Science.gov

Sample records for hematopoietic cell growth factors

  1. Hematopoietic Stem Cell and Its Growth Factor

    DTIC Science & Technology

    1988-02-16

    that both K15 and H5 were selectively retained by mature eosinophiles but not by other granulocytes. These results were obtained by the isolation of...Platelets M143 > 90% 40-60% neg neg neg K15 neutrophils: >90% >95% neg neg neg eosinophils : + H4 weakly + >90% neg neg + + H5 5-15% >95% 10-20% neg...down a band at 130KD from platelets and a complex of 140- 150KD/90-94KD from HEL cells. Because of the unusual reactivity and the possibility that the

  2. Role of hematopoietic growth factors in angiogenesis.

    PubMed

    Ribatti, D; Vacca, A; De Falco, G; Ria, R; Roncali, L; Dammacco, F

    2001-01-01

    In early ontogeny, hematopoiesis is closely associated with angiogenesis. This article reviews recent studies of the effect of hematopoietic growth factors on several endothelial cell functions together with recent findings about angiogenesis and antiangiogenic therapies in hematopoietic malignancies such as leukemia, lymphoma and myeloma. Copyright 2001 S. Karger AG, Basel

  3. Serum stem cell growth factor for monitoring hematopoietic recovery following stem cell transplantation.

    PubMed

    Ito, C; Sato, H; Ando, K; Watanabe, S; Yoshiba, F; Kishi, K; Furuya, A; Shitara, K; Sugimoto, S; Kohno, H; Hiraoka, A; Hotta, T

    2003-08-01

    Stem cell growth factor (SCGF) is a novel cytokine for primitive hematopoietic progenitor cells. Although it has burst-promoting activity and granulocyte/macrophage colony-promoting activity in vitro, its significance in hematopoiesis in vivo has not been elucidated. In this study, we have established enzyme-linked immunosorbent assay (ELISA) to quantify human SCGF and measured serum cytokines in normal volunteers and 27 patients undergoing stem cell transplantation (SCT), including six autologous and 21 allogeneic transplants. SCGF levels gradually increased after SCT regardless of graft-versus-host disease or type of transplant. The maximum level of SCGF was observed during the rapid granulocyte recovery phase in patients subjected to an autologous transplantation, and during the granulocyte stabilization phase in allogeneic patients. SCGF levels in PBSCT patients began to rise earlier than in BMT patients. Two patients with no increment of SCGF after SCT showed delayed engraftment. The source of SCGF was further analyzed by RT-PCR and we found that SCGF was highly expressed in bone marrow (BM) CD34(+) and CD34(-)CD33(+) cells, but not in BM CD34(-)CD33(-) cells, BM stromal cells and peripheral blood cells. The cell population expressing SCGF in BM possess the colony-forming cell activity. Therefore, serum SCGF can be an indicator of hematopoietic recovery following SCT.

  4. Transforming Growth Factor β Drives Hemogenic Endothelium Programming and the Transition to Hematopoietic Stem Cells.

    PubMed

    Monteiro, Rui; Pinheiro, Philip; Joseph, Nicola; Peterkin, Tessa; Koth, Jana; Repapi, Emmanouela; Bonkhofer, Florian; Kirmizitas, Arif; Patient, Roger

    2016-08-22

    Hematopoietic stem cells (HSCs) are self-renewing multipotent stem cells that generate mature blood lineages throughout life. They, together with hematopoietic progenitor cells (collectively known as HSPCs), emerge from hemogenic endothelium in the floor of the embryonic dorsal aorta by an endothelial-to-hematopoietic transition (EHT). Here we demonstrate that transforming growth factor β (TGFβ) is required for HSPC specification and that it regulates the expression of the Notch ligand Jagged1a in endothelial cells prior to EHT, in a striking parallel with the epithelial-to-mesenchymal transition (EMT). The requirement for TGFβ is two fold and sequential: autocrine via Tgfβ1a and Tgfβ1b produced in the endothelial cells themselves, followed by a paracrine input of Tgfβ3 from the notochord, suggesting that the former programs the hemogenic endothelium and the latter drives EHT. Our findings have important implications for the generation of HSPCs from pluripotent cells in vitro.

  5. Bone marrow hematopoietic stem cells behavior with or without growth factors in trauma hemorrhagic shock

    PubMed Central

    Kumar, Manoj; Bhoi, Sanjeev; Mohanty, Sujata; Kamal, Vineet Kumar; Rao, D. N.; Mishra, Pravas; Galwankar, Sagar

    2016-01-01

    Background: Hemorrhagic shock (HS) is the major leading cause of death after trauma. Up to 50% of early deaths are due to massive hemorrhage. Excessive release of pro-inflammatory cytokine and hypercatecholamine induces hematopoietic progenitor cells (HPCs) apoptosis, leading to multiorgan failure and death. However, still, result remains elusive for hematopoietic stem cells (HSCs) behavior in trauma HS (T/HS). Objectives: Therefore, our aim was to evaluate the in vitro HSCs behavior with or without recombinant human erythropoietin (rhEPO), recombinant human granulocyte macrophage-colony-stimulating factor (rhGM-CSF), recombinant human interleukin-3 (rhIL-3) alone, and combination with rhEPO + rhGM-CSF + rhIL-3 (EG3) in T/HS patients. Methodology: Bone marrow (BM) aspirates (n = 14) were collected from T/HS patients, those survived on day 3. BM cells were cultured for HPCs: Colony-forming unit-erythroid (CFU-E), burst-forming unit-erythroid (BFU-E), and colony-forming unit-granulocyte, monocyte/macrophage colonies growth. HPCs were counted with or without rhEPO, rhGM-CSF, rhIL-3 alone, and combination with EG3 in T/HS patients. Results: BM HSCs growth significantly suppressed in T/HS when compared with control group (P < 0.05). In addition, CFU-E and BFU-E colony growth were increased with additional growth factor (AGF) (rhEPO, rhGM-CSF, and rhIL-3) as compared to baseline (without AGF) (P < 0.05). Conclusion: Suppressed HPCs may be reactivated by addition of erythropoietin, GM-CSF, IL-3 alone and with combination in T/HS. PMID:27722113

  6. Proliferation and differentiation of highly enriched mouse hematopoietic stem cells and progenitor cells in response to defined growth factors

    PubMed Central

    1988-01-01

    Three distinct hematopoietic populations derived from normal bone marrow were analyzed for their response to defined growth factors. The Thy-1loT- B- G- M-population, composing 0.2% of bone marrow, is 370- fold enriched for pluripotent hematopoietic stem cells. The two other populations, the Thy-1- T- B- G- M- and the predominantly mature Thy-1+ T+ B+ G+ M+ cells, lack stem cells. Thy-1loT- B- G- M- cells respond with a frequency of one in seven cells to IL-3 in an in vitro CFU-C assay, and give rise to many mixed colonies as expected from an early multipotent or pluripotent progenitor. The Thy-1- T- B- G- M- population also contains progenitor cells which responded to IL-3. However, colonies derived from Thy-1- T- B- G- M- cells are almost exclusively restricted to the macrophage/granulocyte lineages. This indicates that IL-3 can stimulate at least two distinct clonogenic early progenitor cells in normal bone marrow: multipotent Thy-1loT- B- G- M- cells and restricted Thy-1- T- B- G- M- cells. Thy-1loT- B- G- M- cells could not be stimulated by macrophage colony-stimulating factor (M-CSF), granulocyte CSF (G-CSF) or IL-5 (Eosinophil-CSF). The hematopoietic precursors that react to these factors are enriched in the Thy-1- T- G- B- M- population. Thus, multipotent and restricted progenitors can be separated on the basis of the expression of the cell surface antigen Thy-1. PMID:3260264

  7. An epidermal growth factor receptor/Jak2 tyrosine kinase domain chimera induces tyrosine phosphorylation of Stat5 and transduces a growth signal in hematopoietic cells.

    PubMed

    Nakamura, N; Chin, H; Miyasaka, N; Miura, O

    1996-08-09

    The Jak family of tyrosine kinases and the Stat family of transcription factors have been implicated in transducing signals from the hematopoietic growth factor receptors. To explore the role played by a member of the Jak family, Jak2, in hematopoietic cell growth signaling, we constructed a chimeric cDNA coding for the Jak2 tyrosine kinase domain linked to the extracellular and transmembrane regions of the epidermal growth factor (EGF) receptor (EGFR) and expressed the chimera in an interleukin (IL)-3-dependent cell line, 32D. When deprived of IL-3, EGF prevented apoptosis of the transfected cells, induced dose-dependent proliferation, and supported long-term growth. EGF stimulation of the transfectants induced dose-dependent tyrosine phosphorylation of the EGFR/Jak2 chimera and Stat5, which correlated with the EGF dose dependence of cell proliferation. On the other hand, EGF did not induce tyrosine phosphorylation of other factors implicated in cytokine receptor signaling, including the IL-3 receptor beta subunit, Jak kinases, Stat proteins other than Stat5, Shc, Syp, and mitogen-activated protein kinases. These results suggest that the activation of Jak2 may be sufficient for transducing a growth signal in hematopoietic cells by activating the Stat5 pathway or previously unidentified signaling pathways. In addition, because EGF induces homodimerization of the EGFR to activate its tyrosine kinase activity, the present study, which shows EGF-dependent activation of the EGFR/Jak2 chimera, implies that Jak2 may also become activated by homodimerization.

  8. Immobilized hematopoietic growth factors onto magnetic particles offer a scalable strategy for cell therapy manufacturing in suspension cultures.

    PubMed

    Worrallo, Matthew J; Moore, Rebecca L L; Glen, Katie E; Thomas, Robert J

    2017-02-01

    Hematopoietic therapies require high cell dosages and precise phenotype control for clinical success; scalable manufacturing processes therefore need to be economic and controllable, in particular with respect to culture medium and growth factor (GF) strategy. The aim of this work was to demonstrate the biological function, and integration within scalable systems, of a highly controllable immobilized growth factor (iGF) approach. GFs were biotinylated and attached to streptavidin coated magnetic particles. GF concentration during biotinylation, GF-biotin ratio, and GF lysine content were shown to control iGF surface concentration and enable predictable co-presentation of multiple GF on a single bead. Function was demonstrated for immobilized GMCSF, SCF, TPO and IL-3 in GF dependent cell lines TF-1 and M-07e. Immobilized GMCSF (iGMCSF) was analyzed to show sustained activity over 8 days of culture, a 2-3 order of magnitude potency increase relative to soluble factor, and retained functionality under agitation in a micro-scale stirred tank bioreactor. Further, short exposure to iGMCSF demonstrated prolonged growth response relative to soluble factor. This immobilization approach has the potential to reduce the manufacturing costs of scaled cell therapy products by reducing GF quantities and offers important process control opportunities through separation of GF treatments from the bulk media. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Pleiotropic effects of transforming growth factor-β in hematopoietic stem-cell transplantation.

