Science.gov

Sample records for helps stem-like carcinoma

  1. Identification and characterization of cancer stem-like cells from primary carcinoma of the cervix uteri.

    PubMed

    Feng, Dingqing; Peng, Cheng; Li, Cairong; Zhou, Ying; Li, Min; Ling, Bin; Wei, Haiming; Tian, Zhigang

    2009-11-01

    Like many other solid tumors, cervical cancer contains a heterogeneous population of cancer cells. Several investigators have identified putative stem cells from solid tumors and cancer cell lines via the capacity to self renew and drive tumor formation. The aim of this study was to identify and characterize a cancer stem-like cell population from primary carcinoma of the cervix uteri. Cervical carcinoma from 19 patients staged I-II following International Federation of Gynecology and Obstetrics (FIGO) criteria were disaggregated and subjected to growth conditions selective for stem cells. Eight of nineteen tumor-derived cultures encompassed stem-like cells capable of self-renewal, extensive proliferation as clonal non-adherent spherical clusters. Cell markers of spheroid were identified as CD44+CK17+. Cell survival assays showed the sphere-forming cells were only 48% inhibited by doxorubicin whereas 78% inhibited by paclitaxel. Chemo-resistance may partly attribute to the exclusive expression of ABC transporter. To investigate the tumorigenicity of these stem-like cells, xenoengraftment of 10(5) dissociated spheroid cells allowed full recapitulation of the original tumor, whereas the same amount of tumor cells without non-adherent spheroid selection remained non-tumorigenic. Stemness properties of these spheroid cells were further established by reverse transcription-PCR and Western blotting, demonstrating the expression of embryonic and adult stemness-related genes (Oct-4, Piwil2, C-myc, Stat3 and Sox2). Based on these findings, we assert that cervical cancer contain a subpopulation of tumor initiating cells with stem-like properties, thus facilitating the approach to therapeutic strategies aimed at eradicating the tumorigenic subpopulation within cervical cancer.

  2. Isolation of stem-like cells from spontaneous feline mammary carcinomas: Phenotypic characterization and tumorigenic potential

    SciTech Connect

    Barbieri, Federica; Wurth, Roberto; Ratto, Alessandra; Campanella, Chiara; Vito, Guendalina; Thellung, Stefano; Daga, Antonio; Cilli, Michele; Ferrari, Angelo; Florio, Tullio

    2012-04-15

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell-like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-{alpha} and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: Black-Right-Pointing-Pointer Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 Black-Right-Pointing-Pointer These grow as spheres in serum-free medium and self-renew Black-Right-Pointing-Pointer Isolated stem-like cancer cells initiate tumor in immunodeficient mice Black-Right-Pointing-Pointer Xenografted tumors are phenotypically similar to the original tumor Black

  3. Cancer stem-like cells in Epstein-Barr virus-associated nasopharyngeal carcinoma.

    PubMed

    Lun, Samantha Wei-Man; Cheung, Siu-Tim; Lo, Kwok-Wai

    2014-11-01

    Although the Epstein-Barr virus (EBV) has spread to all populations in the world, EBV-associated nasopharyngeal carcinoma (NPC) is prevalent only in South China and Southeast Asia. The role of EBV in the malignant transformation of nasopharyngeal epithelium is the main focus of current researches. Radiotherapy and chemoradiotherapy have been successful in treating early stage NPC, but the recurrence rates remain high. Unfortunately, local relapse and metastasis are commonly unresponsive to conventional treatments. These recurrent and metastatic lesions are believed to arise from residual or surviving cells that have the properties of cancer stem cells. These cancer stem-like cells (CSCs) have the ability to self-renew, differentiate, and sustain propagation. They are also chemo-resistant and can form spheres in anchorage-independent environments. This review summarizes recent researches on the CSCs in EBV-associated NPC, including the findings regarding cell surface markers, stem cell-related transcription factors, and various signaling pathways. In particular, the review focuses on the roles of EBV latent genes [latent membrane protein 1 (LMP1) and latent membrane protein 2A (LMP2A)], cellular microRNAs, and adenosine triphosphate (ATP)-binding cassette chemodrug transporters in contributing to the properties of CSCs, including the epithelial-mesenchymal transition, stem-like transition, and chemo-resistance. Novel therapeutics that enhance the efficacy of radiotherapy and chemoradiotherapy and inhibitors that suppress the properties of CSCs are also discussed.

  4. Cancer stem-like cell: a novel target for nasopharyngeal carcinoma therapy

    PubMed Central

    2014-01-01

    Nasopharyngeal carcinoma (NPC) is the most common cancer originating in the nasopharynx, and is extremely common in southern regions of China. Although the standard combination of radiotherapy and chemotherapy has improved the efficiency in patients with NPC, relapse and early metastasis are still the common causes of mortality. Cancer stem-like cells (CSCs) or tumor initial cells are hypothesized to be involved in cancer metastasis and recurrence. Over the past decade, increasing numbers of studies have been carried out to identify CSCs from human NPC cells and tissues. The present paper will summarize the investigations on nasopharyngeal CSCs, including isolation, characteristics, and therapeutic approaches. Although there are still numerous challenges to translate basic research into clinical applications, understanding the molecular details of CSCs is essential for developing effective strategies to prevent the recurrence and metastasis of NPC. PMID:25158069

  5. Hepatitis B virus X protein promotes the stem-like properties of OV6+ cancer cells in hepatocellular carcinoma

    PubMed Central

    Wang, Chao; Wang, Ming-da; Cheng, Peng; Huang, Hai; Dong, Wei; Zhang, Wei-wei; Li, Peng-peng; Lin, Chuan; Pan, Ze-ya; Wu, Meng-chao; Zhou, Wei-ping

    2017-01-01

    Hepatitis B virus X protein (HBx) and cancer stem-like cells (CSCs) have both been implicated in the occurrence and development of HBV-related hepatocellular carcinoma (HCC). However, whether HBx contributes to the stem-like properties of OV6+ CSCs in HCC remains elusive. In this study, we showed that the concomitant expression of HBx and OV6 was closely associated with the clinical outcomes and prognosis of patients with HBV-related HCC. HBx was required for the stem-like properties of OV6+ liver CSCs, including self-renewal, stem cell-associated gene expression, tumorigenicity and chemoresistance. Mechanistically, HBx enhanced expression of MDM2 by directly binding with MDM2 and inhibiting its ubiquitin-directed self-degradation. MDM2 translocation into the nucleus was also upregulated by HBx and resulted in enhanced transcriptional activity and expression of CXCL12 and CXCR4 independent of p53. This change in expression activated the Wnt/β-catenin pathway and promoted the stem-like properties of OV6+ liver CSCs. Furthermore, we observed that the expression of any two indicators from the HBx/MDM2/CXCR4/OV6 axis in HCC biopsies could predict the prognosis of patients with HBV-related HCC. Taken together, our findings indicate the functional role of HBx in regulating the stem-like properties of OV6+ CSCs in HCC through the MDM2/CXCL12/CXCR4/β-catenin signaling axis, and identify HBx, MDM2, CXCR4 and OV6 as a novel prognostic pathway and potential therapeutic targets for patients with HBV-related HCC patients. PMID:28102846

  6. Effects of curcumin on stem-like cells in human esophageal squamous carcinoma cell lines

    PubMed Central

    2012-01-01

    Background Many cancers contain cell subpopulations that display characteristics of stem cells. Because these cancer stem cells (CSCs) appear to provide resistance to chemo-radiation therapy, development of therapeutic agents that target CSCs is essential. Curcumin is a phytochemical agent that is currently used in clinical trials to test its effectiveness against cancer. However, the effect of curcumin on CSCs is not well established. The current study evaluated curcumin-induced cell death in six cancer cell lines derived from human esophageal squamous cell carcinomas. Moreover, these cell lines and the ones established from cells that survived curcumin treatments were characterized. Methods Cell loss was assayed after TE-1, TE-8, KY-5, KY-10, YES-1, and YES-2 cells were exposed to 20–80 μM curcumin for 30 hrs. Cell lines surviving 40 or 60 μM curcumin were established from these six original lines. The stem cell markers aldehyde dehydrogenase-1A1 (ALDH1A1) and CD44 as well as NF-κB were used to compare CSC-like subpopulations within and among the original lines as well as the curcumin-surviving lines. YES-2 was tested for tumorsphere-forming capabilities. Finally, the surviving lines were treated with 40 and 60 μM curcumin to determine whether their sensitivity was different from the original lines. Results The cell loss after curcumin treatment increased in a dose-dependent manner in all cell lines. The percentage of cells remaining after 60 μM curcumin treatment varied from 10.9% to 36.3% across the six lines. The cell lines were heterogeneous with respect to ALDH1A1, NF-κB and CD44 expression. KY-5 and YES-1 were the least sensitive and had the highest number of stem-like cells whereas TE-1 had the lowest. The curcumin-surviving lines showed a significant loss in the high staining ALDH1A1 and CD44 cell populations. Tumorspheres formed from YES-2 but were small and rare in the YES-2 surviving line. The curcumin-surviving lines showed a small but

  7. DC120, a novel AKT inhibitor, preferentially suppresses nasopharyngeal carcinoma cancer stem-like cells by downregulating Sox2

    PubMed Central

    Tang, Jun; Yang, Fen; Feng, Gong-Kan; Chen, Wen-Dan; Wu, Xiao-Qi; Qian, Xiao-Jun; Ding, Ke; Zhu, Xiao-Feng

    2015-01-01

    Side population (SP) contains cancer stem-like cells (CSLCs). In this study, we characterized SP cells from nasopharyngeal carcinoma (NPC) cell lines and found that SP cells had a higher self-renewal ability in vitro and greater tumorigenicity in vivo. The AKT pathway was activated in NPC SP cells. DC120, a 2-pyrimidyl-5-amidothiazole inhibitor of the ATP binding site of AKT, inhibited phosphorylation of FKHRL1 and GSK-3β. DC120 inhibited SP fraction, the sphere-forming ability in vitro and growth of primary xenografts as well as secondary xenografts’ tumor recurrence. This inhibition was accompanied by reduced expression of stem-related gene Sox2 due to induction of p27 and miR-30a. A combination of DC120 and CDDP more effectively inhibited NPC cells compared with monotherapy in vitro and in vivo. Clinical evaluation of DC120 is warranted. PMID:25749514

  8. Notch inhibition suppresses nasopharyngeal carcinoma by depleting cancer stem-like side population cells.

    PubMed

    Yu, Shudong; Zhang, Ruxin; Liu, Fenye; Wang, Hong; Wu, Jing; Wang, Yanqing

    2012-08-01

    The cancer stem cell (CSC) is responsible for the initiation, proliferation and radiation resistance. Side population (SP) cells are a rare subset of cells enriched with CSCs. The targeting of key signaling pathways that are active in CSCs is a therapeutic approach to treating cancer. Notch signaling is important for the self-renewal and maintenance of stem cells. Our previous studies demonstrated that downregulation of Notch signaling could enhance radiosensitivity of nasopharyngeal carcinoma (NPC) cells. In this study, we found that Notch signaling was highly activated in SP cells compared with that of non-SP (NSP) cells of NPC. Therefore, Notch inhibition could reduce the proportion of SP cells. As SP cells decreased, proliferation, anti-apoptosis and tumorigenesis were also decreased. This study shows that Notch inhibition may be a promising clinical approach in CSC-targeting therapy for NPC.

  9. Parthenolide Inhibits Cancer Stem-Like Side Population of Nasopharyngeal Carcinoma Cells via Suppression of the NF-κB/COX-2 Pathway

    PubMed Central

    Liao, Kun; Xia, Bin; Zhuang, Qun-Ying; Hou, Meng-Jun; Zhang, Yu-Jing; Luo, Bing; Qiu, Yang; Gao, Yan-Fang; Li, Xiao-Jie; Chen, Hui-Feng; Ling, Wen-Hua; He, Cheng-Yong; Huang, Yi-Jun; Lin, Yu-Chun; Lin, Zhong-Ning

    2015-01-01

    Cancer stem cells play a central role in the pathogenesis of nasopharyngeal carcinoma and contribute to both disease initiation and relapse. In this study, cyclooxygenase-2 (COX-2) was found to regulate cancer stem-like side population cells of nasopharyngeal carcinoma cells and enhance cancer stem-like cells' characteristics such as higher colony formation efficiency and overexpression of stemness-associated genes. The regulatory effect of COX-2 on cancer stem-like characteristics may be mediated by ABCG2. COX-2 overexpression by a gain-of-function experiment increased the proportion of side population cells and their cancer stemness properties. The present study also demonstrated that in contrast to the classical chemotherapy drug 5-fluorouracil, which increased the proportion of side population cells and upregulated the expression of COX-2, parthenolide, a naturally occurring small molecule, preferentially targeted the side population cells of nasopharyngeal carcinoma cells and downregulated COX-2. Moreover, we found that the cancer stem-like cells' phenotype was suppressed by using COX-2 inhibitors NS-398 and CAY10404 or knocking down COX-2 with siRNA and shRNA. These findings suggest that COX-2 inhibition is the mechanism by which parthenolide induces cell death in the cancer stem-like cells of nasopharyngeal carcinoma. In addition, parthenolide exhibited an inhibitory effect on nuclear factor-kappa B (NF-κB) nucler translocation by suppressing both the phosphorylation of IκB kinase complex and IκBα degradation. Taken together, these results suggest that parthenolide may exert its cancer stem cell-targeted chemotherapy through the NF-κB/COX-2 pathway. PMID:25553117

  10. A new gamboge derivative compound 2 inhibits cancer stem-like cells via suppressing EGFR tyrosine phosphorylation in head and neck squamous cell carcinoma.

    PubMed

    Deng, Rongxin; Wang, Xu; Liu, Yang; Yan, Ming; Hanada, Sayaka; Xu, Qin; Zhang, Jianjun; Han, Zeguang; Chen, Wantao; Zhang, Ping

    2013-11-01

    Cancer stem-like cells represent a population of tumour-initiating cells that lead to the relapse and metastasis of cancer. Conventional anti-cancer therapeutic drugs are usually ineffective in eliminating the cancer stem-like cells. Therefore, new drugs or therapeutic methods effectively targeting cancer stem-like cells are in urgent need to successfully cure cancer. Gamboge is a natural anti-cancer medicine whose pharmacological effects are different from those of conventional chemotherapeutical drugs and they can kill some kinds of cancer cells selectively. In this study, we identified a new gamboge derivative, Compound 2 (C2), which presents eminent suppression effects on cancer cells. Interestingly, when compared with cisplatin (CDDP), C2 effectively suppresses the growth of both cancer stem-like cells and non-cancer stem-like cells derived from head and neck squamous cell carcinoma (HNSCC), inhibiting the formation of tumour spheres and colony in vitro, resulting in the loss of expression of multiple cancer stem cell (CSC)-related molecules in HNSCC. Treating with C2 effectively inhibited the growth of HNSCC in BALB/C nude mice. Further investigation found that C2 notably inhibits the activation of epithelial growth factor receptor and the phosphorylation of its downstream protein kinase homo sapiens v-akt murine thymoma viral oncogene homolog (AKT) in HNSCC, resulting in down-regulation of multiple CSC-related molecules in HNSCC. Our study has demonstrated that C2 effectively inhibits the stem-like property of cancer stem-like cells in HNSCC and may be a hopeful targeting drug in cancer therapy. © 2013 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  11. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo.

    PubMed

    Lotti, Roberta; Palazzo, Elisabetta; Petrachi, Tiziana; Dallaglio, Katiuscia; Saltari, Annalisa; Truzzi, Francesca; Quadri, Marika; Puviani, Mario; Maiorana, Antonino; Marconi, Alessandra; Pincelli, Carlo

    2016-01-12

    Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC) originate from alterations in keratinocyte stem cells (KSC) gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD) and non-RAD (NRAD) cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β₁-integrin), while it increases the level of differentiation markers (K10, involucrin). Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in Ras(G12V)-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development.

  12. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo

    PubMed Central

    Lotti, Roberta; Palazzo, Elisabetta; Petrachi, Tiziana; Dallaglio, Katiuscia; Saltari, Annalisa; Truzzi, Francesca; Quadri, Marika; Puviani, Mario; Maiorana, Antonino; Marconi, Alessandra; Pincelli, Carlo

    2016-01-01

    Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC) originate from alterations in keratinocyte stem cells (KSC) gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD) and non-RAD (NRAD) cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin), while it increases the level of differentiation markers (K10, involucrin). Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development. PMID:26771605

  13. Cell-surface Vimentin: A mislocalized protein for isolating csVimentin(+) CD133(-) novel stem-like hepatocellular carcinoma cells expressing EMT markers.

    PubMed

    Mitra, Abhisek; Satelli, Arun; Xia, Xueqing; Cutrera, Jeffrey; Mishra, Lopa; Li, Shulin

    2015-07-15

    Recent advances in cancer stem cell biology have shown that cancer stem-like cells with epithelial-mesenchymal transition (EMT) phenotypes are more aggressive and cause relapse; however, absence of a specific marker to isolate these EMT stem-like cells hampers research in this direction. Cell surface markers have been identified for isolating cancer stem-like cells, but none has been identified for isolating cancer stem-like cells with EMT phenotype. Recently, we discovered that Vimentin, an intracellular EMT tumor cell marker, is present on the surface of colon metastatic tumor nodules in the liver. In our study, we examined the potential of targeting cell surface Vimentin (CSV) to isolate stem-like cancer cells with EMT phenotype, by using a specific CSV-binding antibody, 84-1. Using this antibody, we purified the CSV-positive, CD133-negative (csVim(+) CD133(-) ) cell population from primary liver tumor cell suspensions and characterized for stem cell properties. The results of sphere assays and staining for the stem cell markers Sox2 and Oct4A demonstrated that csVim(+) CD133(-) cells have stem-like properties similar to csVim(-) CD133(+) population. Our investigation further revealed that the csVim(+) CD133(-) cells had EMT phenotypes, as evidenced by the presence of Twist and Slug in the nucleus, the absence of EpCAM on the cell surface and basal level of expression of epithelial marker E-cadherin. The csVimentin-negative CD133-positive stem cells do not have any EMT phenotypes. csVim(+) CD133(-) cells exhibited more aggressively metastatic in livers than csVim(-) CD133(+) cells. Our findings indicate that csVim(+) CD133(-) cells are promising targets for treatment and prevention of metastatic hepatocellular carcinoma.

  14. MiR-210 expression reverses radioresistance of stem-like cells of oesophageal squamous cell carcinoma

    PubMed Central

    Chen, Xin; Guo, Jia; Xi, Ru-Xing; Chang, Yu-Wei; Pan, Fei-Yang; Zhang, Xiao-Zhi

    2014-01-01

    AIM: To investigate the expression of miR-210 and the role it plays in the cell cycle to regulate radioresistance in oesophageal squamous cell carcinoma (ESCC). METHODS: MiR-210 expression was evaluated in 37 pairs of ESCC tissues and matched para-tumorous normal oesophageal tissues from surgical patients who had not received neoadjuvant therapy, and in the cells of two novel radioresistant cell lines, TE-1R and Eca-109R, using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The transient up-regulation of miR-210 expression in TE-1R and Eca-109R cells was studied using liposomes and was confirmed using qRT-PCR. The rate of cell survival after a series of radio-treatment doses was evaluated using the clone formation assay. Flow cytometry was used to detect the changes to the cell cycle patterns due to radiation treatment. RT-PCR and Western blot were used to detect the expression of ataxia telangiectasia mutated (ATM) and DNA dependent protein kinase (DNA-PKcs) after irradiation, and the cell sphere formation assay was used to evaluate the proliferative ability of the cancer stem-like cells. RESULTS: The level of miR-210 expression was significantly decreased, by 21.3% to 97.2%, with the average being 39.2% ± 16.1%, in the ESCC tissues of most patients (81.1%, 30 of 37 vs patients with high miR-210 expression, P < 0.05). A low level of expression of miR-210 was correlated with a poorly differentiated pathological type (P < 0.01) but was not correlated with the T-stage or lymph node infiltration (both P > 0.05). Early local recurrences (< 18 mo, n = 19) after radiotherapy were significantly related with low miR-210 expression (n = 13, P < 0.05). The level of miR-210 was decreased by approximately 73% (vs TE-1, 0.27 ± 0.10, P < 0.01) in the established radioresistant TE-IR cell line and by 52% (vs Eca-109, 0.48 ± 0.17, P < 0.05) in the corresponding Eca-109R line. Transient transfection with a miR-210 precursor increased the level of miR-210

  15. Cancer stem-like sphere cells induced from de-differentiated hepatocellular carcinoma-derived cell lines possess the resistance to anti-cancer drugs.

    PubMed

    Hashimoto, Noriaki; Tsunedomi, Ryouichi; Yoshimura, Kiyoshi; Watanabe, Yusaku; Hazama, Shoichi; Oka, Masaaki

    2014-09-27

    Cancer stem cells (CSCs) are thought to play important roles in therapy-resistance. In this study, we induced cancer stem-like cells from hepatocellular carcinoma (HCC) cell lines using a unique medium, and examined their potential for resistance to anti-cancer drugs. The human HCC cell lines SK-HEP-1 (SK), HLE, Hep 3B, and HuH-7 were used to induce cancer stem-like cells with our sphere induction medium supplemented with neural survival factor-1. NANOG and LIN28A were examined as stemness markers. Several surface markers for CSC such as CD24, CD44, CD44 variant, and CD90 were analyzed by flow-cytometry. To assess the resistance to anti-cancer drugs, the MTS assay, cell cycle analysis, and reactive oxygen species (ROS) activity assay were performed. Poorly differentiated HCC derived SK and undifferentiated HCC derived HLE cell lines efficiently formed spheres of cells (SK-sphere and HLE-sphere), but well-differentiated HCC-derived HuH-7 and Hep 3B cells did not. SK-spheres showed increased NANOG, LIN28A, and ALDH1A1 mRNA levels compared to parental cells. We observed more CD44 variant-positive cells in SK-spheres than in parental cells. The cell viability of SK-spheres was significantly higher than that of SK cells in the presence of several anti-cancer drugs except sorafenib (1.7- to 7.3-fold, each P < 0.05). The cell cycle of SK-spheres was arrested at the G0/G1 phase compared to SK cells. SK-spheres showed higher ABCG2 and HIF1A mRNA expression and lower ROS production compared to parental cells. Our novel method successfully induced cancer stem-like cells, which possessed chemoresistance that was related to the cell cycle, drug efflux, and ROS.

  16. Targeting KDM1A attenuates Wnt/β-catenin signaling pathway to eliminate sorafenib-resistant stem-like cells in hepatocellular carcinoma.

    PubMed

    Huang, Mengxi; Chen, Cheng; Geng, Jian; Han, Dong; Wang, Tao; Xie, Tao; Wang, Liya; Wang, Ye; Wang, Chunhua; Lei, Zengjie; Chu, Xiaoyuan

    2017-07-10

    Use of the tyrosine kinase inhibitor sorafenib in patients with advanced hepatocellular carcinoma (HCC) is often hindered by the development of resistance, which has been recently shown to be associated with the emergence of a cancer stem cell (CSC) subpopulation. However, it remains largely unknown whether epigenetic mechanisms, especially histone posttranslational modifications, are causally linked to the maintenance of stem-like properties in sorafenib-resistant HCC. In this study, we report that the activity of lysine-specific histone demethylase 1A (KDM1A or LSD1) is required for the emergence of cancer stem cells following prolonged sorafenib treatment. As such, KDM1A inhibitors, such as pargyline and GSK2879552, dramatically suppress stem-like properties of sorafenib-resistant HCC cells. Mechanistically, KDM1A inhibitors derepress the expression of multiple upstream negative regulators of the Wnt signaling pathway to downregulate the β-catenin pathway. More importantly, KDM1A inhibition resensitizes sorafenib-resistant HCC cells to sorafenib in vivo, at least in part through reducing a CSC pool, suggesting a promising opportunity for this therapeutic combination. Together, these findings suggest that KDM1A inhibitors may be utilized to alleviate acquired resistance to sorafenib, thus increasing the therapeutic efficacy of sorafenib in HCC patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. An epithelial cell adhesion molecule- and CD3-bispecific antibody plus activated T-cells can eradicate chemoresistant cancer stem-like pancreatic carcinoma cells in vitro.

    PubMed

    Umebayashi, Masayo; Kiyota, Akifumi; Koya, Norihiro; Tanaka, Hiroto; Onishi, Hideya; Katano, Mitsuo; Morisaki, Takashi

    2014-08-01

    Cancer stem-like properties of various types of cancer, including pancreatic cancer, one of the most aggressive types, correlate with metastasis, invasion, and therapeutic resistance. More importantly, chemoresistance in cancer stem-like cells (CSLCs) is a critical problem for eradication of pancreatic cancer. Several cell surface markers, such as CD44 and epithelial cell adhesion molecule (EpCAM), are molecular targets on CSLCs of pancreatic carcinoma. In this study, we investigated whether catumaxomab, a clinical-grade bi-specific antibody that binds to both EpCAM on tumor cells and CD3 on T-cells, combined with activated T-cells can eliminate chemoresistant pancreatic CSLCs in vitro. Firstly, we established a CSLC line (MU-PK1) from human pancreatic carcinoma cells derived from a patient with chemoresistant and disseminated pancreatic cancer. These CSLCs were almost completely resistant to gemcitabine-mediated cytotoxicity up to a concentration of 10 μg/ml. The cells expressed high levels of CSLC markers (CD44 and EpCAM) and had significantly higher capacities for sphere formation, invasion, and aldehyde dehydrogenase-1 expression, which are associated with cancer stemness properties. We found that pre-treatment with catumaxomab and subsequent addition of interleukin-2/OKT3 activated autologous T-cells eliminated CSLCs during a short incubation period. Moreover, when MU-PK1 cells were cultured under hypoxic conditions, the CSLCs became more aggressive. However, the combination of cytokine-activated killer T-cells with catumaxomab successfully lysed almost all these cells. In conclusion, catumaxomab combined with activated T-cells may be a potent therapeutic modality to eradicate chemoresistant pancreatic CSLCs.

  18. Lin28B/Let-7 Regulates Expression of Oct4 and Sox2 and Reprograms Oral Squamous Cell Carcinoma Cells to a Stem-like State.

    PubMed

    Chien, Chian-Shiu; Wang, Mong-Lien; Chu, Pen-Yuan; Chang, Yuh-Lih; Liu, Wei-Hsiu; Yu, Cheng-Chia; Lan, Yuan-Tzu; Huang, Pin-I; Lee, Yi-Yen; Chen, Yi-Wei; Lo, Wen-Liang; Chiou, Shih-Hwa

    2015-06-15

    Lin28, a key factor for cellular reprogramming and generation of induced pluripotent stem cell (iPSC), makes a critical contribution to tumorigenicity by suppressing Let-7. However, it is unclear whether Lin28 is involved in regulating cancer stem-like cells (CSC), including in oral squamous carcinoma cells (OSCC). In this study, we demonstrate a correlation between high levels of Lin28B, Oct4, and Sox2, and a high percentage of CD44(+)ALDH1(+) CSC in OSCC. Ectopic Lin28B expression in CD44(-)ALDH1(-)/OSCC cells was sufficient to enhance Oct4/Sox2 expression and CSC properties, whereas Let7 co-overexpression effectively reversed these phenomena. We identified ARID3B and HMGA2 as downstream effectors of Lin28B/Let7 signaling in regulating endogenous Oct4 and Sox2 expression. Let7 targeted the 3' untranslated region of ARID3B and HMGA2 and suppressed their expression, whereas ARID3B and HMGA2 increased the transcription of Oct4 and Sox2, respectively, through promoter binding. Chromatin immunoprecipitation assays revealed a direct association between ARID3B and a specific ARID3B-binding sequence in the Oct4 promoter. Notably, by modulating Oct4/Sox2 expression, the Lin28B-Let7 pathway not only regulated stemness properties in OSCC but also determined the efficiency by which normal human oral keratinocytes could be reprogrammed to iPSC. Clinically, a Lin28B(high)-Let7(low) expression pattern was highly correlated with high levels of ARID3B, HMGA2, OCT4, and SOX2 expression in OSCC specimens. Taken together, our results show how Lin28B/Let7 regulates key cancer stem-like properties in oral squamous cancers.

  19. Bmi1 drives stem-like properties and is associated with migration, invasion, and poor prognosis in tongue squamous cell carcinoma.

    PubMed

    He, Qianting; Liu, Zhonghua; Zhao, Tingting; Zhao, Luodan; Zhou, Xiaofeng; Wang, Anxun

    2015-01-01

    Bmi1 (B-cell-specific Moloney murine leukemia virus insertion site 1) had been found to involve in self -renewal of stem cells and tumorigenesis in various malignancies. The purpose of this study is to evaluate the role of Bmi1 in the development of tongue squamous cell carcinoma (TSCC) and its functional effect on the migration and invasion of TSCC. Initially, immunohistochemistry revealed that Bmi1 overexpression was a common event in premalignant dysplasia, primary TSCC, and lymph node metastases and was associated with a poor prognosis. A significant correlation between Bmi1 and SOD2 (manganese superoxide dismutase) expression was observed. Side population (SP) cells were used as cancer stem-like cells and further assessed by sphere and colony formation assays, and the expression of stem cell markers. TSCC cells with higher migration and invasion ability (UM1 cell lines) showed a higher proportion of SP cells and Bmi1 expression than TSCC cells with lower migration and invasion ability (UM2 cell lines). Knockdown of Bmi1 in UM1 or SP cells inhibited migration and invasion and decreased the sphere and colony formation, and the expression of stem cell markers and SOD2. Direct binding of C-myc to the Bmi1 promoter was demonstrated by chromatin immunoprecipitation and luciferase assays. Moreover, C-myc knockdown in SP cells inhibited their migration and invasion and decreased the expression of Bmi1 and SOD2. Our results indicate that the deregulation of Bmi1 expression is a frequent event during the progression of TSCC and may have a prognostic value for patients with this disease. The Bmi1-mediated migration and invasion of TSCC is related to cancer stem-like cells and involves the C-myc-Bmi1-SOD2 pathway.

  20. Isolation and characterization of squamous cell carcinoma-derived stem-like cells: role in tumor formation.

    PubMed

    Dallaglio, Katiuscia; Petrachi, Tiziana; Marconi, Alessandra; Truzzi, Francesca; Lotti, Roberta; Saltari, Annalisa; Morandi, Paolo; Puviani, Mario; Maiorana, Antonino; Roop, Dennis R; Pincelli, Carlo

    2013-09-26

    In human epidermis, keratinocyte stem cells (KSC) are characterized by high levels of β1-integrin, resulting in the rapid adhesion to type IV collagen. Since epithelial tumors originate from KSC, we evaluated the features of rapidly adhering (RAD) keratinocytes derived from primary human squamous cell carcinoma of the skin (cSCC). RAD cells expressed higher levels of survivin, a KSC marker, as compared to non-rapidly adhering (NRAD) cells. Moreover, RAD cells proliferated to a greater extent and were more efficient in forming colonies than NRAD cells. RAD cells also migrated significantly better than NRAD cells. When seeded in a silicone chamber and grafted onto the back skin of NOD SCID mice, RAD cells formed tumors 2-4 fold bigger than those derived from NRAD cells. In tumors derived from RAD cells, the mitotic index was significantly higher than in those derived from NRAD cells, while Ki-67 and survivin expression were more pronounced in RAD tumors. This study suggests that SCC RAD stem cells play a critical role in the formation and development of epithelial tumors.

  1. Isolation and Characterization of Squamous Cell Carcinoma-Derived Stem-like Cells: Role in Tumor Formation

    PubMed Central

    Dallaglio, Katiuscia; Petrachi, Tiziana; Marconi, Alessandra; Truzzi, Francesca; Lotti, Roberta; Saltari, Annalisa; Morandi, Paolo; Puviani, Mario; Maiorana, Antonino; Roop, Dennis R.; Pincelli, Carlo

    2013-01-01

    In human epidermis, keratinocyte stem cells (KSC) are characterized by high levels of β1-integrin, resulting in the rapid adhesion to type IV collagen. Since epithelial tumors originate from KSC, we evaluated the features of rapidly adhering (RAD) keratinocytes derived from primary human squamous cell carcinoma of the skin (cSCC). RAD cells expressed higher levels of survivin, a KSC marker, as compared to non-rapidly adhering (NRAD) cells. Moreover, RAD cells proliferated to a greater extent and were more efficient in forming colonies than NRAD cells. RAD cells also migrated significantly better than NRAD cells. When seeded in a silicone chamber and grafted onto the back skin of NOD SCID mice, RAD cells formed tumors 2–4 fold bigger than those derived from NRAD cells. In tumors derived from RAD cells, the mitotic index was significantly higher than in those derived from NRAD cells, while Ki-67 and survivin expression were more pronounced in RAD tumors. This study suggests that SCC RAD stem cells play a critical role in the formation and development of epithelial tumors. PMID:24077125

  2. Targeting the c-Met/FZD8 signaling axis eliminates patient-derived cancer stem-like cells in head and neck squamous carcinomas.

    PubMed

    Sun, Shuyang; Liu, Suling; Duan, Sheng Zhong; Zhang, Lei; Zhou, Henghua; Hu, Yongjie; Zhou, Xianghui; Shi, Chaoji; Zhou, Rong; Zhang, Zhiyuan

    2014-12-15

    Cancer stem-like cells (CSC) thought to contribute to head and neck squamous carcinomas (HNSCC) may offer attractive therapeutic targets if a tractable approach can be developed. In this study, we report that silencing c-Met is sufficient to suppress sphere formation, tumor initiation, and metastatic properties of HN-CSC. Pharmacologic inhibition of c-Met with the selective inhibitor PF-2341066 preferentially targeted CSC and synergized with conventional chemotherapy to improve efficacy in a mouse xenograft model of HNSCC, impeding tumor growth and reducing metastasis. Mechanistic investigations showed that CSC elimination was due to downregulation of Wnt/β-catenin signaling in HN-CSC and that the Wnt pathway receptor FZD8 was essential for interactions of c-Met and Wnt/β-catenin signaling in HN-CSC. Notably, ectopic expression of FZD8 rescued the impaired phenotype of HN-CSC where c-Met was inhibited. Furthermore, c-Met upregulated FZD8 through the ERK/c-Fos cascade in HN-CSC. Taken together, our results offer a preclinical proof-of-concept for targeting the c-Met/FZD8 signaling axis as a CSC-directed therapy to improve HNSCC treatment.

  3. Characterization of cancer stem-like cells derived from a side population of a human gallbladder carcinoma cell line, SGC-996

    SciTech Connect

    Li, Xin-xing; Wang, Jian; Wang, Hao-lu; Wang, Wei; Yin, Xiao-bin; Li, Qi-wei; Chen, Yu-ying; Yi, Jing

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer We sorted SP cells from a human gallbladder carcinoma cell lines, SGC-996. Black-Right-Pointing-Pointer SP cells displayed higher proliferation and stronger clonal-generating capability. Black-Right-Pointing-Pointer SP cells showed more migratory and invasive abilities. Black-Right-Pointing-Pointer SP cells were more resistant and tumorigenic than non-SP counterparts. Black-Right-Pointing-Pointer ABCG2 might be a candidate as a marker for SP cells. -- Abstract: The cancer stem cell (CSC) hypothesis proposes that CSCs, which can renew themselves proliferate infinitely, and escape chemotherapy, become the root of recurrence and metastasis. Previous studies have verified that side population (SP) cells, characterized by their ability to efflux lipophilic substrate Hoechst 33342, to share many characteristics of CSCs in multiplying solid tumors. The purpose of this study was to sort SP cells from a human gallbladder carcinoma cell line, SGC-996 and to preliminarily identify the biological characteristics of SP cells from the cell line. Using flow cytometry we effectively sorted SP cells from the cell line SGC-996. SP cells not only displayed higher proliferative, stronger clonal-generating, more migratory and more invasive capacities, but showed stronger resistance. Furthermore, our experiments demonstrated that SP cells were more tumorigenic than non-SP counterparts in vivo. Real-time PCR analysis and immunocytochemistry showed that the expression of ATP-binding cassette subfamily G member 2 (ABCG2) was significantly higher in SP cells. Hence, these results collectively suggest that SP cells are progenitor/stem-like cells and ABCG2 might be a candidate marker for SP cells in human gallbladder cancer.

  4. EGFR inhibitors prevent induction of cancer stem-like cells in esophageal squamous cell carcinoma by suppressing epithelial-mesenchymal transition.

    PubMed

    Sato, Fumiyuki; Kubota, Yoshimasa; Natsuizaka, Mitsuteru; Maehara, Osamu; Hatanaka, Yutaka; Marukawa, Katsuji; Terashita, Katsumi; Suda, Goki; Ohnishi, Shunsuke; Shimizu, Yuichi; Komatsu, Yoshito; Ohashi, Shinya; Kagawa, Shingo; Kinugasa, Hideaki; Whelan, Kelly A; Nakagawa, Hiroshi; Sakamoto, Naoya

    2015-01-01

    There exists a highly tumorigenic subset of esophageal squamous cell carcinoma (ESCC) cells defined by high expression of CD44. A novel therapy targeting these cancer stem-like cells (CSCs) is needed to improve prognosis of ESCC. CSCs of ESCC have a mesenchymal phenotype and epithelial-mesenchymal transition (EMT) is critical to enrich and maintain CSCs. EGFR, frequently overexpressed in ESCC, has pivotal roles in EMT induced by TGF-β in invasive fronts. Thus, EMT in invasive fronts of ESCC might be important for CSCs and EGFR could be a target of a novel therapy eliminating CSCs. However, effects of EGFR inhibitors on CSCs in ESCC have not been fully examined. EGFR inhibitors, erlotinib and cetuximab, significantly suppressed enrichment of CSCs via TGF-β1-mediated EMT. Importantly, EGFR inhibitors sharply suppressed ZEB1 that is essential for EMT in ESCC. Further, EGFR inhibitors activated Notch1 and Notch3, leading to squamous cell differentiation. EGFR inhibition may suppress expression of ZEB1 and induce differentiation, thereby blocking EMT-mediated enrichment of CSCs. In organotypic 3D culture, a form of human tissue engineering, tumor cells in invasive nests showed high expression of CD44. Erlotinib significantly blocked invasion into the matrix and CD44 high expressing CSCs were markedly suppressed by erlotinib in organotypic 3D culture. In conclusion, EMT is a critical process for generation of CSCs and the invasive front of ESCC, where EMT occurs, might form a CSC niche in ESCC. EGFR inhibitors could suppress EMT in invasive fronts and be one therapeutic option targeting against generation of CSCs in ESCC.

  5. cRGD peptide installation on cisplatin-loaded nanomedicines enhances efficacy against locally advanced head and neck squamous cell carcinoma bearing cancer stem-like cells.

    PubMed

    Miyano, Kazuki; Cabral, Horacio; Miura, Yutaka; Matsumoto, Yu; Mochida, Yuki; Kinoh, Hiroaki; Iwata, Caname; Nagano, Osamu; Saya, Hideyuki; Nishiyama, Nobuhiro; Kataoka, Kazunori; Yamasoba, Tatsuya

    2017-09-10

    Recalcitrant head and neck squamous cell carcinoma (HNSCC) usually relapses after therapy due to the enrichment of drug resistant cancer stem-like cells (CSCs). Nanomedicines have shown potential for eradicating both cancer cells and CSCs by effective intratumoral navigation for reaching particular cell populations and controlling drug delivery. The installation of ligands on nanomedicines is an attractive approach for improving the delivery to CSCs within tumors, though the development of CSC-selective ligand-receptor systems has been challenging. Herein, we found that the CSC subpopulation in HNSCC cells overexpresses αvβ5 integrins, which is preferentially expressed in tumor neovasculature and cancer cells, and can be effectively targeted by using cyclic Arg-Gly-Asp (cRGD) peptide. Thus, in this study, we propose installing cRGD peptide on micellar nanomedicines incorporating cisplatin for improving their activity against CSCs and enhancing survival. Both cisplatin-loaded micelles (CDDP/m) and cRGD-installed CDDP/m (cRGD-CDDP/m) were effective against HNSCC SAS-L1-Luc cells in vitro, though cRGD-installed CDDP/m was more potent than CDDP/m against the CSC fraction. In vivo, the cRGD-CDDP/m also showed significant antitumor activity against HNSCC orthotopic tumors, i.e. SAS-L1 and HSC-2. Moreover, cRGD-CDDP/m rapidly accumulated into the lymph node metastasis of SAS-L1 tumors, effectively inhibiting their growth, and prolonging mice survival. These findings indicate cRGD-installed nanomedicines as an advantageous strategy for targeting CSCs in HNSCC, and particularly, cRGD-CDDP/m as a significant therapeutic strategy against regionally advanced HNSCC. Copyright © 2017. Published by Elsevier B.V.

  6. Fibroblast growth factor-2-mediated FGFR/Erk signaling supports maintenance of cancer stem-like cells in esophageal squamous cell carcinoma.

    PubMed

    Maehara, Osamu; Suda, Goki; Natsuizaka, Mitsuteru; Ohnishi, Shunsuke; Komatsu, Yoshito; Sato, Fumiyuki; Nakai, Masato; Sho, Takuya; Morikawa, Kenichi; Ogawa, Koji; Shimazaki, Tomoe; Kimura, Megumi; Asano, Ayaka; Fujimoto, Yoshiyuki; Ohashi, Shinya; Kagawa, Shingo; Kinugasa, Hideaki; Naganuma, Seiji; Whelan, Kelly A; Nakagawa, Hiroshi; Nakagawa, Koji; Takeda, Hiroshi; Sakamoto, Naoya

    2017-09-13

    In esophageal squamous cell carcinoma (ESCC), a subset of cells defined by high expression of CD44 and low expression of CD24 has been reported to possess characteristics of cancer stem-like cells (CSCs). Novel therapies directly targeting CSCs have the potential to improve prognosis of ESCC patients. Although fibroblast growth factor-2 (FGF-2) expression correlates with recurrence and poor survival in ESCC patients, the role of FGF-2 in regulation of ESCC CSCs has yet to be elucidated. We report that FGF-2 is significantly upregulated in CSCs and significantly increases CSC content in ESCC cell lines by inducing epithelial-mesenchymal transition (EMT). Conversely, the FGFR inhibitor, AZD4547, sharply diminishes CSCs via induction of mesenchymal-epithelial transition (MET). Further experiments revealed that Mek/Erk pathway is crucial for FGF-2-mediated CSC regulation. Pharmacological inhibition of FGF receptor (FGFR)-mediated signaling via AZD4547 did not affect CSCs in RAS mutated cells, implying that Mek/Erk pathway, downstream of FGFR signaling, might be an important regulator of CSCs. Indeed, the Mek inhibitor, Trametinib, efficiently suppressed ESCC CSCs even in the context of RAS mutation. Consistent with these findings in vitro, xenotransplantation studies demonstrated that inhibition of FGF-2-mediated FGFR/Erk signaling significantly delayed tumor growth. Taken together, these findings indicate that FGF-2 is an essential factor regulating CSCs via Mek/Erk signaling in ESCC. Additionally, inhibition of FGFR and/or Mek signaling represents a potential novel therapeutic option for targeting CSCs in ESCC. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Sphere-forming-like cells (squamospheres) with cancer stem-like cell traits from VX2 rabbit buccal squamous cell carcinoma.

    PubMed

    Chen, Yuk-Kwan; Huang, Anderson Hsien-Cheng; Lin, Li-Min

    2014-12-01

    Previous studies have demonstrated that spheroid type cells grown under suspension culture conditions have cancer stem cell (CSC) traits in a number of cancers, but this phenomenon has not yet been reported in the VX2 rabbit oral cancer model. Hence, this study aimed to study the spheroid cells from VX2 rabbit buccal squamous cell carcinomas (SCCs) and assess their CSC characteristics. Five adult male New Zealand white outbred rabbits were used to generate VX2 rabbit buccal SCC. Sphere-forming cell culture was performed for the VX2 rabbit buccal SCC specimens. The self-renewal capability; cluster of designation (CD) 44, CD133, acetaldehyde dehydrogenase 1 (ALDH1), B cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1), Nestin, octamer-binding transcription factor 4 (Oct4) and reduced expression protein-1 (Rex-1) expression with reverse transcription-polymerase chain reaction (RT-PCR); chemoresistance to cisplatin and 5-fluorouracil; and in vivo tumorigenicity of spheroid cell transplantation in nude mice were evaluated to determine the CSC characteristics of the resulting spheroid cells. We successfully obtained spheroid cells from the VX2 rabbit OSCC tissues. The spheroid cells exhibited CSC traits, including the expression of CSC and stem cell markers (CD44, Bmi-1, Nestin, Oct4 and Rex-1), capacity to generate new spheroid colonies within 1 week of reseeding from single-dissociated spheroid cells, chemoresistance capacity and generation of tumour xenografts (with histological features resembling those of the original VX2 rabbit buccal SCC) from the transplantation of 10(3) undifferentiated spheroid cells into nude mice. In summary, we demonstrated that spheroid cells with CSC cell traits can be derived from VX2 rabbit buccal SCCs, indicating that this animal cancer model is applicable for studying CSCs in human oral cancers.

  8. Cytokine-induced killer cells efficiently kill stem-like cancer cells of nasopharyngeal carcinoma via the NKG2D-ligands recognition

    PubMed Central

    Jia, Li-Ting; Wang, Hui-Yan; Qin, Yu-Juan; Chen, Lin; Shen, Hong-Fen; Lin, Xiao-Lin; Yang, Jie; Yang, Sheng; Hao, Wei-Chao; Chen, Yan; Xiao, Sheng-Jun; Zhou, Hui-Rong; Lin, Tao-Yan; Chen, Yu-Shuang; Sun, Yan; Yao, Kai-Tai; Xiao, Dong

    2015-01-01

    Cancer stem cells (CSCs) are considered to be the root cause for cancer treatment failure. Thus, there remains an urgent need for more potent and safer therapies against CSCs for curing cancer. In this study, the antitumor activity of cytokine-induced killer (CIK) cells against putative CSCs of nasopharyngeal carcinoma (NPC) was fully evaluated in vitro and in vivo. To visualize putative CSCs in vitro by fluorescence imaging, and image and quantify putative CSCs in tumor xenograft-bearing mice by in vivo bioluminescence imaging, NPC cells were engineered with CSC detector vector encoding GFP and luciferase (Luc) under control of Nanog promoter. Our study reported in vitro intense tumor-killing activity of CIK cells against putative CSCs of NPC, as revealed by percentage analysis of side population cells, tumorsphere formation assay and Nanog-promoter-GFP-Luc reporter gene strategy plus time-lapse recording. Additionally, time-lapse imaging firstly illustrated that GFP-labeled or PKH26-labeled putative CSCs or tumorspheres were usually attacked simultaneously by many CIK cells and finally killed by CIK cells, suggesting the necessity of achieving sufficient effector-to-target ratios. We firstly confirmed that NKG2D blockade by anti-NKG2D antibody significantly but partially abrogated CIK cell-mediated cytolysis against putative CSCs. More importantly, intravenous infusion of CIK cells significantly delayed tumor growth in NOD/SCID mice, accompanied by a remarkable reduction in putative CSC number monitored by whole-body bioluminescence imaging. Taken together, our findings suggest that CIK cells demonstrate the intense tumor-killing activity against putative CSCs of NPC, at least in part, by NKG2D-ligands recognition. These results indicate that CIK cell-based therapeutic strategy against CSCs presents a promising and safe approach for cancer treatment. PMID:26418951

  9. Sphere-forming-like cells (squamospheres) with cancer stem-like cell traits from VX2 rabbit buccal squamous cell carcinoma

    PubMed Central

    Chen, Yuk-Kwan; Huang, Anderson Hsien-Cheng; Lin, Li-Min

    2014-01-01

    Previous studies have demonstrated that spheroid type cells grown under suspension culture conditions have cancer stem cell (CSC) traits in a number of cancers, but this phenomenon has not yet been reported in the VX2 rabbit oral cancer model. Hence, this study aimed to study the spheroid cells from VX2 rabbit buccal squamous cell carcinomas (SCCs) and assess their CSC characteristics. Five adult male New Zealand white outbred rabbits were used to generate VX2 rabbit buccal SCC. Sphere-forming cell culture was performed for the VX2 rabbit buccal SCC specimens. The self-renewal capability; cluster of designation (CD) 44, CD133, acetaldehyde dehydrogenase 1 (ALDH1), B cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1), Nestin, octamer-binding transcription factor 4 (Oct4) and reduced expression protein-1 (Rex-1) expression with reverse transcription-polymerase chain reaction (RT-PCR); chemoresistance to cisplatin and 5-fluorouracil; and in vivo tumorigenicity of spheroid cell transplantation in nude mice were evaluated to determine the CSC characteristics of the resulting spheroid cells. We successfully obtained spheroid cells from the VX2 rabbit OSCC tissues. The spheroid cells exhibited CSC traits, including the expression of CSC and stem cell markers (CD44, Bmi-1, Nestin, Oct4 and Rex-1), capacity to generate new spheroid colonies within 1 week of reseeding from single-dissociated spheroid cells, chemoresistance capacity and generation of tumour xenografts (with histological features resembling those of the original VX2 rabbit buccal SCC) from the transplantation of 103 undifferentiated spheroid cells into nude mice. In summary, we demonstrated that spheroid cells with CSC cell traits can be derived from VX2 rabbit buccal SCCs, indicating that this animal cancer model is applicable for studying CSCs in human oral cancers. PMID:25012868

  10. Gamma-Smooth Muscle Actin Expression Is Associated with Epithelial-Mesenchymal Transition and Stem-Like Properties in Hepatocellular Carcinoma

    PubMed Central

    Benzoubir, Nassima; Mussini, Charlotte; Lejamtel, Charlène; Dos Santos, Alexandre; Guillaume, Claire; Desterke, Christophe; Samuel, Didier; Bréchot, Christian; Bourgeade, Marie-Françoise; Guettier, Catherine

    2015-01-01

    Background and Aims The prognosis of hepatocellular carcinoma (HCC) is hampered by frequent tumour recurrence and metastases. Epithelial-Mesenchymal Transition (EMT) is now recognized as a key process in tumour invasion, metastasis and the generation of cancer initiating cells. The morphological identification of EMT in tumour samples from the expression of novel mesenchymal markers could provide relevant prognostic information and aid in understanding the metastatic process. Methods The expression of Smooth Muscle Actins was studied using immunofluorescence and immunohistochemistry assays in cultured liver cells during an induced EMT process and in liver specimens from adult and paediatric HCC series. Results We report here that in HCC cell lines treated with TGF-β and in HCC specimens, the expression of αSMA, a known mesenchymal marker of EMT, could never be detected. In addition, our in vitro studies identified the enteric form of SMA, γSMA, as being a marker of EMT. Moreover, this SMA isoform was expressed in 46% of 58 tumours from 42 adult HCC patients and in 90% of 16 tumours from 12 paediatric HCC patients. Interestingly, this expression was significantly correlated with poor tumour differentiation and progenitor cell features characterized by the expression of EpCAM and K19. Conclusion Taken together, our results support the conclusion that γSMA expression in HCC is strongly correlated with the EMT process, HCC aggressiveness and the identification of cancer stem cells. This correlation suggests that γSMA represents a novel and powerful marker to predict HCC progression. PMID:26110787

  11. Inhibition of heat-shock protein 90 sensitizes liver cancer stem-like cells to magnetic hyperthermia and enhances anti-tumor effect on hepatocellular carcinoma-burdened nude mice

    PubMed Central

    Yang, Rui; Tang, Qiusha; Miao, Fengqin; An, Yanli; Li, Mengfei; Han, Yong; Wang, Xihui; Wang, Juan; Liu, Peidang; Chen, Rong

    2015-01-01

    Purpose To explore the thermoresistance and expression of heat-shock protein 90 (HSP90) in magnetic hyperthermia-treated human liver cancer stem-like cells (LCSCs) and the effects of a heat-shock protein HSP90 inhibitor 17-allylamino-17-demethoxgeldanamycin (17-AAG) on hepatocellular carcinoma-burdened nude mice. Methods CD90+ LCSCs were isolated by magnetic-activated cell sorting from BEL-7404. Spheroid formation, proliferation, differentiation, drug resistance, and tumor formation assays were performed to identify stem cell characteristics. CD90-targeted thermosensitive magnetoliposomes (TMs)-encapsulated 17-AAG (CD90@17-AAG/TMs) was prepared by reverse-phase evaporation and its characteristics were studied. Heat tolerance in CD90+ LCSCs and the effect of CD90@17-AAG/TMs-mediated heat sensitivity were examined in vitro and in vivo. Results CD90+ LCSCs showed significant stem cell-like properties. The 17-AAG/TMs were successfully prepared and were spherical in shape with an average size of 128.9±7.7 nm. When exposed to magnetic hyperthermia, HSP90 was up-regulated in CD90+ LCSCs. CD90@17-AAG/TMs inhibited the activity of HSP90 and increased the sensitivity of CD90+ LCSCs to magnetic hyperthermia. Conclusion The inhibition of HSP90 could sensitize CD90+ LCSCs to magnetic hyperthermia and enhance its anti-tumor effects in vitro and in vivo. PMID:26677324

  12. HPV16 E6-E7 induces cancer stem-like cells phenotypes in esophageal squamous cell carcinoma through the activation of PI3K/Akt signaling pathway in vitro and in vivo.

    PubMed

    Xi, Ruxing; Pan, Shupei; Chen, Xin; Hui, Beina; Zhang, Li; Fu, Shenbo; Li, Xiaolong; Zhang, Xuanwei; Gong, Tuotuo; Guo, Jia; Zhang, Xiaozhi; Che, Shaomin

    2016-08-30

    High-risk human papillomavirus (HPV), especially HPV16, correlates with cancerogenesis of human esophageal squamous cell carcinoma (ESCC) and we have reported that HPV16 related with a poor prognosis of ESCC patients in China. We aim to investigate the potential role and mechanism of HPV16 in ESCC development and progress. Our following researches demonstrated that ESCC cells which were stably transfected by HPV16 E6-E7 lentiviral vector showed a remarkable cancer stem-like cells (CSCs) phenotype, such as: migration, invasion, spherogenesis, high expression of CSCs marker in ESCC---p75NTR, chemoresistance, radioresistance, anti-apoptosis ability in vitro and cancerogenesis in vivo. HPV16 E6-E7 induced PI3K/Akt signaling pathway activation and this affect could be effectively inhibited by LY294002, a specific PI3K inhibitor. It was also indicated that the inhibition of PI3K/Akt signaling pathway by PI3K and Akt siRNA reverse the effect which induced by HPV16 E6-E7 in ESCC cells. Taken together, the present study demonstrates that HPV16 E6-E7 promotes CSCs phenotype in ESCC cells through the activation of PI3K/Akt signaling pathway. Targeting the PI3K/Akt signaling pathway in HPV16 positive tissues is an available therapeutic for ESCC patients.

  13. LncRNA ANRIL is up-regulated in nasopharyngeal carcinoma and promotes the cancer progression via increasing proliferation, reprograming cell glucose metabolism and inducing side-population stem-like cancer cells

    PubMed Central

    Zou, Zhen Wei; Ma, Charlie; Medoro, Lorraine; Chen, Lili; Wang, Bin; Gupta, Roohi; Liu, Ting; Yang, Xian Zi; Chen, Tian Tian; Wang, Ruo Zhen; Zhang, Wen Jie; Li, Pin Dong

    2016-01-01

    Long noncoding RNAs play a vital role in diverse biological processes such as embryonic development, cell growth, and tumorigenesis. In this study, we report that LncRNA ANRIL, which encodes a 3834-nt RNA that contains 19 exons at the antisense orientation of the INK4B-ARF-INK4A gene cluster, generally up-regulated in nasopharyngeal carcinoma [1]. In a cohort of 88 NPC patients, ANRIL was highly expressed in advanced-stage cancer. Multivariate analyses revealed that ANRIL expression could serve as an independent predictor of overall survival (P = 0.027) and disease-free survival (P = 0.033). Further investigation showed that knockdown of ANRIL significantly repressed NPC cell proliferation and transformation. We also found that ANRIL could induce the percentage of side population cells (SP cells) in NPC. To meet the urgent needs of energy provision, ANRIL can also reprogram glucose metabolism via increasing glucose uptake for glycolysis, which was regulated by the mTOR signal pathway to affect the expression of essential genes in glycolysis. We concluded that ANRIL could promote NPC progression via increasing cell proliferation, reprograming cell glucose metabolism and inducing side-population stem-like cancer cells. Our results also suggested that ANRIL may serve as a novel diagnostic or prognostic biomarker and a candidate target for new therapies in NPC. PMID:27557514

  14. HPV16 E6-E7 induces cancer stem-like cells phenotypes in esophageal squamous cell carcinoma through the activation of PI3K/Akt signaling pathway in vitro and in vivo

    PubMed Central

    Xi, Ruxing; Pan, Shupei; Chen, Xin; Hui, Beina; Zhang, Li; Fu, Shenbo; Li, Xiaolong; Zhang, Xuanwei; Gong, Tuotuo; Guo, Jia; Zhang, Xiaozhi; Che, Shaomin

    2016-01-01

    High-risk human papillomavirus (HPV), especially HPV16, correlates with cancerogenesis of human esophageal squamous cell carcinoma (ESCC) and we have reported that HPV16 related with a poor prognosis of ESCC patients in China. We aim to investigate the potential role and mechanism of HPV16 in ESCC development and progress. Our following researches demonstrated that ESCC cells which were stably transfected by HPV16 E6-E7 lentiviral vector showed a remarkable cancer stem-like cells (CSCs) phenotype, such as: migration, invasion, spherogenesis, high expression of CSCs marker in ESCC---p75NTR, chemoresistance, radioresistance, anti-apoptosis ability in vitro and cancerogenesis in vivo. HPV16 E6-E7 induced PI3K/Akt signaling pathway activation and this affect could be effectively inhibited by LY294002, a specific PI3K inhibitor. It was also indicated that the inhibition of PI3K/Akt signaling pathway by PI3K and Akt siRNA reverse the effect which induced by HPV16 E6-E7 in ESCC cells. Taken together, the present study demonstrates that HPV16 E6-E7 promotes CSCs phenotype in ESCC cells through the activation of PI3K/Akt signaling pathway. Targeting the PI3K/Akt signaling pathway in HPV16 positive tissues is an available therapeutic for ESCC patients. PMID:27489353

  15. Plasma membrane proteomics of tumor spheres identify CD166 as a novel marker for cancer stem-like cells in head and neck squamous cell carcinoma.

    PubMed

    Yan, Ming; Yang, Xihu; Wang, Lizhen; Clark, David; Zuo, Hui; Ye, Dongxia; Chen, Wantao; Zhang, Ping

    2013-11-01

    Patients with advanced head and neck squamous cell carcinoma (HNSCC) have a poor prognosis with the currently available therapy, and tumor recurrence is frequently observed. The discovery of specific membrane-associated cancer stem cell (CSC) markers is crucial for the development of novel therapeutic strategies to target these CSCs. To address this issue, we established sphere cultures to enrich CSCs and used them for plasma membrane proteomics to identify specific membrane signatures of the HNSCC spheres. Of a dataset that included a total of 376 identified proteins, 200 were bona fide membrane proteins. Among them, 123 proteins were at least 1.5-fold up- or down-regulated in the spheres relative to the adherent cultures. These proteins included cell adhesion molecules, receptors, and transporter proteins. Some of them play key roles in wnt, integrin, and TGFβ signaling pathways. When we compared our dataset with two published hESC membrane protein signatures, we found 18 proteins common to all three of the databases. CD166 and CD44 were two such proteins. Interestingly, the expression of CD166, rather than that of the well-established HNSCC CSC marker CD44, was significantly related to the malignant behavior of HNSCC. Relative to CD166(low) HNSCC cells, CD166(high) HNSCC cells had a greater sphere-formation ability in vitro and tumor formation ability in vivo. Patients whose tumors expressed high levels of CD166 had a significantly poorer clinical outcome than those whose tumors expressed low levels of CD166 (cohort 1: 96 cases, p = 0.040), whereas the level of CD44 expression had only a marginal influence on the clinical outcome of patients with HNSCC (p = 0.078). The level of CD166 expression in HNSCC tumors was also associated with the tumor recurrence rate (cohort 2: 104 cases, p = 0.016). This study demonstrates that CD166 is a valuable cell surface marker for the enrichment of HNSCC stem cells and that plasma membrane proteomics is a promising biological

  16. Carcinomas of ovary and lung with clear cell features: can immunohistochemistry help in differential diagnosis?

    PubMed

    Howell, Nicole R; Zheng, Wenxin; Cheng, Liang; Tornos, Carmen; Kane, Philip; Pearl, Michael; Chalas, Eva; Liang, Sharon X

    2007-04-01

    Metastatic lung carcinomas with clear cell morphology can be confused with primary ovarian clear cell carcinomas. We performed immunohistochemical stains in 14 cases of non-small cell lung carcinomas with clear cell features and 14 cases of ovarian clear cell carcinomas using a panel of markers, including thyroid transcription factor 1 (TTF-1), carcinoembryonic antigen (CEA), Wilms tumor gene 1, octamer-binding transcription factor 4 (OCT-4), cancer antigen 125 (CA-125), estrogen receptor, and progesterone receptor. Among non-small cell lung carcinomas with clear cell features, 87.5% of adenocarcinomas (or 50% overall frequency in lung carcinomas) were positive for TTF-1, whereas none of the ovarian clear cell carcinomas were positive (P = 0.002). All 14 ovarian clear cell carcinomas stained for CA-125 as compared with 1 non-small cell lung carcinoma (P < 0.001). On the other hand, 85% of non-small cell lung carcinomas stained for CEA, whereas none of the ovarian clear cell carcinomas did (P < 0.001). Interestingly, 4 ovarian clear cell carcinomas (28%) showed positive staining for the germ cell marker OCT-4. Either lung or ovarian carcinomas stained for Wilms tumor gene 1, estrogen receptor, or progesterone receptor very infrequently; and the difference between the 2 groups was not statistically significant. Our results suggest that an immunohistochemical panel consisting of TTF-1, CEA, CA-125, and OCT-4 is helpful in distinguishing most pulmonary and ovarian carcinomas with clear cell features.

  17. Targeting glutamine metabolism and the focal adhesion kinase additively inhibits the mammalian target of the rapamycin pathway in spheroid cancer stem-like properties of ovarian clear cell carcinoma in vitro.

    PubMed

    Sato, Masakazu; Kawana, Kei; Adachi, Katsuyuki; Fujimoto, Asaha; Yoshida, Mitsuyo; Nakamura, Hiroe; Nishida, Haruka; Inoue, Tomoko; Taguchi, Ayumi; Ogishima, Juri; Eguchi, Satoko; Yamashita, Aki; Tomio, Kensuke; Wada-Hiraike, Osamu; Oda, Katsutoshi; Nagamatsu, Takeshi; Osuga, Yutaka; Fujii, Tomoyuki

    2017-04-01

    Ovarian cancer is one of the leading causes of death in the world, which is linked to its resistance to chemotherapy. Strategies to overcome chemoresistance have been keenly investigated. Culturing cancer cells in suspension, which results in formation of spheroids, is a more accurate reflection of clinical cancer behavior in vitro than conventional adherent cultures. By performing RNA-seq analysis, we found that the focal adhesion pathway was essential in spheroids. The phosphorylation of focal adhesion kinase (FAK) was increased in spheroids compared to adherent cells, and inhibition of FAK in spheroids resulted in inhibition of the downstream mammalian target of the rapamycin (mTOR) pathway in ovarian clear cell carcinomas. This result also suggested that only using a FAK inhibitor might have limitations because the phosphorylation level of FAK could not be reduced to the level in adherent cells, and it appeared that some combination therapies might be necessary. We previously reported that glutamine and glutamate concentrations were higher in spheroids than adherent cells, and we investigated a synergistic effect targeting glutamine metabolism with FAK inhibition on the mTOR pathway. The combination of AOA, a pan-transaminase inhibitor, and PF 573228, a FAK inhibitor, additively inhibited the mTOR pathway in spheroids from ovarian clear cell carcinomas. Our in vitro study proposed a rationale for the positive and negative effects of using FAK inhibitors in ovarian clear cell carcinomas and suggested that targeting glutamine metabolism could overcome the limitation of FAK inhibitors by additively inhibiting the mTOR pathway.

  18. Tumour-associated macrophages influence canine mammary cancer stem-like cells enhancing their pro-angiogenic properties.

    PubMed

    Rybicka, A; Eyileten, C; Taciak, B; Mucha, J; Majchrzak, K; Hellmen, E; Krol, M

    2016-08-01

    Cancer stem-like cells as cells with ability to self-renewal and potential to differentiate into various types of cells are known to be responsible for tumour initiation, recurrence and drug resistance. Hence a comprehensive research is concentrated on discovering cancer stem-like cells biology and interdependence between them and other cells. The aim of our study was to evaluate the impact of macrophages on cancer stem-like cells in canine mammary carcinomas. As recent studies indicated presence of macrophages in cancer environment stimulates cancer cells into more motile and invasive cells by acquisition of macrophage phenotypes. From two canine mammary tumour cell lines, CMT-U27 and P114 cancer stem-like cells were stained with Sca1, CD44 and EpCAM monoclonal antibodies and isolated. Those cells were next co-cultured with macrophages for 5 days and used for further experiments. Canine Gene Expression Microarray revealed 29 different expressed transcripts in cancer stem-like cells co-cultured with macrophages compared to those in mono-culture. Up-regulation of C-C motif chemokine 2 was considered as the most interesting for further investigation. Additionally, those cells showed overexpression of genes involved in non-canonical Wnt pathway. The results of 3D tubule formation in endothelial cells induced by cancer stem-like cells co-cultured with macrophages compared to cancer stem-like cells from mono-cultures and with addition of Recombinant Canine CCL2/MCP-1 revealed the same stimulating effect. Based on those results we can conclude that macrophages have an impact on cancer stem-like cells increasing secretion of pro-angiogenic factors.

  19. Target irradiation induced bystander effects between stem-like and non stem-like cancer cells.

    PubMed

    Liu, Yu; Kobayashi, Alisa; Maeda, Takeshi; Fu, Qibin; Oikawa, Masakazu; Yang, Gen; Konishi, Teruaki; Uchihori, Yukio; Hei, Tom K; Wang, Yugang

    2015-03-01

    Tumors are heterogeneous in nature and consist of multiple cell types. Among them, cancer stem-like cells (CSCs) are suggested to be the principal cause of tumor metastasis, resistance and recurrence. Therefore, understanding the behavior of CSCs in direct and indirect irradiations is crucial for clinical radiotherapy. Here, the CSCs and their counterpart non stem-like cancer cells (NSCCs) in human HT1080 fibrosarcoma cell line were sorted and labeled, then the two cell subtypes were mixed together and chosen separately to be irradiated via a proton microbeam. The radiation-induced bystander effect (RIBE) between the CSCs and NSCCs was measured by imaging 53BP1 foci, a widely used indicator for DNA double strand break (DSB). CSCs were found to be less active than NSCCs in both the generation and the response of bystander signals. Moreover, the nitric oxide (NO) scavenger c-PTIO can effectively alleviate the bystander effect in bystander NSCCs but not in bystander CSCs, indicating a difference of the two cell subtypes in NO signal response. To our knowledge, this is the first report shedding light on the RIBE between CSCs and NSCCs, which might contribute to a further understanding of the out-of-field effect in cancer radiotherapy.

  20. Auraptene Attenuates Malignant Properties of Esophageal Stem-Like Cancer Cells.

    PubMed

    Saboor-Maleki, Saffiyeh; Rassouli, Fatemeh B; Matin, Maryam M; Iranshahi, Mehrdad

    2017-08-01

    The high incidence of esophageal squamous cell carcinoma has been reported in selected ethnic populations including North of Iran. Low survival rate of esophageal carcinoma is partially due to the presence of stem-like cancer cells with chemotherapy resistance. In the current study, we aimed to determine the effects of auraptene, an interesting dietary coumarin with various biological activities, on malignant properties of stem-like esophageal squamous cell carcinoma, in terms of sensitivity to anticancer drugs and expression of specific markers. To do so, the half maximal inhibitory concentration values of auraptene, cisplatin, paclitaxel, and 5-fluorouracil were determined on esophageal carcinoma cells (KYSE30 cell line). After administrating combinatorial treatments, including nontoxic concentrations of auraptene + cisplatin, paclitaxel, or 5-fluorouracil, sensitivity of cells to chemical drugs and also induced apoptosis were assessed. In addition, quantitative real-time polymerase chain reaction was used to study changes in the expression of tumor suppressor proteins 53 and 21 ( P53 and P21), cluster of differentiation 44 ( CD44), and B cell-specific Moloney murine leukemia virus integration site 1 ( BMI-1) upon treatments. Results of thiazolyl blue assay revealed that auraptene significantly ( P < .05) increased toxicity of cisplatin, paclitaxel, and 5-fluorouracil in KYSE30 cells, specifically 72 hours after treatment. Conducting an apoptosis assay using flow cytometry also confirmed the synergic effects of auraptene. Results of quantitative real-time polymerase chain reaction revealed significant ( P < .05) upregulation of P53 and P21 upon combinatorial treatments and also downregulation of CD44 and BMI-1 after auraptene administration. Current study provided evidence, for the first time, that auraptene attenuates the properties of esophageal stem-like cancer cells through enhancing sensitivity to chemical agents and reducing the expression of CD44 and BMI-1

  1. Positive nuclear BAP1 immunostaining helps differentiate non-small cell lung carcinomas from malignant mesothelioma

    PubMed Central

    Carbone, Michele; Shimizu, David; Napolitano, Andrea; Tanji, Mika; Pass, Harvey I.; Yang, Haining; Pastorino, Sandra

    2016-01-01

    The differential diagnosis between pleural malignant mesothelioma (MM) and lung cancer is often challenging. Immunohistochemical (IHC) stains used to distinguish these malignancies include markers that are most often positive in MM and less frequently positive in carcinomas, and vice versa. However, in about 10–20% of the cases, the IHC results can be confusing and inconclusive, and novel markers are sought to increase the diagnostic accuracy. We stained 45 non-small cell lung cancer samples (32 adenocarcinomas and 13 squamous cell carcinomas) with a monoclonal antibody for BRCA1-associated protein 1 (BAP1) and also with an IHC panel we routinely use to help differentiate MM from carcinomas, which include, calretinin, Wilms Tumor 1, cytokeratin 5, podoplanin D2-40, pankeratin CAM5.2, thyroid transcription factor 1, Napsin-A, and p63. Nuclear BAP1 expression was also analyzed in 35 MM biopsies. All 45 non-small cell lung cancer biopsies stained positive for nuclear BAP1, whereas 22/35 (63%) MM biopsies lacked nuclear BAP1 staining, consistent with previous data. Lack of BAP1 nuclear staining was associated with MM (two-tailed Fisher's Exact Test, P = 5.4 × 10−11). Focal BAP1 staining was observed in a subset of samples, suggesting polyclonality. Diagnostic accuracy of other classical IHC markers was in agreement with previous studies. Our study indicated that absence of nuclear BAP1 stain helps differentiate MM from lung carcinomas. We suggest that BAP1 staining should be added to the IHC panel that is currently used to distinguish these malignancies. PMID:27447750

  2. Positive nuclear BAP1 immunostaining helps differentiate non-small cell lung carcinomas from malignant mesothelioma.

    PubMed

    Carbone, Michele; Shimizu, David; Napolitano, Andrea; Tanji, Mika; Pass, Harvey I; Yang, Haining; Pastorino, Sandra

    2016-09-13

    The differential diagnosis between pleural malignant mesothelioma (MM) and lung cancer is often challenging. Immunohistochemical (IHC) stains used to distinguish these malignancies include markers that are most often positive in MM and less frequently positive in carcinomas, and vice versa. However, in about 10-20% of the cases, the IHC results can be confusing and inconclusive, and novel markers are sought to increase the diagnostic accuracy.We stained 45 non-small cell lung cancer samples (32 adenocarcinomas and 13 squamous cell carcinomas) with a monoclonal antibody for BRCA1-associated protein 1 (BAP1) and also with an IHC panel we routinely use to help differentiate MM from carcinomas, which include, calretinin, Wilms Tumor 1, cytokeratin 5, podoplanin D2-40, pankeratin CAM5.2, thyroid transcription factor 1, Napsin-A, and p63. Nuclear BAP1 expression was also analyzed in 35 MM biopsies. All 45 non-small cell lung cancer biopsies stained positive for nuclear BAP1, whereas 22/35 (63%) MM biopsies lacked nuclear BAP1 staining, consistent with previous data. Lack of BAP1 nuclear staining was associated with MM (two-tailed Fisher's Exact Test, P = 5.4 x 10-11). Focal BAP1 staining was observed in a subset of samples, suggesting polyclonality. Diagnostic accuracy of other classical IHC markers was in agreement with previous studies. Our study indicated that absence of nuclear BAP1 stain helps differentiate MM from lung carcinomas. We suggest that BAP1 staining should be added to the IHC panel that is currently used to distinguish these malignancies.

  3. EGFR Amplification and Glioblastoma Stem-Like Cells

    PubMed Central

    Liffers, Katrin; Lamszus, Katrin

    2015-01-01

    Glioblastoma (GBM), the most common malignant brain tumor in adults, contains a subpopulation of cells with a stem-like phenotype (GS-cells). GS-cells can be maintained in vitro using serum-free medium supplemented with epidermal growth factor, basic fibroblast growth factor-2, and heparin. However, this method does not conserve amplification of the Epidermal Growth Factor Receptor (EGFR) gene, which is present in over 50% of all newly diagnosed GBM cases. GS-cells with retained EGFR amplification could overcome the limitations of current in vitro model systems and contribute significantly to preclinical research on EGFR-targeted therapy. This review recapitulates recent methodological approaches to expand stem-like cells from GBM with different EGFR status in order to maintain EGFR-dependent intratumoral heterogeneity in vitro. Further, it will summarize the current knowledge about the impact of EGFR amplification and overexpression on the stem-like phenotype of GBM-derived GS-cells and different approaches to target the EGFR-dependent GS-cell compartment of GBM. PMID:26136784

  4. The effect of salinomycin on ovarian cancer stem-like cells

    PubMed Central

    Chung, Hyewon; Kim, Yu-Hwan; Kwon, Myoung; Shin, So-Jin; Kwon, Sang-Hoon; Cha, Soon-Do

    2016-01-01

    Objective The identification of cancer stem-like cells is a recent development in ovarian cancer. Compared to other cancer cells, cancer stem-like cells present more chemo-resistance and more aggressive characteristics. They play an important role in the recurrence and drug resistance of cancer. Therefore, the target therapy of cancer stem-like cell may become a promising and effective approach for ovarian cancer treatment. It may also help to provide novel diagnostic and therapeutic strategies. Methods The OVCAR3 cell line was cultured under serum-free conditions to produce floating spheres. The CD44+CD117+ cell line was isolated from the human ovarian cancer cell line OVCAR3 by using immune magnetic-activated cell sorting system. The expression of stemness genes such as OCT3/4, NANOG and SOX2 mRNA were determined by reverse transcription polymerase chain reaction. OVCAR3 parental and OVCAR3 CD44+CD117+ cells were grown in different doses of paclitaxel and salinomycin to evaluate the effect of salinomycin. And growth inhibition of OVCAR3 CD44+CD117+ cells by paclitaxel combined with salinomycin was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Results Tumor spheroids generated from the OVCAR3 cell line are shown to have highly enriched CD44 and CD117 expression. Treatment with a combination of paclitaxel and salinomycin demonstrated growth inhibition of OVCAR3 CD44+CD117+ cells. Conclusion The present study is a detailed investigation on the expression of CD44 and CD117 in cancer stem cells and evaluates their specific tumorigenic characteristics in ovarian cancer. This study also demonstrates significant growth inhibition of cancer stem-like cells by paclitaxel combined with salinomycin. Identification of these cancer stem-like cell markers and growth inhibition effect of salinomycin may be the next step to the development of novel target therapy in ovarian cancer. PMID:27462592

  5. Biology and immunology of cancer stem(-like) cells in head and neck cancer.

    PubMed

    Qian, Xu; Ma, Chenming; Nie, Xiaobo; Lu, Jianxin; Lenarz, Minoo; Kaufmann, Andreas M; Albers, Andreas E

    2015-09-01

    Immunological approaches against tumors including head and neck squamous cell carcinoma (HNSCC) have been investigated for about 50 years. Such immunotherapeutic treatments are still not sufficiently effective for therapy of HNSCC. Despite the existence of immunosurveillance tumor cells may escape from the host immune system by a variety of mechanisms. Recent findings have indicated that cancer stem(-like) cells (CSCs) in HNSCC have the ability to reconstitute the heterogeneity of the bulk tumor and contribute to immunosuppression and resistance to current therapies. With regard to the CSC model, future immunotherapy possibly in combination with other modes of treatment should target this subpopulation specifically to reduce local recurrence and metastasis. In this review, we will summarize recent research findings on immunological features of CSCs and the potential of immune targeting of CSCs.

  6. Help

    ERIC Educational Resources Information Center

    Tollefson, Ann

    2009-01-01

    Planning to start or expand a K-8 critical language program? Looking for support in doing so? There "may" be help at the federal level for great ideas and strong programs. While there have been various pools of federal dollars available to support world language programs for a number of years, the federal government's interest in…

  7. Help

    ERIC Educational Resources Information Center

    Tollefson, Ann

    2009-01-01

    Planning to start or expand a K-8 critical language program? Looking for support in doing so? There "may" be help at the federal level for great ideas and strong programs. While there have been various pools of federal dollars available to support world language programs for a number of years, the federal government's interest in…

  8. Harnessing the apoptotic programs in cancer stem-like cells.

    PubMed

    Wang, Ying-Hua; Scadden, David T

    2015-09-01

    Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population. © 2015 The Authors.

  9. Harnessing the apoptotic programs in cancer stem-like cells

    PubMed Central

    Wang, Ying-Hua; Scadden, David T

    2015-01-01

    Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population. PMID:26253117

  10. Valproic acid promotes radiosensitization in meningioma stem-like cells.

    PubMed

    Chiou, Hsin-Ying Clair; Lai, Wen-Kuo; Huang, Li-Chun; Huang, Shih-Ming; Chueh, Sheau-Huei; Ma, Hsin-I; Hueng, Dueng-Yuan

    2015-04-30

    Although meningioma stem-like cells have been isolated and characterized, their therapeutic targeting remains a challenge. Meningioma sphere cells (MgSCs) with cancer stem cells properties show chemo- and radioresistance in comparison with meningioma adherent cells (MgACs). We tested the effect of valproic acid (VPA), a commonly used anti-epileptic drug, which passes the blood brain barrier, on cultured MgSCs. VPA reduced the viability of MgSCs and MgACs. In MgSCs, treatment with VPA increased radio-sensitivity, expression of p-cdc2, p-H2AX and cleaved caspase-3 and PARP. Anchorage-independent growth (AIG) was reduced by VPA. AIG was further reduced by combined treatment with irradiation. Expression of a stem cell marker, Oct4, was reduced by VPA. Oct4 was further decreased by combined treatment with irradiation. These results suggest that VPA may be a potential treatment for meningioma through targeting meningioma stem-like cells.

  11. Divergent roles of CXCR3 isoforms in promoting cancer stem-like cell survival and metastasis.

    PubMed

    Li, Yanchun; Reader, Jocelyn C; Ma, Xinrong; Kundu, Namita; Kochel, Tyler; Fulton, Amy M

    2015-01-01

    There is growing evidence that several chemokine receptors including CXCR3 contribute to metastasis of breast and other cancers, however, in order to target CXCR3 effectively, it is critical to understand the relative contribution of each CXCR3 isoform. Furthermore, the possible contribution of either major CXCR3 isoform (CXCR3-A, CXCR3-B) to cancer stem cell behavior has not been reported. We employed primary invasive ductal carcinomas, a panel of breast cell lines, and a xenograft model of metastatic breast cancer to examine the role of CXCR3 isoforms in the behavior of breast cancer stem-like cells and the contribution of each isoform to metastasis. In primary human breast cancer specimens as well as established breast cancer cell lines, CXCR3-A is more highly expressed than CXCR3-B. Conversely, immortalized normal MCF10A cells express more CXCR3-B relative to CXCR3-A. Overexpression of CXCR3-B in MDA-MB-231 basal-like cells inhibits CXCR3 ligand-stimulated proliferation, which is accompanied by reduced ligand-mediated activation of ERK1/2 and p38 kinases. Likewise, metastatic capacity is reduced in vivo by higher levels of CXCR3-B, and migratory and invasive properties are inhibited in vitro; conversely, silencing of CXCR3-B enhances lung colonization. In contrast to the anti-metastatic and anti-proliferative roles of CXCR3-B in the non-stem cell population, this isoform supports a cancer stem-like cell phenotype. CXCR3-B is markedly elevated in mammosphere-forming parental cells and overexpressing CXCR3-B further enhances mammosphere-forming potential as well as growth in soft agar; stem-like behavior is inhibited in MDA-MB-231shCXCR3-B cells. Targeting of both CXCR3 isoforms may be important to block the stem cell-promoting actions of CXCR3-B, while inhibiting the pro-proliferative and metastasis-promoting functions of CXCR3-A.

  12. Glioblastoma Stem-Like Cells: Characteristics, Microenvironment, and Therapy

    PubMed Central

    Yi, Yang; Hsieh, I-Yun; Huang, Xiaojia; Li, Jie; Zhao, Wei

    2016-01-01

    Glioblastoma multiforme (GBM), grade IV astrocytoma, is the most fatal malignant primary brain tumor. GBM contains functional subsets of cells called glioblastoma stem-like cells (GSCs), which are radioresistant and chemoresistant and eventually lead to tumor recurrence. Recent studies showed that GSCs reside in particular tumor niches that are necessary to support their behavior. To successfully eradicate GBM growth and recurrence, new strategies selectively targeting GSCs and/or their microenvironmental niche should be designed. In this regard, here we focus on elucidating the molecular mechanisms that govern these GSC properties and on understanding the mechanism of the microenvironmental signals within the tumor mass. Moreover, to overcome the blood–brain barrier, which represents a critical limitation of GBM treatments, a new drug delivery system should be developed. Nanoparticles can be easily modified by different methods to facilitate delivery efficiency of chemotherapeutics, to enhance the accumulation within the tumors, and to promote the capacity for targeting the GSCs. Therefore, nanotechnology has become the most promising approach to GSC-targeting therapy. Additionally, we discussed the future of nanotechnology-based targeted therapy and point out the disadvantages that should be overcome. PMID:28003805

  13. Molecular Imaging in Tracking Tumor Stem-Like Cells

    PubMed Central

    Xia, Tian; Jiang, Han; Li, Chenrui; Tian, Mei; Zhang, Hong

    2012-01-01

    Cancer remains a major public health problem in many countries. It was found to contain a subset of cancer stem cells (CSCs) that are capable of proliferation and self-renewal, and differentiation into various types of cancer cells. CSCs often display characteristics of chemotherapy resistance and radiotherapy resistance. Numerous putative biomarkers of CSCs are currently identified including CD133, CD44, CD24, ALDH (aldehyde dehydrogenase), and ABCG2. Interestingly, no single marker is exclusively expressed by CSCs. Thus, the various combinations of different biomarkers will be possible to identify CSCs, and considerable work is being done to recognize new ones. In order to demonstrate the mechanisms of resistance and response to therapy and predict the outcome as well as prognosis, the ways to track and identify CSCs will be extremely important. The technologies of molecular imaging will reveal mechanisms of cancer progression and provide visual targets for novel therapeutics. Limited studies were investigated on the detection of various types of CSCs by molecular imaging. Although the tracking of circulating CSCs is still hampered by technological challenges, personalized diagnosis and therapies of cancers are expected to be established based on increased understanding of molecular imaging of cancer stem-like cells biomarkers. PMID:22570529

  14. Characterization of glioma stem-like cells from human glioblastomas

    PubMed Central

    YAMAMURO, SHUN; OKAMOTO, YUTAKA; SANO, EMIKO; OCHIAI, YUSHI; OGINO, AKIYOSHI; OHTA, TAKASHI; HARA, HIROYUKI; UEDA, TAKUYA; NAKAYAMA, TOMOHIRO; YOSHINO, ATSUO; KATAYAMA, YOICHI

    2015-01-01

    Glioma stem-like cells (GSCs) could have potential for tumorigenesis, treatment resistance, and tumor recurrence (GSC hypothesis). However, the mechanisms underlying such potential has remained elusive and few ultrastructural features of the cells have been reported in detail. We therefore undertook observations of the antigenic characteristics and ultrastructural features of GSCs isolated from human glioblastomas. Tumor spheres formed by variable numbers of cells, exhibiting a variable appearance in both their size and shape, were frequently seen in GSCs expressing the stem cell surface markers CD133 and CD15. Increased cell nucleus atypia, mitochondria, rough endoplasmic reticulum, coated vesicles, and microvilli, were noted in the GSCs. Furthermore, cells at division phases and different phases of the apoptotic process were occasionally observed. These findings could imply that GSCs have certain relations with human neural stem cells (NSCs) but are primitively different from undifferentiated NSCs. The data may provide support for the GSC hypothesis, and also facilitate the establishment of future glioblastoma treatments targeting GSCs. PMID:25955568

  15. CD271+ Osteosarcoma Cells Display Stem-Like Properties

    PubMed Central

    Tian, Jiguang; Li, Xin; Si, Meng; Liu, Ting; Li, Jianmin

    2014-01-01

    Cancer stem cell (CSC) theory has been proposed and verified in many cancers. The existence of osteosarcoma CSCs has been confirmed for many years and multiple surface markers have been employed to identify them. In this study, we identified CD271+ subpopulation of osteosarcoma displaying stem-like properties. CD271, known as the neural crest nerve growth factor receptor, is the marker of bone marrow mesenchymal stem cells (MSCs) and human melanoma-initiating cells. We discovered that CD271 was expressed differentially in diverse types of human osteosarcoma and stabilized cell lines. CD271+ osteosarcoma cells displayed most of the properties of CSC, such as self-renewal, differentiation, drug resistance and tumorigenicity in vivo. Nanog, Oct3/4, STAT3, DNA-PKcs, Bcl-2 and ABCG2 were more expressed in CD271+ cells compared with CD271− cells. Our study supported the osteosarcoma CSC hypothesis and, to a certain extent, revealed one of the possible mechanisms involved in maintaining CSCs properties. PMID:24893164

  16. CD271+ osteosarcoma cells display stem-like properties.

    PubMed

    Tian, Jiguang; Li, Xin; Si, Meng; Liu, Ting; Li, Jianmin

    2014-01-01

    Cancer stem cell (CSC) theory has been proposed and verified in many cancers. The existence of osteosarcoma CSCs has been confirmed for many years and multiple surface markers have been employed to identify them. In this study, we identified CD271(+) subpopulation of osteosarcoma displaying stem-like properties. CD271, known as the neural crest nerve growth factor receptor, is the marker of bone marrow mesenchymal stem cells (MSCs) and human melanoma-initiating cells. We discovered that CD271 was expressed differentially in diverse types of human osteosarcoma and stabilized cell lines. CD271(+) osteosarcoma cells displayed most of the properties of CSC, such as self-renewal, differentiation, drug resistance and tumorigenicity in vivo. Nanog, Oct3/4, STAT3, DNA-PKcs, Bcl-2 and ABCG2 were more expressed in CD271(+) cells compared with CD271- cells. Our study supported the osteosarcoma CSC hypothesis and, to a certain extent, revealed one of the possible mechanisms involved in maintaining CSCs properties.

