Hematite Abundance Map at Echo
NASA Technical Reports Server (NTRS)
2004-01-01
This image shows the hematite abundance map for a portion of the Meridiani Planum rock outcrop near where the Mars Exploration Rover Opportunity landed. It was acquired by the rover's miniature thermal emission spectrometer instrument from a spot called 'Echo.' Portions of the inner crater wall in this region appear rich in hematite (red). The sharp boundary from hematite-rich to hematite-poor (yellow and green) surfaces corresponds to a change in the surface texture and color. The hematite-rich surfaces have ripple-like forms suggesting wind transported hematite to these surfaces. The bounce marks produced during landing at the base of the slope on the left are low in hematite (blue). The hematite grains that originally covered the surface were pushed below the surface by the lander, exposing a soil that has less hematite.
Fine-grained Goethite as a Precursor for Martian Gray Hematite
NASA Technical Reports Server (NTRS)
Glotch, T. D.; Morris, R. V.; Sharp, T. G.; Christensen, P. R.
2003-01-01
Several isolated deposits of gray, crystalline hematite on Mars were discovered using data returned from the Thermal Emission Spectrometer (TES) instrument aboard the Mars Global Surveyor spacecraft. Christensen et al. provided five testable hypotheses regarding the formation of crystalline hematite on Mars: 1) low-temperature precipitation of Fe oxides/hydroxides from standing, oxygenated, Fe-rich water, followed by subsequent alteration to gray hematite, 2) low-temperature leaching of iron-bearing silicates and other materials leaving a Fe-rich residue laterite-style weathering) which is subsequently altered to gray hematite, 3) direct precipitation of gray hematite from Fe-rich circulating fluids of hydrothermal or other origin, 4) formation of gray hematitic surface coatings during weathering, and 5) thermal oxidation of magnetite-rich lavas. Since this initial work, several authors have examined the hematite deposits to determine their formation mechanism. Lane et al. cited the absence of a 390/ cm absorption in the martian hematite spectrum as evidence for platy hematite grains. Their model for the formation of the deposits includes deposition of any of a variety of iron oxides or oxyhydroxides by aqueous or hydrothermal fluids, burial and metamorphosis to gray platy hematite grains, and exhumation in recent times. Based on a detailed geomorphic examination of the Sinus Meridiani region, Hynek et al. conclude that the most likely method of hematite formation was either emplacement by a hydrothermal fluid or oxidation of a magnetite-rich pyroclastic deposit. Similarly, Arvidson et al., favor a model involving the alteration of pyroclastic deposits by aqueous or hydrothermal fluids. Finally, based on geochemical modeling and an examination of Aram Chaos, Catling and Moore favor emplacement by hydrothermal fluids with a minimum temperature of 100 C. Comparison of the average martian hematite spectrum measured by TES to hematite emissivity spectra for a variety of naturally occurring hematites shows small but potentially important differences. In particular, band shapes, positions and relative band emissivities of hematite spectra vary over the range of samples. These differences imply that the natural variability of thermal infrared hematite spectra has not been fully characterized, especially with respect to the reaction pathway and crystal structure.
Hematite at Meridiani Planum and Gusev Crater as identified by the Moessbauer Spectrometer MIMOS II
NASA Astrophysics Data System (ADS)
Klingelhoefer, G.; Morris, R. V.; Rodionov, D.; Schroeder, C.; de Souza, P. A.; Yen, A.; Renz, F.; Wdowiak, T.
2004-12-01
The Moessbauer (MB) spectrometers on the MER rovers Opportunity and Spirit, which landed on Mars in January 2004, have identified the iron-containing mineral hematite (a-Fe2O3) at both landing sites. On Earth, hematite can occur either by itself or with other iron oxides as massive deposits, in veins , and as particles dispersed through a silicate or other matrix material. Hematite particle size can range from nanophase (superparamagnetic) to multidomain and particle shape ranges from equant to acicular to platy. Fine-grained hematite is red in color and is a pigmenting agent. Coarse-grained hematite can be spectrally neutral (gray) at visible wavelengths. Substitutional impurities, particularly Al, are common in hematite. Chemically pure, coarse-grained, and well-crystalline hematite has a magnetic transition (the Morin transition) at ~260 K. Moessbauer spectra, recorded as a function of temperature, provide a way to characterize Martian hematite with respect to some of the physical and chemical characteristics. At Meridiani Planum besides the iron-sulfate mineral jarosite also the Fe-oxide hematite has been identified by the Moessbauer spectrometer, mainly in three distinct types of reservoir: - outcrop matrix material dominated by the mineral jarosite in the MB spectrum, certain basaltic soils, and mm-sized spherules dubbed blueberries. Moessbauer spectra of each reservoir yield a distinct set of hyperfine parameters for hematite, suggesting different degrees of crystallinity and particle size. The hematite found by MB instrument MIMOS II in the outcrop material shows the Morin transition at relatively high temperatures (ca. 250 K) which is an indication of pure and well-crystallized hematite. The source of the hematite in the `Blueberries' as identified by Moessbauer spectroscopy, and also by MiniTES, is not known. These spherules, covering nearly the whole landing site area (Eagle crater, plains, Endurance crater), may be concretions formed in the outcrop involving aqueous processes. They are dispersed throughout the hematite containing jarositic outcrop material. According to Moessbauer analysis the dominating iron-bearing mineral in the spherules is hematite, and jarosite not been detected so far in significant amounts. But there are some places with hematite showing characteristics different from the hematite described above: (1) the soil at B023-HematiteSlope-Hema2 has some blueberries, but the MB did not seem to intercept any. The temperature dependence of its MB parameteres are different from those of blueberries. (2) B049-RasberryNewton-Filling shows a unique Hm MB signature, as well as (3) B051-RealSharksTooth-Enamel1. At Gusev Crater no widespread occurrence of hematite has been detected on the Gusev plains, although minor amounts of hematite were detected in an alteration rind on the rock Mazatzal at the rim of Bonneville crater. At the Columbia Hills, however, the MB instrument did find hematite in significant amounts in highly altered rocks, showing at the same time a significant decrease in the amount of olivine compared to typical basaltic rocks at Gusev crater.
Hematite at Meridiani Planum and Gusev Crater as identified by the Moessbauer Spectrometer MIMOS II
NASA Technical Reports Server (NTRS)
Klingelhoefer, G.; Morris, R. V.; Rodionov, D.; Schroeder, C.; de Souza, P. A.; Yen, A.; Renz, F.; Wdowiak, T.
2006-01-01
The Moessbauer (MB) spectrometers on the MER rovers Opportunity and Spirit, which landed on Mars in January 2004, have identified the iron-containing mineral hematite (a-Fe2O3) at both landing sites. On Earth, hematite can occur either by itself or with other iron oxides as massive deposits, in veins , and as particles dispersed through a silicate or other matrix material. Hematite particle size can range from nanophase (superparamagnetic) to multidomain and particle shape ranges from equant to acicular to platy. Fine-grained hematite is red in color and is a pigmenting agent. Coarse-grained hematite can be spectrally neutral (gray) at visible wavelengths. Substitutional impurities, particularly Al, are common in hematite. Chemically pure, coarse-grained, and well-crystalline hematite has a magnetic transition (the Morin transition) at 260 K. Moessbauer spectra, recorded as a function of temperature, provide a way to characterize Martian hematite with respect to some of the physical and chemical characteristics. At Meridiani Planum besides the iron-sulfate mineral jarosite also the Fe-oxide hematite has been identified by the Moessbauer spectrometer, mainly in three distinct types of reservoir: - outcrop matrix material dominated by the mineral jarosite in the MB spectrum, certain basaltic soils, and mm-sized spherules dubbed blueberries. Moessbauer spectra of each reservoir yield a distinct set of hyperfine parameters for hematite, suggesting different degrees of crystallinity and particle size. The hematite found by MB instrument MIMOS II in the outcrop material shows the Morin transition at relatively high temperatures (ca. 250 K) which is an indication of pure and well-crystallized hematite. The source of the hematite in the Blueberries as identified by Moessbauer spectroscopy, and also by MiniTES, is not known. These spherules, covering nearly the whole landing site area (Eagle crater, plains, Endurance crater), may be concretions formed in the outcrop involving aqueous processes. They are dispersed throughout the hematite containing jarositic outcrop material. According to Moessbauer analysis the dominating iron-bearing mineral in the spherules is hematite, and jarosite not been detected so far in significant amounts. But there are some places with hematite showing characteristics different from the hematite described above: (1) the soil at B023_HematiteSlope_Hema2 has some blueberries, but the MB did not seem to intercept any. The temperature dependence of its MB parameters are different from those of blueberries. (2) B049_RasberryNewton_Filling shows a unique Hm MB signature, as well as (3) B051_RealSharksTooth_Enamel1.
Fergason, Robin L.; Gaddis, Lisa R.; Rogers, A. D.
2014-01-01
The Valles Marineris canyon system on Mars is of enduring scientific interest in part due to the presence of interior mounds that contain extensive layering and water-altered minerals, such as crystalline gray hematite and hydrated sulfates. The presence of hematite and hydrated sulfate minerals is important because their host rock lithologies provide information about past environments that may have supported liquid water and may have been habitable. This work further defines the association and relationship between hematite-bearing materials and low albedo (presumably aeolian) deposits and layered materials, identifies physical characteristics that are strongly correlated with the presence of hematite, and refines hypotheses for the origin and post-emplacement modification (including transport) of these hematite-bearing and associated materials. There are only three regions surrounding Candor Mensa where hematite has been identified, even though morphologic properties are similar throughout the entire mensa. Three possible explanations for why hematite is only exposed in these regions include: (1) the topographic structure of the mensa walls concentrates hematite at the base of the layered deposits, influencing the ability to detect hematite from orbit; (2) the presence of differing amounts of “dark mantling material” and hematite-free erosional sediment; (3) the potential fracturing of the mensa and the influence of these structures on fluid flow and subsequent digenesis. The observations of hematite-bearing materials in this work support the hypothesis that hematite is eroding from a unit in the Candor Mensa interior layered deposits (ILD) and is being concentrated as a lag deposit adjacent to the lower layers of Candor Mensa and at the base in the form of dark aeolian material. Due to the similar geologic context associated with hematite-bearing and ILD materials throughout the Valles Marineris canyon system, the insight gained from studying these materials surrounding Candor Mensa can likely be applicable to similar layered deposits throughout Valles Marineris.
Thermal Sensitivity of MD Hematite: Implication for Magnetic Anomalies
NASA Technical Reports Server (NTRS)
Kletetschka, Gunther; Wasilewski, Peter J.; Taylor, Patrick T.
1999-01-01
Magnetic remanence of crustal rocks can reside in three common rock-forming magnetic minerals: magnetite, pyrrhotite, and hematite. Thermoremanent magnetization (TRM) of magnetite and pyrrhotite is carried mostly by single domain (SD) grains. The TRM of hematite grains, however, is carried mostly by multidomain (NM) grains. This characteristic is illustrated by TRM acquisition curves for hematite of variable grainsizes. The transition between truly NM behavior and tendency towards SD behavior his been established between hematite grainsizes of 0. 1 and 0.05 mm. Coarse grainsize of lower crustal rocks and the large sensitivity of MD hematite grains to acquire TRM indicates that hematite could be a significant contributor to long-wavelength magnetic anomalies.
In-situ deposition of hematite (α-Fe2O3) microcubes on cotton cellulose via hydrothermal method
NASA Astrophysics Data System (ADS)
Gili, M.; Latag, G.; Balela, M.
2018-03-01
Hematite microcubes with truncated edges have been successfully deposited on cotton cellulose via one-step hydrothermal process using anhydrous FeCl3 and glycine as Fe(III) precursor and chelating agent, respectively. The amount of glycine significantly affects the morphology and yield of hematite. The addition of 0.495 g of glycine to 50 ml of 0.1 M FeCl3 solution with 0.400 g of cotton resulted to hematite-deposited cellulose having ∼15% hematite content. The reduction of glycine to 0.247 g increased the amount of hematite on the surface of the cotton cellulose to ∼20% by weight. However, the hematite microcubes have a wide size distribution, with particle size in the range of 0.684 μm to 1.520 μm. Without glycine, hematite cannot be formed in the solution.
Synthesis and characterization of Sn-doped hematite as visible light photocatalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Zhiqin; School of Materials Science and Engineering, Pan Zhihua University, Pan Zhihua 617000; Qin, Mingli, E-mail: qinml@mater.ustb.edu.cn
2016-05-15
Highlights: • Sn-doped hematite nanoparticles are prepared by SCS in one step. • The Sn doping have the ability to inhibit particle growth of hematite. • Sn can enhance visible light harvesting and e{sup −}/h{sup +} separation. • Sn-doped hematite degrades MB under visible light effectively. • The products with 5 mol% Sn have the highest photocatalytic activity. - Abstract: Sn-doped hematite nanoparticles are prepared by solution combustion synthesis. The products are characterized with various analytical and spectroscopic techniques to determine their structural, morphological, light absorption and photocatalytic properties. The results reveal that all the samples consist of nanocrystalline hematitemore » with mesoporous structures, and Sn has the ability to inhibit the growth of hematite particle. Compared to pure hematite, the doped hematite samples with appropriate amount of Sn show better activities for degradation of methylene blue under visible light irradiation. The highest activity is observed for 5% Sn doped hematite and this product has long-term stability and no selectivity for dye degradation. The enhanced performance of 5% Sn doped hematite is ascribed to the smaller particle size, increased ability to absorb in visible light, efficient charge separation as well as improved e{sup −} transfer associated with the effects of appropriate amount of Sn doped sample.« less
Compositional Constraints on Hematite-Rich Spherule (Blueberry) Formation at Meridiani Planum, Mars
NASA Technical Reports Server (NTRS)
Schneider, A. L.; Mittlefehldt, D. W.; Gellert, R.; Jolliff, B.
2007-01-01
Meridiani Planum was chosen as the landing site for the Mars Exploration Rover Opportunity partially based on Mars Global Surveyor Thermal Emission Spectrometer data indicating an abundance of hematite. Hematite often forms through processes that involve water, so the site was a promising one to determine whether conditions on Mars were ever suitable for life. Opportunity struck pay dirt; it s Miniature Thermal Emission Spectrometer (Mini-TES) and Mossbauer Spectrometer (MB) confirmed the presence of hematite in sulfate-rich sedimentary beds and in lag deposits. Meridiani Planum rocks contain three main components: silicate phases, sulfate and possibly chloride salts, and ferric oxide phases such as hematite. Primary igneous phases are at low abundance despite the basaltic origin of the protoliths. Jarosite, an alkali ferric sulfate, was identified by Mossbauer. Some of the hematite is contained in the spherules, and some resides in finer grains in outcrops. Mossbauer and Mini-TES data indicate that hematite is a dominant constituent of the spherules. Panoramic Camera (Pancam) and Microscopic Imager (MI) images of spherule interiors show that hematite is present throughout. The exact composition of the spherules is unknown. Mini-TES only identifies a hematite signature in the spherules; any other constituents have an upper limit of 5-10% .The MB data are consistent with the spherules being composed of only hematite.
The nature of hematite depression with corn starch in the reverse flotation of iron ore.
Shrimali, Kaustubh; Atluri, Venkata; Wang, Yan; Bacchuwar, Sanket; Wang, Xuming; Miller, Jan D
2018-08-15
The function of corn starch and the significance of the order of addition of corn starch and mono ether amine in the reverse flotation of iron ore has been investigated. Understanding hematite depression with starch and the corresponding hydrophilic state involves consideration of adsorption with amine as well as flocculation of fine hematite. Captive bubble contact angle and micro-flotation experiments indicated that amine has an affinity towards both hematite and quartz, and that the role of starch is to hinder the adsorption of amine at the hematite surface so that flotation is inhibited. Micro-flotation results confirmed that quartz does not have affinity towards starch at pH 10.5. In addition to competitive adsorption, flocculation of fine hematite occurs and images from high resolution X-ray computed tomography (HRXCT) and cryo-SEM reveal further detail regarding floc structure. These results provide substantial evidence that the fine hematite particles are flocculated in the presence of corn starch, and flocculation is dependent on the particle size of hematite, with greater flocculation for finer particles. Thus, starch is playing a dual role in the reverse flotation of iron ore, acting as a depressant by hindering amine adsorption at the hematite surface in order to maintain the hydrophilic surface state of hematite, and acting as a flocculant to aggregate fine hematite particles, which if not flocculated, could diminish the flotation separation efficiency by being transported to the froth phase during reverse flotation. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Calzolari, Gabriele; Rossetti, Federico; Ault, Alexis K.; Lucci, Federico; Olivetti, Valerio; Nozaem, Reza
2018-03-01
The Kuh-e-Faghan strike-slip fault system (KFF), located to the northern edge of the Lut Block in central Iran, developed through a Neogene-Quaternary pulsed history of eastward fault propagation and fault-related exhumation. This system is a consequence of the residual stresses transmitted from the Arabia-Eurasia convergent plate boundary. Here we integrate structural and textural analysis with new and previously published apatite fission-track (AFT) and apatite (U-Th)/He (apatite He) results, chlorite thermomentry, and hematite (U-Th)/He data from hematite-coated brittle fault surfaces to constrain the timing of tectonic activity and refine patterns of late Miocene-Pliocene burial and exhumation associated with the propagation of the KFF. Twenty-nine hematite (U-Th)/He (hematite He) dates from three striated hematite coated slip surfaces from the KFF fault core and damage zone yield individual dates from 12-2 Ma. Petrographic analysis and chlorite thermometry of a polyphase, fossil fluid system in the KFF fault core document that fluid circulation and mineralization transitioned from a closed system characterized by pressure solution and calcite growth to an open system characterized by hot hydrothermal (T = 239 ± 10 °C) fluids and hematite formation. Hematite microtextures and grain size analysis reveal primary and secondary syntectonic hematite fabrics, no evidence of hematite comminution and similar hematite He closure temperatures ( 60-85 °C) in each sample. Integration of these results with thermal history modeling of AFT and apatite He data shows that KFF activity in the late Miocene is characterized by an early stage of fault nucleation, fluid circulation, hematite mineralization, and eastward propagation not associated with vertical movement that lasted from 12 to 7 Ma. Hematite He, AFT, and apatite He data track a second phase of fault system activity involving fault-related exhumation initiating at 7 Ma and continuing until present time. Our new data constrain the onset of the recognized Late Miocene-Pliocene tectonic reorganization in north-central Iran.
Effect of magnetic starch on the clarification of hematite tailings wastewater
NASA Astrophysics Data System (ADS)
Yue, Tao; Wu, Xiqing
2018-02-01
The magnetic starch solution, synthesized by mixing the caustic starch, the Fe2+ solution (in some cases containing the Zn2+, Cu2+, Mn2+ or Mg2+ ions) and H2O2 solution, was used as the flocculant to investigate its clarification effect on hematite tailings wastewater. Based on the clarification tests and adsorption analysis it was demonstrated that the magnetic starch produced better clarification effect than the caustic starch, and the adsorption of magnetic starch onto hematite tailings particles was also stronger than the caustic starch. AFM found that the magnetic interaction between magnetic seeds and hematite is characteristic of long range force and greatly strengthens the adsorption of magnetic seeds onto fine hematite for agglomeration. FTIR indicates the starch adsorbed onto the surfaces of hematite and magnetic seeds, thus acting as the bridging between hematite particles and magnetic seeds, resulting in an intensified coverage of the starch onto hematite and positive action in the clarification.
Characterization of hematite nanoparticles synthesized via two different pathways
NASA Astrophysics Data System (ADS)
Das, Soumya; Hendry, M. Jim
2014-08-01
Hematite is one of the most common and thermodynamically stable iron oxides found in both natural and anthropogenic systems. Owing to its ubiquity, stability, moderate specific surface area, and ability to sequester metals and metalloids from aquatic systems, it has been the subject of a large number of adsorption studies published during the past few decades. Although preparation techniques are known to affect the surface morphology of hematite nanoparticles, the effects of aging under environmentally relevant conditions have yet to be tested with respect to surface morphology, surface area, and adsorptive capacity. We prepared hematite via two different pathways and aged it under highly alkaline conditions encountered in many mill tailings settings. Crystal habits and morphologies of the hematite nanoparticles were analyzed via scanning electron microscopy and transmission electron microscopy. X-ray diffraction, Raman spectroscopy, and Brunauer-Emmett-Teller surface area analyses were also conducted on the hematite nanoparticles before and after aging. The hematite synthesized via an Fe(III) salt solution (average particle size 37 nm) was morphologically and structurally different from the hematite synthesized via ferrihydrite aging (average particle size 144 nm). Overall, our data demonstrate that the crystallinity of hematite produced via ferrihydrite transformation is susceptible to morphological alterations/modifications. In contrast, the hematite formed via hydrolysis of an Fe(III) salt solution remains very stable in terms of structure, size, and morphology even under extreme experimental conditions.
Ultrathin planar hematite film for solar photoelectrochemical water splitting
Liu, Dong; Bierman, David M.; Lenert, Andrej; ...
2015-10-08
Hematite holds promise for photoelectrochemical (PEC) water splitting due to its stability, low-cost, abundance and appropriate bandgap. However, it suffers from a mismatch between the hole diffusion length and light penetration length. We have theoretically designed and characterized an ultrathin planar hematite/silver nanohole array/silver substrate photoanode. Due to the supported destructive interference and surface plasmon resonance, photons are efficiently absorbed in an ultrathin hematite film. In conclusion, compared with ultrathin hematite photoanodes with nanophotonic structures, this photoanode has comparable photon absorption but with intrinsically lower recombination losses due to its planar structure and promises to exceed the state-of-the-art photocurrent ofmore » hematite photoanodes.« less
The TES Hematite-Rich Region in Sinus Meridiani: A Proposed Landing Site for the 2003 Rover
NASA Technical Reports Server (NTRS)
Christensen, Philip R.; Bandfield, Joshua; Hamilton, Victoria; Ruff, Steven; Morris, Richard; Lane, Melissa; Malin, Michael
2001-01-01
The Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) mission has identified an accumulation of crystalline hematite (alpha-Fe2O3) that covers an area with very sharp boundaries approximately 350 by 750 km in size centered near 2 S latitude between 0 and 8 W longitude (Sinus Meridiani). The depth and shape of the hematite fundamental bands in the TES spectra show that the hematite is relatively coarse grained (greater than 5-10 micrometers). The spectrally-derived areal abundance of hematite varies with particle size from approximately 10% for particles greater than 30 micrometers in diameter to 40-60% for unpacked 10 micrometer powders. The hematite in Sinus Meridiani is thus distinct from the fine-grained (diameter less than 5-10 micrometers), red, crystalline hematite considered, on the basis of visible and near-IR data, to be a minor spectral component in Martian bright regions. A global map of the hematite abundance has been constructed using TES data from the MGS mapping mission.
NASA Astrophysics Data System (ADS)
Liu, Kan; Wang, Hongyan; Wu, Quanping; Zhao, Jun; Sun, Zhe; Xue, Song
2015-06-01
A thin film of α-Fe2O3 on FTO substrate has been synthesized from hydrothermal process in an aqueous solution of FeCl3 and Na2HPO4. A nanocube structure of α-Fe2O3 is observed within the formed hematite films and coated with phosphate ions on the surface. For comparison, another phosphate modified hematite film has been prepared by soaking the bare hematite film in Na2HPO4 solution. A negative electrostatic field can be built up on the surface of both phosphate modified hematite which will promote charge separation and extraction of photoexcited holes to the electrode surface. It is found that different types of phosphate complex exist in the hematite films, which has been determined by the isoelectric point (IEP) of the hematite films, and consequently influences the formation and strength of the electrostatic field. The effects of phosphate ions on the morphology, surface characteristics and the photoelectrochemical properties of the hematite thin films are investigated and the mechanism is proposed.
NASA Astrophysics Data System (ADS)
Lucey, Paul G.; Trang, David; Johnson, Jeffrey R.; Glotch, Timothy D.
2018-01-01
Several studies have detected the presence of nanophase ferric oxide, such as nanophase hematite, across the martian surface through spacecraft and rover data. In this study, we used the radiative transfer method to detect and quantify the abundance of these nanophase particles. Because the visible/near-infrared spectral characteristics of hematite > 10 nm in size are different from nanophase hematite < 10 nm, there are not any adequate optical constants of nanophase hematite to study visible to near-infrared rover/spacecraft data of the martian surface. Consequently, we found that radiative transfer models based upon the optical constants of crystalline hematite are unable to reproduce laboratory spectra of nanophase hematite. In order to match the model spectra to the laboratory spectra, we developed a new set of optical constants of nanophase hematite in the visible and near-infrared and found that radiative transfer models based upon these optical constants consistently model the laboratory spectra. We applied our model to the passive bidirectional reflectance spectra data from the Chemistry and Camera (ChemCam) instrument onboard the Mars Science Laboratory rover, Curiosity. After modeling six spectra representing different major units identified during the first year of rover operations, we found that the nanophase hematite abundance was no more than 4 wt%.
Morphology and Doping Engineering of Sn-Doped Hematite Nanowire Photoanodes.
Li, Mingyang; Yang, Yi; Ling, Yichuan; Qiu, Weitao; Wang, Fuxin; Liu, Tianyu; Song, Yu; Liu, Xiaoxia; Fang, Pingping; Tong, Yexiang; Li, Yat
2017-04-12
High-temperature activation has been commonly used to boost the photoelectrochemical (PEC) performance of hematite nanowires for water oxidation, by inducing Sn diffusion from fluorine-doped tin oxide (FTO) substrate into hematite. Yet, hematite nanowires thermally annealed at high temperature suffer from two major drawbacks that negatively affect their performance. First, the structural deformation reduces light absorption capability of nanowire. Second, this "passive" doping method leads to nonuniform distribution of Sn dopant in nanowire and limits the Sn doping concentration. Both factors impair the electrochemical properties of hematite nanowire. Here we demonstrate a silica encapsulation method that is able to simultaneously retain the hematite nanowire morphology even after high-temperature calcination at 800 °C and improve the concentration and uniformity of dopant distribution along the nanowire growth axis. The capability of retaining nanowire morphology allows tuning the nanowire length for optimal light absorption. Uniform distribution of Sn doping enhances the donor density and charge transport of hematite nanowire. The morphology and doping engineered hematite nanowire photoanode decorated with a cobalt oxide-based oxygen evolution reaction (OER) catalyst achieves an outstanding photocurrent density of 2.2 mA cm -2 at 0.23 V vs Ag/AgCl. This work provides important insights on how the morphology and doping uniformity of hematite photoanodes affect their PEC performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ioannou, A.; Dimirkou, A.
1997-08-01
The constant capacitance model was used to describe phosphate adsorption on hematite, kaolinite, and a kaolinite-hematite system (k-h). The model assumes a ligand exchange mechanism and considers the charge on both adsorbate and adsorbent. The model is shown to provide a quantitative description of phosphate adsorption on these, including the effect of varying pH values. The computer program Ma-Za 2, a program that fits equilibrium constants to experimental data using an optimization technique, was used to obtain optimal values for the anion surface complexation constants on hematite, kaolinite, and a kaolinite-hematite system, while the PC program Ma-Za 1 in Q-Basicmore » language was used for the application of the constant capacitance model. The model represented adsorption of phosphate anions well over the entire pH range studied (3.8--9.0). The main advantage of the model is its ability to represent changes in anion adsorption occurring with changes in pH. Extension of the model to describe phosphate adsorption in a mixed system, such as the kaolinite-hematite system, using the surface protonation-dissociation constant of hematite was qualitatively successful. In mixed system the model reproduced the shape of the adsorption isotherms well over the pH range 3.8--9.0. However, phosphate adsorption was overestimated. The hematite and the kaolinite-hematite system were synthesized and identified by X-ray, NMR, and FT-IR spectroscopy.« less
A Case for Hydrothermal Gray Hematite in Aram Chaos
NASA Technical Reports Server (NTRS)
Catling, D. C.; Moore, J. M.
2003-01-01
The Thermal Emission Spectrometer (TES) on Mars Global Surveyor has detected deposits of coarsegrained, gray crystalline hematite in Sinus Meridiani, Aram Chaos, and Vallis Marineris [1]. Detailed features in the hematite spectral signature of the Sinus Meridiani region show that the spectrum is consistent with emission dominated by crystal c-faces of hematite, implying that the hematite is specular [2]. Gray specular hematite (also known as specularite ) is a particular gray crystalline form that has intergrown, hexagonal plates with a silvery metallic luster. We believe that the key to the origin of specularite is that it requires crystallization at temperatures in excess of about 100 C. In reviewing the occurrence of gray hematite on Earth, we find no exceptions to this warm temperature requirement [3]. Thermal crystallization on Mars could occur (1) as diagenesis at a depth of a few kilometers of sediments originally formed in lowtemperature waters, or (2) as direct precipitation from hydrothermal solution. Aram Chaos has unique chaotic terrain that offers more clues to the formation of the hematite than the relatively featureless flat terrain (as seen from orbit) of Sinus Meridiani. Aram Chaos provides the opportunity to look at a combination of TES data, Mars Orbiter Camera images, and Mars Orbiter Laser Altimeter (MOLA) topography. This combination of data suggests that high concentrations of hematite were formed in planar strata and have since been exposed by erosion of an overlying light-toned, caprock. Lesser concentrations of hematite are found adjacent to these strata at lower elevations, which we interpret as perhaps a lag deposit. The topography and the collapsed nature of the chaotic terrain favor a hydrothermally charged aquifer as the original setting where the hematite formed. An alternative sedimentary origin requires post-depositional burial to a depth of 3-5 km to induce thermally driven recrystallization of fine-grained iron oxides to coarse-grained hematite.
NASA Technical Reports Server (NTRS)
2004-01-01
This hematite abundance index map helps geologists choose hematite-rich locations to visit around Opportunity's landing site. Blue dots equal areas low in hematite and red dots equal areas high in hematite.
Why Hematite Geologists are eager to reach the hematite-rich area in the upper left to closely examine the soil, which may reveal secrets about how the hematite got to this location. Knowing how the hematite on Mars was formed may help scientists characterize the past environment and determine whether that environment provided favorable conditions for life.The Plan Over the next few sols, engineers and scientists plan to drive Opportunity to the hematite-rich area then attempt a 'pre-trench' sequence, taking measurements with the Moessbauer spectrometer, alpha particle X-ray spectrometer and microscopic imager. Next, the plan is to trench the hematite rich area by spinning one wheel in place to 'dig' a shallow hole. Finally, scientists will aim the instrument arm back at the same area where it pre-trenched to get post-trench data with the same instruments to compare and contrast the levels of hematite and revel how deep the hematite lays in the dirt.Index Map Details The hematite abundance index map was created using data from the miniature thermal emission instrument. The first layer is a mosaic of panoramic camera images taken prior to egress, when Opportunity was still on the lander. The colored dots represent data collected by the miniature thermal emission spectrometer on sol 11, after Opportunity had rolled off of the lander and the rover was located at the center of the blue semi-circle.The spectrometer is located on the panoramic camera mast. On sol 11, it took a low-angle 180-degree panorama of the area in front of the rover, indicated by the blue shaded dots. The instrument then raised the angle of its field of view a few degrees higher to sweep around behind the rover, indicated by the red and yellow dots offset at the far sides of the image.JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Exploration Rover project for NASA's Office of Space Science, Washington, D.C.NASA Astrophysics Data System (ADS)
Hiranuma, N.; Hoffmann, N.; Kiselev, A.; Dreyer, A.; Zhang, K.; Kulkarni, G.; Koop, T.; Möhler, O.
2014-03-01
In this paper, the effect of the morphological modification of aerosol particles with respect to heterogeneous ice nucleation is comprehensively investigated for laboratory-generated hematite particles as a model substrate for atmospheric dust particles. The surface-area-scaled ice nucleation efficiencies of monodisperse cubic hematite particles and milled hematite particles were measured with a series of expansion cooling experiments using the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud simulation chamber. Complementary offline characterization of physico-chemical properties of both hematite subsets were also carried out with scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, dynamic light scattering (DLS), and an electro-kinetic particle charge detector to further constrain droplet-freezing measurements of hematite particles. Additionally, an empirical parameterization derived from our laboratory measurements was implemented in the single-column version of the Community Atmospheric Model version 5 (CAM5) to investigate the model sensitivity in simulated ice crystal number concentration on different ice nucleation efficiencies. From an experimental perspective, our results show that the immersion mode ice nucleation efficiency of milled hematite particles is almost an order of magnitude higher at -35.2 °C < T < -33.5 °C than that of the cubic hematite particles, indicating a substantial effect of morphological irregularities on immersion mode freezing. Our modeling results similarly show that the increased droplet-freezing rates of milled hematite particles lead to about one order magnitude higher ice crystal number in the upper troposphere than cubic hematite particles. Overall, our results suggest that the surface irregularities and associated active sites lead to greater ice activation through droplet freezing.
Nanostructured hematite for photoelectrochemical water splitting
NASA Astrophysics Data System (ADS)
Ling, Yichuan
Solar water splitting is an environmentally friendly reaction of producing hydrogen gas. Since Honda and Fujishima first demonstrated solar water splitting in 1972 by using semiconductor titanium dioxide (TiO2) as photoanode in a photoelectrochemical (PEC) cell, extensive efforts have been invested into improving the solar-to-hydrogen (STH) conversion efficiency and lower the production cost of photoelectrochemical devices. In the last few years, hematite (alpha-Fe2O3) nanostructures have been extensively studied as photoanodes for PEC water splitting. Although nanostructured hematite can improve its photoelectrochemical water splitting performance to some extent, by increasing active sites for water oxidation and shortening photogenerated hole path length to semiconductor/electrolyte interface, the photoactivity of pristine hematite nanostructures is still limited by a number of factors, such as poor electrical conductivities and slow oxygen evolution reaction kinetics. Previous studies have shown that tin (Sn) as an n-type dopant can substantially enhance the photoactivity of hematite photoanodes by modifying their optical and electrical properties. In this thesis, I will first demonstrate an unintentional Sn-doping method via high temperature annealing of hematite nanowires grown on fluorine-doped tin oxide (FTO) substrate to enhance the donor density. In addition to introducing extrinsic dopants into semiconductors, the carrier densities of hematite can also be enhanced by creating intrinsic defects. Oxygen vacancies function as shallow donors for a number of hematite. In this regard, I have investigated the influence of oxygen content on thermal decomposition of FeOOH to induce oxygen vacancies in hematite. In the end, I have studied low temperature activation of hematite nanostructures.
Hisatomi, Takashi; Brillet, Jérémie; Cornuz, Maurin; Le Formal, Florian; Tétreault, Nicolas; Sivula, Kevin; Grätzel, Michael
2012-01-01
Hematite photoanodes for photoelectrochemical (PEC) water splitting are often fabricated as extremely-thin films to minimize charge recombination because of the short diffusion lengths of photoexcited carriers. However, poor crystallinity caused by structural interaction with a substrate negates the potential of ultrathin hematite photoanodes. This study demonstrates that ultrathin Ga2O3 underlayers, which were deposited on conducting substrates prior to hematite layers by atomic layer deposition, served as an isomorphic (corundum-type) structural template for ultrathin hematite and improved the photocurrent onset of PEC water splitting by 0.2 V. The benefit from Ga2O3 underlayers was most pronounced when the thickness of the underlayer was approximately 2 nm. Thinner underlayers did not work effectively as a template presumably because of insufficient crystallinity of the underlayer, while thicker ones diminished the PEC performance of hematite because the underlayer prevented electron injection from hematite to a conductive substrate due to the large conduction band offset. The enhancement of PEC performance by a Ga2O3 underlayer was more significant for thinner hematite layers owing to greater margins for improving the crystallinity of ultrathin hematite. It was confirmed that a Ga2O3 underlayer was applicable to a rough conducting substrate loaded with Sb-doped SnO2 nanoparticles, improving the photocurrent by a factor of 1.4. Accordingly, a Ga2O3 underlayer could push forward the development of host-guest-type nanocomposites consisting of highly-rough substrates and extremely-thin hematite absorbers.
NASA Astrophysics Data System (ADS)
Sexton, M. R.; Elwood Madden, M. E.; Swindle, A. L.; Hamilton, V. E.; Bickmore, B. R.; Elwood Madden, A. S.
2017-04-01
The enigmatic and unexpected occurrence of coarse crystalline (gray) hematite spherules at Terra Meridiani on Mars in association with deposits of jarosite-rich sediments fueled a variety of hypotheses to explain their origin. In this study, we tested the hypothesis that freezing of aqueous hematite nanoparticle suspensions, possibly produced from low-temperature weathering of jarosite-bearing deposits, could produce coarse-grained hematite aggregate spherules. We synthesized four hematite nanoparticle suspensions with a range of sizes and morphologies and performed freezing experiments. All sizes of hematite nanoparticles rapidly aggregate during freezing. Regardless of the size or shape of the initial starting material, they rapidly collect into aggregates that are then too big to push in front of a stable advancing ice front, leading to incohesive masses of particles, rather than solid spherules. We also explored the effects of "seed" silicates, a matrix of sand grains, various concentrations of NaCl and CaCl2, and varying the freezing temperature on hematite nanoparticle aggregation. However, none of these factors resulted in mm-scale spherical aggregates. By comparing our measured freezing rates with empirical and theoretical values from the literature, we conclude that the spherules on Mars could not have been produced through the freezing of aqueous hematite nanoparticle suspensions; ice crystallization front instability disrupts the aggregation process and prevents the formation of mm-scale continuous aggregates.
Influence of Al substitution on magnetism and adsorption properties of hematite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Shanshan; Kang, Feifei; Yang, Xin
2015-08-15
A series of Al-substituted hematite was prepared. The structures and properties of as-prepared samples were characterized by various techniques. The magnetic property of the samples was determined and the adsorption of three dyes Acid Blue 74, Methylene Blue and Phenol Red onto the samples was investigated. The results showed that Al incorporation into the crystal structure of hematite occurs via isomorphous ionic substitution of Al for Fe. With increasing Al content, the particle size of samples decreases, the magnetization increases and the remanent magnetization remains unchanged. The coercivity of the samples increases with Al substitution up to n{sub Al}/n{sub Fe}more » 0.03, and then decreases as Al content further increases. Compared with Al-free hematite, Al-substituted samples exhibit better adsorption ability to all of the three dyes. The adsorption rates of the three dyes on the surface of Al substituted samples depend on the structure of dye, pH and Al content in hematite. - Graphical abstract: Effect of Al on the structure, magnetic properties and adsorption performance of hematite was investigated. - Highlights: • A series of Al-substituted α-Fe{sub 2}O{sub 3} was prepared. • Effect of Al content on the crystal structure and magnetic property of hematite was investigated. • Al-substituted hematite exhibits better adsorption ability than hematite.« less
NASA Astrophysics Data System (ADS)
Li, Dong; Yin, Wan-zhong; Xue, Ji-wei; Yao, Jin; Fu, Ya-feng; Liu, Qi
2017-07-01
The effects of carbonate minerals (dolomite and siderite) on the flotation of hematite using sodium oleate as a collector were investigated through flotation tests, supplemented by dissolution measurements, solution chemistry calculations, zeta-potential measurements, Fourier transform infrared (FTIR) spectroscopic studies, and X-ray photoelectron spectroscopy (XPS) analyses. The results of flotation tests show that the presence of siderite or dolomite reduced the recovery of hematite and that the inhibiting effects of dolomite were stronger. Dissolution measurements, solution chemistry calculations, and flotation tests confirmed that both the cations (Ca2+ and Mg2+) and CO3 2- ions dissolved from dolomite depressed hematite flotation, whereas only the CO3 2- ions dissolved from siderite were responsible for hematite depression. The zeta-potential, FTIR spectroscopic, and XPS analyses indicated that Ca2+, Mg2+, and CO3 2- (HCO3 -) could adsorb onto the hematite surface, thereby hindering the adsorption of sodium oleate, which was the main reason for the inhibiting effects of carbonate minerals on hematite flotation.
Li, Chengcheng; Luo, Zhibin; Wang, Tuo; Gong, Jinlong
2018-05-11
Collecting and storing solar energy to hydrogen fuel through a photo-electrochemical (PEC) cell provides a clean and renewable pathway for future energy demands. Having earth-abundance, low biotoxicity, robustness, and an ideal n-type band position, hematite (α-Fe 2 O 3 ), the most common natural form of iron oxide, has occupied the research hotspot for decades. Here, a close look into recent progress of hematite photoanodes for PEC water splitting is provided. Effective approaches are introduced, such as cocatalysts loading and surface passivation layer deposition, to improve the hematite surface reaction in thermodynamics and kinetics. Second, typical methods for enhancing light absorption and accelerating charge transport in hematite bulk are reviewed, concentrating upon doping and nanostructuring. Third, the back contact between hematite and substrate, which affects interface states and electron transfer, is deliberated. In addition, perspectives on the key challenges and future prospects for the development of hematite photoelectrodes for PEC water splitting are given. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Han, Hongliang; Duan, Dongping; Wang, Xing; Chen, Siming
2014-10-01
This study puts forward a new method to separate phosphorus and iron from high-phosphorus oolitic hematite through iron nuggets process. Firstly, the physical, chemical, and microscopic characteristics of high-phosphorus oolitic hematite are investigated. Then, the reaction mechanisms of high-phosphorus hematite together with feasibility to separating phosphorus and iron by iron nugget process are discussed. Meanwhile, the experiments of high-phosphorus hematite used in rotary hearth furnace iron nugget processes are studied as well. The results indicate that the iron nugget process is a feasible and efficient method for iron and phosphorus separation of high-phosphorus oolitic hematite. The phosphorus content in iron nuggets is relatively low. Through the optimization of process parameters, the lowest of phosphorus in iron nuggets is 0.22 pct, the dephosphorization rate is above 86 pct, and the recovery of Fe is above 85 pct by the iron nugget process. This study aims to provide a theoretical and technical basis for economical and rational use of high-phosphorus oolitic hematite.
Improved flotation performance of hematite fines using citric acid as a dispersant
NASA Astrophysics Data System (ADS)
Luo, Xi-mei; Yin, Wan-zhong; Sun, Chuan-yao; Wang, Nai-ling; Ma, Ying-qiang; Wang, Yun-fan
2016-10-01
In this study, citric acid was used as a dispersant to improve the flotation performance of hematite fines. The effect and mechanism of citric acid on the reverse flotation of hematite fines were investigated by flotation tests, sedimentation experiments, scanning electron microscopy (SEM), zeta-potential measurements, and X-ray photoelectron spectroscopy (XPS). The results of SEM analysis and flotation tests reveal that a strong heterocoagulation in the form of slime coating or coagulation in hematite fine slurry affects the beneficiation of hematite ores by froth flotation. The addition of a small amount of citric acid (less than 300 g/t) favorably affects the reverse flotation of hematite fines by improving particle dispersion. The results of sedimentation experiments, zeta-potential measurements, and XPS measurements demonstrate that citric acid adsorbs onto hematite and quartz surfaces via hydrogen bonding, thereby reducing the zeta potentials of mineral surfaces, strengthening the electrical double-layer repulsion between mineral particles, and dispersing the pulp particles.
Incorporation of Uranium into Hematite during Crystallization from Ferrihydrite
2014-01-01
Ferrihydrite was exposed to U(VI)-containing cement leachate (pH 10.5) and aged to induce crystallization of hematite. A combination of chemical extractions, TEM, and XAS techniques provided the first evidence that adsorbed U(VI) (≈3000 ppm) was incorporated into hematite during ferrihydrite aggregation and the early stages of crystallization, with continued uptake occurring during hematite ripening. Analysis of EXAFS and XANES data indicated that the U(VI) was incorporated into a distorted, octahedrally coordinated site replacing Fe(III). Fitting of the EXAFS showed the uranyl bonds lengthened from 1.81 to 1.87 Å, in contrast to previous studies that have suggested that the uranyl bond is lost altogether upon incorporation into hematite. The results of this study both provide a new mechanistic understanding of uranium incorporation into hematite and define the nature of the bonding environment of uranium within the mineral structure. Immobilization of U(VI) by incorporation into hematite has clear and important implications for limiting uranium migration in natural and engineered environments. PMID:24580024
Hematite mining in the ancient Americas: Mina Primavera, A 2,000 year old Peruvian mine
NASA Astrophysics Data System (ADS)
Vaughn, Kevin J.; Grados, Moises Linares; Eerkens, Jelmer W.; Edwards, Matthew J.
2007-12-01
Mina Primavera, a hematite (Fe2O3) mine located in southern Peru, was exploited beginning approximately 2,000 years ago by two Andean civilizations, the Nasca and Wari. Despite the importance of hematite in the material culture of the ancient Americas, few hematite mines have been reported in the New World literature and none have been reported for the Central Andes. An estimated 3,710 tonnes of hematite were extracted from the mine for over 1,400 years at an average rate of 2.65 tonnes per year, suggesting regular and extensive mining prior to Spanish conquest. The hematite was likely used as a pigment for painting pottery, and the mine demonstrates that iron ores were extracted extensively at an early date in the Americas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phuan, Yi Wen; Chong, Meng Nan, E-mail: Chong.Meng.Nan@monash.edu; Sustainable Water Alliance, Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 46150 Selangor DE
2015-09-15
Highlights: • Nanostructured hematite thin films were synthesized via electrodeposition method. • Effects of annealing on size, grain boundary and PEC properties were examined. • Photocurrents generation was enhanced when the thin films were annealed at 600 °C. • The highest photocurrent density of 1.6 mA/cm{sup 2} at 0.6 V vs Ag/AgCl was achieved. - Abstract: Hematite (α-Fe{sub 2}O{sub 3}) is a promising photoanode material for hydrogen production from photoelectrochemical (PEC) water splitting due to its wide abundance, narrow band-gap energy, efficient light absorption and high chemical stability under aqueous environment. The key challenge to the wider utilisation of nanostructuredmore » hematite-based photoanode in PEC water splitting, however, is limited by its low photo-assisted water oxidation caused by large overpotential in the nominal range of 0.5–0.6 V. The main aim of this study was to enhance the performance of hematite for photo-assisted water oxidation by optimising the annealing temperature used during the synthesis of nanostructured hematite thin films on fluorine-doped tin oxide (FTO)-based photoanodes prepared via the cathodic electrodeposition method. The resultant nanostructured hematite thin films were characterised using field emission-scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), UV-visible spectroscopy and Fourier transform infrared spectroscopy (FTIR) for their elemental composition, average nanocrystallites size and morphology; phase and crystallinity; UV-absorptivity and band gap energy; and the functional groups, respectively. Results showed that the nanostructured hematite thin films possess good ordered nanocrystallites array and high crystallinity after annealing treatment at 400–600 °C. FE-SEM images illustrated an increase in the average hematite nanocrystallites size from 65 nm to 95 nm when the annealing temperature was varied from 400 °C to 600 °C. As the crystallites size increases, the grain boundaries reduce and this suppresses the recombination rate of electron–hole pairs on the nanostructured hematite thin films. As a result, the measured photocurrent densities of nanostructured hematite thin films also increased. The highest measured photocurrent density of 1.6 mA/cm{sup 2} at 0.6 V vs Ag/AgCl in 1 M NaOH electrolyte was achieved for the nanostructured hematite thin film annealed at 600 °C. This study had confirmed that strong interdependencies exist between the average hematite nanocrystallites size and grain boundaries with annealing temperature on the eventual PEC water splitting performance of nanostructured hematite thin films. The annealed hematite thin films at a higher temperature will enhance the nanocrystals growth and thus, suppressing the electron–hole pairs recombination rate, lowering the grain boundary resistance and enabling higher photocurrent flow at the molecular level. As a result, the photocurrent density and thus, the overall PEC water splitting performance of the nanostructured hematite thin films are significantly enhanced.« less
Helium diffusion parameters of hematite from a single-diffusion-domain crystal
NASA Astrophysics Data System (ADS)
Farley, K. A.
2018-06-01
This contribution reports new parameters for helium diffusion in hematite useful for interpretation of cosmogenic 3He and radiogenic 4He chronometry. Fragments of a coarse, euhedral single crystal of hematite from Minas Gerais, Brazil were subjected to bulk step-heating helium diffusion experiments after proton irradiation to make a uniform distribution of 3He. Aliquots of three different grain sizes ranging from ∼300 to ∼700 μm in equivalent-sphere radius yielded helium diffusion activation energies Ea ∼ 170 kJ/mol, very similar to previous estimates for Ea in hematite. Uniquely in this specimen, diffusivity varies with the dimensions of the analyzed fragments in precisely the fashion expected if the diffusion domain corresponds to the physical grain. This contrasts with previous studies that concluded that the analyzed hematites consist of polycrystalline aggregates in which helium migration is governed by the size distribution of the constituent crystallites. These new data permit a direct estimate of the helium diffusivity at infinite temperature for hematite of ln(Do) = -0.66 ± 0.35 in cm2/s. The major implication of the new diffusion parameters is that hematite is very retentive of helium even at very small crystal sizes. For example, a 20 nm radius hematite crystal, at the smallest end of the size range so far described in dated polycrystalline hematite specimens, will retain more than 99% of its ingrown He over 1 Myr at 30 °C, and more than 90% over 100 Myr. Under most conditions, hematite is close to quantitatively helium-retentive on the Earth's surface, simplifying radiogenic and cosmogenic helium dating of this phase. In a system cooling at 10 °C/Myr, the 20 nm hematite crystal has a He closure temperature of ∼70 °C, similar to a typical ∼100 μm apatite crystal. Helium is likely held tightly in hematite owing to its dense hexagonal closest packing structure and absence of migration-enhancing channels. The isostructural minerals corundum and ilmenite are likely to be similarly helium retentive.
Spherulitic (c-axis) Growth for Terrestrial (Mauna Kea, Hawaii) and Martian Hematite "blueberries"
NASA Technical Reports Server (NTRS)
Golden, D. C.; Ming, D. W.; Morris, R. V.
2006-01-01
Hematite concentrations observed by Thermal Emission Spectrometer (TES) onboard Mars Global Surveyor were considered a possible indicator for aqueous processes on Mars. Observations made by Opportunity show that the hematite at Meridiani Planum is present as spherules ( blueberries) and their fragments. The internal structure of the hematite spherules is not discernable at the resolution limit (approx.30 m/pixel) of Opportunity s Microscopic Imager (MI). A terrestrial analog for martian hematite spherules are spherules from hydrothermally altered and sulfate-rich tephra from the summit region of Mauna Kea volcano, Hawaii. The objective of this study is to determine the crystal growth fabric of the Mauna Kea hematite spherules using transmission electron microscopy (TEM) techniques and to relate that crystalline fabric to the observed TES signature of Meridiani Planum "blueberries." TEM analysis of Mauna Kea spherules exhibited a radial growth pattern consisting of "fibrous" hematite with the c-axis of hematite particles aligned along the elongation direction of the hematite fibers. The individual fibers appear to be made of coalesced nano-particles of hematite arranged with their c-axis oriented radially to form a spherical structure. Lattice fringes suggest long-range order across particles and along fibers. According to interpretations of thermal emission spectra for Meridian Planum hematite, the absence of a band at approx. 390/cm implies a geometry where c-face emission dominates. Because the c-face is perpendicular to the c-axis, this is precisely the geometry for the Mauna Kea spherules because the c-axis is aligned parallel to their radial growth direction. Therefore, we conclude as a working hypothesis that the martian spherules also have radial, c-axis growth pattern on a scale that is too small to be detected by the MER MI. Furthermore, by analogy with the Mauna Kea spherules, the martian blueberries could have formed during hydrothermal alteration of basaltic precursors under acid-sulfate conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafsson, Åsa, E-mail: asa.gustafsson@foi.se; Dept of Public Health and Clinical Medicine, Umeå University; Bergström, Ulrika
The aim of this study was to investigate the inflammatory and immunological responses in airways and lung-draining lymph nodes (LDLNs), following lung exposure to iron oxide (hematite) nanoparticles (NPs). The responses to the hematite NPs were evaluated in both healthy non-sensitized mice, and in sensitized mice with an established allergic airway disease. The mice were exposed intratracheally to either hematite NPs or to vehicle (PBS) and the cellular responses were evaluated on days 1, 2, and 7, post-exposure. Exposure to hematite NPs increased the numbers of neutrophils, eosinophils, and lymphocytes in the airways of non-sensitized mice on days 1 andmore » 2 post-exposure; at these time points the number of lymphocytes was also elevated in the LDLNs. In contrast, exposing sensitized mice to hematite NPs induced a rapid and unspecific cellular reduction in the alveolar space on day 1 post-exposure; a similar decrease of lymphocytes was also observed in the LDLN. The results indicate that cells in the airways and in the LDLN of individuals with established airway inflammation undergo cell death when exposed to hematite NPs. A possible explanation for this toxic response is the extensive generation of reactive oxygen species (ROS) in the pro-oxidative environment of inflamed airways. This study demonstrates how sensitized and non-sensitized mice respond differently to hematite NP exposure, and it highlights the importance of including individuals with respiratory disorders when evaluating health effects of inhaled nanomaterials. - Highlights: • Hematite NPs induce differential responses in airways of healthy and allergic mice. • Hematite induced an airway inflammation in healthy mice. • Hematite induced cellular reduction in the alveolus and lymph nodes of allergic mice. • Cell death is possible due to extensive pro-oxidative environment in allergic mice. • It is important to include sensitive individuals when valuing health effects of NPs.« less
NASA Astrophysics Data System (ADS)
Ormö, Jens; Komatsu, Goro; Chan, Marjorie A.; Beitler, Brenda; Parry, William T.
2004-10-01
In order to understand the formation of the few but large, hematite deposits on Mars, comparisons are often made with terrestrial hematite occurrences. In southern Utah, hematite concretions have formed within continental sandstones and are exposed as extensive weathered-out beds. The hematite deposits are linked to geological and geomorphological features such as knobs, buttes, bleached beds, fractures and rings. These terrestrial features are visible in aerial and satellite images, which enables a comparison with similar features occurring extensively in the martian hematite-rich areas. The combination of processes involved in the movement and precipitation of iron in southern Utah can provide new insights in the context of the hematite formation on Mars. Here we present a mapping of the analogue geological and geomorphological features in parts of Meridiani Planum and Aram Chaos. Based on mapping comparisons with the Utah occurrences, we present models for the formation of the martian analogues, as well as a model for iron transport and precipitation on Mars. Following the Utah model, high albedo layers and rings in the mapped area on Mars are due to removal or lack of iron, and precipitation of secondary diagenetic minerals as fluids moved up along fractures and permeable materials. Hematite was precipitated intraformationally where the fluid transporting the reduced iron met oxidizing conditions. Our study shows that certain geological/geomorphological features can be linked to the hematite formation on Mars and that pH differences could suffice for the transport of the iron from an orthopyroxene volcanoclastic source rock. The presence of organic compounds can enhance the iron mobilization and precipitation processes. Continued studies will focus on possible influence of biological activity and/or methane in the formation of the hematite concretions in Utah and on Mars.
NASA Astrophysics Data System (ADS)
Chen, Linfeng; Xie, Jining; Aatre, Kiran R.; Yancey, Justin; Chetan, Sahitya; Srivatsan, Malathi; Varadan, Vijay K.
2011-04-01
This report discusses our work on synthesis of hematite and maghemite nanotubes, analysis of their biocompatibility with pheochromocytoma cells (PC12 cells), and study of their applications in the culture of dorsal root ganglion (DRG) neurons and the delivery of ibuprofen sodium salt (ISS) drug model. Two methods, template-assisted thermal decomposition method and hydrothermal method, were used for synthesizing hematite nanotubes, and maghemite nanotubes were obtained from the synthesized hematite nanotubes by thermal treatment. The crystalline, morphology and magnetic properties of the hematite and maghemite nanotubes were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM), respectively. The biocompatibility of the synthesized hematite nanotubes was confirmed by the survival and differentiation of PC12 cells in the presence of the hematite nanotubes coupled to nerve growth factor (NGF). To study the combined effects of the presence of magnetic nanotubes and external magnetic fields on neurite growth, laminin was coupled to hematite and maghemite nanotubes, and DRG neurons were cultured in the presence of the treated nanotubes with the application of external magnetic fields. It was found that neurons can better tolerate external magnetic fields when magnetic nanotubes were present. Close contacts between nanotubes and filopodia that were observed under SEM showed that the nanotubes and the growing neurites interacted readily. The drug loading and release capabilities of hematite nanotubes synthesized by hydrothermal method were tested by using ibuprofen sodium salt (ISS) as a drug model. Our experimental results indicate that hematite and maghemite nanotubes have good biocompatibility with neurons, could be used in regulating neurite growth, and are promising vehicles for drug delivery.
Xu, Chen-Yang; Li, Jiu-Yu; Xu, Ren-Kou; Hong, Zhi-Neng
2017-03-01
Sorption of organic phosphates-myo-inositol hexakisphosphate (IHP) and glycerol phosphate (GP) and its effects on the early stage of hematite aggregation kinetics were investigated at different pH and electrolyte composition. KH 2 PO 4 (KP) was taken as an inorganic P source for comparison. Results indicated that for all types of P, the sorption amounts decreased with increasing solution pH. Sorption amount of IHP was almost two times that of KP, while those of GP and KP were close. Both organic P and inorganic P interacted with hematite via ligand exchange through their phosphate groups, which conveyed negative charges to mineral surface and significantly decreased the zeta potential of hematite. In Na + solution, critical coagulation concentrations (CCCs) of hematite suspensions increased with increasing P concentration and followed the order of KP < GP < IHP at pH 5.5. Compared with KP, the organic P could more effectively stabilize the hematite suspension not only through increasing the negative charges and electrostatic repulsive force, but also through steric repulsion between P-sorbed hematite nanoparticles. When the pH was increased from 5.5 to 10.0, the CCCs of the hematite suspensions with GP and IHP decreased mainly because of the great reductions in organic P sorption amounts and consequent decreases in electrostatic and steric repulsive forces. However, enhanced aggregation was observed in the presence of IHP at pH 4.5 and above in low Ca 2+ solutions. The precipitation of calcium phytate formed net-like structure, which served as bridges to bind hematite nanoparticles and resulted in enhanced aggregation. These results have important implications for assessing the fate and transport of organic P and hematite nanoparticles in soil and aquatic environments.
Impact of environmental conditions on aggregation kinetics of hematite and goethite nanoparticles
NASA Astrophysics Data System (ADS)
Xu, Chen-yang; Deng, Kai-ying; Li, Jiu-yu; Xu, Ren-kou
2015-10-01
Hematite and goethite nanoparticles were used as model minerals to investigate their aggregation kinetics under soil environmental conditions in the present study. The hydrodynamic diameters of hematite and goethite nanoparticles were 34.4 and 66.3 nm, respectively. The positive surface charges and zeta potential values for goethite were higher than for hematite. The effective diameter for goethite was much larger than for hematite due to anisotropic sticking of needle-shaped goethite during aggregation. Moreover, the critical coagulation concentration (CCC) values of nanoparticles in solutions of NaNO3, NaCl, NaF, and Na2SO4 were 79.2, 75.0, 7.8, and 0.5 mM for hematite and they were 54.7, 62.6, 5.5, and 0.2 mM for goethite, respectively. The disparity of anions in inducing hematite or goethite aggregation lay in the differences in interfacial interactions. NO3 - and Cl- could decrease the zeta potential and enhance aggregation mainly through increasing ionic strength and compressing electric double layers of hematite and goethite nanoparticles. F- and SO4 2- highly destabilized the suspensions of nanoparticles mainly through specific adsorption and then neutralizing the positive surface charges of nanoparticles. Specific adsorption of cations could increase positive surface charges and stabilize hematite and goethite nanoparticles. The Hamaker constants of hematite and goethite nanoparticles were calculated to be 2.87 × 10-20 and 2.29 × 10-20 J-1, respectively. The predicted CCC values based on DLVO theory were consistent well with the experimentally determined CCC values in NaNO3, NaCl, NaF, and Na2SO4 systems, which demonstrated that DLVO theory could successfully predict the aggregation kinetics even when specific adsorption of ions occurred.
NASA Technical Reports Server (NTRS)
Graff, T. G.; Morris, R. V.; Ming, D. W.; Hamilton, J. C.; Adams, M.; Fraeman, A. A.; Arvidson, R. E.; Catalano, J. G.; Mertzman, S. A.
2014-01-01
The Mars Science Laboratory (MSL) rover Curiosity landed in Gale Crater in August 2012 and is currently roving towards the layered central mound known as Mount Sharp [1]. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) hyperspectral data indicate Mount Sharp contains an 5 km stratigraphic sequence including Fe-Mg smectites, hematite, and hydrated sulfates in the lower layers separated by an unconformity from the overlying anhydrous strata [1,2,3]. Hematite was initially detected in CRISM data to occur in the lower sulfate layers on the north side of the mound [2]. [3] further mapped a distinct hematite detection occurring as part of a 200 m wide ridge that extends 6.5 km NE-SW, approximately parallel with the base of Mount Sharp. It is likely a target for in-situ analyses by Curiosity. We document here the occurrence of a stratum of hematite-bearing breccia that is exposed on the Puu Poliahu cinder cone near the summit of Mauna Kea volcano (Hawaii) (Fig.1). The stratum is more resistant to weathering than surrounding material, giving it the appearance of a ridge. The Mauna Kea hematite ridge is thus arguably a potential terrestrial mineralogical and process analog for the Gale Crater hematite ridge. We are acquiring a variety of chemical and mineralogical data on the Mauna Kea samples, with a focus on the chemical and mineralogical information already available or planned for the Gale hematite ridge.
NASA Astrophysics Data System (ADS)
Freitas, Andre L. M.; Souza, Flavio L.
2017-11-01
This work describes the design of a microwave-assisted method using hydrothermal conditions to fabricate pure and Sn-doped hematite photoelectrodes with varied synthesis time and additional thermal treatment under air and N2 atmosphere. The hematite photoelectrode formed under N2 atmosphere, with Sn deposited on its surface—which is represented by material synthesized at 4 h —exhibits the highest performance. Hence, Sn addition followed by high temperature annealing conducted in an oxygen-deficient atmosphere seems to create oxygen vacancies, and to prevent the segregation of dopant to form the SnO2 phase at the hematite crystal surface, reducing its energy and suppressing the grain growth. The increased donor number density provided by the oxygen vacancies (confirmed by x-ray photoelectron data), and a possible reduction in the grain boundary energy or hematite crystal interface might favor charge separation, and increase the electron transfer through the hematite into the back contact (FTO substrate). In consequence, the light-induced water oxidation reaction efficiency of Sn-hematite photoelectrodes was significantly increased in comparison with pure ones, even though the vertical rod morphology was not preserved. This finding provides a novel insight into intentional Sn addition, revealing that dopant segregation at the hematite crystal surface (or at the grain boundaries) could—by increasing the electron mobility—be the more relevant factor in developing active hematite photoelectrodes than the control of columnar morphology.
Control of Earth-like magnetic fields on the transformation of ferrihydrite to hematite and goethite
Jiang, Zhaoxia; Liu, Qingsong; Dekkers, Mark J.; Barrón, Vidal; Torrent, José; Roberts, Andrew P.
2016-01-01
Hematite and goethite are the two most abundant iron oxides in natural environments. Their formation is controlled by multiple environmental factors; therefore, their relative concentration has been used widely to indicate climatic variations. In this study, we aimed to test whether hematite and goethite growth is influenced by ambient magnetic fields of Earth-like values. Ferrihydrite was aged at 95 °C in magnetic fields ranging from ~0 to ~100 μT. Our results indicate a large influence of the applied magnetic field on hematite and goethite growth from ferrihydrite. The synthesized products are a mixture of hematite and goethite for field intensities <~60 μT. Higher fields favour hematite formation by accelerating ferrimagnetic ferrihydrite aggregation. Additionally, hematite particles growing in a controlled magnetic field of ~100 μT appear to be arranged in chains, which may be reduced to magnetite keeping its original configuration, therefore, the presence of magnetic particles in chains in natural sediments cannot be used as an exclusive indicator of biogenic magnetite. Hematite vs. goethite formation in our experiments is influenced by field intensity values within the range of geomagnetic field variability. Thus, geomagnetic field intensity could be a source of variation when using iron (oxyhydr-)oxide concentrations in environmental magnetism. PMID:27458091
Jiang, Zhaoxia; Liu, Qingsong; Dekkers, Mark J; Barrón, Vidal; Torrent, José; Roberts, Andrew P
2016-07-26
Hematite and goethite are the two most abundant iron oxides in natural environments. Their formation is controlled by multiple environmental factors; therefore, their relative concentration has been used widely to indicate climatic variations. In this study, we aimed to test whether hematite and goethite growth is influenced by ambient magnetic fields of Earth-like values. Ferrihydrite was aged at 95 °C in magnetic fields ranging from ~0 to ~100 μT. Our results indicate a large influence of the applied magnetic field on hematite and goethite growth from ferrihydrite. The synthesized products are a mixture of hematite and goethite for field intensities <~60 μT. Higher fields favour hematite formation by accelerating ferrimagnetic ferrihydrite aggregation. Additionally, hematite particles growing in a controlled magnetic field of ~100 μT appear to be arranged in chains, which may be reduced to magnetite keeping its original configuration, therefore, the presence of magnetic particles in chains in natural sediments cannot be used as an exclusive indicator of biogenic magnetite. Hematite vs. goethite formation in our experiments is influenced by field intensity values within the range of geomagnetic field variability. Thus, geomagnetic field intensity could be a source of variation when using iron (oxyhydr-)oxide concentrations in environmental magnetism.
NASA Astrophysics Data System (ADS)
Phuan, Yi Wen; Ibrahim, Elyas; Chong, Meng Nan; Zhu, Tao; Lee, Byeong-Kyu; Ocon, Joey D.; Chan, Eng Seng
2017-01-01
Nanostructured nickel oxide-hematite (NiO/α-Fe2O3) p-n junction photoanodes synthesized from in situ doping of nickel (Ni) during cathodic electrodeposition of hematite were successfully demonstrated. A postulation model was proposed to explain the fundamental mechanism of Ni2+ ions involved, and the eventual formation of NiO on the subsurface region of hematite that enhanced the potential photoelectrochemical water oxidation process. Through this study, it was found that the measured photocurrent densities of the Ni-doped hematite photoanodes were highly dependent on the concentrations of Ni dopant used. The optimum Ni dopant at 25 M% demonstrated an excellent photoelectrochemical performance of 7-folds enhancement as compared to bare hematite photoanode. This was attributed to the increased electron donor density through the p-n junction and thus lowering the energetic barrier for water oxidation activity at the optimum Ni dopant concentration. Concurrently, the in situ Ni-doping of hematite has also lowered the photogenerated charge carrier transfer resistance as measured using the electrochemical impedance spectroscopy. It is expected that the fundamental understanding gained through this study is helpful for the rational design and construction of highly efficient photoanodes for application in photoelectrochemical process.
The transformation of magnetite to hematite and its influence on the rheology of iron oxide rock
NASA Astrophysics Data System (ADS)
Lagoeiro, Leonardo; Barbosa, Paola; Goncalves, Fabio; Rodrigues, Carlos
2013-04-01
Phase transformation is an important process for strain localization after the initiation of ductile shear zones. In polyphase aggregates one important aspect to consider is likely to be the interconnectivity of weak phase after the transformation of the load-bearing framework grains. However the physical processes involved in that transition is not well understood, partially because the microstructures of the initial weakening are generally obliterated by subsequent deformation. Iron oxide-quartz rocks from paleoproterozoic Iron Formations in southern Brazil preserve microstructures that allow a good insight into the evolution of the deformation mechanisms and fabrics during the transition from a load-bearing framework (magnetite) to an interconnected weak phase (hematite). We conducted microstructural and textural analyses of aggregates of magnetite and hematite combining observations in an optical microscope and measurements in the electron back-scatter diffraction (EBSD). The samples were cut parallel to the mineral lineation (the X-axis) and perpendicular to the foliation. Our goal was to understand the evolution of fabric and texture of the iron oxide aggregates caused by the change in deformation behavior resulting from the phase transformation. The studied samples consist mainly of aggregates of magnetite and hematite in a varied proportions. Samples that preserve the early microstructures consist in aggregate of magnetite grains of varied sizes. The grains are partially transformed to hematite along {111} planes but no foliation is observed in the samples. Basically the samples consist of grains of irregular shapes and a weak or absent crystallographic preferred orientation. The newly transformed hematite crystals share the (0001) planes and directions <11-20> with planes {111} and directions <110> of magnetite grains. Other samples present relicts of initial magnetite grains surrounded by a matrix of tabular to platy hematite crystals. The matrix show a preferred orientation of hematite grains. Close to the magnetite, hematite crystals show crystallographic relationship similar to those observed inside the magnetite crystals showing a good match in crystallographic planes and directions. However away from the magnetite crystals hematite of the matrix tend to show a more independent crystallographic orientation with respect to the magnetite grains. The poles to the basal planes of hematite distributed in a small circle centered around the Z-axis and the crystallographic directions <11-20> spread in a wide angle along the foliation plane. In samples where no crystal of magnetite grains is observed only platy hematite with a strong shape preferred orientation occur. Their basal planes show a strong concentration around the foliation pole contrasting to the more dispersed distribution around the Z-axis found in the samples with magnetite relicts.The directions <11-20> also distributed along the foliation planes in platy hematite samples but with a narrower angles than those of samples with magnetite relicts. The progressive transformation of magnetite to hematite led to a change in the iron formation rock fabrics from an isotropic distribution of a load-supporting magnetite to an interconnected weak platy hematite forming a strongly anisotropic fabric. The hard magnetite behaves in a brittle manner with a very limited operation of slip along the main crystallographic planes. The microfracturing creates an easy path for oxidation and transformation of magnetite. The newly formed hematite grains behave in a ductile manner and form a matrix of strongly oriented crystals. The deformation mechanisms change from the microfracturing of the harder magnetite phase to a crystal plastic deformation of the softer hematite platy grains through slip along their basal planes.
Gao, X.; Metge, D.W.; Ray, C.; Harvey, R.W.; Chorover, J.
2009-01-01
The interaction of viable Cryptosporidium parvum öocysts at the hematite (α-Fe2O3)−water interface was examined over a wide range in solution chemistry using in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Spectra for hematite-sorbed öocysts showed distinct changes in carboxylate group vibrations relative to spectra obtained in the absence of hematite, indicative of direct chemical bonding between carboxylate groups and Fe metal centers of the hematite surface. The data also indicate that complexation modes vary with solution chemistry. In NaCl solution, öocysts are bound to hematite via monodentate and binuclear bidentate complexes. The former predominates at low pH, whereas the latter becomes increasingly prevalent with increasing pH. In a CaCl2 solution, only binuclear bidentate complexes are observed. When solution pH is above the point of zero net proton charge (PZNPC) of hematite, öocyst surface carboxylate groups are bound to the mineral surface via outer-sphere complexes in both electrolyte solutions.
Microbially induced separation of quartz from hematite using sulfate reducing bacteria.
Prakasan, M R Sabari; Natarajan, K A
2010-07-01
Cells and metabolic products of Desulfovibrio desulfuricans were successfully used to separate quartz from hematite through environmentally benign microbially induced flotation. Bacterial metabolic products such as extracellular proteins and polysaccharides were isolated from both unadapted and mineral-adapted bacterial metabolite and their basic characteristics were studied in order to get insight into the changes brought about on bioreagents during adaptation. Interaction between bacterial cells and metabolites with minerals like hematite and quartz brought about significant surface-chemical changes on both the minerals. Quartz was rendered more hydrophobic, while hematite became more hydrophilic after biotreatment. The predominance of bacterial polysaccharides on interacted hematite and of proteins on quartz was responsible for the above surface-chemical changes, as attested through adsorption studies. Surface-chemical changes were also observed on bacterial cells after adaptation to the above minerals. Selective separation of quartz from hematite was achieved through interaction with quartz-adapted bacterial cells and metabolite. Mineral-specific proteins secreted by quartz-adapted cells were responsible for conferment of hydrophobicity on quartz resulting in enhanced separation from hematite through flotation. 2010 Elsevier B.V. All rights reserved.
High Field Remagnetization of Hematite Concretions from Utah, USA and Czech Republic
NASA Astrophysics Data System (ADS)
Adachi, T.; Kletetschka, G.; Chan, M.; Mikula, V.; Adamovic, J.; Pruner, P.; Schnabl, P.; Wasilewski, P.
2007-03-01
Terrestrial hematite concretions of the Navajo Sandstone have been discussed as analogues to the blueberries on Mars. Magnetic investigation of terrestrial concretions showed unusual behavior of antiferromagnetic hematite-goethite composition that may mem
Artificial meteor ablation studies - Iron oxides.
NASA Technical Reports Server (NTRS)
Blanchard, M. B.
1972-01-01
Artificial meteor ablation was performed on natural minerals composed predominantly of magnetite and hematite by using an arc-heated plasma stream of air. Analysis indicates that most of the ablated debris was composed of two or more minerals. Wustite, a metastable mineral, was found to occur as a common product. The 'magnetite' sample, which was 80% magnetite, 14% hematite, 4% apatite, and 2% quartz, yielded ablated products consisting of more than 12 different minerals. Magnetite occurred in 91% of the specimens examined, hematite in 16%, and wustite in 30%. The 'hematite' sample, which was 96% hematite and 3% quartz, yielded ablated products consisting of more than 13 different minerals. Hematite occurred in 47% of the specimens examined, magnetite in 60%, and wustite in 28%. The more volatile elements (Si, P, and Cl) were depleted by about 50%. This study has shown that artificially created ablation products from iron oxides exhibit unique properties that can be used for identification.
NASA Technical Reports Server (NTRS)
Morris, Richard V.; Agresti, David G.; Newcomb, Jeffery A.; Shelfer, Tad D.; Lauer, Howard V., Jr.
1989-01-01
Samples containing variable amounts of superparamagnetic hematite (sp-Hm) were prepared by a method in which the sp-Hm particles were dispersed throughout larger particles of silica gel, and the optical and magnetic properties of these samples were compared with those of larger-diameter hematite (bulk-Hm). It is shown that the optical properties of sp-Hm are different from those of bulk-Hm. Implications of the results for mineralogical interpretations of spectral data for the Martian surface and its terrestrial analogues are discussed. It is concluded that features resulting from ferric iron in the Martian spectral data and the results of the Viking magnetic properties experiment are both consistent with hematite present as both sp-Hm and bulk-Hm; the hematite particles most likely occur in pigmentary form, i.e., as particles dispersed throughout the volume of a spectrally neutral material.
NASA Astrophysics Data System (ADS)
Farrand, W. H.; Bell, J. F.; Morris, R. V.; Joliff, B. L.; Squyres, S. W.; Souza, P. A.
2004-12-01
The Mars Exploration Rover Opportunity was sent to Meridiani Planum based largely on MGS TES spectroscopic evidence of a large surface exposure of coarse grained gray hematite. The presence of hematite at Meridiani Planum has been confirmed through thermal infrared spectroscopy by the rover's Mini-TES instrument and by in-situ measurements by its Moessbauer (MB) spectrometer. Several types of hematite, as expressed by differences in MB spectral parameters, have been associated with various rocks and soils examined in Eagle crater and on the surrounding plains. The host materials include the small spherules (informally known as "blueberries") littering the floor of Eagle crater and the plains of Meridiani, the outcrop rock itself, specific types of soils, and two measurements on unique rocks in the Shoemaker's Patio area of Eagle crater. At the visible to near infrared (VNIR) wavelengths covered by the rover's multispectral Panoramic camera (Pancam), gray hematite is spectrally neutral. However, multispectral observations by Pancam of some of these hematite-bearing materials show discernable spectral features. Specifically, portions of the outcrop visible in the walls of Eagle crater display a strong 535 nm absorption feature. This feature resembles a similar feature in laboratory spectra of red hematite, but the characteristic 860 nm absorption of red hematite is either absent or is instead replaced by a longer wavelength absorption centered on Pancam's 900 nm channel. The blueberries display a deep and broad absorption centered on 900 nm and as well as an increase in reflectance in the 1009 nm band. The shape of the absorption feature in the blueberries is consistent with that seen in red hematite, but again the band minimum is displaced to a longer wavelength than would be expected for red hematite. The blueberries also lack the prominent absorption at the shortest wavelengths that would be expected of red hematite. The unique hematite-bearing (or coated) rocks at Shoemaker's Patio lack the very strong 535 nm band depth of other portions of the outcrop but still have a stronger 535 nm feature than most of the outcrop. Interestingly, VNIR spectra more consistent with that expected for red hematite have been found in cuttings released by grinding into outcrop by the rover's Rock Abrasion Tool. The cause of the observed spectral features in the portions of outcrop with strong 535 nm band depths and of the reddish rocks in the Shoemaker's Patio area is believed to be attributable either to red hematite mixed with other Fe3+ - bearing phases (such as jarosite and/or schwertmannite) or, at the longer wavelengths, with Fe2+ - bearing phases (such as pyroxenes). Determination of the nature of these iron-bearing materials will further elucidate the geologic, aqueous and diagenetic history of the rocks at Meridiani Planum.
Cotransport of bacteria with hematite in porous media: Effects of ion valence and humic acid.
Yang, Haiyan; Ge, Zhi; Wu, Dan; Tong, Meiping; Ni, Jinren
2016-01-01
This study investigated the influence of multiple colloids (hematite and humic acid) on the transport and deposition of bacteria (Escherichia coli) in packed porous media in both NaCl (5 mM) and CaCl2 (1 mM) solutions at pH 6. Due to the alteration of cell physicochemical properties, the presence of hematite and humic acid in cell suspensions significantly affected bacterial transport and deposition in quartz sand. Specifically, the presence of hematite (5 mg/L) decreased cell transport (increased cell deposition) in quartz sand in both NaCl and CaCl2 solutions, which could be attributed to the less negative overall zeta potentials of bacteria induced by the adsorption of positively charged hematite onto cell surfaces. The presence of a low concentration (0.1 mg/L) of humic acid in bacteria and hematite mixed suspensions reduced the adsorption of hematite onto cell surfaces, leading to increased cell transport in quartz sand in NaCl solutions, whereas, in CaCl2 solutions, the presence of 0.1 mg/L humic acid increased the formation of hematite-cell aggregates and thus decreased cell transport in quartz sand. When the concentration of humic acid was increased to 1 mg/L, enhanced cell transport was observed in both NaCl and CaCl2 solutions. The decreased adsorption of hematite onto cell surfaces as well as the competition of deposition sites on quartz sand with bacteria by the suspended humic acid contributed to the increased cell transport. Copyright © 2015 Elsevier Ltd. All rights reserved.
Smith, Joseph P; Smith, Frank C; Booksh, Karl S
2017-08-21
The search for evidence of extant or past life on Mars is a primary objective of both the upcoming Mars 2020 rover (NASA) and ExoMars 2020 rover (ESA/Roscosmos) missions. This search will involve the detection and identification of organic molecules and/or carbonaceous material within the Martian surface environment. For the first time on a mission to Mars, the scientific payload for each rover will include a Raman spectrometer, an instrument well-suited for this search. Hematite (α-Fe 2 O 3 ) is a widespread mineral on the Martian surface. The 2LO Raman band of hematite and the Raman D-band of carbonaceous material show spectral overlap, leading to the potential misidentification of hematite as carbonaceous material. Here we report the ability to spatially and spectrally differentiate carbonaceous material from hematite using multivariate curve resolution-alternating least squares (MCR-ALS) applied to Raman microspectroscopic mapping under both 532 nm and 785 nm excitation. For this study, a sample comprised of hematite, carbonaceous material, and substrate-adhesive epoxy in spatially distinct domains was constructed. Principal component analysis (PCA) reveals that both 532 nm and 785 nm excitation produce representative three-phase systems of hematite, carbonaceous material, and substrate-adhesive epoxy in the analyzed sample. MCR-ALS with Raman microspectroscopic mapping using both 532 nm and 785 nm excitation was able to resolve hematite, carbonaceous material, and substrate-adhesive epoxy by generating spatially-resolved chemical maps and corresponding Raman spectra of these spatially distinct chemical species. Moreover, MCR-ALS applied to the combinatorial data sets of 532 nm and 785 nm excitation, which contain hematite and carbonaceous material within the same locations, was able to resolve hematite, carbonaceous material, and substrate-adhesive epoxy. Using multivariate analysis with Raman microspectroscopic mapping, 785 nm excitation more effectively resolved hematite, carbonaceous material, and substrate-adhesive epoxy as compared to 532 nm excitation. To our knowledge, this is the first report of multivariate analysis methods, namely MCR-ALS, with Raman microspectroscopic mapping being employed to differentiate carbonaceous material from hematite. We have therefore provided an analytical methodology useful for the search for extant or past life on the surface of Mars.
NASA Technical Reports Server (NTRS)
Christensen, P. R.; Bandfield, J. L.; Clark, R. N.; Edgett, K. S.; Hamilton, V. E.; Hoefen, T.; Kieffer, H. H.; Kuzmin, R. O.; Lane, M. D.; Malin, M. C.
1999-01-01
The Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) mission has discovered a remarkable accumulation of crystalline hematite ((alpha-Fe2O3) that covers an area with very sharp boundaries approximately 350 by 350-750 km in size centered near 2 S latitude between 0 and 5 W longitude (Sinus Meridiani). Crystalline hematite is uniquely identified by the presence of fundamental vibrational absorption features centered near 300, 450, and >525/cm, and by the absence of silicate fundamentals in the 1000/cm region. Spectral features resulting from atmospheric CO2, dust, and water ice were removed using a radiative transfer model. The spectral properties unique to Sinus Meridiani were emphasized by removing the average spectrum of the surrounding region. The depth and shape of the hematite fundamental bands show that the hematite is crystalline and relatively coarse grained (>5-10 micron). Diameters up to and greater than 100s of micrometers are permitted within the instrumental noise and natural variability of hematite spectra. Hematite particles <5-10 micron in diameter (either as an unpacked or hard-packed powders) fail to match the TES spectra. The spectrally-derived areal abundance of hematite varies with particle size from approximately 10% for particles >30 micron in diameter to 40-60% for unpacked 10 micron powders. The hematite in Sinus Meridiani is thus distinct from the fine-grained (diameter <5-10 micron), red, crystalline hematite considered, on the basis of visible, near-IR data, to be a minor spectral component in Martian bright regions like Olympus-Amazonis. Sinus Meridiani hematite is closely associated with a smooth, layered, friable surface that is interpreted to be sedimentary in origin. This material may be the uppermost surface in the region, indicating that it could be a late-stage sedimentary unit, or it could be a layered portion of the heavily cratered plains units. We consider five possible mechanisms for the formation of coarse-grained, crystalline hematite. These processes fall into two classes depending on whether they require a significant amount of near-surface water: (1) chemical precipitation that includes origin by (a) precipitation from oxygenated, Fe-rich water (iron formations), (b) hydrothermal extraction and crystal growth.
NASA Astrophysics Data System (ADS)
Adachi, T.; Kletetschka, G.; Mikula, V.
2007-12-01
On Mars, Fe-oxides mineral phases (inferred/detected) are mainly magnetite, pyrrhotite, and hematite. Kletetschka et al., 2005 suggested that the grain size dependent potential may contribute to the Mars surface magnetic anomaly. Grain size of Fe-oxides may play a role for the magnetic signature and anomaly on Mars. According to Kletetschka et al., 2005, the larger the grain size, the larger the magnetization (in this case hematite's TRM). Weather they are magnetite, pyrrhotite or hematite, nano-phase or superparamagnetic grains may contribute to the absence of remanent magnetization on the surface of Mars. In this contribution we tackle how to resolve grain size variations by frequency dependent susceptibility measured on terrestrial hematite samples such as hemo-ilmenite from Allard Lake, Canada, Mars analogue concretions from Utah and Czech Republic, and hematite aggregates from Hawaii. The magnetic characteristics of hematite-goethite mineralogies of Utah and Czech concretions suggested (Adachi et al., 2007) that they contain super paramagnetic (SP) to single domain (SD) magnetic states. Coercivity spectra analysis from acquisition of isothermal remanent magnetization (IRM) data showed the distinct behaviors of hematite, goethite, and mixed composition of both. The estimated magnetic states are analyzed with the frequency-dependent susceptibility instrument (500-250,000 Hertz). The frequency- and size-dependent susceptibility for hematite, goethite, and magnetite are calibrated using the known size powdered (commercial) samples.
NASA Technical Reports Server (NTRS)
Ming, Douglas W.; Golden, D. C.; Morris, R. V.
