Laboratory (LANL) has collected aquatic samples from the stream within Sandia Canyon since then. These field studies gather water quality measurements and collect macroinvertebrates from permanent sampling sites. An earlier report by Bennett (1994) discusses previous BRET aquatic studies in Sandia Canyon. This report updates and expands Bennett`s initial findings. During 1993, BRET collected water quality data and aquatic macroinvertebrates atmore » five permanent stations within the canyon. The substrates of the upper three stations are largely sands and silts while the substrates of the two lower stations are largely rock and cobbles. The two upstream stations are located near outfalls that discharge industrial and sanitary waste effluent. The third station is within a natural cattail marsh, approximately 0.4 km (0.25 mi) downstream from Stations SC1 and SC2. Water quality parameters are slightly different at these first three stations from those expected of natural streams, suggesting slightly degraded water quality. Correspondingly, the macroinvertebrate communities at these stations are characterized by low diversities and poorly-developed community structures. The two downstream stations appear to be in a zone of recovery, where water quality parameters more closely resemble those found in natural streams of the area. Macroinvertebrate diversity increases and community structure becomes more complex at the two lower stations, which are further indications of improved water quality downstream.« less

  12. California State Waters Map Series—Monterey Canyon and vicinity, California

    USGS Publications Warehouse

    Dartnell, Peter; Maier, Katherine L.; Erdey, Mercedes D.; Dieter, Bryan E.; Golden, Nadine E.; Johnson, Samuel Y.; Hartwell, Stephen R.; Cochrane, Guy R.; Ritchie, Andrew C.; Finlayson, David P.; Kvitek, Rikk G.; Sliter, Ray W.; Greene, H. Gary; Davenport, Clifton W.; Endris, Charles A.; Krigsman, Lisa M.; Dartnell, Peter; Cochran, Susan A.

    2016-06-10

    IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath bathymetry data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Monterey Canyon and Vicinity map area lies within Monterey Bay in central California. Monterey Bay is one of the largest embayments along the west coast of the United States, spanning 36 km from its northern to southern tips (in Santa Cruz and Monterey, respectively) and 20 km along its central axis. Not only does it contain one of the broadest sections of continental shelf along California’s coast, it also contains Monterey Canyon, one of the largest and deepest submarine canyons in the world. Note that the California’s State Waters limit extends farther offshore between Santa Cruz and Monterey so that it encompasses all of Monterey Bay.The coastal area within the map area is lightly populated. The community of Moss Landing (population, 204) hosts the largest commercial fishing fleet in Monterey Bay in its harbor. The map area also includes parts of the cities of Marina (population, about 20,000) and Castroville (population, about 6,500). Fertile lowlands of the Salinas River and Pajaro River valleys largely occupy the inland part of the map area, and land use is primarily agricultural.The offshore part of the map area lies completely within the Monterey Bay National Marine Sanctuary. The map area also includes Portuguese Ledge and Soquel Canyon State Marine Conservation Areas. Designated conservation and (or) recreation areas in the onshore part of the map area include Salinas River National Wildlife Refuge, Elkhorn Slough State Marine Conservation Area, Elkhorn Slough State Marine Reserve, Moss Landing Wildlife Area, Zmudowski and Salinas River State Beaches, and Marina Dunes Preserve.Monterey Bay, a geologically complex area within a tectonically active continental margin, lies between two major, converging strike-slip faults. The northwest-striking San Andreas Fault lies about 34 km east of Monterey Bay; this section of the fault ruptured in both the 1989 M6.9 Loma Prieta earthquake and the 1906 M7.8 great California earthquake. The northwest-striking San Gregorio Fault crosses Monterey Canyon west of Monterey Bay. Between these two regional faults, strain is accommodated by the northwest-striking Monterey Bay Fault Zone. Deformation associated with these major regional faults and related structures has resulted in uplift of the Santa Cruz Mountains, as well as the granitic highlands of the Monterey peninsula.Monterey Canyon begins in the nearshore area directly offshore of Moss Landing and Elkhorn Slough, and it can be traced for more than 400 km seaward, out to water depths of more than 4,000 m. Within the map area, the canyon can be traced for about 42 km to a water depth of about 1,520 m. The head of the canyon consists of three branches that begin about 150 m offshore of Moss Landing Harbor. At 500 m offshore, the canyon is already 70 m deep and 750 m wide. Large sand waves, which have heights from 1 to 3 m and wavelengths of about 50 m, are present along the channel axis in the upper 4 km of the canyon.Soquel Canyon is the most prominent tributary of Monterey Canyon within the map area. The head of Soquel Canyon is isolated from coastal watersheds and, thus, is considered inactive as a conduit for coarse sediment transport.North and south of Monterey and Soquel Canyons, the relatively flat continental shelf contains only a few rocky outcrop exposures. Bedrock is covered largely by sediment derived from the Salinas and Pajaro Rivers. North of Monterey Canyon, the broad and flat continental shelf dips gently seaward, to water depths of about 95 m. To the south, the shelf also dips slightly, to water depths of as much as 150 m along the canyon edge.In the map area, Monterey Canyon splits the Santa Cruz littoral cell (north of the canyon) and the southern Monterey littoral cell (south of the canyon). It is estimated that about 400,000 m3/yr of sand on average enters Monterey Canyon from both of these littoral cells.In the Santa Cruz littoral cell, sand generally travels east and south. Sand is supplied through sea cliff erosion, as well as from the San Lorenzo River, the Pajaro River, and several other smaller coastal watersheds. About 152,911 m3/yr of sand is dredged from the entrance channel of the Santa Cruz Small Craft Harbor north of the map area and then placed on beaches to the east (downdrift) of it. This sand feeds the beaches in the southeastern reach of the Santa Cruz littoral cell and (or) is eventually trapped and lost by Monterey Canyon.The southern Monterey Bay littoral cell in the map area consists of two subcells. From the head of Monterey Canyon to the Salinas River, littoral drift is dominantly to the north; sand entering the ocean from the Salinas River either is deposited offshore or travels north in the littoral zone, nourishing the beaches until it is transported down Monterey Canyon. From south of the Salinas River to the southern extent of the map area, coastal sediment is moved mainly to the south; dune erosion is the only significant source of sand in this subcell.

  13. Hudson Canyon benthic habitats characterization and mapping by integrated analysis of multidisciplinary data

    NASA Astrophysics Data System (ADS)

    Pierdomenico, Martina; Guida, Vincent G.; Rona, Peter A.; Macelloni, Leonardo; Scranton, Mary I.; Asper, Vernon; Diercks, Arne

    2013-04-01

    Hudson Canyon, about 180 km SE of New York City, is the largest eastern U.S. submarine canyon and is under consideration for HAPC (Habitat Area of Particular Concern) status, representing a fisheries and biodiversity hot spot. Interest in the area, within the perspective of ecosystem based management, marine spatial planning, habitat and species conservation, led to a joint project between NOAA Northeast Fisheries, U.S. Geological Survey (USGS), Mississippi Mineral Research Institute (MMRI), National Institute for Undersea Science and Technology (NIUST), Stony Brook and Rutgers Universities for the study of benthic habitats, that includes the assembly of existing data with newly collected ones: acoustic mapping, visual ground-truthing, hydrographic, sedimentological, and trawl data collections. Acoustic mapping, performed using AUV-mounted multibeam sonar, provided ultra-high resolution bathymetric and backscatter imagery (3m and 1m respectively) at all water depths for identification of geomorphological features and for the characterization of surficial sediments along the two thirds of the shelf portion of the canyon. Identification of benthic and demersal communities was accomplished by visual ground thruthing with underwater vehicle video and still cameras, and from trawl catch data. A CTD-rosette sampler provided water column salinity-temperature profiles and water samples for dissolved methane analysis in the vicinity of suspected bottom sources. Analysis of data revealed a complex of topographic structures and hydrological patterns that provide a wide range of physical habitats in a relatively small area. A mosaic of sandy and muddy substrates, gravel beds, rock outcrops, and semilithified clay outcrops host rich and varied faunal assemblages, including deepwater corals and sponge communities. Pockmark fields, occurring below 300 m depth, suggest that methane-based chemosynthetic carbonate deposition contributes to creation of specific hard bottom habitats. Previously described hummocky terrain associated with extensive, long-term burrowing activity by golden tilefish (Lopholatilus chamaeleonticeps) was clearly delineated along the canyon rims. Bedform fields and potential current deposits observed along the upper portion of canyon walls suggest the presence of intense bottom currents flowing parallel to canyon axis. A benthic habitat map of Hudson Canyon head was produced by integration of the different datasets. The distribution of habitats was primarily inferred from geophysical data characteristics. Furthermore habitat characteristics can be related to sedimentary and oceanographic processes acting on the seafloor. Comparison and refinement of bathymetric and backscatter imagery with ground truth data enabled validation of acoustic classification of the seafloor, allowing the definition of morpho-acoustic classes corresponding to as many habitats, and to extend the predictive results over larger areas.

  14. 4. DARK CANYON SIPHON VIEW ACROSS DARK CANYON AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DARK CANYON SIPHON - VIEW ACROSS DARK CANYON AT LOCATION OF SIPHON. VIEW TO NORTHWEST - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  15. Hydrogeology of Middle Canyon, Oquirrh Mountains, Tooele County, Utah

    USGS Publications Warehouse

    Gates, Joseph Spencer

    1963-01-01

    Geology and climate are the principal influences affecting the hydrology of Middle Canyon, Tooele County, Utah. Reconnaissance in the canyon indicated that the geologic influences on the hydrology may be localized; water may be leaking through fault and fracture zones or joints in sandstone and through solution openings in limestone of the Oquirrh formation of Pennsylvanian and Permian age. Surficial deposits of Quaternary age serve as the main storage material for ground water in the canyon and transmit water from the upper canyon to springs and drains at the canyon mouth. The upper canyon is a more important storage area than the lower canyon because the surficial deposits are thicker, and any zones of leakage in the underlying bedrock of the upper canyon probably would result in greater leakage than would similar outlets in the lower canyon.The total annual discharge from Middle Canyon, per unit of precipitation, decreased between 1910 and 1939. Similar decreases occurred in Parleys Canyon in the nearby Wasatch Range and in other drainage basins in Utah, and it is likely that most of the decrease in discharge from Middle Canyon and other canyons in Utah is due to a change in climate.Chemical analyses of water showed that the high content of sulfate and other constituents in the water from the Utah Metals tunnel, which drains into Middle Canyon, does not have a significant effect on water quality at the canyon mouth. This suggests that much of the tunnel water is lost from the channel by leakage, probably in the upper canyon, during the dry part of the year.Comparison of the 150 acre-feet of water per square mile of drainage area discharged by Middle Canyon in 1947 with the 623 and 543 acre-feet per square mile discharged in 1948 by City Creek and Mill Creek Canyons, two comparable drainage basins in the nearby Wasatch Range, also suggests that there is leakage in Middle Canyon.A hydrologic budget of the drainage basin results in an estimate that about 3,000 acre-feet of water was unaccounted for in the 1947 water year. This may represent a reasonable estimate of annual leakage from Middle Canyon.The future development of Middle Canyon water can best be planned after additional information is obtained on movement of water through the channel fill. Much of this information could be supplied by test drilling in the channel fill.

  16. A Backward-Lagrangian-Stochastic Footprint Model for the Urban Environment

    NASA Astrophysics Data System (ADS)

    Wang, Chenghao; Wang, Zhi-Hua; Yang, Jiachuan; Li, Qi

    2018-02-01

    Built terrains, with their complexity in morphology, high heterogeneity, and anthropogenic impact, impose substantial challenges in Earth-system modelling. In particular, estimation of the source areas and footprints of atmospheric measurements in cities requires realistic representation of the landscape characteristics and flow physics in urban areas, but has hitherto been heavily reliant on large-eddy simulations. In this study, we developed physical parametrization schemes for estimating urban footprints based on the backward-Lagrangian-stochastic algorithm, with the built environment represented by street canyons. The vertical profile of mean streamwise velocity is parametrized for the urban canopy and boundary layer. Flux footprints estimated by the proposed model show reasonable agreement with analytical predictions over flat surfaces without roughness elements, and with experimental observations over sparse plant canopies. Furthermore, comparisons of canyon flow and turbulence profiles and the subsequent footprints were made between the proposed model and large-eddy simulation data. The results suggest that the parametrized canyon wind and turbulence statistics, based on the simple similarity theory used, need to be further improved to yield more realistic urban footprint modelling.

  17. The Munson-Nygren slide: A major lower-slope slide off Georges Bank

    USGS Publications Warehouse

    O'Leary, Dennis W.

    1986-01-01

    The Munson-Nygren slide is a large compound slide located between Munson and Nygren Canyons below 1900 m depth on the Continental Slope off Georges Bank. Its structural and morphological features are recognized in high-resolution seismic-reflection profiles. The slide comprises an axial trough which has a relief as great as 325 m and a width of 6-10 km. The trough is flanked by displaced and disrupted strata for a total lateral extent of approximately 20 km and a downslope extent of at least 35 km. The slide is unrelated genetically to the adjacent canyons and may postdate Munson Canyon. There is evidence of plastic deformation at the base of the section subjected to sliding. Certain features of the slide complex resemble those seen in landforms on the Laurentian Rise and attributed by Emery et al.* * Emery et al. (1970). to the 1929 Grand Banks earthquake. The Munson-Nygren slide may have been triggered by a large earthquake in late Pleistocene time or later. Destructional landforms associated with the slide are similar to those widely present along the lower slope off Georges Bank. ?? 1986.

  18. Giant submarine canyons: Is size any clue to their importance in the rock record?

    USGS Publications Warehouse

    Normark, William R.; Carlson, Paul R.

    2003-01-01

    Submarine canyons are the most important conduits for funneling sediment from continents to oceans. Submarine canyons, however, are zones of sediment bypassing, and little sediment accumulates in the canyon until it ceases to be an active conduit. To understand the potential importance in the rock record of any given submarine canyon, it is necessary to understand sediment-transport processes in, as well as knowledge of, deep-sea turbidite and related deposits that moved through the canyons. There is no straightforward correlation between the final volume of the sedimentary deposits and size of the associated submarine canyons. Comparison of selected modern submarine canyons together with their deposits emphasizes the wide range of scale differences between canyons and their impact on the rock record.Three of the largest submarine canyons in the world are incised into the Beringian (North American) margin of the Bering Sea. Zhemchug Canyon has the largest cross-section at the shelf break and greatest volume of incision of slope and shelf. The Bering Canyon, which is farther south in the Bering Sea, is first in length and total area. In contrast, the largest submarine fans-e.g., Bengal, Indus, and Amazon-have substantially smaller, delta-front submarine canyons that feed them; their submarine drainage areas are one-third to less than one-tenth the area of Bering Canyon. some very large deep-sea channels and tubidite deposits are not even associated with a significant submarine canyon; examples include Horizon Channel in the northeast Pacific and Laurentian Fan Valley in the North Atlantic. Available data suggest that the size of turbidity currents (as determined by volume of sediment transported to the basins) is also not a reliable indicator of submarine canyon size.

  19. Geology of the head of Lydonia Canyon, U.S. Atlantic outer continental shelf

    USGS Publications Warehouse

    Twichell, David C.

    1983-01-01

    The geology of the part of Lydonia Canyon shoreward of the continental shelf edge on the southern side of Georges Bank was mapped using high-resolution seismic-reflection and side-scan sonar techniques and surface sediment grab samples. The head of the canyon incises Pleistocene deltaic deposits and Miocene shallow marine strata. Medium sand containing some coarse sand and gravel covers the shelf except for a belt of very fine sand containing no gravel on either side of the canyon in water depths of 125–140 m. Gravel and boulders, presumably ice-rafted debris, cover the rim of the canyon. The canyon floor and canyon wall gullies are covered by coarse silt of Holocene age which is as much as 25 m thick, and Miocene and Pleistocene strata are exposed on the spurs between gullies. The Holocene sediment is restricted to the canyon shoreward of the shelf edge and has been winnowed from the shelf. Furrows cut in the shelf sands and ripples on the shelf and in the canyon suggest that sediment continues to be moved in this area. Sediment distribution, however, is inconsistent with that expected from the inferred westward sediment transport on the shelf. Either the fine-grained deposits on the shelf to either side of the canyon head are relict or there is a significant component of offshore transport around the canyon head.In the head of Oceanographer Canyon, only 40 km west of Lydonia Canyon, present conditions are strikingly different. The floor of Oceanographer Canyon is covered by sand waves, and their presence indicates active reworking of the bottom sediments by strong currents. The close proximity of the two canyons suggests that the relative importance of processes acting in canyons can be variable over short distances.

  20. Submarine sand dunes and sedimentary environments in Oceanographer Canyon.

    USGS Publications Warehouse

    Valentine, P.C.; Cooper, R.A.; Uzmann, J.R.

    1984-01-01

    Observations from research submersibles in the northern part of Oceanographer Canyon reveal the presence of an extensive field of large sand dunes on the canyon floor. The dunes are medium to coarse sand, are oriented across the axis, and the largest of them are as high as 3 m and have wavelengths up to 15 m. Their asymmetry, grain size, and height suggest that they are formed by axial currents flowing up- and downcanyon and that the largest dunes require flows of at least 70 cm/sec. Shelf sand, low in silt and clay content, is transported by currents down and along the canyon walls onto the canyon floor. As the sand enters the canyon, it is mixed with immobile gravel deposits on the canyon rim; lower on the walls, the sand is mixed with silt and clay burrowed by organisms from the semiconsolidated sandy silt that underlies the canyon walls and floor. Upon reaching the canyon floor, the sand is sculpted into bed forms by currents, and the fines are winnowed out and transported out of the canyon. At present, the shelf and canyon walls are being eroded by bottom currents and burrowing organisms, whereas the canyon floor is covered by mobile sand that moves both up and down the axis in this part of the canyon.

  1. Use of flux and morphologic sediment budgets for sandbar monitoring on the Colorado River in Marble Canyon, Arizona

    USGS Publications Warehouse

    Grams, Paul E.; Buscombe, Daniel D.; Topping, David J.; Hazel, Joseph E.; Kaplinski, Matt

    2015-01-01

    The magnitude and pfattern of streamflow and sediment supply of the Colorado River in Grand Canyon (Figure 1) has been affected by the existence and operations of Glen Canyon Dam since filling of Lake Powell Reservoir began in March 1963. In the subsequent 30 years, fine sediment was scoured from the downstream channel (Topping et al., 2000; Grams et al., 2007), resulting in a decline in the number and size of sandbars in the eastern half of Grand Canyon National Park (Wright et al., 2005; Schmidt et al., 2004). The Glen Canyon Dam Adaptive Management Program (GCDAMP) administered by the U.S. Department of Interior oversees efforts to manage the Colorado River ecosystem downstream from Glen Canyon Dam. One of the goals of the GCDAMP is to maintain and increase the number and size of sandbars in this context of a limited sand supply. Management actions to benefit sandbars have included curtailment of daily streamflow fluctuations, which occur for hydropower generation, and implementation of controlled floods, also called high-flow experiments.Studies of controlled floods, defined as intentional releases that exceed the maximum discharge capacity of the Glen Canyon Dam powerplant, implemented between 1996 and 2008, have demonstrated that these events cause increases in sandbar size throughout Marble and Grand Canyons (Hazel et al., 2010; Schmidt and Grams, 2011; Mueller et al., 2014), although the magnitude of response is spatially variable (Hazel et al., 1999; 2010). Controlled floods may build some sandbars at the expense of erosion of sand from other, upstream, sandbars (Schmidt, 1999). To increase the frequency and effectiveness of sandbar building, the U.S. Department of Interior adopted a “high-flow experimental protocol” to implement controlled floods regularly under conditions of enriched sand supply (U.S. Department of Interior, 2012). Because the supply of sand available to build sandbars has been substantially reduced by Glen Canyon Dam (Topping et al., 2000) and depends entirely on infrequent tributary floods, monitoring of both sandbars and gross sand storage (the sand budget) is required to evaluate whether the high-flow protocol is having the intended effect of increasing sandbar size without progressively depleting sand from the system.There are many challenges associated with monitoring sand storage and active sand deposits in a river system as large and complex as the 450-km segment of the Colorado River between Glen Canyon Dam and Lake Mead. Previous studies have demonstrated the temporal variation in sand storage associated with sand-supply limitation (Topping et al., 2000) and the spatial variability in the amount of sand stored in eddies and the channel associated with channel hydraulics (Grams et al., 2013). In this study, we report on companion measurements of sand flux and morphologic change to quantify, for the first time, the relation between changes in sand mass balance, changes in within-channel sand storage, and changes in sandbars comprehensively for a 50-km river segment of the Colorado River in lower Marble Canyon within Grand Canyon National Park.We show that, when measured over the scale of a 50-km river segment, these complementary measurements of the sand budget agree within measurement uncertainty and provide a rare opportunity to integrate the temporally rich sand-flux record with the spatially rich morphologic measurements. Both methods show that sediment was evacuated from lower Marble Canyon over the 3-year study period. The flux-based budget shows the timing of changes in storage relative to dam-release patterns, while the morphologic measurements depict the spatial distribution of erosion and deposition among different depositional settings.

  2. Geomorphic process fingerprints in submarine canyons

    USGS Publications Warehouse

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.; Twichell, David C.

    2013-01-01

    Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.

  3. Strategic guidelines for street canyon geometry to achieve sustainable street air quality—part II: multiple canopies and canyons

    NASA Astrophysics Data System (ADS)

    Chan, Andy T.; Au, William T. W.; So, Ellen S. P.

    The flow field and pollutant dispersion characteristics in a three-dimensional urban street canyon are investigated for various building array geometries. The street canyon in consideration is located in a multi-canopy building array that is similar to realistic estate situations. The pollutant dispersion characteristics are studied for various canopy aspect ratios, namely: the canyon height to width ratio, canyon length to height ratio, canyon breadth ratio and crossroad locations are studied. A three-dimensional field-size canyon has been analysed through numerical simulations using k- ɛ turbulence model. As expected, the wind flow and mode of pollutant dispersion is strongly dependent on the various flow geometric configurations and that the results can be different from that of a single canyon system. For example, it is found that the pollutant retention value is minimum when the canyon height-to-width ratio is approximately 0.8, or that the building height ratio is 0.5. Various rules of thumbs on urban canyon geometry have been established for good pollutant dispersion.

  4. A reevaluation of the Munson-Nygren-Retriever submarine landslide complex, Georges bank lower slope, western north Atlantic

    USGS Publications Warehouse

    Chaytor, Jason D.; Twichell, David C.; ten Brink, Uri S.

    2012-01-01

    The Munson-Nygren-Retriever (MNR) landslide complex is a series of distinct submarine landslides located between Nygren and Powell canyons on the Georges Bank lower slope. These landslides were first imaged in 1978 using widely-spaced seismic reflection profiles and were further investigated using continuous coverage GLORIA sidescan imagery collected over the landslide complex in 1987. Recent acquisition of highresolution multibeam bathymetry across these landslides has provided an unprecedented view of their complex morphology and allows for a more detailed investigation of their evacuation and deposit morphologies and sizes, modes of failure, and relationship to the adjacent sections of the margin, including the identification of an additional landslide within the MNR complex, referred to here as the Pickett slide. The evacuation zone of these landslides covers an area of approximately 1,780 km2 . The headwalls of these landslides are at a depth of approximately 1,800 m, with evacuation extending for approximately 60 km downslope to the top of the continental rise. High-relief debris deposits, in the form of blocks and ridges, are present down the length of the majority of the evacuation zones and within the deposition area at the base of the slope. On the continental rise, the deposits from each of the most recent failures of the MNR complex landslides merge with debris from earlier continental slope failures, canyon and alongslope derived deposits, and prominent upper-rise failures.

  5. Ancient impact structures on modern continental shelves: The Chesapeake Bay, Montagnais, and Toms Canyon craters, Atlantic margin of North America

    USGS Publications Warehouse

    Poag, C. Wylie; Plescia, J.B.; Molzer, P.C.

    2002-01-01

    Three ancient impact craters (Chesapeake Bay - 35.7 Ma; Toms Canyon - 35.7 Ma; Montagnais - 51 Ma) and one multiring impact basin (Chicxulub - 65 Ma) are currently known to be buried beneath modern continental shelves. All occur on the passive Atlantic margin of North America in regions extensively explored by seismic reflection surveys in the search for oil and gas reserves. We limit our discussion herein to the three youngest structures. These craters were created by submarine impacts, which produced many structural and morphological features similar in construction, composition, and variability to those documented in well-preserved subaerial and planetary impact craters. The subcircular Chesapeake Bay (diameter 85 km) and ovate Montagnais (diameter 45-50 km) structures display outer-rim scarps, annular troughs, peak rings, inner basins, and central peaks similar to those incorporated in the widely cited conceptual model of complex impact craters. These craters differ in several respects from the model, however. For example, the Montagnais crater lacks a raised lip on the outer rim, the Chesapeake Bay crater displays only small remnants of a raised lip, and both craters contain an unusually thick body of impact breccia. The subtriangular Toms Canyon crater (diameter 20-22 km), on the other hand, contains none of the internal features of a complex crater, nor is it typical of a simple crater. It displays a prominent raised lip on the outer rim, but the lip is present only on the western side of the crater. In addition, each of these craters contains some distinct features, which are not present in one or both of the others. For example, the central peak at Montagnais rises well above the elevation of the outer rim, whereas at Chesapeake Bay, the outer rim is higher than the central peak. The floor of the Toms Canyon crater is marked by parallel deep troughs and linear ridges formed of sedimentary rocks, whereas at Chesapeake Bay, the crater floor contains concentric faults and compression ridges formed in rocks of the crystalline basement. The Chesapeake Bay crater is distinguished further by its cluster of at least 23 adjacent secondary craters. The North American tektite strewn field, a widespread deposit of distal ejecta, is thought to be derived from the Chesapeake Bay impact, perhaps with a small contribution from the Toms Canyon impact. No ejecta field is known to be associated with the Montagnais impact. No immediate major extinction event is directly linked to any of these three impacts. There is evidence, however, that the Chesapeake Bay and Toms Canyon impacts helped initiate a long-term pulse of warm global climate, whose eventual dissipation coincided with an early Oligocene mass extinction event, 2 Ma after the impacts.

  6. Investigating Mars: Ius Chasma

    NASA Image and Video Library

    2018-02-26

    This VIS image shows part of eastern Ius Chasma. The lower elevations of Geryon Montes are located at the top of the image. Between the montes and the southern wall face is a region of sand and sand dunes. The presence of mobile sand indicates that winds are eroding, depositing and changing the canyon floor. The texture of the canyon floor beneath the dunes and elsewhere in the image is an indication of water, in some form, was part of the process creating the surface. There is a tongue of material emerging from the canyon wall that has steep sides, this may be a delta formed by material washing down the valley and into a body of standing water, like a lake. It may also just be a landslide deposit that has undergone extensive weathering. A landslide is a failure of slope due to gravity. They initiate due to several reasons. A lower layer of poorly cemented/resistant material may have been eroded, undermining the wall above which then collapses; earthquake seismic waves can cause the slope to collapse; and even an impact event near the canyon wall can cause collapse. As millions of tons of material fall and slide down slope a scalloped cavity forms at the upper part where the slope failure occurred. At the material speeds downhill it will pick up more of the underlying slope, increasing the volume of material entrained into the landslide. Whereas some landslides spread across the canyon floor forming lobate deposits, very large volume slope failures will completely fill the canyon floor in a large complex region of chaotic blocks. Ius Chasma is at the western end of Valles Marineris, south of Tithonium Chasma. Valles Marineris is over 4000 kilometers long, wider than the United States. Ius Chasma is almost 850 kilometers long (528 miles), 120 kilometers wide and over 8 kilometers deep. In comparison, the Grand Canyon in Arizona is about 175 kilometers long, 30 kilometers wide, and only 2 kilometers deep. The canyons of Valles Marineris were formed by extensive fracturing and pulling apart of the crust during the uplift of the vast Tharsis plateau. Landslides have enlarged the canyon walls and created deposits on the canyon floor. Weathering of the surface and influx of dust and sand have modified the canyon floor, both creating and modifying layered materials. There are many features that indicate flowing and standing water played a part in the chasma formation. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 10701 Latitude: -8.75442 Longitude: 281.333 Instrument: VIS Captured: 2004-05-13 10:49 https://photojournal.jpl.nasa.gov/catalog/PIA22282

  7. "If You Give Him Seeds, He'll Eat Forever"

    ERIC Educational Resources Information Center

    Murphy, Betty

    1972-01-01

    Focuses on an OEO-funded farming project through which northern New Mexico Pueblo American Indians are growing crops indoors in nutritive water and gravel through a cultivation process known as hydroponics. (RJ)

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graves, Suzy

    Ranking criteria were developed to rate 19 tributaries on the Coeur d`Alene Indiana Reservation for potential of habitat enhancement for westslope cutthroat trout, Oncorhynchus clarki lewisi, and bull trout, Salvelinus malma. Cutthroat and bull trout habitat requirements, derived from an extensive literature review of each species, were compared to the physical and biological parameters of each stream observed during an aerial -- helicopter survey. Ten tributaries were selected for further study, using the ranking criteria that were derived. The most favorable ratings were awarded to streams that were located completely on the reservation, displayed highest potential for improvement and enhancement,more » had no barriers to fish migration, good road access, and a gradient acceptable to cutthroat and bull trout habitation. The ten streams selected for study were Bellgrove, Fighting, Lake, Squaw, Plummer, Little Plummer, Benewah, Alder, Hell`s Gulch and Evans creeks.« less

  9. HARMONIC SPACE ANALYSIS OF PULSAR TIMING ARRAY REDSHIFT MAPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roebber, Elinore; Holder, Gilbert, E-mail: roebbere@physics.mcgill.ca

    2017-01-20

    In this paper, we propose a new framework for treating the angular information in the pulsar timing array (PTA) response to a gravitational wave (GW) background based on standard cosmic microwave background techniques. We calculate the angular power spectrum of the all-sky gravitational redshift pattern induced at the Earth for both a single bright source of gravitational radiation and a statistically isotropic, unpolarized Gaussian random GW background. The angular power spectrum is the harmonic transform of the Hellings and Downs curve. We use the power spectrum to examine the expected variance in the Hellings and Downs curve in both cases.more » Finally, we discuss the extent to which PTAs are sensitive to the angular power spectrum and find that the power spectrum sensitivity is dominated by the quadrupole anisotropy of the gravitational redshift map.« less

  10. Divergent Effects of Beliefs in Heaven and Hell on National Crime Rates

    PubMed Central

    Shariff, Azim F.; Rhemtulla, Mijke

    2012-01-01

    Though religion has been shown to have generally positive effects on normative ‘prosocial’ behavior, recent laboratory research suggests that these effects may be driven primarily by supernatural punishment. Supernatural benevolence, on the other hand, may actually be associated with less prosocial behavior. Here, we investigate these effects at the societal level, showing that the proportion of people who believe in hell negatively predicts national crime rates whereas belief in heaven predicts higher crime rates. These effects remain after accounting for a host of covariates, and ultimately prove stronger predictors of national crime rates than economic variables such as GDP and income inequality. Expanding on laboratory research on religious prosociality, this is the first study to tie religious beliefs to large-scale cross-national trends in pro- and anti-social behavior. PMID:22723927

  11. Pollutant Concentrations in Street Canyons of Different Aspect Ratio with Avenues of Trees for Various Wind Directions

    NASA Astrophysics Data System (ADS)

    Gromke, Christof; Ruck, Bodo

    2012-07-01

    This study summarizes the effects of avenues of trees in urban street canyons on traffic pollutant dispersion. We describe various wind-tunnel experiments with different tree-avenue models in combination with variations in street-canyon aspect ratio W/ H (with W the street-canyon width and H the building height) and approaching wind direction. Compared to tree-free street canyons, in general, higher pollutant concentrations are found. Avenues of trees do not suppress canyon vortices, although the air ventilation in canyons is hindered significantly. For a perpendicular wind direction, increases in wall-average and wall-maximum concentrations at the leeward canyon wall and decreases in wall-average concentrations at the windward wall are found. For oblique and perpendicular wind directions, increases at both canyon walls are obtained. The strongest effects of avenues of trees on traffic pollutant dispersion are observed for oblique wind directions for which also the largest concentrations at the canyon walls are found. Thus, the prevailing assumption that attributes the most harmful dispersion conditions to a perpendicular wind direction does not hold for street canyons with avenues of trees. Furthermore, following dimensional analysis, an estimate of the normalized wall-maximum traffic pollutant concentration in street canyons with avenues of trees is derived.

  12. Canyon formation constraints on the discharge of catastrophic outburst floods of Earth and Mars

    NASA Astrophysics Data System (ADS)

    Lapotre, Mathieu G. A.; Lamb, Michael P.; Williams, Rebecca M. E.

    2016-07-01

    Catastrophic outburst floods carved amphitheater-headed canyons on Earth and Mars, and the steep headwalls of these canyons suggest that some formed by upstream headwall propagation through waterfall erosion processes. Because topography evolves in concert with water flow during canyon erosion, we suggest that bedrock canyon morphology preserves hydraulic information about canyon-forming floods. In particular, we propose that for a canyon to form with a roughly uniform width by upstream headwall retreat, erosion must occur around the canyon head, but not along the sidewalls, such that canyon width is related to flood discharge. We develop a new theory for bedrock canyon formation by megafloods based on flow convergence of large outburst floods toward a horseshoe-shaped waterfall. The model is developed for waterfall erosion by rock toppling, a candidate erosion mechanism in well fractured rock, like columnar basalt. We apply the model to 14 terrestrial (Channeled Scablands, Washington; Snake River Plain, Idaho; and Ásbyrgi canyon, Iceland) and nine Martian (near Ares Vallis and Echus Chasma) bedrock canyons and show that predicted flood discharges are nearly 3 orders of magnitude less than previously estimated, and predicted flood durations are longer than previously estimated, from less than a day to a few months. Results also show a positive correlation between flood discharge per unit width and canyon width, which supports our hypothesis that canyon width is set in part by flood discharge. Despite lower discharges than previously estimated, the flood volumes remain large enough for individual outburst floods to have perturbed the global hydrology of Mars.

  13. Investigating Mars: Ius Chasma

    NASA Image and Video Library

    2018-02-28

    This VIS image shows the eastern end of Ius Chasma. The southern canyon wall is at the bottom of the image, with dark sand and sand dunes. The presence of mobile sand indicates that winds are eroding, depositing and changing the canyon floor. The rest of the image is dominated by large landslide deposits. At the top of the image are two overlapping deposits from landslides originating on the northern chasma wall. The landslide deposit on the left side of the image originate from the southern chasma wall. A landslide is a failure of slope due to gravity. They initiate due to several reasons. A lower layer of poorly cemented/resistant material may have been eroded, undermining the wall above which then collapses; earthquake seismic waves can cause the slope to collapse; and even an impact event near the canyon wall can cause collapse. As millions of tons of material fall and slide down slope a scalloped cavity forms at the upper part where the slope failure occurred. At the material speeds downhill it will pick up more of the underlying slope, increasing the volume of material entrained into the landslide. Whereas some landslides spread across the canyon floor forming lobate deposits, very large volume slope failures will completely fill the canyon floor in a large complex region of chaotic blocks. Ius Chasma is at the western end of Valles Marineris, south of Tithonium Chasma. Valles Marineris is over 4000 kilometers long, wider than the United States. Ius Chasma is almost 850 kilometers long (528 miles), 120 kilometers wide and over 8 kilometers deep. In comparison, the Grand Canyon in Arizona is about 175 kilometers long, 30 kilometers wide, and only 2 kilometers deep. The canyons of Valles Marineris were formed by extensive fracturing and pulling apart of the crust during the uplift of the vast Tharsis plateau. Landslides have enlarged the canyon walls and created deposits on the canyon floor. Weathering of the surface and influx of dust and sand have modified the canyon floor, both creating and modifying layered materials. There are many features that indicate flowing and standing water played a part in the chasma formation. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 36744 Latitude: -8.64709 Longitude: 282.235 Instrument: VIS Captured: 2010-03-27 18:32 https://photojournal.jpl.nasa.gov/catalog/PIA22285

  14. THE INFLUENCE OF A TALL BUILDING ON STREET-CANYON FLOW IN AN URBAN NEIGHBORHOOD

    EPA Science Inventory

    This study presents a velocity comparison between meteorological wind tunnel results and results from the Quick Urban & Industrial Complex model (QUIC, version 3.9) for a simplified urban area, representing a regular array of city blocks composed of row houses in Brooklyn, New Yo...

  15. THE INFLUENCE OF A TALL BUILDING ON STREET CANYON FLOW IN AN URBAN NEIGBORHOOD

    EPA Science Inventory

    This study presents a velocity comparison between meteorological wind tunnel results and results from the Quick Urban & Industrial Complex model (QUIC, version 3.9) for a simplified urban area, representing a regular array of city blocks composed of row houses in Brooklyn, New Yo...

  16. Mapping a Semester: Using Cultural Mapping in an Honors Humanities Course

    ERIC Educational Resources Information Center

    Martin, Robyn S.

    2013-01-01

    Grand Canyon Semesters (GCS) at Northern Arizona University are integrated learning experiences in the humanities and sciences. Students study the environmental and social challenges confronting us in the twenty-first century using an interdisciplinary approach to the curriculum. During previous semesters, participants have tackled complex issues…

  17. 36 CFR 7.19 - Canyon de Chelly National Monument.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Canyon de Chelly National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.19 Canyon de Chelly National Monument. (a) Visitors are prohibited from entering the canyons of Canyon de Chelly National Monument unless...

  18. 36 CFR 7.19 - Canyon de Chelly National Monument.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Canyon de Chelly National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.19 Canyon de Chelly National Monument. (a) Visitors are prohibited from entering the canyons of Canyon de Chelly National Monument unless...

  19. Deep-Water Coral Diversity and Habitat Associations: Differences among Northeast Atlantic Submarine Canyons

    NASA Astrophysics Data System (ADS)

    Shank, T. M.

    2016-02-01

    From 2012 to 2015, annual seafloor surveys using the towed camera TowCam were used to characterize benthic ecosystems and habitats to groundtruth recently developed habitat suitability models that predict deep-sea coral locations in northwest Atlantic canyons. Faunal distribution, abundance, and habitat data were obtained from more than 90 towed camera surveys in 21 canyons, specifically Tom's, Hendrickson, Veatch, Gilbert, Ryan, Powell, Munson, Accomac, Leonard, Washington, Wilmington, Lindenkohl, Clipper, Sharpshooter, Welker, Dogbody, Chebacco, Heel Tapper, File Bottom, Carteret, and Spencer Canyons, as well as unnamed minor canyons and inter-canyon areas. We also investigated additional canyons including Block, Alvin, Atlantis, Welker, Heezen, Phoenix, McMaster, Nantucket, and two minor canyons and two intercanyon areas through high-definition ROV image surveys from the NOAA CANEX 2013 and 2014 expeditions. Significant differences in species composition and distribution correlated with specific habitat types, depth, and individual canyons. High abundances and diversity of scleractinians, antipatharians, octocorals and sponges were highly correlated with habitat substrates, includingvertical canyon walls, margins, sediments, cobbles, boulders, and coral rubble habitat. Significant differences in species composition among canyons were observed across similar depths suggesting that many canyons may have their own biological and geological signature. Locating and defining the composition and distribution of vulnerable coral ecosystems in canyons in concert with validating predictive species distribution modeling has resulted in the regional management and conservation recommendations of these living resources and the largest proposed Marine Protected Area in North American waters.

  20. Effects of canyon geometry on the distribution of traffic-related air pollution in a large urban area: Implications of a multi-canyon air pollution dispersion model

    NASA Astrophysics Data System (ADS)

    Fu, Xiangwen; Liu, Junfeng; Ban-Weiss, George A.; Zhang, Jiachen; Huang, Xin; Ouyang, Bin; Popoola, Olalekan; Tao, Shu

    2017-09-01

    Street canyons are ubiquitous in urban areas. Traffic-related air pollutants in street canyons can adversely affect human health. In this study, an urban-scale traffic pollution dispersion model is developed considering street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. In the model, vehicle exhausts generated from traffic flows first disperse inside street canyons along the micro-scale wind field generated by computational fluid dynamics (CFD) model. Then, pollutants leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing. We found that an increase in building height leads to heavier pollution inside canyons and lower pollution outside canyons at pedestrian level, resulting in higher domain-averaged concentrations over the area. In addition, canyons with highly even or highly uneven building heights on each side of the street tend to lower the urban-scale air pollution concentrations at pedestrian level. Further, increasing street widths tends to lead to lower pollutant concentrations by reducing emissions and enhancing ventilation simultaneously. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry while considering traffic demand as well as local weather patterns may significantly reduce inhalation of unhealthy air by urban residents.

  1. Measuring currents in submarine canyons: technological and scientific progress in the past 30 years

    USGS Publications Warehouse

    Xu, J. P.

    2011-01-01

    The development and application of acoustic and optical technologies and of accurate positioning systems in the past 30 years have opened new frontiers in the submarine canyon research communities. This paper reviews several key advancements in both technology and science in the field of currents in submarine canyons since the1979 publication of Currents in Submarine Canyons and Other Sea Valleys by Francis Shepard and colleagues. Precise placements of high-resolution, high-frequency instruments have not only allowed researchers to collect new data that are essential for advancing and generalizing theories governing the canyon currents, but have also revealed new natural phenomena that challenge the understandings of the theorists and experimenters in their predictions of submarine canyon flow fields. Baroclinic motions at tidal frequencies, found to be intensified both up canyon and toward the canyon floor, dominate the flow field and control the sediment transport processes in submarine canyons. Turbidity currents are found to frequently occur in active submarine canyons such as Monterey Canyon. These turbidity currents have maximum speeds of nearly 200 cm/s, much smaller than the speeds of turbidity currents in geological time, but still very destructive. In addition to traditional Eulerian measurements, Lagrangian flow data are essential in quantifying water and sediment transport in submarine canyons. A concerted experiment with multiple monitoring stations along the canyon axis and on nearby shelves is required to characterize the storm-trigger mechanism for turbidity currents.

  2. Characteristics of flow and reactive pollutant dispersion in urban street canyons

    NASA Astrophysics Data System (ADS)

    Park, Soo-Jin; Kim, Jae-Jin; Kim, Minjoong J.; Park, Rokjin J.; Cheong, Hyeong-Bin

    2015-05-01

    In this study, the effects of aspect ratio defined as the ratio of building height to street width on the dispersion of reactive pollutants in street canyons were investigated using a coupled CFD-chemistry model. Flow characteristics for different aspect ratios were analyzed first. For each aspect ratio, six emission scenarios with different VOC-NOX ratios were considered. One vortex was generated when the aspect ratio was less than 1.6 (shallow street canyon). When the aspect ratio was greater than 1.6 (deep street canyon), two vortices were formed in the street canyons. Comparing to previous studies on two-dimensional street canyons, the vortex center is slanted toward the upwind building and reverse and downward flows are dominant in street canyons. Near the street bottom, there is a marked difference in flow pattern between in shallow and deep street canyons. Near the street bottom, reverse and downward flows are dominant in shallow street canyon and flow convergence exists near the center of the deep street canyons, which induces a large difference in the NOX and O3 dispersion patterns in the street canyons. NOX concentrations are high near the street bottom and decreases with height. The O3 concentrations are low at high NO concentrations near the street bottom because of NO titration. At a low VOC-NOX ratio, the NO concentrations are sufficiently high to destroy large amount of O3 by titration, resulting in an O3 concentration in the street canyon much lower than the background concentration. At high VOC-NOX ratios, a small amount of O3 is destroyed by NO titration in the lower layer of the street canyons. However, in the upper layer, O3 is formed through the photolysis of NO2 by VOC degradation reactions. As the aspect ratio increases, NOX (O3) concentrations averaged over the street canyons decrease (increase) in the shallow street canyons. This is because outward flow becomes strong and NOX flux toward the outsides of the street canyons increases, resulting in less NO titration. In the deep street canyons, outward flow becomes weak and outward NOX flux decreases, resulting in an increase (decrease) in NOX (O3) concentration.

  3. The Porcupine Bank Canyon coral mounds: oceanographic and topographic steering of deep-water carbonate mound development and associated phosphatic deposition

    NASA Astrophysics Data System (ADS)

    Mazzini, A.; Akhmetzhanov, A.; Monteys, X.; Ivanov, M.

    2012-06-01

    The head of a canyon system extending along the western Porcupine Bank (west of Ireland) and which accommodates a large field of giant carbonate mounds was investigated during two cruises (INSS 2000 and TTR-13). Multibeam and sidescan sonar data (600-1,150 m water depth) suggest that the pre-existing seabed topography acts as a significant factor controlling mound distribution and shape. The mounds are concentrated along the edges of the canyon or are associated with a complex fault system traced around the canyon head, comprising escarpments up to 60 m high and several km long. The sampling for geochemical and petrographic analysis of numerous types of authigenic deposits was guided by sidescan sonar and video recordings. Calcite-cemented biogenic rubble was observed at the top and on the flanks of the carbonate mounds, being associated with both living and dead corals ( Lophelia pertusa, Madrepora oculata and occasional Desmophyllum cristagalli). This can plausibly be explained by dissolution of coral debris facilitated by strong currents along the mound tops and flanks. In turn, the dissolved carbon is recycled and precipitated as interstitial micrite. Calcite, dolomite and phosphatic hardgrounds were identified in samples from the escarpment framing the eastern part of the survey area. The laterally extensive phosphatic hardgrounds represent a novel discovery in the region, supplying hard substrata for the establishment of new coral colonies. Based on existing knowledge of regional oceanographic conditions, complemented with new CTD measurements, it is suggested that water column stratification, enhanced bottom currents, and upwelling facilitate the deposition of organic matter, followed by phosphatisation leading to the formation of phosphate-glauconite deposits. The occurrence of strong bottom currents was confirmed by means of video observations combined with acoustic and sampling data, providing circumstantial evidence of fine- to medium-grained sand. Evidently, slope breaks such as escarpments and deep-water canyon headwalls are important structural elements in the development of mature carbonate mounds induced by deep-water coral growth. Stable isotope data show no evidence of methane-derived carbon in the carbonates and lithified sediments of the Porcupine Bank Canyon mounds.

  4. Meteorological Processes Affecting the Transport of Emissions from the Navajo Generating Station to Grand Canyon National Park.

    NASA Astrophysics Data System (ADS)

    Lindsey, Charles G.; Chen, Jun; Dye, Timothy S.; Willard Richards, L.; Blumenthal, Donald L.

    1999-08-01

    During the 1990 Navajo Generating Station (NGS) Winter Visibility Study, a network of surface and upper-air meteorological measurement systems was operated in and around Grand Canyon National Park to investigate atmospheric processes in complex terrain that affected the transport of emissions from the nearby NGS. This network included 15 surface monitoring stations, eight balloon sounding stations (equipped with a mix of rawinsonde, tethersonde, and Airsonde sounding systems), three Doppler radar wind profilers, and four Doppler sodars. Measurements were made from 10 January through 31 March 1990. Data from this network were used to prepare objectively analyzed wind fields, trajectories, and streak lines to represent transport of emissions from the NGS, and to prepare isentropic analyses of the data. The results of these meteorological analyses were merged in the form of a computer animation that depicted the streak line analyses along with measurements of perfluorocarbon tracer, SO2, and sulfate aerosol concentrations, as well as visibility measurements collected by an extensive surface monitoring network. These analyses revealed that synoptic-scale circulations associated with the passage of low pressure systems followed by the formation of high pressure ridges accompanied the majority of cases when NGS emittants appeared to be transported to the Grand Canyon. The authors' results also revealed terrain influences on transport within the topography of the study area, especially mesoscale flows inside the Lake Powell basin and along the plain above the Marble Canyon.

  5. Demography and movement patterns of leopard sharks (Triakis semifasciata) aggregating near the head of a submarine canyon along the open coast of southern California, USA

    USGS Publications Warehouse

    Nosal, D.C.; Cartamil, D.C.; Long, J.W.; Luhrmann, M.; Wegner, N.C.; Graham, J.B.

    2013-01-01

    The demography, spatial distribution, and movement patterns of leopard sharks (Triakis semifasciata) aggregating near the head of a submarine canyon in La Jolla, California, USA, were investigated to resolve the causal explanations for this and similar shark aggregations. All sharks sampled from the aggregation site (n=140) were sexually mature and 97.1 % were female. Aerial photographs taken during tethered balloon surveys revealed high densities of milling sharks of up to 5470 sharks ha-1. Eight sharks were each tagged with a continuous acoustic transmitter and manually tracked without interruption for up to 48 h. Sharks exhibited strong site-fidelity and were generally confined to a divergence (shadow) zone of low wave energy, which results from wave refraction over the steep bathymetric contours of the submarine canyon. Within this divergence zone, the movements of sharks were strongly localized over the seismically active Rose Canyon Fault. Tracked sharks spent most of their time in shallow water (≤2 m for 71.0 % and ≤10 m for 95.9 % of time), with some dispersing to deeper (max: 53.9 m) and cooler (min: 12.7 °C) water after sunset, subsequently returning by sunrise. These findings suggest multiple functions of this aggregation and that the mechanism controlling its formation, maintenance, and dissolution is complex and rooted in the sharks' variable response to numerous confounding environmental factors.

  6. Microencapsulation of Lithium

    DTIC Science & Technology

    1985-12-31

    nuts, chestnuts, f ilberts, hazelnuts, pecans , walnuts (all nuts, in %hells). In other countries, the appropriate government regulatory agencies...75012 Paris, France, 10 Rue Villiot .. ...... . . . . . . 347.87-45 NEAR EAST 20124 Milan, Italy , Via Rosellini 12 ... ...... ...... 688.4563 Hemel

  7. The State of the Colorado River Ecosystem in Grand Canyon: A Report of the Grand Canyon Monitoring and Research Center 1991-2004

    USGS Publications Warehouse

    Gloss, Steven P.; Lovich, Jeffrey E.; Melis, Theodore S.

    2005-01-01

    This report is an important milestone in the effort by the Secretary of the Interior to implement the Grand Canyon Protection Act of 1992 (GCPA; title XVIII, secs. 1801-1809, of Public Law 102-575), the most recent authorizing legislation for Federal efforts to protect resources downstream from Glen Canyon Dam. The chapters that follow are intended to provide decision makers and the American public with relevant scientific information about the status and recent trends of the natural, cultural, and recreational resources of those portions of Grand Canyon National Park and Glen Canyon National Recreation Area affected by Glen Canyon Dam operations. Glen Canyon Dam is one of the last major dams that was built on the Colorado River and is located just south of the Arizona-Utah border in the lower reaches of Glen Canyon National Recreation Area, approximately 15 mi (24 km) upriver from Grand Canyon National Park (fig. 1). The information presented here is a product of the Glen Canyon Dam Adaptive Management Program (GCDAMP), a federally authorized initiative to ensure that the primary mandate of the GCPA is met through advances in information and resource management. The U.S. Geological Survey`s (USGS) Grand Canyon Monitoring and Research Center (GCMRC) has responsibility for the scientific monitoring and research efforts for the program, including the preparation of reports such as this one.

  8. Morphology of Submarine Canyons in the Palomares Margin (East of Alboran Sea, western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Perez-Hernandez, S.; Comas, M. C.; Escutia, C.