  17. Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells

    SciTech Connect

    Hyun, Kyung-Hwan; Yoon, Chang-Hwan; Kim, Rae-Kwon; Lim, Eun-Jung; An, Sungkwan; Park, Myung-Jin; Hyun, Jin-Won; Suh, Yongjoon; Kim, Min-Jung; Lee, Su-Jae

    2011-07-01

    A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in the malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133{sup +} cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.

  18. Generation of Novel Thyroid Cancer Stem-Like Cell Clones: Effects of Resveratrol and Valproic Acid.

    PubMed

    Hardin, Heather; Yu, Xiao-Min; Harrison, April D; Larrain, Carolina; Zhang, Ranran; Chen, Jidong; Chen, Herbert; Lloyd, Ricardo V

    2016-06-01

    Anaplastic thyroid cancer is an aggressive and highly lethal cancer for which conventional therapies have proved ineffective. Cancer stem-like cells (CSCs) represent a small fraction of cells in the cancer that are resistant to chemotherapy and radiation therapy and are responsible for tumor reoccurrence and metastasis. We characterized CSCs in thyroid carcinomas and generated clones of CSC lines. Our study showed that anaplastic thyroid cancers had significantly more CSCs than well-differentiated thyroid cancers. We also showed that Aldefluor-positive cells revealed significantly higher expression of stem cell markers, self-renewal properties, thyrosphere formation, and enhanced tumorigenicity. In vivo passaging of Aldefluor-positive cells resulted in the growth of larger, more aggressive tumors. We isolated and generated two clonal spheroid CSC lines derived from anaplastic thyroid cancer that were even more enriched with stem cell markers and more tumorigenic than the freshly isolated Aldefluor-positive cells. Resveratrol and valproic acid treatment of one of the CSC lines resulted in a significant decrease in stem cell markers, Aldefluor expression, proliferation, and invasiveness, with an increase in apoptosis and thyroid differentiation markers, suggesting that these cell lines may be useful for discovering new adjuvant therapies for aggressive thyroid cancers. For the first time, we have two thyroid CSC lines that will be useful tools for the study of thyroid CSC targeted therapies.

  19. Accumulation efficiency of cancer stem-like cells post γ-ray and proton irradiation

    NASA Astrophysics Data System (ADS)

    Quan, Yi; Wang, Weikang; Fu, Qibin; Mei, Tao; Wu, Jingwen; Li, Jia; Yang, Gen; Wang, Yugang

    2012-09-01

    Ionizing radiation (IR) has been proven to be a powerful medical treatment in cancer therapy. Rational and effective use of its killing power depends on understanding IR-mediated responses at the molecular, cellular and tissue levels. Increasing evidence supports that cancer stem-like cells (CSCs) play an important role in tumor regrowth and spread post radiotherapy, for they are resistant to various therapy methods including radiation. Presently, SW620 colon carcinoma monolayer culture cells were irradiated with γ-rays and protons of 2 Gy. Then apoptosis, clonogenic survival and the expression of CD133+ protein were examined. The results showed that there was no significantly difference either on long-term clonogenic survival or on short-term apoptosis ratio. However, compared with γ-rays, irradiation with protons was less efficient to accumulate CSCs at the same dose, although both protons and γ-rays can significantly accumulate the CD133+ CSCs subpopulation. In addition, the results of sphere formation assay also confirmed that proton irradiation is less efficient in CSCs accumulation, suggesting proton irradiation might have higher efficiency in CSCs elimination for cancer radiotherapy.

  20. Vitamin D compounds inhibit cancer stem-like cells and induce differentiation in triple negative breast cancer.

    PubMed

    Shan, Naing Lin; Wahler, Joseph; Lee, Hong Jin; Bak, Min Ji; Gupta, Soumyasri Das; Maehr, Hubert; Suh, Nanjoo

    2017-10-01

    Triple-negative breast cancer is one of the least responsive breast cancer subtypes to available targeted therapies due to the absence of hormonal receptors, aggressive phenotypes, and the high rate of relapse. Early breast cancer prevention may therefore play an important role in delaying the progression of triple-negative breast cancer. Cancer stem cells are a subset of cancer cells that are thought to be responsible for tumor progression, treatment resistance, and metastasis. We have previously shown that vitamin D compounds, including a Gemini vitamin D analog BXL0124, suppress progression of ductal carcinoma in situ in vivo and inhibit cancer stem-like cells in MCF10DCIS mammosphere cultures. In the present study, the effects of vitamin D compounds in regulating breast cancer stem-like cells and differentiation in triple-negative breast cancer were assessed. Mammosphere cultures, which enriches for breast cancer cells with stem-like properties, were used to assess the effects of 1α,25(OH)2D3 and BXL0124 on cancer stem cell markers in the triple-negative breast cancer cell line, SUM159. Vitamin D compounds significantly reduced the mammosphere forming efficiency in primary, secondary and tertiary passages of mammospheres compared to control groups. Key markers of cancer stem-like phenotype and pluripotency were analyzed in mammospheres treated with 1α,25(OH)2D3 and BXL0124. As a result, OCT4, CD44 and LAMA5 levels were decreased. The vitamin D compounds also down-regulated the Notch signaling molecules, Notch1, Notch2, Notch3, JAG1, JAG2, HES1 and NFκB, which are involved in breast cancer stem cell maintenance. In addition, the vitamin D compounds up-regulated myoepithelial differentiating markers, cytokeratin 14 and smooth muscle actin, and down-regulated the luminal marker, cytokeratin 18. Cytokeratin 5, a biomarker associated with basal-like breast cancer, was found to be significantly down-regulated by the vitamin D compounds. These results suggest that

  1. CCL21/CCR7 Axis Contributed to CD133+ Pancreatic Cancer Stem-Like Cell Metastasis via EMT and Erk/NF-κB Pathway

    PubMed Central

    Zhang, Lirong; Wang, Dongqing; Li, Yumei; Liu, Yanfang; Xie, Xiaodong; Wu, Yingying; Zhou, Yuepeng; Ren, Jing; Zhang, Jianxin; Zhu, Haitao; Su, Zhaoliang

    2016-01-01

    Background Tumor metastasis is driven by malignant cells and stromal cell components of the tumor microenvironment. Cancer stem cells (CSCs) are thought to be responsible for metastasis by altering the tumor microenvironment. Epithelial-mesenchymal transition (EMT) processes contribute to specific stages of the metastatic cascade, promoted by cytokines and chemokines secreted by stromal cell components in the tumor microenvironment. C-C chemokine receptor 7 (CCR7) interacts with its ligand, chemokine ligand 21(CCL21), to mediate metastasis in some cancer cells lines. This study investigated the role of CCL21/CCR7 in promoting EMT and metastasis of cluster of differentiation 133+ (CD133+) pancreatic cancer stem-like cells. Methods Panc-1, AsPC-1, and MIA PaCa-2 pancreatic cancer cells were selected because of their aggressive invasive potentials. CCR7 expression levels were examined in total, CD133+ and CD133− cell fractions by Immunofluorescence analysis and real time-quantitative polymerase chain reaction (RT-qPCR). The role of CCL21/CCR7 in mediating metastasis and survival of CD133+ pancreatic cancer stem-like cells was detected by Transwell assays and flow cytometry, respectively. EMT and lymph node metastasis related markers (E-cadherin, N- cadherin, LYVE-1) were analyzed by western blot. CCR7 expression levels were analyzed by immunohistochemical staining and RT-qPCR in resected tumor tissues, metastatic lymph nodes, normal lymph nodes and adjacent normal tissues from patients with pancreatic carcinoma. Results CCR7 expression was significantly increased in CD133+ pancreatic cancer stem-like cells, resected pancreatic cancer tissues, and metastatic lymph nodes, compared with CD133− cancer cells, adjacent normal tissues and normal lymph nodes, respectively. CCL21/CCR7 promoted metastasis and survival of CD133+ pancreatic cancer stem-like cells and regulated CD133+ pancreatic cancer stem-like cells metastasis by modulating EMT and Erk/NF-κB pathway

  2. Does CT help in predicting preepiglottic space invasion in laryngeal carcinoma?

    PubMed

    Bozkurt, Gülpembe; Ünsal, Özlem; Çelebi, İrfan; Ayhan, Burak; Guliyev, Umman; Akova, Pınar; Başak, Tülay; Coşkun, Berna Uslu

    2017-08-11

    Evaluating preepiglottic space involvement in laryngeal cancer by CT may lead misinterpretation. We sought to understand the causes of misinterpretation in evaluating the preepiglottic space by CT and assessed the effects of misinterpretation in treatment plans of patients with laryngeal squamous cell carcinomas. Specimen histopathology reports of 102 (99 male, 3 female) patients who underwent total or partial laryngectomy due to supraglottic and/or transglottic laryngeal carcinoma were reviewed. Neck CTs were also re-assessed for preepiglottic space involvement by three radiologists. The initial surgical treatment choices were re-examined according to the current radiological evaluation in combination with pathological results of the specimens and physical examination findings in the patients. Interobserver agreement regarding image interpretation was based on a kappa analysis. The interclass correlation coefficient in predicting preepiglottic space invasion was 0.74; this was considered 'good.' Among the three radiologists, sensitivity, specificity, accuracy of CT in detecting preepiglottic space involvement were 86-93%, 75-93%, and 77-93%, respectively, while the negative and positive predictive values were 97-98% and 38-50%, respectively. Given the previous treatments applied, false-positive diagnoses for PES involvement resulted in overtreatment in 2.9% of cases. False-negative diagnoses of PES involvement (1.9% of cases) did not result in any undertreatment. Although CT is a practical and inexpensive imaging tool for evaluating laryngeal carcinomas, the PPV of CT in assessing preepiglottic space invasion, especially in advanced tumors, is low and may lead to overtreatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Targeting Prostate Cancer Stem-Like Cells Through Cell Surface-Expressed GRP78

    DTIC Science & Technology

    2013-10-01

    hypothesis that cell surface GRP78 drives cancer stem-like behavior by activating an Akt/GSK-3/ Snail -1 signaling axis in prostate cancer stem-like...investigate the hypothesis that cell surface GRP78 drives cancer stem-like behavior by activating an Akt/GSK-3/ Snail -1 signaling axis in prostate cancer stem...investigate these signaling pathways in year 2. Task 4: Investigate the relative expression of Snail -1, a GSK-3 target, in adherent prostate cancer cells

  4. Stem-like cancer cells are inducible by increasing genomic instability in cancer cells.

    PubMed

    Liang, Yi; Zhong, Zhendong; Huang, Yijun; Deng, Wen; Cao, Junxia; Tsao, George; Liu, Quentin; Pei, Duanqing; Kang, Tiebang; Zeng, Yi-Xin

    2010-02-12

    The existence of cancer stem cells (CSCs) or stem-like cancer cells (SLCCs) is regarded as the cause of tumor formation and recurrence. However, the origin of such cells remains controversial with two competing hypotheses: CSCs are either transformed from tissue adult stem cells or dedifferentiated from transformed progenitor cells. Compelling evidence has determined the chromosomal aneuploidy to be one of the hallmarks of cancer cells, indicating genome instability plays an important role in tumorigenesis, for which CSCs are believed to be the initiator. To gain direct evidence that genomic instability is involved in the induction of SLCCs, we utilized multiple approaches to enhance genomic instability and monitored the percentage of SLCC in cultured cancer cells. Using side population (SP) cells as a marker for SLCC in human nasopharyngeal carcinoma (NPC) and CD133 for human neuroblastoma cells, we found that DNA damage inducers, UV and mitomycin C were capable of increasing SP cells in NPC CNE-2 and neuroblastoma SKN-SH cells. Likewise, either overexpression of a key regulator of cell cycle, Mad2, or knock down of Aurora B, an important kinase in mitosis, or Cdh1, a key E3 ligase in cell cycle, resulted in a significant increase of SP cells in CNE-2. More interestingly, enrichment of SP cells was observed in recurrent tumor tissues as compared with the primary tumor in the same NPC patients. Our study thus suggested that, beside transformation of tissue stem cells leading to CSC generation, genomic instability could be another potential mechanism resulting in SLCC formation, especially at tumor recurrence stage.

  5. Global expression profile of tumor stem-like cells isolated from MMQ rat prolactinoma cell.

    PubMed

    Su, Zhipeng; Cai, Lin; Lu, Jianglong; Li, Chuzhong; Gui, Songbai; Liu, Chunhui; Wang, Chengde; Li, Qun; Zhuge, Qichuan; Zhang, Yazhuo

    2017-01-01

    Cancer stem cells (CSCs), which have been isolated from various malignancies, were closely correlated with the occurrence, progression, metastasis and recurrence of the malignant cancer. Little is known about the tumor stem-like cells (TSLCs) isolated from benign tumors. Here we want to explore the global expression profile of RNA of tumor stem-like cells isolated from MMQ rat prolactinoma cells. In this study, total RNA was extracted from MMQ cells and MMQ tumor stem-like cells. RNA expression profiles were determined by Agilent Rat 8 × 60 K Microarray. Then we used the qRT-PCR to test the result of Microarray, and found VEGFA had a distinct pattern of expression in MMQ tumor stem-like cells. Then WB and ELISA were used to confirm the VEGFA protein level of tumor sphere cultured from both MMQ cell and human prolactinoma cell. Finally, CCK-8 was used to evaluate the reaction of MMQ tumor stem-like cells to small interfering RNAs intervention and bevacizumab treatment. The results of Microarray showed that 566 known RNA were over-expressed and 532 known RNA were low-expressed in the MMQ tumor stem-like cells. These genes were mainly involved in 15 different signaling pathways. In pathway in cancer and cell cycle, Bcl2, VEGFA, PTEN, Jun, Fos, APC2 were up-regulated and Ccna2, Cdc25a, Mcm3, Mcm6, Ccnb2, Mcm5, Cdk1, Gadd45a, Myc were down-regulated in the MMQ tumor stem-like cells. The expression of VEGFA were high in tumor spheres cultured from both MMQ cell and human prolactinomas. Down-regulation of VEGFA by small interfering RNAs partially decreased cell viability of MMQ tumor stem-like cells in vitro. Bevacizumab partially suppressed the proliferation of MMQ tumor stem-like cells. Our findings characterize the pattern of RNA expression of tumor stem-like cells isolated from MMQ cells. VEGFA may act as a potential therapeutic target for tumor stem-like cells of prolactinomas.

  6. [Effects of different culture system of isolating and passage of sheep embryonic stem-like cells].

    PubMed

    Bai, Changming; Liu, Chousheng; Wang, Zhigang; Wang, Xinzhuang

    2008-07-01

    In this research, we use mouse embryonic fibroblasts as feeder layers. To eliminate the influence of serum and mouse embryonic stem cells (ESCs) conditioned medium (ESCCM) on self-renewal of sheep embryonic stem-like cells, knockout serum replacement (KSR) was used to replace serum, then supplanted with ESCCM for the isolation and cloning of sheep embryonic stem-like cells. We found when inner cell masses (ICMs) cultured in the control group with medium supplanted with fetal bovine serum (FBS), sheep ES-like cells could not survive for more than 3 passages. However, sheep embryonic stem-like cells could remain undifferentiated for 5 passages when cultured in the medium that FBS was substituted by KSR. The result indicates that KSR culture system was more suitable for the isolation and cloning of sheep embryonic stem-like cells compared to FBS culture system. Finally we applied medium with 15% KSR as basic medium supplanted with 40% ESCCM as a new culture system to isolate sheep embryonic stem-like cells, we found one embryonic stem-like cell line still maintained undifferentiating for 8 passages, which characterized with a normal and stable karyotype and high expression of alkaline phosphatase. These results suggest that it is suitable to culture sheep ICM in the new culture system with 15% KSR as basic medium and supplanted with 40% ESCCM, which indicated that mouse ES cells might secrete factors playing important roles in promoting sheep ES-like cells' self-renewal.

  7. Targeting JNK for therapeutic depletion of stem-like glioblastoma cells

    PubMed Central

    Matsuda, Ken-ichiro; Sato, Atsushi; Okada, Masashi; Shibuya, Keita; Seino, Shizuka; Suzuki, Kaori; Watanabe, Eriko; Narita, Yoshitaka; Shibui, Soichiro; Kayama, Takamasa; Kitanaka, Chifumi

    2012-01-01

    Control of the stem-like tumour cell population is considered key to realizing the long-term survival of patients with glioblastoma, one of the most devastating human malignancies. To date, possible therapeutic targets and targeting methods have been described, but none has yet proven to target stem-like glioblastoma cells in the brain to the extent necessary to provide a survival benefit. Here we show that targeting JNK in vivo, the activity of which is required for the maintenance of stem-like glioblastoma cells, via transient, systemic administration of a small-molecule JNK inhibitor depletes the self-renewing and tumour-initiating populations within established tumours, inhibits tumour formation by stem-like glioblastoma cells in the brain, and provide substantial survival benefit without evidence of adverse events. Our findings not only implicate JNK in the maintenance of stem-like glioblastoma cells but also demonstrate that JNK is a viable, clinically relevant therapeutic target in the control of stem-like glioblastoma cells. PMID:22816039

  8. Brother of the regulator of the imprinted site (BORIS) variant subfamily 6 is a novel target of lung cancer stem-like cell immunotherapy

    PubMed Central

    Horibe, Ryota; Hirohashi, Yoshihiko; Asano, Takuya; Mariya, Tasuku; Suzuki, Takeshi; Takaya, Akari; Saijo, Hiroshi; Shionoya, Yosuke; Kubo, Terufumi; Nakatsugawa, Munehide; Kanaseki, Takayuki; Tsukahara, Tomohide; Watanabe, Kazue; Atsuyama, Eri; Toji, Shingo; Hirano, Hiroshi; Hasegawa, Tadashi; Takahashi, Hiroki; Sato, Noriyuki; Torigoe, Toshihiko

    2017-01-01

    Lung cancer is one of the most common malignancies with a high rate of mortality. Lung cancer stem-like cells (CSCs)/ cancer-initiating cells (CICs) play major role in resistance to treatments, recurrence and distant metastasis and eradication of CSCs/CICs is crucial to improve recent therapy. Cytotoxic T lymphocytes (CTLs) are major effectors of cancer immunotherapy, and CTLs recognize antigenic peptides derived from antigens that are presented by major histocompatibility complex (MHC) class I molecules. In this study, we analyzed the potency of a cancer-testis (CT) antigen, brother of the regulator of the imprinted site variant subfamily 6 (BORIS sf6), in lung CSC/CIC immunotherapy. BORIS sf6 mRNA was expressed in lung carcinoma cells (9/19), especially in sphere-cultured lung cancer stem-like cells, and in primary lung carcinoma tissues (4/9) by RT-PCR. Immunohistochemical staining using BORIS sf6-specific antibody revealed that high expression of BORIS sf6 is related to poorer prognosis. CTLs could be induced by using a human leukocyte antigen, (HLA)-A2 restricted antigenic peptide (BORIS C34_24(9)), from all of 3 HLA-A2-positive individuals, and CTL clone cells specific for BORIS C34_24(9) peptide could recognize BORIS sf6-positive, HLA-A2-positive lung carcinoma cells. These results indicate that BORIS sf6 is a novel target of lung cancer immunotherapy that might be useful for targeting treatment-resistant lung cancer stem-like cells. PMID:28248963

  9. Brother of the regulator of the imprinted site (BORIS) variant subfamily 6 is a novel target of lung cancer stem-like cell immunotherapy.

    PubMed

    Horibe, Ryota; Hirohashi, Yoshihiko; Asano, Takuya; Mariya, Tasuku; Suzuki, Takeshi; Takaya, Akari; Saijo, Hiroshi; Shionoya, Yosuke; Kubo, Terufumi; Nakatsugawa, Munehide; Kanaseki, Takayuki; Tsukahara, Tomohide; Watanabe, Kazue; Atsuyama, Eri; Toji, Shingo; Hirano, Hiroshi; Hasegawa, Tadashi; Takahashi, Hiroki; Sato, Noriyuki; Torigoe, Toshihiko

    2017-01-01

    Lung cancer is one of the most common malignancies with a high rate of mortality. Lung cancer stem-like cells (CSCs)/ cancer-initiating cells (CICs) play major role in resistance to treatments, recurrence and distant metastasis and eradication of CSCs/CICs is crucial to improve recent therapy. Cytotoxic T lymphocytes (CTLs) are major effectors of cancer immunotherapy, and CTLs recognize antigenic peptides derived from antigens that are presented by major histocompatibility complex (MHC) class I molecules. In this study, we analyzed the potency of a cancer-testis (CT) antigen, brother of the regulator of the imprinted site variant subfamily 6 (BORIS sf6), in lung CSC/CIC immunotherapy. BORIS sf6 mRNA was expressed in lung carcinoma cells (9/19), especially in sphere-cultured lung cancer stem-like cells, and in primary lung carcinoma tissues (4/9) by RT-PCR. Immunohistochemical staining using BORIS sf6-specific antibody revealed that high expression of BORIS sf6 is related to poorer prognosis. CTLs could be induced by using a human leukocyte antigen, (HLA)-A2 restricted antigenic peptide (BORIS C34_24(9)), from all of 3 HLA-A2-positive individuals, and CTL clone cells specific for BORIS C34_24(9) peptide could recognize BORIS sf6-positive, HLA-A2-positive lung carcinoma cells. These results indicate that BORIS sf6 is a novel target of lung cancer immunotherapy that might be useful for targeting treatment-resistant lung cancer stem-like cells.

  10. Parthenolide and DMAPT exert cytotoxic effects on breast cancer stem-like cells by inducing oxidative stress, mitochondrial dysfunction and necrosis

    PubMed Central

    Carlisi, D; Buttitta, G; Di Fiore, R; Scerri, C; Drago-Ferrante, R; Vento, R; Tesoriere, G

    2016-01-01

    Triple-negative breast cancers (TNBCs) are aggressive forms of breast carcinoma associated with a high rate of recidivism. In this paper, we report the production of mammospheres from three lines of TNBC cells and demonstrate that both parthenolide (PN) and its soluble analog dimethylaminoparthenolide (DMAPT) suppressed this production and induced cytotoxic effects in breast cancer stem-like cells, derived from dissociation of mammospheres. In particular, the drugs exerted a remarkable inhibitory effect on viability of stem-like cells. Such an effect was suppressed by N-acetylcysteine, suggesting a role of reactive oxygen species (ROS) generation in the cytotoxic effect. Instead z-VAD, a general inhibitor of caspase activity, was ineffective. Analysis of ROS generation, performed using fluorescent probes, showed that both the drugs stimulated in the first hours of treatment a very high production of hydrogen peroxide. This event was, at least in part, a consequence of activation of NADPH oxidases (NOXs), as it was reduced by apocynin and diphenylene iodinium, two inhibitors of NOXs. Moreover, both the drugs caused downregulation of Nrf2 (nuclear factor erythroid 2-related factor 2), which is a critical regulator of the intracellular antioxidant response. Prolonging the treatment with PN or DMAPT we observed between 12 and 24 h that the levels of both superoxide anion and hROS increased in concomitance with the downregulation of manganese superoxide dismutase and catalase. In addition, during this phase dissipation of mitochondrial membrane potential occurred together with necrosis of stem-like cells. Finally, our results suggested that the effect on ROS generation found in the first hours of treatment was, in part, responsible for the cytotoxic events observed in the successive phase. In conclusion, PN and DMAPT markedly inhibited viability of stem-like cells derived from three lines of TNBCs by inducing ROS generation, mitochondrial dysfunction and cell necrosis

  11. RBM5-AS1 Is Critical for Self-Renewal of Colon Cancer Stem-like Cells.

    PubMed

    Di Cecilia, Serena; Zhang, Fan; Sancho, Ana; Li, SiDe; Aguiló, Francesca; Sun, Yifei; Rengasamy, Madhumitha; Zhang, Weijia; Del Vecchio, Luigi; Salvatore, Francesco; Walsh, Martin J

    2016-10-01

    Cancer-initiating cells (CIC) undergo asymmetric growth patterns that increase phenotypic diversity and drive selection for chemotherapeutic resistance and tumor relapse. WNT signaling is a hallmark of colon CIC, often caused by APC mutations, which enable activation of β-catenin and MYC Accumulating evidence indicates that long noncoding RNAs (lncRNA) contribute to the stem-like character of colon cancer cells. In this study, we report enrichment of the lncRNA RBM5-AS1/LUST during sphere formation of colon CIC. Its silencing impaired WNT signaling, whereas its overexpression enforced WNT signaling, cell growth, and survival in serum-free media. RBM5-AS1 has been little characterized previously, and we determined it to be a nuclear-retained transcript that selectively interacted with β-catenin. Mechanistic investigations showed that silencing or overexpression of RBM5-AS1 caused a respective loss or retention of β-catenin from TCF4 complexes bound to the WNT target genes SGK1, YAP1, and MYC Our work suggests that RBM5-AS1 activity is critical for the functional enablement of colon cancer stem-like cells. Furthermore, it defines the mechanism of action of RBM5-AS1 in the WNT pathway via physical interactions with β-catenin, helping organize transcriptional complexes that sustain colon CIC function. Cancer Res; 76(19); 5615-27. ©2016 AACR.

  12. Transcriptional profiling of adult neural stem-like cells from the human brain.

    PubMed

    Sandberg, Cecilie Jonsgar; Vik-Mo, Einar O; Behnan, Jinan; Helseth, Eirik; Langmoen, Iver A

    2014-01-01

    There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33-60). Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate). We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6), foetal human neural stem cells (n = 1) and human brain tissues (n = 12). The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular fate.

  13. Stem-like epithelial cells are concentrated in the distal end of the fallopian tube: a site for injury and serous cancer initiation

    PubMed Central

    Paik, Daniel Y.; Janzen, Deanna M.; Schafenacker, Amanda M.; Velasco, Victor S.; Shung, May S.; Cheng, Donghui; Huang, Jiaoti; Witte, Owen N.; Memarzadeh, Sanaz

    2015-01-01

    The reproductive role of the fallopian tube is to transport the sperm and egg. The tube is positioned to act as a bridge between the ovary where the egg is released and the uterus where implantation occurs. Throughout reproductive years the fallopian tube epithelium undergoes repetitive damage and regeneration. Although a reservoir of adult epithelial stem cells must exist to replenish damaged cells, they remain unidentified. Here we report isolation of a subset of basally located human fallopian tube epithelia (FTE) that lack markers of ciliated (β-tubulin; TUBB4) or secretory (PAX8) differentiated cells. These undifferentiated cells expressed cell surface antigens: epithelial cell adhesion molecule (EPCAM), CD44, and integrin alpha-6 (ITGA6). This fallopian tube epithelial subpopulation was five-fold enriched for cells capable of clonal growth and self renewal suggesting that they contain the fallopian tube epithelial stem-like cells (FTESC). A two-fold enrichment of the FTESC was found in the distal compared to the proximal end of the tube. The distal fimbriated end of the fallopian tube is a well characterized locus for initiation of serous carcinomas. An expansion of the cells expressing markers of FTESC was detected in tubal intraepithelial carcinomas (TIC) and in fallopian tubes from patients with invasive serous cancer. These findings suggest that FTESC may play a role in the initiation of serous tumors. Characterization of these stem-like cells will provide new insight into how the fallopian tube epithelia regenerate, respond to injury and may initiate cancer. PMID:22911892

  14. Two-stage induced differentiation of OCT4+/Nanog+ stem-like cells in lung adenocarcinoma.

    PubMed

    Li, Rong; Huang, Jinsu; Ma, Meili; Lou, Yuqing; Zhang, Yanwei; Wu, Lixia; Chang, David W; Zhao, Picheng; Dong, Qianggang; Wu, Xifeng; Han, Baohui

    2016-10-18

    Stem-like cells in solid tumors are purported to contribute to cancer development and poor treatment outcome. The abilities to self-renew, differentiate, and resist anticancer therapies are hallmarks of these rare cells, and steering them into lineage commitment may be one strategy to curb cancer development or progression. Vitamin D is a prohormone that can alter cell growth and differentiation and may induce the differentiation cancer stem-like cells. In this study, octamer-binding transcription factor 4 (OCT4)-positive/Nanog homeobox (Nanog)- positive lung adenocarcinoma stem-like cells (LACSCs) were enriched from spheroid cultured SPC-A1 cells and differentiated by a two-stage induction (TSI) method, which involved knockdown of hypoxia-inducible factor 1-alpha (HIF1α) expression (first stage) followed by sequential induction with 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3, VD3) and suberoylanilide hydroxamic acid (SAHA) treatment (second stage). The results showed the HIF1α-knockdowned cells displayed diminished cell invasion and clonogenic activities. Moreover, the TSI cells highly expressed tumor suppressor protein p63 (P63) and forkhead box J1 (FOXJ1) and lost stem cell characteristics, including absent expression of OCT4 and Nanog. These cells regained sensitivity to cisplatin in vitro while losing tumorigenic capacity and decreased tumor cell proliferation in vivo. Our results suggest that induced transdifferentiation of LACSCs by vitamin D and SAHA may become novel therapeutic avenue to alter tumor cell phenotypes and improve patient outcome.The development and progression of lung cancer may involve rare population of stem-like cells that have the ability to grow, differentiate, and resist drug treatment. However, current therapeutic strategies have mostly focused on tumor characteristics and neglected the potential source of cells that may contribute to poor clinical outcome. We generated lung adenocarcinoma stem-like cells from spheroid culture and

  15. Two-stage induced differentiation of OCT4+/Nanog+ stem-like cells in lung adenocarcinoma

    PubMed Central

    Ma, Meili; Lou, Yuqing; Zhang, Yanwei; Wu, Lixia; Chang, David W.; Zhao, Picheng; Dong, Qianggang; Wu, Xifeng; Han, Baohui

    2016-01-01

    Stem-like cells in solid tumors are purported to contribute to cancer development and poor treatment outcome. The abilities to self-renew, differentiate, and resist anticancer therapies are hallmarks of these rare cells, and steering them into lineage commitment may be one strategy to curb cancer development or progression. Vitamin D is a prohormone that can alter cell growth and differentiation and may induce the differentiation cancer stem-like cells. In this study, octamer-binding transcription factor 4 (OCT4)-positive/Nanog homeobox (Nanog)- positive lung adenocarcinoma stem-like cells (LACSCs) were enriched from spheroid cultured SPC-A1 cells and differentiated by a two-stage induction (TSI) method, which involved knockdown of hypoxia-inducible factor 1-alpha (HIF1α) expression (first stage) followed by sequential induction with 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3, VD3) and suberoylanilide hydroxamic acid (SAHA) treatment (second stage). The results showed the HIF1α-knockdowned cells displayed diminished cell invasion and clonogenic activities. Moreover, the TSI cells highly expressed tumor suppressor protein p63 (P63) and forkhead box J1 (FOXJ1) and lost stem cell characteristics, including absent expression of OCT4 and Nanog. These cells regained sensitivity to cisplatin in vitro while losing tumorigenic capacity and decreased tumor cell proliferation in vivo. Our results suggest that induced transdifferentiation of LACSCs by vitamin D and SAHA may become novel therapeutic avenue to alter tumor cell phenotypes and improve patient outcome. SIGNIFICANCE STATEMENT The development and progression of lung cancer may involve rare population of stem-like cells that have the ability to grow, differentiate, and resist drug treatment. However, current therapeutic strategies have mostly focused on tumor characteristics and neglected the potential source of cells that may contribute to poor clinical outcome. We generated lung adenocarcinoma stem-like cells from

  16. Secondary Data Analytics of Aquaporin Expression Levels in Glioblastoma Stem-Like Cells.

    PubMed

    Isokpehi, Raphael D; Wollenberg Valero, Katharina C; Graham, Barbara E; Pacurari, Maricica; Sims, Jennifer N; Udensi, Udensi K; Ndebele, Kenneth

    2015-01-01

    Glioblastoma is the most common brain tumor in adults in which recurrence has been attributed to the presence of cancer stem cells in a hypoxic microenvironment. On the basis of tumor formation in vivo and growth type in vitro, two published microarray gene expression profiling studies grouped nine glioblastoma stem-like (GS) cell lines into one of two groups: full (GSf) or restricted (GSr) stem-like phenotypes. Aquaporin-1 (AQP1) and aquaporin-4 (AQP4) are water transport proteins that are highly expressed in primary glial-derived tumors. However, the expression levels of AQP1 and AQP4 have not been previously described in a panel of 92 glioma samples. Therefore, we designed secondary data analytics methods to determine the expression levels of AQP1 and AQP4 in GS cell lines and glioblastoma neurospheres. Our investigation also included a total of 2,566 expression levels from 28 Affymetrix microarray probe sets encoding 13 human aquaporins (AQP0-AQP12); CXCR4 (the receptor for stromal cell derived factor-1 [SDF-1], a potential glioma stem cell therapeutic target]); and PROM1 (gene encoding CD133, the widely used glioma stem cell marker). Interactive visual representation designs for integrating phenotypic features and expression levels revealed that inverse expression levels of AQP1 and AQP4 correlate with distinct phenotypes in a set of cell lines grouped into full and restricted stem-like phenotypes. Discriminant function analysis further revealed that AQP1 and AQP4 expression are better predictors for tumor formation and growth types in glioblastoma stem-like cells than are CXCR4 and PROM1. Future investigations are needed to characterize the molecular mechanisms for inverse expression levels of AQP1 and AQP4 in the glioblastoma stem-like neurospheres.

  17. Secondary Data Analytics of Aquaporin Expression Levels in Glioblastoma Stem-Like Cells

    PubMed Central

    Isokpehi, Raphael D; Wollenberg Valero, Katharina C; Graham, Barbara E; Pacurari, Maricica; Sims, Jennifer N; Udensi, Udensi K; Ndebele, Kenneth

    2015-01-01

    Glioblastoma is the most common brain tumor in adults in which recurrence has been attributed to the presence of cancer stem cells in a hypoxic microenvironment. On the basis of tumor formation in vivo and growth type in vitro, two published microarray gene expression profiling studies grouped nine glioblastoma stem-like (GS) cell lines into one of two groups: full (GSf) or restricted (GSr) stem-like phenotypes. Aquaporin-1 (AQP1) and aquaporin-4 (AQP4) are water transport proteins that are highly expressed in primary glial-derived tumors. However, the expression levels of AQP1 and AQP4 have not been previously described in a panel of 92 glioma samples. Therefore, we designed secondary data analytics methods to determine the expression levels of AQP1 and AQP4 in GS cell lines and glioblastoma neurospheres. Our investigation also included a total of 2,566 expression levels from 28 Affymetrix microarray probe sets encoding 13 human aquaporins (AQP0–AQP12); CXCR4 (the receptor for stromal cell derived factor-1 [SDF-1], a potential glioma stem cell therapeutic target]); and PROM1 (gene encoding CD133, the widely used glioma stem cell marker). Interactive visual representation designs for integrating phenotypic features and expression levels revealed that inverse expression levels of AQP1 and AQP4 correlate with distinct phenotypes in a set of cell lines grouped into full and restricted stem-like phenotypes. Discriminant function analysis further revealed that AQP1 and AQP4 expression are better predictors for tumor formation and growth types in glioblastoma stem-like cells than are CXCR4 and PROM1. Future investigations are needed to characterize the molecular mechanisms for inverse expression levels of AQP1 and AQP4 in the glioblastoma stem-like neurospheres. PMID:26279619

  18. Myeloid-Derived Suppressor Cells Endow Stem-like Qualities to Breast Cancer Cells through IL6/STAT3 and NO/NOTCH Cross-talk Signaling.

    PubMed

    Peng, Dongjun; Tanikawa, Takashi; Li, Wei; Zhao, Lili; Vatan, Linda; Szeliga, Wojciech; Wan, Shanshan; Wei, Shuang; Wang, Yin; Liu, Yan; Staroslawska, Elzbieta; Szubstarski, Franciszek; Rolinski, Jacek; Grywalska, Ewelina; Stanisławek, Andrzej; Polkowski, Wojciech; Kurylcio, Andrzej; Kleer, Celina; Chang, Alfred E; Wicha, Max; Sabel, Michael; Zou, Weiping; Kryczek, Ilona

    2016-06-01

    Myeloid-derived suppressor cells (MDSC) contribute to immune suppression in cancer, but the mechanisms through which they drive metastatic progression are not fully understood. In this study, we show how MDSC convey stem-like qualities to breast cancer cells that coordinately help enable immune suppression and escape. We found that MDSC promoted tumor formation by enhancing breast cancer cell stem-like properties as well as by suppressing T-cell activation. Mechanistic investigations indicated that these effects relied upon cross-talk between the STAT3 and NOTCH pathways in cancer cells, with MDSC inducing IL6-dependent phosphorylation of STAT3 and activating NOTCH through nitric oxide leading to prolonged STAT3 activation. In clinical specimens of breast cancer, the presence of MDSC correlated with the presence of cancer stem-like cells (CSC) and independently predicted poor survival outcomes. Collectively, our work revealed an immune-associated mechanism that extrinsically confers cancer cell stemness properties and affects patient outcome. We suggest that targeting STAT3-NOTCH cross-talk between MDSC and CSC could offer a unique locus to improve cancer treatment, by coordinately targeting a coupled mechanism that enables cancer stemness and immune escape. Cancer Res; 76(11); 3156-65. ©2016 AACR.

  19. Polymorphous low grade adenocarcinoma has a consistent p63+/p40- immunophenotype that helps distinguish it from adenoid cystic carcinoma and cellular pleomorphic adenoma.

    PubMed

    Rooper, Lisa; Sharma, Rajni; Bishop, Justin A

    2015-03-01

    Polymorphous low grade adenocarcinoma (PLGA) is a tumor of minor salivary glands that exhibits considerable morphologic overlap with adenoid cystic carcinoma and cellular pleomorphic adenoma, especially in small biopsy specimens. Unlike these other tumor types. PLGAs do not harbor a myoepithelial component, yet their frequent positivity for p63 diminishes the usefulness of this particular myoepithelial marker as a discriminating immunostain. p40 is an antibody that recognizes ΔNp63, a p63 isoform that is more specific for true myoepithelial differentiation. As such, p40 immunostaining could help distinguish PLGAs from adenoid cystic carcinomas and pleomorphic adenomas. In this study, p63 and p40 immunohistochemistry was performed on paraffin embedded, formalin fixed tissue from 11 PLGAs, 101 adenoid cystic carcinomas, and 31 pleomorphic adenomas. All 11 PLGAs (100 %) were positive for p63 but completely negative for p40. Among adenoid cystic carcinomas, 91 of 101 (90 %) were positive for p63 and 90/101 (89 %) were positive for p40. The single discordant p63+/p40- adenoid cystic carcinoma exhibited solid architecture and high grade features not typically seen in PLGA. Among pleomorphic adenomas, 21/31 (68 %) were positive for p63 and 13/31 (42 %) were positive for p40. For the pleomorphic adenomas, the discordant p63+/p40- staining pattern was seen only in the overtly mesenchymal chondromyxoid stroma. The cellular epithelial component of the pleomorphic adenomas demonstrated concordant p63+/p40+ or p63-/p40- immunophenotypes. PLGA consistently exhibits a p63+/p40- immunophenotype that can help distinguish it from adenoid cystic carcinoma and cellular pleomorphic adenoma, tumors that characteristically demonstrate concordant p63 and p40 immunostaining patterns. A p63/p40 immunohistochemical panel can provide a valuable tool for making the distinction between these morphologically similar but clinically divergent entities.

  20. Honokiol Eliminates Human Oral Cancer Stem-Like Cells Accompanied with Suppression of Wnt/ β -Catenin Signaling and Apoptosis Induction.

    PubMed

    Yao, Chih-Jung; Lai, Gi-Ming; Yeh, Chi-Tai; Lai, Ming-Tang; Shih, Ping-Hsiao; Chao, Wan-Ju; Whang-Peng, Jacqueline; Chuang, Shuang-En; Lai, Tung-Yuan

    2013-01-01

    Honokiol, an active compound of Magnolia officinalis, exerted many anticancer effects on various types of cancer cells. We explored its effects on the elimination of cancer stem-like side population (SP) cells in human oral squamous cell carcinoma SAS cells. The sorted SP cells possessed much higher expression of stemness genes, such as ABCG2, ABCC5, EpCAM, OCT-4, CD133, CD44, and β -catenin, and more clonogenicity as compared with the Non-SP cells. After 48 h of treatment, honokiol dose dependently reduced the proportion of SP from 2.53% to 0.09%. Apoptosis of honokiol-treated SP cells was evidenced by increased annexin V staining and cleaved caspase-3 as well as decreased Survivin and Bcl-2. Mechanistically, honokiol inhibited the CD44 and Wnt/ β -catenin signaling of SP cells. The Wnt signaling transducers such as β -catenin and TCF-4 were decreased in honokiol-treated SP cells, while the β -catenin degradation promoting kinase GSK-3 α / β was increased. Consistently, the protein levels of β -catenin downstream targets such as c-Myc and Cyclin D1 were also downregulated. Furthermore, the β -catenin-related EMT markers such as Slug and Snail were markedly suppressed by honokiol. Our findings indicate honokiol may be able to eliminate oral cancer stem cells through apoptosis induction, suppression of Wnt/ β -catenin signaling, and inhibition of EMT.

  1. Epigallocatechin-3-Gallate Inhibits Stem-Like Inflammatory Breast Cancer Cells

    PubMed Central

    Mineva, Nora D.; Paulson, K. Eric; Naber, Stephen P.; Yee, Amy S.; Sonenshein, Gail E.

    2013-01-01

    Inflammatory Breast Cancer (IBC) is a highly aggressive form of cancer characterized by high rates of proliferation, lymphangiogenesis and metastasis, and an overall poor survival. As regular green tea consumption has been associated with improved prognosis of breast cancer patients, including decreased risk of recurrence, here the effects of the green tea polyphenol epigallocatechin-3-gallate (EGCG) were tested on two IBC lines: SUM-149 and SUM-190. EGCG decreased expression of genes that promote proliferation, migration, invasion, and survival. Consistently, growth, invasive properties, and survival of IBC cells were reduced by EGCG treatment. EGCG also reduced lymphangiogenesis-promoting genes, in particular VEGF-D. Conditioned media from EGCG-treated IBC cells displayed decreased VEGF-D secretion and reduced ability to promote lymphangiogenesis in vitro as measured by hTERT-HDLEC lymphatic endothelial cell migration and tube formation. Tumorsphere formation by SUM-149 cells was robustly inhibited by EGCG, suggesting effects on self-renewal ability. Stem-like SUM-149 cells with high aldehyde dehydrogenase (ALDH) activity, previously implicated in poor patient prognosis, were isolated. EGCG treatment reduced growth and induced apoptosis of the stem-like SUM-149 cells in culture. In an orthotopic mouse model, EGCG decreased growth of pre-existing tumors derived from ALDH-positive stem-like SUM-149 cells and their expression of VEGF-D, which correlated with a significant decrease in peritumoral lymphatic vessel density. Thus, EGCG inhibits the overall aggressive IBC phenotype. Reduction of the stem-like cell compartment by EGCG may explain the decreased risk of breast cancer recurrence among green tea drinkers. Recent clinical trials demonstrate the efficacy of green tea polyphenol extracts in treatment of prostate cancer and lymphocytic leukemia with low toxicity. Given the poor prognosis of IBC patients, our findings suggest further exploration of EGCG or green

  2. Epigallocatechin-3-gallate inhibits stem-like inflammatory breast cancer cells.

    PubMed

    Mineva, Nora D; Paulson, K Eric; Naber, Stephen P; Yee, Amy S; Sonenshein, Gail E

    2013-01-01

    Inflammatory Breast Cancer (IBC) is a highly aggressive form of cancer characterized by high rates of proliferation, lymphangiogenesis and metastasis, and an overall poor survival. As regular green tea consumption has been associated with improved prognosis of breast cancer patients, including decreased risk of recurrence, here the effects of the green tea polyphenol epigallocatechin-3-gallate (EGCG) were tested on two IBC lines: SUM-149 and SUM-190. EGCG decreased expression of genes that promote proliferation, migration, invasion, and survival. Consistently, growth, invasive properties, and survival of IBC cells were reduced by EGCG treatment. EGCG also reduced lymphangiogenesis-promoting genes, in particular VEGF-D. Conditioned media from EGCG-treated IBC cells displayed decreased VEGF-D secretion and reduced ability to promote lymphangiogenesis in vitro as measured by hTERT-HDLEC lymphatic endothelial cell migration and tube formation. Tumorsphere formation by SUM-149 cells was robustly inhibited by EGCG, suggesting effects on self-renewal ability. Stem-like SUM-149 cells with high aldehyde dehydrogenase (ALDH) activity, previously implicated in poor patient prognosis, were isolated. EGCG treatment reduced growth and induced apoptosis of the stem-like SUM-149 cells in culture. In an orthotopic mouse model, EGCG decreased growth of pre-existing tumors derived from ALDH-positive stem-like SUM-149 cells and their expression of VEGF-D, which correlated with a significant decrease in peritumoral lymphatic vessel density. Thus, EGCG inhibits the overall aggressive IBC phenotype. Reduction of the stem-like cell compartment by EGCG may explain the decreased risk of breast cancer recurrence among green tea drinkers. Recent clinical trials demonstrate the efficacy of green tea polyphenol extracts in treatment of prostate cancer and lymphocytic leukemia with low toxicity. Given the poor prognosis of IBC patients, our findings suggest further exploration of EGCG or green

  3. Functional Heterogeneity of Breast Fibroblasts Is Defined by a Prostaglandin Secretory Phenotype that Promotes Expansion of Cancer-Stem Like Cells

    PubMed Central

    Rudnick, Jenny A.; Arendt, Lisa M.; Klebba, Ina; Hinds, John W.; Iyer, Vandana; Gupta, Piyush B.; Naber, Stephen P.; Kuperwasser, Charlotte

    2011-01-01

    Fibroblasts are important in orchestrating various functions necessary for maintaining normal tissue homeostasis as well as promoting malignant tumor growth. Significant evidence indicates that fibroblasts are functionally heterogeneous with respect to their ability to promote tumor growth, but markers that can be used to distinguish growth promoting from growth suppressing fibroblasts remain ill-defined. Here we show that human breast fibroblasts are functionally heterogeneous with respect to tumor-promoting activity regardless of whether they were isolated from normal or cancerous breast tissues. Rather than significant differences in fibroblast marker expression, we show that fibroblasts secreting abundant levels of prostaglandin (PGE2), when isolated from either reduction mammoplasty or carcinoma tissues, were both capable of enhancing tumor growth in vivo and could increase the number of cancer stem-like cells. PGE2 further enhanced the tumor promoting properties of fibroblasts by increasing secretion of IL-6, which was necessary, but not sufficient, for expansion of breast cancer stem-like cells. These findings identify a population of fibroblasts which both produce and respond to PGE2, and that are functionally distinct from other fibroblasts. Identifying markers of these cells could allow for the targeted ablation of tumor-promoting and inflammatory fibroblasts in human breast cancers. PMID:21957456

  4. Novel anticancer activity of phloroglucinol against breast cancer stem-like cells

    SciTech Connect

    Kim, Rae-Kwon; Uddin, Nizam; Hyun, Jin-Won; Kim, Changil; Suh, Yongjoon; Lee, Su-Jae

    2015-08-01

    Poor prognosis of breast cancer patients is closely associated with metastasis and relapse. There is substantial evidence supporting that cancer stem-like cells (CSCs) are primarily responsible for relapse in breast cancer after anticancer treatment. However, there is a lack of suitable drugs that target breast cancer stem-like cells (BCSCs). Here, we report that phloroglucinol (PG), a natural phlorotannin component of brown algae, suppresses sphere formation, anchorage-independent colony formation and in vivo tumorigenicity. In line with these observations, treatment with PG also decreased CD44{sup +} cancer cell population as well as expression of CSC regulators such as Sox2, CD44, Oct4, Notch2 and β-catenin. Also, treatment with PG sensitized breast cancer cells to anticancer drugs such as cisplatin, etoposide, and taxol as well as to ionizing radiation. Importantly, PG inhibited KRAS and its downstream PI3K/AKT and RAF-1/ERK signaling pathways that regulate the maintenance of CSCs. Taken together, our findings implicate PG as a good candidate to target BCSCs and to prevent the disease relapse. - Highlights: • Phloroglucinol suppresses in vivo tumor formation. • Phloroglucinol sensitizes breast cancer cells to anticancer agents. • Phloroglucinol inhibits breast cancer stem-like cells. • Phloroglucinol inhibits PI3K/AKT and KRAS/RAF/ERK signaling pathways.

  5. The fruits of Maclura pomifera extracts inhibits glioma stem-like cell growth and invasion.

    PubMed

    Zhao, Dan; Yao, Chengyun; Chen, Xiaobing; Xia, Hongping; Zhang, Li; Liu, Huixiang; Jiang, Xiaochun; Dai, Yi; Liu, Jun

    2013-10-01

    Glioma is the most common primary intracranial tumour. Recently, growing evidence showed that glioma possesses stem-like cells, which are thought to be chemo- and radio-resistant and believed to contribute to the poor clinical outcomes of these tumours. In this study, we found that stem-like glioma cells (CD133+) were significantly increased in neurosphere cells, which are highly invasive and resistant to multiple chemotherapeutic agents. From our natural products library, we screened 48 natural products and found one compound, Pomiferin, which was of particular interest. Our results showed that Pomiferin could inhibit cell viability, CD133+ cell population, sphere formation, and invasion ability of glioma neurosphere cells. We also found that multiple stemness-associated genes (BIM1, Nestin, and Nanog) were down-regulated by Pomiferin treatment of glioma neurosphere cells. Taken together, our results suggest that Pomiferin could kill the cancer stem-like cells in glioma and may serve as a potential therapeutic agent in the future.

  6. JNK contributes to temozolomide resistance of stem-like glioblastoma cells via regulation of MGMT expression.

    PubMed

    Okada, Masashi; Sato, Atsushi; Shibuya, Keita; Watanabe, Eriko; Seino, Shizuka; Suzuki, Shuhei; Seino, Manabu; Narita, Yoshitaka; Shibui, Soichiro; Kayama, Takamasa; Kitanaka, Chifumi

    2014-02-01

    While elimination of the cancer stem cell population is increasingly recognized as a key to successful treatment of cancer, the high resistance of cancer stem cells to conventional chemoradiotherapy remains a therapeutic challenge. O6-methylguanine DNA methyltransferase (MGMT), which is frequently expressed in cancer stem cells of glioblastoma, has been implicated in their resistance to temozolomide, the first-line chemotherapeutic agent against newly diagnosed glioblastoma. However, much remains unknown about the molecular regulation that underlies MGMT expression and temozolomide resistance of glioblastoma cancer stem cells. Here, we identified JNK as a novel player in the control of MGMT expression and temozolomide resistance of glioblastoma cancer stem cells. We showed that inhibition of JNK, either pharmacologically or by RNA interference, in stem-like glioblastoma cells derived directly from glioblastoma tissues reduces their MGMT expression and temozolomide resistance. Importantly, sensitization of stem-like glioblastoma cells to temozolomide by JNK inhibition was dependent on MGMT expression, implying that JNK controls temozolomide resistance of stem-like glioblastoma cells through MGMT expression. Our findings suggest that concurrent use of JNK inhibitors with temozolomide may be a rational therapeutic approach to effectively target the cancer stem cell population in the treatment of glioblastoma.

  7. Dynamics of leukemia stem-like cell extinction in acute promyelocytic leukemia

    PubMed Central

    Werner, Benjamin; Gallagher, Robert E.; Paietta, Elisabeth M.; Litzow, Mark R.; Tallman, Martin S.; Wiernik, Peter H.; Slack, James L.; Willman, Cheryl L.; Sun, Zhuoxin; Traulsen, Arne; Dingli, David

    2014-01-01

    Many tumors are believed to be maintained by a small number of cancer stem-like cells where cure is thought to require eradication of this cell population. In this study, we investigated the dynamics of acute promyelocytic leukemia (APL) before and during therapy with regard to disease initiation, progression and therapeutic response. This investigation employed a mathematical model of hematopoiesis and a dataset derived from the North American Intergroup Study INT0129. The known phenotypic constraints of APL could be explained by a combination of differentiation blockade of PML-RARα positive cells and suppression of normal hematopoiesis. ATRA neutralizes the differentiation block and decreases the proliferation rate of leukemic stem cells in vivo. Prolonged ATRA treatment after chemotherapy can cure APL patients by eliminating the stem-like cell population over the course of approximately one year. To our knowledge, this study offers the first estimate of the average duration of therapy that is required to eliminate stem-like cancer cells from a human tumor, with the potential for the refinement of treatment strategies to better manage human malignancy. PMID:25082816

  8. PAX-2 is a helpful marker for diagnosing metastatic renal cell carcinoma: comparison with the renal cell carcinoma marker antigen and kidney-specific cadherin.

    PubMed

    Ozcan, Ayhan; Zhai, Qihui; Javed, Rehana; Shen, Steven S; Coffey, Donna; Krishnan, Bhuvaneswari; Truong, Luan D

    2010-08-01

    The diagnosis of metastatic renal cell carcinoma (RCC) remains problematic. To evaluate the role of PAX-2, a renal tubular cell transcription factor, in the diagnosis of metastatic RCC. PAX-2 expression in metastatic RCC was compared with that of the renal cell carcinoma marker antigen (RCCM) and kidney-specific cadherin (KSC), which are 2 known markers for RCC. Immunostaining for PAX-2, RCCM, and KSC was performed on consecutive tissue sections of 95 metastatic RCCs (77 clear cell, 8 papillary, 5 sarcomatoid, and 5 collecting duct) and 183 metastatic tumors other than RCC. For PAX-2, positive immunoreactivity was detected in 77% clear cell, 75% papillary, 100% collecting duct, and 0% sarcomatoid metastatic RCCs. For RCCM, positive immunoreactivity was detected in 49% clear cell, 75% papillary, 0% collecting duct, and 0% sarcomatoid metastatic RCCs. For KSC, only 2 metastatic clear cell RCCs (3%) were positive. In combination, all markers were positive in 0% of cases; all markers were negative in 23% of cases (17 clear cell, 1 papillary, and for all 5 sarcomatoid); and at least 1 marker was positive in 76% of cases (PAX-2 only in 28% of cases [21 clear cell, 1 papillary, and 5 collecting duct] and RCCM only in 3% of cases [2 clear, 1 papillary]). Of 183 metastatic tumors other than RCC, 14 were positive for PAX-2 (nodal metastasis of carcinoma of colon [1], breast [1], endometrium [1], and ovary [1]; and omental metastasis of carcinoma of uterus or ovary [10]). PAX-2 is a sensitive and specific marker for metastatic RCC. The diagnostic yield would be marginally increased by adding RCCM, but not KSC, as an immunomarker.

  9. Stem-like plasticity and heterogeneity of circulating tumor cells: current status and prospect challenges in liver cancer

    PubMed Central

    Correnti, Margherita; Raggi, Chiara

    2017-01-01

    Poor prognosis and high recurrence remain leading causes of primary liver cancerassociated mortality. The spread of circulating tumor cells (CTCs) in the blood plays a major role in the initiation of metastasis and tumor recurrence after surgery. Nevertheless, only a subset of CTCs can survive, migrate to distant sites and establish secondary tumors. Consistent with cancer stem cell (CSC) hypothesis, stem-like CTCs might represent a potential source for cancer relapse and distant metastasis. Thus, identification of stem-like metastasis-initiating CTC-subset may provide useful clinically prognostic information. This review will emphasize the most relevant findings of CTCs in the context of stem-like biology associated to liver carcinogenesis. In this view, the emerging field of stem-like CTCs may deliver substantial contribution in liver cancer field in order to move to personalized approaches for diagnosis, prognosis and therapy. PMID:27738343

  10. Soluble bone-derived osteopontin promotes migration and stem-like behavior of breast cancer cells

    PubMed Central

    Pio, Graciella M.; Xia, Ying; Piaseczny, Matthew M.; Chu, Jenny E.

    2017-01-01

    Breast cancer is a leading cause of cancer death in women, with the majority of these deaths caused by metastasis to distant organs. The most common site of breast cancer metastasis is the bone, which has been shown to provide a rich microenvironment that supports the migration and growth of breast cancer cells. Additionally, growing evidence suggests that breast cancer cells that do successfully metastasize have a stem-like phenotype including high activity of aldehyde dehydrogenase (ALDH) and/or a CD44+CD24- phenotype. In the current study, we tested the hypothesis that these ALDHhiCD44+CD24- breast cancer cells interact with factors in the bone secondary organ microenvironment to facilitate metastasis. Specifically, we focused on bone-derived osteopontin and its ability to promote the migration and stem-like phenotype of breast cancer cells. Our results indicate that bone-derived osteopontin promotes the migration, tumorsphere-forming ability and colony-forming ability of whole population and ALDHhiCD44+CD24- breast cancer cells in bone marrow-conditioned media (an ex vivo representation of the bone microenvironment) (p≤0.05). We also demonstrate that CD44 and RGD-dependent cell surface integrins facilitate this functional response to bone-derived osteopontin (p≤0.05), potentially through activation of WNK-1 and PRAS40-related pathways. Our findings suggest that soluble bone-derived osteopontin enhances the ability of breast cancer cells to migrate to the bone and maintain a stem-like phenotype within the bone microenvironment, and this may contribute to the establishment and growth of bone metastases. PMID:28498874

  11. Drug screening identifies niclosamide as an inhibitor of breast cancer stem-like cells.

    PubMed

    Wang, Yu-Chi; Chao, Tai-Kuang; Chang, Cheng-Chang; Yo, Yi-Te; Yu, Mu-Hsien; Lai, Hung-Cheng

    2013-01-01

    The primary cause of death from breast cancer is the progressive growth of tumors and resistance to conventional therapies. It is currently believed that recurrent cancer is repopulated according to a recently proposed cancer stem cell hypothesis. New therapeutic strategies that specifically target cancer stem-like cells may represent a new avenue of cancer therapy. We aimed to discover novel compounds that target breast cancer stem-like cells. We used a dye-exclusion method to isolate side population (SP) cancer cells and, subsequently, subjected these SP cells to a sphere formation assay to generate SP spheres (SPS) from breast cancer cell lines. Surface markers, stemness genes, and tumorigenicity were used to test stem properties. We performed a high-throughput drug screening using these SPS. The effects of candidate compounds were assessed in vitro and in vivo. We successfully generated breast cancer SPS with stem-like properties. These SPS were enriched for CD44(high) (2.8-fold) and CD24(low) (4-fold) cells. OCT4 and ABCG2 were overexpressed in SPS. Moreover, SPS grew tumors at a density of 10(3), whereas an equivalent number of parental cells did not initiate tumor formation. A clinically approved drug, niclosamide, was identified from the LOPAC chemical library of 1,258 compounds. Niclosamide downregulated stem pathways, inhibited the formation of spheroids, and induced apoptosis in breast cancer SPS. Animal studies also confirmed this therapeutic effect. The results of this proof-of-principle study may facilitate the development of new breast cancer therapies in the near future. The extension of niclosamide clinical trials is warranted.

  12. T Cells Enhance Stem-Like Properties and Conditional Malignancy in Gliomas

    PubMed Central

    Irvin, Dwain K.; Jouanneau, Emmanuel; Duvall, Gretchen; Zhang, Xiao-xue; Zhai, Yuying; Sarayba, Danielle; Seksenyan, Akop; Panwar, Akanksha; Black, Keith L.; Wheeler, Christopher J.

    2010-01-01

    Background Small populations of highly tumorigenic stem-like cells (cancer stem cells; CSCs) can exist within, and uniquely regenerate cancers including malignant brain tumors (gliomas). Many aspects of glioma CSCs (GSCs), however, have been characterized in non-physiological settings. Methods We found gene expression similarity superiorly defined glioma “stemness”, and revealed that GSC similarity increased with lower tumor grade. Using this method, we examined stemness in human grade IV gliomas (GBM) before and after dendritic cell (DC) vaccine therapy. This was followed by gene expression, phenotypic and functional analysis of murine GL26 tumors recovered from nude, wild-type, or DC-vaccinated host brains. Results GSC similarity was specifically increased in post-vaccine GBMs, and correlated best to vaccine-altered gene expression and endogenous anti-tumor T cell activity. GL26 analysis confirmed immune alterations, specific acquisition of stem cell markers, specifically enhanced sensitivity to anti-stem drug (cyclopamine), and enhanced tumorigenicity in wild-type hosts, in tumors in proportion to anti-tumor T cell activity. Nevertheless, vaccine-exposed GL26 cells were no more tumorigenic than parental GL26 in T cell-deficient hosts, though they otherwise appeared similar to GSCs enriched by chemotherapy. Finally, vaccine-exposed GBM and GL26 exhibited relatively homogeneous expression of genes expressed in progenitor cells and/or differentiation. Conclusions T cell activity represents an inducible physiological process capable of proportionally enriching GSCs in human and mouse gliomas. Stem-like gliomas enriched by strong T cell activity, however, may differ from other GSCs in that their stem-like properties may be disassociated from increased tumor malignancy and heterogeneity under specific host immune conditions. PMID:20539758

  13. Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway

    SciTech Connect

    Han, Seula; Woo, Jong Kyu; Jung, Yuchae; Jeong, Dawoon; Kang, Minsook; Yoo, Young-Ji; Lee, Hani; Oh, Seung Hyun; Ryu, Jae-Ha; Kim, Woo-Young

    2016-01-22

    In spite of the recent improvements, the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer, a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here, we report on a component of a traditional Chinese medicine, evodiamine, which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulk cancer cells at the G2/M phase, it did not hold CSLC in a specific cell cycle phase but instead, selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly, evodiamine selectively activated p53 and p21 and decreased inactive Rb, the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer. - Highlights: • Evodiamine selectively kills breast cancer stem like cells at G1 phase. • Evodiamine utilizes different mechanism of cell cycle modulation in CSLC and in bulk cancer cells. • Evodiamine activate the p53, p21 and Rb pathway.

  14. The heterogeneity of cancer stem-like cells at the invasive front.

    PubMed

    Yoshida, Go J

    2017-01-01

    Cancer stem-like cells exhibit the multi-functional roles to survive and persist for a long period in the minimal residual disease after the conventional anti-cancer treatments. Cancer stem-like cells of solid malignant tumors which highly express CD44v8-10, the variant isoform of CD44 generated by alternative splicing, has a resistance to redox stress by the robust production of glutathione mediated by ESRP1-CD44v-xCT (cystine/glutamate antiporter) axis. It has been reported that CD44v and c-Myc tend to show the inversed expression pattern at the invasive front of the aggressive tumors. Given that the accumulation of reactive oxygen species triggers the activation of Wnt/β-catenin signal pathway, it is hypothesized that CD44v causes the negative feedback machinery in the regulation of c-Myc expression via the attenuated ROS-induced Wnt signal pathway. To address the fundamental question whether and how both proliferative and quiescent cancer stem-like cells heterogeneously exist at the invasive/metastatic edge, researchers need to investigate into the E3-ubiquitin ligase activity essential for c-Myc degradation. CSCs heterogeneity at the invasive/metastatic front is expected to demonstrate the dynamic tumor evolution with the selective pressure of anti-cancer treatments. Furthermore, the novel molecular targeting therapeutic strategies would be established to disrupt the finely-regulated c-Myc expression in the heterogeneous CSC population in combination with the typical drug-repositioning with xCT inhibitor.

  15. 'En face' ex vivo reflectance confocal microscopy to help the surgery of basal cell carcinoma of the eyelid.

    PubMed

    Espinasse, Marine; Cinotti, Elisa; Grivet, Damien; Labeille, Bruno; Prade, Virginie; Douchet, Catherine; Cambazard, Frédéric; Thuret, Gilles; Gain, Philippe; Perrot, Jean Luc

    2017-07-01

    Ex vivo confocal microscopy is a recent imaging technique for the perioperative control of skin tumour margins. Up to date, it has been used in the fluorescence mode and with vertical sections of the specimen margins. The aim of this study was to evaluate its use in the reflectance mode and with a horizontal ('en face') scanning of the surgical specimen in a series of basal cell carcinoma of the eyelid. Prospective consecutive cohort study was performed at the University Hospital of Saint-Etienne, France. Forty-one patients with 42 basal cell carcinoma of the eyelid participated in this study. Basal cell carcinomas were excised with a 2-mm-wide clinically safe margin. The surgical specimens were analysed under ex vivo confocal microscopy in the reflectance mode and with an en face scanning in order to control at a microscopic level if the margins were free from tumour invasion. Histopathogical examination was later performed in order to compare the results. Sensitivity and specificity of ex vivo confocal microscopy for the presence of tumour-free margins. Ex vivo confocal microscopy results were consistent with histopathology in all cases (tumour-free margins in 40 out of 42 samples; sensitivity and specificity of 100%). Ex vivo confocal microscopy in the reflectance mode with an 'en face' scanning can control tumour margins of eyelid basal cell carcinomas and optimize their surgical management. This procedure has the advantage on the fluorescent mode of not needing any contrast agent to examine the samples. © 2016 Royal Australian and New Zealand College of Ophthalmologists.

  16. Bruton's tyrosine kinase (Btk) inhibitor ibrutinib suppresses stem-like traits in ovarian cancer.

    PubMed

    Zucha, Muhammad Ary; Wu, Alexander T H; Lee, Wei-Hwa; Wang, Liang-Shun; Lin, Wan-Wan; Yuan, Chiou-Chung; Yeh, Chi-Tai

    2015-05-30

    According to a Prognoscan database, upregulation of Bruton's tyrosine kinase (Btk) is associated with low overall survival in ovarian cancer patients. We found that spheroids-forming ovarian cancer cell, which highly expressed cancer stem-like cell (CSC) markers and Btk, were cisplatin resistant. We next treated CSCs and non-CSCs by a combination of ibrutinib and cisplatin. We found that chemoresistance was dependent on Btk and JAK2/STAT3, which maintained CSC by inducing Sox-2 and prosurvival genes. We suggest that addition of ibrutinib to cisplatin may improve treatment outcome in ovarian cancer.

  17. Establishment and Analysis of Cancer Stem-Like and Non-Cancer Stem-Like Clone Cells from the Human Colon Cancer Cell Line SW480.

    PubMed

    Takaya, Akari; Hirohashi, Yoshihiko; Murai, Aiko; Morita, Rena; Saijo, Hiroshi; Yamamoto, Eri; Kubo, Terufumi; Nakatsugawa, Munehide; Kanaseki, Takayuki; Tsukahara, Tomohide; Tamura, Yasuaki; Takemasa, Ichiro; Kondo, Toru; Sato, Noriyuki; Torigoe, Toshihiko

    2016-01-01

    Human cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) can be isolated as side population (SP) cells, aldehyde dehydrogenase high (ALDHhigh) cells or cell surface marker-positive cells including CD44+ cells and CD133+ cells. CSCs/CICs and non-CSCs/CICs are unstable in in vitro culture, and CSCs/CICs can differentiate into non-CSCs/CICs and some non-CSCs/CICs can dedifferentiate into CSCs/CICs. Therefore, experiments using a large amount of CSCs/CICs are technically very difficult. In this study, we isolated single cell clones from SP cells and main population (MP) cells derived from the human colon cancer cell line SW480. SP analysis revealed that SP clone cells had relatively high percentages of SP cells, whereas MP clone cells showed very few SP cells, and the phenotypes were sustainable for more than 2 months of in vitro culture. Xenograft transplantation revealed that SP clone cells have higher tumor-initiating ability than that of MP clone cells and SP clone cell showed higher chemo-resistance compared with MP clone cells. These results indicate that SP clone cells derived from SW480 cells are enriched with CSCs/CICs, whereas MP clone cells are pure non-CSCs/CICs. SP clone cells and MP clone cells are a very stable in vitro CSC/CIC-enriched and non-CSC/CIC model for further analysis.

  18. Establishment and Analysis of Cancer Stem-Like and Non-Cancer Stem-Like Clone Cells from the Human Colon Cancer Cell Line SW480

    PubMed Central

    Takaya, Akari; Hirohashi, Yoshihiko; Murai, Aiko; Morita, Rena; Saijo, Hiroshi; Yamamoto, Eri; Kubo, Terufumi; Nakatsugawa, Munehide; Kanaseki, Takayuki; Tsukahara, Tomohide; Tamura, Yasuaki; Takemasa, Ichiro; Kondo, Toru; Sato, Noriyuki; Torigoe, Toshihiko

    2016-01-01

    Human cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) can be isolated as side population (SP) cells, aldehyde dehydrogenase high (ALDHhigh) cells or cell surface marker-positive cells including CD44+ cells and CD133+ cells. CSCs/CICs and non-CSCs/CICs are unstable in in vitro culture, and CSCs/CICs can differentiate into non-CSCs/CICs and some non-CSCs/CICs can dedifferentiate into CSCs/CICs. Therefore, experiments using a large amount of CSCs/CICs are technically very difficult. In this study, we isolated single cell clones from SP cells and main population (MP) cells derived from the human colon cancer cell line SW480. SP analysis revealed that SP clone cells had relatively high percentages of SP cells, whereas MP clone cells showed very few SP cells, and the phenotypes were sustainable for more than 2 months of in vitro culture. Xenograft transplantation revealed that SP clone cells have higher tumor-initiating ability than that of MP clone cells and SP clone cell showed higher chemo-resistance compared with MP clone cells. These results indicate that SP clone cells derived from SW480 cells are enriched with CSCs/CICs, whereas MP clone cells are pure non-CSCs/CICs. SP clone cells and MP clone cells are a very stable in vitro CSC/CIC-enriched and non-CSC/CIC model for further analysis. PMID:27415781

  19. CD44 staining of cancer stem-like cells is influenced by down-regulation of CD44 variant isoforms and up-regulation of the standard CD44 isoform in the population of cells that have undergone epithelial-to-mesenchymal transition.

    PubMed

    Biddle, Adrian; Gammon, Luke; Fazil, Bilal; Mackenzie, Ian C

    2013-01-01

    CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44(high) cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44(high) population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44(high) population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44(high) population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that consideration be given to

  20. Rescue of Targeted Nonstem-Like Cells from Bystander Stem-Like Cells in Human Fibrosarcoma HT1080.

    PubMed

    Liu, Yu; Kobayashi, Alisa; Fu, Qibin; Yang, Gen; Konishi, Teruaki; Uchihori, Yukio; Hei, Tom K; Wang, Yugang

    2015-09-01

    Cancer stem-like cells (CSCs) have been suggested to be the principal cause of tumor radioresistance, dormancy and recurrence after radiotherapy. However, little is known about CSC behavior in response to clinical radiotherapy, particularly with regard to CSC communication with bulk cancer cells. In this study, CSCs and nonstem-like cancer cells (NSCCs) were co-cultured, and defined cell types were chosen and irradiated, respectively, with proton microbeam. The bidirectional rescue effect in the combinations of the two cell types was then investigated. The results showed that out of all four combinations, only the targeted, proton irradiated NSCCs were protected by bystander CSCs and showed less accumulation of 53BP1, which is a widely used indicator for DNA double-strand breaks. In addition, supplementation with c-PTIO, a specific nitric oxide scavenger, can show a similar effect on targeted NSCCs. These results, showed that the rescue effect of CSCs on targeted NSCCs involves nitric oxide in the process, suggesting that the cellular communication between CSCs and NSCCs may be important in determining the survival of tumor cells after radiation therapy. To our knowledge, this is the first report demonstrating a rescue effect of CSCs to irradiated NSCCs that may help us better understand CSC behavior in response to cancer radiotherapy.

  1. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line

    PubMed Central

    Kondo, Toru; Setoguchi, Takao; Taga, Tetsuya

    2004-01-01

    Both stem cells and cancer cells are thought to be capable of unlimited proliferation. Paradoxically, however, some cancers seem to contain stem-like cells (cancer stem cells). To help resolve this paradox, we investigated whether established malignant cell lines, which have been maintained for years in culture, contain a subpopulation of stem cells. In this article, we show that many cancer cell lines contain a small side population (SP), which, in many normal tissues, is thought to contain the stem cells of the tissue. We demonstrate that in the absence of serum the combination of basic fibroblast growth factor and platelet-derived growth factor maintains SP cells in the C6 glioma cell line. Moreover, we show that C6 SP cells, but not non-SP cells, can generate both SP and non-SP cells in culture and are largely responsible for the in vivo malignancy of this cell line. Finally, we provide evidence that C6 SP cells can produce both neurons and glial cells in vitro and in vivo. We propose that many cancer cell lines contain a minor subpopulation of stem cells that is enriched in an SP, can be maintained indefinitely in culture, and is crucial for their malignancy. PMID:14711994

  2. Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer

    SciTech Connect

    Yue, Dongli; Zhang, Zhen; Li, Jieyao; Chen, Xinfeng; Ping, Yu; Liu, Shasha; Shi, Xiaojuan; Li, Lifeng; Wang, Liping; Huang, Lan; Zhang, Bin; and others

    2015-08-01

    Esophageal cancer is one of the most lethal solid malignancies. Mounting evidence demonstrates that cancer stem cells (CSCs) are able to cause tumor initiation, metastasis and responsible for chemotherapy and radiotherapy failures. As CSCs are thought to be the main reason of therapeutic failure, these cells must be effectively targeted to elicit long-lasting therapeutic responses. We aimed to enrich and identify the esophageal cancer cell subpopulation with stem-like properties and help to develop new target therapy strategies for CSCs. Here, we found esophageal cancer cells KYSE70 and TE1 could form spheres in ultra low attachment surface culture and be serially passaged. Sphere-forming cells could redifferentiate and acquire morphology comparable to parental cells, when return to adherent culture. The sphere-forming cells possessed the key criteria that define CSCs: persistent self-renewal, overexpression of stemness genes (SOX2, ALDH1A1 and KLF4), reduced expression of differentiation marker CK4, chemoresistance, strong invasion and enhanced tumorigenic potential. SB525334, transforming growth factor-beta 1(TGF-β1) inhibitor, significantly inhibited migration and invasion of sphere-forming stem-like cells and had no effect on sphere-forming ability. In conclusion, esophageal cancer sphere-forming cells from KYSE70 and TE1 cultured in ultra low attachment surface possess cancer stem cell properties, providing a model for CSCs targeted therapy. TGF-β1 promotes the migration and invasion of sphere-forming stem-like cells, which may guide future studies on therapeutic strategies targeting these cells. - Highlights: • Esophageal cancer sphere-forming cells possess cancer stem cell properties. • Sphere-forming cells enhance TGF-β1 pathway activity. • TGF-β 1 inhibitor suppresses the migration and invasion of sphere-forming cells.

  3. Semaphorin 3A Induces Mesenchymal-Stem-Like Properties in Human Periodontal Ligament Cells

    PubMed Central

    Maeda, Hidefumi; Hasegawa, Daigaku; Gronthos, Stan; Bartold, Peter Mark; Menicanin, Danijela; Fujii, Shinsuke; Yoshida, Shinichiro; Tomokiyo, Atsushi; Monnouchi, Satoshi; Akamine, Akifumi

    2014-01-01

    Periodontal ligament stem cells (PDLSCs) have recently been proposed as a novel option in periodontal regenerative therapy. However, one of the issues is the difficulty of stably generating PDLSCs because of the variation of stem cell potential between donors. Here, we show that Semaphorin 3A (Sema3A) can induce mesenchymal-stem-like properties in human periodontal ligament (PDL) cells. Sema3A expression was specifically observed in the dental follicle during tooth development and in parts of mature PDL tissue in rodent tooth and periodontal tissue. Sema3A expression levels were found to be higher in multipotential human PDL cell clones compared with low-differentiation potential clones. Sema3A-overexpressing PDL cells exhibited an enhanced capacity to differentiate into both functional osteoblasts and adipocytes. Moreover, PDL cells treated with Sema3A only at the initiation of culture stimulated osteogenesis, while Sema3A treatment throughout the culture had no effect on osteogenic differentiation. Finally, Sema3A-overexpressing PDL cells upregulated the expression of embryonic stem cell markers (NANOG, OCT4, and E-cadherin) and mesenchymal stem cell markers (CD73, CD90, CD105, CD146, and CD166), and Sema3A promoted cell division activity of PDL cells. These results suggest that Sema3A may possess the function to convert PDL cells into mesenchymal-stem-like cells. PMID:24380401

  4. The chemokine receptor CCR7 promotes mammary tumorigenesis through amplification of stem-like cells.

    PubMed

    Boyle, S T; Ingman, W V; Poltavets, V; Faulkner, J W; Whitfield, R J; McColl, S R; Kochetkova, M

    2016-01-07

    The chemokine receptor CCR7 is widely implicated in breast cancer pathobiology. Although recent reports correlated high CCR7 levels with more advanced tumor grade and poor prognosis, limited in vivo data are available regarding its specific function in mammary gland neoplasia and the underlying mechanisms involved. To address these questions we generated a bigenic mouse model of breast cancer combined with CCR7 deletion, which revealed that CCR7 ablation results in a considerable delay in tumor onset as well as significantly reduced tumor burden. Importantly, CCR7 was found to exert its function by regulating mammary cancer stem-like cells in both murine and human tumors. In vivo experiments showed that loss of CCR7 activity either through deletion or pharmacological antagonism significantly decreased functional pools of stem-like cells in mouse primary mammary tumors, providing a mechanistic explanation for the tumor-promoting role of this chemokine receptor. These data characterize the oncogenic properties of CCR7 in mammary epithelial neoplasia and point to a new route for therapeutic intervention to target evasive cancer stem cells.

  5. Canine osteosarcoma cell lines contain stem-like cancer cells: biological and pharmacological characterization.

    PubMed

    Gatti, Monica; Wurth, Roberto; Vito, Guendalina; Pattarozzi, Alessandra; Campanella, Chiara; Thellung, Stefano; Maniscalco, Lorella; De Maria, Raffaella; Villa, Valentina; Corsaro, Alessandro; Nizzari, Mario; Bajetto, Adriana; Ratto, Alessandra; Ferrari, Angelo; Barbieri, Federica; Florio, Tullio

    2016-05-01

    Cancer stem cells (CSCs) represent a small subpopulation of cells responsible for tumor formation and progression, drug resistance, tumor recurrence and metastasization. CSCs have been identified in many human tumors including osteosarcoma (OSA). CSC distinctive properties are the expression of stem cell markers, sustained growth, self-renewal and tumorigenicity. Here we report the isolation of stem-like cells from two canine OSA cultures, characterized by self-renewal, evaluated by sphere formation ability, differential marker expression, and in vitro proliferation when cultured in a medium containing EGF and bFGF. Current therapies for OSA increased survival time, but prognosis remains poor, due to the development of drug resistance and metastases. Chemotherapy shrinks the tumor mass but CSCs remain unaffected, leading to tumor recurrence. Metformin, a drug for type 2 diabetes, has been shown to possess antitumor properties affecting CSC survival in different human and animal cancers. Here we show that metformin has a significant antiproliferative effect on canine OSA stem-like cells, validating this in vitro model for further pre-clinical drug evaluations. In conclusion, our results demonstrate the feasibility of obtaining CSC-enriched cultures from primary canine OSA cells as a promising model for biological and pharmacological studies of canine and human OSAs.

  6. Sdhd ablation promotes thyroid tumorigenesis by inducing a stem-like phenotype.

    PubMed

    Ashtekar, Amruta; Huk, Danielle; Magner, Alexa; La Perle, Krista; Zhang, Xiaoli; Piruat, Jose; Lopez-Barneo, Jose; Jhiang, Sissy; Kirschner, Lawrence

    2017-09-19

    Mutations in genes encoding enzymes in the tricarboxylic acid cycle (TCA, also known as the Krebs cycle) have been implicated as causative genetic lesions in a number of human cancers, including renal cell cancers, glioblastomas, and pheochromocytomas. In recent studies, missense mutations in the Succinate dehydrogenase (SDH) complex have also been proposed to cause differentiated thyroid cancer. In order to gain mechanistic insight into this process, we generated mice lacking the SDH subunit D (SDHD) in the thyroid. We report that these mice develop enlarged thyroid glands with follicle hypercellularity and increased proliferation. In vitro, human thyroid cell lines with knockdown of SDHD exhibit an enhanced migratory capability, despite no change in proliferative capacity. Interestingly, these cells acquire stem-like features which are also observed in the mouse tumors. The stem-like characteristics are reversed by α-ketoglutarate, suggesting that SDH-associated tumorigenesis results from dedifferentiation driven by an imbalance in cellular metabolites of the TCA cycle. The results of this study reveal a metabolic vulnerability for potential future treatment of SDH-associated neoplasia.

  7. Conversion of vascular endothelial cells into multipotent stem-like cells

    PubMed Central

    Medici, Damian; Shore, Eileen M.; Lounev, Vitali Y.; Kaplan, Frederick S.; Kalluri, Raghu; Olsen, Bjorn R.