2010-01-01
Hematite-rich spherules were discovered embedded in sulfate-rich outcrop rock and as lag deposits of whole and broken spherules by the Opportunity rover at Meridiani Planem [1-6]. The Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES), which has a wider spectral range compared to the Mars Exploration Rover Mini-TES, provided an important constraint that hematite-rich spherules are dominated by emission along the crystallographic c-axis [7-10]. We have previously synthesized hematite spherules whose mineralogic, chemical, and crystallographic properties are strikingly similar to those for the hematite-rich spherules at Meridiani Planum [11]. The spherules were synthesized in the laboratory along with hydronium jarosite and minor hydronium alunite from Fe-Al-Mg-S-Cl acid sulfate solutions under hydrothermal conditions. The reaction sequence was (1) precipitation of hydronium jarosite, (2) jarosite dissolution and precipitation of hematite spherules, and (3) precipitation of hydronium alunite upon depletion of hydronium jarosite. The spherules exhibit a radial growth texture with the crystallographic c-axis aligned along the radial direction, so that thermal emission spectra have no hematite emissivity minimum at approx.390/cm similar to the emission spectra returned by MGS TES. The objective of this paper is to expand on our initial studies [11] to examine the morphological evolution during growth of spherules starting from sub-micrometer crystals to spherules many orders of magnitude in size.
Detection of Gray Crystalline Hematite in the Aureum and Iani Chaos Layered Terrains
NASA Astrophysics Data System (ADS)
Glotch, T. D.; Rogers, D.; Christensen, P. R.
2005-12-01
Using the TES and THEMIS datasets, small hematite-rich deposits have been discovered in Aureum and Iani Chaos. The newly discovered hematite-rich deposits share several similarities with the deposit in Aram Chaos [1], including the occurrence of hematite in a friable layered unit, and the presence of a light-toned caprock. The presence of these units over a distance of several hundred kilometers in the equatorial latitudes of Mars may point to a preferred global mechanism for hematite formation. However, it is unclear how, if at all, these units are related to the hematite- and sulfate-rich unit in Meridiani Planum, which is substantially larger and older (by as much as 1 Ga) than the layered units seen in the equatorial chaotic terrains. Though the caprock units in Aram Chaos and Aureum Chaos are similar, the corresponding unit in Iani Chaos is morphologically different, exhibiting less of a cliff-forming erosional pattern. The hematite-rich units in Aram and Aureum Chaos lie stratigraphically below the light-toned caprock units. In Iani Chaos, the hematite deposit is coincident with the light-toned unit. Data returned from the Mars Express OMEGA instrument have shown the presence of hydrated sulfates in the hematite-rich units associated with Aram and Iani Chaos, although to date, no sulfate detection has been reported in Aureum Chaos [2]. The sequence of caprock and hematite units in Aram, Aureum, and Iani Chaos probably did not form coincidentally as part of an extensive regional layer, but instead formed by similar, but not identical, processes in their respective chaotic terrains. The presence of these units in chaotic terrains, which have been hypothesized to form by subsidence after the release of subsurface water, indicate that these units may have been deposited in an aqueous environment. By analogy to Meridiani Planum, later subsurface aqueous activity in the region of the chaotic terrains may have provided the necessary diagenetic conditions for the formation of hematite within the layered units. [1] Glotch and Christensen, J. Geophys. Res., in press. [2] Gendrin et al., 2005, Science, 307 p. 1587-1590
NASA Astrophysics Data System (ADS)
Subramanian, Arunprabaharan; Gracia-Espino, Eduardo; Annamalai, Alagappan; Lee, Hyun Hwi; Lee, Su Yong; Choi, Sun Hee; Jang, Jum Suk
2018-01-01
In this paper, the influence of tetravalent dopants such as Si4+, Sn4+, Ti4+, and Zr4+ on the hematite (α-Fe2O3) nanostructure for enhanced photoelectrochemical (PEC) water splitting are reported. The tetravalent doping was performed on hydrothermally grown akaganeite (β-FeOOH) nanorods on FTO (fluorine-doped tin-oxide) substrates via a simple dipping method for which the respective metal-precursor solution was used, followed by a high-temperature (800° C) sintering in a box furnace. The photocurrent density for the pristine (hematite) photoanode is ∼0.81 mA/cm2 at 1.23 VRHE, with an onset potential of 0.72 VRHE; however, the tetravalent dopants on the hematite nanostructures alter the properties of the pristine photoanode. The Si4+-doped hematite photoanode showed a slight photocurrent increment without a changing of the onset potential of the pristine photoanode. The Sn4+- and Ti4+-doped hematite photoanodes, however, showed an anodic shift of the onset potential with the photocurrent increment at a higher applied potential. Interestingly, the Zr4+-doped hematite photoanode exhibited an onset potential that is similar to those of the pristine and Si4+-doped hematite, but a larger photocurrent density that is similar to those of the Sn4+- and Ti4+-doped photoanodes was recorded. The photoactivity of the doped photoanodes at 1.23 VRHE follows the order Zr > Sn > Ti > Si. The onset-potential shifts of the doped photoanodes were investigated using the Ab initio calculations that are well correlated with the experimental data. X-ray diffraction (XRD) and scanning-electron microscopy (FESEM) revealed that both the crystalline phase of the hematite and the nanorod morphology were preserved after the doping procedure. X-ray photoelectron spectroscopy (XPS) confirmed the presence of the tetravalent dopants on the hematite nanostructure. The charge-transfer resistance at the various interfaces of the doped photoanodes was studied using impedance spectroscopy. The doping on the hematite photoanodes was confirmed using the Mott-Schottky (MS) analysis.
NASA Technical Reports Server (NTRS)
Golden, D. C.; Ming, D. W.; Morris, R. V.; Graff, T. G.
2008-01-01
The Thermal Emission Spectrometer (TES) onboard the Mars Global Surveyor (MGS) orbiter discovered a large area at Meridiani Planum (MP) covered with the Fe-oxide hematite (alpha-Fe2O3) [1,2]. This discovery and favorable landing site characteristics led to selection of MP as the landing site for the Opportunity Mars Exploration Rover (MER) [3]. The Athena science payload onboard the Opportunity rover identified hematite-rich spherules (mean spherule diameter approx.4.2+/-0.8 mm) embedded in S-rich outcrop rock and also as lag deposits of whole and broken spherules [4,5,6,7,8,9]. Although the chemical and mineralogical compositions of spherules are not fully constrained, Moessbauer spectrometer (MB) Miniature Thermal Emission Spectrometer (Mini-TES) and chemical analyses from the Alpha Particle X-Ray Spectrometer (APXS) are consistent with a hematite mineralogical composition and an oxide bulk chemical composition consisting of Fe2O3. MGS-TES, also provides an important constraint that emission from the hematite-rich spherules is dominated by emission along the crystallographic c-axis [1,2,10,11]. The formation of hematite-rich spherules with similar chemical, mineralogical, morphological, and crystallographic properties to the MP spherules is rare on Earth, to date, only two natural analogs have been proposed; one from Utah (Navaho Concretions) and the other from Mauna Kea, Hawaii [12,13]. In this study, we synthesized in the laboratory hematite-rich spherules using conditions that may have existed on Early Mars [14] and compared their properties to those for MP hematite spherules of Mars and the analog spherules from Utah and Mauna Kea in order to assess their relative merit as MP hematite spherule analogs. Such comparisons yield clues to the formation pathway for MP spherules.
Hematite/silica nanoparticle bilayers on mica: AFM and electrokinetic characterization.
Morga, Maria; Adamczyk, Zbigniew; Kosior, Dominik; Oćwieja, Magdalena
2018-06-06
Quantitative studies on self-assembled hematite/silica nanoparticle (NP) bilayers on mica were performed by applying scanning electron microscopy (SEM), atomic force microscopy (AFM), and streaming potential measurements. The coverage of the supporting hematite layers was adjusted by changing the bulk concentration of the suspension and the deposition time. The coverage was determined by direct enumeration of deposited particles from AFM images and SEM micrographs. Afterward, silica nanoparticle monolayers were assembled under diffusion-controlled transport. A unique functional relationship was derived connecting the silica coverage with the hematite precursor layer coverage. The formation of the hematite monolayer and the hematite/silica bilayer was also monitored in situ by streaming potential measurements. It was confirmed that the zeta potential of the bilayers was independent of the supporting layer coverage, exceeding 0.15. These measurements were theoretically interpreted in terms of the general electrokinetic model that allowed for deriving a formula for calculating nanoparticle coverage in the bilayers. Additionally, from desorption experiments, the interactions among hematite/silica particles in the bilayers were determined using DLVO theory. These results facilitate the development of a robust method of preparing nanoparticle bilayers with controlled properties, with potential applications in catalytic processes.
NASA Astrophysics Data System (ADS)
Paradzah, Alexander T.; Diale, Mmantsae; Maabong, Kelebogile; Krüger, Tjaart P. J.
2018-04-01
Hematite is a widely investigated material for applications in solar water oxidation due primarily to its small bandgap. However, full realization of the material continues to be hampered by fast electron-hole recombination rates among other weaknesses such as low hole mobility, short hole diffusion length and low conductivity. To address the problem of fast electron-hole recombination, researchers have resorted to growth of nano-structured hematite, doping and use of under-layers. Under-layer materials enhance the photo-current by minimising electron-hole recombination through suppressing of back electron flow from the substrate, such as fluorine-doped tin oxide (FTO), to hematite. We have carried out ultrafast transient absorption spectroscopy on hematite in which Nb2O5 and SnO2 materials were used as interfacial layers to enhance hole lifetimes. The transient absorption data was fit with four different lifetimes ranging from a few hundred femtoseconds to a few nanoseconds. We show that the electron-hole recombination is slower in samples where interfacial layers are used than in pristine hematite. We also develop a model through target analysis to illustrate the effect of under-layers on electron-hole recombination rates in hematite thin films.
do Amaral Carminati, Saulo; Souza, Flavio L; Nogueira, Ana F
2016-01-04
Two effective methods to prepare reduced graphene oxide (rGO)/hematite nanostructured photoanodes and their photoelectrochemical characterization towards water splitting reactions are presented. First, graphene oxide (GO) is reduced to rGO using hydrazine in a basic solution containing tetrabutylammonium hydroxide (TBAOH), and then deposited over the nanostructured hematite photoanodes previously treated at 750 °C for 30 min. The second method follows the deposition of a paste containing a mixture of hematite nanoparticles and rGO sheets by the doctor-blade method, varying the rGO concentration. Since hematite suffers from low electron mobility, a low absorption coefficient, high recombination rates and slow reaction kinetics, the incorporation of rGO in the hematite can overcome such limitations due to graphene's exceptional properties. Using the first method, the rGO incorporation results in a photocurrent density increase from 0.56 to 0.82 mA cm(-2) at 1.23 VRHE. Our results indicate that the rGO incorporation in the hematite photoanodes shows a positive effect in the reduction of the electron-hole recombination rate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Subramanian, Arunprabaharan; Annamalai, Alagappan; Lee, Hyun Hwi; Choi, Sun Hee; Ryu, Jungho; Park, Jung Hee; Jang, Jum Suk
2016-08-03
Herein we report the influence of a ZrO2 underlayer on the PEC (photoelectrochemical) behavior of hematite nanorod photoanodes for efficient solar water splitting. Particular attention was given to the cathodic shift in onset potential and photocurrent enhancement. Akaganite (β-FeOOH) nanorods were grown on ZrO2-coated FTO (fluorine-doped tin oxide) substrates. Sintering at 800 °C transformed akaganite to the hematite (α-Fe2O3) phase and induced Sn diffusion into the crystal structure of hematite nanorods from the FTO substrates and surface migration, shallow doping of Zr atoms from the ZrO2 underlayer. The ZrO2 underlayer-treated photoanode showed better water oxidation performance compared to the pristine (α-Fe2O3) photoanode. A cathodic shift in the onset potential and photocurrent enhancement was achieved by surface passivation and shallow doping of Zr from the ZrO2 underlayer, along with Sn doping from the FTO substrate to the crystal lattice of hematite nanorods. The Zr based hematite nanorod photoanode achieved 1 mA/cm(2) at 1.23 VRHE with a low turn-on voltage of 0.80 VRHE. Sn doping and Zr passivation, as well as shallow doping, were confirmed by XPS, Iph, and M-S plot analyses. Electrochemical impedance spectroscopy revealed that the presence of a ZrO2 underlayer decreased the deformation of FTO substrate, improved electron transfer at the hematite/FTO interface and increased charge-transfer resistance at the electrolyte/hematite interface. This is the first systematic investigation of the effects of Zr passivation, shallow doping, and Sn doping on hematite nanorod photoanodes through application of a ZrO2 underlayer on the FTO substrate.
Decrease of dissolved sulfide in sewage by powdered natural magnetite and hematite.
Zhang, Lehua; Verstraete, Willy; de Lourdes Mendoza, María; Lu, Zhihao; Liu, Yongdi; Huang, Guangtuan; Cai, Lankun
2016-12-15
Natural magnetite and hematite were explored to decrease sulfide in sewage, compared with iron salts (FeCl 3 and FeSO 4 ). A particle size of magnetite and hematite ranging from 45 to 60μm was used. The results showed that 40mgL -1 of powdered magnetite and hematite addition decreased the sulfide in sewage by 79%and 70%, respectively. The achieved decrease of sulfide production capacities were 197.3, 210.6, 317.6 and 283.3mgSg -1 Fe for magnetite, hematite, FeCl 3 and FeSO 4 at the optimal dosage of 40mgL -1 , respectively. Magnetite and hematite provided a higher decrease of sulfide production since more iron ions are capable of being released from the solid phase, not because of adsorption capacity of per gram iron. Besides, the impact on pH and oxidation-reduction potential (ORP) of hematite addition was negligible; while magnetite addition resulted in slight increase of 0.3-0.5 on pH and 10-40mV on ORP. Powdered magnetite and hematite thus appear to be suitable for sulfide decrease in sewage, for their sparing solubility, sustained-release, long reactive time in sewage as well as cost-effectiveness, compared with iron salts. Further investigation over long time periods under practical conditions are needed to evaluate the possible settlement in sewers and unwanted (toxic) metal elements presenting as impurities. Powdered magnetite and hematite were more cost-effective at only 30% costs of iron salts, such as FeCl 3 and FeSO 4 for decreasing sulfide production in sewage. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Simmonds, Tegan; Hayes, Peter C.
2017-12-01
In the carbon looping combustion process the oxygen carrier is regenerated through oxidation in air; this process has been simulated by the oxidation of dense synthetic magnetite for selected temperatures and times. The oxidation of magnetite in air is shown to occur through the formation of dense hematite layers on the particle surface. This dense hematite forms through lath type shear transformations or solid-state diffusion through the product layer. Cyclic reduction in CO-CO2/oxidation in air of hematite single crystals has been carried out under controlled laboratory conditions at 1173 K (900 °C). It has been shown that the initial reduction step is critical to determining the product microstructure, which consists of gas pore dendrites in the magnetite matrix with blocky hematite formed on the pore surfaces. The progressive growth of the magnetite layer with the application of subsequent cycles appears to continue until no original hematite remains, after which physical disintegration of the particles takes place.
Hematite from Natural Iron Stones as Microwave Absorbing Material on X-Band Frequency Ranges
NASA Astrophysics Data System (ADS)
Zainuri, Mochamad
2017-05-01
This study has been investigated the effect of hematite as microwave absorbing materials (RAM) on X-Band frequency ranges. Hematite was succesfully processed by coprecipitation method and calcined at 500 °C for 5 hour. It was synthesized from natural iron stones from Tanah Laut, South Kalimantan, Indonesia. The products were characterized by X-ray diffraxtion (XRD), conductivity measurement, Vibrating Sample Magnetometer (VSM), and Vector Network Analyzer (VNA). The result was shown that hematite has conductivity value on (2.5-3).10-7 S/cm and be included as dielectric materials. The hysterisis curve was shown that hematite was a super paramagnetic materials. The product was mixed on paint with procentage 10% of total weight and coated on steel grade AH36 with spray methods. Then, the maximum of reflection loss on x - band’s frequency range (8,2-12,4) GHz was -7 dB on frequency of 10.5 GHz. It mean that almost 50% electromagnetic energy was absorbed by hematite.
Effect of aluminum substitution on the reflectance spectra of hematite
NASA Technical Reports Server (NTRS)
Morris, R. V.; Lauer, H. V., Jr.; Mendell, W. W.
1982-01-01
Hematite and aluminous hematite were synthesized and the diffuse reflectance spectra were recorded for the region between 0.35 and 1.20 microns. Results show that the near-IR based minimum for the aluminous hematite is shifted longward by about 0.02 microns and is much more shallow. Also, the aluminous specimen is considerably more reflective shortward of approximately 0.55 microns where the ferritic specimen is strongly absorbing. This is noteworthy since the visible slope and the red shoulder are often used in the construction of false color and band ratio images.
Design, Fabrication, and Characterization of Hematite (α-Fe2O3) Nanostructures
NASA Astrophysics Data System (ADS)
Jansi Rani, B.; Mageswari, R.; Ravi, G.; Ganesh, V.; Yuvakkumar, R.
2017-12-01
The influence of processing parameters on the physicochemical properties of hematite α-Fe2O3 nanostructures was investigated. X-ray diffraction results revealed the hematite phase rhombohedral structure. Scanning electron microscope results explored nanospheres, nanohexagonal platelets, nanoellipsoids, distorted nanocubes, and interconnected platelets nanostructures. Rhombohedral single-phase hematite was confirmed through five Raman active modes. 2 P 3/2 (1) → 2 P 1/2 transition in photoluminescence spectra and Fourier-transform infrared spectroscopy band observed at 555 cm-1 revealed the hematite formation. The highest specific capacitance value of 151.09 F/g for scan rate of 10 mV/s was obtained for the hydrothermal-assisted product using an Fe(NO3)2·9H2O precursor in KOH electrolyte solutions.
Hematite enhances the removal of Cr(VI) by Bacillus subtilis BSn5 from aquatic environment.
Ma, Shuai; Song, Chang-Shun; Chen, Yuefang; Wang, Fei; Chen, Hui-Lun
2018-06-05
In the present study, we investigated the removal of Cr(VI) and the associated bacterial activity in the systems containing Bacillus subtilis BSn5 (B. subtilis BSn5) and hematite. The microcalorimetry was used to study the effect of hematite on the normal physiological functions of B. subtilis BSn5 towards the removal of Cr(VI) for the first time. The results of the heat flux and the sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed that hematite does not affect the normal physiological functions of B. subtilis BSn5, and can help the strains maintain their activity in the presence of Cr(VI). More importantly, the relative capacity and intensity of Cr(VI) and total Cr removal by B. subtilis BSn5 in the presence of hematite were higher than that in the absence of hematite. The enhancement effect could be associated with their mineral adsorption, biosorption, Fe(II) reduction, bioreduction and immobilization functions. This study demonstrates the possibility of reducing the toxicity of Cr(VI) and enhancing the Cr(VI) removal efficiency in contaminated environments using a combination of hematite and B. subtilis BSn5. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mock, Jan; Klingebiel, Benjamin; Köhler, Florian; Nuys, Maurice; Flohre, Jan; Muthmann, Stefan; Kirchartz, Thomas; Carius, Reinhard
2017-11-01
Hematite (α -F e2O3 ) is known for poor electronic transport properties, which are the main drawback of this material for optoelectronic applications. In this study, we investigate the concept of enhancing electrical conductivity by the introduction of oxygen vacancies during temperature treatment under low oxygen partial pressure. We demonstrate the possibility of tuning the conductivity continuously by more than five orders of magnitude during stepwise annealing in a moderate temperature range between 300 and 620 K. With thermoelectric power measurements, we are able to attribute the improvement of the electrical conductivity to an enhanced charge-carrier density by more than three orders of magnitude. We compare the oxygen vacancy doping of hematite thin films with hematite nanoparticle layers. Thereby we show that the dominant potential barrier that limits charge transport is either due to grain boundaries in hematite thin films or due to potential barriers that occur at the contact area between the nanoparticles, rather than the potential barrier within the small polaron hopping model, which is usually applied for hematite. Furthermore, we discuss the transition from oxygen-deficient hematite α -F e2O3 -x towards the magnetite F e3O4 phase of iron oxide at high density of vacancies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Anxu; Liu, Feng; Shi, Liang
2016-09-20
The aggregation behavior of 9, 36, and 112 nm hematite particles was studied in the presence of OmcA, a bacterial extracellular protein, in aqueous dispersions at pH 5.7 through time-resolved dynamic light scattering, electrophoretic mobility, and circular dichroism spectra, respectively. At low salt concentration, the attachment efficiencies of hematite particles in all sizes first increased, then decreased, and finally remained stable with the increase of OmcA concentration, indicating the dominant interparticle interaction changed along with the increase in the protein-to-particle ratio. Nevertheless, at high salt concentration, the attachment efficiencies of all hematite samples gradually decreased with increasing OmcA concentration, whichmore » can be attributed to increasing steric force. Additionally, the aggregation behavior of OmcA-hematite conjugates was more correlated to total particle-surface area than primary particle size. It was further established that OmcA could stabilize hematite nanoparticles more efficiently than bovine serum albumin (BSA), a model plasma protein, due to the higher affinity of OmcA to hematite surface. This study highlighted the effects of particle properties, solution conditions, and protein properties on the complicated aggregation behavior of protein-nanoparticle conjugates in aqueous environments.« less
Search for the Origin of Hematite at Meridiani Planum and Gusev Crater
NASA Astrophysics Data System (ADS)
Dreibus, G.; Brückner, J.; Jagoutz, E.
2005-05-01
The landscape in Meridiani Planum encountered by the Rover Opportunity is different to all previous Mars landing sites. While those locations look like typical unsorted alluvials, Meridiani Planum consists of sorted sands with aeolian features like small dunes and desert pavements in places. Chemical compositions of soils and rocks at Gusev crater and Meridiani Planum were measured by the Alpha Proton X-Ray Spectrometer (APXS) [1, 2]. At Meridiani Planum all soils and outcrops have a higher mean Fe/Si ratio of 0.75 compared to rocks and soils in Gusev crater with a mean Fe/Si of 0.57. The enrichment of Fe results from an admixture of hematite (Fe2O3) as determined in-situ by the Mössbauer spectrometer (MB) [3]. The formation of hematite is an indicator for aqueous activities under oxidizing conditions. The highest portion of this mineral was found in the spherical grains, also nicknamed `blueberries', which cover most place at the landing site. These spherules were also found in rock exposures in Eagle crater to about 2 % by volume and were interpreted as concretions that formed by precipitation from aqueous fluids inside sedimentary rocks [4]. At Gusev crater no hematite was observed until sol 90 except for layering on a rock. However, about three months later at the foot of the Columbia Hills the MB detected hematite in a rock, dubbed `Pot of Gold'. Our investigations of hematite bearing materials, measured by APXS, MB, and Microscopic Imager (MI) [5], provide an integrated view of different occurrences of hematite on the Martian surface. Ratios of Fe to Mn are compared with Fe concentrations for various soils and outcrops in Meridiani Planum and Gusev crater. Most samples cluster at a mean Fe/Mn ratio of about 50 and range in Fe from 12 to 17 wt. %. Exceptions are found for those Meridiani Planum soils that have very high Fe contents of about 26 wt. %, such as targets dubbed `JackRussell', `FredRipple', and `Berry Bowl full', all showing Fe/Mn ratios of about 110. Based on APXS measurements we cannot distinguish, whether spherules consist of pure hematite or carry a thin layer of hematite. All these high hematite bearing soils are top surface samples, while corresponding subsurface soil samples or soils disturbed by rover wheels have low hematite contents. The very high Fe/Mn ratios of three undisturbed samples together with very high hematite contents suggest the presence of a hematite-rich top layer irrespectively of shape and area coverage of spherules or fragments and could be interpreted as a surface coating similar to terrestrial surface coatings. In the hematite rich outcrops with the same Fe/Mn ratio as found for the soil samples the formation of the main portion of fine dispersed hematite must be an isochemical re-crystallization process under strongly oxidizing conditions. [1] Gellert, R. et al. (2004) Science, 305, 829-832. [2] Rieder, R. et al. (2004) Science, 306, 1746-1749. [3] Klingelhöfer, G. et al. (2004) Science, 306, 1740-1745. [4] Squyres, S, et al. (2004) Science, 306, 1698-1703. [5] Herkenhoff, K. E. et al. (2004) Science, 306, 1727-1730.
Evidence for a Hematite Ore Body on Mars
NASA Technical Reports Server (NTRS)
Morris, Richard V.; Lane, M. D.; Christensen, P. R.
2000-01-01
The Mars Global Surveyor (MGS) spacecraft was launched from Cape Kennedy in November 1996. MGS was put into orbit around Mars in September of 1997 and has since been sending back data from a suite of instruments, including the Thermal Emission Spectrometer (TES). The TES instrument is an interferometric spectrometer designed to map the surface mineralogy of Mars by measuring the midinfrared emitted radiation over the spectral region of about 1600 to 200 cm(exp -1) (about 6 to 50 microns). This mineralogically sensitive technique utilizes the characteristic intra- and inter-molecular vibrations of minerals that are manifested in the midinfrared spectra. These spectral "fingerprints" are unique because they are dependent upon chemical composition, crystal structure, crystal orientation, and other factors. Midinfrared spectral data received from the MGS-TES instrument have indicated the presence of a large deposit of hematite (alpha-Fe2O3) in Sinus Meridiani, Mars. This hematite ore body, that is accompanied by basalt, is really extensive, encompassing an area about 350 by 500 km. To better understand the geologic context of this large deposit, a detailed laboratory spectroscopic investigation was conducted using more than 20 hematite samples so that their spectra could be compared to the martian spectra. The samples included red and gray polycrystaline hand samples, gray single-crystal hand samples, and red and gray fine- and coarse-grained particulates. The laboratory analyses provided thermal emissivity spectra that, when compared to the hematite emissivity spectra from Mars, suggest the Sinus Meridiani hematite is possibly an exposure of oriented hematite grains. These grains are likely coarser that 10 microns (and may be much larger) and gray in color. The characteristic of oriented grains is suggested by the apparent crystal axis-dependence of the energy emitted from the surface of Mars. The strong degree of crystal alignment exhibited in the emissivity spectra of Mars suggests that these oriented hematite crystals most likely occur as bedrock of aligned specular hematite grains (possibly schistose in texture) or as a secondary coating on bedrock, rather than as discrete particles. We are investigating the nature of this vast hematite deposit in order to understand better the geologic setting and infer past conditions and geological evolution on Mars.
Evidence for a Hematite Ore Body on Mars
NASA Technical Reports Server (NTRS)
Lane, M. D.; Christensen, P. R.
2000-01-01
The Mars Global Surveyor (MGS) spacecraft was launched from Cape Kennedy in November 1996. MGS was put into orbit around Mars in September of 1997 and has since been sending back data from a suite of instruments, including the Thermal Emission Spectrometer (TES). The TES instrument is an interferometric spectrometer designed to map the surface mineralogy of Mars by measuring the midinfrared emitted radiation over the spectral region of approximately 1600 to 200 per centimeter (appjroximately 6 to 50 microns). This mineralogically sensitive technique utilizes the characteristic intra- and inter-molecular vibrations of minerals that are manifested in the midinfrared spectra. These spectral "fingerprints" are unique because they are dependent upon chemical composition, crystal structure, crystal orientation, and other factors. Midinfrared spectral data received from the MGS-TES instrument have indicated the presence of a large deposit of hematite (alpha-Fe2O3) in Sinus Meridiani, Mars. This hematite ore body, that is accompanied by basalt, is areally extensive, encompassing and area approximately 350 by 500 km. To better understand the geologic context of this large deposit, a detailed laboratory spectroscopic investigation was conducted using more than 20 hematite samples so that their spectra could be compared to the martian spectra. The samples included red and gray polycrystaline hand samples, gray single-crystal hand samples, and red and gray fine- and coarse-grained particulates. The laboratory analyses provided thermal emissivity spectra that, when compared to the hematite emissivity spectra from Mars, suggest the Sinus Meridiani hematite is possibly an exposure of oriented hematite grains. These grains are likely coarser that 10 microns (and may be much larger) and gray in color The characteristic of oriented grains is suggested by the apparent crystal axis-dependence of the energy emitted from the surface of Mars. The strong degree of crystal alignment exhibited in the emissivity spectra of Mars suggests that these oriented hematite crystals most likely occur as bedrock of aligned specular hematite grains (possibly schistose in texture) or as a secondary coating on bedrock, rather than as discrete particles. We are investigating the nature of this vast hematite deposit in order to understand better the geologic setting and infer past conditions and geological evolution on Mars.
Gustafsson, Åsa; Bergström, Ulrika; Ågren, Lina; Österlund, Lars; Sandström, Thomas; Bucht, Anders
2015-10-01
The aim of this study was to investigate the inflammatory and immunological responses in airways and lung-draining lymph nodes (LDLNs), following lung exposure to iron oxide (hematite) nanoparticles (NPs). The responses to the hematite NPs were evaluated in both healthy non-sensitized mice, and in sensitized mice with an established allergic airway disease. The mice were exposed intratracheally to either hematite NPs or to vehicle (PBS) and the cellular responses were evaluated on days 1, 2, and 7, post-exposure. Exposure to hematite NPs increased the numbers of neutrophils, eosinophils, and lymphocytes in the airways of non-sensitized mice on days 1 and 2 post-exposure; at these time points the number of lymphocytes was also elevated in the LDLNs. In contrast, exposing sensitized mice to hematite NPs induced a rapid and unspecific cellular reduction in the alveolar space on day 1 post-exposure; a similar decrease of lymphocytes was also observed in the LDLN. The results indicate that cells in the airways and in the LDLN of individuals with established airway inflammation undergo cell death when exposed to hematite NPs. A possible explanation for this toxic response is the extensive generation of reactive oxygen species (ROS) in the pro-oxidative environment of inflamed airways. This study demonstrates how sensitized and non-sensitized mice respond differently to hematite NP exposure, and it highlights the importance of including individuals with respiratory disorders when evaluating health effects of inhaled nanomaterials. Copyright © 2015 Elsevier Inc. All rights reserved.
Christensen, P.R.; Bandfield, J.L.; Clark, R.N.; Edgett, K.S.; Hamilton, V.E.; Hoefen, T.; Kieffer, H.H.; Kuzmin, R.O.; Lane, M.D.; Malin, M.C.; Morris, R.V.; Pearl, J.C.; Pearson, R.; Roush, T.L.; Ruff, S.W.; Smith, M.D.
2000-01-01
The Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) mission has discovered a remarkable accumulation of crystalline hematite (α-Fe2O3) that covers an area with very sharp boundaries approximately 350 by 350–750 km in size centered near 2°S latitude between 0° and 5°W longitude (Sinus Meridiani). Crystalline hematite is uniquely identified by the presence of fundamental vibrational absorption features centered near 300, 450, and >525 cm−1 and by the absence of silicate fundamentals in the 1000 cm−1 region. Spectral features resulting from atmospheric CO2, dust, and water ice were removed using a radiative transfer model. The spectral properties unique to Sinus Meridiani were emphasized by removing the average spectrum of the surrounding region. The depth and shape of the hematite fundamental bands show that the hematite is crystalline and relatively coarse grained (>5–10 μm). Diameters up to and greater than hundreds of micrometers are permitted within the instrumental noise and natural variability of hematite spectra. Hematite particles 30 μm diameter) to 40–60% (10 μm diameter). The hematite in Sinus Meridiani is thus distinct from the fine-grained (diameter <5–10 μm), red, crystalline hematite considered, on the basis of visible, near-IR data, to be a minor spectral component in Martian bright regions like Olympus-Amazonis. Sinus Meridiani hematite is closely associated with a smooth, layered, friable surface that is interpreted to be sedimentary in origin. This material may be the uppermost surface in the region, indicating that it might be a late stage sedimentary unit or a layered portion of the heavily cratered plains units. We consider five possible mechanisms for the formation of coarse-grained, crystalline hematite. These processes fall into two classes depending on whether they require a significant amount of near-surface water: the first is chemical precipitation that includes origin by (1) precipitation from standing, oxygenated, Fe-rich water (oxide iron formations), (2) precipitation from Fe-rich hydrothermal fluids, (3) low-temperature dissolution and precipitation through mobile ground water leaching, and (4) formation of surface coatings, and the second is thermal oxidation of magnetite-rich lavas. Weathering and alteration processes, which produce nanophase and red hematite, are not consistent with the coarse, crystalline hematite observed in Sinus Meridiani. We prefer chemical precipitation models and favor precipitation from Fe-rich water on the basis of the probable association with sedimentary materials, large geographic size, distance from a regional heat source, and lack of evidence for extensive groundwater processes elsewhere on Mars. The TES results thus provide mineralogic evidence for probable large-scale water interactions. The Sinus Meridiani region may be an ideal candidate for future landed missions searching for biotic and prebiotic environments, and the physical characteristics of this site satisfy all of the engineering requirements for the missions currently planned.
Composition of Meridiani Hematite-rich Spherules: A Mass-Balance Mixing-Model Approach
NASA Technical Reports Server (NTRS)
jOLLIFF, b. l.
2005-01-01
One of the great surprises of the Mars Exploration Rovers (MER) mission is the discovery at Meridiani Planum that the surface hematite signature observed from orbit is attributable largely to a surface enrichment of hematite-rich spherules, thought to be concretions, that have weathered out of rocks similar to the underlying sulfate-rich rock formation [1]. A strong hematite signature has been observed by the Mini-TES [2] and by in-situ measurements of spherule-rich targets by the Mossbauer spectrometer (MB) [3] and the alpha-particle X-ray spectrometer (APXS) [4]. The Mini-TES derived spectrum of spherule-rich targets on the plains is consistent with nearly pure coarse-grained hematite, with perhaps as little as 5-10 areal % of other components [2]. The occurrence and abundance of the spherules as the bearer of the widespread hematite signature observed by MGS TES over much of Meridiani Planum is significant for global remote sensing, and their occurrence as concretions in the outcrop lithology is significant for the diagenetic history and role of water in the formation of the sedimentary rock formation [5].
NASA Technical Reports Server (NTRS)
2004-01-01
This figure shows spectra taken by the Mars Exploration Rover Opportunity's Moessbauer spectrometer at various spots in 'Eagle Crater.' From top to bottom, the spectra represent soil measurements taken from the center of the crater and out to the rim. The top spectrum taken on sol 56 near the center of the crater shows a basaltic mineral composition and only minor amounts of hematite. Basalts are volcanic minerals and hematite is an iron-bearing mineral often formed in water. Moving closer to the rim, the spectra show increasing amounts of hematite with the 'Punaluu' site containing the highest amounts seen to date on Mars. Only minor basaltic components are seen in this sample.
The corresponding microscopic image of Punaluu shows a high density of 'blueberries,' indicating that these sphere-like grains are responsible for the observed high levels of hematite.NASA Astrophysics Data System (ADS)
Babaei, Amir Haji; Ganji, Alireza
2018-03-01
The Ahmadabad hematite/barite deposit is located to the northeast of the city of Semnan, Iran. Geostructurally, this deposit lies between the Alborz and the Central Iran zones in the Semnan Subzone. Hematite-barite mineralisation occurs in the form of a vein along a local fault within Eocene volcanic host rocks. The Ahmadabad deposit has a simple mineralogy, of which hematite and barite are the main constituents, followed by pyrite and Fe-oxyhydroxides such as limonite and goethite. Based on textural relationships between the above-mentioned principal minerals, it could be deduced that there are three hydrothermal mineralisation stages in which pyrite, hematite and barite with primary open space filling textures formed under different hydrothermal conditions. Subsequently, in the supergene stage, goethite and limonite minerals with secondary replacement textures formed under oxidation surficial conditions. Microthermometric studies on barite samples show that homogenisation temperatures (TH) for primary fluid inclusions range from 142 to 256°C with a temperature peak between 200 and 220°C. Salinities vary from 3.62 to 16.70 NaCl wt% with two different peaks, including one of 6 to 8 NaCl wt% and another of 12 to 14 NaCl wt%. This indicates that two different hydrothermal waters, including basinal and sea waters, could have been involved in barite mineralisation. The geochemistry of the major and trace elements in the samples studied indicate a hydrothermal origin for hematite and barite mineralisation. Moreover, the Fe/Mn ratio (>10) and plots of hematite samples of Ahmadabad ores on Al-Fe-Mn, Fe-Mn-(Ni+Co+ Cu)×10, Fe-Mn-SiX2 and MnO/TiO2 - Fe2O3/TiO2 diagrams indicate that hematite mineralisation in the Ahmadabad deposit occurred under hydrothermal conditions. Furthermore, Ba and Sr enrichment, along with Pb, Zn, Hg, Cu and Sb depletion, in the barite samples of Ahmadabad ores are indicative of a low temperature hydrothermal origin for the deposit. A comparison of the ratios of LaN/YbN, CeN/YbN, TbN/LaN, SmN/NdN and parameters of Ce/Ce* and La/La* anomalies of the hematite, barite, host volcanic rocks and quartz latite samples to each other elucidate two important points: 1) the barite could have originated from volcanic host rocks, 2) the hematite could have originated from a quartz latite lithological unit. The chondrite normalised REE patterns of samples of hematite barite, volcanic host rocks and quartz latite imply that two different hydrothermal fluids could be proposed for hematite and barite mineralisation. The comparison between chondrite normalised REE patterns of Ahmadabad barite with oceanic origin barite and low temperature hydrothermal barite shows close similarities to the low temperature hydrothermal barite deposits.
Importance of a martian hematite site for astrobiology
NASA Technical Reports Server (NTRS)
Allen, C. C.; Westall, F.; Schelble, R. T.
2001-01-01
Defining locations where conditions may have been favorable for life is a key objective for the exploration of Mars. Of prime importance are sites where conditions may have been favorable for the preservation of evidence of prebiotic or biotic processes. Areas displaying significant concentrations of the mineral hematite (alpha-Fe2O3), recently identified by thermal emission spectrometry, may have significance in the search for evidence of extraterrestrial life. Since iron oxides can form as aqueous mineral precipitates, the potential exists to preserve microscopic evidence of life in iron oxide-depositing ecosystems. Terrestrial hematite deposits proposed as possible analogs for hematite deposits on Mars include massive (banded) iron formations, iron oxide hydrothermal deposits, iron-rich laterites and ferricrete soils, and rock varnish. We report the potential for long-term preservation of microfossils by iron oxide mineralization in specimens of the approximately 2,100-Ma banded iron deposit of the Gunflint Formation, Canada. Scanning and analytical electron microscopy reveals micrometer-scale rods, spheres, and filaments consisting predominantly of iron and oxygen with minor carbon. We interpret these objects as microbial cells permineralized by an iron oxide, presumably hematite. The confirmation of ancient martian microbial life in hematite deposits will require the return of samples to terrestrial laboratories. A hematite-rich deposit composed of aqueous iron oxide precipitates may thus prove to be a prime site for future sample return.
Magnetic analysis of commercial hematite, magnetite, and their mixtures
NASA Astrophysics Data System (ADS)
Ahmadzadeh, Mostafa; Romero, Camila; McCloy, John
2018-05-01
Magnetic techniques are suitable to detect iron oxides even in trace concentrations. However, since several iron oxides may be simultaneously present in natural and synthetic samples, mixtures of magnetic particles and magnetic interactions between grains can complicate magnetic signatures. Among the iron oxide minerals, hematite (α-Fe2O3) and magnetite (Fe3O4) are the most common. In this work, different commercial hematite powders, normally used as Fe precursor in laboratory synthesis of Fe-containing oxides, were characterized using X-ray diffractometry (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM). The effects of different concentrations of the hematite and magnetite on the magnetic properties of a set of mixtures (from 1 to 10 wt% magnetite) were then investigated by measuring the hysteresis loops, first order reversal curves (FORCs), thermal demagnetization, and isothermal remanent magnetization (IRM) curves. The three commercial hematite powders presented different magnetic behaviors mostly due to the effects of particle size. The magnetic results of mixtures reveal that it is very difficult to identify hematite magnetic signals by means of hysteresis loops, FORCs, or thermal demagnetization when even a small amount of magnetite (>5 wt%) is present due to magnetite's high specific magnetization. However, IRM was found to be a sensitive method to determine the presence of hematite when magnetite is simultaneously present as high as 10 wt%.
Shinde, Pravin S; Lee, Su Yong; Choi, Sun Hee; Lee, Hyun Hwi; Ryu, Jungho; Jang, Jum Suk
2016-08-31
Augmenting the donor density and nanostructure engineering are the crucial points to improve solar water oxidation performance of hematite (α-Fe2O3). This work addresses the sluggish water oxidation reaction associated with hematite photoanode by tweaking its internal porosity. The porous hematite photoanodes are fabricated by a novel synthetic strategy via pulse reverse electrodeposition (PRED) method that involves incorporation of a cationic CTAB surfactant in a sulfate electrolyte and spin-coated ZrO2 underlayer (UL) on FTO. CTAB is found to be beneficial in promoting the film growth rate during PRED. Incorporation of Zr(4+) ions from ZrO2 UL and Sn(4+) ions from FTO into the Fe2O3 lattice via solid-state diffusion reaction during pertinent annihilation of surfactant molecules at 800 °C produced internally porous hematite films with improved carrier concentration. The porous hematite demonstrated a sustained photocurrent enhancement and a significant cathodic shift of 130 mV relative to the planar hematite under standard illumination conditions (AM 1.5G) in 1 M NaOH electrolyte. The absorption, electrochemical impedance spectroscopy and Mott-Schottky analyses revealed that the ZrO2 UL and CTAB not only increased the carrier density and light harvesting but also accelerated the surface oxidation reaction kinetics, synergistically boosting the performance of internally porous hematite photoanodes.
NASA Astrophysics Data System (ADS)
Shinde, Pravin S.; Lee, Su Yong; Choi, Sun Hee; Lee, Hyun Hwi; Ryu, Jungho; Jang, Jum Suk
2016-08-01
Augmenting the donor density and nanostructure engineering are the crucial points to improve solar water oxidation performance of hematite (α-Fe2O3). This work addresses the sluggish water oxidation reaction associated with hematite photoanode by tweaking its internal porosity. The porous hematite photoanodes are fabricated by a novel synthetic strategy via pulse reverse electrodeposition (PRED) method that involves incorporation of a cationic CTAB surfactant in a sulfate electrolyte and spin-coated ZrO2 underlayer (UL) on FTO. CTAB is found to be beneficial in promoting the film growth rate during PRED. Incorporation of Zr4+ ions from ZrO2 UL and Sn4+ ions from FTO into the Fe2O3 lattice via solid-state diffusion reaction during pertinent annihilation of surfactant molecules at 800 °C produced internally porous hematite films with improved carrier concentration. The porous hematite demonstrated a sustained photocurrent enhancement and a significant cathodic shift of 130 mV relative to the planar hematite under standard illumination conditions (AM 1.5G) in 1 M NaOH electrolyte. The absorption, electrochemical impedance spectroscopy and Mott-Schottky analyses revealed that the ZrO2 UL and CTAB not only increased the carrier density and light harvesting but also accelerated the surface oxidation reaction kinetics, synergistically boosting the performance of internally porous hematite photoanodes.
Natural attenuation of arsenic in the environment by immobilization in nanostructured hematite.
Freitas, Erico T F; Montoro, Luciano A; Gasparon, Massimo; Ciminelli, Virginia S T
2015-11-01
Iron (hydr)oxides are known to play a major role in arsenic fixation in the environment. The mechanisms for long-term fixation into their crystal structure, however, remain poorly understood, especially arsenic partitioning behavior during transformation from amorphous to crystalline phases under natural conditions. In this study, these mechanisms are investigated in Fe-Al-oxisols exposed over a period of 10 years to a sulfide concentrate in tailings impoundments. The spatial resolution necessary to investigate the markedly heterogeneous nanoscale phases found in the oxisols was achieved by combining three different, high resolution electron microscopy techniques - Nano-Beam Electron Diffraction (NBD), Electron Energy-Loss Spectroscopy (EELS), and High Resolution Transmission Electron Microscopy (HRTEM). Arsenic (1.6±0.5 wt.%) was unambiguously and precisely identified in mesocrystals of Al-hematite with an As/Fe atomic ratio of 0.026±0.006. The increase in the c-axis (c=1.379±0.009 nm) compared to standard hematite (c=1.372 nm) is consistent with the presence of arsenic in the Al-hematite structure. The As-bearing Al-hematite is interpreted as a secondary phase formed from oxyhydroxides, such as ferrihydrite, during the long-term exposure to the sulfide tailings. The proposed mechanism of arsenic fixation in the Al-hematite structure involves adsorption onto Al-ferrihydrite nanoparticles, followed by Al-ferrihydrite aggregation by self-assembly oriented attachment and coalescence that ultimately produces Al-hematite mesocrystals. Our results illustrate for the first time the process of formation of stable arsenic bearing Al-hematite for the long-term immobilization of arsenic in environmental samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Zhaoxia; Liu, Qingsong; Dekkers, Mark J.; Tauxe, Lisa; Qin, Huafeng; Barrón, Vidal; Torrent, José
2015-10-01
Hematite-bearing red beds are renowned for their chemical remanent magnetization (CRM). If the CRM was acquired substantially later than the sediment was formed, this severely compromises paleomagnetic records. To improve our interpretation of the natural remanent magnetization, the intricacies of the CRM acquisition process must be understood. Here, we contribute to this issue by synthesizing hematite under controlled 'Earth-like' field conditions (≲ 100 μ T). CRM was imparted in 90 oriented samples with varying inclinations. The final synthesis product appeared to be dominated by hematite with traces of ferrimagnetic iron oxides. When the magnetic field intensity is ≳ 40 μ T, the CRM records the field direction faithfully. However, for field intensities ≲ 40 μ T, the CRM direction may deviate considerably from that of the applied field during synthesis. The CRM intensity normalized by the isothermal remanent magnetization (CRM/IRM@2.5 T) increases linearly with the intensity of growth field, implying that CRM could potentially be useful for relative paleointensity studies if hematite particles of chemical origins have consistent properties. CRM in hematite has a distributed unblocking temperature spectrum from ∼200 to ∼650 °C, while hematite with a depositional remanent magnetization (DRM) has a more confined spectrum from ∼ 600to 680 °C because it is usually coarser-grained and more stoichiometric. Therefore, the thermal decay curves of CRM with their concave shape are notably different from their DRM counterparts which are convex. These differences together are suggested to be a potential discriminator of CRM from DRM carried by hematite in natural red beds, and of significance for the interpretation of paleomagnetic studies on red beds.
Lepidocrocite to Maghemite to Hematite: A way to have Magnetic and Hematitic Martian Soil
NASA Technical Reports Server (NTRS)
Morris, Richard V.; Golden, D. C.; Shelfer, Tad D.; Lauer, H. V., Jr.
1997-01-01
We examined decomposition products of lepidocrocite, which were produced by heating the phase in air at temperatures up to 525 C for 3 and 300 hr, by XRD, TEM, magnetic methods, and reflectance spectroscopy (visible and near-IR). Single-crystal lepidocrocite particles dehydroxilated to polycrystalline particles of disordered maghemite which subsequently transformed to polycrystalline particles of hematite. Essentially pure maghemite was obtained at 265 and 223 C for the 3 and 300 hr heating experiments, respectively. Its saturation magnetization (J(sub s)) and mass specific susceptibility are approximately 50 A(sq m)/kg and approximately 40 cubic micrometers/kg, respectively. Because hematite is spectrally dominant, spectrally-hematitic samples (i.e., characterized bv a minimum near 860 nm and a maximum near 750 nm) could also be strongly magnetic (J(sub s) up to approximately 30 A(sq m)/kg) from the masked maghemite component. TEM analyses showed that individual particles are polycrystalline with respect to both maghemite and hematite. The spectrally-hematitic and magnetic Mh+Hm particles can satisfy the spectral and magnetic constraints for Martian surface materials over a wide range of values of Mh/(Mh+Hm) and as either pure oxide powders or (within limits) as components of multiphase particles. These experiments are consistent with lepidocrocite as the precursor of Mh+Hm assemblages on Mars, but other phases (e.g., magnetite) that decompose to Mh and Hm are also possible precursors. Simulations done with a copy of the Mars Pathfinder Magnet Array showed that spectrally hematitic Mh+Hm powders having J(sub s) equal to 20.6 A(sq m)/kg adhered to all five magnets.
Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversion
Wickman, B.; Bastos Fanta, A.; Burrows, A.; Hellman, A.; Wagner, J. B.; Iandolo, B.
2017-01-01
Hematite is a promising and extensively investigated material for various photoelectrochemical (PEC) processes for energy conversion and storage, in particular for oxidation reactions. Thermal treatments during synthesis of hematite are found to affect the performance of hematite electrodes considerably. Herein, we present hematite thin films fabricated via one-step oxidation of Fe by rapid thermal processing (RTP). In particular, we investigate the effect of oxidation temperature on the PEC properties of hematite. Films prepared at 750 °C show the highest activity towards water oxidation. These films show the largest average grain size and the highest charge carrier density, as determined from electron microscopy and impedance spectroscopy analysis. We believe that the fast processing enabled by RTP makes this technique a preferred method for investigation of novel materials and architectures, potentially also on nanostructured electrodes, where retaining high surface area is crucial to maximize performance. PMID:28091573
Hematite-Rich Deposits in Capri Chasma
2016-12-14
Capri Chasma is located in the eastern portion of the Valles Marineris canyon system, the largest known canyon system in the Solar System. Deeply incised canyons such as this are excellent targets for studying the Martian crust, as the walls may reveal many distinct types of bedrock. This section of the canyon was targeted by HiRISE based on a previous spectral detection of hematite-rich deposits in the area. Hematite, a common iron-oxide mineral, was first identified here by the Mars Global Surveyor Thermal Emission Spectrometer (TES). In this TES image, red pixels indicate higher abundances of hematite, while the blue and green pixels represent different types of volcanic rocks (e.g., basalt). Hematite in the Meridiani Planum region was also detected with the TES instrument (which we can see with the bright red spot on the Global TES mineral map). As a consequence, Meridiani Planum was the first landing site selected on Mars due to the spectral detection of a mineral that may have formed in the presence of liquid water. Shortly after landing, the Opportunity rover detected the presence of hematite in the form of concretions called "blueberries." The blueberries are found in association with layers of sulfate salt-rich rocks. The salts are hypothesized to have formed through the raising and lowering of the groundwater table. During one such an event, the rock altered to form the hematite-rich blueberries. As the rock was eroded away, the more resistant hematite-rich blueberries were plucked out and concentrated on the plains as a "lag" deposit. Martian blueberries are observed to be scattered across the plains of Meridiani along Opportunity's traverse from Eagle Crater to Endeavor Crater, where Opportunity continues to explore after its mission began over 10 years ago. This infrared-color image close-up highlights what is possibly the hematite-rich deposits nestled between different types of bedrock terraces in Capri Chasma. The bluish terrace is likely volcanic in origin, possibly basaltic, whereas the greenish rocks remain unidentified. The central reddish terrace is possibly where some of the hematite may be concentrated. The higher elevation terrace with the lighter-colored materials is likely a sulfate-rich rock (based on CRISM data in the area). Given the presence of both sulfate salts and hematite in this area, akin to the deposits and associations explored by the Opportunity rover in Meridiani Planum, it might be that these materials in Capri Chasma may share a similar origin. The yellow rectangular box shown on the TES spectral map outlines the corresponding location of the HiRISE image. Although the outline does not appear to contain a high hematite abundance, we note that the lower resolution of TES (about 3 to 6 kilometers per pixel) may exclude smaller exposures and finer sub-pixel details not-yet captured, but could be with HiRISE. A follow-up observation by the CRISM spectrometer may reveal additional details and a spectral signature for hematite in the vicinity at a finer resolution than TES. http://photojournal.jpl.nasa.gov/catalog/PIA21274
Maguregui, Maite; Knuutinen, Ulla; Martínez-Arkarazo, Irantzu; Castro, Kepa; Madariaga, Juan M
2011-05-01
After many decades exposed to a polluted environment, in some areas of Marcus Lucretius House, there are clear signs that plasters and hematite pigments are suffering deterioration. In the exhaustive analysis of the black layer covering the red pigment hematite it was possible to identify magnetite (Fe(3)O(4)) as responsible for the black colour, which always appears in combination with gypsum. Thermodynamic modelling stated that the presence of gypsum as well as the transformation of hematite into magnetite is a consequence of the attack of atmospheric SO(2).
Yan, Danhua; Tao, Jing; Kisslinger, Kim; ...
2015-10-13
Here we develop a novel technique for preparing high quality Ti-doped hematite thin films for photoelectrochemical (PEC) water splitting, through sputtering deposition of metallic iron films from an iron target embedded with titanium (dopants) pellets, followed by a thermal oxidation step that turns the metal films into doped hematite. It is found that the hematite domain size can be tuned from ~10 nm to over 100 nm by adjusting the sputtering atmosphere from more oxidative to mostly inert. The better crystallinity at a larger domain size ensures excellent PEC water splitting performance, leading to record high photocurrent from pure planarmore » hematite thin films on FTO substrates. Titanium doping further enhances the PEC performance of hematite photoanodes. The photocurrent is improved by 50%, with a titanium dopant concentration as low as 0.5 atom%. As a result, it is also found that the role of the titanium dopant in improving the PEC performance is not apparently related to the films’ electrical conductivity which had been widely believed, but is more likely due to the passivation of surface defects by the titanium dopants.« less
NASA Technical Reports Server (NTRS)
Golden, D. C.; Ming, D. W.; Morris, R. V.; Graff, T. G.
2007-01-01
The Athena science payload onboard the Opportunity rover identified hematite-rich spherules (mean diameter of 4.2 +/- 0.8 mm) embedded in outcrops and occurring as lag deposits at Meridiani Planum. They have formed as diagenetic concretions from the rapid breakdown of pre-existing jarosite and other iron sulfates when chemically distinct groundwater passed through the sediments. Diagenetic, Fe-cemented concretions found in the Jurassic Navajo Formation, Utah and hematite-rich spherules found within sulfate-rich volcanic breccia on Mauna Kea volcano, Hawaii are possible terrestrial analogues for Meridiani spherules. The Navajo Formation concretions form in porous quartz arenite from the dissolution of iron oxides by reducing fluids and subsequent Fe precipitation to form spherical Fe- and Si-rich concretions. The Mauna Kea spherules form by hydrothermal, acid-sulfate alteration of basaltic tephra. The formation of hematite-rich spherules with similar chemical, mineralogical, and morphological properties to the Meridiani spherules is rare on Earth, so little is known about their formation conditions. In this study, we have synthesized in the laboratory hematite-rich spherules that are analogous in nearly all respects to the Meridiani spherules.
NASA Astrophysics Data System (ADS)
Channell, J. E. T.; Hodell, D. A.; Margari, V.; Skinner, L. C.; Tzedakis, P. C.; Kesler, M. S.
2013-08-01
Magnetic properties of late Quaternary sediments on the SW Iberian Margin are dominated by bacterial magnetite, observed by transmission electron microscopy (TEM), with contributions from detrital titanomagnetite and hematite. Reactive hematite, together with low organic matter concentrations and the lack of sulfate reduction, lead to dissimilatory iron reduction and availability of Fe(II) for abundant magnetotactic bacteria. Magnetite grain-size proxies (κARM/κ and ARM/IRM) and S-ratios (sensitive to hematite) vary on stadial/interstadial timescales, contain orbital power, and mimic planktic δ18O. The detrital/biogenic magnetite ratio and hematite concentration are greater during stadials and glacial isotopic stages, reflecting increased detrital (magnetite) input during times of lowered sea level, coinciding with atmospheric conditions favoring hematitic dust supply. Magnetic susceptibility, on the other hand, has a very different response being sensitive to coarse detrital multidomain (MD) magnetite associated with ice-rafted debris (IRD). High susceptibility and/or magnetic grain-size coarsening, mark Heinrich stadials (HS), particularly HS2, HS3, HS4, HS5, HS6 and HS7, as well as older Heinrich-like detrital layers, indicating the sensitivity of this region to fluctuations in the position of the polar front. Relative paleointensity (RPI) records have well-constrained age models based on planktic δ18O correlation to ice-core chronologies, however, they differ from reference records (e.g. PISO) particularly in the vicinity of glacial maxima, mainly due to inefficient normalization of RPI records in intervals of enhanced hematite input.
NASA Astrophysics Data System (ADS)
Till, J. L.; Nowaczyk, N.
2018-06-01
The iron oxyhydroxide goethite is unstable at elevated temperatures and can transform to magnetite under reducing conditions. In this study, various heating experiments were conducted to simulate Fe-mineral transformations during pyrogenic or burial diagenesis alteration in the presence of organic matter. Thermomagnetic measurements, capsule heating experiments and thermochemical remanence acquisition measurements were performed to determine the effect of organic carbon additions on samples containing synthetic microcrystalline goethite, microcrystalline hematite or nanocrystalline goethite. Changes in magnetic properties with heating were monitored to characterize the magnetic behaviour of secondary magnetite and hematite formed during the experiments. Authigenic magnetite formed in all samples containing organic C, while goethite heated without organic C altered to poorly crystalline pseudomorphic hematite. The concentration of organic matter was found to have little influence on the rate or extent of reaction or on the characteristics of the secondary phases. Authigenic magnetite formed from microcrystalline goethite and hematite dominantly behaves as interacting single-domain particles, while nanophase goethite alters to a mixture of small single-domain and superparamagnetic magnetite. Authigenic magnetite and hematite both acquire a stable thermochemical remanence on heating to temperatures between 350 and 600 °C, although the remanence intensity acquired below 500 °C is much weaker than that at higher temperatures. Reductive transformation of fine-grained goethite or hematite is therefore a potential pathway for the production of authigenic magnetite and the generation of stable chemical remanence that may be responsible for remagnetization in organic-matter-bearing sedimentary rocks.
Shinde, Pravin S.; Lee, Su Yong; Choi, Sun Hee; Lee, Hyun Hwi; Ryu, Jungho; Jang, Jum Suk
2016-01-01
Augmenting the donor density and nanostructure engineering are the crucial points to improve solar water oxidation performance of hematite (α-Fe2O3). This work addresses the sluggish water oxidation reaction associated with hematite photoanode by tweaking its internal porosity. The porous hematite photoanodes are fabricated by a novel synthetic strategy via pulse reverse electrodeposition (PRED) method that involves incorporation of a cationic CTAB surfactant in a sulfate electrolyte and spin-coated ZrO2 underlayer (UL) on FTO. CTAB is found to be beneficial in promoting the film growth rate during PRED. Incorporation of Zr4+ ions from ZrO2 UL and Sn4+ ions from FTO into the Fe2O3 lattice via solid-state diffusion reaction during pertinent annihilation of surfactant molecules at 800 °C produced internally porous hematite films with improved carrier concentration. The porous hematite demonstrated a sustained photocurrent enhancement and a significant cathodic shift of 130 mV relative to the planar hematite under standard illumination conditions (AM 1.5G) in 1 M NaOH electrolyte. The absorption, electrochemical impedance spectroscopy and Mott-Schottky analyses revealed that the ZrO2 UL and CTAB not only increased the carrier density and light harvesting but also accelerated the surface oxidation reaction kinetics, synergistically boosting the performance of internally porous hematite photoanodes. PMID:27577967
NASA Astrophysics Data System (ADS)
Rečnik, Aleksander; Stanković, Nadežda; Daneu, Nina
2015-02-01
Oriented rutile/hematite intergrowths from Mwinilunga in Zambia were investigated by electron microscopy methods in order to resolve the complex sequence of topotaxial reactions. The specimens are composed of up to several-centimeter-large euhedral hematite crystals covered by epitaxially grown reticulated rutile networks. Following a top-down analytical approach, the samples were studied from their macroscopic crystallographic features down to subnanometer-scale analysis of phase compositions and occurring interfaces. Already, a simple morphological analysis indicates that rutile and hematite are met near the orientation relationship. However, a more detailed structural analysis of rutile/hematite interfaces using electron diffraction and high-resolution transmission electron microscopy (HRTEM) has shown that the actual relationship between the rutile and hosting hematite is in fact . The intergrowth is dictated by the formation of equilibrium interfaces leading to 12 possible directions of rutile exsolution within a hematite matrix and 144 different incidences between the intergrown rutile crystals. Analyzing the potential rutile-rutile interfaces, these could be classified into four classes: (1) non-crystallographic contacts at 60° and 120°, (2) {101} twins with incidence angles of 114.44° and their complementaries at 65.56°, (3) {301} twins at 54.44° with complementaries at 125.56° and (4) low-angle tilt boundaries at 174.44° and 5.56°. Except for non-crystallographic contacts, all other rutile-rutile interfaces were confirmed in Mwinilunga samples. Using a HRTEM and high-angle annular dark-field scanning TEM methods combined with energy-dispersive X-ray spectroscopy, we identified remnants of ilmenite lamellae in the vicinity of rutile exsolutions, which were an important indication of the high-T formation of the primary ferrian-ilmenite crystals. Another type of exsolution process was observed in rutile crystals, where hematite precipitates topotaxially exsolved from Fe-rich parts of rutile through intermediate Guinier-Preston zones, characterized by tripling the {101} rutile reflections. Unlike rutile exsolutions in hematite, hematite exsolutions in rutile form equilibrium interfaces. The overall composition of our samples indicates that the ratio between ilmenite and hematite in parent ferrian-ilmenite crystals was close to Ilm67Hem33, typical for Fe-Ti-rich differentiates of mafic magma. The presence of ilmenite lamellae indicates that the primary solid solution passed the miscibility gap at 900 °C. Subsequent exsolution processes were triggered by surface oxidation of ferrous iron and remobilization of cations within the common oxygen sublattice. Based on nanostructural analysis of the samples, we identified three successive exsolution processes: (1) exsolution of ilmenite lamellae from the primary ferrian-ilmenite crystals, (2) exsolution of rutile lamellae from ilmenite and (3) exsolution of hematite precipitates from Fe-rich rutile lamellae. All observed topotaxial reactions appear to be a combined function of temperature and oxygen fugacity, fO2.
Early Mars may have had a methanol ocean
NASA Astrophysics Data System (ADS)
Tang, Yan; Chen, Qianwang; Huang, Yujie
2006-01-01
The detection of gray crystalline hematite deposits on Mars by Thermal Emission Spectrometer (TES) has been used to argue for the presence of liquid water on Mars in the distant past. By methanol-thermal treatment of anhydrous FeCl 3 at low temperatures (70-160 °C), crystalline gray hematite with layered structure was synthesized, based on this result an alternative explanation for the origin of martian hematite deposits is suggested. Methane could be abundant in the early martian atmosphere; process such as photochemical oxidation of methane could result in the formation of ocean or pool of organic compounds such as methanol, which provides an environment for the formation of large-scale hematite deposits on Mars.
The performance of hematite nanostructures in different humidity levels
NASA Astrophysics Data System (ADS)
Ahmad, W. R. W.; Mamat, M. H.; Zoolfakar, A. S.; Khusaimi, Z.; Yusof, M. M.; Ismail, A. S.; Saidi, S. A.; Rusop, M.
2018-05-01
In this study, hematite (α-Fe2O3) nanostructure were prepared in Schott vials on fluorine-doped tin oxide (FTO) coated glass substrate using the sonicated immersion method in aqueous solution with ferric chloride FeCl3ṡ6H2O as a precursor and urea NH2-CONH2 as a stabilizer. The samples were characterized for different level of humidity conditions within range 40% to 90% RH. Based on the results obtained, the hematite nanostructure exhibited good optical properties and virtuous sensor response with high sensitivity. The fabricated hematite nanostructure has revealed a good potential for humidity sensor application based on the results obtained under different levels of humidity.
NASA Astrophysics Data System (ADS)
Selvaraj, Seenivasan; Moon, Hee; Kim, Do-Heyoung
2018-01-01
Photo-electrochemical water splitting with hematite photo-anodes under solar irradiation has attracted considerable attention as regards the production of renewable hydrogen energy. However, many challenges remain unresolved, as the full contribution of the catalytic over-layers has not been fully realized. Herein, we incorporate uniform spinel nickel-ferrite over-layers in hematite photo-anodes to obtain an improved understanding of the associated intrinsic changes. We achieve a 1.5-mA/cm2 photo-current density at 1.23 VRHE (RHE: reversible hydrogen electrode) under one-sun illumination conditions, along with a negative shift of 200 mV in the onset potential, for NiFe2O4-coated Sn-doped hematite photo-anodes. Fundamental electrochemical analyses clearly show that the shift in the onset potential is predominantly due to the enhanced photo-voltage development inside the hematite, rather than being purely caused by the interfacial kinetics. These insights reveal a new direction for fundamental research on photo-anodes towards fabrication of more efficient photo-anode systems.
Hybrid density functional theory band structure engineering in hematite
NASA Astrophysics Data System (ADS)
Pozun, Zachary D.; Henkelman, Graeme
2011-06-01
We present a hybrid density functional theory (DFT) study of doping effects in α-Fe2O3, hematite. Standard DFT underestimates the band gap by roughly 75% and incorrectly identifies hematite as a Mott-Hubbard insulator. Hybrid DFT accurately predicts the proper structural, magnetic, and electronic properties of hematite and, unlike the DFT+U method, does not contain d-electron specific empirical parameters. We find that using a screened functional that smoothly transitions from 12% exact exchange at short ranges to standard DFT at long range accurately reproduces the experimental band gap and other material properties. We then show that the antiferromagnetic symmetry in the pure α-Fe2O3 crystal is broken by all dopants and that the ligand field theory correctly predicts local magnetic moments on the dopants. We characterize the resulting band gaps for hematite doped by transition metals and the p-block post-transition metals. The specific case of Pd doping is investigated in order to correlate calculated doping energies and optical properties with experimentally observed photocatalytic behavior.
Liquid Adsorption of Organic Compounds on Hematite α-Fe2O3 Using ReaxFF.
Chia, Chung-Lim; Avendaño, Carlos; Siperstein, Flor R; Filip, Sorin
2017-10-24
ReaxFF-based molecular dynamics simulations are used in this work to study the effect of the polarity of adsorbed molecules in the liquid phase on the structure and polarization of hematite (α-Fe 2 O 3 ). We compared the adsorption of organic molecules with different polarities on a rigid hematite surface and on a flexible and polarizable surface. We show that the displacements of surface atoms and surface polarization in a flexible hematite model are proportional to the adsorbed molecule's polarity. The increase in electrostatic interactions resulting from charge transfer in the outermost solid atoms in a flexible hematite model results in better-defined adsorbed layers that are less ordered than those obtained assuming a rigid solid. These results suggest that care must be taken when parametrizing empirical transferable force fields because the calculated charges on a solid slab in vacuum may not be representative of a real system, especially when the solid is in contact with a polar liquid.
Hematite on the Surface of Meridiani Planum and Gusev Crater
NASA Technical Reports Server (NTRS)
Brueckner, J.; Dreibus, G.; Jagoutz, E.; Gellert, R.; Lugmair, G.; Rieder, R.; Waenke, H.; Zipfel, J.; Klingelhoefer, G.; Clark, B. C.
2005-01-01
Meridiani Planum was selected as a landing side for the Rover Opportunity because of an indication of hematite observed from orbit. Meridiani Planum consists of sorted sands with aeolian features like ripples and desert pavements. In impact craters, a high-albedo layered bedrock is exposed. The soil is a mixture of: (i) fine sand material in the size ranges of 50 to 150 m, (ii) sub-angular, irregular particles of 0.5 to 5 mm size with submillimeter circular voids that are most likely vesicular basaltic fragments, and (iii) spherules with a restricted grain size between 4 and 6 mm. The Mini-TES on board the rover Opportunity identified a hematite signature at distance resulting from mm-sized spherules as determined by the Moussbauer Spectrometer. Small quantities of similar spherules (2 vol. %) were found in rock exposures in Eagle crater and were interpreted as concretions that formed by precipitation from aqueous fluids inside sedimentary rocks. At Gusev crater no hematite was observed until sol 90 except for layering on a rock. Our investigations of hematite bearing materials, measured by the Alpha Particle X-ray Spectrometer (APXS), Moussbauer Spectrometer (MB), and Microscopic Imager (MI), provide a more integrated view of different occurrences of hematite on the martian surface. Chemistry of soils and rocks: Chemical compositions
Facet-Dependent Cr(VI) Adsorption of Hematite Nanocrystals.
Huang, Xiaopeng; Hou, Xiaojing; Song, Fahui; Zhao, Jincai; Zhang, Lizhi
2016-02-16
In this study, the adsorption process of Cr(VI) on the hematite facets was systematically investigated with synchrotron-based Cr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, density-functional theory calculation, and surface complexation models. Structural model fitting of EXAFS spectroscopy suggested that the interatomic distances of Cr-Fe were, respectively, 3.61 Å for the chromate coordinated hematite nanoplates with exposed {001} facets, 3.60 and 3.30 Å for the chromate coordinated hematite nanorods with exposed {001} and {110} facets, which were characteristic of inner-sphere complexation. In situ ATR-FTIR spectroscopy analysis confirmed the presence of two inner-sphere surface complexes with C3ν and C2ν symmetry, while the C3ν and C2ν species were assigned to monodentate and bidentate inner-sphere surface complexes with average Cr-Fe interatomic distances of 3.60 and 3.30 Å, respectively. On the basis of these experimental and theoretical results, we concluded that HCrO4(-) as dominated Cr(VI) species was adsorbed on {001} and {110} facets in inner-sphere monodentate mononuclear and bidentate binuclear configurations, respectively. Moreover, the Cr(VI) adsorption performance of hematite facets was strongly dependent on the chromate complexes formed on the hematite facets.
NASA Astrophysics Data System (ADS)
Smart, Tyler J.; Ping, Yuan
2017-10-01
Hematite (α-Fe2O3) is a promising candidate as a photoanode material for solar-to-fuel conversion due to its favorable band gap for visible light absorption, its stability in an aqueous environment and its relatively low cost in comparison to other prospective materials. However, the small polaron transport nature in α-Fe2O3 results in low carrier mobility and conductivity, significantly lowering its efficiency from the theoretical limit. Experimentally, it has been found that the incorporation of oxygen vacancies and other dopants, such as Sn, into the material appreciably enhances its photo-to-current efficiency. Yet no quantitative explanation has been provided to understand the role of oxygen vacancy or Sn-doping in hematite. We employed density functional theory to probe the small polaron formation in oxygen deficient hematite, N-doped as well as Sn-doped hematite. We computed the charged defect formation energies, the small polaron formation energy and hopping activation energies to understand the effect of defects on carrier concentration and mobility. This work provides us with a fundamental understanding regarding the role of defects on small polaron formation and transport properties in hematite, offering key insights into the design of new dopants to further improve the efficiency of transition metal oxides for solar-to-fuel conversion.
Hematite Versus Magnetite as the Signature for Planetary Magnetic Anomalies?
NASA Technical Reports Server (NTRS)
Kletetshka, Gunther; Taylor, Patrick T.; Wasilewski, Peter J.
1999-01-01
Crustal magnetic anomalies are the result of adjacent geologic units having contrasting magnetization. This magnetization arises from induction and/or remanence. In a planetary context we now know that Mars has significant crustal magnetic anomalies due to remanent magnetization, while the Earth has some anomalies where remanence can be shown to be important. This picture, however, is less clear because of the nature and the magnitude of the geomagnetic field which is responsible for superimposed induced magnetization. Induced magnetization assumes a magnetite source, because of its much greater magnetic susceptibility when compared with other magnetic minerals. We investigated the TRM (thermoremanent magnetization) acquisition of hematite, in weak magnetic fields up to 1 mT, to determine if the remanent and induced magnetization of hematite could compete with magnetite. TRM acquisition curves of magnetite and hematite show that multi-domain hematite reaches TRM saturation (0.3 - 0.4 A sq m/kg) in fields as low as 100 microT. However, multi-domain magnetite reaches only a few percent of its TRM saturation in a field of 100 microT (0.02 - 0.06 A sq m/kg). These results suggest that a mineral such as hematite and, perhaps, other minerals with significant remanence and minor induced magnetization may play an important role in providing requisite magnetization contrast. Perhaps, and especially for the Mars case, we should reevaluate where hematite and other minerals, with efficient remanence acquisition, exist in significant concentration, allowing a more comprehensive explanation of Martian anomalies and better insight into the role of remanent magnetization in terrestrial crustal magnetic anomalies.
NASA Astrophysics Data System (ADS)
Otake, Tsubasa; Wesolowski, David J.; Anovitz, Lawrence M.; Allard, Lawrence F.; Ohmoto, Hiroshi
2007-05-01
Transformations of magnetite (Fe IIFe 2IIIO 4) to hematite (Fe 2IIIO 3) (and vice versa) have been thought by many scientists and engineers to require molecular O 2 and/or H 2. Thus, the presence of magnetite and/or hematite in rocks has been linked to a specific oxidation environment. However, the availability of reductants or oxidants in many geologic and industrial environments appears to have been too low to account for the transformations of iron oxides through redox reactions. Here, we report the results of hydrothermal experiments in mildly acidic and H 2-rich aqueous solutions at 150 °C, which demonstrate that transformations of magnetite to hematite, and hematite to magnetite, occur rapidly without involving molecular O 2 or H 2: Fe3O 4(Mt) + 2H (aq)+ ↔ Fe 2O 3(Hm) + Fe (aq)2+ + H 2O. The transformation products are chemically and structurally homogeneous, and typically occur as euhedral single crystals much larger than the precursor minerals. This suggests that, in addition to the expected release of aqueous ferrous species to solution, the transformations involve release of aqueous ferric species from the precursor oxides to the solution, which reprecipitate without being reduced by H 2. These redox-independent transformations may have been responsible for the formation of some iron oxides in natural systems, such as high-grade hematite ores that developed from Banded Iron Formations (BIFs), hematite-rich deposits formed on Mars, corrosion products in power plants and other industrial systems.
Newsom, Horton E.; Barber, C.A.; Hare, T.M.; Schelble, R.T.; Sutherland, V.A.; Feldman, W.C.
2003-01-01
The hematite deposit in Meridiani Planum was selected for a Mars Exploration Rover (MER) landing site because water could be involved in the formation of hematite, and water is a key ingredient in the search for life. Our discovery of a chain of paleolake basins and channels along the southern margin of the hematite deposits in Meridiani Planum with the presence of the strongest hematite signature adjacent to a paleolake basin, supports the possible role of water in the formation of the hematite and the deposition of other layered materials in the region. The hematite may have formed by direct precipitation from lake water, as coatings precipitated from groundwater, or by oxidation of preexisting iron oxide minerals. The paleolake basins were fed by an extensive channel system, originating from an area larger than Texas and located south of the Schiaparelli impact basin. On the basis of stratigraphic relationships, the formation of channels in the region occurred over much of Mars' history, from before the layered materials in Meridiani Planum were deposited until recently. The location of the paleolake basins and channels is connected with the impact cratering history of the region. The earliest structure identified in this study is an ancient circular multiringed basin (800-1600 km diameter) that underlies the entire Meridiani Planum region. The MER landing site is located on the buried northern rim of a later 150 km diameter crater. This crater is partially filled with layered deposits that contained a paleolake in its southern portion. Copyright 2003 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Kirkland, L. E.; Herr, K. C.; Adams, P. M.
2001-05-01
A region on Mars within Sinus Meridiani has been interpreted as a surface partially covered by coarse-grained (gray) hematite, using spectra measured by the 1996 Global Surveyor Thermal Emission Spectrometer (TES) [Lane et al., 1999; Christensen et al., 2000]. The band strengths recorded by TES of this region are consistent with either coarse-grained hematite, or cemented poorly crystalline or cemented fine-grained hematite. The band strengths are inconsistent with unconsolidated, poorly crystalline or fine-grained hematite, including nanophase hematite dust [Christensen et al., 2000]. Currently the gray hematite interpretation is based on bands centered near 22 and 33 microns. TES also records a band centered near 18 microns that was used in early hematite interpretations [Lane et al., 1999]. However, it was noted [Kirkland et al., 1999a] that the 18 micron band is too narrow in both TES and the 1971 Mariner Mars IRIS spectra to be a good match to typical spectra of well-crystalline hematite [e.g. Salisbury et al., 1991]. The 18 micron band is near the very strong 15 micron atmospheric CO2 band, but if anything the nearby CO2 band should cause the 18 micron band to appear wider, not narrower. In addition, the higher spectral resolution of IRIS allows improved separation of the bands [Kirkland et al., 1999b]. More recent publications no longer show the TES 18 micron band [e.g. Lane et al., 2000; Christensen et al., 2000], which temporarily resolved the issue. However, we feel it is important to understand why TES and IRIS spectra exhibit an 18 micron band that is too narrow to match typical spectra of coarse-grained hematite. Smooth-surfaced cemented (e.g. ferricrete) or coated materials (e.g. desert varnish) have spectral contrast that is consistent with the observed IRIS and TES band contrast. On Mars, one possible source for cemented material or coatings would be the nanophase hematite dust. Cemented materials may occur in bulk (e.g. duricrust or ferricrete), or as a thin coating (e.g. desert varnish). We have investigated the signatures of naturally occurring cemented materials that contain hematite, and found samples that exhibit 22 and 33 micron bands that are consistent with coarse-grained hematite signatures, and yet also exhibit narrower 18 micron bands. We are continuing to study the materials more in-depth to examine the variations in spectral shape, and to determine the cause of varied 18 micron band width. References. Christensen, P. R. et al., JGR 105, 9632, 2000. Kirkland, L., K. Herr, P. Forney, and J. Salisbury, LPSC XXX, abs. 1693 and oral presentation, 1999a. Kirkland, L., K. Herr, and P. Forney, 5th Internat'l Conf. on Mars, abs. 6174, 1999b. Lane, M., R. Morris, and P. Christensen, LPSC XXX, abs. 1469, 1999. Lane, M., R. Morris, and P. Christensen, LPSC XXXI, abs. 1140, 2000. Salisbury, J., L. Walter, N. Vergo, D. D'Aria, Infrared (2.1-25 micron) Spectra of Minerals, Johns Hopkins UP, 1991.
NASA Astrophysics Data System (ADS)
Scott, G. R.; Brownlee, S. J.; Feinberg, J. M.; Renne, P. R.
2008-12-01
Rocks provide a compound paleomagnetic signal from mixtures of various iron minerals with different grain sizes and magnetic stabilities. To unravel this complex signal, specific mineral phases with stable remanence can be individually examined as single crystals. In the case of the Ecstall Pluton (~91 Ma), intra-pluton discordance of paleomagnetic directions may be the result of post-crystallization deformation, or mineralogical changes caused by re-heating from the adjacent Quottoon Pluton (~52 Ma). In order to distinguish between these two hypotheses we conducted rock magnetic experiments on single crystals of finely-exsolved hematite-ilmenite along a transect approaching the Quottoon Pluton. Reflected light, and SEM observations show grains of hematite and ilmenite as the dominant Fe-oxide throughout the Ecstall. Nearest the Quottoon Pluton, the hematite-ilmenite grains exhibit the classic rutile blitz texture. The lamellar microstructure observed in the hematite-ilmenite grains, as well as the rutile blitz texture are linked to the thermal history of the Ecstall Pluton, and have important effects on the magnetic properties of these grains (i.e. lamellar magnetism). Our results include the magnetic unmixing of isothermal remanence magnetization (IRM) acquisition, First Order Reversal Curve (FORC) diagrams, temperature vs. remanence experiments (MPMS), and TEM studies. These data provide a spatially resolved record of rock magnetic variations across the Ecstall Pluton, showing evidence of thermally activated reduction of hematite to magnetite in samples within 13 km of the Quottoon Pluton. TEM analysis shows the magnetite is present as 20-50 nm-sized particles within hematite. This mineralogic change may be responsible for the variations in paleomagnetic directions across the Ecstall Pluton, and clear evidence for this reaction cannot be found by traditional rock characterization techniques, illustrating the need to couple detailed rock magnetic, paleomagnetic, and mineralogic analyses.
Hole transport in pure and doped hematite
NASA Astrophysics Data System (ADS)
Liao, Peilin; Carter, Emily A.
2012-07-01
Hematite (α-Fe2O3) is a promising candidate for use in photovoltaic (PV) and photoelectrochemical devices. Its poor conductivity is one major drawback. Doping hematite either p-type or n-type greatly enhances its measured conductivity and is required for potential p-n junctions in PVs. Here, we study hole transport in pure and doped hematite using an electrostatically embedded cluster model with ab initio quantum mechanics (unrestricted Hartree-Fock theory). Consistent with previous work, the model suggests that hole hopping is via oxygen anions for pure hematite. The activation energy for hole mobility is predicted to be at least 0.1 eV higher than the activation energy for electron mobility, consistent with the trend observed in experiments. We examine four dopants—magnesium(II), nickel(II), copper(II), and manganese(II/III) in direct cation substitution sites—to gain insight into the mechanism by which conductivity is improved. The activation energies are used to assess qualitative effects of different dopants. The hole carriers are predicted to be attracted to O anions near the dopants. The magnitude of the trapping effect is similar among the four dopants in their +2 oxidation states. The multivalent character of Mn doping facilitates local hole transport around Mn centers via a low-barrier O-Mn-O pathway, which suggests that higher hole mobility can be achieved with increasing Mn doping concentration, especially when a network of these low-barrier pathways is produced. Our results suggest that the experimentally observed conductivity increase in Mg-, Ni-, and Cu-doped p-type hematite is mostly due to an increase in hole carriers rather than improved mobility, and that Mg-, Ni-, and Cu-doping perform similarly, while the conductivity of Mn-doped hematite might be significantly improved in the high doping concentration limit.
NASA Astrophysics Data System (ADS)
Gao, Xinbo; Hao, Qingzhen; Wang, Luo; Oldfield, Frank; Bloemendal, Jan; Deng, Chenglong; Song, Yang; Ge, Junyi; Wu, Haibin; Xu, Bing; Li, Fengjiang; Han, Long; Fu, Yu; Guo, Zhengtang
2018-01-01
In recent years, increasing interest in loess studies has focused on qualitative and quantitative paleoclimatic reconstruction using the imperfect antiferromagnetic mineral hematite. However, the linkage between the hematite formation and climatic variables remains controversial. Here we present the results of a comprehensive investigation of the magnetic properties and statistical analysis of a suite of clay and silt fractions of modern soil samples from 179 sites across the Chinese Loess Plateau (CLP) and adjacent regions. Our objective was to clarify the relationships between modern climatic variables and pedogenic hematite, as well as pedogenic ferrimagnetic minerals. First-order reversal curve measurements were also conducted on representative particle-sized subsamples from a N-S transect to understand the differences in magnetic mineralogy between the two fractions. Our results show that pipette extraction separates the fine-grained superparamagnetic (SP) and most of the single-domain (SD) magnetic grains into the clay fraction, and that the remaining silt fraction displays the magnetic properties of coarse pseudo-single domain (PSD) or a mixture of multidomain (MD)/PSD and a few SD particles. Only the pedogenic clay fraction shows a strong correlation with climatic variables. The application of redundancy analysis helps to distinguish the climate variables controlling the formation of ferrimagnetic minerals and hematite during pedogenesis. On the CLP, pedogenic ferrimagnetic minerals are sensitive to mean annual precipitation, while pedogenic hematite formation is preferentially dependent on mean annual temperature. The confirmation of the temperature-dependent nature of hematite on the CLP provides a new possibility for quantitatively reconstructing the paleotemperature history of Chinese loess/paleosol sequences.
NASA Astrophysics Data System (ADS)
Gao, X.; Hao, Q.; Luo, W.; Oldfield, F.; Bloemendal, J.; Deng, C.; Song, Y.; Ge, J.; Wu, H.; Xu, B.; Li, F.; Han, L.; Fu, Y.; Guo, Z.
2017-12-01
In recent years, increasing interest in loess studies has focused on qualitative and quantitative paleoclimatic reconstruction using the imperfect antiferromagnetic mineral hematite. However, the linkage between the hematite formation and climatic variables remains controversial. Here we present the results of a comprehensive investigation of the magnetic properties and statistical analysis of a suite of clay and silt fractions of modern soil samples from 179 sites across the Chinese Loess Plateau (CLP) and adjacent regions. Our objective was to clarify the relationships between modern climatic variables and pedogenic hematite, as well as pedogenic ferrimagnetic minerals. First-order reversal curve measurements were also conducted on representative particle-sized subsamples from a N-S transect to understand the differences in magnetic mineralogy between the two fractions. Our results show that pipette extraction separates the fine-grained superparamagnetic (SP) and most of the single-domain (SD) magnetic grains into the clay fraction, and that the remaining silt fraction displays the magnetic properties of coarse pseudo-single domain (PSD) or a mixture of multidomain (MD)/PSD and a few SD particles. Only the pedogenic clay fraction shows a strong correlation with climatic variables. The application of redundancy analysis helps to distinguish the climate variables controlling the formation of ferrimagnetic minerals and hematite during pedogenesis. On the CLP, pedogenic ferrimagnetic minerals are sensitive to mean annual precipitation, while pedogenic hematite formation is preferentially dependent on mean annual temperature. The confirmation of the temperature-dependent nature of hematite on the CLP provides a new possibility for quantitatively reconstructing the paleotemperature history of Chinese loess/paleosol sequences.