    2009-04-01

    Morphological analysis on the Palomares Margin has been done using high-resolution swath bathymetry data collected during the MARSIBAL-06 (2006) cruise on board of the R/V BIO Hespérides. Complemented with data from GEBCO 2000 and Ifremer (Medimap Group, 2007) the data-set provides the first complete bathymetric mosaic of the Palomares Margin. The bathymetric mosaic allows to study the physiographic provinces of the Palomares Margin and to conduct, for the first time, a detailed morphological analysis of the two main sediment-transfer conduits: the Gata and the Alias-Almanzora Canyons. The Gata Canyon extends for 64km from the outer shelf to the base of the slope with a general W-E direction. A tributary system of canyons originates at the shelf break and continues on the slope until they merge at 1230m water depth. The walls of the canyons are characterized by repeated slides. Perpendicular profiles to the Canyon pathway reveal gentle transversal "V" asymmetrical shapes with a marked axial incision on the canyon floor (highs between 65 to 103m in the southern flank, and between 30-90m in the northern flank ). The transition from an erosional canyon to a deposition channel is located at 2100m water depth, and is characterized by trapezoidal shapes on transversal profiles accompanied of lower relieves (40-65m). At the mouth of the canyon-channel system no sedimentary lobes are observed. The Alias-Almanzora canyon (73km long and preferential direction W-E) is located North of the Gata Canyon and extends from the continental shelf to the base of the slope. A tributary system to the Alias- Almanzora canyon-head locates less than 150m from the coast, facing a fluvial drainage system onland. Proximal tributary canyons and gullies feed the main canyon until it merges in the continental slope at 1516m water depth. The tributary system exhibits a marked "V" shape in transverse profiles and marked axial incisions. Down slope, transversal profiles have trapezoidal shapes. Longitudinal profiles show convex-up sections along the tributary system and concave-up sections from the merge in the main canyon down slope. The transition from an erosional canyon to a depositional channel is located at 2100m water depth. The mouth of the Alias-Almanzora Canyon-channel system is characterized by distributaries channels and lobated features. Morphological analyses from these Canyons indicate they have different origin and evolution. The connection of the Alias-Almanzora Canyon to a fluvial drainage system offshore suggests the canyon formed by erosion of the continental shelf edge during sea-level low stand periods, when entrapment of sediment on deltas and reduced sediment transport through submarine canyons occurred. The Gata Canyon has instead developed by head wards erosion and gravitational instabilities. Both canyon systems are highly influenced by recent tectonics, and structural trends influence their location and changes in pathways. Contribution from Projects SAGAS CTM2005-08071-03-01 and TOPO-IBERIA CSD2006-00041 (R & D National Plan of the Ministry of Science and Technology and FEDER funding, Spain).

  9. A simulation study of factors controlling white sturgeon recruitment in the Snake River

    USGS Publications Warehouse

    Jager, H.I.; Van Winkle, W.; Chandler, James Angus; Lepla, K.B.; Bates, P.; Counihan, T.D.

    2002-01-01

    Five of the nine populations of white sturgeon Acipenser transmontanus, located between dams on the Middle Snake River, have declined from historical levels and are now at risk of extinction. One step towards more effectively protecting and managing these nine populations is ranking factors that influence recruitment in each of these river segments. We developed a model to suggest which of seven mechanistic factors contribute most to lost recruitment in each river segment: (1) temperature-related mortality during incubation, (2) flow-related mortality during incubation, (3) downstream export of larvae, (4) limitation of juvenile and adult habitat, (5) mortality of all ages during summer episodes of poor water quality in reservoirs, (6) entrainment mortality of juveniles and adults, and (7) angling mortality. We simulated recruitment with, and without, each of the seven factors, over a typical series of hydrologic years. We found a hierarchical pattern of limitation. In the first tier, river segments with severe water quality problems grouped together. Poor water quality during summer had a strong negative effect on recruitment in the river segments between Swan Falls Dam and Hell's Canyon Dam. In the second tier, river segments with better water quality divided into short river segments and longer river segments. Populations in short river segments were limited by larval export. Populations in longer river segments tended to be less strongly limited by any one factor. We also found that downstream effects could be important, suggesting that linked populations cannot be viewed in isolation. In two cases, the effects of a factor on an upstream population had a significant influence on its downstream neighbors. ?? 2002 by the American Fisheries Society.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryer, John L.

    The Department of Microbiology at Oregon State University with funding from the Bonneville Power Administration conducted a study relating to the epidemiology and control of three fish diseases of salmonids in the Columbia River Basin. These three diseases were ceratomyxosis caused by the myxosporidan parasite Ceratomyxa Shasta, bacterial kidney disease, the causative agent Renibacterium salmoninarum, and infectious hematopoietic necrosis, caused by a rhabdovirus. Each of these diseases is highly destructive and difficult or impossible to treat with antimicrobial agents. The geographic range of the infectious stage of C. Shasta has been extended to include the Snake River to the Oxbowmore » and Hells Canyon Dams. These are the farthest upriver sites tested. Infections of ceratomyxosis were also initiated in the east fork of the Lewis River and in the Washougal River in Washington. Laboratory studies with this parasite failed to indicate that tubeficids are required in its life cycle. Bacterial kidney disease has been demonstrated in all life stages of salmonids: in the eggs, fry, smolts, juveniles and adults in the ocean, and in fish returning to fresh water. Monoclonal antibodies produced against R. salmoninarum demonstrated antigenic differences among isolates of the bacterium. Monoclonal antibodies also showed antigens of R. salmoninarum which are similar to those of a wide variety of gram positive and gram negative bacteria. A demonstration project at Round Butte Hatchery showed U V treatment to be an effective method for reducing the microbial population of the water supply and could reduce risks of IHNV. Tangential flow filtration was used successfully to concentrate IHNV from environmental water. At Round Butte Hatchery the carrier rate of IHNV in adults was very low and there was no subsequent mortality resulting from IHN in juveniles.« less

  11. Quantitative comparison of some aesthetic factors among rivers

    USGS Publications Warehouse

    Leopold, Luna Bergere

    1969-01-01

    It is difficult to evaluate the factors contributing to aesthetic or nonmonetary aspects of a landscape. In contrast, aspects which lend themselves to cost-benefit comparisons are now treated in a routine way. As a result, nonmonetary values are described either in emotion-loaded words or else are mentioned and thence forgotten.The present report is a preliminary attempt to quantify some elements of aesthetic appeal while eliminating, insofar as possible, value judgments or personal preferences. If methods of recording such factors can be developed, the results promise to be a useful, new kind of basic data needed in many planning and decision-making circumstances. Such data would be especially useful when choices must be made among alternative courses of action. Such data would tend to provide a more prominent consideration of the nonmonetary aspects of a landscape.Assignment of quantitative estimates to aesthetic factors leads not so much to ratios of value as to relative rank positions. In fact, value itself tends to carry a connotation of preference, whereas ranking can more easily be used for categorization without attribution of preference and thus it tends to a void the introduction at too early a stage of differences in preference. Because the Federal Power Commission has been studying an application for a permit to construct one or more additional hydropower dams in the vicinity of Hells Canyon of the Snake River, the localities studied for the present discussion are in that region of Idaho. Hopefully, the data collected will provide some useful information on factors related to nonmonetary values in the region. The present discussion has been kept free of the preference judgments of the writer, and throughout the discussions observations are treated as facts.

  12. Mantle plumes & lithospheric foundering: Determining the timing and amplitude of post-Miocene uplift in the Wallowa mountains, north-east Oregon with low-temperature thermochronometry.

    NASA Astrophysics Data System (ADS)

    Schoettle-Greene, P.; Duvall, A. R.

    2016-12-01

    The foundering of gravitationally unstable lithosphere, while frequently invoked to explain anomalous topography, proves difficult to verify from an Earth surface perspective. Theoretically, direct observables like sudden uplift associated with extension and mantle-sourced volcanism should help identify affected regions but these markers are often obscured by background stresses and heterogeneous lithosphere. To better understand topographic evolution following the removal of mantle lithosphere, we present new apatite U-Th/He thermocrhonometry data and field observations from the Wallowa mountains adjacent to Hells Canyon in the northwestern United States. The granodiorite-cored Wallowa are increasingly recognized as a type locality for the process of lithospheric foundering, as they are bound by extensional structures and were presumably uplifted contemporaneous with the intrusion of feeder dikes for the mantle-sourced Columbia River Basalts at 16 Ma. Cretaceous and early Cenozoic cooling ages from our study imply that in spite of the presumed 1-2 km of basalt flows eroded from the Wallowa and heating associated with the intrusion of the Chief Joseph dike swarm, and 2 km of proposed rapid post-foundering uplift, there has been little exhumation. We attempt to reconcile these conflicting observations with field mapping of folded basalt flows at the margins of the Wallowa mountains, modeling of geothermal response times following a thermal perturbation, and further study using the 4He/3He thermochronometer on a subset of samples to reveal more recent cooling histories. Our findings will improve our understanding of the landscape evolution of the Wallowa mountains, information pertinent to the geodynamics of lithosphere removal and the eruption of Columbia River Basalts.

  13. 78 FR 2388 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ...-2401-002; ER10-2402-002; ER11- 3414-004; ER10-2403-002. Applicants: Blue Canyon Windpower LLC, Blue Canyon Windpower II LLC, Blue Canyon Windpower V LLC, Blue Canyon Windpower VI LLC, Cloud County Wind Farm, LLC. Description: Blue Canyon Windpower LLC, et al. submits Updated Market Power Analysis for...

  14. Morphology, distribution, and development of submarine canyons on the United States Atlantic continental slope between Hudson arid Baltimore Canyons

    NASA Astrophysics Data System (ADS)

    Twichell, David C.; Roberts, David G.

    1982-08-01

    The distribution and morphology of submarine canyons off the eastern United States between Hudson and Baltimore Canyons have been mapped by long-range sidescan sonar. In this area canyons are numerous, and their spacing correlates with overall slope gradient; they are absent where the gradient is less than 3°, are 2 to 10 km apart where the gradient is 3° to 5°, and are 1.5 to 4 km apart where the gradient exceeds 6°. Canyons range from straight to sinuous; those having sinuous axes indent the edge of the continental shelf and appear to be older than those that head on the upper slope and have straighter axes. A difference in canyon age would suggest that canyons are initiated on the continental slope and only with greater age erode headward to indent the shelf. Shallow gullies on the middle and upper slope parts of the canyon walls suggest that submarine erosion has been a major process in a recent phase of canyon development. *Present address: British Petroleum, Moorgate, London EC2Y 9BU, England

  15. Geologic Map of the Upper Parashant Canyon and Vicinity, Mohave County, Northwestern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Harr, Michelle L.; Wellmeyer, Jessica L.

    2000-01-01

    Introduction The geologic map of the upper Parashant Canyon area covers part of the Colorado Plateau and several large tributary canyons that make up the western part of Arizona's Grand Canyon. The map is part of a cooperative U.S. Geological Survey and National Park Service project to provide geologic information for areas within the newly established Grand Canyon/Parashant Canyon National Monument. Most of the Grand Canyon and parts of the adjacent plateaus have been geologically mapped; this map fills in one of the remaining areas where uniform quality geologic mapping was needed. The geologic information presented may be useful in future related studies as to land use management, range management, and flood control programs for federal and state agencies, and private concerns. The map area is in a remote region of the Arizona Strip, northwestern Arizona about 88 km south of the nearest settlement of St. George, Utah. Elevations range from about 1,097 m (3,600 ft) in Parashant Canyon (south edge of map area) to 2,145 m (7,037 ft) near the east-central edge of the map area. Primary vehicle access is by dirt road locally known as the Mount Trumbull road; unimproved dirt roads and jeep trails traverse various parts of the map area. Travel on the Mount Trumbull road is possible with 2-wheel-drive vehicles except during wet conditions. Extra fuel, two spare tires and extra food and water are highly recommended when traveling in this remote area. The map area includes about 26 sections of land belonging to the State of Arizona, about 40 sections of private land, and a small strip of the Lake Mead National Recreation Area (southeast edge of the map area). The private land is mainly clustered around the abandoned settlement of Mt. Trumbull, locally known as Bundyville, and a few sections are scattered in the upper Whitmore Canyon area just south of Bundyville. Lower elevations within the canyons support a sparse growth of sagebrush, cactus, grass, creosote bush, and a variety of desert shrubs. Sagebrush, grass, cactus, cliffrose bush, pinyon pine trees, juniper trees, and some ponderosa pines thrive at higher elevations. Surface runoff in the north half of the map area drains northward towards the Virgin River in Utah via Hurricane Wash. In the south half of the area, it drains towards the Colorado River in Grand Canyon via Parashant and Whitmore Canyons. Upper Parashant and Whitmore Canyons are part of the physiography of the western Grand Canyon, but are not included within Grand Canyon National Park. The entire map area is now within the newly established Grand Canyon/Parashant Canyon National Monument (as of January, 2000), and is jointly managed by the Lake Mead National Recreational Area, Boulder City, Nevada, and the Bureau of Land Management, Arizona Strip District, St. George, Utah. Surface runoff in the north half of the map area drains northward towards the Virgin River in Utah via Hurricane Wash. In the south half of the area, it drains towards the Colorado River in Grand Canyon via Parashant and Whitmore Canyons. Upper Parashant and Whitmore Canyons are part of the physiography of the western Grand Canyon, but are not included within Grand Canyon National Park. The entire map area is now within the newly established Grand Canyon/Parashant Canyon National Monument (January, 2000), and is jointly managed by the Lake Mead National Recreational Area, Boulder City, Nevada, and the Bureau of Land Management, Arizona Strip District, St. George, Utah.

  16. Anatomy of La Jolla submarine canyon system; offshore southern California

    USGS Publications Warehouse

    Paull, C.K.; Caress, D.W.; Lundsten, E.; Gwiazda, R.; Anderson, K.; McGann, M.; Conrad, J.; Edwards, B.; Sumner, E.J.

    2013-01-01

    An autonomous underwater vehicle (AUV) carrying a multibeam sonar and a chirp profiler was used to map sections of the seafloor within the La Jolla Canyon, offshore southern California, at sub-meter scales. Close-up observations and sampling were conducted during remotely operated vehicle (ROV) dives. Minisparker seismic-reflection profiles from a surface ship help to define the overall geometry of the La Jolla Canyon especially with respect to the pre-canyon host sediments. The floor of the axial channel is covered with unconsolidated sand similar to the sand on the shelf near the canyon head, lacks outcrops of the pre-canyon host strata, has an almost constant slope of 1.0° and is covered with trains of crescent shaped bedforms. The presence of modern plant material entombed within these sands confirms that the axial channel is presently active. The sand on the canyon floor liquefied during vibracore collection and flowed downslope, illustrating that the sediment filling the channel can easily fail even on this gentle slope. Data from the canyon walls help constrain the age of the canyon and extent of incision. Horizontal beds of moderately cohesive fine-grained sediments exposed on the steep canyon walls are consistently less than 1.232 million years old. The lateral continuity of seismic reflectors in minisparker profiles indicate that pre-canyon host strata extend uninterrupted from outside the canyon underneath some terraces within the canyon. Evidence of abandoned channels and point bar-like deposits are noticeably absent on the inside bend of channel meanders and in the subsurface of the terraces. While vibracores from the surface of terraces contain thin (< 10 cm) turbidites, they are inferred to be part of a veneer of recent sediment covering pre-canyon host sediments that underpin the terraces. The combined use of state of the art seafloor mapping and exploration tools provides a uniquely detailed view of the morphology within an active submarine canyon.

  17. Submarine canyons represent an essential habitat network for krill hotspots in a Large Marine Ecosystem.

    PubMed

    Santora, Jarrod A; Zeno, Ramona; Dorman, Jeffrey G; Sydeman, William J

    2018-05-15

    Submarine canyon systems are ubiquitous features of marine ecosystems, known to support high levels of biodiversity. Canyons may be important to benthic-pelagic ecosystem coupling, but their role in concentrating plankton and structuring pelagic communities is not well known. We hypothesize that at the scale of a large marine ecosystem, canyons provide a critical habitat network, which maintain energy flow and trophic interactions. We evaluate canyon characteristics relative to the distribution and abundance of krill, critically important prey in the California Current Ecosystem. Using a geological database, we conducted a census of canyon locations, evaluated their dimensions, and quantified functional relationships with krill hotspots (i.e., sites of persistently elevated abundance) derived from hydro-acoustic surveys. We found that 76% of krill hotspots occurred within and adjacent to canyons. Most krill hotspots were associated with large shelf-incising canyons. Krill hotspots and canyon dimensions displayed similar coherence as a function of latitude and indicate a potential regional habitat network. The latitudinal migration of many fish, seabirds and mammals may be enhanced by using this canyon-krill network to maintain foraging opportunities. Biogeographic assessments and predictions of krill and krill-predator distributions under climate change may be improved by accounting for canyons in habitat models.

  18. A Predictive Model for Submarine Canyon Type Based on the Relative Influence of Rivers, Waves and Tides.

    NASA Astrophysics Data System (ADS)

    Sumner, E.; Paull, C. K.

    2017-12-01

    In recent years progress has been achieved in directly measuring turbidity currents in submarine canyons and channels. It is useful to consider how representative these observations are of the diversity that potentially exists in the dynamics of turbidity currents among different canyons and channels. Firstly, we integrate sediment core, bathymetric and (in a limited number of cases) direct observations of turbidity current dynamics from 20 submarine canyons on the northern California Margin. We use this dataset to construct a diagram that explains canyon type, and thus turbidity current characteristics (grain-size carried, flow power, relative frequency of flows), based on the relative influence of rivers, waves and tides at the canyon head. This diagram enables prediction of canyon type and thus processes using three easily measurable characteristics: (i) distance of the canyon head from the shoreline; (ii) distance of the canyon head from the nearest river mouth; and (iii) local shelf width. Secondly, we test and refine the diagram using published data on submarine canyons from around the world. We also discuss the influence of outsized events such as earthquakes on submarine canyons. Finally, we demonstrate the location within the diagram of current monitoring studies and thus suggest where it might be fruitful to focus future monitoring efforts.

  19. Space-for-time substitution and the evolution of submarine canyons in a passive, progradational margin.

    NASA Astrophysics Data System (ADS)

    Micallef, Aaron; Ribó, Marta; Canals, Miquel; Puig, Pere; Lastras, Galderic; Tubau, Xavier

    2013-04-01

    40% of submarine canyons worldwide are located in passive margins, where they constitute preferential conduits of sediment and biodiversity hotspots. Recent studies have presented evidence that submarine canyons incising passive, progradational margins can co-evolve with the adjacent continental slope during long-term margin construction. The stages of submarine canyon initiation and their development into a mature canyon-channel system are still poorly constrained, however, which is problematic when attempting to reconstruct the development of passive continental margins. In this study we analyse multibeam echosounder and seismic reflection data from the southern Ebro margin (western Mediterranean Sea) to document the stages through which a first-order gully develops into a mature, shelf-breaching canyon and, finally, into a canyon-channel system. This morphological evolution allows the application of a space-for-time substitution approach. Initial gully growth on the continental slope takes place via incision and downslope elongation, with limited upslope head retreat. Gravity flows are the main driver of canyon evolution, whereas slope failures are the main agent of erosion; they control the extent of valley widening, promote tributary development, and their influence becomes more significant with time. Breaching of the continental shelf by a canyon results in higher water/sediment loads that enhance canyon development, particularly in the upper reaches. Connection of the canyon head with a paleo-river changes evolution dynamics significantly, promoting development of a channel and formation of depositional landforms. Morphometric analyses demonstrate that canyons develop into geometrically self-similar systems that approach steady-state and higher drainage efficiency. Canyon activity in the southern Ebro margin is pulsating and enhanced during sea level lowstands. Rapid sedimentation by extension of the palaeo-Millars River into the outermost shelf and upper slope is inferred as the source of gravity flows driving canyon evolution. Canyon morphology is shown to be maintained over the course of more than one fall and rise in sea-level. Our model of canyon evolution is applicable to other passive margins (e.g. Argentine continental margin).

  20. The influence of the San Gregorio fault on the morphology of Monterey Canyon

    USGS Publications Warehouse

    McHugh, C.M.G.; Ryan, William B. F.; Eittreim, S.; Donald, Reed

    1998-01-01

    A side-scan sonar survey was conducted of Monterey Canyon and the San Gregorio fault zone, off shore of Monterey Bay. The acoustic character and morphology of the sonar images, enhanced by SeaBeam bathymetry, show the path of the San Gregorio fault zone across the shelf, upper slope, and Monterey Canyon. High backscatter linear features a few kilometers long and 100 to 200 m wide delineate the sea-floor expression of the fault zone on the shelf. Previous studies have shown that brachiopod pavements and carbonate crusts are the source of the lineations backscatter. In Monterey Canyon, the fault zone occurs where the path of the canyon makes a sharp bend from WNW to SSW (1800 m). Here, the fault is marked by NW-SE-trending, high reflectivity lineations that cross the canyon floor between 1850 m and 1900 m. The lineations can be traced to ridges on the northwestern canyon wall where they have ~ 15 m of relief. Above the low-relief ridges, bowl-shaped features have been excavated on the canyon wall contributing to the widening of the canyon. We suggest that shear along the San Gregorio fault has led to the formation of the low-relief ridges near the canyon wall and that carbonate crusts, as along the shelf, may be the source of the high backscatter features on the canyon floor. The path of the fault zone across the upper slope is marked by elongated tributary canyons with high backscatter floors and 'U'-shaped cross-sectional profiles. Linear features and stepped scarps suggestive of recent crustal movement and mass-wasting, occur on the walls and floors of these canyons. Three magnitude-4 earthquakes have occurred within the last 30 years in the vicinity of the canyons that may have contributed to the observed features. As shown by others, motion along the fault zone has juxtaposed diverse lithologies that outcrop on the canyon walls. Gully morphology and the canyon's drainage patterns have been influenced by the substrate into which the gullies have formed.

  1. Let's Bet on Sediments! Hudson Canyon Cruise--Grades 9-12. Focus: Sediments of Hudson Canyon.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    These activities are designed to teach about the sediments of Hudson Canyon. Students investigate and analyze the patterns of sedimentation in the Hudson Canyon, observe how heavier particles sink faster than finer particles, and learn that submarine landslides are avalanches of sediment in deep ocean canyons. The activity provides learning…

  2. Investigating Mars: Ius Chasma

    NASA Image and Video Library

    2018-02-19

    Continuing eastward along Ius Chasma, this image shows the eastern section of the large landslide deposit seen in yesterday's post. A landslide is a failure of slope due to gravity. They initiate due to several reasons. A lower layer of poorly cemented/resistant material may have been eroded, undermining the wall above which then collapses; earth quake seismic waves can cause the slope to collapse; and even an impact event near the canyon wall can cause collapse. As millions of tons of material fall and slide down slope a scalloped cavity forms at the upper part where the slope failure occurred. At the material speeds downhill it will pick up more of the underlying slope, increasing the volume of material entrained into the landslide. Whereas some landslides spread across the canyon floor forming lobate deposits, very large volume slope failures will completely fill the canyon floor in a large complex region of chaotic blocks. Ius Chasma is at the western end of Valles Marineris, south of Tithonium Chasma. Valles Marineris is over 4000 kilometers long, wider than the United States. Ius Chasma is almost 850 kilometers long (528 miles), 120 kilometers wide and over 8 kilometers deep. In comparison, the Grand Canyon in Arizona is about 175 kilometers long, 30 kilometers wide, and only 2 kilometers deep. The canyons of Valles Marineris were formed by extensive fracturing and pulling apart of the crust during the uplift of the vast Tharsis plateau. Landslides have enlarged the canyon walls and created deposits on the canyon floor. Weathering of the surface and influx of dust and sand have modified the canyon floor, both creating and modifying layered materials. There are many features that indicate flowing and standing water played a part in the chasma formation. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 17902 Latitude: -6.65656 Longitude: 274.872 Instrument: VIS Captured: 2005-12-27 08:01 https://photojournal.jpl.nasa.gov/catalog/PIA22279

  3. Investigating Mars: Ius Chasma

    NASA Image and Video Library

    2018-02-22

    Moving into the central part of Ius Chasma, the canyon profile changes. What started as a large graben south of the main chasma wall, has widened to create a central high ridge separating the chasm into two parallel sections. This interior ridge is called Geryon Montes. The northern canyon wall is at the top of the image, including several tongue shaped landslide deposits. The floor has been covered in deposits that may include landslide material and later materials such as air fall particles like dust and water lain layered deposits. The Geryon Montes are in the lower 1/3 of the image. Just to the top of the Montes are materials with different "colors". These are part of the layered materials inside the canyon. At the very bottom of the image a highly eroded landslide deposit exists. The materials on this side of Geryon Montes are at a higher elevation than the floor on the opposite side. The unusual texture of the canyon floor also points to layered materials that may have been laid down in standing water. A landslide is a failure of slope due to gravity. They initiate due to several reasons. A lower layer of poorly cemented/resistant material may have been eroded, undermining the wall above which then collapses; earth quake seismic waves can cause the slope to collapse; and even an impact event near the canyon wall can cause collapse. As millions of tons of material fall and slide down slope a scalloped cavity forms at the upper part where the slope failure occurred. At the material speeds downhill it will pick up more of the underlying slope, increasing the volume of material entrained into the landslide. Whereas some landslides spread across the canyon floor forming lobate deposits, very large volume slope failures will completely fill the canyon floor in a large complex region of chaotic blocks. Ius Chasma is at the western end of Valles Marineris, south of Tithonium Chasma. Valles Marineris is over 4000 kilometers long, wider than the United States. Ius Chasma is almost 850 kilometers long (528 miles), 120 kilometers wide and over 8 kilometers deep. In comparison, the Grand Canyon in Arizona is about 175 kilometers long, 30 kilometers wide, and only 2 kilometers deep. The canyons of Valles Marineris were formed by extensive fracturing and pulling apart of the crust during the uplift of the vast Tharsis plateau. Landslides have enlarged the canyon walls and created deposits on the canyon floor. Weathering of the surface and influx of dust and sand have modified the canyon floor, both creating and modifying layered materials. There are many features that indicate flowing and standing water played a part in the chasma formation. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 26151 Latitude: -7.12079 Longitude: 275.703 Instrument: VIS Captured: 2007-11-06 12:17 https://photojournal.jpl.nasa.gov/catalog/PIA22280

  4. Strategic guidelines for street canyon geometry to achieve sustainable street air quality

    NASA Astrophysics Data System (ADS)

    Chan, Andy T.; So, Ellen S. P.; Samad, Subash C.

    This paper is concerned with the motion of air within the urban street canyon and is directed towards a deeper understanding of pollutant dispersion with respect to various simple canyon geometries and source positions. Taking into account the present days typical urban configurations, three principal flow regimes "isolated roughness flow", "skimming flow" and "wake interference flow" (Boundary Layer Climates, 2nd edition, Methuen, London) and their corresponding pollutant dispersion characteristics are studied for various canopies aspect ratios, namely relative height ( h2/ h1), canyon height to width ratio ( h/ w) and canyon length to height ratio ( l/ h). A field-size canyon has been analyzed through numerical simulations using the standard k- ɛ turbulence closure model. It is found that the pollutant transport and diffusion is strongly dependent upon the type of flow regime inside the canyon and exchange between canyon and the above roof air. Some rules of thumbs have been established to get urban canyon geometries for efficient dispersion of pollutants.

  5. Geologic map of the Vigo NE quadrangle, Lincoln County, Nevada

    USGS Publications Warehouse

    Scott, Robert B.; Harding, Anne E.

    2006-01-01

    This map of the Vigo NE quadrangle, Lincoln County, Nevada records the distribution, stratigraphy, and structural relationships of Tertiary intracaldera lavas and tuffs in the southeastern part of the Kane Springs Wash caldera, extracaldera Tertiary and upper Paleozoic rocks, and late Cenozoic surficial deposits both within and outside the caldera. The alkaline to peralkaline Kane Springs Wash caldera is the youngest (14 Ma) of three chemically related metaluminous to peralkaline calderas (Boulder Canyon caldera, 15 Ma; Narrow Canyon caldera, 16 Ma) of the nested Kane Springs Wash caldera complex. The chemistry of this caldera complex became progressively more alkalic with time, in contrast to the older calc-alkalic calderas and caldera complexes to the north that migrated progressively southward in eastern Nevada. The increasingly peralkaline eruptions from the Kane Springs Wash caldera complex reached a climax that was simultaneous with the end of both rapid extension and magmatism in this part of the Basin and Range. Using the assumption that degree of tilting is related to the degree of extension, the rate of extension increased until the abrupt halt at about 14 Ma. Silicic volcanism terminated at the Kane Springs Wash caldera followed only by local sporadic basaltic eruptions that ended by about 8 Ma. The northern boundary of an east-west-trending amagmatic corridor appears in the Vigo NE quadrangle south of the Kane Springs Wash caldera.

  6. Mercury in the environment

    ScienceCinema

    Idaho National Laboratory - Mike Abbott

    2017-12-09

    Abbott works for Idaho National Laboratory as an environmental scientist. Using state-of-thescienceequipment, he continuously samples the air, looking for mercury. In turn, he'll analyzethis long-term data and try to figure out the mercury's point of or

  7. Primitive Earth: So Near to Hell

    ERIC Educational Resources Information Center

    Jastrow, Robert

    1973-01-01

    Discusses the atmospheric characteristics of the earth and their implications for the development of life on earth-like planets. Indicates that the chance of life developing on other planets is not as great as men might have thought. (CC)

  8. Terrestrial Cosmogenic-Nuclide Dating of Alluvial Fans in Death Valley, California

    USGS Publications Warehouse

    Machette, Michael N.; Slate, Janet L.; Phillips, Fred M.

    2008-01-01

    We have used terrestrial cosmogenic nuclides (TCN) to establish the age of some of the most extensive Quaternary alluvial fans in Death Valley, California. These intermediate-age alluvial fans are most extensive on the western side of the valley, where tectonic deformation is considerably less pronounced than on the eastern side of the valley. These fans are characterized by a relatively smooth, densely packed desert pavement formed by well-varnished (blackened) clasts. These surfaces have been mapped as the Q2 gravel by previous workers and as unit Qai (intermediate age) by us. However, the intermediate-age gravels probably contain multiple subunits, as evidenced by slight differences in morphologic expression, soil formation, and inset geomorphic relations. The TCN technique used herein sums the cosmogenic 36Cl in approximately 2.5-meter-deep profiles through soil and host alluvium, thus avoiding some of the problems associated with the more typical surface-exposure dating of boulders or smaller clasts. Our TCN 36Cl dating of 12 depth profiles indicates that these intermediate-age (Qai) alluvial fans range from about 100 to 40 kilo-annum (ka), with a mean age of about 70 ka. An alternative interpretation is that alluvial unit Qai was deposited in two discrete episodes from 90 to 80 ka and from 60 to 50 ka, before and after MIS (marine oxygen-isotope stage) 4 (respectively). Without an intermediate-age unit, such as MIS 4 lake deposits, we can neither disprove nor prove that Qai was deposited in two discrete intervals or over a longer range of time. Thus, in Death Valley, alluvial unit Qai largely brackets MIS 4, which is not associated with a deep phase of Lake Manly. These Qai fans extend to elevations of about -46 meters (150 feet below sea level) and have not been transgressed by Lake Manly, suggesting that MIS 4 or MIS 2 lakes were rather shallow in Death Valley, perhaps because they lacked inflow from surface runoff of the Sierra Nevada drainages through Panamint Valley and over Wingate Wash. A remnant of ancient lake shoreline deposits that once extended across the Hanaupah Canyon fan constrains the timing and extent of the last deep cycle of Pleistocene Lake Manly. The lacustrine delta complex yields a 36Cl depth-profile date of 130 ka, which is consistent with deposition during a highstand of Lake Manly at the end of MIS 6. These deposits are presently at an altitude of about 30 meters above sea level (asl), which relates to a lake with a maximum depth of about 115 meters. Remnants of shoreline deposits at higher elevations on the southern margin of the Hanaupah Canyon fan complex are cut across older alluvium (unit Qao) and may be related to an MIS 6 highstand of at least 67 meters asl or, more likely, an older (MIS 8 or earlier) highstand that is poorly preserved and still undated in the valley. As part of our work on the west-side fans, we also dated an older phase of alluvial-fan deposits from the Trail Canyon fan complex, which is north of Hanaupah Canyon. A 36Cl depth-profile age of 170 ka suggests alluvial deposition of unit Qaio (older phase of Qao) took place prior to the MIS 6 highstand of Lake Manly. Knowing the absolute ages (or range in ages) of the intermediate-age (Qai) surfaces in Death Valley allows us to estimate the following rates of geologic processes: (1) a lateral slip rate of 5 millimeters per year for the northern Death Valley fault zone; (2) uplift of 50 meters in roughly the past 80,000 years for parts of the Mustard Canyon hills in east-central Death Valley; and (3) an estimated 10-40 m of dip-slip thrust movement on the Echo Canyon fault in Furnace Creek Canyon.

  9. Recherches sur l'histoire de l'astronomie ancienne

    NASA Astrophysics Data System (ADS)

    Tannery, Paul

    2015-04-01

    Préface; 1. Ce que les Hellènes ont appelé astronomie; 2. Ce que les Hellènes ont appelé astrologie (cont.); 3. Les mathématiciens alexandrins; 4. Les postulats de l'astronomie d'après Ptlolémée et les auteurs élémentaires; 5. La sphéricité de la terre et la mesure de sa circonférence; 6. Le mouvement général des planètes; 7. Les cercles de la sphère; 8. La longueur de l'année solaire; 9. Les tables du soleil; 10. Les périodes d'Hipparque pour les mouvements lunaires; 11. Les tables de la lune; 12. Les parallaxes du soleil et de la lune; 13. Les prédictions d'éclipses; 14. La théorie des planètes; 15. Le catalogue des fixes; Appendice; Errata.

  10. Stories of Hell and Healing: Internet Users' Construction of Benzodiazepine Distress and Withdrawal.

    PubMed

    Fixsen, Alison M; Ridge, Damien

    2017-11-01

    Benzodiazepines are a group of drugs used mainly as sedatives, hypnotics, antiepileptics, and muscle relaxants. Consumption is recommended for 2 to 4 weeks only, due to fast onset of dependency and potentially distressing withdrawal symptoms. Few peer-review studies have drawn on the user experiences and language to appreciate firsthand experiences of benzodiazepine withdrawal or discontinuation syndrome. We looked extensively at patient stories of benzodiazepine withdrawal and recovery on Internet support sites and YouTube. Our analysis indicated that users employ rich metaphors to portray the psychologically disturbing and protracted nature of their suffering. We identified seven major themes: hell and isolation, anxiety and depression, alienation, physical distress, anger and remorse, waves and windows, and healing and renewal. By posting success stories, ex-users make known that "healing" can be a long, unpredictable process, but distress does lessen, and recovery can happen.

  11. Recreational impacts on Colorado River beaches in Glen Canyon, Arizona

    NASA Astrophysics Data System (ADS)

    Carothers, Steven W.; Johnson, Robert A.; Dolan, Robert

    1984-07-01

    Recreational impact was measured on eight beaches in Glen Canyon National Recreation Area and 15 beaches in Grand Canyon National Park using permanently located transects and plots. Recreational impact indices included densities of human trash and charcoal and a measure of sand discoloration due to charcoal. Significant increases in the indices occurred on several Glen Canyon beaches over a seven-month period. Sand discoloration became significantly higher over all Glen Canyon beaches during the same time period. All indices were significantly higher in Glen Canyon than on similar Grand Canyon beaches. These differences are probably due to differences in: (a) level of impacts tolerated by the respective management regimes and, (b) in the number of user days among the two National Park Service administrative units. Management alternatives are presented for reversing the present trends of recreational impact on Glen Canyon beaches.

  12. Shelf-Slope Exchanges near Submarine Canyons in the Southern Mid-Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Wang, H.; Gong, D.

    2016-02-01

    Shelf-slope exchange processes are major physical drivers of biological productivity near the shelf-break. Observations from two Slocum ocean gliders in Fall 2013 are used to explore the driving mechanisms of cross-shelf-slope exchanges near Norfolk Canyon and Washington Canyon in the southern Mid-Atlantic Bight. Offshore excursion of bottom "cold pool" water, and shoreward intrusion of slope water at surface layer and thermocline depth occurred during northeasterly along-shelf winds. The saline intrusions of surface slope water resided between the cold pool and surface shelf water, and reached the bottom on the outer and mid-shelf, while the offshore excursion of cold pool water was found between the surface and intermediate slope-water over the canyon. Ekman transport calculation shows wind-driven cross-shelf transport can partially explain this interleaving pattern of intrusions. Scaling analysis of double diffusive processes demonstrate that they also likely played a role in the cross-shelf-slope exchange. A unique canyon upwelling event was captured in and around Washington Canyon during a period of southwesterly along-shelf wind and along-shelf flow to the northeast. The water mass distributions and isopycnal responses in both along-canyon and cross-canyon transects are consistent with scaling analysis and numerical studies of canyon upwelling. Temperature-Salinity properties of water masses in the canyon suggest active mixing between shelf and slope water masses near the canyon head. These results point to the importance of wind, double diffusion, and canyon topography on shelf-slope exchange in the MAB.

  13. Pollutant Dilution and Diffusion in Urban Street Canyon Neighboring Streets

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Fu, Zh. M.

    2011-09-01

    In the present study we investigated the airflow patterns and air quality of a series of typical street canyon combinations, developed a mass balance model to determine the local pollutant dilution rate, and discuss the impact of upstream canyon on the air quality of downstream canyon. The results indicated that the geometrical size of upstream and downstream buildings have significant impacts on the ambient airflow patterns. The pollution distribution within the canyons varies with different building combinations and flow patterns. Within the upstream canyon, pollution always accumulates to the low building side for non-symmetrical canyon, and for symmetrical canyon high level of pollution occurs at the leeward side. The height of the middle and downstream buildings can evidently change the pollutant dispersion direction during the transport process. Within the polluted canyon, the pollutant dilution rate (PDR) also varies with different street canyon combinations. The highest PDR is observed when the upstream buildings are both low buildings no matter the height of downstream building. However, the two cases are likely to contribution pollution to the downstream canyon. The H-L-H combination is mostly against local pollution remove, while the L-H-L case is considered the best optimistic building combination with both the ability of diluting local pollution and not remarkably decreasing air quality of downstream canyon. The current work is expected instructive for city designers to optimize traffic patterns under typical existing geometry or in the development of urban geometry modification for air quality control.

  14. Assessment of canyon wall failure process from multibeam bathymetry and Remotely Operated Vehicle (ROV) observations, U.S. Atlantic continental margin: Chapter 10 in Submarine mass movements and their consequences: 7th international symposium part II

    USGS Publications Warehouse

    Chaytor, Jason D.; Demopoulos, Amanda W. J.; ten Brink, Uri S.; Baxter, Christopher D. P.; Quattrini, Andrea M.; Brothers, Daniel S.; Lamarche, Geoffroy; Mountjoy, Joshu; Bull, Suzanne; Hubble, Tom; Krastel, Sebastian; Lane, Emily; Micallef, Aaron; Moscardelli, Lorena; Mueller, Christof; Pecher, Ingo; Woelz, Susanne

    2016-01-01

    Over the last few years, canyons along the northern U.S. Atlantic continental margin have been the focus of intensive research examining canyon evolution, submarine geohazards, benthic ecology and deep-sea coral habitat. New high-resolution multibeam bathymetry and Remotely Operated Vehicle (ROV) dives in the major shelf-breaching and minor slope canyons, provided the opportunity to investigate the size of, and processes responsible for, canyon wall failures. The canyons cut through thick Late Cretaceous to Recent mixed siliciclastic and carbonate-rich lithologies which impart a primary control on the style of failures observed. Broad-scale canyon morphology across much of the margin can be correlated to the exposed lithology. Near vertical walls, sedimented benches, talus slopes, and canyon floor debris aprons were present in most canyons. The extent of these features depends on canyon wall cohesion and level of internal fracturing, and resistance to biological and chemical erosion. Evidence of brittle failure over different spatial and temporal scales, physical abrasion by downslope moving flows, and bioerosion, in the form of burrows and surficial scrape marks provide insight into the modification processes active in these canyons. The presence of sessile fauna, including long-lived, slow growing corals and sponges, on canyon walls, especially those affected by failure provide a critical, but as yet, poorly understood chronological record of geologic processes within these systems.

  15. GLORIA mosaic of West Coast US Exclusive Economic Zone, northern sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, M.A.; Cacchione, D.A.; Drake, D.E.

    1986-05-01

    The GLORIA (Geological Long-Range Inclined Asdic) side-scanning sonar system was used to compile an image-enhanced acoustic mosaic, similar to an aerial photograph, of the sea floor of the West Coast US Exclusive Economic Zone. The mosaic clearly shows the spreading centers, fracture zones, submarine fans and channels, and transform to convergent continental margins north of latitude 39/sup 0/N. The linear basement ridges originally generated at the Gorda and Juan de Fuca spreading centers are abruptly truncated by the Mendocino and Blanco fracture zones, and their subtle to distinct divergence, bending, and offset attests to past changes in spreading rate andmore » propagation of spreading centers. The major Delgada, Astoria, and Nitinat fans are traversed by lengthy channel-levee complexes extending from major canyons on the adjacent continental slope; areally extensive sediment-wave fields occur adjacent to the right side (facing down-channel) of these complexes. Other drainage features appear on the mosaic, and the range of channel sinuosity and continuity indicates fluvial-like processes at work on the sea floor. Submarine canyons on the continental slope are irregularly distributed; their range of maturity and relation to substrate type and geologic structure are manifest as variations in length, width, and relief, by changes in trend, and by the degree of sidewall gullying. Compressional and diapiric ridges characterize the continental slope in areas of plate convergence, whereas along the transform margin south of the Mendocino fracture zone, the slope is relatively smooth and featureless, except where incised by large canyon systems.« less

  16. Distributions and habitat associations of deep-water corals in Norfolk and Baltimore Canyons, Mid-Atlantic Bight, USA

    NASA Astrophysics Data System (ADS)

    Brooke, S. D.; Watts, M. W.; Heil, A. D.; Rhode, M.; Mienis, F.; Duineveld, G. C. A.; Davies, A. J.; Ross, S. W.

    2017-03-01

    A multi-disciplinary study of two major submarine canyons, Baltimore Canyon and Norfolk Canyon, off the US mid-Atlantic coast focused on the ecology and biology of canyon habitats, particularly those supporting deep-sea corals. Historical data on deep-sea corals from these canyons were sparse with less than 750 records for the mid-Atlantic region, with most being soft sediment species. This study substantially increased the number of deep-sea coral records for the target canyons and the region. Large gorgonians were the dominant structure-forming coral taxa on exposed hard substrates, but several species of scleractinians were also documented, including first observations of Lophelia pertusa in the mid-Atlantic Bight region. Coral distribution varied within and between the two canyons, with greater abundance of the octocoral Paragorgia arborea in Baltimore Canyon, and higher occurrence of stony corals in Norfolk Canyon; these observations reflect the differences in environmental conditions, particularly turbidity, between the canyons. Some species have a wide distribution (e.g., P. arborea, Primnoa resedaeformis, Anthothela grandiflora), while others are limited to certain habitat types and/or depth zones (e.g., Paramuricea placomus, L. pertusa, Solenosmilia variabilis). The distribution of a species is driven by a combination of factors, which include availability of appropriate physical structure and environmental conditions. Although the diversity of the structure-forming corals (gorgonians, branching scleractinians and large anemones) was low, many areas of both canyons supported high coral abundance and a diverse coral-associated community. The canyons provide suitable habitat for the development of deep-sea coral communities that is not readily available elsewhere on the sedimented shelf and slope of the Mid-Atlantic Bight.

  17. Mars Canyon with Los Angeles for Scale

    NASA Image and Video Library

    2006-03-13

    A Grand Canyon of Mars slices across the Red Planet near its equator. This canyon -- Valles Marineris, or the Mariner Valley -- is 10 times longer and deeper than Arizona Grand Canyon, and 20 times wider

  18. Modifications of highway air pollution models for complex geometries, volume II : wind tunnel test program.

    DOT National Transportation Integrated Search

    2002-09-01

    This is volume I1 of a two-volume report of a study to increase the scope and clarity of air pollution models for : depressed highway and street canyon sites. It presents the atmospheric wind tunnel program conducted to increase the : data base and i...

  19. Prehistoric deforestation at Chaco Canyon?

    PubMed Central

    Wills, W. H.; Drake, Brandon L.; Dorshow, Wetherbee B.

    2014-01-01

    Ancient societies are often used to illustrate the potential problems stemming from unsustainable land-use practices because the past seems rife with examples of sociopolitical “collapse” associated with the exhaustion of finite resources. Just as frequently, and typically in response to such presentations, archaeologists and other specialists caution against seeking simple cause-and effect-relationships in the complex data that comprise the archaeological record. In this study we examine the famous case of Chaco Canyon, New Mexico, during the Bonito Phase (ca. AD 860–1140), which has become a prominent popular illustration of ecological and social catastrophe attributed to deforestation. We conclude that there is no substantive evidence for deforestation at Chaco and no obvious indications that the depopulation of the canyon in the 13th century was caused by any specific cultural practices or natural events. Clearly there was a reason why these farming people eventually moved elsewhere, but the archaeological record has not yet produced compelling empirical evidence for what that reason might have been. Until such evidence appears, the legacy of Ancestral Pueblo society in Chaco should not be used as a cautionary story about socioeconomic failures in the modern world. PMID:25071220

  20. Geomorphic Thresholds of Submarine Canyons Along the U.S. Atlantic Continental Margin

    NASA Astrophysics Data System (ADS)

    Brothers, D. S.; ten Brink, U. S.; Andrews, B. D.; Chaytor, J. D.

    2011-12-01

    Vast networks of submarine canyons and associated channels are incised into the U.S. Atlantic continental slope and rise. Submarine canyons form by differential erosion and deposition, primarily from sedimentary turbidity flows. Theoretical and laboratory studies have investigated the initiation of turbidity flows and their capacity to erode and entrain sedimentary material at distances far from the shelf edge. The results have helped understand the nature of turbidite deposits on the continental slope and rise. Nevertheless, few studies have examined the linkages between down-canyon sediment transport and the morphology of canyon/channel networks using mesoscale analyses of swath bathymetry data. We present quantitative analysis of 100-m resolution multibeam bathymetry data spanning ~616,000 km2 of the slope and rise between Georges Banks and the Blake Plateau (New England to North Carolina). Canyons are categorized as shelf-indenting or slope-confined based on spatial scale, vertical relief and connection with terrestrial river systems during sea level low stands. Shelf-indenting canyons usually represent the trunk-canyon of submerged channel networks. On the rise, shelf-indenting canyons have relatively well-developed channel-levees and sharp inner-thalwag incision suggesting much higher frequency and volume of turbidity flows. Because of the similarities between submarine canyon networks and terrestrial river systems, we apply methods originally developed to study fluvial morphology. Along-canyon profiles are extracted from the bathymetry data and the power-law relationship between thalwag gradient and drainage area is examined for more than 180 canyons along an ~1200 km stretch of the US Atlantic margin. We observe distinct thresholds in the power-law relationship between drainage area and gradient. Almost all canyons with heads on the upper slope contain at least two linear segments when plotted in log-log form. The first segment along the upper slope is flat (constant gradient, low area). The second segment dips (exponentially decreasing gradient with increasing area). We interpret the transition between the two segments to be either diffusive creep/landslide processes that evolve into turbidity flows or the boundary that separates up-canyon infilling from relic, lower-canyon incision. Furthermore, the threshold occurs at a nearly constant drainage area regardless of location and morphology of the drainage network. This suggests that time-averaged erosion rate in submarine canyons depends on frequency of turbidity flows, which in turn depends on the volume of unstable sediments deposited near canyon heads and along canyon walls. We find that the gradient-area relationship does not follow a power-law in shelf-indenting canyons, most likely due to allogenic processes of the continental shelf and linkage to terrestrial river discharge.

  1. Physical and chemical characteristics of Knowles, Forgotten, and Moqui Canyons, and effects of recreational use on water quality, Lake Powell, Arizona and Utah

    USGS Publications Warehouse

    Hart, Robert J.; Taylor, Howard E.; Antweiler, Ronald C.; Fisk, Greg G.; Anderson, G.M.; Roth, D.A.; Flynn, Marilyn E.; Peart, D.B.; Truini, Margot; Barber, L.B.

    2005-01-01

    Side canyons of Lake Powell are the most popular recreation areas of the Glen Canyon National Recreation Area in Arizona and Utah. There are more than 90 side canyons that are tributaries to the main lake body of Lake Powell. Near Bullfrog and Halls Crossing marinas in Utah, visitors frequent Knowles, Forgotten, and Moqui Canyons to fish, boat, camp, and hike the sandstone formations for which Lake Powell is famous. Areas of recreational activity are greatest near beaches in side canyons. Emissions from houseboats, personal watercraft, speedboats, and from some nonboating recreational activities introduce contaminants to the lake and to beach areas. The U.S. Geological Survey documented concentrations of trace elements, volatile organic compounds, organic wastewater contaminants, and other byproducts of fuel-based contaminants in water and bed material in Knowles, Forgotten, and Moqui Canyons during the summers of 2001 and 2002. Field work was conducted during four trips when recreational use was at a minimum (before Memorial Day in May) and when it was at a maximum (near Labor Day in September). Knowles Canyon was treated as a control; therefore, public access by motorcraft was not permitted during the study. Electric-powered or oar-powered research boats were used to collect samples and measure properties in Knowles Canyon. Record-low reservoir elevations during 2000-2002 limited the availability of camping and day-use beaches in Forgotten and Moqui Canyons. Although more beach areas were exposed during this period, the steep slopes of the beaches made it difficult to use the beaches for camping purposes. Side canyon waters of Knowles, Forgotten, and Moqui Canyons were similarly stratified (physically and chemically) during the study from natural advective and convective reservoir processes. Metalimnetic oxygen minimas were observed in September 2001 and 2002 in the side canyons and the main body of Lake Powell. Chemical concentrations of several organic constituents were elevated in Forgotten and Moqui Canyons during the high-use period in September of 2001 and 2002 compared with concentrations during the low-use period in May of 2001 and 2002. Concentrations of some constituents decreased from the mouth of each canyon to the canyon's headwaters, indicating that there could be a mechanism for constituent removal or that the main body of Lake Powell is not in equilibrium with the headwaters of the side canyons. Concentrations of volatile organic compounds, such as benzene, toluene, ethylbenzene, and xylene (BTEX compounds), were highest in the upper reaches of Forgotten and Moqui Canyons where visitor use was greatest. Trace amounts of some organic wastewater compounds, including cholesterol, N,N-diethyl-meta-toluamide (DEET), and ethylenediaminetetraacetic acid (EDTA), were measured in Forgotten and Moqui Canyons. Except for minor concentrations of some volatile organic compounds and cholesterol, contamination from visitor use in Knowles Canyon was not detected, most likely because the canyon was closed to access. Concentrations of some organic compounds in bed material sampled in the side canyons near popular beach areas, including polyaromatic hydrocarbons, were above the laboratory detection limits. Several other constituents were present in trace amounts. Benzyl n-butylphthalate and bis (2 ethyl)-phthalate were detected at concentrations above laboratory detection limits. Numerous trace elements were detected above laboratory detection limits in Knowles, Forgotten, and Moqui Canyons. All water samples from the side canyon transects had low colony counts of Escherichia coli (E. coli); the highest count was less than one-fourth of the U.S. Environmental Protection Agency recommended limit for recreational water. Four water samples collected near beaches in Moqui Canyon had E. coli colony counts that exceeded the U.S. Environmental Protection Agency recommended limit.

  2. Carbon transport in Monterey Submarine Canyon

    NASA Astrophysics Data System (ADS)

    Barry, J.; Paull, C. K.; Xu, J. P.; Clare, M. A.; Gales, J. A.; Buck, K. R.; Lovera, C.; Gwiazda, R.; Maier, K. L.; McGann, M.; Parsons, D. R.; Simmons, S.; Rosenberger, K. J.; Talling, P. J.

    2017-12-01

    Submarine canyons are important conduits for sediment transport from continental margins to the abyss, but the rate, volume, and time scales of material transport have been measured only rarely. Using moorings with current meters, sediment traps (10 m above bottom) and optical backscatter sensors, we measured near-bottom currents, suspended sediment concentrations, and sediment properties at 1300 m depth in Monterey Canyon and at a non-canyon location on the continental slope at the same depth. Flow and water column backscatter were used to characterize "ambient" conditions when tidal currents dominated the flow field, and occasional "sediment transport events" when anomalously high down-canyon flow with sediment-laden waters arrived at the canyon mooring. The ambient sediment flux measured in sediment traps in Monterey Canyon was 350 times greater than measured at the non-canyon location. Although the organic carbon content of the canyon sediment flux during ambient periods was low (1.8 %C) compared to the slope location (4.9 %C), the ambient carbon transport in the canyon was 130 times greater than at the non-canyon site. Material fluxes during sediment transport events were difficult to measure owing to clogging of sediment traps, but minimal estimates indicate that mass transport during events exceeds ambient sediment fluxes through the canyon by nearly 3 orders of magnitude, while carbon transport is 380 times greater. Estimates of the instantaneous and cumulative flux of sediment and carbon from currents, backscatter, and sediment properties indicated that: 1) net flux is down-canyon, 2) flux is dominated by sediment transport events, and 3) organic carbon flux through 1300 m in Monterey Canyon was ca. 1500 MT C per year. The injection of 1500 MTCy-1 into the deep-sea represents ca. 260 km2 of the sediment C flux measured at the continental slope station (5.8 gCm-2y-1) and is sufficient to support a benthic community carbon demand of 5 gCm-2y-1 over 300 km2.