    PubMed

    Coomes, Stephanie M; Moore, Bethany B

    2010-12-15

    Transforming growth factor (TGF)-β is a pleiotropic cytokine with beneficial and detrimental effects posthematopoietic stem-cell transplantation. TGF-β is increased in specific sites postengraftment and can suppress immune responses and maintain peripheral tolerance. Thus, TGF-β may promote allograft acceptance. However, TGF-β is also the central pathogenic cytokine in fibrotic disease and likely promotes pneumonitis. Although TGF-β can enhance leukocyte recruitment and IgA production, it inhibits both innate and adaptive immune cell function and antiviral host defense posthematopoietic stem-cell transplantation. This review will focus on the current understanding of TGF-β biology and the numerous ways it can impact outcomes posttransplant.

  10. The hematopoietic growth factor "erythropoietin" enhances the therapeutic effect of mesenchymal stem cells in Alzheimer's disease.

    PubMed

    Khairallah, M I; Kassem, L A; Yassin, N A; El Din, M A Gamal; Zekri, M; Attia, M

    2014-01-01

    Alzheimer's disease is a neurodegenerative disorder clinically characterized by cognitive dysfunction and by deposition of amyloid plaques, neurofibrillary tangles in the brain. The study investigated the therapeutic effect of combined mesenchymal stem cells and erythropoietin on Alzheimer's disease. Five groups of mice were used: control group, Alzheimer's disease was induced in four groups by a single intraperitoneal injection of 0.8 mg kg(-1) lipopolysaccharide and divided as follows: Alzheimer's disease group, mesenchymal stem cells treated group by injecting mesenchymal stem cells into the tail vein (2 x 10(6) cells), erythropoietin treated group (40 microg kg(-1) b.wt.) injected intraperitoneally 3 times/week for 5 weeks and mesenchymal stem cells and erythropoietin treated group. Locomotor activity and memory were tested using open field and Y-maze. Histological, histochemical, immunohistochemical studies, morphometric measurements were examined in brain sections of all groups. Choline transferase activity, brain derived neurotrophic factor expression and mitochondrial swellings were assessed in cerebral specimens. Lipopolysaccharide decreased locomotor activity, memory, choline transferase activity and brain derived neurotrophic factor. It increased mitochondrial swelling, apoptotic index and amyloid deposition. Combined mesenchymal stem cells and erythropoietin markedly improved all these parameters. This study proved the effective role of mesenchymal stem cells in relieving Alzheimer's disease symptoms and manifestations; it highlighted the important role of erythropoietin in the treatment of Alzheimer's disease.

  11. Soluble factor cross-talk between human bone marrow-derived hematopoietic and mesenchymal cells enhances in vitro CFU-F and CFU-O growth and reveals heterogeneity in the mesenchymal progenitor cell compartment.

    PubMed

    Baksh, Dolores; Davies, John E; Zandstra, Peter W

    2005-11-01

    The homeostatic adult bone marrow (BM) is a complex tissue wherein physical and biochemical interactions serve to maintain a balance between the hematopoietic and nonhematopoietic compartments. To focus on soluble factor interactions occurring between mesenchymal and hematopoietic cells, a serum-free adhesion-independent culture system was developed that allows manipulation of the growth of both mesenchymal and hematopoietic human BM-derived progenitors and the balance between these compartments. Factorial experiments demonstrated a role for stem cell factor (SCF) and interleukin 3 (IL-3) in the concomitant growth of hematopoietic (CD45+) and nonhematopoietic (CD45-) cells, as well as their derivatives. Kinetic tracking of IL-3alpha receptor (CD123) and SCF receptor (CD117) expression on a sorted CD45- cell population revealed the emergence of CD45-CD123+ cells capable of osteogenesis. Of the total fibroblast colony-forming units (CFU-Fs) and osteoblast colony-forming units (CFU-O), approximately 24% of CFU-Fs and about 22% of CFU-Os were recovered from this population. Cell-sorting experiments demonstrated that the CD45+ cell population secreted soluble factors that positively affect the survival and proliferation of CFU-Fs and CFU-Os generated from the CD45- cells. Together, our results provide insight into the intercellular cytokine network between hematopoietic and mesenchymal cells and provide a strategy to mutually culture both mesenchymal and hematopoietic cells in a defined scalable bioprocess.

  12. Mast Cell Growth Factor Enhances Multilineage Hematopoietic Recovery in Vivo Following Radiation-Induced Aplasia

    DTIC Science & Technology

    1994-01-01

    GM-CFC), and peripheral white blood cells macrocytic anemia that is resistant to erythropoietin treat- (WBC), red 1 lood cells (RBC), and platelets...MacVittie TJ (1993) A GM-CSF/IL-3 fusion protein tary mouse anemias (SI/Sid and W/WV) deficient in promotes neutrophil and platelet recovery in

  13. SCL (stem cell leukemia) gene, and a hematopoietic growth and differentiation factor encoded thereby

    SciTech Connect

    Kirsch, I.R.; Begley, C.G.

    1989-11-17

    A new human gene, SCL, was identified. The gene was discovered because of its involvement in a chromosomal translocation associated with the occurrence of a stem cell leukemia manifesting myeloid and lymphoid differentiation capabilities. The sequence of a cDNA for the normal SCL transcript is reported, as well as for an aberrant fusion transcript produced in the leukemic cells. Although different at their 3' untranslated regions, both cDNAs predict a protein within which is contained a region of primary amino acid sequence homology to the previously described amphipathic helix-loop-helix DNA binding and dimerization motif also contained within a variety of proteins whose role in development, differentiation, and proliferation has already been established.

  14. Enhanced genetic modification of adult growth factor mobilized peripheral blood hematopoietic stem and progenitor cells with rapamycin.

    PubMed

    Li, Lijing; Torres-Coronado, Mónica; Gu, Angel; Rao, Anitha; Gardner, Agnes M; Epps, Elizabeth W; Gonzalez, Nancy; Tran, Chy-Anh; Wu, Xiwei; Wang, Jin-Hui; DiGiusto, David L

    2014-10-01

    Genetic modification of adult human hematopoietic stem and progenitor cells (HSPCs) with lentiviral vectors leads to long-term gene expression in the progeny of the HSPCs and has been used to successfully treat several monogenic diseases. In some cases, the gene-modified cells have a selective growth advantage over nonmodified cells and eventually are the dominant engrafted population. However, in disease indications for which the gene-modified cells do not have a selective advantage, optimizing transduction of HSPC is paramount to successful stem cell-based gene therapy. We demonstrate here that transduction of adult CD34+ HSPCs with lentiviral vectors in the presence of rapamycin, a widely used mTORC1 inhibitor, results in an approximately threefold increase in stable gene marking with minimal effects on HSPC growth and differentiation. Using this approach, we have demonstrated that we can enhance the frequency of gene-modified HSPCs that give rise to clonogenic progeny in vitro without excessive increases in the number of vector copies per cell or changes in integration pattern. The genetic marking of HSPCs and expression of transgenes is durable, and transplantation of gene-modified HSPCs into immunodeficient mice results in high levels of gene marking of the lymphoid and myeloid progeny in vivo. The prior safe clinical history of rapamycin in other applications supports the use of this compound to generate gene-modified autologous HSPCs for our HIV gene therapy clinical trials.

  15. Enhanced Genetic Modification of Adult Growth Factor Mobilized Peripheral Blood Hematopoietic Stem and Progenitor Cells With Rapamycin

    PubMed Central

    Li, Lijing; Torres-Coronado, Mónica; Gu, Angel; Rao, Anitha; Gardner, Agnes M.; Epps, Elizabeth W.; Gonzalez, Nancy; Tran, Chy-Anh; Wu, Xiwei; Wang, Jin-Hui

    2014-01-01

    Genetic modification of adult human hematopoietic stem and progenitor cells (HSPCs) with lentiviral vectors leads to long-term gene expression in the progeny of the HSPCs and has been used to successfully treat several monogenic diseases. In some cases, the gene-modified cells have a selective growth advantage over nonmodified cells and eventually are the dominant engrafted population. However, in disease indications for which the gene-modified cells do not have a selective advantage, optimizing transduction of HSPC is paramount to successful stem cell-based gene therapy. We demonstrate here that transduction of adult CD34+ HSPCs with lentiviral vectors in the presence of rapamycin, a widely used mTORC1 inhibitor, results in an approximately threefold increase in stable gene marking with minimal effects on HSPC growth and differentiation. Using this approach, we have demonstrated that we can enhance the frequency of gene-modified HSPCs that give rise to clonogenic progeny in vitro without excessive increases in the number of vector copies per cell or changes in integration pattern. The genetic marking of HSPCs and expression of transgenes is durable, and transplantation of gene-modified HSPCs into immunodeficient mice results in high levels of gene marking of the lymphoid and myeloid progeny in vivo. The prior safe clinical history of rapamycin in other applications supports the use of this compound to generate gene-modified autologous HSPCs for our HIV gene therapy clinical trials. PMID:25107584

  16. Insulin-Like Growth Factor 1 Mitigates Hematopoietic Toxicity After Lethal Total Body Irradiation

    SciTech Connect

    Zhou, Dunhua; Deoliveira, Divino; Kang, Yubin; Choi, Seung S.; Li, Zhiguo; Chao, Nelson J.; Chen, Benny J.

    2013-03-15

    Purpose: To investigate whether and how insulin-like growth factor 1 (IGF-1) mitigates hematopoietic toxicity after total body irradiation. Methods and Materials: BALB/c mice were irradiated with a lethal dose of radiation (7.5 Gy) and treated with IGF-1 at a dose of 100 μg/dose intravenously once a day for 5 consecutive days starting within 1 hour after exposure. Survival and hematopoietic recovery were monitored. The mechanisms by which IGF-1 promotes hematopoietic recovery were also studied by use of an in vitro culture system. Results: IGF-1 protected 8 of 20 mice (40%) from lethal irradiation, whereas only 2 of 20 mice (10%) in the saline control group survived for more than 100 days after irradiation. A single dose of IGF-1 (500 μg) was as effective as daily dosing for 5 days. Positive effects were noted even when the initiation of treatment was delayed as long as 6 hours after irradiation. In comparison with the saline control group, treatment with IGF-1 significantly accelerated the recovery of both platelets and red blood cells in peripheral blood, total cell numbers, hematopoietic stem cells, and progenitor cells in the bone marrow when measured at day 14 after irradiation. IGF-1 protected both hematopoietic stem cells and progenitor cells from radiation-induced apoptosis and cell death. In addition, IGF-1 was able to facilitate the proliferation and differentiation of nonirradiated and irradiated hematopoietic progenitor cells. Conclusions: IGF-1 mitigates radiation-induced hematopoietic toxicity through protecting hematopoietic stem cells and progenitor cells from apoptosis and enhancing proliferation and differentiation of the surviving hematopoietic progenitor cells.

  17. Stroma-Derived Connective Tissue Growth Factor Maintains Cell Cycle Progression and Repopulation Activity of Hematopoietic Stem Cells In Vitro.