Santos, Reginaldo da S; Faria, Guilherme A; Giles, Carlos; Leite, Carlos A P; Barbosa, Herbert de S; Arruda, Marco A Z; Longo, Claudia
2012-10-24
Iron-doped TiO(2) (Fe:TiO(2)) nanoparticles were synthesized by the sol-gel method (with Fe/Ti molar ratio corresponding to 1, 3, and 5%), followed by hydrothermal treatment, drying, and annealing. A similar methodology was used to synthesize TiO(2) and α-Fe(2)O(3) nanoparticles. For comparison, a mixture hematite/titania, with Fe/Ti = 4% was also investigated. Characterization of the samples using Rietveld refinement of X-ray diffraction data revealed that TiO(2) consisted of 82% anatase and 18% brookite; for Fe:TiO(2), brookite increased to 30% and hematite was also identified (0.5, 1.0, and 1.2 wt % for samples prepared with 1, 3, and 5% of Fe/Ti). For hematite/titania mixture, Fe/Ti was estimated as 4.4%, indicating the Rietveld method reliability for estimation of phase composition. Because the band gap energy, estimated as 3.2 eV for TiO(2), gradually ranged from 3.0 to 2.7 eV with increasing Fe content at Fe:TiO(2), it can be assumed that a Fe fraction was also inserted as dopant in the TiO(2) lattice. Extended X-ray absorption fine structure spectra obtained for the Ti K-edge and Fe K-edge indicated that absorbing Fe occupied a Ti site in the TiO(2) lattice, but hematite features were not observed. Hematite particles also could not be identified in the images obtained by transmission electron microscopy, in spite of iron identification by elemental mapping, suggesting that hematite can be segregated at the grain boundaries of Fe:TiO(2).
NASA Technical Reports Server (NTRS)
Morris, R. V.; Ming, D. W.; Graff, T. G.; Arvidson, R. E.; Bell, J. F., III; Squyres, S. W.; Mertzman, S. A.; Gruener, J. E.; Golden, D. C.; Robinson, G. A.
2005-01-01
Iron-rich spherules (>90% Fe2O3 from electron microprobe analyses) approx.10-100 microns in diameter are found within sulfate-rich rocks formed by aqueous, acid-sulfate alteration of basaltic tephra on Mauna Kea volcano, Hawaii. Although some spherules are nearly pure Fe, most have two concentric compositional zones, with the core having a higher Fe/Al ratio than the rim. Oxide totals less than 100% (93-99%) suggest structural H2O and/or /OH. The transmission Moessbauer spectrum of a spherule-rich separate is dominated by a hematite (alpha-Fe2O3) sextet whose peaks are skewed toward zero velocity. Skewing is consistent with Al(3+) for Fe(3+) substitution and structural H2O and/or /OH. The grey color of the spherules implies specular hematite. Whole-rock powder X-ray diffraction spectra are dominated by peaks from smectite and the hydroxy sulfate mineral natroalunite as alteration products and plagioclase feldspar that was present in the precursor basaltic tephra. Whether spherule formation proceeded directly from basaltic material in one event (dissolution of basaltic material and precipitation of hematite spherules) or whether spherule formation required more than one event (formation of Fe-bearing sulfate rock and subsequent hydrolysis to hematite) is not currently constrained. By analogy, a formation pathway for the hematite spherules in sulfate-rich outcrops at Meridiani Planum on Mars (the Burns formation) is aqueous alteration of basaltic precursor material under acid-sulfate conditions. Although hydrothermal conditions are present on Mauna Kea, such conditions may not be required for spherule formation on Mars if the time interval for hydrolysis at lower temperatures is sufficiently long.
Magnetism of Al-substituted magnetite reduced from Al-hematite
NASA Astrophysics Data System (ADS)
Jiang, Zhaoxia; Liu, Qingsong; Zhao, Xiang; Roberts, Andrew P.; Heslop, David; Barrón, Vidal; Torrent, José
2016-06-01
Aluminum-substituted magnetite (Al-magnetite) reduced from Al-substituted hematite or goethite (Al-hematite or Al-goethite) is an environmentally important constituent of magnetically enhanced soils. In order to characterize the magnetic properties of Al-magnetite, two series of Al-magnetite samples were synthesized through reduction of Al-hematite by a mixed gas (80% CO2 and 20% CO) at 395°C for 72 h in a quartz tube furnace. Al-magnetite samples inherited the morphology of their parent Al-hematite samples, but only those transformed from Al-hematite synthesized at low temperature possessed surficial micropores, which originated from the release of structural water during heating. Surface micropores could thus serve as a practical fingerprint of fire or other high-temperature mineralogical alteration processes in natural environments, e.g., shear friction in seismic zones. In addition, Al substitution greatly affects the magnetic properties of Al-magnetite. For example, coercivity (Bc) increases with increasing Al content and then decreases slightly, while the saturation magnetization (Ms), Curie temperature (Tc), and Verwey transition temperature (Tv) all decrease with increasing Al content due to crystal defect formation and dilution of magnetic ions caused by Al incorporation. Moreover, different trends in the correlation between Tc and Bc can be used to discriminate titanomagnetite from Al-magnetite, which is likely to be important in environmental and paleomagnetic studies, particularly in soil.
El Afifi, E M; Attallah, M F; Borai, E H
2016-01-01
Potential utilization of hematite as a natural material for immobilization of long-lived radionuclides from radioactive liquid waste was investigated. Hematite ore has been characterized by different analytical tools such as Fourier transformer infrared (FTIR), X-ray fluorescence (XRF), powder X-ray diffraction (XRD), thermogravimetry (TG) and differential thermal (DT) analysis, scanning electron microscopy (SEM) and BET-surface area. In this study, europium was used as REEs(III) and as a homolog of Am(III)-isotopes (such as (241)Am of 432.6 y, (242m)Am of 141 y and (243)Am of 7370 y). Micro particles of the hematite ore were used for treatment of radioactive waste containing (152+154)Eu(III). The results indicated that 96% (4.1 × 10(4) Bq) of (152+154)Eu(III) was efficiently retained onto hematite ore. Kinetic experiments indicated that the processes could be simulated by a pseudo-second-order model and suggested that the process may be chemisorption in nature. The applicability of Langmuir, Freundlich and Temkin models was investigated. It was found that Langmuir isotherm exhibited the best fit with the experimental results. It can be concluded that hematite is an economic and efficient reactive barrier for immobilization of long-lived radio isotopes of actinides and REEs(III). Copyright © 2015 Elsevier Ltd. All rights reserved.
Mars Hematite Site: Potential for Preservation of Microfossils
NASA Technical Reports Server (NTRS)
Allen, Carlton C.; Westall, Frances; Longazo, Teresa; Schelble, Rachel; Probst, Luke; Flood, Beverly
2003-01-01
Defining locations where conditions may have been favorable for life is a key objective for the exploration of Mars. Of prime importance are sites where conditions may have been favorable for the preservation of evidence of pre-biotic or biotic processes. Areas displaying significant concentrations of the mineral hematite (alpha-Fe2O3) have been identified from orbit by thermal emission spectrometry. The largest such deposit, in Sinus Meridiani, is a strong candidate landing site for one of the twin Mars Exploration Rovers, scheduled to launch in 2003. The Martian hematite site may have significance in the search for evidence of extraterrestrial life. Since iron oxides can form as aqueous mineral precipitates, the potential exists for preserving microscopic evidence of life in ecosystems that deposit iron oxides. Terrestrial hematite deposits proposed as possible analogs for the hematite sites on Mars include massive (banded) iron formations, iron oxide hydrothermal deposits, iron-rich laterites and ferricrete soils, and rock varnish. We are engaged in a systematic effort to document the evidence of life preserved in iron oxide deposits from each of these environments.
Microbial Fossils Detected in Desert Varnish
NASA Technical Reports Server (NTRS)
Flood, B. E.; Allen, C.; Longazo, T.
2003-01-01
Mars Global Surveyor Thermal Emission Spectrometer data indicate regions with significant levels of hematite (_Fe2O3). Fe-oxides, like hematite, can form as aqueous mineral precipitates and as such may preserve microscopic fossils or other biosignatures. Several potential terrestrial analogues to martian hematite like hydrothermal vents have preserved microfossils. Microbial fossilization in Fe-oxides is often a function of biomineralization. For example, goethite (FeO2H) encrustation of fungal mycelia from the mid-Tertiary preserved fungal morphologies such that their genera could be determined.
Interaction of copper and fulvic acid at the hematite-water interface
NASA Astrophysics Data System (ADS)
Christl, Iso; Kretzschmar, Ruben
2001-10-01
The influence of surface-bound fulvic acid on the sorption of Cu(II) to colloidal hematite particles was studied experimentally and the results were compared with model calculations based on the linear additivity assumption. In the first step, proton and Cu binding to colloidal hematite particles and to purified fulvic acid was studied by batch equilibration and ion-selective electrode titration experiments, respectively. The sorption data for these binary systems were modeled with a basic Stern surface complexation model for hematite and the NICA-Donnan model for fulvic acid. In the second step, pH-dependent sorption of Cu and fulvic acid in ternary systems containing Cu, hematite, and fulvic acid in NaNO3 electrolyte solutions was investigated in batch sorption experiments. Sorption of fulvic acid to the hematite decreased with increasing pH (pH 3-10) and decreasing ionic strength (0.01-0.1 M NaNO3), while the presence of 22 μM Cu had a small effect on fulvic acid sorption, only detectable at low ionic strength (0.01 M). Sorption of Cu to the solid phase separated by centrifugation was strongly affected by the presence of fulvic acid. Below pH 6, sorption of Cu to the solid phase increased by up to 40% compared with the pure hematite. Above pH 6, the presence of fulvic acid resulted in a decrease in Cu sorption due to increasing concentrations of dissolved metal-organic complexes. At low ionic strength (0.01 M), the effects of fulvic acid on Cu sorption to the solid phase were more pronounced than at higher ionic strength (0.1 M). Comparison of the experimental data with model calculations shows that Cu sorption in ternary hematite-fulvic acid systems is systematically underestimated by up to 30% using the linear additivity assumption. Therefore, specific interactions between organic matter and trace metal cations at mineral surfaces must be taken into account when applying surface complexation models to soils or sediments which contain oxides and natural organic matter.
NASA Astrophysics Data System (ADS)
Wiens, R. C.; Meslin, P. Y.; Lanza, N.; Frydenvang, J.; Mangold, N.; Johnson, J. R.; Fraeman, A. A.; Horgan, B.; Bedford, C.; Blaney, D. L.; Bridges, J.; Cousin, A.; Ehlmann, B. L.; Forni, O.; Gasda, P. J.; Gasnault, O.; Gellert, R.; Johnstone, S.; Lamm, S. N.; Lasue, J.; Le Mouelic, S.; Maurice, S.; Newsom, H. E.; Ollila, A.; Payre, V.; Rapin, W.; Salvatore, M. R.; Schwenzer, S. P.; Thomas, N. H.; Vasavada, A. R.
2017-12-01
After traversing >17 km, the Curiosity rover has reached Vera Rubin Ridge (VRR), formerly known as the Hematite Ridge. Situated 200 m above the base of Gale crater on the slope of Mt. Sharp, VRR was one of the original objectives of the mission. VRR stretches 6.5 km NE-SW with a vertical height of 30 m (to -4200 m), it is the largest surface feature encountered by Curiosity to date. Orbital observation by CRISM of relatively strong hematite signal along the ridge gave it its original name. Some hematite spectral signatures along the ridge have been observed by Curiosity from long distance by Mastcam and ChemCam passive spectra. Curiosity started observing local enrichments of hematite in Murray lacustrine sediments near Bagnold Dunes, which may or may not be related to the hematite observed on the ridge top. The presence of hematite-like spectral signatures became variable as the rover approached below the ridge. Chemistry and ridge imaging: Magnesium, Mn, and P have shown strong increases in dark surface features in some regions below the ridge. Manganese oxide abundances have risen to >10 wt. % in some dark nodules and laminae. Iron, Mg, and P appear correlated in high-P observations, with the highest values associated with vein-related inclusions. Another class of dark features shows high Fe without high Mn or P. ChemCam high-resolution imaging from within 100 m of the base of the ridge shows regions of both finely laminated parallel strata and low-angle cross stratification along with vertical fractures surrounded by alteration halos; these are comparable to Murray stratigraphy. Given that the exposed surface of the Murray formation is the result of significant erosional deflation, the ridge must be more erosionally resistant than the surrounding material. The observation of high-oxidation-potential element enrichments below VRR argues for an oxidation front in which the local sediments were enriched in oxidized iron (hematite) and manganese. In this presentation we will report on the latest geochemical trends leading up to and on VRR, comparing chemical and morphological observations to observed mineralogy.
NASA Technical Reports Server (NTRS)
Morris, Richard V.; Golden, D. C.; Bell, James F., III; Lauer, H. V., Jr.
1995-01-01
Visible and near-IR reflectivity, Mossbauer, and X ray diffraction data were obtained on powders of impact melt rock from the Manicouagan Impact Crater located in Quebec, Canada. The iron mineralogy is dominated by pyroxene for the least oxidized samples and by hematite for the most oxidized samples. Phyllosilicate (smectite) contents up to 15 wt % were found in some heavily oxidized samples. Nanophase hematite and/or paramagnetic ferric iron is observed in all samples. No hydrous ferric oxides (e.g., goethite, lepidocrocite, and ferrihydrite) were detected, which implies the alteration occurred above 250 C. Oxidative alteration is thought to have occurred predominantly during late-stage crystallization and subsolidus cooling of the impact melt by invasion of oxidizing vapors and/or solutions while the impact melt rocks were still hot. The near-IR band minimum correlated with the extent of aleration (Fe(3+)/Fe(sub tot)) and ranged from approx. 1000 nm (high-Ca pyroxene) to approx. 850 nm (bulk, well-crystalline hematite) for least and most oxidized samples, respectively. Intermediate band positions (900-920 nm) are attributed to low-Ca pyroxene and/or a composite band from hematite-pyroxene assemblages. Manicouagan data are consistent with previous assignments of hematite and pyroxene to the 850 and 1000 nm bands observed in Martian reflectivity spectra. Manicouagan data also show that possible assignments for intermediate band positions (900-920 nm) in Martian spectra are pyroxene and/or hematite-pyroxene assemblages. By analogy with impact melt sheets and in agreement with observables for Mars, oxidative alteration of Martian impact melt sheets above 250 C and subsequent erosion could produce rocks and soils with variable proportions of hematite (both bulk and nanophase), pyroxene, and phyllosilicates as iron-bearing mineralogies. If this process is dominant, these phases on Mars were formed rapidly at relatively high temperatures on a sporadic basis throughout the history of the planet. The Manicouagan samples also show that this mineralogical diversity can be accomplished at constant chemical composition, which is also indicated for Mars from analyses of soil at the two Viking landing sites.
NASA Technical Reports Server (NTRS)
Morris, Richard V.; Golden, D. C.; Bell, James F., III; Lauer, H. V., Jr.
1995-01-01
Visible and near-IR refectivity, Moessbauer, and X ray diffraction data were obtained on powders of impact melt rock from the Manicouagan Impact Crater located in Quebec, Canada. The iron mineralogy is dominated by pyroxene for the least oxidized samples and by hematite for the most oxidized samples. Phyllosilicate (smectite) contents up to approximately 15 wt % were found in some heavily oxidized samples. Nanophase hematite and/or paramagnetic ferric iron is observed in all samples. No hydrous ferric oxides (e.g., goethite, lepidocrocite, and ferrihydrite) were detected, which implies the alteration occurred above 250 C. Oxidative alteration is thought to have occurred predominantly during late-stage crystallization and subsolidus cooling of the impact melt by invasion of oxidizing vapors and/or solutions while the impact melt rocks were still hot. The near-IR band minimum correlated with the extent of aleration Fe(3+)/Fe(sub tot) and ranged from approximately 1000 nm (high-Ca pyroxene) to approximately 850 nm (bulk, well-crystalline hematite) for least and most oxidized samples, respectively. Intermediate band positions (900-920 nm) are attributed to low-Ca pyroxene and/or a composite band from hematite-pyroxene assemblages. Manicouagan data are consistent with previous assignments of hematite and pyroxene to the approximately 850 and approximately 1000nm bands observed in Martian reflectivity spectra. Manicouagan data also show that possible assignments for intermediate band positions (900-920 nm) in Martian spectra are pyroxene and/or hematite-pyroxene assemblages. By analogy with impact melt sheets and in agreement with observables for Mars, oxidative alteration of Martian impact melt sheets above 250 C and subsequent erosion could produce rocks and soils with variable proportions of hematite (both bulk and nanophase), pyroxene, and phyllosilicates as iron-bearing mineralogies. If this process is dominant, these phases on Mars were formed rapidly at relativly high temperatures on a sporadic basis throughout the history of the planet. The Manicouagan samples also show that this mineralogical diversity can be accomplished at constant chemical composition, which is also indicated for Mars from the analyses of soil at the two Viking landing sites.
Chen, Tian-Hu; Wang, Jin; Zhou, Yue-Fei; Yue, Zheng-Bo; Xie, Qiao-Qin; Pan, Min
2014-01-01
Synthetic effect between sulfate minerals (gypsum) and iron oxide (hematite) on the anaerobic transformation of organic substance was investigated in the current study. The results showed that gypsum was completely decomposed while hematite was partially reduced. The mineral phase analysis results showed that FeS and CaCO3 was the major mineralization product. Methane generation process was inhibited and inorganic carbon contents in the precipitates were enhanced compared to the control without hematite and gypsum. The inorganic carbon content increased with the increasing of hematite dosages. Co-addition of sulfate minerals and iron oxide would have a potential application prospect in the carbon sequestration area and reduction of the greenhouse gas release. The results would also reveal the role of inorganic mineral in the global carbon cycle. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bruno, Jordi; Stumm, Werner; Wersin, Paul; Brandberg, Frederick
1992-03-01
We have studied the thermodynamics and kinetics of hematite dissolution in bicarbonate solutions under constant pCO 2. The solubility of hematite is increased in the presence of bicarbonate. We have established that the complexes responsible for this increase are FeOHCO 3 (aq) and Fe(CO 3) 2-. The stability constants of these complexes at the infinite dilution standard state are log β 11 = -3.83 ± 0.21 and log β 2 = 7.40 ± 0.11 , respectively (all errors are given at 2σ confidence level through this work). The rate of dissolution of hematite is enhanced in bicarbonate solutions. This rate of dissolution can be expressed as R diss = k 1[HCO 3-] 0.23 (mol m -2h -1), with k 1 = 1.42 10 -7h -1. The combination of the study of the surface complexation and kinetics of dissolution of hematite in bicarbonate solutions indicate that the dissolution of hematite is surface controlled and bicarbonate promoted. The rate of dissolution follows the expression R diss = k HCO 3-FeOH - HCO 3-}, where k HCO 3- = 1.1 10 -3 h -1. The implications of these findings in the oxic cycle of iron in natural waters are discussed, most importantly in order to explain the high-Fe(III) concentrations measured in groundwaters from the Poços de Caldas complex in Brazil.
Sivula, Kevin; Zboril, Radek; Le Formal, Florian; Robert, Rosa; Weidenkaff, Anke; Tucek, Jiri; Frydrych, Jiri; Grätzel, Michael
2010-06-02
Sustainable hydrogen production through photoelectrochemical water splitting using hematite (alpha-Fe(2)O(3)) is a promising approach for the chemical storage of solar energy, but is complicated by the material's nonoptimal optoelectronic properties. Nanostructuring approaches have been shown to increase the performance of hematite, but the ideal nanostructure giving high efficiencies for all absorbed light wavelengths remains elusive. Here, we report for the first time mesoporous hematite photoelectodes prepared by a solution-based colloidal method which yield water-splitting photocurrents of 0.56 mA cm(-2) under standard conditions (AM 1.5G 100 mW cm(-2), 1.23 V vs reversible hydrogen electrode, RHE) and over 1.0 mA cm(-2) before the dark current onset (1.55 V vs RHE). The sintering temperature is found to increase the average particle size, and have a drastic effect on the photoactivity. X-ray photoelectron spectroscopy and magnetic measurements using a SQUID magnetometer link this effect to the diffusion and incorporation of dopant atoms from the transparent conducting substrate. In addition, examining the optical properties of the films reveals a considerable change in the absorption coefficient and onset properties, critical aspects for hematite as a solar energy converter, as a function of the sintering temperature. A detailed investigation into hematite's crystal structure using powder X-ray diffraction with Rietveld refinement to account for these effects correlates an increase in a C(3v)-type crystal lattice distortion to the improved optical properties.
Properties of Martian Hematite at Meridiani Planum by Simultaneous Fitting of Mars Mossbauer Spectra
NASA Technical Reports Server (NTRS)
Agresti, D. G.; Fleischer, I.; Klingelhoefer, G.; Morris, R. V.
2010-01-01
Mossbauer spectrometers [1] on the two Mars Exploration Rovers (MERs) have been making measurements of surface rocks and soils since January 2004, recording spectra in 10-K-wide temperature bins ranging from 180 K to 290 K. Initial analyses focused on modeling individual spectra directly as acquired or, to increase statistical quality, as sums of single-rock or soil spectra over temperature or as sums over similar rock or soil type [2, 3]. Recently, we have begun to apply simultaneous fitting procedures [4] to Mars Mossbauer data [5-7]. During simultaneous fitting (simfitting), many spectra are modeled similarly and fit together to a single convergence criterion. A satisfactory simfit with parameter values consistent among all spectra is more likely than many single-spectrum fits of the same data because fitting parameters are shared among multiple spectra in the simfit. Consequently, the number of variable parameters, as well as the correlations among them, is greatly reduced. Here we focus on applications of simfitting to interpret the hematite signature in Moessbauer spectra acquired at Meridiani Planum, results of which were reported in [7]. The Spectra. We simfit two sets of spectra with large hematite content [7]: 1) 60 rock outcrop spectra from Eagle Crater; and 2) 46 spectra of spherule-rich lag deposits (Table 1). Spectra of 10 different targets acquired at several distinct temperatures are included in each simfit set. In the table, each Sol (martian day) represents a different target, NS is the number of spectra for a given sol, and NT is the number of spectra for a given temperature. The spectra are indexed to facilitate definition of parameter relations and constraints. An example spectrum is shown in Figure 1, together with a typical fitting model. Results. We have shown that simultaneous fitting is effective in analyzing a large set of related MER Mossbauer spectra. By using appropriate constraints, we derive target-specific quantities and the temperature dependence of certain parameters. By examining different fitting models, we demonstrate an improved fit for martian hematite modeled with two sextets rather than as a single sextet, and show that outcrop and spherule hematite are distinct. For outcrop, the weaker sextet indicates a Morin transition typical of well-crystallized and chemically pure hematite, while most of the outcrop hematite remains in a weakly ferromagnetic state at all temperatures. For spherule spectra, both sextets are consistent with weakly ferromagnetic hematite with no Morin transition. For both hematites, there is evidence for a range of particle sizes.
Iron Oxides of Mars: Evidence for Contemporary Weathering
NASA Technical Reports Server (NTRS)
Huguenin, R. L.
1985-01-01
Reflectance spectra of Mars were analyzed using a multiple high order derivative spectroscopy technique. Among the results of the analysis was the presence of suites of bands in each of the spectra that can be attributed to Fe(3e) phases. Several of the spectra contained bands that are very close to the band positions in the laboratory spectra of goethite, an hexagonal hydrated ferric oxide. Spectra of other areas showed absorption bands that were within 3% of the positions for hematite, and hexagonal close packed unhydrated Fe203. Remaining areas showed bands that are intermediate in position to the goethite and hematite bands, suggesting that there may be mixtures of goethite and hematite, and/or intermediate (partially dehydrated goethite) phases present in those areas. Both bright areas and dark areas showed suites of goethite bands and hematite bands, and there does not therefore appear to be a correlation with albedo. The areas that showed the goethite bands are, however, within zones of ongoing or historically frequent dust cloud activity, and the areas with the hematite bands were outside of the zones of frequent dust cloud activity. This suggests the possiblility that the more hydrated phase may occur within a mobile dust component.
NASA Technical Reports Server (NTRS)
Newsom, H. E.; Barber, C. A.; Schelble, R. T.; Hare, T. M.; Feldman, W. C.; Sutherland, V.; Livingston, A.; Lewis, K.
2003-01-01
The prime MER landing site in Meridiani Planum is located on layered materials, including hematite, whose origin as lacustrine or aeolian sediments, or volcanic materials is uncertain. Our detailed mapping of the region provides important constraints on the history of the region. Our mapping of the location of fluvial and lacustrine land forms in the region relative to the layered deposits provides new evidence of a long history of erosion and deposition as has long been noted . In addition, our detailed mapping of the southern boundary of the hematite deposit strongly supports an association between longlived fluvial channels and lacustrine basins and the strongest hematite signatures. This evidence supports an origin of the hematite deposits by interaction with water under ambient conditions in contrast to suggestions of hydrothermal processes due to volcanic or impact crater processes. An important part of the story is the evidence for the localization of the layered deposits due to topographic control induce by the presence of a large early basin we have identified that extends to the north-east of the landing site. Distribution of current channel networks, drainages,
NASA Astrophysics Data System (ADS)
Stević, Dragana; Mihajlović, Dijana; Kukobat, Radovan; Hattori, Yoshiyuki; Sagisaka, Kento; Kaneko, Katsumi; Atlagić, Suzana Gotovac
2016-08-01
Hematite nanoparticles with amorphous, yet relatively uniform carbon shell, were produced based exclusively on the waste sludge from the iron mine as the raw material. The procedure for acid digestion-based purification of the sludge with the full recovery of acid vapors and the remaining non-toxic rubble is described. Synthesis of the hematite nanoparticles was performed by the arrested precipitation method with cationic surfactant. The particles were thoroughly characterized and the potential of their economical production for the battery industry is indicated.
NASA Astrophysics Data System (ADS)
Geissman, J. W.
2014-12-01
Discussion continues on the relative role of authigenic (pigment) fine-grained hematite, relative to detrital, considerably coarser specular hematite (specularite) as a carrier of geologically meaningful remanence, as a determinant of rock magnetic properties, and as a contributor to magnetic fabrics in red beds. For one, many workers commonly assume that the laboratory unblocking temperature spectra (Tlub) of a red bed dominated by authigenic pigment does not reach the maximum Tlub as approximated by the Neel temperature (~948 K) because of the ultra fine grain size of the pigment. This issue was discussed as recently as the IRM Santa Fe meeting in late June, 2014. Many laboratories routinely utilize chemical demagnetization in concert with progressive thermal demagnetization to attempt to assess the relative role of pigment vs. detrital hematite. However, the utility of chemical demagnetization has been long challenged. In studying the anisotropy of magnetic susceptibility and remanence in red beds, recent work has considered separating the contributions of both types of hematite to the fabric signal. Three different red bed "types" (siltstones of the Triassic Chugwater Group, Gros Ventre Range, Wyoming; mudrocks of lowermost Triassic Quartermaster Formation, west Texas; and siltstones to medium sandstones of Upper Cretaceous age, northwest Vietnam) are used to evaluate the effects of varying contributions by pigment hematite to remanence, rock magnetic, and magnetic fabric properties. All rocks are well-characterized petrographically, so that the modal abundance of detrital oxides is known. The Chugwater siltstones are notable because of a relatively low Tlub spectra (below about 620o C), with no evidence of a low coercivity cubic phase. Rock magnetic and magnetic fabric properties are monitored as a function of progressive chemical demagnetization to further elucidate the role of hematite pigment in rocks that have contributed much to the paleomagnetic record of Earth.
NASA Technical Reports Server (NTRS)
Golden, D. C.; Koster, A. M.; Ming, D. W.; Morris, R. V.; Mertzman, S. A.
2011-01-01
A working hypothesis for Meridiani evaporite formation involves the evaporation of fluids derived from acid weathering of Martian basalts and subsequent diagenesis [1, 2]. However, there are no reported experimental studies for the formation of jarosite and gray hematite (spherules), which are characteristic of Meridiani rocks from Mars analog precursor minerals. A terrestrial analog for hematite spherule formation from basaltic rocks under acidic hydrothermal conditions has been reported [3], and we have previously shown that the hematite spherules and jarosite can be synthetically produced in the laboratory using Fe3+ -bearing sulfate brines under hydrothermal conditions [4]. Here we expand and extend these studies by reacting Mars analog minerals with sulfuric acid to form Meridiani-like rock-mineral compositions. The objective of this study is to provide environmental constraints on past aqueous weathering of basaltic materials on Mars.
NASA Astrophysics Data System (ADS)
Taylor, S. D.; Marcano, M. C.; Becker, U.
2017-01-01
This study investigates how the intrinsic chemical and electronic properties of mineral surfaces and their associated electron transfer (ET) pathways influence the reduction of U(VI) by surface-associated Fe(II). Density functional theory (DFT), including the Hubbard U correction to the exchange-correlation functional, was used to investigate sorption/redox reactions and ET mechanisms between Fe(II) and U(VI) coadsorbed on isostructural, periodic (0 0 1) surfaces of the insulator corundum (α-Al2O3) vs. the semiconductor hematite (α-Fe2O3). Furthermore, the coadsorbed Fe(II) and U(VI) ions are spatially separated from one another on the surfaces (⩾5.9 Å) to observe whether electronic-coupling through the semiconducting hematite surface facilitates ET between the adsorbates, a phenomenon known as the proximity effect. The calculations show that the different chemical and electronic properties between the isostructural corundum and hematite (0 0 1) surfaces lead to considerably different ET mechanisms between Fe(II) and U(VI). ET on the insulating corundum (0 0 1) surface is limited by the adsorbates' structural configuration. When Fe(II) and U(VI) are spatially separated and do not directly interact with one another (e.g. via an inner-sphere complex), U(VI) reduction by Fe(II) cannot occur as there is no physical pathway enabling ET between the adsorbates. In contrast to the insulating corundum (0 0 1) surface, the hematite (0 0 1) surface can potentially participate in ET reactions due to the high number of electron acceptor sites from the Fe d-states near the Fermi level at the hematite surface. The adsorption of Fe(II) also introduces d-states near the Fermi level as well as shifts unoccupied d-states of the Fe cations at the hematite surface to lower energies, making the surface more conductive. In turn, electronic coupling through the surface can link the spatially separated adsorbates to one another and provide distinct ET pathways for an electron from Fe(II) to travel through the hematite surface and reach U(VI). The progression and extent of ET occurring on the semiconducting hematite (0 0 1) surface via the proximity effect depends on the electronic properties of the surface. ET between the spatially separated U(VI) and Fe(II) occurs most readily when orbitals between the Fe and U adsorbates overlap with those of neighboring O and Fe ions at the hematite surface, as shown by calculations without the Hubbard U correction. Analyses of the spins densities confirm that the U and Fe adsorbates were reduced and oxidized, respectively, (acquiring 0.33 μB and 0.11-0.20 μB, respectively), while Fe cations at the hematite surface were reduced (losing ⩽0.6 μB). If electrons are highly localized, the amount of orbital mixing and electronic coupling through the hematite surface decreases and in turn leads to a lower degree of spin transfer, as predicted by calculations with the Hubbard U correction. Thus, the proximity effect is a potential mechanism on semiconducting surfaces facilitating surface-mediated redox reactions, although its significance varies depending on the electronic properties and subsequent charge-carrying ability of the surface. These results provide insight into ET pathways and mechanisms on insulating Al- and semiconducting Fe oxide surfaces influencing the reduction U(VI) by Fe(II) that may subsequently limit uranium's transport in the subsurface.
NASA Astrophysics Data System (ADS)
Bilardello, D.; Kodama, K. P.
2007-12-01
Methods to correct for the observed inclination shallowing in sedimentary rocks have been proposed that are based on either models of the geomagnetic field and the resulting directional distribution of paleomagnetic vectors or the magnetic anisotropy of the magnetic minerals carrying the remanence. One limitation of the anisotropy method for hematite-bearing red beds has been the isolation and determination of a rock's detrital hematite individual particle anisotropy. Up to now, our red bed inclination shallowing corrections have been dependent on estimates of hematite individual particle anisotropy using data fit to theoretical correction curves. We have developed a technique for preferentially extracting the detrital hematite particles in a sample in order to directly measure their individual particle anisotropy. The method involves crushing of the sample followed by ball milling and sieving to ensure that the rock particles are smaller than 4Φ. The resulting slurry was then placed in an ultrasonic cleaner for at least 24 hours and finally centrifuged at 1000 rpm for 20 minutes in order to separate the dense, gray iron oxide particles from the red pigmentary grains. The gray, iron oxide-rich slurry was collected by hand and circulated in a magnetic extraction apparatus. The magnetic separate was then collected over a period of two to three weeks. Small amounts of the magnetic separates where mixed in a slow-drying epoxy resin for 24 hours and placed in a DC magnetic field (100 mT to 180 mT) in order to align the grains. The bulk IRM anisotropy of the epoxy samples provides an average individual particle anisotropy for the magnetic grains. Separates were collected from samples of the Mauch Chunk Fm. of Pennsylvania, the Maringouin and the Shepody Fms of New Brunswick/ Nova Scotia and the Kapusaliang Fm. of northwestern China. IRM acquisitions experiments were performed in fields of up to 1.2 T in order to identify the magnetic mineralogies present. Remanence appears to be carried by a low coercivity phase (~50 mT) interpreted to be secondary magnetite and a higher coercivity phase (~350 mT) interpreted to be primary hematite for the Shepody and Maringouin Fms or just one high coercivity component (200- 250 mT) interpreted as primary hematite for the Mauch Chunk and Kapusaliang Fms. Hematite individual particle anisotropy was measured by imparting a 1.2 T IRM to the specimens in 9 different orientations followed by AF demagnetization at 100 mT. Calculated individual particle anisotropy values ranged between 1.28 and 1.45 with bulk anisotropies of ~$40%. Inclination corrections using the directly measured individual particle anisotropies indicate significant inclination shallowing for the Mauch Chunk and Kapusaliang Fms, while more moderate shallowing for the Maringouin and Shepody Fms. Curve fitting techniques with added constraints give a good first order approximation of the individual particle anisotropy, however direct measurement is preferable. The measured particle anisotropies for hematite are low and suggest that there is the potential for significant amounts of shallowing for a hematite DRM. This observation is consistent with redeposition experiments performed by Tauxe and Kent [1984] and the notion that depositional inclination of hematite may suffer from more shallowing than magnetite because of its lower spontaneous magnetization making it more affected by gravitational forces.
Ferrihydrite Alteration to Magnetite, Maghemite and Hematite; Implications for Iron Oxides on Mars
NASA Technical Reports Server (NTRS)
Zent, A. P.; Bishop, J. L.; Mancinelli, R. L.; Olsen, M.; Wagner, P. A.
2000-01-01
Synthetic ferrihydrites have been altered to form magnetite, maghemite and hematite through low-temperature heating experiments (some with an organic reductant). Maghemite formed in this manner could become an indicator for Astrobiology on Mars.
Utah Marbles and Mars Blueberries: Comparitive Terrestrial Analogs for Hematite Concretions on Mars
NASA Astrophysics Data System (ADS)
Chan, M. A.; Beitler, B.; Parry, W. T.; Ormö, J.; Komatsu, G.
2005-03-01
Compelling comparisons show why Utah iron oxide-cemented "marbles" are a good analog for Mars hematite "blueberries". Terrestrial examples offer valuable models for interpreting the diagenetic history and importance of water on Mars.
Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition.
Chernyshova, I V; Hochella, M F; Madden, A S
2007-04-14
Using Fourier Transform InfraRed (FTIR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), and Transmission Electron Microscopy (TEM), we characterize the structure and/or morphology of hematite (alpha-Fe(2)O(3)) particles with sizes of 7, 18, 39 and 120 nm. It is found that these nanoparticles possess maghemite (gamma-Fe(2)O(3))-like defects in the near surface regions, to which a vibrational mode at 690 cm(-1), active both in FTIR and Raman spectra, is assigned. The fraction of the maghemite-like defects and the net lattice disorder are inversely related to the particle size. However, the effect is opposite for nanoparticles grown by sintering of smaller hematite precursors under conditions when the formation of a uniform hematite-like structure throughout the aggregate is restricted by kinetic issues. This means that not only particle size but also the growth kinetics determines the structure of the nanoparticles. The observed structural changes are interpreted as size-induced alpha-Fe(2)O(3)<-->gamma-Fe(2)O(3) phase transitions. We develop a general model that considers spinel defects and absorbed/adsorbed species (in our case, hydroxyls) as dominant controls on structural changes with particle size in hematite nanoparticles, including solid-state phase transitions. These changes are represented by trajectories in a phase diagram built in three phase coordinates-concentrations of spinel defects, absorbed impurities, and adsorbed species. The critical size for the onset of the alpha-->gamma phase transition depends on the particle environment, and for the dry particles used in this study is about 40 nm. The model supports the existence of intermediate phases (protohematite and hydrohematite) during dehydration of goethite. We also demonstrate that the hematite structure is significantly less defective when the nanoparticles are immersed in water or KBr matrix, which is explained by the effects of the electrochemical double layer and increased rigidity of the particle environment. Finally, we revise the problem of applicability of IR spectroscopy to the lattice vibrations of hematite nanoparticles, demonstrating that structural comparison of different samples is much more reliable if it is based on the E(u) band at about 460 cm(-1) and the spinel band at 690 cm(-1), instead of the A(2u)/E(u) band at about 550 cm(-1) used in previous work. The new methodology is applied to analysis of the reported IR spectra of Martian hematite.
Farahat, Mohsen; Hirajima, Tsuyoshi; Sasaki, Keiko; Doi, Katsumi
2009-11-01
The adhesion of Escherichia coli onto quartz, hematite and corundum was experimentally investigated. A strain of E. coli was used that had the genes for expressing protein for silica precipitation. The maximum cell adhesion was observed at pH <4.3 for quartz and at pH 4.5-8.5 for corundum. For hematite, cell adhesion remained low at all pH values. The microbe-mineral adhesion was assessed by the extended DLVO theory approach. The essential parameters for calculation of microbe-mineral interaction energy (Hamaker constants and acid-base components) were experimentally determined. The extended DLVO approach could be used to explain the results of the adhesion experiments. The effect of E. coli on the floatability of three oxide minerals was determined and the results showed that E. coli can act as a selective collector for quartz at acidic pH values, with 90% of the quartz floated at 1.5 x 10(9)cells/ml. However, only 9% hematite and 30% corundum could be floated under similar conditions. By using E. coli and no reagents, it was possible to separate quartz from a hematite-quartz mixture with Newton's efficiency of 0.70. Removal of quartz from the corundum mixture was achieved by E. coli with Newton's efficiency of 0.62.
Reiller, Pascal; Casanova, Florence; Moulin, Valérie
2005-03-15
The influence of addition order and contact time in the system hematite (alpha-Fe2O3)-humic acid (HA)-thorium(IV) (Th(IV)) was studied in batch experiments. Th(IV) is considered here as a chemical analogue of other actinides (IV). The sorption isotherms were acquired varying pH in the range 2-10 and HA concentration in the range 1-100 mg/L. As already observed by numerous authors, Th(IV) retention was hindered when HA and hematite were equilibrated beforehand during 24 h. As it has been observed in a previous study, this effect was drastic when the ratio between humic and surface (iron oxide) sites exceeds a critical value. However, when HA was added after a 24-h equilibration of the hematite-Th(IV) system, Th(IV) was barely desorbed from the iron oxide surface. Furthermore, no drastic effect of the ratio between humic and surface sites could be evidenced, as the increase of HA concentration only results in a slight monotonic decrease in Th(IV) retention. Increasing contact time between components of the systems only indicated slight Th(IV) retention variation. This was interpreted as a consequence of slow kinetic controls of both the Th(IV)-HA complexation and HA-hematite sorption.
Bargar, John R.; Reitmeyer, Rebecca; Lenhart, John J.; Davis, James A.
2000-01-01
We have measured U(VI) adsorption on hematite using EXAFS spectroscopy and electrophoresis under conditions relevant to surface waters and aquifers (0.01 to 10 μM dissolved uranium concentrations, in equilibrium with air, pH 4.5 to 8.5). Both techniques suggest the existence of anionic U(VI)-carbonato ternary complexes. Fits to EXAFS spectra indicate that U(VI) is simultaneously coordinated to surface FeO6 octahedra and carbonate (or bicarbonate) ligands in bidentate fashions, leading to the conclusion that the ternary complexes have an inner-sphere metal bridging (hematite-U(VI)-carbonato) structure. Greater than or equal to 50% of adsorbed U(VI) was comprised of monomeric hematite-U(VI)-carbonato ternary complexes, even at pH 4.5. Multimeric U(VI) species were observed at pH ≥ 6.5 and aqueous U(VI) concentrations approximately an order of magnitude more dilute than the solubility of crystalline β-UO2(OH)2. Based on structural constraints, these complexes were interpreted as dimeric hematite-U(VI)-carbonato ternary complexes. These results suggest that Fe-oxide-U(VI)-carbonato complexes are likely to be important transport-limiting species in oxic aquifers throughout a wide range of pH values.
NASA Astrophysics Data System (ADS)
Xiong, Dehua; Li, Wei; Wang, Xiaoguang; Liu, Lifeng
2016-09-01
Hematite (i.e., α-Fe2O3) nanorod photoanodes passivated with a phosphorus overlayer have been fabricated by decomposing sodium hypophosphite (NaH2PO2) at a low temperature over the hematite nanorod surface. Extensive scanning electron microscopy, transmission electron microscopy, x-ray diffractometry and UV-vis spectroscopy characterizations confirm that conformal deposition of an amorphous phosphorus overlayer does not change the crystal structure, morphology, and optical absorption properties of hematite photoanodes. X-ray photoelectron spectroscopy reveals that phosphorus in the deposited overlayer exists in an oxidized state. Comprehensive steady-state polarization, transient photocurrent response, and impedance spectroscopy measurements as well as Mott-Schottky analysis manifest that the phosphorus overlayer is able to effectively passivate surface states and suppress electron-hole recombination, substantially enhancing the photocurrent for water oxidation. Combining the phosphorization treatment with two-step thermal activation, a photocurrent density of 1.1 mA cm-2 is achieved at 1.23 V versus reversible hydrogen electrode under illumination of 100 mW cm-2, ca 55 times higher than that of the non-activated pristine hematite photoanode measured under the same conditions. The simple and fast phosphorization strategy we present here can be readily applied to passivate surfaces of other semiconductor photoelectrodes to improve their photoelectrochemical performance.
Composition of Meridiani Hematite-rich Spherules: A Mass-Balance Mixing-Model Approach
NASA Astrophysics Data System (ADS)
Jolliff, B. L.; Athena Science Team
2005-03-01
A mass-balance model using APXS data and microscopic images indicates that the composition of spherules ("blueberries"), found at the Meridiani site by the Mars Exploration Rover Opportunity and thought to be concretions, contain ~45-60 wt% hematite.
Spontaneous Water Oxidation at Hematite (α-Fe2O3) Crystal Faces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatman, Shawn ME; Zarzycki, Piotr P.; Rosso, Kevin M.
2015-01-28
Hematite (α-Fe2O3) persists as a promising candidate for photoelectrochemical water splitting but a slow oxygen evolution reaction (OER) at its surfaces remains a limitation. Here we extend a series of studies that examine pH-dependent surface potentials and electron transfer properties of effectively perfect low-index crystal faces of hematite in contact with simple electrolyte. Zero resistance amperometry was performed in a two electrode configuration to quantify spontaneous dark current between hematite crystal face pairs (001)/(012), (001)/(113), and (012)/(113) at pH 3. Exponentially decaying currents initially of up to 200 nA were reported between faces over four minute experiments. Fourth order ZRAmore » kinetics indicated rate limitation by the OER for current that flows between (001)/(012) and (001)/(113) face pairs, with the (012) and (113) faces serving as the anodes when paired with (001). The cathodic partner reaction is reductive dissolution of the (001) face, converting surface Fe3+ to solubilized aqueous Fe2+, at a rate maintained by the OER at the anode. In contrast, OER rate limitation does not manifest for the (012)/(113) pair. The uniqueness of the (001) face is established in terms of a faster intrinsic ability to accept the protons required for the reductive dissolution reaction. OER rate limitation inversely may thus arise from sluggish kinetics of hematite surfaces to dispense with the protons that accompany the four-electron OER. The results are explained in terms of semi-quantitative energy band diagrams. The finding may be useful as a consideration for tailoring the design of polycrystalline hematite photoanodes that present multiple terminations to the interface with electrolyte.« less
NASA Astrophysics Data System (ADS)
Banerjee, S. K.; Smale, J.; Bilardello, D.; Feinberg, J. M.; Soltis, J. A.
2016-12-01
In spite of the empirical success of the correlation between rainfall and magnetic mineral enhancement in soils across China, Russia and elsewhere, a generally acceptable model of enhancement has eluded our community. Recent field and laboratory studies demonstrate the importance of both strongly magnetic (magnetite, maghemite) as well as weakly magnetic (goethite, hematite) nano-phase minerals forming in response to rainfall and temperature. In particular, the ferrihydrite -> (hydro) maghemite -> hematite pathway of Torrent et al. (2003, et seq.) and formation of magnetite or hematite from nano-goethite under reducing or oxidizing atmosphere by Till et al. (2014) are particularly instructive. Here we report ferrihydrite alteration in constant pH=6.8 at 90°C even without the presence of any strongly adsorbing organic ligand. Aging of an initially pure 2-line ferrihydrite over 4 hours, and freeze-drying the specimens to prevent further alteration, produces small amounts of a mixture of maghemite, hematite and a small amount of partially oxidized magnetite, as identified by its isotropic point, detected by cooling an SIRM imparted at 300K. The details of the precise pathways of initial, intermediate and final products and their relative amounts are difficult to estimate in mixtures, but in future experiments we will attempt to do just that. However, since both the strongly and weakly magnetic products were formed from the same ferrihydrite starting material, it may not be necessary to assume that magnetite -> maghemite, or maghemite -> hematite, or hematite -> magnetite are unique pathways for production of magnetic enhancement in soils. Instead, it appears that multiple, simultaneously active pathways may allow ferrihydrite to directly produce weakly and strongly magnetic iron oxides in soil at the same near normal pH.
Lin, Yongjing; Xu, Yang; Mayer, Matthew T; Simpson, Zachary I; McMahon, Gregory; Zhou, Sa; Wang, Dunwei
2012-03-28
Mg-doped hematite (α-Fe(2)O(3)) was synthesized by atomic layer deposition (ALD). The resulting material was identified as p-type with a hole concentration of ca. 1.7 × 10(15) cm(-3). When grown on n-type hematite, the p-type layer was found to create a built-in field that could be used to assist photoelectrochemical water splitting reactions. A nominal 200 mV turn-on voltage shift toward the cathodic direction was measured, which is comparable to what has been measured using water oxidation catalysts. This result suggests that it is possible to achieve desired energetics for solar water splitting directly on metal oxides through advanced material preparations. Similar approaches may be used to mitigate problems caused by energy mismatch between water redox potentials and the band edges of hematite and many other low-cost metal oxides, enabling practical solar water splitting as a means for solar energy storage.
NASA Technical Reports Server (NTRS)
Golden, D. C.; Ming, D. W.; Lauer, H. V., Jr.
1991-01-01
Magnetite, when present as fine particles, is soluble in acid ammonium oxalate (pH equals 3). However, the commonly used extractant for free iron oxides (i.e., citrate dithionite-bicarbonate (CDB) is not very effective in dissolving magnetite in soils and geologic materials. Upon oxidation, magnetite transforms to maghemite; at elevated temperatures, maghemite inverts to hematite. This transformation causes a change in color from black to red and may affect the reductant solubility as well. The objectives here were to examine the color and reflectance spectral characteristics of products during the transformation of magnetite to maghemite to hematite and to study the effect of Al-substitution in magnetite on the above process. Reductant solubility of Al-substituted magnetite, maghemite, and hematite was also studied. In summary, the transformation of magnetite to maghemite was accompanied by a change in color from black to red because of the oxidation of Fe2(+) to Fe3(+). The phase change maghemite to hematite had a relatively minor effect on the color and the reflectance spectra.
NASA Astrophysics Data System (ADS)
Jiang, Zhaoxia; Rochette, Pierre; Liu, Qingsong; Gattacceca, Jérôme; Yu, Yongjae; Barrón, Vidal; Torrent, José
2013-11-01
Magnetic minerals can undergo high pressures during their formation and subsequent evolution, which can modify both their intrinsic magnetic properties and remanent magnetization. Aluminum-substituted hematite (Al-hematite) occurs in significant proportion in many soils and sediments, especially in temperate and warm areas. In this work we investigated the effect of high hydrostatic pressures on the magnetic remanence of two series of synthetic Al-hematites. A pressure of 1.44 GPa resulted in 50% reduction of the isothermal remanent magnetization (IRM), which was more effective than alternating field (AF) demagnetization with the largest peak field of 120 mT. In addition, repeated application of the same pressure leads to further demagnetization. Aluminum substitution may increase the resistance to the pressure effect by decreasing particle size and generating defects in magnetic lattices, which results in an increase in coercivity. Our study contributes to understanding the effects of pressure on rocks from the interior of Earth and other planets as well as shocked planetary surfaces, which is significant for future planetary studies.
Nedim Ay, Ahmet; Konuk, Deniz; Zümreoglu-Karan, Birgul
2011-02-03
A new nanocomposite architecture is reported which combines prolate spheroidal hematite nanoparticles with drug-carrying layered double hydroxide [LDH] disks in a single structure. Spindle-shaped hematite nanoparticles with average length of 225 nm and width of 75 nm were obtained by thermal decomposition of hydrothermally synthesized hematite. The particles were first coated with Mg-Al-NO3-LDH shell and then subjected to anion exchange with salicylate ions. The resulting bio-nanohybrid displayed a close structural resemblance to that of the Ring Nebula. Scanning electron microscope and transmission electron microscopy images showed that the LDH disks are stacked around the equatorial part of the ellipsoid extending along the main axis. This geometry possesses great structural tunability as the composition of the LDH and the nature of the interlayer region can be tailored and lead to novel applications in areas ranging from functional materials to medicine by encapsulating various guest molecules.
2011-01-01
A new nanocomposite architecture is reported which combines prolate spheroidal hematite nanoparticles with drug-carrying layered double hydroxide [LDH] disks in a single structure. Spindle-shaped hematite nanoparticles with average length of 225 nm and width of 75 nm were obtained by thermal decomposition of hydrothermally synthesized hematite. The particles were first coated with Mg-Al-NO3-LDH shell and then subjected to anion exchange with salicylate ions. The resulting bio-nanohybrid displayed a close structural resemblance to that of the Ring Nebula. Scanning electron microscope and transmission electron microscopy images showed that the LDH disks are stacked around the equatorial part of the ellipsoid extending along the main axis. This geometry possesses great structural tunability as the composition of the LDH and the nature of the interlayer region can be tailored and lead to novel applications in areas ranging from functional materials to medicine by encapsulating various guest molecules. PMID:21711652
Fractography, fluidity, and tensile properties of aluminum/hematite particulate composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, S.C.; Girish, B.M.; Kamath, R.
1999-06-01
This paper examines the effect of hematite (iron oxide) particles on the fluidity of the molten composite as well as the tensile properties and fracture behavior of the solidified as-cast aluminum composites. The percentage of hematite in the composite was varied from 1 to 7% in steps of 2% by weight. The vortex method was employed to prepare the composites. It followed from the results obtained that the ultimate tensile strength and Young`s modulus of the composite increased while the liquid fluidity and solid ductility decreased with the increase in hematite content in the composite specimens. The fluidity of themore » liquid was greater in a metal mold than in a sand mold, and it decreased with an increase in reinforcing particle size and increased with pouring temperature. The presence of the reinforcing particles altered the fracture behavior of the solid composites considerably. Final fracture of the composite occurred due to the propagation of cracks through the matrix between the reinforcing particles.« less
NASA Astrophysics Data System (ADS)
Koehler, Cornelia; Clift, Peter; Pressling, Nicola; Limmer, David; Giosan, Liviu; Tabrez, Ali
2010-05-01
In order to study Holocene Asian monsoon variations, we reconstructed changes in chemical weathering by examining sediments from the Indus Canyon. During the late Holocene, the Asian monsoon system had periods of high and low intensities that influenced the civilisations living in its realm. For example, the demise of the Harappan civilisation has been linked to a weakened monsoon system around 4 ka. The sediments in the Indus Canyon, which originate from the River Indus and its Himalayan tributaries, provide an ideal, natural environmental archive of the South Asian monsoon system. In order to investigate the alternation between arid and humid monsoonal climatic conditions, variations are traced using the magnetic minerals hematite and goethite, which form under distinct environmental conditions: goethite is stable under humid conditions, whereas hematite forms from the dehydration of goethite under arid conditions. The two minerals are characterised and quantified using environmental magnetic measurements, as well as diffuse reflectance spectrometry. Combining both approaches will enable us to reconstruct variations in chemical weathering over time. Furthermore, because this is governed by temperature and the availability of moisture, our weathering record will allow us to understand monsoon variability during the Holocene and test whether summer rain intensity has been decreasing in SW Asia since 8 ka. In addition, the multi-component analysis of colour reflectance spectra identifies different mineral components including hematite/goethite, clay mineral mixtures, calcite and organics. We will present our results from the multi-sensor core logger equipped with a Minolta spectrometer, measuring both magnetic susceptibility and the optical properties of the split sediment cores. Initial results indicate the presence of hematite and goethite in the sediment. There is an increasing hematite content up the cores, indicating an aridification trend during the Holocene. The sediments are further analysed using the environmental magnetic proxies NRM, ARM and IRM to fully understand the mineral magnetic variations and to quantify hematite and goethite contributions. This work plays an integral part of a larger scale palaeoenvironmental project on Indus Canyon sediments.
A Bowl of Hematite-Rich 'Berries'
NASA Technical Reports Server (NTRS)
2004-01-01
This graph shows two spectra of outcrop regions near the Mars Exploration Rover Opportunity's landing site. The blue line shows data for a region dubbed 'Berry Bowl,' which contains a handful of the sphere-like grains dubbed 'blueberries.' The yellow line represents an area called 'Empty' next to Berry Bowl that is devoid of berries. Berry Bowl's spectrum still shows typical outcrop characteristics, but also exhibits an intense hematite signature, seen as a 'magnetic sextet.' Hematite is an iron-bearing mineral often formed in water. These spectra were taken by the rover's Moessbauer spectrometer on the 46th (Empty) and 48th (Berry Bowl) martian days, or sols, of its mission.
Molecular dynamics simulation of siderite-hematite-quartz flotation with sodium oleate
NASA Astrophysics Data System (ADS)
Li, Lixia; Hao, Haiqing; Yuan, Zhitao; Liu, Jiongtian
2017-10-01
Models of sodium oleate adsorption on siderite, hematite and quartz were investigated by molecular dynamic simulation, respectively. Surface energy was calculated to confirm the cleavage plan of hematite and quartz. Both natural cleavage plane of siderite and calculated plane were used to investigate the flotation of the three minerals. Based on the molecular simulation in solution with water as medium, adsorption quantity and interaction capability of oleate ions on the three minerals indicated that siderite could be collected efficiently by sodium oleate at neutral pH. Results of flotation experiments were further demonstrated by analysis of relative concentration of carbon atoms and oxygen atoms.
NASA Astrophysics Data System (ADS)
Busigny, V.; Dauphas, N.
2006-03-01
Iron isotopes of terrestrial hematite and goethite concretions provide clues on fluid transport, reservoir sizes, redox variations and biotic versus abiotic processes. This opens several avenues of research for future work on Martian blueberries.
NASA Astrophysics Data System (ADS)
Nørnberg, P.; Finster, K.; Gunnlaugsson, H. P.; Jensen, S. K.; Merrison, J. P.; Vendelboe, A. L.
2012-04-01
At a number of sandy soil sites in Mid Jutland, Denmark, with iron content of 1-2%, very red spots (Munsell colour: dusky red 10R 3/4) of a few square meters are found. These spots are most likely due to burning events. After the fire ashes raised pH. This dispersed silt and clay size soil particles which were then transported with seepage water down into lower soil horizons. These particles contain hematite and maghemite due to influence of the fire. However, a long-standing unresolved question is how hematite and maghemite can also be present along with goethite and ferrihydrite, in the same geographical region, and in extended areas with high iron content (8-40 %) in the topsoil. Hematite and particularly maghemite would normally not be expected to form under the temperate humid Danish climate, but be interpreted as the result of high temperature as found in tropical regions or as seen in soils exposed to fire. The high iron content most likely has its origin in pyrite dissolution in top of the groundwater zone in deeper Miocene deposits. From there Fe2+ is brought to the surface by the groundwater, and in wells oxidized by meeting the atmosphere and precipitated as two line ferrihydrite. This is later transformed into goethite. However, along with these two minerals hematite and maghemite are present in the topsoil around the well area. Forest fires would be a likely explanation to the hematite and maghemite. But a body of evidence argues against these sites having been exposed to fire. 1) The pH in the topsoil is 3.6 - 4.8 and thus not raised by ashes. 2) No charcoal is present. 3) There is no indication of fire outside the high iron content areas. 4) Goethite is present along with hematite and maghemite in microparticles, and the mineralogical zonation produced in a forest fire is not seen. The natural sites contain a uniform mixture of goethite/ferrihydrite, hematite and maghemite down to 20 cm depth. An experimental forest fire left charcoal and ashes at the topsoil, produced high pH, mineral zonation and decreased organic matter content, all of which is in contrast to the natural sites. In the freshly precipitated iron materials iron oxidizers as Gallionella sp. were found, but also iron reducing Geobachter sp.were present. Microbial activity might have influenced the mineral transformations.
Dong, Yiran; Sanford, Robert A; Chang, Yun-Juan; McInerney, Michael J; Fouke, Bruce W
2017-01-03
Fermentative iron-reducing organisms have been identified in a variety of environments. Instead of coupling iron reduction to respiration, they have been consistently observed to use ferric iron minerals as an electron sink for fermentation. In the present study, a fermentative iron reducer, Orenia metallireducens strain Z6, was shown to use iron reduction to enhance fermentation not only by consuming electron equivalents, but also by generating alkalinity that effectively buffers the pH. Fermentation of glucose by this organism in the presence of a ferric oxide mineral, hematite (Fe 2 O 3 ), resulted in enhanced glucose decomposition compared with fermentation in the absence of an iron source. Parallel evidence (i.e., genomic reconstruction, metabolomics, thermodynamic analyses, and calculation of electron transfer) suggested hematite reduction as a proton-consuming reaction effectively consumed acid produced by fermentation. The buffering effect of hematite was further supported by a greater extent of glucose utilization by strain Z6 in media with increasing buffer capacity. Such maintenance of a stable pH through hematite reduction for enhanced glucose fermentation complements the thermodynamic interpretation of interactions between microbial iron reduction and other biogeochemical processes. This newly discovered feature of iron reducer metabolism also has significant implications for groundwater management and contaminant remediation by providing microbially mediated buffering systems for the associated microbial and/or chemical reactions.
Fate of Adsorbed U(VI) during Sulfidization of Lepidocrocite and Hematite
2017-01-01
The impact on U(VI) adsorbed to lepidocrocite (γ-FeOOH) and hematite (α-Fe2O3) was assessed when exposed to aqueous sulfide (S(-II)aq) at pH 8.0. With both minerals, competition between S(-II) and U(VI) for surface sites caused instantaneous release of adsorbed U(VI). Compared to lepidocrocite, consumption of S(-II)aq proceeded slower with hematite, but yielded maximum dissolved U concentrations that were more than 10 times higher, representing about one-third of the initially adsorbed U. Prolonged presence of S(-II)aq in experiments with hematite in combination with a larger release of adsorbed U(VI), enhanced the reduction of U(VI): after 24 h of reaction about 60–70% of U was in the form of U(IV), much higher than the 25% detected in the lepidocrocite suspensions. X-ray absorption spectra indicated that U(IV) in both hematite and lepidocrocite suspensions was not in the form of uraninite (UO2). Upon exposure to oxygen only part of U(IV) reoxidized, suggesting that monomeric U(IV) might have become incorporated in newly formed iron precipitates. Hence, sulfidization of Fe oxides can have diverse consequences for U mobility: in short-term, desorption of U(VI) increases U mobility, while reduction to U(IV) and its possible incorporation in Fe transformation products may lead to long-term U immobilization. PMID:28121137
Ulman, Kanchan; Nguyen, Manh-Thuong; Seriani, Nicola; Gebauer, Ralph
2016-03-07
There is a big debate in the community regarding the role of surface states of hematite in the photoelectrochemical water splitting. Experimental studies on non-catalytic overlayers passivating the hematite surface states claim a favorable reduction in the overpotential for the water splitting reaction. As a first step towards understanding the effect of these overlayers, we have studied the system Ga2O3 overlayers on hematite (0001) surfaces using first principles computations in the PBE+U framework. Our computations suggest that stoichiometric terminations of Ga2O3 overlayers are energetically more favored than the bare surface, at ambient oxygen chemical potentials. Energetics suggest that the overlayers prefer to grow via a layer-plus-island (Stranski-Krastanov) growth mode with a critical layer thickness of 1-2 layers. Thus, a complete wetting of the hematite surface by an overlayer of gallium oxide is thermodynamically favored. We establish that the effect of deposition of the Ga2O3 overlayers on the bare hematite surface is to passivate the surface states for the stoichiometric termination. For the oxygen terminated surface which is the most stable termination under photoelectrochemical conditions, the effect of deposition of the Ga2O3 overlayer is to passivate the hole-trapping surface state.
Fitzmorris, Bob C; Patete, Jonathan M; Smith, Jacqueline; Mascorro, Xiomara; Adams, Staci; Wong, Stanislaus S; Zhang, Jin Z
2013-10-01
Much progress has been made in using hematite (α-Fe2 O3 ) as a potentially practical and sustainable material for applications such as solar-energy conversion and photoelectrochemical (PEC) water splitting; however, recent studies have shown that the performance can be limited by a very short charge-carrier diffusion length or exciton lifetime. In this study, we performed ultrafast studies on hematite nanoparticles of different shapes to determine the possible influence of particle shape on the exciton dynamics. Nanorice, multifaceted spheroidal nanoparticles, faceted nanocubes, and faceted nanorhombohedra were synthesized and characterized by using SEM and XRD techniques. Their exciton dynamics were investigated by using femtosecond transient absorption (TA) spectroscopy. Although the TA spectral features differ for the four samples studied, their decay profiles are similar, which can be fitted with time constants of 1-3 ps, approximately 25 ps, and a slow nanosecond component extending beyond the experimental time window that was measured (2 ns). The results indicate that the overall exciton lifetime is weakly dependent on the shape of the hematite nanoparticles, even though the overall optical absorption and scattering are influenced by the particle shape. This study suggests that other strategies need to be developed to increase the exciton lifetime or to lengthen the exciton diffusion length in hematite nanostructures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solution deposited and modified iron oxide for enhanced solar water splitting
NASA Astrophysics Data System (ADS)
Abel, Anthony J.
Growing worldwide energy demand coupled with an increasing awareness of anthropogenic climate change has driven research into carbon-neutral and solar-derived energy sources. One attractive strategy is the storage of solar energy in the bonds of H2 formed by photoelectrochemical (PEC) water splitting. Hematite, an iron oxide, has been widely investigated as a candidate material for PEC water splitting due to its stability, non-toxicity, earth abundance and consequent low cost, and a theoretical 15% solar-to-hydrogen conversion efficiency. However, poor electrical properties and slow rates of the water oxidation reaction have limited its potential as an economical water splitting catalyst. Additionally, the most efficient hematite-based devices are fabricated via expensive, vacuum-phase techniques, limiting scalability to broad integration into the energy supply. In this thesis, I develop a new, solution-based deposition method for high quality, planar hematite thin films using successive ionic layer adsorption and reaction (SILAR). The constant geometry and tight control over layer thickness possible with SILAR makes these films ideal model systems to understand the two key steps of PEC water oxidation: charge separation and interfacial hole transfer. In Chapter 3, I report on facile annealing treatments to dope hematite with Ti and Sn, and I show that these impurity atoms at the hematite/electrolyte interface increase hole transfer efficiency from nearly 0 to above 60%. However, charge separation remains below 15% with these dopants incorporated via solid state diffusion, mainly due to low hole mobility. To overcome this associated small transport length, extremely thin hematite coatings were deposited on Sb:SnO2 monolayer inverse opal scaffolds. With this modified substrate, photocurrent increased proportionately to the surface area of the scaffold. While Chapter 3 discusses incorporation of dopants via solid state diffusion, Chapter 4 examines methods to incorporate Ti via modified SILAR solutions. With this method, hematite films with well-controlled, uniform doping profiles were successfully fabricated. An optimal Ti concentration of 4.2% in the film enabled a charge separation efficiency of >20%, and I show that holes generated within 3 nm of the depletion region are separated with unity efficiency. With the addition of an ultrathin FeOOH overlayer, hole transfer efficiency is increased to 100% as a result of an increased concentration of reactive holes at the hematite/electrolyte interface. These combined effects lead to photocurrents >0.85 mAcm-2 at 1.23 VRHE, which is competitive with champion planar films regardless of fabrication method. Importantly, the methods of fabrication and analysis described in this thesis are applicable to a wide range of materials for a variety of applications. The SILAR method can be applied to many compounds, provided their constituent atoms are soluble in liquid solvents. Additionally, the facile optical and electrochemical measurements used to analyze hematite in Chapters 3 and 4 can be readily adapted to other semiconductor materials with the aim of understanding their charge transport properties.
USDA-ARS?s Scientific Manuscript database
To address the lack of systematic and surface sensitive studies on the adsorption energetics of arsenic compounds on metal (oxyhydr)oxides, we conducted temperature-dependent ATR-FTIR studies for the adsorption of arsenate, monomethylarsonic acid, and dimethylarsinic acid on hematite nanoparticles a...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-29
... Electric Company, LLC, Hematite Decommissioning Project, Hematite, MO AGENCY: Nuclear Regulatory Commission... (SNM) License number SNM-33, issued to Westinghouse Electric Company, LLC (WEC) to authorize... radioactively contaminated material by rail car to an offsite facility located in Idaho was also confirmed in...
Surface Temperature Measurement Using Hematite Coating
NASA Technical Reports Server (NTRS)
Bencic, Timothy J. (Inventor)
2015-01-01
Systems and methods that are capable of measuring temperature via spectrophotometry principles are discussed herein. These systems and methods are based on the temperature dependence of the reflection spectrum of hematite. Light reflected from these sensors can be measured to determine a temperature, based on changes in the reflection spectrum discussed herein.
Fishman, Zachary S; He, Yulian; Yang, Ke R; Lounsbury, Amanda W; Zhu, Junqing; Tran, Thanh Minh; Zimmerman, Julie B; Batista, Victor S; Pfefferle, Lisa D
2017-09-14
Understanding how nano-dimensionality impacts iron oxide based catalysis is central to a wide range of applications. Here, we focus on hematite nanosheets, nanowires and nanoparticles as applied to catalyze the reverse water gas shift (RWGS) probe reaction. We introduce a novel approach to synthesize ultrathin (4-7 nm) hematite nanosheets using copper oxide nanosheets as a hard template and propose a reaction mechanism based on density functional theory (DFT) calculations. Hematite nanowires and nanoparticles were also synthesized and characterized. H 2 temperature programmed reduction (H 2 -TPR) and RWGS reactions were performed to glean insights into the mechanism of CO 2 conversion to CO over the iron oxide nanomaterials and were compared to H 2 binding energy calculations based on density functional theory. While the nanosheets did exhibit high CO 2 conversion, 28% at 510 °C, we found that the iron oxide nanowires had the highest CO 2 conversion, reaching 50% at 750 °C under atmospheric pressure. No products besides CO and H 2 O were detected.
Meridiani Planum Hematite Deposit: Potential for Preservation of Microfossils
NASA Technical Reports Server (NTRS)
Allen, C. C.; Westall, F.; Longazo, T. G.; Schelble, R. T.; Probst, L. W.; Flood, B. F.
2003-01-01
Christensen et al., using data from the Mars Global Surveyor Thermal Emission Spectrometer (TES), have identified gray crystalline hematite in a 350 km by 750 km region near Meridiani Planum. The deposit corresponds closely to the low-albedo highlands unit sm, mapped as a wind-eroded, ancient, subaqueous sedimentary deposit. Christensen et al. interpreted the Meridiani Planum deposit to be an in-place, rock-stratigraphic sedimentary unit characterized by smooth, friable layers composed primarily of basaltic sediments with approximately 10 to 15% crystalline gray hematite. The Meridiani Planum hematite deposit has recently been designated as the prime landing site for one of the two Mars Exploration Rover (MER) spacecraft. The MER landings are scheduled for January, 2004. Christensen et al. discussed five possible mechanisms for the formation of this deposit: direct precipitation from standing, oxygenated, Fe-rich water; precipitation from Fe-rich hydrothermal fluids; low-temperature dissolution and precipitation through mobile groundwater leaching; surface weathering and coatings; thermal oxidation of magnetite-rich lavas. Four of these mechanisms involve the interactions of rock with water, and thus have implications in the search for evidence of microbial life.
Structure-charge relationship - the case of hematite (001)
Lutzenkirchen, Johannes; Heberling, Frank; Supljika, Filip; ...
2015-01-16
We present a multidisciplinary study on the hematite (001)–aqueous solution interface, in particular the relationship between surface structure (studied via surface diffraction in a humid atmosphere) and the macroscopic charging (studied via surface- and zeta-potential measurements in electrolyte solutions as a function of pH). Upon aging in water changes in the surface structure are observed, that are accompanied by drastic changes in the zeta-potential. Surprisingly the surface potential is not accordingly affected. We interpret our results by increasing hydration of the surface with time and enhanced reactivity of singly-coordinated hydroxyl groups that cause the isoelectric point of the surface tomore » shift to values that are reminiscent of those typically reported for hematite particles. In its initial stages after preparation the hematite surface is very flat and only weakly hydrated. Our model links the entailing weak water structure with the observed low isoelectric point reminiscent of hydrophobic surfaces. The absence of an aging effect on the surface potential vs. pH curves is interpreted as domination of the surface potential by the doubly coordinated hydroxyls, which are present on both surfaces.« less
Liu, Jingling; Shahid, Muhammad; Ko, Young-Seon; Kim, Eunchul; Ahn, Tae Kyu; Park, Jong Hyeok; Kwon, Young-Uk
2013-06-28
In this paper, we report the porosity and heterojunction effects of hematite (α-Fe2O3) on the photoelectrochemical (PEC) water splitting properties. The worm-like mesoporous hematite thin films (MHFs) with a pore size of ~9 nm and a wall thickness of ~5 nm were successfully obtained through the self-assembly process. MHFs formed on FTO showed much better PEC properties than those of nonporous hematite thin films (NP-HF) owing to the suppression of charge recombination. The PEC data of MHFs under front and back illumination conditions indicated that the porous structure allows the diffusion of electrolyte deep inside the MHF increasing the number of holes to be utilized in the water oxidation reaction. A heterojunction structure was formed by introducing a thin layer of SnO2 (~15 nm in thickness) between the MHF and FTO for a dramatically enhanced PEC response, which is attributed to the efficient electron transfer. Our spectroscopic and electrochemical data show that the SnO2 layer functions as an efficient electron transmitter, but does not affect the recombination kinetics of MHFs.
Lunar and Planetary Science XXXV: Mars: Surface Coatings, Mineralogy, and Surface Properties
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Mars: Surface Coatings, Mineralogy, and Surface Properties" contained the following reports:High-Silica Rock Coatings: TES Surface-Type 2 and Chemical Weathering on Mars; Old Desert Varnish-like Coatings and Young Breccias at the Mars Pathfinder Landing Site; Analyses of IR-Stealthy and Coated Surface Materials: A Comparison of LIBS and Reflectance Spectra and Their Application to Mars Surface Exploration; Contrasting Interpretations of TES Spectra of the 2003 Rover:Opportunity-Landing Site: Hematite Coatings and Gray Hematite; A New Hematite Formation Mechanism for Mars; Geomorphic and Diagenetic Analogs to Hematite Regions on Mars: Examples from Jurassic Sandstones of Southern Utah, USA; The Geologic Record of Early Mars: A Layered, Cratered, and "Valley-"ed: Volume; A Simple Approach to Estimating Surface Emissivity with THEMIS; A Large Scale Topographic Correction for THEMIS Data; Thermophysical Properties of Meridiani Planum, Mars; Thermophysical and Spectral Properties of Gusev, the MER-Spirit Landing Site on Mars; Determining Water Content of Geologic Materials Using Reflectance Spectroscopy; and Global Mapping of Martian Bound Water at 6.1 Microns Based on TES Data: Seasonal Hydration.
Raw hematite based Fe(III) bio-reduction process for humified landfill leachate treatment.
Li, Rui; Jiang, Yu; Xi, Beidou; Li, Mingxiao; Meng, Xiaoguang; Feng, Chuanping; Mao, Xuhui; Liu, Hongliang; Jiang, Yonghai
2018-05-03
Microorganisms from paddy soils and raw hematite are used for enhancing natural Fe(III) bio-reduction, in order to remove macromolecular organic pollutants from humified landfill leachate. Based on batch experiments, 60% of refractory organics can be adsorbed by hematite in 12 days. In the presence of Fe(III)-reducing bacteria, 489.60 ± 0.14 mg L -1 of dissolved organic matters can be degraded to 51.90 ± 3.96 mg L -1 within 50 days; twelve types of semi volatile organic compounds can be degraded; hereby, the reaction follows a first-order kinetics. Crystalline Fe(III) is transformed into the amorphous form and reduced to Fe(II), hydroquinone functional groups in the humic acid (HA) are transformed to quinone ones, and the formation of HA-hematite ligands is promoted. Comparing with most of the studies about electron shuttling of HA, the transformation of quinone in the HA to hydroquinone could not be observed in the present bio-system. Based on column evaluations, more than 93% of chemical oxygen demand (influent concentration of 658 ± 19 mg L -1 ) could be removed microbially under flow conditions, when the hydraulic retention time was 45 h. Raw hematite-based Fe(III) bio-reduction has a promising potential for the removal of humic and benzene series in humified landfill leachate. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Shuster, David L.; Farley, Kenneth A.; Vasconcelos, Paulo M.; Balco, Greg; Monteiro, Hevelyn S.; Waltenberg, Kathryn; Stone, John O.
2012-05-01
Helium isotopes were measured in hematite and goethite samples from several lateritiric duricrusts (canga) developed on banded iron formations. These samples uniformly have high 3He concentrations which must arise from long periods of cosmic ray exposure. From coexisting phases from the Quadrilátero Ferrífero in east central Brazil, we determined the ratio of cosmogenic 3He in hematite to that of 21Ne in quartz to be 3.96 ± 0.19. Combined with best current estimates of the 21Ne production rate in quartz, this ratio implies a sea-level high latitude (SLHL) 3He production rate in hematite of 68.1 ± 8.1 atoms/g/yr; from the chemical composition we estimate the 3He production rate in goethite to be ~ 5% higher. We use these production rate estimates to interpret 3He concentrations measured in goethite and hematite from a ~ 10 m depth profile collected from a surface canga in Carajás, in the Amazon basin of Brazil. We find that the Carajás canga has experienced a very low rate of surface erosion (~ 0.16-0.54 m/Myr) over at least the last few millions of years. This iron-rich canga surface is remarkably resistant to erosion despite its location in a wet tropical environment. Details of the depth profile suggest that despite its stability, the canga has also been internally dynamic (translocation of material; solution and reprecipitation) over million-year timescales.
[Reduction of nitrobenzene by iron oxides bound Fe(II) system at different pH values].
Luan, Fu-Bo; Xie, Li; Li, Jun; Zhou, Qi
2009-07-15
Batch tests were conducted to investigate the reductive transformation of nitrobenzene by goethite, hematite, magnetite and steel converter slag bound Fe(II) system. And the reduction mechanism was explored at different pH values. Experimental results showed that hematite, magnetite and steel converter slag could adsorb Fe(II) on surfaces and form iron oxides bound Fe(II) system at pH from 6.5 to 7.0. The systems had strong reductive capacity and could reduce nitrobenzene to aniline. The reduction efficiency of nitrobenzene in surface bound Fe(II) system followed the sequence of magnetite, hematite and steel converter slag from high to low. The reduction efficiency of hematite and magnetite system increased with pH increasing. While it was almost pH independent in steel converter slag system. Although goethite adsorbed most of Fe(II) in solution, the adsorbed Fe(II) had no reductive activity for nitrobenzene. At pH 6.0, small amount of Fe(II) was adsorbed on magnetite and hematite and the systems did not show reductive activity for nitrobenzene. However, steel converter slag could adsorb Fe(II) at pH 6.0 and reduction efficiency almost equaled to the value at pH 7.0. When pH was above 7.5, dissolved Fe(II) could be converted to Fe(OH)2 and the newly formed Fe(OH)2 became the main redactor in the system. Under alkali condition, the presence of iron oxides inhibited the reduction capacity of system.
Curiosity's ChemCam Checks 'Christmas Cove' Colors
2017-11-01
The Chemistry and Camera (ChemCam) instrument on NASA's Curiosity Mars rover examined a freshly brushed area on target rock "Christmas Cove" and found spectral evidence of hematite, an iron-oxide mineral. ChemCam sometimes zaps rocks with a laser, but can also be used, as in this case, in a "passive" mode. In this type of investigation, the instrument's telescope delivers to spectrometers the sunlight reflected from a small target point. The upper-left inset of this graphic is an image from ChemCam's Remote Micro-Imager with five labeled points that the instrument analyzed. The image covers an area about 2 inches (5 centimeters) wide, and the bright lines are fractures in the rock filled with calcium sulfate minerals. The five charted lines of the graphic correspond to those five points and show the spectrometer measurements of brightness at thousands of different wavelengths, from 400 nanometers (at the violet end of the visible-light spectrum) to 840 nanometers (in near-infrared). Sections of the spectrum measurements that are helpful for identifying hematite are annotated. These include a dip around 535 nanometers, the green-light portion of the spectrum at which fine-grained hematite tends to absorb more light and reflect less compared to other parts of the spectrum. That same green-absorbing characteristic of the hematite makes it appear purplish when imaged through special filters of Curiosity's Mast Camera and even in usual color images. The spectra also show maximum reflectance values near 750 nanometers, followed by a steep decrease in the spectral slope toward 840 nanometers, both of which are consistent with hematite. This ChemCam examination of Christmas Cove was part of an experiment to determine whether the rock had evidence of hematite under a tan coating of dust. The target area was brushed with Curiosity's Dust Removal Tool prior to these ChemCam passive observations on Sept. 17, 2017, during the 1,819th Martian day, or sol, of Curiosity's work on Mars. https://photojournal.jpl.nasa.gov/catalog/PIA22068
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pabisiak, Tomasz; Kiejna, Adam, E-mail: kiejna@ifd.uni.wroc.pl; Winiarski, Maciej J.
2016-01-28
This is the first of two papers dealing with the adsorption of Au and formation of Au{sub n} nanostructures (n = 1–4) on hematite (0001) surface and adsorption of CO thereon. The stoichiometric Fe-terminated (0001) surface of hematite was investigated using density functional theory in the generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) form with Hubbard correction U, accounting for strong electron correlations (PBE+U). The structural, energetic, and electronic properties of the systems studied were examined for vertical and flattened configurations of Au{sub n} nanostructures adsorbed on the hematite surfaces. The flattened ones, which can be viewed as bilayer-like structures, weremore » found energetically more favored than vertical ones. For both classes of structures the adsorption binding energy increases with the number of Au atoms in a structure. The adsorption of Au{sub n} induces charge rearrangement at the Au{sub n}/oxide contact which is reflected in work function changes. In most considered cases Au{sub n} adsorption increases the work function. A detailed analysis of the bonding electron charge is presented and the corresponding electron charge rearrangements at the contacts were quantified by a Bader charge analyses. The interaction of a CO molecule with the Au{sub n} nanostructures supported on α-Fe{sub 2}O{sub 3} (0001) and the oxide support was studied. It is found that the CO adsorption binding to the hematite supported Au{sub n} structures is more than twice as strong as to the bare hematite surface. Analysis of the Bader charges on the atoms showed that in each case CO binds to the most positively charged (cationic) atom of the Au{sub n} structure. Changes in the electronic structure of the Au{sub n} species and of the oxide support, and their consequences for the interactions with CO, are discussed.« less
NASA Technical Reports Server (NTRS)
Newsom, H. E.; Barber, C. A.; Schelble, R. T.; Hare, T. M.; Feldman, W. C.; Sutherland, V.; Gordon, H.; Thorsos, I. E.; Livingston, A.; Lewis, K.
2003-01-01
Topographic evidence for the existence of an early 800 km diameter multi-ringed impact structure, and evidence for fluvial and lacustrine environments in Meridiani Planum suggests a connection with the origin of the hematite deposits present in the region.
Grave, Daniel A; Yatom, Natav; Ellis, David S; Toroker, Maytal Caspary; Rothschild, Avner
2018-03-05
In recent years, hematite's potential as a photoanode material for solar hydrogen production has ignited a renewed interest in its physical and interfacial properties, which continues to be an active field of research. Research on hematite photoanodes provides new insights on the correlations between electronic structure, transport properties, excited state dynamics, and charge transfer phenomena, and expands our knowledge on solar cell materials into correlated electron systems. This research news article presents a snapshot of selected theoretical and experimental developments linking the electronic structure to the photoelectrochemical performance, with particular focus on optoelectronic properties and charge carrier dynamics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Paleomagnetic evidence that the central block of Salinia (California) is not a far-traveled terrane
Whidden, K.J.; Lund, S.P.; Bottjer, D.J.; Champion, D.; Howell, D.G.
1998-01-01
New paleomagnetic results from Late Cretaceous (75-85 m.y.) red beds on the central block of Salinia indicate that Salinia was located within 6?? (in latitude) of its current cratonal North American position during the Late Cretaceous (after correction for Neogene San Andreas Fault transport). The red beds formed as alluvial-fan overbank deposits with hematite cement deposited directly on Salinian granites in the La Panza Range. Paleomagnetic analysis shows two components of magnetization in the red beds, a low-blocking-temperature present-day overprint residing in goethite and a high-blocking-temperature (>600??) component residing in hematite. The hematite magnetization is a chemical remanent magnetization which formed soon after deposition during pedogenesis. The bedding-corrected hematite remanence contains a magnetic polarity stratigraphy with antipodal normal and reversed directions. Twenty-three Class I sites (??95 < 20??) have an average hematite direction with inclination = 54.4?? and declination = 18.2?? (??95 = 6.1??) after structural correction. These paleomagnetic data suggest that Salinia resided at about 35??N latitude during the Late Cretaceous, within 6?? of its current location adjacent to cratonal North America. By contrast, a summary of paleomagnetic data from the Peninsular Ranges terrane and the Sur-Obispo terrane, which are currently outboard of Salinia, shows northward transport of these terranes of 12,.o\\ to 22?? relative to their current locations in North America since the Cretaceous. The offsets increase systematically away from the craton with the most outboard Sur-Obispo terrane (which is composed of accretionary prism and distal forearc material) showing the largest degree of northward translation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrantz, Krisztina; Wyss, Pradeep P.; Ihssen, Julian
2017-04-01
tNature provides functional units which can be integrated in inorganic solar cell materials, such as lightharvesting antenna proteins and photosynthetic molecular machineries, and thus help in advancing artifi-cial photosynthesis. Their integration needs to address mechanical adhesion, light capture, charge transferand corrosion resistance. We showed recently how enzymatic polymerization of melanin can immobi-lize the cyanobacterial light harvesting protein C-phycocyanin on the surface of hematite, a prospectivemetal oxide photoanode for solar hydrogen production by water splitting in photoelectrochemical cells.After the optimization of the functionalization procedure, in this work we show reproducible hydrogenproduction, measured parallel to the photocurrent on this bio-hybrid electrode inmore » benign neutral pHphosphate. Over 90% increase compared to the photocurrent of the pristine hematite could be achieved.The hydrogen evolution was monitored during the photoelectrochemical measurement in an improvedphotoelectrochemical cell. The C-phycocyanin-melanin coating on the hematite was shown to exhibit acomb-like fractal pattern. Raman spectroscopy supported the presence of the protein on the hematiteanode surface. The stability of the protein coating is demonstrated during the 2 h GC measurement andthe 24 h operando current density measurement« less
NASA Astrophysics Data System (ADS)
Bowen, Brenda Beitler; Benison, K. C.; Oboh-Ikuenobe, F. E.; Story, S.; Mormile, M. R.