  3. Durable terrestrial bedrock predicts submarine canyon formation

    USGS Publications Warehouse

    Smith, Elliot; Finnegan, Noah J.; Mueller, Erich R.; Best, Rebecca J.

    2017-01-01

    Though submarine canyons are first-order topographic features of Earth, the processes responsible for their occurrence remain poorly understood. Potentially analogous studies of terrestrial rivers show that the flux and caliber of transported bedload are significant controls on bedrock incision. Here we hypothesize that coarse sediment load could exert a similar role in the formation of submarine canyons. We conducted a comprehensive empirical analysis of canyon occurrence along the West Coast of the contiguous United States which indicates that submarine canyon occurrence is best predicted by the occurrence of durable crystalline bedrock in adjacent terrestrial catchments. Canyon occurrence is also predicted by the flux of bed sediment to shore from terrestrial streams. Surprisingly, no significant correlation was observed between canyon occurrence and the slope or width of the continental shelf. These findings suggest that canyon incision is promoted by greater yields of durable terrestrial clasts to the shore.

  4. Investigating Mars: Ius Chasma

    NASA Image and Video Library

    2018-02-19

    The VIS image shows part of the western end of Ius Chasma. Both the north and south canyon walls are visible in this image. At the top of the frame paired faults have created a graben. On the southern face of the canyon, several linear faults parallel the graben. These faults are part of the tectonic formation of Valles Marineris. Landslides on both walls created deposits on the crater floor. The easiest to identify is the lobate margin at the right side of the images. Lobate margins and radial surface grooves are common features in low volume landslides. A landslide is a failure of slope due to gravity. They initiate due to several reasons. A lower layer of poorly cemented/resistant material may have been eroded, undermining the wall above which then collapses; earth quake seismic waves can cause the slope to collapse; and even an impact event near the canyon wall can cause collapse. As millions of tons of material fall and slide down slope a scalloped cavity forms at the upper part where the slope failure occurred. At the material speeds downhill it will pick up more of the underlying slope, increasing the volume of material entrained into the landslide. Whereas some landslides spread across the canyon floor forming lobate deposits, very large volume slope failures will completely fill the canyon floor in a large complex region of chaotic blocks. Ius Chasma is at the western end of Valles Marineris, south of Tithonium Chasma. Valles Marineris is over 4000 kilometers long, wider than the United States. Ius Chasma is almost 850 kilometers long (528 miles), 120 kilometers wide and over 8 kilometers deep. In comparison, the Grand Canyon in Arizona is about 175 kilometers long, 30 kilometers wide, and only 2 kilometers deep. The canyons of Valles Marineris were formed by extensive fracturing and pulling apart of the crust during the uplift of the vast Tharsis plateau. Landslides have enlarged the canyon walls and created deposits on the canyon floor. Weathering of the surface and influx of dust and sand have modified the canyon floor, both creating and modifying layered materials. There are many features that indicate flowing and standing water played a part in the chasma formation. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 8792 Latitude: -6.69222 Longitude: 270.88 Instrument: VIS Captured: 2003-12-08 06:35 https://photojournal.jpl.nasa.gov/catalog/PIA22277

  5. Coprates Chasma

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 21 June 2002) The Science This image covers a portion of Coprates Chasma, located near 15.5S, 57.8W, which is part of the Valles Marineris system of canyons that stretch for thousands of kilometers. This image displays clearly the contrast between bedrock, sand, and dust surfaces. The steepest slopes, such as on the canyon walls, appear to be free of the mantle of dust and sand that is nearly ubiquitous elsewhere in the image. Layering is clearly present in the bedrock unit, but it is not clear if that layering is due to sedimentary deposits or volcanic lava flows. Superimposed on the slopes is a mantle of dust in a manner that appears similar to snow covered mountains on Earth. This is because in both situations, fine-grained dry, particulate material is settling on a sloped surface. Collecting in the valleys and, in some cases, climbing up the slopes are several sand sheets. The amount of cover and the apparent thickness of these sands give some indication to the huge volume of material that is collected here. The orientation of the slip faces of the dunes in this image can be used to deduce the prevalent wind patterns in the region. In this case, the prevalent wind direction is towards the east but there are areas where the winds indicate a more complex system, perhaps indicating topographic control of the local winds. The Story The canyon walls of Coprates, the old name for the Persian River Ab-I-Diz, descend clearly at the top of this image, without being obscured by the dust that covers much of this region. Coprates Chasma is part of Valles Marineris, the largest canyon system in the solar system. In addition to the hard bedrock and dust, sand dunes also appear on the floor of the canyon. They almost look as though they've been raked by a Zen gardener, but the eastward-blowing wind is really responsible for their rows. Scientists can tell the direction of the wind by looking at the slip faces of the dunes -- that is, by identifying the steep, downward slope formed from loose, cascading sand. Some areas seem to have been formed by more complex wind patterns that may have emerged due to the topography of the area. This region is, in fact, pretty complex. The sand in this area looks like it is thick and abundant. Not only has it collected in the valleys, it has also built up enough to begin to 'climb up' the slopes. There is also layering in the bedrock, but who knows if this layering is made of deposits of 'dirt' and rock or from lava. Finally, at the bottom of this image, dust-covered slopes appear like snow-covered mountain s on Earth. This similar look occurs because both dust and snow are fine-grained particles and cover the slopes in comparable ways.

  6. Research Furthers Conservation of Grand Canyon Sandbars

    USGS Publications Warehouse

    Melis, Theodore S.; Topping, David J.; Rubin, David M.; Wright, Scott A.

    2007-01-01

    Grand Canyon National Park lies approximately 25 km (15 mi) down-river from Glen Canyon Dam, which was built on the Colorado River just south of the Arizona-Utah border in Glen Canyon National Recreation Area. Before the dam began to regulate the Colorado River in 1963, the river carried such large quantities of red sediment, for which the Southwest is famous, that the Spanish named the river the Rio Colorado, or 'red river'. Today, the Colorado River usually runs clear below Glen Canyon Dam because the dam nearly eliminates the main-channel sand supply. The daily and seasonal flows of the river were also altered by the dam. These changes have disrupted the sedimentary processes that create and maintain Grand Canyon sandbars. Throughout Grand Canyon, sandbars create habitat for native plants and animals, supply camping beaches for river runners and hikers, and provide sediment needed to protect archaeological resources from weathering and erosion. Maintenance of sandbars in the Colorado River ecosystem, the river corridor that stretches from the dam to the western boundary of Grand Canyon National Park, is a goal of the Glen Canyon Dam Adaptive Management Program. The program is a federally authorized initiative to ensure that the mandates of the Grand Canyon Protection Act of 1992 are met through advances in information and resource management. The U.S. Geological Survey's Grand Canyon Monitoring and Research Center has responsibility for scientific monitoring and research efforts for the program. Extensive research and monitoring during the past decade have resulted in the identification of possible alternatives for operating Glen Canyon Dam that hold new potential for the conservation of sand resources.

  7. Late Glacial and Holocene gravity deposits in the Gulf of Lions deep basin, Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Dennielou, B.; Bonnel, C.; Sultan, N.; Voisset, M.; Berné, S.; Beaudouin, C.; Guichard, F.; Melki, T.; Méar, Y.; Droz, L.

    2003-04-01

    Recent investigations in the Gulf of Lions have shown that complex gravity processes and deposits occurred in the deep basin since the last Glacial period. Besides the largest western Mediterranean turbiditic system, Petit-Rhône deep-sea fan (PRDSF), whose built-up started at the end of Pliocene, several sedimentary bodies can be distinguished: (1) The turbiditic Pyreneo-Languedocian ridge (PLR), at the outlet of the Sète canyon network, whose activity is strongly connected to the sea level and the connection of the canyons with the rivers. It surface shows long wave-length sediment waves, probably in relation with the turbiditic overspill. (2) An acoustically chaotic unit, filling the topographic low between the PRDSF and the PLR, the Lower Interlobe Unit. Possible source areas are the Sète canyon and/or the Marti Canyon. (3) An acoustically transparent unit, below the neofan, filling the same topographic low, the Western Transparent Unit, interpreted as a debris-flow. Recent sediment cores have shown that this sedimentary is composed of folded, laminated mud, both in its northern and southern fringes. (4) The Petit-Rhône neofan, a channelized turbiditic lobe resulting from the last avulsion of the Petit-Rhône turbiditic channel and composed of two units. The lower, acoustically chaotic facies unit, corresponding to an initial stage of the avulsion, similar to the HARP facies found on the Amazon fan. The upper, transparent, slightly bedded, channel-levee shaped unit, corresponding to the channelized stage of the avulsion. (5) Up to ten, Deglacial to Holocene, thin, fine sand layers, probably originating from shelf-break sand accumulations, through the Sète canyon network. (6) Giant scours, in the southern, distal part of the neofan, possibly linked to turbiditic overflow from the neo-channel, probably corresponding to channel-lobe transition zone features (Wynn et al. 2002). Recent investigations have shown no evidence of bottom current features.

  8. Into the deep: A coarse-grained carbonate turbidite thalweg generated by gigantic submarine chutes

    NASA Astrophysics Data System (ADS)

    Mulder, Thierry; Gillet, Hervé; Reijmer, John; Droxler, André; cavailhes, Thibault; Hanquiez, Vincent; Fauquembergue, Kelly; Bujan, Stéphane; Blanck, David; bashah, Sara; Guiastrennec, Léa; Fabregas, Natacha; Recouvreur, Audrey; Seibert, Chloé

    2017-04-01

    New high-resolution multibeam mapping, in the Southeastern Bahamas, images in exquisite details the southern part of Exuma Sound, and its unchartered transition area to the deep abyssal plain of the Western North Atlantic bounded by the Bahama Escarpment (BE) between San Salvador Island and Samana Cay, referred here to the San Salvador abyssal plain. The transition area is locally referred to as Crooked Island Passage, loosely delineated by Crooked, Long, and Conception Islands, Rum and Samana Cays. Surprisingly in such a pure carbonate landscape, the newly established map reveals the detailed and complex morphology of a giant valley formed by numerous gravity flows originated in Exuma Sound itself, in addition to many secondary slope gullies and smaller tributaries draining the surrounding upper slopes. The valley referred here as the Exuma canyon system starts with a perched valley with low sinuosity, characterized by several flow restrictions and knickpoints initiated by the presence of drowned isolated platforms and merging tributaries. The valley abruptly transforms itself into a deep incised canyon, rivaling the depth of the Colorado Grand Canyon, through two major knickpoints with outsized chutes exceeding several hundred of meters in height, a total of 1600-1800 m. The sudden transformation of the wide valley into a deep narrow canyon, occurring when the flows incised deep into an underlying lower Cretaceous drowned carbonate platform, generates a huge hydraulic jump and creates an enormous plunge pool and related deposits with mechanisms comparable to the ones operating along giant subaerial waterfalls. The high kinetic flow energy, constrained by this narrow and deeply incised canyon, formed, when it is released at its mouth in the abyssal plain, a wide deep-sea channel with well-developed levees and fan, made of coarse-grained carbonate defined layers separated by fine carbonate sediments mixed with fine siliciclastics transported along the BE by the energetic Western Boundary Undercurrent.

  9. To Hell, with Dante and Students.

    ERIC Educational Resources Information Center

    Ostarch, Valerie

    1981-01-01

    The process of creating a canto in imitation of Dante's "The Inferno" not only enables students to gain a sense of medieval morality and history but also allows them to have an imaginative understanding of their own lives and times. (RL)

  10. Zion National Park, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Though the Grand Canyon may receive all the attention due to its tremendous size, the smaller canyons of the Southwest are arguably more sublime. This true-color image of Zion Canyon in southwestern Utah was taken by the Enhanced Thematic Mapper plus aboard the Landsat 7 satellite on October 10, 2001. Zion Canyon is located in the lower half of the image amidst the crisscross pattern of rock formations. The canyon walls, made of red and white sandstone, rise 2,000-3,000 feet from the canyon floor and are peppered with hanging vegetation. Over a period of four million years, the Virgin River cut a path through the western edge of the Colorado Plateau to form the canyon. The river and its tributaries resemble branches across the gray-green landscape in the upper section of the image. They eventually join the canyon, often as spectacular slot canyons only a few feet wide, and exit at the bottom of the image on the way to the Colorado River. Image by Robert Simmon, based on data provided by the Landsat 7 Science Team and the Arizona Regional Image Archive

  11. 78 FR 48670 - Boulder Canyon Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area... Canyon Project (BCP) electric service provided by the Western Area Power Administration (Western). The... States Department of Energy, Western Area Power Administration, Boulder Canyon Project, 133 FERC ] 62,229...

  12. Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.

    1994-12-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lowermore » Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative.« less

  13. Spatial and Temporal Variation in DeSoto Canyon Macrofaunal Community Structure

    NASA Astrophysics Data System (ADS)

    Baco-Taylor, A.; Shantharam, A. K.

    2016-02-01

    Sediment-dwelling macrofauna (polychaetes, bivalves, and assorted crustaceans ≥ 300 µm) have long served as biological indicators of ecosystem stress. As part of evaluating the 2010 impact from the Deepwater Horizon blowout, we sampled 12 sites along and transverse to the DeSoto Canyon axis, Gulf of Mexico, as well as 2 control sites outside the Canyon. Sites ranged in depth from 479-2310 m. Three of the sites (PCB06, S36, and XC4) were sampled annually from 2012-2014. We provide an overview of the macrofauna community structure of canyon and non-canyon sites, as well as trends in community structure and diversity at the time-series sites. Compositionally, polychaetes dominated the communities, followed by tanaid crustaceans and bivalves. The total number of individuals was not significantly correlated with depth while the total number of taxa and species richness were. Rarefaction shows the deepest station, XC4 (2310 m) had the lowest diversity while NT800 (a non-canyon control at 800m) had the highest. Multivariate analysis shows the canyon assemblages fall into eight clusters with the non-canyon stations forming a separate ninth cluster, indicating a detectable difference in canyon and non-canyon communities. Time series stations show an increase in diversity from 2012-2014 with a strong overlap in community structure in 2013 and 2014 samples. Environmental analysis, via BEST, using data from 10 canyon sites and the controls, indicated depth in combination with latitude explain the most variation in macrofaunal community structure.

  14. Food-web dynamics and isotopic niches in deep-sea communities residing in a submarine canyon and on the adjacent open slopes

    USGS Publications Warehouse

    Demopoulos, Amanda W.J.; McClain-Counts, Jennifer; Ross, Steve W.; Brooke, Sandra; Mienis, Furu

    2017-01-01

    Examination of food webs and trophic niches provide insights into organisms' functional ecology, yet few studies have examined trophodynamics within submarine canyons, where the interaction of canyon morphology and oceanography influences habitat provision and food deposition. Using stable isotope analysis and Bayesian ellipses, we documented deep-sea food-web structure and trophic niches in Baltimore Canyon and the adjacent open slopes in the US Mid-Atlantic Region. Results revealed isotopically diverse feeding groups, comprising approximately 5 trophic levels. Regression analysis indicated that consumer isotope data are structured by habitat (canyon vs. slope), feeding group, and depth. Benthic feeders were enriched in 13C and 15N relative to suspension feeders, consistent with consuming older, more refractory organic matter. In contrast, canyon suspension feeders had the largest and more distinct isotopic niche, indicating they consume an isotopically discrete food source, possibly fresher organic material. The wider isotopic niche observed for canyon consumers indicated the presence of feeding specialists and generalists. High dispersion in δ13C values for canyon consumers suggests that the isotopic composition of particulate organic matter changes, which is linked to depositional dynamics, resulting in discrete zones of organic matter accumulation or resuspension. Heterogeneity in habitat and food availability likely enhances trophic diversity in canyons. Given their abundance in the world's oceans, our results from Baltimore Canyon suggest that submarine canyons may represent important havens for trophic diversity.

  15. Earth Observations taken by Expedition 32 crewmember

    NASA Image and Video Library

    2012-09-03

    ISS032-E-024687 (3 Sept. 2012) --- Idaho fires are featured in this image photographed by an Expedition 32 crew member on the International Space Station. Taken with a short lens (45 mm), this west-looking photograph has a field of view covering much of the forested region of central Idaho. The dark areas are all wooded mountains—the Salmon River Mountains (left), Bitterroot Mountains (lower right) and Clearwater Mountains (right). All three areas experienced wildfires in September 2012—this image illustrates the situation early in the month. Smaller fire ‘complexes” appear as tendrils of smoke near the sources (e.g. Halstead complex at left), and as major white smoke plumes from the Mustang fire complex in the densest forests (darkest green, center) of the Clearwater Mountains. This was the largest plume noted in the region with thick smoke blowing eastward over the Beaverhead Mountains at bottom. The linear shape of the smoke plumes gives a sense of the generally eastward smoke transport on this day in early September. The smoke distribution shows another kind of transport: at night, when winds are weak, cooling of the atmosphere near the ground causes drainage of cooled (denser) air down into the major valleys. Here the smoke can be seen flowing west down into the narrow Salmon and Lochsa River valleys (at a local time of 12:18:50 p.m.) – in the opposite direction to the higher winds and the thick smoke masses. The bright yellow-tan areas at top left and top right contrasting with the mountains are grasslands of the Snake River in southern Idaho around Boise, and the Palouse region in western Idaho–SE Washington state. This latter area is known to ecologists as the Palouse Grasslands Ecoregion. Light green areas visible in the center of many of the valleys are agricultural crops including barley, alfalfa, and wheat. The image also shows several firsts of which Idaho can boast. The Snake River between Boise and the Palouse region has cut Hells Canyon (top), the deepest gorge in the U.S. at almost 2,436 meters (8,000 feet). The largest single wilderness area in the contiguous U.S., the Frank Church-River of No Return Wilderness occupies the wooded zones of the Salmon River Mountains and the Clearwater Mountains, i.e. most of the area shown in the middle of the image. Idaho’s highest peak is Borah Peak (lower left) at 3,860 meters above sea level (12,662 feet ASL). The Continental Divide cuts through the bottom of the image—rivers on the eastern slopes of the Beaverhead Mountains drain to the Atlantic Ocean, whereas rivers in the rest of the area drain to the Pacific Ocean.

  16. Investigating Mars: Ius Chasma

    NASA Image and Video Library

    2018-02-23

    Continuing eastward thru central Ius Chasma, this image shows a section of chasma that is not dominated by landslide deposits. Geryon Montes, in the upper half of the image, has several visible faults, including a pair of faults that divide the uppermost ridge into two sections. Between the montes and the southern wall face is a region of sand and sand dunes. The presence of mobile sand indicates that winds are eroding, depositing and changing the canyon floor. A landslide is a failure of slope due to gravity. They initiate due to several reasons. A lower layer of poorly cemented/resistant material may have been eroded, undermining the wall above which then collapses; earthquake seismic waves can cause the slope to collapse; and even an impact event near the canyon wall can cause collapse. As millions of tons of material fall and slide down slope a scalloped cavity forms at the upper part where the slope failure occurred. At the material speeds downhill it will pick up more of the underlying slope, increasing the volume of material entrained into the landslide. Whereas some landslides spread across the canyon floor forming lobate deposits, very large volume slope failures will completely fill the canyon floor in a large complex region of chaotic blocks. Ius Chasma is at the western end of Valles Marineris, south of Tithonium Chasma. Valles Marineris is over 4000 kilometers long, wider than the United States. Ius Chasma is almost 850 kilometers long (528 miles), 120 kilometers wide and over 8 kilometers deep. In comparison, the Grand Canyon in Arizona is about 175 kilometers long, 30 kilometers wide, and only 2 kilometers deep. The canyons of Valles Marineris were formed by extensive fracturing and pulling apart of the crust during the uplift of the vast Tharsis plateau. Landslides have enlarged the canyon walls and created deposits on the canyon floor. Weathering of the surface and influx of dust and sand have modified the canyon floor, both creating and modifying layered materials. There are many features that indicate flowing and standing water played a part in the chasma formation. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 27012 Latitude: -7.59048 Longitude: 276.328 Instrument: VIS Captured: 2008-01-16 09:47 https://photojournal.jpl.nasa.gov/catalog/PIA22281

  17. Investigating Mars: Ius Chasma

    NASA Image and Video Library

    2018-02-27

    This VIS image shows part of the eastern end of Ius Chasma. Geryon Montes are located in the bottom half of the image. Between the montes and the southern wall face is a region of sand and sand dunes. The presence of mobile sand indicates that winds are eroding, depositing and changing the canyon floor. The top of the image is dominated by a large landslide deposit. The radial surface grooves are still visible, but the region as a whole as undergone significant erosion. A landslide is a failure of slope due to gravity. They initiate due to several reasons. A lower layer of poorly cemented/resistant material may have been eroded, undermining the wall above which then collapses; earthquake seismic waves can cause the slope to collapse; and even an impact event near the canyon wall can cause collapse. As millions of tons of material fall and slide down slope a scalloped cavity forms at the upper part where the slope failure occurred. At the material speeds downhill it will pick up more of the underlying slope, increasing the volume of material entrained into the landslide. Whereas some landslides spread across the canyon floor forming lobate deposits, very large volume slope failures will completely fill the canyon floor in a large complex region of chaotic blocks. Ius Chasma is at the western end of Valles Marineris, south of Tithonium Chasma. Valles Marineris is over 4000 kilometers long, wider than the United States. Ius Chasma is almost 850 kilometers long (528 miles), 120 kilometers wide and over 8 kilometers deep. In comparison, the Grand Canyon in Arizona is about 175 kilometers long, 30 kilometers wide, and only 2 kilometers deep. The canyons of Valles Marineris were formed by extensive fracturing and pulling apart of the crust during the uplift of the vast Tharsis plateau. Landslides have enlarged the canyon walls and created deposits on the canyon floor. Weathering of the surface and influx of dust and sand have modified the canyon floor, both creating and modifying layered materials. There are many features that indicate flowing and standing water played a part in the chasma formation. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 17153 Latitude: -8.20738 Longitude: 281.009 Instrument: VIS Captured: 2005-10-26 16:00 https://photojournal.jpl.nasa.gov/catalog/PIA22284

  18. Upwelling and downwelling induced by mesoscale circulation in the DeSoto Canyon region

    NASA Astrophysics Data System (ADS)

    Nguyen, T. T.; Chassignet, E.; Morey, S. L.; Dukhovskoy, D. S.

    2014-12-01

    Ocean dynamics are complex over irregular topography areas, and the northeastern Gulf of Mexico, specifically the DeSoto Canyon region, is a challenge for modelers and oceanographers. Vertical movement of waters, especially upwelling, is observed to take place over the canyon's head and along the coast; however, it is not well understood. We focus on upwelling/downwelling processes induced by the Loop Current and its associated eddy field using multi-decadal Hybrid Coordinate Ocean Model simulations. The Loop Current, part of the Gulf Stream, can develop northward into the Gulf through the Yucatan Channel and exit through the Florida Straits. It can reach the continental slope of the study domain and directly depress the isopycnals. Cyclonic eddies in front of the Loop Current also induce upwelling underneath. On the other hand, the Loop Current sometimes impinges on the West Florida Shelf and generates a high pressure disturbance, which travels northward along the shelf into the study region. Consequently, large-scale downwelling occurs across the continental slopes. Our analysis of sea surface height shows that the Loop Current pressure disturbance tends to propagate along the shallow isobaths of 100 to 300 m in the topographic wave direction from south of the West Florida Shelf to the Mississippi Delta. In addition, after shedding a large anticyclonic eddy, the Loop Current retracts southward and can touch the southeastern corner of the West Florida Shelf. This can result in a higher pressure disturbance, and therefore stronger large-scale downwelling in the DeSoto Canyon region.

  19. 3-D basin-scale reconstruction of natural gas hydrate system of the Green Canyon, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Burwicz, Ewa; Reichel, Thomas; Wallmann, Klaus; Rottke, Wolf; Haeckel, Matthias; Hensen, Christian

    2017-05-01

    Our study presents a basin-scale 3-D modeling solution, quantifying and exploring gas hydrate accumulations in the marine environment around the Green Canyon (GC955) area, Gulf of Mexico. It is the first modeling study that considers the full complexity of gas hydrate formation in a natural geological system. Overall, it comprises a comprehensive basin reconstruction, accounting for depositional and transient thermal history of the basin, source rock maturation, petroleum components generation, expulsion and migration, salt tectonics, and associated multistage fault development. The resulting 3-D gas hydrate distribution in the Green Canyon area is consistent with independent borehole observations. An important mechanism identified in this study and leading to high gas hydrate saturation (>80 vol %) at the base of the gas hydrate stability zone (GHSZ) is the recycling of gas hydrate and free gas enhanced by high Neogene sedimentation rates in the region. Our model predicts the rapid development of secondary intrasalt minibasins situated on top of the allochthonous salt deposits which leads to significant sediment subsidence and an ensuing dislocation of the lower GHSZ boundary. Consequently, large amounts of gas hydrates located in the deepest parts of the basin dissociate and the released free methane gas migrates upward to recharge the GHSZ. In total, we have predicted the gas hydrate budget for the Green Canyon area that amounts to ˜3256 Mt of gas hydrate, which is equivalent to ˜340 Mt of carbon (˜7 × 1011 m3 of CH4 at STP conditions), and consists mostly of biogenic hydrates.

  20. 77 FR 48151 - Boulder Canyon Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area... Canyon Project (BCP) electric service provided by the Western Area Power Administration (Western). The... INFORMATION: Hoover Dam, authorized by the Boulder Canyon Project Act (45 Stat. 1057, December 21, 1928), sits...

  1. Does littoral sand bypass the head of Mugu Submarine Canyon? - a modeling study

    USGS Publications Warehouse

    Xu, Jingping; Elias, Edwin; Kinsman, Nicole; Wang, Ping; Rosati, Julie D.; Roberts, Tiffany M.

    2011-01-01

    A newly developed sand-tracer code for the process-based model Delft3D (Deltares, The Netherlands) was used to simulate the littoral transport near the head of the Mugu Submarine Canyon in California, USA. For westerly swells, which account for more than 90% of the wave conditions in the region, the sand tracers in the downcoast littoral drift were unable to bypass the canyon head. A flow convergence near the upcoast rim of the canyon intercepts the tracers and moves them either offshore onto the shelf just west of the canyon rim (low wave height conditions) or into the canyon head (storm wave conditions). This finding supports the notion that Mugu Canyon is the true terminus of the Santa Barbara Littoral Cell.

  2. Influence of San Gabriel submarine canyon on narrow-shelf sediment dynamics, southern California

    USGS Publications Warehouse

    Karl, Herman A.

    1980-01-01

    A conceptual model attributes the PTC to modification of shelf circulation patterns by San Gabriel Canyon. Surface waves diverge over the canyon head resulting in differential wave set up at the shore face. This forces back turbid nearshore water for a distance of a few kilometers toward the canyon. At some point on the shelf, seaward nearshore flow overlaps offshore currents generated or modified by internal waves focused onto the shelf by the canyon and/or turbulent eddies produced by flow separation in currents moving across the canyon axis. At times, these subtle processes overprint tidal and wind-driven currents and thereby create the PTC. The model suggests that canyons heading several kilometers from shore can have a regulatory effect on narrow-shelf sediment dynamics.

  3. Fluctuating Helical Asymmetry and Morphology of Snails (Gastropoda) in Divergent Microhabitats at ‘Evolution Canyons I and II,’ Israel

    PubMed Central

    Raz, Shmuel; Schwartz, Nathan P.; Mienis, Hendrik K.; Nevo, Eviatar; Graham, John H.

    2012-01-01

    Background Developmental instability of shelled gastropods is measured as deviations from a perfect equiangular (logarithmic) spiral. We studied six species of gastropods at ‘Evolution Canyons I and II’ in Carmel and the Galilee Mountains, Israel, respectively. The xeric, south-facing, ‘African’ slopes and the mesic, north-facing, ‘European’ slopes have dramatically different microclimates and plant communities. Moreover, ‘Evolution Canyon II’ receives more rainfall than ‘Evolution Canyon I.’ Methodology/Principal Findings We examined fluctuating asymmetry, rate of whorl expansion, shell height, and number of rotations of the body suture in six species of terrestrial snails from the two ‘Evolution Canyons.’ The xeric ‘African’ slope should be more stressful to land snails than the ‘European’ slope, and ‘Evolution Canyon I’ should be more stressful than ‘Evolution Canyon II.’ Only Eopolita protensa jebusitica showed marginally significant differences in fluctuating helical asymmetry between the two slopes. Contrary to expectations, asymmetry was marginally greater on the ‘European’ slope. Shells of Levantina spiriplana caesareana at ‘Evolution Canyon I,’ were smaller and more asymmetric than those at ‘Evolution Canyon II.’ Moreover, shell height and number of rotations of the suture were greater on the north-facing slopes of both canyons. Conclusions/Significance Our data is consistent with a trade-off between drought resistance and thermoregulation in snails; Levantina was significantly smaller on the ‘African’ slope, for increasing surface area and thermoregulation, while Eopolita was larger on the ‘African’ slope, for reducing water evaporation. In addition, ‘Evolution Canyon I’ was more stressful than Evolution Canyon II’ for Levantina. PMID:22848631

  4. Distribution and transport of suspended particulate matter in Monterey Canyon, California

    USGS Publications Warehouse

    Xu, J. P.; Noble, M.; Eittreim, S.L.; Rosenfeld, L.K.; Schwing, F.B.; Pilskaln, C.H.

    2002-01-01

    From August 1993 to August 1994, six moorings that measure current, temperature, salinity, and water clarity were deployed along the axis of Monterey Canyon to study the circulation and transport of water and suspended particulate matter through the canyon system. The moorings occupied three sites that are morphologically different: a narrow transverse section (axis width 900 m) at 1450 m water depth, a wide transverse section at 2837 m, and a third site in the fan valley axis farther offshore at 3223 m that recorded for 3 yr. In addition, CTD/transmissometer casts were conducted within and near the Monterey Canyon during four cruises. Our data show a mainly biogenic, surface turbid layer, a limited intermediate nepheloid layer, and a bottom nepheloid layer. There is a consistent presence of a turbid layer within the canyon at a water depth of about 1500 m. Tidal flow dominates at all sites, but currents above the canyon rim and within the canyon appear to belong to two distinct dynamic systems. Bottom intensification of currents plays an important role in raising the near-bottom shear stress high enough that bottom sediments are often, if not always, resuspended. Mean flow pattern suggests a convergence zone between the narrow and wide site: the near-bed (100 m above bottom where the lowest current meter was located) mean transport is down-canyon at the 1450-m site, while the near-bottom transport at the 2837-m site is up-canyon, at a smaller magnitude. Transport at the 3223-m site is dominantly NNW, cross-canyon, with periods of up-canyon flow over 3 yr. A very high-turbidity event was recorded 100 m above the canyon bottom at the narrow site. The event started very abruptly and lasted more than a week. This event was not detected at either of the deeper sites. A canyon head flushing event is likely the cause. ?? 2002 Elsevier Science B.V. All rights reserved.

  5. An Investigation of Amphitheater-Headed Canyon Distribution, Morphology Variation, and Longitudinal Profile Controls in Escalante and Tarantula Mesa, Utah.

    NASA Astrophysics Data System (ADS)

    Ryan, A. J.; Whipple, K. X.

    2014-12-01

    Amphitheater-headed canyons are primarily distinguished from typical fluvial channels by their abrupt headwall terminations. A key goal in the study of river canyons is to establish a reliable link between form and formation processes. This is of particular significance for Mars, where, if such links can be established, amphitheater-headed canyons could be used to determine ancient erosion mechanisms and, by inference, climate conditions. Type examples in arid regions on Earth, such as in Escalante River, Utah, previously have been interpreted as products of groundwater seepage erosion. We investigate amphitheater-headed canyons in Escalante and Tarantula Mesa where variations in canyon head morphology may hold clues for the relative roles of rock properties and fluvial and groundwater processes. In lower Escalante, amphitheaters are only present where canyons have breached the Navajo Sandstone - Kayenta Formation contact. In some canyons, amphitheater development appears to have been inhibited by an abundance of coarse bedload. In Tarantula Mesa, canyons have a variety of headwalls, from amphitheaters to stepped knickzones. Headwall morphology distribution is directly related to the spatially variable presence of knickpoint-forming, fine-grained interbeds within cliff-forming sandstones. Amphitheaters only form where the sandstone unit is undisrupted by these interbeds. Finally, most canyons in Escalante and Tarantula Mesa, regardless of substrate lithology, amphitheater presence, or groundwater spring intensity, are well described by a slope-area power law relationship with regionally constant concavity and normalized steepness indices. This suggests that all channels here are subject to the same erosion rates, independent of groundwater weathering intensity. Thus: 1) variations in canyon headwall form do not necessary relate to differences in fluvial history, 2) stratigraphic variations are clearly of importance in sedimentary canyon systems, and 3) although groundwater seepage weathering is clearly active in many canyons in Utah and may be responsible for amphitheater development, fluvial forces appear to be the dominant erosive force responsible for shaping stream profiles.

  6. Science Activities Associated with Proposed 2008 High-Flow Experiment at Glen Canyon Dam

    USGS Publications Warehouse

    Hamill, John

    2008-01-01

    Grand Canyon National Park lies approximately 15 miles downriver from Glen Canyon Dam, which was built on the Colorado River just south of the Arizona-Utah border. Because the dam stops most sediment moving downstream, its presence has resulted in erosion and shrinkage of river sandbars in Grand Canyon. Fewer and smaller sandbars mean smaller camping beaches for visitors to use, continued erosion of cultural sites, and possibly less habitat for native fish, including the endangered humpback chub. In an effort to restore sandbars and related habitat and to comply with its responsibilities under the Grand Canyon Protection Act, the Department of the Interior has proposed a high-flow release of water from Glen Canyon Dam in March 2008. The U.S. Geological Survey?s (USGS) Grand Canyon Monitoring and Research Center is responsible for coordinating research associated with the proposed experiment. The proposed studies are designed to evaluate the feasibility of using such high flows to improve a range of Grand Canyon resources.

  7. A sand budget for Marble Canyon, Arizona: implications for long-term monitoring of sand storage change

    USGS Publications Warehouse

    Grams, Paul E.

    2013-01-01

    Recent U.S. Geological Survey research is providing important insights into how best to monitor changes in the amount of tributary-derived sand stored on the bed of the Colorado River and in eddies in Marble Canyon, Arizona. Before the construction of Glen Canyon Dam and other dams upstream, sandbars in Glen, Marble, and Grand Canyons were replenished each year by sediment-rich floods. Sand input into the Colorado River is crucial to protecting endangered native fish, animals, and plants and cultural and recreational resources along the river in Glen Canyon National Recreation Area and Grand Canyon National Park.

  8. Grand Canyon Monitoring and Research Center

    USGS Publications Warehouse

    Hamill, John F.

    2009-01-01

    The Grand Canyon of the Colorado River, one of the world's most spectacular gorges, is a premier U.S. National Park and a World Heritage Site. The canyon supports a diverse array of distinctive plants and animals and contains cultural resources significant to the region's Native Americans. About 15 miles upstream of Grand Canyon National Park sits Glen Canyon Dam, completed in 1963, which created Lake Powell. The dam provides hydroelectric power for 200 wholesale customers in six western States, but it has also altered the Colorado River's flow, temperature, and sediment-carrying capacity. Over time this has resulted in beach erosion, invasion and expansion of nonnative species, and losses of native fish. Public concern about the effects of Glen Canyon Dam operations prompted the passage of the Grand Canyon Protection Act of 1992, which directs the Secretary of the Interior to operate the dam 'to protect, mitigate adverse impacts to, and improve values for which Grand Canyon National Park and Glen Canyon National Recreation Area were established...' This legislation also required the creation of a long-term monitoring and research program to provide information that could inform decisions related to dam operations and protection of downstream resources.

  9. Hanging canyons of Haida Gwaii, British Columbia, Canada: Fault-control on submarine canyon geomorphology along active continental margins

    NASA Astrophysics Data System (ADS)

    Harris, Peter T.; Barrie, J. Vaughn; Conway, Kim W.; Greene, H. Gary

    2014-06-01

    Faulting commonly influences the geomorphology of submarine canyons that occur on active continental margins. Here, we examine the geomorphology of canyons located on the continental margin off Haida Gwaii, British Columbia, that are truncated on the mid-slope (1200-1400 m water depth) by the Queen Charlotte Fault Zone (QCFZ). The QCFZ is an oblique strike-slip fault zone that has rates of lateral motion of around 50-60 mm/yr and a small convergent component equal to about 3 mm/yr. Slow subduction along the Cascadia Subduction Zone has accreted a prism of marine sediment against the lower slope (1500-3500 m water depth), forming the Queen Charlotte Terrace, which blocks the mouths of submarine canyons formed on the upper slope (200-1400 m water depth). Consequently, canyons along this margin are short (4-8 km in length), closely spaced (around 800 m), and terminate uniformly along the 1400 m isobath, coinciding with the primary fault trend of the QCFZ. Vertical displacement along the fault has resulted in hanging canyons occurring locally. The Haida Gwaii canyons are compared and contrasted with the Sur Canyon system, located to the south of Monterey Bay, California, on a transform margin, which is not blocked by any accretionary prism, and where canyons thus extend to 4000 m depth, across the full breadth of the slope.

  10. Erosional threshold for the formation of bedrock canyons carved by megafloods on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Lamb, Michael P.; Lapotre, Mathieu G. A.; Larsen, Isaac J.; Williams, Rebecca M. E.

    2017-04-01

    Enormous canyons have been carved into the surfaces of Earth and Mars by catastrophic outbursts of water. On Mars, these bedrock canyons, known as the planetary-scale outflow channels, are the most important indicator of large volumes of flowing water in the planet's history. Despite their importance and now decades of observations of canyon morphology, we lack a basic understanding of how the canyons formed, which limits our ability to reconstruct flood discharge, duration, and water volume. In this presentation I will summarize recent work - using mechanistic numerical models and field observations of similar landforms on Earth - that suggests that bedrock canyons carved by megafloods may rapidly evolve to a size and shape in which boundary shear stress just exceeds that required to entrain fractured blocks of rock. Recent advances in theory for plucking, sliding and toppling of fractured rock allow for quantitative constraints on erosion thresholds. Coupling these erosional constraints with 2-D hydrodynamic models at waterfalls shows that cataracts in basalt, which are common in megaflood terrain, evolve to a threshold state such that canyon width accurately reflects flood discharge. The erosional threshold hypothesis also is consistent with the formation of gravel bars in the Channeled Scablands of the Missoula Floods, USA, and with observations of a small flood-carved canyon from a dam overflow event in 2002 in Texas. Together, these studies suggest that canyons progressively erode in concert with megaflooding, such that flood waters never fully filled the final canyon relief, implying smaller flood discharges and longer durations than models that assume near canyon-filling floods routed over modern topography.

  11. High resolution morphobathymetric analysis and short-term evolution of the upper part of the Capbreton submarine canyon (south-east Bay of Biscay - French Atlantic coast)

    NASA Astrophysics Data System (ADS)

    Gillet, Hervé; Mazières, Alaïs; Mulder, Thierry; Cremer, Michel

    2013-04-01

    The Capbreton Canyon stands out by its deep incision through continental shelf and slope and its present turbidite activity. The head of the canyon is anthropically disconnected from the Adour River since 1310 AD, but is located close enough to the coast to allow a direct supply by longshore drift. Sedimentary processes in upper part of the Capbreton Canyon are poorly documented. Several evidences, including sandy slide scars in the head, suggest that this area plays a major role in triggering downstream gravity currents). However, no modern sedimentary activity in the upper canyon had so far been evidenced. Our study is based on the analysis and comparison of several sets of multibeam bathymetric data acquired in 1998, 2010 and 2012 (up to 1.5 m resolution). The morphobathymetric analysis brought the following key observations: - The upper part of the canyon is characterised by a meandering talweg underlined by two kinds of terraces: (1) small elongated terraces standing only 10 to 15 m above the talweg axis and (2) large terraces standing 45 to 100 m above the talweg axis. - The regular 1° longitudinal slope of the talweg is interrupted by several 10 m high knickpoints. - The floor of the talweg shows some rough areas scattered with transversal bedforms similar to the sediment waves described in the Monterey Canyon upper part (Smith et al, 2005). The morphological evolutions in the upper part of the canyon over the last 14 years especially affect the floor of the talweg: - Between 1998 and 2010, we observe a downstream succession of accretion areas (up to 11m thick) and erosion areas (reaching -25 m). The largest and highest terraces remain stable over this period, whereas the smallest and lowest elongated terraces show active sedimentation (+5 to +8 m). - Difference between 2010 and 2012 DEMs reveals three localized erosion spots corresponding to 200 m backward stepping of the knickpoints. Such observation confirms the active headward erosion in this part of the canyon. - Conversely, the flanks of this part of the canyon do not show significant evolution. We did not observe any large lateral slide such as the canyon flank collapse recently recognised in the upper part of the Monterey or Cap Lopez canyons. (1)Since the lateral sediment supply in the canyon seems to be limited (no significant evolution of the canyon wall), we consider that most of the sediments deposited in this area is supplied from the canyon head. (2)We propose that the lowest elongated terraces are the remnant of sandy slides confined in the upper talweg and later overdeepened by the regressive erosion. This process contrasts with the downstream part of the canyon, where the terraces are constructed by the spilling of turbidity current. (3)These results are consistent with the process evidenced in the head of the canyon and support the assumption that the turbidite processes in modern canyons are related to sandy mass sliding from the head of the canyon.

  12. 75 FR 51990 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ...-1225-009; ER09- 1321-005. Applicants: Blue Canyon Windpower II LLC, Cloud County Wind Farm, LLC, Blue Canyon Windpower LLC, Blue Canyon Windpower V LLC. Description: Supplement to Updated Market Power Anaylsis for Blue Canyon Windpower LLC, et. al. Filed Date: 08/17/2010. Accession Number: 20100817-5034...

  13. 24. VIEW OF CANYON TAKEN FROM NORTH CANYON RIM AROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. VIEW OF CANYON TAKEN FROM NORTH CANYON RIM AROUND 1920. CAMERA FACES SOUTH. VILLAGE IS TREE-COVERED AREA TO LEFT OF DAM AND POWERHOUSE. SUPERINTENDENT SAM GLASS'S ORCHARD IS DOWNSTREAM OF DAM ABOUT A QUARTER OF A MILE. - Swan Falls Village, Snake River, Kuna, Ada County, ID

  14. 7. DARK CANYON SIPHON Photographic copy of construction drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DARK CANYON SIPHON - Photographic copy of construction drawing c1907 (from Record Group 115, Box 17, Denver Branch of the National Archives, Denver) DARK CANYON SIPHON PLAN, ELEVATION, AND SECTIONS - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  15. Valles Marineris and Chryse Outflow Channels

    NASA Image and Video Library

    1998-06-08

    A color image of Valles Marineris, the great canyon and the south Chryse basin-Valles Marineris outflow channels of Mars; north toward top. The scene shows the entire Valles Marineris canyon system, over 3,000 km long and averaging 8 km deep, extending from Noctis Labyrinthus, the arcuate system of graben to the west, to the chaotic terrain to the east and related outflow canyons that drain toward the Chryse basin. Eos and Capri Chasmata (south to north) are two canyons connected to Valles Marineris. Ganges Chasma lies directly north. The chaos in the southeast part of the image gives rise to several outflow channels, Shalbatana, Simud, Tiu, and Ares Valles (left to right), that drained north into the Chryse basin. The mouth of Ares Valles is the site of the Mars Pathfinder lander. This image is a composite of Viking medium-resolution images in black and white and low-resolution images in color; Mercator projection. The image roughly extends from latitude 20 degrees S. to 20 degrees N. and from longitude 15 degrees to 102.5 degrees. The connected chasma or valleys of Valles Marineris may have formed from a combination of erosional collapse and structural activity. Layers of material in the eastern canyons might consist of carbonates deposited in ancient lakes, eolian deposits, or volcanic materials. Huge ancient river channels began from Valles Marineris and from adjacent canyons and ran north. Many of the channels flowed north into Chryse Basin. The south Chryse outflow channels are cut an average of 1 km into the cratered highland terrain. This terrain is about 9 km above datum near Valles Marineris and steadily decreases in elevation to 1 km below datum in the Chryse basin. Shalbatana is relatively narrow (10 km wide) but can reach 3 km in depth. The channel begins at a 2- to 3-km-deep circular depression within a large impact crater, whose floor is partly covered by chaotic material, and ends in Simud Valles. Tiu and Simud Valles consist of a complex of connected channel floors and chaotic terrain and extend as far south as and connect to eastern Valles Marineris. Ares Vallis originates from discontinuous patches of chaotic terrain within large craters. In the Chryse basin the Ares channel forks; one branch continues northwest into central Chryse Planitia and the other extends north into eastern Chryse Planitia. http://photojournal.jpl.nasa.gov/catalog/PIA00426

  16. Analysis of Submarine Landslides and Canyons along the U.S. Atlantic Margin Using Extended Continental Shelf Mapping Data

    NASA Astrophysics Data System (ADS)

    Chaytor, J. D.; Brothers, D. S.; Ten Brink, U. S.; Hoy, S. K.; Baxter, C.; Andrews, B.

    2013-12-01

    U.S. Geological Survey (USGS) studies of the U.S. Atlantic continental slope and rise aim to understand the: 1) the role of submarine landslides in tsunami generation, and 2) the linkages between margin morphology and sedimentary processes, particularly in and around submarine canyon systems. Data from U.S. Extended Continental Shelf (ECS) and numerous subsequent mapping surveys have facilitated the identification and characterization of submarine landslides and related features in fine detail over an unprecedented spatial extent. Ongoing analysis of USGS collected piston cores, sub-bottom and multichannel seismic (MCS) reflection profiles, and an extensive suite of legacy MCS data from two landslides, the Southern New England landslide zone and the Currituck Landslide, suggest that the most recent major landslide events are pre-Holocene, but that failures were complex and most likely multi-phase, at times resulting in extensive overlapping debris deposits. Piston core records plus visual observations of the seafloor from recent TowCam deployments and NOAA Ship Okeanos Explorer ROV dives reveal ongoing development of colluvial wedge-style debris aprons at the base of scarps within these landslides, showing that these regions continue to evolve long after the initial failure events. Multibeam bathymetry data and MCS profiles along the upper slope reveal evidence for vertical fluid migration and possible seabed gas expulsion. These observations underscore the need to reevaluate the sources of pore fluid overpressure in slope sediments and their role in landslide generation. ECS and more recent multibeam mapping have provided the opportunity to investigate the full extent of submarine canyon morphology and evolution from Cape Hatteras up to the US-Canadian EEZ, which has led to better understanding of the important role of antecedent margin physiography on their development. Six submarine canyon systems along the margin (Veatch, Hydrographer, Hudson, Wilmington-Baltimore, Norfolk-Washington, and Hatteras) are being investigated from the canyon heads down to their deep-water submarine fans in an effort to characterize their sediment transport history and constrain the influences of external processes on their morphology. Each canyon-fan system is morphologically unique and is strongly controlled by source region, antecedent margin morphology, landslide and debris flow processes, and the long-term influence of deep-water (along-slope) currents.

  17. Sediment dynamics and post-glacial evolution of the continental shelf around the Blanes submarine canyon head (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Durán, Ruth; Canals, Miquel; Lastras, Galderic; Micallef, Aaron; Amblas, David; Pedrosa-Pàmies, Rut; Sanz, José Luis

    2013-11-01

    The Blanes submarine canyon (BC) deeply incises the Catalan continental shelf in the NW Mediterranean Sea. As a consequence of the closeness (only 4 km) of its head to the coastline and the mouth of the Tordera River, the canyon has a direct influence on the shelf dispersal system as it collects large amounts of sediment, mainly during high-energy events. Multibeam bathymetry, backscatter imagery and very-high resolution seismic reflection profiles have allowed characterizing the morphology of the continental shelf around the canyon head, also identifying sediment sources and transport pathways into the canyon. The morphological data have also been used to reconstruct the evolution of the continental shelf during the last sea-level transgression so that the current understanding of shelf-to-canyon sediment exchanges through time could be improved. The continental shelf surrounding the BC consists of both depositional and erosional or non-depositional areas. Depositional areas display prominent sediment bodies, a generally smooth bathymetry and variable backscatter. These include: (i) an area of modern coarse-grained sediment accumulation that comprises the inner shelf; (ii) a modern fine-grained sedimentation area on the middle shelf offshore Tossa de Mar; and (iii) a modern sediment depleted area that covers most of the middle and outer shelf to the west of the canyon head. Erosional and non-depositional areas display a rough topography and high backscatter, and occur primarily to the east of the canyon head, where the arrival of river-fed inputs is very small. In agreement with this pattern, the continental shelf north and west of the canyon head likely is the main source of shelf sediment into the canyon. To the north, a pattern of very high backscatter extends from the coastline to the canyon head, suggesting the remobilization and off-shelf export of fines. Additionally, relict near-shore sand bodies developed over the Barcelona shelf that extend to the canyon head rim constitute a source of coarse sediment. High-energy processes, namely river floods and coastal storms, are the main controls over the river-shelf-canyon sediment exchange. River floods increase the delivery of terrigenous particles to the coastal system. Storms, mainly from the east, remobilize the sediment temporarily accumulated on the shelf towards the canyon head, so that the finer fractions are preferentially removed and a coarse lag is normally left on the shelf floor. Exceptionally, very strong storms also remove the coarse fractions from the shelf drive them into the canyon. Processes like dense shelf water cascading, which is much more intense in canyons to the north of BC, and the Northern Current also contribute to the transport of suspended sediment from far distant northern sources. During the last post-glacial transgression the BC had a strong influence on the evolution of the inner continental margin, as it interrupted the shelf sediment dispersal system by isolating the shelves to its north and south, named La Planassa and Barcelona shelves, respectively. The detailed study of the geomorphology and uppermost sediment cover of the continental shelf surrounding the Blanes submarine canyon yields insight into the past and present shelf sediment dynamics and the shelf-to-canyon sediment exchanges. The continental shelf near the canyon head consists of mosaic where erosional, or non-depositional, and depositional zones coexist. East of the canyon and offshore Tossa de Mar, the modern sediment deposition is mostly confined to the inner and middle shelf, whilst most of the La Planassa shelf is sediment depleted with numerous relict morphosedimentary features cropping out. Rocky outcrops, narrow ridges and relict coarse sand deposits suggesting erosion or non-deposition of fine sediments in modern times occupy the middle and outer shelf floor east and northeast of the canyon head. In contrast, north and west of the canyon head, the middle and outer shelf comprises several large relict sand bodies that point out to long-term deposition. However, the lack of modern sediments on top of these bodies supports active erosion or by-pass in present times. The morphology of the continental shelf near the canyon head records the imprint of the main factors controlling the shelf sediment-dispersal system and provides evidence for the main sources and transport pathways of sediment from the shelf into the canyon. The depletion of fine sediments on the continental shelf, as evidenced by backscatter data, suggests that the Blanes Canyon acts as a sediment trap collecting the finest fractions resuspended primarily from the adjacent shelf to the north. The main processes that control the shelf-to-canyon transfer of sediment are eastern storms, which enhance the off-shelf export of mainly fine sediment from the shelf. Particularly severe storms are also able to remobilize and transport coarse sediment from the shelf and also from the relict sand bodies into the canyon. Other processes, such as DSWC and the Northern Current, contribute to a lesser extent to the transport of sediment along the shelf and into the canyon. During the last post-glacial transgression, the BC played a crucial role in the shaping of the continental shelf surrounding it by cutting the littoral drift of sediment between the shelf areas to the north and south, thus severely modifying the across- and along-shelf sediment pathways. As a result, to the east of the canyon, the poor development of transgressive deposits indicates the prevalence of erosion and non-deposition associated to a limited sediment supply and an effective action of the littoral drift leading to a south-westward transport of sediment towards the canyon head. To the north and west of the canyon the morphology of the continental shelf changed significantly during the sea-level rise. At the early stage of the transgression, the sediment supplied by the Tordera River was discharged directly into the canyon, thus preventing deposition over the shelf. Later, the progressive sea-level rise favoured the development of large depositional bodies on the Barcelona shelf favoured by the increase of accommodation space and the augmenting distance between the river mouth and the canyon head. A drastic change in the configuration of the shelf occurred when the sea-level raised enough to flood the entire continental shelf. The along-shelf sediment transport between the shelf areas to the north and south of the canyon head was then restored and new sediment bodies were formed between the coastline and the canyon tip. At present, these sediment bodies constitute the primary source of coarse sediment into the BC. These results confirm that the Blanes submarine canyon head is highly dynamic and sensitive to a variety of processes that enhance the transport of sediment from the shelf into the canyon, particularly during major storms.