    PubMed

    Istvánffy, Rouzanna; Vilne, Baiba; Schreck, Christina; Ruf, Franziska; Pagel, Charlotta; Grziwok, Sandra; Henkel, Lynette; Prazeres da Costa, Olivia; Berndt, Johannes; Stümpflen, Volker; Götze, Katharina S; Schiemann, Matthias; Peschel, Christian; Mewes, Hans-Werner; Oostendorp, Robert A J

    2015-11-10

    Hematopoietic stem cells (HSCs) are preserved in co-cultures with UG26-1B6 stromal cells or their conditioned medium. We performed a genome-wide study of gene expression changes of UG26-1B6 stromal cells in contact with Lineage⁻ SCA-1⁺ KIT⁺ (LSK) cells. This analysis identified connective tissue growth factor (CTGF) to be upregulated in response to LSK cells. We found that co-culture of HSCs on CTGF knockdown stroma (shCtgf) shows impaired engraftment and long-term quality. Further experiments demonstrated that CD34⁻ CD48⁻ CD150⁺ LSK (CD34⁻ SLAM) cell numbers from shCtgf co-cultures increase in G0 and senescence and show delayed time to first cell division. To understand this observation, a CTGF signaling network model was assembled, which was experimentally validated. In co-culture experiments of CD34⁻ SLAM cells with shCtgf stromal cells, we found that SMAD2/3-dependent signaling was activated, with increasing p27(Kip1) expression and downregulating cyclin D1. Our data support the view that LSK cells modulate gene expression in the niche to maintain repopulating HSC activity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Prophylactic pretreatment of mice with hematopoietic growth factors induces expansion of primitive cell compartments and results in protection against 5-fluorouracil-induced toxicity.

    PubMed

    de Haan, G; Donte, B; Engel, C; Loeffler, M; Nijhof, W

    1996-06-01

    The aim of this study was to expand the primitive and committed hematopoietic cell compartments in vivo in order to confer resistance of the blood cell forming system against the cytotoxic, cell cycle specific drug 5-fluorouracil (5-FU). Possible chemoprotective effects of such a pretreatment could result from increased numbers of hematopoietic cells, present before 5-FU administration. In addition, we hypothesized that an enhanced number of primitive and progenitor calls would result in a reduced cycling activity, ie, 5-FU sensitivity, of these same cells, due to normal physiological feedback loops. Administration of stem cell factor (SCF) plus interleukin-11 (IL-11) to mice was shown to result in expansion of the various immature cell compartments in marrow and, in particular, spleen. The total body content of the primitive cobblestone area forming cells (CAFC)-day 28 was increased to 140%, whereas the more committed cells (CAFC-day 7, erythroid and granuloid progenitors) were increased to 500%. This in vivo expansion resulted in a decreased 5-FU sensitivity of the hematopoietic system. In particular, mice that had received 5-FU 24 hours after discontinuation of growth factor pretreatment showed significantly less toxicity of committed cell stages. Compared with mice not pretreated, it appeared that in pretreated mice, 24 hours after 5-FU administration, the absolute number, but also the fraction of surviving CAFC, was much higher in both marrow and spleen. This was caused by a decrease in the cycling activity of all primitive cell subsets. To explore the possible use of this finding in a chemotherapeutic setting, we determined the interval between two subsequent doses of 5-FU (160 mg/kg) that was required to prevent drug-induced mortality. When control mice received a second dose of 5-FU 7, 10, or 14 days after the first, respectively 0%, 20%, and 80% survived. In contrast, 40% and 100% of mice that received SCF + IL-11 before the first dose of 5-FU, survived a

  19. Insulin-Like Growth Factor 1 Mitigates Hematopoietic Toxicity after Lethal Total Body Irradiation

    PubMed Central

    Zhou, Dunhua; Deoliveira, Divino; Kang, Yubin; Choi, Seung S.; Li, Zhiguo; Chao, Nelson J.; Chen, Benny J.

    2012-01-01

    Purpose To investigate whether and how insulin-like growth factor 1 (IGF-1) mitigates hematopoietic toxicity after total body irradiation. Methods and Materials BALB/c mice were irradiated with a lethal dose of radiation (7.5 Gy) and treated with IGF-1 at a dose of 100 μg/dose intravenously once a day for five consecutive days starting within one hour post exposure. Survival and hematopoietic recovery were monitored. The mechanisms by which IGF-1 promotes hematopoietic recovery were also studied using an in vitro culture system. Results IGF-1 protected 8 out of 20 mice (40%) from lethal irradiation while only 2 out of 20 mice (10%) in the saline control group survived for more than 100 days after irradiation. A single dose of IGF-1 (500 μg) was as effective as daily dosing for five days. Positive effects were noted even when the initiation of treatment was delayed up to six hours post irradiation. Compared with the saline control group, treatment with IGF-1 significantly accelerated the recovery of both platelets and red cells in peripheral blood, total cell numbers as well as hematopoietic stem cells and progenitors in the bone marrow when measured at day 14 post-irradiation. IGF-1 protected both hematopoietic stem cells and progenitors from radiation-induced apoptosis and cell death. In addition, IGF-1 was able to facilitate the proliferation and differentiation of non-irradiated and irradiated hematopoietic progenitors. Conclusions IGF-1 mitigates radiation-induced hematopoietic toxicity through protecting hematopoietic stem and progenitor cells from apoptosis and enhancing proliferation and differentiation of the surviving hematopoietic progenitors. PMID:23021438

  20. Sulfatase modifying factor 1-mediated fibroblast growth factor signaling primes hematopoietic multilineage development.

    PubMed

    Buono, Mario; Visigalli, Ilaria; Bergamasco, Roberta; Biffi, Alessandra; Cosma, Maria Pia

    2010-08-02

    Self-renewal and differentiation of hematopoietic stem cells (HSCs) are balanced by the concerted activities of the fibroblast growth factor (FGF), Wnt, and Notch pathways, which are tuned by enzyme-mediated remodeling of heparan sulfate proteoglycans (HSPGs). Sulfatase modifying factor 1 (SUMF1) activates the Sulf1 and Sulf2 sulfatases that remodel the HSPGs, and is mutated in patients with multiple sulfatase deficiency. Here, we show that the FGF signaling pathway is constitutively activated in Sumf1(-/-) HSCs and hematopoietic stem progenitor cells (HSPCs). These cells show increased p-extracellular signal-regulated kinase levels, which in turn promote beta-catenin accumulation. Constitutive activation of FGF signaling results in a block in erythroid differentiation at the chromatophilic erythroblast stage, and of B lymphocyte differentiation at the pro-B cell stage. A reduction in mature myeloid cells and an aberrant development of T lymphocytes are also seen. These defects are rescued in vivo by blocking the FGF pathway in Sumf1(-/-) mice. Transplantation of Sumf1(-/-) HSPCs into wild-type mice reconstituted the phenotype of the donors, suggesting a cell autonomous defect. These data indicate that Sumf1 controls HSPC differentiation and hematopoietic lineage development through FGF and Wnt signaling.

  1. Wnt3a Protein Reduces Growth Factor-Driven Expansion of Human Hematopoietic Stem and Progenitor Cells in Serum-Free Cultures

    PubMed Central

    Duinhouwer, Lucia E.; Tüysüz, Nesrin; Rombouts, Elwin W. J. C.; ter Borg, Mariette N. D.; Mastrobattista, Enrico; Spanholtz, Jan; Cornelissen, Jan J.; ten Berge, Derk; Braakman, Eric

    2015-01-01

    Ex vivo expansion of hematopoietic stem and progenitor cells (HSPC) is a promising approach to improve insufficient engraftment after umbilical cord blood stem cell transplantation (UCB-SCT). Although culturing HSPC with hematopoietic cytokines results in robust proliferation, it is accompanied with extensive differentiation and loss of self-renewal capacity. Wnt signaling has been implicated in regulating HSPC fate decisions in vivo and in promoting HSPC self-renewal by inhibition of differentiation, but the effects of Wnt on the ex vivo expansion of HSPC are controversial. Here, we demonstrate that exogenous Wnt3a protein suppresses rather than promotes the expansion of UCB-derived CD34+ cells in serum free expansion cultures. The reduced expansion was also observed in cultures initiated with Lin-CD34+CD38lowCD45RA-CD90+ cells which are highly enriched in HSC and was also observed in response to activation of beta-catenin signaling by GSK3 inhibition. The presence of Wnt3a protein during the culture reduced the frequency of multilineage CFU-GEMM and the long-term repopulation ability of the expanded HSPC. These data suggest that Wnt signaling reduces expansion of human HSPC in growth factor-driven expansion cultures by promoting differentiation of HSPC. PMID:25807521

  2. Wnt3a protein reduces growth factor-driven expansion of human hematopoietic stem and progenitor cells in serum-free cultures.

    PubMed

    Duinhouwer, Lucia E; Tüysüz, Nesrin; Rombouts, Elwin W J C; Ter Borg, Mariette N D; Mastrobattista, Enrico; Spanholtz, Jan; Cornelissen, Jan J; Ten Berge, Derk; Braakman, Eric

    2015-01-01

    Ex vivo expansion of hematopoietic stem and progenitor cells (HSPC) is a promising approach to improve insufficient engraftment after umbilical cord blood stem cell transplantation (UCB-SCT). Although culturing HSPC with hematopoietic cytokines results in robust proliferation, it is accompanied with extensive differentiation and loss of self-renewal capacity. Wnt signaling has been implicated in regulating HSPC fate decisions in vivo and in promoting HSPC self-renewal by inhibition of differentiation, but the effects of Wnt on the ex vivo expansion of HSPC are controversial. Here, we demonstrate that exogenous Wnt3a protein suppresses rather than promotes the expansion of UCB-derived CD34+ cells in serum free expansion cultures. The reduced expansion was also observed in cultures initiated with Lin-CD34+CD38lowCD45RA-CD90+ cells which are highly enriched in HSC and was also observed in response to activation of beta-catenin signaling by GSK3 inhibition. The presence of Wnt3a protein during the culture reduced the frequency of multilineage CFU-GEMM and the long-term repopulation ability of the expanded HSPC. These data suggest that Wnt signaling reduces expansion of human HSPC in growth factor-driven expansion cultures by promoting differentiation of HSPC.

  3. Psychosocial Factors and Hematopoietic Stem Cell Transplantation: Potential Biobehavioral Pathways

    PubMed Central

    Knight, Jennifer M.; Lyness, Jeffrey M.; Sahler, Olle Jane Z.; Liesveld, Jane L.; Moynihan, Jan A.

    2013-01-01

    While psychosocial factors are known to affect cancer progression via biobehavioral pathways in many patient populations, these relationships remain largely unexplored in hematopoietic stem cell transplant (HCT) patients. The purpose of this paper is to critically review the literature regarding psychosocial and endocrine/immune aspects of HCT, with an emphasis on exploring pathways that may mediate the associations between psychosocial factors and disease outcomes. These include the roles of catecholamines, glucocorticoids, inflammation, vascular endothelial growth factor (VEGF), immune reconstitution and infectious susceptibility, as well as the new opportunities available in genomics research. We also discuss the implications for potential immunomodulating psychosocial interventions. Elucidating the biological pathways that account for the associations between psychosocial factors and clinical course could ultimately lead to improved outcomes for this psychologically and immunologically vulnerable population. PMID:23845514

  4. Stromal cell–derived factor-1 and hematopoietic cell homing in an adult zebrafish model of hematopoietic cell transplantation

    PubMed Central

    Glass, Tiffany J.; Patrinostro, Xiaobai; Tolar, Jakub; Bowman, Teresa V.; Zon, Leonard I.; Blazar, Bruce R.