2008-04-01
Concretions can provide valuable records of diagenesis and fluid-sediment interactions, however, reconstruction of ancient concretion-forming conditions can be difficult. Observation of modern hematite concretion growth in a natural sedimentary setting provides a rare glimpse of conditions at the time of formation. Spheroidal hematite-cemented concretions are actively precipitating in shallow subsurface sediments at Lake Brown in Western Australia. Lake Brown is a hypersaline (total dissolved solids up to 23%) and acidic (pH ˜ 4) ephemeral lake. The concretion host sediments were deposited between ˜ 1 and 3 ka, based on dating of stratigraphically higher and lower beds. These age constraints indicate that the diagenetic concretions formed < 3 ka, and field observations suggest that some are currently forming. These modern concretions from Lake Brown provide an example of very early diagenetic formation in acid and saline conditions that may be analogous to past conditions on Mars. Previously, the hematite concretions in the Burns formation on Mars have been interpreted as late stage diagenetic products, requiring long geologic time scales and multiple fluid flow events to form. In contrast, the Lake Brown concretions support the possibility of similar syndepositional to very early diagenetic concretion precipitation on Mars.
Grenne, Tor; Slack, John F.
2003-01-01
The jaspers are interpreted to record colloidal fallout from one or more hydrothermal plumes, followed by maturation (ageing) of an Si-Fe-oxyhydroxide gel, on and beneath the Ordovician sea floor. Small hematitic filaments in the jaspers reflect bacteria-catalysed oxidation of Fe2+ within the plume. The larger tubular filaments resulted from either microbial activity or inorganic self-organized mineral growth of Fe-oxyhydroxide within the Si-Fe-oxyhydroxide gel after deposition on the sea floor, prior to more advanced maturation of the gel as represented by the spheroidal and botryoidal silica-hematite textures. Bleaching and hematite±epidote growth are interpreted to reflect heat and fluids generated during deposition of basaltic sheet flows on top of the gels.
Arai, Yuji; Moran, P B; Honeyman, B D; Davis, J A
2007-06-01
Np(V) surface speciation on hematite surfaces at pH 7-9 under pC2 = 10(-3.45) atm was investigated using X-ray absorption spectroscopy (XAS). In situ XAS analyses suggest that bis-carbonato inner-sphere and tris-carbonato outer-sphere ternary surface species coexist at the hematite-water interface at pH 7-8.8, and the fraction of outer-sphere species gradually increases from 27 to 54% with increasing pH from 7 to 8.8. The results suggest that the heretofore unknown Np(V)-carbonato ternary surface species may be important in predicting the fate and transport of Np(V) in the subsurface environment down gradient of high-level nuclear waste respositories.
Hematite (α-Fe2O3) - A potential Ce4+ carrier in red mud.
Bolanz, Ralph M; Kiefer, Stefan; Göttlicher, Jörg; Steininger, Ralph
2018-05-01
Cerium is the most abundant rare earth element (REE) within the waste product of alumina production (red mud), but its speciation in this complex material is still barely understood. Previous studies showed evidence for a correlation between Ce and the main constituent of red mud, iron oxides, which led us to investigate the most abundant iron oxide in red mud, hematite, as possible carrier phase for Ce. Synthetic hematite can incorporate up to 1.70±0.01wt% Ce, which leads to a systematical increase of all unit cell parameters. Investigations by extended X-ray absorption fine structure spectroscopy suggest an incorporation of Ce 4+ O 6 into the hematite structure by a novel atomic arrangement, fundamentally different from the close-range order around Fe 3+ in hematite. Samples of red mud were taken in Lauta (Saxony), Germany and analyzed by powder X-ray diffraction, inductively coupled plasma mass and optical emission spectrometry, electron microprobe analysis and X-ray absorption near-edge structure spectroscopy. Red mud samples consist of hematite (Fe 2 O 3 ) (34-58wt%), sodalite (Na 8 Al 6 Si 6 O 24 Cl 2 ) (4-30wt%), gibbsite (Al(OH) 3 ) (0-25wt%), goethite (FeOOH) (10-23wt%), böhmite (AlOOH) (0-11wt%), rutile (TiO 2 ) (4-8wt%), cancrinite (Na 6 Ca 2 Al 6 Si 6 O 24 (CO 3 ) 2 ) (0-5wt%), nordstrandite (Al(OH) 3 ) (0-5wt%) and quartz (SiO 2 ) (0-4wt%). While the main elemental composition is Fe>Al>Na>Ti>Ca (Si not included), the average concentration of REE is 1109±6mg/kg with an average Ce concentration of 464±3mg/kg. The main carrier of Ce was located in the Fe-rich fine-grained fraction of red mud (0.10wt% Ce 2 O 3 ), while other potential Ce carriers like monazite, lead oxides, secondary Ce-minerals and particles of potentially anthropogenic origin are of subordinated relevance. Cerium in red mud occurs predominantly as Ce 4+ , which further excludes Ce 3+ minerals as relevant sources. Copyright © 2017. Published by Elsevier B.V.
In situ XAS study of CoBi modified hematite photoanodes.
Xi, Lifei; Schwanke, Christoph; Zhou, Dong; Drevon, Dorian; van de Krol, Roel; Lange, Kathrin M
2017-11-21
Solar water splitting is a potentially scalable method to store solar energy in the form of renewable hydrogen gas. In this study, we demonstrate that the photoelectrochemical (PEC) performance of hematite photoanodes can be improved by modification with the oxygen evolution catalyst CoB i . The current density at 1.23 V of the pristine hematite under one sun is 0.88 mA cm -2 and it increases to 1.12 mA cm -2 after CoB i modification (∼27% improvement). The presence of a CoB i cocatalayst layer is proposed to improve the oxygen evolution reaction (OER) kinetics and also to prevent electron-hole recombination at the surface via passivating surface defects as well as suppressing the tunneling of electrons from the hematite core, thus improving the photocurrents and resulting in a negative shift of photocurrent onset potentials. These effects of CoB i modification are supported by experimental data obtained by performing electrochemical impedance spectroscopy (EIS), PEC and incident photon-to-current efficiency (IPCE) measurements. To investigate the electronic structure of the CoB i cocatalyst deposited on hematite, XPS and in situ X-ray absorption spectroscopy (XAS) are employed. Co K-edge spectra at different potentials and light conditions are recorded. This makes the present work different from most of the previous studies. Using a quantitative analysis method, information on the mean oxidation state of Co in the CoB i film under applied potential and illumination is revealed. We also compare different methods for determining the oxidation state from the edge position and find that the integral method and half height methods are most suitable. In summary, the present work underlines the improvement of the semiconductor/cocatalyst interface of oxygen evolving photoanodes and strengthens the importance of in situ XAS spectroscopy when studying catalysts. This study is the first report so far combining the studies of the PEC performance of a CoB i modified hematite nanorod array photoanode and in situ XAS at the Co K-edge.
NASA Astrophysics Data System (ADS)
Bilardello, Dario
2015-08-01
Separating the contribution of different hematite coercivity grains to the magnetic fabric is a standing problem in rock magnetism because of the common occurrence of thermochemical alterations when measuring the anisotropy of thermal remanence. A technique that eliminates this bias is presented, which is useful when there is a need to separate the fabric of detrital from pigmentary hematite, for example. The method is based on stepwise thermal demagnetization of saturation isothermal remanent magnetizations (IRMs) applied orthogonally on three sister specimens, allowing calculation of the anisotropy tensor from the three components of each demagnetized IRM vector, avoiding the necessity of having to apply IRMs to thermochemically altered specimens. Vector subtraction allows determining the anisotropy tensor for specific unblocking-temperature ranges. The anisotropies of the pigmentary, specular and total hematite of the Mauch Chunk Formation red beds of Pennsylvania have been measured from an oriented block sample and results are compared to previous anisotropy measurements performed using the high-field anisotropy of isothermal remanence technique (hf-AIR), which measures total undifferentiated hematite. Experiments were conducted using non-saturating 1 T and fully saturating 5.5 T fields: both experimental sets seem capable of measuring the orientation of the specularite anisotropy principal axes, but 5.5 T are needed to capture the orientation of the higher coercivity pigmentary grains. The magnitudes of the principal axes, instead, are only faithfully measured using 5.5 T fields and yield somewhat higher anisotropies than those measured by hf-AIR. The fundamental requirement for this technique is homogeneous material among the three sister specimens, which is a significant limitation; homogeneity tests allow assessment of applicability of the method and reliability of the results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Andrew C.; Peterson, L.; Reardon, Catherine L.
2012-07-01
Solid phase iron oxides are considered to be important terminal electron acceptors for microbial respiration in many anoxic environments. Besides the knowledge that cells attach to and reduce these substrates, other aspects of surface-associated cell behavior and the related cell surface components that influence cell-mineral interactions are not well understood. In the present study, wild-type cells of the dissimilatory iron-reducing bacterium Shewanella oneidensis MR-1 formed thin biofilms one-to-two cell layers in thickness when respiring on natural specular hematite under flow conditions similar to those which exist in aquatic sediments and subsurface environments. The distribution of cells within the biofilm indicatedmore » that direct contact was not required for electron transfer from cells to the mineral surface. Detached biomass in the form of single cells represented >99% of the surface-associated wild-type cell production from respiration on hematite over the biofilm life cycle. A mutant deficient in the outer membrane c35 type cytochrome OmcA, while still able to respire and replicate on hematite, established a lower steady-state cell density on the mineral surface than that of the wild-type strain. A mutant deficient in MtrC, another outer membrane c-type cytochrome, and a mutant deficient in both cytochromes were unable to reduce sufficient amounts of hematite to support detectable growth on the mineral surface. When considered in the context of previous work, the results support a growing body of evidence that the relative importance of OmcA and MtrC to cell respiration and replication depends on the form of iron oxide available as terminal electron acceptor.« less
Khare, Nidhi; Eggleston, Carrick M; Lovelace, David M; Boese, Steven W
2006-11-15
The interaction of metalloproteins with oxides has implications not only for bioanalytical systems and biosensors but also in the areas of biomimetic photovoltaic devices, bioremediation, and bacterial metal reduction. Here, we investigate mitochondrial ferricytochrome c (Cyt c) co-sorption with 0.01 and 0.1 M phosphate on hematite (alpha-Fe2O3) surfaces as a function of pH (2-11). Although Cyt c sorption to hematite in the presence of phosphate is consistent with electrostatic attraction, other forces act upon Cyt c as well. The occurrence of multilayer adsorption, and our AFM observations, suggest that Cyt c aggregates as the pH approaches the Cyt c isoelectric point. In solution, methionine coordination of heme Fe occurs only between pH 3 and 7, but in the presence of phosphate this coordination is retained up to pH 10. Electrochemical evidence for the presence of native Cyt c occurs down to pH 3 and up to pH 10 in the absence of phosphate, and this range is extended to pH 2 and 11 in the presence of phosphate. Cyt c that initially adsorbs to a hematite surface may undergo conformation change and coat the surface with unfolded protein such that subsequently adsorbing protein is more likely to retain the native conformational state. AFM provides evidence for rapid sorption kinetics for Cyt c co-sorbed with 0.01 or 0.1 M phosphate. Cyt c co-sorbed with 0.01 M phosphate appears to unfold on the surface of hematite while Cyt c co-sorbed with 0.1 M phosphate possibly retains native conformation due to aggregation.
Arvidson, R. E.; Poulet, F.; Morris, R.V.; Bibring, J.-P.; Bell, J.F.; Squyres, S. W.; Christensen, P.R.; Bellucci, G.; Gondet, B.; Ehlmann, B.L.; Farrand, W. H.; Fergason, R.L.; Golombeck, M.; Griffes, J.L.; Grotzinger, J.; Guinness, E.A.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhofer, G.; Langevin, Y.; Ming, D.; Seelos, K.; Sullivan, R.J.; Ward, J.G.; Wiseman, S.M.; Wolff, M.J.
2006-01-01
The ???5 km of traverses and observations completed by the Opportunity rover from Endurance crater to the Fruitbasket outcrop show that the Meridiani plains consist of sulfate-rich sedimentary rocks that are largely covered by poorly-sorted basaltic aeolian sands and a lag of granule-sized hematitic concretions. Orbital reflectance spectra obtained by Mars Express OMEGA over this region are dominated by pyroxene, plagioclase feldspar, crystalline hematite (i.e., concretions), and nano-phase iron oxide dust signatures, consistent with Pancam and Mini-TES observations. Mo??ssbauer Spectrometer observations indicate more olivine than observed with the other instruments, consistent with preferential optical obscuration of olivine features in mixtures with pyroxene and dust. Orbital data covering bright plains located several kilometers to the south of the landing site expose a smaller areal abundance of hematite, more dust, and a larger areal extent of outcrop compared to plains proximal to the landing site. Low-albedo, low-thermal-inertia, windswept plains located several hundred kilometers to the south of the landing site are predicted from OMEGA data to have more hematite and fine-grained olivine grains exposed as compared to the landing site. Low calcium pyroxene dominates spectral signatures from the cratered highlands to the south of Opportunity. A regional-scale model is presented for the formation of the plains explored by Opportunity, based on a rising ground water table late in the Noachian Era that trapped and altered local materials and aeolian basaltic sands. Cessation of this aqueous process led to dominance of aeolian processes and formation of the current configuration of the plains. Copyright 2006 by the American Geophysical Union.
Annealing effect on the structural and dielectric properties of hematite nanoparticles
NASA Astrophysics Data System (ADS)
Kumar, Vijay; Chahal, Surjeet; Singh, Dharamvir; Kumar, Ashok; Kumar, Parmod; Asokan, K.
2018-05-01
In the present work, we have synthesized hematite (α-Fe2O3) nanoparticles by sol-gel method and sintered them at different temperatures (200 °C, 400 °C and 800 °C for six hours). The samples were then characterized using versatile characterization techniques such as X-ray diffraction (XRD), dielectric measurement and temperature dependent resistivity (RT) for their structural, dielectric and electrical properties. XRD measurements infer that intensity of peak increases with an increase in temperature resulting an increase in crystallite size. Temperature dependent resistivity also shows decrease in the resistivity of the samples. Furthermore, the dielectric measurements correspond to the increase in the dielectric constant. Based on these observations, it can be inferred that sintering temperature plays an important role in tailoring the various physical properties of hematite nanoparticles.
Kim, Jae Young; Ahn, Hyun S; Bard, Allen J
2018-03-06
To understand the pathway of a photoelectrochemical (PEC) reaction, quantitative knowledge of reaction intermediates is important. We describe here surface interrogation scanning electrochemical microscopy for this purpose (PEC SI-SECM), where a light pulse to a photoactive semiconductor film at a given potential generates intermediates that are then analyzed by a tip generated titrant at known times after the light pulse. The improvements were demonstrated for photoelectrochemical water oxidation (oxygen evolution) reaction on a hematite surface. The density of photoactive sites, proposed to be Fe 4+ species, on a hematite surface was successfully quantified, and the photoelectrochemical water oxidation reaction dynamics were elucidated by time-dependent redox titration experiments. The new configuration of PEC SI-SECM should find expanded usage to understand and investigate more complicated PEC reactions with other materials.
NASA Astrophysics Data System (ADS)
Nakamura, Ryuhei; Kamiya, Kazuhide; Hashimoto, Kazuhito
2010-10-01
Herein, the electron-transfer reactions occurring at the interface between bilirubin oxidase (BOD) and nanocrystalline hematite (α-Fe 2O 3) were characterized. Cyclic voltammograms indicated that BOD has an affinity for hematite surfaces and establishes a direct electron-transfer (DET) conduit between the primary electron acceptor T1 site and the conduction band of α-Fe 2O 3. DET was also confirmed photo-electrochemically, as cathodic photocurrents were generated when a nanocomposite of BOD and α-Fe 2O 3 was illuminated under oxygenated conditions. A proline residue displayed a high-binding affinity for hematite surfaces and is therefore likely part of an orientation-controlled motif which serves to locate BOD at the T1 site at a suitable distance for DET to α-Fe 2O 3.
USDA-ARS?s Scientific Manuscript database
The iron-reducing bacterium Shewanella oneidensis MR-1 has the capacity to contribute to iron cycling over the long term by respiring on crystalline iron oxides such as hematite when poorly crystalline phases are depleted. The ability of outer membrane cytochromes OmcA and MtrC of MR-1 to bind to an...
NASA Astrophysics Data System (ADS)
Schneider, A.; Mittlefehldt, D.
2006-10-01
The Mars Exploration Rover Opportunity discovered hematite-rich spherules (``blueberries'') believed to be diagenetic concretions formed in the bedrock in stagnant or slow-moving groundwater. These spherules likely precipitated from solution, but their origins are poorly understood. Three formation mechanisms are possible: inclusive, replacive and displacive. The first would result in a distinct spherule composition compared to the other two. We propose that chemical clues may help to constrain the nature of blueberry formation. We used Alpha Particle X-ray Spectrometer data for undisturbed soils that were blueberry-free and with visible blueberries at the surface in Microscopic Imager images. We made plots of the elements versus iron for the spherule-rich soils and compared them to a mixing line representative of a pure hematite end member spherule (called ``the zero model''). This modeled the replacive formation mechanism, in which pure hematite would replace all of the original material. If the spherules grew inclusively, chemical data should reflect a compositional component of the rock grains included during formation. Four models were developed to test for possible compositions of a rock component. These models could not easily explain the APXS data and thus demonstrate that the most plausible rock compositions are not components of blueberries.
Curiosity Checks Under the Dust on a Martian Rock
2017-11-01
On a part of "Vera Rubin Ridge" where rover-team researchers sought to determine whether dust coatings are hiding rocks' hematite content, the Mast Camera (Mastcam) on NASA's Curiosity Mars rover took this image of a rock surface that had been brushed with the rover's Dust Removal Tool. The image is shown in the usual full color of featured Mastcam images: with a color adjustment similar to white balancing for approximating how the rocks and sand would appear under daytime lighting conditions on Earth. Sunlight on Mars is tinged by the dusty atmosphere and this adjustment helps geologists recognize color patterns they are familiar with on Earth. In this case, the purplish tint of the brushed area suggested fine-grained hematite. Bright lines within the rocks are fractures filled with calcium sulfate minerals. The brushed area is about 2.5 inches (6 centimeters) across. The image was taken on Sept. 17, 2017, during the 1,819th Martian day, or sol, of Curiosity's work on Mars. Mastcam also imaged this same scene using three special filters that help to identify hematite, an iron-oxide mineral that can provide information about ancient environmental conditions. A science-filters image identifies hematite in this brushed target even more clearly. https://photojournal.jpl.nasa.gov/catalog/PIA22067
Kosmulski, Marek; Maczka, Edward; Jartych, Elzbieta; Rosenholm, Jarl B
2003-03-19
Aging of synthetic goethite at 140 degrees C overnight leads to a composite material in which hematite is detectable by Mössbauer spectroscopy, but X-ray diffraction does not reveal any hematite peaks. The pristine point of zero charge (PZC) of synthetic goethite was found at pH 9.4 as the common intersection point of potentiometric titration curves at different ionic strengths and the isoelectric point (IEP). For the goethite-hematite composite, the common intersection point (pH 9.4), and the IEP (pH 8.8) do not match. The electrokinetic potential of goethite at ionic strengths up to 1 mol dm(-3) was determined. Unlike metal oxides, for which the electrokinetic potential is reversed to positive over the entire pH range at sufficiently high ionic strength, the IEP of goethite is rather insensitive to the ionic strength. A literature survey of published PZC/IEP values of iron oxides and hydroxides indicated that the average PZC/IEP does not depend on the degree of hydration (oxide or hydroxide). Our material showed a higher PZC and IEP than most published results. The present results confirm the allegation that electroacoustic measurements produce a higher IEP than the average IEP obtained by means of classical electrokinetic methods.
Contact angle and detachment energy of shape anisotropic particles at fluid-fluid interfaces.
Anjali, Thriveni G; Basavaraj, Madivala G
2016-09-15
The three phase contact angle of particles, a measure of its wettability, is an important factor that greatly influences their behaviour at interfaces. It is one of the principal design parameters for potential applications of particles as emulsion/foam stabilizers, functional coatings and other novel materials. In the present work, the effect of size, shape and surface chemistry of particles on their contact angle is investigated using the gel trapping technique, which facilitates the direct visualization of the equilibrium position of particles at interfaces. The contact angle of hematite particles of spherocylindrical, peanut and cuboidal shapes, hematite-silica core-shell and silica shells is reported at a single particle level. The spherocylindrical and peanut shaped particles are always positioned with their major axis parallel to the interface. However, for cuboidal particles at air-water as well as decane-water interfaces, different orientations namely - face-up, edge-up and the vertex-up - are observed. The influence of gravity on the equilibrium position of the colloidal particles at the interface is studied using the hematite-silica core-shell particles and the silica shells. The measured contact angle values are utilized in the calculations of the detachment and surface energies of the hematite particles adsorbed at the interface. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luna, Carlos, E-mail: carlos.lunacd@uanl.edu.mx; Cuan-Guerra, Aída D.; Barriga-Castro, Enrique D.
2016-08-15
Highlights: • Uniform rhombohedral hematite nanocrystals (RHNCs) have been obtained. • A detailed formation mechanism of these HNCS has been proposed. • Phonon confinement effects were revealed in the RHNCS vibrational bands. • Quantum confinement effects on the optical and electronic properties were found. - Abstract: Morphological, microstructural and vibrational properties of hematite (α-Fe{sub 2}O{sub 3}) nanocrystals with a rhombohedral shape and rounded edges, obtained by forced hydrolysis of iron(III) solutions under a fast nucleation, have been investigated in detail as a function of aging time. These studies allowed us to propose a detailed formation mechanism and revealed that thesemore » nanocrystals are composed of four {104} side facets, two {110} faces at the edges of the long diagonal of the nanocrystals and two {−441} facets as the top and bottom faces. Also, the presence of nanoscopic pores and fissures was evidenced. The vibrational bands of such nanocrystals were shifted to lower frequencies in comparison with bulk hematite ones as the nanocrystal size was reduced due to phonon confinement effects. Also, the indirect and direct transition band gaps displayed interesting dependences on the aging time arising from quantum confinement and surface effects.« less
Science-Filters Study of Martian Rock Sees Hematite
2017-11-01
This false-color image demonstrates how use of special filters available on the Mast Camera (Mastcam) of NASA's Curiosity Mars rover can reveal the presence of certain minerals in target rocks. It is a composite of images taken through three "science" filters chosen for making hematite, an iron-oxide mineral, stand out as exaggerated purple. This target rock, called "Christmas Cove," lies in an area on Mars' "Vera Rubin Ridge" where Mastcam reconnaissance imaging (see PIA22065) with science filters suggested a patchy distribution of exposed hematite. Bright lines within the rocks are fractures filled with calcium sulfate minerals. Christmas Cove did not appear to contain much hematite until the rover team conducted an experiment on this target: Curiosity's wire-bristled brush, the Dust Removal Tool, scrubbed the rock, and a close-up with the Mars Hand Lens Imager (MAHLI) confirmed the brushing. The brushed area is about is about 2.5 inches (6 centimeters) across. The next day -- Sept. 17, 2017, on the mission's Sol 1819 -- this observation with Mastcam and others with the Chemistry and Camera (ChemCam showed a strong hematite presence that had been subdued beneath the dust. The team is continuing to explore whether the patchiness in the reconnaissance imaging may result more from variations in the amount of dust cover rather than from variations in hematite content. Curiosity's Mastcam combines two cameras: one with a telephoto lens and the other with a wider-angle lens. Each camera has a filter wheel that can be rotated in front of the lens for a choice of eight different filters. One filter for each camera is clear to all visible light, for regular full-color photos, and another is specifically for viewing the Sun. Some of the other filters were selected to admit wavelengths of light that are useful for identifying iron minerals. Each of the filters used for this image admits light from a narrow band of wavelengths, extending to only about 5 nanometers longer or shorter than the filter's central wavelength. Three observations are combined for this image, each through one of the filters centered at 751 nanometers (in the near-infrared part of the spectrum just beyond red light), 527 nanometers (green) and 445 nanometers (blue). Usual color photographs from digital cameras -- such as a Mastcam one of this same place (see PIA22067) -- also combine information from red, green and blue filtering, but the filters are in a microscopic grid in a "Bayer" filter array situated directly over the detector behind the lens, with wider bands of wavelengths. Mastcam's narrow-band filters used for this view help to increase spectral contrast, making blues bluer and reds redder, particularly with the processing used to boost contrast in each of the component images of this composite. Fine-grained hematite preferentially absorbs sunlight around in the green portion of the spectrum around 527 nanometers. That gives it the purple look from a combination of red and blue light reflected by the hematite and reaching the camera through the other two filters. https://photojournal.jpl.nasa.gov/catalog/PIA22066
NASA Astrophysics Data System (ADS)
Lohaus, Christian; Steinert, Céline; Deyu, Getnet; Brötz, Joachim; Jaegermann, Wolfram; Klein, Andreas
2018-04-01
Hematite Fe2O3 seed layers are shown to constitute a pathway to prepare highly conductive transparent tin-doped indium oxide thin films by room temperature magnetron sputtering. Conductivities of up to σ = 3300 S/cm are observed. The improved conductivity is not restricted to the interface but related to an enhanced crystallization of the films, which proceeds in the rhombohedral phase.
Astrobiology Investigations at a Martian Hematite Site
NASA Technical Reports Server (NTRS)
Allen, Carlton, C.; Westall, Frances; Schelble, Rachel T.
2001-01-01
Christensen et al, using data from the Mars Global Surveyor Thermal Emission Spectrometer (TES), have identified gray crystalline hematite in a 350 km by 750 km region near Sinus Meridiani. The deposit corresponds closely to the low-albedo highlands unit 'sm', mapped as a wind-eroded, ancient, subaqueous sedimentary deposit. Christensen et al interpreted the Sinus Meridiani deposit to be 'an in-place, rock-stratigraphic sedimentary unit characterized by smooth, friable layers composed primarily of basaltic sediments with approximately 10 to 15 % crystalline gray hematite.' Christensen et al discussed five possible mechanisms for the formation of this deposit: direct precipitation from standing, oxygenated, Fe-rich water; precipitation from Fe-rich hydrothermal fluids; low-temperature dissolution and precipitation through mobile groundwater leaching; surface weathering and coatings; thermal oxidation of magnetite-rich lavas. Four of these mechanisms involve the interactions of rock with water, and thus have implications in the search for evidence of microbial life.
Waychunas, G.; Trainor, T.; Eng, P.; Catalano, J.; Brown, G.; Davis, J.; Rogers, J.; Bargar, J.
2005-01-01
X-ray diffraction [crystal-truncation-rod (CTR)] studies of the surface structure of moisture-equilibrated hematite reveal sites for complexation not present on the bulk oxygen-terminated surface, and impose constraints on the types of inner-sphere sorption topologies. We have used this improved model of the hematite surface to analyze grazing-incidence EXAFS results for arsenate sorption on the c(0001) and r(10-12) surfaces measured in two electric vector polarizations. This work shows that the reconfiguration of the surface under moist conditions is responsible for an increased adsorption density of arsenate complexes on the (0001) surface relative to predicted ideal termination, and an abundance of "edge-sharing" bidentate complexes on both studied surfaces. We consider possible limitations on combining the methods due to differing surface sensitivities, and discuss further analysis possibilities using both methods. ?? Springer-Verlag 2005.
Adsorption of polyethyleneimine and polymethacrylic acid onto synthesized hematite.
Chibowski, S; Patkowski, J; Grzadka, E
2009-01-01
An influence of different functional groups of polymer, its molecular weight, polydispersity ratio (M(w)/M(n)) and presence of impurities on its adsorption in different pH values (3, 6 and 9) onto synthesized hematite (Fe(2)O(3)) was measured. A structure of adsorbed macromolecules of PMA and PEI was obtained according to S-F theory. Two polymers were used: polymethacrylic acid (PMA) of 6500 and 75,100 molecular weight as well as polyethyleneimine (PEI) 25,000 commercial and fractionated. Electrokinetic properties of the interface oxide-polymer solution (surface charge density and zeta potential) were also measured as well as adsorption layer thicknesses (with use of viscosimetric measurements). Obtained data show, that all above-mentioned factors do influence not only the adsorption process itself but also a surface charge, zeta potential and structure of adsorbed polymer layers on polymer/hematite interface.
Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting
Barroso, Monica; Mesa, Camilo A.; Pendlebury, Stephanie R.; Cowan, Alexander J.; Hisatomi, Takashi; Sivula, Kevin; Grätzel, Michael; Klug, David R.; Durrant, James R.
2012-01-01
This paper addresses the origin of the decrease in the external electrical bias required for water photoelectrolysis with hematite photoanodes, observed following surface treatments of such electrodes. We consider two alternative surface modifications: a cobalt oxo/hydroxo-based (CoOx) overlayer, reported previously to function as an efficient water oxidation electrocatalyst, and a Ga2O3 overlayer, reported to passivate hematite surface states. Transient absorption studies of these composite electrodes under applied bias showed that the cathodic shift of the photocurrent onset observed after each of the surface modifications is accompanied by a similar cathodic shift of the appearance of long-lived hematite photoholes, due to a retardation of electron/hole recombination. The origin of the slower electron/hole recombination is assigned primarily to enhanced electron depletion in the Fe2O3 for a given applied bias. PMID:22802673
Wiseman, S.M.; Arvidson, R. E.; Andrews-Hanna, J. C.; Clark, R.N.; Lanza, N.L.; des Marais, D.; Marzo, G.A.; Morris, R.V.; Murchie, S.L.; Newsom, Horton E.; Noe Dobrea, E.Z.; Ollila, A.M.; Poulet, F.; Roush, T.L.; Seelos, F.P.; Swayze, G.A.
2008-01-01
Orbital topographic, image, and spectral data show that sulfate- and hematite-bearing plains deposits similar to those explored by the MER rover Opportunity unconformably overlie the northeastern portion of the 160 km in diameter Miyamoto crater. Crater floor materials exhumed to the west of the contact exhibit CRISM and OMEGA NIR spectral signatures consistent with the presence of Fe/Mg-rich smectite phyllosilicates. Based on superposition relationships, the phyllosilicate-bearing deposits formed either in-situ or were deposited on the floor of Miyamoto crater prior to the formation of the sulfate-rich plains unit. These findings support the hypothesis that neutral pH aqueous conditions transitioned to a ground-water driven acid sulfate system in the Sinus Meridiani region. The presence of both phyllosilicate and sulfate- and hematite-bearing deposits within Miyamoto crater make it an attractive site for exploration by future rover missions. Copyright 2008 by the American Geophysical Union.
Magnetite-hematite transformation: correlation between natural and synthetic features
NASA Astrophysics Data System (ADS)
Barbosa, Paola F.; Lagoeiro, Leonardo; Scholz, Ricardo; Graça, Leonardo M.; Mohallem, Nelcy
2015-06-01
The iron-oxide system can be used as a marker of oxidized and reduced conditions in closed systems. However, natural rocks with iron oxide minerals also exhibit such reactions, although the natural system is typically open. To understand the behaviour of this natural system, some similarities were investigated, in terms of crystallographic textures, between the microstructures of two systems: natural open system and synthetic closed system of iron oxide phase transformation. Particular cases of phase transformation in iron oxide minerals, described as natural reactions of magnetite to hematite and synthetic reactions of hematite to magnetite, were chosen. It is observed, in both scenarios, that the transformation obeys the topotaxial and epitaxial relationship, which are well described for the iron oxide system. However, in natural open systems, the precipitation of a new phase during the in situ transformation modifies the microstructures and must be taken into account as an important factor to describe them.
Tulliani, Jean-Marc; Baroni, Chiara; Zavattaro, Laura; Grignani, Carlo
2013-01-01
The aim of this work is to study the sensing behavior of Sr-doped hematite for soil water content measurement. The material was prepared by solid state reaction from commercial hematite and strontium carbonate heat treated at 900 °C. X-Ray diffraction, scanning electron microscopy and mercury intrusion porosimetry were used for microstructural characterization of the synthesized powder. Sensors were then prepared by uniaxially pressing and by screen-printing, on an alumina substrate, the prepared powder and subsequent firing in the 800–1,000 °C range. These sensors were first tested in a laboratory apparatus under humid air and then in an homogenized soil and finally in field. The results evidenced that the screen printed film was able to give a response for a soil matric potential from about 570 kPa, that is to say well below the wilting point in the used soil. PMID:24025555
NASA Astrophysics Data System (ADS)
Sun, Xiaoming; Tang, Qian; Sun, Weidong; Xu, Li; Zhai, Wei; Liang, Jinlong; Liang, Yeheng; Shen, Kun; Zhang, Zeming; Zhou, Bing; Wang, Fangyue
2007-06-01
We have identified abundant exsolutions in apatite aggregates from eclogitic drillhole samples of the Chinese Continental Scientific Drilling (CCSD) project. Electron microscope and laser Raman spectroscopy analyses show that the apatite is fluorapatite, whereas exsolutions that can be classified into four types: (A) platy to rhombic monazite exsolutions; (B) needle-like hematite exsolutions; (C) irregular magnetite and hematite intergrowths; and (D) needle-like strontian barite exsolutions. The widths and lengths of type A monazite exsolutions range from about 6-10 μm (mostly 6 μm) and about 50-75 μm, respectively. Type B exsolutions are parallel with the C axis of apatite, with widths ranging from 0.5 to 2 μm, with most around 1.5 μm, and lengths that vary dramatically from 6 to 50 μm. Type C exsolutions are also parallel with the C axis of apatite, with lengths of ˜30-150 μm and widths of ˜10 to 50 μm. Type D strontian barite exsolutions coexist mostly with type B hematite exsolutions, with widths of about 9 μm and lengths of about 60-70 μm. Exsolutions of types B, C and D have never been reported in apatites before. Most of the exsolutions are parallel with the C axis of apatite, implying that they were probably exsolved at roughly the same time. Dating by the chemical Th-U-total Pb isochron method (CHIME) yields an U-Pb isochron age of 202 ± 28 Ma for monazite exsolutions, suggesting that these exsolutions were formed during recrystallization and retrograde metamorphism of the exhumed ultrahigh pressure (UHP) rocks. Quartz veins hosting apatite aggregates were probably formed slightly earlier than 202 Ma. Abundant hematite exsolutions, as well as coexistence of magnetite/hematite and barite/hematite in the apatite, suggest that the oxygen fugacity of apatite aggregates is well above the sulfide-sulfur oxide buffer (SSO). Given that quartz veins host these apatite aggregates, they were probably deposited from SiO 2-rich hydrous fluids formed during retrogression of the subducted slab. Such SiO 2-rich hydrous fluids may act as an oxidizing agent, a feasible explanation for the high oxygen fugacity in convergent margin systems.
The choice of iron-containing filling for composite radioprotective material
NASA Astrophysics Data System (ADS)
Matyukhin, P. V.
2018-03-01
The paper presents the data the composition of modern composite building materials including materials which in addition to high physical-mechanical have radio-protective properties. The article presents infrared researches and differential thermal data of fine-grained magnetite and hematite beneficiated iron-ore concentrates. The choice of the most suitable filling for new composite radio-protective building material engineering and development was made basing on the magnetite and hematite data presented in the paper.
Designing New Materials for Converting Solar Energy to Fuels via Quantum Mechanics
2014-07-11
dopants can also be exploited to increase charge carrier concentration without creating traps and hence improve the conductivity of these materials...e.g., Mn(II) in hematite for hole transport, Y(III) in MnO:ZnO for electron transport). • We discovered that dopants derived from covalent oxides...e.g., Si from silica, as a dopant in hematite) can also be used to increase charge carrier density without creating traps. Charge carriers stay
Modification of the Magnetic Properties of α-Fe2O3 Powders by Ultrasonic Processing
NASA Astrophysics Data System (ADS)
Stolyar, S. V.; Bayukov, O. A.; Iskhakov, R. S.; Yaroslavtsev, R. N.; Ladygina, V. P.
2017-12-01
Hematite (α-Fe2O3) powders after ultrasonic treatment (UST) in the regime of cavitation in aqueous suspension and in that with an organic component (albumin protein) have been studied by Mössbauer spectroscopy and ferromagnetic resonance techniques. It is established that the UST in aqueous hematite suspensions with albumin results in the formation of a new magnetic phase with parameters coinciding with those of the α-Fe metallic phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Sandra D.; Liu, Jia; Arey, Bruce W.
The distribution of iron resulting from the autocatalytic interaction of aqueous Fe(II) with the hematite (001) surface was directly mapped in three dimensions (3D) for the first time, using iron isotopic labelling and atom probe tomography (APT). Analyses of the mass spectrum showed that natural abundance ratios in 56Fe-dominant hematite are recovered at depth with good accuracy, whereas at the relict interface with 57Fe(II) solution evidence for hematite growth by oxidative adsorption of Fe(II) was found. 3D reconstructions of the isotope positions along the surface normal direction showed a zone enriched in 57Fe, which was consistent with an average netmore » adsorption of 3.2 – 4.3 57Fe atoms nm–2. Statistical analyses utilizing grid-based frequency distribution analyses show a heterogeneous, non-random distribution of oxidized Fe on the (001) surface, consistent with Volmer-Weber-like island growth. The unique 3D nature of the APT data provides an unprecedented means to quantify the atomic-scale distribution of sorbed 57Fe atoms and the extent of segregation on the hematite surface. This new ability to spatially map growth on single crystal faces at the atomic scale will enable resolution to long-standing unanswered questions about the underlying mechanisms for electron and atom exchange involved in a wide variety of redox-catalyzed processes at this archetypal and broadly relevant interface.« less
NASA Astrophysics Data System (ADS)
Li, Wei; Wang, Nan; Fu, Gui-qin; Chu, Man-sheng; Zhu, Miao-yong
2018-04-01
As part of a research project to develop a novel clean smelting process for the comprehensive utilization of Hongge vanadium titanomagnetite (HVTM), in this study, the effect of Cr2O3 addition on the oxidation induration mechanism of HVTM pellets (HVTMPs) was investigated in detail. The results showed that the compressive strength of the HVTMPs was greatly weakened by the Cr2O3 addition, mainly because of a substantial increase in the porosity of the HVTMPs. The Cr2O3 addition marginally affected the phase composition but greatly affected the microstructural changes of the HVTMPs. Increased amounts of Cr2O3 resulted in a decrease in the uniform distribution of the hematite grains and in an increase in the Fe-Cr solid solutions (Fe1.2Cr0.8O3 and Fe0.7Cr1.3O3) embedded in the hematite grains. Moreover, the compact hematite was destroyed by forming a dispersed structure and the hematite recrystallization was hindered during the oxidation induration, which adversely affected the compressive strength. On the basis of these results, a schematic was formulated to describe the oxidation induration mechanism with different amounts of added Cr2O3. This study provides theoretical and technical foundations for the effective production of HVTMPs and a reference for chromium-bearing minerals.
NASA Astrophysics Data System (ADS)
Mansour, Houda; Letifi, Hanen; Bargougui, Radhouane; De Almeida-Didry, Sonia; Negulescu, Beatrice; Autret-Lambert, Cécile; Gadri, Abdellatif; Ammar, Salah
2017-12-01
Hematite (α-Fe2O3) nanoparticles have been successfully synthesized via two methods: (1) polyol and (2) precipitation in water. The influence of synthesis methods on the crystalline structure, morphological, optical, magnetic and electrical properties were investigated using X-ray diffraction, RAMAN spectroscopy, scanning electron microscopy, transmission electron microscopy, UV-visible diffuse reflectance spectroscopy (UV-vis DRS), superconducting quantum interference device and impedance spectroscopy. The structural properties showed that the obtained hematite α-Fe2O3 nanoparticles with two preparation methods exhibit hexagonal phase with high crystallinity and high-phase stability at room temperature. It was found that the average hematite nanoparticle size is estimated to be 36.86 nm for the sample synthesized by precipitation and 54.14 nm for the sample synthesized by polyol. Moreover, the optical properties showed that the band gap energy value of α-Fe2O3 synthesized by precipitation (2.07 eV) was higher than that of α-Fe2O3 synthesized by polyol (1.97 eV) and they showed a red shift to the visible region. Furthermore, the measurements of magnetic properties indicated a magnetization loop typical of ferromagnetic systems at room temperature. Measurements of electrical properties show higher dielectric permittivity (5.64 × 103) and relaxation phenomenon for α-Fe2O3 issued from the precipitation method than the other sample.
NASA Technical Reports Server (NTRS)
Catling, David C.
2004-01-01
This project was to investigate models for aqueous sedimentation on early Mars from fluid evaporation. Results focused on three specific areas: (1) First, a fluid evaporation model incorporating iron minerals was developed to compute the evaporation of a likely solution on early Mars derived from the weathering of mafic rock. (2) Second, the fluid evaporation model was applied to salts within Martian meteorites, specifically salts in the nakhlites and ALH84001. Evaporation models were found to be consistent with the mineralogy of salt assemblages-anhydrite, gypsum, Fe-Mg-Ca carbonates, halite, clays-- and the concentric chemical fractionation of Ca-to Mg-rich carbonate rosettes in ALH84001. We made progress in further developing our models of fluid concentration by contributing to updating the FREZCHEM model. (3) Third, theoretical investigation was done to determine the thermodynamics and kinetics involved in the formation of gray, crystalline hematite. This mineral, of probable ancient aqueous origin, has been observed in several areas on the surface of Mars by the Thermal Emission Spectrometer on Mars Global Surveyor. The "Opportunity" Mars Exploration Rover has also detected gray hematite at its landing site in Meridiani Planum. We investigated how gray hematite can be formed via atmospheric oxidation, aqueous precipitation and subsequent diagenesis, or hydrothermal processes. We also studied the geomorphology of the Aram Chaos hematite region using Mars Orbiter Camera (MOC) images.
NASA Astrophysics Data System (ADS)
Camacho, K. I.; Pariona, N.; Martinez, A. I.; Baggio-Saitovitch, E.; Herrera-Trejo, M.; Perry, Dale L.
2017-05-01
The effect of cobalt dications on the transformation of 2-line ferrihydrite (2LF) has been studied. The products of the transformation reaction were characterized by X-ray diffraction, Mössbauer spectroscopy (MS), transmission electron microscopy (TEM), magnetometry, and first-order reversal curve (FORC) diagrams. It was found that the concentration of cobalt dications plays an important role on the structural and magnetic properties of the products; i.e., for low cobalt concentrations, cobalt-substituted hematite is formed, while higher concentrations promote the formation of cobalt-substituted magnetite. Structural results revealed that formation of other iron oxide polymorphs is avoided and residual 2LF is always present in the final products. In this way, hematite/2LF and magnetite/2LF nanocomposites were formed. For all the samples, magnetic measurements yielded non-saturated hysteresis loops at a maximum field of 12 kOe. For cobalt-substituted hematite/2LF samples, FORC diagrams revealed the presence of multiple single-domain (SD) components which generate interaction coupling between SD with low and high coercivity. Moreover, for cobalt-substituted magnetite/2LF samples, the FORC diagrams revealed the components of wasp-waist hysteresis loops which consist of mixtures of SD and superparamagnetic particles. One of the goals of the present study is the rigorous, experimental documentation of ferrihydrite/hematite mixtures as a function of reaction conditions for use as analytical standards research.
NASA Astrophysics Data System (ADS)
Chen, Hongsheng; Zheng, Zhong; Chen, Zhiwei; Yu, Wenzhou; Yue, Junrong
2017-04-01
The reduction kinetics of Brazilian hematite by CO is investigated in a Micro Fluidized Bed Reaction Analyzer (MFBRA) using an analyzing method based on Johnson-Mehl-Avrami (JMA) model at temperatures of 973 K (700 °C), 1023 K (750 °C), 1073 K (800 °C), and 1123 K (850 °C). The solid products at different reduction stages are evaluated by SEM/EDS and XRD technologies. Results indicate that the reduction process is better to be discussed in terms of a parallel reaction model that consists of the reactions of hematite to wüstite and wüstite to iron, rather than a stepwise route. Meanwhile, the controlling mechanism of the reduction process is found to vary with temperature and the degree of conversion. The overall process is controlled by the gas-solid reaction occurring at the iron/wüstite interface in the initial stages, and then is limited by the nucleation of wüstite, and finally shifts to diffusion control. Moreover, the reactions of hematite to wüstite and wüstite to iron take place simultaneously but with different time dependences, and the apparent activation energies of hematite to wüstite and wüstite to iron are determined as 83.61 and 80.40 KJ/mol, respectively.
NASA Astrophysics Data System (ADS)
Lassoued, Abdelmajid; Lassoued, Mohamed Saber; Dkhil, Brahim; Gadri, Abdellatif; Ammar, Salah
2017-11-01
Pure and copper (Cu concentration varying from 2 to 8%) doped hematite (α-Fe2O3) nanocrystals were synthesized through co-precipitation method using simple equipment. X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FT-IR), Raman spectroscopy, Differential Thermal Analysis (DTA), Thermo Gravimetric Analysis (TGA) and Ultraviolet-Visible (UV-Vis) techniques were used to characterize the synthesized samples. XRD measurements confirm that all the prepared nanocrystals consist only in nanocrystalline hematite phase. These results along with TEM and SEM show that the size of the nanoparticles decreases with Cu-doping down to 21 nm. FT-IR confirm the phase purity of the nanoparticles synthesized. The Raman spectroscopy was used not only to prove that we synthesized pure and Cu-doped hematite but also to identify their phonon modes. The TGA showed three mass losses, whereas DTA resulted in three endothermic peaks. The UV-Vis absorption measurements confirm that the decrease of particle size is accompanied by a decrease in the band gap value from 2.12 eV for pure α-Fe2O3 down to 1.91 eV for 8% Cu-doped α-Fe2O3. 8% Cu-doped hematite had the smallest size, the best crystallinity and the lowest band gap.
Lewis, James M T; Najorka, Jens; Watson, Jonathan S; Sephton, Mark A
2018-04-01
Jarosite on Mars is of significant geological and astrobiological interest, as it forms in acidic aqueous conditions that are potentially habitable for acidophilic organisms. Jarosite can provide environmental context and may host organic matter. The most common extraction technique used to search for organic compounds on the surface of Mars is pyrolysis. However, thermal decomposition of jarosite releases oxygen into pyrolysis ovens, which degrades organic signals. Jarosite has a close association with the iron oxyhydroxide goethite in many depositional/diagenetic environments. Hematite can form by dehydration of goethite or directly from jarosite under certain aqueous conditions. Goethite and hematite are significantly more amenable than jarosite for pyrolysis experiments employed to search for organic matter. Analysis of the mineralogy and organic chemistry of samples from a natural acidic stream revealed a diverse response for organic compounds during pyrolysis of goethite-rich layers but a poor response for jarosite-rich or mixed jarosite-goethite samples. Goethite units that are associated with jarosite, but do not contain jarosite themselves, should be targeted for organic detection pyrolysis experiments on Mars. These findings are extremely timely, as exploration targets for Mars Science Laboratory include Vera Rubin Ridge (formerly known as "Hematite Ridge"), which may have formed from goethite precursors. Key Words: Mars-Pyrolysis-Jarosite-Goethite-Hematite-Biosignatures. Astrobiology 18, 454-464.
NASA Astrophysics Data System (ADS)
Pieczara, Gabriela; Borkiewicz, Olaf; Manecki, Maciej
2017-04-01
Rodolicoite FePO4 and grattarolaite Fe3PO7, naturally occurring anhydrous iron(III) phosphates have been identified in coal samples derived from Santa Barbara lignite mine, as final products of the progressive thermal conversion and oxidation of vivianite Fe32+(PO4)2•8H2O to amorphous phase [1]. In natural environment however, the conversion steps of amorphous phase into these nanominerals are extremely difficult to identify. We propose to fill this gap by utilizing the nanoparticles of synthetic P-doped ferrihydrite Fe5HO8•4H2O as a source of amorphous hydrated iron(III) phosphate. This phase, at certain conditions, undergoes thermal conversion to rodolicoite and grattarolaite. Synthetic anhydrous iron(III) phosphate analogs of berlinite AlPO4 and α- quartz, particularly rodolicoite, receive a lot of attention in mineral sciences partly because of their geologic importance and partly because of their prospective applications as raw material for lithium iron phosphate batteries LiFePO4[2]. In this case, potential presence of impurities and intermediates during thermal synthesis or oxidation steps of rodolicoite is inexpedient. Thus, the main goal of this research was to characterize the products of thermal transformation of P-doped ferrihydrite. Ferrihydrite synthesized in the presence of phosphate PO43- was used. P-ferrihydrites were synthesized by precipitation from aqueous solutions of Fe2(SO4)3 and K2HPO4 at pH 8.2. The thermal transformation experiments were carried out using ferrihydrites with various P/Fe ratios (0.00, 0.20, 0.50 and 1.00) at various heating temperatures. All samples were characterized by XRD, FTIR, SEM and differential thermal analysis prior and after the experiments. The results indicate that the presence of phosphate not only stabilizes the structure of ferrihydrite but also controls its thermal transformation to hematite α-Fe2O3 in more complex manner. Pure ferrihydrite transforms immediately to hematite at the temperature below 500˚ C. When ferrihydrite with P/Fe=0.20 and P/Fe=0.50 was annealed, the presence of tetragonal maghemite γ-Fe2O3 was detected between 650 and 700˚ C, followed by formation of hematite α-Fe2O3 at higher temperatures. Hematite is accompanied with small amounts of trigonal rodolicoite FePO4 which forms between 800 and 900˚ C. This intermediate phase is not very stable and completely vanishes in the sample of P/Fe=0.20 at temperatures above 900˚ C (transforms into hematite). In contrast, a further increase in temperature of the sample of P/Fe=0.50 causes formation of hematite associated with grattarolaite Fe3PO7. Thermal transformation of ferrihydrite containing the highest-P ratio (P/Fe=1.00) results in the formation of rodolicoite and hematite at 700˚ C, grattarolaite at 800˚ C, and a mixture of two anhydrous phosphates with hematite around 1000˚ C. This project is financed by AGH research grant no. 15.11.140.831 and partly by the Polish National Science Centre under the research project awarded by the decision no. 2015/19/N/ST10/01516. References: [1] Cipriani C, Mellini M, Pratesi G, Viti C (1997) EJM. 9, pp. 1101-1106. [2] Zhu Y, Tang S, Shi H, Hu H (2014) Ceram. Int. 40, pp. 2685-2690.
Shapiro, R S; Konhauser, K O
2015-05-01
Microfossils belonging to the 1.88-billion-year-old 'Gunflint-biota' are preserved as carbonaceous and hematitic filaments and spheres that are believed to represent ancient chemolithoautotrophic Fe(II) oxidizing bacteria that grew above a chemocline where ferruginous seawater upwelled into shallow, oxygenated waters. This 'biological' model posits that hematite formed during burial from dewatering of the precursor ferric oxyhydroxides that encrusted Fe(II)-oxidizing bacteria. Here, we present an alternate 'taphonomic' model in which iron-rich groundwaters discharged into buried stromatolites; thus, the mineralization reactions are more informative of diagenetic processes than they are for primary marine conditions. We sampled centimeter-scale columnar stromatolites from both the lower and upper stromatolite horizons of the Biwabik and Gunflint formations, across a range of metamorphic gradients including unaltered to prehnite-pumpellyite taconite, supergene altered ore, and amphibolite-pyroxene grade contact-metamorphic zones. Fossils are rare to very rare and comprise curved filaments that exist in clusters with similar orientations. The filaments from throughout the Biwabik are similar to well-preserved carbonaceous Gunflintia from Ontario. Spheres of Huroniospora are also found in both formations. Microfossils from the least altered sections are preserved as carbon. Prehnite-pumpellyite samples are composed of either carbon or hematite (Fe2 O3 ). Within the contact aureole, filaments are densely coated by magnetite (Fe3 O4 ); the highest grade samples are secondarily oxidized to martite. The consistency in stromatolite microstructure and lithofacies throughout the metamorphic grades suggests they formed under similar environmental conditions. Post-depositional alteration led to replacement of the carbon by iron oxide. The facies association, filament distribution, and lack of branching and attached spherical cells argue against Gunflintia being a direct analogue to common marine, chemolithoautotrophic Fe(II)-oxidizing bacteria. Instead, we propose that the presence of hematite-coated microfossils is a reflection of taphonomic processes and does not necessarily reflect the byproduct of an original microbial ecosystem. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wang, S.; Wasylenki, L.
2016-12-01
Ni isotope systematics in banded iron formations (BIFs) potentially recorded the Ni isotopic composition of ancient seawater during the Precambrian Eon[1]. The use of BIFs as seawater proxies requires knowing how Ni isotopes fractionated during initial incorporation into iron-rich sediments and during early diagenesis. We conducted experiments to investigate Ni isotope behavior during coprecipitation with ferrihydrite and transformation of ferrihydrite to hematite. Ferrihydrite synthesis at neutral pH demonstrated that dissolved Ni was variably heavier than coprecipitated Ni (Δ60/58Ni = +0.08 to +0.50 ‰), in contrast to the constant offset observed earlier during adsorption to pre-existing ferrihydrite[2]. Experiments at lower pH (<7) yielded negative values of Δ60/58Ni ( -0.18 ‰), suggesting enrichment in heavier isotopes of structurally incorporated Ni relative to dissolved and adsorbed Ni, possibly due to the presence of a small amount of highly fractionated tetrahedral Ni2+ in the ferrihydrite structure. We model our results as equilibrium fractionation among three pools of Ni with systematically varied proportions. We synthesized hematite by transforming Ni-bearing ferrihydrite in aqueous solution at 100 °C and observed significant Ni release from solids (up to 60 %) as pH dropped from 7 to 4.5 - 5.5 during phase transformation. Rinsing hematite with acetic acid released very little Ni (presumably surface-adsorbed) compared to the amounts remaining in solid residues (presumably incorporated). We infer that Δ60/58Ni values (-0.04 to +0.77 ‰) observed in hematite experiments likely reflect Rayleigh fractionation between incorporated and dissolved Ni. The final hematite was slightly lighter than the ferrihydrite had been (by 0.08 ‰), indicating that this phase transformation results in very limited change in Ni isotopic composition, given current analytical uncertainty of ± 0.09 ‰. [1] Wasylenki and Wang (2016) Goldschmidt; [2] Wasylenki et al. (2015) ChemGeol.
Iron Oxide Minerals in Dust: New Insights from Magnetism, Spectroscopy, and Microscopy
NASA Astrophysics Data System (ADS)
Reynolds, R. L.; Moskowitz, B. M.; Goldstein, H. L.; Cattle, S.; Bristow, C. S.; Berquo, T. S.; Kokaly, R. F.
2016-12-01
Although iron oxide minerals typically compose only a few weight percent of bulk atmospheric dust, they exert important effects on weather, climate, melting of snow and ice, and ocean fertilization. Moreover, the partition between hematite and goethite is important to know to improve models for radiative effects of ferric oxide minerals. The combination of magnetic property measurements, Mössbauer spectroscopy, reflectance spectroscopy, chemical analysis, and scanning electron microscopy at 9-nm resolution reveals types, sizes, abundances, and occurrences of iron oxide minerals in samples from the 2009 "Red Dawn" dust storm (Australia), the Bodélé Depression (Chad), and dust and dust-source sediments in the American West. In each case, discrete nano-phase and microcrystalline iron oxides, hematite and (or) goethite were identified on and within clay coatings on composite dust particles. "Red Dawn" dust samples across eastern Australia each contained hematite, goethite, and magnetite. Goethite and hematite composed approximately 25-45% of the Fe-bearing phases as indicated by Mössbauer spectroscopy at 300K and 4.2K. Magnetite concentrations (as much as 0.29 wt %) were much higher in eastern, urban sites than in remote western sites (0.01 wt %), suggesting local addition of magnetite from urban sources. In samples from the Bodélé Depression, dominant goethite and subordinate hematite composed about 2% of yellow-reddish dust-source sediments. Magnetite was ubiquitous (0.002-0.57 wt %). The average iron apportionment was 32% in ferric oxide minerals, 1.4 % in magnetite, and 65% in ferric silicates. In all cases, high abundance of ferric oxides correlated with low reflectance, indicating their capacity to absorb solar radiation. Moreover, the high surface-to-volume ratios of ferric oxide nanoparticles may facilitate atmospheric processing and affect iron solubility and bioavailability in marine ecosystems and in human lungs.
NASA Astrophysics Data System (ADS)
Mitchell, A. C.; Geesey, G. G.
2006-12-01
Current understanding of bacterial respiration by dissimilatory iron (Fe) reduction is based primarily on studies of closed systems using soluble Fe(III). However, natural environments likely to support Fe reduction are typically open systems and contain Fe(III) primarily in the form of crystalline (hydr)oxides. Mechanisms by which electrons are transported between bacteria and mineral terminal electron acceptors (TEAs) under open system conditions are still poorly understood. However, a number of cytochromes have been identified as potentially playing a critical role in the electron transport system of some Fe reducing bacteria. Experiments were performed using (i) omcA, (ii) mtrC, or (iii) omcA and mtrC cytochrome deficient mutants of the Fe-reducing bacteria, Shewanella oneidensis MR-1, in transparent-window flow- reactors containing hematite as the only TEA. These were operated under defined hydrodynamic and anaerobic conditions. Cells expressed green fluorescent protein (gfp), allowing real time measurement of cells at the mineral surface by epifluorescence microscopy. Cytochromes which play a critical role in the anaerobic growth of S. Oneidensis by Fe reduction under open system natural-flow conditions could then be identified. Differences in the accumulation, maximum density, detachment and total production of surface-associated cells growing on hematite surfaces were apparent between the mutants, and between the mutants and the wild-type. Mutants deficient in cytochromes grew to a lower max density by up to 2 orders of magnitude than the wild-type, and exhibited no reduced Fe in the reactor effluent or at the surface of the hematite at the conclusion of the experiment, as revealed by X-Ray photoelectron spectroscopy (XPS). Therefore omcA and / or mtrC cytochromes appear critical for electron shuttling and anaerobic growth of S. Oneidensis on hematite under natural-flow conditions.
A Wind Dependent Desert Aerosol Model: Radiative Properties
1988-04-19
Source Regions and Transport Characteristics 5 2.2 Size Distributions 6 2.3 Composition 8 2.4 Effects of Wind 10 2.5 Indices of Refraction 12 2.5.1 An...Hematite Concentrations of 0, 5, and 10 %, (a) O-Ray and (b) E-Ray 44 8 . Imaginary Part of the Index of Refraction for Sand Having Hematite...rarbonaceous Material 31 8 . Indices of Refraction "or Ammonium Sulfate 32 9. Indices of Refraction for the 0-Ray of Quartz 35 10 . Indices of Refraction for the
Origin of Lamellar Magnetism (Invited)
NASA Astrophysics Data System (ADS)
McEnroe, S. A.; Robinson, P.; Fabian, K.; Harrison, R. J.
2010-12-01
The theory of lamellar magnetism arose through search for the origin of the strong and extremely stable remanent magnetization (MDF>100 mT) recorded in igneous and metamorphic rocks containing ilmenite with exsolution lamellae of hematite, or hematite with exsolution lamellae of ilmenite. Properties of rocks producing major remanent magnetic anomalies could not be explained by PM ilmenite or CAF hematite alone. Monte Carlo modeling of chemical and magnetic interactions in such intergrowths at high temperature indicated the presence of "contact layers" one cation layer thick at (001) interfaces of the two phases. Contact layers, with chemical composition different from layers in the adjacent phases, provide partial relief of ionic charge imbalance at interfaces, and can be common, not only in magnetic minerals. In rhombohedral Fe-Ti oxides, magnetic moments of 2 Fe2+Fe3+ contact layers (2 x 4.5µB) on both sides of a lamella, are balanced by the unbalanced magnetic moment of 1 Fe3+ hematite layer (1 x 5µB), to produce a net uncompensated ferrimagnetic "lamellar moment" of 4µB. Bulk lamellar moment is not proportional to the amount of magnetic oxide, but to the quantity of magnetically "in-phase" lamellar interfaces, with greater abundance and smaller thickness of lamellae, extending down to 1-2 nm. The proportion of "magnetically in-phase" lamellae relates to the orientation of (001) interfaces to the magnetizing field during exsolution, hence highest in samples with a strong lattice-preferred orientation of (001) parallel to the field during exsolution. The nature of contact layers, ~0.23 nm thick, with Fe2+Fe3+ charge ordering postulated by the Monte Carlo models, was confirmed by bond-valence and DFT calculations, and, their presence confirmed by Mössbauer measurements. Hysteresis experiments on hematite with nanoscale ilmenite at temperatures below 57 K, where ilmenite becomes AF, demonstrate magnetic exchange bias produced by strong coupling across phase interfaces. Interface coupling, with nominal magnetic moments perpendicular and parallel to (001), is facilitated by magnetic moments in hematite near interfaces that are a few degrees out of the (001) plane, proved by neutron diffraction experiments. When a ~b.y.-old sample, with a highly stable NRM, is ZF cooled below 57 K, it shows bimodal exchange bias, indicating the presence of two lamellar populations that are magnetically "out-of-phase", and incidentally proving the existence of lamellar magnetism. Lamellar magnetism may enhance the strength and stability of remanence in samples with magnetite or maghemite lamellae in pure hematite, or magnetite lamellae in ilmenite, where coarse magnetite or maghemite alone would be multi-domain. Here the "contact layers" should be a complex hybrid of 2/3-filled rhombohedral layers parallel to (001) and 3/4-filled cubic octahedral layers parallel to (111), with a common octahedral orientation confirmed by TEM observations. Here, because of different layer populations, the calculated lamellar moment may be higher than in the purely rhombohedral example.
NASA Astrophysics Data System (ADS)
Dalstra, Hilke J.
2014-10-01
The discovery of two relatively small but high-grade iron ore deposits near Mt Wall, an intensely faulted part of the southwestern Hamersley province provides unique insights into the structural control on ore formation in this region. The deposits have many geological features typical of the high grade microplaty hematite group which also contains the much larger Mt Tom Price, Paraburdoo and Mt Whaleback deposits. The deposits are structurally controlled along early normal faults and contain abundant microplaty hematite and martite, and are largely confined to the Dales Gorge member of the Brockman Iron Formation. In addition to the microplaty hematite-martite ore, there are martite-goethite ores and rare magnetite-goethite or magnetite-hematite ores. Below the modern weathering surface, hydrothermally altered zones in wallrock BIF from the Lower Dales Gorge member contain magnetite, hematite and carbonate/talc bearing mineral assemblages. A staged ore genesis model involving early extension and fluid circulation along normal faults, hypogene silica leaching and carbonate alteration, followed by deep meteoric oxidation with microplaty hematite formation and finally weathering can explain most features of the Mt Wall deposits. The role of deformation was to provide pathways for mineralising fluids and initiate the seed points for the mineralised systems. High grade iron in the Wellthandalthaluna deposit is situated between the NW to NNW trending Boolgeeda Creek fault and a synthetic joining splay, the Northern fault. Both are high angle normal faults and formed during early extension in this part of the province. Faults are characterised by localised small scale deformation and brecciation, deep carbonate alteration and oxidation. Recent weathering has penetrated deeply into the fault zones, converting the carbonate-rich assemblages into goethite. Mineralisation in the Arochar deposit is situated in the overlap or relay zone between two segments of the Mt Wall fault zone, a moderately to steeply southerly dipping normal fault system which at Arochar is intruded by dolerite dykes. At both locations, the ore controlling faults are offset by later NW trending dextral and normal faults. Fault relay zones or fault splay zones were likely zones of increased permeability and fluid flow during fault development or reactivation and may also have been important in initiating mineralisation in larger deposits such as Mt Tom Price and Mt Whaleback. However structural controls on the largest iron ore deposits are often obscured due to the intensity and scale of ore development, whereas they are better preserved in the smaller deposits. Recognition that carbonate bearing protores at Mt Wall survived for nearly two billion years until intense recent weathering converted them to martite-goethite or magnetite-goethite ores may imply that more of the giant hematite-goethite deposits of the Hamersley province had hydrothermal precursors and were not formed by supergene processes alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yuanyuan; Liu, Chongxuan; Zhang, Changyong
2015-08-01
A micromodel system with a pore structure for heterogeneous flow and transport was used to investigate the effect of subgrid transport heterogeneity on redox reaction rates. Hematite reductive dissolution by injecting a reduced form of flavin mononucleotide (FMNH2) at variable flow rates was used as an example to probe the variations of redox reaction rates in different subgrid transport domains. Experiments, pore-scale simulations, and macroscopic modeling were performed to measure and simulate in-situ hematite reduction and to evaluate the scaling behavior of the redox reaction rates from the pore to macroscopic scales. The results indicated that the measured pore-scale ratesmore » of hematite reduction were consistent with the predictions from a pore scale reactive transport model. A general trend is that hematite reduction followed reductant transport pathways, starting from the advection-dominated pores toward the interior of diffusion-dominated domains. Two types of diffusion domains were considered in the micromodel: a micropore diffusion domain, which locates inside solid grains or aggregates where reactant transport is limited by diffusion; and a macropore diffusion domain, which locates at wedged, dead-end pore spaces created by the grain-grain contacts. The rate of hematite reduction in the advection-dominated domain was faster than those in the diffusion-controlled domains, and the rate in the macropore diffusion domain was faster than that in the micropore domain. The reduction rates in the advection and macropore diffusion domains increased with increasing flow rate, but were affected by different mechanisms. The rate increase in the advection domain was controlled by the mass action effect as a faster flow supplied more reactants, and the rate increase in the macropore domain was more affected by the rate of mass exchange with the advection domain, which increased with increasing flow rate. The hematite reduction rate in the micropore domain was, however, not affected by the flow rate because molecular diffusion limits reductant supply to the micropore domain interior. Domain-based macroscopic models were evaluated to scale redox reaction rates from the pore to macroscopic scales. A single domain model, which ignores subgrid transport heterogeneity deviated significantly from the pore-scale results. Further analysis revealed that the rate expression for hematite reduction was not scalable from the pore to porous media using the single domain model. A three-domain model, which effectively considers subgrid reactive diffusion in the micropore and macropore domains, significantly improved model description. Overall this study revealed the importance of subgrid transport heterogeneity in the manifestation of redox reaction rates in porous media and in scaling reactions from the pore to porous media. The research also supported that the domain-based scaling approach can be used to directly scale redox reactions in porous media with subgrid transport heterogeneity.« less
Mineralogy at Meridiani Planum from the Mini-TES experiment on the opportunity rover
Christensen, P.R.; Wyatt, M.B.; Glotch, T.D.; Rogers, A.D.; Anwar, S.; Arvidson, R. E.; Bandfield, J.L.; Blaney, D.L.; Budney, C.; Calvin, W.M.; Fallacaro, A.; Fergason, R.L.; Gorelick, N.; Graff, T.G.; Hamilton, V.E.; Hayes, A.G.; Johnson, J. R.; Knudson, A.T.; McSween, H.Y.; Mehall, G.L.; Mehall, L.K.; Moersch, J.E.; Morris, R.V.; Smith, M.D.; Squyres, S. W.; Ruff, S.W.; Wolff, M.J.
2004-01-01
The Miniature Thermal Emission Spectrometer (Mini-TES) on Opportunity investigated the mineral abundances and compositions of outcrops, rocks, and soils at Meridiani Planum. Coarse crystalline hematite and olivine-rich basaltic sands were observed as predicted from orbital TES spectroscopy. Outcrops of aqueous origin are composed of 15 to 35% by volume magnesium and calcium sulfates [a high-silica component modeled as a combination of glass, feldspar, and sheet silicates (???20 to 30%)], and hematite; only minor jarosite is identified in Mini-TES spectra. Mini-TES spectra show only a hematite signature in the millimeter-sized spherules. Basaltic materials have more plagioclase than pyroxene, contain olivine, and are similar in inferred mineral composition to basalt mapped from orbit. Bounce rock is dominated by clinopyroxene and is close in inferred mineral composition to the basaltic martian meteorites. Bright wind streak material matches global dust. Waterlain rocks covered by unaltered basaltic sands suggest a change from an aqueous environment to one dominated by physical weathering.
NASA Astrophysics Data System (ADS)
Mishchenko, I.; Chuev, M.; Kubrin, S.; Lastovina, T.; Polyakov, V.; Soldatov, A.
2018-05-01
Alternative explanation to the effect of disappearance of the Morin transition on hematite nanoparticles with their size decreasing is proposed basing on an idea of the predominant role of the shape anisotropy for nanosize particles. Three types of the magnetic structure of hematite nanoparticles with various sizes are found by Mössbauer spectroscopy: coexistence of the well-pronounced antiferromagnetic and weakly ferromagnetic phases for particles with average diameters of about 55 nm, non-uniform distribution of the magnetization axes which concentrate on the vicinity of the basal plane (111) for prolonged particles with cross sections of about 20 nm, and uniform distribution of the easy axes in regard to the crystalline directions for 3-nm particles. Description of the temperature evolution of experimental data within novel model of the magnetic dynamics for antiferromagnetic particles which accounts the exchange, relativistic, and anisotropy interactions is provided, and the structural as well as energy characteristics of the studied systems are reconstructed.
NASA Astrophysics Data System (ADS)
Lian, Xiaojuan; Yang, Xin; Liu, Shangjun; Xu, Ying; Jiang, Chunping; Chen, Jinwei; Wang, Ruilin
2012-01-01
Ti-doped α-Fe2O3 thin films were successfully prepared on FTO substrates by the sol-gel route. Hematite film was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). The XRD data showed α-Fe2O3 had a preferred (1 1 0) orientation which belonged to the rhombohedral system. Interestingly, the grains turned into worm-like shape after annealed at high temperature. The IPCE could reach 32.6% at 400 nm without any additional potential vs. SCE. Titanium in the lattice can affect the photo electro chemical performance positively by increasing the conductivity of the thin film. So the excited electrons and holes could live longer, rather than recombining with each other rapidly as undoped hematite. And the efficient carrier density on the Ti-doped anode surface was higher than the undoped anode, which contribute to the well PEC performance.
Remote Detection and Mapping of Supergene Iron Oxides in the Cripple Creek Mining District, Colorado
NASA Technical Reports Server (NTRS)
Taranik, D. L.; Kruse, F. A.; Goetz, A. F. H.; Atkinson, W. W.
1990-01-01
The Geophysical and Environmental Research Imaging Spectrometer (GERIS) was flown over the Cripple Creek mining district in south-central Colorado to improve the geological understanding of the district. As part of the study, an airborne mapping technique was developed for the discrimination of the ferric iron minerals hematite, goethite, and jarosite, minerals often important indicators of the distribution of economic mineralization. A software technique was developed which uses the binary encoding of spectral slopes to identify the mineral hematite from the group goethite/jarosite. Mixtures of hematite and goethite can also be detected with GERIS data. The study included district-wide field mapping and spectral measurements to evaluate the accuracy of the image classifications. The ARC/INFO geographic information system (GIS) was a useful tool which allowed quantitative comparison of the field mapping and GERIS image data sets. The study results demonstrate the ability to discriminate individual iron minerals using imaging spectroscopy, and the development of a rapid mapping technique useful in the reconnaissance stage of minerals exploration.
Copahue Volcano: A Modern Terrestrial Analog for the Opportunity Landing Site?
NASA Astrophysics Data System (ADS)
Varekamp, Johan C.
2004-10-01
The Opportunity Rover on Mars encountered an environment that contained grey hematite (specularite) and jarosite, with structures indicative of flowing water. Less firm evidence suggests the presence of gypsum as well, and the environment is overall rich in S, Cl, and Br (NASA news releases, 2004). Such a suite of minerals may form from an iron- and sulfate-rich brine, either through evaporation, cooling or changes in redox conditions (see Hynek et al. [2002] and Christensen et al. [2001], for a discussion of the extent and possible origins of the Mars hematite deposits). On Earth, such an association of minerals is not very common, but is found in alteration zones with fumarolic activity in some volcanic craters. The condensation or dissolution in meteoric waters of S-rich volcanic gases creates acid fluids in the surficial environment that leach rock-forming elements (RFEs) from the surrounding rocks, forming large, bleached areas of mineralizations of hematite, cristobalite, and gypsum, occasionally with zones rich in alunite or jarosite.
Reufer, Mathias; Dietsch, Hervé; Gasser, Urs; Hirt, Ann; Menzel, Andreas; Schurtenberger, Peter
2010-04-15
Form factor and magnetic properties of silica-coated spindle-type hematite nanoparticles are determined from SAXS measurements with applied magnetic field and magnetometry measurements. The particle size, polydispersity and porosity are determined using a core-shell model for the form factor. The particles are found to align with their long axis perpendicular to the applied field. The orientational order is determined from the SAXS data and compared to the orientational order obtained from magnetometry. The direct access to both, the orientational order of the particles, and the magnetic moments allow one to determine the magnetic properties of the individual spindle-type hematite particles. We study the influence of the silica coating on the magnetic properties and find a fundamentally different behavior of silica-coated particles. The silica coating reduces the effective magnetic moment of the particles. This effect is enhanced with field strength and can be explained by superparamagnetic relaxation in the highly porous particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Susana; Liu, Q.; Bacon, Diana H.
2014-08-26
Hematite deposit that is the main FeIII-bearing mineral in sedimentary red beds was proposed as a potential host repository for converting CO2 into carbonate minerals such as siderite (FeCO3), when CO2–SO2 gas mixtures are co-injected. This work investigated CO2 mineral trapping using hematite and sensitivity of the reactive systems to different parameters, including particle size, gas composition, temperature, pressure, and solid-to-liquid ratio. Experimental and modelling studies of hydrothermal experiments were conducted, which emulated a CO2 sequestration scenario by injecting CO2-SO2 gas streams into a NaCl-NaOH brine hosted in iron oxide-containing aquifer. This study provides novel information on the mineralogical changesmore » and fluid chemistry derived from the co-injection of CO2-SO2 gas mixtures in hematite deposit. It can be concluded that the amount of siderite precipitate depends primarily on the SO2 content of the gas stream. Increasing SO2 content in the system could promote the reduction of Fe3+ from the hematite sample to Fe2+, which will be further available for its precipitation as siderite. Moreover, siderite precipitation is enhanced at low temperatures and high pressures. The influence of the solid to liquid ratio on the overall carbonation reaction suggests that the conversion increases if the system becomes more diluted.« less
Chernyshova, I V; Ponnurangam, S; Somasundaran, P
2010-11-14
Application of in situ UV-Vis absorption spectroscopy and ex situ X-ray photoelectron spectroscopy (XPS) makes it possible to resolve the controversies about the electronic properties of hematite (α-Fe(2)O(3)) nanoparticles (NPs) and, on this basis, to rationalize the unusual dependence of aquatic (bio)chemistry of these NPs on NP size. 2-Line ferrihydrite (FH) is also included in the study as the end polymorph of the size-driven phase transformation of hematite NPs in aqueous media. It is shown that the absorption edge of all NPs studied is due to the direct O 2p-Fe 3d charge transfer (CT) process, while a manifold of weak bands superimposed onto two main p-d CT bands is attributed to the d-d ligand field transitions. The band gap decreases from 2.95 to 2.18 eV with increasing NP size from 7 nm to 120 nm. This effect is attributed to restoration of hematite lattice structure, which ultimately results in an increase in the O 2p-Fe 3d hybridization, stabilization of the valence band, and delocalization of valence electrons, as confirmed by XPS. Finally, we show that the optical effects such as the Mie resonance significantly distort absorption spectra of hematite NPs larger than ∼120 nm. Possible impacts of these findings on (photo)catalytic and biochemical properties of ferric (hydr)oxide NPs are discussed.
Controls on Fe(II)-Activated Trace Element Release from Goethite and Hematite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frierdich, Andrew J.; Catalano, Jeffrey G.
2012-03-26
Electron transfer and atom exchange (ETAE) between aqueous Fe(II) and Fe(III) oxides induces surface growth and dissolution that affects trace element fate and transport. We have recently demonstrated Ni(II) cycling through goethite and hematite (adsorbed Ni incorporates into the mineral structure and preincorporated Ni releases to solution) during Fe(II)-Fe(III) ETAE. However, the chemical parameters affecting net trace element release remain unknown. Here, we examine the chemical controls on Ni(II) and Zn(II) release from Ni- and Zn-substituted goethite and hematite during reaction with Fe(II). Release follows a rate law consistent with surface reaction limited mineral dissolution and suggests that release occursmore » near sites of Fe(III) reductive dissolution during Fe(II)-Fe(III) ETAE. Metal substituent type affects reactivity; Zn release is more pronounced from hematite than goethite, whereas the opposite trend occurs for Ni. Buildup of Ni or Zn in solution inhibits further release but this resumes upon fluid exchange, suggesting that sustained release is possible under flow conditions. Mineral and aqueous Fe(II) concentrations as well as pH strongly affect sorbed Fe(II) concentrations, which directly control the reaction rates and final metal concentrations. Our results demonstrate that structurally incorporated trace elements are mobilized from iron oxides into fluids without abiotic or microbial net iron reduction. Such release may affect micronutrient availability, contaminant transport, and the distribution of redox-inactive trace elements in natural and engineered systems.« less
Spectroscopic evidence for ternary surface complexes in the lead(II)-malonic acid-hematite system
Lenhart, J.J.; Bargar, J.R.; Davis, J.A.
2001-01-01
Using extended X-ray absorption fine structure (EXAFS) and attenuated total reflectance Fourier-transform infrared (ATR-FTIR) measurements, we examined the sorption of Pb(II) to hematite in the presence of malonic acid. Pb LIII-edge EXAFS measurements performed in the presence of malonate indicate the presence of both Fe and C neighbors, suggesting that a major fraction of surface-bound malonate is bonded to adsorbed Pb(II). In the absence of Pb(II), ATR-FTIR measurements of sorbed malonate suggest the formation of more than one malonate surface complex. The dissimilarity of the IR spectrum of malonate sorbed on hematite to those for aqueous malonate suggest at least one of the sorbed malonate species is directly coordinated to surface Fe atoms in an inner-sphere mode. In the presence of Pb, little change is seen in the IR spectrum for sorbed malonate, indicating that geometry of malonate as it coordinates to sorbed Pb(II) adions is similar to the geometry of malonate as it coordinates to Fe in the hematite surface. Fits of the raw EXAFS spectra collected from pH 4 to pH 8 result in average Pb-C distances of 2.98 to 3.14 A??, suggesting the presence of both four- and six-membered Pb-malonate rings. The IR results are consistent with this interpretation. Thus, our results suggest that malonate binds to sorbed Pb(II) adions, forming ternary metal-bridging surface complexes. ?? 2001 Academic Press.
NASA Technical Reports Server (NTRS)
Adams, M. E.
2014-01-01
Hyperspectral data detected by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board Mars Reconnaissance Orbiter (MRO) indicated the presence of a hematite bearing ridge on Mount Sharp situated in the Gale Crater, Mars. [Fraeman]. The presence of this mineral in high concentrations is indicative of possible aqueous origins. [Fraeman] In 2012, Curiosity Rover landed in Gale Crater on Mars. Curiosity's mission is to determine Mars' habitability and is equipped with an advanced suite of scientific instruments that are capable of conducting analyses on rocks and soil. The hematite bearing ridge on Mount Sharp is thought to be a good candidate of study for Curiosity. To better understand this type of terrain, the study of analog sites similar in geologic setting is of great importance. One site thought to be a comparable analog is a cinder cone called Pu'u Poli'ahu located on the summit of Mauna Kea, Hawai?i. Poli'ahu is unique among the tephra cones of Mauna Kea because it is thought to have formed in subaqueous conditions approximately 170,000 to 175,000 years ago. [Porter] Consequently located on the inner flanks of Poli'ahu is a rock outcrop that contains hematite. Samples were collected from the outcrop and characterized using the following instruments: Digital Microscope, Panalytical X-ray diffraction (XRD), and scanning electron microscope (SEM). The initial preparation of the rocks involved documenting each sample by creating powdered samples, thick sections, and photo documentation.
NASA Astrophysics Data System (ADS)
Adetoro, Ajala Adewole; Sun, Haoyan; He, Shengyi; Zhu, Qingshan; Li, Hongzhong
2018-04-01
With respect to high efficient utilization of low-grade iron ore resource, the behavior of low-temperature "973 K to 1123 K (700 °C to 850 °C)" oxidation, on the phase transition of SA TTM ore (South African titanomagnetite), and its effect on subsequent reduction was investigated. The results showed that hematite and rutile are the oxidation product below 1048 K (775 °C), while pseudobrookite is the stable phase above 1073 K (800 °C). With the increase in temperature and oxidation time, there is a competitive relationship between the amount of hematite and pseudobrookite generated. The reduction efficiency of SA TTM was significantly improved by oxidation pretreatment, primarily due to the dissociation of titania-ferrous oxides to more easily reducible hematite. But the generation of pseudobrookite phase decreases the amount of free hematite available for reduction, which weakens the improvement effect of pre-oxidation. The equilibrium relationship between the metallization degree and the gas reduction potential for TTM ore with pre-oxidation treatment has been built. Finally, the reduction metallization degree for the first and second step can be improved averagely by 16.67 and 3.45 pct, respectively, for sample pre-oxidized at 1098 K (825 °C) for 15 and 90 minutes, while 26.96 and 7.4 pct, improvement is achieved for sample pre-oxidized at a lower temperature of 1048 K (775 °C) for 120 minutes.
Alteration minerals in impact-generated hydrothermal systems - Exploring host rock variability
NASA Astrophysics Data System (ADS)
Schwenzer, Susanne P.; Kring, David A.
2013-09-01
Impact-generated hydrothermal systems have been previously linked to the alteration of Mars’ crust and the production of secondary mineral assemblages seen from orbit. The sensitivity of the resultant assemblages has not yet been evaluated as a function of precursor primary rock compositions. In this work, we use thermochemical modeling to explore the variety of minerals that could be produced by altering several known lithologies based on martian meteorite compositions. For a basaltic host rock lithology (Dhofar 378, Humphrey) the main alteration phases are feldspar, zeolite, pyroxene, chlorite, clay (nontronite, kaolinite), and hematite; for a lherzolithic host rock lithology (LEW 88516) the main alteration phases are amphibole, serpentine, chlorite, clay (nontronite, kaolinite), and hematite; and for an ultramafic host rock lithology (Chassigny) the main minerals are secondary olivine, serpentine, magnetite, quartz, and hematite. These assemblages and proportions of phases in each of those cases depend on W/R and temperature. Integrating geologic, hydrologic and alteration mineral evidence, we have developed a model to illustrate the distribution of alteration assemblages that occur in different levels of an impact structure. At the surface, hot, hydrous alteration affects the ejecta and melt sheet producing clay and chlorite. Deeper in the subsurface and depending on the permeability of the rock, a variety of minerals - smectite, chlorite, serpentine, amphiboles and hematite - are produced in a circulating hydrothermal system. These modeled mineral distributions should assist with interpretation of orbital observations and help guide surface exploration by rovers and sample return assets.