    2011-01-01

    Mesenchymal stem cells can give rise to several cell types, but variations depending on isolation method and tissue source have led to controversies about their usefulness in clinical medicine. Here we show that vascular endothelial cells can transform into multipotent stem-like cells by an ALK2 receptor-dependent mechanism. In lesions from patients with Fibrodysplasia Ossificans Progressiva, a disease where heterotopic ossification occurs as a result of activating ALK2 mutations, or from a mutant ALK2 transgenic mouse model, chondrocytes and osteoblasts express endothelial markers. Tie2-Cre lineage tracing also suggests an endothelial origin of these cells. Expressing mutant ALK2 in endothelial cells, or treatment with the ALK2 ligands TGF-β2 or BMP4, causes endothelial-mesenchymal transition and acquisition of a stem cell-like phenotype. In selective media, these cells differentiate into osteoblasts, chondrocytes, or adipocytes. The process is inhibited by ALK2-specific siRNA. Conversion of endothelial cells to stem-like cells may provide a novel approach to tissue engineering. PMID:21102460

  8. Enriched inhibition of cancer and stem-like cancer cells via STAT-3 modulating niclocelles

    NASA Astrophysics Data System (ADS)

    Misra, Santosh K.; Jensen, Tor W.; Pan, Dipanjan

    2015-04-01

    We describe for the first time a therapeutic strategy to target stem-like cancer cells via STAT-3 modulation using a nanomedicine approach. Niclocelle, a niclosamide loaded rigid core mixed micelle, was synthesized from a self-assembled well-defined amphiphilic diblock copolymer and an FDA-approved signal transducer and activator of transcription factor 3. Followed by a rigorous physico-chemical characterization, niclocelles were evaluated biologically for cytotoxicity and apoptosis in human melanoma (C32) and breast cancer (MDA-MB231 and MCF-7) cells. Niclocelles were found to selectively reduce the CD44+ stem cell population in C32 cells via STAT-3 modulation.We describe for the first time a therapeutic strategy to target stem-like cancer cells via STAT-3 modulation using a nanomedicine approach. Niclocelle, a niclosamide loaded rigid core mixed micelle, was synthesized from a self-assembled well-defined amphiphilic diblock copolymer and an FDA-approved signal transducer and activator of transcription factor 3. Followed by a rigorous physico-chemical characterization, niclocelles were evaluated biologically for cytotoxicity and apoptosis in human melanoma (C32) and breast cancer (MDA-MB231 and MCF-7) cells. Niclocelles were found to selectively reduce the CD44+ stem cell population in C32 cells via STAT-3 modulation. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c5nr00403a

  9. Characterization of stem-like cells in a new astroblastoma cell line.

    PubMed

    Coban, Esra Aydemir; Kasikci, Ezgi; Karatas, Omer Faruk; Suakar, Oznur; Kuskucu, Aysegul; Altunbek, Mine; Türe, Uğur; Sahin, Fikrettin; Bayrak, Omer Faruk

    2017-03-15

    Cell lines established from tumors are the most commonly used models in cancer research, and their use in recent years has enabled a greater understanding of the biology of cancer and the means to develop effective treatment strategies. Astroblastomas are uncommon neuroepithelial tumors of glial origin, predominantly affecting young people, mainly teenagers and children, predominantly females. To date, only a single study has reported that astroblastomas contain a large number of neural stem-like cells, which had only a partial proliferation capacity and differentiation. Our objective was to establish an astroblastoma cell line to investigate the presence of astroblastic cells and cancer stem-like cells. The migratory and invasion abilities of the cells were quantified with invasion and migration assays and compared to a glioblastoma cell line. The presence of stem cells was detected with surface-marker analysis by using flow cytometry, and measuring the differentiation ability with a differentiation assay and the self-renewal capacity with a sphere-forming assay. These characteristics may determine whether this novel cell line is a model for astroblastomas that may have stem-cell characteristics. With this novel cell line, scientists can investigate the molecular pathways underlying astroblastomas and develop new therapeutic strategies for patients with these tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Histological Characterization of the Tumorigenic “Peri-Necrotic Niche” Harboring Quiescent Stem-Like Tumor Cells in Glioblastoma

    PubMed Central

    Ishii, Aya; Kimura, Tokuhiro; Sadahiro, Hirokazu; Kawano, Hiroo; Takubo, Keiyo; Suzuki, Michiyasu; Ikeda, Eiji

    2016-01-01

    Background Characterization of the niches for stem-like tumor cells is important to understand and control the behavior of glioblastomas. Cell-cycle quiescence might be a common mechanism underlying the long-term maintenance of stem-cell function in normal and neoplastic stem cells, and our previous study demonstrated that quiescence induced by hypoxia-inducible factor (HIF)-1α is associated with a high long-term repopulation capacity of hematopoietic stem cells. Based on this, we examined human astrocytoma tissues for HIF-1α-regulated quiescent stem-like tumor cells as a candidate for long-term tumorigenic cells and characterized their niche histologically. Methods Multi-color immunohistochemistry was used to visualize HIF-1α-expressing (HIF-1α+) quiescent stem-like tumor cells and their niche in astrocytoma (WHO grade II–IV) tissues. This niche was modeled using spheroids of cultured glioblastoma cells and its contribution to tumorigenicity was evaluated by sphere formation assay. Results A small subpopulation of HIF-1α+ quiescent stem-like tumor cells was found in glioblastomas but not in lower-grade astrocytomas. These cells were concentrated in the zone between large ischemic necroses and blood vessels and were closer to the necrotic tissues than to the blood vessels, which suggested that a moderately hypoxic microenvironment is their niche. We successfully modeled this niche containing cells of HIF-1α+ quiescent stem-like phenotype by incubating glioblastoma cell spheroids under an appropriately hypoxic condition, and the emergence of HIF-1α+ quiescent stem-like cells was shown to be associated with an enhanced sphere-forming activity. Conclusions These data suggest that the “peri-necrotic niche” harboring HIF-1α+ quiescent stem-like cells confers a higher tumorigenic potential on glioblastoma cells and therefore may be a therapeutic target to control the behavior of glioblastomas. PMID:26799577

  11. Nanomedicine to overcome radioresistance in glioblastoma stem-like cells and surviving clones.

    PubMed

    Séhédic, Delphine; Cikankowitz, Annabelle; Hindré, François; Davodeau, François; Garcion, Emmanuel

    2015-04-01

    Radiotherapy is one of the standard treatments for glioblastoma, but its effectiveness often encounters the phenomenon of radioresistance. This resistance was recently attributed to distinct cell contingents known as glioblastoma stem-like cells (GSCs) and dominant clones. It is characterized in particular by the activation of signaling pathways and DNA repair mechanisms. Recent advances in the field of nanomedicine offer new possibilities for radiosensitizing these cell populations. Several strategies have been developed in this direction, the first consisting of encapsulating a contrast agent or synthesizing metal-based nanocarriers to concentrate the dose gradient at the level of the target tissue. In the second strategy the physicochemical properties of the vectors are used to encapsulate a wide range of pharmacological agents which act in synergy with the ionizing radiation to destroy the cancerous cells. This review reports on the various molecular anomalies present in GSCs and the predominant role of nanomedicines in the development of radiosensitization strategies.

  12. Drug Delivery Using Nanoparticles for Cancer Stem-Like Cell Targeting.

    PubMed

    Lu, Bing; Huang, Xiaojia; Mo, Jingxin; Zhao, Wei

    2016-01-01

    The theory of cancer stem-like cell (or cancer stem cell, CSC) has been established to explain how tumor heterogeneity arises and contributes to tumor progression in diverse cancer types. CSCs are believed to drive tumor growth and elicit resistance to conventional therapeutics. Therefore, CSCs are becoming novel target in both medical researches and clinical studies. Emerging evidences showed that nanoparticles effectively inhibit many types of CSCs by targeting various specific markers (aldehyde dehydrogenases, CD44, CD90, and CD133) and signaling pathways (Notch, Hedgehog, and TGF-β), which are critically involved in CSC function and maintenance. In this review, we briefly summarize the current status of CSC research and review a number of state-of-the-art nanomedicine approaches targeting CSC. In addition, we discuss emerging therapeutic strategies using epigenetic drugs to eliminate CSCs and inhibit cancer cell reprogramming.

  13. Biomarker-specific conjugated nanopolyplexes for the active coloring of stem-like cancer cells.

    PubMed

    Hong, Yoochan; Lee, Eugene; Choi, Jihye; Haam, Seungjoo; Suh, Jin-Suck; Yang, Jaemoon

    2016-06-03

    Stem-like cancer cells possess intrinsic features and their CD44 regulate redox balance in cancer cells to survive under stress conditions. Thus, we have fabricated biomarker-specific conjugated polyplexes using CD44-targetable hyaluronic acid and redox-sensible polyaniline based on a nanoemulsion method. For the most sensitive recognition of the cellular redox at a single nanoparticle scale, a nano-scattering spectrum imaging analyzer system was introduced. The conjugated polyplexes showed a specific targeting ability toward CD44-expressing cancer cells as well as a dramatic change in its color, which depended on the redox potential in the light-scattered images. Therefore, these polyaniline-based conjugated polyplexes as well as analytical processes that include light-scattering imaging and measurements of scattering spectra, clearly establish a systematic method for the detection and monitoring of cancer microenvironments.

  14. Hypoxia in the glioblastoma microenvironment: shaping the phenotype of cancer stem-like cells.

    PubMed

    Colwell, Nicole; Larion, Mioara; Giles, Amber J; Seldomridge, Ashlee N; Sizdahkhani, Saman; Gilbert, Mark R; Park, Deric M

    2017-07-01

    Glioblastoma is the most common and aggressive malignant primary brain tumor. Cellular heterogeneity is a characteristic feature of the disease and contributes to the difficulty in formulating effective therapies. Glioma stem-like cells (GSCs) have been identified as a subpopulation of tumor cells that are thought to be largely responsible for resistance to treatment. Intratumoral hypoxia contributes to maintenance of the GSCs by supporting the critical stem cell traits of multipotency, self-renewal, and tumorigenicity. This review highlights the interaction of GSCs with the hypoxic tumor microenvironment, exploring the mechanisms underlying the contribution of GSCs to tumor vessel dynamics, immune modulation, and metabolic alteration. Published by Oxford University Press on behalf of the Society for Neuro-Oncology 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. Biomarker-specific conjugated nanopolyplexes for the active coloring of stem-like cancer cells

    NASA Astrophysics Data System (ADS)

    Hong, Yoochan; Lee, Eugene; Choi, Jihye; Haam, Seungjoo; Suh, Jin-Suck; Yang, Jaemoon

    2016-06-01

    Stem-like cancer cells possess intrinsic features and their CD44 regulate redox balance in cancer cells to survive under stress conditions. Thus, we have fabricated biomarker-specific conjugated polyplexes using CD44-targetable hyaluronic acid and redox-sensible polyaniline based on a nanoemulsion method. For the most sensitive recognition of the cellular redox at a single nanoparticle scale, a nano-scattering spectrum imaging analyzer system was introduced. The conjugated polyplexes showed a specific targeting ability toward CD44-expressing cancer cells as well as a dramatic change in its color, which depended on the redox potential in the light-scattered images. Therefore, these polyaniline-based conjugated polyplexes as well as analytical processes that include light-scattering imaging and measurements of scattering spectra, clearly establish a systematic method for the detection and monitoring of cancer microenvironments.

  16. Drug Delivery Using Nanoparticles for Cancer Stem-Like Cell Targeting

    PubMed Central

    Lu, Bing; Huang, Xiaojia; Mo, Jingxin; Zhao, Wei

    2016-01-01

    The theory of cancer stem-like cell (or cancer stem cell, CSC) has been established to explain how tumor heterogeneity arises and contributes to tumor progression in diverse cancer types. CSCs are believed to drive tumor growth and elicit resistance to conventional therapeutics. Therefore, CSCs are becoming novel target in both medical researches and clinical studies. Emerging evidences showed that nanoparticles effectively inhibit many types of CSCs by targeting various specific markers (aldehyde dehydrogenases, CD44, CD90, and CD133) and signaling pathways (Notch, Hedgehog, and TGF-β), which are critically involved in CSC function and maintenance. In this review, we briefly summarize the current status of CSC research and review a number of state-of-the-art nanomedicine approaches targeting CSC. In addition, we discuss emerging therapeutic strategies using epigenetic drugs to eliminate CSCs and inhibit cancer cell reprogramming. PMID:27148051

  17. Cisplatin selects for stem-like cells in osteosarcoma by activating Notch signaling.

    PubMed

    Yu, Ling; Fan, Zhengfu; Fang, Shuo; Yang, Jian; Gao, Tian; Simões, Bruno M; Eyre, Rachel; Guo, Weichun; Clarke, Robert B

    2016-05-31

    Notch signaling regulates normal stem cells and is also thought to regulate cancer stem cells (CSCs). Recent data indicate that Notch signaling plays a role in the development and progression of osteosarcoma, however the regulation of Notch in chemo-resistant stem-like cells has not yet been fully elucidated. In this study we generated cisplatin-resistant osteosarcoma cells by treating them with sub-lethal dose of cisplatin, sufficient to induce DNA damage responses. Cisplatin-resistant osteosarcoma cells exhibited lower proliferation, enhanced spheroid formation and more mesenchymal characteristics than cisplatin-sensitive cells, were enriched for Stro-1+/CD117+ cells and showed increased expression of stem cell-related genes. A similar effect was observed in vivo, and in addition in vivo tumorigenicity was enhanced during serial transplantation. Using several publicly available datasets, we identified that Notch expression was closely associated with osteosarcoma stem cells and chemotherapy resistance. We confirmed that cisplatin-induced enrichment of osteosarcoma stem cells was mediated through Notch signaling in vitro, and immunohistochemistry showed that cleaved Notch1 (NICD1) positive cells were significantly increased in a relapsed xenograft which had received cisplatin treatment. Furthermore, pretreatment with a γ-secretase inhibitor (GSI) to prevent Notch signalling inhibited cisplatin-enriched osteosarcoma stem cell activity in vitro, including Stro-1+/CD117+ double positive cells and spheroid formation capacity. The Notch inhibitor DAPT also prevented tumor recurrence in resistant xenograft tumors. Overall, our results show that cisplatin induces the enrichment of osteosarcoma stem-like cells through Notch signaling, and targeted inactivation of Notch may be useful for the elimination of CSCs and overcoming drug resistance.

  18. Propagation of Human Prostate Cancer Stem-Like Cells Occurs through EGFR-Mediated ERK Activation

    PubMed Central

    Rybak, Adrian P.; Ingram, Alistair J.; Tang, Damu

    2013-01-01

    Prostate cancer stem-like cells (PCSCs) are being intensely investigated largely owing to their contributions towards prostate tumorigenesis, however, our understanding of PCSC biology, including their critical pathways, remains incompletely understood. While epidermal growth factor (EGF) is widely used in maintaining PCSC cells in vitro, the importance of EGF-dependent signaling and its downstream pathways in PCSC self-renewal are not well characterized. By investigating DU145 sphere cells, a population of prostate cancer cells with stem-like properties, we report here that epidermal growth factor receptor (EGFR) signaling plays a critical role in the propagation of DU145 PCSCs. Activation of EGFR signaling via addition of EGF and ectopic expression of a constitutively-active EGFR mutant (EGFRvIII) increased sphere formation. Conversely, inhibition of EGFR signaling by using EGFR inhibitors (AG1478 and PD168393) and knockdown of EGFR significantly inhibited PCSC self-renewal. Consistent with the MEK-ERK pathway being a major target of EGFR signaling, activation of the MEK-ERK pathway contributed to EGFR-facilitated PCSC propagation. Modulation of EGFR signaling affected extracellular signal-related kinase (ERK) activation. Inhibition of ERK activation through multiple approaches, including treatment with the MEK inhibitor U0126, ectopic expression of dominant-negative MEK1(K97M), and knockdown of either ERK1 or ERK2 resulted in a robust reduction in PCSC propagation. Collectively, the present study provides evidence that EGFR signaling promotes PCSC self-renewal, in part, by activating the MEK-ERK pathway. PMID:23620784

  19. Cervical cancer stem like cells: Systematic review and identification of reference genes for gene expression.

    PubMed

    de Campos, Rafael Paschoal; Schultz, Iago Carvalho; de Andrade Mello, Paola; Davies, Samuel; Gasparin, Manuela Sangalli; Bertoni, Ana Paula Santin; Buffon, Andréia; Wink, Márcia Rosângela

    2017-09-26

    Cervical cancer is the fourth most common cancer affecting women worldwide. Among many factors, the presence of cancer stem cells, a subpopulation of cells inside the tumor, has been associated with a worse prognosis. Considering the importance of gene expression studies to understand the biology of cervical cancer stem cells (CCSC), this work identifies stable reference genes for cervical cancer cell lines SiHa, HeLa and ME180 as well as their respective cancer stem-like cells. A literature review was performed to identify validated reference genes currently used to normalize RT-qPCR data in cervical cancer cell lines. Then, cell lines were cultured in regular monolayer or in a condition that favors tumor sphere formation. RT-qPCR was performed using five reference genes: ACTB, B2M, GAPDH, HPRT1 and TBP. Stability was assessed to validate the selected genes as suitable reference genes. The evaluation validated B2M, GAPDH, HPRT1 and TBP in these experimental conditions. Among them, GAPDH and TBP presented the lowest variability according to the analysis by Normfinder, Bestkeeper and δCq methods, being therefore the most adequate genes to normalize the combination of all samples. These results suggest that B2M, GAPDH, HPRT1 and TBP are suitable reference genes to normalize RT-qPCR data of established cervical cancer cell lines SiHa, HeLa and ME180 as well as their derived cancer stem-like cells. Indeed, GAPDH and TBP seem to be the most convenient choices for studying gene expression in these cells in monolayers or spheres. This article is protected by copyright. All rights reserved.

  20. Ubiquitin B in cervical cancer: critical for the maintenance of cancer stem-like cell characters.

    PubMed

    Tian, Yuan; Ding, Wencheng; Wang, Yingying; Ji, Teng; Sun, Shujuan; Mo, Qingqing; Chen, Pingbo; Fang, Yong; Liu, Jia; Wang, Beibei; Zhou, Jianfeng; Ma, Ding; Wu, Peng

    2013-01-01

    Cervical cancer cells exhibit an increased requirement for ubiquitin-dependent protein degradation associated with an elevated metabolic turnover rate. Ubiquitin, which is a small, highly conserved protein expressed in all eukaryotic cells, can be covalently linked to certain target proteins to mark them for degradation by the ubiquitin-proteasome system. Previous studies highlight the essential role of Ubiquitin B (UbB) and UbB-dependent proteasomal protein degradation in histone deacetylase inhibitor (HDACi) -induced tumor selectivity. We hypothesized that UbB plays a critical role in the function of cervical cancer stem cells. We measured endogenous UbB levels in mammospheres in vitro by real-time PCR and Western blotting. The function of UbB in cancer stem-like cells was assessed after knockdown of UbB expression in prolonged Trichostatin A-selected HeLa cells (HeLa/TSA) by measuring in vitro cell proliferation, cell apoptosis, invasion, and chemotherapy resistance as well as by measuring in vivo growth in an orthotopic model of cervical cancer. We also assessed the cancer stem cell frequency, tumorsphere formation, and in vivo growth of human cervical cancer xenografts after UbB silencing. We found that HeLa/TSA were resistant to chemotherapy, highly expressed the UbB gene and the stem cell markers Sox2, Oct4 and Nanog. These cells also displayed induced differentiation abilities, including enhanced migration/invasion/malignancy capabilities in vitro and in vivo. Furthermore, an elevated expression of UbB was shown in the tumor samples of chemotherapy patients. Silencing of UbB inhibited tumorsphere formation, lowered the expression of stem cell markers and decreased cervical xenograft growth. Our results demonstrate that UbB was significantly increased in prolonged Trichostatin A-selected HeLa cells and it played a key role in the maintenance of cervical cancer stem-like cells.

  1. Hallmarks in colorectal cancer: angiogenesis and cancer stem-like cells.

    PubMed

    Mathonnet, Muriel; Perraud, Aurelie; Christou, Niki; Akil, Hussein; Melin, Carole; Battu, Serge; Jauberteau, Marie-Odile; Denizot, Yves

    2014-04-21

    Carcinogenesis is a multistep process that requires the accumulation of various genetic and epigenetic aberrations to drive the progressive malignant transformation of normal human cells. Two major hallmarks of carcinogenesis that have been described are angiogenesis and the stem cell characteristic of limitless replicative potential. These properties have been targeted over the past decade in the development of therapeutic treatments for colorectal cancer (CRC), one of the most commonly diagnosed and lethal cancers worldwide. The treatment of solid tumor cancers such as CRC has been challenging due to the heterogeneity of the tumor itself and the chemoresistance of the malignant cells. Furthermore, the same microenvironment that maintains the pool of intestinal stem cells that contribute to the continuous renewal of the intestinal epithelia also provides the necessary conditions for proliferative growth of cancer stem-like cells. These cancer stem-like cells are responsible for the resistance to therapy and cancer recurrence, though they represent less than 2.5% of the tumor mass. The stromal environment surrounding the tumor cells, referred to as the tumor niche, also supports angiogenesis, which supplies the oxygen and nutrients needed for tumor development. Anti-angiogenic therapy, such as with bevacizumab, a monoclonal antibody against vascular-endothelial growth factor, significantly prolongs the survival of metastatic CRC patients. However, such treatments are not completely curative, and a large proportion of patient tumors retain chemoresistance or show recurrence. This article reviews the current knowledge regarding the molecular phenotype of CRC cancer cells, as well as discusses the mechanisms contributing to their maintenance. Future personalized therapeutic approaches that are based on the interaction of the carcinogenic hallmarks, namely angiogenic and proliferative attributes, could improve survival and decrease adverse effects induced by

  2. Notch4+ cancer stem-like cells promote the metastatic and invasive ability of melanoma.

    PubMed

    Lin, Xian; Sun, Baocun; Zhu, Dongwang; Zhao, Xiulan; Sun, Ran; Zhang, Yanhui; Zhang, Danfang; Dong, Xueyi; Gu, Qiang; Li, Yanlei; Liu, Fang

    2016-08-01

    Sphere formation in conditioned serum-free culture medium supplemented with epidermal growth factor and basic fibroblast growth factor (tumorospheres) is considered useful for the enrichment of cancer stem-like cells, also known as tumor-initiating cells. We used a gene expression microarray to investigate the gene expression profile of melanoma cancer stem-like cells (MCSLCs). The results showed that MCSLCs highly expressed the following Notch signaling pathway molecules: Notch3 (NM_008716), Notch4 (NM_010929), Dtx4 (NM_172442), and JAG2 (NM_010588). Immunofluorescence staining showed tumorosphere cells highly expressed Notch4. Notch4(high) B16F10 cells were isolated by FACS, and Western blotting showed that high Notch4 expression is related to the expression of epithelial-mesenchymal transition (EMT)-associated proteins. Reduced invasive and migratory properties concomitant with the downregulation of the EMT markers Twist1, vimentin, and VE-cadherin and the overexpression of E-cadherin was observed in human melanoma A375 and MUM-2B cells. In these cells, Notch4 was also downregulated, both by Notch4 gene knockdown and by application of the γ-secretase inhibitor, DAPT. Mechanistically, the re-overexpression of Twist1 by the transfection of cells with a Twist1 expression plasmid led to an increase in VE-cadherin expression and a decrease in E-cadherin expression. Immunohistochemical analysis of 120 human melanoma tissues revealed a significant correlation between the high expression of Notch4 and the metastasis of melanoma. Taken together, our findings indicate that Notch4+ MCSLCs trigger EMT and promote the metastasis of melanoma cells.

  3. The hypoxic microenvironment upgrades stem-like properties of ovarian cancer cells

    PubMed Central

    2012-01-01

    Background To study whether hypoxia influences the stem-like properties of ovarian cancer cells and their biological behavior under hypoxia. Method Ovarian cancer cell lines ES-2 and OVCAR-3 were cultivated in different oxygen tensions for proliferation, cell cycling and invasion analyses. The clonogenic potential of cells was examined by colony formation and sphere formation assays. Stem cell surface markers, SP and CD44bright and CD44dim cells were analyzed by flow cytometry. Protein expression of HIF-1α, HIF-2α, Ot3/4 and Sox2 were investigated by Western blotting. Results Both cell lines cultivated at hypoxic condition grew relatively slowly with extended G0/G1 phase. However, if the cells were pre-treated under 1% O2 for 48 hrs before brought back to normoxia, the cells showed significantly higher proliferation rate with higher infiltration capability, and significant more colonies and spheres, in comparison to the cells always cultivated under normoxia. CD44bright cells expressed significantly higher levels of Oct3/4 and Sox2 than the CD44dim cells and formed significantly more clones and spheres examined in vitro. Hypoxic treatment of the cells resulted in stronger CD44 expression in both cell lines, and stronger CD133 expression in the OVCAR-3 cell line. In parallel with these findings, significantly increased number of side population (SP) cells and up-regulated expression of Oct3/4 and Sox2 in both ES-2 and OVCAR-3 cell lines were observed. Conclusion We conclude that ovarian cancer cells survive hypoxia by upgrading their stem-like properties through up-regulation of stemness-related factors and behave more aggressively when brought back to higher oxygen environment. PMID:22642602

  4. Mesenchymal and stem-like cell properties targeted in suppression of chronically-induced breast cell carcinogenesis

    PubMed Central

    Rathore, Kusum; Wang, Hwa-Chain Robert

    2013-01-01

    Stem-like cells and the epithelial-to-mesenchymal transition (EMT) program are postulated to play important roles in various stages of cancer development, but their roles in breast cell carcinogenesis and intervention remain to be clarified. We investigated stem-like cell- and EMT-associated properties and markers in breast epithelial cells chronically exposed to low-dose 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene in the presence and absence of the preventive agents green tea catechins and grape seed extract. Our results indicate that stem-like cell- and EMT-associated properties and markers should be seriously considered as new cancer-associated indicators for detecting breast cell carcinogenesis and as endpoints for intervention of carcinogenesis. PMID:23352646

  5. Small G protein Rac GTPases regulate the maintenance of glioblastoma stem-like cells in vitro and in vivo.

    PubMed

    Lai, Yun-Ju; Tsai, Jui-Cheng; Tseng, Ying-Ting; Wu, Meng-Shih; Liu, Wen-Shan; Lam, Hoi-Ian; Yu, Jei-Hwa; Nozell, Susan E; Benveniste, Etty N

    2017-03-14

    Glioblastoma is the most common and aggressive malignant brain tumor in adults. The existence of glioblastoma stem cells (GSCs) or stem-like cells (stemloids) may account for its invasiveness and high recurrence. Rac proteins belong to the Rho small GTPase subfamily which regulates cell movement, proliferation, and survival. To investigate whether Rac proteins can serve as therapeutic targets for glioblastoma, especially for GSCs or stemloids, we examined the potential roles of Rac1, Rac2 and Rac3 on the properties of tumorspheres derived from glioblastoma cell lines. Tumorspheres are thought to be glioblastoma stem-like cells. We showed that Rac proteins promote the STAT3 and ERK activation and enhance cell proliferation and colony formation of glioblastoma stem-like cells. Knockdown of Rac proteins reduces the expression of GSC markers, such as CD133 and Sox2. The in vivo effects of Rac proteins in glioblastoma were further studied in zebrafish and in the mouse xenotransplantation model. Knocking-down Rac proteins abolished the angiogenesis effect induced by the injected tumorspheres in zebrafish model. In the CD133+-U373-tumorsphere xenotransplanted mouse model, suppression of Rac proteins decreased the incidence of tumor formation and inhibited the tumor growth. Moreover, knockdown of Rac proteins reduced the sphere forming efficiency of cells derived from these tumors. In conclusion, not only Rac1 but also Rac2 and 3 are important for glioblastoma tumorigenesis and can serve as the potential therapeutic targets against glioblastoma and its stem-like cells.

  6. Etoposide-Bevacizumab a new strategy against human melanoma cells expressing stem-like traits

    PubMed Central

    Calvani, Maura; Bianchini, Francesca; Taddei, Maria Letizia; Becatti, Matteo; Giannoni, Elisa; Chiarugi, Paola; Calorini, Lido

    2016-01-01

    Tumors contain a sub-population of self-renewing and expanding cells known as cancer stem cells (CSCs). Putative CSCs were isolated from human melanoma cells of a different aggressiveness, Hs294T and A375 cell lines, grown under hypoxia using “sphere-forming assay”, CD133 surface expression and migration ability. We found that a cell sub-population enriched for P1 sphere-initiating ability and CD133 expression also express larger amount of VEGF-R2. Etoposide does not influence phenotype of this sub-population of melanoma cells, while a combined treatment with Etoposide and Bevacizumab significantly abolished P1 sphere-forming ability, an effect associated with apoptosis of this subset of cells. Hypoxic melanoma cells sorted for VEGF-R2/CD133 positivity also undergo apoptosis when exposed to Etoposide and Bevacizumab. When Etoposide and Bevacizumab-treated hypoxic cells were injected intravenously into immunodeficient mice revealed a reduced capacity to induce lung colonies, which also appear with a longer latency period. Hence, our study indicates that a combined exposure to Etoposide and Bevacizumab targets melanoma cells endowed with stem-like properties and might be considered a novel approach to treat cancer-initiating cells. PMID:27303923

  7. Ependymal cells of chordate larvae are stem-like cells that form the adult nervous system.

    PubMed

    Horie, Takeo; Shinki, Ryoko; Ogura, Yosuke; Kusakabe, Takehiro G; Satoh, Nori; Sasakura, Yasunori

    2011-01-27

    In ascidian tunicates, the metamorphic transition from larva to adult is accompanied by dynamic changes in the body plan. For instance, the central nervous system (CNS) is subjected to extensive rearrangement because its regulating larval organs are lost and new adult organs are created. To understand how the adult CNS is reconstructed, we traced the fate of larval CNS cells during ascidian metamorphosis by using transgenic animals and imaging technologies with photoconvertible fluorescent proteins. Here we show that most parts of the ascidian larval CNS, except for the tail nerve cord, are maintained during metamorphosis and recruited to form the adult CNS. We also show that most of the larval neurons disappear and only a subset of cholinergic motor neurons and glutamatergic neurons are retained. Finally, we demonstrate that ependymal cells of the larval CNS contribute to the construction of the adult CNS and that some differentiate into neurons in the adult CNS. An unexpected role of ependymal cells highlighted by this study is that they serve as neural stem-like cells to reconstruct the adult nervous network during chordate metamorphosis. Consequently, the plasticity of non-neuronal ependymal cells and neuronal cells in chordates should be re-examined by future studies.

  8. Fluorouracil selectively enriches stem-like cells in the lung adenocarcinoma cell line SPC.

    PubMed

    Shi, Mu-mu; Xiong, Yan-lei; Jia, Xin-shan; Li, Xin; Zhang, Li; Li, Xiao-lei; Wang, En-Hua

    2013-06-01

    Most adult stem cells are in the G0 or quiescent phase of the cell cycle and account for only a small percentage of the cells in the tissue. Thus, isolation of stem cells from tissues for further study represents a major challenge. This study sought to enrich cancer stem cells and explore cancer stem-like cell clones using 5-fluorouracil (5-FU) in the lung adenocarcinoma cell line, SPC. Proliferation inhibition was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, according to which half maximal inhibitory concentration values were calculated. Expression levels of stem cell markers after treatment with 5-FU were examined using immunofluorescence and Western blotting. Additionally, side population (SP) cells were sorted using FACS. Properties of SP cells were evaluated by using Transwell, colony-forming assays, and tumor formation experiments. 5-FU greatly inhibits proliferation, especially of cells in S phase. SP cells possess greater invasive potential, higher clone-forming potential, and greater tumor-forming ability than non-SP cells. Treatment with 5-FU enriches the SP cells with stem cell properties in human lung adenocarcinoma cell lines.

  9. Oncolytic herpes simplex virus kills stem-like tumor-initiating colon cancer cells

    PubMed Central

    Warner, Susanne G; Haddad, Dana; Au, Joyce; Carson, Joshua S; O’Leary, Michael P; Lewis, Christina; Monette, Sebastien; Fong, Yuman

    2016-01-01

    Stem-like tumor-initiating cells (TICs) are implicated in cancer progression and recurrence, and can be identified by sphere-formation and tumorigenicity assays. Oncolytic viruses infect, replicate in, and kill a variety of cancer cells. In this study, we seek proof of principle that TICs are susceptible to viral infection. HCT8 human colon cancer cells were subjected to serum-free culture to generate TIC tumorspheres. Parent cells and TICs were infected with HSV-1 subtype NV1066. Cytotoxicity, viral replication, and Akt1 expression were assessed. TIC tumorigenicity was confirmed and NV1066 efficacy was assessed in vivo. NV1066 infection was highly cytotoxic to both parent HCT8 cells and TICs. In both populations, cell-kill of >80% was achieved within 3 days of infection at a multiplicity of infection (MOI) of 1.0. However, the parent cells required 2-log greater viral replication to achieve the same cytotoxicity. TICs overexpressed Akt1 in vitro and formed flank tumors from as little as 100 cells, growing earlier, faster, larger, and with greater histologic atypia than tumors from parent cells. Treatment of TIC-induced tumors with NV1066 yielded tumor regression and slowed tumor growth. We conclude that colon TICs are selected for by serum-free culture, overexpress Akt1, and are susceptible to oncolytic viral infection. PMID:27347556

  10. Vascular Transdifferentiation in the CNS: A Focus on Neural and Glioblastoma Stem-Like Cells

    PubMed Central

    Bauchet, Luc; Rothhut, Bernard; Hugnot, Jean-Philippe

    2016-01-01

    Glioblastomas are devastating and extensively vascularized brain tumors from which glioblastoma stem-like cells (GSCs) have been isolated by many groups. These cells have a high tumorigenic potential and the capacity to generate heterogeneous phenotypes. There is growing evidence to support the possibility that these cells are derived from the accumulation of mutations in adult neural stem cells (NSCs) as well as in oligodendrocyte progenitors. It was recently reported that GSCs could transdifferentiate into endothelial-like and pericyte-like cells both in vitro and in vivo, notably under the influence of Notch and TGFβ signaling pathways. Vascular cells derived from GBM cells were also observed directly in patient samples. These results could lead to new directions for designing original therapeutic approaches against GBM neovascularization but this specific reprogramming requires further molecular investigations. Transdifferentiation of nontumoral neural stem cells into vascular cells has also been described and conversely vascular cells may generate neural stem cells. In this review, we present and discuss these recent data. As some of them appear controversial, further validation will be needed using new technical approaches such as high throughput profiling and functional analyses to avoid experimental pitfalls and misinterpretations. PMID:27738435

  11. Reconstructing and reprogramming the tumor propagating potential of glioblastoma stem-like cells

    PubMed Central

    Suvà, Mario L.; Rheinbay, Esther; Gillespie, Shawn M.; Patel, Anoop P.; Wakimoto, Hiroaki; Rabkin, Samuel D.; Riggi, Nicolo; Chi, Andrew S.; Cahill, Daniel P.; Nahed, Brian V.; Curry, William T.; Martuza, Robert L.; Rivera, Miguel N.; Rossetti, Nikki; Kasif, Simon; Beik, Samantha; Kadri, Sabah; Tirosh, Itay; Wortman, Ivo; Shalek, Alex; Rozenblatt-Rosen, Orit; Regev, Aviv; Louis, David N.; Bernstein, Bradley E.

    2014-01-01

    Summary Developmental fate decisions are dictated by master transcription factors (TFs) that interact with cis-regulatory elements to direct transcriptional programs. Certain malignant tumors may also depend on cellular hierarchies reminiscent of normal development but superimposed on underlying genetic aberrations. In glioblastoma (GBM), a subset of stem-like tumor-propagating cells (TPCs) appears to drive tumor progression and underlie therapeutic resistance, yet remain poorly understood. Here, we identify a core set of neurodevelopmental TFs (POU3F2, SOX2, SALL2, OLIG2) essential for GBM propagation. These TFs coordinately bind and activate TPC-specific regulatory elements, and are sufficient to fully reprogram differentiated GBM cells to ‘induced’ TPCs, recapitulating the epigenetic landscape and phenotype of native TPCs. We reconstruct a network model that highlights critical interactions and identifies novel therapeutic targets for eliminating TPCs. Our study establishes the epigenetic basis of a developmental hierarchy in GBM, provides detailed insight into underlying gene regulatory programs, and suggests attendant therapeutic strategies. PMID:24726434

  12. Hedgehog Signaling Regulates Epithelial-Mesenchymal Transition in Pancreatic Cancer Stem-Like Cells

    PubMed Central

    Wang, Feng; Ma, Ling; Zhang, Zhengkui; Liu, Xiaoran; Gao, Hongqiao; Zhuang, Yan; Yang, Pei; Kornmann, Marko; Tian, Xiaodong; Yang, Yinmo

    2016-01-01

    Hedgehog (Hh) signaling is crucially involved in tumorigenesis. This study aimed to assess the role of Hh signaling in the regulation of epithelial-mesenchymal transition (EMT), stemness properties and chemoresistance of human pancreatic Panc-1 cancer stem cells (CSCs). Panc-1 cells were transfected with recombinant lentiviral vectors to silence SMO and serum-free floating-culture system was used to isolate Panc-1 tumorspheres. The expression of CSC and EMT markers was detected by flow cytometry, real-time RT-PCR and Western blot analysis. Malignant behaviors of Panc-1 CSC were evaluated by tumorigenicity assays and nude mouse lung metastasis model. We found that tumorspheres derived from pancreatic cancer cell line Panc-1 possessed self-renewal, differentiation and stemness properties. Hh pathway and EMT were active in Panc-1 tumorspheres. Inhibition of Hh signaling by SMO knockdown inhibited self-renewal, EMT, invasion, chemoresistance, pulmonary metastasis, tumorigenesis of pancreatic CSCs. In conclusion, Hh signaling contributes to the maintenance of stem-like properties and chemoresistance of pancreatic CSC and promotes the tumorigenesis and metastasis of pancreatic cancer. Hh pathway is a potential molecular target for the development of therapeutic strategies for pancreatic CSCs. PMID:26918054

  13. Melatonin Inhibits Glioblastoma Stem-like cells through Suppression of EZH2-NOTCH1 Signaling Axis

    PubMed Central

    Zheng, Xiangrong; Pang, Bo; Gu, Guangyan; Gao, Taihong; Zhang, Rui; Pang, Qi; Liu, Qian

    2017-01-01

    Glioblastoma stem-like cells (GSCs) play essential roles in glioma growth, radio- and chemo-resistance, and recurrence. Elimination of GSCs has therefore become a key strategy and challenge in glioblastoma therapy. Here, we show that melatonin, an indolamine derived from I-tryptophan, significantly inhibited viability and self-renewal ability of GSCs accompanied by a decrease of stem cell markers. We have identified EZH2-NOTCH1 signaling as the key signal pathway that regulated the effects of melatonin in the GSCs. Instead of transcriptionally silencing gene expression by generating a methylated epigenetic mark at histone 3 at lysine 27 (H3K27), EZH2 regulates NOTCH1 expression by directly binding to the NOTCH1 promoter. Moreover, correlation between the expressions of EZH2 and NOTCH intracellular domain 1 (NICD1) was observed in the clinical tumor samples, evidently supporting the existence of EZH2-NOTCH1 interaction in the gliomas and GSCs. Collectively, we demonstrated that melatonin, a potential tumor inhibitor, performs its function partly by suppressing GSC properties through EZH2-NOTCH1 signaling axis. PMID:28255276

  14. Hyperthermia Sensitizes Glioma Stem-like Cells to Radiation By Inhibiting AKT Signaling

    PubMed Central

    Man, Jianghong; Shoemake, Jocelyn D.; Ma, Tuopu; Rizzo, Anthony E.; Godley, Andrew R.; Wu, Qiulian; Mohammadi, Alireza M.; Bao, Shideng; Rich, Jeremy N.; Yu, Jennifer S.

    2015-01-01

    Glioma stem-like cells (GSCs) are a subpopulation of cells in tumors that are believed to mediate self-renewal and relapse in glioblastoma (GBM), the most deadly form of primary brain cancer. In radiation oncology, hyperthermia is known to radiosensitize cells and it is re-emerging as a treatment option for patients with GBM. In this study, we investigated the mechanisms of hyperthermic radiosensitization in GSCs by a phosphokinase array that revealed the survival kinase AKT as a critical sensitization determinant. GSCs treated with radiation alone exhibited increased AKT activation, but the addition of hyperthermia before radiotherapy reduced AKT activation and impaired GSC proliferation. Introduction of constitutively active AKT in GSCs compromised hyperthermic radiosensitization. Pharmacologic inhibition of PI3K further enhanced the radiosensitizing effects of hyperthermia. In a preclinical orthotopic transplant model of human GBM, thermoradiotherapy reduced pS6 levels, delayed tumor growth and extended animal survival. Together, our results offer a preclinical proof-of-concept for further evaluation of combined hyperthermia and radiation for GBM treatment. PMID:25712125

  15. Identification of inhibitors of ovarian cancer stem-like cells by high-throughput screening

    PubMed Central

    2012-01-01

    Background Ovarian cancer stem cells are characterized by self-renewal capacity, ability to differentiate into distinct lineages, as well as higher invasiveness and resistance to many anticancer agents. Since they may be responsible for the recurrence of ovarian cancer after initial response to chemotherapy, development of new therapies targeting this special cellular subpopulation embedded within bulk ovarian cancers is warranted. Methods A high-throughput screening (HTS) campaign was performed with 825 compounds from the Mechanistic Set chemical library [Developmental Therapeutics Program (DTP)/National Cancer Institute (NCI)] against ovarian cancer stem-like cells (CSC) using a resazurin-based cell cytotoxicity assay. Identified sets of active compounds were projected onto self-organizing maps to identify their putative cellular response groups. Results From 793 screening compounds with evaluable data, 158 were found to have significant inhibitory effects on ovarian CSC. Computational analysis indicates that the majority of these compounds are associated with mitotic cellular responses. Conclusions Our HTS has uncovered a number of candidate compounds that may, after further testing, prove effective in targeting both ovarian CSC and their more differentiated progeny. PMID:23078816

  16. Survival, proliferation, and migration of human meningioma stem-like cells in a nanopeptide scaffold

    PubMed Central

    Negah, Sajad Sahab; Aligholi, Hadi; Khaksar, Zabihollah; Kazemi, Hadi; Mousavi, Sayed Mostafa Modarres; Safahani, Maryam; Dowom, Parastoo Barati; Gorji, Ali

    2016-01-01

    Objective(s): In order to grow cells in a three-dimensional (3D) microenvironment, self-assembling peptides, such as PuraMatrix, have emerged with potential to mimic the extracellular matrix. The aim of the present study was to investigate the influence of the self-assembling peptide on the morphology, survival, proliferation rate, migration potential, and differentiation of human meningioma stem-like cells (hMgSCs). Materials and Methods: The efficacy of a novel method for placing hMgSCs in PuraMatrix (the injection approach) was compared to the encapsulation and surface plating methods. In addition, we designed a new method for measurement of migration distance in 3D cultivation of hMgSCs in PuraMatrix. Results: Our results revealed that hMgSCs have the ability to form spheres in stem cell culture condition. These meningioma cells expressed GFAP, CD133, vimentin, and nestin. Using the injection method, a higher proliferation rate of the hMgSCs was observed after seven days of culture. Furthermore, the novel migration assay was able to measure the migration of a single cell alone in 3D environment. Conclusion: The results indicate the injection method as an efficient technique for culturing hMgSCs in PuraMatrix. Furthermore, the novel migration assay enables us to evaluate the migration of hMgSCs. PMID:28096958

  17. Immune responses to human cancer stem-like cells/cancer-initiating cells.

    PubMed

    Hirohashi, Yoshihiko; Torigoe, Toshihiko; Tsukahara, Tomohide; Kanaseki, Takayuki; Kochin, Vitaly; Sato, Noriyuki

    2016-01-01

    Cancer stem-like cells (CSC)/cancer-initiating cells (CIC) are defined as minor subpopulations of cancer cells that are endowed with properties of higher tumor-initiating ability, self-renewal ability and differentiation ability. Accumulating results of recent studies have revealed that CSC/CIC are resistant to standard cancer therapies, including chemotherapy, radiotherapy and molecular targeting therapy, and eradiation of CSC/CIC is, thus, critical to cure cancer. Cancer immunotherapy is expected to become the "fourth" cancer therapy. Cytotoxic T lymphocytes (CTL) play an essential role in immune responses to cancers, and CTL can recognize CSC/CIC in an antigen-specific manner. CSC/CIC express several tumor-associated antigens (TAA), and cancer testis (CT) antigens are reasonable sources for CSC/CIC-targeting immunotherapy. In this review article, we discuss CSC/CIC recognition by CTL, regulation of immune systems by CSC/CIC, TAA expression in CSC/CIC, and the advantages of CSC/CIC-targeting immunotherapy. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  18. miR-367 promotes proliferation and stem-like traits in medulloblastoma cells

    PubMed Central

    Kaid, Carolini; Silva, Patrícia B G; Cortez, Beatriz A; Rodini, Carolina O; Semedo-Kuriki, Patricia; Okamoto, Oswaldo K

    2015-01-01

    In medulloblastoma, abnormal expression of pluripotency factors such as LIN28 and OCT4 has been correlated with poor patient survival. The miR-302/367 cluster has also been shown to control self-renewal and pluripotency in human embryonic stem cells and induced pluripotent stem cells, but there is limited, mostly correlational, information about these pluripotency-related miRNA in cancer. We evaluated whether aberrant expression of such miRNA could affect tumor cell behavior and stem-like traits, thereby contributing to the aggressiveness of medulloblastoma cells. Basal expression of primary and mature forms of miR-367 were detected in four human medulloblastoma cell lines and expression of the latter was found to be upregulated upon enforced expression of OCT4A. Transient overexpression of miR-367 significantly enhanced tumor features typically correlated with poor prognosis; namely, cell proliferation, 3-D tumor spheroid cell invasion and the ability to generate neurosphere-like structures enriched in CD133 expressing cells. A concurrent downregulation of the miR-367 cancer-related targets RYR3, ITGAV and RAB23, was also detected in miR-367-overexpressing cells. Overall, these findings support the pro-oncogenic activity of miR-367 in medulloblastoma and reveal a possible mechanism contributing to tumor aggressiveness, which could be further explored to improve patient stratification and treatment of this important type of pediatric brain cancer. PMID:26250335

  19. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells.

    PubMed

    Zhang, S; Mercado-Uribe, I; Xing, Z; Sun, B; Kuang, J; Liu, J

    2014-01-02

    Polyploid giant cancer cells (PGCCs) have been observed by pathologists for over a century. PGCCs contribute to solid tumor heterogeneity, but their functions are largely undefined. Little attention has been given to these cells, largely because PGCCs have been generally thought to originate from repeated failure of mitosis/cytokinesis and have no capacity for long-term survival or proliferation. Here we report our successful purification and culture of PGCCs from human ovarian cancer cell lines and primary ovarian cancer. These cells are highly resistant to oxygen deprivation and could form through endoreduplication or cell fusion, generating regular-sized cancer cells quickly through budding or bursting similar to simple organisms like fungi. They express normal and cancer stem cell markers, they divide asymmetrically and they cycle slowly. They can differentiate into adipose, cartilage and bone. A single PGCC formed cancer spheroids in vitro and generated tumors in immunodeficient mice. These PGCC-derived tumors gained a mesenchymal phenotype with increased expression of cancer stem cell markers CD44 and CD133 and become more resistant to treatment with cisplatin. Taken together, our results reveal that PGCCs represent a resistant form of human cancer using an ancient, evolutionarily conserved mechanism in response to hypoxia stress; they can contribute to the generation of cancer stem-like cells, and also play a fundamental role in regulating tumor heterogeneity, tumor growth and chemoresistance in human cancer.

  20. Interferon-α/β enhances temozolomide activity against MGMT-positive glioma stem-like cells.

    PubMed

    Shen, Dong; Guo, Cheng-Cheng; Wang, Jing; Qiu, Zhi-Kun; Sai, Ke; Yang, Qun-Ying; Chen, Yin-Sheng; Chen, Fu-Rong; Wang, Jie; Panasci, Lawrence; Chen, Zhong-Ping

    2015-11-01

    Glioma is one of the most common primary tumors of the central nervous system in adults. Glioblastoma (GBM) is the most lethal type of glioma, whose 5-year survival is 9.8% at best. Glioma stem-like cells (GSCs) play an important role in recurrence and treatment resistance. MGMT is a DNA repair protein that removes DNA adducts and therefore attenuates treatment efficiency. It has been reported that interferon-α/β (IFN-α/β) downregulates the level of MGMT and sensitizes glioma cells to temozolomide. In the present study, we assessed whether IFN-α/β is able to sensitize GSCs to temozolomide by modulating MGMT expression. Upon the treatment of IFN-α/β, the efficacy of temozolomide against MGMT‑positive GSCs was markedly enhanced by combination treatment with IFN-α/β when compared with the temozolomide single agent group, and MGMT expression was markedly decreased at the same time. Further mechanistic study showed that IFN-α/β suppressed the NF-κB activity, which further mediated the sensitization of MGMT‑positive GSCs to temozolomide. Our data therefore demonstrated that the application of IFN-α/β is a promising agent with which to enhance temozolomide efficiency and reduce drug resistance, and our findings shed light on improving clinical outcomes and prolonging the survival of patients with malignant gliomas.

  1. Breast cancer stem-like cells: clinical implications and therapeutic strategies

    PubMed Central

    TUDORAN, OANA MIHAELA; BALACESCU, OVIDIU; BERINDAN-NEAGOE, IOANA

    2016-01-01

    Breast cancer is the most frequently diagnosed cancer in women, being also the leading cause of cancer death among female population, including in Romania. Resistance to therapy represents a major problem for cancer treatment. Current cancer treatments are both expensive and induce serious side effects; therefore ineffective therapies are both traumatic and pricy. Characterizing predictive markers that can identify high-risk patients could contribute to dedicated/personalized therapy to improve the life quality and expectancy of cancer patients. Moreover, there are some markers that govern specific tumor molecular features that can be targeted with specific therapies for those patients who are most likely to benefit. The identification of stem cells in both normal and malignant breast tissue have lead to the hypothesis that breast tumors arise from breast cancer stem-like cells (CSCs), and that these cells influence tumor’s response to therapy. CSCs have similar self-renewal properties to normal stem cells, however the balance between the signaling pathways is altered towards tumor formation In this review, we discuss the molecular aspects of breast CSCs and the controversies regarding their use in the diagnosis and treatment decision of breast cancer patients. PMID:27152067

  2. MicroRNA-Mediated Dynamic Bidirectional Shift between the Subclasses of Glioblastoma Stem-like Cells.

    PubMed

    Rooj, Arun K; Ricklefs, Franz; Mineo, Marco; Nakano, Ichiro; Chiocca, E Antonio; Bronisz, Agnieszka; Godlewski, Jakub

    2017-06-06

    Large-scale transcriptomic profiling of glioblastoma (GBM) into subtypes has provided remarkable insight into the pathobiology and heterogeneous nature of this disease. The mechanisms of speciation and inter-subtype transitions of these molecular subtypes require better characterization to facilitate the development of subtype-specific targeting strategies. The deregulation of microRNA expression among GBM subtypes and their subtype-specific targeting mechanisms are poorly understood. To reveal the underlying basis of microRNA-driven complex subpopulation dynamics within the heterogeneous intra-tumoral ecosystem, we characterized the expression of the subtype-enriched microRNA-128 (miR-128) in transcriptionally and phenotypically diverse subpopulations of patient-derived glioblastoma stem-like cells. Because microRNAs are capable of re-arranging the molecular landscape in a cell-type-specific manner, we argue that alterations in miR-128 levels are a potent mechanism of bidirectional transitions between GBM subpopulations, resulting in intermediate hybrid stages and emphasizing highly intricate intra-tumoral networking. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. The clinical potential of targeted nanomedicine: delivering to cancer stem-like cells.

    PubMed

    Kim, Sang-Soo; Rait, Antonina; Rubab, Farwah; Rao, Abhi K; Kiritsy, Michael C; Pirollo, Kathleen F; Wang, Shangzi; Weiner, Louis M; Chang, Esther H

    2014-02-01

    Cancer stem-like cells (CSCs) have been implicated in recurrence and treatment resistance in many human cancers. Thus, a CSC-targeted drug delivery strategy to eliminate CSCs is a desirable approach for developing a more effective anticancer therapy. We have developed a tumor-targeting nanodelivery platform (scL) for systemic administration of molecular medicines. Following treatment with the scL nanocomplex carrying various payloads, we have observed exquisite tumor-targeting specificity and significant antitumor response with long-term survival benefit in numerous animal models. We hypothesized that this observed efficacy might be attributed, at least in part, to elimination of CSCs. Here, we demonstrate the ability of scL to target both CSCs and differentiated nonstem cancer cells (non-CSCs) in various mouse models including subcutaneous and intracranial xenografts, syngeneic, and chemically induced tumors. We also show that systemic administration of scL carrying the wtp53 gene was able to induce tumor growth inhibition and the death of both CSCs and non-CSCs in subcutaneous colorectal cancer xenografts suggesting that this could be an effective method to reduce cancer recurrence and treatment resistance. This scL nanocomplex is being evaluated in a number of clinical trials where it has been shown to be well tolerated with indications of anticancer activity.

  4. Targeting cancer stem-like cells in glioblastoma and colorectal cancer through metabolic pathways.

    PubMed

    Kahlert, U D; Mooney, S M; Natsumeda, M; Steiger, H-J; Maciaczyk, J

    2017-01-01

    Cancer stem-like cells (CSCs) are thought to be the main cause of tumor occurrence, progression and therapeutic resistance. Strong research efforts in the last decade have led to the development of several tailored approaches to target CSCs with some very promising clinical trials underway; however, until now no anti-CSC therapy has been approved for clinical use. Given the recent improvement in our understanding of how onco-proteins can manipulate cellular metabolic networks to promote tumorigenesis, cancer metabolism research may well lead to innovative strategies to identify novel regulators and downstream mediators of CSC maintenance. Interfering with distinct stages of CSC-associated metabolics may elucidate novel, more efficient strategies to target this highly malignant cell population. Here recent discoveries regarding the metabolic properties attributed to CSCs in glioblastoma (GBM) and malignant colorectal cancer (CRC) were summarized. The association between stem cell markers, the response to hypoxia and other environmental stresses including therapeutic insults as well as developmentally conserved signaling pathways with alterations in cellular bioenergetic networks were also discussed. The recent developments in metabolic imaging to identify CSCs were also summarized. This summary should comprehensively update basic and clinical scientists on the metabolic traits of CSCs in GBM and malignant CRC. © 2016 UICC.

  5. The Impact of the Tumor Microenvironment on the Properties of Glioma Stem-Like Cells.

    PubMed

    Audia, Alessandra; Conroy, Siobhan; Glass, Rainer; Bhat, Krishna P L

    2017-01-01

    Glioblastoma is the most common and highly malignant primary brain tumor, and patients affected with this disease exhibit a uniformly dismal prognosis. Glioma stem-like cells (GSCs) are a subset of cells within the bulk tumor that possess self-renewal and multi-lineage differentiation properties similar to somatic stem cells. These cells also are at the apex of the cellular hierarchy and cause tumor initiation and expansion after chemo-radiation. These traits make them an attractive target for therapeutic development. Because GSCs are dependent on the brain microenvironment for their growth, and because non-tumorigenic cell types in the microenvironment can influence GSC phenotypes and treatment response, a better understanding of these cell types is needed. In this review, we provide a focused overview of the contributions from the microenvironment to GSC homing, maintenance, phenotypic plasticity, and tumor initiation. The interaction of GSCs with the vascular compartment, mesenchymal stem cells, immune system, and normal brain cell types are discussed. Studies that provide mechanistic insight into each of these GSC-microenvironment interactions are warranted in the future.

  6. Radiotherapy diagnostic biomarkers in radioresistant human H460 lung cancer stem-like cells.

    PubMed

    Yun, Hong Shik; Baek, Jeong-Hwa; Yim, Ji-Hye; Um, Hong-Duck; Park, Jong Kuk; Song, Jie-Young; Park, In-Chul; Kim, Jae-Sung; Lee, Su-Jae; Lee, Chang-Woo; Hwang, Sang-Gu

    2016-01-01

    Tumor cell radioresistance is a major contributor to radiotherapy failure, highlighting the importance of identifying predictive biomarkers for radioresistance. In this work, we established a radioresistant H460 (RR-H460) cell line from parental radiosensitive H460 lung cancer cells by exposure to fractionated radiation. The radiation-resistant, anti-apoptotic phenotype of RR-H460 cell lines was confirmed by their enhanced clonogenic survival and increased expression of the radioresistance genes Hsp90 and Her-3. RR-H460 cells displayed characteristics of cancer stem-like cells (CSCs), including induction of the surface marker CD44 and stem cell markers Nanog, Oct4, and Sox2. RR-H460 cells also exhibited sphere formation and malignant behavior, further supporting a CSC phenotype. Using proteomic analyses, we identified 8 proteins that were up-regulated in RR-H460 CSC lines and therefore potentially involved in radioresistance and CSC-related biological processes. Notably, 4 of these-PAI-2, NOMO2, KLC4, and PLOD3-have not been previously linked to radioresistance. Depletion of these individual genes sensitized RR-H460 cells to radiotoxicity and additively enhancing radiation-induced apoptosis. Our findings suggest the possibility of integrating molecular targeted therapy with radiotherapy as a strategy for resolving the radioresistance of lung tumors.

  7. Wnt5a Drives an Invasive Phenotype in Human Glioblastoma Stem-like Cells.

    PubMed

    Binda, Elena; Visioli, Alberto; Giani, Fabrizio; Trivieri, Nadia; Palumbo, Orazio; Restelli, Silvia; Dezi, Fabio; Mazza, Tommaso; Fusilli, Caterina; Legnani, Federico; Carella, Massimo; Di Meco, Francesco; Duggal, Rohit; Vescovi, Angelo L

    2017-02-15

    Brain invasion by glioblastoma determines prognosis, recurrence, and lethality in patients, but no master factor coordinating the invasive properties of glioblastoma has been identified. Here we report evidence favoring such a role for the noncanonical WNT family member Wnt5a. We found the most invasive gliomas to be characterized by Wnt5a overexpression, which correlated with poor prognosis and also discriminated infiltrating mesenchymal glioblastoma from poorly motile proneural and classical glioblastoma. Indeed, Wnt5a overexpression associated with tumor-promoting stem-like characteristics (TPC) in defining the character of highly infiltrating mesenchymal glioblastoma cells (Wnt5a(High)). Inhibiting Wnt5a in mesenchymal glioblastoma TPC suppressed their infiltrating capability. Conversely, enforcing high levels of Wnt5a activated an infiltrative, mesenchymal-like program in classical glioblastoma TPC and Wnt5a(Low) mesenchymal TPC. In intracranial mouse xenograft models of glioblastoma, inhibiting Wnt5a activity blocked brain invasion and increased host survival. Overall, our results highlight Wnt5a as a master regulator of brain invasion, specifically TPC, and they provide a therapeutic rationale to target it in patients with glioblastoma. Cancer Res; 77(4); 996-1007. ©2016 AACR. ©2016 American Association for Cancer Research.

  8. EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells

    PubMed Central

    Krusche, Benjamin; Ottone, Cristina; Clements, Melanie P; Johnstone, Ewan R; Goetsch, Katrin; Lieven, Huang; Mota, Silvia G; Singh, Poonam; Khadayate, Sanjay; Ashraf, Azhaar; Davies, Timothy; Pollard, Steven M; De Paola, Vincenzo; Roncaroli, Federico; Martinez-Torrecuadrada, Jorge; Bertone, Paul; Parrinello, Simona

    2016-01-01

    Glioblastomas (GBM) are aggressive and therapy-resistant brain tumours, which contain a subpopulation of tumour-propagating glioblastoma stem-like cells (GSC) thought to drive progression and recurrence. Diffuse invasion of the brain parenchyma, including along preexisting blood vessels, is a leading cause of therapeutic resistance, but the mechanisms remain unclear. Here, we show that ephrin-B2 mediates GSC perivascular invasion. Intravital imaging, coupled with mechanistic studies in murine GBM models and patient-derived GSC, revealed that endothelial ephrin-B2 compartmentalises non-tumourigenic cells. In contrast, upregulation of the same ephrin-B2 ligand in GSC enabled perivascular migration through homotypic forward signalling. Surprisingly, ephrin-B2 reverse signalling also promoted tumourigenesis cell-autonomously, by mediating anchorage-independent cytokinesis via RhoA. In human GSC-derived orthotopic xenografts, EFNB2 knock-down blocked tumour initiation and treatment of established tumours with ephrin-B2-blocking antibodies suppressed progression. Thus, our results indicate that targeting ephrin-B2 may be an effective strategy for the simultaneous inhibition of invasion and proliferation in GBM. DOI: http://dx.doi.org/10.7554/eLife.14845.001 PMID:27350048

  9. mir-300 promotes self-renewal and inhibits the differentiation of glioma stem-like cells.

    PubMed

    Zhang, Daming; Yang, Guang; Chen, Xin; Li, Chunmei; Wang, Lu; Liu, Yaohua; Han, Dayong; Liu, Huailei; Hou, Xu; Zhang, Weiguang; Li, Chenguang; Han, Zhanqiang; Gao, Xin; Zhao, Shiguang

    2014-08-01

    MicroRNAs (miRNAs) are small noncoding RNAs that have been critically implicated in several human cancers. miRNAs are thought to participate in various biological processes, including proliferation, cell cycle, apoptosis, and even the regulation of the stemness properties of cancer stem cells. In this study, we explore the potential role of miR-300 in glioma stem-like cells (GSLCs). We isolated GSLCs from glioma biopsy specimens and identified the stemness properties of the cells through neurosphere formation assays, multilineage differentiation ability analysis, and immunofluorescence analysis of glioma stem cell markers. We found that miR-300 is commonly upregulated in glioma tissues, and the expression of miR-300 was higher in GSLCs. The results of functional experiments demonstrated that miR-300 can enhance the self-renewal of GSLCs and reduce differentiation toward both astrocyte and neural fates. In addition, LZTS2 is a direct target of miR-300. In conclusion, our results demonstrate the critical role of miR-300 in GSLCs and its functions in LZTS2 inhibition and describe a new approach for the molecular regulation of tumor stem cells.

  10. Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment.

    PubMed

    Wang, Tao; Narayanaswamy, Radhika; Ren, Huilan; Torchilin, Vladimir P

    2016-06-02

    Many types of tumors are organized in a hierarchy of heterogeneous cell populations. The cancer stem-like cells (CSCs) hypothesis suggests that tumor development and metastasis are driven by a minority population of cells, which are responsible for tumor initiation, growth and recurrences. The inability to efficiently eliminate CSCs during chemotherapy, together with CSCs being highly tumorigenic and invasive, may result in treatment failure due to cancer relapse and metastases. CSCs are emerging as a promising target for the development of translational cancer therapies. Ideal panacea for cancer would kill all malignant cells, including CSCs and bulk tumor cells. Since both chemotherapy and CSCs-specific therapy are insufficient to cure cancer, we propose combination therapy with CSCs-targeted agents and chemotherapeutics for improved breast cancer treatment. We generated in vitro mammosphere of 2 breast cancer cell lines, and demonstrated ability of mammospheres to grow and enrich cancer cells with stem-like properties, including self-renewal, multilineage differentiation and enrichment of cells expressing breast cancer stem-like cell biomarkers CD44(+)/CD24(-/low). The formation of mammospheres was significantly inhibited by salinomycin, validating its pharmacological role against the cancer stem-like cells. In contrast, paclitaxel showed a minimal effect on the proliferation and growth of breast cancer stem-like cells. While combination therapies of salinomycin with conventional chemotherapy (paclitaxel or lipodox) showed a potential to improve tumor cell killing, different subtypes of breast cancer cells showed different patterns in response to the combination therapies. While optimization of combination therapy is warranted, the design of combination therapy should consider phenotypic attributes of breast cancer types.

  11. CD133+ ovarian cancer stem-like cells promote non-stem cancer cell metastasis via CCL5 induced epithelial-mesenchymal transition

    PubMed Central

    Qi, Wei; Huang, Jiani; Chen, Junying; He, Luhang; Liang, Zhiqing; Guo, Bo; Li, Yongsheng; Xie, Rongkai; Zhu, Bo

    2015-01-01

    Cancer stem cells (CSCs, also called cancer stem-like cells, CSLCs) can function as “seed cells” for tumor recurrence and metastasis. Here, we report that, in the presence of CD133+ ovarian CSLCs, CD133− non-CSLCs can undergo an epithelial-mesenchymal transition (EMT)-like process and display enhanced metastatic capacity in vitro and in vivo. Highly elevated expression of chemokine (C-C motif) ligand 5 (CCL5) and its receptors chemokine (C-C motif) receptor (CCR) 1/3/5 are observed in clinical and murine metastatic tumor tissues from epithelial ovarian carcinomas. Mechanistically, paracrine CCL5 from ovarian CSLCs activates the NF-κB signaling pathway in ovarian non-CSLCs via binding CCR1/3/5, thereby inducing EMT and tumor invasion. Taken together, our results redefine the metastatic potential of non-stem cancer cells and provide evidence that targeting the CCL5:CCR1/3/5-NF-κB pathway could be an effective strategy to prevent ovarian cancer metastasis. PMID:25788271

  12. Metabolic analysis of radioresistant medulloblastoma stem-like clones and potential therapeutic targets.

    PubMed

    Sun, Lue; Moritake, Takashi; Ito, Kazuya; Matsumoto, Yoshitaka; Yasui, Hironobu; Nakagawa, Hidehiko; Hirayama, Aki; Inanami, Osamu; Tsuboi, Koji

    2017-01-01

    Medulloblastoma is a fatal brain tumor in children, primarily due to the presence of treatment-resistant medulloblastoma stem cells. The energy metabolic pathway is a potential target of cancer therapy because it is often different between cancer cells and normal cells. However, the metabolic properties of medulloblastoma stem cells, and whether specific metabolic pathways are essential for sustaining their stem cell-like phenotype and radioresistance, remain unclear. We have established radioresistant medulloblastoma stem-like clones (rMSLCs) by irradiation of the human medulloblastoma cell line ONS-76. Here, we assessed reactive oxygen species (ROS) production, mitochondria function, oxygen consumption rate (OCR), energy state, and metabolites of glycolysis and tricarboxylic acid cycle in rMSLCs and parental cells. rMSLCs showed higher lactate production and lower oxygen consumption rate than parental cells. Additionally, rMSLCs had low mitochondria mass, low endogenous ROS production, and existed in a low-energy state. Treatment with the metabolic modifier dichloroacetate (DCA) resulted in mitochondria dysfunction, glycolysis inhibition, elongated mitochondria morphology, and increased ROS production. DCA also increased radiosensitivity by suppression of the DNA repair capacity through nuclear oxidization and accelerated the generation of acetyl CoA to compensate for the lack of ATP. Moreover, treatment with DCA decreased cancer stem cell-like characters (e.g., CD133 positivity and sphere-forming ability) in rMSLCs. Together, our findings provide insights into the specific metabolism of rMSLCs and illuminate potential metabolic targets that might be exploited for therapeutic benefit in medulloblastoma.

  13. Sunitinib reduces tumor hypoxia and angiogenesis, and radiosensitizes prostate cancer stem-like cells.

    PubMed

    Diaz, Roque; Nguewa, Paul A; Redrado, Miriam; Manrique, Irene; Calvo, Alfonso

    2015-08-01

    The need for new treatments for advanced prostate cancer has fostered the experimental use of targeted therapies. Sunitinib is a multi-tyrosine kinase inhibitor that mainly targets membrane-bound receptors of cells within the tumor microenvironment, such as endothelial cells and pericytes. However, recent studies suggest a direct effect on tumor cells. In the present study, we have evaluated both direct and indirect effects of Sunitinib in prostate cancer and how this drug regulates hypoxia, using in vitro and in vivo models. We have used both in vitro (PC-3, DU145, and LNCaP cells) and in vivo (PC-3 xenografts) models to study the effect of Sunitinib in prostate cancer. Analysis of hypoxia based on HIF-1α expression and FMISO uptake was conducted. ALDH activity was used to analyze cancer stem cells (CSC). Sunitinib strongly reduced proliferation of PC-3 and DU-145 cells in a dose dependent manner, and decreased levels of p-Akt, p-Erk1/2, and Id-1, compared to untreated cells. A 3-fold reduction in tumor growth was also observed (P < 0.001 with respect to controls). Depletion of Hif-1α levels in vitro and a decrease in FMISO uptake in vivo showed that Sunitinib inhibits tumor hypoxia. When combined with radiotherapy, this drug enhanced cell death in vitro and in vivo, and significantly decreased CD-31, PDGFRβ, Hif-1α, Id1, and PCNA protein levels (whereas apoptosis was increased) in tumors as compared to controls or single-therapy treated mice. Moreover, Sunitinib reduced the number of ALDH + cancer stem-like cells and sensitized these cells to radiation-mediated loss of clonogenicity. Our results support the use of Sunitinib in prostate cancer and shows that both hypoxia and cancer stem cells are involved in the effect elicited by this drug. Combination of Sunitinib with radiotherapy warrants further consideration to reduce prostate cancer burden. © 2015 Wiley Periodicals, Inc.

  14. Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest

    PubMed Central

    Long, Patrick M.; Tighe, Scott W.; Driscoll, Heather E.; Fortner, Karen A.; Viapiano, Mariano S.; Jaworski, Diane M.

    2015-01-01

    Glioblastoma (GBM), the most common primary adult malignant brain tumor, is associated with a poor prognosis due, in part, to tumor recurrence mediated by chemotherapy and radiation resistant glioma stem-like cells (GSCs). The metabolic and epigenetic state of GSCs differs from their non-GSC counterparts, with GSCs exhibiting greater glycolytic metabolism and global hypoacetylation. However, little attention has been focused on the potential use of acetate supplementation as a therapeutic approach. N-acetyl-L-aspartate (NAA), the primary storage form of brain acetate, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis, are significantly reduced in GBM tumors. We recently demonstrated that NAA supplementation is not an appropriate therapeutic approach since it increases GSC proliferation and pursued an alternative acetate source. The FDA approved food additive Triacetin (glyceryl triacetate, GTA) has been safely used for acetate supplementation therapy in Canavan disease, a leukodystrophy due to ASPA mutation. This study characterized the effects of GTA on the proliferation and differentiation of six primary GBM-derived GSCs relative to established U87 and U251 GBM cell lines, normal human cerebral cortical astrocytes, and murine neural stem cells. GTA reduced proliferation of GSCs greater than established GBM lines. Moreover, GTA reduced growth of the more aggressive mesenchymal GSCs greater than proneural GSCs. Although sodium acetate induced a dose-dependent reduction of GSC growth, it also reduced cell viability. GTA-mediated growth inhibition was not associated with differentiation, but increased protein acetylation. These data suggest that GTA-mediated acetate supplementation is a novel therapeutic strategy to inhibit GSC growth. PMID:25573156

  15. S100B Mediates Stemness of Ovarian Cancer Stem-Like Cells Through Inhibiting p53.

    PubMed

    Yang, Tao; Cheng, Jianan; Yang, Yang; Qi, Wei; Zhao, Yuetao; Long, Haixia; Xie, Rongkai; Zhu, Bo

    2017-02-01

    S100B is one of the members of the S100 protein family and is involved in the progression of a variety of cancers. Ovarian cancer is driven by cancer stem-like cells (CSLCs) that are involved in tumorigenesis, metastasis, chemo-resistance and relapse. We then hypothesized that S100B might exert pro-tumor effects by regulating ovarian CSLCs stemness, a key characteristic of CSLCs. First, we observed the high expression of S100B in ovarian cancer specimens when compared to that in normal ovary. The S100B upregulation associated with more advanced tumor stages, poorer differentiation and poorer survival. In addition, elevated S100B expression correlated with increased expression of stem cell markers including CD133, Nanog and Oct4. Then, we found that S100B was preferentially expressed in CD133(+) ovarian CSLCs derived from both ovarian cancer cell lines and primary tumors of patients. More importantly, we revealed that S100B knockdown suppressed the in vitro self-renewal and in vivo tumorigenicity of ovarian CSLCs and decreased their expression of stem cell markers. S100B ectopic expression endowed non-CSLCs with stemness, which has been demonstrated with both in vitro and in vivo experiments. Mechanically, we demonstrated that the underlying mechanism of S100B-mediated effects on CSLCs stemness was not dependent on its binding with a receptor for advanced glycation end products (RAGE), but might be through intracellular regulation, through the inhibition of p53 expression and phosphorylation. In conclusion, our results elucidate the importance of S100B in maintenance of ovarian CSLCs stemness, which might provide a promising therapeutic target for ovarian cancer. Stem Cells 2017;35:325-336.

  16. Pien Tze Huang suppresses the stem-like side population in colorectal cancer cells.

    PubMed

    Wei, Lihui; Chen, Pangyu; Chen, Youqin; Shen, Aling; Chen, Hongwei; Lin, Wei; Hong, Zhenfeng; Sferra, Thomas J; Peng, Jun

    2014-01-01

    Accumulating evidence suggests that a small population of cells termed cancer stem cells (CSCs) are crucial in tumor development and drug resistance, leading to cancer relapse and metastasis and eventually the failure of clinical cancer treatment. Therefore, targeting CSCs is a promising approach for anticancer therapies. Due to the drug resistance and adverse effects of currently used chemotherapies, traditional Chinese medicines (TCM) have recently received attention due to the relatively few side-effects. Thus, they have been used as important alternative remedies for various diseases, including cancer. Pien Tze Huang (PZH), a well-known TCM formula that was first prescribed more than 450 years ago in the Ming Dynasty, has been used in China and Southeast Asia for centuries as a folk remedy for various types of cancer. Previously, it was reported that PZH inhibits colon cancer growth via the promotion of cancer cell apoptosis and inhibition of cell proliferation and tumor angiogenesis, which is probably mediated by its regulatory effect on multiple intracellular signaling pathways. To elucidate the mechanism of the tumoricidal activity of PZH, the aim of the present study was to investigate the effect of PZH on CSCs that were isolated as the side population (SP) from the HT-29 colorectal cancer cell line. The results demonstrated that PZH significantly and dose-dependently reduced the percentage of the colorectal cancer stem-like SP cells, decreased the viability and sphere-forming capacity of HT-29 SP cells, indicating that PZH is potent in suppressing the growth of colorectal cancer stem cells. Moreover, PZH treatment in HT-29 SP cells markedly inhibited the mRNA levels of ABCB1 and ABCG2, which are members of the ABC transporter superfamily, thereby contributing to the SP phenotype and multi-drug resistance. Findings of the present study suggest that inhibiting the growth of CSCs is a potential mechanism by which PZH can be used in cancer treatment.

  17. Calreticulin is highly expressed in pancreatic cancer stem-like cells.

    PubMed

    Matsukuma, Satoshi; Yoshimura, Kiyoshi; Ueno, Tomio; Oga, Atsunori; Inoue, Moeko; Watanabe, Yusaku; Kuramasu, Atsuo; Fuse, Masanori; Tsunedomi, Ryouichi; Nagaoka, Satoshi; Eguchi, Hidetoshi; Matsui, Hiroto; Shindo, Yoshitaro; Maeda, Noriko; Tokuhisa, Yoshihiro; Kawano, Reo; Furuya-Kondo, Tomoko; Itoh, Hiroshi; Yoshino, Shigefumi; Hazama, Shoichi; Oka, Masaaki; Nagano, Hiroaki

    2016-11-01

    Cancer stem-like cells (CSLCs) in solid tumors are thought to be resistant to conventional chemotherapy or molecular targeting therapy and to contribute to cancer recurrence and metastasis. In this study, we aimed to identify a biomarker of pancreatic CSLCs (P-CSLCs). A P-CSLC-enriched population was generated from pancreatic cancer cell lines using our previously reported method and its protein expression profile was compared with that of parental cells by 2-D electrophoresis and tandem mass spectrometry. The results indicated that a chaperone protein calreticulin (CRT) was significantly upregulated in P-CSLCs compared to parental cells. Flow cytometry analysis indicated that CRT was mostly localized to the surface of P-CSLCs and did not correlate with the levels of CD44v9, another P-CSLC biomarker. Furthermore, the side population in the CRT(high) /CD44v9(low) population was much higher than that in the CRT(low) /CD44v9(high) population. Calreticulin expression was also assessed by immunohistochemistry in pancreatic cancer tissues (n = 80) obtained after radical resection and was found to be associated with patients' clinicopathological features and disease outcomes in the Cox proportional hazard regression model. Multivariate analysis identified CRT as an independent prognostic factor for pancreatic cancer patients, along with age and postoperative therapy. Our results suggest that CRT can serve as a biomarker of P-CSLCs and a prognostic factor associated with poorer survival of pancreatic cancer patients. This novel biomarker can be considered as a therapeutic target for cancer immunotherapy.

  18. Replication of influenza A virus in swine umbilical cord epithelial stem-like cells.

    PubMed

    Khatri, Mahesh; Chattha, Kuldeep S

    2015-01-01

    In this study, we describe the isolation and characterization of epithelial stem-like cells from the swine umbilical cord and their susceptibility to influenza virus infection. Swine umbilical cord epithelial stem cells (SUCECs) expressed stem cell and pluripotency associated markers such as SSEA-1, SSEA-4, TRA 1-60 and TRA 1-81 and Oct4. Morphologically, cells displayed polygonal morphology and were found to express epithelial markers; pancytokeratin, cytokeratin-18 and occludin; mesenchymal cell markers CD44, CD90 and haematopoietic cell marker CD45 were not detected on these cells. The cells had extensive proliferation and self- renewal properties. The cells also possessed immunomodulatory activity and inhibited the proliferation of T cells. Also, higher levels of anti-inflammatory cytokine IL-10 were detected in SUCEC-T cell co-cultures. The cells were multipotent and differentiated into lung epithelial cells when cultured in epithelial differentiation media. We also examined if SUCECs are susceptible to infection with influenza virus. SUCECs expressed sialic acid receptors, used by influenza virus for binding to cells. The 2009 pandemic influenza virus and swine influenza virus replicated in these cells. SUCECs due to their differentiation and immunoregulatory properties will be useful as cellular therapy in a pig model for human diseases. Additionally, our data indicate that influenza virus can infect SUCECs and may transmit influenza virus from mother to fetus through umbilical cord and transplantation of influenza virus-infected stem cells may transmit infection to recipients. Therefore, we propose that umbilical cord cells, in addition to other agents, should also be tested for influenza virus before cryopreservation for future use as a cell therapy for disease conditions.

  19. Autocrine interleukin-23 promotes self-renewal of CD133+ ovarian cancer stem-like cells

    PubMed Central

    Lin, Kailong; Yin, Pin; Jiang, Lupin; Liang, Zhiqing; Zhu, Bo

    2016-01-01

    Cancer stem cells (CSCs) are a group of cells which possess the ability of self-renewing and unlimited proliferation. And these CSCs are thought to be the cause of metastasis, recurrence and resistance. Recent study has found that pro-inflammatory cytokine and chemotactic factor mediate the self-renewing and differentiation of most of CSCs. Thus we speculate that ovarian cancer stem cells (OCSCs) can also maintain the ability of self-renewing and differentiation by releasing inflammatory factor. This report we discuss the biological characteristics and the specific molecular mechanism mediated by interleukin-23 (IL-23) and its receptor on the self-renewing of OCSCs. We found that OCSCs had high expression of IL-23 and IL-23R. IL-23 could promote the self-renewal ability of OCSCs and played a very important role to maintain the stable expression of stem cell markers in vitro. Moreover, we verified that IL-23 could maintain the potential tumorigenic of OCSCs in vivo and mediate the self-renewal ability and the formation of tumor in OCSCs by activating the signal pathways of STAT3 and NF-κB. In addition, human low differentiation tissues showed overexpression of IL-23. And IL-23 positively correlated to the expression level of CD133, Nanog and Oct4. In conclusion, Our discoveries demonstrate that autocrine IL-23 contribute to ovarian cancer malignancy through promoting the self-renewal of CD133+ ovarian cancer stem-like cells, and this suggests that IL-23 and its signaling pathway might serve as therapeutic targets for the treatment of ovarian cancer. PMID:27738346

  20. Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest.

    PubMed

    Long, Patrick M; Tighe, Scott W; Driscoll, Heather E; Fortner, Karen A; Viapiano, Mariano S; Jaworski, Diane M

    2015-08-01

    Glioblastoma (GBM), the most common primary adult malignant brain tumor, is associated with a poor prognosis due, in part, to tumor recurrence mediated by chemotherapy and radiation resistant glioma stem-like cells (GSCs). The metabolic and epigenetic state of GSCs differs from their non-GSC counterparts, with GSCs exhibiting greater glycolytic metabolism and global hypoacetylation. However, little attention has been focused on the potential use of acetate supplementation as a therapeutic approach. N-acetyl-l-aspartate (NAA), the primary storage form of brain acetate, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis, are significantly reduced in GBM tumors. We recently demonstrated that NAA supplementation is not an appropriate therapeutic approach since it increases GSC proliferation and pursued an alternative acetate source. The FDA approved food additive Triacetin (glyceryl triacetate, GTA) has been safely used for acetate supplementation therapy in Canavan disease, a leukodystrophy due to ASPA mutation. This study characterized the effects of GTA on the proliferation and differentiation of six primary GBM-derived GSCs relative to established U87 and U251 GBM cell lines, normal human cerebral cortical astrocytes, and murine neural stem cells. GTA reduced proliferation of GSCs greater than established GBM lines. Moreover, GTA reduced growth of the more aggressive mesenchymal GSCs greater than proneural GSCs. Although sodium acetate induced a dose-dependent reduction of GSC growth, it also reduced cell viability. GTA-mediated growth inhibition was not associated with differentiation, but increased protein acetylation. These data suggest that GTA-mediated acetate supplementation is a novel therapeutic strategy to inhibit GSC growth.

  1. Loss of androgen receptor expression promotes a stem-like cell phenotype in prostate cancer through STAT3 signaling.

    PubMed

    Schroeder, Anne; Herrmann, Andreas; Cherryholmes, Gregory; Kowolik, Claudia; Buettner, Ralf; Pal, Sumanta; Yu, Hua; Müller-Newen, Gerhard; Jove, Richard

    2014-02-15

    Androgen receptor (AR) signaling is important for prostate cancer progression. However, androgen-deprivation and/or AR targeting-based therapies often lead to resistance. Here, we demonstrate that loss of AR expression results in STAT3 activation in prostate cancer cells. AR downregulation further leads to development of prostate cancer stem-like cells (CSC), which requires STAT3. In human prostate tumor tissues, elevated cancer stem-like cell markers coincide with those cells exhibiting high STAT3 activity and low AR expression. AR downregulation-induced STAT3 activation is mediated through increased interleukin (IL)-6 expression. Treating mice with soluble IL-6 receptor fusion protein or silencing STAT3 in tumor cells significantly reduced prostate tumor growth and CSCs. Together, these findings indicate an opposing role of AR and STAT3 in prostate CSC development.

  2. Stability and bifurcation in a model for the dynamics of stem-like cells in leukemia under treatment

    NASA Astrophysics Data System (ADS)

    Rǎdulescu, I. R.; Cândea, D.; Halanay, A.

    2012-11-01

    A mathematical model for the dynamics of leukemic cells during treatment is introduced. Delay differential equations are used to model cells' evolution and are based on the Mackey-Glass approach, incorporating Goldie-Coldman law. Since resistance is propagated by cells that have the capacity of self-renewal, a population of stem-like cells is studied. Equilibrium points are calculated and their stability properties are investigated.

  3. Canine mammary tumors contain cancer stem-like cells and form spheroids with an embryonic stem cell signature.

    PubMed

    Ferletta, Maria; Grawé, Jan; Hellmén, Eva

    2011-01-01

    We have investigated the presence of tentative stem-like cells in the canine mammary tumor cell line CMT-U229. This cell line is established from an atypical benign mixed mammary tumor, which has the property of forming duct-like structures in collagen gels. Stem cells in mammary glands are located in the epithelium; therefore we thought that the CMT-U229 cell line would be suitable for detection of tentative cancer stem-like cells. Side population (SP) analyses by flow cytometry were performed with cells that formed spheroids and with cells that did not. Flow cytometric, single sorted cells were expanded and re-cultured as spheroids. The spheroids were paraffin embedded and characterized by immunohistochemistry. SP analyses showed that spheroid forming cells (retenate) as well as single cells (filtrate) contained SP cells. Sca1 positive cells were single cell sorted and thereafter the SP population increased with repeated SP analyses. The SP cells were positively labeled with the cell surface-markers CD44 and CD49f (integrin alpha6); however the expression of CD24 was low or negative. The spheroids expressed the transcription factor and stem cell marker Sox2, as well as Oct4. Interestingly, only peripheral cells of the spheroids and single cells were positive for Oct4 expression. SP cells are suggested to correspond to stem cells and in this study, we have enriched for tentative tumor stem-like cells derived from a canine mammary tumor. All the used markers indicate that the studied CMT-U229 cell line contains SP cells, which in particular have cancer stem-like cell characteristics.

  4. 5-fluorouracil resistant colon cancer cells are addicted to OXPHOS to survive and enhance stem-like traits.

    PubMed

    Denise, Corti; Paoli, Paolo; Calvani, Maura; Taddei, Maria Letizia; Giannoni, Elisa; Kopetz, Scott; Kazmi, Syed Mohammad Ali; Pia, Morelli Maria; Pettazzoni, Piergiorgio; Sacco, Elena; Caselli, Anna; Vanoni, Marco; Landriscina, Matteo; Cirri, Paolo; Chiarugi, Paola

    2015-12-08

    Despite marked tumor shrinkage after 5-FU treatment, the frequency of colon cancer relapse indicates that a fraction of tumor cells survives treatment causing tumor recurrence. The majority of cancer cells divert metabolites into anabolic pathways through Warburg behavior giving an advantage in terms of tumor growth. Here, we report that treatment of colon cancer cell with 5-FU selects for cells with mesenchymal stem-like properties that undergo a metabolic reprogramming resulting in addiction to OXPHOS to meet energy demands. 5-FU treatment-resistant cells show a de novo expression of pyruvate kinase M1 (PKM1) and repression of PKM2, correlating with repression of the pentose phosphate pathway, decrease in NADPH level and in antioxidant defenses, promoting PKM2 oxidation and acquisition of stem-like phenotype. Response to 5-FU in a xenotransplantation model of human colon cancer confirms activation of mitochondrial function. Combined treatment with 5-FU and a pharmacological inhibitor of OXPHOS abolished the spherogenic potential of colon cancer cells and diminished the expression of stem-like markers. These findings suggest that inhibition of OXPHOS in combination with 5-FU is a rational combination strategy to achieve durable treatment response in colon cancer.