  18. Architecture and development of a multi-stage Baiyun submarine slide complex in the Pearl River Canyon, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Wu, Shi-Guo; Li, Qing-Ping; Wang, Da-Wei; Fu, Shao-Ying

    2014-08-01

    The Baiyun submarine slide complex (BSSC) along the Pearl River Canyon of the northern South China Sea has been imaged by multibeam bathymetry and 2D/3D seismic data. By means of maximum likelihood classification with slope aspect and gradient as inputs, the BSSC is subdivided into four domains, denoted as slide area I, II, III and IV. Slide area I is surrounded by cliffs on three sides and has been intensely reshaped by turbidity currents generated by other kinds of mass movement outside the area; slide area II incorporates a shield volcano with a diameter of approximately 10 km and unconfined slides possibly resulting from the toe collapse of inter-canyon ridges; slide area III is dominated by repeated slides that mainly originated from cliffs constituting the eastern boundary of the BSSC; slide area IV is distinguished by a conical seamount with a diameter of 6.5 km and a height of 375 m, and two slides probably having a common source that are separated from each other by a suite of residual strata. The BSSC is interpreted to be composed of numerous slide events, which occurred in the period from 10.5 to 5.5 Ma BP. Six specific factors may have contributed to the development of the BSSC, i.e., gas hydrate dissociation, gas-bearing sediments, submarine volcanic activity, seismicity, sedimentation rate and seafloor geomorphology. A 2D conceptual geological model combining these factors is proposed as a plausible mechanism explaining the formation of the BSSC. However, the BSSC may also have been affected by the Dongsha event (10 Ma BP) as an overriding factor.

  19. School Is Hell: Gendered Fears in Teenage Horror.

    ERIC Educational Resources Information Center

    Jarvis, Christine

    2001-01-01

    Explores the use of schools as settings for teenage horror films. Asserts that these narratives reflect the stress of social pressures and uncertainties, particularly young girls. Focuses on the television show, "Buffy the Vampire Slayer," while making this argument. Includes references. (CMK)

  20. 75 FR 11155 - Combined Notice of Filings No. 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ...; ER08-1225-009; ER09- 1321-005. Applicants: Blue Canyon Windpower II LLC, Cloud County Wind Farm, LLC, Blue Canyon Windpower LLC, Blue Canyon Windpower V LLC. Description: Updated Market Power Analysis of Blue Canyon Windpower LLC, et al. Filed Date: 02/26/2010. Accession Number: 20100226-5194. Comment Date...

  1. 77 FR 8895 - Jimbilnan, Pinto Valley, Black Canyon, Eldorado, Ireteba Peaks, Nellis Wash, Spirit Mountain, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ..., Pinto Valley, Black Canyon, Eldorado, Ireteba Peaks, Nellis Wash, Spirit Mountain, and Bridge Canyon..., Eldorado, Ireteba Peaks, Nellis Wash, Spirit Mountain, and Bridge Canyon Wilderness Areas, Lake Mead... wilderness character; providing for reasonable use of Spirit Mountain and adjacent areas in a manner meeting...

  2. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Copper Canyon, Lake Havasu... Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River—Regulated Navigation Area. (a) Location. The following is a regulated navigation area: (1) In the water area of Copper Canyon, Lake Havasu...

  3. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Copper Canyon, Lake Havasu... Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River—Regulated Navigation Area. (a) Location. The following is a regulated navigation area: (1) In the water area of Copper Canyon, Lake Havasu...

  4. 77 FR 51022 - Clark Canyon Hydro, LLC; Notice of Application Accepted for Filing, Ready for Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12429-007] Clark Canyon... b. Project No.: 12429-007. c. Date Filed: May 31, 2012. d. Applicant: Clark Canyon Hydro, LLC . e. Name of Project: Clark Canyon Dam Hydroelectric Project. f. Location: When constructed, the project...

  5. 78 FR 17389 - Clark Canyon Hydro, LLC; Notice of Application for Amendment of License and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-21

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12429-009] Clark Canyon...: 12429-009. c. Date Filed: January 28, 2013. d. Applicant: Northwest Power Services on behalf of Clark Canyon Hydro, LLC. e. Name of Project: Clark Canyon Dam Hydroelectric Project. f. Location: The Clark...

  6. 5. DARK CANYON SIPHON Photographic copy of historic photo, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DARK CANYON SIPHON - Photographic copy of historic photo, November 11, 1906 (original print located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown 'LOWER END OF DARK CANYON SIPHON CONSTRUCTION' - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  7. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Li, Xian-Xiang; Britter, Rex E.; Norford, Leslie K.; Koh, Tieh-Yong; Entekhabi, Dara

    2012-02-01

    A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street canyon of aspect ratio 2 and 0.5, while only the street canyon of aspect ratio 0.5 showed a change in flow regime (from wake interference flow to skimming flow). The street canyon of aspect ratio 1 does not show any significant change in the flow field. Ground heating generated strong mixing of heat and pollutant; the normalized temperature inside street canyons was approximately spatially uniform and somewhat insensitive to the aspect ratio and heating intensity. This study helps elucidate the combined effects of urban geometry and thermal stratification on the urban canyon flow and pollutant dispersion.

  8. Bottom-trawling along submarine canyons impacts deep sedimentary regimes.

    PubMed

    Paradis, Sarah; Puig, Pere; Masqué, Pere; Juan-Díaz, Xènia; Martín, Jacobo; Palanques, Albert

    2017-02-24

    Many studies highlight that fish trawling activities cause seafloor erosion, but the assessment of the remobilization of surface sediments and its relocation is still not well documented. These impacts were examined along the flanks and axes of three headless submarine canyons incised on the Barcelona continental margin, where trawling fleets have been operating for decades. Trawled grounds along canyon flanks presented eroded and highly reworked surface sediments resulting from the passage of heavy trawling gear. Sedimentation rates on the upper canyon axes tripled and quadrupled its natural (i.e. pre-industrialization) values after a substantial increase in total horsepower of the operating trawling fleets between 1960 s and 1970 s. These impacts affected the upper canyon reaches next to fishing grounds, where sediment resuspended by trawling can be transported towards the canyon axes. This study highlights that bottom trawling has the capacity to alter natural sedimentary environments by promoting sediment-starved canyon flanks, and by enhancing sedimentation rates along the contiguous axes, independently of canyons' morphology. Considering the global mechanisation and offshore expansion of bottom trawling fisheries since the mid-20 th century, these sedimentary alterations may occur in many trawled canyons worldwide, with further ecological impacts on the trophic status of these non-resilient benthic communities.

  9. Street canyon aerosol pollutant transport measurements.

    PubMed

    Longley, I D; Gallagher, M W; Dorsey, J R; Flynn, M; Bower, K N; Allan, J D

    2004-12-01

    Current understanding of dispersion in street canyons is largely derived from relatively simple dispersion models. Such models are increasingly used in planning and regulation capacities but are based upon a limited understanding of the transport of substances within a real canyon. In recent years, some efforts have been made to numerically model localised flow in idealised canyons (e.g., J. Appl. Meteorol. 38 (1999) 1576-89) and stepped canyons (Assimakopoulos V. Numerical modelling of dispersion of atmospheric pollution in and above urban canopies. PhD thesis, Imperial College, London, 2001) but field studies in real canyons are rare. To further such an understanding, a measurement campaign has been conducted in an asymmetric street canyon with busy one-way traffic in central Manchester in northern England. The eddy correlation method was used to determine fluxes of size-segregated accumulation mode aerosol. Measurements of aerosol at a static location were made concurrently with measurements on a platform lift giving vertical profiles. Size-segregated measurements of ultrafine and coarse particle concentrations were also made simultaneously at various heights. In addition, a small mobile system was used to make measurements of turbulence at various pavement locations within the canyon. From this data, various features of turbulent transport and dispersion in the canyon will be presented. The concentration and the ventilation fluxes of vehicle-related aerosol pollutants from the canyon will be related to controlling factors. The results will also be compared with citywide ventilation data from a separate measurement campaign conducted above the urban canopy.

  10. Impact of roof height non-uniformity on pollutant transport between a street canyon and intersections.

    PubMed

    Nosek, Štěpán; Kukačka, Libor; Jurčáková, Klára; Kellnerová, Radka; Jaňour, Zbyněk

    2017-08-01

    This paper presents an extension of our previous wind-tunnel study (Nosek et al., 2016) in which we highlighted the need for investigation of the removal mechanisms of traffic pollution from all openings of a 3D street canyon. The extension represents the pollution flux (turbulent and advective) measurements at the lateral openings of three different 3D street canyons for the winds perpendicular and oblique to the along-canyon axis. The pollution was simulated by emitting a passive gas (ethane) from a homogeneous ground-level line source positioned along the centreline of the investigated street canyons. The street canyons were formed by courtyard-type buildings of two different regular urban-array models. The first model has a uniform building roof height, while the second model has a non-uniform roof height along each building's wall. The mean flow and concentration fields at the canyons' lateral openings confirm the findings of other studies that the buildings' roof-height variability at the intersections plays an important role in the dispersion of the traffic pollutants within the canyons. For the perpendicular wind, the non-uniform roof-height canyon appreciably removes or entrains the pollutant through its lateral openings, contrary to the uniform canyon, where the pollutant was removed primarily through the top. The analysis of the turbulent mass transport revealed that the coherent flow structures of the lateral momentum transport correlate with the ventilation processes at the lateral openings of all studied canyons. These flow structures coincide at the same areas and hence simultaneously transport the pollutant in opposite directions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Multibeam bathymetric survey of the Ipala Submarine Canyon, Jalisco, Mexico (20°N): The southern boundary of the Banderas Forearc Block?

    NASA Astrophysics Data System (ADS)

    Urías Espinosa, J.; Bandy, W. L.; Mortera Gutiérrez, C. A.; Núñez Cornú, Fco. J.; Mitchell, N. C.

    2016-03-01

    The Middle America Trench bends sharply northward at 20°N. This, along with the close proximity of the Rivera-North America Euler pole to the northern end of this trench, sharply increases the obliquity of subduction at 20°N. By analogy with other subduction zones with similar sharply changing obliquity, significant trench parallel extension is expected to exist in the forearc region near the bend. To evaluate this possibility, multibeam bathymetric, seafloor backscatter and sub-bottom seismic reflection data were collected in this area during the MORTIC08 campaign of the B.O. El Puma. These data image in detail a large submarine canyon (the Ipala Canyon) extending from the coast at 20°05‧N to the Middle America Trench at 19°50‧N. This canyon is 114 km long and is fed by sediments originating from two, possibly three, small rivers: the Ipala, Tecolotlán and Maria Garza. This canyon deeply incises (up to 600 m) the entire continental slope and at least the outer part of the shelf. Within the canyon, we observe meanders and narrow channels produced by turbidity flows indicating that the canyon is active. In the marginal areas of the canyon slumps, rills, and uplifts suggest that mass movements and fluid flow have had a major impact on the seafloor morphology. The seafloor bathymetry, backscatter images and sub-bottom reflection profiles evidence the tectonic processes occurring in this area. Of particular interest, the canyon is deflected by almost 90° at three locations, the deflections all having a similar azimuth of between 125° and 130°. Given the prominence and geometry of this canyon, along with its tectonic setting, we propose that the presence of the canyon is related to extension produced by the sharp change in the plate convergence. If so, the canyon may lie along the southeast boundary of a major forearc block (the Banderas Forearc Block).

  12. Sediment transport processes at the head of Halibut Canyon, Eastern Canada margin: An interplay between internal tides and dense shelf water cascading.

    NASA Astrophysics Data System (ADS)

    Puig, Pere; Greenan, Blair J. W.; Li, Michael Z.; Prescott, Robert H.; Piper, David J. W.

    2013-04-01

    To investigate the processes by which sediment is transported through a submarine canyon incised in a glaciated margin, the bottom boundary layer quadrapod RALPH was deployed at 276-m depth in the West Halibut Canyon (off Newfoundland) during winter 2008-2009. Two main sediment transport processes were identified throughout the deployment. Firstly, periodic increases of near-bottom suspended-sediment concentrations (SSC) were recorded associated with the up-canyon propagation of the semidiurnal internal tidal bore along the canyon axis, carrying fine sediment particles resuspended from deeper canyon regions. The recorded SSC peaks, lasting less than one hour, were observed sporadically and were linked to bottom intensified up-canyon flows concomitant with sharp drops in temperature. Secondly, sediment transport was also observed during events of intensified down-canyon current velocities that occurred during periods of sustained heat loss from surface waters, but were not associated with large storms. High-resolution velocity profiles throughout the water column during these events revealed that the highest current speeds (~1 m s-1) were centered several meters above the sea floor and corresponded to the region of maximum velocities of a gravity flow. Such flows had associated low SSC and cold water temperatures and have been interpreted as dense shelf water cascading events channelized along the canyon axis. Sediment transport during these events was largely restricted to bedload and saltation, producing winnowing of sands and fine sediments around larger gravel particles. Analysis of historical hydrographic data suggests that the origin of such gravity flows is not related to the formation of coastal dense waters advected towards the canyon head. Rather, the dense shelf waters appear to be generated around the outer shelf, where convection during winter is able to reach the sea floor and generate a pool of near-bottom dense water that cascades into the canyon during one or two tidal cycles. A similar transport mechanism can occur in other submarine canyons along the eastern Canadian margin, as well in other canyoned regions elsewhere, where winter convection generally reaches the shelf-edge.

  13. Modes of development of slope canyons and their relation to channel and levee features on the Ebro sediment apron, off-shore northeastern Spain

    USGS Publications Warehouse

    O'Connell, S.; Ryan, William B. F.; Normark, W.R.

    1987-01-01

    Six submarine slope canyons in an area of the northwestern Mediterranean, offshore from the Ebro River and Delta, were surveyed with bathymetric swathmapping (SeaBeam) and mid-range side-looking sonar (SeaMARC I). All of the canyons have slightly winding paths with concave-upwards gradients that are relatively steep shallower than 1,200 m. Two major types of canyons are identified on the basis of their morphologic character at the base of the slope; Type-I canyons lead to an unchannelled base-of-slope deposit and Type-II canyons are continuous with channel-levee systems that cross the rise. Four Type-I canyons were surveyed in the area. Two of these are broad, U-shaped, steep (average gradients of 1:14), do not indent the shelf, and terminate downslope at debris-flow deposits. These two canyons, the most northern in the area, have rounded heads with extensive gullies separated by knife-edge ridges. Relief of the canyon walls is about equal on both sides of the canyons, although the right-hand walls (looking downslope) are generally steeper. The other two Type-I canyons in the area are similar in that they do not indent the shelf, but they are much smaller and shallower and coalesce before terminating in the base-of-slope region. The two Type-II canyons that feed leveed-channels are U-shaped with flatter floors, longer profiles and gentler gradients than Type-I canyons. They are closer to the Valencia Valley and have relatively small cross-sectional areas. We propose a four-stage evolutionary sequence to explain the development of the canyons observed in this section on the prograding Ebro margin. During the initial stage, slumping and erosion on the slope creates a network of small gullies. During the next stage, headward growth of one (or more) gully leads to a major indentation of the shelf. This is the critical factor for developing a channel that will incise the slope and provide a major conduit for moving sediment to the basin. Stage 3 is characterized by the development of a continuous channel accompanied by levee growth across the lobe. In the final stage, the channel-levee system becomes inactive either through destruction by mass wasting, infilling of the channel, or loss of the major sediment source. ?? 1987.

  14. Late Holocene earthquake history of the Brigham City segment of the Wasatch fault zone at the Hansen Canyon, Kotter Canyon, and Pearsons Canyon trench sites, Box Elder County, Utah

    USGS Publications Warehouse

    DuRoss, Christopher B.; Personius, Stephen F.; Crone, Anthony J.; McDonald, Greg N.; Briggs, Richard W.

    2012-01-01

    Of the five central segments of the Wasatch fault zone (WFZ) having evidence of recurrent Holocene surface-faulting earthquakes, the Brigham City segment (BCS) has the longest elapsed time since its most recent surface-faulting event (~2.1 kyr) compared to its mean recurrence time between events (~1.3 kyr). Thus, the BCS has the highest time-dependent earthquake probability of the central WFZ. We excavated trenches at three sites––the Kotter Canyon and Hansen Canyon sites on the north-central BCS and Pearsons Canyon site on the southern BCS––to determine whether a surface-faulting earthquake younger than 2.1 ka occurred on the BCS. Paleoseismic data for Hansen Canyon and Kotter Canyon confirm that the youngest earthquake on the north-central BCS occurred before 2 ka, consistent with previous north-central BCS investigations at Bowden Canyon and Box Elder Canyon. At Hansen Canyon, the most recent earthquake is constrained to 2.1–4.2 ka and had 0.6–2.5 m of vertical displacement. At Kotter Canyon, we found evidence for two events at 2.5 ± 0.3 ka and 3.5 ± 0.3 ka, with an average displacement per event of 1.9–2.3 m. Paleoseismic data from Pearsons Canyon, on the previously unstudied southern BCS, indicate that a post-2 ka earthquake ruptured this part of the segment. The Pearsons Canyon earthquake occurred at 1.2 ± 0.04 ka and had 0.1–0.8 m of vertical displacement, consistent with our observation of continuous, youthful scarps on the southern 9 km of the BCS having 1–2 m of late Holocene(?) surface offset. The 1.2-ka earthquake on the southern BCS likely represents rupture across the Weber–Brigham City segment boundary from the penultimate Weber-segment earthquake at about 1.1 ka. The Pearsons Canyon data result in a revised length of the BCS that has not ruptured since 2 ka (with time-dependent probability implications), and provide compelling evidence of at least one segment-boundary failure and multi-segment rupture on the central WFZ. Our paleoseismic investigations of the BCS clarify the timing, displacement, and extent of late Holocene earthquakes on the segment, and importantly, confirm the long elapsed time since the most recent earthquake on most of the BCS.

  15. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickerson, R.P.; Drake, R.M. II

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits ofmore » pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited.« less

  16. 6 Ma age of carving Westernmost Grand Canyon: Reconciling geologic data with combined AFT, (U-Th)/He, and 4He/3He thermochronologic data

    NASA Astrophysics Data System (ADS)

    Winn, Carmen; Karlstrom, Karl E.; Shuster, David L.; Kelley, Shari; Fox, Matthew

    2017-09-01

    Conflicting hypotheses about the timing of carving of the Grand Canyon involve either a 70 Ma (;old;) or <6 Ma (;young;) Grand Canyon. This paper evaluates the controversial westernmost segment of the Grand Canyon where the following lines of published evidence firmly favor a ;young; Canyon. 1) North-derived Paleocene Hindu Fanglomerate was deposited across the present track of the westernmost Grand Canyon, which therefore was not present at ∼55 Ma. 2) The 19 Ma Separation Point basalt is stranded between high relief side canyons feeding the main stem of the Colorado River and was emplaced before these tributaries and the main canyon were incised. 3) Geomorphic constraints indicate that relief generation in tributaries and on plateaus adjacent to the westernmost Grand Canyon took place after 17 Ma. 4) The late Miocene-Pliocene Muddy Creek Formation constraint shows that no river carrying far-traveled materials exited at the mouth of the Grand Canyon until after 6 Ma. Interpretations of previously-published low-temperature thermochronologic data conflict with these lines of evidence, but are reconciled in this paper via the integration of three methods of analyses on the same sample: apatite (U-Th)/He ages (AHe), 4He/3He thermochronometry (4He/3He), and apatite fission-track ages and lengths (AFT). HeFTy software was used to generate time-temperature (t-T) paths that predict all new and published 4He/3He, AHe, and AFT data to within assumed uncertainties. These t-T paths show cooling from ∼100 °C to 40-60 °C in the Laramide (70-50 Ma), long-term residence at 40-60 °C in the mid-Tertiary (50-10 Ma), and cooling to near-surface temperatures after 10 Ma, and thus support young incision of the westernmost Grand Canyon. A subset of AHe data, when interpreted alone (i.e. without 4He/3He or AFT data), are better predicted by t-T paths that cool to surface temperatures during the Laramide, consistent with an ;old; Grand Canyon. However, the combined AFT, AHe, and 4He/3He analysis of a key sample from Separation Canyon can only be reconciled by a ;young; Canyon. Additional new AFT (5 samples) and AHe data (3 samples) in several locations along the canyon corridor also support a ;young; Canyon. This inconsistency, which mimics the overall controversy of the age of the Grand Canyon, is reconciled here by optimizing cooling paths so they are most consistent with multiple thermochronometers from the same rocks. To do this, we adjusted model parameters and uncertainties to account for uncertainty in the rate of radiation damage annealing in these apatites during sedimentary burial and the resulting variations in He retentivity. In westernmost Grand Canyon, peak burial conditions (temperature and duration) during the Laramide were likely insufficient to fully anneal radiation damage that accumulated during prolonged, near-surface residence since the Proterozoic. We conclude that application of multiple thermochronometers from common rocks reconciles conflicting thermochronologic interpretations and the data presented here are best explained by a ;young; westernmost Grand Canyon. Samples spread along the river corridor also suggest the possibility of variable mid-Tertiary thermal histories beneath north-retreating cliffs.

  17. Geologic Map of the House Rock Valley Area, Coconino County, Northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Priest, Susan S.

    2010-01-01

    This geologic map is a cooperative effort of the U.S. Geological Survey (USGS), the Bureau of Land Management, the National Park Service, and the U.S. Forest Service to provide a geologic database for resource management officials and visitor information services. This map was produced in response to information needs related to a proposed withdrawal of three segregated land areas near Grand Canyon National Park, Arizona, from new hard rock mining activity. House Rock Valley was designated as the east parcel of the segregated lands near the Grand Canyon. This map was needed to provide connectivity for the geologic framework of the Grand Canyon segregated land areas. This geologic map of the House Rock Valley area encompasses approximately 280 mi2 (85.4 km2) within Coconino County, northern Arizona, and is bounded by longitude 111 degrees 37'30' to 112 degrees 05' W. and latitude 36 degrees 30' to 36 degrees 50' N. The map area is in the eastern part of the Arizona Strip, which lies within the southern Colorado Plateaus geologic province (herein Colorado Plateau). The Arizona Strip is the part of Arizona lying north of the Colorado River. The map is bound on the east by the Colorado River in Marble Canyon within Grand Canyon National Park and Glen Canyon National Recreation Area, on the south and west by the Kaibab National Forest and Grand Canyon National Game Preserve, and on the north by the Vermilion Cliffs Natural Area, the Paria Canyon Vermilion Cliffs Wilderness Area, and the Vermilion Cliffs National Monument. House Rock State Buffalo Ranch also bounds the southern edge of the map area. The Bureau of Land Management Arizona Field Office in St. George, Utah, manages public lands of the Vermilion Cliffs Natural Area, Paria Canyon - Vermilion Cliffs Wilderness and Vermilion Cliffs National Monument. The North Kaibab Ranger District in Fredonia, Arizona, manages U.S. Forest Service land along the west edge of the map area and House Rock State Buffalo Ranch. Other lands include about 13 sections of Arizona State land, about ? of a section of private land along House Rock Wash, and about 1? sections of private land at Cliff Dwellers Lodge, Vermilion Cliffs Lodge, and Marble Canyon, Arizona. Landmark features within the map area include the Vermilion Cliffs, Paria Plateau, Marble Canyon, and House Rock Valley. Surface drainage in House Rock Valley is to the east toward the Colorado River in Marble Canyon. Large tributaries of Marble Canyon from north to south include Badger Canyon, Soap Creek, Rider Canyon, North Canyon, Bedrock Canyon, and South Canyon. Elevations range from about 2,875 ft (876 m) at the Colorado River in the southeast corner of the map to approximately 7,355 ft (2,224 m) on the east rim of Paria Plateau along the north-central edge of the map area. Three small settlements are in the map area along U.S. Highway 89A, Cliff Dwellers Lodge, Vermilion Cliffs Lodge, and Marble Canyon, Arizona. The community of Jacob Lake is about 9 mi (14.5 km) west of House Rock Valley on the Kaibab Plateau. Lees Ferry is 5 mi (8 km) north of Marble Canyon and marks the confluence of the Paria and Colorado Rivers and the beginning of Marble Canyon. U.S. Highway 89A provides access to the northern part of the map area. Dirt roads lead south into House Rock Valley from U.S. Highway 89A and are collectively maintained by the Bureau of Land Management, the U.S. National Forest Service, and the Grand Canyon Trust. House Rock Valley is one of the few remaining areas where uniform geologic mapping is needed for connectivity to the regional Grand Canyon geologic framework. This information is useful to Federal and State resource managers who direct environmental and land management programs that encompass such issues as range management, biological studies, flood control, water, and mineral-resource investigations. The geologic information will support future and ongoing geologic investigations and scientific studies

  18. Research Outcomes and Their Applications.

    ERIC Educational Resources Information Center

    Gagne, Robert M.

    1984-01-01

    Reviews articles by Shoemaker, Morell, and Smith that appear in this issue and summarizes their suggestions for translating research into practice. Other, more aggressive approaches--the "survival gambit," the "cost-effectiveness ploy," the "younger-generation-is-going-to-hell argument," and the "infiltration route"--are suggested. (MBR)

  19. Not a Snowball's Chance in Hell.

    ERIC Educational Resources Information Center

    Koontz, Jonathan W.

    1980-01-01

    Describes the involvement of administrators, faculty, and students in a successful publicity campaign designed to gain public backing for a referendum in support of Palm Beach Junior College, Florida. Examines various publicity tactics utilized, including newspaper advertisements and editorials, slideshows and lectures, and the distribution of…

  20. Strategy for a Military Spiritual Self-Development Tool

    DTIC Science & Technology

    2008-12-12

    and Islam in the Middle East (the Hebrew prophets developed their monotheistic faith during this period), Hinduism, Buddhism, and Jainism in India......concepts such as the Bible , Jesus, the Holy Spirit, hell, and the devil, thereby making them insensitive to cultural differences and therefore

  1. "University?... Hell No!": Stammering through Education

    ERIC Educational Resources Information Center

    Butler, Clare

    2013-01-01

    Little research has addressed the effect of having a stammer on academic achievement, specifically progression into higher education. This study spans six decades of educational practice and shows few differences in participants' experiences. They describe their education as occasions of scant interaction, spatial segregation and limited…

  2. To Heaven or Hell: Sensemaking about Why Faculty Leave

    ERIC Educational Resources Information Center

    O'Meara, KerryAnn; Lounder, Andrew; Campbell, Corbin M.

    2014-01-01

    This article analyzes sensemaking about faculty departure among administrators, faculty colleagues, and faculty leavers in one research university. A mixed methods database was analyzed to reveal four dominant explanations for faculty departure and two influences on sensemaking. Dominant explanations included better opportunities, the likelihood…

  3. Mineralized soft-tissue structure and chemistry in a mummified hadrosaur from the Hell Creek Formation, North Dakota (USA).

    PubMed

    Manning, Phillip L; Morris, Peter M; McMahon, Adam; Jones, Emrys; Gize, Andy; Macquaker, Joe H S; Wolff, George; Thompson, Anu; Marshall, Jim; Taylor, Kevin G; Lyson, Tyler; Gaskell, Simon; Reamtong, Onrapak; Sellers, William I; van Dongen, Bart E; Buckley, Mike; Wogelius, Roy A

    2009-10-07

    An extremely well-preserved dinosaur (Cf. Edmontosaurus sp.) found in the Hell Creek Formation (Upper Cretaceous, North Dakota) retains soft-tissue replacement structures and associated organic compounds. Mineral cements precipitated in the skin apparently follow original cell boundaries, partially preserving epidermis microstructure. Infrared and electron microprobe images of ossified tendon clearly show preserved mineral zonation, with silica and trapped carbon dioxide forming thin linings on Haversian canals within apatite. Furthermore, Fourier transform infrared spectroscopy (FTIR) of materials recovered from the skin and terminal ungual phalanx suggests the presence of compounds containing amide groups. Amino acid composition analyses of the mineralized skin envelope clearly differ from the surrounding matrix; however, intact proteins could not be obtained using protein mass spectrometry. The presence of endogenously derived organics from the skin was further demonstrated by pyrolysis gas chromatography mass spectrometry (Py-GCMS), indicating survival and presence of macromolecules that were in part aliphatic (see the electronic supplementary material).

  4. Mineralized soft-tissue structure and chemistry in a mummified hadrosaur from the Hell Creek Formation, North Dakota (USA)

    PubMed Central

    Manning, Phillip L.; Morris, Peter M.; McMahon, Adam; Jones, Emrys; Gize, Andy; Macquaker, Joe H. S.; Wolff, George; Thompson, Anu; Marshall, Jim; Taylor, Kevin G.; Lyson, Tyler; Gaskell, Simon; Reamtong, Onrapak; Sellers, William I.; van Dongen, Bart E.; Buckley, Mike; Wogelius, Roy A.

    2009-01-01

    An extremely well-preserved dinosaur (Cf. Edmontosaurus sp.) found in the Hell Creek Formation (Upper Cretaceous, North Dakota) retains soft-tissue replacement structures and associated organic compounds. Mineral cements precipitated in the skin apparently follow original cell boundaries, partially preserving epidermis microstructure. Infrared and electron microprobe images of ossified tendon clearly show preserved mineral zonation, with silica and trapped carbon dioxide forming thin linings on Haversian canals within apatite. Furthermore, Fourier transform infrared spectroscopy (FTIR) of materials recovered from the skin and terminal ungual phalanx suggests the presence of compounds containing amide groups. Amino acid composition analyses of the mineralized skin envelope clearly differ from the surrounding matrix; however, intact proteins could not be obtained using protein mass spectrometry. The presence of endogenously derived organics from the skin was further demonstrated by pyrolysis gas chromatography mass spectrometry (Py-GCMS), indicating survival and presence of macromolecules that were in part aliphatic (see the electronic supplementary material). PMID:19570788

  5. Reworking of Cretaceous dinosaurs into Paleocene channel deposits, upper Hell Creek Formation, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lofgren, D.L.; Hotton, C.L.; Runkel, A.C.

    1990-09-01

    Dinosaur teeth from Paleocene channel fills have been interpreted as indicating dinosaur survival into the Paleocene. However, enormous potential for reworking exists because these records are restricted to large channel fills that are deeply incised into Cretaceous strata. Identification of reworked fossils is usually equivocal. This problem is illustrated by the Black Spring Coulee channel fill, a dinosaur-bearing Paleocene deposit in the upper Hell Creek Formation of eastern Montana. In this example, the reworked nature of well-preserved dinosaur bones is apparent only after detailed sedimentological and palynological analysis. Because of the potential for reworking, dinosaur remains derived from Paleocene fluvialmore » deposits should not be assigned a Paleocene age unless the (1) are found in floodplain deposits, (2) are articulated, (3) are in channels that do not incise Cretaceous strata, or (4) are demonstrably reworked from Paleocene deposits. To date, reports of Paleocene dinosaurs do not fulfill any of these criteria. Thus, the proposal that dinosaurs persisted into the Paleocene remains unsubstantiated.« less

  6. 6. DARK CANYON SIPHON Photographic copy of historic photo, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DARK CANYON SIPHON - Photographic copy of historic photo, January 29, 1907 (original print filed in Record Group 115, National Archives, Washington, D.C.) W.J.Lubken, photographer 'RIPRAP AT THE ENTRANCE END OF DARK CANYON PRESSURE PIPE' - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  7. Biologic surveys for the Sandia National Laboratories, Coyote Canyon Test Complex, Kirtland Air Force Base, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, R.M.; Knight, P.J.

    This report provides results of a comprehensive biologic survey performed in Coyote Canyon Test Complex (CCTC), Sandia National Laboratories (SNL), Bernalillo County, New Mexico, which was conducted during the spring and summer of 1992 and 1993. CCTC is sited on land owned by the Department of Energy (DOE) and Kirtland Air Force Base and managed by SNL. The survey covered 3,760 acres of land, most of which is rarely disturbed by CCTC operations. Absence of grazing by livestock and possibly native ungulates, and relative to the general condition of private range lands throughout New Mexico, and relative to other grazingmore » lands in central New Mexico. Widely dispersed, low intensity use by SNL as well as prohibition of grazing has probably contributed to abundance of special status species such as grama grass cactus within the CCTC area. This report evaluates threatened and endangered species found in the area, as well as comprehensive assessment of biologic habitats. Included are analyses of potential impacts and mitigative measures designed to reduce or eliminate potential impacts. Included is a summary of CCTC program and testing activities.« less

  8. Quaternary Basalts in Grand Canyon: Correlation of Flows Using Lidar, 40Ar/39Ar Dating, Geochemical Correlation, Neotectonic Studies, and History of Lava Dams

    NASA Astrophysics Data System (ADS)

    Crow, R. S.; Karlstrom, K. E.; McIntosh, W. C.; Dunbar, N. W.; Peters, L.; Raucci, J.; Umhoefer, P. J.

    2005-12-01

    In western Grand Canyon, basalts flowed into the already existing canyon from at least 719 ka to present. These basalts provide a key for deciphering Quaternary rates of incision, neotectonic slip rates on the Toroweap and Hurricane faults, and the history of lava dams. Stratigraphy and/or inset relationships between basalt flows is exceedingly complex because of the multiple eruptions, extreme topography, long transport distance, and incomplete preservation. Correlation of flows using 40Ar/39Ar dating, LIDAR data, orthophotography, and geochemical analysis, as well as structural and geomorphic studies, lead to a working hypothesis for four major episodes of basaltic eruptive activity. From 719 to 484 Ma major volcanoes erupted near the Toroweap fault zone. The extent of the remnants and presence of 527 ka dikes indicates that cones where built within Grand Canyon during this phase. These flows had the longest outflow (719 ka flow at mile 246). At 349 to 296 ka flows seem to have entered the canyon at Whitmore Wash, north rim. The two remaining episodes, dated at 199-193 ka and 109-97 ka are interpreted to have cascaded into the canyon at and upstream from Whitmore Wash. LIDAR/orthophotography interpretation of the tops and bottoms of the flows and geochemical analysis of phenocrysts aid in correlation of undated remnants and reconstructing the shape of volcanic edifices. Flows dated from 720-450 ka include Prospect, Black Ledge, D-Dam, and Toroweap flows, thus Black Ledge flows are considerably older than previously thought. The 350 to 300 flows include Whitmore, Layered Diabase, Massive Diabase, and 177-mile flows. All the dated 200 and 100 ka flows have been called Grey Ledge flows, suggesting that the Grey Ledge represents two distinct events. Basalt data indicate an interaction of canyon incision and Quaternary fault slip. Bedrock incision rates are calculated using dated flows that overly bedrock straths. Rates vary across active faults indicating fault dampening of apparent river incision rates. Incision rates for eastern Grand Canyon are 127 m/my over 387 ka. Similar rates just east of the Toroweap faults (136 m/my over 349 ka and 153 m/my over 484 ka) suggest that a fairly uniform regional rate of ~ 140 m/my can be considered the average rate for Grand Canyon incision east of the Toroweap fault. This is subequal to the sum of apparent incision rate just below the Toroweap fault (56 m/my over 484 ka) plus fault slip rate (90 m/my over 550 ka). Similarly, apparent incision rates below the Hurricane fault (66 m/my over 527 ka and 76 m/my over 604 ka, near Granite Park) plus fault slip rate (~80±20 m/my over 185 ka) is subequal to the far field incision rate. Accumulating data suggests that apparent incision rates are lowest adjacent to faults in the hanging wall and highest adjacent to faults in the footwall, with rates varying systematically across fault blocks. This suggests that faulting is taking place by domino rotation of blocks bounded by normal faults with mild listric character. These new empirical data help constrain physical models for Quaternary fault slip across the active Colorado Plateau- Basin and Range bounding structures.

  9. Impacts of Realistic Urban Heating, Part I: Spatial Variability of Mean Flow, Turbulent Exchange and Pollutant Dispersion

    NASA Astrophysics Data System (ADS)

    Nazarian, Negin; Martilli, Alberto; Kleissl, Jan

    2018-03-01

    As urbanization progresses, more realistic methods are required to analyze the urban microclimate. However, given the complexity and computational cost of numerical models, the effects of realistic representations should be evaluated to identify the level of detail required for an accurate analysis. We consider the realistic representation of surface heating in an idealized three-dimensional urban configuration, and evaluate the spatial variability of flow statistics (mean flow and turbulent fluxes) in urban streets. Large-eddy simulations coupled with an urban energy balance model are employed, and the heating distribution of urban surfaces is parametrized using sets of horizontal and vertical Richardson numbers, characterizing thermal stratification and heating orientation with respect to the wind direction. For all studied conditions, the thermal field is strongly affected by the orientation of heating with respect to the airflow. The modification of airflow by the horizontal heating is also pronounced for strongly unstable conditions. The formation of the canyon vortices is affected by the three-dimensional heating distribution in both spanwise and streamwise street canyons, such that the secondary vortex is seen adjacent to the windward wall. For the dispersion field, however, the overall heating of urban surfaces, and more importantly, the vertical temperature gradient, dominate the distribution of concentration and the removal of pollutants from the building canyon. Accordingly, the spatial variability of concentration is not significantly affected by the detailed heating distribution. The analysis is extended to assess the effects of three-dimensional surface heating on turbulent transfer. Quadrant analysis reveals that the differential heating also affects the dominance of ejection and sweep events and the efficiency of turbulent transfer (exuberance) within the street canyon and at the roof level, while the vertical variation of these parameters is less dependent on the detailed heating of urban facets.

  10. Reconstructing the Aliso Canyon natural gas leak incident

    NASA Astrophysics Data System (ADS)

    Duren, R. M.; Yadav, V.; Verhulst, K. R.; Thorpe, A. K.; Hopkins, F. M.; Prasad, K.; Kuai, L.; Thompson, D. R.; Wong, C.; Sander, S. P.; Mueller, K. L.; Nehrkorn, T.; Lee, M.; Hulley, G. C.; Johnson, W. R.; Aubrey, A. D.; Whetstone, J. R.; Miller, C. E.

    2016-12-01

    Natural gas is a key energy source and presents significant policy challenges including energy reliability and the potential for fugitive methane emissions. The well blowout reported in October 2015 at the Aliso Canyon underground gas storage facility near Porter Ranch, California and subsequent uncontrolled venting was the largest single anthropogenic methane source known to date. Multiple independent estimates indicate that this super-emitter source rivaled the normal methane flux of the entire South Coast Air Basin (SoCAB) for several months until the well was plugged. The complexity of the event and logistical challenges - particularly in the initial weeks - presented significant barriers to estimating methane losses. Additionally, accounting for total gas lost is necessary but not sufficient for understanding the sequence of events and the controlling physical processes. We used a tiered system of observations to assess methane emissions from the Aliso Canyon incident. To generate a complete flux time-series, we applied tracer-transport models and tracer-tracer techniques to persistent, multi-year atmospheric methane observations from a network of surface in-situ and remote-sensing instruments. To study the fine spatio-temporal structure of methane plumes and understand the changing source morphology, we conducted intensive mobile surface campaigns, deployed airborne imaging spectrometers, requested special observations from two satellites, and employed large eddy simulations. Through a synthesis analysis we assessed methane fluxes from Aliso Canyon before, during and after the reported incident. We compared our fine scale spatial data with bottom-up data and reports of activity at the facility to better understand the controlling processes. We coordinated with California stakeholder agencies to validate and interpret these results and to consider the potential broader implications on underground gas storage and future priorities for methane monitoring.

  11. Insights into the emplacement of upper-crustal plutons and their relationship to large silicic calderas, from field relationships, geochronology, and zircon trace element geochemistry in the Stillwater - Clan Alpine caldera complex, western Nevada, USA

    NASA Astrophysics Data System (ADS)

    Colgan, Joseph P.; John, David A.; Henry, Christopher D.; Watts, Kathryn E.

    2018-01-01

    Geologic mapping, new U-Pb zircon ages, and new and published 40Ar/39Ar sanidine ages document the timing and extent of Oligocene magmatism in the southern Stillwater Range and Clan Alpine Mountains of western Nevada, where Miocene extension has exposed at least six nested silicic calderas and underlying granitic plutons to crustal depths locally ≥ 9 km. Both caldera-forming rhyolitic tuffs and underlying plutons were emplaced in two episodes, one from about 30.4-28.2 Ma that included the Deep Canyon, Job Canyon, and Campbell Creek calderas and underlying plutons, and one from about 25.3-24.8 Ma that included the Louderback Mountains, Poco Canyon, and Elevenmile Canyon calderas and underlying plutons. In these two 1-2 m.y. periods, almost the entire Mesozoic upper crust was replaced by Oligocene intrusive and extrusive rocks to depths ≥ 9 km over an estimated total area of 1500 km2 (pre-extension). Zircon trace element geochemistry indicates that some plutonic rock can be solidified residual magma from the tuff eruptions. Most plutons are not solidified residual magma, although they directly underlie calderas and were emplaced along the same structures shortly after to as much as one million years after caldera formation. Magma chambers and plutons grew by floor subsidence accommodated by downward transfer of country rocks. If other Great Basin calderas are similar, the dense concentration of shallowly exposed calderas in central Nevada is underlain by a complexly zoned mid-Cenozoic batholith assembled in discrete pulses that coincided with formation of large silicic calderas up to 2500-5000 km3.

  12. Relation of landslides triggered by the Kiholo Bay earthquake to modeled ground motion

    USGS Publications Warehouse

    Harp, Edwin L.; Hartzell, Stephen H.; Jibson, Randall W.; Ramirez-Guzman, L.; Schmitt, Robert G.

    2014-01-01

    The 2006 Kiholo Bay, Hawaii, earthquake triggered high concentrations of rock falls and slides in the steep canyons of the Kohala Mountains along the north coast of Hawaii. Within these mountains and canyons a complex distribution of landslides was triggered by the earthquake shaking. In parts of the area, landslides were preferentially located on east‐facing slopes, whereas in other parts of the canyons no systematic pattern prevailed with respect to slope aspect or vertical position on the slopes. The geology within the canyons is homogeneous, so we hypothesize that the variable landslide distribution is the result of localized variation in ground shaking; therefore, we used a state‐of‐the‐art, high‐resolution ground‐motion simulation model to see if it could reproduce the landslide‐distribution patterns. We used a 3D finite‐element analysis to model earthquake shaking using a 10 m digital elevation model and slip on a finite‐fault model constructed from teleseismic records of the mainshock. Ground velocity time histories were calculated up to a frequency of 5 Hz. Dynamic shear strain also was calculated and compared with the landslide distribution. Results were mixed for the velocity simulations, with some areas showing correlation of landslide locations with peak modeled ground motions but many other areas showing no such correlation. Results were much improved for the comparison with dynamic shear strain. This suggests that (1) rock falls and slides are possibly triggered by higher frequency ground motions (velocities) than those in our simulations, (2) the ground‐motion velocity model needs more refinement, or (3) dynamic shear strain may be a more fundamental measurement of the decoupling process of slope materials during seismic shaking.

  13. Slope basins, headless canyons, and submarine palaeoseismology of the Cascadia accretionary complex

    USGS Publications Warehouse

    McAdoo, B.G.; Orange, D.L.; Screaton, Elizabeth; Lee, H.; Kayen, R.

    1997-01-01

    A combination of geomorphological, seismic reflection and geotechnical data constrains this study of sediment erosion and deposition at the toe of the Cascadia accretionary prism. We conducted a series of ALVIN dives in a region south of Astoria Canyon to examine the interrelationship of fluid flow and slope failure in a series of headless submarine canyons. Elevated head gradients at the inflection point of canyons have been inferred to assist in localized failures that feed sediment into a closed slope basin. Measured head gradients are an order of magnitude too low to cause seepage-induced slope failure alone; we therefore propose transient slope failure mechanisms. Intercanyon slopes are uniformly unscarred and smooth, although consolidation tests indicate that up to several metres of material may have been removed. A sheet-like failure would remove sediment uniformly, preserving the observed smooth intercanyon slope. Earthquake-induced liquefaction is a likely trigger for this type of sheet failure as the slope is too steep and short for sediment flow to organize itself into channels. Bathymetric and seismic reflection data suggest sediment in a trench slope basin between the second and third ridges from the prism's deformation is derived locally. A comparison of the amounts of material removed from the slopes and that in the basin shows that the amount of material removed from the slopes may slightly exceed the amount of material in the basin, implying that a small amount of sediment has escaped the basin, perhaps when the second ridge was too low to form a sufficient dam, or through a gap in the second ridge to the south. Regardless, almost 80% of the material shed off the slopes around the basin is deposited locally, whereas the remaining 20% is redeposited on the incoming section and will be re-accreted.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockhold, Mark L.; White, Mark D.; Freeman, Eugene J.

    This letter report documents initial numerical analyses conducted by PNNL to provide support for a feasibility study on decommissioning of the canyon buildings at Hanford. The 221-U facility is the first of the major canyon buildings to be decommissioned. The specific objective of this modeling effort was to provide estimates of potential rates of migration of residual contaminants out of the 221-U facility during the first 40 years after decommissioning. If minimal contaminant migration is predicted to occur from the facility during this time period, then the structure may be deemed to provide a level of groundwater protection that ismore » essentially equivalent to the liner and leachate collection systems that are required at conventional landfills. The STOMP code was used to simulate transport of selected radionuclides out of a canyon building, representative of the 221-U facility after decommissioning, for a period of 40 years. Simulation results indicate that none of the selected radionuclides that were modeled migrated beyond the concrete structure of the facility during the 40-year period of interest. Jacques (2001) identified other potential contaminants in the 221-U facility that were not modeled, however, including kerosene, phenol, and various metals. Modeling of these contaminants was beyond the scope of this preliminary effort due to increased complexity. Simulation results indicate that contaminant release from the canyon buildings will be diffusion controlled at early times. Advection is expected to become much more important at later times, after contaminants have diffused out of the facility and into the surrounding soil environment. After contaminants have diffused out of the facility, surface infiltration covers will become very important for mitigating further transport of contaminants in the underlying vadose zone and groundwater.« less

  15. Further amphoricarpolides from the surface extracts of Amphoricarpos complex from Montenegro.

    PubMed

    Cvetković, Mirjana; Ethorđević, Iris; Jadranin, Milka; Vajs, Vlatka; Vučković, Ivan; Menković, Nebojša; Milosavljević, Slobodan; Tešević, Vele

    2014-09-01

    Analysis of composition of sesquiterpene lactone fraction of leaf cuticular neutral lipids of Amphoricarpos complex from two different localities in north Montenegro, i.e., canyon of river Tara (A. autariatus ssp. autariatus) and mountain Zeletin (A. autariatus ssp. bertisceus) afforded sesquiterpene lactones with guaianolide skeletons (17 compounds), so called amphoricarpolides, typical for this genus. Nine of them, 9-17, were new compounds, and their structures were elucidated by detailed analyses of IR, NMR, and MS data. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  16. Morphodynamic Model of Submarine Canyon Incision by Sandblasting

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Parker, G.; Izumi, N.; Cartigny, M.; Li, T.; Wang, G.

    2017-12-01

    Submarine canyons are carved by turbidity currents under the deep sea. As opposed to subaerial canyons, the relevant processes are not easy to observe directly. Turbidity currents are bottom-hugging sediment gravity flows of that can incise or deposit on the seafloor to create submarine canyons or fans. The triggers of turbidity currents can be storms, edge waves, internal waves, canyon wall sapping, delta failure, breaching and hyperpycnal flows. The formation and evolution mechanisms of submarine canyons are similar to those of subaerial canyons, but have substantial differences. For example, sandblasting, rather than wear due to colliding gravel clasts is more likely to be the mechanism of bedrock incision. Submarine canyons incise downward, and often develop meander bends and levees within the canyon, so defining "fairways". Here we propose a simple model for canyon incision. The starting point of our model is the Macro Roughness Saltation Abrasion Alluviation model of Zhang et al. [2015], designed for bedrock incision by gravel clasts in mixed bedrock-alluvial rivers. We adapt this formulation to consider sandblasting as a means of wear. We use a layer-averaged model for turbidity current dynamics. The current contains a mixture of mud, which helps drive the flow but which does not cause incision, and sand, which is the agent of incision. We show that the model can successfully model channel downcutting, and indeed illustrate the early formation of net incisional cyclic steps, i.e. upstream-migrating undulations on the bed associated with transcritical (in the Froude sense) flow. These steps can be expected to abet the process of incision.

  17. Progressive incision of the Channeled Scablands by outburst floods.

    PubMed

    Larsen, Isaac J; Lamb, Michael P

    2016-10-13

    The surfaces of Earth and Mars contain large bedrock canyons that were carved by catastrophic outburst floods. Reconstructing the magnitude of these canyon-forming floods is essential for understanding the ways in which floods modify planetary surfaces, the hydrology of early Mars and abrupt changes in climate. Flood discharges are often estimated by assuming that the floods filled the canyons to their brims with water; however, an alternative hypothesis is that canyon morphology adjusts during incision such that bed shear stresses exceed the threshold for erosion by a small amount. Here we show that accounting for erosion thresholds during canyon incision results in near-constant discharges that are five- to ten-fold smaller than full-to-the-brim estimates for Moses Coulee, a canyon in the Channeled Scablands, which was carved during the Pleistocene by the catastrophic Missoula floods in eastern Washington, USA. The predicted discharges are consistent with flow-depth indicators from gravel bars within the canyon. In contrast, under the assumption that floods filled canyons to their brims, a large and monotonic increase in flood discharge is predicted as the canyon was progressively incised, which is at odds with the discharges expected for floods originating from glacial lake outbursts. These findings suggest that flood-carved landscapes in fractured rock might evolve to a threshold state for bedrock erosion, thus implying much lower flood discharges than previously thought.

  18. Amphitheater-headed canyons formed by megaflooding at Malad Gorge, Idaho

    PubMed Central

    Lamb, Michael P.; Mackey, Benjamin H.; Farley, Kenneth A.

    2014-01-01

    Many bedrock canyons on Earth and Mars were eroded by upstream propagating headwalls, and a prominent goal in geomorphology and planetary science is to determine formation processes from canyon morphology. A diagnostic link between process and form remains highly controversial, however, and field investigations that isolate controls on canyon morphology are needed. Here we investigate the origin of Malad Gorge, Idaho, a canyon system cut into basalt with three remarkably distinct heads: two with amphitheater headwalls and the third housing the active Wood River and ending in a 7% grade knickzone. Scoured rims of the headwalls, relict plunge pools, sediment-transport constraints, and cosmogenic (3He) exposure ages indicate formation of the amphitheater-headed canyons by large-scale flooding ∼46 ka, coeval with formation of Box Canyon 18 km to the south as well as the eruption of McKinney Butte Basalt, suggesting widespread canyon formation following lava-flow diversion of the paleo-Wood River. Exposure ages within the knickzone-headed canyon indicate progressive upstream younging of strath terraces and a knickzone propagation rate of 2.5 cm/y over at least the past 33 ka. Results point to a potential diagnostic link between vertical amphitheater headwalls in basalt and rapid erosion during megaflooding due to the onset of block toppling, rather than previous interpretations of seepage erosion, with implications for quantifying the early hydrosphere of Mars. PMID:24344293

  19. New thermochronometric constraints on the Tertiary landscape evolution of the central and eastern Grand Canyon, Arizona

    USGS Publications Warehouse

    Lee, John P.; Stockli, Daniel F.; Kelley, S.A.; Pederson, J.; Karlstrom, K.E.; Ehlers, T.A.

    2013-01-01

    Thermal histories are modeled from new apatite (U-Th)/He and apatite fission-track data in order to quantitatively constrain the landscape evolution of the Grand Canyon region. Fifty new samples and their associated thermochronometric ages are presented here. Samples span from Lee’s Ferry in the east to Quartermaster Canyon in the west and include four age-elevation transects into Grand Canyon and borehole samples from the Coconino Plateau. Twenty-seven samples are inversely modeled to provide continuous thermal histories. This represents the most extensive and complete dataset on patterns of long-term exhumation in the Grand Canyon region, and it enables us to constrain the timing and magnitude of erosion and also discriminate between canyon incision and broader planation. The new data suggest that the early Cenozoic landscape in eastern Grand Canyon was low in relief and does not indicate the presence of an early Cenozoic precursor to the modern Grand Canyon. However, there is evidence for the incision of a smaller-scale canyon across the Kaibab Uplift at 28–20 Ma. This middle-Cenozoic denudation event was accompanied by the removal of a majority of remaining Mesozoic strata west of the Kaibab Uplift. In contrast, just upstream in the area of Lee’s Ferry, ∼2 km of Mesozoic strata remained over the middle Cenozoic and were removed after 10 Ma.