Emerson, Hilary P; Hickok, Katherine A; Powell, Brian A
2016-12-01
Previous field experiments have suggested colloid-facilitated transport via inorganic and organic colloids as the primary mechanism of enhanced actinide transport in the subsurface at former nuclear weapons facilities. In this work, research was guided by the hypothesis that humic substances can enhance tetravalent actinide (An(IV)) migration by coating and mobilizing natural colloids in environmental systems and increasing An(IV) sorption to colloids. This mechanism is expected to occur under relatively acidic conditions where organic matter can sorb and coat colloid surfaces and facilitate formation of ternary colloid-ligand-actinide complexes. The objective of this work was to examine Th transport through packed columns in the presence of hematite colloids and/or Suwannee River fulvic acid (SRFA). In the presence of SRFA, with or without hematite colloids, significant transport (>60% recovery within the effluent) of thorium occurred through quartz columns. It is notable that the SRFA contributed to increased transport of both Th and hematite colloids, while insignificant transport occurred in the absence of fulvic acid. Further, in the presence of a natural sandy sediment (as opposed to pure quartz), transport is negligible in the presence of SRFA due to interactions with natural, clay-sized sediment coatings. Moreover, this data shows that the transport of Th through quartz columns is enhanced in ternary Th-colloid-SRFA and binary Th-SRFA systems as compared to a system containing only Th. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alijani, Hassan; Shariatinia, Zahra
2017-03-01
This research presents an efficient system for removing aqua's arsenic based on in situ zero valent iron doping onto multiwall carbon nanotube (MWCNT) through MWCNT growth onto the natural α-Fe 2 O 3 surface in chemical vapor deposition (CVD) reactor. The as-synthesized magnetic nanohybrid was characterized by XRD, VSM, FE-SEM and TEM techniques. The result of XRD analysis revealed that MWCNT has been successfully generated on the surface of zero valent iron. Moreover, the material showed good superparamagnetic characteristic to be employed as a magnetic adsorbent. The hematite, nanohybrid and its air oxidized form were used for removing aqueous arsenite and arsenate; however, non oxidized material exhibited greater efficiency for the analytes uptake. Equilibrium times were 60 and 90 min for arsenate and arsenite adsorption using nanohybrid and oxidized sorbent but the equilibrium time was 1320 min using hematite. The adsorption efficiencies of hematite and oxidized sorbent were 18, 74% and 26, 77% for arsenite and arsenate, respectively, at initial concentration of 10 mg L -1 . At this situation, the removal efficiencies were 96 and 98.5% for arsenite and arsenate adsorption using raw nanohybrid. Thermodynamic study was also performed and results indicated that arsenic adsorption onto nanohybrid and oxidized sorbent was spontaneous however hematite followed a nonspontaneous path for the arsenic removal. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Wengang; Liu, Wenbao; Dai, Shujuan; Wang, Benying
2018-06-01
In order to clarify the effect of polar group modification on flotation performance of amine collector, flotation properties of quartz and hematite using bis(2-hydroxy-3-chloropropyl) dodecylamine (N23) as a collector were investigated. And the adsorption mechanism of N23 on quartz surface was established by zeta potential measurements, SEM/EDS measurements, and molecular structure analysis. Single mineral flotation results indicated that N23 showed stronger collecting ability on quartz and hematite than DDA-CH3COOH. However, starch could depress the flotation of hematite. Flotation recovery of 98.10% for quartz could be achieved, when N23 concentration was 43.33 mg/L and starch concentration was 16.67 mg/L at natural slurry pH. Separation of artificially mixed minerals of hematite and quartz was achieved effectively using N23 as the collector. The optimized separation result with 66.29% iron grade and 90.06% iron recovery in concentrate was obtained when slurry pH was 7.34 with 43.33 mg/L N23 and 23.33 mg/L starch. The interaction energies of N23 with mineral surface also showed well consistency with flotation results. SEM/EDS analyses and zeta potential measurements revealed that N23 could absorb on quartz surface in the forms of strong electrostatic and hydrogen bonding interaction. Compared with DDA, N23 had a higher HLB value and better water-solubility, which resulted in better dispersion in water and stronger adsorption on mineral surface.
NASA Astrophysics Data System (ADS)
Wang, Dengjun; Jin, Yan; Jaisi, Deb P.
2015-11-01
The fate and transport of individual type of engineered nanoparticles (ENPs) in porous media have been studied intensively and the corresponding mechanisms controlling ENPs transport and deposition are well-documented. However, investigations regarding the mobility of ENPs in the concurrent presence of another mobile colloidal phase such as naturally occurring colloids (colloid-mediated transport of ENPs) are largely lacking. Here, we investigated the cotransport and retention of engineered hydroxyapatite nanoparticles (HANPs) with naturally occurring hematite colloids in water-saturated sand columns under environmentally relevant transport conditions, i.e., pH, ionic strength (IS), and flow rate. Particularly, phosphate oxygen isotope fractionation of HANPs during cotransport was explored at various ISs and flow rates to examine the mechanisms controlling the isotope fractionation of HANPs in abiotic transport processes (physical transport). During cotransport, greater mobility of both HANPs and hematite occurred at higher pHs and flow rates, but at lower ISs. Intriguingly, the mobility of both HANPs and hematite was substantially lower during cotransport than the individual transport of either, attributed primarily to greater homo- and hetero-aggregation when both particles are copresent in the suspension. The shapes of breakthrough curves (BTCs) and retention profiles (RPs) during cotransport for both particles evolved from blocking to ripening with time and from flat to hyperexponential with depth, respectively, in response to decreases in pH and flow rate, and increases in IS. The blocking BTCs and RPs that are flat or hyperexponential can be well-approximated by a one-site kinetic attachment model. Conversely, a ripening model that incorporates attractive particle-particle interaction has to be employed to capture the ripening BTCs that are impacted by particle aggregation during cotransport. A small phosphate oxygen isotope fractionation (≤ 1.8‰) occurred among HANPs populations during cotransport responding to IS and flow rate changes. This fractionation is most likely a result of hetero-aggregation between hematite and HANPs that favors light phosphate isotopes (P16O4). This interpretation is further supported by the increase in isotope fractionation at higher ISs (i.e., greater aggregation). However, the fractionation was progressively erased by decreasing flow rate, ascribed to the reduced mass transfer of HANPs between the influent and effluent. Together our findings suggest that the cotransport and retention of HANPs and hematite colloids are highly sensitive to the considered physicochemical factors, and isotope tracing could serve as a promising tool to identify the sources and transport of phosphate-based NPs in complex subsurface environments due to insignificant transport-related isotope fractionation.
Antiphase domains and reverse thermoremanent magnetism in ilmenite-hematite minerals
Lawson, C.A.; Nord, G.L.; Dowty, Eric; Hargraves, R.B.
1981-01-01
Examination of synthetic ilmenite-hematite samples by transmission electron microscopy has for the first time revealed the presence of well-defined antiphase domains and antiphase domain boundaries in this mineral system. Samples quenched from 1300??C have a high density of domain boundaries, whereas samples quenched from 900??C have a much lower density. Only the high-temperature samples acquire reverse thermoremanent magnetism when cooled in an applied magnetic field. The presence of a high density of domain boundaries seems to be a necessary condition for the acquisition of reverse thermoremanent magnetism.
NASA Astrophysics Data System (ADS)
Jáger, Viktor; Dabi, Gergely; Menyhárt, Adrienn
2013-04-01
Near the village of Ófalu, in the Geresd Hills, South Hungary, within the "Mecsekalja tectonic belt", low and intermediate grade paleozoic metamorphic complex (phyllite, gneiss) contains vein-like hematitic carbonate beds, up to 30 cm in thickness. The carbonate mineral is calcite. These hematitic carbonate beds cross-cut the foliation of the phyllite, and show no signs of any metamorphic alteration. In the studied section the red carbonate beds are associated with a vein system filled with multiple generations of vein carbonates(Dabi et al., 2011). The red carbonate beds contain a vaste number of twisted stalks of the iron oxidizing taxon of Gallionella. Rarely in some siliceous parts, Leptothrix-like microbial fossils can be found and these beds also contain numerous unidentifiable, hematitic foraminifers. According to ICP-AES measurements, the hematitic carbonate beds contains 8 % Fe, 0.86 % Mn and 0.12 % Ba. XRD and Raman measurements proved that the iron phase is hematite. The SEM observations revealed that the bacterial microfossils and foraminifers are built up of micron-submicron sized pseudohexagonal platy hematite. The bacterial microfossils of the Gallionella iron oxidizer are very well preserved and reaches about 80 µm length and about 2-3 µm width. The above observations raise the following issues: 1. how did these non metamorphic hematitic-carbonatic beds get inside into the metamorphic complex?, 2. what is the age of the formation of these beds?, and 3. what was the source of the iron? If we consider that the hematitic beds contain foraminifers and iron oxidizing bacteria, and no signs of metamorphic alteration nor foliations can be observed in these beds, the only answer for the first question is that the formations are fractures filled with lime-mud, i.e. neptunian dykes, which penetrated into the cracks of the phyllite. The presence of foraminifers and the geotectonic situation of the unit imply marine origin. Considering that these beds are neptunian dykes, their age must be younger than the paleozoic metamorphic event. They must be older than the Early Cretaceous dyke emplacement in the region, based on cross-cutting relation with limonite stained calcite veins, related to the volcanic activity (Dabi et al., 2011) In this region (Tisza-megaunit) continental rift-related alkali basaltic submarine volcanism was widespread during the Early Cretaceous epoch, when hypabyssal basaltic bodies (intrusive pillow basalts) intruded into unconsolidated sediments. Along these magmatic bodies low temperature hydrothermal circulation of seawater hydrolyzed basaltic glass and mafic minerals, and huge amount of Fe(II) was released and got into the lime mud that was saturated with anaerobic water, where iron oxidizing microorganisms thrived (Jáger et al., 2012).We propose a very similar paleoenvironmental model for Ófalu occurence, where low temperature, reductive iron-rich hydrothermal fluids penetrated soft sediments and contributed to the flourishing of iron-oxidizers. Due to subsequent tectonic events, these iron-rich sediments got into the fissures of the Ófalu metamorphic complex. This model is strenghtened by some borehole and outcrops where the Lower Cretaceous interpillow sediments and hyaloclastites rich in iron oxydes and intrusive pillow basalt can be found close to our investigated section. (Hetényi et al., 1976) This study was supported by the Developing Competitiveness of Universities in the South Transdanubian Region (SROP-4.2.1.B-10/2/KONV-2010-0002). Dabi, G., Siklósy, Z., Schubert, F., Bajnóczi, B., M. Tóth, T., 2011. The relevance of vein texture in understanding the past hydraulic behaviour of a crystalline rock mass: reconstruction of the palaeohydrology of the Mecsekalja Zone, South Hungary. Geofluids, 11, 309-327. Hetényi, R., Földi, M., Hámor, G., Nagy, I., Bilik, I., Jantsky, B. 1976. Magyarázó a Mecsek hegység földtani térképéhez 10 000-es sorozat. MÁFI Budapest (in hungarian). Jáger, V., Molnár, F., Buchs, D. & Koděra, P. 2012: The connection between iron ore formations and "mud-shrimp" colonizations around sunken wood debris and hydrothermal sediments in a Lower Cretaceous continental rift basin, Mecsek Mts., Hungary. — Earth-Science Reviews 114/3-4, 250-278.
Tavares, Fernanda Vasconcelos Fonseca; Ardisson, José Domingos; Rodrigues, Paulo César Horta; Fabris, José Domingos; Fernandez-Outon, Luis Eugenio; Feliciano, Vanusa Maria Delage
2017-08-01
Samples of soil, iron ore, and airborne particulate matter (size <10 μm) were analyzed with the main goal of investigating the differentiating physicochemical properties of their ferruginous compounds. These data were used to identify whether the sources of airborne particulate matter in the metropolitan area of Belo Horizonte, Minas Gerais, Brazil, are either from natural origin, as, for instance, re-suspension of particles from soil, or due to anthropogenic activities, meaning that it would be originated from the many iron ore minings surrounding the metropolitan area. Numerical simulations were used to model the atmospheric dispersion of the airborne particulate matter emitted by iron mining located at the Iron Quadrangle geodomain, Minas Gerais. Results from these numerical simulations supported identifying the sites with the highest concentrations of airborne particulate matter in the metropolitan area. Samples of these suspended materials were collected at the selected sites by using high-volume air samplers. The physicochemical features of the solid materials were assessed by X-ray fluorescence, X-ray diffraction, magnetometry, and 57 Fe Mössbauer spectroscopy. The soil materials were found to be rich in quartz, aluminum, organic matter, and low contents of iron, mainly as low crystalline iron oxides. The samples of the iron ores, on the other hand, contain high concentration of iron, dominantly as relatively pure and crystalline hematite (α-Fe 2 O 3 ). The samples of the airborne particulate matter are rich in iron, mainly as hematite, but contained also quartz, aluminum, and calcium. Mössbauer spectroscopy was used to evaluate the hyperfine structure of 57 Fe of the hematite both from the iron ore and the soil samples. The structural characteristics of the hematite of these particulate materials were further explored. The direct influence of the iron ore mining on the composition of the airborne particulate matter was clearly evidenced based on the trace ability of hematite to its source of emission. Even the atmospheric air on regions relatively far away from the mining activities is also significantly influenced.
Hematite-rich fracture fill at Meridiani Planum, Mars: Implications for fluid chemistry
NASA Astrophysics Data System (ADS)
Yen, Albert; Mittlefehldt, David; Morris, Richard; Gellert, Ralf
The Mars Exploration Rover Opportunity has been operating at the surface of Mars for over 2100 sols and has driven a distance of approximately 20 km. Throughout the traverse, outcrop rocks with margins and fracture fill resistant to erosion have been imaged and analyzed in detail by the Müssbauer (MB) spectrometer and the Alpha Particle X-ray Spectrometer (APXS). A recent APXS analysis of an outcrop block excavated by a young impact crater shows a coating with the highest concentration of iron measured by either rover, not including the iron-nickel meteorites. Texturally, this sample (referred to as "Chocolate Hills -Aloya") appears as a cemented collection of partially fragmented "blueberries." With the exception of an el-evated sulfur content, the elemental chemistry of this particular sample is entirely consistent with other analyses of hematite spherules at Merdiani Planum. As a result, it is difficult to determine whether this coating, which may have been filling a fracture in outcrop rocks prior to disruption by the impact, was simply an agglomeration of spherules or a result of a more complicated aqueous process. In contrast, a number of other fracture-filling exposures and erosion-resistant rinds have been analyzed by the APXS and MB instruments showing significant concentrations of iron in the form of hematite without the texture of spherule fragments. In one of these samples, a broken piece of fracture fill within Victoria crater referred to as "Dorsal," showed over 50% of the iron in hematite, the highest Mn concentration of any sample measured by the rovers, and elevated levels of Cl and Br. While the Fe:Mn ratio of the Dorsal analyses are comparable to that of Gusev and Meridiani basalts, it is clear that chemistry of this sample cannot be completely explained by a simple mixing of outcrop and blueberry compositions. A likely formation process for fracture fill and certain rinds involves the infiltration of iron-rich fluids post-dating the development of subsurface cracks. Mineral precipitates from these fluids resulted in hematite-rich zones within the outcrop rocks.
NASA Astrophysics Data System (ADS)
Chen, Quan; Kissel, Catherine; Liu, Zhifei
2017-04-01
In the South China Sea, the magnetic component of marine sediment is a powerful recorder of paleoenvironmental changes linked to the regional and global climate. Based on the knowledge of the sedimentary signature of the potential sources for terrigenous sediments, the composition of marine sediments can be used to decipher the different mechanisms, forcing, and transport vectors. We report here the analysis of the magnetic properties combined with sortable silt and clay mineralogy of a 51 m long sedimentary sequence retrieved from the northern South China Sea and covering the last 400 ka. Magnetic minerals with different coercivities (magnetite, pyrrhotite and hematite) are mixed in the sequence and their relative concentration varies with time. Glacial low sea-levels reduce the land-site distance and they are illlustrated by higher concentrations in magnetites and iron-sulfides (pyrrhotite) related to the sediments previously deposited on the continental shelf and re-worked by the river. This is accompanied by increasing kaolinite content within the clay assemblage (Pearl River signature) and by coarser grains. Superimposed to this eccentricity periodicity, hematite content and smectite/(illite+chlorite) ratio present a predominant precession periodicity synchronous with the northern hemisphere summer insolation changes and therefore with that of the East Asian summer monsoon. Events of high hematite content, in phase with finer grains, coincide with precession lows, while smectite/(illite+chlorite) ratio is maximum during precession highs. Knowing that smectite is mainly produced by contemporaneous chemical weathering intensity in Luzon, we use the smectite/(illite+chlorite) ratio as a tracer for increasing weathering rate in Luzon, in turn related to enhanced East Asian summer monsoon. Hematite is not produced in large amount on adjacent lands and its association with fine sediment grains suggests that its periodic supply is related to the eolian dust transported from the Central China deserts to the studied site. Higher hematite content at this latitude may therefore be used as a tracer for weak East Asian summer monsoon intensity.
Curiosity at Vera Rubin Ridge: Testable Hypotheses, First Results, and Implications for Habitability
NASA Astrophysics Data System (ADS)
Fraeman, A.; Bedford, C.; Bridges, J.; Edgar, L. A.; Hardgrove, C.; Horgan, B. H. N.; Gabriel, T. S. J.; Grotzinger, J. P.; Gupta, S.; Johnson, J. R.; Rampe, E. B.; Morris, R. V.; Salvatore, M. R.; Schwenzer, S. P.; Stack, K.; Pinet, P. C.; Rubin, D. M.; Weitz, C. M.; Wellington, D. F.; Wiens, R. C.; Williams, A. J.; Vasavada, A. R.
2017-12-01
As of sol 1756, Curiosity was 250 meters from ascending Vera Rubin Ridge, a unique geomorphic feature preserved in the lower foothills of Aeolis Mons (informally known as Mt. Sharp) that is distinguishable from orbit. Vera Rubin Ridge (previously termed the Hematite Ridge) is characterized by a higher thermal inertia than the surrounding terrain, is comparatively resistant to erosion, and is capped with a hematite-bearing layer that is visible in 18 m/pixel CRISM data. A key hypothesis associated with this unit is that it represents a redox interface where ferrous iron oxidized and precipitated either as hematite or another ferric precursor. The Curiosity integrated payload is being used to determine the depositional environment(s), stratigraphic context and geochemical conditions associated with this interface, all of which will provide key insights into its past habitability potential and the relative timing of processes. Specifically, analysis of Curiosity data will address four major questions related to the history and evolution of ridge-forming strata: (1) What is the stratigraphic relationship between the units in the ridge and the Mt. Sharp group (see Grotzinger et al., 2015)? (2) What primary and secondary geologic processes deposited and modified the ridge units over time? (3) What is the nature and timing of the hematite precipitation environment, and how does it relate to similar oxidized phases in the Murray formation? (4) What are the implications for habitability and the preservation of organic molecules? Initial results of a systematic imaging campaign along the contact between the lower portion or the ridge and the Murray formation has revealed dm-scale cross bedding within the ridge stratigraphy, which provide clues about the depositional environments; these can be compared to suites of sedimentary structures within the adjacent Murray formation. Long distance ChemCam passive and Mastcam multispectral data show that hematite and likely other ferric phases are present in the upper ridge, consistent with orbital data. Curiosity will continue to take systematic observations that draw upon testable hypotheses about the ridge environments as the rover ascends Vera Rubin Ridge.
Tabelin, Carlito Baltazar; Veerawattananun, Suchol; Ito, Mayumi; Hiroyoshi, Naoki; Igarashi, Toshifumi
2017-02-15
Pyrite is one of the most common and geochemically important sulfide minerals in nature because of its role in the redox recycling of iron (Fe). It is also the primary cause of acid mine drainage (AMD) that is considered as a serious and widespread problem facing the mining and mineral processing industries. In the environment, pyrite oxidation occurs in the presence of ubiquitous metal oxides, but the roles that they play in this process remain largely unknown. This study evaluates the effects of hematite (α-Fe 2 O 3 ) and alumina (α-Al 2 O 3 ) on pyrite oxidation by batch-reactor type experiments, surface-sensitive characterization of the oxidation layer and thermodynamic/kinetic modeling calculations. In the presence of hematite, dissolved sulfur (S) concentration dramatically decreased independent of the pH, and the formation of intermediate sulfoxy anionic species on the surface of pyrite was retarded. These results indicate that hematite minimized the overall extent of pyrite oxidation, but the kinetic model could not explain how this suppression occurred. In contrast, pyrite oxidation was enhanced in the alumina suspension as suggested by the higher dissolved S concentration and stronger infrared (IR) absorption bands of surface-bound oxidation products. Based on the kinetic model, alumina enhanced the oxidative dissolution of pyrite because of its strong acid buffering capacity, which increased the suspension pH. The higher pH values increased the oxidation of Fe 2+ to Fe 3+ by dissolved O 2 (DO) that enhanced the overall oxidative dissolution kinetics of pyrite. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Velásquez, A. A.; Marín, C. C.; Urquijo, J. P.
2018-03-01
We present the process of synthesis and characterization of magnetite-maghemite nanoparticles by the ball milling method. The particles were synthesized in a planetary ball mill equipped with vials and balls of tempered steel, employing dry and wet conditions. For dry milling, we employed microstructured analytical-grade hematite (α-Fe2O3), while for wet milling, we mixed hematite and deionized water. Milling products were characterized by X-ray diffraction, transmission electron microscopy, room temperature Mössbauer spectroscopy, vibrating sample magnetometry, and atomic absorption spectroscopy. The Mössbauer spectrum of the dry milling product was well fitted with two sextets of hematite, while the spectrum of the wet milling product was well fitted with three sextets of spinel phase. X-ray measurements confirmed the phases identified by Mössbauer spectroscopy in both milling conditions and a reduction in the crystallinity of the dry milling product. TEM measurements showed that the products of dry milling for 100 h and wet milling for 24 h consist of aggregates of nanoparticles distributed in size, with mean particle size of 10 and 15 nm, respectively. Magnetization measurements of the wet milling product showed little coercivity and a saturation magnetization around 69 emu g-1, characteristic of a nano-spinel system. Atomic absorption measurements showed that the chromium contamination in the wet milling product is approximately two orders of magnitude greater than that found in the dry milling product for 24 h, indicating that the material of the milling bodies, liberated more widely in wet conditions, plays an important role in the conversion hematite-spinel phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modreski, P.J.; Herring, J.R.
1985-01-01
Ultrametamorphic effects (1300+ /sup 0/C) in shales above burned coal seams in the Powder River Basin, Wyoming, include the formation of droplets and stalactites of congealed iron-rich melt (40.3 wt.% SiO/sub 2/, 35.5% Fe as Fe/sub 2/O/sub 3/, 13.5% Al/sub 2/O/sub 3/, 2.2% MgO, 5.0% CaO, 0.3% MnO, 1.0% K/sub 2/O, 0.5% TiO/sub 2/, 1.3% P/sub 2/O/sub 5/, <0.2% Na/sub 2/O, 0.55% LOI, total 100.2%). This melt, quartz-normative and comparable to an iron-rich basalt, formed along fractures which served as chimneys for escape of burning gases; pyrite or other iron-rich concretions in the shale may have been the source ofmore » the iron in the melts. Oxide phases, dominantly intergrown hematite+magnetite, in the droplets reflect a high-T, low-P, high-f(O/sub 2/) environment. Hematite ranges from nearly pure Fe/sub 2/O/sub 3/ near the droplet rims (Hm-1) to Al- and Ti-rich in the interiors (Hm-2 to -5). Magnetite contains Mg and Al (Mt-1); in the droplet interiors it is richer in Mg and Al (Mt-2 = host+lamellae) and contains lamellae of exsolved hercynite spinel (Sp-1). Near droplet rims, hematite occurs with magnesioferrite spinel (Mf-1) enriched in Mn and Zn (up to 7 wt.% ZnO), a product of reaction with gases during cooling. Averaged microprobe analyses are provided.« less
Mineral Content Comparison at Two Gale Crater Sites
2016-12-13
This graphic shows proportions of minerals identified in mudstone exposures at the "Yellowknife Bay" location where NASA's Curiosity Mars rover first analyzed bedrock, in 2013, and at the "Murray Buttes" area investigated in 2016. Minerals were identified by X-ray diffraction analysis of sample powder from the rocks. The samples were acquired by drilling and delivered to the Chemistry and Mineralogy (CheMin) instrument inside the rover. Two key differences in the Murray Buttes mudstone include hematite rather than magnetite, and far less abundance of crystalline mafic minerals, compared to the Yellowknife Bay mudstone composition. Hematite and magnetite are both iron oxide minerals, with hematite as a more oxidized one. That difference could result from the Murray Buttes mudstone layer experiencing more weathering than the Yellowknife Bay mudstone. More weathering could also account for the lower abundance of crystalline mafics, which are volcanic-origin minerals such as pyroxene and olivine. The Yellowknife Bay site is on the floor of Gale Crater. The Murray Buttes site is on lower Mount Sharp, the layered mound in the center of the crater. http://photojournal.jpl.nasa.gov/catalog/PIA21149
Control of autoclave scaling during acid pressure leaching of nickeliferous laterite ore
NASA Astrophysics Data System (ADS)
Queneau, P. B.; Doane, R. E.; Cooperrider, M. W.; Berggren, M. H.; Rey, P.
1984-09-01
An operating problem encountered at the Moa Bay operation in Cuba, where nickeliferous laterite ore is processed by sulfuric acid pressure leaching, is the formation of alunite and hematite deposits on the autoclave walls. The AMAX Extractive Research & Development, Inc., metallurgical laboratory (Golden, Colorado) has made substantial improvements in the Moa Bay process in the area of metal recovery, energy consumption, and feed versatility. One of the advantages of AMAX's process is its ability to treat substantial portions of nickel-and magnesium-rich serpentine while maintaining acid utilization efficiency. Scale formation is minimized by combining staged acid addition with vigorous agitation and 270 °C operation. This paper describes how advantage can be taken of MgSO4· XH2O precipitation both to inhibit alunite scaling and to disperse hematite scale within the MgSO4 · XH2O matrix. Cooling the autoclave from its 270 ·C operating temperature down to 180 ·C takes advantage of the reverse solubility of magnesium sulfate. The magnesium dissolves, liberating entrained hematite, thus providing a means for control of autoclave scale with minimum process disruption.
Hemingway, B.S.
1990-01-01
Smoothed values of the heat capacities and derived thermodynamic functions are given for bunsenite, magnetite, and hematite for the temperature interval 298.15 to 1800 K. The Gibbs free energy for the reaction Ni + 0.5O2 = NiO is given by the equation ??rG0T = -238.39 + 0.1146T - 3.72 ?? 10-3T ln T and is valid from 298.15 K to 1700 K. The Gibbs free energy (in kJ) of the reaction 2 magnetite + 3 quartz = 3 fayalite + O2 may be calculated from the equation ??rG0T = 474.155 - 0.16120 T in kJ and between 800 and 1400 K. The Gibbs free energy (in kJ) of the reaction 6 hematite = 4 magnetite + O2 may be calculated from the following equations: ??rG0T = 496.215 - 0.27114T, ??rG0T = 514.690 - 0.29753T, ??rG0T = 501.348 - 0.2854T. -from Author
NASA Astrophysics Data System (ADS)
Diakonov, Igor I.; Schott, Jacques; Martin, Francois; Harrichourry, Jean-Claude; Escalier, Jocelyne
1999-08-01
The solubility of natural and synthetic hematite (α-Fe 2O 3) was measured in NaOH-NaCl solutions (0.007 ≤ m(NaOH) ≤ 2.0) between 60 and 300°C at saturated water vapour pressure and under excess oxygen. Solubility constants determined in the present study and by Yishan et al. (1986) at 300°C were combined with the thermodynamic properties of hematite (Hemingway, 1990) and water (SUPCRT92, Johnson et al., 1992) to generate within the framework of the revised Helgeson-Kirkham-Flowers (HKF) model the standard partial molal thermodynamic properties at 25°C and 1 bar, and the revised HKF equations of state parameters of Fe(OH) 4 -. The extrapolated value for the Gibbs energy of formation for Fe(OH) 4 - at 25°C is -201.97 kcal/mol. Thermodynamic calculations show that Fe(OH) 4 - exhibits a chemical behaviour different from that of Ga(OH) 4 - and Al(OH) 4 -.
Possible mechanism for explaining the origin and size distribution of Martian hematite spherules
NASA Astrophysics Data System (ADS)
Misra, Anupam K.; Acosta-Maeda, Tayro E.; Scott, Edward R. D.; Sharma, Shiv K.
2014-03-01
Mysterious hematite spherules, also known as “blueberries”, observed at Meridiani Planum on Mars have been widely accepted as concretions which are formed by precipitation of aqueous fluids. One of the biggest mysteries is that all observed Martian blueberries are limited in size with maximum diameter of 6.2 mm. In contrast, terrestrial concretions are not size limited. In this article, we discuss significant differences between Martian blueberries and Earth concretion analogs. Puzzling observations from Mars Exploration Rovers Opportunity and Spirit suggest that the spherules may not be concretions but are cosmic spherules formed by ablation of meteorites. The perfect spherical shape of spherules, their observed size limit, and all other physical properties are easily explained by a meteorite ablation model. Evidence that some of these spherules are only few years old strongly constrains concretion and other growth mechanisms related to aqueous processes that require the existence of water on Mars in its recent history. The large number of hematite spherules in Meridiani Planum may be due to a big rare iron meteorite impact event in this region sometime in the past.
Evolution and alteration in situ of a massive iron duricrust in Central Africa
NASA Astrophysics Data System (ADS)
Bitom, Dieudonné; Volkoff, Boris; Abossolo-Angue, Monique
2003-08-01
A soil sequence with iron duricrust is described in an area covered by tropical rain forest in South Cameroon. The dismantling of the iron duricrust is documented through a close observation of a soft duricrust, which corresponds to a transitional stage in the degradation of a massive iron duricrust into a loose nodular horizon. In the initial massive and hematitic duricrust, nodular shapes are progressively formed. The nodules and the internodular matrix remain hematitic. The internodular matrix undergoes goethitization and a pronounced deferruginisation before loosening; the primary structure of the iron duricrust is maintained, however, due to internodular bridges, relics of internodular matrix which escaped the process of goethitization. The iron is gradually released from these hematitic bridges, which become softer. This leads to the collapse of the initial structures of the iron duricrust and to the formation of a loose nodular material with a clayey matrix containing kaolinite and goethite. Many loose nodular horizons, which are found all over Central Africa, may have been formed by such alteration of a former iron duricrust.
Solventless synthesis, morphology, structure and magnetic properties of iron oxide nanoparticles
NASA Astrophysics Data System (ADS)
Das, Bratati; Kusz, Joachim; Reddy, V. Raghavendra; Zubko, Maciej; Bhattacharjee, Ashis
2017-12-01
In this study we report the solventless synthesis of iron oxide through thermal decomposition of acetyl ferrocene as well as its mixtures with maliec anhydride and characterization of the synthesized product by various comprehensive physical techniques. Morphology, size and structure of the reaction products were investigated by scanning electron microscopy, transmission electron microscopy and X-ray powder diffraction technique, respectively. Physical characterization techniques like FT-IR spectroscopy, dc magnetization study as well as 57Fe Mössbauer spectroscopy were employed to characterize the magnetic property of the product. The results observed from these studies unequivocally established that the synthesized materials are hematite. Thermal decomposition has been studied with the help of thermogravimetry. Reaction pathway for synthesis of hematite has been proposed. It is noted that maliec anhydride in the solid reaction environment as well as the gaseous reaction atmosphere strongly affect the reaction yield as well as the particle size. In general, a method of preparing hematite nanoparticles through solventless thermal decomposition technique using organometallic compounds and the possible use of reaction promoter have been discussed in detail.
Synthesis and characterization of hematite pigment obtained from a steel waste industry.
Prim, S R; Folgueras, M V; de Lima, M A; Hotza, D
2011-09-15
Pigments that meet environmental and technology requirements are the focus of the research in the ceramic sector. This study focuses on the synthesis of ceramic pigment by encapsulation of hematite in crystalline and amorphous silica matrix. Iron oxide from a metal sheet rolling process was used as chromophore. A different content of hematite and silica was homogenized by conventional and high energy milling. The powders obtained after calcinations between 1050 and 1200 °C for 2h were characterized by X-ray diffraction and SEM analysis. The pigments were applied to ceramic enamel and porcelain body. The effect of pigment was measured by comparing L*a*b* values of the heated samples. Results showed that the color developed is influenced by variables such as oxide content employed, conditions of milling and processing temperature. The results showed that the use of pigment developed does not interfere in microstructural characteristics of pigmented material. The best hue was obtained from samples with 15 wt% of chromophore, heated at 1200 °C in amorphous silica matrix. Copyright © 2011 Elsevier B.V. All rights reserved.
Impact of Bioreduction on Remobilization of Adsorbed Cadmium on Iron Minerals in Anoxic Condition.
Ghorbanzadeh, Nasrin; Lakzian, Amir; Halajnia, Akram; Choi, Ui-Kyu; Kim, Ki-Hyun; Kim, Jong-Oh; Kurade, Mayur; Jeon, Byong-Hun
2017-06-01
The impact of bioreduction on the remobilization of adsorbed cadmium Cd(II) on minerals, including hematite, goethite, and two iron(III)-rich clay minerals nontronites (NAU-1 and NAU-2) under anoxic conditions was investigated. Langmuir isotherm equation better described the sorption of Cd(II) onto the all minerals. The maximum adsorption capacity was 6.2, 18.1, 3.6, and 4 mg g-1 for hematite, goethite, NAU-1 and NAU-2, respectively. The desorption of Cd(II) was due to the production of Fe(II) as a result of bioreduction of structural Fe(III) in the minerals by Shewanella putrefaciens. The bioreduction of Cd(II)-loaded Fe(III) minerals was negligible during the initial 5 days followed by a rapid increase up to 20 days. The amount of Cd(II) in solution phase at the end of 30 days increased up to 0.07 mmol L-1 for hematite, NAU-1, and NAU-2 and 0.02 mmol L-1 for goethite. The X-ray diffraction study showed negligible changes in bioreduced minerals phases.
NASA Technical Reports Server (NTRS)
2004-01-01
This image from the Mars Exploration Rover Opportunity's panoramic camera is an approximate true-color rendering of the exceptional rock called 'Berry Bowl' in the 'Eagle Crater' outcrop. The study of this 'blueberry-strewn' area and the identification of hematite as the major iron-bearing element within these sphere-like grains helped scientists confirm their hypothesis that the hematite in these martian spherules was deposited in water. To separately analyze the mineralogical content of three main features within this area -- blueberries, dust and rock -- it was important that the rock abrasion tool's brush was able to rest on a relatively berry-free spot. The rock's small size and crowd of berries made the 10-minute brushing a challenge to plan and execute. The successful brushing on the target whimsically referred to as 'Near Empty' on the rover's 48th sol on Mars left a dust-free impression for subsequent examination by the rover's spectrometers. No grinding was necessary on the rock because spectral data obtained on the dust-free surface were sufficient to verify that the rock's chemical composition differs significantly from the hematite-rich berries.
Interaction of light with hematite hierarchical structures: Experiments and simulations
NASA Astrophysics Data System (ADS)
Distaso, Monica; Zhuromskyy, Oleksander; Seemann, Benjamin; Pflug, Lukas; Mačković, Mirza; Encina, Ezequiel; Taylor, Robin Klupp; Müller, Rolf; Leugering, Günter; Spiecker, Erdmann; Peschel, Ulf; Peukert, Wolfgang
2017-03-01
Mesocrystalline particles have been recognized as a class of multifunctional materials with potential applications in different fields. However, the internal organization of nanocomposite mesocrystals and its influence on the final properties have not yet been investigated. In this paper, a novel strategy based on electrodynamic simulations is developed to shed light on how the internal structure of mesocrystals influences their optical properties. In a first instance, a unified design protocol is reported for the fabrication of hematite/PVP particles with different morphologies such as pseudo-cubes, rods-like and apple-like structures and controlled particle size distributions. The optical properties of hematite/PVP mesocrystals are effectively simulated by taking their aggregate and nanocomposite structure into consideration. The superposition T-Matrix approach accounts for the aggregate nature of mesocrystalline particles and validate the effective medium approximation used in the framework of the Mie theory and electromagnetic simulation such as Finite Element Method. The approach described in our paper provides the framework to understand and predict the optical properties of mesocrystals and more general, of hierarchical nanostructured particles.
Müller, Katharina; Gröschel, Annett; Rossberg, André; Bok, Frank; Franzen, Carola; Brendler, Vinzenz; Foerstendorf, Harald
2015-02-17
Hematite plays a decisive role in regulating the mobility of contaminants in rocks and soils. The Np(V) reactions at the hematite-water interface were comprehensively investigated by a combined approach of in situ vibrational spectroscopy, X-ray absorption spectroscopy and surface complexation modeling. A variety of sorption parameters such as Np(V) concentration, pH, ionic strength, and the presence of bicarbonate was considered. Time-resolved IR spectroscopic sorption experiments at the iron oxide-water interface evidenced the formation of a single monomer Np(V) inner-sphere sorption complex. EXAFS provided complementary information on bidentate edge-sharing coordination. In the presence of atmospherically derived bicarbonate the formation of the bis-carbonato inner-sphere complex was confirmed supporting previous EXAFS findings.1 The obtained molecular structure allows more reliable surface complexation modeling of recent and future macroscopic data. Such confident modeling is mandatory for evaluating water contamination and for predicting the fate and migration of radioactive contaminants in the subsurface environment as it might occur in the vicinity of a radioactive waste repository or a reprocessing plant.
Surface catalysis of uranium(VI) reduction by iron(II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liger, E.; Charlet, L.; Van Cappellen, P.
1999-10-01
Colloidal hematite ({alpha}-Fe{sub 2}O{sub 3}) is used as model solid to investigate the kinetic effect of specific adsorption interactions on the chemical reduction of uranyl (U{sup VI}O{sub 2}{sup 2+}) by ferrous iron. Acid-base titrations and Fe(II) and uranyl adsorption experiments are performed on hematite suspensions, under O{sub 2}- and CO{sub 2}-free conditions. The results are explained in terms of a constant capacitance surface complexation model of the hematite-aqueous solution interface. Two distinct Fe(II) surface complexes are required to reproduce the data: ({equivalent{underscore}to}Fe{sup III}OFe{sup II}){sup +} (or {equivalent{underscore}to}Fe{sup III}OFe{sup II}(OH{sub 2}){sub n}{sup +}) and {equivalent{underscore}to}Fe{sup III}OFe{sup II}OH{sup 0} (or {equivalent{underscore}to}Fe{sup III}OFe{supmore » II}(OH{sub 2}){sub n{minus}1}OH{sup 0}). The latter complex represents a significant fraction of total adsorbed Fe(II) at pH {gt} 6.5. Uranyl binding to the hematite particles is characterized by a sharp adsorption edge between pH 4 and pH 5.5. Because of the absence of competing aqueous carbonate complexes, uranyl remains completely adsorbed at pH {gt} 7. A single mononuclear surface complex accounts for the adsorption of uranyl over the entire range of experimental conditions. Although thermodynamically feasible, no reaction between uranyl and Fe(II) is observed in homogeneous solution at pH 7.5, for periods of up to three days. In hematite suspensions, however, surface-bound uranyl reacts on a time scale of hours. Based on Fourier Transformed Infrared spectra, chemical reduction of U(VI) is inferred to be the mechanism responsible for the disappearance of uranyl. The kinetics of uranyl reduction are quantified by measuring the decrease with time of the concentration of U(VI) extractable from the hematite particles by NaHCO{sub 3}. In the presence of excess Fe(II), the initial rate of U(VI) reduction exhibits a first-order dependence on the concentration of adsorbed uranyl. The pseudo-first-order rate constant varies with pH (range, 6--7.5) and the total (dissolved + adsorbed) concentration of Fe(II) (range, 2--160 {micro}M). When analyzing the rate data in terms of the calculated surface speciation, the variability of the rate constant can be accounted for entirely by changes in the concentration of the Fe(II) monohydroxo surface complex {equivalent{underscore}to}Fe{sup III}OFe{sup II}OH{sup 0}. Therefore, the rate law is derived for the hematite-catalyzed reduction of uranyl by Fe(II), where the bimolecular rate constant {kappa} has a value of 399 {+-} 25 M{sup {minus}1} min{sup {minus}1} at 25 C. The hydroxo surface complex is the rate-controlling reductant species, because it provides the most favorable coordination environment in which electrons are removed from Fe(II). Natural particulate matter collected in the hypolimnion of a seasonally stratified lake also causes the rapid reduction of uranyl by Fe(II), Ferrihydrite, identified in the particulate matter by X-ray diffraction, is one possible mineral phase accelerating the reaction between U(VI) and Fe(II). At near-neutral pH and total Fe(II) levels less than 1 mM, the pseudo-first-order rate constants of chemical U(VI) reduction, measured in the presence of the hematite and lake particles, are of the same order of magnitude as the highest corresponding rate coefficients for enzymatic U(VI) reduction in bacterial cultures. Hence, based on the results of this study, surface-catalyzed U(VI) reduction by Fe(II) is expected to be a major pathway of uranium immobilization in a wide range of redox-stratified environments.« less
NASA Technical Reports Server (NTRS)
Nie, N. X.; Dauphas, N.; Morris, R. V
2017-01-01
The Mars Exploration Rover mission revealed the presence of rocks and minerals indicative of water-rock interactions on Mars. A range of mineralogies have been identified, including hematite spherules (i.e., blueberries), jarosite, Mg-, Ca-sulfates, silica-rich materials and silicate relics from basaltic rocks. The mineral assemblages have been interpreted to be derived from acid-sulfate alteration of basaltic materials. Indeed, the chemical compositions of rocks and soils at Home Plate in Gusev Crater follow the trends expected for acid-sulfate alteration.
NASA Astrophysics Data System (ADS)
Lassoued, Abdelmajid; Lassoued, Mohamed Saber; Dkhil, Brahim; Gadri, Abdellatif; Ammar, Salah
2017-08-01
Iron oxide (α-Fe2O3) nanoparticles were synthesized using the precipitation synthesis method focusing only on (FeCl3, 6H2O), NaOH, KOH and NH4OH as raw materials. The impact of varying the nature of the base on the crystalline phase, size and morphology of α-Fe2O3 products was explored. XRD spectra revealed that samples crystallize in the rhombohedral (hexagonal) system at 800 °C.The Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) were used to detect the morphology of synthesized nanoparticles and specify their sizes. However, the Fourier Transform Infra-Red (FT-IR) spectroscopy has permitted the observation of vibration band Fe-O. Raman spectroscopy was used not only to prove that we have synthesized hematite but also to identify their phonon modes. The Thermo Gravimetric Analysis (TGA) findings allow the thermal cycle determination of samples whereas Differential Thermal Analysis (DTA) findings allow the phase transition temperature identification. Besides, the optical investigation revealed that samples have an optical gap of about 2.1 eV. Findings highlight that the nature of the agent precipitant plays a significant role in the morphology of the products and the formation of the crystalline phase. Hematite synthesis with the base NH4OH brought about much stronger, sharper and wider diffraction peaks of α-Fe2O3. The morphology of samples are spherical with a size of about 61 nm while the size of the nanoparticles of hematite which we have synthesized with NaOH and KOH is respectively of the order of 82 and 79 nm.
Park, Jin Woo; Subramanian, Arunprabaharan; Mahadik, Mahadeo A; Lee, Su Yong; Choi, Sun Hee; Jang, Jum Suk
2018-03-28
In this paper, we focus on the controlled growth mechanism of α-Fe 2 O 3 nanostructures via the hydrothermal method. The field emission scanning electron microscopy (FESEM) results reveal that at a lower hydrothermal time, the initial nucleation involves the formation of short and thin β-FeOOH nanorods. The subsequent increase in the hydrothermal time leads β-FeOOH to form thicker and longer nanorods. However, high-temperature quenching (HTQ) at 800 °C for 10 min causes the conversion of akaganeite to the hematite phase and activation of hematite by Sn 4+ diffusion from a FTO substrate. Sn 4+ diffusion from the FTO substrate to the hematite nanostructure was elaborated by X-ray photoelectron spectroscopy (XPS). An α-Fe 2 O 3 nanorod photoanode prepared by a hydrothermal reaction for 3 h and HTQ exhibits the highest photocurrent density of 1.04 mA cm -2 . The excellent photoelectrochemical performance could be ascribed to the synergistic effect of the optimum growth of α-Fe 2 O 3 nanorod arrays and Sn 4+ diffusion. Intensity modulated photovoltage spectroscopy (IMVS) studies revealed that the α-Fe 2 O 3 photoanodes prepared at 3 h and HTQ exhibited a long electron lifetime (132.69 ms), and contribute to the enhanced PEC performance. The results confirmed that the controlled growth of the β-FeOOH nanorods, as well as Sn 4+ diffusion, played a key role in charge transfer during the photoelectrochemical application. The charge transfer mechanisms in α-Fe 2 O 3 nanostructure photoanodes prepared at different hydrothermal times and high-temperature quenching are also investigated.
NASA Astrophysics Data System (ADS)
Hartmann, G. A.; Gallet, Y.; Trindade, R. I.; Genevey, A.; Berquo, T. S.; Neumann, R.; Le Goff, M.
2013-05-01
The thermoremanent magnetization in baked clay archeological materials provide very useful information on the time evolution of the Earth's magnetic field over the past few millennia. In these materials, a thermally stable magnetic phase characterized by high coercivities (>400 mT) and low unblocking temperatures (~200 degrees Celsius) has recently been recognized in European bricks, tiles, kilns and hearth samples. Both the identification and the origin of this phase remain, however, poorly constrained. The very same high-coercivity, thermally stable, low unblocking temperature (HCSLT) magnetic phase has been identified in Brazilian bricks fragments dated of the past five centuries. We report here a large set of measurements on a selected collection of samples showing variable contributions of the HCSLT phase. These measurements include low-field magnetic susceptibility vs. temperature curves, hysteresis loops, isothermal remanent magnetization (IRM) acquisition, thermal demagnetization of the three-axis IRM, first order reversal curves (FORC), low-temperature magnetization experiments (remanent magnetization curves and alternating current susceptibility), Mössbauer spectroscopy and X-ray diffraction. Results show the coexistence of low-coercivity magnetic minerals (magnetite and titanomagnetite) and high-coercivity minerals (hematite, HCSLT phase and, in some cases, goethite). We note that the HCSLT magnetic phase is always found in association with hematite. We further observe that the Mössbauer spectroscopy, X-ray diffraction spectra, and the FORC diagrams are also very similar to results previously obtained from annealed clays in which nontronite or iron-rich montmorillonite was transformed into Al-substituted hematite by heating. The HCSLT magnetic phase is thus confidently identified as being hematite with Al substitution. Moreover, considering the abundance of montmorillonite in clay mining settings, we suggest that the widespread occurrence of HCSLT in archeological materials predominantly originates from the transformation of iron-rich montmorillonite during the manufacturing (heating) process.
Inner-Helmholtz potential development at the hematite (α-Fe 2O 3) (0 0 1) surface
NASA Astrophysics Data System (ADS)
Boily, Jean-François; Chatman, Shawn; Rosso, Kevin M.
2011-08-01
Electric potentials of the (0 0 1) surface of hematite were measured as a function of pH and ionic strength in solutions of sodium nitrate and oxalic acid using the single-crystal electrode approach. The surface is predominantly charge-neutral in the pH 4-14 range, and develops a positive surface potential below pH 4 due to protonation of μ-OH 0 sites (p K1,1,0,int = -1.32). This site is resilient to deprotonation up to at least pH 14 (-p K-1,1,0,int ≫ 19). The associated Stern layer capacitance of 0.31-0.73 F/m 2 is smaller than typical values of powders, and possibly arises from a lower degree of surface solvation. Acid-promoted dissolution under elevated concentrations of HNO 3 etches the (0 0 1) surface, yielding a convoluted surface populated by -OH20.5+ sites. The resulting surface potential was therefore larger under these conditions than in the absence of dissolution. Oxalate ions also promoted (0 0 1) dissolution. Associated electric potentials were strongly negative, with values as large as -0.5 V, possibly from metal-bonded interactions with oxalate. The hematite surface can also acquire negative potentials in the pH 7-11 range due to surface complexation and/or precipitation of iron species (0.0038 Fe/nm 2) produced from acidic conditions. Oxalate-bearing systems also result in negative potentials in the same pH range, and may include ferric-oxalate surface complexes and/or surface precipitates. All measurements can be modeled by a thermodynamic model that can be used to predict inner-Helmholtz potentials of hematite surfaces.
Structural and Magnetic Properties of Dilute Ca²⁺ Doped Iron Oxide Nanoparticles.
Samar Layek; Rout, K; Mohapatra, M; Anand, S; Verma, H C
2016-01-01
Undoped and calcium substituted hematite (α-Fe₂O₃) nanoparticles are synthesized by surfactant-directed co-precipitation and post annealing method. The annealed nanoparticles were found to be in single phase in nature and crystallize in the rhombohedral structure with space group R3c as confirmed by Rietveld refinement of the X-ray diffraction (XRD) data. Average crystallite sizes are calculated to be 20 to 30 nm and 50 to 60 nm for the nanoparticles annealed at 400 and 600 °C respectively. Mössbauer spectra for all the nanoparticles could be fitted with a sextet corresponding to the single magnetic state of the iron atoms in its Fe³⁺ state in the hematite matrix. The FTIR and Raman spectra of all the samples correspond to specific modes of α-Fe₂O₃. UV-Vis spectra of annealed samples showed broad peaks in the range of 525-630 nm resulting from spin-forbidden ligand field transition together with the spin-flip transition among the 2t₂g states. The estimated band gap energies were in the range of 1.6 to 1.9 eV which are much lower than the reported values for nano hematite. From the room temperature magnetic hysteresis loop measurements, weak ferromagnetic behavior is observed in all undoped and Ca²⁺ doped hematite samples. Morin temperature (T(M)) is calculated to be 257 and 237 K for 1.45% doped samples with particle size 54 and 27 nm respectively. The sample with Ca content of 1.45 wt% when annealed at 400 °C showed that the particles were of different shapes which included both quasi spherical and rod shaped. On annealing the same sample at 600 °C, the nanorods collapsed to form bigger spherical and ellipsoidal particles.
Reductive Dissolution of Goethite and Hematite by Reduced Flavins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Zhi; Zachara, John M.; Wang, Zheming
2013-10-02
The abiotic reductive dissolution of goethite and hematite by the reduced forms of flavin mononucleotide (FMNH2) and riboflavin (RBFH2), electron transfer mediators (ETM) secreted by the dissimilatory iron-reducing bacterium Shewanella, was investigated under stringent anaerobic conditions. In contrast to the rapid redox reaction rate observed for ferrihydrite and lepidocrocite (Shi et al., 2012), the reductive dissolution of crystalline goethite and hematite was slower, with the extent of reaction limited by the thermodynamic driving force at circumneutral pH. Both the initial reaction rate and reaction extent increased with decreasing pH. On a unit surface area basis, goethite was less reactive thanmore » hematite between pH 4.0 and 7.0. AH2DS, the reduced form of the well-studied synthetic ETM anthraquinone-2,6-disulfonate (AQDS), yielded higher rates than FMNH2 under most reaction conditions, despite the fact that FMNH2 was a more effective reductant than AH2DS for ferryhydrite and lepidocrocite. Two additional model compounds, methyl viologen and benzyl viologen, were investigated under similar reaction conditions to explore the relationship between reaction rate and thermodynamic properties. Relevant kinetic data from the literature were also included in the analysis to span a broad range of half-cell potentials. Other conditions being equal, the surface area normalized initial reaction rate (ra) increased as the redox potential of the reductant became more negative. A non-linear, parabolic relationship was observed between log ra and the redox potential for eight reducants at pH 7.0, as predicted by Marcus theory for electron transfer. When pH and reductant concentration were fixed, log ra was positively correlated to the redox potential of four Fe(III) oxides over a wide pH range, following a non-linear parabolic relationship as well.« less
Visible-NIR Spectroscopic Evidence for the Composition of Low-Albedo Altered Soils on Mars
NASA Astrophysics Data System (ADS)
Murchie, S.; Merenyi, E.; Singer, R.; Kirkland, L.
1996-03-01
Spectroscopic studies of altered Martian soils at visible and at NIR wavelengths have generally supported the canonical model of the surface layer as consisting mostly of 2 components, bright red hematite-containing dust and dark gray pyroxene-containing sand. However several of the studies have also provided tantalizing evidence for distinct 1 micrometer Fe absorptions in discrete areas, particularly dark red soils which are hypothesized to consist of duricrust. These distinct absorptions have been proposed to originate from one or more non-hematitic ferric phases. We have tested this hypothesis by merging high spatial resolution visible- and NIR-wavelength data to synthesize composite 0.44-3.14 1lm spectra for regions of western Arabia and Margaritifer Terra. The extended wavelength coverage allows more complete assessment of ferric, ferrous, and H2O absorptions in both wavelength ranges. The composite data show that, compared to nearby bright red soil in Arabia, dark red soil in Oxia has a lower albedo, a more negative continuum slope, and a stronger 3 micrometer H2O absorption . However Fe absorptions are closely similar in position and depth. These results suggest that at least some dark red soils may differ from "normal" dust and mafic sand more in texture than in Fe mineralogy, although there appears to be enrichment in a water-containing phase and/or a dark, spectrally neutral phase. In contrast, there is clear evidence for enrichment of a low-albedo ferric mineral in dark gray soils composing Sinus Meridiani. These have visible- and NIR-wavelength absorptions consistent with crystalline hematite with relatively little pyroxene, plus a very weak 3 micrometer H2O absorption. These properties suggest a Ethology richer in crystalline hematite and less hydrated than both dust and mafic-rich sand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, Kai; Walker, Sharon L.; Yu, Xiao-Ying
Natural organic matter (NOM) is likely to coat naturally occurring nanoparticles (NNPs) in the soil environment and poses distinct effects on the interaction between NPs and soil microorganisms, however such topic has not been well investigated. This study explored the influence of nanoparticle surface-bound humic acid (HA, as a model NOM) on the toxicity of hematite NPs (i.e., nano-Fe2O3) to Pseudomonas putida (P. putida). Results showed that nano-Fe2O3 could inhibit the bacterial growth with an IC50 of 23.58 mg L-1, while nanoparticle surface-bound HA could significantly alleviate the P. putida toxicity of nano-Fe2O3. IC50 of nano-Fe2O3 increased to 4774.23 mgmore » L-1 as a result of surface-saturation by HA. Co-precipitation experiment and transmission electron microscopy observation revealed that nanoparticle surface-bound HA prevented the adhesion of nano-Fe2O3 to the cells as well as limited cell internalization of nanoparticles due to the increased electrostatic repulsion. The generation of intracellular reactive oxygen species (ROS) was significantly limited by the nanoparticle surface-bound HA. The prevention of adhesion and inhibition of ROS generation could account for the HA-mitigated nanotoxicity. Interfacial interactions between hematite NPs and cell membrane were also evaluated on the basis of the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory, and the magnitude of interaction energy barrier correlated well with the 48 h LC50 data of hematite NPs to P. putida. This result implies that metal oxide NPs with strong association with the cell surface might induce more severe cytotoxicity in microorganisms.« less
Remote sensing of ferric iron minerals as guides for gold exploration
NASA Technical Reports Server (NTRS)
Taranik, Dan L.; Kruse, Fred A.; Goetz, Alexander F. H.; Atkinson, William W.
1991-01-01
The relationship between the surficial iron mineralogy and economic mineralization is investigated, using data from an airborne imaging spectrometer (the 63-channel Geophysical and Environmental Research Imaging Spectrometer) to map the distribution of iron minerals in the Cripple Creek mining district in Colorado. The airborne image data were coregistered with the field map data for the distribution of iron oxides in the district, in a geographic information computer system, in order to compare their information content. It is shown that the remote imagery was able to uniquely identify the mineral hematite, a mixture of goethite/jarosite, and a mixture of hematite/goethite.
Iron-tolerant Cyanobacteria as a Tool to Study Terrestrial and Extraterrestrial Iron Deposition
NASA Technical Reports Server (NTRS)
Brown, I. I.; Mummey, D.; Cooksey, K. E.; McKay, D. S.
2005-01-01
We are investigating biological mechanisms of terrestrial iron deposition as analogs for Martian hematite recently confirmed by. Possible terrestrial analogs include iron oxide hydrothermal deposits, rock varnish, iron-rich laterites, ferricrete soils, moki balls, and banded iron formations (BIFs). With the discovery of recent volcanic activity in the summit craters of five Martian volcanoes, renewed interest in the iron dynamics of terrestrial hydrothermal environments and associated microorganisms is warranted. In this study we describe a new genus and species of CB exhibiting elevated dissolved iron tolerance and the ability to precipitate hematite on the surface of their exopolymeric sheathes.
Phase transformations in the hematite-metal system during mechanical alloying
NASA Astrophysics Data System (ADS)
Kozlov, K. A.; Shabashov, V. A.; Litvinov, A. V.; Sagaradze, V. V.
2009-04-01
Mössbauer spectroscopy and X-ray diffraction are used to show that the phase transformations in hematite α-Fe2O3-metal ( M = Fe, Ni, Ti, Zr) powder mixtures induced by severe cold plastic deformation in ball mills occur via the formation of M-Fe-O solid solutions, redox reactions with the reduction of metallic iron, and the formation of secondary M x O y oxides and M x Fe y intermetallics. Mechanical activation in a ball mill is compared to that under high-pressure shear in Bridgman anvils. The transformations that take place in a ball mill are found to have several stages and to be accelerated.
Soils of eagle crater and Meridiani Planum at the opportunity Rover landing site
Soderblom, L.A.; Anderson, R.C.; Arvidson, R. E.; Bell, J.F.; Cabrol, N.A.; Calvin, W.; Christensen, P.R.; Clark, B. C.; Economou, T.; Ehlmann, B.L.; Farrand, W. H.; Fike, D.; Gellert, Ralf; Glotch, T.D.; Golombek, M.P.; Greeley, R.; Grotzinger, J.P.; Herkenhoff, K. E.; Jerolmack, D.J.; Johnson, J. R.; Jolliff, B.; Klingelhofer, C.; Knoll, A.H.; Learner, Z.A.; Li, R.; Malin, M.C.; McLennan, S.M.; McSween, H.Y.; Ming, D. W.; Morris, R.V.; Rice, J. W.; Richter, L.; Rieder, R.; Rodionov, D.; Schroder, C.; Seelos, F.P.; Soderblom, J.M.; Squyres, S. W.; Sullivan, R.; Watters, W.A.; Weitz, C.M.; Wyatt, M.B.; Yen, A.; Zipfel, J.
2004-01-01
The soils at the Opportunity site are fine-grained basaltic sands mixed with dust and sulfate-rich outcrop debris. Hematite is concentrated in spherules eroded from the strata. Ongoing saltation exhumes the spherules and their fragments, concentrating them at the surface. Spherules emerge from soils coated, perhaps from subsurface cementation, by salts. Two types of vesicular clasts may represent basaltic sand sources. Eolian ripples, armored by well-sorted hematite-rich grains, pervade Meridiani Planum. The thickness of the soil on the plain is estimated to be about a meter. The flatness and thin cover suggest that the plain may represent the original sedimentary surface.
More on the Possible Composition of the Meridiani Hematite-Rich Concretions
NASA Technical Reports Server (NTRS)
Jolliff, B. L.; Gellert, R.; Mittlefehldt, D. W.
2007-01-01
Elsewhere in these proceedings, Schneider et al. discuss compositional constraints on hematite-rich spherule (blueberry) formation at Meridiani Planum. Schneider et al. provide the background for work done to date to understand the composition and mineralogy of the spherules and devise a test of possible concretion growth processes. They also report the results of area analyses of spherules in targets analyzed with the Alpha Particle X-ray Spectrometer (APXS) and test several possible models for included components other than hematite. In this abstract, we use the compositional trends for spherule-rich targets to compute possible elemental compositions of the spherules. This approach differs from that of, which also used a determination of the area of spherules in APXS targets, coupled with a correction for the radial acceptance function, to try to un-mix the compositions directly, using 2 and 3-component models and mass balance. That approach contained a fair amount of uncertainty owing to problems associated with irregular and heterogeneous target geometry, unknown composition of non-spherule lithic components, and variable dust coatings on spherules. Since then, Opportunity has analyzed additional spherule-rich targets, and the compositional trends so obtained permit a more direct assessment of the data.
Magnetic Properties of Hematite-Titania Nanocomposites from Ilmenite Leachant Solutions
NASA Astrophysics Data System (ADS)
Sanad, M. M. S.; Rashad, M. M.
2017-07-01
Different Fe2O3/TiO2 nanocomposite ratios have been auto-synthesized from the leaching solution of Egyptian ilmenite ore with and without solvent extraction of soluble iron ions. Hydrolysis-hydrothermal strategy was then implemented for preparation of Fe2O3-TiO2 nanocomposites. The x-ray diffraction results indicated that rutile and hematite were only found at high iron oxide content. Meanwhile, anatase and hematite were the predominant phases at low iron oxide content. High-resolution transmission electron microscopy investigations exhibited nano-rods like morphology and the space lattice distances of TiO2 and Fe2O3 were clearly estimated. Moreover, the chemical composition of different Fe2O3-TiO2 nanocomposites was also elucidated using energy dispersive spectroscopy and Fourier transform infrared analyses techniques. The values of saturation magnetization ( M s) and remanent magnetization ( M r) were noticeably increased by 17.5% and 18.4% with increasing the Fe2O3/TiO2 molar ratio from 1.0 to 3.0, respectively. Field cooling-warming magnetization studies showed that the Morin transition temperature ( T M = 200 K) was consistent with the previously published values.
Reduction of Hematite to Magnetite in CO/CO2 Gas Mixtures Under Carbon Looping Combustion Conditions
NASA Astrophysics Data System (ADS)
Simmonds, Tegan; Hayes, Peter C.
2017-12-01
Iron oxides have been identified as promising materials for use as oxygen carriers in chemical looping combustion technologies as there are abundant resources available in the form of ore and in industrial wastes. The isothermal reduction of hematite (Fe2O3) in the fuel reactor and the subsequent oxidation of magnetite (Fe3O4) in air are the principal reactions of interest for these applications. Experimental investigations have been carried out to characterize the microstructural changes taking place as a result of the reduction reactions for a range of CO/CO2 gas compositions at temperatures between 1073 K and 1373 K (800 °C and 1100 °C). It has been shown that magnetite spinel is formed directly from hematite under these conditions and that porous magnetite or dense platelet or "lath" type morphologies can be formed depending on gas composition and reaction temperature. The conditions for the lath/pore transition are established. Dendritic gas pores are formed during the creation of the porous magnetite. This morphology allows continuous contact between the gas reactant and reaction interface and results in high reduction reaction rates.
Geology and tin-greisen mineralization of the Akash granite, northern Arabian Shield
Kellogg, K.S.; Smith, C.W.
1986-01-01
The western margin of the postorogenic Akash granite, 30 km E of Ha'il in the northern Arabian Shield, is greisenized and contains anomalous concentrations of Sn. The pluton intrudes metamorphic and intrusive rocks, and crops out as a 10 by 15 km elliptical body with its long axis oriented N. It consists predominantly of metaluminous alkali-feldspar granite or syenogranite, with accessory biotite and muscovite, and traces of fluorite. Greisenization extends discontinuously in a zone at least 3 km long parallel to the western contact, and along E-trending hematitic quartz veins for more than 2 km from the contact. The veins occupy fractures that were probably conduits for ascending mineralizing fluids. Within about 20 m of the contact, they are enclosed in quartz-white mica greisen containing hematite, fluorite, and locally, topaz and cassiterite. Composite chip samples from the greisenized zone have an average Sn content of 710 ppm, and a maximum of 1600 ppm. Anomalous values for Zn, Fe, Mn, Mo, Bi and Cu also occur, but none of the samples contain detectable W. Three samples of hematitic quartz averaged 126 ppm Sn, and one contained 200 ppm W. ?? 1986.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stack, Andrew G; Eggleston, Carrick M; Engelhard, Mark H
2004-06-15
The reaction of hematite with quinones and the quinone moieties of larger molecules may be an important factor in limiting the rate ofreductive dissolution, especially by iron-reducing bacteria. Here, the electrochemical and physical properties of hydroquinone adsorbed on hematite surfaces at pH 2.5–3 were investigated with cyclic voltammetry (CV), electrochemical-scanning tunneling microscopy (EC-STM), and X-ray photoelectron spectroscopy (XPS). An oxidation peak for hydroquinone was observed in the CV experiments, as well as (photo)reduction of iron and decomposition of the solvent. The EC-STM results indicate that hydroquinone sometimes forms an ordered monolayer with ~1.1 H₂/nm², but can be fairly disordered (especiallymore » when viewed at larger scales). XPS results indicate that hydroquinone and benzoquinone are retained at the interface in increasing amounts as the reaction proceeds, but reduced iron is not observed. These results suggest that quinones do not adsorb by an inner-sphere complex where adsorbate–surface interactions determine the adsorbate surface structure, but rather in an outer-sphere complex where interactions among the adsorbate molecules dominate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stack, Andrew G; Eggleston, Carrick M; Engelhard, Mark H
2003-12-01
The reaction of hematite with quinones and the quinone moieties of larger molecules may be an important factor in limiting the rate of reductive dissolution, especially by iron-reducing bacteria. Here, the electrochemical and physical properties of hydroquinone adsorbed on hematite surfaces at pH 2.5-3 were investigated with cyclic voltammetry (CV), electrochemical-scanning tunneling microscopy (EC-STM), and X-ray photoelectron spectroscopy (XPS). An oxidation peak for hydroquinone was observed in the CV experiments, as well as (photo)reduction of iron and decomposition of the solvent. The EC-STM results indicate that hydroquinone sometimes forms an ordered monolayer with {approx}1.1 QH{sub 2}/nm{sup 2}, but can bemore » fairly disordered (especially when viewed at larger scales). XPS results indicate that hydroquinone and benzoquinone are retained at the interface in increasing amounts as the reaction proceeds, but reduced iron is not observed. These results suggest that quinones do not adsorb by an inner-sphere complex where adsorbate-surface interactions determine the adsorbate surface structure, but rather in an outer-sphere complex where interactions among the adsorbate molecules dominate.« less
Hein, J.R.; Clague, D.A.; Koski, R.A.; Embley, R.W.; Dunham, R.E.
2008-01-01
A Tiburon ROV dive within the East Blanco Depression (EBD) increased the mapped extent of a known hydrothermal field by an order of magnitude. In addition, a unique opal-CT (cristobalite-tridymite)-hematite mound was discovered, and mineralized sediments and rock were collected and analyzed. Silica-hematite mounds have not previously been found on the deep ocean floor. The light-weight rock of the porous mound consists predominantly of opal-CT and hematite filaments, rods, and strands, and averages 77.8% SiO2 and 11.8% Fe2O3. The hematite and opal-CT precipitated from a low-temperature (???115?? C), strongly oxidized, silica- and iron-rich, sulfur-poor hydrothermal fluid; a bacterial mat provided the framework for precipitation. Samples collected from a volcaniclastic rock outcrop consist primarily of quartz with lesser plagioclase, smectite, pyroxene, and sulfides; SiO2 content averages 72.5%. Formation of these quartz-rich samples is best explained by cooling in an up-flow zone of silica-rich hydrothermal fluids within a low permeability system. Opal-A, opal-CT, and quartz mineralization found in different places within the EBD hydrothermal field likely reflects decreasing silica saturation and increasing temperature of the mineralizing fluid with increasing silica crystallinity. Six push cores recovered gravel, coarse sand, and mud mineralized variously by Fe or Mn oxides, silica, and sulfides. Total rare-earth element concentrations are low for both the rock and push core samples. Ce and Eu anomalies reflect high and low temperature hydrothermal components and detrital phases. A remarkable variety of types of mineralization occur within the EBD field, yet a consistent suite of elements is enriched (relative to basalt and unmineralized cores) in all samples analyzed: Ag, Au, S, Mo, Hg, As, Sb, Sr, and U; most samples are also enriched in Cu, Pb, Cd, and Zn. On the basis of these element enrichments, the EBD hydrothermal field might best be described as a base- and precious-metal-bearing, silica-Fe-oxide-barite deposit. Such deposits are commonly spatially and temporally associated with volcanogenic massive sulfide (VMS) ores. A plot of data for pathfinder elements shows a large hot spot at the northwestern margin of the field, which may mark a region where moderate to high temperature sulfide deposits are forming at depth; further exploration of the hydrothermal field to the northwest is warranted.
Johnson, Jeffrey R.; Bell, James F.; Bender, Steve; ...
2016-07-01
Relative reflectace point spectra (400–840 nm) were acquired by the Chemistry and Camera (ChemCam) instrument on the Mars Science Laboratory (MSL) rover Curiosity in passive mode (no laser) of drill tailings and broken rock fragments near the rover as it entered the lower reaches of Mt. Sharp and of landforms at distances of 2–8 km. Freshly disturbed surfaces are less subject to the spectral masking effects of dust, and revealed spectral features consistent with the presence of iron oxides and ferric sulfates. Here, we present the first detection on Mars of a ~433 nm absorption band consistent with small abundancesmore » of ferric sulfates, corroborated by jarosite detections by the Chemistry and Mineralogy (CheMin) X-ray diffraction instrument in the Mojave, Telegraph Peak, and Confidence Hills drilled samples. The disturbed materials near the Bonanza King region also exhibited strong 433 nm bands and negative near-infrared spectral slopes consistent with jarosite. ChemCam passive spectra of the Confidence Hills and Mojave drill tailings showed features suggestive of the crystalline hematite identified by CheMin analyses. The Windjana drill sample tailings exhibited flat, low relative reflectance spectra, explained by the occurrence of magnetite detected by CheMin. Passive spectra of Bonanza King were similar, suggesting the presence of spectrally dark and neutral minerals such as magnetite. Long-distance spectra of the “Hematite Ridge” feature (3–5 km from the rover) exhibited features consistent with crystalline hematite. The Bagnold dune field north of the Hematite Ridge area exhibited low relative reflectance and near-infrared features indicative of basaltic materials (olivine, pyroxene). Light-toned layers south of Hematite Ridge lacked distinct spectral features in the 400–840 nm region, and may represent portions of nearby clay minerals and sulfates mapped with orbital near-infrared observations. The presence of ferric sulfates such as jarosite in the drill tailings suggests a relatively acidic environment, likely associated with flow of iron-bearing fluids, associated oxidation, and/or hydrothermal leaching of sedimentary rocks. Combined with other remote sensing data sets, mineralogical constraints from ChemCam passive spectra will continue to play an important role in interpreting the mineralogy and composition of materials encountered as Curiosity traverses further south within the basal layers of the Mt. Sharp complex.« less
NASA Astrophysics Data System (ADS)
Park, A. J.; Chan, M. A.; Parry, W. T.
2005-12-01
Modeling of how terrestrial concretions form can provide valuable insights into understanding water-rock interactions that led to the formation of hematite concretions at Meridiani Planum, Mars. Numerical simulations of iron oxide concretions in the Jurassic Navajo Sandstone of southern Utah provide physical and chemical input parameters for emulating conditions that may have prevailed on Mars. In the terrestrial example, iron oxide coatings on eolian sand grains are reduced and mobilized by methane or petroleum. Precipitation of goethite or hematite occurs as Fe interacts with oxygen. Conditions that produced Navajo Sandstone concretions can range from a regional scale that is strongly affected by advection of large pore volumes of water, to small sub-meter scale features that are dominantly controlled by diffusive processes. Hematite concretions are results of a small-scale cross-diffusional process, where Fe and oxygen are supplied from two opposite sides from the 'middle' zone of mixing where concretions precipitate. This is an ideal natural system where Liesegang banding and other self-organized patterns can evolve. A complicating variable here is the sedimentologic (both mineralogic and textural) heterogeneity that, in reality, may be the key factor controlling the nucleation and precipitation habits (including possible competitive growth) of hematite concretions. Sym.8 water-rock interaction simulator program was used for the Navajo Sandstone concretions. Sym.8 is a water-rock simulator that accounts for advective and diffusive mass-transfer, and equilibrium and kinetic reactions. The program uses a dynamic composite media texture model to address changing sediment composition and texture to be consistent with the reaction progress. Initial one-dimensional simulation results indicate precipitation heterogeneity in the range of sub-meters, e.g., possible banding and distribution of iron oxide nodules may be centimeters apart for published diffusivities and water chemistries of the solutes involved. This modeling effort underscores the importance of coupled reactions and mass-transfer in formation of iron oxide concretions in both terrestrial and Mars sediments. Methane is interpreted to be the reactive agent that mobilizes iron in Navajo Sandstone. On Mars volatile volcanic gases may be the reactive agents that mobilize iron from volcanic sediments. In both cases, subsequent diffusive and advective mass-transfer coupled to nonlinear chemical reactions produces localized precipitates.
Thermodynamic properties of hematite — ilmenite — geikielite solid solutions
NASA Astrophysics Data System (ADS)
Ghiorso, Mark S.
1990-11-01
A solution model is developed for rhombohedral oxide solid solutions having compositions within the ternary system ilmenite [(Fe{2+/ s }Ti{4+/1- s }) A (Fe{2+/1- s }Ti{4+/s}) B O3]-geikielite [(Mg{2+/ t }Ti{4+/1- t }) A (Mg{2+/1- t }Ti{4+/ t }) B O3]-hematite [(Fe3+) A (Fe3+) B O3]. The model incorporates an expression for the configurational entropy of solution, which accounts for varying degrees of structural long-range order (0≤s, t≤1) and utilizes simple regular solution theory to characterize the excess Gibbs free energy of mixing within the five-dimensional composition-ordering space. The 13 model parameters are calibrated from available data on: (1) the degree of long-range order and the composition-temperature dependence of theRbar 3c - Rbar 3 transition along the ilmenite-hematite binary join; (2) the compositions of coexisting olivine and rhombohedral oxide solid solutions close to the Mg-Fe2+ join; (3) the shape of the miscibility gap along the ilmenite-hematite join; (4) the compositions of coexisting spinel and rhombohedral oxide solid solutions along the Fe2+-Fe3+ join. In the course of calibration, estimates are obtained for the reference state enthalpy of formation of ulvöspinel and stoichiometric hematite (-1488.5 and -822.0 kJ/mol at 298 K and 1 bar, respectively). The model involves no excess entropies of mixing nor does it incorporate ternary interaction parameters. The formulation fits the available data and represents an internally consistent energetic model when used in conjuction with the standard state thermodynamic data set of Berman (1988) and the solution theory for orthopyroxenes, olivines and Fe-Mg titanomagnetite-aluminate-chromate spinels developed by Sack and Ghiorso (1989, 1990a, b). Calculated activity-composition relations for the end-members of the series, demonstrate the substantial degree of nonideality associated with interactions between the ordered and disordered structures and the dominant influence of the miscibility gap across much of the ternary system. The predicted shape of the miscibility gap, and the orientation of tie-lines relating the compositions of coexisting phases, display the effects of coupling between the excess enthalpy of solution and the degree of long-range order. One limb of the miscibility gap follows the composititiontemperature surface corresponding to the ternaryRbar 3 - Rbar 3c second-order transition.
NASA Astrophysics Data System (ADS)
Nørnberg, Per; Vendelboe, Anders L.; Gunnlaugsson, Haraldur P.; Merrison, Jonathan P.; Finster, Kai; Jensen, Svend K.
2010-05-01
Isolated soil spots, a few square metres in size, as red as Munsell colour 10R ¾ are found in Denmark. These spots are well known as places that have been exposed to fire. However, a long-standing unresolved puzzle is the presence of extended areas with high iron content (8-40 %) where goethite and ferrihydrite are present in the topsoil along with hematite and maghemite. Hematite and particularly maghemite would normally not be expected to occur under the temperate humid Danish climate, but be interpreted as the result of high temperature as found in tropical areas or after forest fires. However, a body of evidence argues against these sites having been exposed to fire. In an attempt to get closer to an explanation of this iron mineralogy, an experimental forest fire was produced. The results showed a clear mineralogical zonation down to 10 cm depth. This was not observed at the natural sites, which contained a uniform mixture of goethite/ferrihydrite, hematite and maghemite down to 20 cm depth. The experimental forest fire furthermore left charcoal and ashes at the topsoil, produced high pH and decreased organic matter content, all of which is in contrast to the natural sites. Physical and chemical date as well as XRD, Mössbauer spectroscopic data and TEM micrographs from the sites will be presented. The conclusion from this work is that the mineralogy of these sites is not consistent with exposure to fire, but may rather result from long term transformation within a reducing environment, possibly involving microorganisms. References: Nørnberg, P., Vendelboe, A.L., Gunnlaugsson, H.P., Merrison, J.P., Finster, K., Jensen, S.K. 2009 Mineralogy after an experimental forest fire on Quaternary soil goethite, compared with a hematite, maghemite, goethite containing topsoil. Clay Minerals, 44, 239-247. Nørnberg, P., Gunnlaugsson, H.P., Merrison, J.P., Vendelboe, A.L. 2009: Salten Skov I: A Martian dust analogue. Planetary and Space Science, 57, 628-631. Nørnberg, P., Schwertmann, U., Stanjek, C.B., An¬dersen, T., Gunnlaugsson, H.P. 2004: Mineralogy of Quaternary iron oxide rich formations in Denmark.Clay Minerals, 39, 85-98.
NASA Astrophysics Data System (ADS)
Geissman, J. W.; McIntosh, J.; Buhedma, H. M. A.
2017-12-01
Despite the fact that the Triassic Period (ca. 251.9-201.3 Ma) is bound by two of Earth's largest mass extinctions, experienced giant bolide impacts and eruption of three large igneous provinces, and witnessed evolution of the main components of modern tetrapod communities, the time interval has sparse geochronologic calibration. The US NSF- and ICDP-funded coring of Phase 1 of the CPCP was completed in 2013, with the recovery of two major cores (6.35 cm diameter: 1A, 518m length and 2B, 253m; 31km apart) from the Petrified Forest National Park spanning the Chinle and Moenkopi fms. Core 1A has been fully sampled, with specimens obtained either by drilling or by extraction of core fragments and packing in ceramic boxes. Specimens are subjected to progressive thermal demagnetization or a combination of alternating field (AF) followed by thermal treatment. In several cases, specimens were extracted from each core segment to test for internal consistency. Chinle hematitic mudstones and siltstones have NRM intensities between 130 to 0.5 mA/m, with bulk susceptibilities from 2 x 10-2 to 5 x 10-5 SI units. More indurated hematitic siltstones/ medium sandstones of the Moenkopi Fm have NRM intensities and bulk susceptibilities that are far less variable (NRM: 9.0 to 1.2 mA/m, MS: 3.0 X 10-4 and 0.5 x 10-5 SI vol). Thermal demagnetization typically isolates magnetizations of N declination and shallow inclination (interpreted as normal polarity) and antipodes (reverse) (image), a polarity stratigraphy is being compiled for much of the section. Response is typically more interpretable for very hematitic Chinle mudstone sections and most Moenkopi rocks. Coarser grained, less hematitic Chinle strata rarely yield interpretable results, likely due to coarse-grained detrital magnetite, and it is likely that these intervals will not yield robust polarity information. Some core segments yield well-resolved magnetizations that are inconsistent with a Triassic field and we suspect occasional core reorientation inaccuracies. For core segments yielding magnetizations resembling a Triassic magnetic field, anisotropy of magnetic susceptibility data show a well-developed depositional fabric. IRM acquisition and backfield demagnetization data demonstrate both hematite and magnetite as magnetic phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jeffrey R.; Bell, James F.; Bender, Steve
Relative reflectace point spectra (400–840 nm) were acquired by the Chemistry and Camera (ChemCam) instrument on the Mars Science Laboratory (MSL) rover Curiosity in passive mode (no laser) of drill tailings and broken rock fragments near the rover as it entered the lower reaches of Mt. Sharp and of landforms at distances of 2–8 km. Freshly disturbed surfaces are less subject to the spectral masking effects of dust, and revealed spectral features consistent with the presence of iron oxides and ferric sulfates. Here, we present the first detection on Mars of a ~433 nm absorption band consistent with small abundancesmore » of ferric sulfates, corroborated by jarosite detections by the Chemistry and Mineralogy (CheMin) X-ray diffraction instrument in the Mojave, Telegraph Peak, and Confidence Hills drilled samples. The disturbed materials near the Bonanza King region also exhibited strong 433 nm bands and negative near-infrared spectral slopes consistent with jarosite. ChemCam passive spectra of the Confidence Hills and Mojave drill tailings showed features suggestive of the crystalline hematite identified by CheMin analyses. The Windjana drill sample tailings exhibited flat, low relative reflectance spectra, explained by the occurrence of magnetite detected by CheMin. Passive spectra of Bonanza King were similar, suggesting the presence of spectrally dark and neutral minerals such as magnetite. Long-distance spectra of the “Hematite Ridge” feature (3–5 km from the rover) exhibited features consistent with crystalline hematite. The Bagnold dune field north of the Hematite Ridge area exhibited low relative reflectance and near-infrared features indicative of basaltic materials (olivine, pyroxene). Light-toned layers south of Hematite Ridge lacked distinct spectral features in the 400–840 nm region, and may represent portions of nearby clay minerals and sulfates mapped with orbital near-infrared observations. The presence of ferric sulfates such as jarosite in the drill tailings suggests a relatively acidic environment, likely associated with flow of iron-bearing fluids, associated oxidation, and/or hydrothermal leaching of sedimentary rocks. Combined with other remote sensing data sets, mineralogical constraints from ChemCam passive spectra will continue to play an important role in interpreting the mineralogy and composition of materials encountered as Curiosity traverses further south within the basal layers of the Mt. Sharp complex.« less
NASA Astrophysics Data System (ADS)
Carneiro, Cristine E. A.; Ivashita, Flávio F.; de Souza, Ivan Granemann; de Souza, Cláudio M. D.; Paesano, Andrea; da Costa, Antonio C. S.; di Mauro, Eduardo; de Santana, Henrique; Zaia, Cássia T. B. V.; Zaia, Dimas A. M.
2013-04-01
This study investigated the synthesis of goethite under conditions resembling those of the prebiotic Earth. The artificial seawater used contains all the major elements as well as amino acids (α-Ala, β-Ala, Gly, Cys, AIB) that could be found on the prebiotic Earth. The spectroscopic methods (FT-IR, EPR, Raman), scanning electron microscopy (SEM) and X-ray diffraction showed that in any condition Gly and Cys favoured the formation of goethite, artificial seawater plus β-Ala and distilled water plus AIB favoured the formation of hematite and for the other synthesis a mixture of goethite and hematite were obtained. Thus in general no protein amino acids (β-Ala, AIB) favoured the formation of hematite. As shown by surface enhanced Raman spectroscopy (SERS) spectra the interaction between Cys and Fe3+ of goethite is very complex, involving decomposition of Cys producing sulphur, as well as interaction of carboxylic group with Fe3+. SERS spectra also showed that amino/CN and C-CH3 groups of α-Ala are interacting with Fe3+ of goethite. For the other samples the shifting of several bands was observed. However, it was not possible to say which amino acid groups are interacting with Fe3+. The pH at point of zero charge of goethites increased with artificial seawater and decreased with amino acids. SEM images showed when only goethite was synthesized the images of the samples were acicular and when only hematite was synthesized the images of the samples were spherical. SEM images for the synthesis of goethite with Cys were spherical crystal aggregates with radiating acicular crystals. The highest resonance line intensities were obtained for the samples where only hematite was obtained. Electron paramagnetic resonance (EPR) and Mössbauer spectra showed for the synthesis of goethite with artificial seawater an isomorphic substitution of iron by seawater cations. Mössbauer spectra also showed that for the synthesis goethite in distilled water plus Gly only goethite was synthesized and in artificial seawater plus Cys a doublet due to interaction of iron with artificial seawater/Cys was observed. It should be pointed out that EPR spectroscopy did not show the interaction of iron with artificial seawater/Cys.
NASA Astrophysics Data System (ADS)
Geissman, J. W.; Buhedma, H. M. A.; McIntosh, J.; Olsen, P. E.; Kent, D. V.
2016-12-01
The Triassic Period (251.9-201.3 Ma) is bound by two of Earth's largest mass extinctions, suffered giant bolide impacts and eruption of 3 large igneous provinces, and saw evolution of the main components of modern tetrapod communities, and yet has sparse geochronologic calibration. To bridge this gap, the US NSF- and ICDP-funded coring of Phase 1 of the CPCP was completed in late 2013, with the recovery of two major cores (1A, 518m length and 2B, 253m; 31km apart) from the north and south ends of Petrified Forest National Park spanning most of the Chinle and all of the Moenkopi fms. Core 1A has been fully sampled, with specimens obtained either by drilling or by careful extraction of core fragments and packing in ceramic boxes. Several specimens were extracted from each core segment to test for internal consistency and subjected to progressive thermal demagnetization or a combination of alternating field (AF) followed by thermal treatment. Chinle hematitic mudstones and siltstones have NRM intensities that range from 130 to 0.5 mA/m, with bulk susceptibilities from 2 x 10-2 to 5 x 10-5 SI units. More indurated hematitic siltstones and sandstones of the Moenkopi Fm have NRM intensities that range from 9.0 to 1.2 mA/m and bulk susceptibilities are far less variable, between 3.0 X 10-4 and 0.5 x 10-5 SI units. Thermal demagnetization typically isolates magnetizations of N declination and shallow inclination (interpreted as normal polarity) and antipodes (reverse). Some core segments yield well-resolved magnetizations that are inconsistent with a Triassic field and we suspect correctable core orientation errors. Demagnetization response is typically more interpretable for hematitic Chinle mudstone intervals and most Moenkopi rocks. Coarser grained, less hematitic Chinle rocks rarely yield interpretable results, likely due to coarse-grained detrital magnetite. For core segments yielding magnetizations resembling a Triassic magnetic field, anisotropy of magnetic susceptibility data show a well-developed depositional fabric. IRM acquisition and backfield demagnetization data demonstrate both hematite and magnetite as magnetic phases. Given results thus far, a polarity stratigraphy should be obtainable for the section, allowing global export of the numerous zircon U-Pb dates from core and local outcrop.