  5. 5-Fluorouracil resistant colon cancer cells are addicted to OXPHOS to survive and enhance stem-like traits

    PubMed Central

    Calvani, Maura; Taddei, Maria Letizia; Giannoni, Elisa; Kopetz, Scott; Kazmi, Syed Mohammad Ali; Pia, Morelli Maria; Pettazzoni, Piergiorgio; Sacco, Elena; Caselli, Anna; Vanoni, Marco; Landriscina, Matteo; Cirri, Paolo; Chiarugi, Paola

    2015-01-01

    Despite marked tumor shrinkage after 5-FU treatment, the frequency of colon cancer relapse indicates that a fraction of tumor cells survives treatment causing tumor recurrence. The majority of cancer cells divert metabolites into anabolic pathways through Warburg behavior giving an advantage in terms of tumor growth. Here, we report that treatment of colon cancer cell with 5-FU selects for cells with mesenchymal stem-like properties that undergo a metabolic reprogramming resulting in addiction to OXPHOS to meet energy demands. 5-FU treatment-resistant cells show a de novo expression of pyruvate kinase M1 (PKM1) and repression of PKM2, correlating with repression of the pentose phosphate pathway, decrease in NADPH level and in antioxidant defenses, promoting PKM2 oxidation and acquisition of stem-like phenotype. Response to 5-FU in a xenotransplantation model of human colon cancer confirms activation of mitochondrial function. Combined treatment with 5-FU and a pharmacological inhibitor of OXPHOS abolished the spherogenic potential of colon cancer cells and diminished the expression of stem-like markers. These findings suggest that inhibition of OXPHOS in combination with 5-FU is a rational combination strategy to achieve durable treatment response in colon cancer. PMID:26527315

  6. Network biology of tumor stem-like cells identified a regulatory role of CBX5 in lung cancer.

    PubMed

    Yu, Yau-Hua; Chiou, Guang-Yuh; Huang, Pin-I; Lo, Wen-Liang; Wang, Chien-Ying; Lu, Kai-Hsi; Yu, Cheng-Chia; Alterovitz, Gil; Huang, Wen-Chien; Lo, Jeng-Fan; Hsu, Han-Shui; Chiou, Shih-Hwa

    2012-01-01

    Mounting evidence links cancers possessing stem-like properties with worse prognosis. Network biology with signal processing mechanics was explored here using expression profiles of a panel of tumor stem-like cells (TSLCs). The profiles were compared to their parental tumor cells (PTCs) and the human embryonic stem cells (hESCs), for the identification of gene chromobox homolog 5, CBX5, as a potential target for lung cancer. CBX5 was found to regulate the stem-like properties of lung TSLCs and was predictive of lung cancer prognosis. The investigation was facilitated by finding target genes based on modeling epistatic signaling mechanics via a predictive and scalable network-based survival model. Topologically-weighted measurements of CBX5 were synchronized with those of BIRC5, DNMT1, E2F1, ESR1, MLH1, MSH2, RB1, SMAD1 and TAF5. We validated our findings in another Taiwanese lung cancer cohort, as well as in knockdown experiments using sh-CBX5 RNAi both in vitro and in vivo.

  7. Chitosan-Decorated Doxorubicin-Encapsulated Nanoparticle Targets and Eliminates Tumor Reinitiating Cancer Stem-like Cells.

    PubMed

    Rao, Wei; Wang, Hai; Han, Jianfeng; Zhao, Shuting; Dumbleton, Jenna; Agarwal, Pranay; Zhang, Wujie; Zhao, Gang; Yu, Jianhua; Zynger, Debra L; Lu, Xiongbin; He, Xiaoming

    2015-06-23

    Tumor reinitiating cancer stem-like cells are responsible for cancer recurrence associated with conventional chemotherapy. We developed a doxorubicin-encapsulated polymeric nanoparticle surface-decorated with chitosan that can specifically target the CD44 receptors of these cells. This nanoparticle system was engineered to release the doxorubicin in acidic environments, which occurs when the nanoparticles are localized in the acidic tumor microenvironment and when they are internalized and localized in the cellular endosomes/lysosomes. This nanoparticle design strategy increases the cytotoxicity of the doxorubicin by six times in comparison to the use of free doxorubicin for eliminating CD44(+) cancer stem-like cells residing in 3D mammary tumor spheroids (i.e., mammospheres). We further show these nanoparticles reduced the size of tumors in an orthotopic xenograft tumor model with no evident systemic toxicity. The development of nanoparticle system to target cancer stem-like cells with low systemic toxicity provides a new treatment arsenal for improving the survival of cancer patients.

  8. Defective autophagy leads to the suppression of stem-like features of CD271(+) osteosarcoma cells.

    PubMed

    Zhang, Dong; Zhao, Qing; Sun, Hao; Yin, Lijuan; Wu, Jiajun; Xu, Jun; He, Tianxiang; Yang, Chunlei; Liang, Chengwei

    2016-11-18

    contributes to the stem-like features of CD271+ OS CSCs. Inhibition of autophagy is a promising strategy in the CSCs-targeting OS therapy.

  9. Natural killer cell-based adoptive immunotherapy eradicates and drives differentiation of chemoresistant bladder cancer stem-like cells.

    PubMed

    Ferreira-Teixeira, Margarida; Paiva-Oliveira, Daniela; Parada, Belmiro; Alves, Vera; Sousa, Vitor; Chijioke, Obinna; Münz, Christian; Reis, Flávio; Rodrigues-Santos, Paulo; Gomes, Célia

    2016-10-21

    High-grade non-muscle invasive bladder cancer (NMIBC) has a high risk of recurrence and progression to muscle-invasive forms, which seems to be largely related to the presence of tumorigenic stem-like cell populations that are refractory to conventional therapies. Here, we evaluated the therapeutic potential of Natural Killer (NK) cell-based adoptive immunotherapy against chemoresistant bladder cancer stem-like cells (CSCs) in a pre-clinical relevant model, using NK cells from healthy donors and NMIBC patients. Cytokine-activated NK cells from healthy donors and from high-grade NMIBC patients were phenotypically characterized and assayed in vitro against stem-like and bulk differentiated bladder cancer cells. Stem-like cells were isolated from two bladder cancer cell lines using the sphere-forming assay. The in vivo therapeutic efficacy was evaluated in mice bearing a CSC-induced orthotopic bladder cancer. Animals were treated by intravesical instillation of interleukin-activated NK cells. Tumor response was evaluated longitudinally by non-invasive bioluminescence imaging. NK cells from healthy donors upon activation with IL-2 and IL-15 kills indiscriminately both stem-like and differentiated tumor cells via stress ligand recognition. In addition to cell killing, NK cells shifted CSCs towards a more differentiated phenotype, rendering them more susceptible to cisplatin, highlighting the benefits of a possible combined therapy. On the contrary, NK cells from NMIBC patients displayed a low density on NK cytotoxicity receptors, adhesion molecules and a more immature phenotype, losing their ability to kill and drive differentiation of CSCs. The local administration, via the transurethral route, of activated NK cells from healthy donors provides an efficient tumor infiltration and a subsequent robust tumoricidal activity against bladder cancer with high selective cytolytic activity against CSCs, leading to a dramatic reduction in tumor burden from 80 % to complete

  10. Comparison of efficacy of Salmonella typhimurium A1-R and chemotherapy on stem-like and non-stem human pancreatic cancer cells.

    PubMed

    Hiroshima, Yukihiko; Zhao, Ming; Zhang, Yong; Maawy, Ali; Hassanein, Mohamed K; Uehara, Fuminari; Miwa, Shinji; Yano, Shuya; Momiyama, Masashi; Suetsugu, Atsushi; Chishima, Takashi; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M

    2013-09-01

    The XPA1 human pancreatic cancer cell line is dimorphic, with spindle stem-like cells and round non-stem cells. We report here the in vitro IC 50 values of stem-like and non-stem XPA1 human pancreatic cells cells for: (1) 5-fluorouracil (5-FU), (2) cisplatinum (CDDP), (3) gemcitabine (GEM), and (4) tumor-targeting Salmonella typhimurium A1-R (A1-R). IC 50 values of stem-like XPA1 cells were significantly higher than those of non-stem XPA1 cells for 5-FU (P = 0.007) and CDDP (P = 0.012). In contrast, there was no difference between the efficacy of A1-R on stem-like and non-stem XPA1 cells. In vivo, 5-FU and A1-R significantly reduced the tumor weight of non-stem XPA1 cells (5-FU; P = 0.028; A1-R; P = 0.011). In contrast, only A1-R significantly reduced tumor weight of stem-like XPA1 cells (P = 0.012). The combination A1-R with 5-FU improved the antitumor efficacy compared with 5-FU monotherapy on the stem-like cells (P = 0.004). The results of the present report indicate A1-R is a promising therapy for chemo-resistant pancreatic cancer stem-like cells.

  11. Helping Kids Help

    ERIC Educational Resources Information Center

    Heiss, E. Renee

    2008-01-01

    Educators need to help kids help others so that they can help themselves. Volunteering does not involve competition or grades. This is one area where students don't have to worry about measuring up to the expectations of parents, teachers, and coaches. Students participate in charitable work to add another line to a college transcript or job…

  12. Helping Kids Help

    ERIC Educational Resources Information Center

    Heiss, E. Renee

    2008-01-01

    Educators need to help kids help others so that they can help themselves. Volunteering does not involve competition or grades. This is one area where students don't have to worry about measuring up to the expectations of parents, teachers, and coaches. Students participate in charitable work to add another line to a college transcript or job…

  13. Effect of Corilagin on the Proliferation and NF-κB in U251 Glioblastoma Cells and U251 Glioblastoma Stem-Like Cells

    PubMed Central

    Yang, Wen-Tao; Li, Gen-Hua; Li, Zheng-You; Feng, Song; Liu, Xue-Qin; Han, Guang-Kui; Zhang, Hao; Qin, Xian-Yun; Zhang, Ran; Nie, Quan-Min; Jin, Feng

    2016-01-01

    Background. This study is to explore the effect of corilagin on the proliferation and NF-κB signaling pathway in U251 glioblastoma cells and U251 glioblastoma stem-like cells. Methods. CD133 positive U251 glioblastoma cells were separated by immunomagnetic beads to isolate glioblastoma stem-like cells. U251 cells and stem-like cells were intervened by different corilagin concentrations (0, 25, 50, and 100 μg/mL) for 48 h, respectively. Cell morphology, cell counting kit-8 assay, flow cytometry, dual luciferase reporter assay, and a western blot were used to detect and analyze the cell proliferation and cell cycle and investigate the expression of IKBα protein in cytoplasm and NF-κB/p65 in nucleus. Results. Corilagin inhibited the cell proliferation of U251 cells and their stem-like cells and the inhibition role was stronger in U251 stem-like cells (P < 0.05). The cell cycle was arrested at G2/M phase in the U251 cells following corilagin intervention; the proportion of cells in G2/M phase increased as the concentration of corilagin increased (P < 0.05). The U251 stem-like cells were arrested at the S phase following treatment with corilagin; the proportion of cells in the S phase increased as the concentration of corilagin increased (P < 0.05). The ratio of dual luciferase activities of U251 stem-like cells was lower than that of U251 cells in the same corilagin concentration. With increasing concentrations of corilagin, the IKBα expression in cytoplasm of U251 cells and U251 stem-like cells was increased, but the p65 expression in nucleus of U251 cells and U251 stem-like cells was decreased (P < 0.05). Conclusion. Corilagin can inhibit the proliferation of glioblastoma cells and glioblastoma stem-like cells; the inhibition on glioblastoma stem-like cell proliferation is stronger than glioblastoma cells. This different result indicates that the effect of corilagin on U251 cells and U251 stem-like cells may have close relationships with mechanism of cell

  14. B7-H4 expression is elevated in human U251 glioma stem-like cells and is inducible in monocytes cultured with U251 stem-like cell conditioned medium.

    PubMed

    Mo, Lian-Jie; Ye, Hong-Xing; Mao, Ying; Yao, Yu; Zhang, Jian-Min

    2013-12-01

    Previous studies indicated that B7-H4, the youngest B7 family, negatively regulates T cell-mediated immunity and is significantly overexpressed in many human tumors. Tumor stem cells are purported to play a role in tumor renewal and resistance to radiation and chemotherapy. However, the link between B7-H4 and tumor stem cells is unclear. In this study, we investigated B7-H4 expression in the medium of human glioma U251 cell cultures. Immunofluorescence results showed that U251 cells cultured in serum-free medium (supplemented with 2% B27, 20 ng/mL epidermal growth factor, 20 ng/mL basic fibroblast growth factor) maintained stem-like cell characteristics, including expression of stem cell marker CD133 and the neural progenitor cell markers nestin and SOX2. In contrast, U251 cells cultured in serum-containing medium highly expressed differentiation marker glial fibrillary acidic protein. Flow cytometry analysis showed serum-free medium-cultured U251 cells expressed higher intracellular B7-H4 than serum-containing medium-cultured U251 cells (24%-35% vs. 8%-11%, P < 0.001). Immunofluorescence in purified monocytes from normal human peripheral blood mononuclear cells revealed moderate expression of B7-H4 after stimulation with conditioned medium from U251 cells cultured in serum-containing medium. Moreover, conditioned medium from U251 stem-like cells had a significant stimulation effect on B7-H4 expression compared with serum-containing conditioned medium (P < 0.01). Negative costimulatory molecule B7-H4 was preferentially expressed in U251 stem-like cells, and conditioned medium from these cells more effectively induced monocytes to express B7-H4 than conditioned medium from U251 cells cultured in the presence of serum. Our results show that U251 stem-like cells may play a more crucial role in tumor immunoloregulation with high expression of B7-H4.

  15. Monoclonal antibodies targeting non-small cell lung cancer stem-like cells by multipotent cancer stem cell monoclonal antibody library.

    PubMed

    Cao, Kaiyue; Pan, Yunzhi; Yu, Long; Shu, Xiong; Yang, Jing; Sun, Linxin; Sun, Lichao; Yang, Zhihua; Ran, Yuliang

    2017-02-01

    Cancer stem cells (CSCs) are a rare subset of cancer cells that play a significant role in cancer initiation, spreading, and recurrence. In this study, a subpopulation of lung cancer stem-like cells (LCSLCs) was identified from non-small cell lung carcinoma cell lines, SPCA-1 and A549, using serum-free suspension sphere-forming culture method. A monoclonal antibody library was constructed using immunized BLAB/c mice with the multipotent CSC cell line T3A-A3. Flow cytometry analysis showed that 33 mAbs targeted antigens can be enriched in sphere cells compared with the parental cells of SPCA-1 and A549 cell lines. Then, we performed functional antibody screening including sphere-forming inhibiting and invasion inhibiting assay. The results showed that two antibodies, 12C7 and 9B8, notably suppressed the self-renewal and invasion of LCSLCs. Fluorescence-activated cell sorting (FACs) found that the positive cells recognized by mAbs, 12C7 or 9B8, displayed features of LCSLCs. Interestingly, we found that these two antibodies recognized different subsets of cells and their combination effect was superior to the individual effect both in vitro and in vivo. Tissue microarrays were applied to detect the expression of the antigens targeted by these two antibodies. The positive expression of 12C7 and 9B8 targeted antigen was 84.4 and 82.5%, respectively, which was significantly higher than that in the non-tumor lung tissues. In conclusion, we screened two potential therapeutic antibodies that target different subsets of LCSLCs.

  16. Synergistic inhibition of characteristics of liver cancer stem-like cells with a combination of sorafenib and 8-bromo-7-methoxychrysin in SMMC-7721 cell line.

    PubMed

    Zou, Hui; Cao, Xiaozheng; Xiao, Qiao; Sheng, Xifeng; Ren, Kaiqun; Quan, Meifang; Song, Zhengwei; Li, Duo; Zheng, Yu; Zeng, Wenbin; Cao, Jianguo; Peng, Yaojin

    2016-09-01

    Sorafenib, a multi-kinase inhibitor, has shown its promising antitumor effect in a series of clinical trials, and has been approved as the current standard treatment for advanced hepatocellular carcinoma (HCC). 8-Bromo‑7-methoxychrysin (BrMC) is a novel chrysin synthetic analogue that has been reported to inhibit the growth of various tumor cells and possess properties for targeting liver cancer stem cells (LCSCs) . The present study investigated the synergistic targeting effects on the properties of liver cancer stem-like cells (LCSLCs) by a combination of sorafenib and BrMC in SMMC-7721 cell line. We also investigated whether this effect involves regulation of HIF-1α, Twist and NF-κB protein. We found that the sphere-forming cells (SFCs) from the SMMC‑7721 cells possessed the properties of LCSLCs. Sorafenib diminished the self-renewal capacity and downregulated the expression of stem cell biomarkers (CD133, CD44 and ALDH1) in a dose-dependent manner, while BrMC cooperated with sorafenib to strengthen this inhibition. Moreover, the combination of sorafenib and BrMC led to a remarkable decrease in the cellular migration and invasion, the downregulation of N-cadherin protein and upregulation of E-cadherin protein, and increase of cell apoptosis in LCSLCs. BrMC has a remarkable antagonistic effect on the upregulation of protein expression and DNA binding activity of NF-κB (p65) induced by sorafenib. In addition, our results indicated that the synergistic inhibition of sorafenib and BrMC on the characteristics of LCSLCs involves the downregulated expression of HIF-1α and EMT regulator Twist1. Collectively, the combination therapy of sorafenib and BrMC could be a new and promising therapeutic approach in the treatment of HCC.

  17. Adoptive transfer of osteoclast-expanded natural killer cells for immunotherapy targeting cancer stem-like cells in humanized mice.

    PubMed

    Kozlowska, Anna K; Kaur, Kawaljit; Topchyan, Paytsar; Jewett, Anahid

    2016-07-01

    Based on data obtained from oral, pancreatic and lung cancers, glioblastoma, and melanoma, we have established that natural killer (NK) cells target cancer stem-like cells (CSCs). CSCs displaying low MHC class I, CD54, and PD-L1 are killed by cytotoxic NK cells and are differentiated by split anergized NK cells through both membrane bound and secreted forms of TNF-α and IFN-γ. NK cells select and differentiate both healthy and transformed stem-like cells, resulting in target cell maturation and shaping of their microenvironment. In our recent studies, we have observed that oral, pancreatic, and melanoma CSCs were capable of forming large tumors in humanized bone marrow, liver, thymus (hu-BLT) mice with fully reconstituted human immune system. In addition, major human immune subsets including NK cells, T cells, B cells, and monocytes were present in the spleen, bone marrow, peripheral blood, and tumor microenvironment. Similar to our previously published in vitro data, CSCs differentiated with split anergized NK cells prior to implantation in mice formed smaller tumors. Intravenous injection of functionally potent osteoclast-expanded NK cells inhibited tumor growth through differentiation of CSCs in humanized mice. In this review, we present current approaches, advances, and existing limitations in studying interactions of the immune system with the tumor, in particular NK cells with CSCs, using in vivo preclinical hu-BLT mouse model. In addition, we discuss the use of osteoclast-expanded NK cells in targeting cancer stem-like tumors in humanized mice-a strategy that provides a much-needed platform to develop effective cancer immunotherapies.

  18. H460 non-small cell lung cancer stem-like holoclones yield tumors with increased vascularity

    PubMed Central

    Manley, Eugene; Waxman, David J.

    2014-01-01

    Cancer stem-like cells were isolated from several human tumor cell lines by limiting dilution assays and holoclone morphology, followed by assessment of self-renewal capacity, tumor growth, vascularity, and blood perfusion. H460 holoclone-derived tumors grew slower than parental H460 tumors, but displayed significantly increased microvessel density and tumor blood perfusion. Microarray analysis identified 177 differentially regulated genes in the holoclone-derived tumors, of which 47 were associated with angiogenesis. The dysregulated genes include several small leucine-rich proteoglycans that may modulate angiogenesis and serve as novel therapeutic targets for inhibiting cancer stem cell-driven angiogenesis. PMID:24334139

  19. H460 non-small cell lung cancer stem-like holoclones yield tumors with increased vascularity.

    PubMed

    Manley, Eugene; Waxman, David J

    2014-04-28

    Cancer stem-like cells were isolated from several human tumor cell lines by limiting dilution assays and holoclone morphology, followed by assessment of self-renewal capacity, tumor growth, vascularity, and blood perfusion. H460 holoclone-derived tumors grew slower than parental H460 tumors, but displayed significantly increased microvessel density and tumor blood perfusion. Microarray analysis identified 177 differentially regulated genes in the holoclone-derived tumors, of which 47 were associated with angiogenesis. The dysregulated genes include several small leucine-rich proteoglycans that may modulate angiogenesis and serve as novel therapeutic targets for inhibiting cancer stem cell-driven angiogenesis.

  20. Making Sure Helping Helps.

    ERIC Educational Resources Information Center

    Gartner, Audrey; Riessman, Frank

    1993-01-01

    Benefits to the helper are important to consider in a national-service program, along with the benefits to the recipient. Some suggestions are offered to ensure reciprocity in community service. Democratizing help giving, that is making it available to the widest possible audience, could help remove some of the pitfalls associated with help…

  1. Making Sure Helping Helps.

    ERIC Educational Resources Information Center

    Gartner, Audrey; Riessman, Frank

    1993-01-01

    Benefits to the helper are important to consider in a national-service program, along with the benefits to the recipient. Some suggestions are offered to ensure reciprocity in community service. Democratizing help giving, that is making it available to the widest possible audience, could help remove some of the pitfalls associated with help…

  2. Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells.

    PubMed

    Zhu, Thant S; Costello, Mark A; Talsma, Caroline E; Flack, Callie G; Crowley, Jessica G; Hamm, Lisa L; He, Xiaobing; Hervey-Jumper, Shawn L; Heth, Jason A; Muraszko, Karin M; DiMeco, Francesco; Vescovi, Angelo L; Fan, Xing

    2011-09-15

    One important function of endothelial cells in glioblastoma multiforme (GBM) is to create a niche that helps promote self-renewal of cancer stem-like cells (CSLC). However, the underlying molecular mechanism for this endothelial function is not known. Since activation of NOTCH signaling has been found to be required for propagation of GBM CSLCs, we hypothesized that the GBM endothelium may provide the source of NOTCH ligands. Here, we report a corroboration of this concept with a demonstration that NOTCH ligands are expressed in endothelial cells adjacent to NESTIN and NOTCH receptor-positive cancer cells in primary GBMs. Coculturing human brain microvascular endothelial cells (hBMEC) or NOTCH ligand with GBM neurospheres promoted GBM cell growth and increased CSLC self-renewal. Notably, RNAi-mediated knockdown of NOTCH ligands in hBMECs abrogated their ability to induce CSLC self-renewal and GBM tumor growth, both in vitro and in vivo. Thus, our findings establish that NOTCH activation in GBM CSLCs is driven by juxtacrine signaling between tumor cells and their surrounding endothelial cells in the tumor microenvironment, suggesting that targeting both CSLCs and their niche may provide a novel strategy to deplete CSLCs and improve GBM treatment.

  3. A novel matrine derivate inhibits differentiated human hepatoma cells and hepatic cancer stem-like cells by suppressing PI3K/AKT signaling pathways

    PubMed Central

    Liu, Ying; Qi, Yang; Bai, Zhi-hui; Ni, Chen-xu; Ren, Qi-hui; Xu, Wei-heng; Xu, Jing; Hu, Hong-gang; Qiu, Lei; Li, Jian-zhong; He, Zhi-gao; Zhang, Jun-ping

    2017-01-01

    inhibited Huh7 xenograft tumor growth and markedly reduced the number of surviving cancer stem-like cells in the tumors. MASM administration also reduced the expression of stem cell markers while increasing the expression of mature hepatocyte markers in the tumor tissues. The novel derivative of matrine, MASM, markedly suppresses HCC tumor growth through multiple mechanisms, and it may be a promising candidate drug for the treatment of hepatocellular carcinoma. PMID:27773936

  4. Hes1 is involved in the self-renewal and tumourigenicity of stem-like cancer cells in colon cancer.

    PubMed

    Gao, Fei; Zhang, YuQin; Wang, ShengChun; Liu, YuanQiang; Zheng, Lin; Yang, JianQuan; Huang, Wei; Ye, YanFen; Luo, WeiRen; Xiao, Dong

    2014-02-04

    A small subpopulation of cancer cells with stem cell-like features might be responsible for tumour generation, progression, and chemoresistance. Hes1 influences the maintenance of certain stem cells and progenitor cells and the digestive systems. We found upregulated Hes1 in poorly differentiated cancer samples compared with well-differentiated tumour samples, and most of the adenocarcinomas exhibited significantly higher levels of Hes1 mRNA compared with that observed in matched normal colon samples. Moreover, Hes1 expression was found to be correlated with the expression of stem cell markers in colon cancer samples, and Hes1 upregulates the expression of stemness-related genes in colon cancer cells. In addition, Hes1 enhances the self-renewal properties of the stem-like cells by increasing the sizes of CD133+ cells and SP cells and the ability of tumour sphere formation. Additionally, the Hes1-overexpressing cells formed significantly larger and higher number of colonies, as determined through the colony and the soft agar assays. More importantly, Hes1 enhances the tumourigenicity of colon cancer cell lines in nude mice and exhibits a strong tumour-formation ability at a cell density of 1 × 10(3). Taken together, our data indicate that Hes1 induces stem-like cell self-renewal and increases the number of tumour-initiating cells in colon cancer.

  5. Cancer stem-like cells derived from chemoresistant tumors have a unique capacity to prime tumorigenic myeloid cells.

    PubMed

    Yamashina, Tsunaki; Baghdadi, Muhammad; Yoneda, Akihiro; Kinoshita, Ichiro; Suzu, Shinya; Dosaka-Akita, Hirotoshi; Jinushi, Masahisa

    2014-05-15

    Resistance to anticancer therapeutics greatly affects the phenotypic and functional properties of tumor cells, but how chemoresistance contributes to the tumorigenic activities of cancer stem-like cells remains unclear. In this study, we found that a characteristic of cancer stem-like cells from chemoresistant tumors (CSC-R) is the ability to produce a variety of proinflammatory cytokines and to generate M2-like immunoregulatory myeloid cells from CD14(+) monocytes. Furthermore, we identified the IFN-regulated transcription factor IRF5 as a CSC-R-specific factor critical for promoting M-CSF production and generating tumorigenic myeloid cells. Importantly, myeloid cells primed with IRF5(+) CSC-R facilitate the tumorigenic and stem cell activities of bulk tumors. Importantly, the activation of IRF5/M-CSF pathways in tumor cells were correlated with the number of tumor-associated CSF1 receptor(+) M2 macrophages in patients with non-small lung cancer. Collectively, our findings show how chemoresistance affects the properties of CSCs in their niche microenvironments.

  6. Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cells.

    PubMed

    Kathagen, Annegret; Schulte, Alexander; Balcke, Gerd; Phillips, Heidi S; Martens, Tobias; Matschke, Jakob; Günther, Hauke S; Soriano, Robert; Modrusan, Zora; Sandmann, Thomas; Kuhl, Carsten; Tissier, Alain; Holz, Mareike; Krawinkel, Lutz A; Glatzel, Markus; Westphal, Manfred; Lamszus, Katrin

    2013-11-01

    Fluctuations in oxygen tension during tissue remodeling impose a major metabolic challenge in human tumors. Stem-like tumor cells in glioblastoma, the most common malignant brain tumor, possess extraordinary metabolic flexibility, enabling them to initiate growth even under non-permissive conditions. We identified a reciprocal metabolic switch between the pentose phosphate pathway (PPP) and glycolysis in glioblastoma stem-like (GS) cells. Expression of PPP enzymes is upregulated by acute oxygenation but downregulated by hypoxia, whereas glycolysis enzymes, particularly those of the preparatory phase, are regulated inversely. Glucose flux through the PPP is reduced under hypoxia in favor of flux through glycolysis. PPP enzyme expression is elevated in human glioblastomas compared to normal brain, especially in highly proliferative tumor regions, whereas expression of parallel preparatory phase glycolysis enzymes is reduced in glioblastomas, except for strong upregulation in severely hypoxic regions. Hypoxia stimulates GS cell migration but reduces proliferation, whereas oxygenation has opposite effects, linking the metabolic switch to the "go or grow" potential of the cells. Our findings extend Warburg's observation that tumor cells predominantly utilize glycolysis for energy production, by suggesting that PPP activity is elevated in rapidly proliferating tumor cells but suppressed by acute severe hypoxic stress, favoring glycolysis and migration to protect cells against hypoxic cell damage.

  7. Substrate-mediated reprogramming of human fibroblasts into neural crest stem-like cells and their applications in neural repair.

    PubMed

    Tseng, Ting-Chen; Hsieh, Fu-Yu; Dai, Niann-Tzyy; Hsu, Shan-Hui

    2016-09-01

    Cell- and gene-based therapies have emerged as promising strategies for treating neurological diseases. The sources of neural stem cells are limited while the induced pluripotent stem (iPS) cells have risk of tumor formation. Here, we proposed the generation of self-renewable, multipotent, and neural lineage-related neural crest stem-like cells by chitosan substrate-mediated gene transfer of a single factor forkhead box D3 (FOXD3) for the use in neural repair. A simple, non-toxic, substrate-mediated method was applied to deliver the naked FOXD3 plasmid into human fibroblasts. The transfection of FOXD3 increased cell proliferation and up-regulated the neural crest marker genes (FOXD3, SOX2, and CD271), stemness marker genes (OCT4, NANOG, and SOX2), and neural lineage-related genes (Nestin, β-tubulin and GFAP). The expression levels of stemness marker genes and neural crest maker genes in the FOXD3-transfected fibroblasts were maintained until the fifth passage. The FOXD3 reprogrammed fibroblasts based on the new method significantly rescued the neural function of the impaired zebrafish. The chitosan substrate-mediated delivery of naked plasmid showed feasibility in reprogramming somatic cells. Particularly, the FOXD3 reprogrammed fibroblasts hold promise as an easily accessible cellular source with neural crest stem-like behavior for treating neural diseases in the future.

  8. Isolation of rat embryonic stem-like cells: a tool for stem cell research and drug discovery.

    PubMed

    Fernández, M; Pirondi, S; Chen, B L; Del Vecchio, G; Alessandri, M; Farnedi, A; Pession, A; Feki, A; Jaconi, M E E; Calzà, L

    2011-11-01

    The establishment of rat embryonic stem cells constitutes a precious tool since rat has been extensively used in biomedical research, in particular for the generation of human neurodisease animal models. Up to now only a few studies have described the isolation of rat embryonic stem-like cells. One out of 9 isolated rat embryonic stem-like cell lines (B1-RESC) obtained from a 4.5-day post-coitum blastocyst were extensively characterized and kept in culture for up to 80 passages on feeders with LIF. The stable growth of these cells and the expression of pluripotent markers were confirmed up to a high number of passages in culture, also in the absence of feeders and LIF. B1-RESC expresses the three germ layers markers both in vitro, within differentiating embryoid bodies, and in vivo through teratoma formation. Collectively, the B1-RESC line with a stable near-diploid karyotype can be used as a highly sensitive tool for testing anti-proliferative molecules. Copyright © 2011 Wiley Periodicals, Inc.

  9. Integrated omics-analysis reveals Wnt-mediated NAD+ metabolic reprogramming in cancer stem-like cells

    PubMed Central

    Min, Soonki; Park, Ki Cheong; Park, Sunho; Hwang, Tae Hyun; Ryu, Do Hyun; Hwang, Geum-Sook; Cheong, Jae-Ho

    2016-01-01

    Abnormal tumor cell metabolism is a consequence of alterations in signaling pathways that provide critical selective advantage to cancer cells. However, a systematic characterization of the metabolic and signaling pathways altered in cancer stem-like cells (CSCs) is currently lacking. Using nuclear magnetic resonance and mass spectrometry, we profiled the whole-cell metabolites of a pair of parental (P-231) and stem-like cancer cells (S-231), and then integrated with whole transcriptome profiles. We identified elevated NAAD+ in S-231 along with a coordinated increased expression of genes in Wnt/calcium signaling pathway, reflecting the correlation between metabolic reprogramming and altered signaling pathways. The expression of CD38 and ALP, upstream NAAD+ regulatory enzymes, was oppositely regulated between P- and S-231; high CD38 strongly correlated with NAADP in P-231 while high ALP with NAAD+ levels in S-231. Antagonizing Wnt activity by dnTCF4 transfection reversed the levels of NAAD+ and ALP expression in S-231. Of note, elevated NAAD+ caused a decrease of cytosolic Ca2+ levels preventing calcium-induced apoptosis in nutrient-deprived conditions. Reprograming of NAD+ metabolic pathway instigated by Wnt signaling prevented cytosolic Ca2+ overload thereby inhibiting calcium-induced apoptosis in S-231. These results suggest that “oncometabolites” resulting from cross talk between the deranged core cancer signaling pathway and metabolic network provide a selective advantage to CSCs. PMID:27391070

  10. Sphere-forming tumor cells possess stem-like properties in human fibrosarcoma primary tumors and cell lines

    PubMed Central

    LIU, WEI-DONG; ZHANG, TAO; WANG, CHUN-LEI; MENG, HONG-MEI; SONG, YU-WEN; ZHAO, ZHE; LI, ZHENG-MIN; LIU, JIANG-KUN; PAN, SHANG-HA; WANG, WEN-BO

    2012-01-01

    Fibrosarcoma is a malignant soft tissue tumor of mesenchymal origin. Despite advances in medical and surgical treatment, patient survival rates have remained poor. According to the cancer stem cell hypothesis, tumors are comprised of heterogeneous cell populations that have different roles in tumor formation and growth. Cancer stem cells are a small cell subpopulation that exhibits stem-like properties to gain aggressiveness and recurrence. These cells have been identified in a variety of cancerous tumors, but not in human fibrosarcoma. In this study, we observed that HT1080 cells and primary fibrosarcoma cells formed spheres and showed higher self-renewal capacity, invasiveness and drug resistance compared with their adherent counterparts. Moreover, we demonstrated that the cells showed higher expression of the embryonic stem cell-related genes Nanog, Oct3/4, Sox2, Sox10 and their encoding proteins, as well as greater tumorigenic capacity in nude mice. In conclusion, our data suggest the presence of a stem-like cell population in human fibrosarcoma tumors, which provides more evidence for the cancer stem cell hypothesis and assistance in designing new therapeutic strategies against human fibrosarcoma. PMID:23205129

  11. Induction of Vasculogenic Mimicry Overrides VEGF-A Silencing and Enriches Stem-like Cancer Cells in Melanoma.

    PubMed

    Schnegg, Caroline I; Yang, Moon Hee; Ghosh, Subrata K; Hsu, Mei-Yu

    2015-04-15

    The basis for resistance to VEGF inhibition is not fully understood despite its clinical importance. In this study, we examined the adaptive response to VEGF-A inhibition by a loss-of-function analysis using plasmid-based shRNA. Tumor xenografts that initially responded to VEGF-A inhibition underwent an adaptation in vivo, leading to acquired resistance. VEGF-A blockade in tumors was associated with HIF1α expression and an increase in CD144(+) vasculogenic mimicry (VM), leading to formation of channels displaying Tie-1 and MMP-2 upregulation. CD133(+) and CD271(+) melanoma stem-like cells (MSLC) accumulated in the perivascular niche. Tumor xenografts of melanoma cell populations that were intrinsically resistant to VEGF-A blockade did not exhibit any of these features, compared with nontarget control counterparts. Thus, melanomas that are initially sensitive to VEGF-A blockade acquire adaptive resistance by adopting VM as an alternate angiogenic strategy, thereby enriching for deposition of MSLC in the perivascular niche through an HIF1α-dependent process. Conversely, melanomas that are intrinsically resistant to VEGF-A blockade do not show any evidence of compensatory survival mechanisms that promote MSLC accumulation. Our work highlights the potential risk of anti-VEGF treatments owing to a selective pressure for an adaptive resistance mechanism that empowers the development of stem-like cancer cells, with implications for how to design combination therapies that can improve outcomes in patients. ©2015 American Association for Cancer Research.

  12. Induction of vasculogenic mimicry overrides VEGF-A silencing and enriches stem-like cancer cells in melanoma

    PubMed Central

    Schnegg, Caroline I.; Yang, Moon Hee; Ghosh, Subrata K.; Hsu, Mei-Yu

    2015-01-01

    The basis for resistance to VEGF inhibition is not fully understood despite its clinical importance. In this study, we examined the adaptive response to VEGF-A inhibition by a loss-of-function analysis using plasmid-based shRNA. Tumor xenografts that initially responded to VEGF-A inhibition underwent an adaptation in vivo leading to acquired resistance. VEGF-A blockade in tumors was associated with HIF-1α expression and an increase in CD144+ vasculogenic mimicry (VM), leading to formation of channels displaying Tie-1 and MMP-2 upregulation. CD133+ and CD271+ melanoma stem-like cells (MSLC) accumulated in the perivascular niche. Tumor xenografts of melanoma cell populations that were intrinsically resistant to VEGF-A blockade did not exhibit any of these features, compared to non-target control counterparts. Thus, melanomas which are initially sensitive to VEGF-A blockade acquire adaptive resistance by adopting VM as an alternate angiogenic strategy, thereby enriching for deposition of MSLC in the perivascular niche through a HIF-1α-dependent process. Conversely, melanomas which are intrinsically resistant to VEGF-A blockade do not show any evidence of compensatory survival mechanisms that promote MSLC accumulation. Our work highlights the potential risk of anti-VEGF treatments owing to a selective pressure for an adaptive resistance mechanism that empowers the development of stem-like cancer cells, with implications for how to design combination therapies that can improve outcomes in patients. PMID:25769726

  13. Derivation of Porcine Embryonic Stem-Like Cells from In Vitro-Produced Blastocyst-Stage Embryos

    PubMed Central

    Hou, Dao-Rong; Jin, Yong; Nie, Xiao-Wei; Zhang, Man-Ling; Ta, Na; Zhao, Li-Hua; Yang, Ning; Chen, Yuan; Wu, Zhao-Qiang; Jiang, Hai-Bin; Li, Yan-Ru; Sun, Qing-Yuan; Dai, Yi-Fan; Li, Rong-Feng

    2016-01-01

    Efficient isolation of embryonic stem (ES) cells from pre-implantation porcine embryos has remained a challenge. Here, we describe the derivation of porcine embryonic stem-like cells (pESLCs) by seeding the isolated inner cell mass (ICM) from in vitro-produced porcine blastocyst into α-MEM with basic fibroblast growth factor (bFGF). The pESL cells kept the normal karyotype and displayed flatten clones, similar in phenotype to human embryonic stem cells (hES cells) and rodent epiblast stem cells. These cells exhibited alkaline phosphatase (AP) activity and expressed pluripotency markers such as OCT4, NANOG, SOX2, SSEA-4, TRA-1-60, and TRA-1-81 as determined by both immunofluorescence and RT-PCR. Additionally, these cells formed embryoid body (EB), teratomas and also differentiated into 3 germ layers in vitro and in vivo. Microarray analysis showed the expression of the pluripotency markers, PODXL, REX1, SOX2, KLF5 and NR6A1, was significantly higher compared with porcine embryonic fibroblasts (PEF), but expression of OCT4, TBX3, REX1, LIN28A and DPPA5, was lower compared to the whole blastocysts or ICM of blastocyst. Our results showed that porcine embryonic stem-like cells can be established from in vitro-produced blastocyst-stage embryos, which promote porcine naive ES cells to be established. PMID:27173828

  14. Automatic cell cloning assay for determining the clonogenic capacity of cancer and cancer stem-like cells.

    PubMed

    Fedr, Radek; Pernicová, Zuzana; Slabáková, Eva; Straková, Nicol; Bouchal, Jan; Grepl, Michal; Kozubík, Alois; Souček, Karel

    2013-05-01

    The clonogenic assay is a well-established in vitro method for testing the survival and proliferative capability of cells. It can be used to determine the cytotoxic effects of various treatments including chemotherapeutics and ionizing radiation. However, this approach can also characterize cells with different phenotypes and biological properties, such as stem cells or cancer stem cells. In this study, we implemented a faster and more precise method for assessing the cloning efficiency of cancer stem-like cells that were characterized and separated using a high-speed cell sorter. Cell plating onto a microplate using an automatic cell deposition unit was performed in a single-cell or dilution rank mode by the fluorescence-activated cell sorting method. We tested the new automatic cell-cloning assay (ACCA) on selected cancer cell lines and compared it with the manual approach. The obtained results were also compared with the results of the limiting dilution assay for different cell lines. We applied the ACCA to analyze the cloning capacity of different subpopulations of prostate and colon cancer cells based on the expression of the characteristic markers of stem (CD44 and CD133) and cancer stem cells (TROP-2, CD49f, and CD44). Our results revealed that the novel ACCA is a straightforward approach for determining the clonogenic capacity of cancer stem-like cells identified in both cell lines and patient samples. Copyright © 2013 International Society for Advancement of Cytometry.

  15. Isolation and phenotypic characterization of cancer stem-like side population cells in colon cancer.

    PubMed

    Feng, Long; Wu, Jian-Bing; Yi, Feng-Ming

    2015-09-01

    Previous studies in cancer biology suggest that chemotherapeutic drug resistance and tumor relapse are driven by cells within a tumor termed 'cancer stem cells'. In the present study, a Hoechst 33342 dye exclusion technique was used to identify cancer stem‑like side population (SP) cells in colon carcinoma, which accounted for 3.4% of the total cell population. Following treatment with verapamil, the population of SP cells was reduced to 0.6%. In addition, the sorted SP cells exhibited marked multidrug resistance and enhanced cell survival rates compared with non‑SP cells. The SP cells were able to generate more tumor spheres and were CD133 positive. Subsequent biochemical analysis revealed that the levels of the adenosine triphosphate‑binding cassette sub‑family G member 2 transporter protein, B‑cell lymphoma anti‑apoptotic factor and autocrine production of interleukin‑4 were significantly enhanced in the colon cancer SP cells, which contributed to drug resistance, protection of the cells from apoptosis and tumor recurrence. Therefore, the findings suggested that treatment failure and colon tumorigenesis is dictated by a small population of SP cells, which indicate a potential target in future therapies.

  16. Effective elimination of liver cancer stem-like cells by CD90 antibody targeted thermosensitive magnetoliposomes

    PubMed Central

    Yang, Rui; An, Li Y.; Miao, Qin F.; Li, Feng M.; Han, Yong; Wang, Hui X.; Liu, Dang P.; Chen, Rong; Tang, Sha Q.

    2016-01-01

    Aim To investigate the use of thermosensitive magnetoliposomes (TMs) loaded with magnetic iron oxide (Fe3O4) and the anti-cancer stem cell marker CD90 (CD90@TMs) to target and kill CD90+ liver cancer stem cells (LCSCs). Methods The hepatocellular carcinoma cell line Huh7 was used to separate CD90+ LCSCs by magnetic-activated cell sorting. CD90@TMs was characterized and their ability to target CD90+ LCSCs was determined. Experiments were used to investigate whether CD90@TMs combined with magnetic hyperthermia could effectively eliminate CD90+ LCSCs. Results The present study demonstrated that CD90+ LCSCs with stem cells properties were successfully isolated. We also successfully prepared CD90@TMs that was almost spherical and uniform with an average diameter of 130±4.6 nm and determined that magnetic iron oxide could be incorporated and retained a superparamagnetic response. CD90@TMs showed good targeting and increased inhibition of CD90+ LCSCs in vitro and in vivo compared to TMs. Conclusion CD90@TMs can be used for controlled and targeted delivery of anticancer drugs, which may offer a promising alternative for HCC therapy. PMID:27145285

  17. Notch pathway activation is essential for maintenance of stem-like cells in early tongue cancer

    PubMed Central

    Kaur, Ekjot; Aich, Jyotirmoi; Dani, Prachi; Sethunath, Vidyalakshmi; Gardi, Nilesh; Chandrani, Pratik; Godbole, Mukul; Sonawane, Kavita; Prasad, Ratnam; Kannan, Sadhana; Agarwal, Beamon; Kane, Shubhada; Gupta, Sudeep; Dutt, Shilpee; Dutt, Amit

    2016-01-01

    Background Notch pathway plays a complex role depending on cellular contexts: promotes stem cell maintenance or induces terminal differentiation in potential cancer-initiating cells; acts as an oncogene in lymphocytes and mammary tissue or plays a growth-suppressive role in leukemia, liver, skin, and head and neck cancer. Here, we present a novel clinical and functional significance of NOTCH1 alterations in early stage tongue squamous cell carcinoma (TSCC). Patients and Methods We analyzed the Notch signaling pathway in 68 early stage TSCC primary tumor samples by whole exome and transcriptome sequencing, real-time PCR based copy number, expression, immuno-histochemical, followed by cell based biochemical and functional assays. Results We show, unlike TCGA HNSCC data set, NOTCH1 harbors significantly lower frequency of inactivating mutations (4%); is somatically amplified; and, overexpressed in 31% and 37% of early stage TSCC patients, respectively. HNSCC cell lines over expressing NOTCH1, when plated in the absence of attachment, are enriched in stem cell markers and form spheroids. Furthermore, we show that inhibition of NOTCH activation by gamma secretase inhibitor or shRNA mediated knockdown of NOTCH1 inhibits spheroid forming capacity, transformation, survival and migration of the HNSCC cells suggesting an oncogenic role of NOTCH1 in TSCC. Clinically, Notch pathway activation is higher in tumors of non-smokers compared to smokers (50% Vs 18%, respectively, P=0.026) and is also associated with greater nodal positivity compared to its non-activation (93% Vs 64%, respectively, P=0.029). Conclusion We anticipate that these results could form the basis for therapeutic targeting of NOTCH1 in tongue cancer. PMID:27391340

  18. Stem-Like Memory T Cells Are Discovered | Center for Cancer Research

    Cancer.gov

    T cells are the white blood cells that are the body’s first line of attack against foreign invaders.  When designing immunotherapies to treat cancer the goal is to prolong the immune response of T cells a bit beyond what the body normally does when a bacterium or a virus is encountered.   Nicholas P. Restifo, M.D., working with Luca Gattinoni, M.D., and other colleagues in CCR’s Surgery Branch recently discovered a subset within the human T cell population that may help clinicians to do just  this.

  19. Helping Kids Help Themselves.

    ERIC Educational Resources Information Center

    Good, E. Perry

    This book explains how many of the behaviors that adults use to "help" kids are, at best, ineffective and, at worst, destructive to the adults' relationships with children. Adults traditionally believe that external cues prompt correct behavior--the premise of stimulus-response psychology. However, the ideas discussed here revolve around the…

  20. NOR1 Suppresses Cancer Stem-Like Cells Properties of Tumor Cells via the Inhibition of the AKT-GSK-3β-Wnt/β-catenin-ALDH1A1 Signal Circuit.

    PubMed

    Wang, Wei; Yi, Mei; Chen, Shengnan; Li, Junjun; Zhang, Haijing; Xiong, Wei; Li, Guiyuan; Li, Xiaoling; Xiang, Bo

    2017-10-01

    Cancer stem cells (CSCs) play a key role in tumor radiotherapy and chemotherapy resistance, relapse, and metastasis, and are primarily maintained in a resting state in vivo. The failure of conventional therapies to target CSCs is the main cause of treatment failure. The discovery of CSCs in nasopharyngeal carcinoma (NPC) tumors is becoming more prevalent; however, the understanding of the mechanisms underlying the maintenance of tumor stemness is still limited. We previously cloned NOR1, a tumor suppressor gene downregulated in NPC cell lines and tissues. In this study, we demonstrate that Wnt/β-catenin and ALDH1A1 form a signal circuit and that NOR1 antagonizes the tumor stem cell-like phenotype in NPC cell lines: the ectopic overexpression of NOR1 reduced β-catenin and ALDH1A1 expression; β-catenin/TCF4 targeted the regulation of ALDH1A1 transcription in NPC cells; silencing ALDH1A1 reduced AKT (total and phosphorylated) and GSK-3β (phosphorylated) expression; and eventually feedback decreased β-catenin expression levels. We also found that NOR1 expression decreased cancer stem-like cell properties of NPC cells, reduced their ability to form tumor spheroids in vitro, reduced tumorigenicity in nude mice in vivo, and increased sensitivity to chemotherapy agents. Taken together, our findings illustrated a new function of NOR1 that suppresses cancer stem-like cell properties in tumor cells by inhibiting the AKT-GSK-3β-Wnt/β-catenin-ALDH1A1 signal circuit. The study suggests that NOR1 deletion expression in NPC cells may be a potential molecular target for cancer stem cell therapy. J. Cell. Physiol. 232: 2829-2840, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    SciTech Connect

    Kang, Khong Bee; Zhu Congju; Wong Yinling; Gao Qiuhan; Ty, Albert; Wong, Meng Cheong

    2012-05-01

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, {gamma}-H{sub 2}AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, {gamma}-H{sub 2}AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G{sub 2}/M arrest and increased {gamma}-H{sub 2}AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased {gamma}-H{sub 2}AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are

  2. Chemical Library Screening and Structure-Function Relationship Studies Identify Bisacodyl as a Potent and Selective Cytotoxic Agent Towards Quiescent Human Glioblastoma Tumor Stem-Like Cells

    PubMed Central

    Mameri, Samir; Dong, Jihu; Salomé, Christophe; Chen, Wanyin; El-Habr, Elias A.; Bousson, Fanny; Sy, Mohamadou; Obszynski, Julie; Boh, Alexandre; Villa, Pascal; Assad Kahn, Suzana; Didier, Bruno; Bagnard, Dominique; Junier, Marie-Pierre; Chneiweiss, Hervé; Haiech, Jacques; Hibert, Marcel; Kilhoffer, Marie-Claude

    2015-01-01

    Cancer stem-like cells reside in hypoxic and slightly acidic tumor niches. Such microenvironments favor more aggressive undifferentiated phenotypes and a slow growing "quiescent state" which preserves them from chemotherapeutic agents that essentially target proliferating cells. Our objective was to identify compounds active on glioblastoma stem-like cells, including under conditions that mimick those found in vivo within this most severe and incurable form of brain malignancy. We screened the Prestwick Library to identify cytotoxic compounds towards glioblastoma stem-like cells, either in a proliferating state or in more slow-growing "quiescent" phenotype resulting from non-renewal of the culture medium in vitro. Compound effects were assessed by ATP-level determination using a cell-based assay. Twenty active molecules belonging to different pharmacological classes have thus been identified. Among those, the stimulant laxative drug bisacodyl was the sole to inhibit in a potent and specific manner the survival of quiescent glioblastoma stem-like cells. Subsequent structure-function relationship studies led to identification of 4,4'-dihydroxydiphenyl-2-pyridyl-methane (DDPM), the deacetylated form of bisacodyl, as the pharmacophore. To our knowledge, bisacodyl is currently the only known compound targeting glioblastoma cancer stem-like cells in their quiescent, more resistant state. Due to its known non-toxicity in humans, bisacodyl appears as a new potential anti-tumor agent that may, in association with classical chemotherapeutic compounds, participate in tumor eradication. PMID:26270679

  3. Disulfiram inhibits TGF-β-induced epithelial-mesenchymal transition and stem-like features in breast cancer via ERK/NF-κB/Snail pathway

    PubMed Central

    Chang, Chan; Zhu, Fang; Xiao, Yin; Li, Qiuhui; Zhang, Tao; Zhang, Liling

    2015-01-01

    Disulfiram (DSF), an anti-alcoholism drug, has been reported as an inhibitor of NF-κB. NF-κB is involved in epithelial-mesenchymal transition (EMT) and self-renewal of breast cancer stem cells (CSCs). In this study, we treated MCF-7 and MDA-MB-231 breast cancer cells with TGF-β to induce EMT and cancer stem-like features and studied whether DSF can reverse this process. We found that DSF inhibited TGF-β induced EMT in breast cancer cells in a dose-dependent manner. Also, DSF inhibited EMT-associated stem-like features, migration and invasion of tumor cells as well as tumor growth in xenograft model. The activation of NF-κB was linked with EMT and stem-like cells. We conclude that DSF can suppress NF-κB activity and downregulate ERK/NF-κB/Snail pathway, leading to reverse EMT and stem-like features. Our data suggest that DSF inhibits EMT and stem-like properties in breast cancer cells associated with inhibition of the ERK/NF-κB/Snail pathway. PMID:26517513

  4. δ-Tocotrienol, a natural form of vitamin E, inhibits pancreatic cancer stem-like cells and prevents pancreatic cancer metastasis

    PubMed Central

    Husain, Kazim; Centeno, Barbara A; Coppola, Domenico; Trevino, Jose; Sebti, Said M; Malafa, Mokenge P

    2017-01-01

    The growth, metastasis, and chemotherapy resistance of pancreatic ductal adenocarcinoma (PDAC) is characterized by the activation and growth of tumor-initiating cells in distant organs that have stem-like properties. Thus, inhibiting growth of these cells may prevent PDAC growth and metastases. We have demonstrated that δ-tocotrienol, a natural form of vitamin E (VEDT), is bioactive against cancer, delays progression, and prevents metastases in transgenic mouse models of PDAC. In this report, we provide the first evidence that VEDT selectively inhibits PDAC stem-like cells. VEDT inhibited the viability, survival, self-renewal, and expression of Oct4 and Sox2 transcription factors in 3 models of PDAC stem-like cells. In addition, VEDT inhibited the migration, invasion, and several biomarkers of epithelial-to-mesenchymal transition and angiogenesis in PDAC cells and tumors. These processes are critical for tumor metastases. Furthermore, in the L3.6pl orthotopic model of PDAC metastases, VEDT significantly inhibited growth and metastases of these cells. Finally, in an orthotopic xenograft model of human PDAC stem-like cells, we showed that VEDT significantly retarded the growth and metastases of gemcitabine-resistant PDAC human stem-like cells. Because VEDT has been shown to be safe and to reach bioactive levels in humans, this work supports investigating VEDT for chemoprevention of PDAC metastases. PMID:28404939

  5. Disulfiram inhibits TGF-β-induced epithelial-mesenchymal transition and stem-like features in breast cancer via ERK/NF-κB/Snail pathway.

    PubMed

    Han, Dan; Wu, Gang; Chang, Chan; Zhu, Fang; Xiao, Yin; Li, Qiuhui; Zhang, Tao; Zhang, Liling

    2015-12-01

    Disulfiram (DSF), an anti-alcoholism drug, has been reported as an inhibitor of NF-κB. NF-κB is involved in epithelial-mesenchymal transition (EMT) and self-renewal of breast cancer stem cells (CSCs). In this study, we treated MCF-7 and MDA-MB-231 breast cancer cells with TGF-β to induce EMT and cancer stem-like features and studied whether DSF can reverse this process. We found that DSF inhibited TGF-β induced EMT in breast cancer cells in a dose-dependent manner. Also, DSF inhibited EMT-associated stem-like features, migration and invasion of tumor cells as well as tumor growth in xenograft model. The activation of NF-κB was linked with EMT and stem-like cells. We conclude that DSF can suppress NF-κB activity and downregulate ERK/NF-κB/Snail pathway, leading to reverse EMT and stem-like features. Our data suggest that DSF inhibits EMT and stem-like properties in breast cancer cells associated with inhibition of the ERK/NF-κB/Snail pathway.

  6. Chemical Library Screening and Structure-Function Relationship Studies Identify Bisacodyl as a Potent and Selective Cytotoxic Agent Towards Quiescent Human Glioblastoma Tumor Stem-Like Cells.

    PubMed

    Zeniou, Maria; Fève, Marie; Mameri, Samir; Dong, Jihu; Salomé, Christophe; Chen, Wanyin; El-Habr, Elias A; Bousson, Fanny; Sy, Mohamadou; Obszynski, Julie; Boh, Alexandre; Villa, Pascal; Assad Kahn, Suzana; Didier, Bruno; Bagnard, Dominique; Junier, Marie-Pierre; Chneiweiss, Hervé; Haiech, Jacques; Hibert, Marcel; Kilhoffer, Marie-Claude

    2015-01-01

    Cancer stem-like cells reside in hypoxic and slightly acidic tumor niches. Such microenvironments favor more aggressive undifferentiated phenotypes and a slow growing "quiescent state" which preserves them from chemotherapeutic agents that essentially target proliferating cells. Our objective was to identify compounds active on glioblastoma stem-like cells, including under conditions that mimick those found in vivo within this most severe and incurable form of brain malignancy. We screened the Prestwick Library to identify cytotoxic compounds towards glioblastoma stem-like cells, either in a proliferating state or in more slow-growing "quiescent" phenotype resulting from non-renewal of the culture medium in vitro. Compound effects were assessed by ATP-level determination using a cell-based assay. Twenty active molecules belonging to different pharmacological classes have thus been identified. Among those, the stimulant laxative drug bisacodyl was the sole to inhibit in a potent and specific manner the survival of quiescent glioblastoma stem-like cells. Subsequent structure-function relationship studies led to identification of 4,4'-dihydroxydiphenyl-2-pyridyl-methane (DDPM), the deacetylated form of bisacodyl, as the pharmacophore. To our knowledge, bisacodyl is currently the only known compound targeting glioblastoma cancer stem-like cells in their quiescent, more resistant state. Due to its known non-toxicity in humans, bisacodyl appears as a new potential anti-tumor agent that may, in association with classical chemotherapeutic compounds, participate in tumor eradication.

  7. Tumor-associated mesenchymal stem-like cells provide extracellular signaling cue for invasiveness of glioblastoma cells

    PubMed Central

    Yoo, Ki-Chun; Lee, Ji-Hyun; Kim, In-Gyu; Kim, Min-Jung; Chang, Jong Hee; Kang, Seok-Gu; Lee, Su-Jae

    2017-01-01

    Hyaluronic acid (HA) is abundant in tumor microenvironment and closely associated with invasiveness of glioblastoma (GBM) cells. However, the cellular mechanism underlying HA-rich microenvironment in GBM remains unexplored. Here, we show that tumor-associated mesenchymal stem-like cells (tMSLCs) contribute to abundance of hyaluronic acid (HA) in tumor microenvironment through HA synthase-2 (HAS2) induction, and thereby enhances invasiveness of GBM cells. In an autocrine manner, C5a secreted by tMSLCs activated ERK MAPK for HAS2 induction in tMSLCs. Importantly, HA acted as a signaling ligand of its cognate receptor RHAMM for intracellular signaling activation underlying invasiveness of GBM cells. Taken together, our study suggests that tMSLCs contribute to HA-rich proinvasive ECM microenvironment in GBM. PMID:27903965

  8. Growth factors from tumor microenvironment possibly promote the proliferation of glioblastoma-derived stem-like cells in vitro.

    PubMed

    Guo, JingJing; Niu, Rui; Huang, Wenhui; Zhou, Mengliang; Shi, Jixing; Zhang, Luyong; Liao, Hong

    2012-10-01

    Glioblastoma multiform is a lethal brain glial tumor characterized by low survival and high recurrence, partially attributed to the glioblastoma stem cells according to recent researches. Microenvironment or niche in tumor tissue is believed to provide essential support for the aberrant growth of tumor stem cells. In order to explore the effect of growth factors in tumor microenvironment on glioblastoma stem cells behavior, glioblastoma-derived stem-like cells (GDSCs) were isolated from adult human glioblastoma specimen with antibody against surface marker CD133 and were co-cultured with various tumor cells including U87MG cells, unsorted glioblastoma tumor cells, CD133(-) cells and normal rat primary astrocytes. Results suggested that tumor cells could promote GDSCs proliferation while non-tumor cells could not, and several growth factors were exclusively detected in the co-culture system with tumor cells. It was concluded that growth factors derived from tumor microenvironment possibly contributed to the uncontrolled proliferation of GDSCs.

  9. Noninvasive method of immortalized neural stem-like cell transplantation in an experimental model of Huntington's disease.

    PubMed

    Lee, Soon-Tae; Park, Jung-Eun; Lee, Kyungmi; Kang, Lami; Chu, Kon; Kim, Seung U; Kim, Manho; Roh, Jae-Kyu

    2006-04-15

    A loss of neostriatal neurons is a characteristic of Huntington's disease (HD), and neural tissue transplantation has been performed directly into the striatum. Since the neural stem cells have ability to migrate into the lesion site, we administered immortalized neural stem-like cells (NSC) into the ventricle or via a tail vein following unilateral intrastriatal quinolinic acid lesioning in Sprague-Dawley rats. To identify transplanted NSC, cells were encoded with lac Z and beta-galactosidase histochemistry was performed. lac Z+ cells were detected in the lesioned striatum but tissue damage or tumor formation was not observed. This study shows that NSC migrate into the striatum, either from ventricle or from the systemic circulation, providing less invasive routes for stem cell application in HD.

  10. Expansive growth of two glioblastoma stem-like cell lines is mediated by bFGF and not by EGF

    PubMed Central

    Podergajs, Neza; Brekka, Narve; Radlwimmer, Bernhard; Herold-Mende, Christel; Talasila, Krishna M.; Tiemann, Katja; Rajcevic, Uros; Lah, Tamara T.; Bjerkvig, Rolf; Miletic, Hrvoje

    2013-01-01

    Background Patient-derived glioblastoma (GBM) stem-like cells (GSCs) represent a valuable model for basic and therapeutic research. GSCs are usually propagated in serum-free Neural Basal medium supplemented with bFGF and EGF. Yet, the exact influence of these growth factors on GSCs is still unclear. Recently it was suggested that GBM stem-like cells with amplified EGFR should be cultured in stem cell medium without EGF, as the presence of EGF induced rapid loss of EGFR amplification. However, patient biopsies are usually taken into culture before their genomic profiles are defined. Thus, an important question remains whether GBM cells without EGFR amplification also can be cultured in stem cell medium without EGF. Meterials and methods To address this question, we used two heterogeneous glioblastoma GSC lines (NCH421k and NCH644) that lack EGFR amplification. Results Although both cell lines showed very low EGFR expression under standard growth conditions, bFGF stimulation induced higher expression of EGFR in NCH644. In both cell lines, expression of the stem cell markers nestin and CD133 was higher upon stimulation with bFGF compared to EGF. Importantly, bFGF stimulated the growth of both cell lines, whereas EGF had no effect. We verified that the growth stimulation by bFGF was either mediated by proliferation (NCH421k) or resistance to apoptosis (NCH644). Conclusions We demonstrate that GSC cultures without EGFR amplification can be maintained and expanded with bFGF, while the addition of EGF has no significant effect and therefore can be omitted. PMID:24294177

  11. Side Population Cells From an Immortalized Human Liver Epithelial Cell Line Exhibit Hepatic Stem-Like Cell Properties.

    PubMed

    Tokiwa, Takayoshi; Yamazaki, Taisuke; Enosawa, Shin

    2012-01-01

    The existence of hepatic stem cells in human livers is controversial. We investigated whether the side population (SP) cells derived from an immortalized human liver epithelial cell line THLE-5b possess the properties of hepatic stem-like cells. SP cells derived from THLE-5b were isolated using flow cytometry and were assayed for the expression of phenotypic markers by reverse transcription polymerase chain reaction and immunostaining. THLE-5b SP cells retained the capacity to generate both SP and non-SP cells, showed a capacity for self-renewal, and were more efficient in colony formation than non-SP cells. Neither the SP nor the non-SP cells formed tumors when transplanted into athymic nude mice or severe combined immunodeficient mice. The expression level of stem cell-associated markers such as an ATP-binding cassette membrane transporter, epithelial cell adhesion molecule, c-kit, Thy-1, and octomer binding transcription factor 4 was higher in SP cells than in non-SP cells. When cultivated as rotation-mediated aggregates, the expression of liver-specific genes including tryptophan oxygenase and CYP3A4 was up-regulated in SP cells, suggesting that THLE-5b SP cells have the ability to differentiate into a hepatocyte phenotype. One of the clonal cell lines derived from the SP cells expressed stem cell-associated markers. These results indicate that SP cells derived from THLE-5b possess hepatic stem-like cell properties and suggest that THLE-5b can be used as a model of normal human liver progenitor or stem cell line.

  12. Genome-Wide Microarray Expression and Genomic Alterations by Array-CGH Analysis in Neuroblastoma Stem-Like Cells

    PubMed Central

    Martínez-Soto, Soledad; Legarra, Sheila; Pata-Merci, Noémie; Guegan, Justine; Danglot, Giselle; Bernheim, Alain; Meléndez, Bárbara; Rey, Juan A.; Castresana, Javier S.

    2014-01-01

    Neuroblastoma has a very diverse clinical behaviour: from spontaneous regression to a very aggressive malignant progression and resistance to chemotherapy. This heterogeneous clinical behaviour might be due to the existence of Cancer Stem Cells (CSC), a subpopulation within the tumor with stem-like cell properties: a significant proliferation capacity, a unique self-renewal capacity, and therefore, a higher ability to form new tumors. We enriched the CSC-like cell population content of two commercial neuroblastoma cell lines by the use of conditioned cell culture media for neurospheres, and compared genomic gains and losses and genome expression by array-CGH and microarray analysis, respectively (in CSC-like versus standard tumor cells culture). Despite the array-CGH did not show significant differences between standard and CSC-like in both analyzed cell lines, the microarray expression analysis highlighted some of the most relevant biological processes and molecular functions that might be responsible for the CSC-like phenotype. Some signalling pathways detected seem to be involved in self-renewal of normal tissues (Wnt, Notch, Hh and TGF-β) and contribute to CSC phenotype. We focused on the aberrant activation of TGF-β and Hh signalling pathways, confirming the inhibition of repressors of TGF-β pathway, as SMAD6 and SMAD7 by RT-qPCR. The analysis of the Sonic Hedgehog pathway showed overexpression of PTCH1, GLI1 and SMO. We found overexpression of CD133 and CD15 in SIMA neurospheres, confirming that this cell line was particularly enriched in stem-like cells. This work shows a cross-talk among different pathways in neuroblastoma and its importance in CSC-like cells. PMID:25392930

  13. Raloxifene and antiestrogenic gonadorelin inhibits intestinal tumorigenesis by modulating immune cells and decreasing stem-like cells.

    PubMed

    Janakiram, Naveena B; Mohammed, Altaf; Brewer, Misty; Bryant, Taylor; Biddick, Laura; Lightfoot, Stan; Pathuri, Gopal; Gali, Hariprasad; Rao, Chinthalapally V

    2014-03-01

    Studies suggest that estrogen plays a contributing role in colorectal cancer. This project examined the preventive effects of raloxifene, a selective estrogen receptor modulator (SERM), and gonadorelin, an antiestrogenic drug, in female Apc(Min/+) mouse intestinal tumorigenesis. Six-week-old Apc(Min/+)mice were fed diet containing 1 ppm raloxifene or control diet. Gonadorelin (150 ng/mouse) was injected subcutaneously into one treatment group. Intestinal tumors were evaluated for tumor multiplicity and size. Mice treated with raloxifene and gonadorelin showed colon tumor inhibition of 80% and 75%, respectively. Both drugs significantly inhibited small intestinal tumor multiplicity and size (75%-65%, P < 0.0001). Raloxifene and gonadorelin showed significant tumor inhibition with 98% and 94% inhibition of polyps >2 mm in size. In mice fed with raloxifene or injected with gonadorelin, tumors showed significantly reduced proliferating cell nuclear antigen expression (58%-65%, P < 0.0001). Raloxifene treatment decreased β-catenin, cyclin D1, laminin 1β, Ccl6, and stem-like cells (Lgr 5, EpCAM, CD44/CD24), as well as suppressed inflammatory genes (COX-2, mPGES-1, 5-LOX,). Gonadorelin showed significant decrease in COX-2, mPGES-1, iNOS, and stem-like cells or increased NK cells and chemokines required for NK cells. Both drugs were effective in suppressing tumor growth albeit with different mechanisms. These observations show that either suppression of estrogen levels or modulation of estrogen receptor dramatically suppresses small intestinal and colonic tumor formation in female Apc(Min/+) mice. These results support the concept of chemoprevention by these agents in reducing endogenous levels of estrogen or modulating ER signaling.

  14. Identification of microRNA profile specific to cancer stem-like cells directly isolated from human larynx cancer specimens.

    PubMed

    Karatas, Omer Faruk; Suer, Ilknur; Yuceturk, Betul; Yilmaz, Mehmet; Oz, Buge; Guven, Gulgun; Cansiz, Harun; Creighton, Chad J; Ittmann, Michael; Ozen, Mustafa

    2016-11-05

    Emerging evidences proposed that microRNAs are associated with regulation of distinct physio-pathological processes including development of normal stem cells and carcinogenesis. In this study we aimed to investigate microRNA profile of cancer stem-like cells (CSLCs) isolated form freshly resected larynx cancer (LCa) tissue samples. CD133 positive (CD133(+)) stem-like cells were isolated from freshly resected LCa tumor specimens. MicroRNA profile of 12 pair of CD133(+) and CD133(-) cells was determined using microRNA microarray and differential expressions of selvected microRNAs were validated by quantitative real time PCR (qRT-PCR). MicroRNA profiling of CD133(+) and CD133(-) LCa samples with microarray revealed that miR-26b, miR-203, miR-200c, and miR-363-3p were significantly downregulated and miR-1825 was upregulated in CD133(+) larynx CSLCs. qRT-PCR analysis in a total of 25 CD133(+)/CD133(-) sample pairs confirmed the altered expressions of these five microRNAs. Expressions of miR-26b, miR-200c, and miR-203 were significantly correlated with miR-363-3p, miR-203, and miR-363-3p expressions, respectively. Furthermore, in silico analysis revealed that these microRNAs target both cancer and stem-cell associated signaling pathways. Our results showed that certain microRNAs in CD133(+) cells could be used as cancer stem cell markers. Based on these results, we propose that this panel of microRNAs might carry crucial roles in LCa pathogenesis through regulating stem cell properties of tumor cells.

  15. High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant.

    PubMed

    Farnie, Gillian; Sotgia, Federica; Lisanti, Michael P

    2015-10-13

    Chemo-resistance is a clinical barrier to more effective anti-cancer therapy. In this context, cancer stem-like cells (CSCs) are thought to be chemo-resistant, resulting in tumor recurrence and distant metastasis. Our hypothesis is that chemo-resistance in CSCs is driven, in part, by enhanced mitochondrial function. Here, we used breast cell lines and metastatic breast cancer patient samples to begin to dissect the role of mitochondrial metabolism in conferring the CSC phenotype. More specifically, we employed fluorescent staining with MitoTracker (MT) to metabolically fractionate these cell lines into mito-high and mito-low sub-populations, by flow-cytometry. Interestingly, cells with high mitochondrial mass (mito-high) were specifically enriched in a number of known CSC markers, such as aldehyde dehydrogenase (ALDH) activity, and they were ESA+/CD24-/low and formed mammospheres with higher efficiency. Large cell size is another independent characteristic of the stem cell phenotype; here, we observed a >2-fold increase in mitochondrial mass in large cells (>12-μm), relative to the smaller cell population (4-8-μm). Moreover, the mito-high cell population showed a 2.4-fold enrichment in tumor-initiating cell activity, based on limiting dilution assays in murine xenografts. Importantly, primary human breast CSCs isolated from patients with metastatic breast cancer or a patient derived xenograft (PDX) also showed the co-enrichment of ALDH activity and mitochondrial mass. Most significantly, our investigations demonstrated that mito-high cells were resistant to paclitaxel, resulting in little or no DNA damage, as measured using the comet assay. In summary, increased mitochondrial mass in a sub-population of breast cancer cells confers a stem-like phenotype and chemo-resistance. As such, our current findings have important clinical implications for over-coming drug resistance, by therapeutically targeting the mito-high CSC population.

  16. Syngeneic murine ovarian cancer model reveals that ascites enriches for ovarian cancer stem-like cells expressing membrane GRP78

    PubMed Central

    Mo, Lihong; Bachelder, Robin E.; Kennedy, Margaret; Chen, Po-Han; Chi, Jen-Tsan; Berchuck, Andrew; Cianciolo, George; Pizzo, Salvatore V.

    2016-01-01

    Ovarian cancer patients are generally diagnosed at FIGO (International Federation of Gynecology and Obstetrics) stage III/IV, when ascites is common. The volume of ascites correlates positively with the extent of metastasis and negatively with prognosis. Membrane GRP78, a stress-inducible endoplasmic reticulum chaperone that is also expressed on the plasma membrane (memGRP78) of aggressive cancer cells, plays a crucial role in the embryonic stem cell maintenance. We studied ascites effects on ovarian cancer stem-like cells using a syngeneic mouse model. Our study demonstrates that ascites-derived tumor cells from mice injected intraperitoneally with murine ovarian cancer cells (ID8) express increased memGRP78 levels compared to ID8 cells from normal culture. We hypothesized that these ascites associated memGRP78+ cells are cancer stem-like cells (CSC). Supporting this hypothesis, we show that memGRP78+ cells isolated from murine ascites exhibit increased sphere forming and tumor initiating abilities compared to memGRP78− cells. When the tumor microenvironment is recapitulated by adding ascites fluid to cell culture, ID8 cells express more memGRP78 and increased self-renewing ability compared to those cultured in medium alone. Moreover, compared to their counterparts cultured in normal medium, ID8 cells cultured in ascites, or isolated from ascites, show increased stem cell marker expression. Antibodies directed against the carboxy-terminal domain of GRP78: 1) reduce self-renewing ability of murine and human ovarian cancer cells pre-incubated with ascites and 2) suppress a GSK3α-AKT/SNAI1 signaling axis in these cells. Based on these data, we suggest that memGRP78 is a logical therapeutic target for late stage ovarian cancer. PMID:25589495

  17. Meta-Analysis of Tumor Stem-Like Breast Cancer Cells Using Gene Set and Network Analysis.

    PubMed

    Lee, Won Jun; Kim, Sang Cheol; Yoon, Jung-Ho; Yoon, Sang Jun; Lim, Johan; Kim, You-Sun; Kwon, Sung Won; Park, Jeong Hill

    2016-01-01

    Generally, cancer stem cells have epithelial-to-mesenchymal-transition characteristics and other aggressive properties that cause metastasis. However, there have been no confident markers for the identification of cancer stem cells and comparative methods examining adherent and sphere cells are widely used to investigate mechanism underlying cancer stem cells, because sphere cells have been known to maintain cancer stem cell characteristics. In this study, we conducted a meta-analysis that combined gene expression profiles from several studies that utilized tumorsphere technology to investigate tumor stem-like breast cancer cells. We used our own gene expression profiles along with the three different gene expression profiles from the Gene Expression Omnibus, which we combined using the ComBat method, and obtained significant gene sets using the gene set analysis of our datasets and the combined dataset. This experiment focused on four gene sets such as cytokine-cytokine receptor interaction that demonstrated significance in both datasets. Our observations demonstrated that among the genes of four significant gene sets, six genes were consistently up-regulated and satisfied the p-value of < 0.05, and our network analysis showed high connectivity in five genes. From these results, we established CXCR4, CXCL1 and HMGCS1, the intersecting genes of the datasets with high connectivity and p-value of < 0.05, as significant genes in the identification of cancer stem cells. Additional experiment using quantitative reverse transcription-polymerase chain reaction showed significant up-regulation in MCF-7 derived sphere cells and confirmed the importance of these three genes. Taken together, using meta-analysis that combines gene set and network analysis, we suggested CXCR4, CXCL1 and HMGCS1 as candidates involved in tumor stem-like breast cancer cells. Distinct from other meta-analysis, by using gene set analysis, we selected possible markers which can explain the biological

  18. Oct-4 Expression Maintained Cancer Stem-Like Properties in Lung Cancer-Derived CD133-Positive Cells

    PubMed Central

    Tsai, Tung-Hu; How, Chorng-Kuang; Wang, Chien-Ying; Hung, Shih-Chieh; Chang, Yuh-Lih; Tsai, Ming-Long; Lee, Yi-Yen; Ku, Hung-Hai; Chiou, Shih-Hwa

    2008-01-01

    CD133 (prominin-1), a 5-transmembrane glycoprotein, has recently been considered to be an important marker that represents the subset population of cancer stem-like cells. Herein we report the isolation of CD133-positive cells (LC-CD133+) and CD133-negative cells (LC-CD133−) from tissue samples of ten patients with non-small cell lung cancer (LC) and five LC cell lines. LC-CD133+ displayed higher Oct-4 expressions with the ability to self-renew and may represent a reservoir with proliferative potential for generating lung cancer cells. Furthermore, LC-CD133+, unlike LC-CD133−, highly co-expressed the multiple drug-resistant marker ABCG2 and showed significant resistance to chemotherapy agents (i.e., cisplatin, etoposide, doxorubicin, and paclitaxel) and radiotherapy. The treatment of Oct-4 siRNA with lentiviral vector can specifically block the capability of LC-CD133+ to form spheres and can further facilitate LC-CD133+ to differentiate into LC-CD133−. In addition, knock-down of Oct-4 expression in LC-CD133+ can significantly inhibit the abilities of tumor invasion and colony formation, and increase apoptotic activities of caspase 3 and poly (ADP-ribose) polymerase (PARP). Finally, in vitro and in vivo studies further confirm that the treatment effect of chemoradiotherapy for LC-CD133+ can be improved by the treatment of Oct-4 siRNA. In conclusion, we demonstrated that Oct-4 expression plays a crucial role in maintaining the self-renewing, cancer stem-like, and chemoradioresistant properties of LC-CD133+. Future research is warranted regarding the up-regulated expression of Oct-4 in LC-CD133+ and malignant lung cancer. PMID:18612434

  19. Inhibition of PRDM14 expression in pancreatic cancer suppresses cancer stem-like properties and liver metastasis in mice.

    PubMed

    Moriya, Chiharu; Taniguchi, Hiroaki; Miyata, Kanjiro; Nishiyama, Nobuhiro; Kataoka, Kazunori; Imai, Kohzoh

    2017-06-01

    Pancreatic cancer is one of the most lethal types of cancer, with aggressive properties characterized by metastasis, recurrence and drug resistance. Cancer stem cells are considered to be responsible for these properties. PRDM14, a transcriptional regulator that maintains pluripotency in embryonic stem cells, is overexpressed in some cancers. Here, we assessed PRDM14 expression and the effects of PRDM14 knockdown on cancer stem-like phenotypes in pancreatic cancer. We observed that PRDM14 protein was overexpressed in pancreatic cancer tissues compared with normal pancreatic tissues. Using lentiviral shRNA-transduced pancreatic cancer cells, we found that PRDM14 knockdown decreased sphere formation, number of side population and cell surface marker-positive cells and subcutaneous xenograft tumors and liver metastasis in mice. This was accompanied by upregulation of some microRNAs (miRNAs), including miR-125a-3p. miR-125a-3p, a tumor suppressor that is down-regulated in pancreatic cancer, has been suggested to regulate the expression of the Src-family kinase, Fyn. In PRDM14-knockdown cells, Fyn was expressed at lower levels and downstream proteins were less activated. These changes were considered to cause suppression of the above cancer phenotypes. In addition, we used small interfering RNA (siRNA)-based therapy targeting PRDM14 in a mouse model of liver metastasis induced using MIA-PaCa2 cells, and this treatment significantly decreased metastasis and in vitro migration. Taken together, these results suggest that targeting the overexpression of PRDM14 suppresses cancer stem-like phenotypes, including liver metastasis, via miRNA regulation and siRNA-based therapy targeting it shows promise as a treatment for patients with pancreatic cancer. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Anticancer effects of cinnamic acid in lung adenocarcinoma cell line h1299-derived stem-like cells.

    PubMed

    Huang, Yanyan; Zeng, Fang; Xu, Liyun; Zhou, Jihang; Liu, Xiaoguang; Le, Hanbo

    2013-01-01

    Lung cancer is a lethal solid tumor with poor prognosis because of its high metastasis and resistance to current therapies. Recently, cancer stem cells (CSCs) were suggested to be major contributors to tumorigenicity and cancer relapse. However, therapeutic targets for lung cancer-related CSCs remain undetermined. The objective of the current study was to investigate whether cinnamic acid (CINN) exerts an antitumor activity against sphere-derived lung CSCs. In this study, CSCs were isolated from the non-small cell lung cancer cell line H1299 as tumor spheres under CSC-selective conditions, and found to have increased tumorigenicity, chemoresistance, and higher expression of both embryonic stem cell-related and drug resistance-related genes compared with parental cells. These observations are consistent with the notion that CSCs are tumorigenic, display the ability to self-renew, and generate differentiated progeny that constitute the majority of cells in tumors. Treatment of sphere-derived stem cells with CINN could diminish their CSC-like abilities by decreasing their proliferation and invasive abilities and facilitating their differentiation into CD133-negative cells. Furthermore, CINN treatment increased the sensitivity of CSCs to chemotherapeutic drugs through apoptosis. Of note, xenotransplantation experiments revealed that CINN combined with cisplatin had a synergistic effect in inhibiting the tumorigenicity of CSCs. In summary, our study clearly revealed the presence of a population of sphere-forming cells with stem-like properties among H1299 cells and CINN can attenuate CSC properties of this stem-like cell population. The potential of CINN should be verified further in future studies of anti-CSC therapy.

  1. High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant

    PubMed Central

    Farnie, Gillian; Sotgia, Federica; Lisanti, Michael P.

    2015-01-01

    Chemo-resistance is a clinical barrier to more effective anti-cancer therapy. In this context, cancer stem-like cells (CSCs) are thought to be chemo-resistant, resulting in tumor recurrence and distant metastasis. Our hypothesis is that chemo-resistance in CSCs is driven, in part, by enhanced mitochondrial function. Here, we used breast cell lines and metastatic breast cancer patient samples to begin to dissect the role of mitochondrial metabolism in conferring the CSC phenotype. More specifically, we employed fluorescent staining with MitoTracker (MT) to metabolically fractionate these cell lines into mito-high and mito-low sub-populations, by flow-cytometry. Interestingly, cells with high mitochondrial mass (mito-high) were specifically enriched in a number of known CSC markers, such as aldehyde dehydrogenase (ALDH) activity, and they were ESA+/CD24-/low and formed mammospheres with higher efficiency. Large cell size is another independent characteristic of the stem cell phenotype; here, we observed a >2-fold increase in mitochondrial mass in large cells (>12-μm), relative to the smaller cell population (4–8-μm). Moreover, the mito-high cell population showed a 2.4-fold enrichment in tumor-initiating cell activity, based on limiting dilution assays in murine xenografts. Importantly, primary human breast CSCs isolated from patients with metastatic breast cancer or a patient derived xenograft (PDX) also showed the co-enrichment of ALDH activity and mitochondrial mass. Most significantly, our investigations demonstrated that mito-high cells were resistant to paclitaxel, resulting in little or no DNA damage, as measured using the comet assay. In summary, increased mitochondrial mass in a sub-population of breast cancer cells confers a stem-like phenotype and chemo-resistance. As such, our current findings have important clinical implications for over-coming drug resistance, by therapeutically targeting the mito-high CSC population. PMID:26421710

  2. Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells.

    PubMed

    De Luca, Arianna; Fiorillo, Marco; Peiris-Pagès, Maria; Ozsvari, Bela; Smith, Duncan L; Sanchez-Alvarez, Rosa; Martinez-Outschoorn, Ubaldo E; Cappello, Anna Rita; Pezzi, Vincenzo; Lisanti, Michael P; Sotgia, Federica

    2015-06-20

    Here, we show that new mitochondrial biogenesis is required for the anchorage independent survival and propagation of cancer stem-like cells (CSCs). More specifically, we used the drug XCT790 as an investigational tool, as it functions as a specific inhibitor of the ERRα-PGC1 signaling pathway, which governs mitochondrial biogenesis. Interestingly, our results directly demonstrate that XCT790 efficiently blocks both the survival and propagation of tumor initiating stem-like cells (TICs), using the MCF7 cell line as a model system. Mechanistically, we show that XCT790 suppresses the activity of several independent signaling pathways that are normally required for the survival of CSCs, such as Sonic hedgehog, TGFβ-SMAD, STAT3, and Wnt signaling. We also show that XCT790 markedly reduces oxidative mitochondrial metabolism (OXPHOS) and that XCT790-mediated inhibition of CSC propagation can be prevented or reversed by Acetyl-L-Carnitine (ALCAR), a mitochondrial fuel. Consistent with our findings, over-expression of ERRα significantly enhances the efficiency of mammosphere formation, which can be blocked by treatment with mitochondrial inhibitors. Similarly, mammosphere formation augmented by FOXM1, a downstream target of Wnt/β-catenin signaling, can also be blocked by treatment with three different classes of mitochondrial inhibitors (XCT790, oligomycin A, or doxycycline). In this context, our unbiased proteomics analysis reveals that FOXM1 drives the expression of >90 protein targets associated with mitochondrial biogenesis, glycolysis, the EMT and protein synthesis in MCF7 cells, processes which are characteristic of an anabolic CSC phenotype. Finally, doxycycline is an FDA-approved antibiotic, which is very well-tolerated in patients. As such, doxycycline could be re-purposed clinically as a 'safe' mitochondrial inhibitor, to target FOXM1 and mitochondrial biogenesis in CSCs, to prevent tumor recurrence and distant metastasis, thereby avoiding patient relapse.