    2011-01-01

    In mammals, stromal cell–derived factor-1 (SDF-1) promotes hematopoietic cell mobilization and migration. Although the zebrafish, Danio rerio, is an emerging model for studying hematopoietic cell transplantation (HCT), the role of SDF-1 in the adult zebrafish has yet to be determined. We sought to characterize sdf-1 expression and function in the adult zebrafish in the context of HCT. In situ hybridization of adult zebrafish organs shows sdf-1 expression in kidney tubules, gills, and skin. Radiation up-regulates sdf-1 expression in kidney to nearly 4-fold after 40 Gy. Assays indicate that zebrafish hematopoietic cells migrate toward sdf-1, with a migration ratio approaching 1.5 in vitro. A sdf-1a:DsRed2 transgenic zebrafish allows in vivo detection of sdf-1a expression in the adult zebrafish. Matings with transgenic reporters localized sdf-1a expression to the putative hematopoietic cell niche in proximal and distal renal tubules and collecting ducts. Importantly, transplant of hematopoietic cells into myelosuppressed recipients indicated migration of hematopoietic cells to sdf-1a–expressing sites in the kidney and skin. We conclude that sdf-1 expression and function in the adult zebrafish have important similarities to mammals, and this sdf-1 transgenic vertebrate will be useful in characterizing the hematopoietic cell niche and its interactions with hematopoietic cells. PMID:21622651

  5. Growth factor plus preemptive ('just-in-time') plerixafor successfully mobilizes hematopoietic stem cells in multiple myeloma patients despite prior lenalidomide exposure.

    PubMed

    Costa, L J; Abbas, J; Hogan, K R; Kramer, C; McDonald, K; Butcher, C D; Littleton, A; Shoptaw, K; Kang, Y; Stuart, R K

    2012-11-01

    Lenalidomide is associated with suboptimal autologous hematopoietic stem cell (AHSC) mobilization. We hypothesized that growth factor plus preemptive plerixafor is an effective strategy for AHSC mobilization in multiple myeloma (MM) despite prior exposure to lenalidomide. We retrospectively reviewed patient characteristics and mobilization outcomes of 89 consecutive MM patients undergoing first mobilization with filgrastim or pegfilgrastim +/- preemptive plerixafor using a previously validated algorithm based on day 4 peripheral blood CD34+ cell count (PB-CD34+) and mobilization target. Outcomes were analyzed according to the extent of prior exposure to lenalidomide: no prior exposure (group A, n=40), 1- 4 cycles (group B, n=30) and >4 cycles (group C, n=19). Multivariate analysis yielded only age and number of cycles of lenalidomide as negatively associated, and mobilization with pegfilgrastim as positively associated with higher PB-CD34+. Only 45% of patients in group A required plerixafor vs 63% in groups B and 84% in C, P=0.01. A higher proportion of patients in group A (100%) met the mobilization target than in groups B (90%) or C (79%), P=0.008. All patients yielded at least 2 × 10(6) CD34+/kg. Growth factor mobilization with preemptive plerixafor is an adequate upfront mobilization strategy for MM patients regardless of prior exposure to lenalidomide.

  6. Transcription factor-mediated reprogramming toward hematopoietic stem cells

    PubMed Central

    Ebina, Wataru; Rossi, Derrick J

    2015-01-01

    De novo generation of human hematopoietic stem cells (HSCs) from renewable cell types has been a long sought-after but elusive goal in regenerative medicine. Paralleling efforts to guide pluripotent stem cell differentiation by manipulating developmental cues, substantial progress has been made recently toward HSC generation via combinatorial transcription factor (TF)-mediated fate conversion, a paradigm established by Yamanaka's induction of pluripotency in somatic cells by mere four TFs. This review will integrate the recently reported strategies to directly convert a variety of starting cell types toward HSCs in the context of hematopoietic transcriptional regulation and discuss how these findings could be further developed toward the ultimate generation of therapeutic human HSCs. PMID:25712209

  7. Growth Factors: Production of Monocyte Chemotactic Protein-1 (MCP-1/JE) by Bone Marrow Stromal Cells: Effect on the Migration and Proliferation of Hematopoietic Progenitor Cells.

    PubMed

    Xu, Y. X.; Talati, B. R.; Janakiraman, N.; Chapman, R. A.; Gautam, S. C.

    1999-01-01

    Recombinant chemotactic cytokines (chemokines) have been shown to modulate in vitro proliferation of hematopoietic progenitor cells. Whether bone marrow stromal cells produce chemokines and the physiological role they may have in the regulation of hematopoiesis has largely remained unexamined. We have examined the expression of monocyte chemoattractant protein-1 (MCP-1/JE) in bone marrow stromal cells and its effect on the migration and proliferation of murine hematopoietic progenitor cells. Freshly derived murine bone marrow stromal cells were found to secrete abundant amounts of MCP-1/JE, which was further increased upon stimulation of stromal cells with pro-inflammatory agents LPS, IL1-alpha, IFN-gamma, or TNF-alpha. Although culture supernatant conditioned by stromal cells exhibited chemotactic activity toward hematopoietic progenitor cells, the chemotactic activity was not due to MCP-1/JE. Furthermore, rMCP-1/JE also failed to induce migration of progenitor cells. MCP-1/JE, however, caused 20 to 30% increase in the clonal expansion of progenitor cells. Thus, although MCP-1/JE does not chemoattract hematopoietic progenitor cells it may have a role in their proliferation and clonal expansion.

  8. Hematopoietic Stem Cell Cytokines and Fibroblast Growth factor-2 Stimulate Human Endothelial Cell-Pericyte Tube Co-Assembly in 3D Fibrin Matrices under Serum-Free Defined Conditions

    PubMed Central

    Smith, Annie O.; Bowers, Stephanie L. K.; Stratman, Amber N.; Davis, George E.

    2013-01-01

    We describe a novel 3D fibrin matrix model using recombinant hematopoietic stem cell cytokines under serum-free defined conditions which promotes the assembly of human endothelial cell (EC) tubes with co-associated pericytes. Individual ECs and pericytes are randomly mixed together and EC tubes form that is accompanied by pericyte recruitment to the EC tube abluminal surface over a 3-5 day period. These morphogenic processes are stimulated by a combination of the hematopoietic stem cell cytokines, stem cell factor, interleukin-3, stromal derived factor-1α, and Flt-3 ligand which are added in conjunction with fibroblast growth factor (FGF)-2 into the fibrin matrix. In contrast, this tube morphogenic response does not occur under serum-free defined conditions when VEGF and FGF-2 are added together in the fibrin matrices. We recently demonstrated that VEGF and FGF-2 are able to prime EC tube morphogenic responses (i.e. added overnight prior to the morphogenic assay) to hematopoietic stem cell cytokines in collagen matrices and, interestingly, they also prime EC tube morphogenesis in 3D fibrin matrices. EC-pericyte interactions in 3D fibrin matrices leads to marked vascular basement membrane assembly as demonstrated using immunofluorescence and transmission electron microscopy. Furthermore, we show that hematopoietic stem cell cytokines and pericytes stimulate EC sprouting in fibrin matrices in a manner dependent on the α5β1 integrin. This novel co-culture system, under serum-free defined conditions, allows for a molecular analysis of EC tube assembly, pericyte recruitment and maturation events in a critical ECM environment (i.e. fibrin matrices) that regulates angiogenic events in postnatal life. PMID:24391990

  9. Growth and development after hematopoietic cell transplant in children.

    PubMed

    Sanders, J E

    2008-01-01

    Hematopoietic cell transplantation (HCT) following high-dose chemotherapy or chemoradiotherapy for children with malignant or nonmalignant hematologic disorders has resulted in an increasing number of long-term disease-free survivors. The preparative regimens include high doses of alkylating agents, such as CY with or without BU, and may include TBI. These agents impact the neuroendocrine system in growing children and their subsequent growth and development. Children receiving high-dose CY or BUCY have normal thyroid function, but those who receive TBI-containing regimens may develop thyroid function abnormalities. Growth is not impacted by chemotherapy-only preparative regimens, but TBI is likely to result in growth hormone deficiency and decreased growth rates that need to be treated with synthetic growth hormone therapy. Children who receive high-dose CY-only have normal development through puberty, whereas those who receive BUCY have a high incidence of delayed pubertal development. Following fractionated TBI preparative regimens, approximately half of the patients have normal pubertal development. These data demonstrate that the growth and development problems after HCT are dependent upon the preparative regimen received. All children should be followed for years after HCT for detection of growth and development abnormalities that are treatable with appropriate hormone therapy.

  10. ETS transcription factors in hematopoietic stem cell development.

    PubMed

    Ciau-Uitz, Aldo; Wang, Lu; Patient, Roger; Liu, Feng

    2013-12-01

    Hematopoietic stem cells (HSCs) are essential for the maintenance of the hematopoietic system. However, these cells cannot be maintained or created in vitro, and very little is known about their generation during embryogenesis. Many transcription factors and signaling pathways play essential roles at various stages of HSC development. Members of the ETS ('E twenty-six') family of transcription factors are recognized as key regulators within the gene regulatory networks governing hematopoiesis, including the ontogeny of HSCs. Remarkably, although all ETS transcription factors bind the same DNA consensus sequence and overlapping tissue expression is observed, individual ETS transcription factors play unique roles in the development of HSCs. Also, these transcription factors are recurrently used throughout development and their functions are context-dependent, increasing the challenge of studying their mechanism of action. Critically, ETS factors also play roles under pathological conditions, such as leukemia and, therefore, deciphering their mechanism of action will not only enhance our knowledge of normal hematopoiesis, but also inform protocols for their creation in vitro from pluripotent stem cells and the design of new therapeutic approaches for the treatment of malignant blood cell diseases. In this review, we summarize the key findings on the roles of ETS transcription factors in HSC development and discuss novel mechanisms by which they could control hematopoiesis. © 2013.

  11. Epidermal Growth Factor Regulates Hematopoietic Regeneration Following Radiation Injury

    PubMed Central

    Doan, Phuong L.; Himburg, Heather A.; Helms, Katherine; Russell, J. Lauren; Fixsen, Emma; Quarmyne, Mamle; Harris, Jeffrey R.; Deoliviera, Divino; Sullivan, Julie M.; Chao, Nelson J.; Kirsch, David G.; Chute, John P.