Paleomagnetism and tectonics of the Jura arcuate mountain belt in France and Switzerland
NASA Astrophysics Data System (ADS)
Gehring, Andreas U.; Keller, Peter; Heller, Friedrich
1991-02-01
Goethite and hematite in ferriferous oolitic beds of Callovian age from the Jura mountains (Switzerland, France) carry either pre- and/or post-tectonic magnetization. The frequent pre-tectonic origin of goethite magnetization indicates a temperature range during formation of the arcuate Jura mountain belt below the goethite Néel temperature of about 100°C. The scatter of the pre-tectonic paleomagnetic directions ( D = 11.5° E, I = 55.5°; α95 = 4.7) which reside both in goethite and hematite, provides strong evidence that the arcuate mountain belt was shaped without significant rotation. The paleomagnetic results support tectonic thin-skinned models for the formation of the Jura mountain belt.
Tucker, Robert D.; Stettner, Will R.; Masonic, Linda M.; Bogdanow, Anya K.
2014-01-01
The Ahankashan and Rakhna prospect area is one of several gold and copper deposits within west-central Afghanistan. Here, various felsic to intermediate igneous porphyries intrude Lower Triassic to lower Paleogene sedimentary rocks, producing mineral and ore-bearing zones related to hydrothermal alteration, skarns, silicification, and crushing (brecciation). Mineralized skarns contain assemblages such as magnetite, magnetite-hematite, epidote-hematite, and epidote-garnet, as well as disseminations of chalcopyrite, covellite, chalcocite, cuprite, malachite, and azurite. Gold mineralization is mainly associated with zones of crushing along faults, and with small silicified igneous veins within granite and quartz porphyry.
2011-02-01
cuprite [Cu2O], hematite [Fe2O3], ilmenite [FeTiO3], magnesite [MgCO3], malachite [Cu2(CO3)(OH)2], pyrite [FeS2], pyrolusite [MnO2], siderite [FeCO3...0.3 m2/g], malachite [3.65 ± 0.03 m2/g], pyrite [2.12 ± 0.01 m2/g], pyrolusite [1.39 ± 0.04 m2/g], siderite [6.8 ± 0.4 m2/g], willemite [1.8 ± 0.02 m2...0.4 0.6 0.8 1 0 10 20 30 40 50 60 Anatase Bauxite Calcite Cobaltite Control Cuprite Hematite Ilmenite Magnesite Malachite Pyrite Pyrolusite Siderite
Tubular nanostructured materials for bioapplications
NASA Astrophysics Data System (ADS)
Xie, Jining; Chen, Linfeng; Srivatsan, Malathi; Varadan, Vijay K.
2009-03-01
Tubular nanomaterials possess hollow structures as well as high aspect ratios. In addition to their unique physical and chemical properties induced by their nanoscale dimensions, their inner voids and outer surfaces make them ideal candidates for a number of biomedical applications. In this work, three types of tubular nanomaterials including carbon nanotubes, hematite nanotubes, and maghemite nanotubes, were synthesized by different chemical techniques. Their structural and crystalline properties were characterized. For potential bioapplications of tubular nanomaterials, experimental investigations were carried out to demonstrate the feasibility of using carbon nanotubes, hematite nanotubes, and maghemite nanotubes in glucose sensing, neuronal growth, and drug delivery, respectively. Preliminary results show the promise of tubular nanomaterials in future biomedical applications.
NASA Astrophysics Data System (ADS)
Costa, B. F. O.; Silva, A. J. M.; Wagner, F. E.; Wagner, U.
2011-11-01
Haltern 70 amphora sherds from Castro do Vieito and from kilns in the Roman provinces Baetica and Lusitania were studied by Mössbauer spectroscopy, EDX and XRD. An amphora whose handle was carefully studied must have been fired reducingly at a temperature of or above about 900°C and cooled in oxidizing conditions in the end. Oxidation and hematite formation went hand in hand, and the amount of hematite formed depended sensitively of the speed of penetration of the oxygen and the cooling rate in the interior of the ceramic body.
NASA Technical Reports Server (NTRS)
Morris, Richard V.; Schulze, Darrell G.; Lauer, Howard V., Jr.; Agresti, David G.; Shelfer, Tad D.
1992-01-01
The effect of substituting iron by aluminum in polymorphs of Fe2O3 and FeOOH on their reflectivity characteristics was investigated by comparing data on visible and NIR reflectivities and on static magnetic, XRD, and Moessbauer properties for a family of aluminum-substituted hematites alpha-(Fe,Al)2O3, with compositions where the values of the Al/(Al+Fe) ratio were up to 0.61. Samples were prepared by oxidation of magnetite, dehydroxylation of goethite, and direct precipitation. The analytical methods used for obtaining diffuse reflectivity spectra (350-2200 nm), Moessbauer spectra, and static magnetic data are those described by Morris et al. (1989).
The Fe removal in pyrophyllite by physical method
NASA Astrophysics Data System (ADS)
Cho, Kanghee; Jo, Jiyu; Bak, GeonYeong; Choi, NagChoul; Park*, CheonYoung
2015-04-01
The presence of Fe in ingredient material such as limestone, borax and pyrophyllite can prevent their use mainly in the glass fiber manufacturing industry. The red to yellow pigmentation in pyrophyllite is mainly due to the associated oxides and sulfides of Fe such as hematite, pyrite, etc. The removal of Fe in the pyrophyllite was investigated using high frequency treatment and magnetic separation under various alumina grades in pyrophyllite. The hematite and pyrite were observed in the pyrophyllite from photomicrograph and XRD analysis results. On the decrease of Al2O3 content in pyrophyllite was showed that SiO2, Fe2O3 and TiO2 content were increased by XRF analysis. The high frequency treatment experiment for the pyrophyllite showed that the (1) pyrite phase was transformed hematite and magnetite, (2) mass loss of the sample by volatilization of included sulfur(S) in pyrite. The results of magnetic separation for treated sample by high frequency were identified that Fe removal percent were in the range of 97.6~98.8%. This study demonstrated that physical method (high frequency treatment and magnetic separation) was effective for the removal of Fe in pyrophyllite. This subject is supported by Korea Ministry of Environment(MOE) as "Advanced Technology Program for Environmental Industry".
Molecular dynamics studies of water deposition on hematite surfaces
NASA Astrophysics Data System (ADS)
Kvamme, Bjørn; Kuznetsova, Tatiana; Haynes, Martin
2012-12-01
The interest in carbon dioxide for enhanced oil recovery is increasing proportional to the decrease in naturally driven oil production and also due to the increasing demand for reduced emission of carbon dioxide to the atmosphere. Transport of carbon dioxide in offshore pipelines involves high pressure and low temperatures which may lead to the formation of hydrate between residual water dissolved in carbon dioxide. The critical question is whether the water at some condition of temperature and pressure will drop out as liquid droplets or as water adsorbed on the surfaces of the pipeline and then subsequently form hydrates heterogeneously. In this work we have used the 6-311G basis set with B3LYP to estimate the charge distribution of different sizes of hematite crystals. The obtained surface charge distribution were kept unchanged while the inner charge distribution where scaled so as to result in an overall neutral crystal. These rust particles were embedded in water and chemical potential for adsorbed water molecules were estimated through thermodynamic integration and compared to similar estimates for same size water cluster. Estimated values of water chemical potentials indicate that it is thermodynamically favorable for water to adsorb on hematite, and that evaluation of potential carbon dioxide hydrate formation conditions and kinetics should be based this sequence of processes.
Post-depositional alteration of titanomagnetite in a Miocene sandstone, south Texas (U.S.A.)
Reynolds, R.L.
1982-01-01
Petrographic and geochemical studies have yielded information on the time-space relationships of the post-depositional alteration of detrital titanomagnetite (Ti-mt) in fine- to medium-grained sandstone from unoriented core samples (taken below the water table at depths of 30-45 m) of the Miocene Catahoula Sandstone, south Texas. Aqueous sulfide introduced from sour gas reservoirs along a growth fault into part of the Catahoula shortly after deposition resulted in the replacement at the periphery of Ti-mt grains by iron disulfide (FeS2) minerals. Remnants of Ti-mt in cores of the partly sulfidized grains show no evidence of earlier hematitic oxidation. After sulfidization, part of the sandstone body was invaded by oxygenated groundwaters flowing down a shallowly inclined (1??) hydrologic gradient. The boundary between oxidized and reduced facies is clearly defined by the distribution of ferric and ferrous iron minerals, and the concentrations of Mo, U, and Se. In oxidized (light-red) strata that had not been previously subjected to sulfidic-reducing conditions but that are correlative with strata containing FeS2 minerals, Ti-mt has been partly to entirely replaced pseudomorphously by hematite to form martite. The absence of hematitic alteration of Ti-mt in the reduced facies is strong evidence that martite in the oxidized facies formed after deposition. ?? 1982.
Mössbauer and magnetic studies of surfactant mediated Ca-Mg doped ferrihydrite nanoparticles.
Layek, Samar; Mohapatra, M; Anand, S; Verma, H C
2013-03-01
Ultrafine (2-5 nm) particles of amorphous Ca-Mg co-doped ferrihydrite have been synthesized by surfactant mediated co-precipitation method. The evolution of the amorphous ferrihydrite by Ca-Mg co-doping is quite different from our earlier investigations on individual doping of Ca and Mg. Amorphous phase of ferrihydrite for the present study has been confirmed by X-ray diffraction (XRD) and Mössbauer spectroscopy at room temperature and low temperatures (40 K and 20 K). Hematite nanoparticles with crystallite size about 8, 38 and 70 nm were obtained after annealing the as-prepared samples at 400, 600 and 800 degrees C respectively in air atmosphere. Superparamagnetism has been found in 8 nm sized hematite nanoparticles which has been confirmed from the magnetic hysteresis loop with zero remanent magnetization and coercive field and also from the superparamagnetic doublet of its room temperature Mössbauer spectrum. The magnetic properties of the 38 and 70 nm sized particles have been studied by room temperature magnetic hysteresis loop measurements and Mössbauer spectroscopy. The coercive field in these hematite nanoparticles increases with increasing particle size. Small amount of spinel MgFe2O4 phase has been detected in the 800 degrees C annealed sample.
NASA Technical Reports Server (NTRS)
Sadowski, R. M.; Abrams, M. J.
1983-01-01
Two Visible-Near Infrared (VNIR) scanners, the NS-001 and the M2S, were flown over the Rosemont porphyry copper deposit as part of the NASA/JPL/GEOSAT test site program. This program was established to determine the feasibility and limitations of mapping hydrothermal alteration with multispectral scanners. Data from the NS-001 at 0.83 and 2.2 microns were used to identify Fe(3+) and OH enriched outcrops. These areas were then correlated with three alteration assemblages. The first correlation, hematite-epidote, was the most obvious and appeared as a strong ferric iron signature associated with hematite stained Cretaceous arkoses and andesites. The second correlation, qtz-sericite, showed a combined ferric-hydroxyl signature for a phyllicly altered quartz monzonite. The third correlation, skarn, was identified only after a review of calc-silicate mineral VNIR spectra. Altered limestones that outcrop west of the deposit have a similar ferric iron-hydroxyl signature as the quartz-sericite altered quartz monzonite. This skarn signature has been interpreted to indicate the presence of andradite, hydro-grossularite and idocrase. Data from the second scanner, M2S, was used to search for variation in ferric iron mineral type. Resulting imagery data indicated that hematite was the dominant ferric iron mineral present in the Rosemont area.
Hegner, Franziska Simone; Cardenas-Morcoso, Drialys; Giménez, Sixto; López, Núria; Galan-Mascaros, Jose Ramon
2017-11-23
The realization of artificial photosynthesis may depend on the efficient integration of photoactive semiconductors and catalysts to promote photoelectrochemical water splitting. Many efforts are currently devoted to the processing of multicomponent anodes and cathodes in the search for appropriate synergy between light absorbers and active catalysts. No single material appears to combine both features. Many experimental parameters are key to achieve the needed synergy between both systems, without clear protocols for success. Herein, we show how computational chemistry can shed some light on this cumbersome problem. DFT calculations are useful to predict adequate energy-level alignment for thermodynamically favored hole transfer. As proof of concept, we experimentally confirmed the limited performance enhancement in hematite photoanodes decorated with cobalt hexacyanoferrate as a competent water-oxidation catalyst. Computational methods describe the misalignment of their energy levels, which is the origin of this mismatch. Photoelectrochemical studies indicate that the catalyst exclusively shifts the hematite surface state to lower potentials, which therefore reduces the onset for water oxidation. Although kinetics will still depend on interface architecture, our simple theoretical approach may identify and predict plausible semiconductor/catalyst combinations, which will speed up experimental work towards promising photoelectrocatalytic systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Redox Reactions of Phenazine Antibiotics with Ferric (Hydr)oxides and Molecular Oxygen
Wang, Yun; Newman, Dianne K.
2009-01-01
Phenazines are small redox-active molecules produced by a variety of bacteria. Beyond merely serving as antibiotics, recent studies suggest that phenazines play important physiological roles, including one in iron acquisition. Here we characterize the ability of four electrochemically reduced natural phenazines—pyocyanin (PYO), phenazine-1-carboxylate (PCA), phenazine-1-carboxamide, and 1-hydroxyphenazine (1-OHPHZ)—to reductively dissolve ferrihydrite and hematite in the pH range 5–8. Generally, the reaction rate is higher for a phenazine with a lower reduction potential, with the reaction between PYO and ferrihydrite at pH 5 being an exception; the rate decreases as the pH increases; the rate is higher for poorly crystalline ferrihydrite than for highly crystalline hematite. Ferric (hydr)oxide reduction by reduced phenazines can potentially be inhibited by oxygen, where O2 competes with Fe(III) as the final oxidant. The reactivity of reduced phenazines with O2 decreases in the order: PYO > 1-OHPHZ > PCA. Strikingly, reduced PYO, which is the least reactive phenazine with ferrihydrite and hematite at pH 7, is the most reactive phenazine with O2. These results imply that different phenazines may perform different functions in environments with gradients of iron and O2. PMID:18504969
NASA Astrophysics Data System (ADS)
Rioult, Maxime; Belkhou, Rachid; Magnan, Hélène; Stanescu, Dana; Stanescu, Stefan; Maccherozzi, Francesco; Rountree, Cindy; Barbier, Antoine
2015-11-01
The direct conversion of solar light into chemical energy or fuel through photoelectrochemical water splitting is promising as a clean hydrogen production solution. Ti-doped hematite (Ti:α-Fe2O3) is a potential key photoanode material, which despite its optimal band gap, excellent chemical stability, abundance, non-toxicity and low cost, still has to be improved. Here we give evidence of a drastic improvement of the water splitting performances of Ti-doped hematite photoanodes upon a HCl wet-etching. In addition to the topography investigation by atomic force microscopy, a detailed determination of the local electronic structure has been carried out in order to understand the phenomenon and to provide new insights in the understanding of solar water splitting. Using synchrotron radiation based spectromicroscopy (X-PEEM), we investigated the X-ray absorption spectral features at the L3 Fe edge of the as grown surface and of the wet-etched surface on the very same sample thanks to patterning. We show that HCl wet etching leads to substantial surface modifications of the oxide layer including increased roughness and chemical reduction (presence of Fe2 +) without changing the band gap. We demonstrate that these changes are profitable and correlated to the drastic changes of the photocatalytic activity.
Influence of Oxalate on Ni Fate during Fe(II)-Catalyzed Recrystallization of Hematite and Goethite.
Flynn, Elaine D; Catalano, Jeffrey G
2018-06-05
During biogeochemical iron cycling at redox interfaces, dissolved Fe(II) induces the recrystallization of Fe(III) oxides. Oxalate and other organic acids promote dissolution of these minerals and may also induce recrystallization. These processes may redistribute trace metals among the mineral bulk, mineral surface, and aqueous solution. However, the impact of interactions among organic acids, dissolved Fe(II), and iron oxide minerals on trace metal fate in such systems is unclear. The present study thus explores the effect of oxalate on Ni release from and incorporation into hematite and goethite in the absence and presence of Fe(II). When Ni is initially structurally incorporated into the iron oxides, both oxalate and dissolved Fe(II) promote the release of Ni to aqueous solution. When both species are present, their effects on Ni release are synergistic at pH 7 but inhibitory at pH 4, indicating that cooperative and competitive interactions vary with pH. In contrast, oxalate suppresses Ni incorporation into goethite and hematite during Fe(II)-induced recrystallization, decreasing the proportion of Ni substituting in a mineral structure by up to 36%. These observations suggest that at redox interfaces oxalate largely enhances trace metal mobility. In such settings, oxalate, and likely other organic acids, may thus enhance micronutrient availability and inhibit contaminant sequestration.
Hematite-Rich Fracture Fill at Meridiani Planum, Mars: Implications for Fluid Chemistry
NASA Technical Reports Server (NTRS)
Yen, Albert; Mittlefehldt, David W.; Morris, Richard V.; Gellert, Ralf
2010-01-01
The Mars Exploration Rover Opportunity has been operating at the surface of Mars for over 2100 sols and has driven a distance of approximately 20 km. Throughout the traverse, outcrop rocks with margins and fracture fill resistant to erosion have been imaged and analyzed in detail by the Moessbauer (MB) spectrometer and the Alpha Particle X-ray Spectrometer (APXS). A recent APXS analysis of an outcrop block excavated by a young impact crater shows a coating with the highest concentration of iron measured by either rover, not including the iron-nickel meteorites. Texturally, this sample (referred to as "Chocolate Hills -Aloya") appears as a cemented collection of partially fragmented \\blueberries." With the exception of an elevated sulfur content, the elemental chemistry of this particular sample is entirely consistent with other analyses of hematite spherules at Merdiani Planum. As a result, it is difficult to determine whether this coating, which may have been filling a fracture in outcrop rocks prior to disruption by the impact, was simply an agglomeration of spherules or a result of a more complicated aqueous process. In contrast, a number of other fracture-filling exposures and erosion-resistant rinds have been analyzed by the APXS and MB instruments showing significant concentrations of iron in the form of hematite without the texture of spherule fragments. In one of these samples, a broken piece of fracture fill within Victoria crater referred to as "Dorsal," showed over 50% of the iron in hematite, the highest Mn concentration of any sample measured by the rovers, and elevated levels of Cl and Br. While the Fe:Mn ratio of the Dorsal analyses are comparable to that of Gusev and Meridiani basalts, it is clear that chemistry of this sample cannot be completely explained by a simple mixing of outcrop and blueberry compositions
NASA Astrophysics Data System (ADS)
Font, Eric; Adatte, Thierry; Ponte, Jorge; Fantasia, Alicia; Mirão, José; Samant, Bandana; Mohabey, Dhananjay; Florindo, Fabio
2014-05-01
The Deccan phase 2 is a crucial period caracterized by the rapid eruptions of huge volume of continental flood basalts correlated in age to the mass extinction of the Cretaceous-Paleogene boundary. However, local to global paleonvironmental changes during the Deccan Phase 2 are still baddly known. Here we provide new environmental magnetic data coupled to scanning electron microscopy of intertrapean deposits from the Deccan Volcanic Province (India) in order to unravel local paleoenvironmental conditions during periods of volcanic quiescence in the aftermath of the Deccan Phase 1 and Phase 2. Our results show that the magnetic mineralogy of these lacustrine and fluvial sediments is composed by several populations of iron oxides and sulphur, with a large range of grain size, probably resulting from different source of magnetic carriers (aeolian, detrital and bio-chemical). The number of magnetic phases identified using unmixing Isothermal Remanence Magnetic techniques is significantly higher (2 to 4) in the Podgavan section equivalent to Phase 2 than in the other studied sections, interpreted to result from higher weathering rates (acidity) by correlation with index of chemical alteration. Detailed scanning electron microscopy analysis of the Podgavan section reveal a complex mineralogy constituted by detrital magnetite, spherical and framboidal magnetite, microsphere of silicon, pyrrhotite, sylvite, manganese oxides and sporangiospores. A peculiar interval observed in the middle part of the Podgavan section, and corresponding to a thin interval of organic-rich clay capped by a thin oxidized level of reddish clays, show the presence of calcite needles and very fine hematite pigment. Hematite pigment are systematically associated to voids and form structures comparable to the blueberry hematite formed on mars. The abrupt transition from organic-rich levels (reducing conditions) to red hematitic clays (oxidation) suggests drastic and abrupt paleoenvironmental changes and acid conditions during the Deccan Phase 2. Keywords: Deccan, lacustrine sediments, environmental magnetism, acid rain, climate, weathering, volcanism.
NASA Astrophysics Data System (ADS)
Raye, Urmidola; Pufahl, Peir K.; Kyser, T. Kurtis; Ricard, Estelle; Hiatt, Eric E.
2015-09-01
The Sokoman Formation is a ca. 100-m-thick succession of interbedded iron formation and fine-grained siliciclastics deposited at 1.88 Ga. Accumulation occurred on a dynamic paleoshelf where oxygen stratification, coastal upwelling of hydrothermally derived Fe and Si, microbial processes, tide and storm currents, diagenesis, and low-grade prehnite-pumpellyite metamorphism controlled lithofacies character and produced complex associations of multigenerational chert, hematite, magnetite, greenalite, stilpnomelane and Fe carbonate. Hematite-rich facies were deposited along suboxic segments of the coastline where photosynthetic oxygen oases impinged on the seafloor. Hematitic, cross-stratified grainstones were formed by winnowing and reworking of freshly precipitated Fe-(oxyhydr)oxide and opal-A by waves and currents into subaqueous dunes. Magnetite-rich facies contain varying proportions of greenalite and stilpnomelane and record deposition in anoxic middle shelf environments beneath an oxygen chemocline. Minor negative Ce anomalies in hematitic facies, but prominent positive Ce and Eu anomalies and high LREE/HREE ratios in magnetite-rich facies imply the existence of a weakly oxygenated surface ocean above anoxic bottom waters. The Fe isotopic composition of 31 whole rock (-0.46 ⩽ δ56Fe ⩽ 0.47‰) and 21 magnetite samples (-0.29 ⩽ δ56Fe ⩽ 0.22‰) from suboxic and anoxic lithofacies was controlled primarily by the physical oceanography of the paleoshelf. Despite low-grade metamorphism recorded by the δ18O values of paragenetically related quartz and magnetite, the Sokoman Formation preserves a robust primary Fe isotopic signal. Coastal upwelling is interpreted to have affected the isotopic equilibria between Fe2+aq and Fe-(oxyhydr)oxide in open marine versus coastal environments, which controlled the Fe isotopic composition of lithofacies. Unlike previous work that focuses on microbial and abiotic fractionation processes with little regard for paleoenvironment, our work demonstrates that depositional setting is paramount in governing the Fe isotopic composition of iron formations irrespective of what Fe-bearing minerals precipitated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Juan; Pearce, Carolyn I.; Shi, Liang
The cycling of iron at the Earth’s near surface is profoundly influenced by dissimilatory metal reducing microorganisms, and many studies have focused on unraveling electron transfer mechanisms between these bacteria and Fe(III)-(oxyhydr)oxides. However, these efforts have been complicated by the fact that these minerals often occur in the micro- to nanosize regime, and in relevant natural environments as well as in the laboratory are subject to aggregation. The nature of the physical interface between the cellular envelope, the outer-membrane cytochromes responsible for facilitating the interfacial electron transfer step, and these complex mineral particulates is thus difficult to probe. Previous studiesmore » using whole cells have reported reduction rates that do not correlate with particle size. In the present study we isolate the interaction between the decaheme outer-membrane cytochrome OmcA of Shewanella oneidensis and nanoparticulate hematite, examining the reduction rate as a function of particle size and reaction products through detailed characterization of the electron balance and the structure and valence of iron at particle surfaces. By comparison with abiotic reduction via the smaller molecule ascorbic acid, we show that the reduction rate is systematically controlled by the sterically accessible interfacial contact area between OmcA and hematite in particle aggregates; rates increase once pore throat sizes in aggregates become as large as OmcA. Simultaneous measure of OmcA oxidation against Fe(II) release shows a ratio of 1:10, consistent with a cascade OmcA oxidation mechanism heme by heme. X-ray absorption spectroscopies reveal incipient magnetite on the reacted surfaces of the hematite nanoparticles after reaction. The collective findings establish the importance of accessibility of physical contact between the terminal reductases and iron oxide surfaces, and through apparent consistency of observations help reconcile behavior reported at the larger more complex scale of whole cell studies.« less
NASA Astrophysics Data System (ADS)
Liu, Juan; Pearce, Carolyn I.; Shi, Liang; Wang, Zheming; Shi, Zhi; Arenholz, Elke; Rosso, Kevin M.
2016-11-01
The cycling of iron at the Earth's near surface is profoundly influenced by dissimilatory metal reducing microorganisms, and many studies have focused on unraveling electron transfer mechanisms between these bacteria and Fe(III)-(oxyhydr)oxides. However, these efforts have been complicated by the fact that these minerals often occur in the micro- to nanosize regime, and in relevant natural environments as well as in the laboratory are subject to aggregation. The nature of the physical interface between the cellular envelope, the outer-membrane cytochromes responsible for facilitating the interfacial electron transfer step, and these complex mineral particulates is thus difficult to probe. Previous studies using whole cells have reported reduction rates that do not correlate with particle size. In the present study we isolate the interaction between the decaheme outer-membrane cytochrome OmcA of Shewanella oneidensis and nanoparticulate hematite, examining the reduction rate as a function of particle size and reaction products through detailed characterization of the electron balance and the structure and valence of iron at particle surfaces. By comparison with abiotic reduction via the smaller molecule ascorbic acid, we show that the reduction rate is systematically controlled by the sterically accessible interfacial contact area between OmcA and hematite in particle aggregates; rates increase once pore throat sizes in aggregates become as large as OmcA. Simultaneous measure of OmcA oxidation against Fe(II) release shows a ratio of 1:10, consistent with a cascade OmcA oxidation mechanism heme by heme. X-ray absorption spectroscopies reveal incipient magnetite on the reacted surfaces of the hematite nanoparticles after reaction. The collective findings establish the importance of accessibility of physical contact between the terminal reductases and iron oxide surfaces, and through apparent consistency of observations help reconcile behavior reported at the larger more complex scale of whole cell studies.
Moskowitz, Bruce M; Reynolds, Richard L.; Goldstein, Harland L.; Beroquo, Thelma; Kokaly, Raymond F.; Bristow, Charlie S
2016-01-01
Atmospheric mineral dust can influence climate and biogeochemical cycles. An important component of mineral dust is ferric oxide minerals (hematite and goethite) which have been shown to influence strongly the optical properties of dust plumes and thus affect the radiative forcing of global dust. Here we report on the iron mineralogy of dust-source samples from the Bodélé Depression (Chad, north-central Africa), which is estimated to be Earth’s most prolific dust producer and may be a key contributor to the global radiative budget of the atmosphere as well as to long-range nutrient transport to the Amazon Basin. By using a combination of magnetic property measurements, Mössbauer spectroscopy, reflectance spectroscopy, chemical analysis, and scanning electron microscopy, we document the abundance and relative amounts of goethite, hematite, and magnetite in dust-source samples from the Bodélé Depression. The partition between hematite and goethite is important to know to improve models for the radiative effects of ferric oxide minerals in mineral dust aerosols. The combination of methods shows (1) the dominance of goethite over hematite in the source sediments, (2) the abundance and occurrences of their nanosize components, and (3) the ubiquity of magnetite, albeit in small amounts. Dominant goethite and subordinate hematite together compose about 2% of yellow-reddish dust-source sediments from the Bodélé Depression and contribute strongly to diminution of reflectance in bulk samples. These observations imply that dust plumes from the Bodélé Depression that are derived from goethite-dominated sediments strongly absorb solar radiation. The presence of ubiquitous magnetite (0.002–0.57 wt%) is also noteworthy for its potentially higher solubility relative to ferric oxide and for its small sizes, including PM < 0.1 μm. For all examined samples, the average iron apportionment is estimated at about 33% in ferric oxide minerals, 1.4% in magnetite, and 65% in ferric silicates. Structural iron in clay minerals may account for much of the iron in the ferric silicates. We estimate that the mean ferric oxides flux exported from the Bodélé Depression is 0.9 Tg/yr with greater than 50% exported as ferric oxide nanoparticles (<0.1 μm). The high surface-to-volume ratios of ferric oxide nanoparticles once entrained into dust plumes may facilitate increased atmospheric chemical and physical processing and affect iron solubility and bioavailability to marine and terrestrial ecosystems.
Hematite Spherules of Meridiani Planum: Implications for Aqueous History at the Site
NASA Astrophysics Data System (ADS)
Calvin, W. M.
2004-12-01
The thermal infrared spectral signature of bulk, grey hematite was the chemical "beacon" that focused the selection of Meridiani Planum as the landing site for the Mars Exploration Rover Opportunity, and aqueous processes were favored for its formation. Orbital data suggesting more bound water in accessory minerals at this location also supported this interpretation. After landing January 24, 2004, the Mini-TES instrument rapidly confirmed the thermal spectral signature of bulk hematite in soils on the plains surrounding Eagle crater and unevenly distributed within the crater. Observations within Eagle crater soon uncovered unusual spherical grains in abundance surrounding the outcrop and Microscopic Imager (MI) showed these grains eroding from within these rocks. They were dubbed "blueberries" by the team due to their spherical nature and their grey or blue appearance compared to their surroundings in various color composites of Pancam images. Extensive observations with the Mössbauer, Alpha-Particle X-ray Spectrometer (APXS) and Mini-TES instruments, especially of the "Berry Bowl" (i.e. with berries and adjacent berry-free rock), confirmed that these spherules are dominantly composed of hematite. Pancam spectra of individual spheres also match laboratory spectra of hematite. These spheres are found within and around outcrop rocks, across the plains of Meridiani, and rolling into the interior of Endurance crater. They are ubiquitous and remarkably even in size and tone. Grains are spherical to subspherical typically 2 to 6 mm in diameter. Opportunity has performed numerous operations with the Rock Abrasion Tool (RAT), and has sliced through individual spherules. The appearance after ratting shows limited or no interior structure and they remain uniformly grey in color. They can preserve scratches from the grinding wheel or become dislodged by ratting, indicating they are harder than the host rock. Several lines of evidence suggest the spheres are post-depositional diagenetic products. On Earth, oolitic iron occurs as concretions in Utah and in the Clinton Formation outcropping from New York into Alabama. Ferromanganese nodules occur in abundance on the modern sea floor and are found in the Great Lakes. Although diagenetic in origin, these terrestrial analogs have strong contrasts with what is observed on Mars, including diverse size, shape and composition of terrestrial samples, significant interior lamination and presence of nucleation centers that are lacking in the Martian spheres. The uniformity of composition and size of the Martian examples provide clues to the redox state of fluids at the time of formation and by analogy with seafloor nodules a rough estimate of the time required for growth.
NASA Astrophysics Data System (ADS)
Wagner, Christiane; Orberger, Beate; Tudryn, Alina; Baptiste, Benoît; Wirth, Richard; Morgan, Rachel; Miska, Serge
2016-04-01
In low-grade banded iron formations (BIFs), a large part of the iron is related to micro- and nano- metric iron-bearing inclusions within quartz and/or carbonates, mainly dolomite (~ 20 to 50 μm). Low-grade fine grained iron ore present two types of environmental risks: a) they are often stocked as tailings. For example, the recent disaster (5th of November 2015) in the Minas Gerais district, Brazil, was caused by the collapse of the Fundão tailings dam at an open cast mine; b) during beneficiation significant amounts of dust are generated also leading to metal loss. A laminated BIF studied from a drill core at Àguas Claras Mine, Quadrilátero Ferrífero, Brazil, contains 26.71 wt. % total iron, 0.2 wt. % SiO2, 0.32 wt.% MnO, 15.46 wt. % MgO, 22.32 wt.% CaO, 0.09 wt. % P2O5, < 0.05 wt. % Al2O3, 0.15 wt. % H2O and 34.08 wt. % CO2. Environmental hazardous elements are present as traces (As: 3-20 ppm, Cd: 0-0.7 ppm; Cr: 0.05-60 ppm, Pb: up to 55 ppm; U: up to 8 ppm). Dolomite and quartz bands alternate with hematite bands. Raman spectroscopy, X-ray diffraction and FIB-TEM analyses reveal that the micro- and nano- metric inclusions in dolomite are hematite and minor goethite, partly occurring as clusters in voids. Curie Balance analyses were carried out at different heating steps and temperatures on whole rock samples and a synthetic mix of decarbonated sample and pure dolomite. X-ray diffraction on the products of the heating experiments shows that that hematite is stable and new phases: magnesioferrite (MgFe2O4), lime (CaO), periclase (MgO), portlandite (Ca(OH)2) and srebrodoskite (Ca2Fe2O5) were formed between 680 °C and 920 °C. These findings promote the economic use of low grade ores rather than their stockpiling as tailings. The presence of OH-bearing goethite reduces the sintering temperature. After having separated coarse hematite from barren dolomite and quartz, a low temperature sintering of the inclusion-bearing dolomite/quartz leads to transformations into phases with higher magnetic susceptibilities (such as hematite and magnesioferrite). The entire Fe and Fe/Mg oxide feed can then pass through wet-high intensity magnetic separation after crushing. Intelligent processing of these ore types can minimize the two above mentioned risk factors.
Magnetic Properties of Iron Oxide Minerals in Atmospheric Dust and Source Sediments from Western US
NASA Astrophysics Data System (ADS)
Moskowitz, B. M.; Yauk, K.; Till, J. L.; Berquo, T. S.; Banerjee, S. K.; Reynolds, R. L.; Goldstein, H. L.
2011-12-01
Atmospheric dust contains iron oxide minerals that can play important roles in various physical and biological processes affecting atmospheric and surface temperatures, marine phytoplankton productivity, and human health. Iron oxide minerals in dust deposited on mountain snow cover are especially important because these minerals absorb solar and IR radiation leading to changes in albedo and affecting the timing and rate of spring and summer snowpack melting. As part of an ongoing project to study physical and chemical properties of dust from sources to sinks in the western US, we will describe one approach to characterize iron oxide mineralogy using magnetic property measurements and Mossbauer spectroscopy. Magnetic property measurements over a wide range of temperatures (2-300 K) and magnetic fields (0-5 T) are particularly sensitive to composition, particle size (from nanometer to micrometer), and concentration of iron oxide and oxyhydroxide minerals. The high sensitivity of magnetic measurements to target minerals allows the measurement of bulk samples preventing any aliasing of composition or grain size resulting from attempts at prior magnetic separation. In addition, different magnetic measurement protocols can isolate different particle-size assemblages and different compositions in multicomponent mixtures and help to identify dust-source areas. These techniques have been applied to dust deposited on snow (DOS) cover of the San Juan Mountains, Colorado (collected 2005-2010) and Wasatch Mountains, Utah (collected 2010) and possible dust-source sediments from the North American Great Basin and Colorado Plateau deserts. Results show that all samples contain a high coercivity phase consistent with hematite and/or goethite as the dominate ferric oxide mineral plus minor amounts of magnetite (<0.5 wt%). The presence of magnetite was determined from the detection of the characteristic Verwey transition (T=121 K) on low-temperature (< 300 K) remanence and susceptibility curves. Room temperature remanence parameters for the San Juan Mountains DOS fall into two discrete populations of hematite concentration ( x2 difference) but with similar spreads in magnetite concentrations (0.05-0.2%) within each group. Preliminary Mössbauer spectroscopy at 300 K for San Juan Mountains DOS indicates hematite as the sole magnetic phase with magnetite below the detection limits. However, spectra taken at 4.2 K show an increase in the hematite component and the appearance of goethite indicating superparamagnetism and nanoparticle size distribution for both phases. The lack of the Morin transition (T=263 K) for hematite on low-temperature remanence curves is also consistent with nanohematite as the main iron oxide phase in DOS from the San Juan Mountains.
NASA Astrophysics Data System (ADS)
Evenson, N. S.; Reiners, P. W.; Spencer, J. E.
2012-12-01
The Buckskin-Rawhide-Harcuvar detachment fault is one of the largest and youngest extensional detachment faults on Earth. It is also associated with abundant deposits of specular hematite with less common Pb, Zn, Ag, Au, and Mn mineralization. Mineralization is thought to be the result of movement of basin brines along the active detachment and subsidiary normal faults, with circulation driven by the heat of the uplifted footwall rocks of the Harcuvar metamorphic core complex. (U/Th)-He dating of specular hematite from the Buckskin-Rawhide detachment system, and Mn oxide minerals from syn-extensional clastic sedimentary rocks directly above the detachment fault, yield ages primarily between 16-10 Ma. These ages are consistent with low-temperature apatite (U/Th)-He and fission track cooling ages from the Rawhide Mountains and other ranges along the detachment. This suggests that Fe and Mn mineralization occurred during a period of rapid footwall exhumation that was underway by ~16 Ma. Aliquots from four hematite samples from the eastern Rawhide Mountains yielded weighted mean ages of 12.1 ± 0.24 Ma, 12.8 ± 0.15 Ma, 13.1 ± 0.17 Ma, and 13.8 ± 0.20 Ma (all uncertainties as 2-sigma standard error). These ages are similar to apatite (U/Th)-He and fission track ages of nearby samples, and display a SW to NE-younging trend when projected parallel to the extension direction, consistent with findings from previous low-T thermochronology studies. Three hematite samples from the western Rawhide and Buckskin Mountains yield more dispersed ages than samples in the eastern part of the core complex. Published apatite fission-track and (U/Th)-He dates from the Rawhide and Buckskin Mountains fall between 16-10 Ma. These ages are interpreted to represent the timing of final tectonic exhumation and fault-driven fluid circulation along the detachment. Average ages for one hematite sample fall in this age range, but one other is younger (9.5 Ma) and another is substantially older (35 Ma). The older age age may indicate the presence of excess He in fluid inclusions. The younger age could indicate that hydrothermal circulation outlasted exhumation by several million years, or other unknown complications to the system. (U/Th)-He analysis of two samples of manganese oxides from the Artillery Mountains yielded weighted mean ages of 13.8 ± 0.20 and 8.12 ± 0.13 Ma. Both ages are consistent with the age of host strata, and suggest that these dates record near-surface mineralization that occurred shortly after the syn-extension host sandstone and conglomerate were deposited. Our results suggest that hematite and manganese oxide (U/Th)-He systems can provide information about the timing of faulting and related fluid flow/mineralization events. With further development in this and other localities, these systems have the potential to provide valuable insights that until now have been difficult or impossible to obtain by other methods.
Radiation attenuation on labyrinth design bunker using Iridium-192 source
NASA Astrophysics Data System (ADS)
Ismail, Mohamad Pauzi bin; Sani, Suhairy bin; Masenwat, Noor Azreen bin; Mohd, Shukri; Sayuti, Shaharudin; Ahmad, Mohamad Ridzuan Bin; Mahmud, Mohamad Haniza bin; Isa, Nasharuddin bin
2017-01-01
Gamma rays are better absorbed by materials with high atomic numbers and high density. Steel, lead, depleted uranium, concrete, water or sand can be used as gamma shielding. Lead and steel are normally used for making doors of the bunker and to reduce radiation scatter. Depleted uranium is used for gamma container. Water is used in nuclear reactor as neutron and gamma absorber. Sand is used for mobile hot cell. However concrete is the most common and cheap material for gamma radiation bunker. In this research, concrete made from hematite aggregates was used to make chevron blocks for a temporary construction of labyrinth bunker. This paper explains and discusses the gamma attenuation around labyrinth bunker with concrete containing hematite aggregates.
In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars.
Squyres, S W; Grotzinger, J P; Arvidson, R E; Bell, J F; Calvin, W; Christensen, P R; Clark, B C; Crisp, J A; Farrand, W H; Herkenhoff, K E; Johnson, J R; Klingelhöfer, G; Knoll, A H; McLennan, S M; McSween, H Y; Morris, R V; Rice, J W; Rieder, R; Soderblom, L A
2004-12-03
Sedimentary rocks at Eagle crater in Meridiani Planum are composed of fine-grained siliciclastic materials derived from weathering of basaltic rocks, sulfate minerals (including magnesium sulfate and jarosite) that constitute several tens of percent of the rock by weight, and hematite. Cross-stratification observed in rock outcrops indicates eolian and aqueous transport. Diagenetic features include hematite-rich concretions and crystal-mold vugs. We interpret the rocks to be a mixture of chemical and siliciclastic sediments with a complex diagenetic history. The environmental conditions that they record include episodic inundation by shallow surface water, evaporation, and desiccation. The geologic record at Meridiani Planum suggests that conditions were suitable for biological activity for a period of time in martian history.
XRF and UV-Vis-NIR analyses of medieval wall paintings of al-Qarawiyyin Mosque (Morocco)
NASA Astrophysics Data System (ADS)
Fikri, I.; El Amraoui, M.; Haddad, M.; Ettahiri, A. S.; Bellot-Gurlet, L.; Falguères, C.; Lebon, M.; Nespoulet, R.; Ait Lyazidi, S.; Bejjit, L.
2018-05-01
Medieval wall painting fragments, taken at the medieval Mosque of al-Qarawiyyin in Fez, have been investigated by means of X-ray fluorescence and UV-Vis-NIR diffuse reflectance spectroscopies. The analyses permitted to determine the palette of pigments used by craftsmen of the time. Hematite or red ochre were used to obtain red brown colours, calcite for white, copper-based pigments for blue and blue-grey shades while a mixture of cinnabar, lead-based pigments and hematite was adopted to make red-orange colours. Furthermore, the analysis of mortars (external layer and plaster) on these wall painting samples revealed that they are composed mainly by calcite and sometimes by additional compounds such as quartz and gypsum.
Compact hematite buffer layer as a promoter of nanorod photoanode performances
NASA Astrophysics Data System (ADS)
Milan, R.; Cattarin, S.; Comisso, N.; Baratto, C.; Kaunisto, K.; Tkachenko, N. V.; Concina, I.
2016-10-01
The effect of a thin α-Fe2O3 compact buffer layer (BL) on the photoelectrochemical performances of a bare α-Fe2O3 nanorods photoanode is investigated. The BL is prepared through a simple spray deposition onto a fluorine-doped tin oxide (FTO) conducting glass substrate before the growth of a α-Fe2O3 nanorods via a hydrothermal process. Insertion of the hematite BL between the FTO and the nanorods markedly enhances the generated photocurrent, by limiting undesired losses of photogenerated charges at the FTO||electrolyte interface. The proposed approach warrants a marked improvement of material performances, with no additional thermal treatment and no use/dispersion of rare or toxic species, in agreement with the principles of green chemistry.
NASA Astrophysics Data System (ADS)
Keller, P.; Gehring, A. U.
1992-06-01
Paleomagnetic and structural data from the Pedraforca thrust sheet in the southeast Pyrenees show that the chemical weathering of the late Cretaceous limestones is a multistage process. The first weathering stage, of latest Eocene to early Oligocene age, is indicated by a chemical remanent magnetization carried by hematite. The formation of hematite as the dominant weathering product suggests a subtropical climate in northeast Spain during this period. The second weathering stage is indicated by the presence of goethite, which carries a chemical remanent magnetization parallel to the present earth field. This suggests formation of the goethite since the late Pleistocene under cooler climatic conditions similar to the present-day climate in the Pyrenees.
Low-cost superior solid-state symmetric supercapacitors based on hematite nanocrystals.
Peng, Shaomin; Yu, Lin; Lan, Bang; Sun, Ming; Cheng, Gao; Liao, Shuhuan; Cao, Han; Deng, Yulin
2016-11-22
We present a facile method for the fabrication of hematite nanocrystal-carbon cloth (Fe 2 O 3 -CC) composite. Hierarchical manganite is chosen as the sacrificial precursor, that does not contribute to the component of final iron oxide but can be in situ dissolved by the acid produced from the Fe 3+ hydrolysis. This method effectively enhances the specific surface area and conductivity of hematite (Fe 2 O 3 ) by attaching Fe 2 O 3 nanocrystals (around 5 nm) firmly on the surface of carbon fibers. The obtained Fe 2 O 3 -CC can be directly used as a binder-free electrode for a supercapacitor. Interestingly, the composite electrode exhibits synergistic electrochemical capacitance (electrochemical double-layer capacitance and pseudo-capacitance). It manifests a very high areal capacitance of 1.66 F cm -2 (1660 F g -1 ) at 2 mA cm -2 and excellent cycling performance at large current densities (88.6% retention at 30 mA cm -2 after 5000 cycles) in a three-electrode testing system, which is among the best performances reported in the literature. Importantly, when fabricated as a solid-state flexible symmetric supercapacitor it still shows a maximum energy density of 8.74 mW h cm -3 and power density of 253.9 mW cm -3 . Additionally, its good flexibility makes it suitable for portable devices.
Low-cost superior solid-state symmetric supercapacitors based on hematite nanocrystals
NASA Astrophysics Data System (ADS)
Peng, Shaomin; Yu, Lin; Lan, Bang; Sun, Ming; Cheng, Gao; Liao, Shuhuan; Cao, Han; Deng, Yulin
2016-12-01
We present a facile method for the fabrication of hematite nanocrystal-carbon cloth (Fe2O3-CC) composite. Hierarchical manganite is chosen as the sacrificial precursor, that does not contribute to the component of final iron oxide but can be in situ dissolved by the acid produced from the Fe3+ hydrolysis. This method effectively enhances the specific surface area and conductivity of hematite (Fe2O3) by attaching Fe2O3 nanocrystals (around 5 nm) firmly on the surface of carbon fibers. The obtained Fe2O3-CC can be directly used as a binder-free electrode for a supercapacitor. Interestingly, the composite electrode exhibits synergistic electrochemical capacitance (electrochemical double-layer capacitance and pseudo-capacitance). It manifests a very high areal capacitance of 1.66 F cm-2 (1660 F g-1) at 2 mA cm-2 and excellent cycling performance at large current densities (88.6% retention at 30 mA cm-2 after 5000 cycles) in a three-electrode testing system, which is among the best performances reported in the literature. Importantly, when fabricated as a solid-state flexible symmetric supercapacitor it still shows a maximum energy density of 8.74 mW h cm-3 and power density of 253.9 mW cm-3. Additionally, its good flexibility makes it suitable for portable devices.
Dust Removal Target on 'Vera Rubin Ridge'
2017-11-01
This image from the Mars Hand Lens Imager (MAHLI) camera on NASA's Curiosity Mars rover shows effects of using the rover's wire-bristled Dust Removal Tool (DRT) on a rock target called "Christmas Cove." The tool brushed an area about 2.5 inches (6 centimeters) across on Sept. 16, 2017, during the 1,118th Martian day, or sol of Curiosity's work on Mars. MAHLI took this image later the same sol. Both DRT and MAHLI are on the turret of tools at the end of Curiosity's arm. The site is partway up "Vera Rubin Ridge" on lower Mount Sharp, in an area where reconnaissance imaging with science filters revealed variability in indications of the mineral hematite. Removing dust from part of the Christmas Cove target was part of an experiment to check whether dust is subduing the apparent indications of hematite in some of the area's bedrock. The brushed area's purplish tint in this MAHLI image, accentuated even more when observed with science filters of the rover's Mast Camera, is characteristic of fine-grained hematite. Brushing of this target also exposed details in the fine layering and bright veins within the bedrock of this part of Vera Rubin Ridge. The image is oriented so that sunlight comes from upper left. Layers are lower (older) toward lower right. https://photojournal.jpl.nasa.gov/catalog/PIA22064
Fe(II)-induced transformation from ferrihydrite to lepidocrocite and goethite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Hui; Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 China; Li Ping
2007-07-15
The transformation of Fe(II)-adsorbed ferrihydrite was studied. Data tracking the formation of products as a function of pH, temperature and time is presented. The results indicate that trace of Fe(II) adsorbed on ferrihydrite can accelerate its transformation obviously. The products are lepidocrocite and/or goethite and/or hematite, which is different from those without Fe(II). That is, Fe(II) not only accelerates the transformation of ferrihydrite but also leads to the formation of lepidocrocite by a new path. The behavior of Fe(II) is shown in two aspects-catalytic dissolution-reprecipitation and catalytic solid-state transformation. The results indicate that a high temperature and a high pH(inmore » the range from 5 to 9) are favorable to solid-state transformation and the formation of hematite, while a low temperature and a low pH are favorable to dissolution-reprecipitation mechanism and the formation of lepidocrocite. Special attentions were given to the formation mechanism of lepidocrocite and goethite. - Graphical abstract: Fe(II)-adsorbed ferrihydrite can rapidly transform into lepidocrocite or/and goethite or/and hematite. Which product dominates depends on the transformation conditions of ferrihydrite such as temperature, pH, reaction time, etc. In the current system, there exist two transformation mechanisms. One is dissolution/reprecipitation and the other is solid-state transformation. The transformation mechanisms from Fe(II)-adsorbed ferrihydrite to lepidocrocite and goethite were investigated.« less
Ab initio simulation of structure and surface energy of low-index surfaces of stoichiometric α-Fe2O3
NASA Astrophysics Data System (ADS)
Stirner, Thomas; Scholz, David; Sun, Jizhong
2018-05-01
The structure and surface energy of a series of low-index surfaces of stoichiometric α-Fe2O3 (hematite) are investigated using the periodic Hartree-Fock approach with an a posteriori correction of the correlation energy. The simulations show that, amongst the modeled facets, (01 1 bar2) and (0001) are the most stable surfaces of hematite, which is consistent with the fact that the latter are the dominant growth faces exposed on natural α-Fe2O3. The Fe-terminated (0001) surface is shown to exhibit a large relaxation of the surface atoms. It is argued that this arises mainly due to the fact that the surface cations are located opposite empty cation sites in the filled-filled-unfilled cation sequence along the c-axis. In contrast, the (01 1 bar2) plane cuts the crystal through a plane of empty cation sites, thus giving rise to relatively small relaxations and surface energies. The small relaxations and concomitant exposure of five-coordinate cation sites may be important for the catalytic activity of hematite. The simulations also show that the relative stability of the investigated surfaces changes after a full lattice relaxation with the (0001) and (11 2 bar6) facets relaxing disproportionately large. Wherever possible, the simulations are compared with previous simulation data and experimental results. A Wulff-Gibbs construction is also presented.
Controls on the Fate and Speciation of Np(V) During Iron (Oxyhydr)oxide Crystallization.
Bots, Pieter; Shaw, Samuel; Law, Gareth T W; Marshall, Timothy A; Mosselmans, J Frederick W; Morris, Katherine
2016-04-05
The speciation and fate of neptunium as Np(V)O2(+) during the crystallization of ferrihydrite to hematite and goethite was explored in a range of systems. Adsorption of NpO2(+) to iron(III) (oxyhydr)oxide phases was reversible and, for ferrihydrite, occurred through the formation of mononuclear bidentate surface complexes. By contrast, chemical extractions and X-ray absorption spectroscopy (XAS) analyses showed the incorporation of Np(V) into the structure of hematite during its crystallization from ferrihydrite (pH 10.5). This occurred through direct replacement of octahedrally coordinated Fe(III) by Np(V) in neptunate-like coordination. Subsequent analyses on mixed goethite and hematite crystallization products (pH 9.5 and 11) showed that Np(V) was incorporated during crystallization. Conversely, there was limited evidence for Np(V) incorporation during goethite crystallization at the extreme pH of 13.3. This is likely due to the formation of a Np(V) hydroxide precipitate preventing incorporation into the goethite particles. Overall these data highlight the complex behavior of Np(V) during the crystallization of iron(III) (oxyhydr)oxides, and demonstrate clear evidence for neptunium incorporation into environmentally important mineral phases. This extends our knowledge of the range of geochemical conditions under which there is potential for long-term immobilization of radiotoxic Np in natural and engineered environments.
On the Spectral Variance of MGS TES Spectra in the 300-500 cm-1 Range
NASA Astrophysics Data System (ADS)
Altieri, F.; Bellucci, G.
2001-11-01
The Thermal Emission Spectrometer (TES) aboard NASA mission Mars Global Surveyor (MGS) is collecting 200 - 1600 cm-1 thermal emission spectra since September 1997. The principal purpose of TES is to determine and map the Mars surface composition. Spectral features directly ascribable to surface minerals have been identified in the 300 - 500 cm-1 spectral range. Outcrops of hematite have been localized in Sinus Meridiani, Aram Chaos and Valles Marineris [1, 2] and areas with olivine have been individuated in Nili Fossae and in other limited regions [3]. On the other hand, TES spectra show, in general, significant variance between 300 and 500 cm-1; this variance is not directly attributable to surface mineralogical components. In this study we report some examples of spectra with typical hematite and olivine bands and spectra with a different spectral contrast. The spectral masking effect of a dust layer is suggested to explain this behaviour. Spectra characterized by hematite features have been localized also inside a crater near Baldet Crater. The MOC narrow-angle image M02-0039 acquired on the same area shows dark layers at the crater bottom. References: [1] Christensen P. R., et al., JGR, 105, 9623-9642, 2000. [2] Christensen P. R., et al., JGR, in press., 2001. [3] Hoefen T. M. and Clark R. N., LPS XXXII, 2049, 2001.
NASA Astrophysics Data System (ADS)
Sefton-Nash, Elliot; Catling, David C.
2008-05-01
Using diffusion-based models for concretion growth, we calculate growth times of hematitic concretions that have been found in the Burns formation at Meridiani Planum, Mars, by NASA's Opportunity Mars Exploration Rover. Growth times of ~ 350-1900 terrestrial years are obtained for the observed size range of the concretions over a range of parameters representing likely diagenetic conditions and allowing for an iron source from diagenetic redistribution. This time scale is consistent with radiometric age constraints for the growth time of iron oxide concretions in sandy sediments of the acid-saline Lake Brown in Western Australia (< 3000 yr) reported elsewhere. We consider the source of the iron for Meridiani concretions by calculating the constraints on the supply of Fe 3+ to growing concretions from the dissolution and oxidation rates of iron minerals on early Mars. Mass balance arguments suggest that acid dissolution of jarosite ((H 3O,K)(Fe 3+3(OH) 6(SO 4) 2) and minor ferric sulfates is probably the most plausible dominant contributor to Fe 3+ in the concretions. Ferrous iron released from melanterite (Fe 2+SO 4·7H 2O) that is subsequently oxidized could also have been an important iron source if melanterite existed prior to diagenesis. Our conclusion that the iron is sourced from iron sulfates may explain the global observation from orbiters that grey crystalline hematite occurs in association with sulfate deposits.
Najorka, Jens; Watson, Jonathan S.; Sephton, Mark A.
2018-01-01
Abstract Jarosite on Mars is of significant geological and astrobiological interest, as it forms in acidic aqueous conditions that are potentially habitable for acidophilic organisms. Jarosite can provide environmental context and may host organic matter. The most common extraction technique used to search for organic compounds on the surface of Mars is pyrolysis. However, thermal decomposition of jarosite releases oxygen into pyrolysis ovens, which degrades organic signals. Jarosite has a close association with the iron oxyhydroxide goethite in many depositional/diagenetic environments. Hematite can form by dehydration of goethite or directly from jarosite under certain aqueous conditions. Goethite and hematite are significantly more amenable than jarosite for pyrolysis experiments employed to search for organic matter. Analysis of the mineralogy and organic chemistry of samples from a natural acidic stream revealed a diverse response for organic compounds during pyrolysis of goethite-rich layers but a poor response for jarosite-rich or mixed jarosite-goethite samples. Goethite units that are associated with jarosite, but do not contain jarosite themselves, should be targeted for organic detection pyrolysis experiments on Mars. These findings are extremely timely, as exploration targets for Mars Science Laboratory include Vera Rubin Ridge (formerly known as “Hematite Ridge”), which may have formed from goethite precursors. Key Words: Mars—Pyrolysis—Jarosite—Goethite—Hematite—Biosignatures. Astrobiology 18, 454–464. PMID:29298093
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoonen, Martin A.
2014-12-22
The reactivity of sandstones was studied under conditions relevant to the injection of supercritical carbon dioxide in the context of carbon geosequestration. The emphasis of the study was on the reactivity of iron-bearing minerals when exposed to supercritical CO 2 (scCO 2) and scCO 2 with commingled aqueous solutions containing H 2S and/or SO 2. Flow through and batch experiments were conducted. Results indicate that sandstones, irrespective of their mineralogy, are not reactive when exposed to pure scCO2 or scCO 2 with commingled aqueous solutions containing H 2S and/or SO 2 under conditions simulating the environment near the injection pointmore » (flow through experiments). However, sandstones are reactive under conditions simulating the edge of the injected CO 2 plume or ahead of the plume (batch experiments). Sandstones containing hematite (red sandstone) are particularly reactive. The composition of the reaction products is strongly dependent on the composition of the aqueous phase. The presence of dissolved sulfide leads to the conversion of hematite into pyrite and siderite. The relative amount of the pyrite and siderite is influenced by the ionic strength of the solution. Little reactivity is observed when sulfite is present in the aqueous phase. Sandstones without hematite (grey sandstones) show little reactivity regardless of the solution composition.« less
Maldonado, Carolina Solis; De la Rosa, Javier Rivera; Lucio-Ortiz, Carlos J; Hernández-Ramírez, Aracely; Barraza, Felipe F Castillón; Valente, Jaime S
2014-03-12
The role of iron in two modes of integration into alumina catalysts was studied at 0.39 wt% Fe and tested in trichloroethylene combustion. One modified alumina was synthesized using the sol-gel method with Fe added in situ during hydrolysis; another modification was performed using calcined alumina, prepared using the sol-gel method and impregnated with Fe. Several characterization techniques were used to study the level of Fe modification in the γ-Al₂O₃ phase formed and to correlate the catalytic properties during trichloroethylene (TCE) combustion. The introduction of Fe in situ during the sol-gel process influenced the crystallite size, and three iron species were generated, namely, magnetite, maghemite and hematite. The impregnated Fe-alumina formed hematite and maghemite, which were highly dispersed on the γ-Al₂O 3 surface. The X-ray photoelectron spectra (XPS), FT-IR and Mössbauer spectroscopy analyses revealed how Fe interacted with the γ-Al₂O₃ lattice in both catalysts. The impregnated Fe-catalyst showed the best catalytic performance compared to the catalyst that was Fe-doped in situ by the sol-gel method; both had better catalytic activity than pure alumina. This difference in activity was correlated with the accessibility of the reactants to the hematite iron species on the surface. The chlorine poisoning for all three catalysts was less than 1.8%.
Wedege, Kristina; Azevedo, João; Khataee, Amirreza
2016-01-01
Abstract The intermittent nature of the sunlight and its increasing contribution to electricity generation is fostering the energy storage research. Direct solar charging of an auspicious type of redox flow battery could make solar energy directly and efficiently dispatchable. The first solar aqueous alkaline redox flow battery using low cost and environmentally safe materials is demonstrated. The electrolytes consist of the redox couples ferrocyanide and anthraquinone‐2,7‐disulphonate in sodium hydroxide solution, yielding a standard cell potential of 0.74 V. Photovoltage enhancement strategies are demonstrated for the ferrocyanide‐hematite junction by employing an annealing treatment and growing a layer of a conductive polyaniline polymer on the electrode surface, which decreases electron–hole recombination. PMID:27151516
Carbon isotope effect during abiogenic oxidation of methane
NASA Astrophysics Data System (ADS)
Kiyosu, Yasuhiro; Roy Krouse, H.
1989-11-01
The oxidation of methane during flow over CuO and Fe 2O 3 has been examined in the temperature range of 400-650°C. The reaction rate and carbon isotope fractionation are dependent upon the choice of oxide and temperature. The activation energy is lower for hematite (8.0 kcal mole -1) than for cupric oxide (16.6 kcal mole -1). The measured ratios of the isotopic rate constants α =k 12/k 13 were found to have temperature dependences given by: 10 3(α - 1) =2.93 × 10 6/T 2 + 8.11 (cupric oxide) 10 3(α - 1) =7.44 × 10 6/T 2 + 6.56 (hematite) Abiogenic oxidation of methane is probably a significant mechanism for fractionating carbon isotopes in nature.
A 'Pot of Gold' Rich with Nuggets
NASA Technical Reports Server (NTRS)
2004-01-01
This close-up image taken by the Mars Exploration Rover Spirit highlights the nodular nuggets that cover the rock dubbed 'Pot of Gold.' These nuggets appear to stand on the end of stalk-like features. The surface of the rock is dotted with fine-scale pits. Data from the rover's scientific instruments have shown that Pot of Gold contains the mineral hematite, which can be formed with or without water. Scientists are planning further observations of this rock, which they hope will yield more insight into the hematite's origins as well as how the enigmatic nuggets formed. This image was taken by Spirit's microscopic imager on sol 162 (June 17, 2004). The observed area is 3 centimeters by 3 centimeters (1.2 inches by 1.2 inches)A 'Pot of Gold' Rich with Nuggets (Sol 163-2)
NASA Technical Reports Server (NTRS)
2004-01-01
This close-up image taken by the Mars Exploration Rover Spirit highlights the nobular nuggets that cover the rock dubbed 'Pot of Gold.' These nuggets appear to stand on the end of stalk-like features. The surface of the rock is dotted with fine-scale pits. Data from the rover's scientific instruments have shown that Pot of Gold contains the mineral hematite, which can be formed with or without water. Scientists are planning further observations of this rock, which they hope will yield more insight into the hematite's origins as well as how the enigmatic nuggets formed. This image was taken by Spirit's microscopic imager on sol 163 (June 18, 2004). The observed area is 3 centimeters by 3 centimeters (1.2 inches by 1.2 inches).A 'Pot of Gold' Rich with Nuggets (Sol 163)
NASA Technical Reports Server (NTRS)
2004-01-01
This close-up image taken by the Mars Exploration Rover Spirit highlights the nodular nuggets that cover the rock dubbed 'Pot of Gold.' These nuggets appear to stand on the end of stalk-like features. The surface of the rock is dotted with fine-scale pits. Data from the rover's scientific instruments have shown that Pot of Gold contains the mineral hematite, which can be formed with or without water. Scientists are planning further observations of this rock, which they hope will yield more insight into the hematite's origins as well as how the enigmatic nuggets formed. This image was taken by Spirit's microscopic imager on sol 163 (June 18, 2004). The observed area is 3 centimeters by 3 centimeters (1.2 inches by 1.2 inches).Pervasively Altered Hematite-Rich Deposits Southeast of Home Plate, Gusev Crater, Mars
NASA Technical Reports Server (NTRS)
Schroder, C.; Arvidson, R. E.; Schmidt, M. E.; Gellert, R.; Klingelhoefer, G.; Ming, D. W.; Morris, R. V.; Rice, J. W.; Yen, A. S.; deSouza, P. A., Jr.
2008-01-01
The investigation of Home Plate and its surroundings in the Inner Basin of the Columbia Hills in Gusev Crater has added substantially to the water story on Mars. Textural, morphological, and geochemical evidence from Home Plate point towards an explosive origin, probably a hydrovolcanic explosion [1]. High silica deposits in the immediate vicinity of Home Plate suggest hydrothermal alteration [e.g. 2,3]. Pervasively altered deposits rich in hematite were investigated to the southeast of Home Plate. Of these, the target Halley, the target KingGeorgeIsland on the GrahamLand outcrop, and the targets Montalva and Riquelme on the Troll outcrop were investigated in situ with the Alpha Particle X-ray spectrometer (APXS), the Microscopic Imager (MI), and the Moessbauer (MB) spectrometer (Fig. 1).
Curiosity Destinations for Second Extended Mission
2016-10-03
This map shows the route driven by NASA's Curiosity Mars rover from the location where it landed in August 2012 to its location in September 2016 at "Murray Buttes," and the path planned for reaching destinations at "Hematite Unit" and "Clay Unit" on lower Mount Sharp. Blue triangles mark waypoints investigated by Curiosity during the rover's two-year prime mission and first two-year extended mission. The Hematite Unit and Clay Unit are key destinations for the second two-year extension, through September 2018. The base image for the map is from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. North is up. Bagnold Dunes form a band of dark, wind-blown material at the foot of Mount Sharp. http://photojournal.jpl.nasa.gov/catalog/PIA20846
Goodall, Rosemary A; Hall, Jay; Sharer, Robert J; Traxler, Loa; Rintoul, Llew; Fredericks, Peter M
2008-01-01
Fourier transform infrared (FT-IR) attenuated total reflection (ATR) imaging has been successfully used to identify individual mineral components of ancient Maya paint. The high spatial resolution of a micro FT-IR-ATR system in combination with a focal plane array detector has allowed individual particles in the paint to be resolved and identified from their spectra. This system has been used in combination with micro-Raman spectroscopy to characterize the paint, which was found to be a mixture of hematite and silicate particles with minor amounts of calcite, carbon, and magnetite particles in a sub-micrometer hematite and calcite matrix. The underlying stucco was also investigated and found to be a combination of calcite with fine carbon particles, making a dark sub-ground for the paint.
NASA Astrophysics Data System (ADS)
Ransom, C. J.
2005-04-01
Z-pinch plasma simulations have been performed that indicate the production of spherules under certain experimental parameters. (A. L. Peratt, private communication) While performing experiments dealing with the impact of plasma discharges on various materials, we observed that spherules were created at the surface of some of the materials. For specific materials and conditions, spherules were always produced. Both individual spherules and joined spherules were created. The size and shapes were nearly identical to items found by the Mars rover, Opportunity, and called ``blueberries.'' Sky & Telescope, June 2004, p. 20, among other sources indicated the blueberries were gray spherules composed of hematite. The experiments produced hematite spherules identical in appearance to those found on Mars. These experiments suggest how the newly discovered blueberries were formed on Mars while providing an explanation that does not depend on the presence of water.
NASA Astrophysics Data System (ADS)
Rosina, P.; Gomes, H.; Collado, H.; Nicoli, M.; Volpe, L.; Vaccaro, C.
2018-06-01
Micro-Raman spectroscopic technique allowed the characterization of organic and inorganic pigments of different colours sampled from a rock-art shelter named Abrigo del Aguila, located in the district of Badajoz, Cabeza del Buey (Extremadura - Spain). Micro-Raman analyses has been coupled with SEM observation and elemental analyses (EDS). The white and the black colours, used for non-representative figures, have been identified respectively as anatase and amorphous carbon, while two different type of red pigment has been found on figurative representations. The darker one, sampled, from a sun-figure, comprises an indeterminate organic compound beside of hematite. The second one, sampled from an anthropomorphic figure, is of a brilliant red and only hematite has been recognized in it.
Red Dawn: Characterizing Iron Oxide Minerals in Atmospheric Dust
NASA Astrophysics Data System (ADS)
Yauk, K.; Ottenfeld, C. F.; Reynolds, R. L.; Goldstein, H.; Cattle, S.; Berquo, T. S.; Moskowitz, B. M.
2012-12-01
Atmospheric dust is comprised of many components including small amounts of iron oxide minerals. Although the iron oxides make up a small weight percent of the bulk dust, they are important because of their roles in ocean fertilization, controls on climate, and as a potential health hazard to humans. Here we report on the iron oxide mineralogy in dust from a large dust storm, dubbed Red Dawn, which engulfed eastern Australia along a 3000 km front on 23 September 2009. Red Dawn originated from the lower Lake Eyre Basin of South Australia, western New South Wales (NSW) and southwestern Queensland and was the worst dust storm to have hit the city of Sydney in more than 60 years. Dust samples were collected from various locations across eastern Australia (Lake Cowal, Orange, Hornsby, Sydney) following the Red Dawn event. Our dust collection provides a good opportunity to study the physical and mineralogical properties of iron oxides from Red Dawn using a combination of reflectance spectroscopy, Mössbauer spectroscopy (MB), and magnetic measurements. Magnetization measurements from 20-400 K reveal that magnetite/maghemite, hematite and goethite are present in all samples with magnetite occurring in trace amounts (< 0.5wt%). However, the amount of magnetite/maghemite even in trace concentrations generally increases from Lake Cowal from west to east (0.01 to 0.29 wt%), with highest magnetite contents in the urban-Sydney sites. These observations indicate the additions of magnetite from local urban sources. Variable temperature Mössbauer spectroscopy (300 K and 4.2 K) indicate that goethite and hematite compose approximately 25-45 % of the Fe-bearing phases in the Orange and Lake Cowal samples. Goethite is more abundant than hematite in the Lake Cowal samples whereas the opposite is observed for Orange. Hematite is observed at both temperatures but goethite only at 4.2 K. The identification of goethite in Mössbauer analyses at low-temperature but not at room temperature indicates the presence of nanogoethite and small particle sizes (< 30 nm). Magnetization experiments indicates that some of the nanogoethite has remanence blocking temperatures above 300 K (and hence larger particle sizes) but it must be a small fraction of the total grain distribution considering that goethite was not indicated at 300 K with Mössbauer. Likewise, Mössbauer spectra indicate that the hematite component is still above the Morin transition (TM=265 K) and in its canted antiferromagnetic state even at 4.2 K. Suppression of the Morin transition in hematite can occur due to reduced crystallinity, cation substitution (e.g., Ti4+, Al 3+), or small particle effects (d< 100 nm). Finally, we compared reflectance with a magnetic parameter (hard isothermal remanent magnetization, HIRM) for ferric oxide abundance to assess the degree to which ferric oxide in these samples might absorb solar radiation. In samples for which both parameters were obtained, HIRM and average reflectance over the visible wavelengths are correlated as a group (r2=0.24). These results indicate that the ferric oxide minerals in Red Dawn dust absorb solar radiation. Much of this ferric oxide occurs likely as grain coatings of nanohematite and nanogoethite, thereby providing high surface area to enhance absorption of solar radiation.
Rock magnetic properties of iron-rich Chicxulub impact ejecta from La Sierrita, northeastern Mexico
NASA Astrophysics Data System (ADS)
Kontny, A.; Schulte, P.; Stinnesbeck, W.
2002-12-01
Chicxulub ejecta deposits from La Sierrita, NE Mexico, are composed mainly of mm-cm sized vesicular spherules and (ejecta-) fragments that consist of Fe- and Mg-rich chlorite, opaque phases, and calcite infillings. Their Fe-rich and Si-poor composition may be indicative of contribution to the ejecta from mafic target rocks (Schulte et al., this meeting). This study addresses the magnetic mineralogy and properties of these ejecta deposits, since they could provide clues to target lithologies, physical conditions during the impact (quenching, crystallization, oxidation), and diagenetic processes. Optical microscopy, backscattered electron images, and electron microprobe (EMP) analyses show that opaque phases within spherules and fragments (even in calcite infillings) are hematite, goethite, rutile, and Ti-Fe oxides. Cubic and hexagonal hematite crystals are up to 20 μm in size and show a zonar composition with elevated Si (4-8 wt%) and Ni (up to 0.4 wt%) concentrations in the cores of crystals. Hematite formed either primary from melt or as replacement product of cubic minerals such as magnetite or pyrite during diagenesis. Garland-shaped, Ti- and Fe-rich lamellae are present with grain sizes of the opaque minerals below the resolution of the EMP; rutile and Ti-Fe oxide phases within these lamellae show crystal sizes growing towards the interior of grains. Some Ti-Fe oxides also show dendritic or skeletal crystals with spinifex textures that may be indicative of quenching. The volume magnetic susceptibility (MS) of ejecta deposits show relatively homogeneous paramagnetic values between 6 and 30 x 10-6 SI/g that correlate well with the bulk Fe-content and are enhanced as compared to the surrounding marls and sandstones. In the range from -192 to 700°C, temperature-dependent MS shows a dominant exponential decrease, thus confirming the paramagnetic behavior. However, a small peak at about -80°C is superimposed on the paramagnetic curve. This peak either indicates a Curie or Néel temperature or reflects a grain-size effect of a ferromagnetic phase. The heating leg of the MS(T) curve generally displays constant low MS values. However, heating and cooling runs are irreversible and the cooling leg displays two Curie temperatures (TC) at 570 and 480°C, thus indicating transformation during heating of iron-bearing minerals into magnetite or magnetite-near phases. No characteristic TC related either to hematite or to goethite has been detected; this absence could be related to impurities (Si, Ni) or cation deficiency. Intensity of the natural remanent magnetization (NRM) of the ejecta deposits is very small (0.3-0.7 mA/m). In fields below 10 mT, alternating field-demagnetization of NRM shows initial rapid decrease of about 50 % of the original intensity, whereas in fields of 160 mT no further demagnetization occurs. Induced remanent magnetization (IRM) acquisition curves reveal that some studied samples are nearly saturated in fields of 1000 mT while others are not. Furthermore, the IRM data confirm the presence of a single dominant high coercive mineral such as hematite and goethite; these are the main iron-bearing magnetic phases, in addition to chlorite. The occurrence of hematite and goethite in the La Sierrita ejecta points to highly oxidizing conditions during or after ejecta formation. Such conditions may have prevented the origination of stronger (ferro-) magnetic phases (e.g. magnetite) or destroyed them.
NASA Astrophysics Data System (ADS)
Liu, Dantong; Taylor, Jonathan W.; Crosier, Jonathan; Marsden, Nicholas; Bower, Keith N.; Lloyd, Gary; Ryder, Claire L.; Brooke, Jennifer K.; Cotton, Richard; Marenco, Franco; Blyth, Alan; Cui, Zhiqiang; Estelles, Victor; Gallagher, Martin; Coe, Hugh; Choularton, Tom W.
2018-03-01
During the summertime, dust from the Sahara can be efficiently transported westwards within the Saharan air layer (SAL). This can lead to high aerosol loadings being observed above a relatively clean marine boundary layer (MBL) in the tropical Atlantic Ocean. These dust layers can impart significant radiative effects through strong visible and IR light absorption and scattering, and can also have indirect impacts by altering cloud properties. The processing of the dust aerosol can result in changes in both direct and indirect radiative effects, leading to significant uncertainty in climate prediction in this region. During August 2015, measurements of aerosol and cloud properties were conducted off the coast of west Africa as part of the Ice in Cloud Experiment - Dust (ICE-D) and AERosol properties - Dust (AER-D) campaigns. Observations were obtained over a 4-week period using the UK Facility for Atmospheric Airborne Measurements (FAAM) BAe 146 aircraft based on Santiago Island, Cabo Verde. Ground-based observations were collected from Praia (14°57' N, 23°29' W; 100 m a.s.l.), also located on Santiago Island. The dust in the SAL was mostly sampled in situ at altitudes of 2-4 km, and the potential dust age was estimated by backward trajectory analysis. The particle mass concentration (at diameter d = 0.1-20 µm) decreased with transport time. Mean effective diameter (Deff) for supermicron SAL dust (d = 1-20 µm) was found to be 5-6 µm regardless of dust age, whereas submicron Deff (d = 0.1-1 µm) showed a decreasing trend with longer transport. For the first time, an airborne laser-induced incandescence instrument (the single particle soot photometer - SP2) was deployed to measure the hematite content of dust. For the Sahel-influenced dust in the SAL, the observed hematite mass fraction of dust (FHm) was found to be anti-correlated with the single scattering albedo (SSA, λ = 550 nm, for particles d < 2.5 µm); as potential dust age increased from 2 to 7 days, FHm increased from 2.5 to 4.5 %, SSA decreased from 0.97 to 0.93 and the derived imaginary part (k) of the refractive index at 550 nm increased from 0.0015 to 0.0035. However, the optical properties of Sahara-influenced plumes (not influenced by the Sahel) were independent of dust age and hematite content with SSA ˜ 0.95 and k ˜ 0.0028. This indicates that the absorbing component of dust may be source dependent, or that gravitational settling of larger particles may lead to a higher fraction of more absorbing clay-iron aggregates at smaller sizes. Mie calculation using the measured size distribution and size-resolved refractive indices of the absorbing components (black carbon and hematite) reproduces the measured SSA to within ±0.02 for SAL dust by assuming a goethite / hematite mass ratio of 2. Overall, hematite and goethite constituted 40-80 % of the absorption for particles d < 2.5 µm, and black carbon (BC) contributed 10-37 %. This highlights the importance of size-dependent composition in determining the optical properties of dust and also the contribution from BC within dust plumes.
NASA Astrophysics Data System (ADS)
Wang, Shui-Jiong; Wasylenki, Laura E.
2017-06-01
The Ni isotopic systematics in banded iron formations (BIFs) potentially recorded the Ni isotopic composition of ancient seawater over Precambrian geological history. However, the utility of BIFs as proxies requires quantitative knowledge of how Ni isotopes fractionated as dissolved Ni was initially incorporated into iron-rich sediments and how diagenesis may have affected the Ni isotopic systematics. Here we report results of synthesis experiments to investigate the behavior of Ni isotopes during Ni coprecipitation with ferrihydrite and then transformation of ferrihydrite to hematite. Ferrihydrite coprecipitation experiments at neutral pH demonstrated that the dissolved Ni was variably heavier than coprecipitated Ni (likely a mixture of surface-adsorbed and structurally incorporated Ni), with the isotope fractionation becoming larger as the fraction of Ni associated with solid increased (Δ60/58Nisolution-solid = +0.08 to +0.50‰). Further experiments at lower pH (3.7-6.7), in which structurally incorporated Ni likely dominated in solids, documented a decrease in Δ60/58Nisolution-solid from +0.44‰ to -0.18‰ as the pH decreased. The negative value for Δ60/58Nisolution-solid at low pH indicates the enrichment of heavier isotopes in incorporated Ni relative to dissolved and adsorbed Ni, possibly as a result of the presence of a small amount of tetrahedral Ni2+ in addition to octahedral Ni2+ in the ferrihydrite structure. The results of the ferrihydrite experiments thus reflect equilibrium isotope fractionation between three pools of Ni, with δ60/58Ni values in the order of incorporated > dissolved > adsorbed. Hematite was synthesized by transformation of Ni-bearing ferrihydrite in aqueous solution at ∼100 °C. A significant amount of Ni (up to 60%) was released (desorbed) from solids into solutions as pH dropped from ∼7 to 4.5-5.5 upon phase transformation. Rinsing of the synthesized hematite in 2 M acetic acid released only very small amounts of Ni (<4% of total Ni, presumably surface-adsorbed) that were isotopically heavier (δ60/58Ni = +0.11 ± 0.06‰) than the residues (presumably dominated by incorporated Ni), which had δ60/58Ni of -0.26 ± 0.07‰. The preference of lighter isotopes for the incorporated Ni relative to the surface-adsorbed Ni after phase transformation (most had been released into solution) is probably due to distortion of Nisbnd O octahedra in the hematite structure, with weaker Nisbnd O bond strengths on average. Hence, the more variable Δ60/58Nisolution-solid values (-0.04 to +0.77‰) observed in hematite experiments most likely reflect thermodynamically driven Rayleigh fractionation, with incorporated Ni unavailable to exchange with dissolved Ni due to continuous reduction in size of the highly reactive surface pool of Ni, through which all solid-solution exchange must occur. Overall, the synthesized hematite was isotopically lighter than the ferrihydrite by ∼0.08‰ in δ60/58Ni, which is however within the current analytical uncertainties (±0.09‰). This implies that earliest diagenesis of BIFs results in very limited change in the isotopic composition of solid-associated Ni. Our experimental results, although conducted in a very simple system that differs from Archean seawater, represent an important step toward reconstruction of the Ni isotopic composition of ancient seawater from Ni isotopic signatures in BIFs.
Bassez, Marie-Paule
2017-12-01
In this article, anoxic and oxic hydrolyses of rocks containing Fe (II) Mg-silicates and Fe (II)-monosulfides are analyzed at 25 °C and 250-350 °C. A table of the products is drawn. It is shown that magnetite and hydrogen can be produced during low-temperature (25 °C) anoxic hydrolysis/oxidation of ferrous silicates and during high-temperature (250 °C) anoxic hydrolysis/oxidation of ferrous monosulfides. The high-T (350 °C) anoxic hydrolysis of ferrous silicates leads mainly to ferric oxides/hydroxides such as the hydroxide ferric trihydroxide, the oxide hydroxide goethite/lepidocrocite and the oxide hematite, and to Fe(III)-phyllosilicates. Magnetite is not a primary product. While the low-T (25 °C) anoxic hydrolysis of ferrous monosulfides leads to pyrite. Thermodynamic functions are calculated for elementary reactions of hydrolysis and carbonation of olivine and pyroxene and E-pH diagrams are analyzed. It is shown that the hydrolysis of the iron endmember is endothermic and can proceed within the exothermic hydrolysis of the magnesium endmember and also within the exothermic reactions of carbonations. The distinction between three products of the iron hydrolysis, magnetite, goethite and hematite is determined with E-pH diagrams. The hydrolysis/oxidation of the sulfides mackinawite/troilite/pyrrhotite is highly endothermic but can proceed within the heat produced by the exothermic hydrolyses and carbonations of ferromagnesian silicates and also by other sources such as magma, hydrothermal sources, impacts. These theoretical results are confirmed by the products observed in several related laboratory experiments. The case of radiolyzed water is studied. It is shown that magnetite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite are formed in oxic hydrolysis of ferromagnesian silicates at 25 °C and 350 °C. Oxic oxidation of ferrous monosulfides at 25 °C leads mainly to pyrite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite and also to sulfates, and at 250 °C mainly to magnetite instead of pyrite, associated to the same ferric oxides/hydroxides and sulfates. Some examples of geological terrains, such as Mawrth Vallis on Mars, the Tagish Lake meteorite and hydrothermal venting fields, where hydrolysis/oxidation of ferromagnesian silicates and iron(II)-monosulfides may occur, are discussed. Considering the evolution of rocks during their interaction with water, in the absence of oxygen and in radiolyzed water, with hydrothermal release of H 2 and the plausible associated formation of components of life, geobiotropic signatures are proposed. They are mainly Fe(III)-phyllosilicates, magnetite, ferric trihydroxide, goethite/lepidocrocite, hematite, but not pyrite.
NASA Astrophysics Data System (ADS)
Bassez, Marie-Paule
2017-12-01
In this article, anoxic and oxic hydrolyses of rocks containing Fe (II) Mg-silicates and Fe (II)-monosulfides are analyzed at 25 °C and 250-350 °C. A table of the products is drawn. It is shown that magnetite and hydrogen can be produced during low-temperature (25 °C) anoxic hydrolysis/oxidation of ferrous silicates and during high-temperature (250 °C) anoxic hydrolysis/oxidation of ferrous monosulfides. The high-T (350 °C) anoxic hydrolysis of ferrous silicates leads mainly to ferric oxides/hydroxides such as the hydroxide ferric trihydroxide, the oxide hydroxide goethite/lepidocrocite and the oxide hematite, and to Fe(III)-phyllosilicates. Magnetite is not a primary product. While the low-T (25 °C) anoxic hydrolysis of ferrous monosulfides leads to pyrite. Thermodynamic functions are calculated for elementary reactions of hydrolysis and carbonation of olivine and pyroxene and E-pH diagrams are analyzed. It is shown that the hydrolysis of the iron endmember is endothermic and can proceed within the exothermic hydrolysis of the magnesium endmember and also within the exothermic reactions of carbonations. The distinction between three products of the iron hydrolysis, magnetite, goethite and hematite is determined with E-pH diagrams. The hydrolysis/oxidation of the sulfides mackinawite/troilite/pyrrhotite is highly endothermic but can proceed within the heat produced by the exothermic hydrolyses and carbonations of ferromagnesian silicates and also by other sources such as magma, hydrothermal sources, impacts. These theoretical results are confirmed by the products observed in several related laboratory experiments. The case of radiolyzed water is studied. It is shown that magnetite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite are formed in oxic hydrolysis of ferromagnesian silicates at 25 °C and 350 °C. Oxic oxidation of ferrous monosulfides at 25 °C leads mainly to pyrite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite and also to sulfates, and at 250 °C mainly to magnetite instead of pyrite, associated to the same ferric oxides/hydroxides and sulfates. Some examples of geological terrains, such as Mawrth Vallis on Mars, the Tagish Lake meteorite and hydrothermal venting fields, where hydrolysis/oxidation of ferromagnesian silicates and iron(II)-monosulfides may occur, are discussed. Considering the evolution of rocks during their interaction with water, in the absence of oxygen and in radiolyzed water, with hydrothermal release of H2 and the plausible associated formation of components of life, geobiotropic signatures are proposed. They are mainly Fe(III)-phyllosilicates, magnetite, ferric trihydroxide, goethite/lepidocrocite, hematite, but not pyrite.