  3. Chemoresistance and chemotherapy targeting stem-like cells in malignant glioma.

    PubMed

    Sørensen, Mia Dahl; Fosmark, Sigurd; Hellwege, Sofie; Beier, Dagmar; Kristensen, Bjarne Winther; Beier, Christoph Patrick

    2015-01-01

    Glioblastoma remains a tumor with a dismal prognosis because of failure of current treatment. Glioblastoma cells with stem cell (GSC) properties survive chemotherapy and give rise to tumor recurrences that invariably result in the death of the patients. Here we summarize the current knowledge on chemoresistance of malignant glioma with a strong focus on GSC. Chemoresistant GSC are the most likely cause of tumor recurrence, but it remains controversial if GSC and under which conditions GSC are more chemoresistant than non-GSC within the tumor. Regardless of this uncertainty, the chemoresistance varies and it is mainly mediated by intrinsic factors. O6-methyl-guanidine methyltransferase (MGMT) remains the most potent mediator of chemoresistance, but disturbed mismatch repair system and multidrug resistance proteins contribute substantially. However, the intrinsic resistance by MGMT expression is regulated by extrinsic factors like hypoxia increasing MGMT expression and thereby resistance to alkylating chemotherapy. The search of new biomarkers helping to predict the tumor response to chemotherapy is ongoing and will complement the already known markers like MGMT.

  4. Enhancement of cancer stem-like and epithelial−mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: Reversal by targeting SNAIL

    SciTech Connect

    Yu, Cheng-Chia; Chang, Yu-Chao

    2013-02-01

    Cigarette smoking is one of the major risk factors in the development and further progression of tumorigenesis, including oral squamous cell carcinoma (OSCC). Recent studies suggest that interplay cancer stem-like cells (CSCs) and epithelial−mesenchymal transdifferentiation (EMT) properties are responsible for the tumor maintenance and metastasis in OSCC. The aim of the present study was to investigate the effects of long-term exposure with nicotine, a major component in cigarette, on CSCs and EMT characteristics. The possible reversal regulators were further explored in nicotine-induced CSCs and EMT properties in human oral epithelial (OE) cells. Long-term exposure with nicotine was demonstrated to up-regulate ALDH1 population in normal gingival and primary OSCC OE cells dose-dependently. Moreover, long-term nicotine treatment was found to enhance the self-renewal sphere-forming ability and stemness gene signatures expression and EMT regulators in OE cells. The migration/cell invasiveness/anchorage independent growth and in vivo tumor growth by nude mice xenotransplantation assay was enhanced in long-term nicotine-stimulated OE cells. Knockdown of Snail in long-term nicotine-treated OE cells was found to reduce their CSCs properties. Therapeutic delivery of Si-Snail significantly blocked the xenograft tumorigenesis of long-term nicotine-treated OSCC cells and largely significantly improved the recipient survival. The present study demonstrated that the enrichment of CSCs coupled EMT property in oral epithelial cells induced by nicotine is critical for the development of OSCC tumorigenesis. Targeting Snail might offer a new strategy for the treatment of OSCC patients with smoking habit. -- Highlights: ► Sustained nicotine treatment induced CSCs properties of oral epithelial cells. ► Long-term nicotine treatment enhance EMT properties of oral epithelial cells. ► Long-term nicotine exposure increased tumorigenicity of oral epithelial cells. ► Si

  5. A new 2-pyrone derivative, 5-bromo-3-(3-hydroxyprop-1-ynyl)-2H-pyran-2-one, suppresses stemness in glioma stem-like cells.

    PubMed

    Kim, Rae-Kwon; Kim, Min-Jung; Yoon, Chang-Hwan; Lim, Eun-Jung; Yoo, Ki-Chun; Lee, Ga-Haeng; Kim, Young-Heon; Kim, Hyeonmi; Jin, Yeung Bae; Lee, Yoon-Jin; Cho, Cheon-Gyu; Oh, Yeong Seok; Gye, Myung Chan; Suh, Yongjoon; Lee, Su-Jae

    2012-09-01

    Glioma cells with stem cell properties, termed glioma stem-like cells (GSCs), have been linked to tumor formation, maintenance, and progression and are responsible for the failure of chemotherapy and radiotherapy. Because conventional glioma treatments often fail to eliminate GSCs completely, residual surviving GSCs are able to repopulate the tumor. Compounds that target GSCs might be helpful in overcoming resistance to anticancer treatments in human brain tumors. In this study, we showed that 5-bromo-3-(3-hydroxyprop-1-ynyl)-2H-pyran-2-one (BHP), a new 2-pyrone derivative, suppressed the maintenance of the GSC population in both a glioma cell line and patient-derived glioma cells. Treatment of GSCs with BHP effectively inhibited sphere formation and suppressed the CD133(+) cell population. Treatment with BHP also suppressed expression of the stemness-regulating transcription factors Sox2, Notch2, and β-catenin in sphere-cultured glioma cells. Treatment of GSCs with BHP significantly suppressed two fundamental characteristics of cancer stem cells: self-renewal and tumorigenicity. BHP treatment dramatically inhibited clone-forming ability at the single-cell level and suppressed in vivo tumor formation. BHP markedly inhibited both phosphoinositide 3-kinase/Akt and Ras/Raf-1/extracellular signal-regulated kinase signaling, which suggests that one or both of these pathways are involved in BHP-induced suppression of GSCs. In addition, treatment with BHP effectively sensitized GSCs to chemotherapy and radiotherapy. Taken together, these results indicate that BHP targets GSCs and enhances their sensitivity to anticancer treatments and suggest that BHP treatment may be useful for treating brain tumors by eliminating GSCs.

  6. Pro-Oxidant Activity of Amine-Pyridine-Based Iron Complexes Efficiently Kills Cancer and Cancer Stem-Like Cells.

    PubMed

    González-Bártulos, Marta; Aceves-Luquero, Clara; Qualai, Jamal; Cussó, Olaf; Martínez, M Angeles; Fernández de Mattos, Silvia; Menéndez, Javier A; Villalonga, Priam; Costas, Miquel; Ribas, Xavi; Massaguer, Anna

    2015-01-01

    Differential redox homeostasis in normal and malignant cells suggests that pro-oxidant-induced upregulation of cellular reactive oxygen species (ROS) should selectively target cancer cells without compromising the viability of untransformed cells. Consequently, a pro-oxidant deviation well-tolerated by nonmalignant cells might rapidly reach a cell-death threshold in malignant cells already at a high setpoint of constitutive oxidative stress. To test this hypothesis, we took advantage of a selected number of amine-pyridine-based Fe(II) complexes that operate as efficient and robust oxidation catalysts of organic substrates upon reaction with peroxides. Five of these Fe(II)-complexes and the corresponding aminopyridine ligands were selected to evaluate their anticancer properties. We found that the iron complexes failed to display any relevant activity, while the corresponding ligands exhibited significant antiproliferative activity. Among the ligands, none of which were hemolytic, compounds 1, 2 and 5 were cytotoxic in the low micromolar range against a panel of molecularly diverse human cancer cell lines. Importantly, the cytotoxic activity profile of some compounds remained unaltered in epithelial-to-mesenchymal (EMT)-induced stable populations of cancer stem-like cells, which acquired resistance to the well-known ROS inducer doxorubicin. Compounds 1, 2 and 5 inhibited the clonogenicity of cancer cells and induced apoptotic cell death accompanied by caspase 3/7 activation. Flow cytometry analyses indicated that ligands were strong inducers of oxidative stress, leading to a 7-fold increase in intracellular ROS levels. ROS induction was associated with their ability to bind intracellular iron and generate active coordination complexes inside of cells. In contrast, extracellular complexation of iron inhibited the activity of the ligands. Iron complexes showed a high proficiency to cleave DNA through oxidative-dependent mechanisms, suggesting a likely mechanism of

  7. The Nerve Growth Factor Receptor CD271 Is Crucial to Maintain Tumorigenicity and Stem-Like Properties of Melanoma Cells

    PubMed Central

    Behrens, Diana; Fichtner, Iduna; Przybilla, Dorothea; Wruck, Wasco; Yaspo, Marie-Laure; Lehrach, Hans; Schäfer, Reinhold; Regenbrecht, Christian R. A.

    2014-01-01

    Background Large-scale genomic analyses of patient cohorts have revealed extensive heterogeneity between individual tumors, contributing to treatment failure and drug resistance. In malignant melanoma, heterogeneity is thought to arise as a consequence of the differentiation of melanoma-initiating cells that are defined by cell-surface markers like CD271 or CD133. Results Here we confirmed that the nerve growth factor receptor (CD271) is a crucial determinant of tumorigenicity, stem-like properties, heterogeneity and plasticity in melanoma cells. Stable shRNA mediated knock-down of CD271 in patient-derived melanoma cells abrogated their tumor-initiating and colony-forming capacity. A genome-wide expression profiling and gene-set enrichment analysis revealed novel connections of CD271 with melanoma-associated genes like CD133 and points to a neural crest stem cell (NCSC) signature lost upon CD271 knock-down. In a meta-analysis we have determined a shared set of 271 differentially regulated genes, linking CD271 to SOX10, a marker that specifies the neural crest. To dissect the connection of CD271 and CD133 we have analyzed 10 patient-derived melanoma-cell strains for cell-surface expression of both markers compared to established cell lines MeWo and A375. We found CD271+ cells in the majority of cell strains analyzed as well as in a set of 16 different patient-derived melanoma metastases. Strikingly, only 2/12 cell strains harbored a CD133+ sub-set that in addition comprised a fraction of cells of a CD271+/CD133+ phenotype. Those cells were found in the label-retaining fraction and in vitro deduced from CD271+ but not CD271 knock-down cells. Conclusions Our present study provides a deeper insight into the regulation of melanoma cell properties and points CD271 out as a regulator of several melanoma-associated genes. Further, our data strongly suggest that CD271 is a crucial determinant of stem-like properties of melanoma cells like colony-formation and tumorigenicity

  8. The nerve growth factor receptor CD271 is crucial to maintain tumorigenicity and stem-like properties of melanoma cells.

    PubMed

    Redmer, Torben; Welte, Yvonne; Behrens, Diana; Fichtner, Iduna; Przybilla, Dorothea; Wruck, Wasco; Yaspo, Marie-Laure; Lehrach, Hans; Schäfer, Reinhold; Regenbrecht, Christian R A

    2014-01-01

    Large-scale genomic analyses of patient cohorts have revealed extensive heterogeneity between individual tumors, contributing to treatment failure and drug resistance. In malignant melanoma, heterogeneity is thought to arise as a consequence of the differentiation of melanoma-initiating cells that are defined by cell-surface markers like CD271 or CD133. Here we confirmed that the nerve growth factor receptor (CD271) is a crucial determinant of tumorigenicity, stem-like properties, heterogeneity and plasticity in melanoma cells. Stable shRNA mediated knock-down of CD271 in patient-derived melanoma cells abrogated their tumor-initiating and colony-forming capacity. A genome-wide expression profiling and gene-set enrichment analysis revealed novel connections of CD271 with melanoma-associated genes like CD133 and points to a neural crest stem cell (NCSC) signature lost upon CD271 knock-down. In a meta-analysis we have determined a shared set of 271 differentially regulated genes, linking CD271 to SOX10, a marker that specifies the neural crest. To dissect the connection of CD271 and CD133 we have analyzed 10 patient-derived melanoma-cell strains for cell-surface expression of both markers compared to established cell lines MeWo and A375. We found CD271+ cells in the majority of cell strains analyzed as well as in a set of 16 different patient-derived melanoma metastases. Strikingly, only 2/12 cell strains harbored a CD133+ sub-set that in addition comprised a fraction of cells of a CD271+/CD133+ phenotype. Those cells were found in the label-retaining fraction and in vitro deduced from CD271+ but not CD271 knock-down cells. Our present study provides a deeper insight into the regulation of melanoma cell properties and points CD271 out as a regulator of several melanoma-associated genes. Further, our data strongly suggest that CD271 is a crucial determinant of stem-like properties of melanoma cells like colony-formation and tumorigenicity.

  9. Pro-Oxidant Activity of Amine-Pyridine-Based Iron Complexes Efficiently Kills Cancer and Cancer Stem-Like Cells

    PubMed Central

    González-Bártulos, Marta; Aceves-Luquero, Clara; Qualai, Jamal; Cussó, Olaf; Martínez, Mª Angeles; Fernández de Mattos, Silvia; Menéndez, Javier A.; Villalonga, Priam; Costas, Miquel; Ribas, Xavi; Massaguer, Anna

    2015-01-01

    Differential redox homeostasis in normal and malignant cells suggests that pro-oxidant-induced upregulation of cellular reactive oxygen species (ROS) should selectively target cancer cells without compromising the viability of untransformed cells. Consequently, a pro-oxidant deviation well-tolerated by nonmalignant cells might rapidly reach a cell-death threshold in malignant cells already at a high setpoint of constitutive oxidative stress. To test this hypothesis, we took advantage of a selected number of amine-pyridine-based Fe(II) complexes that operate as efficient and robust oxidation catalysts of organic substrates upon reaction with peroxides. Five of these Fe(II)-complexes and the corresponding aminopyridine ligands were selected to evaluate their anticancer properties. We found that the iron complexes failed to display any relevant activity, while the corresponding ligands exhibited significant antiproliferative activity. Among the ligands, none of which were hemolytic, compounds 1, 2 and 5 were cytotoxic in the low micromolar range against a panel of molecularly diverse human cancer cell lines. Importantly, the cytotoxic activity profile of some compounds remained unaltered in epithelial-to-mesenchymal (EMT)-induced stable populations of cancer stem-like cells, which acquired resistance to the well-known ROS inducer doxorubicin. Compounds 1, 2 and 5 inhibited the clonogenicity of cancer cells and induced apoptotic cell death accompanied by caspase 3/7 activation. Flow cytometry analyses indicated that ligands were strong inducers of oxidative stress, leading to a 7-fold increase in intracellular ROS levels. ROS induction was associated with their ability to bind intracellular iron and generate active coordination complexes inside of cells. In contrast, extracellular complexation of iron inhibited the activity of the ligands. Iron complexes showed a high proficiency to cleave DNA through oxidative-dependent mechanisms, suggesting a likely mechanism of

  10. Adding Maximum Standard Uptake Value of Primary Lesion and Lymph Nodes in 18F-Fluorodeoxyglucose PET Helps Predict Distant Metastasis in Patients with Nasopharyngeal Carcinoma

    PubMed Central

    Zhang, Yingjian; Hu, Chaosu

    2014-01-01

    Objective To find out the most valuable parameter of 18F-Fluorodeoxyglucose positron emission tomography for predicting distant metastasis in nasopharyngeal carcinoma. Methods From June 2007 through December 2010, 43 non-metastatic NPC patients who underwent 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) before radical Intensity-Modulated Radiation Therapy were enrolled and reviewed retrospectively. PET parameters including maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), metabolic tumor volume (MTV), and total lesion glucose (TLG) of both primary tumor and cervical lymph nodes were calculated. Total SUVmax were recorded as the sum of SUVmax of primary tumor and cervical lymph nodes. Total SUVmean, Total MTV and Total TLG were calculated in the same way as Total SUVmax. Results The median follow-up was 32 months (range, 23–68 months). Distant metastasis was the main pattern of treatment failure. Univariate analysis showed higher SUVmax, SUVmean, MTV, and TLG of primary tumor, Total SUVmax, Total MTV, Total TLG, and stage T3-4 were factors predicting for significantly poorer distant metastasis-free survival (p = 0.042, p = 0.008, p = 0.023, p = 0.023, p = 0.024, p = 0.033, p = 0.016, p = 0.015). In multivariate analysis, Total SUVmax was the independent predictive factor for distant metastasis (p = 0.046). Spearman Rank correlation analysis showed mediate to strong correlationship between Total SUVmax and SUVmax-T, and between Total SUVmax and SUVmax-N(Spearman coefficient:0.568 and 0.834;p = 0.000 and p = 0.000). Conclusions Preliminary results indicated that Total SUVmax was an independently predictive factor for distant metastasis in patients of nasopharyngeal carcinoma treated with Intensity-Modulated Radiation Therapy. PMID:25068373

  11. Activation of Wnt signaling pathway by AF1q enriches stem-like population and enhance mammosphere formation of breast cells.

    PubMed

    Tse, Charlotte Olivia; Kim, Soojin; Park, Jino

    2017-03-18

    Wnt signaling pathway is believed to be responsible for control over various types of stem cells and may act as a niche factor to maintain stem cells in a self-renewing state. Moreover, dysregulated Wnt signaling pathway is strongly associated with several diseases including cancer. Previously, we have shown that AF1q associates with a poor prognosis in leukemia, myelodysplastic syndromes, multiple myeloid, ovarian cancer, and breast cancer. Also, AF1q plays a pivotal role as an oncogene and metastasis enhancer in breast cancer via activation of Wnt signaling pathway. AF1q is highly expressed in stem cells, and this expression is diminished by differentiation. To understand the role of AF1q in stem-like population, we examined stem-like cells derived from breast cells which dysregulated Wnt signaling pathway by alteration of AF1q expression. The effect of Wnt signaling pathway by AF1q on EMT marker expression, stem cell marker expression, and sphere formation was determined. Activated Wnt signaling pathway by AF1q enriched stem-like population showed enhanced sphere formation ability. Interestingly, Wnt signaling pathway inhibitor, Quercetin, decreased the sphere formation in these cells. These results suggest that AF1q would have a role as an enhancer in generation of stem-like population through activation of Wnt signaling pathway.

  12. Overexpression of Large-Conductance Calcium-Activated Potassium Channels in Human Glioblastoma Stem-Like Cells and Their Role in Cell Migration.

    PubMed

    Rosa, Paolo; Sforna, Luigi; Carlomagno, Silvia; Mangino, Giorgio; Miscusi, Massimo; Pessia, Mauro; Franciolini, Fabio; Calogero, Antonella; Catacuzzeno, Luigi

    2017-09-01

    Glioblastomas (GBMs) are brain tumors characterized by diffuse invasion of cancer cells into the healthy brain parenchyma, and establishment of secondary foci. GBM cells abundantly express large-conductance, calcium-activated potassium (BK) channels that are thought to promote cell invasion. Recent evidence suggests that the GBM high invasive potential mainly originates from a pool of stem-like cells, but the expression and function of BK channels in this cell subpopulation have not been studied. We investigated the expression of BK channels in GBM stem-like cells using electrophysiological and immunochemical techniques, and assessed their involvement in the migratory process of this important cell subpopulation. In U87-MG cells, BK channel expression and function were markedly upregulated by growth conditions that enriched the culture in GBM stem-like cells (U87-NS). Cytofluorimetric analysis further confirmed the appearance of a cell subpopulation that co-expressed high levels of BK channels and CD133, as well as other stem cell markers. A similar association was also found in cells derived from freshly resected GBM biopsies. Finally, transwell migration tests showed that U87-NS cells migration was much more sensitive to BK channel block than U87-MG cells. Our data show that BK channels are highly expressed in GBM stem-like cells, and participate to their high migratory activity. J. Cell. Physiol. 232: 2478-2488, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. G-protein stimulatory subunit alpha and Gq/11α G-proteins are both required to maintain quiescent stem-like chondrocytes

    PubMed Central

    Chagin, Andrei S.; Vuppalapati, Karuna K.; Kobayashi, Tatsuya; Guo, Jun; Hirai, Takao; Chen, Min; Offermanns, Stefan; Weinstein, Lee S.; Kronenberg, Henry M.

    2014-01-01

    Round chondrocytes in the resting zone of the growth plate provide precursors for columnar chondrocytes and have stem-like properties. Here we demonstrate that these stem-like chondrocytes undergo apoptosis in the absence of the receptor (PPR) for parathyroid hormone-related protein. We examine the possible roles of heterotrimeric G-proteins activated by the PPR. Inactivation of the G-protein stimulatory α-subunit (Gsα) leads to accelerated differentiation of columnar chondrocytes, as seen in the PPR knockout, but a remnant of growth cartilage remains, in contrast to disappearance of the growth cartilage in the PPR knockout. Stem-like chondrocytes lose their quiescence and proliferate upon Gsα ablation. Inactivation of Gsα in mice with a mutant PPR that cannot activate G proteins, Gq and G11, leads to a PPR knockout-like phenotype. Thus, Gsα is the major mediator of the anti-differentiation action of the PPR, while activation of both Gsα and Gq/11α is required for quiescence of stem-like chondrocytes. PMID:24781502

  14. Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain.

    PubMed

    Xing, Fei; Kobayashi, Aya; Okuda, Hiroshi; Watabe, Misako; Pai, Sudha K; Pandey, Puspa R; Hirota, Shigeru; Wilber, Andrew; Mo, Yin-Yuan; Moore, Brian E; Liu, Wen; Fukuda, Koji; Iiizumi, Megumi; Sharma, Sambad; Liu, Yin; Wu, Kerui; Peralta, Elizabeth; Watabe, Kounosuke

    2013-03-01

    Brain metastasis of breast cancer profoundly affects the cognitive and sensory functions as well as morbidity of patients, and the 1 year survival rate among these patients remains less than 20%. However, the pathological mechanism of brain metastasis is as yet poorly understood. In this report, we found that metastatic breast tumour cells in the brain highly expressed IL-1β which then 'activated' surrounding astrocytes. This activation significantly augmented the expression of JAG1 in the astrocytes, and the direct interaction of the reactivated astrocytes and cancer stem-like cells (CSCs) significantly stimulated Notch signalling in CSCs. We also found that the activated Notch signalling in CSCs up-regulated HES5 followed by promoting self-renewal of CSCs. Furthermore, we have shown that the blood-brain barrier permeable Notch inhibitor, Compound E, can significantly suppress the brain metastasis in vivo. These results represent a novel paradigm for the understanding of how metastatic breast CSCs re-establish their niche for their self-renewal in a totally different microenvironment, which opens a new avenue to identify a novel and specific target for the brain metastatic disease.

  15. High-Throughput Single-Cell Derived Sphere Formation for Cancer Stem-Like Cell Identification and Analysis

    PubMed Central

    Chen, Yu-Chih; Ingram, Patrick N.; Fouladdel, Shamileh; McDermott, Sean P.; Azizi, Ebrahim; Wicha, Max S.; Yoon, Euisik

    2016-01-01

    Considerable evidence suggests that many malignancies are driven by a cellular compartment that displays stem cell properties. Cancer stem-like cells (CSCs) can be identified by expression of cell surface markers or enzymatic activity, but these methods are limited by phenotypic heterogeneity and plasticity of CSCs. An alternative phenotypic methodology based on in-vitro sphere formation has been developed, but it is typically labor-intensive and low-throughput. In this work, we present a 1,024-microchamber microfluidic platform for single-cell derived sphere formation. Utilizing a hydrodynamic capturing scheme, more than 70% of the microchambers capture only one cell, allowing for monitoring of sphere formation from heterogeneous cancer cell populations for identification of CSCs. Single-cell derived spheres can be retrieved and dissociated for single-cell analysis using a custom 96-gene panel to probe heterogeneity within the clonal CSC spheres. This microfluidic platform provides reliable and high-throughput sphere formation for CSC identification and downstream clonal analysis. PMID:27292795

  16. Autocrine Secretion of Progastrin Promotes the Survival and Self-Renewal of Colon Cancer Stem-like Cells.

    PubMed

    Giraud, Julie; Failla, Laura M; Pascussi, Jean-Marc; Lagerqvist, Ebba L; Ollier, Jérémy; Finetti, Pascal; Bertucci, François; Ya, Chu; Gasmi, Imène; Bourgaux, Jean-François; Prudhomme, Michel; Mazard, Thibault; Ait-Arsa, Imade; Houhou, Leila; Birnbaum, Daniel; Pélegrin, André; Vincent, Charles; Ryall, James G; Joubert, Dominique; Pannequin, Julie; Hollande, Frédéric

    2016-06-15

    Subpopulations of cancer stem-like cells (CSC) are thought to drive tumor progression and posttreatment recurrence in multiple solid tumors. However, the mechanisms that maintain stable proportions of self-renewing CSC within heterogeneous tumors under homeostatic conditions remain poorly understood. Progastrin is a secreted peptide that exhibits tumor-forming potential in colorectal cancer, where it regulates pathways known to modulate colon CSC behaviors. In this study, we investigated the role of progastrin in regulating CSC phenotype in advanced colorectal cancer. Progastrin expression and secretion were highly enriched in colon CSC isolated from human colorectal cancer cell lines and colon tumor biopsies. Progastrin expression promoted CSC self-renewal and survival, whereas its depletion by RNA interference-mediated or antibody-mediated strategies altered the homeostatic proportions of CSC cells within heterogeneous colorectal cancer tumors. Progastrin downregulation also decreased the frequency of ALDH(high) cells, impairing their tumor-initiating potential, and inhibited the high glycolytic activity of ALDH(high) CSC to limit their self-renewal capability. Taken together, our results show how colorectal CSC maintain their tumor-initiating and self-renewal capabilities by secreting progastrin, thereby contributing to the tumor microenvironment to support malignancy. Cancer Res; 76(12); 3618-28. ©2016 AACR.

  17. High-Throughput Single-Cell Derived Sphere Formation for Cancer Stem-Like Cell Identification and Analysis

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Chih; Ingram, Patrick N.; Fouladdel, Shamileh; McDermott, Sean P.; Azizi, Ebrahim; Wicha, Max S.; Yoon, Euisik

    2016-06-01

    Considerable evidence suggests that many malignancies are driven by a cellular compartment that displays stem cell properties. Cancer stem-like cells (CSCs) can be identified by expression of cell surface markers or enzymatic activity, but these methods are limited by phenotypic heterogeneity and plasticity of CSCs. An alternative phenotypic methodology based on in-vitro sphere formation has been developed, but it is typically labor-intensive and low-throughput. In this work, we present a 1,024-microchamber microfluidic platform for single-cell derived sphere formation. Utilizing a hydrodynamic capturing scheme, more than 70% of the microchambers capture only one cell, allowing for monitoring of sphere formation from heterogeneous cancer cell populations for identification of CSCs. Single-cell derived spheres can be retrieved and dissociated for single-cell analysis using a custom 96-gene panel to probe heterogeneity within the clonal CSC spheres. This microfluidic platform provides reliable and high-throughput sphere formation for CSC identification and downstream clonal analysis.

  18. Response of cancer stem-like cells and non-stem cancer cells to proton and γ-ray irradiation

    NASA Astrophysics Data System (ADS)

    Fu, Qibin; Quan, Yi; Wang, Weikang; Mei, Tao; Wu, Jingwen; Li, Jia; Yang, Gen; Ren, Xiaotang; Xue, Jianming; Wang, Yugang

    2012-09-01

    Ionizing radiation is a widely used therapy for solid tumors. Compelling evidence indicates cancer stem-like cells (CSCs) exist in solid tumors, which is on the top of hierarchically organization and suggested to be involved in carcinogenesis, tumor invasion, recurrence and resistance to various forms of therapies. Understanding the response of CSCs to irradiation is of great importance to improve cancer curability. In present study, the response to proton and γ-ray irradiation of these cells, including DNA damage and apoptosis were investigated experimentally. The results show that CSCs have higher resistance than non-stem cancer cells (NSCCs) to either proton or γ-ray irradiation. In addition, compared with γ-ray, proton irradiation is more efficient to kill CSCs at the same dose with lower survival as well as higher DNA damages. The results suggest that proton irradiation may have greater capability of eliminating CSCs for cancer radiotherapy than γ-ray at the same dose, which in turn makes radiotherapy more efficient.

  19. Bovine CD49 positive-cell subpopulation remarkably increases in mammary epithelial cells that retain a stem-like phenotype.

    PubMed

    Cravero, Diego; Martignani, Eugenio; Miretti, Silvia; Accornero, Paolo; Baratta, Mario

    2015-10-01

    We previously proved that adult stem cells reside in the bovine mammary gland and possess an intrinsic potential to generate a functional mammary outgrowth. The aim of this study was to investigate on the immunophenotyping features retained by mammary stem-like cells detected in long term culture. Flow cytometry analysis showed different subpopulations of mammary epithelial cells emerging according to the timing of cell culture. CD49f(+)-cells significantly increased during the culture (p<0.01) and a similar trend was observed, even if less regular, for CD29(+) and ALDH1 positive cell populations. No difference during the culture was observed for CD24 positive cells but after 35 days of culture a subset of cells, CD49f positive, still retained regenerative capabilities in in vivo xenotransplants. These cells were able to form organized pseudo-alveoli when transplanted in immunodeficient mice. These results prove the presence of a multipotent cell subpopulation that retain a strong epithelial induction, confirmed in in vivo xenotransplants with a presumable in vitro expansion of the primitive population of adult mammary stem cells.

  20. Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain

    PubMed Central

    Xing, Fei; Kobayashi, Aya; Okuda, Hiroshi; Watabe, Misako; Pai, Sudha K; Pandey, Puspa R; Hirota, Shigeru; Wilber, Andrew; Mo, Yin-Yuan; Moore, Brian E; Liu, Wen; Fukuda, Koji; Iiizumi, Megumi; Sharma, Sambad; Liu, Yin; Wu, Kerui; Peralta, Elizabeth; Watabe, Kounosuke

    2013-01-01

    Brain metastasis of breast cancer profoundly affects the cognitive and sensory functions as well as morbidity of patients, and the 1 year survival rate among these patients remains less than 20%. However, the pathological mechanism of brain metastasis is as yet poorly understood. In this report, we found that metastatic breast tumour cells in the brain highly expressed IL-1β which then ‘activated’ surrounding astrocytes. This activation significantly augmented the expression of JAG1 in the astrocytes, and the direct interaction of the reactivated astrocytes and cancer stem-like cells (CSCs) significantly stimulated Notch signalling in CSCs. We also found that the activated Notch signalling in CSCs up-regulated HES5 followed by promoting self-renewal of CSCs. Furthermore, we have shown that the blood-brain barrier permeable Notch inhibitor, Compound E, can significantly suppress the brain metastasis in vivo. These results represent a novel paradigm for the understanding of how metastatic breast CSCs re-establish their niche for their self-renewal in a totally different microenvironment, which opens a new avenue to identify a novel and specific target for the brain metastatic disease. PMID:23495140

  1. Verteporfin induces apoptosis and eliminates cancer stem-like cells in uveal melanoma in the absence of light activation

    PubMed Central

    Ma, Ya-Wen; Liu, Yi-Zhi; Pan, Jing-Xuan

    2016-01-01

    Uveal melanoma (UM) is the most common primary ocular malignancy in adults. Currently, no beneficial systemic therapy is available; therefore, there is an urgent need for effective targeted therapeutic drugs. As verteporfin has shown anti-neoplastic activity in several types of cancers, here we hypothesized and investigated the efficacy of verteporfin against UM cells without light activation. MTS assay, flow cytometry analysis of apoptosis, Western blotting of relevant proteins, transwell migration and invasion assay, melanosphere culture, and measurement of ALDH+ populations, were used to evaluate the effects of verteporfin on UM cells. We found that verteporfin disrupted the interaction between YAP and TEAD4 in UM cells and decreased the expression of YAP targeted downstream genes. Verteporfin treatment decreased the cytoplasmic and nuclear levels of YAP and induced lysosome-dependent degradation of YAP protein. Verteporfin exhibited distinct inhibitory effect on the proliferation of four lines of UM cells (e.g., 92.1, Mel 270, Omm 1 and Omm 2.3), and induced apoptosis through the intrinsic pathway. Additionally, verteporfin suppressed migration and invasion of UM cells, impaired the traits of cancer stem-like cells (e.g., melanosphere formation capacity, and ALDH+ cell population). This study demonstrated the anti-neoplastic activity of verteporfin against UM cells in vitro, providing a rationale for evaluating this agent in clinical investigation. PMID:28042502

  2. ER-mitochondria contacts control surface glycan expression and sensitivity to killer lymphocytes in glioma stem-like cells.

    PubMed

    Bassoy, Esen Yonca; Kasahara, Atsuko; Chiusolo, Valentina; Jacquemin, Guillaume; Boydell, Emma; Zamorano, Sebastian; Riccadonna, Cristina; Pellegatta, Serena; Hulo, Nicolas; Dutoit, Valérie; Derouazi, Madiha; Dietrich, Pierre Yves; Walker, Paul R; Martinvalet, Denis

    2017-03-10

    Glioblastoma is a highly heterogeneous aggressive primary brain tumor, with the glioma stem-like cells (GSC) being more sensitive to cytotoxic lymphocyte-mediated killing than glioma differentiated cells (GDC). However, the mechanism behind this higher sensitivity is unclear. Here, we found that the mitochondrial morphology of GSCs modulates the ER-mitochondria contacts that regulate the surface expression of sialylated glycans and their recognition by cytotoxic T lymphocytes and natural killer cells. GSCs displayed diminished ER-mitochondria contacts compared to GDCs. Forced ER-mitochondria contacts in GSCs increased their cell surface expression of sialylated glycans and reduced their susceptibility to cytotoxic lymphocytes. Therefore, mitochondrial morphology and dynamism dictate the ER-mitochondria contacts in order to regulate the surface expression of certain glycans and thus play a role in GSC recognition and elimination by immune effector cells. Targeting the mitochondrial morphology, dynamism, and contacts with the ER could be an innovative strategy to deplete the cancer stem cell compartment to successfully treat glioblastoma.

  3. Stem-Like Cell Characteristics from Breast Milk of Mothers with Preterm Infants as Compared to Mothers with Term Infants.

    PubMed

    Briere, Carrie-Ellen; Jensen, Todd; McGrath, Jacqueline M; Young, Erin E; Finck, Christine

    2017-04-01

    Breast milk stem cells are hypothesized to be involved in infant health and development. Our research team is the first known team to enroll mothers of hospitalized preterm infants during the first few weeks of lactation and compare stem cell phenotypes and gene expression to mothers of healthy full-term infants. Participants were recruited from a Level IV Neonatal Intensive Care Unit (preterm dyads) and the community (full-term dyads) in the northeastern United States. Mothers of hospitalized preterm infants (<37 weeks gestational age at birth) and mothers of healthy full-term infants (>39 weeks gestational age at birth). Breast milk stem-like cell populations were identified in both preterm and full-term breast milk samples. The data suggest variability in the proportion of stem cell phenotypes present, as well as statistically significant differential expression (both over- and underexpression) of stem cell-specific genetic markers when comparing mothers' milk for preterm and full-term births. Our findings indicate that (1) stem cells are present in preterm breast milk; (2) differential expression of stem cell-specific markers can be detected in preterm and full-term breast milk samples; and (3) the percentage of cells expressing the various stem cell-specific markers differs when preterm and full-term breast milk samples are compared.

  4. Epimorphin regulates bile duct formation via effects on mitosis orientation in rat liver epithelial stem-like cells.

    PubMed

    Zhou, Junnian; Zhao, Lei; Qin, Lipeng; Wang, Jing; Jia, Yali; Yao, Hailei; Sang, Chen; Hu, Qinghua; Shi, Shuangshuang; Nan, Xue; Yue, Wen; Zhuang, Fengyuan; Yang, Chun; Wang, Yunfang; Pei, Xuetao

    2010-03-17

    Understanding how hepatic precursor cells can generate differentiated bile ducts is crucial for studies on epithelial morphogenesis and for development of cell therapies for hepatobiliary diseases. Epimorphin (EPM) is a key morphogen for duct morphogenesis in various epithelial organs. The role of EPM in bile duct formation (DF) from hepatic precursor cells, however, is not known. To address this issue, we used WB-F344 rat epithelial stem-like cells as model for bile duct formation. A micropattern and a uniaxial static stretch device was used to investigate the effects of EPM and stress fiber bundles on the mitosis orientation (MO) of WB cells. Immunohistochemistry of liver tissue sections demonstrated high EPM expression around bile ducts in vivo. In vitro, recombinant EPM selectively induced DF through upregulation of CK19 expression and suppression of HNF3alpha and HNF6, with no effects on other hepatocytic genes investigated. Our data provide evidence that EPM guides MO of WB-F344 cells via effects on stress fiber bundles and focal adhesion assembly, as supported by blockade EPM, beta1 integrin, and F-actin assembly. These blockers can also inhibit EPM-induced DF. These results demonstrate a new biophysical action of EPM in bile duct formation, during which determination of MO plays a crucial role.

  5. Epimorphin Regulates Bile Duct Formation via Effects on Mitosis Orientation in Rat Liver Epithelial Stem-Like Cells

    PubMed Central

    Qin, Lipeng; Wang, Jing; Jia, Yali; Yao, Hailei; Sang, Chen; Hu, Qinghua; Shi, Shuangshuang; Nan, Xue; Yue, Wen; Zhuang, Fengyuan; Yang, Chun; Wang, Yunfang; Pei, Xuetao

    2010-01-01

    Understanding how hepatic precursor cells can generate differentiated bile ducts is crucial for studies on epithelial morphogenesis and for development of cell therapies for hepatobiliary diseases. Epimorphin (EPM) is a key morphogen for duct morphogenesis in various epithelial organs. The role of EPM in bile duct formation (DF) from hepatic precursor cells, however, is not known. To address this issue, we used WB-F344 rat epithelial stem-like cells as model for bile duct formation. A micropattern and a uniaxial static stretch device was used to investigate the effects of EPM and stress fiber bundles on the mitosis orientation (MO) of WB cells. Immunohistochemistry of liver tissue sections demonstrated high EPM expression around bile ducts in vivo. In vitro, recombinant EPM selectively induced DF through upregulation of CK19 expression and suppression of HNF3α and HNF6, with no effects on other hepatocytic genes investigated. Our data provide evidence that EPM guides MO of WB-F344 cells via effects on stress fiber bundles and focal adhesion assembly, as supported by blockade EPM, β1 integrin, and F-actin assembly. These blockers can also inhibit EPM-induced DF. These results demonstrate a new biophysical action of EPM in bile duct formation, during which determination of MO plays a crucial role. PMID:20305811

  6. A Distinct Slow-Cycling Cancer Stem-like Subpopulation of Pancreatic Adenocarcinoma Cells is maintained in Vivo

    PubMed Central

    Dembinski, Jennifer L.; Krauss, Stefan

    2010-01-01

    Pancreatic adenocarcinoma has the worst prognosis of any major malignancy, with <5% of patients surviving five years. This can be contributed to the often late diagnosis, lack of sufficient treatment and metastatic spread. Heterogeneity within tumors is increasingly becoming a focus in cancer research, as novel therapies are required to target the most aggressive subpopulations of cells that are frequently termed cancer stem cells (CSCs). In the current study, we describe the identification of a slow-cycling cancer stem-like population of cells in vivo in BxPC-3 and Panc03.27 xenografts. A distinct slow-cycling label-retaining population of cells (DiI+/SCC) was found both at the edge of tumors, and in small circumscribed areas within the tumors. DiI+/SCC in these areas display an epithelial-to-mesenchymal transition (EMT) fingerprint, including an upregulation of the mesenchymal markers vimentin and N-cadherin and a loss of the epithelial marker E-cadherin. DiI+/SCC also displayed a critical re-localization of beta-catenin from the membrane to the nucleus. Additionally, the DiI+/SCC population was found to express the developmental signaling molecule sonic hedgehog. This study represents a novel step in defining the biological activities of a tumorigenic subpopulation within the heterogeneous tumor microenvironment in vivo. Understanding the interactions and functions of a CSC population within the context of the tumor microenvironment is critical to design targeted therapeutics. PMID:24281215

  7. Blockade of Rho-associated protein kinase (ROCK) inhibits the contractility and invasion potential of cancer stem like cells

    PubMed Central

    Mohanty, Sagarajit; Das, Alakesh; Das, Sreya; Kumar, Sushant; Sen, Shamik; Purwar, Rahul

    2017-01-01

    Recent studies have implicated the roles of cancer stem like cells (CSCs) in cancer metastasis. However, very limited knowledge exists at the molecular and cellular level to target CSCs for prevention of cancer metastasis. In this study, we examined the roles of contractile dynamics of CSCs in cell invasion and delineated the underlying molecular mechanisms of their distinct cell invasion potential. Using de-adhesion assay and atomic force microscopy, we show that CSCs derived from melanoma and breast cancer cell lines exhibit increased contractility compared to non-CSCs across all tumor types. In addition, CSCs possess increased ECM remodeling capacity as quantified by collagen degradation assay. More importantly, pharmacological blockade of Rho-associated protein kinase completely abolished the contractility and collagen degradation capacity of both CSCs and non-CSCs. In conclusion, our study demonstrates the importance of cell contractility in regulating invasiveness of CSCs and suggests that pharmacological targeting of ROCK pathway represents a novel strategy for targeting both CSCs and bulk population for the treatment of cancer metastasis. PMID:28199964

  8. Ovarian cancer stem-like cells differentiate into endothelial cells and participate in tumor angiogenesis through autocrine CCL5 signaling.

    PubMed

    Tang, Shu; Xiang, Tong; Huang, Shuo; Zhou, Jie; Wang, Zhongyu; Xie, Rongkai; Long, Haixia; Zhu, Bo

    2016-06-28

    Cancer stem cells (CSCs) are well known for their self-regeneration and tumorigenesis potential. In addition, the multi-differentiation potential of CSCs has become a popular issue and continues to attract increased research attention. Recent studies demonstrated that CSCs are able to differentiate into functional endothelial cells and participate in tumor angiogenesis. In this study, we found that ovarian cancer stem-like cells (CSLCs) activate the NF-κB and STAT3 signal pathways through autocrine CCL5 signaling and mediate their own differentiation into endothelial cells (ECs). Our data demonstrate that CSLCs differentiate into ECs morphologically and functionally. Anti-CCL5 antibodies and CCL5-shRNA lead to markedly inhibit EC differentiation and the tube formation of CSLCs, both in vitro and in vivo. Recombinant human-CCL5 significantly promotes ovarian CSLCs that differentiate into ECs and form microtube network. The CCL5-mediated EC differentiation of CSLCs depends on binding to receptors, such as CCR1, CCR3, and CCR5. The results demonstrated that CCL5-CCR1/CCR3/CCR5 activates the NF-κB and STAT3 signal pathways, subsequently mediating the differentiation of CSLCs into ECs. Therefore, this study was conducted based on the theory that CSCs improve tumor angiogenesis and provides a novel strategy for anti-angiogenesis in ovarian cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. c-Myc and Her2 cooperate to drive a stem-like phenotype with poor prognosis in breast cancer.

    PubMed

    Nair, R; Roden, D L; Teo, W S; McFarland, A; Junankar, S; Ye, S; Nguyen, A; Yang, J; Nikolic, I; Hui, M; Morey, A; Shah, J; Pfefferle, A D; Usary, J; Selinger, C; Baker, L A; Armstrong, N; Cowley, M J; Naylor, M J; Ormandy, C J; Lakhani, S R; Herschkowitz, J I; Perou, C M; Kaplan, W; O'Toole, S A; Swarbrick, A

    2014-07-24

    The HER2 (ERBB2) and MYC genes are commonly amplified in breast cancer, yet little is known about their molecular and clinical interaction. Using a novel chimeric mammary transgenic approach and in vitro models, we demonstrate markedly increased self-renewal and tumour-propagating capability of cells transformed with Her2 and c-Myc. Coexpression of both oncoproteins in cultured cells led to the activation of a c-Myc transcriptional signature and acquisition of a self-renewing phenotype independent of an epithelial-mesenchymal transition programme or regulation of conventional cancer stem cell markers. Instead, Her2 and c-Myc cooperated to induce the expression of lipoprotein lipase, which was required for proliferation and self-renewal in vitro. HER2 and MYC were frequently coamplified in breast cancer, associated with aggressive clinical behaviour and poor outcome. Lastly, we show that in HER2(+) breast cancer patients receiving adjuvant chemotherapy (but not targeted anti-Her2 therapy), MYC amplification is associated with a poor outcome. These findings demonstrate the importance of molecular and cellular context in oncogenic transformation and acquisition of a malignant stem-like phenotype and have diagnostic and therapeutic consequences for the clinical management of HER2(+) breast cancer.

  10. Cancer stem-like cells can be induced through dedifferentiation under hypoxic conditions in glioma, hepatoma and lung cancer

    PubMed Central

    Wang, Pan; Wan, Wen-wu; Xiong, Shuang-Long; Feng, Hua; Wu, Nan

    2017-01-01

    Traditional studies have shown that transcription factors, including SOX-2, OCT-4, KLF-4, Nanog and Lin-28A, contribute to the dedifferentiation and reprogramming process in normal tissues. Hypoxia is a physiological phenomenon that exists in tumors and promotes the expression of SOX-2, OCT-4, KLF-4, Nanog and Lin-28A. Therefore, an interesting question is whether hypoxia as a stimulating factor promotes the process of dedifferentiation and induces the formation of cancer stem-like cells. Studies have shown that OCT-4 and Nanog overexpression induced the formation of cancer stem cell-like cells through dedifferentiation and enhanced malignancy in lung adenocarcinoma, and reprogramming SOX-2 in pancreatic cancer cells also promoted the dedifferentiation process. Therefore, we investigated this phenomenon in glioma, lung cancer and hepatoma cells and found that the transcription factors mentioned above were highly expressed under hypoxic conditions and induced the formation of spheres, which exhibited asymmetric division and cell cycle arrest. The dedifferentiation process induced by hypoxia highlights a new pattern of cancer development and recurrence, demonstrating that all kinds of cancer cells and the hypoxic microenvironment should be taken into consideration when developing tumor therapies. PMID:28179999

  11. SOX9 Regulates Cancer Stem-Like Properties and Metastatic Potential of Single-Walled Carbon Nanotube-Exposed Cells.

    PubMed

    Voronkova, Maria A; Luanpitpong, Sudjit; Rojanasakul, Liying Wang; Castranova, Vincent; Dinu, Cerasela Zoica; Riedel, Heimo; Rojanasakul, Yon

    2017-09-14

    Engineered nanomaterials hold great promise for the future development of innovative products but their adverse health effects are a major concern. Recent studies have indicated that certain nanomaterials, including carbon nanotubes (CNTs), may be carcinogenic. However, the underlying mechanisms behind their potential malignant properties remain unclear. In this study, we linked SOX9, a stem cell associated transcription factor, to the neoplastic-like properties of human lung epithelial cells chronically exposed to a low-dose of single-walled carbon nanotubes (SWCNTs). We found that SOX9 is upregulated in SWCNT-exposed cells, which is consistent with their abilities to induce tumor formation and metastasis in vivo. We therefore hypothesized that SOX9 overexpression may be responsible for the neoplastic-like phenotype observed in our model. Indeed, SOX9 knockdown inhibited anchorage-independent cell growth in vitro and lung colonization in vivo in a mouse xenograft model. SOX9 depletion also suppressed the formation of cancer stem-like cells (CSCs), as determined by tumor sphere formation and aldehyde dehydrogenase (ALDH) activity (Aldefluor) assays. Furthermore, SOX9 knockdown suppressed tumor metastasis and the expression of the stem cell marker ALDH1A1. Taken together, our findings provide a mechanistic insight into SWCNT-induced carcinogenesis and the role of SOX9 in CSC regulation and metastasis.

  12. An activated form of ADAM10 is tumor selective and regulates cancer stem-like cells and tumor growth

    PubMed Central

    Saha, Nayanendu; Eissman, Moritz F.; Xu, Kai; Llerena, Carmen; Kusebauch, Ulrike; Ding, Bi-Sen; Cao, Zhongwei; Rafii, Shahin; Ernst, Matthias; Scott, Andrew M.; Nikolov, Dimitar B.; Lackmann, Martin

    2016-01-01

    The transmembrane metalloprotease ADAM10 sheds a range of cell surface proteins, including ligands and receptors of the Notch, Eph, and erbB families, thereby activating signaling pathways critical for tumor initiation and maintenance. ADAM10 is thus a promising therapeutic target. Although widely expressed, its activity is normally tightly regulated. We now report prevalence of an active form of ADAM10 in tumors compared with normal tissues, in mouse models and humans, identified by our conformation-specific antibody mAb 8C7. Structure/function experiments indicate mAb 8C7 binds an active conformation dependent on disulfide isomerization and oxidative conditions, common in tumors. Moreover, this active ADAM10 form marks cancer stem-like cells with active Notch signaling, known to mediate chemoresistance. Importantly, specific targeting of active ADAM10 with 8C7 inhibits Notch activity and tumor growth in mouse models, particularly regrowth after chemotherapy. Our results indicate targeted inhibition of active ADAM10 as a potential therapy for ADAM10-dependent tumor development and drug resistance. PMID:27503072

  13. Active targeting docetaxel-PLA nanoparticles eradicate circulating lung cancer stem-like cells and inhibit liver metastasis.

    PubMed

    Yang, Nan; Jiang, Yao; Zhang, Huifeng; Sun, Bo; Hou, Chunying; Zheng, Ji; Liu, Yanyong; Zuo, Pingping

    2015-01-05

    Lung cancer is the major cause of cancer related lethality worldwide, and metastasis to distant organs is the pivotal cause of death for the vast majority of lung cancer patients. Accumulated evidence indicates that lung cancer stem-like cells (CSLCs) play important roles in metastagenesis, and these circulating CSLCs may be important targets to inhibit the subsequent metastasis. The present study was aimed at establishing CSLC-targeting polylactic acid (PLA) encapsulated docetaxel nanoparticles for antimetastatic therapy. Cyclic binding peptides were screened on CSLCs in vitro and the peptide CVKTPAQSC exhibiting high specific binding ability to pulmonary adenocarcinoma tissue was subsequently conjugated to the nanoparticles loaded with docetaxel (NDTX). Antimetastatic effect of CSLC-targeting nanoparticles loaded with docetaxel (TNDTX) was evaluated in a nude mouse model of liver metastasis. Results showed that, in the absence of targeting peptide, NDTX hardly exhibited any antimetastatic effect. However, TNDTX treatment significantly decreased the metastatic tumor area in the nude mouse liver. Histopathological and serological results also confirmed the antimetastatic efficacy of TNDTX. To our knowledge, this is the first report on establishing a CSLC-based strategy for lung cancer metastatic treatment, and we hope this will offer a potential therapeutic approach for management of metastatic lung cancer.

  14. Combined Cancer Therapy with Hyaluronan-Decorated Fullerene-Silica Multifunctional Nanoparticles to Target Cancer Stem-Like Cells

    PubMed Central

    Wang, Hai; Agarwal, Pranay; Zhao, Shuting; Yu, Jianhua; Lu, Xiongbin; He, Xiaoming

    2016-01-01

    Cancer stem-like cells (CSCs) are resistant to chemotherapy and highly tumorigenic, which contributes to tumor occurrence and post-treatment relapse. We developed a novel C60 fullerene-silica nanoparticle system surface-decorated with hyaluronan (HA) to target the variant CD44 overexpressed on breast CSCs. Furthermore, doxorubicin hydrochloride (DOX) and indocyanine green (ICG) can be encapsulated in the nanoparticles with ultrahigh encapsulation efficiency (> 90%) and loading content (e.g., 48.5% at a drug-to-nanoparticle feeding ratio of 1:1, compared to the commonly used drug-to-nanoparticle feeding ratio of 1:20 with a drug loading content of less than 5%). As a result, the DOX and ICG-laden nanoparticles can be used as a single nanoplatform to achieve combined chemo, photodynamic, and photothermal therapy under near infrared laser irradiation for effective destruction of the breast CSCs both in vitro and in vivo, with no evident systemic toxicity. Moreover, we found the nanoparticles with a higher drug loading content (e.g., 48.5 versus 4.6%) also have significantly higher antitumor efficacy, given the same total drug dose. These results demonstrate the great potential of the multifunctional hybrid nanoparticle system for augmenting cancer therapy by eliminating the CSCs. PMID:27162075

  15. Anti-Cancer Stem-like Cell Compounds in Clinical Development – An Overview and Critical Appraisal

    PubMed Central

    Marcucci, Fabrizio; Rumio, Cristiano; Lefoulon, François

    2016-01-01

    Cancer stem-like cells (CSC) represent a subpopulation of tumor cells with elevated tumor-initiating potential. Upon differentiation, they replenish the bulk of the tumor cell population. Enhanced tumor-forming capacity, resistance to antitumor drugs, and metastasis-forming potential are the hallmark traits of CSCs. Given these properties, it is not surprising that CSCs have become a therapeutic target of prime interest in drug discovery. In fact, over the last few years, an enormous number of articles describing compounds endowed with anti-CSC activities have been published. In the meanwhile, several of these compounds and also approaches that are not based on the use of pharmacologically active compounds (e.g., vaccination, radiotherapy) have progressed into clinical studies. This article gives an overview of these compounds, proposes a tentative classification, and describes their biological properties and their developmental stage. Eventually, we discuss the optimal clinical setting for these compounds, the need for biomarkers allowing patient selection, the redundancy of CSC signaling pathways and the utility of employing combinations of anti-CSC compounds and the therapeutic limitations posed by the plasticity of CSCs. PMID:27242955

  16. Coculture with astrocytes reduces the radiosensitivity of glioblastoma stem-like cells and identifies additional targets for radiosensitization.

    PubMed

    Rath, Barbara H; Wahba, Amy; Camphausen, Kevin; Tofilon, Philip J

    2015-11-01

    Toward developing a model system for investigating the role of the microenvironment in the radioresistance of glioblastoma (GBM), human glioblastoma stem-like cells (GSCs) were grown in coculture with human astrocytes. Using a trans-well assay, survival analyses showed that astrocytes significantly decreased the radiosensitivity of GSCs compared to standard culture conditions. In addition, when irradiated in coculture, the initial level of radiation-induced γH2AX foci in GSCs was reduced and foci dispersal was enhanced suggesting that the presence of astrocytes influenced the induction and repair of DNA double-strand breaks. These data indicate that astrocytes can decrease the radiosensitivity of GSCs in vitro via a paracrine-based mechanism and further support a role for the microenvironment as a determinant of GBM radioresponse. Chemokine profiling of coculture media identified a number of bioactive molecules not present under standard culture conditions. The gene expression profiles of GSCs grown in coculture were significantly different as compared to GSCs grown alone. These analyses were consistent with an astrocyte-mediated modification in GSC phenotype and, moreover, suggested a number of potential targets for GSC radiosensitization that were unique to coculture conditions. Along these lines, STAT3 was activated in GSCs grown with astrocytes; the JAK/STAT3 inhibitor WP1066 enhanced the radiosensitivity of GSCs under coculture conditions and when grown as orthotopic xenografts. Further, this coculture system may also provide an approach for identifying additional targets for GBM radiosensitization.

  17. Addiction to the IGF2-ID1-IGF2 circuit for maintenance of the breast cancer stem-like cells

    PubMed Central

    Tominaga, K; Shimamura, T; Kimura, N; Murayama, T; Matsubara, D; Kanauchi, H; Niida, A; Shimizu, S; Nishioka, K; Tsuji, E-i; Yano, M; Sugano, S; Shimono, Y; Ishii, H; Saya, H; Mori, M; Akashi, K; Tada, K-i; Ogawa, T; Tojo, A; Miyano, S; Gotoh, N

    2017-01-01

    The transcription factor nuclear factor-κB (NF-κB) has important roles for tumorigenesis, but how it regulates cancer stem cells (CSCs) remains largely unclear. We identified insulin-like growth factor 2 (IGF2) is a key target of NF-κB activated by HER2/HER3 signaling to form tumor spheres in breast cancer cells. The IGF2 receptor, IGF1 R, was expressed at high levels in CSC-enriched populations in primary breast cancer cells. Moreover, IGF2-PI3K (IGF2-phosphatidyl inositol 3 kinase) signaling induced expression of a stemness transcription factor, inhibitor of DNA-binding 1 (ID1), and IGF2 itself. ID1 knockdown greatly reduced IGF2 expression, and tumor sphere formation. Finally, treatment with anti-IGF1/2 antibodies blocked tumorigenesis derived from the IGF1Rhigh CSC-enriched population in a patient-derived xenograft model. Thus, NF-κB may trigger IGF2-ID1-IGF2-positive feedback circuits that allow cancer stem-like cells to appear. Then, they may become addicted to the circuits. As the circuits are the Achilles' heels of CSCs, it will be critical to break them for eradication of CSCs. PMID:27546618

  18. Blockade of Rho-associated protein kinase (ROCK) inhibits the contractility and invasion potential of cancer stem like cells.

    PubMed

    Srinivasan, Srisathya; Ashok, Vandhana; Mohanty, Sagarajit; Das, Alakesh; Das, Sreya; Kumar, Sushant; Sen, Shamik; Purwar, Rahul

    2017-02-10

    Recent studies have implicated the roles of cancer stem like cells (CSCs) in cancer metastasis. However, very limited knowledge exists at the molecular and cellular level to target CSCs for prevention of cancer metastasis. In this study, we examined the roles of contractile dynamics of CSCs in cell invasion and delineated the underlying molecular mechanisms of their distinct cell invasion potential. Using de-adhesion assay and atomic force microscopy, we show that CSCs derived from melanoma and breast cancer cell lines exhibit increased contractility compared to non-CSCs across all tumor types. In addition, CSCs possess increased ECM remodeling capacity as quantified by collagen degradation assay. More importantly, pharmacological blockade of Rho-associated protein kinase completely abolished the contractility and collagen degradation capacity of both CSCs and non-CSCs. In conclusion, our study demonstrates the importance of cell contractility in regulating invasiveness of CSCs and suggests that pharmacological targeting of ROCK pathway represents a novel strategy for targeting both CSCs and bulk population for the treatment of cancer metastasis.

  19. Targeting atypical protein kinase C iota reduces viability in glioblastoma stem-like cells via a notch signaling mechanism.

    PubMed

    Phillips, Emma; Lang, Verena; Bohlen, Jonathan; Bethke, Frederic; Puccio, Laura; Tichy, Diana; Herold-Mende, Christel; Hielscher, Thomas; Lichter, Peter; Goidts, Violaine

    2016-10-15

    In a previous study, Protein Kinase C iota (PRKCI) emerged as an important candidate gene for glioblastoma (GBM) stem-like cell (GSC) survival. Here, we show that PKCι is overexpressed and activated in patient derived GSCs compared with normal neural stem cells and normal brain lysate, and that silencing of PRKCI in GSCs causes apoptosis, along with loss of clonogenicity and reduced proliferation. Notably, PRKCI silencing reduces tumor growth in vivo in a xenograft mouse model. PKCι has been intensively studied as a therapeutic target in non-small cell lung cancer, resulting in the identification of an inhibitor, aurothiomalate (ATM), which disrupts the PKCι/ERK signaling axis. However, we show that, although sensitive to pharmacological inhibition via a pseudosubstrate peptide inhibitor, GSCs are much less sensitive to ATM, suggesting that PKCι acts along a different signaling axis in GSCs. Gene expression profiling of PRKCI-silenced GSCs revealed a novel role of the Notch signaling pathway in PKCι mediated GSC survival. A proximity ligation assay showed that Notch1 and PKCι are in close proximity in GSCs. Targeting PKCι in the context of Notch signaling could be an effective way of attacking the GSC population in GBM.

  20. A rational approach for cancer stem-like cell isolation and characterization using CD44 and prominin-1(CD133) as selection markers

    PubMed Central

    Lee, Yi-Jen; Wu, Chang-Cheng; Li, Jhy-Wei; Ou, Chien-Chih; Hsu, Shih-Chung; Tseng, Hsiu-Hsueh; Kao, Ming-Ching; Liu, Jah-Yao

    2016-01-01

    The availability of adequate cancer stem cells or cancer stem-like cell (CSC) is important in cancer study. From ovarian cancer cell lines, SKOV3 and OVCAR3, we induced peritoneal ascites tumors in immunodeficient mice. Among the cells (SKOV3.PX1 and OVCAR3.PX1) from those tumors, we sorted both CD44 and CD133 positive cells (SKOV3.PX1_133+44+, OVCAR3.PX1_133+44+), which manifest the characteristics of self-renewal, multi-lineage differentiation, chemoresistance and tumorigenicity, those of cancer stem-like cells (CSLC). Intraperitoneal transplantation of these CD44 and CD133 positive cells resulted in poorer survival in the engrafted animals. Clinically, increased CD133 expression was found in moderately and poorly differentiated (grade II and III) ovarian serous cystadenocarcinomas. The ascites tumor cells from human ovarian cancers demonstrated more CD133 and CD44 expressions than those from primary ovarian or metastatic tumors and confer tumorigenicity in immunodeficient mice. Compared to their parental cells, the SKOV3.PX1_133+44+ and OVCAR3.PX1_133+44+ cells uniquely expressed 5 CD markers (CD97, CD104, CD107a, CD121a, and CD125). Among these markers, CD97, CD104, CD107a, and CD121a are significantly more expressed in the CD133+ and CD44+ double positive cells of human ovarian ascites tumor cells (Ascites_133+44+) than those from primary ovarian or metastatic tumors. The cancer stem-like cells were enriched from 3% to more than 70% after this manipulation. This intraperitoneal enrichment of cancer stem-like cells, from ovarian cancer cell lines or primary ovarian tumor, potentially provides an adequate amount of ovarian cancer stem-like cells for the ovarian cancer study and possibly benefits cancer therapy. PMID:27655682

  1. BIX01294, an inhibitor of histone methyltransferase, induces autophagy-dependent differentiation of glioma stem-like cells

    PubMed Central

    Ciechomska, Iwona Anna; Przanowski, Piotr; Jackl, Judyta; Wojtas, Bartosz; Kaminska, Bozena

    2016-01-01

    Glioblastoma (GBM) contains rare glioma stem-like cells (GSCs) with capacities of self-renewal, multi-lineage differentiation, and resistance to conventional therapy. Drug-induced differentiation of GSCs is recognized as a promising approach of anti-glioma therapy. Accumulating evidence suggests that unique properties of stem cells depend on autophagy. Here we demonstrate that BIX01294, an inhibitor of a G9a histone methyltransferase (introducing H3K9me2 and H3K27me3 repressive marks) triggers autophagy in human glioma cells. Pharmacological or genetic inhibition of autophagy decreased LC3-II accumulation and GFP-LC3 punctation in BIX01294-treated cells. GSCs-enriched spheres originating from glioma cells and GBM patient-derived cultures express lower levels of autophagy related (ATG) genes than the parental glioma cell cultures. Typical differentiation inducers that upregulate neuronal and astrocytic markers in sphere cultures, increase the level of ATG mRNAs. G9a binds to the promoters of autophagy (LC3B, WIPI1) and differentiation-related (GFAP, TUBB3) genes in GSCs. Higher H3K4me3 (an activation mark) and lower H3K9me2 (the repressive mark) levels at the promoters of studied genes were detected in serum-differentiated cells than in sphere cultures. BIX01294 treatment upregulates the expression of autophagy and differentiation-related genes in GSCs. Pharmacological inhibition of autophagy decreases GFAP and TUBB3 expression in BIX01294-treated GSCs suggesting that BIX01294-induced differentiation of GSCs is autophagy-dependent. PMID:27934912

  2. Elimination of cancer stem-like cells and potentiation of temozolomide sensitivity by Honokiol in glioblastoma multiforme cells.

    PubMed

    Lai, I-Chun; Shih, Ping-Hsiao; Yao, Chih-Jung; Yeh, Chi-Tai; Wang-Peng, Jacqueline; Lui, Tai-Ngar; Chuang, Suang-En; Hu, Tsai-Shu; Lai, Tung-Yuan; Lai, Gi-Ming

    2015-01-01

    Glioblastoma multiforme (GBM) is the most common adult malignant glioma with poor prognosis due to the resistance to radiotherapy and chemotherapy, which might be critically involved in the repopulation of cancer stem cells (CSCs) after treatment. We had investigated the characteristics of cancer stem-like side population (SP) cells sorted from GBM cells, and studied the effect of Honokiol targeting on CSCs. GBM8401 SP cells possessed the stem cell markers, such as nestin, CD133 and Oct4, and the expressions of self-renewal related stemness genes, such as SMO, Notch3 and IHH (Indian Hedgehog). Honokiol inhibited the proliferation of both GBM8401 parental cells and SP cells in a dose-dependent manner, the IC50 were 5.3±0.72 and 11±1.1 μM, respectively. The proportions of SP in GBM8401 cells were diminished by Honokiol from 1.5±0.22% down to 0.3±0.02% and 0.2±0.01% at doses of 2.5 μM and 5 μM, respectively. The SP cells appeared to have higher expression of O6-methylguanine-DNA methyltransferase (MGMT) and be more resistant to Temozolomide (TMZ). The resistance to TMZ could be only slightly reversed by MGMT inhibitor O6-benzylguanine (O6-BG), but markedly further enhanced by Honokiol addition. Such significant enhancement was accompanied with the higher induction of apoptosis, greater down-regulation of Notch3 as well as its downstream Hes1 expressions in SP cells. Our data indicate that Honokiol might have clinical benefits for the GBM patients who are refractory to TMZ treatment.

  3. Isolation, Culture and Identification of Choriocarcinoma Stem-Like Cells from the Human Choriocarcinoma Cell-Line JEG-3.

    PubMed

    Cai, Jingting; Peng, Tianfang; Wang, Jing; Zhang, Jingli; Hu, Hui; Tang, Dihong; Chu, Chaonan; Yang, Ting; Liu, Huining

    2016-01-01

    Cancer stem cells (CSCs) exhibit enhanced proliferative capacity and resistance to chemotherapy; however, choriocarcinoma CSCs have not yet been reported. In this study the human choriocarcinoma cell line JEG-3 was cultured in serum free media, and the characteristics of suspension and parental adherent JEG-3 cells were compared. Cell proliferation, colony-formation, soft agar clonogenicity, and transwell invasion assays were performed in vitro, and tumor xenografts in BALB/c nude mice were used to evaluate stem cell properties. In serum-supplemented medium (SSM), JEG-3 cells were 4.51 ± 1.71% CD44+, 7.67 ± 2.67% CD133+, and 13.85 ± 2.95% ABCG2+. In serum-free medium (SFM), the expression of these markers increased to 53.08 ± 3.15%, 47.40 ± 2.67%, and 78.70 ± 7.16%, respectively. Moreover, suspension JEG-3 cells exhibited enhanced colony-formation capability as well as invasive and proliferative ability in vitro, alongside enhanced tumorigenic properties in vivo. Suspension JEG-3 cells also exhibited resistance to the chemotherapeutic drugs methotrexate, fluorouracil and etoposide. When seeded in serum supplemented medium, suspension JEG-3 cells readopted an adherent phenotype and continued to differentiate with no significant difference in the morphology between suspension and parent cells. In this study, choriocarcinoma stem-like cells (CSLCs) were isolated from the human choriocarcinoma JEG-3 cell line by SFM culture and characterized. © 2016 The Author(s) Published by S. Karger AG, Basel.

  4. Chronic Exposure to Combined Carcinogens Enhances Breast Cell Carcinogenesis with Mesenchymal and Stem-Like Cell Properties

    PubMed Central

    Pluchino, Lenora Ann; Wang, Hwa-Chain Robert

    2014-01-01

    Breast cancer is the most common type of cancer affecting women in North America and Europe. More than 85% of breast cancers are sporadic and attributable to long-term exposure to small quantities of multiple carcinogens. To understand how multiple carcinogens act together to induce cellular carcinogenesis, we studied the activity of environmental carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo[a]pyrene (B[a]P), and dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) using our breast cell carcinogenesis model. Our study revealed, for the first time, that combined NNK and B[a]P enhanced breast cell carcinogenesis chronically induced by PhIP in both non-cancerous and cancerous breast cells. Co-exposure was more potent than sequential exposure to combined NNK and B[a]P followed by PhIP in inducing carcinogenesis. Initiation of carcinogenesis was measured by transient endpoints induced in a single exposure, while progression of carcinogenesis was measured by acquisition of constitutive endpoints in cumulative exposures. Transient endpoints included DNA damage, Ras-Erk-Nox pathway activation, reactive oxygen species elevation, and increased cellular proliferation. Constitutive endpoints included various cancer-associated properties and signaling modulators, as well as enrichment of cancer stem-like cell population and activation of the epithelial-to-mesenchymal transition program. Using transient and constitutive endpoints as targets, we detected that a combination of the green tea catechins ECG and EGCG, at non-cytotoxic levels, was more effective than individual agents in intervention of cellular carcinogenesis induced by combined NNK, B[a]P, and PhIP. Thus, use of combined ECG and EGCG should be seriously considered for early intervention of breast cell carcinogenesis associated with long-term exposure to environmental and dietary carcinogens. PMID:25372613

  5. Pancreatic Cancer Stem-like Cells Display Aggressive Behavior Mediated via Activation of FoxQ1

    PubMed Central

    Bao, Bin; Azmi, Asfar S.; Aboukameel, Amro; Ahmad, Aamir; Bolling-Fischer, Aliccia; Sethi, Seema; Ali, Shadan; Li, Yiwei; Kong, Dejuan; Banerjee, Sanjeev; Back, Jessica; Sarkar, Fazlul H.

    2014-01-01

    Subpopulations of cancer stem cells (CSCs) or cancer stem-like cells (CSLCs) have been identified from most tumors, including pancreatic cancer (PC), and the existence of these cells is clinically relevant. Emerging evidence suggests that CSLCs participate in cell growth/proliferation, migration/invasion, metastasis, and chemo-radiotherapy resistance, ultimately contributing to poor clinical outcome. However, the pathogenesis and biological significance of CSLCs in PC has not been well characterized. In the present study, we found that isolated triple-marker-positive (CD44+/CD133+/EpCAM+) cells of human PC MiaPaCa-2 and L3.6pl cells behave as CSLCs. These CSLCs exhibit aggressive behavior, such as increased cell growth, migration, clonogenicity, and self-renewal capacity. The mRNA expression profiling analysis showed that CSLCs (CD44+/CD133+/EpCAM+) exhibit differential expression of more than 1,600 mRNAs, including FoxQ1, compared with the triple-marker-negative (CD44−/CD133−/EpCAM−) cells. The knockdown of FoxQ1 by its siRNA in CSLCs resulted in the inhibition of aggressive behavior, consistent with the inhibition of EpCAM and Snail expression. Mouse xenograft tumor studies showed that CSLCs have a 100-fold higher potential for tumor formation and rapid tumor growth, consistent with overexpression of CSC-associated markers/mediators, including FoxQ1, compared with its parental MiaPaCa-2 cells. The inhibition of FoxQ1 attenuated tumor formation and growth, and expression of CSC markers in the xenograft tumor derived from CSLCs of MiaPaCa-2 cells. These data clearly suggest the role of differentially expressed genes in the regulation of CSLC characteristics, further suggesting that targeting some of these genes could be important for the development of novel therapies for achieving better treatment outcome of PC. PMID:24719318

  6. Chemo-Predictive Assay for Targeting Cancer Stem-Like Cells in Patients Affected by Brain Tumors

    PubMed Central

    Nande, Rounak; Neto, Walter; Lawrence, Logan; McCallister, Danielle R.; Denvir, James; Kimmey, Gerrit A.; Mogul, Mark; Oakley, Gerard; Denning, Krista L.; Dougherty, Thomas; Valluri, Jagan V.; Claudio, Pier Paolo

    2014-01-01

    Administration of ineffective anticancer therapy is associated with unnecessary toxicity and development of resistant clones. Cancer stem-like cells (CSLCs) resist chemotherapy, thereby causing relapse of the disease. Thus, development of a test that identifies the most effective chemotherapy management offers great promise for individualized anticancer treatments. We have developed an ex vivo chemotherapy sensitivity assay (ChemoID), which measures the sensitivity of CSLCs as well as the bulk of tumor cells to a variety of chemotherapy agents. Two patients, a 21-year old male (patient 1) and a 5-month female (patient 2), affected by anaplastic WHO grade-III ependymoma were screened using the ChemoID assay. Patient 1 was found sensitive to the combination of irinotecan and bevacizumab, which resulted in a prolonged disease progression free period of 18 months. Following recurrence, the combination of various chemotherapy drugs was tested again with the ChemoID assay. We found that benzyl isothiocyanate (BITC) greatly increased the chemosensitivity of the ependymoma cells to the combination of irinotecan and bevacizumab. After patient 1 was treated for two months with irinotecan, bevacizumab and supplements of cruciferous vegetable extracts containing BITC, we observed over 50% tumoral regression in comparison with pre-ChemoID scan as evidenced by MRI. Patient 2 was found resistant to all treatments tested and following 6 cycles of vincristine, carboplatin, cyclophosphamide, etoposide, and cisplatin in various combinations, the tumor of this patient rapidly progressed and proton beam therapy was recommended. As expected animal studies conducted with patient derived xenografts treated with ChemoID screened drugs recapitulated the clinical observation. This assay demonstrates that patients with the same histological stage and grade of cancer may vary considerably in their clinical response, suggesting that ChemoID testing which measures the sensitivity of CSLCs as

  7. Chemo-predictive assay for targeting cancer stem-like cells in patients affected by brain tumors.

    PubMed

    Mathis, Sarah E; Alberico, Anthony; Nande, Rounak; Neto, Walter; Lawrence, Logan; McCallister, Danielle R; Denvir, James; Kimmey, Gerrit A; Mogul, Mark; Oakley, Gerard; Denning, Krista L; Dougherty, Thomas; Valluri, Jagan V; Claudio, Pier Paolo

    2014-01-01

    Administration of ineffective anticancer therapy is associated with unnecessary toxicity and development of resistant clones. Cancer stem-like cells (CSLCs) resist chemotherapy, thereby causing relapse of the disease. Thus, development of a test that identifies the most effective chemotherapy management offers great promise for individualized anticancer treatments. We have developed an ex vivo chemotherapy sensitivity assay (ChemoID), which measures the sensitivity of CSLCs as well as the bulk of tumor cells to a variety of chemotherapy agents. Two patients, a 21-year old male (patient 1) and a 5-month female (patient 2), affected by anaplastic WHO grade-III ependymoma were screened using the ChemoID assay. Patient 1 was found sensitive to the combination of irinotecan and bevacizumab, which resulted in a prolonged disease progression free period of 18 months. Following recurrence, the combination of various chemotherapy drugs was tested again with the ChemoID assay. We found that benzyl isothiocyanate (BITC) greatly increased the chemosensitivity of the ependymoma cells to the combination of irinotecan and bevacizumab. After patient 1 was treated for two months with irinotecan, bevacizumab and supplements of cruciferous vegetable extracts containing BITC, we observed over 50% tumoral regression in comparison with pre-ChemoID scan as evidenced by MRI. Patient 2 was found resistant to all treatments tested and following 6 cycles of vincristine, carboplatin, cyclophosphamide, etoposide, and cisplatin in various combinations, the tumor of this patient rapidly progressed and proton beam therapy was recommended. As expected animal studies conducted with patient derived xenografts treated with ChemoID screened drugs recapitulated the clinical observation. This assay demonstrates that patients with the same histological stage and grade of cancer may vary considerably in their clinical response, suggesting that ChemoID testing which measures the sensitivity of CSLCs as

  8. Chemotherapy resistance in diffuse type gastric adenocarcinoma is mediated by RhoA activation in cancer stem-like cells

    PubMed Central

    Yoon, Changhwan; Cho, Soo-Jeong; Aksoy, Bülent Arman; Park, Do Joong; Schultz, Nikolaus; Ryeom, Sandra W.; Yoon, Sam S.

    2016-01-01

    Purpose The Lauren diffuse type of gastric adenocarcinoma (DGA), as opposed to the intestinal type (IGA), often harbor mutations in RHOA but little is known about the role of RhoA in DGA. Experimental Design We examined RhoA activity and RhoA pathway inhibition in DGA cell lines and in two mouse xenograft models. RhoA activity was also assessed in patient tumor samples. Results RhoA activity was higher in DGA compared to IGA cell lines, and was further increased when grown as spheroids to enrich for cancer stem-like cells (CSC) or when sorted using the gastric CSC marker CD44. RhoA shRNA or the RhoA inhibitor Rhosin decreased expression of the stem cell transcription factor, Sox2, and decreased spheroid formation by 78–81%. DGA spheroid cells had 3–5 fold greater migration and invasion than monolayer cells, and this activity was Rho-dependent. Diffuse GA spheroid cells were resistant in a cytotoxicity assay to 5-fluorouracil and cisplatin chemotherapy, and this resistance could be reversed with RhoA pathway inhibition. In two xenograft models, cisplatin inhibited tumor growth by 40–50%, RhoA inhibition by 32–60%, and the combination by 77–83%. In 288 patient tumors, increased RhoA activity correlated with worse OS in DGA patients (p=0.017) but not in IGA patients (p=0.612). Conclusions RhoA signaling promotes CSC phenotypes in DGA cells. Increased RhoA activity is correlated with worse OS in DGA patients and RhoA inhibition can reverse chemotherapy resistance in DGA CSC and in tumor xenografts. Thus the RhoA pathway is a promising new target in DGA patients. PMID:26482039

  9. β-Elemene Selectively Inhibits the Proliferation of Glioma Stem-Like Cells Through the Downregulation of Notch1.

    PubMed

    Feng, Hai-Bin; Wang, Jing; Jiang, Hao-Ran; Mei, Xin; Zhao, Yi-Ying; Chen, Fu-Rong; Qu, Yue; Sai, Ke; Guo, Cheng-Cheng; Yang, Qun-Ying; Zhang, Zong-Ping; Chen, Zhong-Ping

    2017-03-01

    Glioma is the most frequent primary central nervous system tumor. Although the current first-line medicine, temozolomide (TMZ), promotes patient survival, drug resistance develops easily. Thus, it is important to investigate novel therapeutic reagents to solidify the treatment effect. β-Elemene (bELE) is a compound from a Chinese herb whose anticancer effect has been shown in various types of cancer. However, its role in the inhibition of glioma stem-like cells (GSLCs) has not yet been reported. We studied both the in vitro and the in vivo inhibitory effect of bELE and TMZ in GSLCs and parental cells and their combined effects. The molecular mechanisms were also investigated. We also optimized the delivery methods of bELE. We found that bELE selectively inhibits the proliferation and sphere formation of GSLCs, other than parental glioma cells, and TMZ exerts its effects on parental cells instead of GSLCs. The in vivo data confirmed that the combination of bELE and TMZ worked better in the xenografts of GSLCs, mimicking the situation of tumorigenesis of human cancer. Notch1 was downregulated with bELE treatment. Our data also demonstrated that the continuous administration of bELE produces an ideal effect to control tumor progression. Our findings have demonstrated, for the first time, that bELE could compensate for TMZ to kill both GSLCs and nonstem-like cancer cells, probably improving the prognosis of glioma patients tremendously. Notch1 might be a downstream target of bELE. Therefore, our data shed light on improving the outcomes of glioma patients by combining bELE and TMZ. Stem Cells Translational Medicine 2017;6:830-839.

  10. miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4

    PubMed Central

    Okuda, Hiroshi; Xing, Fei; Pandey, Puspa R; Sharma, Sambad; Watabe, Misako; Pai, Sudha K.; Mo, Yin-Yuan; Iiizumi-Gairani, Megumi; Hirota, Shigeru; Liu, Yin; Wu, Kerui; Pochampally, Radhika; Watabe, Kounosuke

    2012-01-01

    Despite significant improvement in survival rates of breast cancer patients, prognosis of metastatic disease is still dismal. Cancer stem-like cells (CSCs) are considered to play a role in metastatic progression of breast cancer; however, the exact pathological role of CSCs is yet to be elucidated. In this report, we found that CSCs (CD24−/CD44+/ESA+) isolated from metastatic breast cell lines are significantly more metastatic than non-CSC populations in an organ specific manner. The results of our microRNA profile analysis for these cells revealed that CSCs that are highly metastatic to bone and brain expressed significantly lower level of miR-7 and that this microRNA was capable of modulating one of the essential genes for induced pluripotent stem cell, KLF4. Interestingly, high expression of KLF4 was significantly and inversely correlated to brain- but not bone-metastasis free survival of breast cancer patients, and we indeed found that the expression of miR-7 significantly suppressed the ability of CSCs to metastasize to brain but not to bone in our animal model. We also examined the expression of miR-7 and KLF4 in brain-metastatic lesions and found that these genes were significantly down- or up-regulated, respectively, in the tumor cells in brain. Furthermore, the results of our in vitro experiments indicate that miR-7 attenuates the abilities of invasion and self-renewal of CSCs by modulating KLF4 expression. These results suggest that miR-7 and KLF4 may serve as biomarkers or therapeutic targets for brain metastasis of breast cancer. PMID:23384942

  11. Notch3 signaling-mediated melanoma-endothelial crosstalk regulates melanoma stem-like cell homeostasis and niche morphogenesis.

    PubMed

    Hsu, Mei-Yu; Yang, Moon Hee; Schnegg, Caroline I; Hwang, Soonyean; Ryu, Byungwoo; Alani, Rhoda M

    2017-02-06

    Melanoma is among the most virulent cancers, owing to its propensity to metastasize and its resistance to current therapies. The treatment failure is largely attributed to tumor heterogeneity, particularly subpopulations possessing stem cell-like properties, ie, melanoma stem-like cells (MSLCs). Evidence indicates that the MSLC phenotype is malleable and may be acquired by non-MSLCs through phenotypic switching upon appropriate stimuli, the so-called 'dynamic stemness'. Since the phenotypic characteristics and functional integrity of MSLCs depend on their vascular niche, using a two-dimensional (2D) melanoma-endothelium co-culture model, where the MSLC niche is recapitulated in vitro, we identified Notch3 signaling pathway as a micro-environmental cue governing MSLC phenotypic plasticity via pathway-specific gene expression arrays. Accordingly, lentiviral shRNA-mediated Notch3 knockdown (KD) in melanoma cell lines exhibiting high levels of endogenous Notch3 led to retarded/abolished tumorigenicity in vivo through both depleting MSLC fractions, evinced by MSLC marker downregulation (eg, CD133 and CD271); and impeding the MSLC niche, corroborated by the attenuated tumor angiogenesis as well as vasculogenic mimicry. In contrast, Notch3 KD affected neither tumor growth nor MSLC subsets in a melanoma cell line with relatively low endogenous Notch3 expression. Thus, Notch3 signaling may facilitate MSLC plasticity and niche morphogenesis in a cell context-dependent manner. Our findings illustrate Notch3 as a molecular switch driving melanoma heterogeneity, and provide the biological rationale for Notch inhibition as a promising therapeutic option.Laboratory Investigation advance online publication, 6 February 2017; doi:10.1038/labinvest.2017.1.

  12. Cathepsin K cleavage of SDF-1α inhibits its chemotactic activity towards glioblastoma stem-like cells.

    PubMed

    Hira, Vashendriya V V; Verbovšek, Urška; Breznik, Barbara; Srdič, Matic; Novinec, Marko; Kakar, Hala; Wormer, Jill; der Swaan, Britt Van; Lenarčič, Brigita; Juliano, Luiz; Mehta, Shwetal; Van Noorden, Cornelis J F; Lah, Tamara T

    2017-03-01

    Glioblastoma (GBM) is the most aggressive primary brain tumor with poor patient survival that is at least partly caused by malignant and therapy-resistant glioma stem-like cells (GSLCs) that are protected in GSLC niches. Previously, we have shown that the chemo-attractant stromal-derived factor-1α (SDF-1α), its C-X-C receptor type 4 (CXCR4) and the cysteine protease cathepsin K (CatK) are localized in GSLC niches in glioblastoma. Here, we investigated whether SDF-1α is a niche factor that through its interactions with CXCR4 and/or its second receptor CXCR7 on GSLCs facilitates their homing to niches. Furthermore, we aimed to prove that SDF-1α cleavage by CatK inactivates SDF-1α and inhibits the invasion of GSLCs. We performed mass spectrometric analysis of cleavage products of SDF-1α after proteolysis by CatK. We demonstrated that CatK cleaves SDF-1α at 3 sites in the N-terminus, which is the region of SDF-1α that binds to its receptors. Confocal imaging of human GBM tissue sections confirmed co-localization of SDF-1α and CatK in GSLC niches. In accordance, 2D and 3D invasion experiments using CXCR4/CXCR7-expressing GSLCs and GBM cells showed that SDF-1α had chemotactic activity whereas CatK cleavage products of SDF-1α did not. Besides, CXCR4 inhibitor plerixafor inhibited invasion of CXCR4/CXCR7-expressing GSLCs. In conclusion, CatK can cleave and inactivate SDF-1α. This implies that CatK activity facilitates migration of GSLCs out of niches. We propose that activation of CatK may be a promising strategy to prevent homing of GSLCs in niches and thus render these cells sensitive to chemotherapy and radiation.