  20. Progressive incision of the Channeled Scablands by outburst floods

    NASA Astrophysics Data System (ADS)

    Larsen, Isaac J.; Lamb, Michael P.

    2016-10-01

    The surfaces of Earth and Mars contain large bedrock canyons that were carved by catastrophic outburst floods. Reconstructing the magnitude of these canyon-forming floods is essential for understanding the ways in which floods modify planetary surfaces, the hydrology of early Mars and abrupt changes in climate. Flood discharges are often estimated by assuming that the floods filled the canyons to their brims with water; however, an alternative hypothesis is that canyon morphology adjusts during incision such that bed shear stresses exceed the threshold for erosion by a small amount. Here we show that accounting for erosion thresholds during canyon incision results in near-constant discharges that are five- to ten-fold smaller than full-to-the-brim estimates for Moses Coulee, a canyon in the Channeled Scablands, which was carved during the Pleistocene by the catastrophic Missoula floods in eastern Washington, USA. The predicted discharges are consistent with flow-depth indicators from gravel bars within the canyon. In contrast, under the assumption that floods filled canyons to their brims, a large and monotonic increase in flood discharge is predicted as the canyon was progressively incised, which is at odds with the discharges expected for floods originating from glacial lake outbursts. These findings suggest that flood-carved landscapes in fractured rock might evolve to a threshold state for bedrock erosion, thus implying much lower flood discharges than previously thought.

  1. Estimating recruitment dynamics and movement of rainbow trout (Oncorhynchus mykiss) in the Colorado River in Grand Canyon using an integrated assessment model

    USGS Publications Warehouse

    Korman, Josh; Martell, Steven J.D.; Walters, Carl J.; Makinster, Andrew S.; Coggins, Lewis G.; Yard, Michael D.; Persons, William R.

    2012-01-01

    We used an integrated assessment model to examine effects of flow from Glen Canyon Dam, Arizona, USA, on recruitment of nonnative rainbow trout (Oncorhynchus mykiss) in the Colorado River and to estimate downstream migration from Glen Canyon to Marble Canyon, a reach used by endangered native fish. Over a 20-year period, recruitment of rainbow trout in Glen Canyon increased with the annual flow volume and when hourly flow variation was reduced and after two of three controlled floods. The model predicted that approximately 16 000 trout·year–1 emigrated to Marble Canyon and that the majority of trout in this reach originate from Glen Canyon. For most models that were examined, over 70% of the variation in emigration rates was explained by variation in recruitment in Glen Canyon, suggesting that flow from the dam controls in large part the extent of potential negative interactions between rainbow trout and native fish. Controlled floods and steadier flows, which were originally aimed at partially restoring conditions before the dam (greater native fish abundance and larger sand bars), appear to have been more beneficial to nonnative rainbow trout than to native fish.

  2. A numerical study of air pollutant dispersion with bimolecular chemical reactions in an urban street canyon using large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Kikumoto, Hideki; Ooka, Ryozo

    2012-07-01

    A large-eddy simulation is performed on a turbulent dispersion of chemically reactive air pollutants in a two-dimensional urban street canyon with an aspect ratio of 1.0. Nitrogen monoxide emitted from a line-source set on the bottom of the street canyon disperses and reacts with Ozone included in a free stream. The reactions have significant influences on the concentrations of pollutants in the canyon space, and they increase the concentrations of the reaction products relative to of the concentrations of the reactants. The transport of air pollutants through a free shear layer above the canyon is closely related to the structure of the turbulence. Gases in the canyon are mainly exhausted when low-speed regions appear above the canyon. In contrast, pollutants in the free stream flow into the canyon with high-speed fluid bodies. Consequently, the correlation between the time fluctuations of the reactants' concentrations strongly affects the reaction rates in the region near the free shear layer. In this calculation, the correlation term reaches to a value of 20% of the mean reaction rate at a maximum there.

  3. Anomalous concentrations of seismically triggered rock falls in Pacoima Canyon: Are they caused by highly susceptible slopes or local amplification of seismic shaking?

    USGS Publications Warehouse

    Harp, Edwin L.; Jibson, Randall W.

    2002-01-01

    Anomalously high concentrations of rock falls were triggered in Pacoima Canyon (Los Angeles, California) during the 1994 Northridge earthquake. Similar concentrations were also documented from the 1971 San Fernando earthquake. Using an engineering rock-mass classification that evaluates the susceptibility of rock slopes to seismic failure based on the fracture properties of a rock mass (in terms of a numerical "Q-value" that describes rock quality), the rock slopes in Pacoima Canyon were compared with rock slopes in sorrounding areas where topography and lithology are similar, but rock-fall concentrations from the earthquakes were much lower. A statistical comparison of Q-values from five sites surrounding Pacoima Canyon indicates that seismic susceptibilities are similar to those within Pacoima Canyon; differences in the characteristics of rock slopes between these sites are not sufficient to account for the relatively high concentrations of rock falls within Pacoima Canyon as compared to low concentrations elsewhere. By eliminating susceptibility differences as a cause, the most likely explanations for the differences in rock-fall concentrations is anomalously high shaking levels in Pacoima Canyon, possibly resulting from topographic amplification within the canyon.

  4. Literature review for oxalate oxidation processes and plutonium oxalate solubility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, C. A.

    2015-10-01

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate.more » Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign.« less

  5. History of Snake River Canyon Indicated by Revised Stratigraphy of Snake River Group Near Hagerman and King Hill, Idaho: With a Section on Paleomagnetism

    USGS Publications Warehouse

    Malde, Harold E.; Cox, Allan

    1971-01-01

    A discovery that debris left by the Bonneville Flood (Melon Gravel) overlies McKinney Basalt about 200 feet above the Snake River near King Hill requires that the stratigraphy of the Snake River Group be revised. In former usage, the McKinney Basalt and its immediately older companion, the Wendell Grade Basalt, were considered on the basis of equivocal field relations to be younger than the Melon Gravel and were assigned to the Recent. These lava flows are here reclassified as Pleistocene. The Bancroft Springs Basalt, which consists of both subaerial lava and pillow lava in a former Snake River canyon, was previously separated from the McKinney but is now combined with the McKinney. Accordingly, the name Bancroft Springs Basalt is here abandoned. This revised stratigraphy is first described from geomorphic relations of the McKinney Basalt near King Hill and is then discussed in the light of drainage changes caused by local lava flows during entrenchment of the Snake River. Near King Hill, a former Snake River canyon was completely filled by McKinney Basalt at the place called Bancroft Springs, hut the depth of this lava in the next several miles of the canyon downstream (along a route that approximately coincides with the present canyon) steadily decreased. This ancestral geomorphology is inferred from the former canyon route and, also, from the continuity in gradient of the McKinney lava surface downstream from Bancroft Springs. The drainage history recorded by various lava flows and river deposits of the Snake River Group indicates that the McKinney and Wendell Grade Basalts erupted after the Snake River canyon had reached its present depth of about 500 feet. The Snake River of that time, as far downstream as Bliss, flowed approximately along its present route. The Wood River of that time, however, skirted the north flank of Gooding Butte and joined the ancestral Snake at a junction, now concealed by lava, north of the present canyon about 3 miles west of Bliss. From that place the former Snake River canyon, also now concealed by lava, continued west to Bancroft Springs and thence along a route close to the present canyon to King Hill. To become entrenched in a canyon 500 feet deep, the Snake River downstream from Hagerman became progressively more incised while its upstream route was pushed south in several earlier canyons by intermittent lava flows. Distinctive gravel deposits help to establish the episodes of progressive canyon cutting and to determine the routes of ancestral drainage, including the former position of the Wood River. As canyon cutting continued, springs began to emerge where lavas had filled the earlier canyons. When the Snake River canyon eventually attained its approximate present depth, the Wendell Grade Basalt erupted near Shoshone and, as several tongues, spread west to the canyon rim opposite Hagerman. One tongue crossed the future route of the Wood River, and another covered an upland area of Sand Springs Basalt that had previously reached the canyon floor at Hagerman. The McKinney Basalt then erupted from McKinney Butte northeast of Bliss and spread southward as a subaerial flow, covering part of the Wendell Grade Basalt. It filled the ancestral Wood River canyon and the Snake River canyon of that time west of Bliss as far downstream as King Hill. The resulting dam of lava impounded a deep lake, which extended upstream in the canyon beyond Hagerman. Copious amounts of the McKinney spilled into this temporary lake and produced pillow lava. About 2 miles west of Bliss, pillow lava 500 feet thick completely fills the former canyon and is protected by rimrock of the subaerial McKinney Basalt. From Bliss, the pillow facies extends upstream as far as the McKinney rimrock - about 5 miles. Eruption of the McKinney Basalt diverted the Wood River to a course along the southeast edge of this lava flow. The temporary lake that was dammed by McKinney Basalt west of Bliss spilled along the sou

  6. Effect of stable stratification on dispersion within urban street canyons: A large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Li, Xian-Xiang; Britter, Rex; Norford, Leslie K.

    2016-11-01

    This study employs a validated large-eddy simulation (LES) code with high tempo-spatial resolution to investigate the effect of a stably stratified roughness sublayer (RSL) on scalar transport within an urban street canyon. The major effect of stable stratification on the flow and turbulence inside the street canyon is that the flow slows down in both streamwise and vertical directions, a stagnant area near the street level emerges, and the vertical transport of momentum is weakened. Consequently, the transfer of heat between the street canyon and overlying atmosphere also gets weaker. The pollutant emitted from the street level 'pools' within the lower street canyon, and more pollutant accumulates within the street canyon with increasing stability. Under stable stratification, the dominant mechanism for pollutant transport within the street canyon has changed from ejections (flow carries high-concentration pollutant upward) to unorganized motions (flow carries high-concentration pollutant downward), which is responsible for the much lower dispersion efficiency under stable stratifications.

  7. The Moral Obligation of the Government to Recover POWs

    DTIC Science & Technology

    2012-03-12

    Freedom by James Rowe, and Surviving Hell by Leo Thorsness, several of a great many primary sources that tell autobiographically of life as a POW. A...from the collective social memory , allowing the government to politically maneuver itself for the next adversarial engagement. The political climate

  8. We're on a Merry-Go-Round to Hell.

    ERIC Educational Resources Information Center

    Goldsmith, James

    1992-01-01

    Discusses ecological, social, and moral issues associated with destruction of rural communities, industrial agriculture, gene patenting and international trade. Analyzes agricultural ramifications of the Common Agriculture Policy (CAP) and the General Agreement on Tariffs and Trade. Cites these and other measures as the struggle of industrialized…

  9. Japanese Higher-Education Reformers Weigh Elitism, Academic Laxness, and "Exam Hell."

    ERIC Educational Resources Information Center

    Fararo, Kim

    1987-01-01

    Reform proposals for Japan's large higher education system include diminishing the trauma of university entrance examinations, strengthening the quality and diversity of undergraduate education, improving graduate school offerings, establishing a lifelong education system, and expanding the scope of international exchange programs. Politics are…

  10. Evaluation of the hydrologic system and potential effects of mining in the Dickinson lignite area, eastern slope and western Stark and Hettinger counties, North Dakota

    USGS Publications Warehouse

    Armstrong, C.A.

    1984-01-01

    The investigation of the water resources of the Dickinson lignite area, an area of about 500 square miles, was undertaken to define the hydrologic system of the area and to project probable effects of coal mining on the system.Aquifers occur in sandstone beds in: the Fox Hills Sandstone and the lower Hell Creek Formation of Cretaceous age, the upper Hell Creek Formation of Cretaceous age and the lower Ludlow Member of the Fort Union Formation of Tertiary age, and the upper Ludlow and lower Tongue River Members of the Fort Union Formation of Tertiary age. Aquifers also occur in the sandstone and lignite lenses in the upper Tongue River Member and the Sentinel Butte Member of the Fort Union Formation. Depths to the Fox Hills-lower Hell Creek aquifer system range from about 1,300 to 1,710 feet. Well yields range from 18 to 100 gallons per minute. The water is soft and is a sodium bicarbonate type. Dissolvedsolids concentrations in samples collected from the aquifer system ranged from 1,230 to 1,690 milligrams per liter.Depths to the upper Hell Creek-lower Ludlow aquifer system range from about 720 to 1,040 feet. Well yields generally are less than 30 gallons per minute but may be as much as 150 gallons per minute. The water is soft and a sodium bicarbonate type. Dissolved-solids concentrations in samples collected from the aquifer system ranged from 1,010 to 1,450 milligrams per liter.Depths to the upper Ludlow-lower Tongue River aquifer system range from about 440 to 713 feet. Well yields may range from about 1 to 100 gallons per minute. The water generally is soft and a sodium bicarbonate type but may be moderately hard and a sulfate type in the southwestern part of the area. Dissolved-solids concentrations in samples collected from the aquifer system ranged from 995 to 1,990 milligrams per liter. Depths to the upper Tongue River-Sentinel Butte aquifer system range from near land surface to about 530 feet below land surface. Well yields generally range from about 1 to 185 gallons per minute. Yields from the lignite parts of the system range from about 2 to 60 gallons per minute. The water generally is a sodium bicarbonate type, but locally sulfate is the dominant anion. Dissolved-solids concentrations in samples collected from the aquifer system generally ranged from 574 to 2,720 milligrams per liter.

  11. Spatial scale-dependent habitat heterogeneity influences submarine canyon macrofaunal abundance and diversity off the Main and Northwest Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    De Leo, Fabio C.; Vetter, Eric W.; Smith, Craig R.; Rowden, Ashley A.; McGranaghan, Matthew

    2014-06-01

    The mapping of biodiversity on continental margins on landscape scales is highly relevant to marine spatial planning and conservation. Submarine canyons are widespread topographic features on continental and island margins that enhance benthic biomass across a range of oceanic provinces and productivity regimes. However, it remains unclear whether canyons enhance faunal biodiversity on landscape scales relevant to marine protected area (MPA) design. Furthermore, it is not known which physical attributes and heterogeneity metrics can provide good surrogates for large-scale mapping of canyon benthic biodiversity. To test mechanistic hypotheses evaluating the role of different canyon-landscape attributes in enhancing benthic biodiversity at different spatial scales we conducted 34 submersible dives in six submarine canyons and nearby slopes in the Hawaiian archipelago, sampling infaunal macrobenthos in a depth-stratified sampling design. We employed multivariate multiple regression models to evaluate sediment and topographic heterogeneity, canyon transverse profiles, and overall water mass variability as potential drivers of macrobenthic community structure and species richness. We find that variables related to habitat heterogeneity at medium (0.13 km2) and large (15-33 km2) spatial scales such as slope, backscatter reflectivity and canyon transverse profiles are often good predictors of macrobenthic biodiversity, explaining 16-30% of the variance. Particulate organic carbon (POC) flux and distance from shore are also important variables, implicating food supply as a major predictor of canyon biodiversity. Canyons off the high Main Hawaiian Islands (Oahu and Moloka'i) are significantly affected by organic enrichment, showing enhanced infaunal macrobenthos abundance, whereas this effect is imperceptible around the low Northwest Hawaiian Islands (Nihoa and Maro Reef). Variable canyon alpha-diversity and high rates of species turnover (beta-diversity), particularly for polychaetes, suggest that canyons play important roles in maintaining high levels of regional biodiversity in the extremely oligotrophic system of the North Pacific Subtropical Gyre. This information is of key importance to the process of MPA design, suggesting that canyon habitats be explicitly included in marine spatial planning. The low-islands of Nihoa and Maro Reef in the NWHI showed a lack of sustained input of terrestrial and macrolagae detritus, likely having an influence on the observed low macrofaunal abundances (see further discussion of ‘canyon effects’ in Section 4.3), and showing the fundamental role of coastal landscape characteristics in determining the amount and nature of allochthonous organic matter entering the system. Total and highly-mobile invertebrate megafauna abundances were two to three times higher in the submarine canyons and slopes of the MHI contrasted with the NWHI (Vetter et al., 2010), also demonstrating the role of this larger contribution of terrestrial and coastal organic enrichment in the MHI contrasted with the NWHI.

  12. Megafauna of vulnerable marine ecosystems in French mediterranean submarine canyons: Spatial distribution and anthropogenic impacts

    NASA Astrophysics Data System (ADS)

    Fabri, M.-C.; Pedel, L.; Beuck, L.; Galgani, F.; Hebbeln, D.; Freiwald, A.

    2014-06-01

    Vulnerable Marine Ecosystems (VME) in the deep Mediterranean Sea have been identified by the General Fisheries Commission for the Mediterranean as consisting of communities of Scleractinia (Lophelia pertusa and Madrepora oculata), Pennatulacea (Funiculina quadrangularis) and Alcyonacea (Isidella elongata). This paper deals with video data recorded in the heads of French Mediterranean canyons. Quantitative observations were extracted from 101 video films recorded during the MEDSEACAN cruise in 2009 (Aamp/Comex). Qualitative information was extracted from four other cruises (two Marum/Comex cruises in 2009 and 2011 and two Ifremer cruises in 1995 and 2010) to support the previous observations in the Cassidaigne and Lacaze-Duthiers canyons. All the species, fishing impacts and litter recognized in the video films recorded from 180 to 700 m depth were mapped using GIS. The abundances and distributions of benthic fishing resources (marketable fishes, Aristeidae, Octopodidae), Vulnerable Marine Species, trawling scars and litter of 17 canyons were calculated and compared, as was the open slope between the Stoechades and Toulon canyons. Funiculina quadrangularis was rarely observed, being confined for the most part to the Marti canyon and, I. elongata was abundant in three canyons (Bourcart, Marti, Petit-Rhône). These two cnidarians were encountered in relatively low abundances, and it may be that they have been swept away by repeated trawling. The Lacaze-Duthiers and Cassidaigne canyons comprised the highest densities and largest colony sizes of scleractinian cold-water corals, whose distribution was mapped in detail. These colonies were often seen to be entangled in fishing lines. The alcyonacean Callogorgia verticillata was observed to be highly abundant in the Bourcart canyon and less abundant in several other canyons. This alcyonacean was also severely affected by bottom fishing gears and is proposed as a Vulnerable Marine Species. Our studies on anthropogenic impacts show that seafloor disturbance by benthic fishing is mainly attributable to trawling in the Gulf of Lion and to long lines where rocky substrates are present. The bauxite residue (red mud) expelled in the Cassidaigne canyon was seen to prevent fauna from settling at the bottom of the canyon and it covered much of the flanks. Litter was present in all of the canyons and especially in considerable quantities in the Ligurian Sea, where the heads of the canyons are closer to the coast. Three Marine Protected Areas and one fishing area with restricted access have recently been established and should permit the preservation of these deep ecosystems.

  13. Differentiation among Multiple Sources of Anthropogenic Nitrate in a Complex Groundwater System using Dual Isotope Systematics: A case study from Mortandad Canyon, New Mexico

    NASA Astrophysics Data System (ADS)

    Larson, T. E.; Perkins, G.; Longmire, P.; Heikoop, J. M.; Fessenden, J. E.; Rearick, M.; Fabyrka-Martin, J.; Chrystal, A. E.; Dale, M.; Simmons, A. M.

    2009-12-01

    The groundwater system beneath Los Alamos National Laboratory has been affected by multiple sources of anthropogenic nitrate contamination. Average NO3-N concentrations of up to 18.2±1.7 mg/L have been found in wells in the perched intermediate aquifer beneath one of the more affected sites within Mortandad Canyon. Sources of nitrate potentially reaching the alluvial and intermediate aquifers include: (1) sewage effluent, (2) neutralized nitric acid, (3) neutralized 15N-depleted nitric acid (treated waste from an experiment enriching nitric acid in 15N), and (4) natural background nitrate. Each of these sources is unique in δ18O and δ15N space. Using nitrate stable isotope ratios, a mixing model for the three anthropogenic sources of nitrate was established, after applying a linear subtraction of the background component. The spatial and temporal variability in nitrate contaminant sources through Mortandad Canyon is clearly shown in ternary plots. While microbial denitrification has been shown to change groundwater nitrate stable isotope ratios in other settings, the redox potential, relatively high dissolved oxygen content, increasing nitrate concentrations over time, and lack of observed NO2 in these wells suggest minimal changes to the stable isotope ratios have occurred. Temporal trends indicate that the earliest form of anthropogenic nitrate in this watershed was neutralized nitric acid. Alluvial wells preserve a trend of decreasing nitrate concentrations and mixing models show decreasing contributions of 15N-depleted nitric acid. Nearby intermediate wells show increasing nitrate concentrations and mixing models indicate a larger component derived from 15N-depleted nitric acid. These data indicate that the pulse of neutralized 15N-depleted nitric acid that was released into Mortandad Canyon between 1986 and 1989 has infiltrated through the alluvial aquifer and is currently affecting two intermediate wells. This hypothesis is consistent with previous research suggesting that the perched intermediate aquifers in the Mortandad Canyon watershed are recharged locally from the overlying alluvial aquifers.

  14. Antecedent topography and morphological controls on sediment accumulation and slope stability of the U.S. Atlantic margin

    NASA Astrophysics Data System (ADS)

    Hill, J. C.; Brothers, D. S.; Ten Brink, U. S.; Andrews, B. D.

    2017-12-01

    The U.S. Atlantic margin encompasses a wide variety of slope failure processes, ranging from small canyon-confined failures on the upper slope to large, open slope landslides originating in deeper water. Here we used a suite of high-resolution multibeam bathymetry and detailed multichannel seismic data coverage to investigate the relationship between modern seafloor morphology, pre-existing stratigraphy and sediment accumulation patterns. We suggest that a combination of sediment supply and antecedent margin physiography, whereby variations in margin evolution during the Miocene have influenced the modern seafloor morphology, controls both the location of slope sediment accumulation and the style of slope failure. Oversteepened margins with angular shelf breaks and steep upper slopes, referred to as oblique margins, are characterized by downslope mass transport and densely-spaced canyon formation. These margins are most likely the locus of canyon-confined failures and smaller lower slope fan-apron failures (e.g., much of the Mid-Atlantic). Sigmoidal margins with prograded slopes, a rounded shelf edge, and a low gradient slope morphology can support significant sediment accumulation across a broad area, with limited canyon development. These margins are often associated with high sediment supply and are prone to large, upper slope slab-style failures (e.g., the Hudson Apron, southwestern New England, the Currituck and Cape Fear Slide complexes). Areas with morphologies in between these two end members are characterized by limited shelf-edge accommodation space and large-scale lower slope accumulation and onlap, representing transitional stages of equilibrium slope adjustment. Large failures along these intermediate-type margins tend to develop lower on the slope where thick wedges of onlapping sediment are found (e.g., around Washington Canyon, Cape Lookout and southeastern New England). As antecedent topography and sediment loading appear to play an important role in determining the spatial distribution of submarine slope failures, other key processes that contribute to the development of overpressure (e.g., sediment compaction and fluid migration) should be examined with this in mind to improve our understanding of the geologic factors that precondition slopes for failure.

  15. Fine-scale predictive mapping of Cold Water Coral species in the Cap de Creus Canyon (NW Mediterranean): first insights

    NASA Astrophysics Data System (ADS)

    Lo Iacono, Claudio; Gonzalez-Villanueva, Rita; Gori, Andrea; Orejas, Covadonga; Gili, Josep Maria

    2013-04-01

    Cold-water corals (CWC) are azooxanthellate species which develop in a complex environment ruled out by a delicate interplay between geological, biological and oceanographic conditions.High impact deep-sea bottom trawling activities are seriously compromising the health and state of conservation of CWC habitats. It has been recently discovered that submarine canyons can act as hosting areas for benthic communities dominated by CWCs. Favorable environmental conditions along the canyons coupled with the rough seafloor morphology can foster their development and facilitate their preservation from the trawling threat. The aim of this study is to statistically predict the distribution of three CWC species (Madrepora oculata, Lophelia pertusa, Dendrophyllia cornigera) in the Cap de Creus Canyon (NW Mediterranean) based on high-resolution swath-bathymetry data (pixel resolution: 5m) and video observations from the submersible JAGO (IFM-GEOMAR). Species distribution models have been constructed with a Maximum Entropy approach (MaxEnt model) using the presence data from video imagery and layers derived from multibeam bathymetry such as slope, geomorphologic category, rugosity, aspect (orientation of the pixel respect to the North) and backscatter. For the three species the predictive model performance is outstanding, with the area under the curve (AUC) from the sensitivity-specificity approach of 0.98 for M. oculata and D. cornigera and of 0.99 for L. pertusa. The most relevant variables responsible for the CWC distribution are the slope and aspect for M. oculata and L. pertusa, and rugosity and aspect for D. cornigera. According to the models, CWC species are most likely to be found on the medium to steep rough walls of the southern flank of the Cap de Creus Canyon and almost exclusively along the regions facing the North and the North-West, from where strong organic sediment-rich currents flow. Results are coherent with previous observations and quantitative studies performed in the area. Insights coming out from the application of geo-spatial statistical models could represent the basis for the development of a scientifically-based approach in the planning and management of Marine Protected Areas.

  16. Megabenthic assemblages at the Hudson Canyon head (NW Atlantic margin): Habitat-faunal relationships

    NASA Astrophysics Data System (ADS)

    Pierdomenico, Martina; Gori, Andrea; Guida, Vincent G.; Gili, Josep-Maria

    2017-09-01

    The distribution of megabenthic communities at the head of Hudson Canyon and adjacent continental shelf was studied by means of underwater video transects and still photo imagery collected using a towed camera system. The goal was to explore the relationships between faunal distribution and physical seafloor conditions and to test the hypothesis that increased seafloor heterogeneity in the Hudson Canyon supports a larger diversity of benthic communities, compared with the adjacent continental shelf. Hierarchical cluster analysis was performed to identify benthic assemblages as defined in imagery. The BIO-ENV procedure and the Canonical Correspondence Analysis were carried out to elucidate species groupings in relation to terrain variables extracted from bathymetric data. Species accumulation curves were generated to evaluate species turn over in and out of Hudson Canyon. The results indicate that seafloor morphology is the main physical factor related to benthic community composition and distribution. Assemblages dominated by sponges, zoanthids and cup corals colonized the canyon margins and flanks, and were associated with coarse-grained sediments, while sea pen assemblages were observed along muddy seafloor within the thalweg. An assemblage dominated by sea stars occurred on the shelf, associated with a sandy seafloor. Some assemblages were exclusively observed in the canyon area, suggesting that the increased variability of seafloor composition, together with the oceanographic processes specific to the canyon area, enhance beta diversity. The colonization by benthic suspension feeders within the canyon, in contrast to shelf assemblages, mainly composed of carnivores and detritus feeders could be favored the intense hydrodynamics at the canyon head that increase the availability of suspended organic matter. From the perspective of management and conservation of marine resources, the results obtained support the relevance of Hudson Canyon as a biodiversity hotspot. Such results are of particular significance in light of the recent action promoted by the Mid-Atlantic Fisheries Management Council, that restricts bottom trawling in most of the submarine canyons of the US Atlantic margin, including the Hudson Canyon, to protect cold-water corals from damage by fishing gear.

  17. Direct Measurements of the Evolution and Impact of Sediment Density Flows as they Pass Through Monterey Submarine Canyon, Offshore California

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Talling, P.; Maier, K. L.; Parsons, D. R.; Xu, J.; Caress, D. W.; Gwiazda, R.; Lundsten, E. M.; Anderson, K.; Barry, J.; Chaffey, M. R.; O'Reilly, T. C.; Rosenberger, K. J.; Gales, J. A.; McGann, M.; McCann, M. P.; Simmons, S.; Sumner, E.

    2017-12-01

    Sediment density flows flushing through submarine canyons carry globally significant amounts of material into the deep sea to form many of the largest sediment accumulations on Earth. Despite their global significance, these flows remain poorly understood because they have rarely been directly measured. Here we provide an initial overview of the recently completed Coordinated Canyon Experiment (CCE), which was undertaken specifically to provide detailed measurements of sediment density flows and their impact on seafloor morphology and sedimentology. No previous study has deployed as extensive an array of monitoring sensors along a turbidity current pathway. During the 18 months of the CCE, at least 15 sediment density flows were recorded within the axis of Monterey Canyon. Because no external triggers (i.e., earthquakes or floods) correlate with these flows, they must have originated as failures in the canyon floor or canyon flanks. Three flows ignited and ran out for > 50 km from water depths of <200 to >1,860 m, reaching velocities up to 8.1 m/s. The rest of the flows died out within the array. During these events, large objects on or in the canyon floor were displaced substantial distances downslope, including a 7.1 km downslope movement of an entire mooring; a 4.6 km displacement of an 860 kg instrument frame followed by repeated down canyon displacements of this same frame after it was entombed in sediment; and multiple depth changes of man-made boulders containing acceleration and pressure sensors. During this same time interval the canyon floor was mapped six times with autonomous underwater vehicles covering the canyon thalweg at the upper and lower end of the instrument array (200-540 and 1350-1880 m water depths). The repeated mapping surveys reveal that flows caused +3 to -3 m bathymetric changes within a continuous clearly defined 200 m wide swath running along the canyon axis in <200 to >540 m water depth. This study shows that sediment density flows caused massive remolding of thick sections of the canyon floor in <540 m water depth as a consequence of displacement or fluidization of entire slabs of the seabed during these events.

  18. Active geologic processes in Barrow Canyon, northeast Chukchi Sea

    USGS Publications Warehouse

    Eittreim, S.; Grantz, A.; Greenberg, J.

    1982-01-01

    Circulation patterns on the shelf and at the shelf break appear to dominate the Barrow Canyon system. The canyon's shelf portion underlies and is maintained by the Alaska Coastal Current (A.C.C.), which flows northeastward along the coast toward the northeast corner of the broad Chukchi Sea. Offshelf and onshelf advective processes are indicated by oceanographic measurements of other workers. These advective processes may play an important role in the production of bedforms that are found near the canyon head as well as in processes of erosion or non-deposition in the deeper canyon itself. Coarse sediments recovered from the canyon axis at 400 to 570 m indicate that there is presently significant flow along the canyon. The canyon hooks left at a point north of Point Barrow where the A.C.C. loses its coastal constriction. The left hook, as well as preferential west-wall erosion, continues down to the abyssal plain of the Canada Basin at 3800 m. A possible explanation for the preferential west-wall erosion along the canyon, at least for the upper few hundred meters, is that the occasional upwelling events, which cause nutrient-rich water to flow along the west wall would in turn cause larger populations of burrowing organisms to live there than on the east wall, and that these organisms cause high rates of bioerosion. This hypothesis assumes that the dominant factor in the canyon's erosion is biological activity, not current velocity. Sedimentary bedforms consisting of waves and furrows are formed in soft mud in a region on the shelf west of the canyon head; their presence there perhaps reflects: (a) the supply of fine suspended sediments delivered by the A.C.C. from sources to the south, probably the Yukon and other rivers draining northwestern Alaska; and (b) the westward transport of these suspended sediments by the prevailing Beaufort Gyre which flows along the outer shelf. ?? 1982.

  19. Vertical stratification in the distribution of demersal fishes along the walls of the La Jolla and Scripps submarine canyons, California, USA

    NASA Astrophysics Data System (ADS)

    Smith, Joshua G.; Lindholm, James

    2016-08-01

    The geographic distributions of many coastal marine fish assemblages are strongly driven by habitat features, particularly among demersal fishes that live along the seafloor. Ecologists have long recognized the importance of characterizing fish habitat associations, especially where spatial management is under consideration. However, little is known about fish distributions and habitat suitability in unique demersal habitats such as submarine canyons. The active continental margin of the California coast is cut by eight submarine canyons, several of which extend from the shore to the deep abyssal plain. We sampled the demersal fish assemblages in two of those canyons: (1) the Scripps submarine canyon in the San-Diego-Scripps State Marine Conservation Area (SMCA) and (2) the La Jolla canyon in the Matlahuayl State Marine Reserve (SMR) to gain insight into both the distributions and habitat associations of demersal fishes in canyons. A remotely operated vehicle was used to conduct 21 vertically oriented transects along the canyon walls in depths ranging from 20 to 300 m. Species composition was assessed in three depth-stratified zones (100 m per zone) along the canyon walls. Species richness, abundance, and attributes of the surrounding canyon habitat structure (slope and benthic terrain ruggedness) were quantified. Three distinct assemblage groupings were identified, which comprised 35 species of demersal fishes from 17 families. Among all factors analyzed in this study, depth, slope, and ruggedness were strong explanatory variables of patterns of species richness and abundance; however, the relationship between depth and assemblage structure was non-linear. The greatest number of species was observed in the mid depth-stratified zone. These trends suggest that variation in canyon dynamics across depth strata may facilitate distinct assemblage groupings of demersal fishes, which can in turn be used to better manage these unique habitats.

  20. Recent sediment transport and deposition in the Cap-Ferret Canyon, South-East margin of Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Schmidt, Sabine; Howa, Hélène; Diallo, Amy; Martín, Jacobo; Cremer, Michel; Duros, Pauline; Fontanier, Christophe; Deflandre, Bruno; Metzger, Edouard; Mulder, Thierry

    2014-06-01

    The Cap-Ferret Canyon (CFC), a major morphologic feature of the eastern margin of the Bay of Biscay, occupies a deep structural depression that opens about 60 km southwest of the Gironde Estuary. Detailed depth profiles of the particle-reactive radionuclides 234Th and 210Pb in interface sediments were used to characterise the present sedimentation (bioturbation, sediment mass accumulation, and focusing) in the CFC region. Two bathymetric transects were sampled along the CFC axis and the southern adjacent margin. Particle fluxes were recorded from the nearby Landes Plateau by means of sediment traps in 2006 and 2007. This dataset provides a new and comprehensive view of particulate matter transfer in the Cap-Ferret Canyon region, through a direct comparison of the canyon with the adjacent southern margin. Radionuclide profiles (234Th and 210Pb) and mass fluxes demonstrate that significant particle dynamics occur on the SE Aquitanian margin in comparison with nearby margins. The results also suggest show three distinct areas in terms of sedimentary activity. In the upper canyon (<500 m), there is little net sediment accumulation, suggesting a by-pass area. Sediment focusing is apparent at the middle canyon (500-1500 m), that therefore acts as a depocenter for particles from the shelf and the upper canyon. The lower canyon (>2000 m) can be considered inactive at annual or decadal scales. In contrast with the slow and continuous accumulation of relatively fresh material that characterises the middle canyon, the lower canyon receives pulses of sediment via gravity flows on longer time scales. At decadal scale, the CFC can be considered as a relatively quiescent canyon. The disconnection of the CFC from major sources of sediment delivery seems to limit its efficiency in particle transfer from coastal areas to the adjacent ocean basin.

  1. Dispersion and photochemical evolution of reactive pollutants in street canyons

    NASA Astrophysics Data System (ADS)

    Kwak, Kyung-Hwan; Baik, Jong-Jin; Lee, Kwang-Yeon

    2013-05-01

    Dispersion and photochemical evolution of reactive pollutants in street canyons with canyon aspect ratios of 1 and 2 are investigated using a computational fluid dynamics (CFD) model coupled with the carbon bond mechanism IV (CBM-IV). Photochemical ages of NOx and VOC are expressed as a function of the NO2-to-NOx and toluene-to-xylene ratios, respectively. These are found to be useful for analyzing the O3 and OH oxidation processes in the street canyons. The OH oxidation process (O3 oxidation process) is more pronounced in the upper (lower) region of the street canyon with a canyon aspect ratio of 2, which is characterized by more (less) aged air. In the upper region of the street canyon, O3 is chemically produced as well as transported downward across the roof level, whereas O3 is chemically reduced in the lower region of the street canyon. The O3 chemical production is generally favorable when the normalized photochemical ages of NOx and VOC are larger than 0.55 and 0.28, respectively. The sensitivities of O3 chemical characteristics to NOx and VOC emission rates, photolysis rate, and ambient wind speed are examined for the lower and upper regions of the street canyon with a canyon aspect ratio of 2. The O3 concentration and the O3 chemical production rate divided by the O3 concentration increase as the NOx emission rate decreases and the VOC emission rate and photolysis rate increase. The O3 concentration is less sensitive to the ambient wind speed than to other factors considered. The relative importance of the OH oxidation process compared to the O3 oxidation process increases with increasing NOx emission rate and photolysis rate and decreasing VOC emission rate. In this study, both O3 and OH oxidation processes are found to be important in street-canyon scale chemistry. The methodology of estimating the photochemical ages can potentially be adopted to neighborhood scale chemistry.

  2. Use of Composite Fingerprinting Technique to Determine Contribution of Paria River Sediments to Dam-Release Flood Deposits in Marble Canyon, Grand Canyon, Az

    NASA Astrophysics Data System (ADS)

    Chapman, K.; Parnell, R. A.; Smith, M. E.; Grams, P. E.; Mueller, E. R.

    2015-12-01

    The 1963 closure of Glen Canyon Dam drastically reduced the downstream sediment supply and altered daily flow regimes of the Colorado River through Grand Canyon, resulting in significant sandbar erosion downstream of the dam. Dam-release floods, known as High Flow Experiments (HFEs), have occurred six times since 1996 and are intended to rebuild Grand Canyon sandbars using tributary-supplied sediment. In Marble Canyon (first 100 km of Grand Canyon) the targeted tributary is the Paria River which supplies approximately 90% of the annual suspended sediment flux through Marble Canyon; the same input contributed less than 6% prior to the dam. Annual topographic surveys have established that HFEs are effective at rebuilding sandbars. However, the long-term viability of using HFEs for sandbar maintenance is dependent on a sustainable source of sediments comprising HFE deposits. Significant use of non-tributary, main-stem sediments (i.e. pre-dam sand stored in eddies or the channel bed) in HFE deposits would indicate reliance on a limited resource, and diminishing returns in the ability of HFEs to rebuild sandbars. In this study, we sampled vertically throughout 12 bars in Marble Canyon to document temporal and downstream changes in the proportion of sediment sourced from the Paria River during the 2013 and 2014 HFEs. Preliminary data suggest that heavy mineral compositions and concentrations of Ti, S, Cr and Rb, all of which are influenced by grainsize, could be sufficiently capable of differentiating Paria-derived and main-stem sediments when combined into a composite fingerprint (CF). A multivariate mixing model using these CFs quantitatively determines the contribution of Paria-derived sediment in each HFE deposit sample. Mixing model endmembers for non-Paria sand include pre-dam flood deposits in Glen and Marble Canyons, and Marble Canyon dredge samples. These results elucidate the role of contemporary versus legacy sediment in long-term sandbar maintenance.

  3. Large eddy simulation of reactive pollutants in a deep urban street canyon: Coupling dynamics with O3-NOx-VOC chemistry.

    PubMed

    Zhong, Jian; Cai, Xiao-Ming; Bloss, William James

    2017-05-01

    A large eddy simulation (LES) model coupled with O 3 -NO x -VOC chemistry is implemented to simulate the coupled effects of emissions, mixing and chemical pre-processing within an idealised deep (aspect ratio = 2) urban street canyon under a weak wind condition. Reactive pollutants exhibit significant spatial variations in the presence of two vertically aligned unsteady vortices formed in the canyon. Comparison of the LES results from two chemical schemes (simple NO x -O 3 chemistry and a more comprehensive Reduced Chemical Scheme (RCS) chemical mechanism) shows that the concentrations of NO 2 and O x inside the street canyon are enhanced by approximately 30-40% via OH/HO 2 chemistry. NO, NO x , O 3 , OH and HO 2 are chemically consumed, while NO 2 and O x (total oxidant) are chemically produced within the canyon environment. Within-canyon pre-processing increases oxidant fluxes from the canyon to the overlying boundary layer, and this effect is greater for deeper street canyons (as found in many traditional European urban centres) than shallower (lower aspect ratio) streets. There is clear evidence of distinct behaviours for emitted chemical species and entrained chemical species, and positive (or negative) values of intensities of segregations are found between pairs of species with similar (or opposite) behaviour. The simplified two-box model underestimated NO and O 3 levels, but overestimated NO 2 levels for both the lower and upper canyon compared with the more realistic LES-chemistry model. This suggests that the segregation effect due to incomplete mixing reduces the chemical conversion rate of NO to NO 2 . This study reveals the impacts of nonlinear O 3 -NO x -VOC photochemical processes in the incomplete mixing environment and provides a better understanding of the pre-processing of emissions within canyons, prior to their release to the urban boundary layer, through the coupling of street canyon dynamics and chemistry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. On the nature and origin of water masses in Herald Canyon, Chukchi Sea: Synoptic surveys in summer 2004, 2008, and 2009

    NASA Astrophysics Data System (ADS)

    Linders, Johanna; Pickart, Robert. S.; Björk, Göran; Moore, G. W. K.

    2017-12-01

    Hydrographic and velocity data from three high-resolution shipboard surveys of Herald Canyon in the northwest Chukchi Sea, in 2004, 2008, and 2009, are used to investigate the water masses in the canyon and their possible source regions. Both summer and winter Pacific waters were observed in varying amounts in the different years, although in general the summer waters resided on the eastern side of the canyon while the winter waters were located on the western flank. The predominant summer water was Bering summer water, although some Alaskan coastal water resided in the canyon in the two later years likely due to wind forcing. Both newly ventilated and remnant winter waters were found in the canyon, but the amount lessened in each successive survey. Using mooring data from Bering Strait it is shown that a large amount of Bering summer water in the western channel of the strait follows a relatively direct route into Herald Canyon during the summer months, with an estimated advective speed of 10-20 cm/s. However, while the winter water observed in 2004 was consistent with a Bering Strait source (with a slower advective speed of 5-8 cm/s), the dense water in the canyon during 2008 and 2009 was more in line with a northern source. This is consistent with sections to the west of the canyon and with previously reported measurements implying winter water formation on the East Siberian shelf. Large-scale wind patterns and polynya activity on the shelf are also investigated. It was found that the former appears to impact more strongly the presence of dense water in Herald Canyon.

  5. Fluid mechanical dispersion of airborne pollutants inside urban street canyons subjecting to multi-component ventilation and unstable thermal stratifications.

    PubMed

    Mei, Shuo-Jun; Liu, Cheng-Wei; Liu, Di; Zhao, Fu-Yun; Wang, Han-Qing; Li, Xiao-Hong

    2016-09-15

    The pedestrian level pollutant transport in street canyons with multiple aspect ratios (H/W) is numerically investigated in the present work, regarding of various unstable thermal stratification scenarios and plain surrounding. Non-isothermal turbulent wind flow, temperature field and pollutant spread within and above the street canyons are solved by the realizable k-ε turbulence model along with the enhanced wall treatment. One-vortex flow regime is observed for shallow canyons with H/W=0.5, whereas multi-vortex flow regime is observed for deep canyons with H/W=2.0. Both one-vortex and multi-vortex regimes could be observed for the street canyons with H/W=1.0, where the secondary vortex could be initiated by the flow separation and intensified by unstable thermal stratification. Air exchange rate (AER) and pollutant retention time are adopted to respectively evaluate the street canyon ventilation and pollutant removal performance. A second-order polynomial functional relationship is established between AER and Richardson number (Ri). Similar functional relationship could be established between retention time and Ri, and it is only valid for canyons with one-vortex flow regime. In addition, retention time could be prolonged abruptly for canyons with multi-vortex flow regime. Very weak secondary vortex is presented at the ground level of deep canyons with mild stratification, where pollutants are highly accumulated. However, with the decrease of Ri, pollutant concentration adjacent to the ground reduces accordingly. Present research could be applied to guide the urban design and city planning for enhancing pedestrian environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Physiographic rim of the Grand Canyon, Arizona: a digital database

    USGS Publications Warehouse

    Billingsley, George H.; Hampton, Haydee M.

    1999-01-01

    This Open-File report is a digital physiographic map database. This pamphlet serves to introduce and describe the digital data. There is no paper map included in the Open-File report. The report does include, however, PostScript and PDF format plot files, each containing an image of the map. For those interested in a paper plot of information contained in the database or in obtaining the PostScript plot files, please see the section entitled "For Those Who Don't Use Digital Geologic Map Databases" below. This physiographic map of the Grand Canyon is modified from previous versions by Billingsley and Hendricks (1989), and Billingsley and others (1997). The boundary is drawn approximately along the topographic rim of the Grand Canyon and its tributary canyons between Lees Ferry and Lake Mead (shown in red). Several isolated small mesas, buttes, and plateaus are within this area, which overall encompasses about 2,600 square miles. The Grand Canyon lies within the southwestern part of the Colorado Plateaus of northern Arizona between Lees Ferry, Colorado River Mile 0, and Lake Mead, Colorado River Mile 277. The Colorado River is the corridor for raft trips through the Grand Canyon. Limestone rocks of the Kaibab Formation form most of the north and south rims of the Grand Canyon, and a few volcanic rocks form the north rim of parts of the Uinkaret and Shivwits Plateaus. Limestones of the Redwall Limestone and lower Supai Group form the rim of the Hualapai Plateau area, and Limestones of Devonian and Cambrian age form the boundary rim near the mouth of Grand Canyon at the Lake Mead. The natural physiographic boundary of the Grand Canyon is roughly the area a visitor would first view any part of the Grand Canyon and its tributaries.

  7. Slope instabilities along the Western Andean Escarpment and the main canyons in Northern Chile

    NASA Astrophysics Data System (ADS)

    Crosta, G.; Hermanns, R. L.; Valbuzzi, E.; Dehls, J.; Yugsi Molina, F. X.; Sepulveda, S.

    2012-04-01

    The western slope of the Andes of northern Chile - southern Perù is generally subdivided from the west to the east into the morphological units of: the Coastal Cordillera, Central Depression, the Western Escarpment-Precordillera and the Western Andean Cordillera. The western escarpment and Precordillera are formed by the Azapa coarse-grained clastic formation (sandstones, conglomerates, mudstones) and the Oxaya (rhyodacitic ignimbrites) and Diablo volcanoclastic formations (Oligocene and Miocene). Important uplift has been suggested between the deposition of the Oxaya and Diablo formations. The entire area has been characterized by a long-term hyperaridity (Atacama desert), initially established between 20 and 15 Ma, and this caused a strong difference between the long term continuous uplift and low denudation rates. This long sector of the central western escarpment and Precordillera is incised by deep canyons and subparallel drainage network in the upper part. The drainage network developed in two main phases: a lower-middle Miocene phase with formation of a parallel poorly structured drainage network cutting into the Oxaya formation, and presently well preserved; the canyons have been incised in the initial topography starting around 9 Ma and up to about 3.8 Ma with subsequent refilling episodes. Valley incision (ave. rate of 0.2 mm yr-1) has been controlled by topographic uplift and less arid climate (after 7 Ma). As a consequence of these geologic and climatic settings the evolution of this area has been characterized by canyon incision and extremely large slope instabilities. These slope instabilities occur in the "interfluvial" sectors of the western escarpment and Precordillera and along the canyon flanks. Landslides affecting the preserved paleosurfaces, interested by the parallel drainage network in the Oxaya formation, involve volumes of various cubic kilometres (Lluta collapse, Latagualla Landslide) and can control the drainage network. These mega landslides can be classified as large block slides and can evolve in large rock avalanches. Their initiation seems to be strongly associated to the presence of secondary faults and large fractures transversal to the slope. Furthermore, most of these landslides show evidences suggesting a re-incision by the main canyon network. Landslides along the canyon flanks affect volumes lower than 1 km3 and can be mainly classified as large complex slumps. The deposits of these landslides often cross the valley and have been incised exposing undeformed bedrock material. At the same time large boulder fields and alluvial deposits infill the lower part of the canyons suggesting also a long history of dam breaching events. We present a landslide inventory in the area (about 220 km long and 80 km wide) between Pisagua (19.4° Chile) and Tacna (17.5° Perù) to the NE of the Arica bend. We mapped landslides, main tectonic structures and other morphological features. Mapping has been performed by use of satellite images, Google Earth® and field surveys performed in the last few years. We discuss two specific landslide sites, the Cerro Caquilluco-Cerrillos Negros rock slide-avalanche (Tacna, Tomasiri, Perù) and a small group of rock avalanches south of Iquique (Chile) in two other abstracts presented by the authors at this conference

  8. Geochronology and correlation of Tertiary volcanic and intrusive rocks in part of the southern Toquima Range, Nye County, Nevada

    USGS Publications Warehouse

    Shawe, Daniel R.; Snee, Lawrence W.; Byers, Frank M.; du Bray, Edward A.

    2014-01-01

    Extensive volcanic and intrusive igneous activity, partly localized along regional structural zones, characterized the southern Toquima Range, Nevada, in the late Eocene, Oligocene, and Miocene. The general chronology of igneous activity has been defined previously. This major episode of Tertiary magmatism began with emplacement of a variety of intrusive rocks, followed by formation of nine major calderas and associated with voluminous extrusive and additional intrusive activity. Emplacement of volcanic eruptive and collapse megabreccias accompanied formation of some calderas. Penecontemporaneous volcanism in central Nevada resulted in deposition of distally derived outflow facies ash-flow tuff units that are interleaved in the Toquima Range with proximally derived ash-flow tuffs. Eruption of the Northumberland Tuff in the north part of the southern Toquima Range and collapse of the Northumberland caldera occurred about 32.3 million years ago. The poorly defined Corcoran Canyon caldera farther to the southeast formed following eruption of the tuff of Corcoran Canyon about 27.2 million years ago. The Big Ten Peak caldera in the south part of the southern Toquima Range Tertiary volcanic complex formed about 27 million years ago during eruption of the tuff of Big Ten Peak and associated air-fall tuffs. The inferred Ryecroft Canyon caldera formed in the south end of the Monitor Valley adjacent to the southern Toquima Range and just north of the Big Ten Peak caldera in response to eruption of the tuff of Ryecroft Canyon about 27 million years ago, and the Moores Creek caldera just south of the Northumberland caldera developed at about the same time. Eruption of the tuff of Mount Jefferson about 26.8 million years ago was accompanied by collapse of the Mount Jefferson caldera in the central part of the southern Toquima Range. An inferred caldera, mostly buried beneath alluvium of Big Smoky Valley southwest of the Mount Jefferson caldera, formed about 26.5 million years ago with eruption of the tuff of Round Mountain. The Manhattan caldera south of the Mount Jefferson caldera and northwest of the Big Ten Peak caldera formed in association with eruption of a series of tuffs, principally the Round Rock Formation, mostly ash-flow tuff, about 24.4 million years ago. Extensive 40Ar/39Ar dating of about 60 samples that represent many of the Tertiary extrusive and intrusive rocks in the southern Toquima Range provides precise ages that refine the chronology of previously dated units. New geochronologic data indicate that the petrogenetically related Corcoran Canyon, Ryecroft Canyon, and Mount Jefferson calderas formed during a period of about 560,000 years. Electron microprobe analyses of phenocrysts from 20 samples of six dated units underscore inferred petrogenetic relations among some of these units. In particular, compositions of augite, hornblende, and biotite in tuffs erupted from the Corcoran Canyon, Ryecroft Canyon, and Mount Jefferson calderas are similar, which suggests that magmas represented by these tuffs have similar petrogenetic histories. The unique occurrence of hypersthene in Isom-type tuff confirms its derivation from a source beyond the southern Toquima Range.

  9. Geology and biology of Oceanographer submarine canyon.

    USGS Publications Warehouse

    Valentine, P.C.; Uzmann, J.R.; Cooper, R.A.

    1980-01-01

    Santonian beds more than 100 m thick are the oldest rocks collected from the canyon. Quaternary silty clay veneers the canyon walls in many places and is commonly burrowed by benthic organisms that cause extensive erosion of the canyon walls, especially in the depth zone (100-1300 m) inhabited by the crabs Geryon and Cancer. Bioerosion is minimal on high, near-vertical cliffs of sedimentary rock, in areas of continual sediment movement, and where the sea floor is paved by gravel. A thin layer of rippled, unconsolidated silt and sand is commonly present on the canyon walls and in the axis. Shelf sediments are transported from Georges Bank over the E rim and in the Canyon by the SW drift and storm currents; tidal currents and internal waves move the sediment downcanyon along the walls and axis.- from Authors

  10. 2008 High-Flow Experiment at Glen Canyon Dam Benefits Colorado River Resources in Grand Canyon National Park

    USGS Publications Warehouse

    Melis, Theodore S.; Topping, David J.; Grams, Paul E.; Rubin, David M.; Wright, Scott A.; Draut, Amy E.; Hazel, Joseph E.; Ralston, Barbara E.; Kennedy, Theodore A.; Rosi-Marshall, Emma; Korman, Josh; Hilwig, Kara D.; Schmit, Lara M.