Looking Northeast Along Hallway between Pellet Plant and Oxide Building, ...
Looking Northeast Along Hallway between Pellet Plant and Oxide Building, including Virgin Hopper Bins - Hematite Fuel Fabrication Facility, Pellet Plant, 3300 State Road P, Festus, Jefferson County, MO
Looking Northwest at Office Building Boiler Room, Including Cinderblock Walls, ...
Looking Northwest at Office Building Boiler Room, Including Cinderblock Walls, Fuel Tank and Scale Weights - Hematite Fuel Fabrication Facility, Office, 3300 State Road P, Festus, Jefferson County, MO
NASA Astrophysics Data System (ADS)
Schaefer, B. F.
2016-12-01
The Stuart Shelf on the margin of the Gawler Craton, South Australia, contains numerous economic and sub-econmic IOCG mineralised systems, including the giant Olympic Dam Cu-Au-U deposit. Hematite and magnetite have played a critical in the genesis of all of these deposits, and increasingly it appears that magnetite has been in equilibrium with either the final mineralised assemblage or was critical in transporting metals during the ore forming event. 14 magnetites and one hematite from three separate styles of iron oxide mineralisation associated with the Prominent Hill Cu-Au deposit were selected for detailed analysis. The REE and isotopic separations were all conducted by low blank wet chemistry and isotopes determined by TIMS (Nd) and MC-ICPMS (Hf). Magnetites associated with skarn style mineralsiation proximal to the ore body are unformly depleted in REE, whereas hematite within the ore and magmatic magmatites and whole rock gabbros from the nearby 1590Ma White Hill Gabbro intrusion are all relatively LREE enriched and display a comparable range in REE. Significantly however, magnetite separates almost invariably display more evolved Hf isotopic signatures than the host lithologies adjacent the economic mineralisation (dacites and metasediments at Prominent Hill mine) implying that the magnetites were sourcing their REE inventory dominantly from the local crust rather than a mantle derived source. In contrast, the magmatic magnetites from the White Hill Complex display Nd and Hf isotopes which are slightly more primitive, recording a greater relative mantle component, however still requiring a significant crustal input. Significantly, the hematite which contains the Au mineralisation preserves ɛNd (1590) = -4.04 and ɛHf (1590) = -6.05 essentially identical to the magmatic magnetites and their host gabbros in the White Hill complex and the basalts and dacites of the host Gawler Range Volcanics (ɛNd (1590) = -7.10 - -3.72 and ɛHf (1590) = -7.69 - -1.89). Therefore it would appear that the mineralising event was driven by the intrusion of the White Hills Complex and proximal Gawler Range Volcanics.
iron phase control during pressure leaching at elevated temperature
NASA Astrophysics Data System (ADS)
Fleuriault, Camille
Iron is a common contaminant encountered in most metal recovery operations, and particularly hydrometallurgical processes. For example, the Hematite Process uses autoclaves to precipitate iron oxide out of the leaching solution, while other metals are solubilized for further hydrometallurgical processing. In some cases, Basic Iron Sulfate (BIS) forms in place of hematite. The presence of BIS is unwanted in the autoclave discharge because it diminishes recovery and causes environmental matters. The focus of this master thesis is on the various iron phases forming during the pressure oxidation of sulfates. Artificial leaching solutions were produced from CuSO4, FeSO4 and H2SO4 in an attempt to recreate the matrix composition and conditions used for copper sulfides autoclaving. The following factors were investigated in order to determine which conditions hinder the formation of BIS: initial free acidity (5 -- 98 g/L), initial copper concentration (12.7 -- 63.5 g/L), initial iron concentration (16.7 -- 30.7 g/L) and initial iron oxidation state. There were three solid species formed in the autoclave: hematite, BIS and hydronium jarosite. The results show that free acid is the main factor influencing the composition of the residue. At an initial concentration of 22.3 g/L iron and no copper added, the upper limit for iron oxide formation is 41 g/L H2SO4. The increase of BIS content in the residue is not gradual and occurs over a change of a few grams per liter around the aforementioned limit. Increasing copper sulfate concentration in the solution hinders the formation of BIS. At 63.5g/L copper, the upper free acidity limit is increased to 61g/L. This effect seems to be related to the buffering action of copper sulfate, decreasing the overall acid concentration and thus extending the stability range of hematite. The effect of varying iron concentration on the precipitate chemistry is unclear. At high iron levels, the only noticeable effect was the inhibition of jarosite. The results were reported within a Cu-Fe-S ternary system and modeled. The modeling confirmed the experimental observations with the exception that increasing iron concentrations seem to promote BIS stability.
A probable martian analogue in muttom in southern india
NASA Astrophysics Data System (ADS)
Wankhede, Tushar; Rajesh, V. J.; Charri, Abhishek
2012-07-01
Mars, a terrestrial planet fourth from the Sun in the solar system, is widely known as the red planet. The iron oxide sand/dust is predominant on its surface and gives the reddish appearance. Recent explorations have exposed abundance of haematite-rich loose materials in the surface of Mars especially at Meridiani Planum. Sedimentary structures like bedding, cross-bedding, ripple marks, gullies, mud cracks etc. are identified in this area. It is essential to look for some terrestrial analogues for the iron oxide rich sand/dust in order to explore their genetic mechanisms in Martian surface. Red sand beds occur above the crystalline basement or younger calcareous sandstone/limestone as isolated patches of partly indurated or unindurated dunes and sheets fringing the south western coastal lands of Tamil Nadu. Calcretes, source of carbonates, also occur at places within these red sand beds. Muttom soils are dark red in color on fresh surfaces. The red sand beds are dominated by iron-bearing minerals such as hematite and ilmenite. Local patches of heavy mineral deposition by the action of wind and water were also observed in the Muttom area. Preliminary spectral analyses confirmed the presence of iron bearing minerals like hematite and ilmenite which are also present in Mars. Many sedimentary structures like gullies, channels, polygonal mud cracks, erosion pits and dunes were present in Muttom area similar to those observed on Martian surface. Meridiani planum outcrops are composed of some siliciclastics grains, and hematite, and only few deposits on Earth match this description. The siliciclastics grains are primarily quartz grain coated with hematite. Quartz is also found in Muttom which, may have been transported by the action of wind while in the Mars siliciclastics is the alteration product of basalt. The structures are more or less similar to those observed at Meridiani Planum. Previous workers interpreted these red sands as `unique' formed either by a mixed beach and dune environment, or as similar to colluvium (formed by mass wasting and fluvial processes). Comparative studies between the red sand beds formations on Martian surface and southern Tamil Nadu can provide valuable insights on the origin, weathering pattern, tectonics and depositional environment of red sand beds in Mars.
Mapping iron oxides and the color of Australian soil using visible-near-infrared reflectance spectra
NASA Astrophysics Data System (ADS)
Viscarra Rossel, R. A.; Bui, E. N.; de Caritat, P.; McKenzie, N. J.
2010-12-01
Iron (Fe) oxide mineralogy in most Australian soils is poorly characterized, even though Fe oxides play an important role in soil function. Fe oxides reflect the conditions of pH, redox potential, moisture, and temperature in the soil environment. The strong pigmenting effect of Fe oxides gives most soils their color, which is largely a reflection of the soil's Fe mineralogy. Visible-near-infrared (vis-NIR) spectroscopy can be used to identify and measure the abundance of certain Fe oxides in soil, and the visible range can be used to derive tristimuli soil color information. The aims of this paper are (1) to measure the abundance of hematite and goethite in Australian soils from their vis-NIR spectra, (2) to compare these results to measurements of soil color, and (3) to describe the spatial variability of hematite, goethite, and soil color and map their distribution across Australia. We measured the spectra of 4606 surface soil samples from across Australia using a vis-NIR spectrometer with a wavelength range of 350-2500 nm. We determined the Fe oxide abundance for each sample using the diagnostic absorption features of hematite (near 880 nm) and goethite (near 920 nm) and derived a normalized iron oxide difference index (NIODI) to better discriminate between them. The NIODI was generalized across Australia with its spatial uncertainty using sequential indicator simulation, which resulted in a map of the probability of the occurrence of hematite and goethite. We also derived soil RGB color from the spectra and mapped its distribution and uncertainty across the country using sequential Gaussian simulations. The simulated RGB color values were made into a composite true color image and were also converted to Munsell hue, value, and chroma. These color maps were compared to the map of the NIODI, and both were used to interpret our results. The work presented here was validated by randomly splitting the data into training and test data sets, as well as by comparing our results to existing studies on the distribution of Fe oxides in Australian soils.
Why do Hematite FORCs Look Weird?
NASA Astrophysics Data System (ADS)
Harrison, R. J.
2017-12-01
Although much progress has been made in the modelling of first-order reversal curve (FORC) diagrams for ensembles of interacting single domain (SD) magnetite particles with cubic and uniaxial anisotropy, a comprehensive understanding of FORC diagrams for magnetic minerals with other forms of anisotropy is currently lacking. For example, it has long been recognised that FORC diagrams for hematite display a range of unexplained features, including one or more of the following: 1) a kidney-shaped positive peak that is negatively offset from the horizontal axis; 2) a negative peak that sits below the offset positive peak; and 3) a negative-positive streak that extends at a steep negative angle to the horizontal axis. Here we demonstrate that many of the diagnostic features of hematite FORCs can be explained as an intrinsic consequence of hexagonal anisotropy operating within the basal plane. Simulations are performed for an ensemble of identical, randomly oriented, non-interacting SD particles, with easy axes located at 60° to each other within a basal plane. In the general case, there are six stable or metastable solutions for the magnetic state of a particle, with different critical fields for switching into and out of the corresponding hysteresis branch. Downward switching between branches at the reversal field is paired with either symmetrical or asymmetrical upward switching between branches at the measurement field. Paired switching events lead to both symmetrical (central ridge) and asymmetrical (negatively shifted) signals in the FORC diagram. A downward transition out of one branch means the corresponding upward transition from that branch is no longer accessible, leading to a negative contribution to the FORC distribution. At the same time, an upward transition from a different branch becomes newly accessible, leading to a paired positive contribution to the FORC distribution. Simulations of interacting SD particles with hexagonal anisotropy and a broad range of switching fields reproduce many of the features typically associated with hematite FORC diagrams, demonstrating that key features can largely be explained as an intrinsic effect caused by the availability of multiple hysteresis branches.
Iron oxide nanotubes synthesized via template-based electrodeposition
NASA Astrophysics Data System (ADS)
Lim, Jin-Hee; Min, Seong-Gi; Malkinski, Leszek; Wiley, John B.
2014-04-01
Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition. In the case of magnetite nanotubes, which consist of slightly larger nanoparticles, magnetization curves show ferromagnetism with weak coercivity at room temperature, while FC-ZFC curves exhibit the Verwey transition at 125 K.Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition. In the case of magnetite nanotubes, which consist of slightly larger nanoparticles, magnetization curves show ferromagnetism with weak coercivity at room temperature, while FC-ZFC curves exhibit the Verwey transition at 125 K. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06924a
Green urea synthesis catalyzed by hematite nanowires in magnetic field
NASA Astrophysics Data System (ADS)
Yahya, Noorhana; Qureshi, Saima; Rehman, Zia ur; Alqasem, Bilal; Fai Kait, Chong
2017-04-01
The catalytic activity of hematite (α-Fe2O3) nanowires under the influence of magnetic field on urea synthesis is considered green. The adsorption and subsequent dissociative reaction of hydrogen, nitrogen and carbon dioxide gases on the α-Fe2O3 (111) nanowires were investigated using the density functional theory (DFT) method. The average adsorption energy is -4.12 kcal/mole at different sites. The adsorption of gases resulted in a difference in density and net spin of electrons from 68 to 120 and 0-21 respectively. In addition, it induces magnetic moment value of 36.33 μB, which confirms the enhanced magnetic behaviour of hematite. α-Fe2O3 nanowires (NWs) synthesized by heating iron wire in a box furnace at (750-800) °C and as synthesized α-Fe2O3 nanoparticles (NPs) were received to use as a catalyst in the magnetic reaction of urea synthesis. X-ray Diffractometer (XRD) confirms the peaks of rhombohedral structure of α-Fe2O3 and Raman spectrum analyses confirms the α-Fe2O3 peaks at 410 cm-1, 500 cm-1 and 616 cm-1. The needle-like shape of hematite nanowires with length ranging from 16-25) μm and diameter from 74 to 145 nm confirmed by Field emission scanning electron microscopy (FESEM). The magnetic properties of the nanowires exhibited different levels of saturation magnetization, for α-Fe2O3 perpendicularly aligned direction (13.18 emu/g) and random direction (10.73 emu/g). Urea synthesis was done under magnetic field ranges from 0.0 to 2.5 T. The activation energy of α-Fe2O3 NWs for urea production is lower than NPs in the range of 0-1 T, whereas it is reversed for higher magnetic induction values. Fourier transform infrared spectroscopy (FTIR) confirmed the formation of urea at the peaks of 1690-1600 cm-1. This green urea employing magnetically induced method could be a contender to the Haber-Bosch process currently used by the current industry which utilizes high temperature and high pressure.
Looking North into Lab Metallurgy Testing Area and Enrichment Motor ...
Looking North into Lab Metallurgy Testing Area and Enrichment Motor within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO
Looking North at Uranium recovery Recycle Tanks in Red Room ...
Looking North at Uranium recovery Recycle Tanks in Red Room in Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO
Looking Southwest to Dry and Wet Exterior Scrubbers at Rear ...
Looking Southwest to Dry and Wet Exterior Scrubbers at Rear of Oxide Building - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO
Looking South at south End of Green Room Including Scrubber ...
Looking South at south End of Green Room Including Scrubber for Incinerator within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO
Looking Southeast at Precipitation System, Steam Dryer and Centrifuge in ...
Looking Southeast at Precipitation System, Steam Dryer and Centrifuge in Red Room within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO
Looking West From rear (East) End of Office Building Including ...
Looking West From rear (East) End of Office Building Including Recycle Storage Area, Loading Docks, and Decontamination Zone - Hematite Fuel Fabrication Facility, Office, 3300 State Road P, Festus, Jefferson County, MO
Looking Northwest at Uranium Dryers Along North Side of Green ...
Looking Northwest at Uranium Dryers Along North Side of Green Room in Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO
Looking Southwest at Reactor Box Furnaces With Reactor Boxes and ...
Looking Southwest at Reactor Box Furnaces With Reactor Boxes and Repossessed Uranium in Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO
The MARTE VNIR imaging spectrometer experiment: design and analysis.
Brown, Adrian J; Sutter, Brad; Dunagan, Stephen
2008-10-01
We report on the design, operation, and data analysis methods employed on the VNIR imaging spectrometer instrument that was part of the Mars Astrobiology Research and Technology Experiment (MARTE). The imaging spectrometer is a hyperspectral scanning pushbroom device sensitive to VNIR wavelengths from 400-1000 nm. During the MARTE project, the spectrometer was deployed to the Río Tinto region of Spain. We analyzed subsets of three cores from Río Tinto using a new band modeling technique. We found most of the MARTE drill cores to contain predominantly goethite, though spatially coherent areas of hematite were identified in Core 23. We also distinguished non Fe-bearing minerals that were subsequently analyzed by X-ray diffraction (XRD) and found to be primarily muscovite. We present drill core maps that include spectra of goethite, hematite, and non Fe-bearing minerals.
The MARTE VNIR Imaging Spectrometer Experiment: Design and Analysis
NASA Astrophysics Data System (ADS)
Brown, Adrian J.; Sutter, Brad; Dunagan, Stephen
2008-10-01
We report on the design, operation, and data analysis methods employed on the VNIR imaging spectrometer instrument that was part of the Mars Astrobiology Research and Technology Experiment (MARTE). The imaging spectrometer is a hyperspectral scanning pushbroom device sensitive to VNIR wavelengths from 400-1000 nm. During the MARTE project, the spectrometer was deployed to the Río Tinto region of Spain. We analyzed subsets of three cores from Río Tinto using a new band modeling technique. We found most of the MARTE drill cores to contain predominantly goethite, though spatially coherent areas of hematite were identified in Core 23. We also distinguished non Fe-bearing minerals that were subsequently analyzed by X-ray diffraction (XRD) and found to be primarily muscovite. We present drill core maps that include spectra of goethite, hematite, and non Fe-bearing minerals.
Synthesis of nanocrystalline α-Fe2O3 by using thermal oxidation of Fe Films
NASA Astrophysics Data System (ADS)
Fortas, G.; Saidoun, I.; Abboud, H.; Gabouze, N.; Haine, N.; Manseri, A.; Zergoug, M.; Menari, H.; Sam, S.; Cheraga, H.; Bozetine, I.
2018-03-01
α-Fe2O3 hematite films were prepared by thermal oxidation from Fe films electroplated on silicon. Electrodeposition of Fe thin films was carried out from a sulfate bath containing an ammonium chloride complexing agent. The electrochemical study was performed by cyclic voltammetry. The SEM analysis of the films obtained at a -1.3 V constant polarization shows dendritic grains in the form of islet. The DRX spectra exhibit characteristic iron peaks according to the face centered cubic (Fcc) structure. These samples were annealed. At a temperature of 650 ° C, a single iron oxide phase was well formed, with the hematite structure. The SEM photos show a well-assembled columnar structure with formation of nanowires at the surface of the deposit. The absorbance spectra reveal an absorption features in the ultraviolet range
NASA Technical Reports Server (NTRS)
Burns, Roger G.; Straub, Darcy W.
1992-01-01
Inferences from these investigations are that Fe(3+)-bearing minerals such as hematite magnesioferrite, acmite, and epidote are thermodynamically unstable, and that magnetite is the predominant mixed-valence iron oxide mineral on venus. Recently, the Fe(2+)-Fe(3+) silicate mineral laihunite was proposed to be a reaction product of olivine with the venusian atmosphere. This possibility is discussed further here. We suggest that other mixed-valence Fe(2+)-Fe(3+)-Oz-OH(-) silicates could also result from surface-atmosphere interactions on Venus. Topics discussed include the following: (1) conversion of hematite to magnetite; (2) stability of laihunite; (3) the possible existence of oxy-amphiboles and oxy-micas on Venus; and (4) other mixed-valence Fe(2+)-Fe(3+) silicates likely to exist on Venus.
Nanostructured hematite thin films for photoelectrochemical water splitting
NASA Astrophysics Data System (ADS)
Maabong, Kelebogile; Machatine, Augusto G. J.; Mwankemwa, Benard S.; Braun, Artur; Bora, Debajeet K.; Toth, Rita; Diale, Mmantsae
2018-04-01
Nanostructured hematite thin films prepared by dip coating technique were investigated for their photoelectrochemical activity for generation of hydrogen from water splitting. Structural, morphological and optical analyses of the doped/undoped films were performed by X-ray diffraction, high resolution field emission-scanning electron microscopy, UV-vis spectrophotometry and Raman spectroscopy. The photoelectrochemical measurements of the films showed enhanced photoresponse and cathodic shift of the onset potential upon Ti doping indicating improved transfer of photoholes at the semiconductor-electrolyte interface. Films doped with 1 at% Ti produced 0.72 mA/cm2 at 1.23 V vs RHE which is 2 times higher than current density for the pure film (0.30 mA/cm2, at 1.23 V vs RHE). Gas chromatography analysis of the films also showed enhanced hydrogen evolution at 1 at% Ti with respect to pure film.
Wedege, Kristina; Azevedo, João; Khataee, Amirreza; Bentien, Anders; Mendes, Adélio
2016-06-13
The intermittent nature of the sunlight and its increasing contribution to electricity generation is fostering the energy storage research. Direct solar charging of an auspicious type of redox flow battery could make solar energy directly and efficiently dispatchable. The first solar aqueous alkaline redox flow battery using low cost and environmentally safe materials is demonstrated. The electrolytes consist of the redox couples ferrocyanide and anthraquinone-2,7-disulphonate in sodium hydroxide solution, yielding a standard cell potential of 0.74 V. Photovoltage enhancement strategies are demonstrated for the ferrocyanide-hematite junction by employing an annealing treatment and growing a layer of a conductive polyaniline polymer on the electrode surface, which decreases electron-hole recombination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Identification of magnetic minerals in the fine-grain sediment on the Bengawan Solo River
NASA Astrophysics Data System (ADS)
Purnama, B.; Kusuma, R.; Legowo, B.; Suharyana; Wijayanta, A. T.
2018-03-01
The magnetic mineral content in the fine sediment of Bengawan Solo River is discussed. The fine sediment is obtained on the upper part of the tributary of Bengawan Solo River. Magnetic minerals are separated using permanent magnets. Furthermore the magnetic minerals are overnight dried using oven at 100°C. FTIR characterization indicate that the magnetic minerals in the fine sediment of Bengawan Solo River have the same characteristics as minerals in Cilacap and Purwokerto areas. Magnetic minerals are estimated to form at wave number k = 569.03 cm-1. This hematite content increase to 70.67% after anealling treatment at 600°C for 4 hours in atmosphere condition. This result is interesting because the heating process increases the hematite content. Within results, the magnetic properties of the sample will change.
Davis, Philip A.; Berlin, Graydon L.; Chavez, Pat S.
1987-01-01
Landsat Thematic Mapper image data were analyzed to determine their ability to discriminate red cone basalts from gray flow basalts and sedimentary country rocks for three volcanic fields in the southwestern United States. Analyses of all of the possible three-band combinations of the six nonthermal bands indicate that the combination of bands 1, 4, and 5 best discriminates among these materials. The color-composite image of these three bands unambiguously discriminates 89 percent of the mapped red volcanic cones in the three volcanic fields. Mineralogic and chemical analyses of collected samples indicate that discrimination is facilitated by the presence of hematite as a major mineral phase in the red cone basalts (hematite is only a minor mineral phase in the gray flow basalts and red sedimentary rocks).
Maldonado, Carolina Solis; De la Rosa, Javier Rivera; Lucio-Ortiz, Carlos J.; Hernández-Ramírez, Aracely; Castillón Barraza, Felipe F.; Valente, Jaime S.
2014-01-01
The role of iron in two modes of integration into alumina catalysts was studied at 0.39 wt% Fe and tested in trichloroethylene combustion. One modified alumina was synthesized using the sol-gel method with Fe added in situ during hydrolysis; another modification was performed using calcined alumina, prepared using the sol-gel method and impregnated with Fe. Several characterization techniques were used to study the level of Fe modification in the γ-Al2O3 phase formed and to correlate the catalytic properties during trichloroethylene (TCE) combustion. The introduction of Fe in situ during the sol-gel process influenced the crystallite size, and three iron species were generated, namely, magnetite, maghemite and hematite. The impregnated Fe-alumina formed hematite and maghemite, which were highly dispersed on the γ-Al2O3 surface. The X-ray photoelectron spectra (XPS), FT-IR and Mössbauer spectroscopy analyses revealed how Fe interacted with the γ-Al2O3 lattice in both catalysts. The impregnated Fe-catalyst showed the best catalytic performance compared to the catalyst that was Fe-doped in situ by the sol-gel method; both had better catalytic activity than pure alumina. This difference in activity was correlated with the accessibility of the reactants to the hematite iron species on the surface. The chlorine poisoning for all three catalysts was less than 1.8%. PMID:28788556
Role of background ions in guar gum adsorption on oxide minerals and kaolinite.
Ma, Xiaodong; Pawlik, Marek
2007-09-15
Adsorption of guar gum onto alumina, titania (rutile), hematite, quartz, and kaolinite was investigated as a function of pH, ionic strength (from distilled water to saturated NaCl and KCl), and the type of background electrolyte (0.01 mol/L LiCl, NaCl, KCl, and CsCl). It was demonstrated that the adsorption density of the polymer does not depend on pH for any of the tested minerals, so only hydrogen bonding was identified as the dominant adsorption mechanism. The minerals could, however, be divided into two groups depending on the effect of the salt type on polymer adsorption. Guar gum adsorption onto quartz and kaolinite significantly increased in the presence of even a small amount of KCl, while NaCl equally enhanced guar gum adsorption on these two minerals only at concentrations approaching saturation. In contrast, no significant differences between the effects of KCl and NaCl on polysaccharide adsorption were observed on titania, alumina, and hematite. The results were correlated with the chaotropic (KCl) and kosmotropic (NaCl) properties of the background salts, and-based on a review of the available literature data-with the presence (quartz) or absence (titania, alumina, hematite) of an extensive hydration layer on the oxide surfaces. It was concluded that the main role of background ions in the studied systems was to control the stability of the interfacial water layer on oxide particles whose presence serves as a barrier to guar gum adsorption.
NASA Astrophysics Data System (ADS)
Mishra, Srinibash; Roy, Gour Gopal
2016-08-01
The effect of carbon-to-hematite molar ratio has been studied on the reduction efficiency of iron ore-coal composite pellet reduced at 1523 K (1250 °C) for 20 minutes in a laboratory scale multi-layer bed rotary hearth furnace (RHF). Reduced pellets have been characterized through weight loss measurement, estimation of porosity, shrinkage, qualitative and quantitative phase analysis by XRD. Performance parameters such as the degree of reduction, metallization, carbon efficiency, productivity, and compressive strength have been calculated to compare the process efficacy at different carbon levels in the pellets. Pellets with optimum carbon-to-hematite ratio (C/Fe2O3 molar ratio = 1.66) that is much below the stoichiometric carbon required for direct reduction of hematite yielded maximum reduction, better carbon utilization, and productivity for all three layers. Top layer exhibited maximum reduction at comparatively lower carbon level (C/Fe2O3 molar ratio <2.33) in the pellet, while bottom layer exceeded top layer reduction at higher carbon level (C/Fe2O3 molar ratio >2.33). Correlation between degree of reduction and metallization indicated non-isothermal kinetics influenced by heat and mass transfer in multi-layer bed RHF. Compressive strength of the partially reduced pellet with optimum carbon content (C/Fe2O3 molar ratio = 1.66) showed that they could be potentially used as an alternate feed in a blast furnace or any other smelting reactor.
Fraeman, A A; Ehlmann, B L; Arvidson, R E; Edwards, C S; Grotzinger, J P; Milliken, R E; Quinn, D P; Rice, M S
2016-09-01
We have developed a refined geologic map and stratigraphy for lower Mount Sharp using coordinated analyses of new spectral, thermophysical, and morphologic orbital data products. The Mount Sharp group consists of seven relatively planar units delineated by differences in texture, mineralogy, and thermophysical properties. These units are (1-3) three spatially adjacent units in the Murray formation which contain a variety of secondary phases and are distinguishable by thermal inertia and albedo differences, (4) a phyllosilicate-bearing unit, (5) a hematite-capped ridge unit, (6) a unit associated with material having a strongly sloped spectral signature at visible near-infrared wavelengths, and (7) a layered sulfate unit. The Siccar Point group consists of the Stimson formation and two additional units that unconformably overlie the Mount Sharp group. All Siccar Point group units are distinguished by higher thermal inertia values and record a period of substantial deposition and exhumation that followed the deposition and exhumation of the Mount Sharp group. Several spatially extensive silica deposits associated with veins and fractures show that late-stage silica enrichment within lower Mount Sharp was pervasive. At least two laterally extensive hematitic deposits are present at different stratigraphic intervals, and both are geometrically conformable with lower Mount Sharp strata. The occurrence of hematite at multiple stratigraphic horizons suggests redox interfaces were widespread in space and/or in time, and future measurements by the Mars Science Laboratory Curiosity rover will provide further insights into the depositional settings of these and other mineral phases.
Ferric iron in sediments as a novel CO2 mineral trap: CO 2-SO2 reaction with hematite
Palandri, J.L.; Rosenbauer, R.J.; Kharaka, Y.K.
2005-01-01
Thermodynamic simulations of reactions among SO2-bearing CO 2-dominated gas, water and mineral phases predict that Fe III in sediments should be converted almost entirely to dissolved FeII and siderite (FeCO3), and that SO2 should simultaneously be oxidized to dissolved sulfate. The reactions are however, subject to kinetic constraints which may result in deviation from equilibrium and the precipitation of other metastable mineral phases. To test the prediction, a laboratory experiment was carried out in a well stirred hydrothermal reactor at 150??C and 300 bar with hematite, 1.0 m NaCl, 0.5 m NaOH, SO2 in quantity sufficient to reduce much of the iron, and excess CO2. The experiment produced stable siderite and metastable pyrite and elemental S. Changes in total dissolved Fe are consistent with nucleation of pyrite at ???17 h, and nucleation of siderite at ???600 h. Dissolution features present on elemental S at the conclusion of the experiment suggest nucleation early in the experiment. The experiment did not reach equilibrium after ???1400 h, as indicated by coexistence of hematite with metastable pyrite and elemental sulfur. However, the results confirm that FeIII can be used to trap CO2 in siderite if partly oxidized S, as SO2, is present to reduce the Fe with CO2 in the gas phase. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
García-Hidalgo, José F.; Elorza, Javier; Gil-Gil, Javier; Herrero, José M.; Segura, Manuel
2018-02-01
Ferruginous sandstones and crusts are prominent sedimentary features throughout the continental (braided)-coastal siliciclastic (estuarine-tidal) wedges of the Late Cenomanian Utrillas Formation in the Iberian Basin. Crust types recognized are: Ferruginous sandy crusts (Fsc) with oxides-oxyhydroxides (hematite and goethite) concentrated on sandstone tops presenting a fibro-radial internal structure reminding organic structures that penetrate different mineral phases, suggesting the existence of bacterial activity in crust development; Ferruginous muddy crusts (Fmc) consisting of wavy, laminated, microbial mats, being composed mainly of hematite. On the other hand, a more dispersed and broader mineralization included as Ferruginous sandstones with iron oxides and oxyhydroxides (hematite and goethite) representing a limited cement phase on these sediments. The presence of microbial remains, ferruginous minerals, Microbially-induced sedimentary structures, microbial laminites and vertebrate tracks preserved due to the presence of biofilms suggest firstly a direct evidence of syn-depositional microbial activity in these sediments; and, secondly, that iron accumulation and ferruginous crusts development occurred immediately after deposition of the host, still soft sediments. Ferruginous crusts cap sedimentary cycles and they represent the gradual development of hard substrate conditions, and the development of a discontinuity surface at the top of the parasequence sets, related to very low sedimentary rates; the overlying sediments record subsequent flooding of underlying shallower environments; crusts are, consequently, interpreted as boundaries for these higher-order cycles in the Iberian Basin.
Looking Southeast from Second Floor Mezzanine of Pellet Plant to ...
Looking Southeast from Second Floor Mezzanine of Pellet Plant to Erbia Mixing Area and Poreformer and Acrawax Mixing Station - Hematite Fuel Fabrication Facility, Pellet Plant, 3300 State Road P, Festus, Jefferson County, MO
Looking North at Reactor Number One and Air Vent on ...
Looking North at Reactor Number One and Air Vent on Fourth Floor of Oxide Building - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO
View of North End of Oxide Building Interior Including Roof ...
View of North End of Oxide Building Interior Including Roof and Wall Juncture and Crane Trolley - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO
Looking Northwest at First Floor Typical Wall and Ceiling Juncture ...
Looking Northwest at First Floor Typical Wall and Ceiling Juncture in Oxide Building and Loading Dock - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO
Looking Northeast at Southwest End of Maintenance Shop with Milling ...
Looking Northeast at Southwest End of Maintenance Shop with Milling Machines, Hoist, Electrical Boxes in Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO
Looking Southwest at Southwest End of Erbia Building Showing Typical ...
Looking Southwest at Southwest End of Erbia Building Showing Typical Wall and Roof Juncture Including a Recycling Furnace - Hematite Fuel Fabrication Facility, Erbia Plant, 3300 State Road P, Festus, Jefferson County, MO
Looking Northwest at Furnace Control Panels and Gas Control Furnace ...
Looking Northwest at Furnace Control Panels and Gas Control Furnace in Red Room Within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO
Looking East at Motor Control System, Clarity Columns and Blend ...
Looking East at Motor Control System, Clarity Columns and Blend Tank Along East Side of Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO
Iron isotope fractionation during hydrothermal ore deposition and alteration
NASA Astrophysics Data System (ADS)
Markl, Gregor; von Blanckenburg, Friedhelm; Wagner, Thomas
2006-06-01
Iron isotopes fractionate during hydrothermal processes. Therefore, the Fe isotope composition of ore-forming minerals characterizes either iron sources or fluid histories. The former potentially serves to distinguish between sedimentary, magmatic or metamorphic iron sources, and the latter allows the reconstruction of precipitation and redox processes. These processes take place during ore formation or alteration. The aim of this contribution is to investigate the suitability of this new isotope method as a probe of ore-related processes. For this purpose 51 samples of iron ores and iron mineral separates from the Schwarzwald region, southwest Germany, were analyzed for their iron isotope composition using multicollector ICP-MS. Further, the ore-forming and ore-altering processes were quantitatively modeled using reaction path calculations. The Schwarzwald mining district hosts mineralizations that formed discontinuously over almost 300 Ma of hydrothermal activity. Primary hematite, siderite and sulfides formed from mixing of meteoric fluids with deeper crustal brines. Later, these minerals were partly dissolved and oxidized, and secondary hematite, goethite and iron arsenates were precipitated. Two types of alteration products formed: (1) primary and high-temperature secondary Fe minerals formed between 120 and 300 °C, and (2) low-temperature secondary Fe minerals formed under supergene conditions (<100 °C). Measured iron isotope compositions are variable and cover a range in δ56Fe between -2.3‰ and +1.3‰. Primary hematite ( δ56Fe: -0.5‰ to +0.5‰) precipitated by mixing oxidizing surface waters with a hydrothermal fluid that contained moderately light Fe ( δ56Fe: -0.5‰) leached from the crystalline basement. Occasional input of CO 2-rich waters resulted in precipitation of isotopically light siderite ( δ56Fe: -1.4 to -0.7‰). The difference between hematite and siderite is compatible with published Fe isotope fractionation factors. The observed range in isotopic compositions can be accounted for by variable fractions of Fe precipitating from the fluid. Therefore, both fluid processes and mass balance can be inferred from Fe isotopes. Supergene weathering of siderite by oxidizing surface waters led to replacement of isotopically light primary siderite by similarly light secondary hematite and goethite, respectively. Because this replacement entails quantitative transfer of iron from precursor mineral to product, no significant isotope fractionation is produced. Hence, Fe isotopes potentially serve to identify precursors in ore alteration products. Goethites from oolitic sedimentary iron ores were also analyzed. Their compositional range appears to indicate oxidative precipitation from relatively uniform Fe dissolved in coastal water. This comprehensive iron isotope study illustrates the potential of the new technique in deciphering ore formation and alteration processes. Isotope ratios are strongly dependent on and highly characteristic of fluid and precipitation histories. Therefore, they are less suitable to provide information on Fe sources. However, it will be possible to unravel the physico-chemical processes leading to the formation, dissolution and redeposition of ores in great detail.
AMS Fabric of a CRM in Hematite-Bearing Samples: Evidence of DRMs in Natural Red Beds
NASA Astrophysics Data System (ADS)
Kodama, K. P.
2002-12-01
Anisotropy of magnetic susceptibility (AMS) and anisotropy of isothermal remanence (AIR) in red sedimentary rocks both typically show a bedding parallel foliation with minimum axes clustered perpendicular to the bedding plane. Our studies have observed this type of magnetic fabric in red bed units that have a range of ages and come from widespread localities. These units include the Mississippian Mauch Chunk Formation from the Appalachians, the Triassic Passaic Formation from the Newark basin in Pennsylvania, the Cretaceous Kapusaliang Formation from the Tarim basin in China, and the early Mesozoic Kayenta and Chinle Formations from the Colorado Plateau in southwestern North America. Bedding parallel foliations are also observed in magnetite-bearing rocks that carry a depositional remanence (DRM), suggesting the possibility of a DRM in red beds, even though the conventional wisdom is that they carry a post-depositional chemical remanent magnetization (CRM). Before the typical magnetic fabric of red beds can be used to indicate their type of remanence, we must determine what the magnetic fabric of a CRM looks like. For this reason, I conducted a series of hematite-growth experiments following the procedures outlined by Stokking and Tauxe (1987). I grew hematite in the laboratory on stacks of glass-fiber filter papers and in slurries of quartz and kaolinite. The hematite was grown from a ferric nitrate solution heated to 95° C for 8 hours. The samples were then dehydrated in a vacuum at room temperature for approximately 38 hours. It was possible to thermally demagnetize the eight filter paper samples to 350° C, but the six kaolinite-quartz samples were grown in plastic sample cubes and could only be thermally demagnetized to 150° C, enough to remove the thermoviscous magnetization acquired by the samples during the heating at 95° C. The mean CRM acquired by the red-brown magnetic phase grown in the experiments was within its alpha-95 of the steeply inclined (inclination=60°) ambient magnetic field. The kaolinite-quartz samples had a very scattered remanence, probably due to the physical disturbance of the samples upon the initial application of the vacuum. In both the filter paper and kaolinite-quartz experiments the AMS fabric of the CRM-carrying grains was foliated with the maximum and intermediate principal axes defining a great circle that passes through the mean CRM direction and is moderately inclined (approximately 45°) to the horizontal. The moderately inclined great circle defined by the maximum-intermediate principal axes is quite distinct from the horizontal maximum-intermediate axes observed in the natural red bed samples, despite red bed characteristic remanences that range from nearly horizontal (Passaic, Chinle, Kayenta) to as steep as 30° (Mauch Chunk, Kapusaliang). This observation suggests that red bed characteristic remanence is typically a DRM, rather than a CRM. This has implications for interpreting red bed remanence since DRMs in hematite-bearing red beds may have large inclination errors.
Looking Northeast in Oxide Building at Reactors on Second Floor ...
Looking Northeast in Oxide Building at Reactors on Second Floor Including Reactor One (Left) and Reactor Two (Right) - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO
Signature of Hematite in Confidence Hills Martian Rock
2014-11-04
This side-by-side comparison shows the X-ray diffraction patterns of two different samples collected from rocks on Mars by NASA Curiosity rover. The images present data obtained by Curiosity Chemistry and Mineralogy instrument CheMin.
The Opportunity Rover's Athena science investigation at Meridiani Planum, Mars
NASA Technical Reports Server (NTRS)
Squyres, S. W.; Arvidson, R. E.; Bell, J. F., III; Bruckner, J.; Cabrol, N. A.; Calvin, W.; Carr, M. H.; Christensen, P. R.; Clark, B. C.; Crumpler, L.;
2004-01-01
The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.
NASA Astrophysics Data System (ADS)
Kotova, O.; Silaev, V.; Lutoev, V.; Vakhrushev, A.
2016-04-01
Mineralogical and geochemical features of two series of samples of typical bauxites from two deposits of Middle Timan mining area (Vezhayu-Vorykva and Svetlinskoe) were studied. The phase composition of ferrous bauxites generally is boehmite, hematite, ultradisperse low-ordered goethite and berthierine. In a boehmite and kaolinite structural impurity of iron to 10%, and in the iron oxidehydroxides aluminum impurity is revealed. On iron content bauxites are subdivided into three mineral types for which quantitative data on valence states of ions of iron and proportions of their distribution last on nonequivalent structural positions in hematite, goethite and berthierine are obtained. Noble metals (Ag, Au, Ir, Rh, Pd) concentrating in bauxites are revealed for the first time. Obtained data can lead to decrease of power consumption during aluminum production and high quality ceramics, to provide production of valuable iron oxide, and also to minimize the ecological harm from accumulation of bauxite wastes.
JMSS-1: a new Martian soil simulant
NASA Astrophysics Data System (ADS)
Zeng, Xiaojia; Li, Xiongyao; Wang, Shijie; Li, Shijie; Spring, Nicole; Tang, Hong; Li, Yang; Feng, Junming
2015-05-01
It is important to develop Martian soil simulants that can be used in Mars exploration programs and Mars research. A new Martian soil simulant, called Jining Martian Soil Simulant (JMSS-1), was developed at the Lunar and Planetary Science Research Center at the Institute of Geochemistry, Chinese Academy of Sciences. The raw materials of JMSS-1 are Jining basalt and Fe oxides (magnetite and hematite). JMSS-1 was produced by mechanically crushing Jining basalt with the addition of small amounts of magnetite and hematite. The properties of this simulant, including chemical composition, mineralogy, particle size, mechanical properties, reflectance spectra, dielectric properties, volatile content, and hygroscopicity, have been analyzed. On the basis of these test results, it was demonstrated that JMSS-1 is an ideal Martian soil simulant in terms of chemical composition, mineralogy, and physical properties. JMSS-1 would be an appropriate choice as a Martian soil simulant in scientific and engineering experiments in China's Mars exploration in the future.
NASA Technical Reports Server (NTRS)
Coleman, Max
2005-01-01
The MER Opportunity Athena Science team has described spheroidal hematite nodules in sediments at Meridiani Planum on Mars [1]. They were informally referred to as "Blueberries" in the initial press releases and for brevity that is the name to be used in this abstract. Not all spheroidal objects in sediments are nodular concretions, but this paper will discuss the diagenetic processes possibly relevant to understanding the origin of the Blueberries. There are many occurrences of spheroidal diagenetic concretions in terrestrial sediments and detailed work has been done to understand the processes of their formation. In particular, it is possible to reconstruct the controls on their shapes and compositions, both mineral and chemical. Although there may not be good analogs for the Meridiani Planum hematite spherules on Earth, it may be possible to deduce the former environmental conditions that led to their formation and whether they might retain (or even be) biosignatures.
Characterisation and Processing of Some Iron Ores of India
NASA Astrophysics Data System (ADS)
Krishna, S. J. G.; Patil, M. R.; Rudrappa, C.; Kumar, S. P.; Ravi, B. P.
2013-10-01
Lack of process characterization data of the ores based on the granulometry, texture, mineralogy, physical, chemical, properties, merits and limitations of process, market and local conditions may mislead the mineral processing entrepreneur. The proper implementation of process characterization and geotechnical map data will result in optimized sustainable utilization of resource by processing. A few case studies of process characterization of some Indian iron ores are dealt with. The tentative ascending order of process refractoriness of iron ores is massive hematite/magnetite < marine black iron oxide sands < laminated soft friable siliceous ore fines < massive banded magnetite quartzite < laminated soft friable clayey aluminous ore fines < massive banded hematite quartzite/jasper < massive clayey hydrated iron oxide ore < manganese bearing iron ores massive < Ti-V bearing magnetite magmatic ore < ferruginous cherty quartzite. Based on diagnostic process characterization, the ores have been classified and generic process have been adopted for some Indian iron ores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Hawoong; Kim, Jongjin; Fang, Xinyue
Thin films of iron oxides including magnetite (Fe3O4) and hematite (α-Fe2O3) have many important applications. Both forms of oxide can occur naturally during film growth by iron deposition under various oxidation environment; an important issue is to understand and control the process resulting in a single-phase film. We have performed in-situ real-time studies using x-ray diffraction of such film growth on sapphire (001) under pure ozone by monitoring the (00L) rod. Stable magnetite growth can be maintained at growth temperatures below 600° C up to a certain critical film thickness, beyond which the growth becomes hematite. The results demonstrate themore » importance of interfacial interaction in stabilizing the magnetite phase.« less
Shavorskiy, Andrey; Ye, Xiaofei; Karslgolu, Osman; ...
2017-10-30
Photoelectrochemical water splitting is a promising pathway for the direct conversion of renewable solar energy to easy to store and use chemical energy. The performance of a photoelectrochemical device is determined in large part by the heterogeneous interface between the photoanode and the electrolyte, which we here characterize directly under operating conditions using interface-specific probes. Utilizing X-ray photoelectron spectroscopy as a noncontact probe of local electrical potentials, we demonstrate direct measurements of the band alignment at the semiconductor/electrolyte interface of an operating hematite/KOH photoelectrochemical cell as a function of solar illumination, applied potential, and doping. Here, we provide evidence formore » the absence of in-gap states in this system, which is contrary to previous measurements using indirect methods, and give a comprehensive description of shifts in the band positions and limiting processes during the photoelectrochemical reaction.« less
UV, visible, and near-IR reflectivity data for magnetic soils/rocks from Brazil
NASA Technical Reports Server (NTRS)
Vempati, R. K.; Morris, R. V.; Lauer, H. V., Jr.; Coey, J. M. D.
1991-01-01
The objective is to obtain UV, visible, and near-IR reflectivity spectra for several magnetic Brazilian soils/rocks and compare them to corresponding data for Mars to see if these materials satisfy both magnetic and spectral constraints for Mars. Selected physical properties of the magnetic Brazilian soils/rocks are presented. In general, the spectral features resulting from ferric crystal-field transitions are much better defined in the spectra of the magnetic Brazilian soils/rocks than in Martian spectral data. Presumably, this results from a relatively higher proportion of crystalline ferric oxides for the former. The apparent masking of the spectral signature of maghemite by hematite or goethite for the Brazilian samples implies the magnetic and spectral constraints for Mars can be decoupled. That is, maghemite may be present in magnetically-significant but optically-insignificant amounts compared to crystalline hematite.
Effective flocculation of fine mineral suspensions using Moringa oleifera seeds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickett, T.M.
1995-12-31
The purpose of this research was to investigate the feasibility of using Moringa oleifera seeds, or the active components of the seeds, in the clarification of waters containing suspended mineral fines. In comparative testing using a hematite suspension, the flocculating activity of Moringa oleifera seeds was better than alum. Twenty milligrams of seed powder was sufficient to clarify the hematite to near zero turbidity, while the same amount of alum had a minimal effect on turbidity. Extracts were prepared from the seeds in an attempt to separate the proteins. A crude protein extract was enriched by lowering the pH tomore » 6.0. Only 0.08 mg/L of the enriched extract was required to flocculate a minusil suspension. Environmentally friendly protein flocculants could theoretically be produced and enhanced with recombinant DNA techniques as an alternative to chemical flocculants currently used in water treatment.« less
The opportunity Rover's athena science investigation at Meridiani Planum, Mars
Squyres, S. W.; Arvidson, R. E.; Bell, J.F.; Brückner, J.; Cabrol, N.A.; Calvin, W.; Carr, M.H.; Christensen, P.R.; Clark, B. C.; Crumpler, L.; Des Marais, D.J.; D'Uston, C.; Economou, T.; Farmer, J.; Farrand, W.; Folkner, W.; Golombek, M.; Gorevan, S.; Grant, J. A.; Greeley, R.; Grotzinger, J.; Haskin, L.; Herkenhoff, K. E.; Hviid, S.; Johnson, J.; Klingelhofer, G.; Knoll, A.H.; Landis, G.; Lemmon, M.; Li, R.; Madsen, M.B.; Malin, M.C.; McLennan, S.M.; McSween, H.Y.; Ming, D. W.; Moersch, J.; Morris, R.V.; Parker, T.; Rice, J. W.; Richter, L.; Rieder, R.; Sims, M.; Smith, M.; Smith, P.; Soderblom, L.A.; Sullivan, R.; Wanke, H.; Wdowiak, T.; Wolff, M.; Yen, A.
2004-01-01
The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.
Hamaker constants of iron oxide nanoparticles.
Faure, Bertrand; Salazar-Alvarez, German; Bergström, Lennart
2011-07-19
The Hamaker constants for iron oxide nanoparticles in various media have been calculated using Lifshitz theory. Expressions for the dielectric responses of three iron oxide phases (magnetite, maghemite, and hematite) were derived from recently published optical data. The nonretarded Hamaker constants for the iron oxide nanoparticles interacting across water, A(1w1) = 33 - 39 zJ, correlate relatively well with previous reports, whereas the calculated values in nonpolar solvents (hexane and toluene), A(131) = 9 - 29 zJ, are much lower than the previous estimates, particularly for magnetite. The magnitude of van der Waals interactions varies significantly between the studied phases (magnetite < maghemite < hematite), which highlights the importance of a thorough characterization of the particles. The contribution of magnetic dispersion interactions for particle sizes in the superparamagnetic regime was found to be negligible. Previous conjectures related to colloidal stability and self-assembly have been revisited on the basis of the new Lifshitz values of the Hamaker constants.
NASA Astrophysics Data System (ADS)
Sutter, Brad; Brown, Adrian J.; Stoker, Carol R.
2008-10-01
Sampling of subsurface rock may be required to detect evidence of past biological activity on Mars. The Mars Astrobiology Research and Technology Experiment (MARTE) utilized the Río Tinto region, Spain, as a Mars analog site to test dry drilling technologies specific to Mars that retrieve subsurface rock for biological analysis. This work examines the usefulness of visible-near infrared (VNIR) (450-1000 nm) point spectrometry to characterize ferric iron minerals in core material retrieved during a simulated Mars drilling mission. VNIR spectrometry can indicate the presence of aqueously precipitated ferric iron minerals and, thus, determine whether biological analysis of retrieved rock is warranted. Core spectra obtained during the mission with T1 (893-897 nm) and T2 (644-652 nm) features indicate goethite-dominated samples, while relatively lower wavelength T1 (832-880 nm) features indicate hematite. Hematite/goethite molar ratios varied from 0 to 1.4, and within the 880-898 nm range, T1 features were used to estimate hematite/goethite molar ratios. Post-mission X-ray analysis detected phyllosilicates, which indicates that examining beyond the VNIR (e.g., shortwave infrared, 1000-2500 nm) will enhance the detection of other minerals formed by aqueous processes. Despite the limited spectral range of VNIR point spectrometry utilized in the MARTE Mars drilling simulation project, ferric iron minerals could be identified in retrieved core material, and their distribution served to direct core subsampling for biological analysis.
Sutter, Brad; Brown, Adrian J; Stoker, Carol R
2008-10-01
Sampling of subsurface rock may be required to detect evidence of past biological activity on Mars. The Mars Astrobiology Research and Technology Experiment (MARTE) utilized the Río Tinto region, Spain, as a Mars analog site to test dry drilling technologies specific to Mars that retrieve subsurface rock for biological analysis. This work examines the usefulness of visible-near infrared (VNIR) (450-1000 nm) point spectrometry to characterize ferric iron minerals in core material retrieved during a simulated Mars drilling mission. VNIR spectrometry can indicate the presence of aqueously precipitated ferric iron minerals and, thus, determine whether biological analysis of retrieved rock is warranted. Core spectra obtained during the mission with T1 (893-897 nm) and T2 (644-652 nm) features indicate goethite-dominated samples, while relatively lower wavelength T1 (832-880 nm) features indicate hematite. Hematite/goethite molar ratios varied from 0 to 1.4, and within the 880-898 nm range, T1 features were used to estimate hematite/goethite molar ratios. Post-mission X-ray analysis detected phyllosilicates, which indicates that examining beyond the VNIR (e.g., shortwave infrared, 1000-2500 nm) will enhance the detection of other minerals formed by aqueous processes. Despite the limited spectral range of VNIR point spectrometry utilized in the MARTE Mars drilling simulation project, ferric iron minerals could be identified in retrieved core material, and their distribution served to direct core subsampling for biological analysis.
Rare earth elements in Hamersley BIF minerals
NASA Astrophysics Data System (ADS)
Alibert, Chantal
2016-07-01
Minerals from the Hamersley banded iron formation, Western Australia, were analyzed for Y and rare earth elements (YREEs) by laser ablation ICP-MS to investigate diagenetic pathways, from precursor phases to BIF minerals. One group of apatites carries the seawater REE signature, giving evidence that P and REEs, thoroughly scavenged from the water column by Si-ferrihydrite particles, were released upon microbial Fe3+ reductive dissolution of Si-ferrihydrite in pore-water and finally sequestered mainly in authigenic apatite. The absence of fractionation between apatite and seawater suggests that REE were first incorporated into an amorphous calcium phosphate as fully hydrated cations, i.e. as outer-sphere complexes. The iron oxides and carbonates carry only a small fraction of the whole-rock REE budget. Their REE patterns are distinctly enriched in Yb and show some M-type tetrad effect consistent with experimental Kd(REE) between solid and saline solution with low carbonate ion concentrations. It is deduced that hematite formed at an incipient stage of Fe2+-catalyzed dissolution of Si-ferrihydrite, via a dissolution-reprecipitation pathway. The REE pattern of greenalite, found as sub-micron particles in quartz in a chert-siderite sample, is consistent with its authigenic origin by precipitation in pore-water after dissolution of a small amount of Si-ferrihydrite. Magnetite carries very low YREEs (ppb-level), has an homogeneous pattern distinctly enriched in the mid-REEs compared to hematite, and includes a late population depleted in light-REEs, Ba and As. Magnetite forming aggregates and massive laminae is tentatively interpreted as reflecting some fluid-aided hematite-magnetite re-equilibration or transformation at low-grade metamorphic temperatures.
Biogeochemical stability and reactions of iron-organic carbon complexes
NASA Astrophysics Data System (ADS)
Yang, Y.; Adhikari, D.; Zhao, Q.; Dunham-Cheatham, S.; Das, K.; Mejia, J.; Huang, R.; Wang, X.; Poulson, S.; Tang, Y.; Obrist, D.; Roden, E. E.
2017-12-01
Our core hypothesis is that the degradation rate of soil organic carbon (OC) is governed by the amount of iron (Fe)-bound OC, and the ability of microbial communities to utilize OC as an energy source and electron shuttle for Fe reduction that in turn stimulates reductive release of Fe-bound labile dissolved OC. This hypothesis is being systematically evaluated using model Fe-OC complexes, natural soils, and microcosm system. We found that hematite-bound aliphatic C was more resistant to reduction release, although hematite preferred to sorb more aromatic C. Resistance to reductive release represents a new mechanism that aliphatic soil OC was stabilized by association with Fe oxide. In other studies, pyrogenic OC was found to facilitate the reduction of hematite, by enhancing extracellular electron transport and sorbing Fe(II). For ferrihydrite-OC co-precipitates, the reduction of Fe and release of OC was closely governed by the C/Fe ratio in the system. Based on the XPS, XANES and XAFS analysis, the transformation of Fe speciation was heterogeneous, depending on the conformation and composition of Fe-OC complexes. For natural soils, we investigated the quantity, characteristics, and reactivity of Fe-bound OC in soils collected from 14 forests in the United States. Fe-bound OC contributed up to 57.8% of total OC in the forest soils. Under the anaerobic conditions, the reduction of Fe was positively correlated to the electron accepting capacity of OC. Our findings highlight the closely coupled dynamics of Fe and OC, with broad implications on the turnover of OC and biogeochemical cycles of Fe.
Hole localization in Fe2O3 from density functional theory and wave-function-based methods
NASA Astrophysics Data System (ADS)
Ansari, Narjes; Ulman, Kanchan; Camellone, Matteo Farnesi; Seriani, Nicola; Gebauer, Ralph; Piccinin, Simone
2017-08-01
Hematite (α -Fe2O3 ) is a promising photocatalyst material for water splitting, where photoinduced holes lead to the oxidation of water and the release of molecular oxygen. In this work, we investigate the properties of holes in hematite using density functional theory (DFT) calculations with hybrid functionals. We find that holes form small polarons and, depending on the fraction of exact exchange included in the PBE0 functional, the site where the holes localize changes from Fe to O. We find this result to be independent of the size and structure of the system: small Fe2O3 clusters with tetrahedral coordination, larger clusters with octahedral coordination, Fe2O3 (001) surfaces in contact with water, and bulk Fe2O3 display a very similar behavior in terms of hole localization as a function of the fraction of exact exchange. We then use wave-function-based methods such as coupled cluster with single and double excitations and Møller-Plesset second-order perturbation theory applied on a cluster model of Fe2O3 to shed light on which of the two solutions is correct. We find that these high-level quantum chemistry methods suggest holes in hematite are localized on oxygen atoms. We also explore the use of the DFT +U approach as a computationally convenient way to overcome the known limitations of generalized gradient approximation functionals and recover a gap in line with experiments and hole localization on oxygen in agreement with quantum chemistry methods.
Mineral induced mechanochemical degradation: the imazaquin case.
Nasser, Ahmed; Buchanovsky, Nadia; Gerstl, Zev; Mingelgrin, Uri
2009-03-01
The potential role of mechanochemical processes in enhancing degradation of imazaquin by soil components is demonstrated. The investigated components include montmorillonite saturated with Na(+), Ca(2+), Cu(2+)and Al(3+), Agsorb (a commercial clay mix), birnessite and hematite. The mechanical force applied was manual grinding of mixtures of imazaquin and the minerals, using mortar and pestle. The degradation rates of imazaquin in these mixtures were examined as a function of the following parameters: time of grinding, herbicide load (3.9, 8.9, 16.7 and 26.6 mg imazaquin per g mineral), temperature (10, 25, 40 and 70 degrees C), acidic/basic conditions, and dry or wet grinding. Dry grinding of imazaquin for 5 min with Al-montmorillonite or with hematite resulted in 56% and 71% degradation of the imazaquin, respectively. Wet grinding slightly reduced the degradation rate with hematite and entirely cancelled the enhancing effect of grinding with Al-montmorillonite. Wet grinding in the presence of the transition metals: Ni(2+), Cu(2+), Fe(3+) added as chlorides was carried out. Addition of Cu(2+) to Na-montmorillonite loaded with imazaquin was the most effective treatment in degrading imazaquin (more than 90% of the imazaquin degraded after 5 min of grinding). In this treatment, Cu-montmorillonite formation during the grinding process was confirmed by XRD and accordingly, grinding with Cu-montmorillonite gave similar degradation values. LC-MS analysis revealed that the mechanochemical transformation of imazaquin resulted in the formation of a dimer and several breakdown products. The reported results demonstrate once again that mechanochemical procedures offer a remediation avenue applicable to soils polluted with organic contaminants.
NASA Astrophysics Data System (ADS)
Just, J.; Schleicher, A.; Kontny, A.; de Wall, H.
The EPS-1 drilling in Soultz-sous-Forêts (Rhinegraben, France) recovered a core pro- file of Tertiary to Permo-Mesozoic sediments deposited on a Variscan granitic base- ment. Magnetic susceptibility (k) measurements on the core material revealed a con- tinous increase from the basement/cover boundary (kmean 0.4 x 10-3 SI) into the magnetite-bearing granite (kmean 13 x 10-3 SI) over a depth range of 1417 U 1555 m. Rock magnetic and mineralogic studies were performed for the fresh granite, the hydrothermally altered granite near a fault zone and the altered granite from the fossil land surface near the basement/cover boundary. The decrease in susceptibility can be correlated with a gradual decomposition of magnetite to hematite and an alteration of the matrix minerals feldspars, biotite and hornblende to clay minerals and carbon- ates. Along with this transition, characteristic rock magnetic signatures can be dis- criminated for different degrees of alteration. While temperature-dependent magnetic susceptibility k(T)-curves in fresh granites indicate a typical multidomain magnetite course with good reversibility, different types of irreversible courses are observed for the altered granite. However, hematite could not be identified in the k(T)-curves. Al- tered granite shows relatively weak magnetic behaviour in AF-demagnetisation exper- iments, untypical for hematite. The alteration of the fresh granite also causes a change in magnetic fabric parameter, especially of the anisotropy factor. The magnetic min- eralogy from the altered granite in respect to the changes in rock magnetic properties will be discussed.
Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps
Sivan, Orit; Antler, Gilad; Turchyn, Alexandra V.; ...
2014-09-22
Seep sediments are dominated by intensive microbial sulfate reduction coupled to the anaerobic oxidation of methane (AOM). Through geochemical measurements of incubation experiments with methane seep sediments collected from Hydrate Ridge, we provide insight into the role of iron oxides in sulfate-driven AOM. Seep sediments incubated with 13C-labeled methane showed co-occurring sulfate reduction, AOM, and methanogenesis. The isotope fractionation factors for sulfur and oxygen isotopes in sulfate were about 40‰ and 22‰, respectively, reinforcing the difference between microbial sulfate reduction in methane seeps versus other sedimentary environments (for example, sulfur isotope fractionation above 60‰ in sulfate reduction coupled to organicmore » carbon oxidation or in diffusive sedimentary sulfate–methane transition zone). The addition of hematite to these microcosm experiments resulted in significant microbial iron reduction as well as enhancing sulfate-driven AOM. The magnitude of the isotope fractionation of sulfur and oxygen isotopes in sulfate from these incubations was lowered by about 50%, indicating the involvement of iron oxides during sulfate reduction in methane seeps. The similar relative change between the oxygen versus sulfur isotopes of sulfate in all experiments (with and without hematite addition) suggests that oxidized forms of iron, naturally present in the sediment incubations, were involved in sulfate reduction, with hematite addition increasing the sulfate recycling or the activity of sulfur-cycling microorganisms by about 40%. Furthermore, these results highlight a role for natural iron oxides during bacterial sulfate reduction in methane seeps not only as nutrient but also as stimulator of sulfur recycling.« less
NASA Astrophysics Data System (ADS)
Wahyuningsih, S.; Ramelan, A. H.; Pranata, H. P.; Hanif, Q. A.; Ismoyo, Y. A.; Ichsan, K. F.
2016-11-01
Preparation of Fe2O3/TiO2 composite from Sukabumi iron sand by magnetic separation, roasting, leaching and precipitation treatment has been carried out. Magnetic separation can separate magnetic particles and non-magnetic particles of iron sand content, while the non-magnetic particles (wustite (FeO), hematite (α-Fe2O3), maghemite (γ-Fe2O3) and magnetite (Fe3O4)) was washing with oxalic acid 1 M. The result product then was roasted at 800 °C treated by sodium carbonate (Na2CO3) addition of 1:1; 2:1 and 1:2 (w/w) of iron sand to Na2CO3 weight ratio, respectively. The X-Ray Fluorescence (XRF) analysis result shown that Sukabumi iron sand have hematite (Fe2O3) and titanium dioxide (TiO2) content about 72.17% dan 14.42%. XRD analysis of roasted iron sand shown the rutile (TiO2), Hematite (Fe2O3), NaFeO2, FeO, and Na2TiO3. Leaching of roasted iron sand using sulphuric acid (H2SO4) have influenced by concentrations of the H2SO4 solution. The optimum iron sand dissolution occurred in H2SO4 9 M, which condensation product of the leachant have a weight ratio of Fe:Ti = 1:1 (w/w). Meanwhile, the settling back-filtrate result of second condensation was obtained a ratio of Fe2O3: TiO2 of 3: 1 (w/w).
A Hierarchical Z-Scheme α-Fe2 O3 /g-C3 N4 Hybrid for Enhanced Photocatalytic CO2 Reduction.
Jiang, Zhifeng; Wan, Weiming; Li, Huaming; Yuan, Shouqi; Zhao, Huijun; Wong, Po Keung
2018-03-01
The challenge in the artificial photosynthesis of fossil resources from CO 2 by utilizing solar energy is to achieve stable photocatalysts with effective CO 2 adsorption capacity and high charge-separation efficiency. A hierarchical direct Z-scheme system consisting of urchin-like hematite and carbon nitride provides an enhanced photocatalytic activity of reduction of CO 2 to CO, yielding a CO evolution rate of 27.2 µmol g -1 h -1 without cocatalyst and sacrifice reagent, which is >2.2 times higher than that produced by g-C 3 N 4 alone (10.3 µmol g -1 h -1 ). The enhanced photocatalytic activity of the Z-scheme hybrid material can be ascribed to its unique characteristics to accelerate the reduction process, including: (i) 3D hierarchical structure of urchin-like hematite and preferable basic sites which promotes the CO 2 adsorption, and (ii) the unique Z-scheme feature efficiently promotes the separation of the electron-hole pairs and enhances the reducibility of electrons in the conduction band of the g-C 3 N 4 . The origin of such an obvious advantage of the hierarchical Z-scheme is not only explained based on the experimental data but also investigated by modeling CO 2 adsorption and CO adsorption on the three different atomic-scale surfaces via density functional theory calculation. The study creates new opportunities for hierarchical hematite and other metal-oxide-based Z-scheme system for solar fuel generation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Diagenesis and Replacement of Cosmic Dust in the Geological Record
NASA Astrophysics Data System (ADS)
Suttle, M. D.; Genge, M. J.
2017-07-01
We report the discovery of abundant pseudomorphic fossil cosmic spherules, preserved in 87Ma old Cretaceous chalk. These replaced micrometeorites are composed of hematite or iron silicides and identified on the basis of characteristic textures.
Looking Southwest at First Floor View of Oxide Building Interior ...
Looking Southwest at First Floor View of Oxide Building Interior Including Steam Lines, Weigh and Sample Hood, and Superheater - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO
Iron oxide minerals in dust of the Red Dawn event in eastern Australia, September 2009
Reynolds, Richard L.; Cattle, Stephen R.; Moskowitz, Bruce M.; Goldstein, Harland L.; Yauk, Kimberly; Flagg, Cody B.; Berquó, Thelma S.; Kokaly, Raymond F.; Morman, Suzette A.; Breit, George N.
2014-01-01
Iron oxide minerals typically compose only a few weight percent of bulk atmospheric dust but are important for potential roles in forcing climate, affecting cloud properties, influencing rates of snow and ice melt, and fertilizing marine phytoplankton. Dust samples collected from locations across eastern Australia (Lake Cowal, Orange, Hornsby, and Sydney) following the spectacular “Red Dawn” dust storm on 23 September 2009 enabled study of the dust iron oxide assemblage using a combination of magnetic measurements, Mössbauer spectroscopy, reflectance spectroscopy, and scanning electron microscopy. Red Dawn was the worst dust storm to have hit the city of Sydney in more than 60 years, and it also deposited dust into the Tasman Sea and onto snow cover in New Zealand. Magnetization measurements from 20 to 400 K reveal that hematite, goethite, and trace amounts of magnetite are present in all samples. Magnetite concentrations (as much as 0.29 wt%) were much higher in eastern, urban sites than in western, agricultural sites in central New South Wales (0.01 wt%), strongly suggesting addition of magnetite from local urban sources. Variable temperature Mössbauer spectroscopy (300 and 4.2 K) indicates that goethite and hematite compose approximately 25–45% of the Fe-bearing phases in samples from the inland sites of Orange and Lake Cowal. Hematite was observed at both temperatures but goethite only at 4.2 K, thereby revealing the presence of nanogoethite (less than about 20 nm). Similarly, hematite particulate matter is very small (some of it d < 100 nm) on the basis of magnetic results and Mössbauer spectra. The degree to which ferric oxide in these samples might absorb solar radiation is estimated by comparing reflectance values with a magnetic parameter (hard isothermal remanent magnetization, HIRM) for ferric oxide abundance. Average visible reflectance and HIRM are correlated as a group (r2 = 0.24), indicating that Red Dawn ferric oxides have capacity to absorb solar radiation. Much of this ferric oxide occurs as nanohematite and nanogoethite particles on surfaces of other particulate matter, thereby providing high surface area to enhance absorption of solar radiation. Leaching of the sample from Orange in simulated human-lung fluid revealed low bioaccessibility for most metals.
NASA Astrophysics Data System (ADS)
Satolli, S.; Muttoni, G.; Di Cencio, A.; Lanci, L.
2017-12-01
The early Toarcian is globally characterized by a concomitance of extensional tectonics, volcanism, greenhouse conditions, marine transgression, mass extinction and increase in the total organic carbon, generally resulting in an organic rich facies known as the Toarcian oceanic anoxic event (T-OAE). These events have been related to the eruption of the Karoo-Ferrar igneous province. We characterize the time interval encompassing the T-OAE in the Marne del Serrone section (Northern Apennines, Italy). This 62-m-thick section is characterized by micritic limestones, red-green marls and by 50-cm-thick black shale and massive slumps in its bottom part. The age of the section has been constrained trough magnetostratigraphy and ammonite biostratigraphy in the Spinatum to Variabilis biozones. Non-oriented samples were collected at 5-to-10-cm sampling space and analyzed in order to detect variations in the magnetic minerals content. Rock magnetic investigations comprise mass-normalized NRM and magnetic susceptibility (MS), isothermal remanent magnetization (IRM) at room temperature, and thermal demagnetization of a three-component IRM. The section is magnetic-wise characterized by an alternate predominance of two end-members: magnetite and hematite. Higher SIRM coupled with lower S-ratio documented in red levels and nodular grey-reddish marl indicates higher presence of hematite, suggesting a detrital input. Instead, the black shale is characterized by a comparably high amount of magnetite. Here, the absence of hematite suggests the lack of continental influx. The cyclicity of rock magnetic parameters S-ratio and MS record was studied as a proxy for changes in productivity due to fluctuations in hematite of detrital origin. The latter reflects the expression of orbital modulation on the lithological alternations found in the upper part of the section (Bifrons biozone). The analysis allowed quantifying the timing and duration of the environmental change triggered by the Karoo-Ferrar event, which in the Marne del Serrone section is mirrored by a rapid increase in the SIRM starting in the "Posidonia Beds" and reaches its acme few meters above the anoxic level. The decrease in the magnetization of saturation is gradual after the event and characterized by peaks in the magnetization intensity.
Geology of the Eymir iron mine, Edremit, Turkey
Jacobson, Herbert Samuel; Turet, Erdogan
1972-01-01
The Eymir mine near Edremit on Turkey's Aegean coast (long 27?30'E.,1at 39?36'N.) was investigated as part of the Maden Tetkik ve Arama Enstitutsu (MTA)-U. S. Geological Survey (USGS) mineral exploration and training project, for the purpose of increasing the known mineral reserves. Geologic mapping of the mine area indicates that hematite is restricted to argillized, silicified, and pyritized dacite and possibly andesite. Hematite is present as massive replacements, impregnations, disseminations, and fracture fillings. Most of the upper part of the iron deposit consists of a breccia composed mostly of silicifiled dacite fragments in a hematite matrix. The iron deposit was apparently formed in three steps: 1. Argillation, silicification, and pyritization of the andesitic lava and dacite units as a result of a regional intrusion. 2. Intrusion of the Dere Oren dacite stock, with associated faulting, fracturing, and breccia formation at the surface. 3. Deposition of hematite by oxidation of pyrite, and transfer of iron via fractures and faults by hydrothermal or meteoric fluids. The Eymir iron deposit is a blanketlike deposit on the crest of the Sivritepe-Eymir ridge. It is 1300 meters long, 80 to 450 meters wide, and has an average thickness of 18.6 meters. Drill holes in the deposit show the iron content to range from 32.0 to 57.6 percent, and to average 46.5 percent. Most of the gangue is silica, and an arsenic impurity averaging 0.39 percent is present. Most of the deposit cannot be utilized as iron ore because of low iron content, high silica content, and high arsenic content. Ore-dressing tests have shown that it is feasible to concentrate the low-grade material, producing a concentrate having increased iron content and reduced silica content. Tests have shown also that the arsenic content of the ore can be reduced substantially by sintering. Further tests and economic feasibility studies are necessary to determine whether an economic marketable iron ore can be produced. If such studies indicate the technical and economic feasibility of utilizing all the Eymir iron deposit, detailed additional studies are recommended including: 1. A detailed drilling and sampling program to include 60 drill holes averaging 40 meters in depth and detailed sampling of mine dumps. 2. Pilot-plant testing of concentration and sintering procedures. 3. A detailed pre-investment economic feasibility study.
NASA Astrophysics Data System (ADS)
Kontny, A.
Low-field magnetic susceptibility measurements in the temperature range U192 to 700 C (k(T)) are a widely applied method used for the identification of magnetic phases and characteristic magnetic phase transitions. One of the advantages of this method is the precise determination of titanomagnetite composition independently from grain size. However, the interpretations of k(T)-curves often are discussed controversially because other effects like grain size or the occurrence of more than one magnetic phase complicate the courses. Case studies from the titanomagnetite and titanohe- matite solid solution series including pure magnetite and hematite will be presented and variations in chemical composition, alteration and grain size will be discussed in relation to their geological significance. (1) In subaerially extruded basaltic lava differences in the low-temperature legs of the k(T) curves indicate variations in the degree of high-temperature (deuteric) oxidation of titanomagnetite. This alteration to magnetite-rich titanomagnetite is accompanied by a grain size reduction, which can be correlated with the development of a susceptibility peak at about U160 C. Fur- ther oxidation transforms the titanomagnetite into titanohematite which again results in a characteristic k(T) behavior at low temperatures with a decrease in k with in- creasing temperature (2) Hydrothermal alteration from magnetite to hematite creates a hematite phase that cannot be seen in k(T)-curves. However, hematite that is grown in sediments, can be identified by its Tc. Therefore it is assumed that crystallinity of magnetic phases seems to play a significant role to explain a different behaviour. (3) Submarine basalts rapidly quenched from high temperatures often show wide anti- clines in the k(T)-curves which can be correlated with a range of chemical composition and grain sizes, including small amounts of pure magnetite. This feature is commonly attributed to low-temperature alteration of single domain grains of titanomagnetite and is described for ocean floor basalts. An alternative interpretation is given by composi- tional and grain size variations due to small scale fractionation of melt related to the cooling of the lava. Generally, the high-temperature leg of k(T) curves mostly indi- cates the chemical composition (Tc) and degree of alteration, the low-temperature leg seems to be more sensible for grain size variations.
Mastcam Special Filters Help Locate Variations Ahead
2017-11-01
This pair of images from the Mast Camera (Mastcam) on NASA's Curiosity rover illustrates how special filters are used to scout terrain ahead for variations in the local bedrock. The upper panorama is in the Mastcam's usual full color, for comparison. The lower panorama of the same scene, in false color, combines three exposures taken through different "science filters," each selecting for a narrow band of wavelengths. Filters and image processing steps were selected to make stronger signatures of hematite, an iron-oxide mineral, evident as purple. Hematite is of interest in this area of Mars -- partway up "Vera Rubin Ridge" on lower Mount Sharp -- as holding clues about ancient environmental conditions under which that mineral originated. In this pair of panoramas, the strongest indications of hematite appear related to areas where the bedrock is broken up. With information from this Mastcam reconnaissance, the rover team selected destinations in the scene for close-up investigations to gain understanding about the apparent patchiness in hematite spectral features. The Mastcam's left-eye camera took the component images of both panoramas on Sept. 12, 2017, during the 1,814th Martian day, or sol, of Curiosity's work on Mars. The view spans from south-southeast on the left to south-southwest on the right. The foreground across the bottom of the scene is about 50 feet (about 15 meters) wide. Figure 1 includes scale bars of 1 meter (3.3 feet) in the middle distance and 5 meters (16 feet) at upper right. Curiosity's Mastcam combines two cameras: the right eye with a telephoto lens and the left eye with a wider-angle lens. Each camera has a filter wheel that can be rotated in front of the lens for a choice of eight different filters. One filter for each camera is clear to all visible light, for regular full-color photos, and another is specifically for viewing the Sun. Some of the other filters were selected to admit wavelengths of light that are useful for identifying iron minerals. Each of the filters used for the lower panorama shown here admits light from a narrow band of wavelengths, extending to only about 5 to 10 nanometers longer or shorter than the filter's central wavelength. The three observations combined into this product used filters centered at three near-infrared wavelengths: 751 nanometers, 867 nanometers and 1,012 nanometers. Hematite distinctively absorbs some frequencies of infrared light more than others. Usual color photographs from digital cameras -- such as the upper panorama here from Mastcam -- combine information from red, green and blue filtering. The filters are in a microscopic grid in a "Bayer" filter array situated directly over the detector behind the lens, with wider bands of wavelengths. The colors of the upper panorama, as with most featured images from Mastcam, have been tuned with a color adjustment similar to white balancing for approximating how the rocks and sand would appear under daytime lighting conditions on Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22065
NASA Astrophysics Data System (ADS)
Patra, Astam K.; Kundu, Sudipta K.; Bhaumik, Asim; Kim, Dukjoon
2015-12-01
We have developed a new green chemical approach for the shape-controlled synthesis of single-crystalline hematite nanocrystals in aqueous medium. FESEM, HRTEM and SAED techniques were used to determine the morphology and crystallographic orientations of each nanocrystal and its exposed facets. PXRD and HRTEM techniques revealed that the nanocrystals are single crystalline in nature; twins and stacking faults were not detected in these nanocrystals. The structural, vibrational, and electronic spectra of these nanocrystals were highly dependent on their shape. Different shaped hematite nanocrystals with distinct crystallographic planes have been synthesized under similar reaction conditions, which can be desired as a model for the purpose of properties comparison with the nanocrystals prepared under different reaction conditions. Here we investigated the photocatalytic performance of these different shaped-nanocrystals for methyl orange degradation in the presence of white light (λ > 420 nm). In this study, we found that the density of surface Fe3+ ions in particular facets was the key factor for the photocatalytic activity and was higher on the bitruncated-dodecahedron shape nanocrystals by coexposed {104}, {100} and {001} facets, attributing to higher catalytic activity. The catalytic activity of different exposed facet nanocrystals were as follows: {104} + {100} + {001} (bitruncated-dodecahedron) > {101} + {001} (bitruncated-octahedron) > {001} + {110} (nanorods) > {012} (nanocuboid) which provided the direct evidence of exposed facet-driven photocatalytic activity. The nanocrystals were easily recoverable using an external magnet and reused at least six times without significant loss of its catalytic activity.We have developed a new green chemical approach for the shape-controlled synthesis of single-crystalline hematite nanocrystals in aqueous medium. FESEM, HRTEM and SAED techniques were used to determine the morphology and crystallographic orientations of each nanocrystal and its exposed facets. PXRD and HRTEM techniques revealed that the nanocrystals are single crystalline in nature; twins and stacking faults were not detected in these nanocrystals. The structural, vibrational, and electronic spectra of these nanocrystals were highly dependent on their shape. Different shaped hematite nanocrystals with distinct crystallographic planes have been synthesized under similar reaction conditions, which can be desired as a model for the purpose of properties comparison with the nanocrystals prepared under different reaction conditions. Here we investigated the photocatalytic performance of these different shaped-nanocrystals for methyl orange degradation in the presence of white light (λ > 420 nm). In this study, we found that the density of surface Fe3+ ions in particular facets was the key factor for the photocatalytic activity and was higher on the bitruncated-dodecahedron shape nanocrystals by coexposed {104}, {100} and {001} facets, attributing to higher catalytic activity. The catalytic activity of different exposed facet nanocrystals were as follows: {104} + {100} + {001} (bitruncated-dodecahedron) > {101} + {001} (bitruncated-octahedron) > {001} + {110} (nanorods) > {012} (nanocuboid) which provided the direct evidence of exposed facet-driven photocatalytic activity. The nanocrystals were easily recoverable using an external magnet and reused at least six times without significant loss of its catalytic activity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06509g
FATE, TRANSFORMATION AND TOXICITY OF MANUFACTURED NANOMATERIALS IN DRINKING WATER
Studies were conducted using several types of commercial metal oxide nanoparticles (two types of titanium dioxide, iron(III) oxide, zinc oxide, nickel oxide, and silica in powder form or liquid suspensions), functionalized quantum dots, lab-synthesized hematite nanoparticles a...
NASA Technical Reports Server (NTRS)
Morris, P. A.; Wentworth, Susan J.; Thomas-Keprta, Kathie L.; Allen, Carlton C.; Schwandt, Craig S.; McKay, David S.; Westall, Frances; Bell, Mary Sue; Gibson, Everett K.
2000-01-01
Iron-bearing spherules in Archean Warrawoona rocks are composed of hematite and goethite. They are clearly syngenetic with the rock but their origin, whether biological or abiogenic, is not yet known.
NASA Astrophysics Data System (ADS)
Coleman, M. L.
2005-03-01
Formation of spheroidal concretions on Earth results generally from reactions of organic matter in oxidized sediments. Had organic matter been present in Merididani Planum it could have produced a reduced iron mineral phase later oxidized to hematite.
NASA Astrophysics Data System (ADS)
V. R., Arun prakash; Rajadurai, A.
2016-10-01
In this present work hybrid polymer (epoxy) matrix composite has been strengthened with surface modified E-glass fiber and iron(III) oxide particles with varying size. The particle sizes of 200 nm and <100 nm has been prepared by high energy ball milling and sol-gel methods respectively. To enhance better dispersion of particles and improve adhesion of fibers and fillers with epoxy matrix surface modification process has been done on both fiber and filler by an amino functional silane 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized iron(III) oxide particles were characterized by XRD and FTIR spectroscopy analysis. Fixed quantity of surface treated 15 vol% E-glass fiber was laid along with 0.5 and 1.0 vol% of iron(III) oxide particles into the matrix to fabricate hybrid composites. The composites were cured by an aliphatic hardener Triethylenetetramine (TETA). Effectiveness of surface modified particles and fibers addition into the resin matrix were revealed by mechanical testing like tensile testing, flexural testing, impact testing, inter laminar shear strength and hardness. Thermal behavior of composites was evaluated by TGA, DSC and thermal conductivity (Lee's disc). The scanning electron microscopy was employed to found shape and size of iron(III) oxide particles adhesion quality of fiber with epoxy matrix. Good dispersion of fillers in matrix was achieved with surface modifier APTMS. Tensile, flexural, impact and inter laminar shear strength of composites was improved by reinforcing surface modified fiber and filler. Thermal stability of epoxy resin was improved when surface modified fiber was reinforced along with hard hematite particles. Thermal conductivity of epoxy increased with increase of hematite content in epoxy matrix.
NASA Astrophysics Data System (ADS)
Montreuil, Jean-François; Corriveau, Louise; Potter, Eric G.
2015-03-01
Uranium and polymetallic U mineralization hosted within brecciated albitites occurs one kilometer south of the magnetite-rich Au-Co-Bi-Cu NICO deposit in the southern Great Bear magmatic zone (GBMZ), Canada. Concentrations up to 1 wt% U are distributed throughout a 3 by 0.5 km albitization corridor defined as the Southern Breccia zone. Two distinct U mineralization events are observed. Primary uraninite precipitated with or without pyrite-chalcopyrite ± molybdenite within magnetite-ilmenite-biotite-K-feldspar-altered breccias during high-temperature potassic-iron alteration. Subsequently, pitchblende precipitated in earthy hematite-specular hematite-chlorite veins associated with a low-temperature iron-magnesium alteration. The uraninite-bearing mineralization postdates sodic (albite) and more localized high-temperature potassic-iron (biotite-magnetite ± K-feldspar) alteration yet predates potassic (K-feldspar), boron (tourmaline) and potassic-iron-magnesium (hematite ± K-feldspar ± chlorite) alteration. The Southern Breccia zone shares attributes of the Valhalla (Australia) and Lagoa Real (Brazil) albitite-hosted U deposits but contains greater iron oxide contents and lower contents of riebeckite and carbonates. Potassium, Ni, and Th are also enriched whereas Zr and Sr are depleted with respect to the aforementioned albitite-hosted U deposits. Field relationships, geochemical signatures and available U-Pb dates on pre-, syn- and post-mineralization intrusions place the development of the Southern Breccia and the NICO deposit as part of a single iron oxide alkali-altered (IOAA) system. In addition, this case example illustrates that albitite-hosted U deposits can form in albitization zones that predate base and precious metal ore zones in a single IOAA system and become traps for U and multiple metals once the tectonic regime favors fluid mixing and oxidation-reduction reactions.
NASA Astrophysics Data System (ADS)
Lassoued, Abdelmajid; Lassoued, Mohamed Saber; Dkhil, Brahim; Ammar, Salah; Gadri, Abdellatif
2018-07-01
In this work the iron oxide (α-Fe2O3) nanoparticles are synthesized using two different methods: precipitation and hydrothermal. Size, structural, optical and magnetic properties were determined and compared using X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FT-IR), Raman spectroscopy, Differential Thermal Analysis (DTA), Thermogravimetric Analysis (TGA), Ultraviolet-Visible (UV-Vis) analysis, Superconducting QUantum Interference Device (SQUID) magnetometer and Photoluminescence (PL). XRD data further revealed a rhombohedral (hexagonal) structure with the space group (R-3c) and showed an average size of 21 nm for hydrothermal samples and 33 nm for precipitation samples which concorded with TEM and SEM images. FT-IR confirms the phase purity of the nanoparticles synthesized. The Raman spectroscopy was used not only to prove that we have synthesized pure α-Fe2O3 but also to identify their phonon modes. The TGA showed three mass losses, whereas DTA resulted in three endothermic peaks. The decrease in the particle size of hematite of 33 nm for precipitation samples to 21 nm for hydrothermal samples is responsible for increasing the optical band gap of 1.94-2.10 eV where, the relation between them is inverse relationship. The products exhibited the attractive magnetic properties with good saturation magnetization, which were examined by a SQUID magnetometer. Photoluminescence measurements showed a strong emission band at 450 nm. Pure hematite prepared by hydrothermal method has smallest size, best crystallinity, highest band gap and best value of saturation magnetization compared to the hematite elaborated by the precipitation method.