  13. Autocrine VEGF–VEGFR2–Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth

    PubMed Central

    Hamerlik, Petra; Lathia, Justin D.; Rasmussen, Rikke; Wu, Qiulian; Bartkova, Jirina; Lee, MyungHee; Moudry, Pavel; Bartek, Jiri; Fischer, Walter; Lukas, Jiri

    2012-01-01

    Although vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) is traditionally regarded as an endothelial cell protein, evidence suggests that VEGFRs may be expressed by cancer cells. Glioblastoma multiforme (GBM) is a lethal cancer characterized by florid vascularization and aberrantly elevated VEGF. Antiangiogenic therapy with the humanized VEGF antibody bevacizumab reduces GBM tumor growth; however, the clinical benefits are transient and invariably followed by tumor recurrence. In this study, we show that VEGFR2 is preferentially expressed on the cell surface of the CD133+ human glioma stem-like cells (GSCs), whose viability, self-renewal, and tumorigenicity rely, at least in part, on signaling through the VEGF-VEGFR2–Neuropilin-1 (NRP1) axis. We find that the limited impact of bevacizumab-mediated VEGF blockage may reflect ongoing autocrine signaling through VEGF–VEGFR2–NRP1, which is associated with VEGFR2–NRP1 recycling and a pool of active VEGFR2 within a cytosolic compartment of a subset of human GBM cells. Whereas bevacizumab failed to inhibit prosurvival effects of VEGFR2-mediated signaling, GSC viability under unperturbed or radiation-evoked stress conditions was attenuated by direct inhibition of VEGFR2 tyrosine kinase activity and/or shRNA-mediated knockdown of VEGFR2 or NRP1. We propose that direct inhibition of VEGFR2 kinase may block the highly dynamic VEGF–VEGFR2–NRP1 pathway and inspire a GBM treatment strategy to complement the currently prevalent ligand neutralization approach. PMID:22393126

  14. Bufalin suppresses cancer stem-like cells in gemcitabine-resistant pancreatic cancer cells via Hedgehog signaling

    PubMed Central

    Wang, Haiyong; Ning, Zhouyu; Li, Yingyi; Zhu, Xiaoyan; Meng, Zhiqiang

    2016-01-01

    Cancer stem cells (CSCs) are important in cancer, as these cells possess enhanced tumor-forming capabilities and are resistant to current anticancer therapies. Agents with the ability to suppress CSCs are likely to provide novel opportunities for combating tumor proliferation and metastasis. The present study aimed to evaluate the effects of bufalin on pancreatic CSCs in vivo and in vitro. Using a serum-free suspension culture, tumor spheres were enriched in a gemcitabine-resistant human pancreatic cancer cell line, which had a higher percentage of CSCs, and western blotting, flow cytometry, and colony and tumor formation assays were used to demonstrate that these sphere cells exhibited CSC characteristics. Using these cancer stem-like cells as a model, the present study examined the effect of bufalin on pancreatic CSCs. It was demonstrated that bufalin inhibited the number of tumor spheres, and western blotting and immunohistochemical assays showed that the expression levels of CD24 and epithelial specific antigen (ESA) were downregulated by bufalin. Furthermore, in a subcutaneous xenograft model of implanted gemcitabine-resistant MiaPaCa2 cells, bufalin inhibited tumor growth and prolonged the duration of tumor formation. Additionally, the expression levels of CD24 and ESA were inhibited in the bufalin-treated mice. Notably, in another cancer model injected with tumor cells via the tail vein, fewer metastatic lesions were detected in the group in which tumor cells were pretreated with bufalin in vitro, compared with those without pretreatment. Of note, the Hedgehog (Hh) signaling pathway was found to be inhibited in the bufalin-treated cells. Taken together, these results suggested that bufalin suppressed pancreatic CSCs in gemcitabine-resistant MiaPaCa2 cells, and the Hh signaling pathway may be involved in this process. PMID:27432228

  15. Elimination of Cancer Stem-Like Cells and Potentiation of Temozolomide Sensitivity by Honokiol in Glioblastoma Multiforme Cells

    PubMed Central

    Lai, I-Chun; Shih, Ping-Hsiao; Yao, Chih-Jung; Yeh, Chi-Tai; Wang-Peng, Jacqueline; Lui, Tai-Ngar; Chuang, Suang-En; Hu, Tsai-Shu; Lai, Tung-Yuan; Lai, Gi-Ming

    2015-01-01

    Glioblastoma multiforme (GBM) is the most common adult malignant glioma with poor prognosis due to the resistance to radiotherapy and chemotherapy, which might be critically involved in the repopulation of cancer stem cells (CSCs) after treatment. We had investigated the characteristics of cancer stem-like side population (SP) cells sorted from GBM cells, and studied the effect of Honokiol targeting on CSCs. GBM8401 SP cells possessed the stem cell markers, such as nestin, CD133 and Oct4, and the expressions of self-renewal related stemness genes, such as SMO, Notch3 and IHH (Indian Hedgehog). Honokiol inhibited the proliferation of both GBM8401 parental cells and SP cells in a dose-dependent manner, the IC50 were 5.3±0.72 and 11±1.1 μM, respectively. The proportions of SP in GBM8401 cells were diminished by Honokiol from 1.5±0.22% down to 0.3±0.02% and 0.2±0.01% at doses of 2.5 μM and 5 μM, respectively. The SP cells appeared to have higher expression of O6-methylguanine-DNA methyltransferase (MGMT) and be more resistant to Temozolomide (TMZ). The resistance to TMZ could be only slightly reversed by MGMT inhibitor O6-benzylguanine (O6-BG), but markedly further enhanced by Honokiol addition. Such significant enhancement was accompanied with the higher induction of apoptosis, greater down-regulation of Notch3 as well as its downstream Hes1 expressions in SP cells. Our data indicate that Honokiol might have clinical benefits for the GBM patients who are refractory to TMZ treatment. PMID:25763821

  16. Biomechanical profile of cancer stem-like/tumor-initiating cells derived from a progressive ovarian cancer model.

    PubMed

    Babahosseini, Hesam; Ketene, Alperen N; Schmelz, Eva M; Roberts, Paul C; Agah, Masoud

    2014-07-01

    We herein report, for the first time, the mechanical properties of ovarian cancer stem-like/tumor-initiating cells (CSC/TICs). The represented model is a spontaneously transformed murine ovarian surface epithelial (MOSE) cell line that mimics the progression of ovarian cancer from early/non-tumorigenic to late/highly aggressive cancer stages. Elastic modulus measurements via atomic force microscopy (AFM) illustrate that the enriched CSC/TICs population (0.32±0.12kPa) are 46%, 61%, and 72% softer (P<0.0001) than their aggressive late-stage, intermediate, and non-malignant early-stage cancer cells, respectively. Exposure to sphingosine, an anti-cancer agent, induced an increase in the elastic moduli of CSC/TICs by more than 46% (0.47±0.14kPa, P<0.0001). Altogether, our data demonstrate that the elastic modulus profile of CSC/TICs is unique and responsive to anti-cancer treatment strategies that impact the cytoskeleton architecture of cells. These findings increase the chance for obtaining distinctive cell biomechanical profiles with the intent of providing a means for effective cancer detection and treatment control. This novel study utilized atomic force microscopy to demonstrate that the elastic modulus profile of cancer stem cell-like tumor initiating cells is unique and responsive to anti-cancer treatment strategies that impact the cytoskeleton of these cells. These findings pave the way to the development of unique means for effective cancer detection and treatment control. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Isolation and characterization of cardiogenic, stem-like cardiac precursors from heart samples of patients with congenital heart disease.

    PubMed

    Ghazizadeh, Zaniar; Vahdat, Sadaf; Fattahi, Faranak; Fonoudi, Hananeh; Omrani, Gholamreza; Gholampour, Maziar; Aghdami, Nasser

    2015-09-15

    Regenerative therapies based on resident human cardiac progenitor cells (hCPCs) are a promising alternative to medical treatments for patients with myocardial infarction. However, hCPCs are rare in human heart and finding efficient source and proper surface marker for isolation of these cells would make them a good candidate for therapy. We have isolated 5.34∗10(6)±2.04∗10(5)/g viable cells from 35 heart tissue samples of 23 patients with congenital heart disease obtained during their heart surgery along with 6 samples from 3 normal subjects during cardiac biopsy. According to FACS analysis, younger ages, atrial specimen and disease with increased pulmonary vascular resistance were associated with higher percentage of c-kit(+) (CD117) hCPCs. Analysis for other stemness markers revealed increased CD133(+) cells in the hearts of patients with congenital heart disease. By using both immune-labeling and PCR, we demonstrated that these cells express key cardiac lineage and endothelial transcription factors and structural proteins during in vitro differentiation and do express stemness transcription factors in undifferentiated state. Another novel datum of potentially relevant interest is their ability in promoting greater myocardial regeneration and better survival in rat model of myocardial infarction following transplantation. Our results could provide evidence for conditions associated with enriched hCPCs in patients with congenital heart disease. Moreover, we showed presence of a significant number of CD133 expressing cardiogenic stem-like cardiac precursors in the heart of patients with congenital heart disease, which could be isolated and stored for future regenerative therapies in these patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. A novel model for evaluating therapies targeting human tumor vasculature and human cancer stem-like cells

    PubMed Central

    Burgos-Ojeda, Daniela; McLean, Karen; Bai, Shoumei; Pulaski, Heather; Gong, Yusong; Silva, Ines; Skorecki, Karl; Tzukerman, Maty; Buckanovich, Ronald J.

    2013-01-01

    Human tumor vessels express tumor vascular markers (TVMs), proteins that are not expressed in normal blood vessels. Antibodies targeting TVMs could act as potent therapeutics. Unfortunately, preclinical in vivo studies testing anti-human TVM therapies have been difficult to perform due to a lack of in vivo models with confirmed expression of human TVMs. We therefore evaluated TVM expression in a human embryonic stem cell derived teratoma (hESCT) tumor model previously shown to have human vessels. We now report that, in the presence of tumor cells, hESCT tumor vessels express human TVMs. The addition of mouse embryonic fibroblasts and human tumor endothelial cells significantly increases the number of human tumor vessels. TVM induction is mostly tumor type specific with ovarian cancer cells inducing primarily ovarian TVMs while breast cancer cells induce breast cancer specific TVMs. We demonstrate the utility of this model to test an anti-human specific TVM immunotherapeutics; anti-human Thy-1 TVM immunotherapy results in central tumor necrosis and a three-fold reduction in human tumor vascular density. Finally, we tested the ability of the hESCT model, with human tumor vascular niche, to enhance the engraftment rate of primary human ovarian cancer stem-like cells (CSC). ALDH+ CSC from patients (n=6) engrafted in hESCT within 4–12 weeks whereas none engrafted in the flank. ALDH- ovarian cancer cells showed no engraftment in the hESCT or flank (n=3). Thus this model represents a useful tool to test anti-human TVM therapy and evaluate in vivo human CSC tumor biology. PMID:23576551

  19. Chronic exposure to combined carcinogens enhances breast cell carcinogenesis with mesenchymal and stem-like cell properties.

    PubMed

    Pluchino, Lenora Ann; Wang, Hwa-Chain Robert

    2014-01-01

    Breast cancer is the most common type of cancer affecting women in North America and Europe. More than 85% of breast cancers are sporadic and attributable to long-term exposure to small quantities of multiple carcinogens. To understand how multiple carcinogens act together to induce cellular carcinogenesis, we studied the activity of environmental carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo[a]pyrene (B[a]P), and dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) using our breast cell carcinogenesis model. Our study revealed, for the first time, that combined NNK and B[a]P enhanced breast cell carcinogenesis chronically induced by PhIP in both non-cancerous and cancerous breast cells. Co-exposure was more potent than sequential exposure to combined NNK and B[a]P followed by PhIP in inducing carcinogenesis. Initiation of carcinogenesis was measured by transient endpoints induced in a single exposure, while progression of carcinogenesis was measured by acquisition of constitutive endpoints in cumulative exposures. Transient endpoints included DNA damage, Ras-Erk-Nox pathway activation, reactive oxygen species elevation, and increased cellular proliferation. Constitutive endpoints included various cancer-associated properties and signaling modulators, as well as enrichment of cancer stem-like cell population and activation of the epithelial-to-mesenchymal transition program. Using transient and constitutive endpoints as targets, we detected that a combination of the green tea catechins ECG and EGCG, at non-cytotoxic levels, was more effective than individual agents in intervention of cellular carcinogenesis induced by combined NNK, B[a]P, and PhIP. Thus, use of combined ECG and EGCG should be seriously considered for early intervention of breast cell carcinogenesis associated with long-term exposure to environmental and dietary carcinogens.

  20. Radiation Response of Cancer Stem-Like Cells From Established Human Cell Lines After Sorting for Surface Markers

    SciTech Connect

    Al-Assar, Osama; Muschel, Ruth J.; Mantoni, Tine S.; McKenna, W. Gillies; Brunner, Thomas B.

    2009-11-15

    Purpose: A subpopulation of cancer stem-like cells (CSLC) is hypothesized to exist in different cancer cell lines and to mediate radioresistance in solid tumors. Methods and Materials: Cells were stained for CSLC markers and sorted (fluorescence-activated cell sorter/magnetic beads) to compare foci and radiosensitivity of phosphorylated histone H2AX at Ser 139 (gamma-H2AX) in sorted vs. unsorted populations in eight cell lines from different organs. CSLC properties were examined using anchorage-independent growth and levels of activated Notch1. Validation consisted of testing tumorigenicity and postirradiation enrichment of CSLC in xenograft tumors. Results: The quantity of CSLC was generally in good agreement with primary tumors. CSLC from MDA-MB-231 (breast) and Panc-1 and PSN-1 (both pancreatic) cells had fewer residual gamma-H2AX foci than unsorted cells, pointing to radioresistance of CSLC. However, only MDA-MB-231 CSLC were more radioresistant than unsorted cells. Furthermore, MDA-MB-231 CSLC showed enhanced anchorage-independent growth and overexpression of activated Notch1 protein. The expression of cancer stem cell surface markers in the MDA-MB-231 xenograft model was increased after exposure to fractionated radiation. In contrast to PSN-1 cells, a growth advantage for MDA-MB-231 CSLC xenograft tumors was found compared to tumors arising from unsorted cells. Conclusions: CSLC subpopulations showed no general radioresistant phenotype, despite the quantities of CSLC subpopulations shown to correspond relatively well in other reports. Likewise, CSLC characteristics were found in some but not all of the tested cell lines. The reported problems in testing for CSLC in cell lines may be overcome by additional techniques, beyond sorting for markers.

  1. Notch3 Signaling-Mediated Melanoma-Endothelial Crosstalk Regulates Melanoma Stem-Like Cell Homeostasis and Niche Morphogenesis

    PubMed Central

    Hsu, Mei-Yu; Yang, Moon Hee; Schnegg, Caroline I.; Hwang, Soonyean; Ryu, Byungwoo; Alani, Rhoda M.

    2016-01-01

    Melanoma is among the most virulent cancers, owing to its propensity to metastasize and its resistance to current therapies. The treatment failure is largely attributed to tumor heterogeneity, particularly subpopulations possessing stem cell-like properties, i.e., melanoma stem-like cells (MSLCs). Evidence indicates that the MSLC phenotype is malleable and may be acquired by non-MSLCs through phenotypic switching upon appropriate stimuli, the so–called “dynamic stemness”. Since the phenotypic characteristics and functional integrity of MSLCs depend on their vascular niche, using a two dimensional (2D) melanoma-endothelium co-culture model, where the MSLC niche is recapitulated in vitro, we identified Notch3 signaling pathway as a micro-environmental cue governing MSLC phenotypic plasticity via pathway-specific gene expression arrays. Accordingly, lentiviral shRNA-mediated Notch3 knockdown (KD) in melanoma cell lines exhibiting high levels of endogenous Notch3 led to retarded/abolished tumorigenicity in vivo through both depleting MSLC fractions, evinced by MSLC marker down-regulation (e.g., CD133 and CD271); and impeding the MSLC niche, corroborated by the attenuated tumor angiogenesis as well as vasculogenic mimicry. In contrast, Notch3 KD affected neither tumor growth nor MSLC subsets in a melanoma cell line with relatively low endogenous Notch3 expression. Thus, Notch3 signaling may facilitate MSLC plasticity and niche morphogenesis in a cell context-dependent fashion. Our findings illustrate Notch3 as a molecular switch driving melanoma heterogeneity, and provide the biological rationale for Notch inhibition as a promising therapeutic option. PMID:28165469

  2. p62/SQSTM1 enhances breast cancer stem-like properties by stabilizing MYC mRNA.

    PubMed

    Xu, L-Z; Li, S-S; Zhou, W; Kang, Z-J; Zhang, Q-X; Kamran, M; Xu, J; Liang, D-P; Wang, C-L; Hou, Z-J; Wan, X-B; Wang, H-J; Lam, E W-F; Zhao, Z-W; Liu, Q

    2017-01-19

    Aberrant p62 overexpression has been implicated in breast cancer development. Here, we found that p62 expression was elevated in breast cancer stem cells (BCSCs), including CD44(+)CD24(-) fractions, mammospheres, ALDH1(+) populations and side population cells. Indeed, short-hairpin RNA (shRNA)-mediated knockdown of p62 impaired breast cancer cells from self-renewing under anchorage-independent conditions, whereas ectopic overexpression of p62 enhanced the self-renewal ability of breast cancer cells in vitro. Genetic depletion of p62 robustly inhibited tumor-initiating frequencies, as well as growth rates of BCSC-derived tumor xenografts in immunodeficient mice. Consistently, immunohistochemical analysis of clinical breast tumor tissues showed that high p62 expression levels were linked to poorer clinical outcome. Further gene expression profiling analysis revealed that p62 was positively correlated with MYC expression level, which mediated the function of p62 in promoting breast cancer stem-like properties. MYC mRNA level was reduced upon p62 deletion by siRNA and increased with p62 overexpression in breast cancer cells, suggesting that p62 positively regulated MYC mRNA. Interestingly, p62 did not transactivate MYC promoter. Instead, p62 delayed the degradation of MYC mRNA by repressing the expression of let-7a and let-7b, thus promoting MYC mRNA stabilization at the post-transcriptional level. Consistently, let-7a and let-7b mimics attenuated p62-mediated MYC mRNA stabilization. Together, these findings unveiled a previously unappreciated role of p62 in the regulation of BCSCs, assigning p62 as a promising therapeutic target for breast cancer treatments.

  3. p62/SQSTM1 enhances breast cancer stem-like properties by stabilizing MYC mRNA

    PubMed Central

    Xu, L-Z; Li, S-S; Zhou, W; Kang, Z-J; Zhang, Q-X; Kamran, M; Xu, J; Liang, D-P; Wang, C-L; Hou, Z-J; Wan, X-B; Wang, H-J; Lam, E W-F; Zhao, Z-W; Liu, Q

    2017-01-01

    Aberrant p62 overexpression has been implicated in breast cancer development. Here, we found that p62 expression was elevated in breast cancer stem cells (BCSCs), including CD44+CD24− fractions, mammospheres, ALDH1+ populations and side population cells. Indeed, short-hairpin RNA (shRNA)-mediated knockdown of p62 impaired breast cancer cells from self-renewing under anchorage-independent conditions, whereas ectopic overexpression of p62 enhanced the self-renewal ability of breast cancer cells in vitro. Genetic depletion of p62 robustly inhibited tumor-initiating frequencies, as well as growth rates of BCSC-derived tumor xenografts in immunodeficient mice. Consistently, immunohistochemical analysis of clinical breast tumor tissues showed that high p62 expression levels were linked to poorer clinical outcome. Further gene expression profiling analysis revealed that p62 was positively correlated with MYC expression level, which mediated the function of p62 in promoting breast cancer stem-like properties. MYC mRNA level was reduced upon p62 deletion by siRNA and increased with p62 overexpression in breast cancer cells, suggesting that p62 positively regulated MYC mRNA. Interestingly, p62 did not transactivate MYC promoter. Instead, p62 delayed the degradation of MYC mRNA by repressing the expression of let-7a and let-7b, thus promoting MYC mRNA stabilization at the post-transcriptional level. Consistently, let-7a and let-7b mimics attenuated p62-mediated MYC mRNA stabilization. Together, these findings unveiled a previously unappreciated role of p62 in the regulation of BCSCs, assigning p62 as a promising therapeutic target for breast cancer treatments. PMID:27345399

  4. The ETS factor ESE3/EHF represses IL-6 preventing STAT3 activation and expansion of the prostate cancer stem-like compartment

    PubMed Central

    Albino, Domenico; Civenni, Gianluca; Rossi, Simona; Mitra, Abhishek; Catapano, Carlo V.; Carbone, Giuseppina M.

    2016-01-01

    Metastatic prostate cancer represents a yet unsolved clinical problem due to the high frequency of relapse and treatment resistance. Understanding the pathways that lead to prostate cancer progression is an important task to prevent this deadly disease. The ETS transcription factor ESE3/EHF has an important role in differentiation of human prostate epithelial cells. Loss of ESE3/EHF in prostate epithelial cells determines transformation, epithelial-to-mesenchymal transition (EMT) and acquisition of stem-like properties. In this study we identify IL-6 as a direct target of ESE3/EHF that is activated in prostate epithelial cells upon loss of ESE3/EHF. ESE3/EHF and IL-6 were significantly inversely correlated in prostate tumors. Chromatin immunoprecipitation confirmed binding of ESE3/EHF to a novel ETS binding site in the IL-6 gene promoter. Inhibition of IL-6 reverted transformation and stem-like phenotype in tumorigenic ESE3/EHF knockdown prostate epithelial cell models. Conversely, IL-6 stimulation induced malignant phenotypes, stem-like behavior and STAT3 activation. Increased level of IL-6 was observed in prostatospheres compared with adherent bulk cancer cells and this was associated with stronger activation of STAT3. Human prostate tumors with IL-6 elevation and loss of ESE3/EHF were associated with STAT3 activation and displayed upregulation of genes related to cell adhesion, cancer stem-like and metastatic spread. Pharmacological inhibition of IL-6/STAT3 activation by a JAK inhibitor restrained cancer stem cell growth in vitro and inhibited self-renewal in vivo. This study identifies a novel connection between the transcription factor ESE3/EHF and the IL-6/JAK/STAT3 pathway and suggests that targeting this axis might be preferentially beneficial in tumors with loss of ESE3/EHF. PMID:27732936

  5. Survival of patients with gastrointestinal cancers can be predicted by a surrogate microRNA signature for cancer stem-like cells marked by DCLK1 kinase

    PubMed Central

    Weygant, Nathaniel; Ge, Yang; Qu, Dongfeng; Kaddis, John S.; Berry, William L.; May, Randal; Chandrakesan, Parthasarathy; Bannerman-Menson, Edwin; Vega, Kenneth J.; Tomasek, James J.; Bronze, Michael S.; An, Guangyu; Houchen, Courtney W.

    2016-01-01

    DCLK1 is a gastrointestinal (GI) tuft cell kinase that has been investigated as a biomarker of cancer stem-like cells in colon and pancreatic cancers. However, its utility as a biomarker may be limited in principle by signal instability and dilution in heterogeneous tumors, where the proliferation of diverse tumor cell lineages obscures the direct measurement of DCLK1 activity. To address this issue, we explored the definition of a microRNA signature as a surrogate biomarker for DCLK1 in cancer stem-like cells. Utilizing RNA/miRNA sequencing datasets from the Cancer Genome Atlas, we identified a surrogate 15-miRNA expression signature for DCLK1 activity across several GI cancers, including colon, pancreatic and stomach cancers. Notably, Cox regression and Kaplan-Meier analysis demonstrated that this signature could predict the survival of patients with these cancers. Moreover, we identified patient subgroups that predicted the clinical utility of this DCLK1 surrogate biomarker. Our findings greatly strengthen the clinical significance for DCLK1 expression across GI cancers. Further, they provide an initial guidepost toward the development of improved prognostic biomarkers or companion biomarkers for DCLK1-targeted therapies to eradicate cancer stem-like cells in these malignancies. PMID:27287716

  6. ATG4A promotes tumor metastasis by inducing the epithelial-mesenchymal transition and stem-like properties in gastric cells

    PubMed Central

    Yang, Shi-Wei; Ping, Yi-Fang; Jiang, Yu-Xing; Luo, Xiao; Zhang, Xia; Bian, Xiu-Wu; Yu, Pei-Wu

    2016-01-01

    The metastasis of tumor cells to distant organs is an ominous feature of gastric cancer. However, the molecular mechanisms underlying the invasion and metastasis of gastric cancer cells remain elusive. In this study, we found that the expression of ATG4A, an autophagy-regulating molecule, was significantly increased in gastric cancer tissues and was significantlycorrelated with the gastric cancer differentiation degree, tumor invasion and lymph node metastasis. ATG4A over-expression significantly promoted gastric cancer cell migration and invasion in vitro and metastasis in vivo, as well as promoted gastric cancer cell stem-like properties and the epithelial-mesenchymal transition (EMT) phenotype. By contrast, ATG4A knockdown inhibited the migration, invasion and metastasis of cancer cells, as well as the stem-like properties and EMT phenotype. Mechanistically, ATG4A promotes gastric cancer cell stem-like properties and the EMT phenotype through the activation of Notch signaling not via autophagy, and using the Notch signaling inhibitor DAPT attenuated the effects of ATG4A on gastric cancer cells. Taken together, these findings demonstrated that ATG4A promotes the metastasis of gastric cancer cells via the Notch signaling pathway, which is an autophagy-independent mechanism. PMID:27276686

  7. Salinomycin Promotes Anoikis and Decreases the CD44+/CD24- Stem-Like Population via Inhibition of STAT3 Activation in MDA-MB-231 Cells.

    PubMed

    An, Hyunsook; Kim, Ji Young; Oh, Eunhye; Lee, Nahyun; Cho, Youngkwan; Seo, Jae Hong

    2015-01-01

    Triple-negative breast cancer (TNBC) is an aggressive tumor subtype with an enriched CD44+/CD24- stem-like population. Salinomycin is an antibiotic that has been shown to target cancer stem cells (CSC); however, the mechanisms of action involved have not been well characterized. The objective of the present study was to investigate the effect of salinomycin on cell death, migration, and invasion, as well as CSC-like properties in MDA-MB-231 breast cancer cells. Salinomycin significantly induced anoikis-sensitivity, accompanied by caspase-3 and caspase-8 activation and PARP cleavage, during anchorage-independent growth. Salinomycin treatment also caused a marked suppression of cell migration and invasion with concomitant downregulation of MMP-9 and MMP-2 mRNA levels. Notably, salinomycin inhibited the formation of mammospheres and effectively reduced the CD44+/CD24- stem-like population during anchorage-independent growth. These observations were associated with the inhibition of STAT3 phosphorylation (Tyr705). Furthermore, interleukin-6 (IL-6)-induced STAT3 activation was strongly suppressed by salinomycin challenge. These findings support the notion that salinomycin may be potentially efficacious for targeting breast cancer stem-like cells through the inhibition of STAT3 activation.

  8. Bisacodyl and its cytotoxic activity on human glioblastoma stem-like cells. Implication of inositol 1,4,5-triphosphate receptor dependent calcium signaling.

    PubMed

    Dong, Jihu; Aulestia, Francisco J; Assad Kahn, Suzana; Zeniou, Maria; Dubois, Luiz Gustavo; El-Habr, Elias A; Daubeuf, François; Tounsi, Nassera; Cheshier, Samuel H; Frossard, Nelly; Junier, Marie-Pierre; Chneiweiss, Hervé; Néant, Isabelle; Moreau, Marc; Leclerc, Catherine; Haiech, Jacques; Kilhoffer, Marie-Claude

    2017-06-01

    Glioblastoma is the most common malignant brain tumor. The heterogeneity at the cellular level, metabolic specificities and plasticity of the cancer cells are a challenge for glioblastoma treatment. Identification of cancer cells endowed with stem properties and able to propagate the tumor in animal xenografts has opened a new paradigm in cancer therapy. Thus, to increase efficacy and avoid tumor recurrence, therapies need to target not only the differentiated cells of the tumor mass, but also the cancer stem-like cells. These therapies need to be effective on cells present in the hypoxic, slightly acidic microenvironment found within tumors. Such a microenvironment is known to favor more aggressive undifferentiated phenotypes and a slow-growing "quiescent state" that preserves the cells from chemotherapeutic agents, which mostly target proliferating cells. Based on these considerations, we performed a differential screening of the Prestwick Chemical Library of approved drugs on both proliferating and quiescent glioblastoma stem-like cells and identified bisacodyl as a cytotoxic agent with selectivity for quiescent glioblastoma stem-like cells. In the present study we further characterize bisacodyl activity and show its efficacy in vitro on clonal macro-tumorospheres, as well as in vivo in glioblastoma mouse models. Our work further suggests that bisacodyl acts through inhibition of Ca(2+) release from the InsP3 receptors. Copyright © 2017. Published by Elsevier B.V.

  9. Multivoxel magnetic resonance spectroscopy identifies enriched foci of cancer stem-like cells in high-grade gliomas

    PubMed Central

    He, Tao; Qiu, Tianming; Wang, Xiaodong; Gui, Hongxing; Wang, Xilong; Hu, Qikuan; Xia, Hechun; Qi, Gaoyang; Wu, Jinsong; Ma, Hui

    2017-01-01

    Objective This study investigated the correlation between choline/creatine (Cho/Cr) ratios determined by multivoxel proton magnetic resonance spectroscopy (1H-MRS) and the distribution of cancer stem-like cells (CSLCs) in high-grade gliomas. Patients and methods Sixteen patients with high-grade gliomas were recruited and underwent 1H-MRS examination before surgery to identify distinct tumor regions with variable Cho/Cr ratios. Using intraoperative neuronavigation, tumor tissues were accurately sampled from regions with high and low Cho/Cr ratios within each tumor. The distribution of CSLCs in samples from glioma tissue regions with different Cho/Cr ratios was quantified by neurosphere culture, immunohistochemistry, and Western blot. Results The mean neurosphere formation rate in tissues with high Cho/Cr ratios was significantly increased compared with that in low Cho/Cr ratio tissues (13.94±5.94 per 100 cells vs 8.04±3.99 per 100 cells, P<0.001). Immunohistochemistry indicated that tissues with high Cho/Cr ratios had elevated expression of CD133, nestin, and CD15, relative to low Cho/Cr ratio tissue samples (23.6%±3.8% vs 18.3%±3.3%, 25.2%±4.5% vs 19.8%±2.8%, 24.5%±3.8% vs 17.8%±2.2%, respectively; all P<0.001). Western blot demonstrated that relative CD133 and nestin protein expression in high Cho/Cr ratio regions was significantly higher than that in low Cho/Cr ratio tissue samples (0.50±0.17 vs 0.30±0.08, 0.45±0.13 vs 0.27±0.07, respectively; both P<0.001). The protein expression levels of CD133 and nestin were highly correlated with Cho/Cr ratios (r=0.897 and r=0.861, respectively). Conclusion Cho/Cr ratios correlate with the distribution of CSLCs in high-grade gliomas, and this may assist in identifying foci enriched with CSLCs and thus improve the management of high-grade gliomas. PMID:28115854

  10. Microenvironmental Modulation of Decorin and Lumican in Temozolomide-Resistant Glioblastoma and Neuroblastoma Cancer Stem-Like Cells

    PubMed Central

    Melguizo, Consolacion; Alvarez, Pablo; Bandiera, Pasquale; Rama, Ana Rosa; Malaguarnera, Giulia; Ortiz, Raul; Madeddu, Roberto; Prados, Jose

    2015-01-01

    The presence of cancer stem cells (CSCs) or tumor-initiating cells can lead to cancer recurrence in a permissive cell–microenvironment interplay, promoting invasion in glioblastoma (GBM) and neuroblastoma (NB). Extracellular matrix (ECM) small leucine-rich proteoglycans (SLRPs) play multiple roles in tissue homeostasis by remodeling the extracellular matrix (ECM) components and modulating intracellular signaling pathways. Due to their pan-inhibitory properties against receptor tyrosine kinases (RTKs), SLRPs are reported to exert anticancer effects in vitro and in vivo. However, their roles seem to be tissue-specific and they are also involved in cancer cell migration and drug resistance, paving the way to complex different scenarios. The aim of this study was to determine whether the SLRPs decorin (DCN) and lumican (LUM) are recruited in cell plasticity and microenvironmental adaptation of differentiated cancer cells induced towards stem-like phenotype. Floating neurospheres were generated by applying CSC enrichment medium (neural stem cell serum-free medium, NSC SFM) to the established SF-268 and SK-N-SH cancer cell lines, cellular models of GBM and NB, respectively. In both models, the time-dependent synergistic activation of DCN and LUM was observed. The highest DCN and LUM mRNA/protein expression was detected after cell exposure to NSC SFM for 8/12 days, considering these cells as SLRP-expressing (SLRP+) CSC-like. Ultrastructural imaging showed the cellular heterogeneity of both the GBM and NB neurospheres and identified the inner living cells. Parental cell lines of both GBM and NB grew only in soft agar + NSC SFM, whereas the secondary neurospheres (originated from SLRP+ t8 CSC-like) showed lower proliferation rates than primary neurospheres. Interestingly, the SLRP+ CSC-like from the GBM and NB neurospheres were resistant to temozolomide (TMZ) at concentrations >750 μM. Our results suggest that GBM and NB CSC-like promote the activation of huge quantities

  11. Mitochondrial mass, a new metabolic biomarker for stem-like cancer cells: Understanding WNT/FGF-driven anabolic signaling.

    PubMed

    Lamb, Rebecca; Bonuccelli, Gloria; Ozsvári, Béla; Peiris-Pagès, Maria; Fiorillo, Marco; Smith, Duncan L; Bevilacqua, Generoso; Mazzanti, Chiara Maria; McDonnell, Liam A; Naccarato, Antonio Giuseppe; Chiu, Maybo; Wynne, Luke; Martinez-Outschoorn, Ubaldo E; Sotgia, Federica; Lisanti, Michael P

    2015-10-13

    that high mitochondrial mass is a new metabolic biomarker for the enrichment of anabolic CSCs, as functionally assessed by mammosphere-forming activity. This observation has broad implications for understanding the role of mitochondrial biogenesis in the propagation of stem-like cancer cells. Technically, this general metabolic approach could be applied to any cancer type, to identify and target the mitochondrial-rich CSC population.The implications of our work for understanding the role of mitochondrial metabolism in viral oncogenesis driven by random promoter insertions are also discussed, in the context of MMTV and ALV infections.

  12. Dissecting tumor metabolic heterogeneity: Telomerase and large cell size metabolically define a sub-population of stem-like, mitochondrial-rich, cancer cells.

    PubMed

    Lamb, Rebecca; Ozsvari, Bela; Bonuccelli, Gloria; Smith, Duncan L; Pestell, Richard G; Martinez-Outschoorn, Ubaldo E; Clarke, Robert B; Sotgia, Federica; Lisanti, Michael P

    2015-09-08

    Tumor cell metabolic heterogeneity is thought to contribute to tumor recurrence, distant metastasis and chemo-resistance in cancer patients, driving poor clinical outcome. To better understand tumor metabolic heterogeneity, here we used the MCF7 breast cancer line as a model system to metabolically fractionate a cancer cell population. First, MCF7 cells were stably transfected with an hTERT-promoter construct driving GFP expression, as a surrogate marker of telomerase transcriptional activity. To enrich for immortal stem-like cancer cells, MCF7 cells expressing the highest levels of GFP (top 5%) were then isolated by FACS analysis. Notably, hTERT-GFP(+) MCF7 cells were significantly more efficient at forming mammospheres (i.e., stem cell activity) and showed increased mitochondrial mass and mitochondrial functional activity, all relative to hTERT-GFP(-) cells. Unbiased proteomics analysis of hTERT-GFP(+) MCF7 cells directly demonstrated the over-expression of 33 key mitochondrial proteins, 17 glycolytic enzymes, 34 ribosome-related proteins and 17 EMT markers, consistent with an anabolic cancer stem-like phenotype. Interestingly, MT-CO2 (cytochrome c oxidase subunit 2; Complex IV) expression was increased by >20-fold. As MT-CO2 is encoded by mt-DNA, this finding is indicative of increased mitochondrial biogenesis in hTERT-GFP(+) MCF7 cells. Importantly, most of these candidate biomarkers were transcriptionally over-expressed in human breast cancer epithelial cells in vivo. Similar results were obtained using cell size (forward/side scatter) to fractionate MCF7 cells. Larger stem-like cells also showed increased hTERT-GFP levels, as well as increased mitochondrial mass and function. Thus, this simple and rapid approach for the enrichment of immortal anabolic stem-like cancer cells will allow us and others to develop new prognostic biomarkers and novel anti-cancer therapies, by specifically and selectively targeting this metabolic sub-population of aggressive cancer

  13. Analysis of microRNA expression in canine mammary cancer stem-like cells indicates epigenetic regulation of transforming growth factor-beta signaling.

    PubMed

    Rybicka, A; Mucha, J; Majchrzak, K; Taciak, B; Hellmen, E; Motyl, T; Krol, M

    2015-02-01

    Cancer stem cells (CSCs) display both unique self-renewal ability as well as the ability to differentiate into many kinds of cancer cells. They are supposed to be responsible for cancer initiation, recurrence and drug resistance. Despite the fact that a variety of methods are currently employed in order to target CSCs, little is known about the regulation of their phenotype and biology by miRNAs. The aim of our study was to assess miRNA expression in canine mammary cancer stem-like cells (expressing stem cell antigen 1, Sca-1; CD44 and EpCAM) sorted from canine mammary tumour cell lines (CMT-U27, CMT-309 and P114). In order to prove their stem-like phenotype, we conducted a colony formation assay that confirmed their ability to form colonies from a single cell. Profiles of miRNA expression were investigated using Agilent custom-designed microarrays. The results were further validated by real-time rt-PCR analysis of expression of randomly selected miRNAs. Target genes were indicated and analysed using Kioto Encyclopedia of Genes and Genomes (KEGG) and BioCarta databases. The results revealed 24 down-regulated and nine up-regulated miRNAs in cancer stem-like cells compared to differentiated tumour cells. According to KEGG and BioCarta databases, target genes (n=240) of significantly down-regulated miRNAs were involved in transforming growth factor-beta signaling, mitogen-activated protein kinases (MAPK) signaling pathway, anaplastic lymphoma receptor tyrosine kinase (ALK) and peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC1A) pathways. The analysis of single-gene overlapping with different pathways showed that the most important genes were: TGFBR1, TGFBR2, SOS1, CHUK, PDGFRA, SMAD2, MEF2A, MEF2C and MEF2D. All of them are involved in tumor necrosis factor-beta signaling and may indicate its important role in cancer stem cell biology. Increased expression of TGFBR2, SMAD2, MEF2A and MEF2D in canine mammary cancer stem-like cells was further

  14. Evidence for epithelial-mesenchymal transition in cancer stem-like cells derived from carcinoma cell lines of the cervix uteri.

    PubMed

    Lin, Jiaying; Liu, Xishi; Ding, Ding

    2015-01-01

    The cancer stem cell (CSC) paradigm is one possible way to understand the genesis of cancer, and cervical cancer in particular. We quantified and enriched ALDH1(+) cells within cervical cancer cell lines and subsequently characterized their phenotypical and functional properties like invasion capacity and epithelial-mesenchymal transition (EMT). ALDH1 expression in spheroid-derived cells (SDC) and the parental monolayer-derived cell (MDC) line was compared by flow-cytometry. Invasion capability was evaluated by Matrigel assay and expression of EMT-related genes Twist 1, Twist 2, Snail 1, Snail 2, Vimentin and E-cadherin by real-time PCR. ALDH1 expression was significantly higher in SDC. ALDH1(+) cells showed increased colony-formation. SDC expressed lower levels of E-cadherin and elevated levels of Twist 1, Twist 2, Snail 1, Snail 2 and Vimentin compared to MDC. Cervical cancer cell lines harbor potential CSC, characterized by ALDH1 expression as well as properties like invasiveness, colony-forming ability, and EMT. CSC can be enriched by anchorage-independent culture techniques, which may be important for the investigation of their contribution to therapy resistance, tumor recurrence and metastasis.

  15. CD133 Expression Is Not Synonymous to Immunoreactivity for AC133 and Fluctuates throughout the Cell Cycle in Glioma Stem-Like Cells.

    PubMed

    Barrantes-Freer, Alonso; Renovanz, Mirjam; Eich, Marcus; Braukmann, Alina; Sprang, Bettina; Spirin, Pavel; Pardo, Luis A; Giese, Alf; Kim, Ella L

    2015-01-01

    A transmembrane protein CD133 has been implicated as a marker of stem-like glioma cells and predictor for therapeutic response in malignant brain tumours. CD133 expression is commonly evaluated by using antibodies specific for the AC133 epitope located in one of the extracellular domains of membrane-bound CD133. There is conflicting evidence regarding the significance of the AC133 epitope as a marker for identifying stem-like glioma cells and predicting the degree of malignancy in glioma cells. The reasons for discrepant results between different studies addressing the role of CD133/AC133 in gliomas are unclear. A possible source for controversies about CD133/AC133 is the widespread assumption that expression patterns of the AC133 epitope reflect linearly those of the CD133 protein. Consequently, the readouts from AC133 assessments are often interpreted in terms of the CD133 protein. The purpose of this study is to determine whether and to what extent do the readouts obtained with anti-AC133 antibody correspond to the level of CD133 protein expressed in stem-like glioma cells. Our study reveals for the first time that CD133 expressed on the surface of glioma cells is poorly immunoreactive for AC133. Furthermore, we provide evidence that the level of CD133 occupancy on the surface of glioma cells fluctuates during the cell cycle. Our results offer a new explanation for numerous inconsistencies regarding the biological and clinical significance of CD133/AC133 in human gliomas and call for caution in interpreting the lack or presence of AC133 epitope in glioma cells.

  16. Characterization of sphere-forming cells with stem-like properties from the small cell lung cancer cell line H446.

    PubMed

    Qiu, Xiaofei; Wang, Zhengyan; Li, Yanlei; Miao, Yajing; Ren, Yu; Luan, Yajing

    2012-10-28

    A relatively novel paradigm in tumor biology hypothesizes that cancer growth is driven by tumor cells with stem-like properties. However, direct proof of a population of stem cells in small cell lung cancer (SCLC) remains elusive. In this study, we enriched for stem-like cells from the SCLC cell line H446 by growing them as spheres in a defined serum-free medium. Sphere-derived cells have increased in vitro clonogenic and in vivo tumorigenic potentials as well as drug-resistant properties. After enrichment for stem-like cells, we used multiple candidate stem cell markers to examine the expression profile and found that the sphere-derived cells contained a higher proportion of cells expressing the stem cell surface markers uPAR and CD133 when compared with parental cells. To identify a selectable marker for the sphere-forming cells, we evaluated the sphere-forming abilities of uPAR(+) and uPAR(-) cells as well as the sphere-forming abilities of CD133(+) and CD133(-) cells. Both CD133(+) and CD133(-) cell fractions were capable of forming spheres, and no statistically significant difference was observed in the sphere-forming efficiency between these two populations. In contrast, cells derived from the uPAR(+) fraction were capable of forming spheres, whereas cells derived from the uPAR(-) fraction remained as single cells. Moreover, uPAR(+) cells efficiently formed transplantable tumors, whereas uPAR(-) cells were unable to initiate tumors when transplanted at equivalent cell numbers. In addition, uPAR(+) cells could differentiate into CD56(+)cells, CK(+) cells, and uPAR(-) cells. These data support the existence of a population of tumor sphere-forming cells with stem cell properties in the H446 SCLC cell line. Furthermore, the stem cell population may be enriched in cells expressing the uPAR cell surface marker.

  17. Tight regulation between cell survival and programmed cell death in GBM stem-like cells by EGFR/GSK3b/PP2A signaling.

    PubMed

    Gürsel, Demirkan B; Banu, Matei A; Berry, Nicholas; Marongiu, Roberta; Burkhardt, Jan-Karl; Kobylarz, Keith; Kaplitt, Michael G; Rafii, Shahin; Boockvar, John A

    2015-01-01

    Malignant gliomas represent one of the most aggressive forms of cancer, displaying high mortality rates and limited treatment options. Specific subpopulations of cells residing in the tumor niche with stem-like characteristics have been postulated to initiate and maintain neoplasticity while resisting conventional therapies. The study presented here aims to define the role of glycogen synthase kinase 3 beta (GSK3b) in patient-derived glioblastoma (GBM) stem-like cell (GSC) proliferation, apoptosis and invasion. To evaluate the potential role of GSK3b in GBM, protein profiles from 68 GBM patients and 20 normal brain samples were analyzed for EGFR-mediated PI3kinase/Akt and GSK3b signaling molecules including protein phosphatase 2A (PP2A). To better understand the function of GSK3b in GBM, GSCs were isolated from GBM patient samples. Blocking GSK3b phosphorylation at Serine 9 attenuated cell proliferation while concomitantly stimulating apoptosis through activation of Caspase-3 in patient-derived GSCs. Increasing GSK3b protein content resulted in the inhibition of cell proliferation, colony formation and stimulated programmed cell death. Depleting GSK3b in GSCs down regulated PP2A. Furthermore, knocking down PP2A or blocking its activity by okadaic acid inactivated GSK3b by increasing GSK3b phosphorylation at Serine 9. Our data suggests that GSK3b may function as a regulator of apoptosis and tumorigenesis in GSCs. Therapeutic approaches targeting GSK3b in glioblastoma stem-like cells may be a useful addition to our current therapeutic armamentarium.

  18. Low adherent cancer cell subpopulations are enriched in tumorigenic and metastatic epithelial-to-mesenchymal transition-induced cancer stem-like cells.

    PubMed

    Morata-Tarifa, Cynthia; Jiménez, Gema; García, María A; Entrena, José M; Griñán-Lisón, Carmen; Aguilera, Margarita; Picon-Ruiz, Manuel; Marchal, Juan A

    2016-01-11

    Cancer stem cells are responsible for tumor progression, metastasis, therapy resistance and cancer recurrence, doing their identification and isolation of special relevance. Here we show that low adherent breast and colon cancer cells subpopulations have stem-like properties. Our results demonstrate that trypsin-sensitive (TS) breast and colon cancer cells subpopulations show increased ALDH activity, higher ability to exclude Hoechst 33342, enlarged proportion of cells with a cancer stem-like cell phenotype and are enriched in sphere- and colony-forming cells in vitro. Further studies in MDA-MB-231 breast cancer cells reveal that TS subpopulation expresses higher levels of SLUG, SNAIL, VIMENTIN and N-CADHERIN while show a lack of expression of E-CADHERIN and CLAUDIN, being this profile characteristic of the epithelial-to-mesenchymal transition (EMT). The TS subpopulation shows CXCL10, BMI-1 and OCT4 upregulation, differing also in the expression of several miRNAs involved in EMT and/or cell self-renewal such as miR-34a-5p, miR-34c-5p, miR-21-5p, miR-93-5p and miR-100-5p. Furthermore, in vivo studies in immunocompromised mice demonstrate that MDA-MB-231 TS cells form more and bigger xenograft tumors with shorter latency and have higher metastatic potential. In conclusion, this work presents a new, non-aggressive, easy, inexpensive and reproducible methodology to isolate prospectively cancer stem-like cells for subsequent biological and preclinical studies.

  19. Low adherent cancer cell subpopulations are enriched in tumorigenic and metastatic epithelial-to-mesenchymal transition-induced cancer stem-like cells

    PubMed Central

    Morata-Tarifa, Cynthia; Jiménez, Gema; García, María A.; Entrena, José M.; Griñán-Lisón, Carmen; Aguilera, Margarita; Picon-Ruiz, Manuel; Marchal, Juan A.

    2016-01-01

    Cancer stem cells are responsible for tumor progression, metastasis, therapy resistance and cancer recurrence, doing their identification and isolation of special relevance. Here we show that low adherent breast and colon cancer cells subpopulations have stem-like properties. Our results demonstrate that trypsin-sensitive (TS) breast and colon cancer cells subpopulations show increased ALDH activity, higher ability to exclude Hoechst 33342, enlarged proportion of cells with a cancer stem-like cell phenotype and are enriched in sphere- and colony-forming cells in vitro. Further studies in MDA-MB-231 breast cancer cells reveal that TS subpopulation expresses higher levels of SLUG, SNAIL, VIMENTIN and N-CADHERIN while show a lack of expression of E-CADHERIN and CLAUDIN, being this profile characteristic of the epithelial-to-mesenchymal transition (EMT). The TS subpopulation shows CXCL10, BMI-1 and OCT4 upregulation, differing also in the expression of several miRNAs involved in EMT and/or cell self-renewal such as miR-34a-5p, miR-34c-5p, miR-21-5p, miR-93-5p and miR-100-5p. Furthermore, in vivo studies in immunocompromised mice demonstrate that MDA-MB-231 TS cells form more and bigger xenograft tumors with shorter latency and have higher metastatic potential. In conclusion, this work presents a new, non-aggressive, easy, inexpensive and reproducible methodology to isolate prospectively cancer stem-like cells for subsequent biological and preclinical studies. PMID:26752044

  20. Search Help

    EPA Pesticide Factsheets

    Guidance and search help resource listing examples of common queries that can be used in the Google Search Appliance search request, including examples of special characters, or query term seperators that Google Search Appliance recognizes.

  1. The Side Population in Human Lung Cancer Cell Line NCI-H460 Is Enriched in Stem-Like Cancer Cells

    PubMed Central

    Shi, Yang; Fu, Xuelian; Hua, Yong; Han, Yang; Lu, Ying; Wang, Junchen

    2012-01-01

    Lung cancer is among the most lethal malignancies with a high metastasis and recurrence rate. Recent studies indicate that tumors contain a subset of stem-like cancer cells that possess certain stem cell properties. Herein, we used Hoechst 33342 dye efflux assay and flow cytometry to isolate and characterize the side population (SP) cells from human lung cancer cell line NCI-H460 (H460). We show that the H460 SP cells harbor stem-like cells as they can readily form anchorage-independent floating spheres, possess great proliferative potential, and exhibit enhanced tumorigenicity. Importantly, the H460 SP cells were able to self-renew both in vitro and in vivo. Finally, we show that the H460 SP cells preferentially express ABCG2 as well as SMO, a critical mediator of the Hedgehog (HH) signaling, which seems to play an important role in H460 lung cancer cells as its blockage using Cyclopamine greatly inhibits cell-cycle progression. Collectively, our results lend further support to the existence of lung cancer stem cells and also implicate HH signaling in regulating large-cell lung cancer (stem) cells. PMID:22428030

  2. Cancer stem-like cell related protein CD166 degrades through E3 ubiquitin ligase CHIP in head and neck cancer.

    PubMed

    Xiao, Meng; Yan, Ming; Zhang, Jianjun; Xu, Qin; Qi, Shengcai; Wang, Xu; Chen, Wantao

    2017-04-01

    Our previous studies have identified that CD166 works as a cancer stem-like cell (CSC) marker in epithelial cancers with a large repertoire of cellular functions. However, the post-translational regulatory mechanisms underlying CD166 turnover remain elusive. Several independent studies have reported that E3 ubiquitin ligase CHIP revealed significant biological effects through ubiquitin proteasome pathway on some kinds of malignant tumors. With analyzing the effects of CHIP expressions on stem-like cell populations, we found that CHIP represses CSC characteristics mainly targeting the CSC related protein CD166 in head and neck cancer (HNC). To investigate the role and relationship between CD166 and CHIP, HNC tissues and cell lines were used in this study. A significant negative correlation was observed between the expression levels of CHIP and CD166 in HNC patient samples. We also found that CHIP directly regulates the stability of CD166 protein through the ubiquitin proteasome system, which was also identified participating in the regulation of CSC behaviors in HNCs. Our findings demonstrate that CHIP-CD166-proteasome axis participates in regulating CSC properties in HNCs, suggesting that the regulation of CD166 by CHIP could provide new options for diagnosing and treating in the patients with HNCs.

  3. Co-culture of hepatoma cells with hepatocytic precursor (stem-like) cells inhibits tumor cell growth and invasion by downregulating Akt/NF-κB expression

    PubMed Central

    Sui, Cheng-Jun; Xu, Miao; Li, Wei-Qing; Yang, Jia-Mei; Yan, Hong-Zhu; Liu, Hui-Min; Xia, Chun-Yan; Yu, Hong-Yu

    2016-01-01

    Hepatocytic stem cells (HSCs) have inhibitory effects on hepatocarcinoma cells. The present study investigated the effects of HSC activity in hepatocarcinoma cells in vitro. A Transwell co-culture system of hepatocytic precursor (stem-like) WB-F344 cells and hepatoma CBRH-7919 cells was used to assess HSC activity in metastasized hepatoma cells in vitro. Nude mouse xenografts were used to assess HSC activity in vivo. Co-culture of hepatoma CBRH-7919 cells with WB-F344 cells suppressed the growth and colony formation, tumor cell migration and invasion capacity of CBRH-7919 cells. The nude mouse xenograft assay demonstrated that the xenograft size of CBRH-7919 cells following co-culture with WB-F344 cells was significantly smaller compared with that of control cells. Furthermore, the expression levels of the epithelial markers E-cadherin and β-catenin were downregulated, while the mesenchymal markers α-SMA and vimentin were upregulated. Co-culture of CBRH-7919 cells with WB-F344 cells downregulated NF-κB and phospho-Akt expression. In conclusion, hepatocytic precursor (stem-like) WB-F344 cells inhibited the growth, colony formation and invasion capacity of metastasized hepatoma CBRH-7919 cells in vitro and in vivo by downregulating Akt/NF-κB signaling. PMID:27895771

  4. Identification and analysis of CD133(+) melanoma stem-like cells conferring resistance to taxol: An insight into the mechanisms of their resistance and response.

    PubMed

    El-Khattouti, Abdelouahid; Selimovic, Denis; Haïkel, Youssef; Megahed, Mosaad; Gomez, Christian R; Hassan, Mohamed

    2014-02-01

    The presence and the involvement of cancer stem-like cells (CSCs) in tumor initiation and progression, and chemo-resistance are documented. Herein, we functionally analyzed melanoma stem-like cells (MSC)/CD133(+) cells on their resistance and response to taxol-induced apoptosis. Besides being taxol resistant, the CD133(+) cells demonstrated a growth advantage over the CD133(-) subpopulation. Taxol induced apoptosis on CD133(-) cells, but not on CD133(+) cells. In the CD133(-) subpopulation, the exposure to taxol induced the activation of apoptosis signal-regulating kinase1 (ASK1)/c-jun-N-terminal kinase (JNK), p38, extracellular signal regulated kinase (ERK) pathways and Bax expression, while in CD133(+) cells taxol was able only to enhance the activity of the ERK pathway. In CD133(+) cells, the direct gene transfer of Bax overcame the acquired resistance to taxol. Taken together, our data provide an insight into the mechanistic cascade of melanoma resistance to taxol and suggest Bax gene transfer as a complementary approach to chemotherapy. Published by Elsevier Ireland Ltd.

  5. Radiation Resistance in KRAS-Mutated Lung Cancer Is Enabled by Stem-like Properties Mediated by an Osteopontin-EGFR Pathway.

    PubMed

    Wang, Meng; Han, Jing; Marcar, Lynnette; Black, Josh; Liu, Qi; Li, Xiangyong; Nagulapalli, Kshithija; Sequist, Lecia V; Mak, Raymond H; Benes, Cyril H; Hong, Theodore S; Gurtner, Kristin; Krause, Mechthild; Baumann, Michael; Kang, Jing X; Whetstine, Johnathan R; Willers, Henning

    2017-04-15

    Lung cancers with activating KRAS mutations are characterized by treatment resistance and poor prognosis. In particular, the basis for their resistance to radiation therapy is poorly understood. Here, we describe a radiation resistance phenotype conferred by a stem-like subpopulation characterized by mitosis-like condensed chromatin (MLCC), high CD133 expression, invasive potential, and tumor-initiating properties. Mechanistic investigations defined a pathway involving osteopontin and the EGFR in promoting this phenotype. Osteopontin/EGFR-dependent MLCC protected cells against radiation-induced DNA double-strand breaks and repressed putative negative regulators of stem-like properties, such as CRMP1 and BIM. The MLCC-positive phenotype defined a subset of KRAS-mutated lung cancers that were enriched for co-occurring genomic alterations in TP53 and CDKN2A. Our results illuminate the basis for the radiation resistance of KRAS-mutated lung cancers, with possible implications for prognostic and therapeutic strategies. Cancer Res; 77(8); 2018-28. ©2017 AACR. ©2017 American Association for Cancer Research.

  6. Cellular Components, Including Stem-Like Cells, of Preterm Mother's Mature Milk as Compared with Those in Her Colostrum: A Pilot Study.

    PubMed

    Kaingade, Pankaj; Somasundaram, Indumathi; Sharma, Akshita; Patel, Darshan; Marappagounder, Dhanasekaran

    2017-09-01

    Purpose and Study Objective: Whether the preterm mothers' mature milk retains the same cellular components as those in colostrum including stem-like cell, cell adhesion molecules, and immune cells. A total of five preterm mothers were recruited for the study having an average age of 30.2 years and gestational age of 29.8 weeks from the Pristine Women's Hospital, Kolhapur. Colostrum milk was collected within 2-5 days and matured milk was collected 20-30 days after delivery from the same mothers. Integral cellular components of 22 markers including stem cells, immune cells, and cell adhesion molecules were measured using flowcytometry. Preterm mature milk was found to possess higher expressions of hematopoietic stem cells, mesenchymal stem-like cells, immune cells, few cell adhesion molecules, and side population cells than colostrum. The increased level of these different cell components in mature milk may be important in the long-term preterm baby's health growth. Further similar research in a larger population of various gestational ages and lactation stages of preterm mothers is warranted to support these pilot findings.

  7. Surgery-induced wound response promotes stem-like and tumor-initiating features of breast cancer cells, via STAT3 signaling.

    PubMed

    Segatto, Ilenia; Berton, Stefania; Sonego, Maura; Massarut, Samuele; Perin, Tiziana; Piccoli, Erica; Colombatti, Alfonso; Vecchione, Andrea; Baldassarre, Gustavo; Belletti, Barbara

    2014-08-15

    Inflammation is clinically linked to cancer but the mechanisms are not fully understood. Surgery itself elicits a range of inflammatory responses, suggesting that it could represent a perturbing factor in the process of local recurrence and/or metastasis. Post-surgery wound fluids (WF), drained from breast cancer patients, are rich in cytokines and growth factors, stimulate the in vitro growth of breast cancer cells and are potent activators of the STAT transcription factors. We wondered whether STAT signaling was functionally involved in the response of breast cancer cells to post-surgical inflammation. We discovered that WF induced the enrichment of breast cancer cells with stem-like phenotypes, via activation of STAT3. In vitro, WF highly stimulated mammosphere formation and self-renewal of breast cancer cells. In vivo, STAT3 signaling was critical for breast cancer cell tumorigenicity and for the formation of local relapse after surgery. Overall, we demonstrate here that surgery-induced inflammation promotes stem-like phenotypes and tumor-initiating abilities of breast cancer cells. Interfering with STAT3 signaling with a peri-surgical treatment was sufficient to strongly suppress this process. The understanding of the crosstalk between breast tumor-initiating cells and their microenvironment may open the way to successful targeting of these cells in their initial stages of growth and be eventually curative.

  8. The side population in human lung cancer cell line NCI-H460 is enriched in stem-like cancer cells.

    PubMed

    Shi, Yang; Fu, Xuelian; Hua, Yong; Han, Yang; Lu, Ying; Wang, Junchen

    2012-01-01

    Lung cancer is among the most lethal malignancies with a high metastasis and recurrence rate. Recent studies indicate that tumors contain a subset of stem-like cancer cells that possess certain stem cell properties. Herein, we used Hoechst 33342 dye efflux assay and flow cytometry to isolate and characterize the side population (SP) cells from human lung cancer cell line NCI-H460 (H460). We show that the H460 SP cells harbor stem-like cells as they can readily form anchorage-independent floating spheres, possess great proliferative potential, and exhibit enhanced tumorigenicity. Importantly, the H460 SP cells were able to self-renew both in vitro and in vivo. Finally, we show that the H460 SP cells preferentially express ABCG2 as well as SMO, a critical mediator of the Hedgehog (HH) signaling, which seems to play an important role in H460 lung cancer cells as its blockage using Cyclopamine greatly inhibits cell-cycle progression. Collectively, our results lend further support to the existence of lung cancer stem cells and also implicate HH signaling in regulating large-cell lung cancer (stem) cells.

  9. The NSL Chromatin-Modifying Complex Subunit KANSL2 Regulates Cancer Stem-like Properties in Glioblastoma That Contribute to Tumorigenesis.

    PubMed

    Ferreyra Solari, Nazarena E; Belforte, Fiorella S; Canedo, Lucía; Videla-Richardson, Guillermo A; Espinosa, Joaquín M; Rossi, Mario; Serna, Eva; Riudavets, Miguel A; Martinetto, Horacio; Sevlever, Gustavo; Perez-Castro, Carolina

    2016-09-15

    KANSL2 is an integral subunit of the nonspecific lethal (NSL) chromatin-modifying complex that contributes to epigenetic programs in embryonic stem cells. In this study, we report a role for KANSL2 in regulation of stemness in glioblastoma (GBM), which is characterized by heterogeneous tumor stem-like cells associated with therapy resistance and disease relapse. KANSL2 expression is upregulated in cancer cells, mainly at perivascular regions of tumors. RNAi-mediated silencing of KANSL2 in GBM cells impairs their tumorigenic capacity in mouse xenograft models. In clinical specimens, we found that expression levels of KANSL2 correlate with stemness markers in GBM stem-like cell populations. Mechanistic investigations showed that KANSL2 regulates cell self-renewal, which correlates with effects on expression of the stemness transcription factor POU5F1. RNAi-mediated silencing of POU5F1 reduced KANSL2 levels, linking these two genes to stemness control in GBM cells. Together, our findings indicate that KANSL2 acts to regulate the stem cell population in GBM, defining it as a candidate GBM biomarker for clinical use. Cancer Res; 76(18); 5383-94. ©2016 AACR. ©2016 American Association for Cancer Research.

  10. Surgery-induced wound response promotes stem-like and tumor-initiating features of breast cancer cells, via STAT3 signaling

    PubMed Central

    Segatto, Ilenia; Berton, Stefania; Sonego, Maura; Massarut, Samuele; Perin, Tiziana; Piccoli, Erica; Colombatti, Alfonso; Vecchione, Andrea; Baldassarre, Gustavo; Belletti, Barbara

    2014-01-01

    Inflammation is clinically linked to cancer but the mechanisms are not fully understood. Surgery itself elicits a range of inflammatory responses, suggesting that it could represent a perturbing factor in the process of local recurrence and/or metastasis formation. Post-surgery wound fluids (WF), drained from breast cancer patients, are rich in cytokines and growth factors, stimulate the in vitro growth of breast cancer cells and are potent activators of the STAT transcription factors. We wondered whether STAT signaling was functionally involved in the response of breast cancer cells to post-surgical inflammation. We discovered that WF induced the enrichment of breast cancer cells with stem-like phenotypes, via activation of STAT3. In vitro, WF highly stimulated mammosphere formation and self-renewal of breast cancer cells. In vivo, STAT3 signaling was critical for breast cancer cell tumorigenicity and for the formation of local relapse after surgery. Overall, we demonstrate here that surgery-induced inflammation promotes stem-like phenotypes and tumor-initiating abilities of breast cancer cells. Interfering with STAT3 signaling with a peri-surgical treatment is sufficient to strongly suppress this process. The understanding of the crosstalk between breast tumor-initiating cells and their microenvironment may open the way to successful targeting of these cells in their initial stages of growth and be eventually curative. PMID:25026286

  11. The NSL chromatin-modifying complex subunit KANSL2 regulates cancer stem-like properties in glioblastoma that contribute to tumorigenesis

    PubMed Central

    Ferreyra-Solari, Nazarena; Belforte, Fiorella S.; Canedo, Lucía; Videla-Richardson, Guillermo A.; Espinosa, Joaquín M.; Rossi, Mario; Serna, Eva; Riudavets, Miguel A.; Martinetto, Horacio; Sevlever, Gustavo; Perez-Castro, Carolina

    2016-01-01

    KANSL2 is an integral subunit of the Non-Specific Lethal (NSL) chromatin-modifying complex which contributes to epigenetic programs in embryonic stem cells. In this study, we report a role for KANSL2 in regulation of stemness in glioblastoma (GBM), which is characterized by heterogeneous tumor stem-like cells associated with therapy resistance and disease relapse. KANSL2 expression is upregulated in cancer cells, mainly at perivascular regions of tumors. RNAi-mediated silencing of KANSL2 in GBM cells impairs their tumorigenic capacity in mouse xenograft models. In clinical specimens, we found that expression levels of KANSL2 correlate with stemness markers in GBM stem-like cell populations. Mechanistic investigations showed that KANSL2 regulates cell self-renewal, which correlates with effects on expression of the stemness transcription factor POU5F1. RNAi-mediated silencing of POU5F1 reduced KANSL2 levels, linking these two genes to stemness control in GBM cells. Together, our findings indicate that KANSL2 acts to regulate the stem cell population in GBM, defining it as a candidate GBM biomarker for clinical use. PMID:27406830

  12. Selective proapoptotic activity of polyphenols from red wine on teratocarcinoma cell, a model of cancer stem-like cell.

    PubMed

    Sharif, Tanveer; Auger, Cyril; Bronner, Christian; Alhosin, Mahmoud; Klein, Thibaut; Etienne-Selloum, Nelly; Schini-Kerth, Valérie B; Fuhrmann, Guy

    2011-04-01

    Cancer stem cells are expected to be responsible for tumor initiation and metastasis. These cells are therefore potential targets for innovative anticancer therapies. However, the absence of bona fide cancer stem cell lines is a real problem for the development of such approaches. Since teratocarcinoma cells are totipotent stem cells with a high degree of malignancy, we used them as a model of cancer stem cells in order to evaluate the anticancer chemopreventive activity of red wine polyphenols (RWPs) and to determine the underlying cellular and molecular mechanisms. We therefore investigated the effects of RWPs on the embryonal carcinoma (EC) cell line P19 which was grown in the same culture conditions as the most appropriate normal cell line counterpart, the pluripotent embryonic fibroblast cell line NIH/3T3. The present study indicates that RWPs selectively inhibited the proliferation of P19 EC cells and induced G1 cell cycle arrest in a dose-dependent manner. Moreover, RWPs treatment specifically triggered apoptosis of P19 EC cells in association with a dramatic upregulation of the tumor suppressor gene p53 and caspase-3 activation. Our findings suggest that the chemopreventive activity of RWPs on tumor initiation and development is related to a growth inhibition and a p53-dependent induction of apoptosis in teratocarcinoma cells. In addition, this study also shows that the EC cell line is a convenient source for studying the responses of cancer stem cells to new potential anticancer agents.

  13. Helping Children Help Themselves. Revised.

    ERIC Educational Resources Information Center

    Alberta Dept. of Agriculture, Edmonton.

    Youth leaders and parents can use this activity oriented publication to help children six to twelve years of age become more independent by acquiring daily living skills. The publication consists of five units, each of which contains an introduction, learning activities, and lists of resource materials. Age-ability levels are suggested for…

  14. Helping Children Help Themselves. Revised.

    ERIC Educational Resources Information Center

    Alberta Dept. of Agriculture, Edmonton.

    Youth leaders and parents can use this activity oriented publication to help children six to twelve years of age become more independent by acquiring daily living skills. The publication consists of five units, each of which contains an introduction, learning activities, and lists of resource materials. Age-ability levels are suggested for…

  15. Help Us to Help Ourselves

    ERIC Educational Resources Information Center

    Stanistreet, Paul

    2010-01-01

    Local authorities have a strong tradition of supporting communities to help themselves, and this is nowhere better illustrated than in the learning they commission and deliver through the Adult Safeguarded Learning budget. The budget was set up to protect at least a minimum of provision for adult liberal education, family learning and learning for…

  16. Help Us to Help Ourselves

    ERIC Educational Resources Information Center

    Stanistreet, Paul

    2010-01-01

    Local authorities have a strong tradition of supporting communities to help themselves, and this is nowhere better illustrated than in the learning they commission and deliver through the Adult Safeguarded Learning budget. The budget was set up to protect at least a minimum of provision for adult liberal education, family learning and learning for…

  17. m(6)A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program.

    PubMed

    Zhang, Sicong; Zhao, Boxuan Simen; Zhou, Aidong; Lin, Kangyu; Zheng, Shaoping; Lu, Zhike; Chen, Yaohui; Sulman, Erik P; Xie, Keping; Bögler, Oliver; Majumder, Sadhan; He, Chuan; Huang, Suyun

    2017-03-13

    The dynamic and reversible N(6)-methyladenosine (m(6)A) RNA modification installed and erased by N(6)-methyltransferases and demethylases regulates gene expression and cell fate. We show that the m(6)A demethylase ALKBH5 is highly expressed in glioblastoma stem-like cells (GSCs). Silencing ALKBH5 suppresses the proliferation of patient-derived GSCs. Integrated transcriptome and m(6)A-seq analyses revealed altered expression of certain ALKBH5 target genes, including the transcription factor FOXM1. ALKBH5 demethylates FOXM1 nascent transcripts, leading to enhanced FOXM1 expression. Furthermore, a long non-coding RNA antisense to FOXM1 (FOXM1-AS) promotes the interaction of ALKBH5 with FOXM1 nascent transcripts. Depleting ALKBH5 and FOXM1-AS disrupted GSC tumorigenesis through the FOXM1 axis. Our work uncovers a critical function for ALKBH5 and provides insight into critical roles of m(6)A methylation in glioblastoma.

  18. Constitutive expression and activation of stress response genes in cancer stem-like cells/tumour initiating cells: potent targets for cancer stem cell therapy.

    PubMed

    Torigoe, Toshihiko; Hirohashi, Yoshihiko; Yasuda, Kazuyo; Sato, Noriyuki

    2013-08-01

    Cancer stem-like cells (CSCs)/tumour-initiating cells (TICs) are defined as the small population of cancer cells that have stem cell-like phenotypes and high capacity for tumour initiation. These cells may have a huge impact in the field of cancer therapy since they are extremely resistant to standard chemoradiotherapy and thus are likely to be responsible for disease recurrence after therapy. Therefore, extensive efforts are being made to elucidate the pathological and molecular properties of CSCs/TICs and, with this information, to establish efficient anti-CSC/TIC targeting therapies. This review considers recent findings on stress response genes that are preferentially expressed in CSCs/TICs and their roles in tumour-promoting properties. Implications for a novel therapeutic strategy targeting CSCs/TICs are also discussed.

  19. Arsenic trioxide depletes cancer stem-like cells and inhibits repopulation of neurosphere derived from glioblastoma by downregulation of Notch pathway.

    PubMed

    Wu, Jianing; Ji, Zhiyong; Liu, Huailei; Liu, Yaohua; Han, Dayong; Shi, Chen; Shi, Changbin; Wang, Chunlei; Yang, Guang; Chen, Xiaofeng; Shen, Chen; Li, Huadong; Bi, Yunke; Zhang, Dongzhi; Zhao, Shiguang

    2013-06-20

    Notch signaling has been demonstrated to have a central role in cancer stem-like cells (CSLCs) in glioblastoma multiforme (GBM). We have recently demonstrated the inhibitory effect of arsenic trioxide (ATO) on CSLCs in glioblastoma cell lines. In this study we used neurosphere recovery assay that measured neurosphere formation at three time points to assess the capacity of the culture to repopulate after ATO treatment. Our results provided strong evidence that ATO depleted CSLCs in GBM, and inhibited neurosphere recovery and secondary neurosphere formation. ATO inhibited the phosphorylation and activation of AKT and STAT3 through Notch signaling blockade. These data show that the ATO is a promising new approach to decrease glioblastoma proliferation and recurrence by downregulation of Notch pathway.

  20. Plasticity of lung cancer stem-like cells is regulated by the transcription factor HOXA5 that is induced by oxidative stress

    PubMed Central

    Saijo, Hiroshi; Hirohashi, Yoshihiko; Torigoe, Toshihiko; Horibe, Ryota; Takaya, Akari; Murai, Aiko; Kubo, Terufumi; Kajiwara, Toshimitsu; Tanaka, Tsutomu; Shionoya, Yosuke; Yamamoto, Eri; Maruyama, Reo; Nakatsugawa, Munehide; Kanaseki, Takayuki; Tsukahara, Tomohide; Tamura, Yasuaki; Sasaki, Yasushi; Tokino, Takashi; Suzuki, Hiromu; Kondo, Toru; Takahashi, Hiroki; Sato, Noriyuki

    2016-01-01

    Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are reasonable targets for cancer therapy. However, recent studies have revealed that some non-CSCs/CICs have plastic ability and can dedifferentiate into CSCs/CICs. Therefore, an understanding of the molecular mechanisms that control the plasticity is essential to achieve CSC/CIC-targeting therapy. In this study, we analyzed the plasticity of lung cancer cells and found that lung non-CSCs/CICs can dedifferentiate into CSCs/CICs in accordance with the expression of stem cell transcription factor SOX2. SOX2 expression was induced by the transcription factor HOXA5. Oxidative stress repressed the expression of HDAC8 and then induced histone 3 acetylation and increased the expression of HOXA5 and SOX2. These findings indicate that lung cancer cells have plasticity under a condition of oxidative stress and that HOAX5 has a critical role in dedifferentiation. PMID:27418136

  1. Quantitative Relationships Between the Cytotoxicity of Flavonoids on the Human Breast Cancer Stem-Like Cells MCF7-SC and Their Structural Properties.

    PubMed

    Jung, Hyeryoung; Shin, Soon Young; Jung, Yearam; Tran, Thao Anh; Lee, Hye Ok; Jung, Kang-Yeoun; Koh, Dongsoo; Cho, Somi Kim; Lim, Yoongho

    2015-10-01

    As some breast cancer-related deaths can be attributed to the metastasis of cancer stem cells, chemotherapeutic agents targeting breast cancer stem cells are of interest as a potential treatment. Flavonoids that exhibit cytotoxicity on breast cancer stem cells have rarely been observed. Thus, the objective of this study was to measure potential cytotoxic effects of 42 different flavonoids on the human breast cancer stem-like cell line, MCF7-SC. The relationship between flavonoid structural properties and cytotoxicity has not been reported previously; therefore, we determined quantitative structure-activity relationships using both comparative molecular field analysis and comparative molecular similarity analysis. Further biological experiments including Western blot analysis, flow cytometry, and immunofluorescence microscopy were also conducted on the most cytotoxic 8-chloroflavanone.

  2. Kinome-wide shRNA screen identifies the receptor tyrosine kinase AXL as a key regulator for mesenchymal glioblastoma stem-like cells.

    PubMed

    Cheng, Peng; Phillips, Emma; Kim, Sung-Hak; Taylor, David; Hielscher, Thomas; Puccio, Laura; Hjelmeland, Anita B; Lichter, Peter; Nakano, Ichiro; Goidts, Violaine

    2015-05-12

    Glioblastoma is a highly lethal cancer for which novel therapeutics are urgently needed. Two distinct subtypes of glioblastoma stem-like cells (GSCs) were recently identified: mesenchymal (MES) and proneural (PN). To identify mechanisms to target the more aggressive MES GSCs, we combined transcriptomic expression analysis and kinome-wide short hairpin RNA screening of MES and PN GSCs. In comparison to PN GSCs, we found significant upregulation and phosphorylation of the receptor tyrosine kinase AXL in MES GSCs. Knockdown of AXL significantly decreased MES GSC self-renewal capacity in vitro and inhibited the growth of glioblastoma patient-derived xenografts. Moreover, inhibition of AXL with shRNA or pharmacologic inhibitors also increased cell death significantly more in MES GSCs. Clinically, AXL expression was elevated in the MES GBM subtype and significantly correlated with poor prognosis in multiple cancers. In conclusion, we identified AXL as a potential molecular target for novel approaches to treat glioblastoma and other solid cancers.

  3. Human glioblastoma stem-like cells accumulate protoporphyrin IX when subjected to exogenous 5-aminolaevulinic acid, rendering them sensitive to photodynamic treatment.

    PubMed

    Schimanski, Adrian; Ebbert, Lara; Sabel, Michael C; Finocchiaro, Gaetano; Lamszus, Katrin; Ewelt, Christian; Etminan, Nima; Fischer, Johannes C; Sorg, Rüdiger V

    2016-10-01

    Glioblastoma (GBM) is the most frequent and lethal primary brain tumor in adults. Despite multimodal therapy combining resection, radio- and alkylating chemotherapy, disease recurrence is universal and prognosis of patients is poor. Glioblastoma stem-like cells (GSC), which can be grown as neurospheres from primary tumors in vitro, appear to be resistant to the established therapies and are suspected to be the driving force for disease recurrence. Thus, efficacy of emerging therapies may depend on targeting GSC. 5-aminolaevulinic acid-mediated photodynamic therapy (5-ALA/PDT) is a promising therapeutic approach in GBM. It utilizes the selective accumulation of the photosensitizer protoporphyrin IX (PPIX) in GBM cells after application of 5-ALA. When exposed to laser light of 635nm wavelength, PPIX initiates a photochemical reaction resulting in the generation of reactive oxygen species, which kill the tumor cells. Whether GSC accumulate PPIX and are sensitive to 5-ALA/PDT is currently unknown. Therefore, human GSC were derived from primary tumors and grown as neurospheres under serum free conditions. When subjected to exogenous 5-ALA, a dose- and time-dependent accumulation of PPIX in GSC was observed by flow cytometry, which varied between individual GSC preparations. Subsequent exposure to laser light of 635nm wavelength substantially killed GSC, whereas treatment with 5-ALA or exposure to laser light only had no effect. LD50 values differed between GSC preparations, but were negatively correlated with PPIX accumulation in GSC. In summary, we report for the first time that glioblastoma stem-like cells accumulate PPIX when subjected to 5-aminolaevulinic acid and are sensitive to 5-aminolaevulinc acid based photodynamic therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. CEH-20/Pbx and UNC-62/Meis function upstream of rnt-1/Runx to regulate asymmetric divisions of the C. elegans stem-like seam cells.

    PubMed

    Hughes, Samantha; Brabin, Charles; Appleford, Peter J; Woollard, Alison

    2013-07-15

    Caenorhabditis elegans seam cells divide in the stem-like mode throughout larval development, with the ability to both self-renew and produce daughters that differentiate. Seam cells typically divide asymmetrically, giving rise to an anterior daughter that fuses with the hypodermis and a posterior daughter that proliferates further. Previously we have identified rnt-1 (a homologue of the mammalian cancer-associated stem cell regulator Runx) as being an important regulator of seam development, acting to promote proliferation; rnt-1 mutants have fewer seam cells whereas overexpressing rnt-1 causes seam cell hyperplasia. We isolated the interacting CEH-20/Pbx and UNC-62/Meis TALE-class transcription factors during a genome-wide RNAi screen for novel regulators of seam cell number. Animals lacking wild type CEH-20 or UNC-62 display seam cell hyperplasia, largely restricted to the anterior of the worm, whereas double mutants have many additional seam cells along the length of the animal. The cellular basis of the hyperplasia involves the symmetrisation of normally asymmetric seam cell divisions towards the proliferative stem-like fate. The hyperplasia is completely suppressed in rnt-1 mutants, and rnt-1 is upregulated in ceh-20 and unc-62 mutants, suggesting that CEH-20 and UNC-62 function upstream of rnt-1 to limit proliferative potential to the appropriate daughter cell. In further support of this we find that CEH-20 is asymmetrically localised in seam daughters following an asymmetric division, being predominantly restricted to anterior nuclei whose fate is to differentiate. Thus, ceh-20 and unc-62 encode crucial regulators of seam cell division asymmetry, acting via rnt-1 to regulate the balance between proliferation and differentiation.

  5. Mesenchymal Stromal Cell-Derived Interleukin-6 Promotes Epithelial-Mesenchymal Transition and Acquisition of Epithelial Stem-Like Cell Properties in Ameloblastoma Epithelial Cells.

    PubMed

    Jiang, Chunmiao; Zhang, Qunzhou; Shanti, Rabie M; Shi, Shihong; Chang, Ting-Han; Carrasco, Lee; Alawi, Faizan; Le, Anh D

    2017-09-01

    Epithelial-mesenchymal transition (EMT), a biological process associated with cancer stem-like or cancer-initiating cell formation, contributes to the invasiveness, metastasis, drug resistance, and recurrence of the malignant tumors; it remains to be determined whether similar processes contribute to the pathogenesis and progression of ameloblastoma (AM), a benign but locally invasive odontogenic neoplasm. Here, we demonstrated that EMT- and stem cell-related genes were expressed in the epithelial islands of the most common histologic variant subtype, the follicular AM. Our results revealed elevated interleukin (IL)-6 signals that were differentially expressed in the stromal compartment of the follicular AM. To explore the stromal effect on tumor pathogenesis, we isolated and characterized both mesenchymal stromal cells (AM-MSCs) and epithelial cells (AM-EpiCs) from follicular AM and demonstrated that, in in vitro culture, AM-MSCs secreted a significantly higher level of IL-6 as compared to the counterpart AM-EpiCs. Furthermore, both in vitro and in vivo studies revealed that exogenous and AM-MSC-derived IL-6 induced the expression of EMT- and stem cell-related genes in AM-EpiCs, whereas such effects were significantly abrogated either by a specific inhibitor of STAT3 or ERK1/2, or by knockdown of Slug gene expression. These findings suggest that AM-MSC-derived IL-6 promotes tumor-stem like cell formation by inducing EMT process in AM-EpiCs through STAT3 and ERK1/2-mediated signaling pathways, implying a role in the etiology and progression of the benign but locally invasive neoplasm. Stem Cells 2017;35:2083-2094. © 2017 AlphaMed Press.

  6. Jak2-Stat5a/b Signaling Induces Epithelial-to-Mesenchymal Transition and Stem-Like Cell Properties in Prostate Cancer

    PubMed Central

    Talati, Pooja G.; Gu, Lei; Ellsworth, Elyse M.; Girondo, Melanie A.; Trerotola, Marco; Hoang, David T.; Leiby, Benjamin; Dagvadorj, Ayush; McCue, Peter A.; Lallas, Costas D.; Trabulsi, Edouard J.; Gomella, Leonard; Aplin, Andrew E.; Languino, Lucia; Fatatis, Alessandro; Rui, Hallgeir; Nevalainen, Marja T.

    2016-01-01

    Active Stat5a/b predicts early recurrence and disease-specific death in prostate cancer (PC), which both typically are caused by development of metastatic disease. Herein, we demonstrate that Stat5a/b induces epithelial-to-mesenchymal transition (EMT) of PC cells, as shown by Stat5a/b regulation of EMT marker expression (Twist1, E-cadherin, N-cadherin, vimentin, and fibronectin) in PC cell lines, xenograft tumors in vivo, and patient-derived PCs ex vivo using organ explant cultures. Jak2-Stat5a/b signaling induced functional end points of EMT as well, indicated by disruption of epithelial cell monolayers and increased migration and adhesion of PC cells to fibronectin. Knockdown of Twist1 suppressed Jak2-Stat5a/b–induced EMT properties of PC cells, which were rescued by re-introduction of Twist1, indicating that Twist1 mediates Stat5a/b-induced EMT in PC cells. While promoting EMT, Jak2-Stat5a/b signaling induced stem-like properties in PC cells, such as sphere formation and expression of cancer stem cell markers, including BMI1. Mechanistically, both Twist1 and BMI1 were critical for Stat5a/b induction of stem-like features, because genetic knockdown of Twist1 suppressed Stat5a/b-induced BMI1 expression and sphere formation in stem cell culture conditions, which were rescued by re-introduction of BMI1. By using human prolactin knock-in mice, we demonstrate that prolactin-Stat5a/b signaling promoted metastases formation of PC cells in vivo. In conclusion, our data support the concept that Jak2-Stat5a/b signaling promotes metastatic progression of PC by inducing EMT and stem cell properties in PC cells. PMID:26362718

  7. Dopamine enhances the response of sunitinib in the treatment of drug-resistant breast cancer: Involvement of eradicating cancer stem-like cells.

    PubMed

    Wang, Siyuan; Mou, Zhenzhen; Ma, Yuanheng; Li, Jian; Li, Jingyun; Ji, Xiwei; Wu, Kehua; Li, Liang; Lu, Wei; Zhou, Tianyan

    2015-05-15

    Growing evidence suggests that the efficacy of sunitinib in breast cancer may be limited by increasing the population of cancer stem-like cells (CSCs). Hence the concurrent use of CSCs-targeting agents is required. Previous results indicated that dopamine receptor (DR) may serve as a potential therapeutic target of anti-CSCs therapies. This study focused on evaluating the effect of dopamine (an agonist of DR) on the enhancement of sunitinib's efficacy in the treatment of drug-resistant breast cancer, investigating the involved activation type of DR pathway and exploring the underlying anti-CSCs mechanisms. MCF-7 cells, MCF-7/Adr cells and breast cancer stem-like cells (BCSCs) were used for in vitro study. Moreover, MCF-7/Adr cells and BCSCs were selected as drug-resistant cell lines and further used for in vivo development of the xenograft animal models. Our results showed that dopamine greatly synergized the inhibitory effect of sunitinib in the drug-resistant cells and strikingly enhanced the response of sunitinib in both xenograft models. It was found that dopamine significantly down-regulated the expression of BCSCs markers (CD44(+)/CD24(-)) in vitro and in vivo. In addition, dopamine remarkably induced the apoptosis of BCSCs, markedly inhibited the Wnt signaling pathway and activated the apoptotic associated signals. The activation of dopamine receptor D1 (D1DR) pathway may be involved in the underlying mechanism as D1DR's antagonist SCH23390 completely reversed the combined effects. In conclusion, dopamine may eradicate CSCs and it significantly enhances the response of sunitinib in the treatment of drug-resistant breast cancer.