    2010-01-01

    On March 5, 2008, the Department of the Interior began a 60-hour high-flow experiment at Glen Canyon Dam, Arizona, to determine if water releases designed to mimic natural seasonal flooding could be used to improve downstream resources in Glen Canyon National Recreation Area and Grand Canyon National Park. U.S. Geological Survey (USGS) scientists and their cooperators undertook a wide range of physical and biological resource monitoring and research activities before, during, and after the release. Scientists sought to determine whether or not high flows could be used to rebuild Grand Canyon sandbars, create nearshore habitat for the endangered humpback chub, and benefit other resources such as archaeological sites, rainbow trout, aquatic food availability, and riverside vegetation. This fact sheet summarizes research completed by January 2010.

  11. Environmental assessment: Davis Canyon site, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOEmore » prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considering for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization.« less

  12. A Numerical Simulation of Traffic-Related Air Pollution Exposures in Urban Street Canyons

    NASA Astrophysics Data System (ADS)

    Liu, J.; Fu, X.; Tao, S.

    2016-12-01

    Urban street canyons are usually associated with intensive vehicle emissions. However, the high buildings successively along both sides of a street block the dispersion of traffic-generated air pollutants, which enhances human exposure and adversely affects human health. In this study, an urban scale traffic pollution dispersion model is developed with the consideration of street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. Vehicle exhausts generated from traffic flows will first disperse inside a street canyon along the micro-scale wind field (generated by computational fluid dynamics (CFD) model) and then leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing, China. We found that an increase of building height along the streets leads to higher pollution levels inside streets and lower pollution levels outside, resulting in higher domain-averaged concentrations over the area. In addition, street canyons with equal (or highly uneven) building heights on two sides of a street tend to lower the urban-scale air pollution concentrations at pedestrian level. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry in consideration of traffic demand as well as local weather pattern may significantly reduce the chances of unhealthy air being inhaled by urban residents.

  13. World War II in Social Studies and Science Curricula.

    ERIC Educational Resources Information Center

    Mayer, Victor J.

    2000-01-01

    Western educators are forgetting the need to impart knowledge about modern warfare's consequences. Science texts contain little about radiation damage. The nuclear bomb's destructiveness to humans and the biosphere should be a teacher responsibility in several curriculum areas. "War is hell" should be educators' main message. (Contains…

  14. Environmental Investigations and Analyses for Los Angeles-Long Beach Harbors, Los Angeles, California, 1973-1976.

    DTIC Science & Technology

    1976-12-01

    Christine Yonai Fred Piltz Ichthyology Jay Carroll Karl Lyde John Helle Scott Ralston S. Ishikawa Steve Subber Catherine Kusick Catherine Terry...Charles Greaves Catherine Link Susan Harrison Julie Thompson Kaoru 0. Kendis Ismay Stanley Randall Kendis Marine Technicians Bruce Adams Gene Mummert

  15. From "Hell No!" to "Que Paso?": Interrogating a Hispanic-Serving Institution Possibility

    ERIC Educational Resources Information Center

    Lara, Dulcinea; Lara, Antonio

    2012-01-01

    Some Hispanic students are making it through the Eurocentric, United Statesian education pipeline, but exponentially more are failing. Meanwhile, poor Chican@ communities are disproportionately suffering from unemployment, low levels of education, chronic illness, pollution, and myriad social ills. At this historical crossroads, it behooves…

  16. 75 FR 22699 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... from the requirements of 44 CFR part 10, Environmental Consideration. An environmental impact..., Nebraska, and Incorporated Areas Docket No.: FEMA-B-7759 Hell Creek Approximately 100 feet +1038 City of La... of Homeland Security, Federal Emergency Management Agency. [FR Doc. 2010-10053 Filed 4-29-10; 8:45 am...

  17. Legal Education as Political Consciousness-Raising or Paving the Road to Hell.

    ERIC Educational Resources Information Center

    Devlin, Richard F.

    1989-01-01

    One law teachers's experience in teaching a legal research and writing course in Ireland is discussed. A primary course objective was to raise law students' consciousness of the political aspects of legal research and literature through legal examination of a film categorized as pornographic. (MSE)

  18. Globalization: the path to neo-liberal nirvana or health and environmental hell?

    PubMed

    Arya, Neil

    2003-01-01

    This article addresses the impact of the neo-liberal agenda of globalization and in particular how international financial institutions and transnational corporations have affected and continue to affect the health of peoples, especially the poorest. It also examines impacts of these policies on the environment and peace.

  19. To Excel at "O," Study the Map and Run Like Hell.

    ERIC Educational Resources Information Center

    Conniff, Richard

    1992-01-01

    Explains the sport of orienteering in which participants use detailed topographic maps and compasses to reach control points along a course. Describes the history of the sport and its minimal success in the United States. Presents several versions of the sport and identifies the demographics of participants. (KS)

  20. 14 CFR Appendix to Subpart U of... - Special Flight Rules in the Vicinity of the Grand Canyon National Park, AZ

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Grand Canyon National Park, AZ Appendix to Subpart U of Part 93 Aeronautics and Space FEDERAL AVIATION... TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ Pt. 93, Subpt. U, App. Appendix to Subpart U of Part 93—Special Flight Rules in the Vicinity of the Grand Canyon National Park, AZ...

  1. 14 CFR Appendix to Subpart U of... - Special Flight Rules in the Vicinity of the Grand Canyon National Park, AZ

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Grand Canyon National Park, AZ Appendix to Subpart U of Part 93 Aeronautics and Space FEDERAL AVIATION... TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ Pt. 93, Subpt. U, App. Appendix to Subpart U of Part 93—Special Flight Rules in the Vicinity of the Grand Canyon National Park, AZ...

  2. 14 CFR Appendix to Subpart U of... - Special Flight Rules in the Vicinity of the Grand Canyon National Park, AZ

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Grand Canyon National Park, AZ Appendix to Subpart U of Part 93 Aeronautics and Space FEDERAL AVIATION... TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ Pt. 93, Subpt. U, App. Appendix to Subpart U of Part 93—Special Flight Rules in the Vicinity of the Grand Canyon National Park, AZ...

  3. 14 CFR Appendix to Subpart U of... - Special Flight Rules in the Vicinity of the Grand Canyon National Park, AZ

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Grand Canyon National Park, AZ Appendix to Subpart U of Part 93 Aeronautics and Space FEDERAL AVIATION... TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ Pt. 93, Subpt. U, App. Appendix to Subpart U of Part 93—Special Flight Rules in the Vicinity of the Grand Canyon National Park, AZ...

  4. 14 CFR Appendix to Subpart U of... - Special Flight Rules in the Vicinity of the Grand Canyon National Park, AZ

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Grand Canyon National Park, AZ Appendix to Subpart U of Part 93 Aeronautics and Space FEDERAL AVIATION... TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ Pt. 93, Subpt. U, App. Appendix to Subpart U of Part 93—Special Flight Rules in the Vicinity of the Grand Canyon National Park, AZ...

  5. Sea-floor drainage features of Cascadia Basin and the adjacent continental slope, northeast Pacific Ocean

    USGS Publications Warehouse

    Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.

    1989-01-01

    Sea-floor drainage features of Cascadia Basin and the adjacent continental slope include canyons, primary fan valleys, deep-sea valleys, and remnant valley segments. Long-range sidescan sonographs and associated seismic-reflection profiles indicate that the canyons may originate along a mid-slope escarpment and grow upslope by mass wasting and downslope by valley erosion or aggradation. Most canyons are partly filled with sediment, and Quillayute Canyon is almost completely filled. Under normal growth conditions, the larger canyons connect with primary fan valleys or deep-sea valleys in Cascadia Basin, but development of accretionary ridges blocks or re-routes most canyons, forcing abandonment of the associated valleys in the basin. Astoria Fan has a primary fan valley that connects with Astoria Canyon at the fan apex. The fan valley is bordered by parallel levees on the upper fan but becomes obscure on the lower fan, where a few valley segments appear on the sonographs. Apparently, Nitinat Fan does not presently have a primary fan valley; none of the numerous valleys on the fan connect with a canyon. The Willapa-Cascadia-Vancouver-Juan de Fuca deep-sea valley system bypasses the submarine fans and includes deeply incised valleys to broad shallow swales, as well as within-valley terraces and hanging-valley confluences. ?? 1989.

  6. Bottom-trawling along submarine canyons impacts deep sedimentary regimes

    PubMed Central

    Paradis, Sarah; Puig, Pere; Masqué, Pere; Juan-Díaz, Xènia; Martín, Jacobo; Palanques, Albert

    2017-01-01

    Many studies highlight that fish trawling activities cause seafloor erosion, but the assessment of the remobilization of surface sediments and its relocation is still not well documented. These impacts were examined along the flanks and axes of three headless submarine canyons incised on the Barcelona continental margin, where trawling fleets have been operating for decades. Trawled grounds along canyon flanks presented eroded and highly reworked surface sediments resulting from the passage of heavy trawling gear. Sedimentation rates on the upper canyon axes tripled and quadrupled its natural (i.e. pre-industrialization) values after a substantial increase in total horsepower of the operating trawling fleets between 1960 s and 1970 s. These impacts affected the upper canyon reaches next to fishing grounds, where sediment resuspended by trawling can be transported towards the canyon axes. This study highlights that bottom trawling has the capacity to alter natural sedimentary environments by promoting sediment-starved canyon flanks, and by enhancing sedimentation rates along the contiguous axes, independently of canyons’ morphology. Considering the global mechanisation and offshore expansion of bottom trawling fisheries since the mid-20th century, these sedimentary alterations may occur in many trawled canyons worldwide, with further ecological impacts on the trophic status of these non-resilient benthic communities. PMID:28233856

  7. A Numerical Study on the Effects of Street‒canyon Aspect‒ratio on Reactive Pollutant Dispersion

    NASA Astrophysics Data System (ADS)

    Park, S. J.; Kim, J.

    2014-12-01

    In this study, the effects of street‒canyon aspect‒ratio on reactive pollutant dispersion were investigated using the coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons with different aspect ratios and flow regimes were classified according to the building height. For each flow regime, dispersion characteristics were investigated in views of reactive pollutant concentration and VOCs‒NOX ratio. Finally, the relations between pollutant concentration and aspect ratio in urban street canyons were investigated. In the case of H/S = 1.0 (H is building height and S is street width), one clockwise‒rotating vortex appeared vertically and the reverse and outward flows were dominant near the street bottom. In the case of H/S = 2.0, two counter‒rotating vortices appeared vertically in the street canyon. The primary (secondary) vortex rotating clockwise (counterclockwise) was formed in upper (lower) layer. The flow patterns affected the reactive pollutant concentration in street canyons. As building height increased, mean concentration of NO decreased when one vortex was generated in street canyons and increased when two vortexes appeared in street canyons. O3 concentration showed almost contrasted tendency with those of NO because O3 was depleted by the NO titration.

  8. Bottom-trawling along submarine canyons impacts deep sedimentary regimes

    NASA Astrophysics Data System (ADS)

    Paradis, Sarah; Puig, Pere; Masqué, Pere; Juan-Díaz, Xènia; Martín, Jacobo; Palanques, Albert

    2017-02-01

    Many studies highlight that fish trawling activities cause seafloor erosion, but the assessment of the remobilization of surface sediments and its relocation is still not well documented. These impacts were examined along the flanks and axes of three headless submarine canyons incised on the Barcelona continental margin, where trawling fleets have been operating for decades. Trawled grounds along canyon flanks presented eroded and highly reworked surface sediments resulting from the passage of heavy trawling gear. Sedimentation rates on the upper canyon axes tripled and quadrupled its natural (i.e. pre-industrialization) values after a substantial increase in total horsepower of the operating trawling fleets between 1960 s and 1970 s. These impacts affected the upper canyon reaches next to fishing grounds, where sediment resuspended by trawling can be transported towards the canyon axes. This study highlights that bottom trawling has the capacity to alter natural sedimentary environments by promoting sediment-starved canyon flanks, and by enhancing sedimentation rates along the contiguous axes, independently of canyons’ morphology. Considering the global mechanisation and offshore expansion of bottom trawling fisheries since the mid-20th century, these sedimentary alterations may occur in many trawled canyons worldwide, with further ecological impacts on the trophic status of these non-resilient benthic communities.

  9. 2. Exterior view of instrumentation and gauge panels on southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Exterior view of instrumentation and gauge panels on southeast wall of Signal Transfer Building (T-28A). The piping and tubing visibile in the photograph extends from the structure to the Systems Integration Laboratory Building (T-28) and other structures in the complex. - Air Force Plant PJKS, Systems Integration Laboratory, Signal Transfer Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  10. Effects of Wildfire on the Hydrology of Capulin and Rito de los Frijoles canyons, Bandelier National Monument, New Mexico

    USGS Publications Warehouse

    Veenhuis, Jack E.

    2002-01-01

    In June of 1977, the La Mesa wildfire burned 15,270 acres in and around Frijoles Canyon in Bandelier National Monument and the adjacent Santa Fe National Forest, New Mexico. The Dome wildfire in April of 1996 in Bandelier National Monument burned 16,516 acres in Capulin Canyon and the surrounding Dome Wilderness area. Both watersheds are characterized by abundant and extensive archeological sites that could be affected by increased runoff and accelerated rates of erosion, which typically occur after a wildfire. The U.S. Geological Survey in cooperation with the National Park Service monitored the wildfires' effects on streamflow in both canyons. The magnitude of large stormflows increased dramatically after these wildfires; peak flows at the most downstream streamflow-gaging station in Frijoles and Capulin Canyons increased to about 160 times the maximum recorded flood prior to the fire. Maximum peak flow was 3,030 cubic feet per second at the gaging station in Frijoles Canyon (drainage area equals 18.1 square miles) and 3,630 cubic feet per second at the most downstream crest-stage gage in Capulin Canyon (drainage area equals 14.1 square miles). The pre-fire maximum peak flow recorded in these two canyons was 19 and an estimated 25 cubic feet per second, respectively. As vegetation reestablished itself during the second year, the post-fire annual maximum peak flow decreased to about 10 to 15 times the pre-fire annual maximum peak flow. During the third year, maximum annual peak flows decreased to about three to five times the pre-fire maximum peak flow. In the 22 years since the La Mesa wildfire, flood magnitudes have not completely returned to pre-fire size. Post-fire flood magnitudes in Frijoles and Capulin Canyons do not exceed the maximum floods per drainage area for physiographic regions 5 and 6 in New Mexico. For a burned watershed, however, the peak flows that occur after a wildfire are several orders of magnitude larger than normal forested watershed peak flows. The frequency of larger stormflows also increased in response to the effects of the wildfires in both canyons. In Frijoles Canyon, the number of peak stormflows greater than the pre-fire maximum flow of 19 cubic feet per second was 15 in 1977, 9 in 1978, and 5 in 1979, which is about the magnitude of the maximum pre-fire peak flow in both canyons. Again the hydrologic effects of a wildfire seem to be more pronounced for the 3 years following the date of the fire. Likewise, larger peakflows occurred more frequently in Capulin Canyon for the first 3 years after the 1996 wildfire. Median suspended-sediment concentrations in samples collected in Frijoles Canyon in 1977 were 1,330 milligrams per liter; median concentrations were 16 milligrams per liter after the watershed stabilized in 1993-95. The annual load calculated from regression equations for load compared to flow for the first year after the wildfire was 220 times the annual load for the post-recovery period. To convey the increased frequency and magnitude of average flows in Capulin Canyon after the 1996 Dome wildfire, the stream channel in Capulin Canyon increased in flow capacity by widening and downcutting. As Capulin Canyon peak flows have decreased in both magnitude and frequency with vegetative recovery, the stream channel also has slowly begun to readjust. The channel at the most downstream crest-stage gage, which has the shallowest initial valley slope, is showing the first signs of aggradation.

  11. Relationship between rooftop and on-road concentrations of traffic-related pollutants in a busy street canyon: Ambient wind effects.

    PubMed

    Kwak, Kyung-Hwan; Lee, Sang-Hyun; Seo, Jaemyeong Mango; Park, Seung-Bu; Baik, Jong-Jin

    2016-01-01

    Rooftop and on-road measurements of O3, NO2, NOx, and CO concentrations were conducted to investigate the relationship between rooftop and on-road concentrations in a busy and shallow street canyon with an aspect ratio of ∼0.3 in Seoul, Republic of Korea, from 15 April to 1 May 2014. The median road-to-roof concentration ratios, correlation coefficients between rooftop and on-road concentrations, and temporal variations of rooftop and on-road concentrations are analyzed according to the rooftop wind directions which are two cross-canyon and two along-canyon directions. The analysis results indicate that the relationship is strong when the rooftop is situated on the downwind side rather than on the upwind side. Relative to the cross-canyon wind directions, one of the along-canyon wind directions can more enhance the relationship. A conceptual framework is proposed to explain the effect of ambient wind direction on the relationship between rooftop and on-road concentrations in a street canyon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating

    NASA Astrophysics Data System (ADS)

    Li, Xian-Xiang; Britter, Rex E.; Koh, Tieh Yong; Norford, Leslie K.; Liu, Chun-Ho; Entekhabi, Dara; Leung, Dennis Y. C.

    2010-11-01

    Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier-Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were validated against experimental data obtained in wind-tunnel studies before the model was applied to study the detailed turbulence, temperature, and pollutant dispersion characteristics in the street canyon of aspect ratio 1. The effects of different Richardson numbers ( Ri) were investigated. The ground heating significantly enhanced mean flow, turbulence, and pollutant flux inside the street canyon, but weakened the shear at the roof level. The mean flow was observed to be no longer isolated from the free stream and fresh air could be entrained into the street canyon at the roof-level leeward corner. Weighed against higher temperature, the ground heating facilitated pollutant removal from the street canyon.

  13. Event-driven sediment flux in Hueneme and Mugu submarine canyons, southern California

    USGS Publications Warehouse

    Xu, J. P.; Swarzenski, P.W.; Noble, M.; Li, A.-C.

    2010-01-01

    Vertical sediment fluxes and their dominant controlling processes in Hueneme and Mugu submarine canyons off south-central California were assessed using data from sediment traps and current meters on two moorings that were deployed for 6 months during the winter of 2007. The maxima of total particulate flux, which reached as high as 300+ g/m2/day in Hueneme Canyon, were recorded during winter storm events when high waves and river floods often coincided. During these winter storms, wave-induced resuspension of shelf sediment was a major source for the elevated sediment fluxes. Canyon rim morphology, rather than physical proximity to an adjacent river mouth, appeared to control the magnitude of sediment fluxes in these two submarine canyon systems. Episodic turbidity currents and internal bores enhanced sediment fluxes, particularly in the lower sediment traps positioned 30 m above the canyon floor. Lower excess 210Pb activities measured in the sediment samples collected during periods of peak total particulate flux further substantiate that reworked shelf-, rather than newly introduced river-borne, sediments supply most of the material entering these canyons during storms.

  14. Detail of Bright Angel stone vault, containing condenser, Hoffman condensation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of Bright Angel stone vault, containing condenser, Hoffman condensation pump, Jennings vacuum heating pump, and misc. pipes and valves. - Grand Canyon Village Utilities, Grand Canyon National Park, Grand Canyon Village, Coconino County, AZ

  15. NASA Satellite Reveals Grandeur of Arizona Grand Canyon

    NASA Image and Video Library

    2011-10-14

    Arguably one of America most magnificent national parks is the Grand Canyon in northern Arizona. NASA Terra spacecraft captured this image looking to the northeast, the buildings and roads in the center foreground are Grand Canyon Village.

  16. 5. Long view from canyon edge, west of the overlook, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Long view from canyon edge, west of the overlook, showing relationship of Mather Point to neighboring south rim projections; view to southeast - Mather Point Overlook, South Entrance Road, Grand Canyon Village, Coconino County, AZ

  17. Mineral resources of the Fish Creek Canyon, Road Canyon, and Mule Canyon Wilderness Study Areas, San Juan County, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bove, D.J.; Shawe, D.R.; Lee, G.K.

    1989-01-01

    This book reports the Fish Creek Canyon (UT-060-204), Road Canyon(UT-060-201), and Mule Canyon (UT-060-205B) Wilderness Study Areas, which comprise 40,160 acres, 52,420 acres, and 5,990 acres, respectively, studied for their mineral endowment. A search of federal, state, and county records showed no current or previous mining-claim activity. No mineral resources were identified during field examination of the study areas. Sandstone and sand and gravel have no unique qualities but could have limited local use for road metal or other construction purposes. However, similar materials are abundant outside the study areas. The three study areas have moderate resource potential for undiscoveredmore » oil and gas and low resource potential for undiscovered metals, including uranium and thorium, coal, and geothermal energy.« less

  18. Populating a Control Point Database: A cooperative effort between the USGS, Grand Canyon Monitoring and Research Center and the Grand Canyon Youth Organization

    NASA Astrophysics Data System (ADS)

    Brown, K. M.; Fritzinger, C.; Wharton, E.

    2004-12-01

    The Grand Canyon Monitoring and Research Center measures the effects of Glen Canyon Dam operations on the resources along the Colorado River from Glen Canyon Dam to Lake Mead in support of the Grand Canyon Adaptive Management Program. Control points are integral for geo-referencing the myriad of data collected in the Grand Canyon including aerial photography, topographic and bathymetric data used for classification and change-detection analysis of physical, biologic and cultural resources. The survey department has compiled a list of 870 control points installed by various organizations needing to establish a consistent reference for data collected at field sites along the 240 mile stretch of Colorado River in the Grand Canyon. This list is the foundation for the Control Point Database established primarily for researchers, to locate control points and independently geo-reference collected field data. The database has the potential to be a valuable mapping tool for assisting researchers to easily locate a control point and reduce the occurrance of unknowingly installing new control points within close proximity of an existing control point. The database is missing photographs and accurate site description information. Current site descriptions do not accurately define the location of the point but refer to the project that used the point, or some other interesting fact associated with the point. The Grand Canyon Monitoring and Research Center (GCMRC) resolved this problem by turning the data collection effort into an educational exercise for the participants of the Grand Canyon Youth organization. Grand Canyon Youth is a non-profit organization providing experiential education for middle and high school aged youth. GCMRC and the Grand Canyon Youth formed a partnership where GCMRC provided the logistical support, equipment, and training to conduct the field work, and the Grand Canyon Youth provided the time and personnel to complete the field work. Two data collection efforts were conducted during the 2004 summer allowing 40 youth the opportunity to contribute valuable information to the Control Point Database. This information included: verification of point existence, photographs, accurate site descriptions concisely describing the location of the point, how to reach the point, the specific point location and detailed bearings to visible and obvious land marks. The youth learned to locate themselves and find the points using 1:1000 airphotos, write detailed site descriptions, take bearings with a compass, measure vertical and horizontal distances, and use a digital camera. The youth found information for 252 control points (29% of the total points).

  19. Preliminary report on the geology and hydrology of Mortandad Canyon near Los Alamos, New Mexico, with reference to disposal of liquid low-level radioactive waste

    USGS Publications Warehouse

    Baltz, E.H.; Abrahams, J.H.; Purtyman, W.D.

    1963-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Atomic Energy Commission and the Los Alamos Scientific Laboratory, selected the upper part of Mortandad Canyon near Los Alamos, New Mexico for a site for disposal of treated liquid low-level radioactive waste. This report summarizes the part of a study of the geology and hydrology that was done from October 1960 through June 1961. Additional work is being continued. Mortandad Canyon is a narrow east-southeast-trending canyon about 9? miles long that heads on the central part of the Pajarito Plateau at an altitude of about 7,340 feet. The canyon is tributary to the Rio Grande. The drainage area of the part of Mortandad Canyon that was investigated is about 2 square miles, and the total drainage area is about 4.9 square miles. The Pajarito Plateau is capped by the Bandelier Tuff of Pleistocene age. Mortandad Canyon is cut in the Bandelier, and alluvium covers the floor of the canyon to depths ranging from less than 1 foot to as much as 100 feet. The Bandelier is underlain by silt, sand, conglomerate, and interbedded basalt of the Santa Fe Group of Miocene, Pliocene, and Pleistocene(?) age. Some ground water is perched in the alluvium in the canyon; however, the top of the main aquifer is in the Santa Fe Group at a depth of about 990 feet below the canyon floor. Joints in the Bandelier Tuff probably were caused by shrinkage of the tuff during cooling. The joints range in width from hairline cracks to fissures several inches wide. Water can infiltrate along the open joints where the Bandelier is at the surface; however, soil, alluvial fill, and autochthonous clay inhibit infiltration on the tops of mesas and probably in the alluvium-floored canyons also. Thirty-three test holes, each less than 100 feet deep, were drilled in 10 lies across Mortandad Canyon from the western margin of the study area to just west of the Los Alamos-Santa Fe County line. Ten of the holes were cased for observation wells to measure water levels and collect water samples from the alluvium. Twenty-three of the holes were cased to seal out water and were used as access tubes to accommodate a neutron-neutron probe for determining the moisture content of the alluvium and tuff. The source of recharge for the perched ground-water body in the alluvium in Mortandad Canyon is the precipitation in the drainage area of the canyon. During the winter of 1960-61, a snowpack 1-2 feet thick accumulated in the narrow shaded upper part of the canyon. The alluvium below the snowpack received some recharge because of diurnal melting during the winter. In March 1961 the snowmelt water saturated most of the thin alluvium in the upper part of the canyon, and a surface stream began to flow on the alluvium. The maximum flow of the stream was about 250 gpm (gallons per minute). Water from the stream infiltrated the alluvium at the front of the stream and in the reach upstream from the front. A ground-water mound was formed beneath the channel by water infiltrating from the stream. The front of the stream and the front of the ground-water mound advanced eastward to about the middle of the area studied. From this point eastward, the alluvium was thick enough to absorb and transmit the amount of flow in 1961. Late in April the front of the stream retreated, and by the first of May the flow stopped. During and after this period the ground-water mound decayed, and ground-water levels declined in the upper part of the canyon as water drained into the channel and downgradient through the alluvium. The amount of recharge was small in the wide lower part of the canyon during the period of study. The rise in ground-water levels and the increase in moisture content of the alluvium in the lower part of the canyon indicate that water moved downgradient by underflow through the alluvium from the recharge area in the upper part of the canyon. Moisture measurements indicate that only a little water moved into the underlyin

  20. Environmental assessment: Davis Canyon site, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOEmore » prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has fond that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 181 figs., 175 tabs.« less

  1. Evaluation of Macroinvertebrate Communities and Habitat for Selected Stream Reaches at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L.J. Henne; K.J. Buckley

    2005-08-12

    This is the second aquatic biological monitoring report generated by Los Alamos National Laboratory's (LANL's) Water Quality and Hydrology Group. The study has been conducted to generate impact-based assessments of habitat and water quality for LANL waterways. The monitoring program was designed to allow for the detection of spatial and temporal trends in water and habitat quality through ongoing, biannual monitoring of habitat characteristics and benthic aquatic macroinvertebrate communities at six key sites in Los Alamos, Sandia, Water, Pajarito, and Starmer's Gulch Canyons. Data were collected on aquatic habitat characteristics, channel substrate, and macroinvertebrate communities during 2001 and 2002. Aquaticmore » habitat scores were stable between 2001 and 2002 at all locations except Starmer's Gulch and Pajarito Canyon, which had lower scores in 2002 due to low flow conditions. Channel substrate changes were most evident at the upper Los Alamos and Pajarito study reaches. The macroinvertebrate Stream Condition Index (SCI) indicated moderate to severe impairment at upper Los Alamos Canyon, slight to moderate impairment at upper Sandia Canyon, and little or no impairment at lower Sandia Canyon, Starmer's Gulch, and Pajarito Canyon. Habitat, substrate, and macroinvertebrate data from the site in upper Los Alamos Canyon indicated severe impacts from the Cerro Grande Fire of 2000. Impairment in the macroinvertebrate community at upper Sandia Canyon was probably due to effluent-dominated flow at that site. The minimal impairment SCI scores for the lower Sandia site indicated that water quality improved with distance downstream from the outfall at upper Sandia Canyon.« less

  2. Environmental assessment: Davis Canyon site, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, themore » DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of the five sites suitable for characterization.« less

  3. A new model for turbidity current behavior based on integration of flow monitoring and precision coring in a submarine canyon

    USGS Publications Warehouse

    Symons, William O.; Sumner, Esther J.; Paull, Charles K.; Cartigny, Matthieu J.B.; Xu, Jingping; Maier, Katherine L.; Lorenson, Thomas; Talling, Peter J.

    2017-01-01

    Submarine turbidity currents create some of the largest sediment accumulations on Earth, yet there are few direct measurements of these flows. Instead, most of our understanding of turbidity currents results from analyzing their deposits in the sedimentary record. However, the lack of direct flow measurements means that there is considerable debate regarding how to interpret flow properties from ancient deposits. This novel study combines detailed flow monitoring with unusually precisely located cores at different heights, and multiple locations, within the Monterey submarine canyon, offshore California, USA. Dating demonstrates that the cores include the time interval that flows were monitored in the canyon, albeit individual layers cannot be tied to specific flows. There is good correlation between grain sizes collected by traps within the flow and grain sizes measured in cores from similar heights on the canyon walls. Synthesis of flow and deposit data suggests that turbidity currents sourced from the upper reaches of Monterey Canyon comprise three flow phases. Initially, a thin (38–50 m) powerful flow in the upper canyon can transport, tilt, and break the most proximal moorings and deposit chaotic sands and gravel on the canyon floor. The initially thin flow front then thickens and deposits interbedded sands and silty muds on the canyon walls as much as 62 m above the canyon floor. Finally, the flow thickens along its length, thus lofting silty mud and depositing it at greater altitudes than the previous deposits and in excess of 70 m altitude.

  4. Modern landscape processes affecting archaeological sites along the Colorado River corridor downstream of Glen Canyon Dam, Glen Canyon National Recreation Area, Arizona

    USGS Publications Warehouse

    East, Amy E.; Sankey, Joel B.; Fairley, Helen C.; Caster, Joshua J.; Kasprak, Alan

    2017-08-29

    The landscape of the Colorado River through Glen Canyon National Recreation Area formed over many thousands of years and was modified substantially after the completion of Glen Canyon Dam in 1963. Changes to river flow, sediment supply, channel base level, lateral extent of sedimentary terraces, and vegetation in the post-dam era have modified the river-corridor landscape and have altered the effects of geologic processes that continue to shape the landscape and its cultural resources. The Glen Canyon reach of the Colorado River downstream of Glen Canyon Dam hosts many archaeological sites that are prone to erosion in this changing landscape. This study uses field evaluations from 2016 and aerial photographs from 1952, 1973, 1984, and 1996 to characterize changes in potential windblown sand supply and drainage configuration that have occurred over more than six decades at 54 archaeological sites in Glen Canyon and uppermost Marble Canyon. To assess landscape change at these sites, we use two complementary geomorphic classification systems. The first evaluates the potential for aeolian (windblown) transport of river-derived sand from the active river channel to higher elevation archaeological sites. The second identifies whether rills, gullies, or arroyos (that is, overland drainages that erode the ground surface) exist at the archaeological sites as well as the geomorphic surface, and therefore the relative base level, to which those flow paths drain. Results of these assessments are intended to aid in the management of irreplaceable archaeological resources by the National Park Service and stakeholders of the Glen Canyon Dam Adaptive Management Program.

  5. Mapping rock forming minerals at Boundary Canyon, Death Valey National Park, California, using aerial SEBASS thermal infrared hyperspectral image data

    NASA Astrophysics Data System (ADS)

    Aslett, Zan; Taranik, James V.; Riley, Dean N.

    2018-02-01

    Aerial spatially enhanced broadband array spectrograph system (SEBASS) long-wave infrared (LWIR) hyperspectral image data were used to map the distribution of rock-forming minerals indicative of sedimentary and meta-sedimentary lithologies around Boundary Canyon, Death Valley, California, USA. Collection of data over the Boundary Canyon detachment fault (BCDF) facilitated measurement of numerous lithologies representing a contact between the relatively unmetamorphosed Grapevine Mountains allochthon and the metamorphosed core complex of the Funeral Mountains autochthon. These included quartz-rich sandstone, quartzite, conglomerate, and alluvium; muscovite-rich schist, siltstone, and slate; and carbonate-rich dolomite, limestone, and marble, ranging in age from late Precambrian to Quaternary. Hyperspectral data were reduced in dimensionality and processed to statistically identify and map unique emissivity spectra endmembers. Some minerals (e.g., quartz and muscovite) dominate multiple lithologies, resulting in a limited ability to differentiate them. Abrupt variations in image data emissivity amongst pelitic schists corresponded to amphibolite; these rocks represent gradation from greenschist- to amphibolite-metamorphic facies lithologies. Although the full potential of LWIR hyperspectral image data may not be fully utilized within this study area due to lack of measurable spectral distinction between rocks of similar bulk mineralogy, the high spectral resolution of the image data was useful in characterizing silicate- and carbonate-based sedimentary and meta-sedimentary rocks in proximity to fault contacts, as well as for interpreting some mineral mixtures.

  6. Overview of the Colorado River Canyon from the helicopter pad. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of the Colorado River Canyon from the helicopter pad. View of the Nevada side where new bridge will cross canyon, view northwest - Hoover Dam, Spanning Colorado River at Route 93, Boulder City, Clark County, NV

  7. Giant landslides and turbidity currents in the Agadir Canyon Region, NW-Africa

    NASA Astrophysics Data System (ADS)

    Krastel, Sebastian; Wynn, Russell B.; Stevenson, Christopher; Feldens, Peter; Mehringer, Lisa; Schürer, Anke

    2017-04-01

    Coring and drilling of the Moroccan Turbidite System off NW-Africa revealed a long sequence of turbidites, mostly sourced from the Moroccan continental margin and the volcanic Canary Islands. The largest individual flow deposits in the Moroccan Turbidite System contain sediment volumes >100 km3, although these large-scale events are relatively infrequent with a recurrence interval of 10,000 years (over the last 200,000 years). The largest siliciclastic flow in the last 200,000 years was the 'Bed 5 event', which transported 160 km3 of sediment up to 2000 km from the Agadir Canyon region to the southwest Madeira Abyssal Plain. While the Moroccan Turbidite System is extremely well investigated, almost no data from the source region, i.e. the Agadir Canyon, are available. Understanding why some submarine landslides remain as coherent blocks of sediment throughout their passage downslope, while others mix and disintegrate almost immediately after initial failure, is a major scientific challenge, which was addressed in the Agadir Canyon source region during RV Maria S. Merian Cruise MSM32 in late 2013. A major landslide area was identified 200 km south of the Agadir Canyon. A landslide was traced from this failure area to the Agadir Canyon. This landslide entered the canyon in about 2500 m water depth. Despite a significant increase in slope angle, the landslide did not disintegrate into a turbidity current when entering the canyon but moved on as landslide for at least another 200 km down the canyon. The age of the landslide ( 145 ka) does not correspond to any major turbidte deposit in the Moroccan Turbidite System, further supporting the fact that the landslide did not disintegrate into a major turbidity current. A core taken about 350 m above the thalweg in the head region of Agadir Canyon shows a single coarse-grained turbidite, which resembles the composition of the Bed 5 event in the Madeira Abyssal Plain. Hence, the Bed 5 turbidite originated as a failure in the head region of the Agadir Canyon. Interestingly, this failure did not leave a major landslide scarp behind suggesting a small initial failure despite the large-volume deposits in the Madeira Abyssal Plain. The turbidity current must have eroded and incorporated huge amounts of sediments while traveling through the canyon.

  8. Internal tides affect benthic community structure in an energetic submarine canyon off SW Taiwan

    NASA Astrophysics Data System (ADS)

    Liao, Jian-Xiang; Chen, Guan-Ming; Chiou, Ming-Da; Jan, Sen; Wei, Chih-Lin

    2017-07-01

    Submarine canyons are major conduits of terrestrial and shelf organic matter, potentially benefiting the seafloor communities in the food-deprived deep sea; however, strong bottom currents driven by internal tides and the potentially frequent turbidity currents triggered by storm surges, river flooding, and earthquakes may negatively impact the benthos. In this study, we investigated the upper Gaoping Submarine Canyon (GPSC), a high-sediment-yield canyon connected to a small mountain river (SMR) off southwest (SW) Taiwan. By contrasting the benthic meiofaunal and macrofaunal communities within and outside the GPSC, we examined how food supplies and disturbance influenced the benthic community assemblages. The benthic communities in the upper GPSC were mainly a nested subset of the adjacent slope assemblages. Several meiofaunal (e.g. ostracods) and macrofaunal taxa (e.g. peracarid crustaceans and mollusks) that typically occurred on the slope were lost from the canyon. The polychaete families switched from diverse feeding guilds on the slope to motile subsurface deposit feeders dominant in the canyon. The diminishing of epibenthic peracarids and proliferation of deep burrowing polychaetes in the GPSC resulted in macrofauna occurring largely within deeper sediment horizons in the canyon than on the slope. The densities and numbers of taxa were depressed with distinct and more variable composition in the canyon than on the adjacent slope. Both the densities and numbers of taxa were negatively influenced by internal tide flushing and positively influenced by food availability; however, the internal tides also negatively influenced the food supplies. While the meiofauna and macrofauna densities were both depressed by the extreme physical conditions in the GPSC, only the macrofaunal densities increased with depth in the canyon, presumably related to increased frequency and intensity of disturbance toward the canyon head. The population densities of meiofauna, on the other hand, rebounded more rapidly due to their fast growth rate and short generation time and thus did not display bathymetric pattern in the canyon. To our knowledge, this is the first benthic ecological study in a submarine canyon connected to a high-sediment-yield SMR. The biological responses to extreme physical conditions in the GPSC could have broad implications on understanding the anthropogenic and climate change impacts in the deep-sea ecosystems.

  9. The effects of wildfire on the peak streamflow magnitude and frequency, Frijoles and Capulin Canyons, Bandelier National Monument, New Mexico

    USGS Publications Warehouse

    Veenhuis, J.E.

    2004-01-01

    In June of 1977, the La Mesa fire burned 15,270 acres in and around Frijoles Canyon, Bandelier National Monument and the adjacent Santa Fe National Forest, New Mexico. The Dome fire occurred in April of 1996 in Bandelier National Monument, burned 16,516 acres in Capulin Canyon and the surrounding Dome Wilderness area. Both canyons are characterized by extensive archeological artifacts, which could be threatened by increased runoff and accelerated rates of erosion after a wildfire. The U.S. Geological Survey (USGS) in cooperation with the National Park Service monitored the fires' effects on streamflow in both canyons. Copyright 2004 ASCE.

  10. Fragmented Landscapes in the San Gorgonio Pass Region: Insights into Quaternary Strain History of the Southern San Andreas Fault System

    NASA Astrophysics Data System (ADS)

    Kendrick, K. J.; Matti, J. C.; Landis, G. P.; Alvarez, R. M.

    2006-12-01

    The San Gorgonio Pass (SGP) region is a zone of structural complexity within the southern San Andreas Fault system that is characterized by (1) multiple strands of the San Andreas Fault (SAF), (2) intense and diverse microseismicity, (3) contraction within the SGP fault zone (SGPfz), and (4) complex and diverse landforms - all a consequence of structural complications in the vicinity of the southeastern San Bernardino Mountains (SBM). Multiple strands of the SAF zone in the SGP region partition the landscape into discrete geomorphic/geologic domains, including: San Gorgonio Mountain (SGM), Yucaipa Ridge (YR), Kitching Peak (KP), Pisgah Peak (PP), and Coachella Valley (CV) domains. The morphology of each domain reflects the tectonic history unique to that region. Development of the SGP knot in the Mission Creek strand of the SAF (SAFmi) led to westward deflection of the SAFmi, juxtaposition of the KP, PP, and SGM domains, initiation of uplift of YR domain along thrust faults in headwaters of San Gorgonio River, and development of the San Jacinto Fault. Slip on the SAF diminished as a result, thereby allowing integrated drainage systems to develop in the greater SGP region. San Gorgonio River, Whitewater River, and Mission Creek are discrete drainages that transport sediment across the SGM, YR, PP, KP, and CV domains into alluvial systems peripheral to the SGP region. There, depositional units (San Timoteo Formation, upper member, deformed gravels of Whitewater River) all contain clasts of SBM-type and San Gabriel Mountain-type basement, thus constraining slip on the SAF in the SGP region. Middle and late Pleistocene slip on the Mill Creek strand of the SAF (SAFm) in the SGP region has attempted to bypass the SGP knot, and has disrupted landscapes established during SAFmi quiescence. Restoration of right-slip on the SAFm is key to deciphering landscape history. Matti and others (1985, 1992) proposed that a bi-lobed alluvial deposit in the Raywood Flats area has been displaced by 8-10 km from entrenched bedrock drainages north of the SAFm (North Fork Whitewater River and Hell-For-Sure Canyon). This restoration, along with restoration of 3-4 km of dextral-slip along SAFmi, leads to an integrated drainage network that extended from San Gorgonio Peak southward across the SAFm and SAFmi, through the San Timoteo drainage basin and ultimately to the Santa Ana River drainage. Following final slip on the SAFmi, which occurred between approximately 1.2 and 0.5 Ma, the 8-10 km dextral-slip reconstruction on the SAFm can be used to restore the ancestral Mission Creek drainage system, which has always flowed southeast. A large alluvial-fan complex that overlies the SAFmi strand developed where the ancestral Mission Creek River debouched into the Coachella Valley. Analysis of cosmogenic radionuclides (21Ne from quartz) from surface boulders indicates that oldest deposits in the fan complex are about 400ka old, compatible with pedogenic development on the oldest surface. Approximately 2-4 km dextral slip on the youngest strands of the SAF (Banning and Garnet Hill) represents the latest bypass of the SGP structural knot. Cumulative displacement on all strands of the SAF in the greater SGP region appears to have been no more than ~18 km since inception of the left step in the SAFmi. Regional evidence suggests that this event initiated at ~1.2Ma, leading to a Quaternary slip rate on the SAF at SGP of no more than 10-15 mm/yr.

  11. Installation and Implementation of a Comprehensive Groundwater Monitoring Program for the Indian Wells Valley, California

    DTIC Science & Technology

    2010-04-01

    isotopes. Laboratory analysis for general chemistry included Na, Ca, Mg, K, Fe, Cl, HCO3, CO3 , SO4, F, B, NO3, arsenic (As), hardness, alkalinity...used for interpretations within the project. Prior to this effort, a single -location repository for isotopic data related to IWV investigations...canyons of importance to this study (Indian Wells Canyon, Freeman Canyon, and the upgradient canyons of Cow Haven, Sage, and Horse). Single samples

  12. Rapid formation of a modern bedrock canyon by a single flood event

    NASA Astrophysics Data System (ADS)

    Lamb, Michael P.; Fonstad, Mark A.

    2010-07-01

    Deep river canyons are thought to form slowly over geological time (see, for example, ref. 1), cut by moderate flows that reoccur every few years. In contrast, some of the most spectacular canyons on Earth and Mars were probably carved rapidly during ancient megaflood events. Quantification of the flood discharge, duration and erosion mechanics that operated during such events is hampered because we lack modern analogues. Canyon Lake Gorge, Texas, was carved in 2002 during a single catastrophic flood. The event offers a rare opportunity to analyse canyon formation and test palaeo-hydraulic-reconstruction techniques under known topographic and hydraulic conditions. Here we use digital topographic models and visible/near-infrared aerial images from before and after the flood, discharge measured during the event, field measurements and sediment-transport modelling to show that the flood moved metre-sized boulders, excavated ~7m of limestone and transformed a soil-mantled valley into a bedrock canyon in just ~3days. We find that canyon morphology is strongly dependent on rock type: plucking of limestone blocks produced waterfalls, inner channels and bedrock strath terraces, whereas abrasion of cemented alluvium sculpted walls, plunge pools and streamlined islands. Canyon formation was so rapid that erosion might have been limited by the ability of the flow to transport sediment. We suggest that our results might improve hydraulic reconstructions of similar megafloods on Earth and Mars.

  13. Experimental simulation of air quality in street canyon under changes of building orientation and aspect ratio.

    PubMed

    Yassin, Mohamed F; Ohba, Masaake

    2012-09-01

    To assist validation of numerical simulations of urban pollution, air quality in a street canyon was investigated using a wind tunnel as a research tool under neutral atmospheric conditions. We used tracer gas techniques from a line source without buoyancy. Ethylene (C(2)H(4)) was used as the tracer gas. The street canyon model was formed of six parallel building rows of the same length. The flow and dispersion field was analyzed and measured using a hot-wire anemometer with split fiber probe and fast flame ionization detector. The diffusion flow field in the boundary layer within the street canyon was examined at different locations, with varying building orientations (θ=90°, 112.5°, 135° and 157.5°) and street canyon aspect ratios (W/H=1/2, 3/4 and 1) downwind of the leeward side of the street canyon model. Results show that velocity increases with aspect ratio, and with θ>90°. Pollutant concentration increases as aspect ratio decreases. This concentration decreases exponentially in the vertical direction, and decreases as θ increases from 90°. Measured pollutant concentration distributions indicate that variability of building orientation and aspect ratio in the street canyon are important for estimating air quality in the canyon. The data presented here can be used as a comprehensive database for validation of numerical models.

  14. High-Resolution Acoustic Imaging in the Agadir-Canyon Region, NW-Africa: Morphology, Processes and Geohazards

    NASA Astrophysics Data System (ADS)

    Krastel, S.; Wynn, R. B.; Feldens, P.; Unverricht, D.; Huehnerbach, V.; Stevenson, C.; Glogowski, S.; Schuerer, A.

    2014-12-01

    Agadir Canyon is one of the largest submarine canyons in the World, supplying giant submarine sediment gravity flows to the Agadir Basin and the wider Moroccan Turbidite System. While the Moroccan Turbidite System is extremely well investigated, almost no data from the source region, i.e. the Agadir Canyon, are available. Understanding why some submarine landslides remain as coherent blocks of sediment throughout their passage downslope, while others mix and disintegrate almost immediately after initial failure, is a major scientific challenge, which was addressed in the Agadir Canyon source region during Cruise MSM32. We collected ~ 1500 km of high-resolution seismic 2D-lines in combination with a dense net of hydroacoustic data. About 1000 km2 of sea floor were imaged during three deployments of TOBI (deep-towed sidescan sonar operated by the National Oceanography Centre Southampton). A total of 186 m of gravity cores and several giant box cores were recovered at more than 50 stations. The new data show that Agadir canyon is the source area of the world's largest submarine sediment flow, which occurred about 60,000 years ago. Up to 160 km3 of sediment was transported to the deep ocean in a single catastrophic event. For the first time, sediment flows of this scale have been tracked along their entire flow pathway. A major landslide area was identified south of Agadir Canyon. Landslide material enters Agadir canyon in about 2500 m water depth; the material is transported as debrite for at least another 200 km down the canyon. Initial data suggest that the last major slide from this source entered Agadir canyon at least 130,000 years ago. A large field of living deep-water corals was imaged north of Agadir canyon. To our knowledge, these are the first living cold water corals recovered off the coast of Morocco (except for the Gulf of Cadiz). They represent an important link between the known cold-water coral provinces off Mauritania and in the Gulf of Cádiz.

  15. Macrofaunal Patterns in and around du Couedic and Bonney Submarine Canyons, South Australia

    PubMed Central

    Dittmann, Sabine; Sorokin, Shirley J.; Hendrycks, Ed

    2015-01-01

    Two South Australian canyons, one shelf-incising (du Couedic) and one slope-limited (Bonney) were compared for macrofaunal patterns on the shelf and slope that spanned three water masses. It was hypothesized that community structure would (H1) significantly differ by water mass, (H2) show significant regional differences and (H3) differ significantly between interior and exterior of each canyon. Five hundred and thirty-one species of macrofauna ≥1 mm were captured at 27 stations situated in depth stratified transects inside and outside the canyons from 100 to1500 m depth. The macrofauna showed a positive relationship to depth in abundance, biomass, species richness and community composition while taxonomic distinctness and evenness remained high at all depths. Biotic variation on the shelf was best defined by variation in bottom water primary production while sediment characteristics and bottom water oxygen, temperature and nutrients defined biotic variation at greater depth. Community structure differed significantly (p<0.01) among the three water masses (shelf-flowing South Australian current, upper slope Flinders current and lower slope Antarctic Intermediate Water) (H1). Although community differences between the du Couedic and Bonney regions were marginally above significance at p = 0.05 (H2), over half of the species captured were unique to each region. This supports the evidence from fish and megafaunal distributions that the du Couedic and Bonney areas are in different bioregions. Overall, the canyon interiors were not significantly different in community composition from the exterior (H3). However, both canyons had higher abundance and/or biomass, increased species dominance, different species composition and coarser sediments near the canyon heads compared to outside the canyons at the same depth (500 m), suggestive of heightened currents within the canyons that influence community composition there. At 1000–1500 m, the canyon interiors were depauperate, typical of V-shaped canyons elsewhere. The large number of species captured, given the relatively low sampling effort and focus on the larger macrofauna, support previous studies that identify the South Australian coast as a high biodiversity area. PMID:26618354

  16. Formative flow in bedrock canyons

    NASA Astrophysics Data System (ADS)

    Venditti, J. G.; Kwoll, E.; Rennie, C. D.; Church, M. A.

    2017-12-01

    In alluvial channels, it is widely accepted that river channel configuration is set by a formative flow that represents a balance between the magnitude and frequency of flood flows. The formative flow is often considered to be one that is just capable of filling a river channel to the top of its banks. Flows much above this formative flow are thought to cause substantial sediment transport and rearrange the channel morphology to accommodate the larger flow. This idea has recently been extended to semi-alluvial channels where it has been shown that even with bedrock exposed, the flows rarely exceed that required to entrain the local sediment cover. What constitutes a formative flow in a bedrock canyon is not clear. By definition, canyons have rock walls and are typically incised vertically, removing the possibility of the walls being overtopped, as can occur in an alluvial channel at high flows. Canyons are laterally constrained, have deep scour pools and often have width to maximum depth ratios approaching 1, an order of magnitude lower than alluvial channels. In many canyons, there are a sequence of irregularly spaced scour pools. The bed may have intermittent or seasonal sediment cover, but during flood flows the sediment bed is entrained leaving a bare bedrock channel. It has been suggested that canyons cut into weak, well-jointed rock may adjust their morphology to the threshold for block plucking because the rock bed is labile during exceptionally large magnitude flows. However, this hypothesis does not apply to canyons cut into massive crystalline rock where abrasion is the dominant erosion process. Here, we argue that bedrock canyon morphology is adjusted to a characteristic flow structure developed in bedrock canyons. We show that the deeply scoured canyon floor is adjusted to a velocity inversion that is present at low flows, but gets stronger at high flows. The effect is to increase boundary shear stresses along the scour pool that forms in constricted bedrock canyons, thereby increasing abrasion rates and the potential for block plucking from massive crystalline rock beds.

  17. A 3D Analysis of Rock Block Deformation and Failure Mechanics Using Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Rowe, Emily; Hutchinson, D. Jean; Kromer, Ryan A.; Edwards, Tom

    2017-04-01

    Many natural geological hazards are present along the Thompson River corridor in British Columbia, Canada, including one particularly hazardous rocky slope known as the White Canyon. Railway tracks used by Canadian National (CN) and Canadian Pacific (CP) Railway companies pass through this area at the base of the Canyon slope. The geologically complex and weathered rock face exposed at White Canyon is prone to rockfalls. With a limited ditch capacity, these falling rocks have the potential to land on the tracks and therefore increase the risk of train derailment. Since 2012, terrestrial laser scanning (TLS) data has been collected at this site on a regular basis to enable researchers at Queen's University to study these rockfalls in greater detail. In this paper, the authors present a summary of an analysis of these TLS datasets including an examination of the pre-failure deformation patterns exhibited by failed rock blocks as well as an investigation into the influence of structural constraints on the pre-failure behavior of these blocks. Aligning rockfall source zones in an early point cloud dataset to a later dataset generates a transformation matrix describing the movement of the block from one scan to the next. This process was repeated such that the motion of the block over the entire TLS data coverage period was measured. A 3D roto-translation algorithm was then used to resolve the motion into translation and rotation components (Oppikofer et al. 2009; Kromer et al. 2015). Structural information was plotted on a stereonet for further analysis. A total of 111 rockfall events exceeding a volume of 1 m3 were analyzed using this approach. The study reveals that although some rockfall source blocks blocks do not exhibit detectable levels of deformation prior to failure, others do experience cm-level translation and rotation on the order of 1 to 6 degrees before detaching from the slope. Moreover, these movements may, in some cases, be related to the discontinuity planes on the slope that were confining the block. It is concluded that rock blocks in White Canyon may be classified as one of five main failure mechanisms based on their pre-failure deformation and structure: planar slide, topple, rotation, wedge, and overhang, with overhang failures representing a large portion of rockfalls in this area. Overhang rockfalls in the White Canyon are characterized by blocks that (a) are not supported by an underlying discontinuity plane, and (b) generally do not exhibit pre-failure deformation. Though overhanging rock blocks are a structural subset of toppling failure, their behavior suggests a different mechanism of detachment. Future work will further populate the present database of rockfalls in White Canyon and will expand the study to include other sites along this corridor. The ultimate goal of this research is to establish warning thresholds based on deformation magnitudes for rockfalls in White Canyon to assist Canadian railways in better understanding and managing these slopes.