NASA Astrophysics Data System (ADS)
Quinton, Emily E.; Dahms, Dennis E.; Geiss, Christoph E.
2011-07-01
In order to constrain the rate of magnetic enhancement in soils, we investigated modern soils from five fluvial terraces in the eastern Wind River Range, Wyoming. Profiles up to 1.2 m deep were sampled in 5-cm intervals from hand-dug pits or natural riverbank exposures. Soils formed in fluvial terraces correlated to the Sacajawea Ridge (730-610 ka BP), Bull Lake (130-100 ka BP) and Pinedale-age (˜20 ka BP) glacial advances. One soil profile formed in Holocene-age sediment. Abundance, mineralogy, and grain size of magnetic minerals were estimated through magnetic measurements. Magnetic enhancement of the A-horizon as well as an increase in fine-grained magnetic minerals occurred mostly in Bull Lake profiles but was absent from the older profile. Such low rates of magnetic enhancement may limit the temporal resolution of paleosol-based paleoclimate reconstructions in semiarid regions even where high sedimentation rates result in multiple paleosols. A loss of ferrimagnetic and an increase in antiferromagnetic minerals occurred with age. Our findings suggest either the conversion of ferrimagnetic minerals to weakly magnetic hematite with progressing soil age, or the presence of ferrimagnetic minerals as an intermediate product of pedogenesis. Absolute and relative hematite abundance increase with age, making both useful proxies for soil age and the dating of regional glacial deposits. All coercivity proxies are consistent with each other, which suggests that observed changes in HIRM and S-ratio are representative of real changes in hematite abundance rather than shifts in coercivity distributions, even though the modified L-ratio varies widely.
NASA Astrophysics Data System (ADS)
Wellington, D. F.; Bell, J. F., III; Johnson, J. R.; Fraeman, A. A.; Kinch, K. M.; Godber, A.; Rice, M. S.
2016-12-01
The Mars Science Laboratory Curiosity rover reached the lower units of Mt. Sharp in Gale Crater approximately two years ago. Along the traverse, Mastcam multispectral observations have documented the visible/near-IR spectral variability of drill tailings, bedrock, float rocks, fines, and other materials, recording a set of diverse reflectance properties in twelve unique filters over wavelengths 400-1100 nm. The most recent multi-filter images include new spectral diversity not encountered in near-field imaging acquired earlier in the mission. Since departing Marias Pass ( sol 1072), the rover has sampled material from the Stimson sandstone unit four times at two widely separated locations. These drill pairs were designed to investigate alteration regions visible as bright haloes bordering fractures in the bedrock. Drill fines and piles of dumped sample material from these sites (at Bridger Basin and on the Naukluft Plateau) were targeted for multispectral observations, which quantify the differences in overall reflectance and spectral shape between the unaltered Stimson material and the light-toned haloes. In the latter, high reflectances and relatively flat spectral shapes are consistent with interpretations of silica enrichment from other instruments. Mastcam spectra of the portions of the underlying Murray Formation (mudstone) that were encountered on first approach to the Bagnold dunes, and again upon exiting the Naukluft Plateau, are consistent with the presence of crystalline hematite. Variations in the relative strength of hematite absorption features in different locations may suggest possible differences in relative and/or absolute abundances of hematite of varying degrees of crystallinity. Dune materials have low reflectances with a broad, shallow absorption near 1-µm consistent with an olivine-bearing basaltic composition. We present these and other examples of spectral variability encountered by the rover during its ascent up the lower slopes of Mt. Sharp.
Chernyshova, Irina V; Ponnurangam, Sathish; Somasundaran, Ponisseril
2013-05-14
A better understanding of interaction with dissolved CO2 is required to rationally design and model the (photo)catalytic and sorption processes on metal (hydr)oxide nanoparticles (NPs) in aqueous media. Using in situ FTIR spectroscopy, we address this problem for rhombohedral 38 nm hematite (α-Fe2O3) nanoparticles as a model. We not only resolve the structures of the adsorbed carbonate species, but also specify their adsorption sites and their location on the nanoparticle surface. The spectral relationships obtained present a basis for a new method of characterizing the microscopic structural and acid-base properties (related to individual adsorption sites) of hydrated metal (hydr)oxide NPs using atmospherically derived CO2 as a probe. Specifically, we distinguish two carbonate species suggesting two principally different adsorption mechanisms. One species, which is more weakly adsorbed, has an inner-sphere mononuclear monodentate structure which is formed by a conventional ligand-exchange mechanism. At natural levels of dissolved carbonate and pH from 3 to 11, this species is attached to the most acidic/reactive surface cations (surface states) associated with ferrihydrite-like surface defects. The second species, which is more strongly adsorbed, presents a mixed C and O coordination of bent CO2. This species uniquely recognizes the stoichiometric rhombohedral {104} facets in the NP texture. Like in gas phase, it is formed through the surface coordination of molecular CO2. We address how the adsorption sites hosting these two carbonate species are affected by the annealing and acid etching of the NPs. These results support the nanosize-induced phase transformation of hematite towards ferrihydrite under hydrous conditions, and additionally show that the process starts from the roughened areas of the facet intersections.
NASA Astrophysics Data System (ADS)
Gavriliuk, A. G.; Struzhkin, V. V.; Mironovich, A. A.; Lyubutin, I. S.; Troyan, I. A.; Chow, P.; Xiao, Y.
2018-02-01
The magnetic properties of the α-Fe2O3 hematite at a high hydrostatic pressure have been studied by synchrotron Mössbauer spectroscopy (nuclear forward scattering (NFS)) on iron nuclei. Time-domain NFS spectra of hematite have been measured in a diamond anvil cell in the pressure range of 0-72 GPa and the temperature range of 36-300 K in order to study the magnetic properties at a phase transition near a critical pressure of 50 GPa. In addition, Raman spectra at room temperature have been studied in the pressure range of 0-77 GPa. Neon has been used as a pressure-transmitting medium. The appearance of an intermediate electronic state has been revealed at a pressure of 48 GPa. This state is probably related to the spin crossover in Fe3+ ions at their transition from the high-spin state (HS, S = 5/2) to a low-spin one (LS, S = 1/2). It has been found that the transient pressure range of the HS-LS crossover is extended from 48 to 55 GPa and is almost independent of the temperature. This surprising result differs fundamentally from other cases of the spin crossover in Fe3+ ions observed in other crystals based on iron oxides. The transition region of spin crossover appears because of thermal fluctuations between HS and LS states in the critical pressure range and is significantly narrowed at cooling because of the suppression of thermal excitations. The magnetic P- T phase diagram of α-Fe2O3 at high pressures and low temperatures in the spin crossover region has been constructed according to the results of measurements.
Charge transport in metal oxides: A theoretical study of hematite α-Fe2O3
NASA Astrophysics Data System (ADS)
Iordanova, N.; Dupuis, M.; Rosso, K. M.
2005-04-01
Transport of conduction electrons and holes through the lattice of α-Fe2O3 (hematite) is modeled as a valence alternation of iron cations using ab initio electronic structure calculations and electron transfer theory. Experimental studies have shown that the conductivity along the (001) basal plane is four orders of magnitude larger than the conductivity along the [001] direction. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e., the reorganization energy and the electronic coupling matrix element that enter Marcus' theory. The calculation of the electronic coupling followed the generalized Mulliken-Hush approach using the complete active space self-consistent field method. Our findings demonstrate an approximately three orders of magnitude anisotropy in both electron and hole mobility between directions perpendicular and parallel to the c axis, in good accord with experimental data. The anisotropy arises from the slowness of both electron and hole mobilities across basal oxygen planes relative to that within iron bilayers between basal oxygen planes. Interestingly, for elementary reaction steps along either of the directions considered, there is only less than one order of magnitude difference in mobility between electrons and holes, in contrast to accepted classical arguments. Our findings indicate that the most important quantity underlying mobility differences is the electronic coupling, albeit the reorganization energy contributes as well. The large values computed for the electronic coupling suggest that charge transport reactions in hematite are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron spin coupling within the Fe-Fe donor-acceptor pair, while the reorganization energy is essentially independent of the electron spin coupling.
NASA Astrophysics Data System (ADS)
Lassoued, Abdelmajid; Dkhil, Brahim; Gadri, Abdellatif; Ammar, Salah
Hematite (α-Fe2O3) nanoparticles were synthesized via a simple chemical precipitation method. The impact of varying the concentration of precursor on the crystalline phase, size and morphology of α-Fe2O3 products was explored. The characteristic of the synthesized hematite nanoparticles were evaluated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FT-IR) spectroscopy, Raman spectroscopy, Differential Thermal Analysis (DTA), Thermo Gravimetric Analysis (TGA), Ultraviolet-Visible (UV-Vis) analysis and Photoluminescence (PL). XRD data revealed a rhombohedral (hexagonal) structure with the space group R-3c in all samples. Uniform spherical like morphology was confirmed by TEM and SEM. The result revealed that the particle sizes were varied between 21 and 82 nm and that the increase in precursor concentration (FeCl3, 6H2O) is accompanied by an increase in the particle size of 21 nm for pure α-Fe2O3 synthesized with [Fe3+] = 0.05 M at 82 nm for pure α-Fe2O3 synthesized with [Fe3+] = 0.4 M. FT-IR confirms the phase purity of the nanoparticles synthesized. The Raman spectroscopy was used not only to prove that we have synthesized pure hematite but also to identify their phonon modes. The thermal behavior of compound was studied by using TGA/DTA results: The TGA showed three mass losses, whereas DTA resulted in three endothermic peaks. Besides, the optical investigation revealed that samples have an optical gap of about 2.1 eV and that this value varies as a function of the precursor concentration.
Adsorption of divalent metals to metal oxide nanoparicles: Competitive and temperature effects
NASA Astrophysics Data System (ADS)
Grover, Valerie Ann
The presence of metals in natural waters is becoming a critical environmental and public health concern. Emerging nanotechnology and the use of metal oxide nanoparticles has been identified as a potential remediation technique in removing metals from water. However, practical applications are still being explored to determine how to apply their unique chemical and physical properties for full scale remediation projects. This thesis investigates the sorption properties of Cd(II), Cu(II), Pb(II) and Zn(II) to hematite (alpha-Fe2O3) and titanium dioxide (TiO2) nanoparticles in single- and binary-adsorbate systems. Competitive sorption was evaluated in 1L batch binary-metal systems with 0.05g/L nano-hematite at pH 8.0 and pH 6.0. Results indicate that the presence of a secondary metal can affect the sorption process depending upon the molar ratios, such as increased or reduced adsorption. Thermodynamic properties were also studied in order to better understand the effects of temperature on equilibrium and kinetic adsorption capabilities. Understanding the thermodynamic properties can also give insight to determine if the sorption process is a physical, chemical or ion exchange reaction. Thermodynamic parameters such as enthalpy (DeltaH), entropy (DeltaS), and Gibbs free energy (DeltaG) were evaluated as a function of temperature, pH, and metal concentration. Results indicate that Pb(II) and Cu(II) adsorption to nano-hematite was an endothermic and physical adsorption process, while Zn(II) and Cd(II) adsorption was dependent upon the adsorbed concentration evaluated. However, metal adsorptions to nano-titanium dioxide were all found to be endothermic and physical adsorption processes; the spontaneity of metal adsorption was temperature dependent for both metal oxide nanoparticles.
NASA Technical Reports Server (NTRS)
Fernandez-Remolar, David C.; Morris, Richard V.; Gruener, John E.; Amils, Ricardo; Knoll, Andrew H.
2005-01-01
Exploration by the NASA rover Opportunity has revealed sulfate- and hematite-rich sedimentary rocks exposed in craters and other surface features of Meridiani Planum, Mars. Modern, Holocene, and Plio-Pleistocene deposits of the Rio Tinto, southwestern Spain, provide at least a partial environmental analog to Meridiani Planum rocks, facilitating our understanding of Meridiani mineral precipitation and diagenesis, while informing considerations of martian astrobiology. Oxidation, thought to be biologically mediated, of pyritic ore bodies by groundwaters in the source area of the Rio Tinto generates headwaters enriched in sulfuric acid and ferric iron. Seasonal evaporation of river water drives precipitation of hydronium jarosite and schwertmannite, while (Mg,Al,Fe(sup 3+))-copiapite, coquimbite, gypsum, and other sulfate minerals precipitate nearby as efflorescences where locally variable source waters are brought to the surface by capillary action. During the wet season, hydrolysis of sulfate salts results in the precipitation of nanophase goethite. Holocene and Plio-Pleistocene terraces show increasing goethite crystallinity and then replacement of goethite with hematite through time. Hematite in Meridiani spherules also formed during diagenesis, although whether these replaced precursor goethite or precipitated directly from groundwaters is not known. The retention of jarosite and other soluble sulfate salts suggests that water limited the diagenesis of Meridiani rocks. Diverse prokaryotic and eukaryotic microorganisms inhabit acidic and seasonally dry Rio Tinto environments. Organic matter does not persist in Rio Tinto sediments, but biosignatures imparted to sedimentary rocks as macroscopic textures of coated microbial streamers, surface blisters formed by biogenic gas, and microfossils preserved as casts and molds in iron oxides help to shape strategies for astrobiological investigation of Meridiani outcrops.
Hayes, Dugan; Hadt, Ryan G.; Emery, Jonathan D.; ...
2016-11-02
Ultrafast time-resolved studies of photocatalytic thin films can provide a wealth of information crucial for understanding and thereby improving the performance of these materials by directly probing electronic structure, reaction intermediates, and charge carrier dynamics. The interpretation of transient spectra, however, can be complicated by thermally induced structural distortions, which appear within the first few picoseconds following excitation due to carrier–phonon scattering. Here we present a comparison of ex situ steady-state thermal difference spectra and transient absorption spectra spanning from NIR to hard X-ray energies of hematite thin films grown by atomic layer deposition. We find that beyond the firstmore » 100 picoseconds, the transient spectra measured for all excitation wavelengths and probe energies are almost entirely due to thermal effects as the lattice expands in response to the ultrafast temperature jump and then cools to room temperature on the microsecond timescale. At earlier times, a broad excited state absorption band that is assigned to free carriers appears at 675 nm, and the lifetime and shape of this feature also appear to be mostly independent of excitation wavelength. The combined spectroscopic data, which are modeled with density functional theory and full multiple scattering calculations, support an assignment of the optical absorption spectrum of hematite that involves two LMCT bands that nearly span the visible spectrum. Lastly, our results also suggest a framework for shifting the ligand-to-metal charge transfer absorption bands of ferric oxide films from the near-UV further into the visible part of the solar spectrum to improve solar conversion efficiency.« less
Effects of iron-containing minerals on hydrothermal reactions of ketones
NASA Astrophysics Data System (ADS)
Yang, Ziming; Gould, Ian R.; Williams, Lynda B.; Hartnett, Hilairy E.; Shock, Everett L.
2018-02-01
Hydrothermal organic transformations occurring in geochemical processes are influenced by the surrounding environments including rocks and minerals. This work is focused on the effects of five common minerals on reactions of a model ketone substrate, dibenzylketone (DBK), in an experimental hydrothermal system. Ketones play a central role in many hydrothermal organic functional group transformations, such as those converting hydrocarbons to oxygenated compounds; however, how these minerals control the hydrothermal chemistry of ketones is poorly understood. Under the hydrothermal conditions of 300 °C and 70 MPa for up to 168 h, we observed that, while quartz (SiO2) and corundum (Al2O3) had no detectable effect on the hydrothermal reactions of DBK, iron-containing minerals, such as hematite (Fe2O3), magnetite (Fe3O4), and troilite (synthetic FeS), accelerated the reaction of DBK by up to an order of magnitude. We observed that fragmentation products, such as toluene and bibenzyl, dominated in the presence of hematite or magnetite, while use of troilite gave primarily the reduction products, e.g., 1, 3-diphenyl-propane and 1, 3-diphenyl-2-propanol. The roles of the three iron minerals in these transformations were further explored by (1) control experiments with various mineral surface areas, (2) measuring H2 in hydrothermal solutions, and (3) determining hydrogen balance among the organic products. These results suggest the reactions catalyzed by iron oxides (hematite and magnetite) are promoted mainly by the mineral surfaces, whereas the sulfide mineral (troilite) facilitated the reduction of ketone in the reaction solution. Therefore, this work not only provides a useful chemical approach to study and uncover complicated hydrothermal organic-mineral interactions, but also fosters a mechanistic understanding of ketone reactions in the deep carbon cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myrabo, D.O.
This paper describes the world's first buoyant articulated loading column (ALC) made principally of concrete and which can operate in the weather conditions of the North Sea. The ALC is an unmanned structure, mooring and loading being controlled by a tanker. Gravity base buoyancy tanks ''floaters'' are lightly reinforced and have a similar section to the column, 29.5 ft diameter and a wall thickness of 13.8 in. Before towing to the field, the column was ballasted by 1,000 metric tons of hematite, a fine ore aggregate. Final ballast will comprise 1,000 metric tons of hematite and 460 metric tons ofmore » water. Setting will be carried out by pumping water into the column until the base structure contacts the seabed. Once the base has touched down, the 2 cyclindrical buoyancy tanks will be vented, thus instantly applying the full weight of the gravity base to the sea floor and anchoring the ALC. Hyperbaric welding techniques will be used to tie the subsea pipeline into the expansion loop.« less
NASA Astrophysics Data System (ADS)
Cabral, Alexandre Raphael; Ließmann, Wilfried; Lehmann, Bernd
2015-10-01
At Roter Bär, a former underground mine in the polymetallic deposits of St. Andreasberg in the middle-Harz vein district, Germany, native gold and palladium minerals occur very locally in clausthalite-hematite pockets of few millimetres across in carbonate veinlets. The native gold is a Au-Ag intermetallic compound and the palladium minerals are characterised as mertieite-II [Pd8(Sb,As)3] and empirical PdCuBiSe3 with some S. The latter coexists with bohdanowiczite (AgBiSe2), a mineral that is stable below 120 °C. The geological setting of Roter Bär, underneath a post-Variscan unconformity, and its hematite-selenide-gold association suggest that oxidising hydrothermal brines of low temperature were instrumental to the Au-Pd mineralisation. The Roter Bär Au-Pd mineralisation can be explained by Permo-Triassic, red-bed-derived brines in the context of post-Variscan, unconformity-related fluid overprint.
Symbolic use of marine shells and mineral pigments by Iberian Neandertals
Zilhão, João; Angelucci, Diego E.; Badal-García, Ernestina; d’Errico, Francesco; Daniel, Floréal; Dayet, Laure; Douka, Katerina; Higham, Thomas F. G.; Martínez-Sánchez, María José; Montes-Bernárdez, Ricardo; Murcia-Mascarós, Sonia; Pérez-Sirvent, Carmen; Roldán-García, Clodoaldo; Vanhaeren, Marian; Villaverde, Valentín; Wood, Rachel; Zapata, Josefina
2010-01-01
Two sites of the Neandertal-associated Middle Paleolithic of Iberia, dated to as early as approximately 50,000 years ago, yielded perforated and pigment-stained marine shells. At Cueva de los Aviones, three umbo-perforated valves of Acanthocardia and Glycymeris were found alongside lumps of yellow and red colorants, and residues preserved inside a Spondylus shell consist of a red lepidocrocite base mixed with ground, dark red-to-black fragments of hematite and pyrite. A perforated Pecten shell, painted on its external, white side with an orange mix of goethite and hematite, was abandoned after breakage at Cueva Antón, 60 km inland. Comparable early modern human-associated material from Africa and the Near East is widely accepted as evidence for body ornamentation, implying behavioral modernity. The Iberian finds show that European Neandertals were no different from coeval Africans in this regard, countering genetic/cognitive explanations for the emergence of symbolism and strengthening demographic/social ones. PMID:20080653
Li, Hao; Pan, Bo; Liao, Shaohua; Zhang, Di; Xing, Baoshan
2014-05-01
Iron is rich in soils, and is recently reported to form stable complexes with organic free radicals, generating environmentally persistent free radicals (EPFRs). The observation may challenge the common viewpoint that iron is an effective catalyst to facilitate the degradation of various organic chemicals. But no study was specifically designed to investigate the possible inhibited degradation of organic chemicals because of the formation of EPFRs in dry environment. We observed that catechol degradation under UV irradiation was decreased over 20% in silica particles coated with 1% hematite in comparison to uncoated silica particles. Stabilized semiquinone or quinine and phenol radicals were involved in HMT-silica system. EPFR formation was thus the reason for the reduced catechol degradation on HMT-silica surface under UV irradiation at ambient temperature. EPFRs should be incorporated in the studies of organic contaminants geochemical behavior, and will be a new input in their environmental fate modeling. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Rowan, L. C. (Principal Investigator)
1976-01-01
The author has identified the following significant results. Mineralogical differences between hydrothermally altered rocks and most unaltered rocks in south central Nevada cause visible and near infrared (0.45-2.4 micron) spectral reflectance differences which can be used to discriminate broad categories of rocks in multispectral images. The most important mineralogical differences are the increased abundance of goethite, hematite, jarosite, alunite, montmorillonite, and kaolinite in the altered zones. Because of the wavelength positions and widths of the LANDSAT MSS bands, these spectral differences are not apparent in individual or color infrared composite MSS images. The technique developed to enhance these subtle spectral differences combines ratioing of the MSS bands and contrast stretching. Field evaluation of color-ratio composite shows that, after exclusion of alluvial areas, approximately 80% of the green and brown color patterns are related to hydrothermal alteration. The remaining 20% consists mainly of pink hematitic crystallized tuff and tan or red ferruginous shale and siltstone.
Recovery of Iron from Hematite-Rich Diasporic-Type Bauxite Ore
NASA Astrophysics Data System (ADS)
Jiang, Tao; Li, Zhuoxuan; Yang, Lin; Li, Guanghui; Zhang, Yuanbo; Zeng, Jinghua
A technique has been proposed for recovering iron from hematite-rich diasporic-type bauxite ore in this study. Direct reduction roasting followed by low intensity wet magnetic separation process was carried out. The parameters including reduction temperature and time, sodium salts, grinding conditions and magnetic field intensity for separation of iron were determined. The optimum process parameters as follows: roasting temperature of 1050 °C, time of 60 min, sodium salts involving sodium sulfate, borax, sodium carbonate with dosages of 10 wt%, 2 wt%, 35 wt% respectively, and magnetic field intensity of 1000 Gs with fineness of pulp reached 92.75% passing -0.074mm. Under the optimal conditions, an iron concentrate containing 88.17% total iron grade and iron recovery of 92.51% was obtained, 4.55% total iron grade in tailings. This novel technique provide a potential route for utilizing hematiterich diasporic bauxite ore, recovering iron resource firstly, and extracting alumina from magnetic separation tailings further.
Photoelectrochemical Performance of the Ag(III)-Based Oxygen-Evolving Catalyst.
Sordello, Fabrizio; Ghibaudo, Manuel; Minero, Claudio
2017-07-19
We report the electrosynthesis of a water oxidation catalyst based on Ag oxides (AgCat). The deposited AgCat is composed of mixed valence crystalline Ag oxides with the presence of particle aggregates whose size is ∼1 μm. This catalyst, coupled with TiO 2 and hematite, and under photoelectrochemical conditions, substantially increases photocurrents in a wide range of applied potentials compared with bare and Co-Pi-modified photocatalysts. AgCat can sustain current densities comparable with other water oxidation catalysts. Dark bulk electrolysis demonstrated that AgCat is stable and can sustain high turnover number in operative conditions. Oxygen evolution from water occurs in mild conditions: pH = 2-13, room temperature and pressure, and moderate overpotentials (600 mV) compatible with the coupling with semiconducting oxides as sensitizers. Using hematite in sustained electrolysis O 2 production is significant, both in the dark and under irradiation, after an initial slow induction time in which modification of surface species occurs.
NASA Astrophysics Data System (ADS)
Graham, R. A.
2012-10-01
Disturbed geology within a several km diameter surface area of sedimentary Carrizo Sandstone near Uvalde, Texas, indicates the presence of a partially buried meteorite impact crater. Identification of its impact origin is supported by detailed studies but quartz grains recovered from distances of about100 km from the structure also show planar deformation features (PDFs). While PDFs are recognized as uniquely from impact processes, quantitative interpretation requires extension of Hugoniot materials models to more realistic grain-level, mixture models. Carrizo sandstone is a porous mixture of fine quartz and goethite. At impact pressures of tens of GPa, goethite separates into hematite and water vapor upon release of impact pressure. Samples from six different locations up to 50 km from the impact site preserve characteristic features resulting from mixtures of goethite, its water vapor, hematite and quartz. Spheroids resulting from local radial acceleration of mixed density, hot products are common at various sites. Local hydrodynamic instabilities cause similar effects.
NASA Astrophysics Data System (ADS)
Cheung, Kristina Alyssa
This project focuses on the characterization of materials from burial offerings and painted decoration in a royal Maya tomb at El Zotz, Guatemala, and their association with mortuary rituals. Archaeological findings included vessels, jade masks, organic materials (wood, cord, and textiles), specular hematite cubes, shells with powdered cinnabar, green (malachite) painted stucco assumed to have decorated the wooden bier where the king was resting, and caches of lip-to-lip Aguila Orange bowls containing human phalanges. This paper describes findings from non-invasive and non-destructive analytical techniques including XRF, VPSEM-EDS, and XRD, emphasizing the potential of these combined technologies in the identification of organic and inorganic markers to infer burial customs. The nature and location of the findings, the evidence of pigment coloration on the bones employing hematite and cinnabar, and the indication of exposure of the bones to high temperatures suggest highly complex, even protracted mortuary practices of Maya elite.
NASA Astrophysics Data System (ADS)
Sharma, Poonam; Zachariah, Michael; Ehrman, Sheryl; Shrivastava, Rohit; Dass, Sahab; Satsangi, Vibha; Michael Zachariah, Sheryl Ehrman Collaboration; Rohit Shrivastava, Sahab Dass Collaboration; Vibha R Satsangi, Poonam Sharma Team
2013-03-01
Graphene has an excellent electronic conductivity, a high theoretical surface area of 2630 m2/g and excellent mechanical properties and, thus, is a promising component for high-performance electrode materials. Following this, GO has been used to modify the PEC response of photoactive material hematite thin films in PEC cell. A reduced graphene oxide/iron oxide (R-GO/Fe2O3) thin film structure has been successfully prepared on ITO by directly growing iron oxide particles on the thermally reduced graphene oxide sheets prepared from suspension of exfoliated graphene oxide. R-GO/Fe2O3 thin films were tested in PEC cell and offered ten times higher photocurrent density than pristine Fe2O3 thin film sample. XRD, SEM, EDS, UV-Vis, Mott-Schottky and Raman studies were carried out to study spectro-electrochemical properties. Enhanced PEC performance of these photoelectrodes was attributed to its porous morphology, improved conductivity upon favorable carrier transfer across the oxides interface.
Ryu, Young Jay; Kim, Minseob; Yoo, Choong -Shik
2015-10-12
In this study, we present the phase diagram of Fe(CO) 5, consisting of three molecular polymorphs (phase I, II and III) and an extended polymeric phase that can be recovered at ambient condition. The phase diagram indicates a limited stability of Fe(CO) 5 within a pressure-temperature dome formed below the liquid- phase II- polymer triple point at 4.2 GPa and 580 K. The limited stability, in turn, signifies the temperature-induced weakening of Fe-CO back bonds, which eventually leads to the dissociation of Fe-CO at the onset of the polymerization of CO. The recovered polymer is a composite of novel nm-lamellarmore » layers of crystalline hematite Fe 2O 3 and amorphous carbon-oxygen polymers. These results, therefore, demonstrate the synthesis of carbon-oxygen polymer by compressing Fe(CO) 5, which advocates a novel synthetic route to develop atomistic composite materials by compressing organometallic compounds.« less
Liao, Peilin; Carter, Emily A
2011-09-07
Quantitative characterization of low-lying excited electronic states in materials is critical for the development of solar energy conversion materials. The many-body Green's function method known as the GW approximation (GWA) directly probes states corresponding to photoemission and inverse photoemission experiments, thereby determining the associated band structure. Several versions of the GW approximation with different levels of self-consistency exist in the field. While the GWA based on density functional theory (DFT) works well for conventional semiconductors, less is known about its reliability for strongly correlated semiconducting materials. Here we present a systematic study of the GWA using hematite (α-Fe(2)O(3)) as the benchmark material. We analyze its performance in terms of the calculated photoemission/inverse photoemission band gaps, densities of states, and dielectric functions. Overall, a non-self-consistent G(0)W(0) using input from DFT+U theory produces physical observables in best agreement with experiments. This journal is © the Owner Societies 2011
NASA Astrophysics Data System (ADS)
Asadi Haroni, Hooshang; Hassan Tabatabaei, Seyed
2016-04-01
Muteh gold mining area is located in 160 km NW of Isfahan town. Gold mineralization is meso-thermal type and associated with silisic, seresitic and carbonate alterations as well as with hematite and goethite. Image processing and interpretation were applied on the ASTER satellite imagery data of about 400 km2 at the Muteh gold mining area to identify hydrothermal alterations and iron oxides associated with gold mineralization. After applying preprocessing methods such as radiometric and geometric corrections, image processing methods of Principal Components Analysis (PCA), Least Square Fit (Ls-Fit) and Spectral Angle Mapper (SAM) were applied on the ASTER data to identify hydrothermal alterations and iron oxides. In this research reference spectra of minerals such as chlorite, hematite, clay minerals and phengite identified from laboratory spectral analysis of collected samples were used to map the hydrothermal alterations. Finally, identified hydrothermal alteration and iron oxides were validated by visiting and sampling some of the mapped hydrothermal alterations.
NASA Astrophysics Data System (ADS)
Poperechnikova, O. Yu; Filippov, L. O.; Shumskaya, E. N.; Filippova, I. V.
2017-07-01
The demand of high grade iron ore concentrates is a major issue due to the depletion of rich iron-bearing ores and high competitiveness in the iron ore market. Iron ore production is forced out to upgrade flowsheets to decrease the silica content in the pelettes. Different types of ore have different mineral composition and texture-structural features which require different mineral processing methods and technologies. The paper presents a comparative study of the cationic and anionic flotation routes to process a fine-grain oxidized iron ore. The modified carboxymethyl cellulose was found as the most efficient depressant in reverse cationic flotation. The results of flotation optimization of hematite ores using matrix of second-order center rotatable uniform design allowed to define the collector concentration, impeller rotation speed and air flowrate as the main flotation parameters impacting on the iron ore concentrate quality and iron recovery in a laboratory flotation machine. These parameters have been selected as independent during the experiments.
Potential-specific structure at the hematite-electrolyte interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBriarty, Martin E.; Stubbs, Joanne; Eng, Peter
The atomic-scale structure of interfaces between metal oxides and aqueous electrolytes controls their catalytic, geochemical, and corrosion behavior. Measurements that probe these interfaces in situ provide important details of ion and solvent arrangements, but atomically precise structural models do not exist for common oxide-electrolyte interfaces far from equilibrium. Using a novel cell, we measured the structure of the hematite (a-Fe 2O 3) (110more » $$\\bar{2}$$)-electrolyte interface under controlled electrochemical bias using synchrotron crystal truncation rod X ray scattering. At increasingly cathodic potentials, charge-compensating protonation of surface oxygen groups increases the coverage of specifically bound water while adjacent water layers displace outwardly and became disordered. Returning to open circuit potential leaves the surface in a persistent metastable protonation state. The flux of current and ions at applied potential is thus regulated by a unique interfacial electrolyte environment, suggesting that electrical double layer models should be adapted to the dynamically changing interfacial structure far from equilibrium.« less
Klotz, Dino; Grave, Daniel A; Dotan, Hen; Rothschild, Avner
2018-03-15
Photoelectrochemical impedance spectroscopy (PEIS) is a useful tool for the characterization of photoelectrodes for solar water splitting. However, the analysis of PEIS spectra often involves a priori assumptions that might bias the results. This work puts forward an empirical method that analyzes the distribution of relaxation times (DRT), obtained directly from the measured PEIS spectra of a model hematite photoanode. By following how the DRT evolves as a function of control parameters such as the applied potential and composition of the electrolyte solution, we obtain unbiased insights into the underlying mechanisms that shape the photocurrent. In a subsequent step, we fit the data to a process-oriented equivalent circuit model (ECM) whose makeup is derived from the DRT analysis in the first step. This yields consistent quantitative trends of the dominant polarization processes observed. Our observations reveal a common step for the photo-oxidation reactions of water and H 2 O 2 in alkaline solution.
Understanding Our Environment: Land.
ERIC Educational Resources Information Center
Callister, Jeffrey C.; Crampton, Janet Wert
Part of the Understanding Our Environment project that is designed to engage students in investigating specific environmental problems through concrete activities and direct experience, this unit introduces students to the idea of natural resources and focuses on resources found on land: minerals such as hematite and gypsum; rocks such as granite…
Looking East at BottomHalf of Reactor Number One and TopHalf ...
Looking East at Bottom-Half of Reactor Number One and Top-Half of Reactor Number 2 Including Weigh Hopper on Third Floor of Oxide Building - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO
1981-12-01
plagio - clase feldspar and pyroxene. The tine fraction may Surface area and its effects contain the clay "sheet" minerals (i.e. kaolinite. illite...Pyroxene, Kaoliniwe Unified By By Ortho. Plagio . amphibole, Basic clay min. Hematite Soil Soil soil petrogr. X.ray clase clase and Igneous and clay and no
Mapping soil magnetic susceptibility and mineralogy in Ukraine
NASA Astrophysics Data System (ADS)
Menshov, Oleksandr; Pereira, Paulo; Kruglov, Oleksandr; Sukhorada, Anatoliy
2017-04-01
Soil suatainable planning is fundamental for agricultural areas. Soil mapping and modeling are increasingly used in agricultural areas in the entire world (Brevik et al., 2016). They are beneficial to land managers, to reduce soil degradation, increase soil productivity and their restoration. Magnetic susceptibility (MS) methods are low cost and accurate for the developing maps of agricultural areas.. The objective of this work is to identify the minerals responsible for MS increase in soils from the two study areas in Poltava and Kharkiv region. The thermomagnetic analyses were conducted using the KLY-4 with an oven apparatus. The hysteresis parameters were measured with the Rotating Magnetometer at the Geophysical Centre Dourbes, Belgium. The results showed that all of samples from Kharkiv area and the majortity of the samples collected in Poltava area represent the pseudo single domain (PSD) zone particles in Day plot. According to Hanesch et al. (2006), the transformation of goethite, ferrihydrite or hematite to a stronger ferrimagnetic phase like magnetite or maghemite is common in strongly magnetic soils with high values of organic carbon content. In our case of thermomagnetic study, the first peak on the heating curve near 260 ˚C indicates the presence of ferrihydrite which gradually transforms into maghemite (Jordanova et al., 2013). A further decrease in the MS identified on the heating curve may be related to the transformation of the maghemite to hematite. A second MS peak on the heating curve near 530 ˚C and the ultimate loss of magnetic susceptibility near 580 ˚C were caused by the reduction of hematite to magnetite. The shape of the thermomagnetic curves suggests the presence of single domain (SD) particles at room temperature and their transformation to a superparamagnetic (SP) state under heating. Magnetic mineralogical analyses suggest the presence of highly magnetic minerals like magnetite and maghemite as well as slightly magnetic goethite, ferrihydrite, and hematite. Pseudosingle-domain, single-domain, and superparamagnetic grains of pedogenic origin dominate in the chernozem soils of the Kharkiv and Poltava region. References Brevik, E. C., Calzolari, C., Miller, B. A., Pereira, P., Kabala, C., Baumgarten, A., Jordán, A.: Soil mapping, classification, and pedologic modeling: history and future directions, Geoderma, 264, 256-274, 2016. Hanesch, M., Stanjek, H., Petersen, N.: Thermomagnetic measurements of soil iron minerals: the role of organic carbon, Geophysical Journal International, 165, 1, 53-61, 2006. Jordanova, D., Jordanova, N., Werban, U.: Environmental significance of magnetic properties of Gley soils near Rosslau (Germany), Environ Earth Sci., 69, 1719-1732, 2013.
NASA Astrophysics Data System (ADS)
Bonaccorsi, R.; Stoker, C. R.; Marte Project Science Team
2007-03-01
The Mars Analog Rio Tinto Experiment (MARTE) performed a simulation of a Mars drilling experiment at the Rio Tinto (Spain). Ground-truth and contamination issues during the distribution of bulk organics and their CN isotopic composition in hematite and go
Characterization of MER Landing Sites Using MOC and MOLA
NASA Technical Reports Server (NTRS)
Anderson, F. S.; Parker, T. J.
2002-01-01
The MOC images for MER are compared with MOLA data to characterize and locate each image. MOLA profiles show that Hematite remains benign, Melas and Isidis are rougher, and Athabasca and Gusev have regions of significant small scale topography. Additional information is contained in the original extended abstract.
Molten Salt Techniques for Students: Attacking Hematite with Pyrosulfate.
ERIC Educational Resources Information Center
Atkinson, George F.
1986-01-01
Discusses materials needed, procedures used, and typical results obtained for an experiment involving a dry attack of ores with pyrosulfate flux. The experiment has been carried out by about 150 students a year with a demonstrator-to-student ratio of about 1:15 with no serious accidents. (JN)
NASA Astrophysics Data System (ADS)
Ormö, J.; Souza-Egipsy, V.; Chan, M. A.; Park, A. J.; Stich, M.; Komatsu, G.
2006-03-01
Spherical hematite concretions can form without a nucleus. Self-organized zones of super-saturated solution cause spherical precipitates of amorphous iron-hydroxide. Diffusion of Fe ions towards the outer perimeter of the amorphous sphere forms a rind, which then grows inwards.
Initial results from the MER Athena science investigation
NASA Astrophysics Data System (ADS)
Squyres, S.; Athena Science Team
The Mars Exploration Rover Spirit landed in Gusev Crater on January 4 (UTC), 2004. It was followed 21 days later by the rover Opportunity, which landed on Meridiani Planum. The landing site at Gusev crater lies on a flat, rock-strewn plain. The rocks at the site are mostly angular, and some clearly appear to contain vesicles. The rock at Gusev that has been studied best to date has been named "Adirondack". Three sets of measurements have been made on Adirondack with the full set of payload instruments: one of the natural rock surface, one of the same location after being brushed by the RAT, and one of the same location after removal of 2-3 mm of rock by the RAT. The concentration of presumably dust-borne elements like sulfur and chlorine diminished significantly with brushing, and diminished dramatically with grinding. All of the observations of Adirondack are consistent with it being an essentially unweathered olivine and magnetite-bearing, low-silica basalt. The only soil at Gusev that has been investigated in detail so far is one dominated by fairly coarse (100-300 micron) grains that have the appearance and behavior of well-cemented agglomerates. APXS spectra of this soil are similar to those of soils found at the Viking and Pathfinder sites. Mössbauer spectra show two ferrous doublets and a ferric doublet, with the stronger ferrous doublet assigned to olivine. Mini-TES spectra have been acquired for soils surrounding the the Spirit landing site, and show spectra nearly identical to globally averaged soil viewed by the TES instrument on Mars Global Surveyor. This includes identification of a small amount (a few percent) of carbonate. The dominant rocks in the vicinity of the Spirit landing site at Gusev are clearly volcanic. Upcoming rover activities include a traverse to a nearby crater that is about 200 m in diameter and whose ejecta may include other non-volcanic geologic materials. The landing site at Meridiani Planum lies inside an impact crater that is roughly 20 meters in diameter. The lander came to rest on soil that fills most of the crater. An outcrop of layered bedrock is exposed on the crater wall. The landing site was selected partly because coarse gray hematite was expected to be present on the basis of orbital data. Mini-TES data have confirmed the presence of this hematite in the soil. The soil within the crater has several components. Microscopic images of undisturbed surface soil show that one component is fine (~100 micron) sand. Mössbauer spectra of the sand show two ferrous doublets (one of them due to olivine), a ferric doublet, and a weak magnetic sextet. APXS and Mini-TES data on this sand are consistent with a composition dominated by basalt. Another component of the soil consists of coarse (several mm) granules. These range in shape from subangular to rounded to remarkably spherical. In some locations, granules have been pressed down into the soil by the impact of the lander's airbags. At those locations the concentration of hematite as determined by Mini-TES is sharply reduced, suggesting that at least some of the granules are hematite-bearing. The bedrock outcrop is finely laminated, with typical layer thicknesses of only a few mm. The texture of the outcrop as viewed in miroscopic images suggests that it is fine-grained, with well-expressed structure that is revealed by varying degrees of mechanical abrasion of layers of varying induration. Initial APXS results on this fine-grained matrix suggest an unusual composition, including sulfur concentrations significantly higher than any observed elsewhere on Mars. Embedded within the outcrop and weathering out of it are highly spherical granules with diameters of several mm. The visible to near-IR spectral properties of these embedded spherical granules, as determined by Pancam, are distinctly different from those of the matrix in which they are embedded. The highest Mini-TES-derived concentrations of hematite are found in soil and possible rock units above the bedrock outcrop that have not been visited by the rover as of this writing. Future activities include climbing out of the crater and investigating this hematite-rich material.
Thermal Inertia, Albedo, and MOLA-derived Roughness for Terrains in the Terra Meridiani Area, Mars
NASA Technical Reports Server (NTRS)
Arvidson, R. E.; Deal, K.; Hynek, B. M.; Seelos, F. P., IV; Snider, N. O.; Mellon, M. T.; Garvin, J. B.
2002-01-01
Surface properties of layered deposits draped on dissected, cratered terrain in the Terra Meridiani area are analyzed using remote sensing data. The etched plains are cemented and differentially eroded, and the hematite plains are loose and drifting. Additional information is contained in the original extended abstract.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-31
..., and is material to the findings that the NRC must make to support the granting of a license in... proceeding may, in the discretion of the presiding officer, be permitted to make a limited appearance... on electronic storage media. Participants may not submit paper copies of their filings unless they...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadasivam, Sivachidambaram, E-mail: sadasivams@cardiff.ac.uk; Thomas, Hywel Rhys
A metakaolinite-hematite (KH) red pigment was prepared using an ocherous iron oxide sludge recovered from a water treatment plant of an abandoned coal mine. The KH pigment was prepared by heating the kaolinite and the iron oxide sludge at kaolinite's dehydroxylation temperature. Both the raw sludge and the KH specimen were characterised for their colour properties and toxic characteristics. The KH specimen could serve as a pigment for integrally coloured concrete and offers a potential use for the large volumes of the iron oxide sludge collected from mine water treatment plants. - Graphical abstract: A kaolinite based red pigment wasmore » prepared using an ocherous iron oxide sludge recovered from an abandoned coal mine water treatment plant. Display Omitted - Highlights: • A red pigment was prepared by heating a kaolinite and an iron oxide sludge. • The iron oxide and the pigment were characterised for their colour properties. • The red pigment can be a potential element for integrally coloured concrete.« less
NASA Technical Reports Server (NTRS)
Rowan, L. C. (Principal Investigator)
1976-01-01
The author has identified the following significant results. Preliminary analysis indicates that mineralogical differences between altered rocks and most unaltered rocks in south-central Nevada cause visible and near infrared spectral reflectance differences, which can be used to discriminate these broad categories of rocks in multispectral images. The most important mineralogical differences are the increased abundance of goethite, hematite, and jarosite, and the presence of alunite, montmorillonite, and kaolinite in the altered rock. The technique to enhance subtle spectral differences combines ratioing of the MSS bands and contrast stretching. The stretched ratio values are used to produce black and white images that depict materials according to spectral reflectance; rationing minimizes the influence of topography and overall albedo on the grouping of spectrally similar materials. Field evaluation of color-ratio composite shows that, excluding alluvial areas, approximately 80 percent of the green and brown color patterns are related to hydrothermal alternation. The remaining 20 percent consists mainly of pink hematitic crystallized tuff, a result of vapor phase crystallization, and of tan and red ferruginous shale and siltstone.
NASA Astrophysics Data System (ADS)
Prikryl, James D.; Pickett, David A.; Murphy, William M.; Pearcy, English C.
1997-04-01
Oxidation of pyrite at the Nopal I uranium deposit, Peña Blanca district, Chihuahua, Mexico has resulted in the formation of Fe-oxides/hydroxides. Anomalous U concentrations (i.e. several hundred to several thousand ppm) measured in goethite, hematite, and amorphous Fe-oxyhydroxides in a major fracture that crosscuts the deposit and the absence of U minerals in the fracture suggest that U was retained during secondary mineral growth or sorbed on mineral surfaces. Mobilization and transport of U away from the deposit is suggested by decreasing U concentrations in fracture-infilling materials and in goethite and hematite with distance from the deposit. Greater than unity {234U}/{238U} activity ratios measured in fracture-infilling materials indicate relatively recent ( < 1 Ma) U uptake from fluids that carried excess 234U. Systematic decreases in {234U}/{238U} activity ratios of fracture materials with distance from the deposit suggest a multistage mobilization process, such as remobilization of U from 234U-enriched infill minerals or differential or diminished transport of U-bearing solutions containing excess 234U.
Sirivisoot, Sirinrath; Harrison, Benjamin S
2015-01-01
To extend the external control capability of drug release, iron oxide nanoparticles (NPs) encapsulated into polymeric microspheres were used as magnetic media to stimulate drug release using an alternating magnetic field. Chemically synthesized iron oxide NPs, maghemite or hematite, and the antibiotic ciprofloxacin were encapsulated together within polycaprolactone microspheres. The polycaprolactone microspheres entrapping ciprofloxacin and magnetic NPs could be triggered for immediate drug release by magnetic stimulation at a maximum value of 40%. Moreover, the microspheres were cytocompatible with fibroblasts in vitro with a cell viability percentage of more than 100% relative to a nontreated control after 24 hours of culture. Macrophage cell cultures showed no signs of increased inflammatory responses after in vitro incubation for 56 hours. Treatment of Staphylococcus aureus with the magnetic microspheres under an alternating (isolating) magnetic field increased bacterial inhibition further after 2 days and 5 days in a broth inhibition assay. The findings of the present study indicate that iron oxide NPs, maghemite and hematite, can be used as media for stimulation by an external magnetic energy to activate immediate drug release. PMID:26185446
Facet-controlled synthesis of polyhedral hematite/carbon composites with enhanced photoactivity
NASA Astrophysics Data System (ADS)
Hu, Xiaoyi; Han, Sancan; Zhu, Yufang
2018-06-01
Much effort has been made to develop the semiconductor photocatalysis, but it is still challenging to fabricate low-cost and high-activity photocatalysts. In this study, Hematite (α-Fe2O3) with three kinds of morphologies including dodecahedron, tetrakaidecahedron and hexagonal nanoplates have been synthesized without any organic reagents. The photocatalytic performance reveals that the dodecahedron with exposed {1 0 1} facets is superior to the hexagonal nanoplates with predominant exposure of {0 0 1} facets in the case of similar BET surface area. For further enhancement of photocatalytic activity, carbon layer was coated on dodecahedral α-Fe2O3 through the self-polymerization of dopamine and following pyrolysis at 400 °C under Ar flow. Compared with the pristine dodecahedral α-Fe2O3, the α-Fe2O3/C composites exhibit stronger visible absorption, lower photoexcited electron-hole pairs recombination rate and better photodegradation activity. The photocatalytic performance showed the degradation rate of α-Fe2O3-D/4.5C is nearly 6 times higher than pristine α-Fe2O3, which have great potential for photocatalysis applications.
Formation and decomposition of siderite for CO2 treatment
NASA Astrophysics Data System (ADS)
Y Mora, E.; Sarmiento, A.; Vera, E.; Drozd, V.; Durigyn, A.; Saxena, S.
2017-12-01
In this research work, we studied the conditions for formation and decomposition of siderite FeCO3 from hematite Fe2O3 along with carbon dioxide CO2 at suitable thermodynamic conditions. As reductant agents were used mixtures of two elements, metallic iron and graphite. Best levels of carbonation were found in mixtures with bigger amounts of metallic iron. It was demonstrated that CO2 capture capacity by hematite depends of temperature, CO2 pressure, and reaction time. Temperatures between 100 and 150°C, pressures between 10 and 30bar and reaction times between 1 and 4h were adjusted for analyse the carbonation behaviour; siderite formation was improved by increases of these three variables. There was no carbonation without water in the mixtures, due to kinetic limitations. CO2 capture capacity was calculated from Rietveld refinement results. Using vacuum system and Dielectric Barrier Discharge, DBD plasma, the siderite was decomposed at 300°C, and 320°C respectively. Techniques as X-ray diffraction, and surface area analysis were employed to study the material.
Studies on the controllable transformation of ferrihydrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Hui, E-mail: liuhuicn@126.co; Ma, Miaorui; Qin, Mei
2010-09-15
Ferrihydrite was prepared by two different procedures. Ferrihydrite-1 was prepared by dropping NaOH solution into Fe(III) solution. Ferrihydrite-2 was prepared by adding Fe(III) and NaOH solutions into a certain volume of water simultaneously. Our earlier results obtained at {approx}100 {sup o}C have shown that the structure of ferrihydrite-2 favors its solid state transformation mechanism. Further research reveals that the structure of ferrihydrite-2 favors its dissolution re-crystallization mechanism at a temperature of {<=}60 {sup o}C. Based on the transformation mechanism of ferrihydrite at different temperatures, the controllable transformation from ferrihydrite to various iron (hydr)oxides such as lepidocrocite, goethite, hematite and magnetitemore » can be achieved by adjusting the pH, transformation temperature, transformation time, the amount of Fe(II) as well as the preparation procedures of ferrihydrite. The results in the present paper give a nice example that the transformation of a precursor can be controlled with the help of mechanism. - Graphical abstract: The transformations from ferrihydrite to lepidocrocite, goethite, hematite or magnetite can be controlled with the help of mechanism.« less
Yokosawa, Tadahiro; Prestat, Eric; Polly, Robert; Bouby, Muriel; Dardenne, Kathy; Finck, Nicolas; Haigh, Sarah J; Denecke, Melissa A; Geckeis, Horst
2018-04-18
Transformation products of two-line ferrihydrite associated with Lu(III) were studied after 12 years of aging using aberration-corrected high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), high-efficiency energy-dispersive X-ray spectroscopy (EDXS), and density functional theory (DFT). The transformation products consisted of hematite nanoparticles with overgrown goethite needles. High-efficiency STEM-EDXS revealed that Lu is only associated with goethite needles, and atomic-resolution HAADF-STEM reveals structural incorporation of Lu within goethite, partially replacing structural Fe sites. This finding corroborates those recently obtained by AsFlFFF and EXAFS spectroscopy on the same sample (Finck et al. 2018). DFT calculations indicate that Lu incorporation within goethite or hematite are almost equally likely, suggesting that experimental parameters such as temperature and reaction time which affect reaction kinetics, play important roles in determining the Lu uptake. It seems likely that these results may be transferable to predict the behavior of chemically homologous trivalent actinides.
Kinetics of Photoelectrochemical Oxidation of Methanol on Hematite Photoanodes
2017-01-01
The kinetics of photoelectrochemical (PEC) oxidation of methanol, as a model organic substrate, on α-Fe2O3 photoanodes are studied using photoinduced absorption spectroscopy and transient photocurrent measurements. Methanol is oxidized on α-Fe2O3 to formaldehyde with near unity Faradaic efficiency. A rate law analysis under quasi-steady-state conditions of PEC methanol oxidation indicates that rate of reaction is second order in the density of surface holes on hematite and independent of the applied potential. Analogous data on anatase TiO2 photoanodes indicate similar second-order kinetics for methanol oxidation with a second-order rate constant 2 orders of magnitude higher than that on α-Fe2O3. Kinetic isotope effect studies determine that the rate constant for methanol oxidation on α-Fe2O3 is retarded ∼20-fold by H/D substitution. Employing these data, we propose a mechanism for methanol oxidation under 1 sun irradiation on these metal oxide surfaces and discuss the implications for the efficient PEC methanol oxidation to formaldehyde and concomitant hydrogen evolution. PMID:28735533
NASA Astrophysics Data System (ADS)
da Cruz, Raquel Souza; Fernandes, Carlos Marcello Dias; Villas, Raimundo Netuno Nobre; Juliani, Caetano; Monteiro, Lena Virgínia Soares; Lagler, Bruno; Misas, Carlos Mario Echeverri
2016-06-01
Geological, petrographic, scanning electron microscopy, and X-ray diffraction studies revealed hydrothermalized lithotypes evidenced by overprinted zones of potassic, propylitic, sericitic, and intermediate argillic alterations types, with pervasive and fracture-controlled styles, in Paleoproterozoic volcano-plutonic units of the São Félix do Xingu region, Amazonian craton, northern Brazil. The Sobreiro Formation presents propylitic (epidote + chlorite + carbonate + clinozoisite + sericite + quartz ± albite ± hematite ± pyrite), sericitic (sericite + quartz + carbonate), and potassic (potassic feldspar + hematite) alterations. The prehnite-pumpellyite pair that is common in geothermal fields also occurs in this unit. The Santa Rosa Formation shows mainly potassic (biotite + microcline ± magnetite), sericitic (sericite + quartz + carbonate ± chlorite ± gold), and intermediate argillic (montmorillonite + kaolinite/halloysite + illite) alterations. These findings strongly suggest the involvement of magma-sourced and meteoric fluids and draw attention to the metallogenetic potential of these volcanic units for Paleoproterozoic epithermal and rare and base metal porphyry-type mineralizations, similar to those already identified in other portions of the Amazonian craton.
Aqueous chemical growth of alpha-Fe2O3-alpha-Cr203 nanocompositethin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vayssieres, Lionel; Guo, Jinghua; Nordgren, Joseph
2001-06-30
We are reporting here on the inexpensive fabrication and optical properties of an iron(III) oxide chromium(III) oxide nanocomposite thin film of corundum crystal structure. Its novel and unique-designed architecture consists of uniformed, well-defined and oriented nanorods of Hematite (alpha-Fe2O3) of 50 nm in diameter and 500nm in length and homogeneously distributed nonaggregated monodisperse spherical nanoparticles of Eskolaite (alpha-Cr2O3) of 250 nm in diameter. This alpha-Fe2O3 alpha-Cr2O3 nanocomposite thin film is obtained by growing, directly onto transparent polycrystalline conducting substrate, an oriented layer of hematite nanorods and growing subsequently, the eskolaite layer. The synthesis is carried out by a template-free, low-temperature,more » multilayer thin film coating process using aqueous solution of metal salts as precursors. Almost 100 percent of the light is absorbed by the composite film between 300 and 525 nm and 40 percent at 800 nm which yields great expectations as photoanode materials for photovoltaic cells and photocatalytic devices.« less
NASA Astrophysics Data System (ADS)
Hiranuma, N.; Paukert, M.; Steinke, I.; Zhang, K.; Kulkarni, G.; Hoose, C.; Schnaiter, M.; Saathoff, H.; Möhler, O.
2014-12-01
A new heterogeneous ice nucleation parameterization that covers a wide temperature range (-36 to -78 °C) is presented. Developing and testing such an ice nucleation parameterization, which is constrained through identical experimental conditions, is important to accurately simulate the ice nucleation processes in cirrus clouds. The ice nucleation active surface-site density (ns) of hematite particles, used as a proxy for atmospheric dust particles, were derived from AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber measurements under water subsaturated conditions. These conditions were achieved by continuously changing the temperature (T) and relative humidity with respect to ice (RHice) in the chamber. Our measurements showed several different pathways to nucleate ice depending on T and RHice conditions. For instance, almost T-independent freezing was observed at -60 °C < T < -50 °C, where RHice explicitly controlled ice nucleation efficiency, while both T and RHice played roles in other two T regimes: -78 °C < T < -60 °C and -50 °C < T < -36 °C. More specifically, observations at T lower than -60 °C revealed that higher RHice was necessary to maintain a constant ns, whereas T may have played a significant role in ice nucleation at T higher than -50 °C. We implemented the new hematite-derived ns parameterization, which agrees well with previous AIDA measurements of desert dust, into two conceptual cloud models to investigate their sensitivity to the new parameterization in comparison to existing ice nucleation schemes for simulating cirrus cloud properties. Our results show that the new AIDA-based parameterization leads to an order of magnitude higher ice crystal concentrations and to an inhibition of homogeneous nucleation in lower-temperature regions. Our cloud simulation results suggest that atmospheric dust particles that form ice nuclei at lower temperatures, below -36 °C, can potentially have a stronger influence on cloud properties, such as cloud longevity and initiation, compared to previous parameterizations.
Prediction of iron oxide contents using diffuse reflectance spectroscopy
NASA Astrophysics Data System (ADS)
Marques, José, Jr.; Arantes Camargo, Livia
2015-04-01
Determining soil iron oxides using conventional analysis is relatively unfeasible when large areas are mapped, with the aim of characterizing spatial variability. Diffuse reflectance spectroscopy (DRS) is rapid, less expensive, non-destructive and sometimes more accurate than conventional analysis. Furthermore, this technique allows the simultaneous characterization of many soil attributes with agronomic and environmental relevance. This study aims to assess the DRS capability to predict iron oxides content -hematite and goethite - , characterizing their spatial variability in soils of Brazil. Soil samples collected from an 800-hectare area were scanned in the visible and near-infrared spectral range. Moreover, chemometric calibration was obtained through partial least-squares regression (PLSR). Then, spatial distribution maps of the attributes were constructed using predicted values from calibrated models through geostatistical methods. The studied area presented soils with varied contents of iron oxides as examples for the Oxisols and Entisols. In the spectra of each soil is observed that the reflectance decreases with the content of iron oxides present in the soil. In soils with a high content of iron oxides can be observed more pronounced concavities between 380 and 1100 nm which are characteristic of the presence of these oxides. In soils with higher reflectance it were observed concavity characteristics due to the presence of kaolinite, in agreement with the low iron contents of those soils. The best accuracy of prediction models [residual prediction deviation (RPD) = 1.7] was obtained for goethite within the visible region (380-800 nm), and for hematite (RPD = 2.0) within the visible near infrared (380-2300 nm). The maps of goethite and hematite predicted showed the spatial distribution pattern similar to the maps of clay and iron extracted by dithionite-citrate-bicarbonate, being consistent with the iron oxide contents of soils present in the study area. These results confirm the value of DRS in the mapping of iron oxides in large areas at detailed scale.
Theoretical Characterization of Charge Transport in Chromia (α-Cr2O3)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iordanova, Nellie I.; Dupuis, Michel; Rosso, Kevin M.
2005-08-15
Transport of conduction electrons and holes through the lattice of ?-Cr2O3 (chromia) is modeled as a valence alternation of chromium cations using ab initio electronic structure calculations and electron transfer theory. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e. the reorganization energy and the electronic coupling matrix element that enter Marcus? theory. The calculation of the electronic coupling followed the Generalized Mulliken-Hush approach and the quasi-diabatic method using the complete active space self-consistent field (CASSCF) method. Our findings indicate that hole mobility ismore » more than three orders of magnitude larger than electron mobility in both (001) and [001] lattice directions. The difference arises mainly from the larger internal reorganization energy calculated for electron transport relative to hole transport processes while electronic couplings have similar magnitudes. The much larger hole mobility vs electron mobility in ?-Cr2O3 is in contrast to similar hole and electron mobility in hematite ?-Fe2O3 previously calculated. Our calculations also indicate that the electronic coupling for all charge transfer processes of interest is smaller than for the corresponding processes in hematite. This variation is attributed to weaker interaction between the metal 3d states and the O(2p) states in chromia than in hematite, leading to smaller overlap between the charge transfer donor and acceptor wavefunctions and smaller super-exchange coupling in chromia. Nevertheless, the weaker coupling in chromia is still sufficiently large to suggest that charge transport processes in chromia are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron spin coupling within the Cr-Cr donor-acceptor pair, while the reorganization energy is essentially independent of the electron spin coupling.« less
Theoretical characterization of charge transport in chromia (α-Cr2O3)
NASA Astrophysics Data System (ADS)
Iordanova, N.; Dupuis, M.; Rosso, K. M.
2005-08-01
Transport of conduction electrons and holes through the lattice of α-Cr2O3 (chromia) is modeled as a valence alternation of chromium cations using ab initio electronic structure calculations and electron-transfer theory. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e., the reorganization energy and the electronic coupling matrix element that enter Marcus' theory. The calculation of the electronic coupling followed the generalized Mulliken-Hush approach using the complete active space self-consistent-field (CASSCF) method and the quasidiabatic method. Our findings indicate that hole mobility is more than three orders of magnitude larger than electron mobility in both (001) and [001] lattice directions. The difference arises mainly from the larger internal reorganization energy calculated for electron-transport relative to hole-transport processes while electronic couplings have similar magnitudes. The much larger hole mobility versus electron mobility in α-Cr2O3 is in contrast to similar hole and electron mobilities in hematite α-Fe2O3 previously calculated. Our calculations also indicate that the electronic coupling for all charge-transfer processes of interest is smaller than for the corresponding processes in hematite. This variation is attributed to the weaker interaction between the metal 3d states and the O(2p ) states in chromia than in hematite, leading to a smaller overlap between the charge-transfer donor and acceptor wave functions and smaller superexchange coupling in chromia. Nevertheless, the weaker coupling in chromia is still sufficiently large to suggest that charge-transport processes in chromia are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron-spin coupling within the Cr-Cr donor-acceptor pair, while the reorganization energy is essentially independent of the electron-spin coupling.
Charge Transport in Metal Oxides: A Theoretical Study of Hematite α-Fe2O3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iordanova, Nellie I.; Dupuis, Michel; Rosso, Kevin M.
2005-04-08
Transport of conduction electrons and holes through the lattice of ??Fe2O3 (hematite) is modeled as a valence alternation of iron cations using ab initio electronic structure calculations and electron transfer theory. Experimental studies have shown that the conductivity along the (001) basal plane is four orders of magnitude larger than the conductivity along the [001] direction. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e. the reorganization energy and the electronic coupling matrix element that enter Marcus? theory. The calculation of the electronic couplingmore » followed the Generalized Mulliken-Hush approach using the complete active space self-consistent field (CASSCF) method. Our findings demonstrate an approximately three orders of magnitude anisotropy in both electron and hole mobility between directions perpendicular and parallel to the c-axis, in good accord with experimental data. The anisotropy arises from the slowness of both electron and hole mobility across basal oxygen planes relative to that within iron bi-layers between basal oxygen planes. Interestingly, for elementary reaction steps along either of the directions considered, there is only approximately one order of magnitude difference in mobility between electrons and holes, in contrast to accepted classical arguments. Our findings indicate that the most important quantity underlying mobility differences is the electronic coupling, albeit the reorganization energy contributes as well. The large values computed for the electronic coupling suggest that charge transport reactions in hematite are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron spin coupling within the Fe?Fe donor-acceptor pair, while the reorganization energy is essentially independent of the electron spin coupling.« less
NASA Astrophysics Data System (ADS)
Hettiarachchi, E.; Rubasinghege, G. R. S.; Reynolds, R. L.; Goldstein, H. L.; Moskowitz, B. M.
2017-12-01
Iron is one of the important trace elements for the life. Though it is the fourth most abundant element in the terrestrial crust, given higher pH ( 8.5) in the ocean, the direct dissolution of iron from the Earth crust is limited. Despite this limitation, ocean contains about 2 nM of dissolved iron that is 20-fold greater. Therefore, it is hypothesized most iron comes to the ocean via atmosphere, and dissolution occurs in the acidic atmospheric environments. The current work focuses on the effect of minerology on atmospheric processing of Fe-containing mineral dust using four authentic dust samples, collected from different parts of the world, along with three model systems, hematite (α-Fe2O3), magnetite (Fe3O4) and ilmenite (FeTiO3). Here, spectroscopic methods are combined with batch reactor studies to investigate total iron dissolution and speciation, with a specific focus on source material i.e. particle size, mineralogy, and environmental conditions, i.e. pH, temperature and solar flux. Our data suggests that the presence of Ti metal enhances the dissolution of iron regardless the total %Fe in the mineral. The surface area normalized total iron dissolution in ilmenite, under the dark conditions, in the presence of nitric acid (HNO3) is 3-fold higher than that of hematite. In authentic samples, similar effects were observed for samples containing %Ti. Further, 74% of the dissolved iron in ilmenite remained as Fe(II), bioavailable iron, whereas it was only 60% for magnetite and 8% for hematite. In this study, these results were used to interpret similar trends observed for authentic dust samples with high magnetite content. Thus, the findings of the current study highlight important, yet unconsidered, factors in the atmospheric processing of iron-containing mineral dust aerosol.
Is the Neoproterozoic oxygen burst a supercontinent legacy?
NASA Astrophysics Data System (ADS)
Macouin, Melina; Roques, Damien; Rousse, Sonia; Ganne, Jerome; Denele, Yoann; Trindade, Ricardo
2015-09-01
The Neoproterozoic (1000-542 Myr ago) witnessed the dawn of Earth as we know it with modern-style plate tectonics, high levels of O2 in atmosphere and oceans and a thriving fauna. Yet, the processes leading to the fully oxygenation of the external envelopes, its exact timing and its link with the inner workings of the planet remain poorly understood. In some ways, it is a "chicken and egg" question: did the Neoproterozoic Oxygenation Event (NOE) cause life blooming, low-latitudes glaciations and perturbations in geochemical cycles or is it a consequence of these phenomena? Here, we suggest that the NOE may have been triggered by multi-million years oxic volcanic emissions along a protracted period at the end of the Neoproterozoic when continents were assembled in the Rodinia supercontinent. We report a very oxidized magma source at the upper mantle beneath a ring of subducting margins around Rodinia, and detail here the evidence at the margin of the Arabian shield. We investigate the 780 Ma Biotite and Pink granites and associated rocks of the Socotra Island with rock magnetic and petrographic methods. Magnetic susceptibility and isothermal remanent magnetization acquisitions show that, in these granites, both magnetite and hematite are present. Hematite subdivides magnetite grains into small grains. Magnetite and hematite are found to be primary, and formed at the early magmatic evolution of the granite at very high oxygen fugacity. Massive degassing of these oxidized magmas would reduce the sink for oxygen, and consequently contribute to its rise in the atmosphere with a net O2 flux of at least 2.25 x 107 Tmol. Our conceptual model provides a deep Earth link to the NOE and implies the oxygenation burst has occurred earlier than previously envisaged, paving the way for later changes in the outer envelopes of the planet epitomized on the extreme Neoproterozoic glaciations and the appearance of the first animals.
NASA Astrophysics Data System (ADS)
Calvin, W. M.; Athena Science Team
The Meridiani Planum landing site was selected based on a unique mineralogical signature (coarse hematite) observed from orbit, as well as suitability for rover landing and operations. On January 25th (UTC) the spacecraft executed a flawless landing, placing the rover Opportunity inside a small crater. Navigation and panorama camera images (Navcam and Pancam) returned during the first days on the surface set the initial exploration goals for the rover and the Athena Science Payload. Within the crater is a rock outcrop unlike anything previously observed from the surface of Mars. Color and textural variations were immediately evident both in the outcrop and in soils, especially in conjunction with the final rolling trajectory of the lander system and the airbag retraction. First observations by the Mini-Thermal Emission Spectrometer (Mini-TES) confirmed the spectral signature of coarse-grained hematite seen from orbit and found significant spatial variability in the strength of this feature. Pancam data confirm that the hematite rich regions do not have a strong color variation. The rover executed Alpha-Particle X-Ray Spectrometer (APXS) and Moessbauer (MB) measurements on the soil immediately after egress from the lander. Opportunity then approached one end of the outcrop, obtaining APXS, MB, Mini-TES and Pancam spectral data in addition to 30 micrometers per pixel images from the Microscopic Imager (MI). This site revealed the small unusual spherical grains, dubbed "blueberries" by the Team, that are eroding from the outcrop, and a higher sulfur content than all previous measurements on Mars. We then proceeded with a systematic survey of the outcrop in three stops, performing Mini-TES and Pancam at each stop. A traverse was made to an area more rich in hematite (as determined by Mini-TES) where a trench into the soil was performed with accompanying pre- and post-trench measurements by all spectral instruments. Opportunity then returned to a high-priority target in the center of the outcrop, called El Capitan, where distinct differences were noted in Pancam observations of the upper and lower units. As of the abstract deadline, the rover was performing a systematic survey on both the upper and lower units and preparing for the first use of the Rock Abrasion Tool (RAT) on the lower outcrop unit with spectral observations by all instruments before and after "ratting". Surveys of the magnets mounted on the rover deck provides information on accumulated atmospheric dust. A summary of the chemical and mineralogical signatures determined by these measurements as well as targets yet to be explored outside the crater will be presented at the Assembly.
NASA Astrophysics Data System (ADS)
Jeans, Christopher V.; Turchyn, Alexandra V.; Hu, Xu-Fang
2016-06-01
The relationship between the development of iron sulfide and barite nodules in the Cenomanian Chalk of England and the presence of a red hematitic pigment has been investigated using sulfur isotopes. In southern England where red and pink chalks are absent, iron sulfide nodules are widespread. Two typical large iron sulfide nodules exhibit δ34S ranging from -48.6‰ at their core to -32.6‰ at their outer margins. In eastern England, where red and pink chalks occur in three main bands, there is an antipathetic relationship between the coloured chalks and the occurrence of iron sulfide or barite nodules. Here iron sulfide, or its oxidised remnants, are restricted to two situations: (1) in association with hard grounds that developed originally in chalks that contained the hematite pigment or its postulated precursor FeOH3, or (2) in regional sulfidization zones that cut across the stratigraphy. In the Cenomanian Chalk exposed in the cliffs at Speeton, Yorkshire, pyrite and marcasite (both iron sulfide) nodules range in δ34S from -34.7‰ to +40.0‰. In the lower part of the section δ34S vary from -34.8‰ to +7.8‰, a single barite nodule has δ34S between +26.9‰ and +29.9‰. In the middle part of the section δ34S ranges from +23.8‰ to +40.0‰. In the sulfidization zones that cut across the Cenomanian Chalk of Lincolnshire the iron sulfide nodules are typically heavily weathered but these may contain patches of unoxidised pyrite. In these zones, δ34S ranges from -32.9‰ to +7.9‰. The cross-cutting zones of sulfidization in eastern England are linked to three basement faults - the Flamborough Head Fault Zone, the Caistor Fault and the postulated Wash Line of Jeans (1980) - that have affected the deposition of the Chalk. It is argued that these faults have been both the conduits by which allochthonous fluids - rich in hydrogen sulfide/sulfate, hydrocarbons and possibly charged with sulfate-reducing bacteria - have penetrated the Cenomanian Chalk as the result of movement during the Late Cretaceous or Cenozoic. These invasive fluids are associated with (1) the reduction of the red hematite pigment or its praecursor, (2) the subsequent development of both iron sulfides and barite, and (3) the loss of overpressure in the Cenomanian Chalk and its late diagenetic hardening by anoxic cementation. Evidence is reviewed for the origin of the red hematite pigment of the coloured chalks and for the iron involved in the development of iron sulfides, a hydrothermal or volcanogenic origin is favoured.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-30
... associated funerary objects include 20 bifaces; 11 bone pins; 4 bone beads; 3 Matanzas points; 3 chert drills; 2 bone awls; 1 knife; 1 unidentified point; and 3,517 artifacts found nearby including shell, animal bone, nutshell, hematite, charcoal, and chert flakes. Determinations Made by the Indiana Department of...
A template-free solid-state synthesis of a morphologically controlled and highly organized iron(III)oxide micro–mesoporous Fenton catalyst has been engineered through a simple two-step synthetic procedure. The 3D nanoassembly of hematite nanoparticles (5–7 nm) organized into a ro...
USDA-ARS?s Scientific Manuscript database
Given the ubiquity of organic-metal oxide interfaces in environmental and medical systems, it is incumbent to obtain mechanistic details at the molecular level from experimental procedures that mimic real systems and conditions. We report herein the adsorption pH envelopes (range 9-5) and isotherms...
78 FR 52574 - Westinghouse Electric Company, LLC; Decommissioning Project; Hematite, Missouri
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-23
... statement of the issue of law or fact to be raised or controverted, as well as a brief explanation of the... must also include a concise statement of the alleged facts or expert opinions which support the... material issue of law or fact, including references to specific portions of the application for amendment...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-19
..., the petitioner must provide a specific statement of the issue of law or fact to be raised or... application. The petition must also include a concise statement of the alleged facts or expert opinions which... applicant on a material issue of law or fact, including references to specific portions of the application...
The Weathering of Rocks Under Humid Tropical Conditions.
kaolinitic clay, the formation of gibbsite from the kaolinite , and the leaching of silica and iron-oxides. (Modified author abstract)...rhyolitic to andesitic lavas, tuffs and granophyre, under warm humid climatic conditions. The dominant minerals in the bauxite deposits are gibbsite ... kaolinite , quartz (also chalcedony), goethite, and hematite. The occurrence of bauxite is determined primarily by the parent rocks, which are typically fine
Mechanism of groundwater arsenic removal by goethite-coated mineral sand
NASA Astrophysics Data System (ADS)
Cashion, J. D.; Khan, S. A.; Patti, A. F.; Adeloju, S.; Gates, W. P.
2017-11-01
Skye sand (Vic, Australia) has been considered for arsenic removal from groundwater. Analysis showed that the silica sand is coated with poorly crystalline goethite, hematite and clay minerals. Mössbauer spectra taken following arsenic adsorption revealed changes in the recoilless fraction and relaxation behaviour of the goethite compared to the original state, showing that the goethite is the main active species.
The Mineralogy of Microbiologically Influenced Corrosion
2015-01-01
cathodically active). The biomineralization rate and the corrosion current control oxide accumulation. Localized corrosion current that exceeds the... phosphate ). Localized corrosion would not readily occur unless Cl- was the predominant anion in the medium. They concluded that the Cl- concentration...transforms into goethite and/or hematite over time. For mild steel corrosion under anodic control , manganese oxides elevate con-osion current, but will
NASA Astrophysics Data System (ADS)
Roy, Gopal Ghosh; Sarkar, Bitan Kumar; Chaudhuri, Mahua Ghosh; Mitra, Manoj Kumar; Dey, Rajib
2017-10-01
An attempt has been made to utilise hematite ore fines in the form of briquettes with two different form of mixing i.e. intermixing and multilayered by means of carbothermal reduction along with boiler grade coal and coke dust. The influence of reduction temperature (1323, 1373 and 1423 K) and reduction time (10, 20, 30, 45 and 60 min) has been investigated in detail and the reduced briquettes are characterised by XRD, SEM analyses. The reducibility of intermixing briquettes is found to be higher for multilayered briquettes. In addition, isothermal kinetic study has also been carried out for both intermixing and multilayered briquettes. The activation energy for intermixing briquettes are evaluated to be 125.88 kJ/mol for the initial stage of reaction (CG3 controlled mechanism) and 113.11 kJ/mol for the later part of reaction (D3 controlled mechanism), respectively. In case of multilayered briquettes, the corresponding activation energy is found to be 235.59 kJ/mol for reaction (CG3 controlled mechanism). These results corroborate the observed better reducibility of the intermixing briquettes over multilayered briquettes.
NASA Astrophysics Data System (ADS)
Bezaeva, Natalia S.; Demory, François; Rochette, Pierre; Sadykov, Ravil A.; Gattacceca, Jérôme; Gabriel, Thomas; Quesnel, Yoann
2015-12-01
We present new experimental data on the dependence of the Morin transition temperature (TM) on hydrostatic pressure up to 1.61 GPa, obtained on a well-characterized multidomain hematite-bearing sample from a banded iron formation. We used a nonmagnetic high-pressure cell for pressure application and a Superconducting Quantum Interference Device magnetometer to measure the isothermal remanent magnetization (IRM) under pressure on warming from 243 K to room temperature (T0). IRM imparted at T0 under pressure in 270 mT magnetic field (IRM270mT) is not recovered after a cooling-warming cycle. Memory effect under pressure was quantified as IRM recovery decrease of 10%/GPa. TM, determined on warming, reaches T0 under hydrostatic pressure 1.38-1.61 GPa. The pressure dependence of TM up to 1.61 GPa is positive and essentially linear with a slope dTM/dP = (25 ± 2) K/GPa. This estimate is more precise than previous ones and allows quantifying the effect of a pressure wave on the upper crust magnetization, with special emphasis on Mars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinde, S.S.; Rajpure, K.Y., E-mail: rajpure@yahoo.co
Nanocomposites of aluminium integrated hematite {alpha}-Fe{sub 2}O{sub 3} are synthesized by combustion route using aqueous solutions of AR grade ferric trichloride and aluminium nitrate as precursors. The influence of aluminium incorporation on to the morphology, XPS, photoluminescence and thermal properties has been investigated. The FESEM and AFM micrographs depict that the samples are compact and have homogeneously distributed grains of varying sizes ({approx}20-60 nm). Chemical composition and valence states of constituent elements in hematite are analyzed by XPS. In room temperature photoluminescence (PL) study, we observed strong violet emission around 436 nm without any deep-level emission and a small PLmore » FWHM indicating that the concentrations of defects are responsible for deep-level emissions. The specific heat and thermal conductivity study shows the phonon conduction behavior is dominant. We studied interparticle interactions using complex impedance spectroscopy. We report a new potential candidate for its possible applications in optoelectronics and magnetic devices. -- Graphical abstract: Frequency and temperature dependent interparticle interactions like grains, grain boundary effects using complex impedance spectroscopy of pure and 10 at% Al:Fe{sub 2}O{sub 3} have been studied. Display Omitted« less
NASA Astrophysics Data System (ADS)
Shankhwar, Nisha; Kothiyal, G. P.; Srinivasan, A.
2014-09-01
Bioactive glass of composition 41CaO-44SiO2-4P2O5-8Fe2O3-3Na2O has been heat treated in the temperature (TA) range of 750-1150 °C for time periods (tA) ranging from 1 h to 3 h to yield magnetic bioactive glass ceramics (MBCs). X-ray diffraction studies indicate the presence of bone mineral (hydroxyapatite and wollastonite) and magnetic (magnetite and α-hematite) phases in nanocrystalline form in the MBCs. Electron paramagnetic resonance (EPR) study was carried out to understand the variation in saturation magnetization and coercivity of the MBCs with TA and tA. These studies reveal the nature and amount of iron ions present in the MBCs and their interaction in the glassy oxide matrix as a function of annealing parameters. The deterioration in the magnetic properties of the glass heat treated above 1050 °C is attributed to the crystallization of the non-magnetic α-hematite phase. These results are expected to be useful in the application of these MBCs as thermoseeds in hyperthermia treatment of cancer.
Birnessite-induced mechanochemical degradation of 2,4-dichlorophenol.
Nasser, A; Mingelgrin, U
2014-07-01
DCP (2,4-dichlorophenol) is the key-intermediate in the synthesis of some widely used pesticides and is an EPA priority pollutant. The mechanochemical breakdown of DCP loaded on birnessite (δ-MnO2), montmorillonite saturated with Na(+) or Cu(2+) and hematite was investigated. Mechanical force was applied by grinding of mixtures of DCP and the minerals, using mortar and pestle. Grinding of DCP for 5 min with the montmorillonites or with hematite resulted in negligible degradation during grinding, while grinding with birnessite induced the immediate degradation of 90% of the loaded DCP. Incubation for 24h after grinding did result in up to 30% degradation of the DCP loaded on the other minerals tested. HPLC and LC-MS analysis revealed that the transformation of DCP yielded oligomerization products as well as partial dechlorination. DCP degradation on birnessite was accompanied with a substantial increase in the extractability of manganese from the mineral into an acidic aqueous solution, indicating that Mn(IV) in the mineral transformed into Mn(II) and that birnessite served as an electron acceptor in the transformation. The oligomerization and partial dechlorination brought about by grinding, suggest a reduction in bioavailability and toxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.
The effect of precursor types on the magnetic properties of Y-type hexa-ferrite composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Chin Mo; Na, Eunhye; Kim, Ingyu
2015-05-07
With magnetic composite including uniform magnetic particles, we expect to realize good high-frequency soft magnetic properties. We produced needle-like (α-FeOOH) nanoparticles with nearly uniform diameter and length of 20 and 500 nm. Zn-doped Y-type hexa-ferrite samples were prepared by solid state reaction method using the uniform goethite and non-uniform hematite (Fe{sub 2}O{sub 3}) with size of <1 μm, respectively. The micrographs observed by scanning electron microscopy show that more uniform hexagonal plates are observed in ZYG-sample (Zn-doped Y-type hexa-ferrite prepared with non-uniform hematite) than in ZYH-sample (Zn-doped Y-type hexa-ferrite prepared with uniform goethite). The permeability (μ′) and loss tangent (δ) atmore » 2 GHz are 2.31 and 0.07 in ZYG-sample and 2.0 and 0.07 in ZYH sample, respectively. We can observe that permeability and loss tangent are strongly related to the particle size and uniformity based on the nucleation, growth, and two magnetizing mechanisms: spin rotation and domain wall motion. The complex permeability spectra also can be numerically separated into spin rotational and domain wall resonance components.« less
NASA Astrophysics Data System (ADS)
Allwes, Mark; Mekaoui, Mehdi; Sorescu, Monica
2017-08-01
xSc2O3-(1-x)α-Fe2O3 (x = 0.1, 0.3 and 0.5) nanocomposite systems were successfully synthesized by mechanochemical activation of Sc2O3 and α-Fe2O3 mixtures for 0-12 h of ball milling time. Mössbauer investigations were performed to study the structural and magnetic properties of xSc2O3-(1-x)α-Fe2O3 nanoparticle systems during the mechanochemical activation treatment. The Mössbauer studies showed that the spectrum of the mechanochemically activated composites evolved from a sextet for hematite to sextets and a doublet upon duration of the milling process with scandium oxide. Mutual solubility was achieved at the nanoscopic level only. A comprehensive Mössbauer study was performed by recording the recoilless fraction f as function of the ball milling time using our dual absorber method. The results obtained indicate that prolonged ball milling times favor formation of the Fe:Sc2O3 non-magnetic phase and decrease of the grain sizes for both magnetic and non-magnetic components, leading to a maximum in the recoilless fraction followed by its decay.
NASA Astrophysics Data System (ADS)
Cabral, Alexandre Raphael; Ließmann, Wilfried; Jian, Wei; Lehmann, Bernd
2017-10-01
Carbonate veinlets at Roter Bär, a former underground mine in the polymetallic St. Andreasberg vein district of the Harz Mountains, Germany, host selenide minerals that are characterised as Bi-Ag-bearing clausthalite (PbSe), tiemannite (HgSe), guanajuatite (Bi2Se3) and a number of selenides of Bi, Zn, Cu, Ag and Pd. An unnamed Bi-Pb-Ag selenide species with some Hg and Cu, ideally Bi4Pb3Ag2Se10, is reported here. Specular hematite is disseminated within the clausthalite, at the marginal zones of which other selenide minerals are located. The occurrence of bohdanowiczite (AgBiSe2) and umangite (Cu3Se2) constrains the formation temperature to ≤120 °C, and the selenide-hematite assemblage (plus barite in the carbonate gangue) identifies highly oxidised conditions. Selenide assemblages of Pb, Bi, Ag, with and without Co and Ni, occur in many parts of the Variscan basement of central Europe (Harz, Erzgebirge, Schwarzwald and Bohemian Massif) and represent a high-oxidation variety of five-element (Ag-As-Bi-Co-Ni) veins.
NASA Astrophysics Data System (ADS)
Rao, Gottumukkala Venkateswara; Markandeya, R.; Kumar, Rajan
2018-04-01
An attempt has been made to utilise Sub Grade Iron Ore by producing pellet grade concentrate from Deposit 5, Bacheli Complex, Bailadila, Chhattisgarh, India. The `as received' Run of Mine (ROM) sample assayed 40.80% Fe, 40.90% SiO2. Mineralogical studies indicated that the main ore mineral is Hematite and lone gangue mineral is Quartz. Mineral liberation studies indicated that, the ore mineral Hematite and gangue mineral Quartz are getting liberated below 100 microns. The stage crushed and ground sample was subjected to concentration by using a Multi Gravity Separator (MGS). Rougher Multi Gravity Separation (MGS) experimental results were optimised to recover highest possible iron values. A concentrate of 55.80% Fe with a yield of 61.73% by weight with a recovery of 84.42% Iron values was obtained in rougher MGS concentrate. Further experiments were carried out with rougher MGS concentrate to produce a concentrate suitable for commercial grade pellet concentrate. It was proved that a concentrate assaying 66.67% Fe, 3.12% SiO2 with an yield of 45.08% by weight and with a recovery of 73.67% iron values in the concentrate.