  8. Enrichment of Human Stem-Like Prostate Cells with s-SHIP Promoter Activity Uncovers a Role in Stemness for the Long Noncoding RNA H19.

    PubMed

    Bauderlique-Le Roy, Hélène; Vennin, Constance; Brocqueville, Guillaume; Spruyt, Nathalie; Adriaenssens, Eric; Bourette, Roland P

    2015-05-15

    Understanding normal and cancer stem cells should provide insights into the origin of prostate cancer and their mechanisms of resistance to current treatment strategies. In this study, we isolated and characterized stem-like cells present in the immortalized human prostate cell line, RWPE-1. We used a reporter system with green fluorescent protein (GFP) driven by the promoter of s-SHIP (for stem-SH2-domain-containing 5'-inositol phosphatase) whose stem cell-specific expression has been previously shown. We observed that s-SHIP-GFP-expressing RWPE-1 cells showed stem cell characteristics such as increased expression of stem cell surface markers (CD44, CD166, TROP2) and pluripotency transcription factors (Oct4, Sox2), and enhanced sphere-forming capacity and resistance to arsenite-induced cell death. Concomitant increased expression of the long noncoding RNA H19 was observed, which prompted us to investigate a putative role in stemness for this oncofetal gene. Targeted suppression of H19 with siRNA decreased Oct4 and Sox2 gene expression and colony-forming potential in RWPE-1 cells. Conversely, overexpression of H19 significantly increased gene expression of these two transcription factors and the sphere-forming capacity of RWPE-1 cells. Analysis of H19 expression in various prostate and mammary human cell lines revealed similarities with Sox2 expression, suggesting that a functional relationship may exist between H19 and Sox2. Collectively, we provide the first evidence that s-SHIP-GFP promoter reporter offers a unique marker for the enrichment of human stem-like cell populations and highlight a role in stemness for the long noncoding RNA H19.

  9. The PRKCI and SOX2 Oncogenes are Co-amplified and Cooperate to Activate Hedgehog Signaling in Lung Squamous Cell Carcinoma

    PubMed Central

    Justilien, Verline; Walsh, Michael P.; Ali, Syed A.; Thompson, E. Aubrey; Murray, Nicole R.; Fields, Alan P.

    2014-01-01

    SUMMARY We report that two oncogenes co-amplified on chromosome 3q26, PRKCI and SOX2, cooperate to drive a stem-like phenotype in lung squamous cell carcinoma (LSCC). PKCι phosphorylates SOX2, a master transcriptional regulator of stemness, and recruits it to the promoter of Hedgehog Acyl Transferase (HHAT), which catalyzes the rate-limiting step in Hh ligand production. PKCι-mediated SOX2 phosphorylation is required for HHAT promoter occupancy, HHAT expression, and maintenance of a stem-like phenotype. Primary LSCC tumors coordinately overexpress PKCι, SOX2, and HHAT, and require PKCι-SOX2-HHAT signaling to maintain a stem-like phenotype. Thus, PKCι and SOX2 are genetically, biochemically and functionally linked in LSCC, and together they drive tumorigenesis by establishing a cell autonomous Hh signaling axis. PMID:24525231

  10. Helping individuals to help themselves.

    PubMed

    Costain, Lyndel; Croker, Helen

    2005-02-01

    Obesity is a serious and increasing health issue. Approximately two-thirds of adults in the UK are now overweight or obese. Recent public health reports firmly reinforce the importance of engaging individuals to look after their health, including their weight. They also spell out the need for individuals to be supported more actively, on many levels, to enable this 'engagement'. Meanwhile, national surveys indicate that approximately two-thirds of adults are concerned about weight control, with one-third actively trying to lose weight. This finding is hardly surprising considering current weight statistics, plus the plethora of popular diets on offer. Weight-loss methods include diet clubs, diet books, exercise, meal replacements, advice from healthcare professionals and following a self-styled diet. Obesity is a multi-factorial problem, and losing weight and, in particular, maintaining weight loss is difficult and often elusive. It is argued that the modern obesogenic or 'toxic' environment has essentially taken body-weight control from an instinctive 'survival' process to one that needs sustained cognitive and skill-based control. The evidence suggests that health professionals can help individuals achieve longer-term weight control by supporting them in making sustainable lifestyle changes using a range of behavioural techniques. These techniques include: assessing readiness to change; self-monitoring; realistic goal setting; dietary change; increased physical activity; stimulus control; cognitive restructuring; relapse management; establishing ongoing support. Consistently working in a client-centred way is also being increasingly advocated and incorporated into practice to help motivate and encourage, rather than hinder, the individual's progress.

  11. Adrenocortical carcinoma

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001663.htm Adrenocortical carcinoma To use the sharing features on this page, please enable JavaScript. Adrenocortical carcinoma (ACC) is a cancer of the adrenal glands . ...

  12. Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells.

    PubMed

    Iglesia, Rebeca Piatniczka; Prado, Mariana Brandão; Cruz, Lilian; Martins, Vilma Regina; Santos, Tiago Góss; Lopes, Marilene Hohmuth

    2017-04-17

    Glioblastoma (GBM), a highly aggressive brain tumor, contains a subpopulation of glioblastoma stem-like cells (GSCs) that play roles in tumor maintenance, invasion, and therapeutic resistance. GSCs are therefore a promising target for GBM treatment. Our group identified the cellular prion protein (PrP(C)) and its partner, the co-chaperone Hsp70/90 organizing protein (HOP), as potential target candidates due to their role in GBM tumorigenesis and in neural stem cell maintenance. GSCs expressing different levels of PrP(C) were cultured as neurospheres with growth factors, and characterized with stem cells markers and adhesion molecules markers through immunofluorescence and flow cytometry. We than evaluated GSC self-renewal and proliferation by clonal density assays and BrdU incorporation, respectively, in front of recombinant HOP treatment, combined or not with a HOP peptide which mimics the PrP(C) binding site. Stable silencing of HOP was also performed in parental and/or PrP(C)-depleted cell populations, and proliferation in vitro and tumor growth in vivo were evaluated. Migration assays were performed on laminin-1 pre-coated glass. We observed that, when GBM cells are cultured as neurospheres, they express specific stemness markers such as CD133, CD15, Oct4, and SOX2; PrP(C) is upregulated compared to monolayer culture and co-localizes with CD133. PrP(C) silencing downregulates the expression of molecules associated with cancer stem cells, upregulates markers of cell differentiation and affects GSC self-renewal, pointing to a pivotal role for PrP(C) in the maintenance of GSCs. Exogenous HOP treatment increases proliferation and self-renewal of GSCs in a PrP(C)-dependent manner while HOP knockdown disturbs the proliferation process. In vivo, PrP(C) and/or HOP knockdown potently inhibits the growth of subcutaneously implanted glioblastoma cells. In addition, disruption of the PrP(C)-HOP complex by a HOP peptide, which mimics the PrP(C) binding site, affects GSC

  13. Prostaglandin E2 receptor EP4 as the common target on cancer cells and macrophages to abolish angiogenesis, lymphangiogenesis, metastasis, and stem-like cell functions

    PubMed Central

    Majumder, Mousumi; Xin, Xiping; Liu, Ling; Girish, Gannareddy V; Lala, Peeyush K

    2014-01-01

    We previously established that COX-2 overexpression promotes breast cancer progression and metastasis. As long-term use of COX-2 inhibitors (COX-2i) can promote thrombo-embolic events, we tested an alternative target, prostaglandin E2 receptor EP4 subtype (EP4), downstream of COX-2. Here we used the highly metastatic syngeneic murine C3L5 breast cancer model to test the role of EP4-expressing macrophages in vascular endothelial growth factor (VEGF)-C/D production, angiogenesis, and lymphangiogenesis in situ, the role of EP4 in stem-like cell (SLC) functions of tumor cells, and therapeutic effects of an EP4 antagonist RQ-15986 (EP4A). C3L5 cells expressed all EP receptors, produced VEGF-C/D, and showed high clonogenic tumorsphere forming ability in vitro, functions inhibited with COX-2i or EP4A. Treating murine macrophage RAW 264.7 cell line with COX-2i celecoxib and EP4A significantly reduced VEGF-A/C/D production in vitro, measured with quantitative PCR and Western blots. Orthotopic implants of C3L5 cells in C3H/HeJ mice showed rapid tumor growth, angiogenesis, lymphangiogenesis (CD31/LYVE-1 and CD31/PROX1 immunostaining), and metastasis to lymph nodes and lungs. Tumors revealed high incidence of EP4-expressing, VEGF-C/D producing macrophages identified with dual immunostaining of F4/80 and EP4 or VEGF-C/D. Celecoxib or EP4A therapy at non-toxic doses abrogated tumor growth, lymphangiogenesis, and metastasis to lymph nodes and lungs. Residual tumors in treated mice revealed markedly reduced VEGF-A/C/D and phosphorylated Akt/ERK proteins, VEGF-C/D positive macrophage infiltration, and proliferative/apoptotic cell ratios. Knocking down COX-2 or EP4 in C3L5 cells or treating cells in vitro with celecoxib or EP4A and treating tumor-bearing mice in vivo with the same drug reduced SLC properties of tumor cells including preferential co-expression of COX-2 and SLC markers ALDH1A, CD44, OCT-3/4, β-catenin, and SOX-2. Thus, EP4 is an excellent therapeutic target to block

  14. Prostaglandin E2 receptor EP4 as the common target on cancer cells and macrophages to abolish angiogenesis, lymphangiogenesis, metastasis, and stem-like cell functions.

    PubMed

    Majumder, Mousumi; Xin, Xiping; Liu, Ling; Girish, Gannareddy V; Lala, Peeyush K

    2014-09-01

    We previously established that COX-2 overexpression promotes breast cancer progression and metastasis. As long-term use of COX-2 inhibitors (COX-2i) can promote thrombo-embolic events, we tested an alternative target, prostaglandin E2 receptor EP4 subtype (EP4), downstream of COX-2. Here we used the highly metastatic syngeneic murine C3L5 breast cancer model to test the role of EP4-expressing macrophages in vascular endothelial growth factor (VEGF)-C/D production, angiogenesis, and lymphangiogenesis in situ, the role of EP4 in stem-like cell (SLC) functions of tumor cells, and therapeutic effects of an EP4 antagonist RQ-15986 (EP4A). C3L5 cells expressed all EP receptors, produced VEGF-C/D, and showed high clonogenic tumorsphere forming ability in vitro, functions inhibited with COX-2i or EP4A. Treating murine macrophage RAW 264.7 cell line with COX-2i celecoxib and EP4A significantly reduced VEGF-A/C/D production in vitro, measured with quantitative PCR and Western blots. Orthotopic implants of C3L5 cells in C3H/HeJ mice showed rapid tumor growth, angiogenesis, lymphangiogenesis (CD31/LYVE-1 and CD31/PROX1 immunostaining), and metastasis to lymph nodes and lungs. Tumors revealed high incidence of EP4-expressing, VEGF-C/D producing macrophages identified with dual immunostaining of F4/80 and EP4 or VEGF-C/D. Celecoxib or EP4A therapy at non-toxic doses abrogated tumor growth, lymphangiogenesis, and metastasis to lymph nodes and lungs. Residual tumors in treated mice revealed markedly reduced VEGF-A/C/D and phosphorylated Akt/ERK proteins, VEGF-C/D positive macrophage infiltration, and proliferative/apoptotic cell ratios. Knocking down COX-2 or EP4 in C3L5 cells or treating cells in vitro with celecoxib or EP4A and treating tumor-bearing mice in vivo with the same drug reduced SLC properties of tumor cells including preferential co-expression of COX-2 and SLC markers ALDH1A, CD44, OCT-3/4, β-catenin, and SOX-2. Thus, EP4 is an excellent therapeutic target to block

  15. Adenovirus adenine nucleotide translocator-2 shRNA effectively induces apoptosis and enhances chemosensitivity by the down-regulation of ABCG2 in breast cancer stem-like cells.

    PubMed

    Jang, Ji Young; Kim, Min Kyoung; Jeon, Yoon Kyung; Joung, Yoon Ki; Park, Ki Dong; Kim, Chul Woo

    2012-04-30

    Cancer stem cells (CSCs) are resistant to chemo- and radio-therapy, and can survive to regenerate new tumors. This is an important reason why various anti- cancer therapies often fail to completely control tumors, although they kill and eliminate the bulk of cancer cells. In this study, we determined whether or not adenine nucleotide translocator-2 (ANT2) suppression could also be effective in inducing cell death of breast cancer stem-like cells. A sub-population (SP; CD44+/ CD24-) of breast cancer cells has been reported to have stem/progenitor cell properties. We utilized the adeno- ANT2 shRNA virus to inhibit ANT2 expression and then observed the treatment effect in a SP of breast cancer cell line. In this study, MCF7, MDA-MB-231 cells, and breast epithelial cells (MCF10A) mesenchymally-transdifferentiated through E-cadherin knockdown were used. ANT2 expression was high in both stem-like cells and non-stem-like cells of MCF7 and MDA-MB-231 cells, and was induced and up-regulated by mesenchymal transdifferentiation in MCF10A cells (MCF10A(EMT)). Knockdown of ANT2 by adeno-shRNA virus efficiently induced apoptotic cell death in the stem-like cells of MCF7 and MDA-MB-231 cells, and MCF10A(EMT). Stem-like cells of MCF7 and MDA-MB-231, and MCF10A(EMT) cells exhibited increased drug (doxorubicin) resistance, and expressed a multi-drug resistant related molecule, ABCG2, at a high level. Adeno-ANT2 shRNA virus markedly sensitized the stem-like cells of MCF7 and MDA-MB-231, and the MCF10A(EMT) cells to doxorubicin, which was accompanied by down-regulation of ABCG2. Our results suggest that ANT2 suppression by adeno-shRNA virus is an effective strategy to induce cell death and increase the chemosensitivity of stem-like cells in breast cancer.

  16. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells.

    PubMed

    Torres, Angelo; Vargas, Yosselyn; Uribe, Daniel; Jaramillo, Catherine; Gleisner, Alejandra; Salazar-Onfray, Flavio; López, Mercedes N; Melo, Rómulo; Oyarzún, Carlos; San Martín, Rody; Quezada, Claudia

    2016-10-11

    MRP1 transporter correlates positively with glioma malignancy and the Multiple Drug Resistance (MDR) phenotype in Glioblastoma Multiforme (GBM). Evidence shows that the MRP1 transporter is controlled by the adenosine signalling axis. The aim of this study was to identify the role of adenosine on the MDR phenotype in Glioblastoma Stem-like Cells (GSCs), the cell population responsible for the tumorigenic and chemoresistance capabilities of this tumour. We found that GSCs have increased intrinsic capacity to generate extracellular adenosine, thus controlling MRP1 transporter expression and activity via activation of the adenosine A3 receptor (A3AR). We showed PI3K/Akt and MEK/ERK1/2 signaling pathways downstream A3AR to control MRP1 in GSCs. In vitro pharmacological blockade of A3AR had a chemosensitizing effect, enhancing the actions of antitumour drugs and decreasing cell viability and proliferation of GSCs. In addition, we produced an in vivo xenograft model by subcutaneous inoculation of human GSCs in NOD/SCID-IL2Rg null mice. Pharmacological blockade of A3AR generated a chemosensitizing effect, enhancing the effectiveness of the MRP1 transporter substrate, vincristine, reducing tumour size and the levels of CD44 and Nestin stem cell markers as well as the Ki-67 proliferation indicator. In conclusion, we demonstrated the chemosensitizing effect of A3AR blockade on GSCs.

  17. Highly enriched CD133(+)CD44(+) stem-like cells with CD133(+)CD44(high) metastatic subset in HCT116 colon cancer cells.

    PubMed

    Chen, Ke-li; Pan, Feng; Jiang, Heng; Chen, Jian-fang; Pei, Li; Xie, Fang-wei; Liang, Hou-jie

    2011-12-01

    Stem-like cancer cells (SLCCs) are distinct cellular subpopulation in colon cancer that is essential for tumor maintenance. Previous studies indicated that SLCCs accounted for only a minor subset in a given cancer model. However, we found that SLCCs frequency varied among a panel of colon cancer cell lines, with HCT116 cells composed mainly of SLCCs, as demonstrated by colonosphere forming capability and CD133 expression. Indeed, flow cytometric analysis revealed more than 60% HCT116 cells co-expressed the putative SLCCs markers CD133 and CD44. Compared with non-CD133(+)CD44(+) cells, FACS sorted CD133(+)CD44(+) cells were undifferentiated, endowed with extensive self-renewal and epithelial lineage differentiation capacity in vitro. CD133(+)CD44(+) exhibited enhanced tumorigeneicity in NOD/SCID mice. One thousand CD133(+)CD44(+) cells initiated xenograft tumors efficiently (3/6) while 1 × 10(5) non-CD133(+)CD44(+) cells could only form palpable nodule with much slower growth rate (1/6). More interestingly, long-term cultured self-renewing CD133(+)CD44(+) cells enriched CD133(+)CD44(high) subset, which expressed epithelial to mesenchymal transition marker, were more invasive in vitro and responsible solely for liver metastasis in vivo. In conclusion, these data demonstrated for the first time that CD133(+)CD44(+) SLCCs were highly enriched in HCT116 cells and that metastatic SLCCs resided exclusively in a CD133(+)CD44(high) subpopulation.

  18. Notch signaling induces retinal stem-like properties in perinatal neural retina progenitors and promotes symmetric divisions in adult retinal stem cells.

    PubMed

    Balenci, Laurent; van der Kooy, Derek

    2014-02-01

    Understanding the mechanisms regulating retinal stem cell (RSC) activity is fundamental for future stem cell-based therapeutic purposes. By combining gain and loss of function approaches, we addressed whether Notch signaling may play a selective role in retinal stem versus retinal progenitor cells in both developing and adult eyes. Inhibition of either Notch or fibroblast growth factor signaling reduced proliferation of retinal stem and retinal progenitor cells, and inhibited RSC self-renewal. Conversely, exogenous Delta-like 3 and direct intrinsic Notch activation stimulated expansionary symmetric divisions in adult RSCs with the concomitant upregulation of Hes5. Knocking down Hes5 expression specifically decreased the numbers, but not the diameters, of adult RSC primary spheres, indicating that HES5 is the downstream effector of Notch receptor in controlling adult RSC proliferation. In addition, constitutive Notch activation induced retinal stem-like asymmetric self-renewal properties, with no expansion (no symmetrical division) in perinatal neural retina progenitor cells. These findings highlight central roles of Notch signaling activity in regulating the modes of division of retinal stem and retinal progenitor cells.

  19. Loss of fructose-1,6-bisphosphatase induces glycolysis and promotes apoptosis resistance of cancer stem-like cells: an important role in hexavalent chromium-induced carcinogenesis.

    PubMed

    Dai, Jin; Ji, Yanli; Wang, Wei; Kim, Donghern; Fai, Leonard Yenwong; Wang, Lei; Luo, Jia; Zhang, Zhuo

    2017-09-15

    Hexavalent chromium (Cr(VI)) compounds are confirmed human carcinogens for lung cancer. Our previous studies has demonstrated that chronic exposure of human bronchial epithelial BEAS-2B cells to low dose of Cr(VI) causes malignant cell transformation. The acquisition of cancer stem cell-like properties is involved in the initiation of cancers. The present study has observed that a small population of cancer stem-like cells (BEAS-2B-Cr-CSC) exists in the Cr(VI)-transformed cells (BEAS-2B-Cr). Those BEAS-2B-Cr-CSC exhibit extremely reduced capability of generating reactive oxygen species (ROS) and apoptosis resistance. BEAS-2B-Cr-CSC are metabolic inactive as evidenced by reductions in oxygen consumption, glucose uptake, ATP production, and lactate production. Most importantly, BEAS-2B-Cr-CSC are more tumorigenic with high levels of cell self-renewal genes, Notch1 and p21. Further study has found that fructose-1,6-bisphosphatase (FBP1), an rate-limiting enzyme driving glyconeogenesis, was lost in BEAS-2B-Cr-CSC. Forced expression of FBP1 in BEAS-2B-Cr-CSC restored ROS generation, resulting in increased apoptosis, leading to inhibition of tumorigenesis. In summary, the present study suggests that loss of FBP1 is a critical event in tumorigenesis of Cr(VI)-transformed cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Telomerase Activity and Telomere Length in Human Benign Prostatic Hyperplasia Stem-like Cells and Their Progeny Implies the Existence of Distinct Basal and Luminal Cell Lineages.

    PubMed

    Rane, Jayant K; Greener, Sarah; Frame, Fiona M; Mann, Vincent M; Simms, Matthew S; Collins, Anne T; Berney, Daniel M; Maitland, Norman J

    2016-04-01

    Benign prostatic hyperplasia (BPH) treatments have changed little over many years and do not directly address the underlying cause. Because BPH is characterised by uncontrolled cell growth, the chromosomal telomeres should be eroded in the reported absence or low levels of telomerase activity, but this is not observed. We investigated the telomere biology of cell subpopulations from BPH patients undergoing transurethral resection of prostate (TURP). Measurement of TERC, TERT, and telomerase activity revealed that only the epithelial stem-like and progenitor fractions expressed high levels of telomerase activity (p<0.01) and individual enzyme components (p<0.01). Telomerase activity and TERT expression were not detected in stromal cells. Telomere length measurements reflected this activity, although the average telomere length of (telomerase-negative) luminal cells was equivalent to that of telomerase-expressing stem/progenitor cells. Immunohistochemical analysis of patient-derived BPH arrays identified distinct areas of luminal hyperproliferation, basal hyperproliferation, and basal-luminal hyperproliferation, suggesting that basal and luminal cells can proliferate independently of each other. We propose a separate lineage for the luminal and basal cell components in BPH. We unexpectedly found an enzyme called telomerase in the cells that maintain benign prostatic hyperplasia (BPH), suggesting that telomerase inhibitors could be used to alleviate BPH symptoms. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  1. Strigolactones: a novel class of phytohormones that inhibit the growth and survival of breast cancer cells and breast cancer stem-like enriched mammosphere cells.

    PubMed

    Pollock, C B; Koltai, H; Kapulnik, Y; Prandi, C; Yarden, R I

    2012-08-01

    Several naturally occurring phytohormones have shown enormous potential in the prevention and treatment of variety of different type of cancers. Strigolactones (SLs) are a novel class of plant hormones produced in roots and regulate new above ground shoot branching, by inhibiting self-renewal of undifferentiated meristem cells. Here, we study the effects of six synthetic SL analogs on breast cancer cell lines growth and survival. We show that SL analogs are able to inhibit proliferation and induce apoptosis of breast cancer cells but to a much lesser extent "non-cancer" lines. Given the therapeutic problem of cancer recurrence which is hypothesized to be due to drug resistant cancer stem cells, we also tested the ability of SL analogs to inhibit the growth of mammosphere cultures that are typically enriched with cancer stem-like cells. We show that SLs are potent inhibitors of self-renewal and survival of breast cancer cell lines grown as mammospheres and even a short exposure leads to irreversible effects on mammosphere dissociation and cell death. Immunoblot analysis revealed that SLs analogs induce activation of the stress response mediated by both P38 and JNK1/2 MAPK modules and inhibits PI3K/AKT activation. Taken together this study indicates that SLs may be promising anticancer agents whose activities may be achieved through modulation of stress and survival signaling pathways.

  2. Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells.

    PubMed

    Toledo, Chad M; Ding, Yu; Hoellerbauer, Pia; Davis, Ryan J; Basom, Ryan; Girard, Emily J; Lee, Eunjee; Corrin, Philip; Hart, Traver; Bolouri, Hamid; Davison, Jerry; Zhang, Qing; Hardcastle, Justin; Aronow, Bruce J; Plaisier, Christopher L; Baliga, Nitin S; Moffat, Jason; Lin, Qi; Li, Xiao-Nan; Nam, Do-Hyun; Lee, Jeongwu; Pollard, Steven M; Zhu, Jun; Delrow, Jeffery J; Clurman, Bruce E; Olson, James M; Paddison, Patrick J

    2015-12-22

    To identify therapeutic targets for glioblastoma (GBM), we performed genome-wide CRISPR-Cas9 knockout (KO) screens in patient-derived GBM stem-like cells (GSCs) and human neural stem/progenitors (NSCs), non-neoplastic stem cell controls, for genes required for their in vitro growth. Surprisingly, the vast majority GSC-lethal hits were found outside of molecular networks commonly altered in GBM and GSCs (e.g., oncogenic drivers). In vitro and in vivo validation of GSC-specific targets revealed several strong hits, including the wee1-like kinase, PKMYT1/Myt1. Mechanistic studies demonstrated that PKMYT1 acts redundantly with WEE1 to inhibit cyclin B-CDK1 activity via CDK1-Y15 phosphorylation and to promote timely completion of mitosis in NSCs. However, in GSCs, this redundancy is lost, most likely as a result of oncogenic signaling, causing GBM-specific lethality. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Coencapsulation of epirubicin and metformin in PEGylated liposomes inhibits the recurrence of murine sarcoma S180 existing CD133+ cancer stem-like cells.

    PubMed

    Yang, Qiang; Zhang, Ting; Wang, Chunling; Jiao, Jiao; Li, Jing; Deng, Yihui

    2014-11-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells, which constitute a subpopulation of tumor cells, are key drivers of tumorigenesis and potential recurrence of cancer. The CSC theory has brought new opportunities as well as challenges to the development of sophisticated drug delivery systems for treating cancer. In the present study, CD133+ cells were sorted from S180 cell lines by magnetic activated cell sorting and a fraction (approximately 1.01%) of CD133+ cells with higher proliferative potential and stronger tumorigenicity in vivo compared with CD133- cells was identified. Furthermore, a procedure for the coencapsulation of epirubicin (EPI) and metformin (MET) was developed with the primary goal of eradicating the bulk population of CD133- cells and the rare population of CD133+ cancer stem-like cells, thus ultimately preventing tumor relapse. The inhibitory effect of free MET was more potent in CD133+cells than in CD133- cells; in addition, EPI- and MET-coencapsulated liposomes exhibited increased cytotoxicity against CD133+ cells compared with liposomal EPI alone. Meanwhile, tumors in KM mice were completely eliminated upon multiple intravenous injections of liposomal EPI and MET, and tumors virtually eliminated in the experimental period, which could be attributed to the arrest of CD133+ cells in the G0/G1 phase. The coencapsulation of an anti-CSC agent with conventional chemotherapy drugs in liposomes may be a promising drug delivery strategy for fighting cancer and eradicating tumor stem cells.

  4. The Caenorhabditis elegans GATA factor ELT-1 works through the cell proliferation regulator BRO-1 and the Fusogen EFF-1 to maintain the seam stem-like fate.

    PubMed

    Brabin, Charles; Appleford, Peter J; Woollard, Alison

    2011-08-01

    Seam cells in Caenorhabditis elegans provide a paradigm for the stem cell mode of division, with the ability to both self-renew and produce daughters that differentiate. The transcription factor RNT-1 and its DNA binding partner BRO-1 (homologues of the mammalian cancer-associated stem cell regulators RUNX and CBFβ, respectively) are known rate-limiting regulators of seam cell proliferation. Here, we show, using a combination of comparative genomics and DNA binding assays, that bro-1 expression is directly regulated by the GATA factor ELT-1. elt-1(RNAi) animals display similar seam cell lineage defects to bro-1 mutants, but have an additional phenotype in which seam cells lose their stem cell-like properties and differentiate inappropriately by fusing with the hyp7 epidermal syncytium. This phenotype is dependent on the fusogen EFF-1, which we show is repressed by ELT-1 in seam cells. Overall, our data suggest that ELT-1 has dual roles in the stem-like seam cells, acting both to promote proliferation and prevent differentiation.

  5. The Caenorhabditis elegans GATA Factor ELT-1 Works through the Cell Proliferation Regulator BRO-1 and the Fusogen EFF-1 to Maintain the Seam Stem-Like Fate

    PubMed Central

    Brabin, Charles; Appleford, Peter J.; Woollard, Alison

    2011-01-01

    Seam cells in Caenorhabditis elegans provide a paradigm for the stem cell mode of division, with the ability to both self-renew and produce daughters that differentiate. The transcription factor RNT-1 and its DNA binding partner BRO-1 (homologues of the mammalian cancer-associated stem cell regulators RUNX and CBFβ, respectively) are known rate-limiting regulators of seam cell proliferation. Here, we show, using a combination of comparative genomics and DNA binding assays, that bro-1 expression is directly regulated by the GATA factor ELT-1. elt-1(RNAi) animals display similar seam cell lineage defects to bro-1 mutants, but have an additional phenotype in which seam cells lose their stem cell-like properties and differentiate inappropriately by fusing with the hyp7 epidermal syncytium. This phenotype is dependent on the fusogen EFF-1, which we show is repressed by ELT-1 in seam cells. Overall, our data suggest that ELT-1 has dual roles in the stem-like seam cells, acting both to promote proliferation and prevent differentiation. PMID:21829390

  6. Enhanced enrichment of prostate cancer stem-like cells with miniaturized 3D culture in liquid core-hydrogel shell microcapsules

    PubMed Central

    Yu, Jianhua; Lu, Xiongbin; Zynger, Debra L.; He, Xiaoming

    2015-01-01

    Cancer stem-like cells (CSCs) are rare subpopulations of cancer cells that are reported to be responsible for cancer resistance and metastasis associated with conventional cancer therapies. Therefore, effective enrichment/culture of CSCs is of importance to both the understanding and treatment of cancer. However, it usually takes approximately 10 days for the widely used conventional approach to enrich CSCs through the formation of CSC-containing aggregates. Here we report the time can be shortened to 2 days while obtaining prostate CSC-containing aggregates with better quality based on the expression of surface receptor markers, dye exclusion, gene and protein expression, and in vivo tumorigenicity. This is achieved by encapsulating and culturing human prostate cancer cells in the miniaturized 3D liquid core of microcapsules with an alginate hydrogel shell. The miniaturized 3D culture in core–shell microcapsules is an effective strategy for enriching/culturing CSCs in vitro to facilitate cancer research and therapy development. PMID:24952981

  7. Combinatorial TGF-β attenuation with paclitaxel inhibits the epithelial-to-mesenchymal transition and breast cancer stem-like cells

    PubMed Central

    Park, So-Yeon; Kim, Min-Jin; Park, Sang-A; Kim, Jung-Shin; Min, Kyung-Nan; Kim, Dae-Kee; Lim, Woosung; Nam, Jeong-Seok; Sheen, Yhun Yhong

    2015-01-01

    Distant relapse after chemotherapy is an important clinical issue for treating breast cancer patients and results from the development of cancer stem-like cells (CSCs) during chemotherapy. Here we report that blocking epithelial-to-mesenchymal transition (EMT) suppresses paclitaxel-induced CSCs properties by using a MDA-MB-231-xenografted mice model (in vivo), and breast cancer cell lines (in vitro). Paclitaxel, one of the cytotoxic taxane-drugs such as docetaxel, increases mesenchymal markers (Vimentin and Fibronectin) and decreases an epithelial marker (Zo-1). Blocking TGF-β signaling with the TGF-β type I receptor kinase (ALK5) inhibitor, EW-7197, suppresses paclitaxel-induced EMT and CSC properties such as mammosphere-forming efficiency (MSFE), aldehyde dehydrogenase (ALDH) activity, CD44+/CD24− ratio, and pluripotency regulators (Oct4, Nanog, Klf4, Myc, and Sox2). The combinatorial treatment of EW-7197 improves the therapeutic effect of paclitaxel by decreasing the lung metastasis and increasing the survival time in vivo. We confirmed that Snail is increased by paclitaxel-induced intracellular reactive oxygen species (ROS) and EW-7197 suppresses the paclitaxel-induced Snail and EMT by attenuating paclitaxel-induced intracellular ROS. Knock-down of SNAI1 suppresses paclitaxel-induced EMT and CSC properties. These data together suggest that blocking the Snail-induced EMT with the ALK5 inhibitor attenuates metastasis after paclitaxel-therapy and that this combinatorial approach could prove useful in treating breast cancer. PMID:26462028

  8. Combinatorial TGF-β attenuation with paclitaxel inhibits the epithelial-to-mesenchymal transition and breast cancer stem-like cells.

    PubMed

    Park, So-Yeon; Kim, Min-Jin; Park, Sang-A; Kim, Jung-Shin; Min, Kyung-Nan; Kim, Dae-Kee; Lim, Woosung; Nam, Jeong-Seok; Sheen, Yhun Yhong

    2015-11-10

    Distant relapse after chemotherapy is an important clinical issue for treating breast cancer patients and results from the development of cancer stem-like cells (CSCs) during chemotherapy. Here we report that blocking epithelial-to-mesenchymal transition (EMT) suppresses paclitaxel-induced CSCs properties by using a MDA-MB-231-xenografted mice model (in vivo), and breast cancer cell lines (in vitro). Paclitaxel, one of the cytotoxic taxane-drugs such as docetaxel, increases mesenchymal markers (Vimentin and Fibronectin) and decreases an epithelial marker (Zo-1). Blocking TGF-β signaling with the TGF-β type I receptor kinase (ALK5) inhibitor, EW-7197, suppresses paclitaxel-induced EMT and CSC properties such as mammosphere-forming efficiency (MSFE), aldehyde dehydrogenase (ALDH) activity, CD44+/CD24- ratio, and pluripotency regulators (Oct4, Nanog, Klf4, Myc, and Sox2). The combinatorial treatment of EW-7197 improves the therapeutic effect of paclitaxel by decreasing the lung metastasis and increasing the survival time in vivo. We confirmed that Snail is increased by paclitaxel-induced intracellular reactive oxygen species (ROS) and EW-7197 suppresses the paclitaxel-induced Snail and EMT by attenuating paclitaxel-induced intracellular ROS. Knock-down of SNAI1 suppresses paclitaxel-induced EMT and CSC properties. These data together suggest that blocking the Snail-induced EMT with the ALK5 inhibitor attenuates metastasis after paclitaxel-therapy and that this combinatorial approach could prove useful in treating breast cancer.

  9. Combination of carbon ion beam and gemcitabine causes irreparable DNA damage and death of radioresistant pancreatic cancer stem-like cells in vitro and in vivo

    PubMed Central

    Sai, Sei; Wakai, Toshifumi; Vares, Guillaume; Yamada, Shigeru; Kamijo, Takehiko; Kamada, Tadashi; Shirai, Toshiyuki

    2015-01-01

    We try to elucidate whether a carbon ion beam alone or in combination with gemcitabine has advantages over X-ray in targeting putative pancreatic cancer stem-like cells (CSCs) in vitro and in vivo. Colony, spheroid formation and tumorigenicity assays confirmed that CD44+/ESA+ cells sorted from PANC1 and PK45 cells have more CSC properties than CD44−/ESA− cells. The number of colonies and spheroids formed from CSCs after carbon ion beam irradiation was significantly reduced compared to after X-ray irradiation, and they were extremely highly suppressed when carbon ion beam combined with gemcitabine. The relative biological effectiveness (RBE) values for the carbon ion beam relative to X-ray at the D10 levels for CSCs were 2.23-2.66. Expressions of multiple cell death-related genes were remarkably highly induced, and large numbers of γH2AX foci in CSCs were formed after carbon ion beam combined with gemcitabine. The highly expressed CSC markers were significantly inhibited after 30 Gy of carbon ion beam and almost lost after 25 Gy carbon ion beam combined with 50 mg/kg gemcitabine. In conclusion, a carbon ion beam combined with gemcitabine has superior potential to kill pancreatic CSCs via irreparable clustered DSB compared to a carbon ion alone or X-rays combined with gemcitabine. PMID:25849939

  10. Hyaluronan synthase HAS2 promotes tumor progression in bone by stimulating the interaction of breast cancer stem-like cells with macrophages and stromal cells

    PubMed Central

    Okuda, Hiroshi; Kobayashi, Aya; Xia, Bo; Watabe, Misako; Pai, Sudha K; Hirota, Shigeru; Xing, Fei; Liu, Wen; Pandey, Puspa R; Fukuda, Koji; Modur, Vishnu; Ghosh, Arnab; Wilber, Andrew; Watabe, Kounosuke

    2012-01-01

    The molecular mechanisms that operate within the organ microenvironment to support metastatic progression remain unclear. Here we report that upregulation of the hyaluronan synthase HAS2 occurs in highly metastatic breast stem-like cancer cells (CSCs) defined by CD44+/CD24−/ESA+ phenotype, where it plays a critical role in the generation of a pro-metastatic microenvironment in breast cancer. HAS2 was critical for interaction of CSCs with tumor associated macrophages (TAMs), leading to enhanced secretion of PDGF-BB from TAMs which then activated stromal cells and enhanced CSC self-renewal. Loss of HAS2 in CSCs or treatment with 4-methylumbelliferone (4-MU), an inhibitor of hyaluronan synthases which blocks hyaluronan production, drastically reduced the incidence and growth of metastatic lesions in vitro or in vivo, respectively. Taken together, our findings demonstrate a critical role for HAS2 in the development of a pro-metastatic microenvironment and suggest that HAS2 inhibitors can act as anti-metastatic agents that disrupt a paracrine growth factor loop within this microenvironment. PMID:22113945

  11. The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches.

    PubMed

    Mineo, Marco; Ricklefs, Franz; Rooj, Arun K; Lyons, Shawn M; Ivanov, Pavel; Ansari, Khairul I; Nakano, Ichiro; Chiocca, E Antonio; Godlewski, Jakub; Bronisz, Agnieszka

    2016-06-14

    Long non-coding RNAs (lncRNAs) have an undefined role in the pathobiology of glioblastoma multiforme (GBM). These tumors are genetically and phenotypically heterogeneous with transcriptome subtype-specific GBM stem-like cells (GSCs) that adapt to the brain tumor microenvironment, including hypoxic niches. We identified hypoxia-inducible factor 1 alpha-antisense RNA 2 (HIF1A-AS2) as a subtype-specific hypoxia-inducible lncRNA, upregulated in mesenchymal GSCs. Its deregulation affects GSC growth, self-renewal, and hypoxia-dependent molecular reprogramming. Among the HIF1A-AS2 interactome, IGF2BP2 and DHX9 were identified as direct partners. This association was needed for maintenance of expression of their target gene, HMGA1. Downregulation of HIF1A-AS2 led to delayed growth of mesenchymal GSC tumors, survival benefits, and impaired expression of HMGA1 in vivo. Our data demonstrate that HIF1A-AS2 contributes to GSCs' speciation and adaptation to hypoxia within the tumor microenvironment, acting directly through its interactome and targets and indirectly by modulating responses to hypoxic stress depending on the subtype-specific genetic context. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. A Systematic Comparison Identifies an ATP-Based Viability Assay as Most Suitable Read-Out for Drug Screening in Glioma Stem-Like Cells

    PubMed Central

    Kleijn, A.; Kloezeman, J. J.; Balvers, R. K.; van der Kaaij, M.; Dirven, C. M. F.; Leenstra, S.; Lamfers, M. L. M.

    2016-01-01

    Serum-free culture methods for patient-derived primary glioma cultures, selecting for glioma stem-like cells (GSCs), are becoming the gold standard in neurooncology research. These GSCs can be implemented in drug screens to detect patient-specific responses, potentially bridging the translational gap to personalized medicine. Since numerous compounds are available, a rapid and reliable readout for drug efficacies is required. This can be done using approaches that measure viability, confluency, cytotoxicity, or apoptosis. To determine which assay is best suitable for drug screening, 10 different assays were systematically tested on established glioma cell lines and validated on a panel of GSCs. General applicability was assessed using distinct treatment modalities, being temozolomide, radiation, rapamycin, and the oncolytic adenovirus Delta24-RGD. The apoptosis and cytotoxicity assays did not unequivocally detect responses and were excluded from further testing. The NADH- and ATP-based viability assays revealed comparable readout for all treatments; however, the latter had smaller standard deviations and direct readout. Importantly, drugs that interfere with cell metabolism require alternative techniques such as confluency monitoring to accurately measure treatment effects. Taken together, our data suggest that the combination of ATP luminescence assays with confluency monitoring provides the most specific and reproducible readout for drug screening on primary GSCs. PMID:27274737

  13. Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles

    PubMed Central

    Kaluzova, Milota; Bouras, Alexandros; Machaidze, Revaz; Hadjipanayis, Costas G.

    2015-01-01

    Malignant gliomas remain aggressive and lethal primary brain tumors in adults. The epidermal growth factor receptor (EGFR) is frequently overexpressed in the most common malignant glioma, glioblastoma (GBM), and represents an important therapeutic target. GBM stem-like cells (GSCs) present in tumors are felt to be highly tumorigenic and responsible for tumor recurrence. Multifunctional magnetic iron-oxide nanoparticles (IONPs) can be directly imaged by magnetic resonance imaging (MRI) and designed to therapeutically target cancer cells. The targeting effects of IONPs conjugated to the EGFR inhibitor, cetuximab (cetuximab-IONPs), were determined with EGFR- and EGFRvIII-expressing human GBM neurospheres and GSCs. Transmission electron microscopy revealed cetuximab-IONP GBM cell binding and internalization. Fluorescence microscopy and Prussian blue staining showed increased uptake of cetuximab-IONPs by EGFR- as well as EGFRvIII-expressing GSCs and neurospheres in comparison to cetuximab or free IONPs. Treatment with cetuximab-IONPs resulted in a significant antitumor effect that was greater than with cetuximab alone due to more efficient, CD133-independent cellular targeting and uptake, EGFR signaling alterations, EGFR internalization, and apoptosis induction in EGFR-expressing GSCs and neurospheres. A significant increase in survival was found after cetuximab-IONP convection-enhanced delivery treatment of 3 intracranial rodent GBM models employing human EGFR-expressing GBM xenografts. PMID:25871395

  14. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells

    PubMed Central

    Torres, Angelo; Vargas, Yosselyn; Uribe, Daniel; Jaramillo, Catherine; Gleisner, Alejandra; Salazar-Onfray, Flavio; López, Mercedes N.; Melo, Rómulo; Oyarzún, Carlos; Martín, Rody San; Quezada, Claudia

    2016-01-01

    MRP1 transporter correlates positively with glioma malignancy and the Multiple Drug Resistance (MDR) phenotype in Glioblastoma Multiforme (GBM). Evidence shows that the MRP1 transporter is controlled by the adenosine signalling axis. The aim of this study was to identify the role of adenosine on the MDR phenotype in Glioblastoma Stem-like Cells (GSCs), the cell population responsible for the tumorigenic and chemoresistance capabilities of this tumour. We found that GSCs have increased intrinsic capacity to generate extracellular adenosine, thus controlling MRP1 transporter expression and activity via activation of the adenosine A3 receptor (A3AR). We showed PI3K/Akt and MEK/ERK1/2 signaling pathways downstream A3AR to control MRP1 in GSCs. In vitro pharmacological blockade of A3AR had a chemosensitizing effect, enhancing the actions of antitumour drugs and decreasing cell viability and proliferation of GSCs. In addition, we produced an in vivo xenograft model by subcutaneous inoculation of human GSCs in NOD/SCID-IL2Rg null mice. Pharmacological blockade of A3AR generated a chemosensitizing effect, enhancing the effectiveness of the MRP1 transporter substrate, vincristine, reducing tumour size and the levels of CD44 and Nestin stem cell markers as well as the Ki-67 proliferation indicator. In conclusion, we demonstrated the chemosensitizing effect of A3AR blockade on GSCs. PMID:27634913

  15. The long non-coding RNA – HIF1A-AS2 facilitates the maintenance of mesenchymal glioblastoma stem-like cells in hypoxic niches

    PubMed Central

    Mineo, Marco; Ricklefs, Franz; Rooj, Arun K.; Lyons, Shawn M.; Ivanov, Pavel; Ansari, Khairul I.; Nakano, Ichiro; Chiocca, E. Antonio; Godlewski, Jakub; Bronisz, Agnieszka

    2016-01-01

    Long-non-coding RNAs (lncRNAs) have an undefined role in the pathobiology of glioblastoma multiforme (GBM). These tumors are genetically and phenotypically heterogeneous with transcriptome subtype-specific GBM stem-like cells (GSCs) that adapt to the brain tumor microenvironment, including hypoxic niches. We identified hypoxia inducible factor 1 alpha-antisense RNA 2 (HIF1A-AS2) as a subtype-specific hypoxia inducible lncRNA, up-regulated in mesenchymal GSCs. Its deregulation affects GSC growth, self-renewal and hypoxia-dependent molecular reprogramming. Amongst the HIF1A-AS2 interactome, IGF2BP2 and DHX9 were identified as direct partners. This association was needed for maintenance of expression of their target gene, HMGA1. Down-regulation of HIF1A-AS2 led to delayed growth of mesenchymal GSC tumors, survival benefits, and impaired expression of HMGA1 in vivo. Our data demonstrate that HIF1A-AS2 contributes to GSCs’ speciation and adaptation to hypoxia within the tumor microenvironment, acting directly through its interactome/targets and indirectly by modulating responses to hypoxic stress depending on the subtype-specific genetic context. PMID:27264189

  16. [Imaging renal cell carcinoma].

    PubMed

    Bazan, F; Busto, M

    2014-01-01

    Renal cell carcinoma is the eighth most common malignancy in adults and the most common malignancy in the kidney. It is thus a very common disease for radiologists. This review aims to provide a general overview of the imaging techniques used to diagnose, characterize, and help plan the treatment of renal cell carcinoma as well as to review basic aspects related to staging, imaging-guided percutaneous treatment, and follow-up in the most common clinical scenarios. Copyright © 2012 SERAM. Published by Elsevier Espana. All rights reserved.

  17. Cannabidiol stimulates Aml-1a-dependent glial differentiation and inhibits glioma stem-like cells proliferation by inducing autophagy in a TRPV2-dependent manner.

    PubMed

    Nabissi, Massimo; Morelli, Maria Beatrice; Amantini, Consuelo; Liberati, Sonia; Santoni, Matteo; Ricci-Vitiani, Lucia; Pallini, Roberto; Santoni, Giorgio

    2015-10-15

    Glioma stem-like cells (GSCs) correspond to a tumor cell subpopulation, involved in glioblastoma multiforme (GBM) tumor initiation and acquired chemoresistance. Currently, drug-induced differentiation is considered as a promising approach to eradicate this tumor-driving cell population. Recently, the effect of cannabinoids (CBs) in promoting glial differentiation and inhibiting gliomagenesis has been evidenced. Herein, we demonstrated that cannabidiol (CBD) by activating transient receptor potential vanilloid-2 (TRPV2) triggers GSCs differentiation activating the autophagic process and inhibits GSCs proliferation and clonogenic capability. Above all, CBD and carmustine (BCNU) in combination overcome the high resistance of GSCs to BCNU treatment, by inducing apoptotic cell death. Acute myeloid leukemia (Aml-1) transcription factors play a pivotal role in GBM proliferation and differentiation and it is known that Aml-1 control the expression of several nociceptive receptors. So, we evaluated the expression levels of Aml-1 spliced variants (Aml-1a, b and c) in GSCs and during their differentiation. We found that Aml-1a is upregulated during GSCs differentiation, and its downregulation restores a stem cell phenotype in differentiated GSCs. Since it was demonstrated that CBD induces also TRPV2 expression and that TRPV2 is involved in GSCs differentiation, we evaluated if Aml-1a interacted directly with TRPV2 promoters. Herein, we found that Aml-1a binds TRPV2 promoters and that Aml-1a expression is upregulated by CBD treatment, in a TRPV2 and PI3K/AKT dependent manner. Altogether, these results support a novel mechanism by which CBD inducing TRPV2-dependent autophagic process stimulates Aml-1a-dependent GSCs differentiation, abrogating the BCNU chemoresistance in GSCs.

  18. Activation of the Lin28/let-7 Axis by Loss of ESE3/EHF Promotes a Tumorigenic and Stem-like Phenotype in Prostate Cancer.

    PubMed

    Albino, Domenico; Civenni, Gianluca; Dallavalle, Cecilia; Roos, Martina; Jahns, Hartmut; Curti, Laura; Rossi, Simona; Pinton, Sandra; D'Ambrosio, Gioacchino; Sessa, Fausto; Hall, Jonathan; Catapano, Carlo V; Carbone, Giuseppina M

    2016-06-15

    Although cancer stem-like cells (CSC) are thought to be the most tumorigenic, metastatic, and therapy-resistant cell subpopulation within human tumors, current therapies target bulk tumor cells while tending to spare CSC. In seeking to understand mechanisms needed to acquire and maintain a CSC phenotype in prostate cancer, we investigated connections between the ETS transcription factor ESE3/EHF, the Lin28/let-7 microRNA axis, and the CSC subpopulation in this malignancy. In normal cells, we found that ESE3/EHF bound and repressed promoters for the Lin28A and Lin28B genes while activating transcription and maturation of the let-7 microRNAs. In cancer cells, reduced expression of ESE3/EHF upregulated Lin28A and Lin28B and downregulated the let-7 microRNAs. Notably, we found that deregulation of the Lin28/let-7 axis with reduced production of let-7 microRNAs was critical for cell transformation and expansion of prostate CSC. Moreover, targeting Lin28A/Lin28B in cell lines and tumor xenografts mimicked the effects of ESE3/EHF and restrained tumor-initiating and self-renewal properties of prostate CSC both in vitro and in vivo These results establish that tight control by ESE3/EHF over the Lin28/let-7 axis is a critical barrier to malignant transformation, and they also suggest new strategies to antagonize CSC in human prostate cancer for therapeutic purposes. Cancer Res; 76(12); 3629-43. ©2016 AACR. ©2016 American Association for Cancer Research.

  19. Nucleolin overexpression in breast cancer cell sub-populations with different stem-like phenotype enables targeted intracellular delivery of synergistic drug combination.

    PubMed

    Fonseca, Nuno A; Rodrigues, Ana S; Rodrigues-Santos, Paulo; Alves, Vera; Gregório, Ana C; Valério-Fernandes, Ângela; Gomes-da-Silva, Lígia C; Rosa, Manuel Santos; Moura, Vera; Ramalho-Santos, João; Simões, Sérgio; Moreira, João Nuno

    2015-11-01

    Breast cancer stem cells (CSC) are thought responsible for tumor growth and relapse, metastization and active evasion to standard chemotherapy. The recognition that CSC may originate from non-stem cancer cells (non-SCC) through plastic epithelial-to-mesenchymal transition turned these into relevant cell targets. Of crucial importance for successful therapeutic intervention is the identification of surface receptors overexpressed in both CSC and non-SCC. Cell surface nucleolin has been described as overexpressed in cancer cells as well as a tumor angiogenic marker. Herein we have addressed the questions on whether nucleolin was a common receptor among breast CSC and non-SCC and whether it could be exploited for targeting purposes. Liposomes functionalized with the nucleolin-binding F3 peptide, targeted simultaneously, nucleolin-overexpressing putative breast CSC and non-SCC, which was paralleled by OCT4 and NANOG mRNA levels in cells from triple negative breast cancer (TNBC) origin. In murine embryonic stem cells, both nucleolin mRNA levels and F3 peptide-targeted liposomes cellular association were dependent on the stemness status. An in vivo tumorigenic assay suggested that surface nucleolin overexpression per se, could be associated with the identification of highly tumorigenic TNBC cells. This proposed link between nucleolin expression and the stem-like phenotype in TNBC, enabled 100% cell death mediated by F3 peptide-targeted synergistic drug combination, suggesting the potential to abrogate the plasticity and adaptability associated with CSC and non-SCC. Ultimately, nucleolin-specific therapeutic tools capable of simultaneous debulk multiple cellular compartments of the tumor microenvironment may pave the way towards a specific treatment for TNBC patient care.

  20. Single cell dual adherent-suspension co-culture micro-environment for studying tumor-stromal interactions with functionally selected cancer stem-like cells.

    PubMed

    Chen, Yu-Chih; Zhang, Zhixiong; Fouladdel, Shamileh; Deol, Yadwinder; Ingram, Patrick N; McDermott, Sean P; Azizi, Ebrahim; Wicha, Max S; Yoon, Euisik

    2016-08-07

    Considerable evidence suggests that cancer stem-like cells (CSCs) are critical in tumor pathogenesis, but their rarity and transience has led to much controversy about their exact nature. Although CSCs can be functionally identified using dish-based tumorsphere assays, it is difficult to handle and monitor single cells in dish-based approaches; single cell-based microfluidic approaches offer better control and reliable single cell derived sphere formation. However, like normal stem cells, CSCs are heavily regulated by their microenvironment, requiring tumor-stromal interactions for tumorigenic and proliferative behaviors. To enable single cell derived tumorsphere formation within a stromal microenvironment, we present a dual adherent/suspension co-culture device, which combines a suspension environment for single-cell tumorsphere assays and an adherent environment for co-culturing stromal cells in close proximity by selectively patterning polyHEMA in indented microwells. By minimizing dead volume and improving cell capture efficiency, the presented platform allows for the use of small numbers of cells (<100 cells). As a proof of concept, we co-cultured single T47D (breast cancer) cells and primary cancer associated fibroblasts (CAF) on-chip for 14 days to monitor sphere formation and growth. Compared to mono-culture, co-cultured T47D have higher tumorigenic potential (sphere formation rate) and proliferation rates (larger sphere size). Furthermore, 96-multiplexed single-cell transcriptome analyses were performed to compare the gene expression of co-cultured and mono-cultured T47D cells. Phenotypic changes observed in co-culture correlated with expression changes in genes associated with proliferation, apoptotic suppression, tumorigenicity and even epithelial-to-mesechymal transition. Combining the presented platform with single cell transcriptome analysis, we successfully identified functional CSCs and investigated the phenotypic and transcriptome effects induced

  1. Linking of mPGES-1 and iNOS activates stem-like phenotype in EGFR-driven epithelial tumor cells.

    PubMed

    Terzuoli, Erika; Finetti, Federica; Costanza, Filomena; Giachetti, Antonio; Ziche, Marina; Donnini, Sandra

    2017-03-01

    Inflammatory prostaglandin E-2 (PGE-2) favors cancer progression in epithelial tumors characterized by persistent oncogene input. However, its effects on tumor cell stemness are poorly understood at molecular level. Here we describe two epithelial tumor cells A431 and A459, originating from human lung and skin tumors, in which epithelial growth factor (EGF) induces sequential up-regulation of mPGES-1 and iNOS enzymes, producing an inflammatory intracellular milieu. We demonstrated that concerted action of EGF, mPGES-1 and iNOS causes sharp changes in cell phenotype demonstrated by acquisition of stem-cell features and activation of the epithelial-mesenchymal transition (EMT). When primed with EGF, epithelial tumor cells transfected with mPGES-1 or iNOS to ensure steady enzyme levels display major stem-like and EMT markers, such as reduction in E-cadherin with a concomitant rise in vimentin, ALDH-1, CD133 and ALDH activity. Tumorsphere studies with these cells show increased sphere number and size, enhanced migratory and clonogenic capacity and sharp changes in EMT markers, indicating activation of this process. The concerted action of the enzymes forms a well-orchestrated cascade where expression of iNOS depends on overexpression of mPGES-1. Indeed, we show that through its downstream effectors (PGE-2, PKA, PI3K/Akt), mPGES-1 recruits non-canonical transcription factors, thus facilitating iNOS production. In conclusion, we propose that the initial event leading to tumor stem-cell activation may be a leveraged intrinsic mechanism in which all players are either inherent constituents (EGF) or highly inducible proteins (mPGES-1, iNOS) of tumor cells. We suggest that incipient tumor aggressiveness may be moderated by reducing pivotal input of mPGES-1.

  2. Celecoxib Suppresses the Phosphorylation of STAT3 Protein and Can Enhance the Radiosensitivity of Medulloblastoma-Derived Cancer Stem-Like Cells

    PubMed Central

    Yang, Meng-Yin; Lee, Hsu-Tung; Chen, Chien-Min; Shen, Chiung-Chyi; Ma, Hsin-I

    2014-01-01

    Medulloblastoma (MB) is a malignant primary brain tumor with poor prognosis. MB-derived CD133/Nestin double-positive cells (MB-DPs) exhibit cancer stem-like cell (CSC)-like properties that may contribute to chemoradioresistance, tumorigenesis and recurrence. In various tumors, signal transducer and activator of transcription 3 (STAT3) upregulation including MB which can regulate the expression of Nestin. Celecoxib, a selective COX-2 inhibitor, has been shown to potentially reduce STAT3 phosphorylation. The aim of the present study was to investigate the role of celecoxib in enhancing the effects of ionizing radiotherapy (IR) on MB-DP. MB-DPs and MB-derived CD133/Nestin double-negative cells (MB-DNs) were isolated from medulloblastoma cell line Daoy. Then, both of them were treated with celecoxib in different concentrations, and cell viability was assessed. The assays of cell survival, sphere formation, radiosensitivity, colony formation, apoptotic activity and mouse xenografting experiments in MB-DPs and MB-DNs treated with celecoxib alone, radiation alone, or celecoxib combined with radiation were further evaluated. We isolated MB-DPs from MB cell line Daoy, which exhibited typical CSC-like characteristics. Microarray analysis and Western blotting both indicated the upregulation of Janus kinase (JAK)-STAT cascade and STAT3 phosphorylation. Incubation with celecoxib dose-dependently suppressed the CSC-like properties and enhanced the IR effect on the induction of apoptosis, as detected by TUNEL assay and staining for Caspase 3 and Annexin V. Finally, celecoxib also enhanced the IR effect to suppress tumorigenesis and synergistically improve the recipient survival in orthotopic MB-derived CD133/Nestin double-positive cells (MB-DP cells) bearing mice. PMID:24945311

  3. Redox Regulation of Stem-like Cells Though the CD44v-xCT Axis in Colorectal Cancer: Mechanisms and Therapeutic Implications

    PubMed Central

    Ju, Huai-Qiang; Lu, Yun-Xin; Chen, Dong-Liang; Tian, Tian; Mo, Hai-Yu; Wei, Xiao-Li; Liao, Jian-Wei; Wang, Feng; Zeng, Zhao-Lei; Pelicano, Helene; Aguilar, Mitzi; Jia, Wei-Hua; Xu, Rui-Hua

    2016-01-01

    Colorectal cancer (CRC) is a common neoplastic disease and a frequent cause of death. Drug resistance is a major challenge to CRC treatment and stem-like side-population (SP) cells may play a key role in this resistance. Although it has been recognized that cancer stem cells may be affected by redox status, the underlying mechanisms for this effect and the roles of celllular redox adaptation and antioxidant capacity in CRC remain elusive. Our study shows that CRC SP cells are highly dependent on cellular GSH to maintain ROS levels below those of non-SP cells. Exposing CRC cells to H2O2 produced a significant decrease in the percentage of SP cells, which was rescued by adding N-acetylcysteine. Mechanistically, CD44v interacts with and stabilizes xCT and thereby promotes the uptake of cysteine for GSH synthesis and stimulates SP cell enrichment. Additionally, miR-1297 levels were inversely correlated with the expression of xCT; thus, reduced miR-1297 contributes to SP cell enrichment in CRC tumors, which results in tumor aggressiveness and poor clinical outcomes. Importantly, redox modification by PEITC significantly reduces CRC SP cells in vitro and impairs tumors growth in vivo. The combination of 5FU and PEITC led to synergistic cytotoxic effects against CRC cells in vitro and in vivo. Taken together, our data suggest that a GSH-mediated reduction in cellular ROS levels is an essential regulator of CRC SP cells mediated by the CD44v-xCT axis, and disrupting the redox status may eliminate the chemotherapy-resistant CRC SP cells with potentially significant benefits for cancer treatment. PMID:27279909

  4. miR128-1 inhibits the growth of glioblastoma multiforme and glioma stem-like cells via targeting BMI1 and E2F3

    PubMed Central

    Shan, Zheng-nan; Tian, Rui; Zhang, Min; Gui, Zhao-hua; Wu, Jing; Ding, Min; Zhou, Xin-Fu; He, Jie

    2016-01-01

    MicroRNA128-1 (miR128-1), as a brain-specific miRNA, is downregulated in glioblastoma multiforme (GBM) and closely associated with the progression of GBM. However, the underlying molecular mechanism of the downregulation and its role in the regulation of tumorigenesis and anticancer drug resistance in GBM remains largely unknown. In the current study,we found that miR128-1 was downregulated in GBM and glioma stem-like cells (GSCs). Intriguingly, treatment with the DNA methylation inhibitors 5-Aza-CdR (Aza) and 4-phenylbutyric acid (PBA) resulted in miR128-1 upregulation in both GBM cells and GSCs. Either forced expression of miR128-1 or Aza/PBA treatment inhibited tumor cell proliferation, migration and invasion in vitro. Moreover, overexpression of miR128-1 inhibited the growth of transplant tumor in vivo. BMI1 and E2F3 were found to be direct targets of miR128-1 and downregulated by miR128-1 in vitro and in vivo. Our results revealed a mechanism of methylation that controls miR128-1 expression in GBM cells and GSCs and indicate miR128-1 could function as a tumor suppressor in GBM by negatively regulating tumor cell proliferation, invasion and self-renewal through direct targeting BMI1 and E2F3. Our findings suggest that DNA methylation inhibitors are potential agents for GBM treatment by upregulating miR-128-1. PMID:27705931

  5. Role of epimorphin in bile duct formation of rat liver epithelial stem-like cells: involvement of small G protein RhoA and C/EBPβ.

    PubMed

    Jia, Yali; Yao, Hailei; Zhou, Junnian; Chen, Lin; Zeng, Quan; Yuan, Hongfeng; Shi, Lei; Nan, Xue; Wang, Yunfang; Yue, Wen; Pei, Xuetao

    2011-11-01

    Epimorphin/syntaxin 2 is a high conserved and very abundant protein involved in epithelial morphogenesis in various organs. We have shown recently that epimorphin (EPM), a protein exclusively expressed on the surface of hepatic stellate cells and myofibroblasts of the liver, induces bile duct formation of hepatic stem-like cells (WB-F344 cells) in a putative biophysical way. Therefore, the aim of this study was to present some of the molecular mechanisms by which EPM mediates bile duct formation. We established a biliary differentiation model by co-culture of EPM-overexpressed mesenchymal cells (PT67(EPM)) with WB-F344 cells. Here, we showed that EPM could promote WB-F344 cells differentiation into bile duct-like structures. Biliary differentiation markers were also elevated by EPM including Yp, Cx43, aquaporin-1, CK19, and gamma glutamyl transpeptidase (GGT). Moreover, the signaling pathway of EPM was analyzed by focal adhesion kinase (FAK), extracellular regulated kinase 1/2 (ERK1/2), and RhoA Western blot. Also, a dominant negative (DN) RhoA-WB-F344 cell line (WB(RhoA-DN)) was constructed. We found that the levels of phosphorylation (p) of FAK and ERK1/2 were up-regulated by EPM. Most importantly, we also showed that RhoA is necessary for EPM-induced activation of FAK and ERK1/2 and bile duct formation. In addition, a dual luciferase-reporter assay and CHIP assay was performed to reveal that EPM regulates GGT IV and GGT V expression differentially, possibly mediated by C/EBPβ. Taken together, these data demonstrated that EPM regulates bile duct formation of WB-F344 cells through effects on RhoA and C/EBPβ, implicating a dual aspect of this morphoregulator in bile duct epithelial morphogenesis. Copyright © 2011 Wiley-Liss, Inc.

  6. CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment.

    PubMed

    Würth, Roberto; Bajetto, Adriana; Harrison, Jeffrey K; Barbieri, Federica; Florio, Tullio

    2014-01-01

    Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells. Glioblastoma (GBM) is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascribed to high growth rate, invasiveness to normal brain, marked angiogenesis, ability to escape the immune system and resistance to standard of care therapies. Tumor molecular and cellular heterogeneity severely hinders GBM therapeutic improvement. In particular, a subpopulation of chemo- and radio-therapy resistant tumorigenic cancer stem-like cells (CSCs) is believed to be the main responsible for tumor cell dissemination to the brain. GBM cells display heterogeneous expression levels of CXCR4 and CXCR7 that are overexpressed in CSCs, representing a molecular correlate for the invasive potential of GBM. The microenvironment contribution in GBM development is increasingly emphasized. An interplay exists between CSCs, differentiated GBM cells, and the microenvironment, mainly through secreted chemokines (e.g., CXCL12) causing recruitment of fibroblasts, endothelial, mesenchymal and inflammatory cells to the tumor, via specific receptors such as CXCR4. This review covers recent developments on the role of CXCL12/CXCR4-CXCR7 networks in GBM progression and the potential translational impact of their targeting. The biological and molecular understanding of the heterogeneous GBM cell behavior, phenotype and signaling is still limited. Progress in the identification of chemokine-dependent mechanisms that affect GBM cell survival, trafficking and chemo-attractive functions, opens new perspectives for development of more specific therapeutic approaches that include chemokine

  7. ET-11RESVERATROL REGULATES GLIOBLASTOMA AND GLIOBLASTOMA STEM-LIKE CELLS VIA ANTI-TUMORIGENIC AKT DEPHOSPHORYLATION AND p53 ACTIVATION

    PubMed Central

    Clark, Paul; Bhattacharya, Saswati; van Ginkel, Paul; Darjatmoko, Soesiawati; Elmayam, Ardem; Polans, Arthur; Kuo, John

    2014-01-01

    Resveratrol (RES), a natural non-toxic plant product, exerts broad anti-cancer effects. RES was investigated for efficacy against glioblastoma (GBM) and therapeutically resistant GBM stem-like cells (GSC) hypothesized to drive tumor recurrence. Patient-derived GSC lines (12.1, 22, 33, 44) isolated via marker-neutral sphere cultures in stem cell medium, and U87 glioma were treated with RES. Low RES (25 µM) achieved significant inhibition of U87 cell proliferation after 4 days compared to control vehicle (DMSO) treatment. RES also inhibited GSC sphere-forming ability, with 50% inhibitory concentrations (IC50) from 5-25 µM. Interestingly, both 12.1 and 22 GSC lines highly express stem cell markers and initiate focal orthotopic GBM xenografts in brains of immunodeficient mice, and were most sensitive to RES compared to 33 and 44 GSC lines that cause highly infiltrative xenografts. This suggests differential RES response by various GBM/GSC subtypes. In a Matrigel transwell assay, 50 µM RES significantly inhibited invasion (>50%) of both U87 and 44 GSCs. RES also altered GSC progenitor marker expression, with 50 µM RES inducing increased expression of neural differentiation markers GFAP (astrocyte) and βIII-tubulin (neuron) after 3 days on western immunoblotting. We observed the broad anti-tumorigenic RES effects against GBM/GSC by dephosphorylating oncogenic AKT and activating tumor suppressor p53. Quantitative PCR revealed RES activates a large p53 tumor suppressive gene network (PIGG8, CD95, TP53, and NOXA). In U87 flank xenografts, oral RES (50 mg/kg daily) significantly inhibited xenograft growth, and single intra-tumoral 1mg injections reduced tumor volume by >60% compared to injection of vehicle control. In conclusion, RES causes broad anti-GBM and anti-GSC effects via AKT dephosphorylation and p53 activation, and warrants further study as a non-toxic adjuvant GBM therapy.

  8. Bedaquiline, an FDA-approved antibiotic, inhibits mitochondrial function and potently blocks the proliferative expansion of stem-like cancer cells (CSCs).

    PubMed

    Fiorillo, Marco; Lamb, Rebecca; Tanowitz, Herbert B; Cappello, Anna Rita; Martinez-Outschoorn, Ubaldo E; Sotgia, Federica; Lisanti, Michael P

    2016-08-01

    Bedaquiline (a.k.a., Sirturo) is an anti-microbial agent, which is approved by the FDA for the treatment of multi-drug resistant pulmonary tuberculosis (TB). Bedaquiline is a first-in-class diaryl-quinoline compound, that mechanistically inhibits the bacterial ATP-synthase, and shows potent activity against both drug-sensitive and drug-resistant TB. Interestingly, eukaryotic mitochondria originally evolved from engulfed aerobic bacteria. Thus, we hypothesized that, in mammalian cells, bedaquiline might also target the mitochondrial ATP-synthase, leading to mitochondrial dysfunction and ATP depletion. Here, we show that bedaquiline has anti-cancer activity, directed against Cancer Stem-like Cells (CSCs). More specifically, we demonstrate that bedaquiline treatment of MCF7 breast cancer cells inhibits mitochondrial oxygen-consumption, as well as glycolysis, but induces oxidative stress. Importantly, bedaquiline significantly blocks the propagation and expansion of MCF7-derived CSCs, with an IC-50 of approx. 1-μM, as determined using the mammosphere assay. Similarly, bedaquiline also reduces both the CD44+/CD24low/- CSC and ALDH+ CSC populations, under anchorage-independent growth conditions. In striking contrast, bedaquiline significantly increases oxygen consumption in normal human fibroblasts, consistent with the fact that it is well-tolerated in patients treated for TB infections. As such, future pre-clinical studies and human clinical trials in cancer patients may be warranted. Interestingly, we also highlight that bedaquiline shares certain structural similarities with trans-piceatannol and trans-resveratrol, which are known natural flavonoid inhibitors of the mitochondrial ATP-synthase (complex V) and show anti-aging properties.

  9. Bedaquiline, an FDA-approved antibiotic, inhibits mitochondrial function and potently blocks the proliferative expansion of stem-like cancer cells (CSCs)

    PubMed Central

    Fiorillo, Marco; Lamb, Rebecca; Tanowitz, Herbert B.; Cappello, Anna Rita; Martinez-Outschoorn, Ubaldo E.; Sotgia, Federica; Lisanti, Michael P.

    2016-01-01

    Bedaquiline (a.k.a., Sirturo) is an anti-microbial agent, which is approved by the FDA for the treatment of multi-drug resistant pulmonary tuberculosis (TB). Bedaquiline is a first-in-class diaryl-quinoline compound, that mechanistically inhibits the bacterial ATP-synthase, and shows potent activity against both drug-sensitive and drug-resistant TB. Interestingly, eukaryotic mitochondria originally evolved from engulfed aerobic bacteria. Thus, we hypothesized that, in mammalian cells, bedaquiline might also target the mitochondrial ATP-synthase, leading to mitochondrial dysfunction and ATP depletion. Here, we show that bedaquiline has anti-cancer activity, directed against Cancer Stem-like Cells (CSCs). More specifically, we demonstrate that bedaquiline treatment of MCF7 breast cancer cells inhibits mitochondrial oxygen-consumption, as well as glycolysis, but induces oxidative stress. Importantly, bedaquiline significantly blocks the propagation and expansion of MCF7-derived CSCs, with an IC-50 of approx. 1-μM, as determined using the mammosphere assay. Similarly, bedaquiline also reduces both the CD44+/CD24low/− CSC and ALDH+ CSC populations, under anchorage-independent growth conditions. In striking contrast, bedaquiline significantly increases oxygen consumption in normal human fibroblasts, consistent with the fact that it is well-tolerated in patients treated for TB infections. As such, future pre-clinical studies and human clinical trials in cancer patients may be warranted. Interestingly, we also highlight that bedaquiline shares certain structural similarities with trans-piceatannol and trans-resveratrol, which are known natural flavonoid inhibitors of the mitochondrial ATP-synthase (complex V) and show anti-aging properties. PMID:27344270

  10. High linear-energy-transfer radiation can overcome radioresistance of glioma stem-like cells to low linear-energy-transfer radiation.

    PubMed

    Hirota, Yuki; Masunaga, Shin-Ichiro; Kondo, Natsuko; Kawabata, Shinji; Hirakawa, Hirokazu; Yajima, Hirohiko; Fujimori, Akira; Ono, Koji; Kuroiwa, Toshihiko; Miyatake, Shin-Ichi

    2014-01-01

    Ionizing radiation is applied as the standard treatment for glioblastoma multiforme (GBM). However, radiotherapy remains merely palliative, not curative, because of the existence of glioma stem cells (GSCs), which are regarded as highly radioresistant to low linear-energy-transfer (LET) photons. Here we analyzed whether or not high-LET particles can overcome the radioresistance of GSCs. Glioma stem-like cells (GSLCs) were induced from the GBM cell line A172 in stem cell culture medium. The phenotypes of GSLCs and wild-type cells were confirmed using stem cell markers. These cells were irradiated with (60)Co gamma rays or reactor neutron beams. Under neutron-beam irradiation, high-LET proton particles can be produced through elastic scattering or nitrogen capture reaction. Radiosensitivity was assessed by a colony-forming assay, and the DNA double-strand breaks (DSBs) were assessed by a histone gamma-H2AX focus detection assay. In stem cell culture medium, GSLCs could form neurosphere-like cells and express neural stem cell markers (Sox2 and Musashi) abundantly in comparison with their parental cells. GSLCs were significantly more radioresistant to gamma rays than their parental cells, but neutron beams overcame this resistance. There were significantly fewer gamma-H2AX foci in the A172 GSLCs 24 h after irradiation with gamma rays than in their parental cultured cells, while there was no apparent difference following neutron-beam irradiation. High-LET radiation can overcome the radioresistance of GSLCs by producing unrepairable DNA DSBs. High-LET radiation therapy might have the potential to overcome GBM's resistance to X-rays in a clinical setting.

  11. Curcumin reduces the expression of survivin, leading to enhancement of arsenic trioxide-induced apoptosis in myelodysplastic syndrome and leukemia stem-like cells

    PubMed Central

    Zeng, Yingjian; Weng, Guangyang; Fan, Jiaxin; Li, Zhangqiu; Wu, Jianwei; Li, Yuanming; Zheng, Rong; Xia, Pingfang; Guo, Kunyuan

    2016-01-01

    Low response, treatment-related complications and relapse due to the low sensitivity of myelodysplastic syndrome (MDS) and leukemia stem cells (LSCs) or pre-LSCs to arsenic trioxide (ATO), represent the main problems following treatment with ATO alone in patients with MDS. To solve these problems, a chemosensitization agent can be applied to increase the susceptibility of these cells to ATO. Curcumin (CUR), which possesses a wide range of anticancer activities, is a commonly used chemosensitization agent for various types of tumors, including hematopoietic malignancies. In the present study, we investigated the cytotoxic effects and potential mechanisms in MDS-SKM-1 and leukemia stem-like KG1a cells treated with CUR and ATO alone or in combination. CUR and ATO exhibited growth inhibition detected by MTT assays and apoptosis analyzed by Annexin V/PI analyses in both SKM-1 and KG1a cells. Apoptosis of SKM-1 and KG1a cells determined by Annexin V/PI was significantly enhanced in the combination groups compared with the groups treated with either agent alone. Further evaluation was performed by western blotting for two hallmark markers of apoptosis, caspase-3 and cleaved-PARP. Co-treatment of the cells with CUR and ATO resulted in significant synergistic effects. In SKM-1 and KG1a cells, 31 and 13 proteins analyzed by protein array assays were modulated, respectively. Notably, survivin protein expression levels were downregulated in both cell lines treated with CUR alone and in combination with ATO, particularly in the latter case. Susceptibility to apoptosis was significantly increased in SKM-1 and KG1a cells treated with siRNA-survivin and ATO. These results suggested that CUR increased the sensitivity of SKM-1 and KG1a cells to ATO by downregulating the expression of survivin. PMID:27430728

  12. Dual drug-loaded biofunctionalized amphiphilic chitosan nanoparticles: Enhanced synergy between cisplatin and demethoxycurcumin against multidrug-resistant stem-like lung cancer cells.

    PubMed

    Huang, Wei-Ting; Larsson, Mikael; Lee, Yi-Chi; Liu, Dean-Mo; Chiou, Guang-Yuh

    2016-12-01

    Lung cancer kills more humans than any other cancer and multidrug resistance (MDR) in cancer stem-like cells (CSC) is emerging as a reason for failed treatments. One concept that addresses this root cause of treatment failure is the utilization of nanoparticles to simultaneously deliver dual drugs to cancer cells with synergistic performance, easy to envision - hard to achieve. (1) It is challenging to simultaneously load drugs of highly different physicochemical properties into one nanoparticle, (2) release kinetics may differ between drugs and (3) general requirements for biomedical nanoparticles apply. Here self-assembled nanoparticles of amphiphilic carboxymethyl-hexanoyl chitosan (CHC) were shown to present nano-microenvironments enabling simultaneous loading of hydrophilic and hydrophobic drugs. This was expanded into a dual-drug nano-delivery system to treat lung CSC. CHC nanoparticles were loaded/chemically modified with the anticancer drug cisplatin and the MDR-suppressing Chinese herbal extract demethoxycurcumin, followed by biofunctionalization with CD133 antibody for enhanced uptake by lung CSC, all in a feasible one-pot preparation. The nanoparticles were characterized with regard to chemistry, size, zeta potential and drug loading/release. Biofunctionalized and non-functionalized nanoparticles were investigated for uptake by lung CSC. Subsequently the cytotoxicity of single and dual drugs, free in solution or in nanoparticles, was evaluated against lung CSC at different doses. From the dose response at different concentrations the degree of synergy was determined through Chou-Talalay's Plot. The biofunctionalized nanoparticles promoted synergistic effects between the drugs and were highly effective against MDR lung CSC. The efficacy and feasible one-pot preparation suggests preclinical studies using relevant disease models to be justified.

  13. Identification of T cell target antigens in glioblastoma stem-like cells using an integrated proteomics-based approach in patient specimens.

    PubMed

    Rapp, Carmen; Warta, Rolf; Stamova, Slava; Nowrouzi, Ali; Geisenberger, Christoph; Gal, Zoltan; Roesch, Saskia; Dettling, Steffen; Juenger, Simone; Bucur, Mariana; Jungk, Christine; DaoTrong, Philip; Ahmadi, Rezvan; Sahm, Felix; Reuss, David; Fermi, Valentina; Herpel, Esther; Eckstein, Volker; Grabe, Niels; Schramm, Christoph; Weigand, Markus A; Debus, Juergen; von Deimling, Andreas; Unterberg, Andreas; Abdollahi, Amir; Beckhove, Philipp; Herold-Mende, Christel

    2017-03-22

    Glioblastoma (GBM) is a highly aggressive brain tumor and still remains incurable. Among others, an immature subpopulation of self-renewing and therapy-resistant tumor cells-often referred to as glioblastoma stem-like cells (GSCs)-has been shown to contribute to disease recurrence. To target these cells personalized immunotherapy has gained a lot of interest, e.g. by reactivating pre-existing anti-tumor immune responses against GSC antigens. To identify T cell targets commonly presented by GSCs and their differentiated counterpart, we used a proteomics-based separation of GSC proteins in combination with a T cell activation assay. Altogether, 713 proteins were identified by LC-ESI-MS/MS mass spectrometry. After a thorough filtering process, 32 proteins were chosen for further analyses. Immunogenicity of corresponding peptides was tested ex vivo. A considerable number of these antigens induced T cell responses in GBM patients but not in healthy donors. Moreover, most of them were overexpressed in primary GBM and also highly expressed in recurrent GBM tissues. Interestingly, expression of the most frequent T cell target antigens could also be confirmed in quiescent, slow-cycling GSCs isolated in high purity by the DEPArray technology. Finally, for a subset of these T cell target antigens, an association between expression levels and higher T cell infiltration as well as an increased expression of positive immune modulators was observed. In summary, we identified novel immunogenic proteins, which frequently induce tumor-specific T cell responses in GBM patients and were also detected in vitro in therapy-resistant quiescent, slow-cycling GSCs. Stable expression of these T cell targets in primary and recurrent GBM support their suitability for future clinical use.

  14. Antioxidant enzymes in oral verrucous carcinoma.

    PubMed

    Fu, Ting-Ying; Tsai, Meng-Han; Wang, Jyh-Seng; Ger, Luo-Ping

    2017-01-01

    Verrucous carcinoma is a non-metastasizing variant of welldifferentiated squamous cell carcinoma, which has been associated with reactive oxygen species generated by betel quid chewing. Salivary antioxidant systems have been suggested to play a protective role in reducing the oxidative damage. Herein, we investigated the difference of the enzymatic antioxidant system expressions in oral verrucous carcinoma and oral squamous cell carcinoma. The enzymatic antioxidant system expressions, including manganese superoxide dismutase, glutathione peroxidase, and catalase were evaluated by immunohistochemistry in a series of 202 surgically resected oral squamous cell carcinoma and 20 oral verrucous carcinoma specimens, using tissue microarray slides. The immuno-staining intensities of superoxide dismutase and glutathione peroxidase were strongest in the oral squamous cell carcinoma group than in verrucous carcinoma. The catalase expression showed no difference between different pathological groups. The different degrees of superoxide dismutase and glutathione expressions in verrucous carcinoma and squamous cell carcinoma may be helpful for pathologists to differentiate these two entities, especially between oral verrucous carcinoma and well differentiated oral squamous cell carcinoma. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Hepatocellular carcinoma.

    PubMed

    Macdonald, G A

    1999-05-01

    Hepatitis C infection is associated with the development of hepatocellular carcinoma, and progress has been made in a number of areas. Transgenic mice lines expressing the hepatitis C core protein develop hepatic steatosis, adenomas, and hepatocellular carcinomas, with no significant hepatitis or fibrosis. This implies that hepatitis C can lead directly to malignant transformation. A new lesion, irregular regeneration, has been described in chronic hepatitis C infection and is associated with a 15-fold increase in the relative risk of developing hepatocellular carcinoma. A minority of patients with hepatitis C-related hepatocellular carcinoma have intense lymphocytic infiltration of the cancer, a feature associated with a better prognosis. Several studies have confirmed the association between large cell dysplasia and hepatocellular carcinoma. However, large cell dysplasia may not be a premalignant lesion and instead may be a marker for premalignant alterations elsewhere in the liver. Oral contraceptives previously have been linked to an increased risk of hepatocellular carcinoma. A large multicenter European case-control study has shown minimal increased risk of hepatocellular carcinoma with use of steroidal contraception. Tamoxifen had shown promise in the management of advanced hepatocellular carcinoma. However, a randomized placebo-controlled study of 477 patients with hepatocellular carcinoma found no benefit from tamoxifen. In a preliminary study, however, octreotide has shown improved survival and quality of life in patients with advanced hepatocellular carcinoma. Finally, interferon treatment continues to be linked to a reduced risk of hepatocellular carcinoma in patients with hepatitis C. These studies generally are not randomized, and a randomized prospective study is required to address this issue.

  16. Childhood Carcinoma.

    PubMed

    Vargas, Sara O

    2010-09-01

    Carcinoma in children differs from that occurring in adults. It is far rarer and represents only a small fraction of all pediatric cancer diagnoses. Pediatric sarcomas were among the first tumors in which recurrent chromosomal aberrations were discovered. Once defined, these recurrent aberrations, many of them translocations, became incorporated into the pathologist's diagnostic armamentarium. In the past several years, defining chromosomal rearrangements have been identified in pediatric carcinomas as well, and this has become a new frontier in pathologic diagnosis. This article provides an overview of pediatric carcinoma as well as a detailed review of selected types of carcinoma that in particular can present diagnostic difficulty to the practicing pathologist and illustrate new and emerging concepts in pediatric carcinoma.

  17. The effectiveness of an anti-human IL-6 receptor monoclonal antibody combined with chemotherapy to target colon cancer stem-like cells.

    PubMed

    Ying, Jin; Tsujii, Masahiko; Kondo, Jumpei; Hayashi, Yoshito; Kato, Motohiko; Akasaka, Tomofumi; Inoue, Takuta; Shiraishi, Eri; Inoue, Tahahiro; Hiyama, Satoshi; Tsujii, Yoshiki; Maekawa, Akira; Kawai, Shoichiro; Fujinaga, Tetsuji; Araki, Maekawa; Shinzaki, Shinichiro; Watabe, Kenji; Nishida, Tsutomu; Iijima, Hideki; Takehara, Tetsuo

    2015-04-01

    Recent studies have demonstrated that cancer stem cells (CSCs) can initiate and sustain tumor growth and exhibit resistance to clinical cytotoxic therapies. Therefore, CSCs represent the main target of anticancer therapy. Interleukin-6 (IL-6) promotes cellular proliferation and drug resistance in colorectal cancer, and its serum levels correlate with patient survival. Therefore, IL-6 and its downstream signaling molecule the signal transducer and activator of transcription-3 (STAT3) represent potential molecular targets. In the present study, we investigated the effects of IL-6 and its downstream signaling components on stem cell biology, particularly the chemoresistance of CSCs, to explore potential molecular targets for cancer therapy. The colon cancer cell line WiDr was cultured in serum-free, non-adherent, and three-dimensional spheroid-forming conditions to enrich the stem cell-like population. Spheroid-forming cells slowly proliferated and expressed high levels of Oct-4, Klf4, Bmi-1, Lgr5, IL-6, and Notch 3 compared with adherent cells. Treatment with an anti-human IL-6 receptor monoclonal antibody reduced spheroid formation, stem cell-related gene expression, and 5-fluorouracil (5-FU) resistance. In addition, IL-6 treatment enhanced the levels of p-STAT3 (Tyr705), the expression of Oct-4, Klf4, Lgr5, and Notch 3, and chemoresistance to 5-FU. siRNA targeting Notch 3 suppressed spheroid formation, Oct-4 and Lgr5 expression, and 5-FU chemoresistance, whereas STAT3 inhibition enhanced Oct-4, Klf4, Lgr5, and Notch 3 expression and 5-FU chemoresistance along with reduced spheroid growth. Taken together, these results indicate that IL-6 functions in dichotomous pathways involving Notch 3 induction and STAT3 activation. The former pathway is involved in cancer stem-like cell biology and enhanced chemoresistance, and the latter pathway leads to accelerated proliferation and reduced chemoresistance. Thus, an anti-human IL-6 receptor monoclonal antibody or Notch 3

  18. Activation of tumor suppressor LKB1 by honokiol abrogates cancer stem-like phenotype in breast cancer via inhibition of oncogenic Stat3.