  18. Red Rock Canyon National Conservation Area Transportation Feasibility Study

    DOT National Transportation Integrated Search

    2012-07-31

    Red Rock Canyon National Conservation Area is a popular Bureau of Land Management natural area located near Las Vegas, Nevada. Red Rock Canyon experiences heavy congestion on its Scenic Drive and associated parking areas, due to high volumes of visit...

  19. The LSH/HELLS homolog Irc5 contributes to cohesin association with chromatin in yeast

    PubMed Central

    Bakowski, Tomasz; Maciaszczyk-Dziubinska, Ewa; Wysocki, Robert

    2017-01-01

    Abstract Accurate chromosome segregation is essential for every living cell as unequal distribution of chromosomes during cell division may result in genome instability that manifests in carcinogenesis and developmental disorders. Irc5 from Saccharomyces cerevisiae is a member of the conserved Snf2 family of ATP-dependent DNA translocases and its function is poorly understood. Here, we identify Irc5 as a novel interactor of the cohesin complex. Irc5 associates with Scc1 cohesin subunit and contributes to cohesin binding to chromatin. Disruption of IRC5 decreases cohesin levels at centromeres and chromosome arms, causing premature sister chromatid separation. Moreover, reduced cohesin occupancy at the rDNA region in cells lacking IRC5 leads to the loss of rDNA repeats. We also show that the translocase activity of Irc5 is required for its function in cohesion pathway. Finally, we demonstrate that in the absence of Irc5 both the level of chromatin-bound Scc2, a member of cohesin loading complex, and physical interaction between Scc1 and Scc2 are reduced. Our results suggest that Irc5 is an auxiliary factor that is involved in cohesin association with chromatin. PMID:28383696

  20. 2. View, structures in Systems Integration Laboratory complex, looking north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View, structures in Systems Integration Laboratory complex, looking north. The Components Test Laboratory (T-27) is located in the immediate foreground. Immediately uphill to the left of T-27 is the Boiler Chiller Plant (T-28H). To the left of T-28H is the Oxidizer Conditioning Structure (T-28D). Behind the T-28D is the Long-Term Oxidizer Silo (T-28B). The twin gantry structure at the left is the Systems Integration Laboratory (T-28). - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  1. 1. View, structures in Systems Integration Laboratory complex, looking northwest. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View, structures in Systems Integration Laboratory complex, looking northwest. The twin gantry structure in the center is the Systems Integration Laboratory (T-28). To its immediate left in the foreground is a truck well, concrete retaining wall, piping, and stack associated with the oxidizer vault storage area. To the immediate right of T-28 is the concrete Signal Transfer Building (T-28A). At the extreme right is the Long-Term Hydrazine Silo (T-28E). - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  2. Seven years of geomorphic change in the head of Monterey Canyon, CA: Steady state equilibrium or monotonic change?

    NASA Astrophysics Data System (ADS)

    Smith, D. P.; Kvitek, R. G.; Ross, E.; Iampietro, P.; Paull, C. K.; Sandersfeld, M.

    2010-12-01

    The head of Monterey submarine canyon has been surveyed with high-precision multibeam sonar at least once each year since September 2002. This poster provides a summary of changes between September 2002 and September 2008. Data were collected with a variety of Reson mulitbeam sonar heads, and logged with an ISIS data acquisition system. Vessel attitude was corrected using an Applanix POS MV equipped with an auxillary C-Nav 2050 GPS receiver. Data were processed and filtered and cleaned in Caris HIPS. Depth changes for various time spans were determined through raster subtraction of pairs of 3-m resolution bathymetric grids in ArcMap. The depth change analyses focused on the canyon floor, except where a landslide occurred on a wall, and where obvious gullying near the headwall had occurred during the time of our study. Canyon walls were generally excluded from analysis. The analysis area was 1,414,240 sq meters. The gross changes between 2002 and 2008 include net erosion of 2,300,000 m^3 +/- 800,000 m^3 of material from the canyon. The annualized rate of net sediment loss from this time frame agrees within an order of magnitude with our previously published estimates from earlier (shorter) time frames, so the erosion events seem to be moderate magnitude and frequent, rather than infrequent and catastrophic. The greatest sediment loss appears to be from lateral erosion of channel-bounding terraces rather than deepening or scouring of the existing channel axis. A single landslide event that occurred in summer 2003 had an initial slide scar (void) volume of 71,000 m^3. The scar was observed to increase annually, and had grown to approximately 96,000 m^3 by 2008. The initial slide was too small to be tsunamigenic. In contrast to the monotonic canyon axis widening, the shoreward terminus of the canyon (canyon lip) appears to be in steady state equilibrium with sediment supply entering the canyon from the littoral zone. The lip position, indicated by the clearly defined shelf/slope break, typically oscillates offshore and onshore about 20 m to 30 m annually, but a 50 m change was measured. This oscillation likely represents cycles of sediment wedge progradation followed by slope failure and shoreward lip retreat. At this time, it appears that buildings along Moss Landing strand are not at risk from net shoreward canyon growth. The canyon appears to be excavating material that was previously stored in the canyon during an era when sediment supply outcompeted submarine transport processes. Published ages and pollen analyses from the canyon walls indicate that an enormous volume of sediment entered the canyon in post-European settlement time, with up to 1.6 m of sediment drape occurring after 1945 (presence of trace DDT). Likewise, 1930’s-era bathymetric charts indicate that major depositional features now located in the canyon were not present in the 1930’s, again suggesting a very young age for the deposits now being excavated from the canyon. One possible source of the young deposits is the construction of nearby Moss Landing Harbor in 1946, which has led to very high erosion rates in adjacent Elkhorn Slough.

  3. Internal wave scattering in continental slope canyons, part 1: Theory and development of a ray tracing algorithm

    NASA Astrophysics Data System (ADS)

    Nazarian, Robert H.; Legg, Sonya

    2017-10-01

    When internal waves interact with topography, such as continental slopes, they can transfer wave energy to local dissipation and diapycnal mixing. Submarine canyons comprise approximately ten percent of global continental slopes, and can enhance the local dissipation of internal wave energy, yet parameterizations of canyon mixing processes are currently missing from large-scale ocean models. As a first step in the development of such parameterizations, we conduct a parameter space study of M2 tidal-frequency, low-mode internal waves interacting with idealized V-shaped canyon topographies. Specifically, we examine the effects of varying the canyon mouth width, shape and slope of the thalweg (line of lowest elevation). This effort is divided into two parts. In the first part, presented here, we extend the theory of 3-dimensional internal wave reflection to a rotated coordinate system aligned with our idealized V-shaped canyons. Based on the updated linear internal wave reflection solution that we derive, we construct a ray tracing algorithm which traces a large number of rays (the discrete analog of a continuous wave) into the canyon region where they can scatter off topography. Although a ray tracing approach has been employed in other studies, we have, for the first time, used ray tracing to calculate changes in wavenumber and ray density which, in turn, can be used to calculate the Froude number (a measure of the likelihood of instability). We show that for canyons of intermediate aspect ratio, large spatial envelopes of instability can form in the presence of supercritical sidewalls. Additionally, the canyon height and length can modulate the Froude number. The second part of this study, a diagnosis of internal wave scattering in continental slope canyons using both numerical simulations and this ray tracing algorithm, as well as a test of robustness of the ray tracing, is presented in the companion article.

  4. Draft environmental assessment: Davis Canyon site, Utah. Nuclear Waste Policy Act (Section 112). [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluationsmore » are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received. On the basis of the evaluations reported in this draft EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. The site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site - the Lavender Canyon site. Although the Lavender Canyon site appears to be suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. Furthermore, the DOE finds that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is proposing to nominate the Davis Canyon site as one of five sites suitable for characterization. Having compared the Davis Canyon site with the other four sites proposed for nomination, the DOE has determined that the Davis Canyon site is not one of the three preferred sites for recommendation to the President as candidates for characterization.« less

  5. Water-quality data for Walnut Canyon and Wupatki National Monuments, Arizona, 2001-02

    USGS Publications Warehouse

    Thomas, Blakemore E.

    2003-01-01

    Water-quality data are provided for four sites in Walnut Canyon and Wupatki National Monuments in north-central Arizona. These data describe the current water quality and provide baseline water-quality information for monitoring future trends. Water samples were collected from a ground-water seep and well in Walnut Canyon and from a spring and a river in Wupatki during September 2001 to September 2002. Water from the four sites is from four different sources. In Walnut Canyon, Cherry Canyon seep is in a shallow local aquifer, and the Little Colorado River contains ground-water discharge from several aquifers and runoff from a 22,000 square-mile drainage area. Concentrations of dissolved solids were similar within the two monuments; the range for water samples from Walnut Canyon was 203 to 248 milligrams per liter, and the range for water samples from Wupatki was 503 to 614 milligrams per liter. Concentrations of trace elements were generally low in water samples from the three ground-water sites--Cherry Canyon seep, Walnut Canyon headquarters well, and Heiser Spring. The water sample collected from the Little Colorado River, however, had high concentrations of aluminum (4,020 micrograms per liter), antimony (54 micrograms per liter), arsenic (14.3 micrograms per liter), and iron (749 micrograms per liter) relative to U.S. Environmental Protection Agency Primary and Secondary Maximum Contaminant Levels. Concentrations of nitrate (as nitrogen) in water samples from the four sites were generally low (0.11 to 1.8 milligrams per liter) and are within the upper 25 percent of nitrate concentrations measured in the regional aquifer near Flagstaff in 1996 and 1997. Water samples from Cherry Canyon seep, Heiser Spring, and the Little Colorado River contained total coliform bacteria. Fecal coliform and Escherichia coli bacteria were found in water samples from Cherry Canyon seep and the Little Colorado River.

  6. Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins.

    PubMed

    Mountjoy, Joshu J; Howarth, Jamie D; Orpin, Alan R; Barnes, Philip M; Bowden, David A; Rowden, Ashley A; Schimel, Alexandre C G; Holden, Caroline; Horgan, Huw J; Nodder, Scott D; Patton, Jason R; Lamarche, Geoffroy; Gerstenberger, Matthew; Micallef, Aaron; Pallentin, Arne; Kane, Tim

    2018-03-01

    Although the global flux of sediment and carbon from land to the coastal ocean is well known, the volume of material that reaches the deep ocean-the ultimate sink-and the mechanisms by which it is transferred are poorly documented. Using a globally unique data set of repeat seafloor measurements and samples, we show that the moment magnitude ( M w ) 7.8 November 2016 Kaikōura earthquake (New Zealand) triggered widespread landslides in a submarine canyon, causing a powerful "canyon flushing" event and turbidity current that traveled >680 km along one of the world's longest deep-sea channels. These observations provide the first quantification of seafloor landscape change and large-scale sediment transport associated with an earthquake-triggered full canyon flushing event. The calculated interevent time of ~140 years indicates a canyon incision rate of 40 mm year -1 , substantially higher than that of most terrestrial rivers, while synchronously transferring large volumes of sediment [850 metric megatons (Mt)] and organic carbon (7 Mt) to the deep ocean. These observations demonstrate that earthquake-triggered canyon flushing is a primary driver of submarine canyon development and material transfer from active continental margins to the deep ocean.

  7. Simulations of the impacts of building height layout on air quality in natural-ventilated rooms around street canyons.

    PubMed

    Yang, Fang; Zhong, Ke; Chen, Yonghang; Kang, Yanming

    2017-10-01

    Numerical simulations were conducted to investigate the effects of building height ratio (i.e., HR, the height ratio of the upstream building to the downstream building) on the air quality in buildings beside street canyons, and both regular and staggered canyons were considered for the simulations. The results show that the building height ratio affects not only the ventilation fluxes of the rooms in the downstream building but also the pollutant concentrations around the building. The parameter, outdoor effective source intensity of a room, is then proposed to calculate the amount of vehicular pollutants that enters into building rooms. Smaller value of this parameter indicates less pollutant enters the room. The numerical results reveal that HRs from 2/7 to 7/2 are the favorable height ratios for the regular canyons, as they obtain smaller values than the other cases. While HR values of 5/7, 7/7, and 7/5 are appropriate for staggered canyons. In addition, in terms of improving indoor air quality by natural ventilation, the staggered canyons with favorable HR are better than those of the regular canyons.

  8. Diel drift of Chironomidae larvae in a pristine Idaho mountain stream

    USGS Publications Warehouse

    Tilley, L.J.

    1989-01-01

    Simultaneous hourly net collections in a meadow and canyon reach of a mountain stream determined diel and spatial abundances of drifting Chironomidae larvae. Sixty-one taxa were identified to the lowest practical level, 52 in the meadow and 41 in the canyon. Orthocladiinae was the most abundant subfamily with 32 taxa and a 24 h mean density of 294 individuals 100 m-3 (meadow) and 26 taxa and a mean of 648 individuals 100 m-3 (canyon). Chironominae was the second most abundant subfamily. Nonchironomid invertebrates at both sites and total Chironomidae larvae (meadow) were predominantly night-drifting. Parakiefferiella and Psectrocladius were day-drifting (meadow) whereas 8 other chironomid taxa (meadow) and 2 taxa (canyon) were night-drifting. All others were aperiodic or too rare to test periodicity, Stempellinella cf brevis Edwards exhibited catastrophic drift in the canyon only. The different drift patterns between sites is attributed to greater loss of streambed habitat in the canyon compared to the meadow as streamflow decreased. Consequent crowding of chironomid larvae in the canyon caused catastrophic drift or interfered with drift periodicty. This study adds to knowledge of Chironomidae drift and shows influences on drift of hydrologic and geomorphic conditions. ?? 1989 Kluwer Academic Publishers.

  9. Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins

    PubMed Central

    Mountjoy, Joshu J.; Howarth, Jamie D.; Orpin, Alan R.; Barnes, Philip M.; Bowden, David A.; Rowden, Ashley A.; Schimel, Alexandre C. G.; Holden, Caroline; Horgan, Huw J.; Nodder, Scott D.; Patton, Jason R.; Lamarche, Geoffroy; Gerstenberger, Matthew; Micallef, Aaron; Pallentin, Arne; Kane, Tim

    2018-01-01

    Although the global flux of sediment and carbon from land to the coastal ocean is well known, the volume of material that reaches the deep ocean—the ultimate sink—and the mechanisms by which it is transferred are poorly documented. Using a globally unique data set of repeat seafloor measurements and samples, we show that the moment magnitude (Mw) 7.8 November 2016 Kaikōura earthquake (New Zealand) triggered widespread landslides in a submarine canyon, causing a powerful “canyon flushing” event and turbidity current that traveled >680 km along one of the world’s longest deep-sea channels. These observations provide the first quantification of seafloor landscape change and large-scale sediment transport associated with an earthquake-triggered full canyon flushing event. The calculated interevent time of ~140 years indicates a canyon incision rate of 40 mm year−1, substantially higher than that of most terrestrial rivers, while synchronously transferring large volumes of sediment [850 metric megatons (Mt)] and organic carbon (7 Mt) to the deep ocean. These observations demonstrate that earthquake-triggered canyon flushing is a primary driver of submarine canyon development and material transfer from active continental margins to the deep ocean. PMID:29546245

  10. Deep-sea bacterial communities in sediments and guts of deposit-feeding holothurians in Portuguese canyons (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Amaro, Teresa; Witte, Harry; Herndl, Gerhard J.; Cunha, Marina R.; Billett, David S. M.

    2009-10-01

    Deposit-feeding holothurians often dominate the megafauna in bathyal deep-sea settings, in terms of both abundance and biomass. Molpadia musculus is particularly abundant at about 3400 m depth in the Nazaré Canyon on the NE Atlantic Continental Margin. However, these high abundances are unusual for burrowing species at this depth. The objective of this research was to understand the reasons of the massive occurrence of these molpadiid holothurians in the Nazaré Canyon. To address this question we investigated possible trophic interactions with bacteria at sites where the organic content of the sediment was different (Setúbal and Cascais Canyons, NE Atlantic Continental Margin). The molecular fingerprinting technique of Denaturing Gradient Gel Electrophoresis (DGGE) with band sequencing, combined with non-metric multi-dimensional scaling and statistical analyses, was used to compare the bacterial community diversity in canyon sediments and holothurian gut contents. Our results suggest that M. musculus does not need to develop a specialised gut bacterial community to aid digestion where the sediment is rich in organic matter (Nazaré Canyon); in contrast, such a community may be developed where the sediment is poorer in organic matter (Cascais Canyon).

  11. [Effect of greenbelt on pollutant dispersion in street canyon].

    PubMed

    Xu, Wei-Jia; Xing, Hong; Yu, Zhi

    2012-02-01

    The effect feature of greenbelt on flow field and pollutant dispersion in urban street canyon was researched. The greenbelt was assumed as uniform porous media and its aerodynamics property defined by the pressure loss coefficient. Subsequently, the pollutant dispersion in the street canyon of which there was greenbelt in the middle was simulated with the steady-state standard kappa-epsilon turbulence model and species transport equation. The simulated results agreed well with the wind-tunnel data. Compared with the treeless case, it finds that the street canyon contain a clockwise vortex, the pollutant concentration of the leeward was several times than the windward and the growth rate of pollutant concentration was 46.0%. The further simulation for the impact of tree crown position on the airflow and pollutant dispersion finds that the height of major vortex center in the street canyon increases with the height of tree crown and gradually closes the top of windward building This causes that the average wind speed in the street canyon decreases. Especially when the top of tree crown over the roof and hinder the air flow above the street canyon, the average pollutant concentration increases with the height of tree crown rapidly.

  12. Nuclear Hell On Wheels Examining The Need For A Mobile ICBM

    DTIC Science & Technology

    2015-02-17

    www.defenseone.com/ideas/2014/11/last-thing- us-needs-are-mobile-nuclear-missiles/98828/?oref=d- skybox (accessed 28 Nov 2014) 4 Department of Defense...last-thing-us-needs- are-mobile-nuclear-missiles/98828/?oref=d- skybox (accessed 28 Nov 2014) Craig, Campbell. Destroying the Village: Eisenhower and

  13. Hello...Hello...This Is the Poet Speaking...Do You Read Me...?

    ERIC Educational Resources Information Center

    Gibbons, Maurice

    1972-01-01

    In dialogue between Poet" and English teacher", author writes, Kids will know a hell of a lot more about poetry if they read, experience, enjoy, talk, probe, criticize, respond and create...than if they line-by-line a few set poems." His thesis: the set poetry curriculum turns pupils off. (Author/PD)

  14. Compensating Scientism through "The Black Hole."

    ERIC Educational Resources Information Center

    Roth, Lane

    The focal image of the film "The Black Hole" functions as a visual metaphor for the sacred, order, unity, and eternal time. The black hole is a symbol that unites the antinomic pairs of conscious/unconscious, water/fire, immersion/emersion, death/rebirth, and hell/heaven. The black hole is further associated with the quest for…

  15. Breakdown: Mind Terror in Sylvia Plath and Doris Lessing.

    ERIC Educational Resources Information Center

    Ahearn, Marie

    Both Sylvia Plath and Doris Lessing use themes prevalent in Gothic horror tales--fear, madness, dissolution of personality, the dream journey, and the grotesque--but both writers make use of these themes in their own inimitable way. This paper discusses Plath's "The Bell Jar" and Lessing's "Briefing for a Descent into Hell" in…

  16. Development and Psychometric Evaluation of the Military Suicide Attitudes Questionnaire (MSAQ)

    DTIC Science & Technology

    2015-05-12

    selfish 42 People who kill themselves will burn in hell 43 Someone who kills themselves must not believe in an afterlife 44 Those who attempt suicide...who attempt suicide will be punished in the afterlife 62 God will forgive those who take their own life 63 Chaplains should be required to report

  17. An Analysis of Tactical Military Airlift

    DTIC Science & Technology

    1997-09-01

    an officer; Ashley Donoho and Walinda Enoch, my brother and sister; and Shane Dies, my best friend, who taught me to play guitar - a hobby that has...1969: 29). The book Hell in a Very Small Place, a classic history of Dienbienphu by Bernard B. Fall, made many people in the United States skeptical

  18. Listen; There's a Hell of a Good Universe Next Door; Let's Go

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2012-01-01

    Scientific research is key to our nation's technological and economic development. One can attempt to focus research toward specific applications, but science has a way of surprising us. Think for example of the "charge-couple device", which was originally invented for memory storage, but became the modern digital camera that is used everywhere from camera phones to the Hubble Space Telescope. Using digital cameras, Hubble has taken pictures that reach back 12 billion light-years into the past, when the Universe was only 1-2 billion years old. Such results would never have been possible with the film cameras Hubble was originally supposed to use. Over the past two decades, Hubble and other telescopes have shown us much about the Universe -- many of these results are shocking. Our galaxy is swarming with planets; most of the mass in the Universe is invisible; and our Universe is accelerating ever faster and faster for unknown reasons. Thus, we live in a "hell of a good universe", to quote e.e. cummings, that we fundamentally don't understand. This means that you, as young scientists, have many worlds to discover

  19. A new species of Ischyodus (Chondrichthyes: Holocephali: Callorhynchidae) from Upper Maastrichtian Shallow marine facies of the Fox Hills and Hell Creek Formations, Williston basin, North Dakota, USA

    USGS Publications Warehouse

    Hoganson, J.W.; Erickson, J.M.

    2005-01-01

    A new species of chimaeroid, Ischyodus rayhaasi sp. nov., is described based primarily upon the number and configuration of tritors on palatine and mandibular tooth plates. This new species is named in honour of Mr Raymond Haas. Fossils of I. rayhaasi have been recovered from the Upper Maastrichtian Fox Hills Formation and the Breien Member and an unnamed member of the Hell Creek Formation at sites in south-central North Dakota and north-central South Dakota, USA. Ischyodus rayhaasi inhabited shallow marine waters in the central part of the Western Interior Seaway during the latest Cretaceous. Apparently it was also present in similar habitats at that time in the Volga region of Russia. Ischyodus rayhaasi is the youngest Cretaceous species Ischyodus known to exist before the Cretaceous/Tertiary extinction, and the species apparently did not survive that event. It was replaced by Ischyodus dolloi, which is found in the Paleocene Cannonball Formation of the Williston Basin region of North Dakota and is widely distributed elsewhere. ?? The Palaeontological Association.

  20. Geology, geochronology, and potential volcanic hazards in the Lava Ridge-Hells Half Acre area, eastern Snake River Plain, Idaho

    USGS Publications Warehouse

    Kuntz, Mel A.; Dalrymple, G. Brent

    1979-01-01

    The evaluation of volcanic hazards for the proposed Safety Test Reactor Facility (STF) at the Argonne National Laboratory-West (ANLW) site, Idaho National Engineering Laboratory (INEL), Idaho, involves an analysis of the geology of the Lava Ridge-Hells Half Acre area and of K-At age determinations on lava flows in cored drill holes. The ANLW site at INEL lies in a shallow topographic depression bounded on the east and south by volcanic rift zones that are the locus of past shield-type basalt volcanism and by rhyolite domes erupted along the ring fracture of an inferred rhyolite caldera. The K-At age data indicate that the ANLW site has been flooded by basalt lava flows at irregular intervals from perhaps a few thousand years to as much as 300,000-400,000 years, with an average recurrence interval between flows of approximately 80,000-100,000 years. At least five major lava flows have covered the ANLW site within the past 500,000 years.

  1. Software Configuration Management Plan for the B-Plant Canyon Ventilation Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCDANIEL, K.S.

    1999-08-31

    Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This Software Configuration Management Plan provides instructions for change control of the CVCS.

  2. 4. VISTA POINT AND INTERPRETIVE PLAQUE AT LEE VINING CANYON. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VISTA POINT AND INTERPRETIVE PLAQUE AT LEE VINING CANYON. NOTE ROAD CUT ON CANYON WALL. LOOKING NNE. GIS: N-37 56 30.3 / 119 13 44.8 - Tioga Road, Between Crane Flat & Tioga Pass, Yosemite Village, Mariposa County, CA

  3. Colorado River sediment transport: 1. Natural sediment supply limitation and the influence of Glen Canyon Dam

    USGS Publications Warehouse

    Topping, David J.; Rubin, David M.; Vierra, L.E.

    2000-01-01

    Analyses of flow, sediment‐transport, bed‐topographic, and sedimentologic data suggest that before the closure of Glen Canyon Dam in 1963, the Colorado River in Marble and Grand Canyons was annually supply‐limited with respect to fine sediment (i.e., sand and finer material). Furthermore, these analyses suggest that the predam river in Glen Canyon was not supply‐limited to the same degree and that the degree of annual supply limitation increased near the head of Marble Canyon. The predam Colorado River in Grand Canyon displays evidence of four effects of supply limitation: (1) seasonal hysteresis in sediment concentration, (2) seasonal hysteresis in sediment grain size coupled to the seasonal hysteresis in sediment concentration, (3) production of inversely graded flood deposits, and (4∥ development or modification of a lag between the time of a flood peak and the time of either maximum or minimum (depending on reach geometry) bed elevation. Analyses of sediment budgets provide additional support for the interpretation that the predam river was annually supply‐limited with respect to fine sediment, but it was not supply‐limited with respect to fine sediment during all seasons. In the average predam year, sand would accumulate and be stored in Marble Canyon and upper Grand Canyon for 9 months of the year (from July through March) when flows were dominantly below 200–300 m3/s; this stored sand was then eroded during April through June when flows were typically higher. After closure of Glen Canyon Dam, because of the large magnitudes of the uncertainties in the sediment budget, no season of substantial sand accumulation is evident. Because most flows in the postdam river exceed 200–300 m3/s, substantial sand accumulation in the postdam river is unlikely.

  4. Influence of a dam on fine-sediment storage in a canyon river

    USGS Publications Warehouse

    Hazel, J.E.; Topping, D.J.; Schmidt, J.C.; Kaplinski, M.

    2006-01-01

    Glen Canyon Dam has caused a fundamental change in the distribution of fine sediment storage in the 99-km reach of the Colorado River in Marble Canyon, Grand Canyon National Park, Arizona. The two major storage sites for fine sediment (i.e., sand and finer material) in this canyon river are lateral recirculation eddies and the main-channel bed. We use a combination of methods, including direct measurement of sediment storage change, measurements of sediment flux, and comparison of the grain size of sediment found in different storage sites relative to the supply and that in transport, in order to evaluate the change in both the volume and location of sediment storage. The analysis shows that the bed of the main channel was an important storage environment for fine sediment in the predam era. In years of large seasonal accumulation, approximately 50% of the fine sediment supplied to the reach from upstream sources was stored on the main-channel bed. In contrast, sediment budgets constructed for two short-duration, high experimental releases from Glen Canyon Dam indicate that approximately 90% of the sediment discharge from the reach during each release was derived from eddy storage, rather than from sandy deposits on the main-channel bed. These results indicate that the majority of the fine sediment in Marble Canyon is now stored in eddies, even though they occupy a small percentage (???17%) of the total river area. Because of a 95% reduction in the supply of fine sediment to Marble Canyon, future high releases without significant input of tributary sediment will potentially erode sediment from long-term eddy storage, resulting in continued degradation in Marble Canyon. Copyright 2006 by the American Geophysical Union.

  5. A Computational Fluid Dynamic (CFD) Simulation of PM10 Dispersion Caused by Rail Transit Construction Activity: A Real Urban Street Canyon Model.

    PubMed

    Wang, Yang; Zhou, Ying; Zuo, Jian; Rameezdeen, Raufdeen

    2018-03-09

    Particle emissions derived from construction activities have a significant impact on the local air quality, while the canyon effect with reduced natural ventilation contributes to the highest particulate pollution in urban environments. This study attempted to examine the effect of PM 10 emissions derived from the construction of a rail transit system in an urban street canyon. Using a 3D computational fluid dynamic (CFD) model based on a real street canyon with different height ratios, this study formulates the impact of height ratio and wind directions on the dispersion and concentration of PM 10 . The results indicate that parallel flow would cause the concentration of PM 10 at the end of the street canyons in all height ratios, and the trends in horizontal, vertical and lateral planes in all street canyons are similar. While in the condition of perpendicular flow, double-eddy circulations occur and lead to the concentration of PM 10 in the middle part of the street canyon and leeward of backwind buildings in all height ratios. Furthermore, perpendicular flow will cause the concentration of PM 10 to increase if the upwind buildings are higher than the backwind ones. This study also shows that the dispersion of PM 10 is strongly associated with wind direction in and the height ratios of the street canyons. Certain measures could, therefore, be taken to prevent the impact on people in terms of the PM 10 concentration and the heights of street canyons identified in this research. Potential mitigation strategies are suggested, include measurements below 4 m according to governmental regulations, dust shields, and atomized water.

  6. A Computational Fluid Dynamic (CFD) Simulation of PM10 Dispersion Caused by Rail Transit Construction Activity: A Real Urban Street Canyon Model

    PubMed Central

    Wang, Yang; Zhou, Ying; Zuo, Jian

    2018-01-01

    Particle emissions derived from construction activities have a significant impact on the local air quality, while the canyon effect with reduced natural ventilation contributes to the highest particulate pollution in urban environments. This study attempted to examine the effect of PM10 emissions derived from the construction of a rail transit system in an urban street canyon. Using a 3D computational fluid dynamic (CFD) model based on a real street canyon with different height ratios, this study formulates the impact of height ratio and wind directions on the dispersion and concentration of PM10. The results indicate that parallel flow would cause the concentration of PM10 at the end of the street canyons in all height ratios, and the trends in horizontal, vertical and lateral planes in all street canyons are similar. While in the condition of perpendicular flow, double-eddy circulations occur and lead to the concentration of PM10 in the middle part of the street canyon and leeward of backwind buildings in all height ratios. Furthermore, perpendicular flow will cause the concentration of PM10 to increase if the upwind buildings are higher than the backwind ones. This study also shows that the dispersion of PM10 is strongly associated with wind direction in and the height ratios of the street canyons. Certain measures could, therefore, be taken to prevent the impact on people in terms of the PM10 concentration and the heights of street canyons identified in this research. Potential mitigation strategies are suggested, include measurements below 4 m according to governmental regulations, dust shields, and atomized water. PMID:29522495

  7. Effects of three high-flow experiments on the Colorado River ecosystem downstream from Glen Canyon Dam, Arizona

    USGS Publications Warehouse

    Melis, Theodore S.

    2011-01-01

    Three high-flow experiments (HFEs) were conducted by the U.S. Department of the Interior at Glen Canyon Dam, Arizona, in March 1996, November 2004, and March 2008. These experiments, also known as artificial or controlled floods, were large-volume, scheduled releases of water from Glen Canyon Dam that were designed to mimic some aspects of pre-dam Colorado River seasonal flooding. The goal of these experiments was to determine whether high flows could be used to benefit important physical and biological resources in Glen Canyon National Recreation Area and Grand Canyon National Park that had been affected by the operation of Glen Canyon Dam. Efforts such as HFEs that seek to maintain and restore downstream resources are undertaken by the U.S. Department of the Interior under the auspices of the Grand Canyon Protection Act of 1992 (GCPA; title XVIII, secs. 1801-1809, of Public Law 102-575). Scientists conducted a wide range of monitoring and research activities before, during, and after the experiments. Initially, research efforts focused on whether HFEs could be used to rebuild and maintain Grand Canyon sandbars, which provide camping beaches for hikers and whitewater rafters, create habitats potentially used by native fish and other wildlife, and are the source of windborne sand that may help to protect some archaeological resources from weathering and erosion. As scientists gained a better understanding of how HFEs affect the physical environment, research efforts expanded to include additional investigations about the effects of HFEs on biological resources, such as native fishes, nonnative sports fishes, riverside vegetation, and the aquatic food web. The chapters that follow summarize and synthesize for decisionmakers and the public what has been learned about HFEs to provide a framework for implementing similar future experiments. This report is a product of the Glen Canyon Dam Adaptive Management Program (GCDAMP), a Federal initiative authorized to ensure that the primary mandate of the GCPA (GCPA sec. 1802 (a)) is met through advances in information and resource management. The program and its research efforts focus on a study area that encompasses the Colorado River corridor from the forebay of Glen Canyon Dam to the western boundary of Grand Canyon National Park, which is identified as the Colorado River ecosystem elsewhere in this report. The study area includes the approximately 16-mile river corridor between the dam and Lees Ferry within Glen Canyon National Recreation Area and the entire 277-river mile corridor downstream from Lees Ferry and within Grand Canyon National Park. The U.S. Geological Survey's Grand Canyon Monitoring and Research Center (GCMRC) is responsible for the scientific monitoring and research efforts of the GCDAMP, including the preparation of this report. The GCMRC gratefully acknowledges the contributions of those scientists with Federal and State resource-management agencies, academic institutions, and private consulting firms who undertook much of the research presented in the chapters that follow.

  8. Impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon

    USGS Publications Warehouse

    Dauble, D.D.; Hanrahan, T.P.; Geist, D.R.; Parsley, M.J.

    2003-01-01

    Salmonid habitats in main-stem reaches of the Columbia and Snake rivers have changed dramatically during the past 60 years because of hydroelectric development and operation. Only about 13% and 58% of riverine habitats in the Columbia and Snake rivers, respectively, remain. Most riverine habitat is found in the upper Snake River; however, it is upstream of Hells Canyon Dam and not accessible to anadromous salmonids. We determined that approximately 661 and 805 km of the Columbia and Snake rivers, respectively, were once used by fall chinook salmon Oncorhynchus tshawytscha for spawning. Fall chinook salmon currently use only about 85 km of the main-stem Columbia River and 163 km of the main-stem Snake River for spawning. We used a geomorphic model to identify three river reaches downstream of present migration barriers with high potential for restoration of riverine processes: the Columbia River upstream of John Day Dam, the Columbia-Snake-Yakima River confluence, and the lower Snake River upstream of Little Goose Dam. Our analysis substantiated the assertion that historic spawning areas for fall chinook salmon occurred primarily within wide alluvial floodplains, which were once common in the mainstem Columbia and Snake rivers. These areas possessed more unconsolidated sediment and more bars and islands and had lower water surface slopes than did less extensively used areas. Because flows in the main stem are now highly regulated, the predevelopment alluvial river ecosystem is not expected to be restored simply by operational modification of one or more dams. Establishing more normative flow regimes - specifically, sustained peak flows for scouring - is essential to restoring the functional characteristics of existing, altered habitats. Restoring production of fall chinook salmon to any of these reaches also requires that population genetics and viability of potential seed populations (i.e., from tributaries, tailrace spawning areas, and hatcheries) be considered.

  9. Favorable fragmentation: river reservoirs can impede downstream expansion of riparian weeds.

    PubMed

    Rood, Stewart B; Braatne, Jeffrey H; Goater, Lori A

    2010-09-01

    River valleys represent biologically rich corridors characterized by natural disturbances that create moist and barren sites suitable for colonization by native riparian plants, and also by weeds. Dams and reservoirs interrupt the longitudinal corridors and we hypothesized that this could restrict downstream weed expansion. To consider this "reservoir impediment" hypothesis we assessed the occurrences and abundances of weeds along a 315-km river valley corridor that commenced with an unimpounded reach of the Snake River and extended through Brownlee, Oxbow, and Hells Canyon reservoirs and dams, and downstream along the Snake River. Sampling along 206 belt transects with 3610 quadrats revealed 16 noxious and four invasive weed species. Ten weeds were upland plants, with Canada thistle (Cirsium arvense) restricted to the upstream reaches, where field morning glory (Convolvulus arvensis) was also more common. In contrast, St. John's wort (Hypericum perforatum) was more abundant below the dams, and medusahead wildrye (Taeniatherum caput-medusae) occurred primarily along the reservoirs. All seven riparian species were abundant in the upstream zones but sparse or absent below the dams. This pattern was observed for the facultative riparian species, poison hemlock (Conium maculatum) and perennial pepperweed (Lepidium latifolium), the obligate riparian, yellow nut sedge (Cyperus esculentus), the invasive perennial, reed canary grass (Phalaris arundinacea), and three invasive riparian trees, Russian olive (Elaeagnus angustifolia), false indigo (Amorpha fruticosa), and tamarisk (Tamarix spp.). The hydrophyte purple loosestrife (Lythrum salicaria) was also restricted to the upstream zone. These longitudinal patterns indicate that the reservoirs have impeded the downstream expansion of riparian weeds, and this may especially result from the repetitive draw-down and refilling of Brownlee Reservoir that imposes a lethal combination of drought and flood stress. The dams and reservoirs may also interrupt hydrochory, the downstream flow of seeds and clonal fragments. We thus conclude that with some operational patterns, dams and reservoirs can impede the downstream expansion of riparian weeds.

  10. Aerial radiometric and magnetic reconnaissance survey of portions of Arizona, Idaho, Montana, New Mexico, South Dakota and Washington. Volume 2-F. Lewistown Quadrangle. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    Results of a high-sensitivity, aerial, gamma-ray spectrometer and magnetometer survey of the Lewistown Quadrangle, Montana, are presented. Instrumentation and methods are described in Volume 1 of this final report. Statistical and geological analysis of the radiometric data revealed 58 uranium anomalies worthy of field-checking as possible prospects. One anomaly may be associated with the Cambrian Flathead Quartzite that may contain deposits similar to the Blind River and Rand uranium deposits. Three anomalies may be indicative of sandstone-type deposits in Jurassic rocks, particularly the Morrison Formation, which hosts uranium mineralization elsewhere. One of the latter anomalies is also related to rocksmore » of the Mississippian Madison Group, and this suggests the possible presence of uranium in limestones of the Mission Canyon Formation. There are 45 anomalies related to the Cretaceous rocks. Lignite in the Hell Creek and Judith River formations and Eagle Sandstone may have caused the formation of 22 epigenetic uranium deposits. Many anomalies occur in the Bearpaw Shale and Claggett Formation. However, only five are considered significant of the remainder are expected to be caused by large amounts of radioactive bentonite or bentonitic shale. Two other Cretaceous units that may host sandstone-type deposits are the Colorado Shale and Kootenai Formation that register 16 and two anomalies respectively. Only one anomaly pertains to Tertiary rocks, and it may be indicative of vein-type deposits in the intrusives of the Judith Mountains. These rocks may also act as source rocks for deposits surrounding the Judith Mountains. Eight anomalies related only to Quaternary units may be demonstrative of uranium-rich source rocks that could host uranium mineralization.Several anomalies are located close to oil fields and may have been cause by radium-rich oil-field brines.« less

  11. 75 FR 32960 - Hazardous Fire Risk Reduction, East Bay Hills, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-10

    ... program. The Strawberry Canyon Vegetation Management Project involves the removal of eucalyptus and other... tree sprouts from the area. The Claremont Canyon Vegetation Management Project involves the removal of... the Strawberry Canyon Vegetation Management Project for public comment. The draft environmental...

  12. An In Situ Radiological Survey of Three Canyons at the Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.J. Maurer

    1999-06-01

    An in situ radiological survey of Mortandad, Ten Site, and DP Canyons at the Los Alamos National Laboratory was conducted during August 19-30, 1996. The purpose of this survey was to measure the quantities of radionuclides that remain in the canyons from past laboratory operations. A total of 65 in situ measurements were conducted using high-resolution gamma radiation detectors at 1 meter above the ground. The measurements were obtained in the streambeds of the canyons beginning near the water-release points at the laboratories and extending to the ends of the canyons. Three man-made gamma-emitting radionuclides were detected in the canyons:more » americium-241 ({sup 241}Am), cesium-137 ({sup 137}Cs), and cobalt-60 ({sup 60}Co). Estimated contamination levels ranged from 13.3-290.4 picocuries per gram (pCi/g)for {sup 241}Am, 4.4-327.8 pCi/g for {sup 137}Cs, and 0.4-2.6 pCi/g for {sup 60}Co.« less

  13. Status and Trends of Resources Below Glen Canyon Dam Update - 2009

    USGS Publications Warehouse

    Hamill, John F.

    2009-01-01

    The protection of resources found in Glen Canyon National Recreation Area and Grand Canyon National Park, Arizona, emerged as a significant public concern in the decades following the completion of Glen Canyon Dam in 1963. The dam, which lies about 15 miles upstream from the park, altered the Colorado River's flow, temperature, and sediment-carrying capacity, resulting over time in beach erosion, expansion of nonnative species, and losses of native fish. During the 1990s, in response to public concern, Congress and the Department of the Interior embarked on an ongoing effort to reduce and address the effects of dam operations on downstream resources. In 2005, the U.S. Geological Survey produced a comprehensive report entitled 'The State of the Colorado River Ecosystem in Grand Canyon', which documented the condition and trends of resources downstream of Glen Canyon Dam from 1991 to 2004. This fact sheet updates the 2005 report to extend its findings to include data published through April 2009 for key resources.

  14. Daily and seasonal variability of pH, dissolved oxygen, temperature, and specific conductance in the Colorado River between the forebay of Glen Canyon, Dam and Lees Ferry, northeastern Arizona, 1998-99

    USGS Publications Warehouse

    Flynn, Marilyn E.; Hart, Robert J.; Marzolf, G. Richard; Bowser, Carl J.

    2001-01-01

    The productivity of the trout fishery in the tailwater reach of the Colorado River downstream from Glen Canyon Dam depends on the productivity of lower trophic levels. Photosynthesis and respiration are basic biological processes that control productivity and alter pH and oxygen concentration. During 1998?99, data were collected to aid in the documentation of short- and long-term trends in these basic ecosystem processes in the Glen Canyon reach. Dissolved-oxygen, temperature, and specific-conductance profile data were collected monthly in the forebay of Glen Canyon Dam to document the status of water chemistry in the reservoir. In addition, pH, dissolved-oxygen, temperature, and specific-conductance data were collected at five sites in the Colorado River tailwater of Glen Canyon Dam to document the daily, seasonal, and longitudinal range of variation in water chemistry that could occur annually within the Glen Canyon reach.

  15. Debris Flows and Record Floods from Extreme Mesoscale Convective Thunderstorms over the Santa Catalina Mountains, Arizona

    USGS Publications Warehouse

    Magirl, Christopher S.; Shoemaker, Craig; Webb, Robert H.; Schaffner, Mike; Griffiths, Peter G.; Pytlak, Erik

    2007-01-01

    Ample geologic evidence indicates early Holocene and Pleistocene debris flows from the south side of the Santa Catalina Mountains north of Tucson, Arizona, but few records document historical events. On July 31, 2006, an unusual set of atmospheric conditions aligned to produce record floods and an unprecedented number of debris flows in the Santa Catalinas. During the week prior to the event, an upper-level area of low pressure centered near Albuquerque, New Mexico generated widespread heavy rainfall in southern Arizona. After midnight on July 31, a strong complex of thunderstorms developed over central Arizona in a deformation zone that formed on the back side of the upper-level low. High atmospheric moisture (2.00' of precipitable water) coupled with cooling aloft spawned a mesoscale thunderstorm complex that moved southeast into the Tucson basin. A 15-20 knot low-level southwesterly wind developed with a significant upslope component over the south face of the Santa Catalina Mountains advecting moist and unstable air into the merging storms. National Weather Service radar indicated that a swath of 3-6' of rainfall occurred over the lower and middle elevations of the southern Santa Catalina Mountains. This intense rain falling on saturated soil triggered over 250 hillslope failures and debris flows throughout the mountain range. Sabino Canyon, a heavily used recreation area administered by the U.S. Forest Service, was the epicenter of mass wasting, where at least 18 debris flows removed structures, destroyed the roadway in multiple locations, and closed public access for months. The debris flows were followed by streamflow floods which eclipsed the record discharge in the 75-year gaging record of Sabino Creek. In five canyons adjacent to Sabino Canyon, debris flows approached or excited the mountain front, compromising floow conveyance structures and flooding some homes.

  16. Seismic architecture and lithofacies of turbidites in Lake Mead (Arizona and Nevada, U.S.A.), an analogue for topographically complex basins

    USGS Publications Warehouse

    Twichell, D.C.; Cross, V.A.; Hanson, A.D.; Buck, B.J.; Zybala, J.G.; Rudin, M.J.

    2005-01-01

    Turbidites, which have accumulated in Lake Mead since completion of the Hoover Dam in 1935, have been mapped using high-resolution seismic and coring techniques. This lake is an exceptional natural laboratory for studying fine-grained turbidite systems in complex topographic settings. The lake comprises four relatively broad basins separated by narrow canyons, and turbidity currents run the full length of the lake. The mean grain size of turbidites is mostly coarse silt, and the sand content decreases from 11-30% in beds in the easternmost basin nearest the source to 3-14% in the central basins to 1-2% in the most distal basin. Regionally, the seismic amplitude mimics the core results and decreases away from the source. The facies and morphology of the sediment surface varies between basins and suggests a regional progression from higher-energy and possibly channelized flows in the easternmost basin to unchannelized flows in the central two basins to unchannelized flows that are ponded by the Hoover Dam in the westernmost basin. At the local scale, turbidites are nearly flat-lying in the central two basins, but here the morphology of the basin walls strongly affects the distribution of facies. One of the two basins is relatively narrow, and in sinuous sections reflection amplitude increases toward the outsides of meanders. Where a narrow canyon debouches into a broad basin, reflection amplitude decreases radially away from the canyon mouth and forms a fan-like deposit. The fine-grained nature of the turbidites in the most distal basin and the fact that reflections drape the underlying pre-impoundment surface suggest ponding here. The progression from ponding in the most distal basin to possibly channelized flows in the most proximal basin shows in plan view a progression similar to the stratigraphic progression documented in several minibasins in the Gulf of Mexico. Copyright ?? 2005, SEPM (Society for Sedimentary Geology).

  17. The Schistes à Blocs Fm: the ultimate member of the Annot Sandstones in the Southern Alps (France); slope gullies or canyon system?

    NASA Astrophysics Data System (ADS)

    Rubino, Jean-Loup; Mercier, Louison; Daghdevirenian, Laurent; Migeon, Sébastien; Bousquet, Romain; Broucke, Olivier; Raisson, Francois; Joseph, Philippe; Deschamp, Remi; Imbert, Patrice

    2017-04-01

    Described since a long time, the Schistes à Blocs Fm is the ultimate member of the famous tertiary Grès d'Annot Sandstones in southern alpine foredeep basin in SE France. It mainly consists of shales, silty shales, debris flows, olistoliths and a subordinate amount of sandstones. Since their introduction, and because of their location down to major thrust sheet, they have been considered as a tectono-sedimentary unit linked to the nappe's emplacement and refer as an olistostrome, (Kerckove 1964-1969). However they are separated from the underlying Annot Sandstones by a major erosional surface which deeply cuts, up to 500m, into the sandy turbidites; this surface definitively predates the infill and the nappe emplacement. This is supported by the fact that imbricates affect the upper part of the Schistes and also because of the age; the Schistes à Blocs being Upper Eocene to Lower Oligocene whilst the nappe is latest Oligocene to Lower Miocene. A detailed analysis of the erosional surface in la Bonette area reveals a complex geometry which shows obvious similarities with these observed either on submarine canyons or in slope dissected by gullies as shown by numerous seabeams or 3D seismic images. The infill is quite complex, no basal lag have been observed, however bioturbations suggest occurrence of by pass. Most commonly the lower part of the infill is made of muddy or silty sediments. In some areas, decametric to pluri hectometric olistoliths are interbedded within these deposits. Debris flows are also common with a muddy matrix and finally isolated turbidite channels including the same material than in the Annot Sandstones occur. The reworked material into the debris flows and in the olistoliths suggests that it doesn't only derived from canyon flanks (sandstones) but includes elements belonging to older tethyan series such as Triassic and Liassic carbonates which must be exposed on the sea floor on local highs in the more internal part of the Alps but much earlier than the nappe emplacement. In the forthcoming weeks, thanks to an already done drone acquisition of the cliffs, a 3D gridded model will be realize and will allow to discriminate if we are dealing with a major canyon with lateral irregularities or if, all incisions must be interpreted as numerous gullies entrenching the slope, it will also help to restore the offset of small normal faults affecting the surface. Such type of features are of primary importance in the deep sea sediment routine system; very few examples of mud filled prone canyon are published and because of the outcrop quality, this example can become a world class analog; particularly to highlight potential hydrocarbon trapping mechanism in turbidite systems. Many other outcrops, of a coeval Fm occur all along the Alps from Italy to Switzerland and can provide opportunities to analyze variation of geometrical elements and describe additional facies participating to the infill.

  18. Structure-forming corals and sponges and their use as fish habitat in Bering Sea submarine canyons.

    PubMed

    Miller, Robert J; Hocevar, John; Stone, Robert P; Fedorov, Dmitry V

    2012-01-01

    Continental margins are dynamic, heterogeneous settings that can include canyons, seamounts, and banks. Two of the largest canyons in the world, Zhemchug and Pribilof, cut into the edge of the continental shelf in the southeastern Bering Sea. Here currents and upwelling interact to produce a highly productive area, termed the Green Belt, that supports an abundance of fishes and squids as well as birds and marine mammals. We show that in some areas the floor of these canyons harbors high densities of gorgonian and pennatulacean corals and sponges, likely due to enhanced surface productivity, benthic currents and seafloor topography. Rockfishes, including the commercially important Pacific ocean perch, Sebastes alutus, were associated with corals and sponges as well as with isolated boulders. Sculpins, poachers and pleuronectid flounders were also associated with corals in Pribilof Canyon, where corals were most abundant. Fishes likely use corals and sponges as sources of vertical relief, which may harbor prey as well as provide shelter from predators. Boulders may be equivalent habitat in this regard, but are sparse in the canyons, strongly suggesting that biogenic structure is important fish habitat. Evidence of disturbance to the benthos from fishing activities was observed in these remote canyons. Bottom trawling and other benthic fishing gear has been shown to damage corals and sponges that may be very slow to recover from such disturbance. Regulation of these destructive practices is key to conservation of benthic habitats in these canyons and the ecosystem services they provide.

  19. Structure-Forming Corals and Sponges and Their Use as Fish Habitat in Bering Sea Submarine Canyons

    PubMed Central

    Miller, Robert J.; Hocevar, John; Stone, Robert P.; Fedorov, Dmitry V.

    2012-01-01

    Continental margins are dynamic, heterogeneous settings that can include canyons, seamounts, and banks. Two of the largest canyons in the world, Zhemchug and Pribilof, cut into the edge of the continental shelf in the southeastern Bering Sea. Here currents and upwelling interact to produce a highly productive area, termed the Green Belt, that supports an abundance of fishes and squids as well as birds and marine mammals. We show that in some areas the floor of these canyons harbors high densities of gorgonian and pennatulacean corals and sponges, likely due to enhanced surface productivity, benthic currents and seafloor topography. Rockfishes, including the commercially important Pacific ocean perch, Sebastes alutus, were associated with corals and sponges as well as with isolated boulders. Sculpins, poachers and pleuronectid flounders were also associated with corals in Pribilof Canyon, where corals were most abundant. Fishes likely use corals and sponges as sources of vertical relief, which may harbor prey as well as provide shelter from predators. Boulders may be equivalent habitat in this regard, but are sparse in the canyons, strongly suggesting that biogenic structure is important fish habitat. Evidence of disturbance to the benthos from fishing activities was observed in these remote canyons. Bottom trawling and other benthic fishing gear has been shown to damage corals and sponges that may be very slow to recover from such disturbance. Regulation of these destructive practices is key to conservation of benthic habitats in these canyons and the ecosystem services they provide. PMID:22470486

  20. Effects of street canyon design on pedestrian thermal comfort in the hot-humid area of China.

    PubMed

    Zhang, Yufeng; Du, Xiaohan; Shi, Yurong

    2017-08-01

    The design characteristics of street canyons were investigated in Guangzhou in the hot-humid area of China, and the effects of the design factors and their interactions on pedestrian thermal comfort were studied by numerical simulations. The ENVI-met V4.0 (BASIC) model was validated by field observations and used to simulate the micrometeorological conditions and the standard effective temperature (SET) at pedestrian level of the street canyons for a typical summer day of Guangzhou. The results show that the micrometeorological parameters of mean radiant temperature (MRT) and wind speed play key roles in pedestrian thermal comfort. Street orientation has the largest contribution on SET at pedestrian level, followed by aspect ratio and greenery, while surface albedo and interactions between factors have small contributions. The street canyons oriented southeast-northwest or with a higher aspect ratio provide more shade, higher wind speed, and better thermal comfort conditions for pedestrians. Compared with the east-west-oriented street canyons, the north-south-oriented street canyons have higher MRTs and worse pedestrian thermal comfort due to their wider building spacing along the street. The effects of greenery change with the road width and the time of the day. Street canyon design is recommended to improve pedestrian thermal comfort. This study provides a better understanding of the effects of street canyon design on pedestrian thermal comfort and is a useful guide on urban design for the hot-humid area of China.