    2013-01-01

    The mechanisms which regulate HSC regeneration following myelosuppressive injury are not well understood. We identified epidermal growth factor (EGF) to be highly enriched in the bone marrow (BM) serum of mice bearing deletion of Bak and Bax in Tie2+ cells (Tie2Cre;Bak1−/−;Baxfl/− mice), which displayed radioprotection of the HSC pool and 100% survival following lethal dose total body irradiation (TBI). BM HSCs from wild type mice expressed functional EGFR and systemic administration of EGF promoted the recovery of the HSC pool in vivo and the improved survival of mice following TBI. Conversely, administration of erlotinib, an EGFR antagonist, significantly decreased both HSC regeneration and mice survival following TBI. VavCre;EGFRfl/+ mice also demonstrated delayed recovery of BM stem/progenitor cells following TBI compared to VavCre;EGFR+/+ mice. Mechanistically, EGF reduced radiation-induced apoptosis of HSCs and mediated this effect via repression of the proapoptotic protein, PUMA. EGFR signaling regulates HSC regeneration following myelosuppressive injury. PMID:23377280

  12. Risk factors for lymphoproliferative disorders after allogeneic hematopoietic cell transplantation.

    PubMed

    Landgren, Ola; Gilbert, Ethel S; Rizzo, J Douglas; Socié, Gérard; Banks, Peter M; Sobocinski, Kathleen A; Horowitz, Mary M; Jaffe, Elaine S; Kingma, Douglas W; Travis, Lois B; Flowers, Mary E; Martin, Paul J; Deeg, H Joachim; Curtis, Rochelle E

    2009-05-14

    We evaluated 26 901 patients who underwent allogeneic hematopoietic cell transplantation (HCT) at 271 centers worldwide to define patterns of posttransplantation lymphoproliferative disorders (PTLDs). PTLDs developed in 127 recipients, with 105 (83%) cases occurring within 1 year after transplantation. In multivariate analyses, we confirmed that PTLD risks were strongly associated (P < .001) with T-cell depletion of the donor marrow, antithymocyte globulin (ATG) use, and unrelated or HLA-mismatched grafts (URD/HLA mismatch). Significant associations were also confirmed for acute and chronic graft-versus-host disease. The increased risk associated with URD/HLA-mismatched donors (RR = 3.8) was limited to patients with T-cell depletion or ATG use (P = .004). New findings were elevated risks for age 50 years or older at transplantation (RR = 5.1; P < .001) and second transplantation (RR = 3.5; P < .001). Lower risks were found for T-cell depletion methods that remove both T and B cells (alemtuzumab and elutriation, RR = 3.1; P = .025) compared with other methods (RR = 9.4; P = .005 for difference). The cumulative incidence of PTLDs was low (0.2%) among 21 686 patients with no major risk factors, but increased to 1.1%, 3.6%, and 8.1% with 1, 2, and more than 3 major risk factors, respectively. Our findings identify subgroups of patients who underwent allogeneic HCT at elevated risk of PTLDs for whom prospective monitoring of Epstein-Barr virus activation and early treatment intervention may be particularly beneficial.

  13. The hematopoietic factor GM-CSF (granulocyte-macrophage colony-stimulating factor) promotes neuronal differentiation of adult neural stem cells in vitro.

    PubMed

    Krüger, Carola; Laage, Rico; Pitzer, Claudia; Schäbitz, Wolf-Rüdiger; Schneider, Armin

    2007-10-22

    Granulocyte-macrophage colony stimulating factor (GM-CSF) is a hematopoietic growth factor involved in the generation of granulocytes, macrophages, and dendritic cells from hematopoietic progenitor cells. We have recently demonstrated that GM-CSF has anti-apoptotic functions on neurons, and is neuroprotective in animal stroke models. The GM-CSF receptor alpha is expressed on adult neural stem cells in the rodent brain, and in culture. Addition of GM-CSF to NSCs in vitro increased neuronal differentiation in a dose-dependent manner as determined by quantitative PCR, reporter gene assays, and FACS analysis. Similar to the hematopoietic factor Granulocyte-colony stimulating factor (G-CSF), GM-CSF stimulates neuronal differentiation of adult NSCs. These data highlight the astonishingly similar functions of major hematopoietic factors in the brain, and raise the clinical attractiveness of GM-CSF as a novel drug for neurological disorders.

  14. Immune suppressor factor confers stromal cell line with enhanced supporting activity for hematopoietic stem cells

    SciTech Connect

    Nakajima, Hideaki . E-mail: hnakajim@ims.u-tokyo.ac.jp; Shibata, Fumi; Fukuchi, Yumi; Goto-Koshino, Yuko; Ito, Miyuki; Urano, Atsushi; Nakahata, Tatsutoshi; Aburatani, Hiroyuki; Kitamura, Toshio

    2006-02-03

    Immune suppressor factor (ISF) is a subunit of the vacuolar ATPase proton pump. We earlier identified a short form of ISF (ShIF) as a stroma-derived factor that supports cytokine-independent growth of mutant Ba/F3 cells. Here, we report that ISF/ShIF supports self-renewal and expansion of primary hematopoietic stem cells (HSCs). Co-culture of murine bone marrow cells with a stromal cell line overexpressing ISF or ShIF (MS10/ISF or MS10/ShIF) not only enhanced their colony-forming activity and the numbers of long-term culture initiating cells, but also maintained the competitive repopulating activity of HSC. This stem cell supporting activity depended on the proton-transfer function of ISF/ShIF. Gene expression analysis of ISF/ShIF-transfected cell lines revealed down-regulation of secreted frizzled-related protein-1 and tissue inhibitor of metalloproteinase-3, and the restoration of their expressions in MS10/ISF cells partially reversed its enhanced LTC-IC supporting activity to a normal level. These results suggest that ISF/ShIF confers stromal cells with enhanced supporting activities for HSCs by modulating Wnt-activity and the extracellular matrix.

  15. Aberrant Levels of Hematopoietic/Neuronal Growth and Differentiation Factors in Euthyroid Women at Risk for Autoimmune Thyroid Disease

    PubMed Central

    Massolt, Elske T.; Effraimidis, Grigoris; Korevaar, Tim I. M.; Wiersinga, Wilmar M.; Visser, W. Edward; Peeters, Robin P.; Drexhage, Hemmo A.

    2016-01-01

    Background Subjects at risk for major mood disorders have a higher risk to develop autoimmune thyroid disease (AITD) and vice-versa, implying a shared pathogenesis. In mood disorder patients, an abnormal profile of hematopoietic/neuronal growth factors is observed, suggesting that growth/differentiation abnormalities of these cell lineages may predispose to mood disorders. The first objective of our study was to investigate whether an aberrant profile of these hematopoietic/neuronal growth factors is also detectable in subjects at risk for AITD. A second objective was to study the inter relationship of these factors with previously determined and published growth factors/cytokines in the same subjects. Methods We studied 64 TPO-Ab-negative females with at least 1 first- or second-degree relative with AITD, 32 of whom did and 32 who did not seroconvert to TPO-Ab positivity in 5-year follow-up. Subjects were compared with 32 healthy controls (HCs). We measured serum levels of brain-derived neurotrophic factor (BDNF), Stem Cell Factor (SCF), Insulin-like Growth Factor-Binding Protein 2 (IGFBP-2), Epidermal Growth Factor (EGF) and IL-7 at baseline. Results BDNF was significantly lower (8.2 vs 18.9 ng/ml, P<0.001), while EGF (506.9 vs 307.6 pg/ml, P = 0.003) and IGFBP-2 (388.3 vs 188.5 ng/ml, P = 0.028) were significantly higher in relatives than in HCs. Relatives who seroconverted in the next 5 years had significantly higher levels of SCF than non-seroconverters (26.5 vs 16.7 pg/ml, P = 0.017). In a cluster analysis with the previously published growth factors/cytokines SCF clustered together with IL-1β, IL-6 and CCL-3, of which high levels also preceded seroconversion. Conclusion Relatives of AITD patients show aberrant serum levels of 4 hematopoietic/neuronal growth factors similar to the aberrancies found in mood disorder patients, suggesting that shared growth and differentiation defects in both the hematopoietic and neuronal system may underlie thyroid

  16. Independent expression of human. alpha. or. beta. platelet-derived growth factor receptor cDNAs in a naive hematopoietic cell leads to functional coupling with mitogenic and chemotactic signaling pathways

    SciTech Connect

    Matsui, T.; Pierce, J.H.; Fleming, T.P.; LaRochelle, W.J.; Ruggiero, M.; Aaronson, S.A. ); Greenberger, J.S. )

    1989-11-01

    Distinct genes encode {alpha} and {beta} platelet-derived growth factor (PDGF) receptors that differ in their abilities to be triggered by three dimeric forms of the PDGF molecule. The authors show that PDGF-receptor mitogenic function can be reconstituted in a naive hematopoietic cell line by introduction of expression vectors for either {alpha} or {beta} PDGF receptor cDNAs. Thus, each receptor is independently capable of coupling with mitogenic signal-transduction pathways inherently present in these cells. Activation of either receptor also resulted in chemotaxis, alterations in inositol lipid metabolism, and mobilization of intracellular Ca{sup 2+}. The magnitude of these functional responses correlated well with the binding properties of the different PDGF isoforms to each receptor. Thus, availability of specific PDGF isoforms and relative expression of each PDGF-receptor gene product are major determinants of the spectrum of known PDGF responses.

  17. Mobilization of hematopoietic stem cells into the peripheral blood.

    PubMed

    Damon, Lloyd E; Damon, Lauren E

    2009-12-01

    Hematopoietic stem cells can be mobilized out of the bone marrow into the blood for the reconstitution of hematopoiesis following high-dose therapy. Methods to improve mobilization efficiency and yields are rapidly emerging. Traditional methods include chemotherapy with or without myeloid growth factors. Plerixafor, a novel agent that disrupts the CXCR4-CXCL12 bond, the primary hematopoietic stem cell anchor in the bone marrow, has recently been US FDA-approved for mobilizing hematopoietic stem cells in patients with non-Hodgkin lymphoma and multiple myeloma. Plerixafor and myeloid growth factors as single agents appear safe to use in family or volunteer hematopoietic stem cells donors. Plerixafor mobilizes leukemic stem cells and is not approved for use in patients with acute leukemia. Patients failing to mobilize adequate hematopoietic stem cells with myeloid growth factors can often be successfully mobilized with chemotherapy plus myeloid growth factors or with plerixafor and granulocyte colony-stimulating factor.

  18. Analysis of Factors that Influence Hematopoietic Recovery in Autologous Transplanted Patients with Hematopoietic Stem Cells from Peripheral Blood

    PubMed Central

    Grubovic, Rada M.; Georgievski, Borce; Cevreska, Lidija; Genadieva-Stavric, Sonja; Grubovic, Milos R.

    2017-01-01

    BACKGROUND: Successful hematopoietic stem cell transplantation (HSCT) requires a rapid and durable hematopoietic recovery. AIM: The aim of our study was to analyse factors that influence hematopoietic recovery after autologous HSCT. MATERIALS AND METHODS: Multiple regression analysis was used to analyse factors affecting neutrophil and platelet engraftment in 90 autologous transplanted patients – 30 with acute myeloid leukaemia (AML), 30 with lymphoma and 30 with multiple myeloma (MM) from 2008 till 2016. RESULTS: The neutrophil recovery in AML patients was significantly influenced by transfusion support with random-donor platelets, sex and number of transplanted mononuclear cells (MNC) and CD34+ cells; and in lymphoma patients, it was influenced by sex, age, mobilisation strategy and some transplanted MNC. The influence of investigated factors on neutrophil engraftment in MM patients was not statistically significant. The platelet recovery in AML patients was influenced by transfusion support with random-donor platelets; in lymphoma patients, it was influenced by sex, age, time from diagnosis to harvesting and time from diagnosis to HSCT; and in MM patients it was influenced by transfusion support with random-donor platelets. CONCLUSION: Additional studies are necessary to better understanding of engraftment kinetic to improve the safety of HSCT and to minimise potential complications and expenses related to HSCT. PMID:28698751

  19. Hematopoietic Growth Factor support in the Elderly treated with Chemotherapy.

    PubMed

    Rupolo, M; Berretta, M

    2013-10-09

    The 60% of tumors affected patients >65years of age and the future previsions are considering an amount of 70% after 2030. Elderly Patients presents multiple comorbidity, polipharmacy, and disability. Geriatric assessment helps physicians to take the best therapeutic decisions. Clinical conditions influence efficacy and tolerability of chemotherapy. Prophylactic use of G-CSF after chemotherapy lowers the rate and length of severe neutropenia , and decreases the episodes of febrile neutropenia. Anemia is a hematologic condition associated with ageing , but is frequently associated to concomitant chronic disease. Stem cells display increasing resistance to erythropoietin in the elderly patients and this is connected with the onset of pro-inflammatory cytokines characteristic of this age . Anemia is a common adverse event in cancer patients receiving chemotherapy. Several of the symptoms associated with anemia, such as fatigue, syncope, palpitations and dyspnea, reduce patient activity and have a profound effect on the quality of life [QOL]. Considering the unfit or frail status of elderly patient the at home use of pegfilgrastim and weekly or three weekly erythropoietin administration could be preferred for this setting of patients that lack of specialized nursing care or facilities. Further studies, considering the several differences in health organizations in vary countries, could be held to state the real impact of the biosimilars in comparison to the long acting originators in the reduction of costs in this group of patients.