    PubMed

    Sengupta, S; Nagalingam, A; Muniraj, N; Bonner, M Y; Mistriotis, P; Afthinos, A; Kuppusamy, P; Lanoue, D; Cho, S; Korangath, P; Shriver, M; Begum, A; Merino, V F; Huang, C-Y; Arbiser, J L; Matsui, W; Győrffy, B; Konstantopoulos, K; Sukumar, S; Marignani, P A; Saxena, N K; Sharma, D

    2017-06-05

    Tumor suppressor and upstream master kinase Liver kinase B1 (LKB1) plays a significant role in suppressing cancer growth and metastatic progression. We show that low-LKB1 expression significantly correlates with poor survival outcome in breast cancer. In line with this observation, loss-of-LKB1 rendered breast cancer cells highly migratory and invasive, attaining cancer stem cell-like phenotype. Accordingly, LKB1-null breast cancer cells exhibited an increased ability to form mammospheres and elevated expression of pluripotency-factors (Oct4, Nanog and Sox2), properties also observed in spontaneous tumors in Lkb1(-/-) mice. Conversely, LKB1-overexpression in LKB1-null cells abrogated invasion, migration and mammosphere-formation. Honokiol (HNK), a bioactive molecule from Magnolia grandiflora increased LKB1 expression, inhibited individual cell-motility and abrogated the stem-like phenotype of breast cancer cells by reducing the formation of mammosphere, expression of pluripotency-factors and aldehyde dehydrogenase activity. LKB1, and its substrate, AMP-dependent protein kinase (AMPK) are important for HNK-mediated inhibition of pluripotency factors since LKB1-silencing and AMPK-inhibition abrogated, while LKB1-overexpression and AMPK-activation potentiated HNK's effects. Mechanistic studies showed that HNK inhibited Stat3-phosphorylation/activation in an LKB1-dependent manner, preventing its recruitment to canonical binding-sites in the promoters of Nanog, Oct4 and Sox2. Thus, inhibition of the coactivation-function of Stat3 resulted in suppression of expression of pluripotency factors. Further, we showed that HNK inhibited breast tumorigenesis in mice in an LKB1-dependent manner. Molecular analyses of HNK-treated xenografts corroborated our in vitro mechanistic findings. Collectively, these results present the first in vitro and in vivo evidence to support crosstalk between LKB1, Stat3 and pluripotency factors in breast cancer and effective anticancer modulation

  19. Olanzapine inhibits the proliferation and induces the differentiation of glioma stem-like cells through modulating the Wnt signaling pathway in vitro.

    PubMed

    Guo, Q-H; Yang, H-J; Wang, S-D

    2015-07-01

    Olanzapine, a D2/5-HT2 antagonist, is often used as an atypical antipsychotic drug in clinical. Previous research has found its new pharmacological influence on enhancing the differentiation of neural stem cells (NSCs) to oligodendrocyte-like cells (ODLCs). Glioblastomas are associated with poor prognoses owing to the glioma stem-like cells (GSLCs), which have a great many of similarities with adult NSCs. Hence, in this article, we aim to study the effects and associated mechanisms of olanzapine on GSLCs derived from human U87MG glioblastoma cell lines. The methyl thiazolyl tetrazolium (MTT) colorimetric assay was conducted to investigate the effects of olanzapine on cell viability of GSLCs. Flow cytometric analysis was applied to study the cell cycle dynamics of GSLCs and Cell Counting Kit-8 (CCK-8) was used to further investigate the proliferation of GSLCs after treated with olanzapine or dimethyl sulfoxide (DMSO) for 48 h. Cell differentiation assay was carried out to study the differentiation of GSLCs and then Image-Pro Plus image analysis was used to measure the protrusion length of the differentiated cells. Furthermore, the confocal [Ca2+]c measurement was conducted to observe the influence of olanzapine on the opening function of Ca2+ channel. After the application of olanzapine for 48 h, RT-PCR was conducted to measure mRNA levels of calcium-sensing receptor (CaSR) and stromal interaction molecule 1 (STIM1), and Western blotting analysis was carried out to examine the expression of myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), CaSR protein, STIM1 protein and β-catenin protein. Our results demonstrated that olanzapine inhibited the proliferation of GSLCs by arresting cell cycle in G0/G1 phase and facilitated the differentiation of such cells to ODLCs. After treated with olanzapine for 48 h, cells were very sensitive to 100 mM K+ stimulation, with increased spontaneous calcium wave. We also found olanzapine increased the protein

  20. Inhibition of monocarboxylate transporter-4 depletes stem-like glioblastoma cells and inhibits HIF transcriptional response in a lactate-independent manner.

    PubMed

    Lim, K S; Lim, K J; Price, A C; Orr, B A; Eberhart, C G; Bar, E E

    2014-08-28

    Hypoxic regions are frequent in glioblastoma (GBM), the most common type of malignant adult brain tumor, and increased levels of tumor hypoxia have been associated with worse clinical outcomes. To unmask genes important in hypoxia, we treated GBM neurospheres in hypoxia and identified monocarboxylate transporter-4 (MCT4) as one of the most upregulated genes. To investigate the clinical importance of MCT4 in GBM, we examined clinical outcomes and found that MCT4 overexpression is associated with shorter patient survival. Consistent with this, MCT4 upregulation correlated with the aggressive mesenchymal subset of GBM, and MCT4 downregulation correlated with the less aggressive G-CIMP (Glioma CpG Methylator Phenotype) subset of GBM. Immunohistochemical analysis of tissue microarrays confirmed that MCT4 protein levels were increased in high-grade as compared with lower-grade astrocytomas, further suggesting that MCT4 is a clinically relevant target. To test the requirement for MCT4 in vitro, we transduced neurospheres with lentiviruses encoding short-hairpin RNAs (shRNAs) against MCT4, resulting in growth inhibition of 50-80% under hypoxia in two lines. MCT4 knockdown was associated with a decreased percentage of cells expressing the stem-cell marker CD133 and increased apoptotic fraction. We also found that flow-sorted CD133-positive cells had almost sixfold higher MCT4 levels than CD133-negative cells, suggesting that the stem-like population might have a greater requirement for MCT4. Most importantly, MCT4 silencing also slowed GBM intracranial xenograft growth in vivo. Interestingly, whereas MCT4 is a well-characterized lactate exporter, we found that both intracellular and extracellular lactate levels did not change following MCT4 silencing, suggesting a novel lactate export-independent mechanism for growth inhibition in GBMs. To identify this potential mechanism, we performed microarray analysis on control and shMCT4-expressing neurospheres and found a dramatic

  1. Hepatocellular carcinoma

    SciTech Connect

    Nakashima, T.; Kojiro, M.

    1986-01-01

    With the remarkable recent diagnostic and therapeutic advances and the discovery of a possible pathogenetic role of hepatitis B virus, the study and treatment of hepatocellular carcinoma are entering a new era. Parallel developments in the pathological study of this malignancy are also to be expected. To coincide with this new era, this book presents the authors' accumulated pathomorphological knowledge of hepatocellular carcinoma. The detailed coverage is based on the examination findings of 439 cases of hepatocellular carcinoma autopsied at the authors' department in the last twenty years.

  2. Parent Tookit: Homework Help. Helpful Tips.

    ERIC Educational Resources Information Center

    All Kinds of Minds, 2006

    2006-01-01

    This check list contains tips for parents to help students reinforce and build upon what children learn at school: (1) Set a consistent time each day for doing homework; (2) Encourage children to make a homework checklist; (3) Provide assistance to help get started on a task; (4) Help children make a list of all needed materials before starting…

  3. Sonographic features of medullary thyroid carcinomas according to tumor size: comparison with papillary thyroid carcinomas.

    PubMed

    Zhou, Liguang; Chen, Bo; Zhao, Miaoqing; Zhang, Huawei; Liang, Bo

    2015-06-01

    The aim of this study was to evaluate the differences in sonographic features of medullary thyroid carcinomas according to nodule size and compared with findings for papillary thyroid carcinomas. This study included 38 medullary thyroid carcinoma nodules and 91 papillary thyroid carcinoma nodules, which were confirmed by pathologic examination between May 2008 and September 2013. Nodules were divided into those that were greater than 10 mm (large nodules) and 10 mm or less (small nodules). The differences in sonographic features (composition, echogenicity, margin, calcifications, and shape) between groups were analyzed with a χ(2) test. Large medullary thyroid carcinomas more frequently showed an ovoid-to-round shape and a smooth margin; small medullary thyroid carcinomas more frequently showed a taller-than-wide shape and a spiculated margin; the differences were statistically significant between the groups (P < .05). Compared with papillary thyroid carcinomas, large medullary thyroid carcinomas tended to have an ovoid-to-round shape, a smooth margin, and macrocalcifications and were more frequently diagnosed as indeterminate nodules (P < .05); however, there were no significant differences in the internal composition, calcifications, echogenicity, margin, and shape between small medullary thyroid carcinomas and small papillary thyroid carcinomas (P > .05). Our data indicate that the sonographic features of medullary thyroid carcinomas are associated with tumor size; furthermore, the sonographic features of medullary thyroid carcinomas are similar to those of small papillary thyroid carcinomas but greatly different from those of large papillary thyroid carcinomas. Large medullary thyroid carcinomas are more commonly diagnosed as indeterminate nodules by sonography than large papillary thyroid carcinomas, and fine-needle aspiration biopsy or serum calcitonin measurement may be helpful. © 2015 by the American Institute of Ultrasound in Medicine.

  4. Help Seeking and Receiving.

    ERIC Educational Resources Information Center

    Nadler, Arie

    Although social psychology has always had an interest in helping behavior, only recently has the full complexity of helping relations begun to be researched. Help seeking and receiving in the educational setting raise many issues regarding the use and effectiveness of the help itself. Central to all helping relations is the seeking/receiving…

  5. Biomarkers for Hepatocellular Carcinoma

    PubMed Central

    Behne, Tara; Copur, M. Sitki

    2012-01-01

    The hepatocellular carcinoma (HCC) is one of the most common malignant tumors and carries a poor survival rate. The management of patients at risk for developing HCC remains challenging. Increased understanding of cancer biology and technological advances have enabled identification of a multitude of pathological, genetic, and molecular events that drive hepatocarcinogenesis leading to discovery of numerous potential biomarkers in this disease. They are currently being aggressively evaluated to establish their value in early diagnosis, optimization of therapy, reducing the emergence of new tumors, and preventing the recurrence after surgical resection or liver transplantation. These markers not only help in prediction of prognosis or recurrence but may also assist in deciding appropriate modality of therapy and may represent novel potential targets for therapeutic interventions. In this paper, a summary of most relevant available data from published papers reporting various tissue and serum biomarkers involved in hepatocellular carcinoma was presented. PMID:22655201

  6. Helping Parents Help Their Children Toward Literacy.

    ERIC Educational Resources Information Center

    Nichols, G. Jeane

    A practicum was designed to help parents of kindergartners in a low income area help their children develop literacy. The primary goal was to secure the active involvement of parents in their children's learning experiences. Other goals included improving kindergarten teachers' communication skills and expanding their strategies for reaching out…

  7. Clinicopathological analysis of basal cell carcinoma of the anal region and its distinction from basaloid squamous cell carcinoma.

    PubMed

    Patil, Deepa T; Goldblum, John R; Billings, Steven D

    2013-10-01

    Basal cell carcinoma of the anal region is rare and morphologically difficult to distinguish from basaloid squamous cell carcinoma, particularly on biopsies. This distinction has therapeutic and prognostic implications. We reviewed morphological features of 9 basal cell carcinomas and 15 basaloid squamous cell carcinomas from the anal region diagnosed during 1993-2011 and determined the utility of Ber-EP4, BCL2, TP63, CK5/6, CDKN2A, and SOX2 as diagnostic tools. Immunostains were scored in a semi-quantitative manner (1+-1-10%, 2+-11-50%, 3+->50%). All basal cell carcinomas were located in the perianal region, while all basaloid squamous cell carcinomas originated in the anal canal/anorectum. Nodular subtype of basal cell carcinoma was the most common subtype. Retraction artifact was the only significant distinguishing histological feature of basal cell carcinoma compared with basaloid squamous cell carcinoma (88% vs 26%; P=0.04). Atypical mitoses were more common in basaloid squamous cell carcinomas (71% vs 11%; P=0.05). An in situ component was only present in basaloid squamous cell carcinomas, and was noted in 6/15 cases. Basal cell carcinomas had 2-3+ Ber-EP4 (basal cell carcinoma 100% vs basaloid squamous cell carcinoma 40%; P<0.001) and BCL2 immunoreactivity (basal cell carcinomas 100% vs basaloid squamous cell carcinoma 33%; P<0.001). Diffuse CDKN2A and SOX2 expression was seen only in basaloid squamous cell carcinomas (basal cell carcinoma 0% vs basaloid squamous cell carcinoma 93%; P<0.001). There was no difference in TP63 and CK5/6 expression. Perianal location, retraction artifact, and lack of atypical mitoses are histological features that help distinguish basal cell carcinoma from basaloid squamous cell carcinoma. An in situ component, when present, supports the diagnosis of basaloid squamous cell carcinoma. Immunostains are extremely helpful as diffuse Ber-EP4 and BCL2 expression is a feature of basal cell carcinoma and basaloid squamous cell carcinoma

  8. Comparative expression study of the endo-G protein coupled receptor (GPCR) repertoire in human glioblastoma cancer stem-like cells, U87-MG cells and non malignant cells of neural origin unveils new potential therapeutic targets.

    PubMed

    Fève, Marie; Saliou, Jean-Michel; Zeniou, Maria; Lennon, Sarah; Carapito, Christine; Dong, Jihu; Van Dorsselaer, Alain; Junier, Marie-Pierre; Chneiweiss, Hervé; Cianférani, Sarah; Haiech, Jacques; Kilhoffer, Marie-Claude

    2014-01-01

    Glioblastomas (GBMs) are highly aggressive, invasive brain tumors with bad prognosis and unmet medical need. These tumors are heterogeneous being constituted by a variety of cells in different states of differentiation. Among these, cells endowed with stem properties, tumor initiating/propagating properties and particularly resistant to chemo- and radiotherapies are designed as the real culprits for tumor maintenance and relapse after treatment. These cells, termed cancer stem-like cells, have been designed as prominent targets for new and more efficient cancer therapies. G-protein coupled receptors (GPCRs), a family of membrane receptors, play a prominent role in cell signaling, cell communication and crosstalk with the microenvironment. Their role in cancer has been highlighted but remains largely unexplored. Here, we report a descriptive study of the differential expression of the endo-GPCR repertoire in human glioblastoma cancer stem-like cells (GSCs), U-87 MG cells, human astrocytes and fetal neural stem cells (f-NSCs). The endo-GPCR transcriptome has been studied using Taqman Low Density Arrays. Of the 356 GPCRs investigated, 138 were retained for comparative studies between the different cell types. At the transcriptomic level, eight GPCRs were specifically expressed/overexpressed in GSCs. Seventeen GPCRs appeared specifically expressed in cells with stem properties (GSCs and f-NSCs). Results of GPCR expression at the protein level using mass spectrometry and proteomic analysis are also presented. The comparative GPCR expression study presented here gives clues for new pathways specifically used by GSCs and unveils novel potential therapeutic targets.

  9. Post-translational deregulation of YAP1 is genetically controlled in rat liver cancer and determines the fate and stem-like behavior of the human disease.

    PubMed

    Simile, Maria M; Latte, Gavinella; Demartis, Maria I; Brozzetti, Stefania; Calvisi, Diego F; Porcu, Alberto; Feo, Claudio F; Seddaiu, Maria A; Daino, Lucia; Berasain, Carmen; Tomasi, Maria L; Avila, Matias A; Feo, Francesco; Pascale, Rosa M

    2016-08-02

    Previous studies showed that YAP1 is over-expressed in hepatocellular carcinoma (HCC). Here we observed higher expression of Yap1/Ctgf axis in dysplastic nodules and HCC chemically-induced in F344 rats, genetically susceptible to hepatocarcinogenesis, than in lesions induced in resistant BN rats. In BN rats, highest increase in Yap1-tyr357, p73 phosphorylation and Caspase 3 cleavage occurred. In human HCCs with poorer prognosis (< 3 years survival after partial liver resection, HCCP), levels of YAP1, CTGF, 14-3-3, and TEAD proteins, and YAP1-14-3-3 and YAP1-TEAD complexes were higher than in HCCs with better outcome (> 3 years survival; HCCB). In the latter, higher levels of phosphorylated YAP1-ser127, YAP1-tyr357 and p73, YAP1 ubiquitination, and Caspase 3 cleavage occurred. Expression of stemness markers NANOG, OCT-3/4, and CD133 were highest in HCCP and correlated with YAP1 and YAP1-TEAD levels. In HepG2, Huh7, and Hep3B cells, forced YAP1 over-expression led to stem cell markers expression and increased cell viability, whereas inhibition of YAP1 expression by specific siRNA, or transfection of mutant YAP1 which does not bind to TEAD, induced opposite alterations. These changes were associated, in Huh7 cells transfected with YAP1 or YAP1 siRNA, with stimulation or inhibition of cell migration and invasivity, respectively. Furthermore, transcriptome analysis showed that YAP1 transfection in Huh7 cells induces over-expression of genes involved in tumor stemness. In conclusion, Yap1 post-translational modifications favoring its ubiquitination and apoptosis characterize HCC with better prognosis, whereas conditions favoring the formation of YAP1-TEAD complexes are associated with aggressiveness and acquisition of stemness features by HCC cells.

  10. Post-translational deregulation of YAP1 is genetically controlled in rat liver cancer and determines the fate and stem-like behavior of the human disease

    PubMed Central

    Demartis, Maria I.; Brozzetti, Stefania; Calvisi, Diego F.; Porcu, Alberto; Feo, Claudio F.; Seddaiu, Maria A.; Daino, Lucia; Berasain, Carmen; Tomasi, Maria L.; Avila, Matias A.; Feo, Francesco; Pascale, Rosa M.

    2016-01-01

    Previous studies showed that YAP1 is over-expressed in hepatocellular carcinoma (HCC). Here we observed higher expression of Yap1/Ctgf axis in dysplastic nodules and HCC chemically-induced in F344 rats, genetically susceptible to hepatocarcinogenesis, than in lesions induced in resistant BN rats. In BN rats, highest increase in Yap1-tyr357, p73 phosphorylation and Caspase 3 cleavage occurred. In human HCCs with poorer prognosis (< 3 years survival after partial liver resection, HCCP), levels of YAP1, CTGF, 14–3–3, and TEAD proteins, and YAP1-14-3-3 and YAP1-TEAD complexes were higher than in HCCs with better outcome (> 3 years survival; HCCB). In the latter, higher levels of phosphorylated YAP1-ser127, YAP1-tyr357 and p73, YAP1 ubiquitination, and Caspase 3 cleavage occurred. Expression of stemness markers NANOG, OCT-3/4, and CD133 were highest in HCCP and correlated with YAP1 and YAP1-TEAD levels. In HepG2, Huh7, and Hep3B cells, forced YAP1 over-expression led to stem cell markers expression and increased cell viability, whereas inhibition of YAP1 expression by specific siRNA, or transfection of mutant YAP1 which does not bind to TEAD, induced opposite alterations. These changes were associated, in Huh7 cells transfected with YAP1 or YAP1 siRNA, with stimulation or inhibition of cell migration and invasivity, respectively. Furthermore, transcriptome analysis showed that YAP1 transfection in Huh7 cells induces over-expression of genes involved in tumor stemness. In conclusion, Yap1 post-translational modifications favoring its ubiquitination and apoptosis characterize HCC with better prognosis, whereas conditions favoring the formation of YAP1-TEAD complexes are associated with aggressiveness and acquisition of stemness features by HCC cells. PMID:27359056

  11. WM130 preferentially inhibits hepatic cancer stem-like cells by suppressing AKT/GSK3β/β-catenin signaling pathway

    PubMed Central

    Liu, Ying; Xu, Wei-Heng; Xu, Jing; Hu, Hong-Gang; Wu, Qiu-Ye; Wang, Yan; Zhang, Jun-Ping

    2016-01-01

    The eradication of cancer stem cells (CSCs) is significant for cancer therapy and prevention. In this study, we evaluated WM130, a novel derivative of matrine, for its effect on CSCs using human hepatocellular carcinoma (HCC) cell lines, their sphere cells, and sorted EpCAM+ cells. We revealed that WM130 could not only inhibit proliferation and colony formation of HCC cells, but also suppress the expression of some stemness-related genes and up-regulate some mature hepatocyte marker genes, indicating a promotion of differentiation from CSCs to hepatocytes. WM130 also suppressed the proliferation of doxorubicin-resistant hepatoma cells, and markedly reduced the cells with CSC biomarker EpCAM. Moreover, WM130 suppressed HCC spheres, not only primary spheres but also subsequent spheres, indicating an inhibitory effect on self-renewal capability of CSCs. Interestingly, WM130 exhibited a remarkable inhibitory preference on HCC spheres and EpCAM+ cells rather than their parental HCC cells and EpCAM− cells respectively. In vivo, WM130 inhibited HCC xenograft growth, decreased the number of sphere-forming cells, and remarkably decreased the levels of EpCAM mRNA and protein in tumor xenografts. Better inhibitory effect was achieved by WM130 in combination with doxorubicin. Further mechanism study revealed that WM130 inhibited AKT/GSK3β/β-catenin signaling pathway. Collectively, our results suggest that WM130 remarkably inhibits hepatic CSCs, and this effect may via the down-regulation of the AKT/GSK3β/β-catenin pathway. These findings provide a strong rationale for the use of WM130 as a novel drug candidate in HCC therapy. PMID:27783993

  12. Helping for Change

    ERIC Educational Resources Information Center

    Neuringer, Allen; Oleson, Kathryn C.

    2010-01-01

    In "Helping for Change," Allen Neuringer and Kathryn Oleson describe another strategy that individuals can use to achieve their green goals. You might ask, "How can helping someone else help me change when I'm in the habit of not fulfilling my own promises?" The authors answer that question by explaining how the social reinforcement in a helping…

  13. Help! It's Hair Loss!

    MedlinePlus

    ... Emergency Room? What Happens in the Operating Room? Help! It's Hair Loss! KidsHealth > For Kids > Help! It's Hair Loss! A A A What's in ... a better look at what's going on to help decide what to do next. For a fungal ...

  14. Help with Hives

    MedlinePlus

    ... Emergency Room? What Happens in the Operating Room? Help With Hives KidsHealth > For Kids > Help With Hives A A A What's in this ... about what happened. The doctor can try to help figure out what might be causing your hives, ...

  15. Diagnosis of hepatocellular carcinoma

    PubMed Central

    Di Bisceglie, Adrian M.

    2005-01-01

    Hepatocellular carcinoma (HCC) is responsible for a large proportion of cancer deaths worldwide. HCC is frequently diagnosed after the development of clinical deterioration at which time survival is measured in months. Long-term survival requires detection of small tumors, often present in asymptomatic individuals, which may be more amenable to invasive therapeutic options. Surveillance of high-risk individuals for HCC is commonly performed using the serum marker alfa-fetoprotein (AFP) often in combination with ultrasonography. Various other serologic markers are currently being tested to help improve surveillance accuracy. Diagnosis of HCC often requires more sophisticated imaging modalities such as CT scan and MRI, which have multiphasic contrast enhancement capabilities. Serum AFP used alone can be helpful if levels are markedly elevated, which occurs in fewer than half of cases at time of diagnosis. Confirmation by liver biopsy can be performed under circumstances when the diagnosis of HCC remains unclear. PMID:18333158

  16. Pituitary Carcinoma

    PubMed Central

    Cusimano, Michael D.; Ohori, Paul; Martinez, A. Julio; Jungreis, Charles; Wright, Donald C.

    1994-01-01

    The presence of distant metastases may be asymptomatic in patients who present with symptoms and signs due to the local mass effects of an invasive pituitary adenoma. A case of pituitary carcinoma in a 54-year-old man who presented with widespread asymptomatic distant metastases 12 years after initial diagnosis is reviewed. The long course and asymptomatic metastases suggested a relatively slow-growing malignancy. The factors that played a role in the pathogenesis of the metastasis are unknown. A review of the literature on pituitary carcinoma suggests that accurate diagnosis and a multidisciplinary approach to management of such lesions emphasizing surgery, radiotherapy, and hormonal manipulation may provide these patients with the longest and best quality of survival. ImagesFigure 1Figure 2Figure 3p48-bFigure 4Figure 5Figure 6 PMID:17170926

  17. Bronchiolar Carcinoma

    PubMed Central

    Quinlan, J. J.; Schaffner, V. D.; Hiltz, J. E.

    1966-01-01

    Bronchiolar carcinoma is a malignant tumour which apparently arises in a terminal bronchiole from which it spreads either by bronchial embolization or by lymphogenous and/or hematogenous dissemination. It is not a common neoplasm. Histologically, the tumour bears a striking resemblance to the disease of sheep, jagziekte, which is of virus etiology. A very common finding in reported cases is preexisting pulmonary fibrosis. At the Nova Scotia Sanatorium, Kentville, 80 cases of primary lung cancer have been encountered within the past 25 years. Six of these were bronchiolar carcinomas. Five patients had co-existing chronic pulmonary disease, bronchiectasis in one and tuberculosis in four. One patient died of a rapidly progressive bilateral lesion and five were explored. Lobectomy was done in all five, but in one for palliation only. Three patients are alive and well three, six and 14 years, respectively, after their operations. PMID:4285258

  18. Nasopharyngeal carcinoma

    SciTech Connect

    Ho, J.H.C.

    1985-07-01

    In this editorial comment, the author presents a review of recent achievements in the diagnosis and treatment of squamous cell carcinoma of the nasopharynx. The value of the use of CT scans for differentiating between cranial nerve involvement by recurring tumors and irradiation neuropathy, and between temporal lobe irradiation encephalopathy and other nonneoplastic neurologic disorders and meningeal metastasis is discussed. Magnetic resonance imaging is said to be superior to CT for finding soft tissue involvement or abnormalities in the brain. 13 references.

  19. Adrenocortical Carcinoma

    PubMed Central

    Kim, Alex C.; Sabolch, Aaron; Raymond, Victoria M.; Kandathil, Asha; Caoili, Elaine M.; Jolly, Shruti; Miller, Barbra S.; Giordano, Thomas J.

    2014-01-01

    Adrenocortical carcinoma (ACC) is a rare endocrine malignancy, often with an unfavorable prognosis. Here we summarize the knowledge about diagnosis, epidemiology, pathophysiology, and therapy of ACC. Over recent years, multidisciplinary clinics have formed and the first international treatment trials have been conducted. This review focuses on evidence gained from recent basic science and clinical research and provides perspectives from the experience of a large multidisciplinary clinic dedicated to the care of patients with ACC. PMID:24423978

  20. MicroRNA-125b attenuates epithelial-mesenchymal transitions and targets stem-like liver cancer cells through small mothers against decapentaplegic 2 and 4.

    PubMed

    Zhou, Jun-Nian; Zeng, Quan; Wang, Hai-Yang; Zhang, Biao; Li, Si-Ting; Nan, Xue; Cao, Ning; Fu, Chun-Jiang; Yan, Xin-Long; Jia, Ya-Li; Wang, Jing-Xue; Zhao, Ai-Hua; Li, Zhi-Wei; Li, Yan-Hua; Xie, Xiao-Yan; Zhang, Xiao-Mei; Dong, Yan; Xu, Ying-Chen; He, Li-Juan; Yue, Wen; Pei, Xue-Tao

    2015-09-01

    Emerging evidence suggests that epithelial-mesenchymal transitions (EMTs) play important roles in tumor metastasis and recurrence. Understanding molecular mechanisms that regulate the EMT process is crucial for improving treatment of hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) play important roles in HCC; however, the mechanisms by which miRNAs target the EMT and their therapeutic potential remains largely unknown. To better explore the roles of miRNAs in the EMT process, we established an EMT model in HCC cells by transforming growth factor beta 1 treatment and found that several tumor-related miRNAs were significantly decreased. Among these miRNAs, miR-125b expression was most strongly suppressed. We also found down-regulation of miR-125b in most HCC cells and clinical specimens, which correlated with cellular differentiation in HCC patients. We then demonstrated that miR-125b overexpression attenuated EMT phenotype in HCC cancer cells, whereas knockdown of miR-125b promoted the EMT phenotype in vitro and in vivo. Moreover, we found that miR-125b attenuated EMT-associated traits, including chemoresistance, migration, and stemness in HCC cells, and negatively correlated with EMT and cancer stem cell (CSC) marker expressions in HCC specimens. miR-125b overexpression could inhibit CSC generation and decrease tumor incidence in the mouse xenograft model. Mechanistically, our data revealed that miR-125b suppressed EMT and EMT-associated traits of HCC cells by targeting small mothers against decapentaplegic (SMAD)2 and 4. Most important, the therapeutic delivery of synthetic miR-125b mimics decreased the target molecule of CSC and inhibited metastasis in the mice model. These findings suggest a potential therapeutic treatment of miR-125b for liver cancer. miR-125b exerts inhibitory effects on EMT and EMT-associated traits in HCC by SMAD2 and 4. Ectopic expression of miR-125b provides a promising strategy to treat HCC. © 2015 by the American Association for the

  1. [Initial pretherapeutic assessment of anal epidermoid carcinoma].

    PubMed

    de Parades, Vincent; Bauer, Pierre; Benbunan, Jean-Louis; Bouillet, Thierry; Cottu, Paul-Henri; Cuenod, Charles-André; Durdux, Catherine; Fléjou, Jean-François; Atienza, Patrick

    2007-02-01

    Anal epidermoid carcinoma is a rare malignant tumor, comprising less than 5% of all carcinomas of the colon, rectum, and anus. The primary therapy now includes radiotherapy, often in combination with chemotherapy. Radical surgery is now rarely indicated. Therapeutic indications are based on locoregional staging, the presence of visceral metastases and an evaluation of the medical history. Anorectal endosonography is helpful in evaluating locoregional extension. In addition, magnetic resonance imaging, positron emission tomography scanning and inguinal sentinel lymph node procedure should play a role in a more selective approach in patients with anal carcinoma.

  2. miR-92a-3p Exerts Various Effects in Glioma and Glioma Stem-Like Cells Specifically Targeting CDH1/β-Catenin and Notch-1/Akt Signaling Pathways

    PubMed Central

    Song, Hang; Zhang, Yao; Liu, Na; Zhao, Sheng; Kong, Yan; Yuan, Liudi

    2016-01-01

    MicroRNAs (miRNAs) are implicated in the regulation of tumor progression and stemness of cancer stem-like cells. Recently, miR-92a-3p was reported to be up-regulated in human glioma samples. Nevertheless, the precise role of miR-92a-3p in glioma cells and glioma stem-like cells (GSCs) has not been fully elucidated. It is necessary to clarify the function of miR-92a-3p in glioma and GSCs to develop novel therapeutic approaches for glioma patients. In the present study, we applied methyl-thiazolyl-tetrazolium (MTT) assay and Transwell assay to measure the proliferation rate and metastatic potential of glioma cells. Meanwhile, the self-renewal ability of GSCs was detected by tumor sphere formation assay. The results revealed that down-regulation of miR-92a-3p suppressed the glioma cell malignancy in vitro. Moreover, knockdown of miR-92a-3p led to a reduction of tumorgenesis in vivo. Interestingly, we also observed that up-regulation of miR-92a-3p could inhibit the stemness of GSCs. Subsequent mechanistic investigation indicated that cadherin 1 (CDH1)/β-catenin signaling and Notch-1/Akt signaling were the downstream pathways of miR-92a-3p in glioma cells and GSCs, respectively. These results suggest that miR-92a-3p plays different roles in glioma cells and GSCs through regulating different signaling pathways. PMID:27801803

  3. Comparative Expression Study of the Endo–G Protein Coupled Receptor (GPCR) Repertoire in Human Glioblastoma Cancer Stem-like Cells, U87-MG Cells and Non Malignant Cells of Neural Origin Unveils New Potential Therapeutic Targets

    PubMed Central

    Lennon, Sarah; Carapito, Christine; Dong, Jihu; Van Dorsselaer, Alain; Junier, Marie-Pierre; Chneiweiss, Hervé; Cianférani, Sarah; Haiech, Jacques; Kilhoffer, Marie-Claude

    2014-01-01

    Glioblastomas (GBMs) are highly aggressive, invasive brain tumors with bad prognosis and unmet medical need. These tumors are heterogeneous being constituted by a variety of cells in different states of differentiation. Among these, cells endowed with stem properties, tumor initiating/propagating properties and particularly resistant to chemo- and radiotherapies are designed as the real culprits for tumor maintenance and relapse after treatment. These cells, termed cancer stem-like cells, have been designed as prominent targets for new and more efficient cancer therapies. G-protein coupled receptors (GPCRs), a family of membrane receptors, play a prominent role in cell signaling, cell communication and crosstalk with the microenvironment. Their role in cancer has been highlighted but remains largely unexplored. Here, we report a descriptive study of the differential expression of the endo-GPCR repertoire in human glioblastoma cancer stem-like cells (GSCs), U-87 MG cells, human astrocytes and fetal neural stem cells (f-NSCs). The endo-GPCR transcriptome has been studied using Taqman Low Density Arrays. Of the 356 GPCRs investigated, 138 were retained for comparative studies between the different cell types. At the transcriptomic level, eight GPCRs were specifically expressed/overexpressed in GSCs. Seventeen GPCRs appeared specifically expressed in cells with stem properties (GSCs and f-NSCs). Results of GPCR expression at the protein level using mass spectrometry and proteomic analysis are also presented. The comparative GPCR expression study presented here gives clues for new pathways specifically used by GSCs and unveils novel potential therapeutic targets. PMID:24662753

  4. Help Design Software Project

    DTIC Science & Technology

    1988-11-30

    design principles in their online help. * Help Evaluation System to assist developers and end users in diagnosing the strengths and weakness of any...I I I Reference Principles Guidelines Model Help (browse) (browse) (browse) System Screen-Specific Design Principles Examples Guidelines Reference...basically points out the important features of the screen to more specific principles and other examples of those principles , and finally to detailed

  5. Oral Rigosertib for Squamous Cell Carcinoma

    ClinicalTrials.gov

    2016-05-18

    Head and Neck Squamous Cell Carcinoma; Anal Squamous Cell Carcinoma; Lung Squamous Cell Carcinoma; Cervical Squamous Cell Carcinoma; Esophageal Squamous Cell Carcinoma; Skin Squamous Cell Carcinoma; Penile Squamous Cell Carcinoma

  6. Handi Helps, 1984.

    ERIC Educational Resources Information Center

    Handi Helps, 1984

    1984-01-01

    The eight issues of Handi Helps presented in this document focus on specific issues of concern to the disabled, parents, and those working with the disabled. The two-page handi help fact sheets focus on the following topics: child abuse, leukemia, arthritis, Tourette Syndrome, hemophilia, the puppet program "Meet the New Kids on the…

  7. Handi Helps, 1985

    ERIC Educational Resources Information Center

    Handi Helps, 1985

    1985-01-01

    The six issues of Handi Helps presented here focus on specific issues of concern to the disabled, parents, and those working with the disabled. The two-page handi help fact sheets focus on the following topics: child sexual abuse prevention, asthma, scoliosis, the role of the occupational therapist, kidnapping, and muscular dystrophy. Each handi…

  8. Help! It's Hair Loss!

    MedlinePlus

    ... A Real Lifesaver Kids Talk About: Coaches Help! It's Hair Loss! KidsHealth > For Kids > Help! It's Hair Loss! Print A A A What's in ... part above the skin, is dead. (That's why it doesn't hurt to get a haircut!) This ...

  9. Handi Helps, 1984.

    ERIC Educational Resources Information Center

    Handi Helps, 1984

    1984-01-01

    The eight issues of Handi Helps presented in this document focus on specific issues of concern to the disabled, parents, and those working with the disabled. The two-page handi help fact sheets focus on the following topics: child abuse, leukemia, arthritis, Tourette Syndrome, hemophilia, the puppet program "Meet the New Kids on the…

  10. Home Is for Helping.

    ERIC Educational Resources Information Center

    Des Moines Public Schools, IA.

    This booklet for parents offers ideas for utilizing everyday situations in the home to help children improve in school, primarily in reading and mathematics skills. General suggestions are given for helping children to do their best by talking to them, reading to them, listening to them, praising them, watching television with them, keeping them…

  11. Helping America's Youth

    ERIC Educational Resources Information Center

    Bush, Laura

    2005-01-01

    As First Lady of the United States, Laura Bush is leading the Helping America's Youth initiative of the federal government. She articulates the goal of enlisting public and volunteer resources to foster healthy growth by early intervention and mentoring of youngsters at risk. Helping America's Youth will benefit children and teenagers by…

  12. Handi Helps, 1985

    ERIC Educational Resources Information Center

    Handi Helps, 1985

    1985-01-01

    The six issues of Handi Helps presented here focus on specific issues of concern to the disabled, parents, and those working with the disabled. The two-page handi help fact sheets focus on the following topics: child sexual abuse prevention, asthma, scoliosis, the role of the occupational therapist, kidnapping, and muscular dystrophy. Each handi…

  13. Helping Our Children.

    ERIC Educational Resources Information Center

    Polk, Sophie

    1987-01-01

    Describes the Ikaiyurluki Mikelnguut (Helping Our Children) project in the Yukon Kuskokwim Delta of Alaska where trained natural helpers are helping Yup'ik Eskimo villagers to cope with crisis situations--notably teenage suicide and drug and alcohol abuse. (Author/BB)

  14. Helping America's Youth

    ERIC Educational Resources Information Center

    Bush, Laura

    2005-01-01

    As First Lady of the United States, Laura Bush is leading the Helping America's Youth initiative of the federal government. She articulates the goal of enlisting public and volunteer resources to foster healthy growth by early intervention and mentoring of youngsters at risk. Helping America's Youth will benefit children and teenagers by…

  15. Carcinoma gallbladder.

    PubMed

    Biswas, P K

    2010-07-01

    Carcinoma gallbladder (CaGb) is a rare disease. The aetiology of CaGb is yet not known. However the risk of CaGb is increased in anomalous pancreaticobiliary duct junction (APBDJ), gall stones, xanthogranulomatus cholecystitis, calcified or porcelain gallbladder, cholelithiasis with typhoid carriers, gallbladder adenoma, red meat consumption and tobacco uses. There are protective effects of vegetables on CaGb. Most of the cases present with advanced disease. In early carcinoma of a gallbladder sign and symptoms mimic benign disease. The diagnosis is established by ultrasonography, computerized tomography and guided fine needle aspiration cytology (FNAC). Biochemical tests are of very little value in making a diagnosis. The treatment depends on the clinical stage at presentation. Surgery offers the best chance of cure. In stage T1a, laparoscopic or open cholecystectomy alone is curative, and in T1b, cholecystectomy with hepatoduodenal lymph node dissection without combined resection of an adjacent organ is required. Segment S4a+5 hepatectomy combined with extrahepatic bile duct resection (BDR) and D2 lymph node dissection is a highly recommended operation for the treatment of T2 and T3 CaGb. The dye injection method is useful in determining the appropriate extent of hepatic resection for advanced CaGb. Resurgery is required only in those cases where tumour has invaded the serosa and/ or adjacent structures when diagnosed postoperatively. Biliary bypass is required for palliation. Prognosis depends on early diagnosis and appropriate surgical excision.

  16. [New developments in molecular diagnostics of carcinomas of the salivary glands: "translocation carcinomas"].

    PubMed

    Skálová, Alena; Šteiner, Petr; Vaneček, Tomáš

    2016-01-01

    In recent years the discovery of translocations and the fusion oncogenes that they result in has changed the way diagnoses are made in salivary gland pathology. These genetic aberrations are recurrent; and at the very least serve as powerful diagnostic tools in salivary gland tumors diagnosis and classification. They also show promise as prognostic markers and hopefully as targets of therapy. In this review the 4 carcinomas currently known to harbor translocations will be discussed, namely mucoepidermoid carcinoma, adenoid cystic carcinoma, mammary analogue secretory carcinoma, and hyalinizing clear cell carcinoma. The discovery and implications of each fusion will be highlighted and how they have helped to reshape the current classification of salivary gland tumors.

  17. Merkel cell carcinoma (primary neuroendocrine carcinoma of skin) mimicking basal cell carcinoma with review of different histopathologic features.

    PubMed

    Succaria, Farah; Radfar, Arash; Bhawan, Jag

    2014-02-01

    Merkel cell carcinoma (MCC) is a rare but highly aggressive malignancy, which often has typical histopathologic and immunohistochemical (IHC) features. Sometimes the diagnosis is missed because of atypical histological or aberrant IHC findings. A case of MCC that showed irregular lobules of basaloid cells with keratotic areas on the initial shave biopsy is being reported. IHC showed positive staining for high-molecular weight cytokeratin but negative staining for cytokeratin 20, findings consistent with basal cell carcinoma. Subsequent excision specimen showed histopathologic features more typical of MCC. IHC still was negative for cytokeratin 20 but positive for synaptophysin. Review of the literature shows other examples of MCC with basal cell carcinoma-like features. Various other histopathologic differentiations of MCC include those that demonstrate squamous cell and eccrine carcinoma features and those that show melanocytic, lymphomatous, sarcomatous, muscular, and atypical fibroxanthoma-like features. Different histopathologic patterns and mimics of MCC are reviewed to help prevent dermatopathologists from misdiagnosing this aggressive tumor.

  18. Help for Mental Illnesses

    MedlinePlus

    ... If you or someone you know has a mental illness, there are ways to get help. Use these ... Support Alliance Mental Health America National Alliance on Mental Illness University or medical school-affiliated programs may offer ...

  19. Can Reading Help?

    ERIC Educational Resources Information Center

    Crowe, Chris

    2003-01-01

    Ponders the effect of September 11th on teenagers. Proposes that reading books can help teenagers sort out complicated issues. Recommends young adult novels that offer hope for overcoming tragedy. Lists 50 short story collections worth reading. (PM)

  20. Grandparents Can Help

    ERIC Educational Resources Information Center

    Pieper, Elizabeth

    1976-01-01

    Although grandparents may have difficulty in accepting their handicapped grandchild due to such factors as the notion of "bad blood," they can be helpful to parents by drawing from their experience to give new perspectives to complex problems. (SB)

  1. Can Reading Help?

    ERIC Educational Resources Information Center

    Crowe, Chris

    2003-01-01

    Ponders the effect of September 11th on teenagers. Proposes that reading books can help teenagers sort out complicated issues. Recommends young adult novels that offer hope for overcoming tragedy. Lists 50 short story collections worth reading. (PM)

  2. Hooked on Helping

    ERIC Educational Resources Information Center

    Longhurst, James; McCord, Joan

    2014-01-01

    In this article, teens presenting at a symposium on peer-helping programs describe how caring for others fosters personal growth and builds positive group cultures. Their individual thoughts and opinions are expressed.

  3. Helping Parents Say No.

    ERIC Educational Resources Information Center

    Duel, Debra K.

    1988-01-01

    Provides some activities that are designed to help students understand some of the reasons why parents sometimes refuse to let their children have pets. Includes mathematics and writing lessons, a student checklist, and a set of tips for parents. (TW)

  4. Help! Where to Look.

    ERIC Educational Resources Information Center

    Kneer, Marian E.

    1984-01-01

    Developing and maintaining effective physical education programs requires that teachers continually update their knowledge and skills. Books and journals, conferences, professional organizations, and consultants provide information to help teachers develop effective programs. (DF)

  5. Hooked on Helping

    ERIC Educational Resources Information Center

    Longhurst, James; McCord, Joan

    2014-01-01

    In this article, teens presenting at a symposium on peer-helping programs describe how caring for others fosters personal growth and builds positive group cultures. Their individual thoughts and opinions are expressed.

  6. Petition Preparation Help

    EPA Pesticide Factsheets

    Preparing a part 75 Petition provides useful information and answers to common questions that will help the designated representative for a unit subject to part 75 prepare and submit a complete petition under §75.66.

  7. Helping Teens Cope.

    ERIC Educational Resources Information Center

    Jones, Jami I.

    2003-01-01

    Considers the role of school library media specialists in helping teens cope with developmental and emotional challenges. Discusses resiliency research, and opportunities to develop programs and services especially for middle school and high school at-risk teens. (LRW)

  8. [Bronchoalveolar carcinoma].

    PubMed

    Wislez, Marie; Cadranel, Jacques; Milleron, Bernard

    2003-04-01

    Bronchoalveolar carcinoma is one of the four histologic subtypes of adenocarcinoma and its incidence is increasing. It grows in a lepidic fashion along the alveolar septa without invasive growth. The lack of invasive growth is an essential criterion based on data indicating that patients may be curable by surgical resection. The revised definition seems to be suitable for its solitary nodular form but less for multifocal or pneumonic-type form. High-resolution lung CT-scan is necessary to evaluate pulmonary involvement because of the high frequency of multifocal disease at initial presentation and because of the presence of ground glass opacity that could be one of the first manifestation of cancer bronchiolo-alvéolaireon CT. Therapeutic management does not differ from the one of non small cell lung cancer. Solitary nodules are treated by surgical resection with a good prognosis while multifocal and/or pneumonic forms are treated by systemic chemotherapy with a worse prognosis.

  9. Integrative analyses of gene expression and DNA methylation profiles in breast cancer cell line models of tamoxifen-resistance indicate a potential role of cells with stem-like properties

    PubMed Central

    2013-01-01

    Introduction Development of resistance to tamoxifen is an important clinical issue in the treatment of breast cancer. Tamoxifen resistance may be the result of acquisition of epigenetic regulation within breast cancer cells, such as DNA methylation, resulting in changed mRNA expression of genes pivotal for estrogen-dependent growth. Alternatively, tamoxifen resistance may be due to selection of pre-existing resistant cells, or a combination of the two mechanisms. Methods To evaluate the contribution of these possible tamoxifen resistance mechanisms, we applied modified DNA methylation-specific digital karyotyping (MMSDK) and digital gene expression (DGE) in combination with massive parallel sequencing to analyze a well-established tamoxifen-resistant cell line model (TAMR), consisting of 4 resistant and one parental cell line. Another tamoxifen-resistant cell line model system (LCC1/LCC2) was used to validate the DNA methylation and gene expression results. Results Significant differences were observed in global gene expression and DNA methylation profiles between the parental tamoxifen-sensitive cell line and the 4 tamoxifen-resistant TAMR sublines. The 4 TAMR cell lines exhibited higher methylation levels as well as an inverse relationship between gene expression and DNA methylation in the promoter regions. A panel of genes, including NRIP1, HECA and FIS1, exhibited lower gene expression in resistant vs. parental cells and concurrent increased promoter CGI methylation in resistant vs. parental cell lines. A major part of the methylation, gene expression, and pathway alterations observed in the TAMR model were also present in the LCC1/LCC2 cell line model. More importantly, high expression of SOX2 and alterations of other SOX and E2F gene family members, as well as RB-related pocket protein genes in TAMR highlighted stem cell-associated pathways as being central in the resistant cells and imply that cancer-initiating cells/cancer stem-like cells may be involved in

  10. Metaplastic breast carcinomas display genomic and transcriptomic heterogeneity [corrected]. .

    PubMed

    Weigelt, Britta; Ng, Charlotte K Y; Shen, Ronglai; Popova, Tatiana; Schizas, Michail; Natrajan, Rachael; Mariani, Odette; Stern, Marc-Henri; Norton, Larry; Vincent-Salomon, Anne; Reis-Filho, Jorge S

    2015-03-01

    Metaplastic breast carcinoma is a rare and aggressive histologic type of breast cancer, preferentially displaying a triple-negative phenotype. We sought to define the transcriptomic heterogeneity of metaplastic breast cancers on the basis of current gene expression microarray-based classifiers, and to determine whether these tumors display gene copy number profiles consistent with those of BRCA1-associated breast cancers. Twenty-eight consecutive triple-negative metaplastic breast carcinomas were reviewed, and the metaplastic component present in each frozen specimen was defined (ie, spindle cell, squamous, chondroid metaplasia). RNA and DNA extracted from frozen sections with tumor cell content >60% were subjected to gene expression (Illumina HumanHT-12 v4) and copy number profiling (Affymetrix SNP 6.0), respectively. Using the best practice PAM50/claudin-low microarray-based classifier, all metaplastic breast carcinomas with spindle cell metaplasia were of claudin-low subtype, whereas those with squamous or chondroid metaplasia were preferentially of basal-like subtype. Triple-negative breast cancer subtyping using a dedicated website (http://cbc.mc.vanderbilt.edu/tnbc/) revealed that all metaplastic breast carcinomas with chondroid metaplasia were of mesenchymal-like subtype, spindle cell carcinomas preferentially of unstable or mesenchymal stem-like subtype, and those with squamous metaplasia were of multiple subtypes. None of the cases was classified as immunomodulatory or luminal androgen receptor subtype. Integrative clustering, combining gene expression and gene copy number data, revealed that metaplastic breast carcinomas with spindle cell and chondroid metaplasia were preferentially classified as of integrative clusters 4 and 9, respectively, whereas those with squamous metaplasia were classified into six different clusters. Eight of the 26 metaplastic breast cancers subjected to SNP6 analysis were classified as BRCA1-like. The diversity of histologic

  11. Helping patients stop smoking.

    PubMed

    Ferentz, K S; Valente, C M

    1994-01-01

    As more patients seek treatment for nicotine addiction, physicians must become adept at counseling patients on how to quit. Several simple behavioral modification techniques are available to help patients stop smoking, and these techniques can be incorporated into any busy practice. Any patient encounter can be used to inform patients of the dangers of smoking and to tell them to quit. Patients can be offered nicotine replacement therapy, although the long-term benefit is still unknown. Helping patients to quit is a rewarding process.

  12. Carcinoma cuniculatum: not a verrucous carcinoma.

    PubMed

    Kubik, M J; Rhatigan, R M

    2012-12-01

    Carcinoma cuniculatum and verrucous carcinoma are both very well differentiated forms of squamous carcinoma and thus difficult to separate histologically from pseudocarcinomatous hyperplasia. The diagnosis of each often requires clinical-pathologic correlation. We reviewed the literature on cases reported as carcinoma cuniculatum and compared these to the cases originally reported by Aird et al. In addition, we report an additional case of this entity that we encountered in our practice. In reviewing the literature it is evident that most authors consider carcinoma cuniculatum and verrucous carcinoma to be synonymous even though Aird's original two cases had no verrucous features. The lack of a clear conceptual distinction between these two entities may cause diagnostic confusion. The purpose of this report is to record a case of carcinoma cuniculatum which the authors believe to be similar to those reported by Aird et al., to emphasize the differences between carcinoma cuniculatum and verrucous carcinoma, and to explain how the lack of a clear conceptual distinction between these two tumors can lead to further delay in an already difficult diagnosis. Copyright © 2012 John Wiley & Sons A/S.

  13. What Helps Us Learn?

    ERIC Educational Resources Information Center

    Educational Leadership, 2010

    2010-01-01

    This article presents comments of high school students at the Howard Gardner School in Alexandria, Virginia, who were asked, What should teachers know about students to help them learn? Twelve high school students from the Howard Gardner School in Alexandria, Virginia, describe how their best teachers get to know them and thus were more able to…

  14. Stretching: Does It Help?

    ERIC Educational Resources Information Center

    Vardiman, Phillip; Carrand, David; Gallagher, Philip M.

    2010-01-01

    Stretching prior to activity is universally accepted as an important way to improve performance and help prevent injury. Likewise, limited flexibility has been shown to decrease functional ability and predispose a person to injuries. Although this is commonly accepted, appropriate stretching for children and adolescents involved with sports and…

  15. Stretching: Does It Help?

    ERIC Educational Resources Information Center

    Vardiman, Phillip; Carrand, David; Gallagher, Philip M.

    2010-01-01

    Stretching prior to activity is universally accepted as an important way to improve performance and help prevent injury. Likewise, limited flexibility has been shown to decrease functional ability and predispose a person to injuries. Although this is commonly accepted, appropriate stretching for children and adolescents involved with sports and…

  16. Helping You Age Well

    MedlinePlus

    ... to keep family relationships and friendships over time. Exercise can also help prevent depression or lift your mood. Stay active and involved in life. Talk to your physician if you are feeling depressed. Teeth & ... Lungs: Regular aerobic exercise keeps lung capacity up. Smoking leads to chronic ...

  17. What Helps Us Learn?

    ERIC Educational Resources Information Center

    Educational Leadership, 2010

    2010-01-01

    This article presents comments of high school students at the Howard Gardner School in Alexandria, Virginia, who were asked, What should teachers know about students to help them learn? Twelve high school students from the Howard Gardner School in Alexandria, Virginia, describe how their best teachers get to know them and thus were more able to…

  18. Ayudele! [Help Him!].

    ERIC Educational Resources Information Center

    Spencer, Maria Gutierrez, Comp.; Almance, Sofia, Comp.

    Written in Spanish and English, the booklet briefly discusses what parents can do to help their child learn at school. The booklet briefly notes the importance of getting enough sleep; eating breakfast; praising the child; developing the five senses; visiting the doctor; having a home and garden; talking, listening, and reading to the child;…

  19. Helping Students Avoid Plagiarism.

    ERIC Educational Resources Information Center

    Wilhoit, Stephen

    1994-01-01

    Discusses how and why college students commit plagiarism, suggesting techniques that instructors can use to help student avoid plagiarism. Instructors should define and discuss plagiarism thoroughly; discuss hypothetical cases; review the conventions of quoting and documenting material; require multiple drafts of essays; and offer responses…

  20. Helping Families Cope.

    ERIC Educational Resources Information Center

    Goodman, Carol R.

    The paper presents observations of families having adult members with learning disabilities and describes a residential program to facilitate the transition to independent living of lower functioning learning disabled young adults. The program, called Independence Center, involves placing participants in apartments with roommates and helping them…

  1. Helping Teachers Communicate

    ERIC Educational Resources Information Center

    Kise, Jane; Russell, Beth; Shumate, Carol

    2008-01-01

    Personality type theory describes normal differences in how people are energized, take in information, make decisions, and approach work and life--all key elements in how people teach and learn. Understanding one another's personality type preferences helps teachers share their instructional strategies and classroom information. Type theory…

  2. Helping Teachers Develop

    ERIC Educational Resources Information Center

    Bubb, Sara

    2005-01-01

    It is fashionable to say that teaching can be the most rewarding profession there is- and it can be. Most teachers can all give examples of the pleasure of helping a child grow in knowledge and understanding, and achieve their potential. But what about the teacher? They shouldn't be excluded from the benefits of lifelong learning because of their…

  3. Helping Adults to Spell.

    ERIC Educational Resources Information Center

    Moorhouse, Catherine

    This book presents a range of strategies for adult literacy tutors and offers a wealth of practical advice on teaching spelling within the context of writing. Chapters 1-3 offer basic information on talking with the student about spelling, finding out how the student spells and helping the student to see himself/herself as a "good" speller, and…

  4. Ayudele! [Help Him!].

    ERIC Educational Resources Information Center

    Spencer, Maria Gutierrez, Comp.; Almance, Sofia, Comp.

    Written in Spanish and English, the booklet briefly discusses what parents can do to help their child learn at school. The booklet briefly notes the importance of getting enough sleep; eating breakfast; praising the child; developing the five senses; visiting the doctor; having a home and garden; talking, listening, and reading to the child;…

  5. Help for Stressed Students

    ERIC Educational Resources Information Center

    Pope, Denise Clarke; Simon, Richard

    2005-01-01

    The authors argue that increased focus and pressure for high academic achievement, particularly among more highly-motivated and successful students, may have serious negative consequences. They present a number of strategies designed to help reduce both causes and consequences associated with academic stress and improve students' mental and…

  6. Helping Perceptually Handicapped Children

    ERIC Educational Resources Information Center

    Rose, Helen S.

    1974-01-01

    Five children diagnosed as having a perceptual problem as revealed by the Bender Visual Motor Gestalt Test received special tutoring to help develop their visual discrimination abilities. The six-week program for teaching the concept of shapes employed kinesthetic, visual, tactile, and verbal processes. (CS)

  7. A Helping Hand.

    ERIC Educational Resources Information Center

    Renner, Jason M.

    2000-01-01

    Discusses how designing a hand washing-friendly environment can help to reduce the spread of germs in school restrooms. Use of electronic faucets, surface risk management, traffic flow, and user- friendly hand washing systems that are convenient and maximally hygienic are examined. (GR)

  8. Helping, Manipulation, and Magic

    ERIC Educational Resources Information Center

    Frey, Louise A.; Edinburg, Golda M.

    1978-01-01

    The thesis of this article is that an understanding of the primitive origins of the helping process in myth, magic, and ritual may prevent social workers from engaging in practices that negate their clients' ability to work out their own solutions to problems. (Author)

  9. Self-Help Experiences

    ERIC Educational Resources Information Center

    Woody, Robert H.

    1973-01-01

    The author believes that there is a distinct need for professionals to become competent in providing materials for self-help lay efforts. Colleges and universities must provide for the facilitation of personal growth through self administered procedures by either a clinical approach (in counseling centers) or a didactic one (in classes as, for…

  10. Help Teens Manage Diabetes

    MedlinePlus

    ... Grey, dean of the Yale University School of Nursing, developed and tested a program called Coping Skills Training (CST) as a part of routine diabetes ... is to improve diabetic teens' coping and communication skills, healthy ... sugar levels. "Nursing research is about helping people deal with the ...

  11. Help for Stressed Students

    ERIC Educational Resources Information Center

    Pope, Denise Clarke; Simon, Richard

    2005-01-01

    The authors argue that increased focus and pressure for high academic achievement, particularly among more highly-motivated and successful students, may have serious negative consequences. They present a number of strategies designed to help reduce both causes and consequences associated with academic stress and improve students' mental and…

  12. A Helping Hand.

    ERIC Educational Resources Information Center

    Renner, Jason M.

    2000-01-01

    Discusses how designing a hand washing-friendly environment can help to reduce the spread of germs in school restrooms. Use of electronic faucets, surface risk management, traffic flow, and user- friendly hand washing systems that are convenient and maximally hygienic are examined. (GR)

  13. Self-Help Experiences

    ERIC Educational Resources Information Center

    Woody, Robert H.

    1973-01-01

    The author believes that there is a distinct need for professionals to become competent in providing materials for self-help lay efforts. Colleges and universities must provide for the facilitation of personal growth through self administered procedures by either a clinical approach (in counseling centers) or a didactic one (in classes as, for…

  14. Sulforaphane inhibits cancer stem-like cell properties and cisplatin resistance through miR-214-mediated downregulation of c-MYC in non-small cell lung cancer

    PubMed Central

    Wu, Yue; Li, Lin-Lin; Liu, Ying; Miao, Xiao-Bo; Liu, Qiu-Zhen; Yao, Kai-Tai; Xiao, Guang-Hui

    2017-01-01

    We herein report that sulforaphane (SFN), a potent anti-cancer and well-tolerated dietary compound, inhibits cancer stem-like cell (CSC) properties and enhances therapeutic efficacy of cisplatin in human non-small cell lung cancer (NSCLC). SFN exerted these functions through upregulation of miR-214, which in turn targets the coding region of c-MYC. This finding was further corroborated by our observations that plasmid or lentiviral vector-mediated expression of 3'UTR-less c-MYC cDNA and cisplatin- or doxorubicin-induced endogenous c-MYC accumulation was similarly suppressed by either SFN or miR-214. Further, we showed that the reported inhibitory effects of SFN on β-catenin are also mediated by miR-214. SFN/miR-214 signaling inhibited CSC properties and enhanced the cytotoxicity of chemotherapeutic drugs in vitro. Experiments with nude mice carrying xenograft tumors showed that SFN sensitized NSCLC cells to cisplatin's efficacy, which is accompanied by inhibition of cisplatin-induced c-MYC accumulation in tumor tissues. Our results provided strong evidence and mechanisms to support consideration of SFN or synthetic derivatives as a therapeutic agent in combination with cisplatin for the treatment of patients with NSCLC and, potentially, other types of c-MYC-addicted tumors. PMID:28076844

  15. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells

    PubMed Central

    Wang, Hai; Agarwal, Pranay; Zhao, Shuting; Xu, Ronald X.; Yu, Jianhua; Lu, Xiongbin; He, Xiaoming

    2016-01-01

    Dual responsive nanoparticles are developed for co-delivery of multiple anticancer drugs to target the drug resistance mechanisms of cancer stem-like cells (CSCs). The nanoparticles consist of four polymers approved by the Food and Drug Administration (FDA) for medical use: Poly(D,L-lactide-co-glycolide) (PLGA), Pluronic F127 (PF127), chitosan, and hyaluronic acid (HA). By combining PLGA and PF127 together, more stable and uniform-sized nanoparticles can be obtained than using PLGA or PF127 alone. The HA is used for not only actively targeting CSCs to reduce their drug resistance due to dormancy (i.e., slow metabolism), but also replacing the commonly used poly(vinyl alcohol) as a stabilizing agent to synthesize the nanoparticles using the double-emulsion approach and to allow for acidic pH-triggered drug release and thermal responsiveness. Besides minimizing drug efflux from CSCs, the nanoparticles encapsulated with doxorubicin hydrochloride (DOX, hydrophilic) and irinotecan (CPT, hydrophobic) to inhibit the activity of topoisomerases II and I, respectively, can fight against the CSC drug resistance associated with their enhanced DNA repair and anti-apoptosis. Ultimately, the two drugs-laden nanoparticles can be used to efficiently destroy the CSCs both in vitro and in vivo with up to ~500 times of enhancement compared to the simple mixture of the two drugs. PMID:26344365

  16. Thyroid cancer - medullary carcinoma

    MedlinePlus

    Thyroid - medullary carcinoma; Cancer - thyroid (medullary carcinoma); MTC; Thyroid nodule - medullary ... in children and adults. Unlike other types of thyroid cancer, MTC is less likely to be caused by ...

  17. Hepatocellular carcinoma.

    PubMed

    Tang, Z Y

    2000-10-01

    Hepatocellular carcinoma (HCC) has ranked second in cancer mortality in China since the 1990s and is increasing in frequency among males in many countries. Hepatitis B and C viruses, aflatoxin and algal toxin in the contaminated drinking water remain major aetiological factors and hepatitis G virus and transfusion-transmitted virus can not be excluded. A prospective randomized control trial screening for HCC in a high-risk population using alpha fetoprotein (AFP) and ultrasonography has demonstrated a decrease in HCC mortality. Rapidly progressing medical imaging has continuously contributed to the improving treatment results. Surgical resection still plays a major role in influencing prognosis of HCC. Studies on recurrence and metastasis after curative resection have become a key issue for further improvement of the surgical outcome. Regional cancer therapies are progressing rapidly, based on the advances in early diagnosis. The advantages and disadvantages of these are noted. Multimodality combination and sequential treatment has been accepted as an important approach for unresectable HCC and cytoreduction and sequential resection have attracted attention. Conformal radiotherapy has shown important potential for HCC treatment. Intra-arterial chemotherapy has been repeatedly proved effective; however, systemic chemotherapy for HCC remains disappointing. The effects of tamoxifen are questionable, whereas alpha-interferon has been shown to have significant potential, particularly in prevention of recurrence. All of these treatments have resulted in continuing improvement of HCC prognosis in some centres.

  18. Helping children talk.

    PubMed

    Day, L

    1998-01-01

    Many children and young people living in London are affected by HIV. Most such children come from families from sub-Saharan Africa. Some HIV-positive parents have died, some are ill, and some are well. Some older children know that their parents are infected with HIV, but most children are unaware. To help these children understand their situations, children with a parent or parents who have died or are very sick are invited to 6 half-days of storytelling and play, led by a family counselor and someone who uses drama. Trained volunteers come from local AIDS organizations. The sessions vary depending upon what the children choose to discuss. The adults' role is to help the children begin to reflect upon their feelings in a way which is easy for them to express. Sessions usually begin with the creation of a story using a toy animal, after which children subsequently act out the imaginary family in different ways.

  19. Helping pregnant teenagers.

    PubMed

    Bluestein, D; Starling, M E

    1994-08-01

    Teenagers who are pregnant face many difficult issues, and counseling by physicians can be an important source of help. We suggest guidelines for this counseling, beginning with a review of the scope and consequences of adolescent pregnancy. Communication strategies should be aimed at building rapport with techniques such as maintaining confidentiality, avoiding judgmental stances, and gearing communication to cognitive maturity. Techniques for exploring family relationships are useful because these relationships are key influences on subsequent decisions and behaviors. We discuss topics related to abortion and childbearing, such as safety, facilitation of balanced decision making, the use of prenatal care, and the formulation of long-term plans. Physicians who can effectively discuss these topics can help pregnant teenagers make informed decisions and improve their prospects for the future.

  20. Helping Iraqis Rebuild Iraq

    DTIC Science & Technology

    2003-09-01

    For example, the task force hired several former plant workers to fix the water pumps and generators to a water treatment plant in the town of Abu...Charlie Company, 223d Engineer Battalion (Task Force Knight), Mississippi National Guard, was able to put his civilian water treatment plant expertise...to use and help negotiate the purchase of parts that brought the water treatment plant to full operation. In addition, personnel from the 14th

  1. Nonfunctioning parathyroid carcinoma

    SciTech Connect

    Klink, B.K.; Karulf, R.E.; Maimon, W.N.; Peoples, J.B. )

    1991-07-01

    Parathyroid carcinoma is a rare clinical entity accounting for only 4 per cent of all cases of parathyroid neoplasia. Nonfunctioning parathyroid carcinoma is even rarer. Previously, virtually all patients with these lesions were treated for a nonspecific neck mass. However, in the present case, a preoperative diagnosis of nonfunctioning parathyroid carcinoma was made based on the technetium pertechnetate/thallium 201 subtraction scan. The authors report on the 14th case of nonfunctioning parathyroid carcinoma, a review of the literature, and guidelines for the preoperative and operative evaluation of neck masses suspected to be parathyroid carcinoma.22 references.

  2. Information Center Help Desk

    DTIC Science & Technology

    1991-09-01

    UsAISEC AD-A268 157 US Army Information Systems Engineering Command Fort Huachuca, AZ 85613-5300 U.S. ARMY INSTITUTE FOR RESEARCH IN MANAGEMENT...performs the functions of an IC servicing 15 other ICs within its command . It does not service end users at all. This IC develops regulations, policies...entry fields; most commands are function-key driven. There is no context-sensitive help. CA-Netman/MRM Pro uses ’Action Requests’ and ’Memo Files

  3. Mutual help in SETIs

    NASA Astrophysics Data System (ADS)

    Melia, F.; Frisch, D. H.

    1985-06-01

    Techniques to establish communication between earth and extraterrestrial intelligent beings are examined analytically, emphasizing that the success of searches for extraterrestrial intelligence (SETIs) depends on the selection by both sender and receiver of one of a few mutually helpful SETI strategies. An equation for estimating the probability that an SETI will result in the recognition of an ETI signal is developed, and numerical results for various SETI strategies are presented in tables. A minimum approach employing 10 40-m 20-kW dish antennas for a 30-yr SETI in a 2500-light-year disk is proposed.

  4. Squamoid eccrine ductal carcinoma.

    PubMed

    Saraiva, Maria Isabel Ramos; Vieira, Marcella Amaral Horta Barbosa; Portocarrero, Larissa Karine Leite; Fraga, Rafael Cavanellas; Kakizaki, Priscila; Valente, Neusa Yuriko Sakai

    2016-01-01

    Squamoid eccrine ductal carcinoma is an eccrine carcinoma subtype, and only twelve cases have been reported until now. It is a rare tumor and its histopathological diagnosis is difficult. Almost half of patients are misdiagnosed as squamous cell carcinoma by the incisional biopsy. We report the thirteenth case of squamoid eccrine ductal carcinoma. Female patient, 72 years old, in the last 6 months presenting erythematous, keratotic and ulcerated papules on the nose. The incisional biopsy diagnosed squamoid eccrine ductal carcinoma. After excision, histopathology revealed positive margins. A wideningmargins surgery and grafting were performed, which again resulted in positive margins. The patient was then referred for radiotherapy. After 25 sessions, the injury reappeared. After another surgery, although the intraoperative biopsy showed free surgical margins, the product of resection revealed persistent lesion. Distinction between squamoid eccrine ductal carcinoma and squamous cell carcinoma is important because of the more aggressive nature of the first, which requires wider margins surgery to avoid recurrence.

  5. Squamoid eccrine ductal carcinoma*

    PubMed Central

    Saraiva, Maria Isabel Ramos; Vieira, Marcella Amaral Horta Barbosa; Portocarrero, Larissa Karine Leite; Fraga, Rafael Cavanellas; Kakizaki, Priscila; Valente, Neusa Yuriko Sakai

    2016-01-01

    Squamoid eccrine ductal carcinoma is an eccrine carcinoma subtype, and only twelve cases have been reported until now. It is a rare tumor and its histopathological diagnosis is difficult. Almost half of patients are misdiagnosed as squamous cell carcinoma by the incisional biopsy. We report the thirteenth case of squamoid eccrine ductal carcinoma. Female patient, 72 years old, in the last 6 months presenting erythematous, keratotic and ulcerated papules on the nose. The incisional biopsy diagnosed squamoid eccrine ductal carcinoma. After excision, histopathology revealed positive margins. A wideningmargins surgery and grafting were performed, which again resulted in positive margins. The patient was then referred for radiotherapy. After 25 sessions, the injury reappeared. After another surgery, although the intraoperative biopsy showed free surgical margins, the product of resection revealed persistent lesion. Distinction between squamoid eccrine ductal carcinoma and squamous cell carcinoma is important because of the more aggressive nature of the first, which requires wider margins surgery to avoid recurrence. PMID:28099603

  6. Ionizing Radiation Induces Altered Neuronal Differentiation by mGluR1 through PI3K-STAT3 Signaling in C17.2 Mouse Neural Stem-Like Cells.

    PubMed

    Eom, Hyeon Soo; Park, Hae Ran; Jo, Sung Kee; Kim, Young Sang; Moon, Changjong; Kim, Sung-Ho; Jung, Uhee

    2016-01-01

    Most studies of IR effects on neural cells and tissues in the brain are still focused on loss of neural stem cells. On the other hand, the effects of IR on neuronal differentiation and its implication in IR-induced brain damage are not well defined. To investigate the effects of IR on C17.2 mouse neural stem-like cells and mouse primary neural stem cells, neurite outgrowth and expression of neuronal markers and neuronal function-related genes were examined. To understand this process, the signaling pathways including PI3K, STAT3, metabotrophic glutamate receptor 1 (mGluR1) and p53 were investigated. In C17.2 cells, irradiation significantly increased the neurite outgrowth, a morphological hallmark of neuronal differentiation, in a dose-dependent manner. Also, the expression levels of neuronal marker proteins, β-III tubulin were increased by IR. To investigate whether IR-induced differentiation is normal, the expression of neuronal function-related genes including synaptophysin, a synaptic vesicle forming proteins, synaptotagmin1, a calcium ion sensor, γ-aminobutyric acid (GABA) receptors, inhibitory neurotransmitter receptors and glutamate receptors, excitatory neurotransmitter receptors was examined and compared to that of neurotrophin-stimulated differentiation. IR increased the expression of synaptophysin, synaptotagmin1 and GABA receptors mRNA similarly to normal differentiation by stimulation of neurotrophin. Interestingly, the overall expression of glutamate receptors was significantly higher in irradiated group than normal differentiation group, suggesting that the IR-induced neuronal differentiation may cause altered neuronal function in C17.2 cells. Next, the molecular mechanism of the altered neuronal differentiation induced by IR was studied by investigating signaling pathways including p53, mGluR1, STAT3 and PI3K. Increases of neurite outgrowth, neuronal marker and neuronal function-related gene expressions by IR were abolished by inhibition of p53, m

  7. Ionizing Radiation Induces Altered Neuronal Differentiation by mGluR1 through PI3K-STAT3 Signaling in C17.2 Mouse Neural Stem-Like Cells

    PubMed Central

    Eom, Hyeon Soo; Park, Hae Ran; Jo, Sung Kee; Kim, Young Sang; Moon, Changjong; Kim, Sung-Ho; Jung, Uhee

    2016-01-01

    Most studies of IR effects on neural cells and tissues in the brain are still focused on loss of neural stem cells. On the other hand, the effects of IR on neuronal differentiation and its implication in IR-induced brain damage are not well defined. To investigate the effects of IR on C17.2 mouse neural stem-like cells and mouse primary neural stem cells, neurite outgrowth and expression of neuronal markers and neuronal function-related genes were examined. To understand this process, the signaling pathways including PI3K, STAT3, metabotrophic glutamate receptor 1 (mGluR1) and p53 were investigated. In C17.2 cells, irradiation significantly increased the neurite outgrowth, a morphological hallmark of neuronal differentiation, in a dose-dependent manner. Also, the expression levels of neuronal marker proteins, β-III tubulin were increased by IR. To investigate whether IR-induced differentiation is normal, the expression of neuronal function-related genes including synaptophysin, a synaptic vesicle forming proteins, synaptotagmin1, a calcium ion sensor, γ-aminobutyric acid (GABA) receptors, inhibitory neurotransmitter receptors and glutamate receptors, excitatory neurotransmitter receptors was examined and compared to that of neurotrophin-stimulated differentiation. IR increased the expression of synaptophysin, synaptotagmin1 and GABA receptors mRNA similarly to normal differentiation by stimulation of neurotrophin. Interestingly, the overall expression of glutamate receptors was significantly higher in irradiated group than normal differentiation group, suggesting that the IR-induced neuronal differentiation may cause altered neuronal function in C17.2 cells. Next, the molecular mechanism of the altered neuronal differentiation induced by IR was studied by investigating signaling pathways including p53, mGluR1, STAT3 and PI3K. Increases of neurite outgrowth, neuronal marker and neuronal function-related gene expressions by IR were abolished by inhibition of p53, m

  8. Please Help Your Union

    NASA Astrophysics Data System (ADS)

    Killeen, Tim

    2006-03-01

    The continuing success of AGU relies entirely on the volunteer work of members. A major contribution to these efforts comes from the over 40 committees that plan, oversee, and have operational roles in our meetings, publications, finances, elections, awards, education, public information, and public affairs activities. The names of committees are provided in the accompanying text box; their current membership and descriptions can be found on the Web at the AGU site. One of the most important and challenging tasks of the incoming AGU President is to reestablish these committees by appointing hundreds of volunteers. I now solicit your help in staffing these committees. Ideally, participation in these important committees will reflect the overall membership and perspectives of AGU members, so please do consider volunteering yourself. Of course, nominations of others would also be very welcome. I am particularly interested in making sure that the gender balance, age, and geographic representation are appropriate and reflect our changing demographics. Any suggestions you might have will be more helpful if accompanied by a few sentences of background information relevant to the particular committee.

  9. Evaluating hepatocellular carcinoma cell lines for tumour samples using within-sample relative expression orderings of genes.

    PubMed

    Ao, Lu; Guo, You; Song, Xuekun; Guan, Qingzhou; Zheng, Weicheng; Zhang, Jiahui; Huang, Haiyan; Zou, Yi; Guo, Zheng; Wang, Xianlong

    2017-05-08

    Concerns are raised about the representativeness of cell lines for tumours due to the culture environment and misidentification. Liver is a major metastatic destination of many cancers, which might further confuse the origin of hepatocellular carcinoma cell lines. Therefore, it is of crucial importance to understand how well they can represent hepatocellular carcinoma. The HCC-specific gene pairs with highly stable relative expression orderings in more than 99% of hepatocellular carcinoma but with reversed relative expression orderings in at least 99% of one of the six types of cancer, colorectal carcinoma, breast carcinoma, non-small-cell lung cancer, gastric carcinoma, pancreatic carcinoma and ovarian carcinoma, were identified. With the simple majority rule, the HCC-specific relative expression orderings from comparisons with colorectal carcinoma and breast carcinoma could exactly discriminate primary hepatocellular carcinoma samples from both primary colorectal carcinoma and breast carcinoma samples. Especially, they correctly classified more than 90% of liver metastatic samples from colorectal carcinoma and breast carcinoma to their original tumours. Finally, using these HCC-specific relative expression orderings from comparisons with six cancer types, we identified eight of 24 hepatocellular carcinoma cell lines in the Cancer Cell Line Encyclopedia (Huh-7, Huh-1, HepG2, Hep3B, JHH-5, JHH-7, C3A and Alexander cells) that are highly representative of hepatocellular carcinoma. Evaluated with a REOs-based prognostic signature for hepatocellular carcinoma, all these eight cell lines showed the same metastatic properties of the high-risk metastatic hepatocellular carcinoma tissues. Caution should be taken for using hepatocellular carcinoma cell lines. Our results should be helpful to select proper hepatocellular carcinoma cell lines for biological experiments. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. pH-Sensitive Pt Nanocluster Assembly Overcomes Cisplatin Resistance and Heterogeneous Stemness of Hepatocellular Carcinoma

    PubMed Central

    2016-01-01

    Response rates to conventional chemotherapeutics remain unsatisfactory for hepatocellular carcinoma (HCC) due to the high rates of chemoresistance and recurrence. Tumor-initiating cancer stem-like cells (CSLCs) are refractory to chemotherapy, and their enrichment leads to subsequent development of chemoresistance and recurrence. To overcome the chemoresistance and stemness in HCC, we synthesized a Pt nanocluster assembly (Pt-NA) composed of assembled Pt nanoclusters incorporating a pH-sensitive polymer and HCC-targeting peptide. Pt-NA is latent in peripheral blood, readily targets disseminated HCC CSLCs, and disassembles into small Pt nanoclusters in acidic subcellular compartments, eventually inducing damage to DNA. Furthermore, treatment with Pt-NA downregulates a multitude of genes that are vital for the proliferation of HCC. Importantly, CD24+ side population (SP) CSLCs that are resistant to cisplatin are sensitive to Pt-NA, demonstrating the immense potential of Pt-NA for treating chemoresistant HCC. PMID:27924308

  11. Analysis of MicroRNA-mRNA Interactions in Stem-cell Enriched Fraction of Oral Squamous Cell Carcinoma.

    PubMed

    Richard, Vinitha; Raju, Rajesh; Paul, Aswathy Mary; Girijadevi, Reshmi; Santhoshkumar, Thankayyan Retnabai; Pillai, Madhavan Radhakrishna

    2017-03-09

    This study is an integrated analysis of the transcriptome profile, MicroRNA (miRNA) and their experimentally validatedmRNA targets differentially expressed in the tumorigenic stem-like fraction of oral squamous cell carcinoma (OSCC). We had previously reported the co-existence of multiple drug resistant, tumorigenic fractions termed as side population (SP1, SP2 and MP2) and a non-tumorigenic fraction, main population (MP1) in oral cancer. These fractions displayed self-renewal, regeneration potential and expressed known stemness related cell surface markers despite functional differences. Flow cytometrically sorted pure fractions of SP1 and MP1 cells were subjected to differential expression analysis of both mRNAs and microRNAs. A significant upregulation of genes associated with inflammation, cell survival, cell proliferation, drug transporters and antiapoptotic pathways in addition to enhanced transcriptome reprogramming mediated by DNA- histone binding proteins and pattern recognition receptor-mediated signaling was found to play a crucial role in the transformation of non-tumorigenic MP1 fraction to tumorigenic SP1 fraction. We also identified several differentially expressed microRNAs that specifically target genes distinctive of tumorigenic SP1 fraction. MicroRNA mediated downregulation of stemness associated markers CD44, CD147 and upregulation of CD151 may also account for the emergence and persistence of multiple tumorigenic stem cell fractions with varying degrees of malignancy. The phenotypic switch of cancer cells to stem-like OSCC cells mediated by transcriptomal regulation is effectual in addressing biological tumor heterogeneity and subsequent therapeutic resistance leading to minimal residual disease (MRD) condition in oral cancer. Detailed study of the interplay of microRNAs, mRNA and the cellular phases involved in the gradual transition of non-tumorigenic cancer cells to tumorigenic stem-like cells in solid tumors would enable detection and

  12. Xeromammographic screening: is it helping

    SciTech Connect

    Hatton, P.D.; Harford, F.J. Jr.; Sheppard, J.R.

    1984-07-01

    A review is presented of the authors' experience with xeromammography over a five-year period in a setting where there is no protocol for mammographic screening. Only 8.9% of breast carcinomas were found by xeromammography alone, a ratio substantially smaller than that found in large screening programs. While 80% of the occult carcinomas were localized, only 47% of women with palpable disease had localized tumors. It appears that screening mammography is underused, and that more localized tumors would be detected if more mammograms were ordered.

  13. Congress: how to help.

    PubMed

    James, J S

    1995-04-21

    Citizen input, through letters, calls, and visits to government representatives, is needed more urgently now than ever before. The fiscal 1996 budget and appropriations process is expected to provide disappointments. The House has eliminated HOPWA AIDS housing funding for the current year (although it could be reversed in the Senate). Moves are being made toward mandatory HIV testing, with no provisions for counseling or for care. There is no mass movement yet to support AIDS politically, and there is no single or consistent source for connecting with local organizations, or getting the necessary background information, as issues become current. This article lists several national and regional organizations which may be helpful in developing this process. National organizations with an AIDS focus include the National Association of People with AIDS, AIDS Action Council, Treatment Action Network, Mobilization Against AIDS, Center for Women Policy Studies, National Minority AIDS Council, Committee of Ten Thousand, and Mothers' Voice. Gay-focused national organizations include the Log Cabin Republicans and the Human Rights Campaign Fund. Many states have organizations which provide state and regional information on AIDS-related issues. Three major lobbying events include AIDSWATCH 95, Mother's Day Card Campaign, and the California AIDS Budget Lobby Day.

  14. Refiners get petchems help

    SciTech Connect

    Wood, A.; Cornitius, T.

    1997-06-11

    The U.S.Refining Industry is facing hard times. Slow growth, tough environmental regulations, and fierce competition - especially in retail gasoline - have squeezed margins and prompted a series of mergers and acquisitions. The trend has affected the smallest and largest players, and a series of transactions over the past two years has created a new industry lineup. Among the larger companies, Mobil and Amoco are the latest to consider a refining merger. That follows recent plans by Ashland and Marathon to merge their refining businesses, and the decision by Shell, Texaco, and Saudi Aramco to combine some U.S. operations. Many of the leading independent refiners have increased their scale by acquiring refinery capacity. With refining still in the doldrums, more independents are taking a closer look at boosting production of petrochemicals, which offer high growth and, usually, better margins. That is being helped by the shift to refinery processes that favor the increased production of light olefins for alkylation and the removal of aromatics, providing opportunity to extract these materials for the petrochemical market. 5 figs., 3 tabs.

  15. Pilomatrix carcinoma of the clitoris.

    PubMed

    Gazic, Barbara; Sramek-Zatler, Simona; Repse-Fokter, Alenka; Pizem, Joze

    2011-12-01

    Pilomatrix carcinoma, a malignant counterpart of pilomatrixoma, is a rare skin neoplasm composed of basaloid and shadow cells that characterize differentiation toward the hair matrix. The authors present a case of pilomatrix carcinoma of the clitoris, a very unusual location not previously reported. Diagnostic criteria and differential diagnoses are discussed. Pilomatrix carcinoma should be differentiated from benign pilomatrixoma and other carcinomas with shadow cells, including basal cell carcinoma with matrical differentiation and metastases of visceral carcinomas with shadow cells.

  16. Chromophobe cell renal carcinoma.

    PubMed

    Megumi, Y; Nishimura, K

    1998-01-01

    Chromophobe cell renal carcinoma is a recently established subtype of renal cell carcinoma. Herein we report a case of chromophobe cell renal carcinoma in a 67-year-old male patient who occasionally underwent computed tomography. In a microscopic study with hematoxylin and eosin stain, clear eosinophilic cytoplasm, and a moderately atypical nucleus were observed. And it was stained positively by Hale's colloidal iron. Ultrastructurally, the cytoplasm was filled with numerous microvesicles. From these results, this tumor was pathologically diagnosed as chromophobe cell renal carcinoma.

  17. [Radiotherapy of oropharynx carcinoma].

    PubMed

    Servagi Vernat, S; Tochet, F; Vieillevigne, L; Pointreau, Y; Maingon, P; Giraud, P

    2016-09-01

    Indication, doses, technique of radiotherapy and concomitant chemotherapy for oropharynx carcinoma are presented. The recommendations for