  1. On the pollutant removal, dispersion, and entrainment over two-dimensional idealized street canyons

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Ho; Wong, Colman C. C.

    2014-01-01

    Pollutant dispersion over urban areas is not that well understood, in particular at the street canyon scale. This study is therefore conceived to examine how urban morphology modifies the pollutant removal, dispersion, and entrainment over urban areas. An idealized computational domain consisting of 12 two-dimensional (2D) identical street canyons of unity aspect ratio is employed. The large-eddy simulation (LES) is used to calculate the turbulent flows and pollutant transport in the urban boundary layer (UBL). An area source of uniform pollutant concentration is applied on the ground of the first street canyon. A close examination on the roof-level turbulence reveals patches of low-speed air masses in the streamwise flows and narrow high-speed downdrafts in the shear layer. Different from the flows over a smooth surface, the turbulence intensities are peaked near the top of the building roughness. The pollutant is rather uniformly distributed inside a street canyon but disperses quickly in the UBL over the buildings. Partitioning the vertical pollutant flux into its mean and turbulent components demystifies that the pollutant removal is mainly governed by turbulence. Whereas, mean wind carries pollutant into and out of a street canyon simultaneously. In addition to wind speed promotion, turbulent mixing is thus required to dilute the ground-level pollutants, which are then removed from the street canyon to the UBL. Atmospheric flows slow down rapidly after the leeward buildings, leading to updrafts carrying pollutants away from the street canyons (the basic pollutant removal mechanism).

  2. USGS Workshop on Scientific Aspects of a Long-Term Experimental Plan for Glen Canyon Dam, April 10-11, 2007, Flagstaff, Arizona

    USGS Publications Warehouse

    ,

    2008-01-01

    Executive Summary Glen Canyon Dam is located in the lower reaches of Glen Canyon National Recreation Area on the Colorado River, approximately 15 miles upriver from Grand Canyon National Park (fig. 1). In 1992, Congress passed and the President signed into law the Grand Canyon Protection Act (GCPA; title XVIII, sec. 1801?1809, of Public Law 102-575), which seeks ?to protect, mitigate adverse impacts to, and improve the values for which Grand Canyon National Park and Glen Canyon National Recreation Area were established.? The Glen Canyon Dam Adaptive Management Program (GCDAMP) was implemented as a result of the 1996 Record of Decision on the Operation of Glen Canyon Dam Final Environmental Impact Statement to ensure that the primary mandate of the GCPA is met through advances in information and resources management (U.S. Department of the Interior, 1995). On November 3, 2006, the Bureau of Reclamation (Reclamation) announced it would develop a long-term experimental plan environmental impact statement (LTEP EIS) for operational activities at Glen Canyon Dam and other management actions on the Colorado River. The purpose of the long-term experimental plan is twofold: (1) to increase the scientific understanding of the ecosystem and (2) to improve and protect important downstream resources. The proposed plan would implement a structured, longterm program of experimentation to include dam operations, potential modifications to Glen Canyon Dam intake structures, and other management actions such as removal of nonnative fish species. The development of the long-term experimental plan continues efforts begun by the GCDAMP to protect resources downstream of Glen Canyon Dam, including Grand Canyon, through adaptive management and scientific experimentation. The LTEP EIS will rely on the extensive scientific studies that have been undertaken as part of the adaptive management program by the U.S. Geological Survey?s (USGS) Grand Canyon Monitoring and Research Center (GCMRC), one of the four research stations within the USGS Southwest Biological Science Center. On April 10 and 11, 2007, at the behest of Reclamation, the GCMRC convened a workshop with scientific experts to identify one or more scientifically credible, long-term experimental options for Reclamation to consider for the LTEP EIS that would be consistent with the purpose and need for the plan. Workshop participants included government, academic, and private scientists with broad experience in the Colorado River in Grand Canyon and regulated rivers around the world. Resource managers and GCDAMP participants were also present on the second day of the workshop. In advance of the workshop, Reclamation and LTEP EIS cooperating agencies identified 14 core scientific questions. Workshop participants were asked to consider how proposed options would address these questions, which fall primarily into four areas: (1) conservation of endangered humpback chub (Gila cypha) and other high-priority biological resources, (2) conservation of sediment resources, (3) enhancement of recreational resources, and (4) preservation of cultural resources. A secondary objective of the workshop was the evaluation of four long-term experimental options developed by the GCDAMP Science Planning Group (SPG) (appendix B). The flow and nonflow treatments called for in the four experimental options were an important starting point for workshop discussions. At the beginning of the workshop, participants were provided with the final LTEP EIS scoping report prepared by Reclamation. Participants were also advised that Reclamation had committed to ?make every effortEto ensure that a new population of humpback chub is established in the mainstem or one or more of the tributaries within Grand Canyon? in the 1995 Operation of Glen Canyon Dam Final Environmental Impact Statement (U.S. Department of the Interior, 1995). This decision was consistent with the U.S. Fish and Wildlife Service?s 1995 bi

  3. A Spacebird-eye View of the Grand Canyon from NASA Terra Spacecraft

    NASA Image and Video Library

    2011-10-14

    NASA Terra spacecraft provided this view of the eastern part of Grand Canyon National Park in northern Arizona in this image on July 14, 2011. This view looks to the west, with tourist facilities of Grand Canyon Village visible in the upper left.

  4. H CANYON PROCESSING IN CORRELATION WITH FH ANALYTICAL LABS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinheimer, E.

    2012-08-06

    Management of radioactive chemical waste can be a complicated business. H Canyon and F/H Analytical Labs are two facilities present at the Savannah River Site in Aiken, SC that are at the forefront. In fact H Canyon is the only large-scale radiochemical processing facility in the United States and this processing is only enhanced by the aid given from F/H Analytical Labs. As H Canyon processes incoming materials, F/H Labs provide support through a variety of chemical analyses. Necessary checks of the chemical makeup, processing, and accountability of the samples taken from H Canyon process tanks are performed at themore » labs along with further checks on waste leaving the canyon after processing. Used nuclear material taken in by the canyon is actually not waste. Only a small portion of the radioactive material itself is actually consumed in nuclear reactors. As a result various radioactive elements such as Uranium, Plutonium and Neptunium are commonly found in waste and may be useful to recover. Specific processing is needed to allow for separation of these products from the waste. This is H Canyon's specialty. Furthermore, H Canyon has the capacity to initiate the process for weapons-grade nuclear material to be converted into nuclear fuel. This is one of the main campaigns being set up for the fall of 2012. Once usable material is separated and purified of impurities such as fission products, it can be converted to an oxide and ultimately turned into commercial fuel. The processing of weapons-grade material for commercial fuel is important in the necessary disposition of plutonium. Another processing campaign to start in the fall in H Canyon involves the reprocessing of used nuclear fuel for disposal in improved containment units. The importance of this campaign involves the proper disposal of nuclear waste in order to ensure the safety and well-being of future generations and the environment. As processing proceeds in the fall, H Canyon will have a substantial number of samples being sent to F/H Labs. All analyses of these samples are imperative to safe and efficient processing. The important campaigns to occur would be impossible without feedback from analyses such as chemical makeup of solutions, concentrations of dissolution acids and nuclear material, as well as nuclear isotopic data. The necessity of analysis for radiochemical processing is evident. Processing devoid of F/H Lab's feedback would go against the ideals of a safety-conscious and highly accomplished processing facility such as H Canyon.« less

  5. Simulations of photochemical smog formation in complex urban areas

    NASA Astrophysics Data System (ADS)

    Muilwijk, C.; Schrijvers, P. J. C.; Wuerz, S.; Kenjereš, S.

    2016-12-01

    In the present study we numerically investigated the dispersion of photochemical reactive pollutants in complex urban areas by applying an integrated Computational Fluid Dynamics (CFD) and Computational Reaction Dynamics (CRD) approach. To model chemical reactions involved in smog generation, the Generic Reaction Set (GRS) approach is used. The GRS model was selected since it does not require detailed modeling of a large set of reactive components. Smog formation is modeled first in the case of an intensive traffic emission, subjected to low to moderate wind conditions in an idealized two-dimensional street canyon with a building aspect ratio (height/width) of one. It is found that Reactive Organic Components (ROC) play an important role in the chemistry of smog formation. In contrast to the NOx/O3 photochemical steady state model that predicts a depletion of the (ground level) ozone, the GRS model predicts generation of ozone. Secondly, the effect of direct sunlight and shadow within the street canyon on the chemical reaction dynamics is investigated for three characteristic solar angles (morning, midday and afternoon). Large differences of up to one order of magnitude are found in the ozone production for different solar angles. As a proof of concept for real urban areas, the integrated CFD/CRD approach is applied for a real scale (1 × 1 km2) complex urban area (a district of the city of Rotterdam, The Netherlands) with high traffic emissions. The predicted pollutant concentration levels give realistic values that correspond to moderate to heavy smog. It is concluded that the integrated CFD/CRD method with the GRS model of chemical reactions is both accurate and numerically robust, and can be used for modeling of smog formation in complex urban areas.

  6. The Death Valley turtlebacks reinterpreted as Miocene­ Pliocene folds of a major detachment surface

    USGS Publications Warehouse

    Holm, Daniel K.; Fleck, Robert J.; Lux, Daniel R.

    1994-01-01

    Determining the origin of extension parallel folds in metamorphic core complexes is fundamental to understanding the development of detachment faults. An excellent example of such a feature occurs in the Death Valley region of California where a major, undulatory, detachment fault is exposed along the well-known turtleback (antiformal) surfaces of the Black Mountains. In the hanging wall of this detachment fault are deformed strata of the Copper Canyon Formation. New age constraints indicate that the Copper Canyon Formation was deposited from ~6 to 3 Ma. The formation was folded during deposition into a SE-plunging syncline with an axial surface coplanar with that of a synform in the underlying detachment. This relation suggests the turtlebacks are a folded detachment surface formed during large-scale extension in an overall constrictional strain field. The present, more planar, Black Mountains frontal fault system may be the result of out-stepping of a normal fault system away from an older detachment fault that was deactivated by folding.

  7. 78 FR 3879 - Ochoco National Forest, Paulina Ranger District; Oregon; Fox Canyon Cluster Allotment Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ...; Fox Canyon Cluster Allotment Management Plan Project EIS AGENCY: Forest Service, USDA. ACTION: Notice... preparing an environmental impact statement (EIS) to analyze the effects of changing grazing management in four allotments on the Paulina Ranger District. The Fox Canyon Cluster project area is located...

  8. 75 FR 10308 - Fire Management Plan, Final Environmental Impact Statement, Record of Decision, Grand Canyon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ... DEPARTMENT OF THE INTERIOR National Park Service Fire Management Plan, Final Environmental Impact... Statement for the Fire Management Plan, Grand Canyon National Park. SUMMARY: Pursuant to the National... the Record of Decision for the Fire Management Plan, Grand Canyon National Park, Arizona. On January...

  9. 75 FR 39147 - Establishment of Class E Airspace; Bryce Canyon, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... E airspace at Bryce Canyon, UT, to accommodate aircraft using a new Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures (SIAPs) at Bryce Canyon Airport. This will improve the safety and management of Instrument Flight Rules (IFR) operations at the airport. DATES...

  10. 75 FR 34476 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group... Management Work Group. The purpose of the Adaptive Management Work Group is to advise and to provide... of the Glen Canyon Dam Adaptive Management Work Group is in the public interest in connection with...

  11. 76 FR 23623 - Backcountry Management Plan, Environmental Impact Statement, Grand Canyon National Park, Arizona

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... DEPARTMENT OF THE INTERIOR National Park Service Backcountry Management Plan, Environmental Impact Statement, Grand Canyon National Park, Arizona AGENCY: National Park Service, Department of the Interior..., Grand Canyon National Park. SUMMARY: Pursuant to the National Environmental Policy Act of 1969 (42 U.S.C...

  12. Optimizing Street Canyon Orientation for Rajarhat Newtown, Kolkata, India

    NASA Astrophysics Data System (ADS)

    De, Bhaskar; Mukherjee, Mahua

    2017-12-01

    Air temperature in urban street canyons is increased due to the morphed urban geometry, increased surface area, decreased long wave radiation and evapo-transpiration, different thermo-physical properties of surface materials and anthropogenic heat which results in thermal discomfort. Outdoor thermal stress can be mitigated substantially by properly orienting the canyons. It is crucial for the urban planners and designers to orient street canyons optimally considering variable local climatic context. It is important especially for cities in warm humid climatic context as these cities receive higher insolation with higher relative humidity and low level macro wind flow. This paper examines influence of canyon orientation on outdoor thermal comfort and proposes the optimum canyon orientation for the Rajarhat Newtown, Kolkata - a city in warm humid climate zone. Different scenarios are generated with different orientations. Change in air temperature, wind speed, Mean Radiant Temperature (MRT) and Physiological Equivalent Temperature (PET) of different scenarios are compared to find out the optimum orientation by parametric simulation in ENVI_met. Analysing the simulation results it is observed that orientation angle between 30°-60° to north performs the best for the study area of the Rajarhat Newtown. The findings of this research will be helpful for the planners to orient the street canyons optimally for future development and extension of the Rajarhat Newtown, Kolkata.

  13. Analysis of In-Canyon Flow Characterisitcs in step-up street canyons

    NASA Astrophysics Data System (ADS)

    PARK, S.; Kim, J.; Choi, W.; Pardyjak, E.

    2017-12-01

    Flow characteristics in strep-up street canyons were investigated focusing on in-canyon region. To see the effects of the building geometry, two building height ratios [ratio of the upwind (Hu) to downwind building heights (Hd) = 0.33, 0.6] were considered and eight building length ratios [ratio of the cross-wind building length (L) to street-canyon width (S) from 0.5 to 4 with the increment of 0.5] were systematically changed. For the model validation, the simulated results were compared with the wind- tunnel data measured for Hu/Hd = 0.33, 0.6 and L/S = 1, 2, 3, and 4. In the CFD model simulations, the corner vortices at the downwind side near the ground level and the recirculation zones above the downwind buildings had the relatively small extents, compared with those in the wind-tunnel experiments. However, the CFD model reproduced the main flow features such as the street-canyon vortices, circulations above the building roof, and the positions of the stagnation points on the downwind building walls in the wind-tunnel experiments reasonably well. By further analyzing the three-dimensional flow structures based on the numerical results simulated in the step-up street canyons, we schematically suggested the flow characteristics with different building-height and building-length ratios.

  14. Bedrock Canyons Carved by the Largest Known Floods on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Lamb, M. P.; Lapôtre, M. G. A.; Larsen, I. J.; Williams, R. M. E.

    2017-12-01

    The surface of Earth is a dynamic and permeable interface where the rocky crust is sculpted by ice, wind and water resulting in spectacular mountain ranges, vast depositional basins and environments that support life. These landforms and deposits contain a rich, yet incomplete, record of Earth history that we are just beginning to understand. Some of the most dramatic landforms are the huge bedrock canyons carved by catastrophic floods. On Mars, similar bedrock canyons, known as Outflow Channels, are the most important indicators of large volumes of surface water in the past. Despite their importance and now decades of observations of canyon morphology, we lack a basic understanding of how the canyons formed, which limits our ability to reconstruct flood discharge, duration and water volume. In this presentation I will summarize recent work - using mechanistic numerical models and field observations - that suggests that bedrock canyons carved by megafloods rapidly evolve to a size and shape such that boundary shear stresses just exceed that required to entrain fractured blocks of rock. The threshold shear stress constraint allows for quantitative reconstruction of the largest known floods on Earth and Mars, and implies far smaller discharges than previous methods that assume flood waters fully filled the canyons to high water marks.

  15. Direct sampling during multiple sediment density flows reveals dynamic sediment transport and depositional environment in Monterey submarine canyon

    NASA Astrophysics Data System (ADS)

    Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Rosenberger, K. J.; McGann, M.; Lundsten, E. M.; Anderson, K.; Talling, P.; Xu, J.; Parsons, D. R.; Barry, J.; Simmons, S.; Clare, M. A.; Carvajal, C.; Wolfson-Schwehr, M.; Sumner, E.; Cartigny, M.

    2017-12-01

    Sediment density flows were directly sampled with a coupled sediment trap-ADCP-instrument mooring array to evaluate the character and frequency of turbidity current events through Monterey Canyon, offshore California. This novel experiment aimed to provide links between globally significant sediment density flow processes and their resulting deposits. Eight to ten Anderson sediment traps were repeatedly deployed at 10 to 300 meters above the seafloor on six moorings anchored at 290 to 1850 meters water depth in the Monterey Canyon axial channel during 6-month deployments (October 2015 - April 2017). Anderson sediment traps include a funnel and intervalometer (discs released at set time intervals) above a meter-long tube, which preserves fine-scale stratigraphy and chronology. Photographs, multi-sensor logs, CT scans, and grain size analyses reveal layers from multiple sediment density flow events that carried sediment ranging from fine sand to granules. More sediment accumulation from sediment density flows, and from between flows, occurred in the upper canyon ( 300 - 800 m water depth) compared to the lower canyon ( 1300 - 1850 m water depth). Sediment accumulated in the traps during sediment density flows is sandy and becomes finer down-canyon. In the lower canyon where sediment directly sampled from density flows are clearly distinguished within the trap tubes, sands have sharp basal contacts, normal grading, and muddy tops that exhibit late-stage pulses. In at least two of the sediment density flows, the simultaneous low velocity and high backscatter measured by the ADCPs suggest that the trap only captured the collapsing end of a sediment density flow event. In the upper canyon, accumulation between sediment density flow events is twice as fast compared to the lower canyon; it is characterized by sub-cm-scale layers in muddy sediment that appear to have accumulated with daily to sub-daily frequency, likely related to known internal tidal dynamics also measured in the experiment. The comprehensive scale of the Monterey Coordinated Canyon Experiment allows us to integrate sediment traps with ADCP instrument data and seafloor core samples, which provides important new data to constrain how, when, and what sediment is transported through submarine canyons and how this is archived in seafloor deposits.

  16. Reconciling Conflicting Geologic and Thermochronologic Interpretations Via Multiple Apatite Thermochronometers (AHe, AFT, and 4He/3He): 6 Ma Incision of the Westernmost Grand Canyon

    NASA Astrophysics Data System (ADS)

    Winn, C.; Karlstrom, K. E.; Shuster, D. L.; Kelley, S.; Fox, M.

    2017-12-01

    The application of low-temperature apatite thermochronology to the incision history of the Grand Canyon has led to conflicting hypotheses of either a 70 Ma ("old") or <6 Ma ("young") Grand Canyon. This controversy is best captured in the westernmost segment of the Grand Canyon, where several lines of evidence favor a "young" Canyon: 1) North-derived Paleocene Hindu Fanglomerate was deposited across the present track of the Canyon; 2) The Separation Point basalt (19 Ma) is stranded between high relief tributaries and the main stem of the Colorado River; 3) Relief generation in tributaries and on plateaus adjacent to the Canyon took place after 17 Ma; and 4) The late Miocene-Pliocene Muddy Creek Formation shows that no far-traveled materials entered the Grand Wash Trough until after 6 Ma. Some interpretations of apatite thermochronology data conflict with these lines of evidence and indicate a much older ( 70 Ma) westernmost Grand Canyon. We reconcile this conflict by applying apatite (U-Th)/He ages (AHe), 4He/3He thermochronometry, and apatite fission track ages and lengths (AFT) to the same sample at a key location. Using HeFTy, t-T paths that predict these data show cooling from ˜100 °C to 40-60 °C at 70-50 Ma, long-term residence at 40-60 °C from 50-10 Ma, and cooling to surface temperatures after 10 Ma, indicating young incision. New AFT (5) and AHe (3) datasets are also presented here. When datasets are examined separately, AHe data show t-T paths that cool to surface temperatures during the Laramide, consistent with an "old" Canyon. When multiple methods are applied, t-T paths instead show young incision. This inconsistency demonstrates the age of the Grand Canyon controversy. Here we reconcile the difference in t-T paths by adjusting model parameters to account for uncertainty in the rate of radiation damage annealing in apatite during burial heating and the resulting variations in He retentivity. In this area, peak burial conditions during the Laramide were likely insufficient to fully anneal radiation damage that accumulated during prolonged near-surface residence prior to burial. We conclude that application of multiple thermochronometers from common rocks reconciles conflicting thermochronologic interpretations and these data are best explained by a "young" westernmost Grand Canyon.

  17. Exploration of the canyon-incised continental margin of the northeastern United States reveals dynamic habitats and diverse communities

    USGS Publications Warehouse

    Quattrini, Andrea; Nizinski, Martha S.; Chaytor, Jason; Demopoulos, Amanda W.J.; Roark, E. Brendan; France, Scott; Moore, Jon A.; Heyl, Taylor P.; Auster, Peter J.; Ruppel, Carolyn D.; Elliott, Kelley P.; Kennedy, Brian R.C.; Lobecker, Elizabeth A.; Skarke, Adam; Shank, Timothy M.

    2015-01-01

    The continental margin off the northeastern United States (NEUS) contains numerous, topographically complex features that increase habitat heterogeneity across the region. However, the majority of these rugged features have never been surveyed, particularly using direct observations. During summer 2013, 31 Remotely-Operated Vehicle (ROV) dives were conducted from 494 to 3271 m depth across a variety of seafloor features to document communities and to infer geological processes that produced such features. The ROV surveyed six broad-scale habitat features, consisting of shelf-breaching canyons, slope-sourced canyons, inter-canyon areas, open-slope/landslide-scar areas, hydrocarbon seeps, and Mytilus Seamount. Four previously unknown chemosynthetic communities dominated by Bathymodiolus mussels were documented. Seafloor methane hydrate was observed at two seep sites. Multivariate analyses indicated that depth and broad-scale habitat significantly influenced megafaunal coral (58 taxa), demersal fish (69 taxa), and decapod crustacean (34 taxa) assemblages. Species richness of fishes and crustaceans significantly declined with depth, while there was no relationship between coral richness and depth. Turnover in assemblage structure occurred on the middle to lower slope at the approximate boundaries of water masses found previously in the region. Coral species richness was also an important variable explaining variation in fish and crustacean assemblages. Coral diversity may serve as an indicator of habitat suitability and variation in available niche diversity for these taxonomic groups. Our surveys added 24 putative coral species and three fishes to the known regional fauna, including the black coral Telopathes magna, the octocoral Metallogorgia melanotrichosand the fishes Gaidropsarus argentatus, Guttigadus latifrons, and Lepidion guentheri. Marine litter was observed on 81% of the dives, with at least 12 coral colonies entangled in debris. While initial exploration revealed the NEUS region to be both geologically dynamic and biologically diverse, further research into the abiotic conditions and the biotic interactions that influence species abundance and distribution is needed.

  18. Insights into the emplacement of upper-crustal plutons and their relationship to large silicic calderas, from field relationships, geochronology, and zircon trace element geochemistry in the Stillwater – Clan Alpine caldera complex, western Nevada, USA

    USGS Publications Warehouse

    Colgan, Joseph P.; John, David A.; Henry, Christopher D.; Watts, Kathryn E.

    2018-01-01

    Geologic mapping, new U-Pb zircon ages, and new and published 40Ar/39Ar sanidine ages document the timing and extent of Oligocene magmatism in the southern Stillwater Range and Clan Alpine Mountains of western Nevada, where Miocene extension has exposed at least six nested silicic calderas and underlying granitic plutons to crustal depths locally ≥ 9 km. Both caldera-forming rhyolitic tuffs and underlying plutons were emplaced in two episodes, one from about 30.4–28.2 Ma that included the Deep Canyon, Job Canyon, and Campbell Creek calderas and underlying plutons, and one from about 25.3–24.8 Ma that included the Louderback Mountains, Poco Canyon, and Elevenmile Canyon calderas and underlying plutons. In these two 1–2 m.y. periods, almost the entire Mesozoic upper crust was replaced by Oligocene intrusive and extrusive rocks to depths ≥ 9 km over an estimated total area of ~ 1500 km2 (pre-extension). Zircon trace element geochemistry indicates that some plutonic rock can be solidified residual magma from the tuff eruptions. Most plutons are not solidified residual magma, although they directly underlie calderas and were emplaced along the same structures shortly after to as much as one million years after caldera formation. Magma chambers and plutons grew by floor subsidence accommodated by downward transfer of country rocks. If other Great Basin calderas are similar, the dense concentration of shallowly exposed calderas in central Nevada is underlain by a complexly zoned mid-Cenozoic batholith assembled in discrete pulses that coincided with formation of large silicic calderas up to 2500–5000 km3.

  19. Exploration of the Canyon-Incised Continental Margin of the Northeastern United States Reveals Dynamic Habitats and Diverse Communities.

    PubMed

    Quattrini, Andrea M; Nizinski, Martha S; Chaytor, Jason D; Demopoulos, Amanda W J; Roark, E Brendan; France, Scott C; Moore, Jon A; Heyl, Taylor; Auster, Peter J; Kinlan, Brian; Ruppel, Carolyn; Elliott, Kelley P; Kennedy, Brian R C; Lobecker, Elizabeth; Skarke, Adam; Shank, Timothy M

    2015-01-01

    The continental margin off the northeastern United States (NEUS) contains numerous, topographically complex features that increase habitat heterogeneity across the region. However, the majority of these rugged features have never been surveyed, particularly using direct observations. During summer 2013, 31 Remotely-Operated Vehicle (ROV) dives were conducted from 494 to 3271 m depth across a variety of seafloor features to document communities and to infer geological processes that produced such features. The ROV surveyed six broad-scale habitat features, consisting of shelf-breaching canyons, slope-sourced canyons, inter-canyon areas, open-slope/landslide-scar areas, hydrocarbon seeps, and Mytilus Seamount. Four previously unknown chemosynthetic communities dominated by Bathymodiolus mussels were documented. Seafloor methane hydrate was observed at two seep sites. Multivariate analyses indicated that depth and broad-scale habitat significantly influenced megafaunal coral (58 taxa), demersal fish (69 taxa), and decapod crustacean (34 taxa) assemblages. Species richness of fishes and crustaceans significantly declined with depth, while there was no relationship between coral richness and depth. Turnover in assemblage structure occurred on the middle to lower slope at the approximate boundaries of water masses found previously in the region. Coral species richness was also an important variable explaining variation in fish and crustacean assemblages. Coral diversity may serve as an indicator of habitat suitability and variation in available niche diversity for these taxonomic groups. Our surveys added 24 putative coral species and three fishes to the known regional fauna, including the black coral Telopathes magna, the octocoral Metallogorgia melanotrichos and the fishes Gaidropsarus argentatus, Guttigadus latifrons, and Lepidion guentheri. Marine litter was observed on 81% of the dives, with at least 12 coral colonies entangled in debris. While initial exploration revealed the NEUS region to be both geologically dynamic and biologically diverse, further research into the abiotic conditions and the biotic interactions that influence species abundance and distribution is needed.

  20. Layers within the Valles Marineris: Clues to the Ancient Crust of Mars - High Resolution Image

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This high resolution picture of the Martian surface was obtained in the early evening of January 1, 1998 by the Mars Orbiter Camera (MOC), shortly after the Mars Global Surveyor spacecraft began it's 80th orbit. Seen in this view are a plateau and surrounding steep slopes within the Valles Marineris, the large system of canyons that stretches 4000 km (2500 mi) along the equator of Mars. The image covers a tiny fraction of the canyons at very high resolution: it extends only 9.8 km by 17.3 km (6.1 mi by 10.7 mi) but captures features as small as 6 m (20 ft) across. The highest terrain in the image is the relatively smooth plateau near the center. Slopes descend to the north and south (upper and lower part of image, respectively) in broad, debris-filled gullies with intervening rocky spurs. Multiple rock layers, varying from a few to a few tens of meters thick, are visible in the steep slopes on the spurs and gullies. Layered rocks on Earth form from sedimentary processes (such as those that formed the layered rocks now seen in Arizona's Grand Canyon) and volcanic processes (such as layering seen in the Waimea Canyon on the island of Kauai). Both origins are possible for the Martian layered rocks seen in this image. In either case, the total thickness of the layered rocks seen in this image implies a complex and extremely active early history for geologic processes on Mars.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  1. Impacts of traffic composition and street-canyon geometry on on-road air quality in a high-rise building area

    NASA Astrophysics Data System (ADS)

    Kwak, Kyung-Hwan; Kim, Kyung Hwan; Lee, Seung-Bok; Woo, Sung Ho; Bae, Gwi-Nam; Sunwoo, Young; Baik, Jong-Jin

    2016-04-01

    Mobile measurements using a mobile laboratory and numerical simulations using a computational fluid dynamics (CFD) model were conducted over different time periods of multiple days in a high-rise building area, Seoul, Republic of Korea. Mobile measurement can provide actual on-road emission levels of air pollutants from vehicles as well as validation dataset of a CFD model. On the other hand, CFD modeling is required for the process analysis of mobile measurement data and the quantitative estimation of determining factors in complex phenomena. The target area is characterized as a busy street canyon elongated along a major road with hourly traffic volumes of approximately 4000 vehicles during working hours on weekdays. Nitrogen oxides (NOx), black carbon (BC), particle-bound polycyclic aromatic hydrocarbons (pPAH), and particle number (PN) concentrations were measured during 39 round trips of mobile laboratory. The associations of the measured NOx, BC, pPAH, and PN concentrations with the traffic volumes of individual compositions are analyzed by calculating the correlation coefficients (R2) based on linear regressions. It is found that SUV, truck, van, and bus are heavy emitters responsible for the on-road air pollution in the street canyon. Among the measured pollutants, the largest R2 is shown for pPAH. The measured NOx, BC, pPAH, and PN concentrations are unevenly distributed in the street canyon. The measured concentrations around an intersection are higher than those in between intersections, particularly for NOx and pPAH. The CFD modeling for different dispersion scenarios reveals that the intersection has counterbalancing roles in determining the on-road concentrations. The emission process acts to increase the on-road concentrations due to accelerating and idling vehicles, whereas the dispersion process acts to decrease the on-road concentrations due to lateral ventilations along the crossing street. It is needed to control the number of heavy emitters and the building geometries around an intersection for better air quality in a high-rise building area.

  2. Detailed anatomy of a deep-water carbonate breccia lobe (Upper Jurassic, French subalpine basin)

    NASA Astrophysics Data System (ADS)

    Courjault, Thomas; Grosheny, Danièle; Ferry, Serge; Sausse, Judith

    2011-06-01

    Detailed correlations across Tithonian carbonate breccia deposits in the Drôme River area (northern part of the so-called "Vocontian Through") suggest the depositional system was that of an elongated deep-water lobe, up to 70 km long and 20 to 30 km wide, for a thickness reaching 200 m. The Drôme lobe, as it is now called, is mainly made of slope to basinal mudstones breccias with minor platform components, interpreted as debris flow and mud flow deposits, associated with slump deposits. It is basically a base-of-slope system, whose elongated depositional area implies it was a "point-sourced" gravity system, thus perhaps connected to a small canyon cut onto the western slope of the basin. But the mostly mudstone material of the breccias also suggests that the walls of this inferred canyon were the main supplier of the lobe, not the carbonate platform proper. The updip part of the lobe has a complex internal geometry as the deposition of breccia bed packages is interrupted by scourings locally 50 m-deep, indicating maybe a canyon mouth environment. The middle part of the lobe is dominated by pure vertical aggradation of breccia beds with minor intervening erosion. In the downdip part of the system a morphological compensation mechanism occurs as breccia beds tend to spread laterally. A huge slump carrying large mudstone olistoliths ends the breccia deposition at the beginning of the Berriasian. This megaslump deposit was mostly emplaced on the right side of the breccia lobe supporting the idea of a depositional relief. Our observations thus show that previous interpretations as a submarine canyon infilling or as shallow-water breccias formed in-situ by cyclic loading under attenuating hurricane waves approaching the platform are not consistent with our observations. The internal geometry of the system studied brings new data about a poorly-studied kind of "turbidite" systems that of deep-water carbonate breccias.

  3. Exploration of the Canyon-Incised Continental Margin of the Northeastern United States Reveals Dynamic Habitats and Diverse Communities

    PubMed Central

    Quattrini, Andrea M.; Nizinski, Martha S.; Chaytor, Jason D.; Demopoulos, Amanda W. J.; Roark, E. Brendan; France, Scott C.; Moore, Jon A.; Heyl, Taylor; Auster, Peter J.; Kinlan, Brian; Ruppel, Carolyn; Elliott, Kelley P.; Kennedy, Brian R.C.; Lobecker, Elizabeth; Skarke, Adam; Shank, Timothy M.

    2015-01-01

    The continental margin off the northeastern United States (NEUS) contains numerous, topographically complex features that increase habitat heterogeneity across the region. However, the majority of these rugged features have never been surveyed, particularly using direct observations. During summer 2013, 31 Remotely-Operated Vehicle (ROV) dives were conducted from 494 to 3271 m depth across a variety of seafloor features to document communities and to infer geological processes that produced such features. The ROV surveyed six broad-scale habitat features, consisting of shelf-breaching canyons, slope-sourced canyons, inter-canyon areas, open-slope/landslide-scar areas, hydrocarbon seeps, and Mytilus Seamount. Four previously unknown chemosynthetic communities dominated by Bathymodiolus mussels were documented. Seafloor methane hydrate was observed at two seep sites. Multivariate analyses indicated that depth and broad-scale habitat significantly influenced megafaunal coral (58 taxa), demersal fish (69 taxa), and decapod crustacean (34 taxa) assemblages. Species richness of fishes and crustaceans significantly declined with depth, while there was no relationship between coral richness and depth. Turnover in assemblage structure occurred on the middle to lower slope at the approximate boundaries of water masses found previously in the region. Coral species richness was also an important variable explaining variation in fish and crustacean assemblages. Coral diversity may serve as an indicator of habitat suitability and variation in available niche diversity for these taxonomic groups. Our surveys added 24 putative coral species and three fishes to the known regional fauna, including the black coral Telopathes magna, the octocoral Metallogorgia melanotrichos and the fishes Gaidropsarus argentatus, Guttigadus latifrons, and Lepidion guentheri. Marine litter was observed on 81% of the dives, with at least 12 coral colonies entangled in debris. While initial exploration revealed the NEUS region to be both geologically dynamic and biologically diverse, further research into the abiotic conditions and the biotic interactions that influence species abundance and distribution is needed. PMID:26509818

  4. "The Great Cataract" - Effects of Late Holocene Debris Flows on Lava Falls Rapid, Grand Canyon National National Park, Arizona

    USGS Publications Warehouse

    Webb, Robert H.; Melis, Theodore S.; Wise, Thomas W.; Elliott, John G.

    1996-01-01

    Lava Falls Rapid is the most formidable reach of whitewater on the Colorado River in Grand Canyon and is one of the most famous rapids in the world. Although the rapid was once thought to be controlled by the remnants of lava dams of Pleistocene age, Lava Falls was created and is maintained by frequent debris flows from Prospect Canyon. We used 232 historical photographs, of which 121 were replicated, and 14C and 3He dating methods to reconstruct the ages and, in some cases, the magnitudes of late Holocene debris flows. We quantified the interaction between Prospect Canyon debris flows and the Colorado River using image processing of the historical photographs. The highest and oldest debris-flow deposits on the debris fan yielded a 3He date of 2.9?0.6 ka (950 BC), which indicates predominately late Holocene aggradation of one of the largest debris fans in Grand Canyon. The deposit, which has a 25-m escarpment caused by river reworking, crossed the Colorado River and raised its base level by 30 m for an indeterminate, although probably short, period. We mapped depositional surfaces of 6 debris flows that occurred after 950 BC. The most recent prehistoric debris flow occurred no more than 500 years ago (AD 1434). From April 1872 to July 1939, no debris flows occurred in Prospect Canyon. Debris flows in 1939, 1954, 1955, 1963, 1966, and 1995 constricted the Colorado River between 35 and 80 percent and completely changed the pattern of flow through the rapid. The debris flows had discharges estimated between about 290 and 1,000 m3/s and transported boulders as heavy as 30 Mg. The recurrence interval of these debris flows, calculated from the volume of the aggraded debris fan, ranged from 35 to 200 yrs. The 1939 debris flow in Prospect Canyon appears to have been the largest debris flow in Grand Canyon during the last 125 years. Debris flows in Prospect Canyon are initiated by streamflow pouring over a 325-m waterfall onto unconsolidated colluvium, a process called the firehose effect. Floods in Prospect Valley above the waterfall are generated during regional winter storms, localized summer thunderstorms, and occasional tropical cyclones. Winter precipitation has increased in the Grand Canyon region since the early 1960s, and the most recent debris flows have occurred during winter storms. Summer rainfall has declined in the same period, decreasing the potential for debris flows in the summer months. The history of river reworking of the Prospect Canyon debris fan illustrates the interrelation between tributary debris fans and mainstem floods in bedrock canyons. Lava Falls Rapid did not change despite Colorado River floods of 8,500 m3/s in 1884 and 6,230 m3/s in 1921. Floods up to 3,540 m3/s that occurred after the historical, pre-dam debris flows removed most of the deposits within 3 years. Releases in 1965 from Glen Canyon Dam that were above powerplant capacity but less than 1,640 m3/s removed most of the debris fan deposited in 1963, and the combination of dam releases and a 1973 flood on the Little Colorado River removed the 1966 aggradation. About 4,800 m3 of the 1995 deposit was reworked on the day of the 1995 debris flow, dam releases of less than 570 m3/s had not reworked the remainder of the aggraded debris fan. Lava Falls Rapid has been the most unstable reach of whitewater in Grand Canyon during the late Holocene and particularly during the last 120 years. Rapids in bedrock canyons controlled by tributary deposition in the main channel are aggradational features that reflect the net effect of tributary-mainstem interactions. Boulders that form the core of rapids in Grand Canyon are essentially immobile by both regulated and unregulated Colorado River flows. Historical operation of Glen Canyon Dam, which was completed in 1963, has reduced the potential for reworking of debris fans, and has accelerated the rate of net aggradation at the mouths of tributary canyons. Because debris fans that formed after 196

  5. Investigating Mars: Tithonium Chasma

    NASA Image and Video Library

    2018-02-07

    This VIS image shows part of the floor of Tithonium Chasma. Eroded materials cover most of the image. The initial formation of layered floor deposits was possibly created of air fall of dust, sand, and volcanic materials and water lain materials. The weathering of these deposits is probably by the wind. The bottom part of the image has complex, hummocky material, probably very old landslide deposits. At the top of the image is a large mound of material that has been eroded mainly by wind action. The overlapping of these surfaces indicates a long history of modication of Tithonium Chasma. Tithonium Chasma is at the western end of Valles Marineris. Valles Marineris is over 4000 kilometers long, wider than the United States. Tithonium Chasma is almost 810 kilometers long (499 miles), 50 kilometers wide and over 6 kilometers deep. In comparison, the Grand Canyon in Arizona is about 175 kilometers long, 30 kilometers wide, and only 2 kilometers deep. The canyons of Valles Marineris were formed by extensive fracturing and pulling apart of the crust during the uplift of the vast Tharsis plateau. Landslides have enlarged the canyon walls and created deposits on the canyon floor. Weathering of the surface and influx of dust and sand have modified the canyon floor, both creating and modifying layered materials. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 3936 Latitude: -5.06026 Longitude: 271.813 Instrument: VIS Captured: 2002-11-03 13:15 https://photojournal.jpl.nasa.gov/catalog/PIA22269

  6. The timing of sediment transport down Monterey Submarine Canyon, offshore California

    USGS Publications Warehouse

    Stevens, Thomas; Paull, Charles K.; Ussler, William III; McGann, Mary; Buylaert, Jan-Pieter; Lundsten, Eve M.

    2013-01-01

    While submarine canyons are the major conduits through which sediments are transported from the continents out into the deep sea, the time it takes for sediment to pass down through a submarine canyon system is poorly constrained. Here we report on the first study to couple optically stimulated luminescence (OSL) ages of quartz sand deposits and accelerator mass spectrometry 14C ages measured on benthic foraminifera to examine the timing of sediment transport through the axial channel of Monterey Submarine Canyon and Fan, offshore California. The OSL ages date the timing of sediment entry into the canyon head while the 14C ages of benthic foraminifera record the deposition of hemipelagic sediments that bound the sand horizons. We use both single-grain and small (∼2 mm area) single-aliquot regeneration approaches on vibracore samples from fining-upward sequences at various water depths to demonstrate relatively rapid, decadal-scale sand transport to at least 1.1 km depth and more variable decadal- to millennial-scale transport to a least 3.5 km depth on the fan. Significant differences between the time sand was last exposed at the canyon head (OSL age) and the timing of deposition of the sand (from 14C ages of benthic foraminifera in bracketing hemipelagic sediments) are interpreted as indicating that the sand does not pass through the entire canyon instantly in large individual events, but rather moves multiple times before emerging onto the fan. The increased spread in single-grain OSL dates with water depth provides evidence of mixing and temporary storage of sediment as it moves through the canyon system. The ages also indicate that the frequency of sediment transport events decreases with distance down the canyon channel system. The amalgamated sands near the canyon head yield OSL ages that are consistent with a sub-decadal recurrence frequency while the fining-upward sand sequences on the fan indicate that the channel is still experiencing events with a 150–250 year recurrence frequency out to 3.5 km water depths.    

  7. Variability in rainfall at monitoring stations and derivation of a long-term rainfall intensity record in the Grand Canyon Region, Arizona, USA

    USGS Publications Warehouse

    Caster, Joshua J.; Sankey, Joel B.

    2016-04-11

    In this study, we examine rainfall datasets of varying temporal length, resolution, and spatial distribution to characterize rainfall depth, intensity, and seasonality for monitoring stations along the Colorado River within Marble and Grand Canyons. We identify maximum separation distances between stations at which rainfall measurements might be most useful for inferring rainfall characteristics at other locations. We demonstrate a method for applying relations between daily rainfall depth and intensity, from short-term high-resolution data to lower-resolution longer-term data, to synthesize a long-term record of daily rainfall intensity from 1950–2012. We consider the implications of our spatio-temporal characterization of rainfall for understanding local landscape change in sedimentary deposits and archaeological sites, and for better characterizing past and present rainfall and its potential role in overland flow erosion within the canyons. We find that rainfall measured at stations within the river corridor is spatially correlated at separation distances of tens of kilometers, and is not correlated at the large elevation differences that separate stations along the Colorado River from stations above the canyon rim. These results provide guidance for reasonable separation distances at which rainfall measurements at stations within the Grand Canyon region might be used to infer rainfall at other nearby locations along the river. Like other rugged landscapes, spatial variability between rainfall measured at monitoring stations appears to be influenced by canyon and rim physiography and elevation, with preliminary results suggesting the highest elevation landform in the region, the Kaibab Plateau, may function as an important orographic influence. Stations at specific locations within the canyons and along the river, such as in southern (lower) Marble Canyon and eastern (upper) Grand Canyon, appear to have strong potential to receive high-intensity rainfall that can generate runoff which may erode alluvium. The characterization of past and present rainfall variability in this study will be useful for future studies that evaluate more spatially continuous datasets in order to better understand the rainfall dynamics within this, and potentially other, deep canyons.

  8. The Role of Subsurface Water in Carving Hesperian Amphitheater-Headed Valleys

    NASA Astrophysics Data System (ADS)

    Lapotre, M. G. A.; Lamb, M. P.

    2017-12-01

    Groundwater sapping may play a role in valley formation in rare cases on Earth, typically in sand or weakly cemented sandstones. Small-scale valleys resulting from groundwater seepage in loose sand typically have amphitheater-shaped canyon heads with roughly uniform widths. By analogy to terrestrial sapping valleys, Hesperian-aged amphitheater canyons on Mars have been interpreted to result from groundwater sapping, with implications for subsurface and surface water flows on ancient Mars. However, other studies suggest that martian amphitheater canyons carved in fractured rock may instead result from large overland floods, by analogy to dry cataracts in scabland terrains in the northwestern U.S. Understanding the formation of bedrock canyons is critical to our understanding of liquid water reservoirs on ancient Mars. Can groundwater sapping carve canyons in substrates other than sand? There is currently no model to predict the necessary conditions for groundwater to carve canyons in substrates ranging from loose sediment of various sizes to competent rock. To bridge this knowledge gap, we formulate a theoretical model coupling equations of groundwater flow and sediment transport that can be applied to a wide range of substrates. The model is used to infer whether groundwater sapping could have carved canyons in the absence of overland flows, and requires limited inputs that are measureable in the field or from orbital images. Model results show that sapping erosion is capable of forming canyons, but only in loose well-sorted sand. Coarser sediment is more permeable, but more difficult to transport. Finer sediment is more easily transported, but lower permeability precludes the necessary seepage discharge. Finally, fractured rock is highly permeable, but seepage discharges are far below those required to transport typical talus boulders. Using orbiter-based lithological constraints, we conclude that canyons near Echus Chasma are carved into bedrock and therefore required high-discharge overland flow during formation. These results have implications for Hesperian hydrology; while water volumes to carve sapping versus flood canyons need not be significantly different, erosion rates are orders of magnitude faster in the flood scenario, implying brief periods of abundant surface water on Hesperian Mars.

  9. Biodiversity of macrofaunal assemblages from three Portuguese submarine canyons (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Cunha, Marina R.; Paterson, Gordon L. J.; Amaro, Teresa; Blackbird, Sabena; de Stigter, Henko C.; Ferreira, Clarisse; Glover, Adrian; Hilário, Ana; Kiriakoulakis, Konstadinos; Neal, Lenka; Ravara, Ascensão; Rodrigues, Clara F.; Tiago, Áurea; Billett, David S. M.

    2011-12-01

    The macrofaunal assemblages from three Portuguese submarine canyons, Nazaré, Cascais and Setúbal were studied from samples collected at their upper (900-1000 m), middle (3200-3500 m) and lower sections (4200-4500 m) and at the adjacent open slopes (˜1000 m), during the HERMES cruises D297 (R.R.S. Discovery, 2005) CD179 (R.R.S. Charles Darwin, 2006) and 64PE252 (R.V. Pelagia, 2006). The taxonomic composition and patterns in biodiversity, abundance and community structure of the benthic macrofauna were described. Annelida (42.1% of total abundance; 137 species) and Arthropoda (20.6%; 162 species) were, respectively, the most abundant and the most species-rich Phyla among the 342 taxa identified during this study. Multivariate analyses showed significant differences between and within canyons and between canyons and open slope assemblages. At their upper section, canyons supported higher macrofauna abundance but slightly lower biodiversity than the adjacent slopes at similar depth. In all canyons abundance reached the highest value in the middle section and the lowest in the upper section, with marked fluctuations in Nazaré (474-4599 ind. m -2) and lower variability in Cascais (583-1125 ind. m -2). The high abundance and dominance of the assemblages in the middle section of Nazaré and Setúbal was accompanied by depressed biodiversity, while in Cascais, Hurlbert's expected species richness showed increasing values from the upper to the middle canyon, and maintained the high values at the lower section. Overall, the Nazaré Canyon showed the lowest expected species richness (ES (100): 16-39) and the Cascais Canyon the highest (39-54). There was a significant negative Kendall's correlation between total organic carbon concentrations in the superficial sediments and ES (100) and a significant positive correlation between total nitrogen and macrofauna density. The influences of organic enrichment, sediment heterogeneity and hydrodynamic regime on the abundance, diversity and community structure of the macrofauna are discussed. It is suggested that altered and localised environmental conditions in the Portuguese canyons play an important role in modifying more common abundance and diversity bathymetric patterns evident in many continental slope environments.

  10. The Hispano Ranchos of Northern New Mexico: Continuity and Change. Teaching with Historic Places.

    ERIC Educational Resources Information Center

    Koman, Rita G.

    Northern New Mexico boasts river valleys surrounded by snow covered mountains. But it is also harsh and unforgiving. One settler called it a "glorious hell." The "Hispanos," as the early Spanish settlers and their descendants were called, and the "Anglos," the immigrants from the east, were often in conflict. The…

  11. "Will This Hell Never End?": Substantiating and Resisting "Race-Language" Policies in a Multilingual High School

    ERIC Educational Resources Information Center

    Malsbary, Christine

    2014-01-01

    This article presents a critical race theory analysis of teachers' and students' language policy negotiation. It draws on an ethnographic study in a high-school English as a Second Language (ESL) program. Results demonstrate how race-language processes create conditions that traumatize immigrant and bilingual youth of color through…

  12. To Hell with Privacy

    ERIC Educational Resources Information Center

    Kochersberger, Bob

    2009-01-01

    The author shares how he helps a student who is a drug addict and reflects about the role of teachers on the campus. He believes that most teachers on the faculty are caring individuals, often parents themselves who want the best for their students. But the author also realizes that teachers are pressed for time, have a wide range of conflicting…

  13. Teaching Students to Show, Not Tell

    ERIC Educational Resources Information Center

    Spitzer, Mark

    2012-01-01

    In his epic poem "A Season in Hell," the surly French poet Arthur Rimbaud proposes that the Devil likes writing that lacks "descriptive" qualities. Rimbaud then makes a stand in favor of descriptive writing by offering "these hideous pages from [his] notes of the damned." The author would not go so far as to say that nondescriptive writing is evil…

  14. To Hell with the Wigs! Native American Representation and Resistance at the World's Columbian Exposition

    ERIC Educational Resources Information Center

    Rinehart, Melissa

    2012-01-01

    The World's Columbian Exposition of 1893, in celebration of the quadricentennial anniversary of Columbus's landing in the Americas, spread over six hundred acres of reclaimed marsh lands in Chicago's South Side. Fourteen great buildings and two hundred additional buildings stood on the fairgrounds, and if tourists had visited every exhibit, they…

  15. Outlook: The Next Twenty Years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murayama, Hitoshi

    2003-12-07

    I present an outlook for the next twenty years in particle physics. I start with the big questions in our field, broken down into four categories: horizontal, vertical, heaven, and hell. Then I discuss how we attack the bigquestions in each category during the next twenty years. I argue for a synergy between many different approaches taken in our field.

  16. Precision Atomic Beam Spectroscopy Using Stabilized Lasers.

    DTIC Science & Technology

    1985-06-30

    spacer (a Zerodur rod 15 cm dia. by 30 cm length) under ir I MN, M A 9 differentials of its own weight. A powerful tilt stabilization concept has been...1120-2523 (1936). 3504. Jo L. Hell, No Len -Sheng and G. Kramer,’Prinuiples of *ptical phase lock ng: :ith eppr catien to internal mirror Ne-o

  17. Talking Back to Power: Snowballs in Hell and the Imperative of Insisting on Structural Explanations

    ERIC Educational Resources Information Center

    Francis, Becky; Hey, Valerie

    2009-01-01

    This viewpoint explores and shares our experience of "doing" feminism in the context of its apparent "demise". We were recently invited to attend an event at the Cabinet Office, to "discuss the impact aspirations and expectations within the community have on the educational achievement of young people in deprived…

  18. Identifying Contradictions in Science Education Activity Using the Change Laboratory Methodology

    ERIC Educational Resources Information Center

    Kornelaki, Athina Christina; Plakitsi, Katerina

    2018-01-01

    The study is based on an implementation of the basic steps of the Change Laboratory methodology (Engeström, Virkkunen, Helle, Pihlaja & Poikela, 1996) at the University of Ioannina. It was derived by a discussion with master's students during a course about science education curricula in pre-school and primary education and their effectiveness…

  19. Postcards from Heaven and Hell: Understanding the Near-Death Experience through Art

    ERIC Educational Resources Information Center

    Rominger, Ryan

    2010-01-01

    Art making offers the opportunity to reflect upon ineffable experiences, including those surrounding death and dying. This article examines the artwork of two research participants who each reported a near-death experience (NDE). A trans-personal model was used to elicit the narratives and artwork of two individuals: one who experienced a pleasant…

  20. 77 FR 39694 - National Currents Energy Services, LLC; Notice of Declaration of Intention and Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... Sea Dragon Tidal Turbine; (2) a vessel-based deployment Principal Project Works or Structural Support... Services, LLC. e. Name of Project: Wards Island Tidal Energy Project. f. Location: The proposed Wards Island Tidal Energy Project will be located off the south shore of Wards Island, in the Hell Gate...

Top