  20. Post-traumatic growth in survivors of allogeneic hematopoietic stem cell transplantation.

    PubMed

    Jeon, Mijin; Yoo, Il Young; Kim, Sue; Lee, Jehwan

    2015-08-01

    This study aimed to understand factors related to post-traumatic growth (PTG) in patients who received allogeneic hematopoietic stem cell transplantation (HSCT), building baseline data for developing intervention programs to enhance PTG in HSCT survivors. A self-report survey was administered to 100 patients who received HSCT within the last 5 years. The Post-traumatic Growth Inventory, Impact of Event Scale-Revised, Perceived Social Support Scale, and Healthcare Professional's Support Scale were used, as well as items on demographic and clinical characteristics. Standard deviations of frequency and percentage, Chi-squared test between genders, independent t-test, correlation analysis between independent variables and extent of PTG, and regression analysis were conducted. The PTG levels of HSCT survivors were statistically significantly higher when participants were women, carried out more religious activities, had higher educational levels, or utilized nurse counseling. The 'intrusive thinking' traumatic impact subcategory, as well as social support and support from healthcare professionals, were found to be highly related to PTG scores. Upon multiple regression analysis, factors with greatest influence on PTG in HSCT survivors were support from healthcare professionals, followed in order, by social support, utilization of nurse counseling, intrusive thinking, and frequency of religious activities. We suggest implementing programs for HSCT patients to enhance support from healthcare professionals and to increase post-traumatic growth through greater utilization of nurse counseling, self-help meetings, and writing. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Key factors in experimental mouse hematopoietic stem cell transplantation.

    PubMed

    Nevozhay, Dmitry; Opolski, Adam

    2006-01-01

    The first mouse model of hematopoietic stem cell transplantation (HSCT) was developed more than 50 years ago. HSCT is currently being widely used in a broad range of research areas, which include studies of the engraftment process, the pathogenesis of graft-versus-host disease and possible ways of its treatment and prophylaxis, attempts to use the graft-versus-leukemia/tumor effect in treating hematological and oncological malignancies, cancer vaccine development, induction of transplanted organ tolerance, and gene therapy. However, although this model is widely distributed, many laboratories use different protocols for the procedure. There are a number of papers discussing different HSCT protocols in clinical work, but no articles summarizing mouse laboratory models are available. This review attempts to bring together different details about HSCT in the mouse model, such as the types of transplantation, possible pretreatment regimens and their combinations, methods and sources of graft harvesting and preparation for the transplantation procedure, the influence of graft cell dose and content on the engraftment process, the transplantation method itself, possible complications, symptoms and techniques of their prophylaxis or treatment, as well as follow-up and engraftment assessment. We have also tried to reflect current knowledge of the biology of the engraftment.

  2. Converting cell fates: generating hematopoietic stem cells de novo via transcription factor reprogramming.

    PubMed

    Daniel, Michael G; Lemischka, Ihor R; Moore, Kateri

    2016-04-01

    Even though all paradigms of stem cell therapy and regenerative medicine emerged from the study of hematopoietic stem cells (HSCs), the inability to generate these cells de novo or expand them in vitro persists. Initial efforts to obtain these cells began with the use of embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) technologies, but these strategies have yet to yield fully functional cells. Subsequently, more recent approaches involve transcription factor (TF) overexpression to reprogram PSCs and various somatic cells. The induction of pluripotency with just four TFs by Yamanaka informs our ability to convert cell fates and demonstrates the feasibility of utilizing terminally differentiated cells to generate cells with multilineage potential. In this review, we discuss the recent efforts undertaken using TF-based reprogramming strategies to convert several cell types into HSCs. © 2016 New York Academy of Sciences.

  3. Induction of hematopoietic and endothelial cell program orchestrated by ETS transcription factor ER71/ETV2.

    PubMed

    Liu, Fang; Li, Daofeng; Yu, Yik Yeung Lawrence; Kang, Inyoung; Cha, Min-Ji; Kim, Ju Young; Park, Changwon; Watson, Dennis K; Wang, Ting; Choi, Kyunghee

    2015-05-01

    The ETS factor ETV2 (aka ER71) is essential for the generation of the blood and vascular system, as ETV2 deficiency leads to a complete block in blood and endothelial cell formation and embryonic lethality in the mouse. However, the ETV2-mediated gene regulatory network and signaling governing hematopoietic and endothelial cell development are poorly understood. Here, we map ETV2 global binding sites and carry out in vitro differentiation of embryonic stem cells, and germ line and conditional knockout mouse studies to uncover mechanisms involved in the hemangiogenic fate commitment from mesoderm. We show that ETV2 binds to enhancers that specify hematopoietic and endothelial cell lineages. We find that the hemangiogenic progenitor population in the developing embryo can be identified as FLK1(high)PDGFRα(-). Notably, these hemangiogenic progenitors are exclusively sensitive to ETV2-dependent FLK1 signaling. Importantly, ETV2 turns on other Ets genes, thereby establishing an ETS hierarchy. Consequently, the hematopoietic and endothelial cell program initiated by ETV2 is maintained partly by other ETS factors through an ETS switching mechanism. These findings highlight the critical role that transient ETV2 expression plays in the regulation of hematopoietic and endothelial cell lineage specification and stability. © 2015 The Authors.

  4. Cartography of hematopoietic stem cell commitment dependent upon a reporter for transcription factor activation.

    PubMed

    Akashi, Koichi

    2007-06-01

    A hierarchical hematopoietic developmental tree has been proposed based on the result of prospective purification of lineage-restricted progenitors. For more detailed mapping for hematopoietic stem cell (HSC) commitment, we tracked the expression of PU.1, a major granulocyte/monocyte (GM)- and lymphoid-related transcription factor, from the HSC to the myelolymphoid progenitor stages by using a mouse line harboring a knockin reporter for PU.1. This approach enabled us to find a new progenitor population committed to GM and lymphoid lineages within the HSC fraction. This result suggests that there should be another developmental pathway independent of the conventional one with myeloid versus lymphoid bifurcation, represented by common myeloid progenitors and common lymphoid progenitors, respectively. The utilization of the transcription factor expression as a functional marker might be useful to obtain cartography of the hematopoietic development at a higher resolution.

  5. Ex vivo expanded human cord blood-derived hematopoietic progenitor cells induce lung growth and alveolarization in injured newborn lungs.

    PubMed

    Mao, Quanfu; Chu, Sharon; Ghanta, Sailaja; Padbury, James F; De Paepe, Monique E

    2013-03-23

    We investigated the capacity of expanded cord blood-derived CD34+ hematopoietic progenitor cells to undergo respiratory epithelial differentiation ex vivo, and to engraft and attenuate alveolar disruption in injured newborn murine lungs in vivo. Respiratory epithelial differentiation was studied in CD34+ cells expanded in the presence of growth factors and cytokines ("basic" medium), in one group supplemented with dexamethasone ("DEX"). Expanded or freshly isolated CD34+ cells were inoculated intranasally in newborn mice with apoptosis-induced lung injury. Pulmonary engraftment, lung growth and alveolarization were studied at 8 weeks post-inoculation. SP-C mRNA expression was seen in 2/7 CD34+ cell isolates expanded in basic media and in 6/7 isolates expanded in DEX, associated with cytoplasmic SP-C immunoreactivity and ultrastructural features suggestive of type II cell-like differentiation. Administration of expanding CD34+ cells was associated with increased lung growth and, in animals treated with DEX-exposed cells, enhanced alveolar septation. Freshly isolated CD34+ cells had no effect of lung growth or remodeling. Lungs of animals treated with expanded CD34+ cells contained intraalveolar aggregates of replicating alu-FISH-positive mononuclear cells, whereas epithelial engraftment was extremely rare. Expanded cord blood CD34+ cells can induce lung growth and alveolarization in injured newborn lungs. These growth-promoting effects may be linked to paracrine or immunomodulatory effects of persistent cord blood-derived mononuclear cells, as expanded cells showed limited respiratory epithelial transdifferentiation.

  6. Common elements in interleukin 4 and insulin signaling pathways in factor-dependent hematopoietic cells.

    PubMed

    Wang, L M; Keegan, A D; Li, W; Lienhard, G E; Pacini, S; Gutkind, J S; Myers, M G; Sun, X J; White, M F; Aaronson, S A

    1993-05-01

    Interleukin 4 (IL-4), insulin, and insulin-like growth factor I (IGF-I) efficiently induced DNA synthesis in the IL-3-dependent murine myeloid cell lines FDC-P1 and FDC-P2. Although these factors could not individually sustain long-term growth of these lines, a combination of IL-4 with either insulin or IGF-I did support continuous growth. The principal tyrosine-phosphorylated substrate observed in FDC cells stimulated with IL-4, previously designated 4PS, was of the same size (170 kDa) as the major substrate phosphorylated in response to insulin or IGF-I. These substrates had phosphopeptides of the same size when analyzed by digestion with Staphylococcus aureus V8 protease, and each tightly associated with the 85-kDa component of phosphatidylinositol 3-kinase after factor stimulation. IRS-1, the principal substrate phosphorylated in response to insulin or IGF-I stimulation in nonhematopoietic cells, is similar in size to 4PS. However, anti-IRS-1 antibodies failed to efficiently precipitate 4PS, and some phosphopeptides generated by V8 protease digestion of IRS-1 were distinct in size from the phosphopeptides of 4PS. Nevertheless, IL-4, insulin, and IGF-I were capable of stimulating tyrosine phosphorylation of IRS-1 in FDC cells that expressed this substrate as a result of transfection. These findings indicate that (i) IL-4, insulin, and IGF-I use signal transduction pathways in FDC lines that have at least one major feature in common, the rapid tyrosine phosphorylation of 4PS, and (ii) insulin and IGF-I stimulation of hematopoietic cell lines leads to the phosphorylation of a substrate that may be related to but is not identical to IRS-1.

  7. Common elements in interleukin 4 and insulin signaling pathways in factor-dependent hematopoietic cells.

    PubMed Central

    Wang, L M; Keegan, A D; Li, W; Lienhard, G E; Pacini, S; Gutkind, J S; Myers, M G; Sun, X J; White, M F; Aaronson, S A

    1993-01-01

    Interleukin 4 (IL-4), insulin, and insulin-like growth factor I (IGF-I) efficiently induced DNA synthesis in the IL-3-dependent murine myeloid cell lines FDC-P1 and FDC-P2. Although these factors could not individually sustain long-term growth of these lines, a combination of IL-4 with either insulin or IGF-I did support continuous growth. The principal tyrosine-phosphorylated substrate observed in FDC cells stimulated with IL-4, previously designated 4PS, was of the same size (170 kDa) as the major substrate phosphorylated in response to insulin or IGF-I. These substrates had phosphopeptides of the same size when analyzed by digestion with Staphylococcus aureus V8 protease, and each tightly associated with the 85-kDa component of phosphatidylinositol 3-kinase after factor stimulation. IRS-1, the principal substrate phosphorylated in response to insulin or IGF-I stimulation in nonhematopoietic cells, is similar in size to 4PS. However, anti-IRS-1 antibodies failed to efficiently precipitate 4PS, and some phosphopeptides generated by V8 protease digestion of IRS-1 were distinct in size from the phosphopeptides of 4PS. Nevertheless, IL-4, insulin, and IGF-I were capable of stimulating tyrosine phosphorylation of IRS-1 in FDC cells that expressed this substrate as a result of transfection. These findings indicate that (i) IL-4, insulin, and IGF-I use signal transduction pathways in FDC lines that have at least one major feature in common, the rapid tyrosine phosphorylation of 4PS, and (ii) insulin and IGF-I stimulation of hematopoietic cell lines leads to the phosphorylation of a substrate that may be related to but is not identical to IRS-1. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7683417

  8. Disturbances in dental development and craniofacial growth in children treated with hematopoietic stem cell transplantation.

    PubMed

    Vesterbacka, M; Ringdén, O; Remberger, M; Huggare, J; Dahllöf, G

    2012-02-01

    To investigate the correlation between age, degree of disturbances in dental development, and vertical growth of the face in children treated with hematopoietic stem cell transplantation (HSCT). 39 long-term survivors of HSCT performed in childhood and transplanted before the age of 12, at a mean age of 6.8±3.3 years. Panoramic and cephalometric radiographs were taken at a mean age of 16.2 years. For each patient two age- and sex-matched healthy controls were included. The area of three mandibular teeth was measured and a cephalometric analysis was performed. The mean area of the mandibular central incisor, first and second molar was significantly smaller in the HSCT group, and the vertical growth of the face was significantly reduced, especially in the lower third, compared to healthy controls. A statistically significant correlation between age at HSCT, degree of disturbances in dental development, and vertical growth of the face was found. Children subjected to pre-HSCT chemotherapy protocols had significantly more growth reduction in vertical craniofacial variables compared to children without pre-HSCT chemotherapy. Conditioning regimens including busulfan or total body irradiation had similar deleterious effects on tooth area reduction and craniofacial parameters. The younger the child is at HSCT, the greater the impairment in dental and vertical facial development. This supports the suggestion that the reduction in lower facial height found in SCT children mainly is a result of impaired dental development and that young age is a risk factor for more severe disturbances. © 2012 John Wiley & Sons A/S.

  9. Pharmacological Modulation of Radiation Damage. Does It Exist a Chance for Other Substances than Hematopoietic Growth Factors and Cytokines?

    PubMed Central

    Hofer, Michal; Hoferová, Zuzana; Falk, Martin

    2017-01-01

    In recent times, cytokines and hematopoietic growth factors have been at the center of attention for many researchers trying to establish pharmacological therapeutic procedures for the treatment of radiation accident victims. Two granulocyte colony-stimulating factor-based radiation countermeasures have been approved for the treatment of the hematopoietic acute radiation syndrome. However, at the same time, many different substances with varying effects have been tested in animal studies as potential radioprotectors and mitigators of radiation damage. A wide spectrum of these substances has been studied, comprising various immunomodulators, prostaglandins, inhibitors of prostaglandin synthesis, agonists of adenosine cell receptors, herbal extracts, flavonoids, vitamins, and others. These agents are often effective, relatively non-toxic, and cheap. This review summarizes the results of animal experiments, which show the potential for some of these untraditional or new radiation countermeasures to become a part of therapeutic procedures applicable in patients with the acute radiation syndrome. The authors consider β-glucan, 5-AED (5-androstenediol), meloxicam, γ-tocotrienol, genistein, IB-MECA (N6-(3-iodobezyl)adenosine-5’-N-methyluronamide), Ex-RAD (4-carboxystyryl-4-chlorobenzylsulfone), and entolimod the most promising agents, with regards to their contingent use in clinical practice. PMID:28657605

  10. The transcription factor MEF/ELF4 regulates the quiescence of primitive hematopoietic cells.

    PubMed

    Lacorazza, H Daniel; Yamada, Takeshi; Liu, Yan; Miyata, Yasuhiko; Sivina, Mariela; Nunes, Juliana; Nimer, Stephen D

    2006-03-01

    The transcriptional circuitry that regulates the quiescence of hematopoietic stem cells is largely unknown. We report that the transcription factor known as MEF (or ELF4), which is targeted by the t(X;21)(q26;q22) in acute myelogenous leukemia, regulates the proliferation of primitive hematopoietic progenitor cells at steady state, controlling their quiescence. Mef null HSCs display increased residence in G0 with reduced 5-bromodeoxyuridine incorporation in vivo and impaired cytokine-driven proliferation in vitro. Due to their increased HSC quiescence, Mef null mice are relatively resistant to the myelosuppressive effects of chemotherapy and radiation. Thus, MEF plays an important role in the decision of stem/primitive progenitor cells to divide or remain quiescent by regulating their entry to the cell cycle.

  11. Hematopoietic expression of oncogenic BRAF promotes aberrant growth of monocyte-lineage cells resistant to PLX4720

    PubMed Central

    Kamata, Tamihiro; Dankort, David; Kang, Jing; Giblett, Susan; Pritchard, Catrin A.; McMahon, Martin; Leavitt, Andrew D.

    2013-01-01

    Mutational activation of BRAF leading to expression of the BRAFV600E oncoprotein was recently identified in a high percentage of specific hematopoietic neoplasms in monocyte/histiocyte and mature B-cell lineages. Although BRAFV600E is a driver oncoprotein and pharmacological target in solid tumors such as melanoma, lung and thyroid cancer, it remains unknown whether BRAFV600E is an appropriate therapeutic target in hematopoietic neoplasms. To address this critical question, we generated a mouse model expressing inducible BRAFV600E in the hematopoietic system, and evaluated the efficacy of pathway-targeted therapeutics against primary hematopoietic cells. In this model, BRAFV600E expression conferred cytokine-independent growth to monocyte/macrophage-lineage progenitors leading to aberrant in vivo and in vitro monocyte/macrophage expansion. Furthermore, transplantation of BRAFV600E-expressing bone marrow cells promoted an in vivo pathology most notable for monocytosis in hematopoietic tissues and visceral organs. In vitro analysis revealed that MEK inhibition, but not RAF inhibition, effectively suppressed cytokine-independent clonal growth of monocyte/macrophage-lineage progenitors. However, combined RAF and PI3K inhibition effectively inhibited cytokine-independent colony formation, suggesting autocrine PI3K pathway activation. Taken together, these results provide evidence that constitutively activated BRAFV600E drives aberrant proliferation of monocyte-lineage cells. This study supports the development of pathway-targeted therapeutics in the treatment of BRAFV600E-expressing hematopoietic neoplasms in the monocyte/histiocyte lineage. PMID:24152792

  12. Murine embryonic stem cells secrete cytokines/growth modulators that enhance cell survival/anti-apoptosis and stimulate colony formation of murine hematopoietic progenitor cells.

    PubMed

    Guo, Ying; Graham-Evans, Barbara; Broxmeyer, Hal E

    2006-04-01

    Stromal cell-derived factor (SDF)-1/CXCL12, released by murine embryonic stem (ES) cells, enhances survival, chemotaxis, and hematopoietic differentiation of murine ES cells. Conditioned medium (CM) from murine ES cells growing in the presence of leukemia inhibitory factor (LIF) was generated while the ES cells were in an undifferentiated Oct-4 expressing state. ES cell-CM enhanced survival of normal murine bone marrow myeloid progenitors (CFU-GM) subjected to delayed growth factor addition in vitro and decreased apoptosis of murine bone marrow c-kit(+)lin- cells. ES CM contained interleukin (IL)-1alpha, IL-10, IL-11, macrophage-colony stimulating factor (CSF), oncostatin M, stem cell factor, vascular endothelial growth factor, as well as a number of chemokines and other proteins, some of which are known to enhance survival/anti-apoptosis of progenitors. Irradiation of ES cells enhanced release of some proteins and decreased release of others. IL-6, FGF-9, and TNF-alpha, not detected prior to irradiation was found after ES cells were irradiated. ES cell CM also stimulated CFU-GM colony formation. Thus, undifferentiated murine ES cells growing in the presence of LIF produce/release a number of biologically active interleukins, CSFs, chemokines, and other growth modulatory proteins, results which may be of physiological and/or practical significance.

  13. Hematopoietic Growth Factors and Glucocorticoids Synergize to Mimic the Effects of IL-1 on Granulocyte Differentiation and IL-1 Receptor Induction on Bone Marrow Cells In Vivo

    DTIC Science & Technology

    1993-01-01

    eosinophilic cells. No specific IL-1 labeling was treated mice. We next evaluated whether the in vivo adminis- observed on erythroid cells. These results...granulopoiesis. Because the showed that most of the labeled cells belonged to the granu - administration of IL-1 induces an initial rapid mobilization of...and 16% of eosinophilic and mono- the differential expression of RB6-8C5 antigen on myeloid cytic cells exhibited a similar pattern of labeling with 7

  14. Acquired factor VII deficiency in hematopoietic stem cell transplant recipients.

    PubMed

    Toor, A A; Slungaard, A; Hedner, U; Weisdorf, D J; Key, N S

    2002-03-01

    Acquired factor VII (FVII) deficiency in the absence of vitamin K deficiency, oral anticoagulant therapy, synthetic liver dysfunction, or DIC is rare, with only a handful of cases thus far reported. In the period from 1990 to 1996 we identified eight patients with acquired FVII deficiency, all of whom presented with prolongation of the prothrombin time (PT) in the first 2 weeks following stem cell transplantation (SCT). The mean plasma FVII clotting activity (FVII:c) was 22% (range 8-35%) with an approximately equivalent reduction in FVII antigen (FVII:Ag) level. Mean plasma levels of fibrinogen and factors II, V, IX, and X were normal. Protein C activity was significantly depressed in only one of the three patients in whom it was measured. Several patients experienced bleeding complications, and hemorrhage directly accounted for death in two cases. Veno-occlusive disease of the liver developed in three patients. We conclude that FVII deficiency should be considered in the differential diagnosis of prolonged PT in patients who have recently undergone SCT. The mechanism of this acquired deficiency state remains to be defined.

  15. Topical Recombinant Human Epidermal Growth Factor for Oral Mucositis Induced by Intensive Chemotherapy with Hematopoietic Stem Cell Transplantation: Final Analysis of a Randomized, Double-Blind, Placebo-Controlled, Phase 2 Trial

    PubMed Central

    Kim, Ji-Won; Kim, Myeong Gyu; Lee, Hyun Jung; Koh, Youngil; Kwon, Ji-Hyun; Kim, Inho; Park, Seonyang; Kim, Byoung Kook; Oh, Jung Mi; Kim, Kyung Im; Yoon, Sung-Soo

    2017-01-01

    The aim of this study was to evaluate the efficacy and safety of recombinant human epidermal growth factor (rhEGF) oral spray for oral mucositis (OM) induced by intensive chemotherapy with hematopoietic stem cell transplantation. In this phase 2 study, patients were randomized to either rhEGF (50 microg/mL) or placebo in a 1:1 ratio. The primary endpoint was incidence of National Cancer Institute (NCI) grade ≥2 OM. A total of 138 patients were enrolled in this study. In the intention-to-treat analysis, rhEGF did not reduce the incidence of NCI grade ≥2 OM (p = 0.717) nor reduce its duration (p = 0.725). Secondary endpoints including the day of onset and duration of NCI grade ≥2 OM, the incidence of NCI grade ≥3 OM and its duration, and patient-reported quality of life were also similar between the two groups. In the per-protocol analysis, however, the duration of opioid analgesic use was shorter in the rhEGF group (p = 0.036), and recipients in the rhEGF group required a lower cumulative dose of opioid analgesics than those in the placebo group (p = 0.046), among patients with NCI grade ≥2 OM. Adverse events were mild and transient. This study found no evidence to suggest that rhEGF oral spray reduces the incidence of OM. However, further studies are needed to investigate the effect of rhEGF on OM-induced pain reduction after intensive chemotherapy. PMID:28045958

  16. Topical Recombinant Human Epidermal Growth Factor for Oral Mucositis Induced by Intensive Chemotherapy with Hematopoietic Stem Cell Transplantation: Final Analysis of a Randomized, Double-Blind, Placebo-Controlled, Phase 2 Trial.

    PubMed

    Kim, Ji-Won; Kim, Myeong Gyu; Lee, Hyun Jung; Koh, Youngil; Kwon, Ji-Hyun; Kim, Inho; Park, Seonyang; Kim, Byoung Kook; Oh, Jung Mi; Kim, Kyung Im; Yoon, Sung-Soo

    2017-01-01

    The aim of this study was to evaluate the efficacy and safety of recombinant human epidermal growth factor (rhEGF) oral spray for oral mucositis (OM) induced by intensive chemotherapy with hematopoietic stem cell transplantation. In this phase 2 study, patients were randomized to either rhEGF (50 microg/mL) or placebo in a 1:1 ratio. The primary endpoint was incidence of National Cancer Institute (NCI) grade ≥2 OM. A total of 138 patients were enrolled in this study. In the intention-to-treat analysis, rhEGF did not reduce the incidence of NCI grade ≥2 OM (p = 0.717) nor reduce its duration (p = 0.725). Secondary endpoints including the day of onset and duration of NCI grade ≥2 OM, the incidence of NCI grade ≥3 OM and its duration, and patient-reported quality of life were also similar between the two groups. In the per-protocol analysis, however, the duration of opioid analgesic use was shorter in the rhEGF group (p = 0.036), and recipients in the rhEGF group required a lower cumulative dose of opioid analgesics than those in the placebo group (p = 0.046), among patients with NCI grade ≥2 OM. Adverse events were mild and transient. This study found no evidence to suggest that rhEGF oral spray reduces the incidence of OM. However, further studies are needed to investigate the effect of rhEGF on OM-induced pain reduction after intensive chemotherapy.

  17. Zebrafish Stromal Cells have Endothelial Properties and Support Hematopoietic Cells

    PubMed Central

    Lund, Troy C.; Glass, Tiffany J.; Somani, Arif; Nair, Sethu; Tolar, Jakub; Nyquist, Mick; Patrinostro, Xiaobai; Blazar, Bruce R.

    2014-01-01

    Objective The goal of this study was to determine if we could establish a mesenchymal stromal line from zebrafish that would support hematopoietic cells. Such a co-culture system would be a great benefit to study the hematopoietic cell-stromal cell interaction in both the in vitro and in vivo environments. Methods Zebrafish stromal cells, ZStrC, were isolated from the “mesenchymal” tissue of the caudal tail and expanded in a specialized growth media. ZStrC were evaluated for phenotype, gene expression, and the ability to maintain zebrafish marrow cells in co-culture experiments. Results ZStrC showed mesenchymal and endothelial gene expression. Although ZStrC lacked the ability to differentiate into classic MSC lineages (osteocytes, adipocytes, chondrocytes), they did have the capacity for endotube formation on matrigel and LDL-uptake. ZStrC supported marrow cells for greater than 2 weeks in vitro. Importantly, the marrow cells were shown to retain homing ability in adoptive transfer experiments. ZStrC also were shown to improve hematopoietic recovery after sub-lethal irradiation after adoptive transfer. Conclusion As the zebrafish model grows in popularity and importance in the study of hematopoiesis, new tools to aid in our understanding of the hematopoietic cell-stromal cell interaction are required. ZStrC represent an additional tool in the study of hematopoiesis and will be useful to understand the factors that mediate the stromal cell-hematopoietic cell interaction that are important in hematopoietic maintenance. PMID:21920471

  18. [Peripheral blood hematopoietic stem cell collection].

    PubMed

    Bojanić, Ines; Mazić, Sanja; Cepulić, Branka Golubić

    2009-01-01

    Summary. Peripheral blood hematopoietic stem cells (PBSC) have numerous advatages in comparison with traditionally used bone marrow. PBSC collection by leukapheresis procedure is simpler and better tolerated than bone marrow harvest. PBCS are mobilized by myelosupressive chemotherapy or/and hematopoietic growth factors. Leukapheresis product contains PBSC along with lineage commited progenitors and precursors which contribute to faster hematopoietic recovery. In "poor mobilizers" options are large-volume leukapheresis (LVL) procedure or second generation of mobilising agents (pegfilgrastim, CXCR4 receptor antagonists). Total blood volume is processed 2-3 times in standard procedure compared to more than 3 times in LVL. LVL yields significantly higher numbers of CD34+ cells. Adverse effects of leukapheresis are electrolyte disbalance (hypocalcemia) caused by citrat administration and risk of bleeding due to trobocytopenia and heparin administration. PBSC collection and product quality control are regulated by national and international standards and recommendations.

  19. MicroRNA126 contributes to granulocyte colony-stimulating factor-induced hematopoietic progenitor cell mobilization by reducing the expression of vascular cell adhesion molecule 1.

    PubMed

    Salvucci, Ombretta; Jiang, Kan; Gasperini, Paola; Maric, Dragan; Zhu, Jinfang; Sakakibara, Shuhei; Espigol-Frigole, Georgina; Wang, Shushang; Tosato, Giovanna

    2012-06-01

    Mobilization of hematopoietic stem/progenitor cells from the bone marrow to the peripheral blood by granulocyte colony-stimulating factor is the primary means to acquire stem cell grafts for hematopoietic cell transplantation. Since hematopoietic stem/progenitor cells represent a minority of all blood cells mobilized by granulocyte colony-stimulating factor, the underlying mechanisms need to be understood in order to develop selective drugs. We analyzed phenotypic, biochemical and genetic changes in bone marrow cell populations from granulocyte colony-stimulating factor-mobilized and control mice, and linked such changes to effective mobilization of hematopoietic stem/progenitor cells. We show that granulocyte colony-stimulating factor indirectly reduces expression of surface vascular cell adhesion molecule 1 on bone marrow hematopoietic stem/progenitor cells, stromal cells and endothelial cells by promoting the accumulation of microRNA-126 (miR126)-containing microvescicles in the bone marrow extracellular compartment. We found that hematopoietic stem/progenitor cells, stromal cells and endothelial cells readily incorporate these miR126-loaded microvescicles, and that miR126 represses vascular cell adhesion molecule 1 expression on bone marrow hematopoietic stem/progenitor cells, stromal cells and endothelial cells. In line with this, miR126-null mice displayed a reduced mobilization response to granulocyte colony-stimulating factor. Our results implicate miR126 in the regulation of hematopoietic stem/progenitor cell trafficking between the bone marrow and peripheral sites, clarify the role of vascular cell adhesion molecule 1 in granulocyte colony-stimulating factor-mediated mobilization, and have important implications for improved approaches to selective mobilization of hematopoietic stem/progenitor cells.

  20. Distinct Stromal Cell Factor Combinations Can Separately Control Hematopoietic Stem Cell Survival, Proliferation, and Self-Renewal

    PubMed Central

    Wohrer, Stefan; Knapp, David J.H.F.; Copley, Michael R.; Benz, Claudia; Kent, David G.; Rowe, Keegan; Babovic, Sonja; Mader, Heidi; Oostendorp, Robert A.J.; Eaves, Connie J.

    2014-01-01

    Summary Hematopoietic stem cells (HSCs) are identified by their ability to sustain prolonged blood cell production in vivo, although recent evidence suggests that durable self-renewal (DSR) is shared by HSC subtypes with distinct self-perpetuating differentiation programs. Net expansions of DSR-HSCs occur in vivo, but molecularly defined conditions that support similar responses in vitro are lacking. We hypothesized that this might require a combination of factors that differentially promote HSC viability, proliferation, and self-renewal. We now demonstrate that HSC survival and maintenance of DSR potential are variably supported by different Steel factor (SF)-containing cocktails with similar HSC-mitogenic activities. In addition, stromal cells produce other factors, including nerve growth factor and collagen 1, that can antagonize the apoptosis of initially quiescent adult HSCs and, in combination with SF and interleukin-11, produce >15-fold net expansions of DSR-HSCs ex vivo within 7 days. These findings point to the molecular basis of HSC control and expansion. PMID:24910437

  1. Short-term growth hormone treatment in children with Hurler syndrome after hematopoietic cell transplantation

    PubMed Central

    Polgreen, Lynda E.; Plog, Melissa; Schwender, James D.; Tolar, Jakub; Thomas, William; Orchard, Paul J.; Miller, Bradley S.; Petryk, Anna

    2011-01-01

    Summary Children with Hurler syndrome experience progressive growth failure after hematopoietic cell transplantation (HCT). The goal of this study was to review the safety and efficacy of growth hormone (GH) in eight children with Hurler syndrome who were treated at our institution with GH for short stature or GH deficiency between 2005 and 2008. The age at initiation of treatment with GH was 9.6 ± 2.3 years and time since HCT was 7.5 ± 1.5 years. Mean GH dose was 0.32 mg/kg/week. Baseline growth velocity was 3.5 ± 1.5 cm/yr (−2.6 ± 1.9 SDS) and increased to 5.2 ± 3.0 cm/yr (−0.1 ± 3.6 SDS) after 1 year of treatment. Of 6 patients with radiographic data there was 1 progression of scoliosis, 1 progression of kyphosis, and 1 progression of genu valgum. No patient discontinued treatment due to progression of skeletal disease. One patient discontinued GH due to slipped capital femoral epiphysis (SCFE). Preliminary data suggest that one year GH treatment may modestly improve growth velocity in children with Hurler syndrome. PMID:19252529

  2. Factors Influencing Hematopoietic Stem Cell Donation Intention in Hong Kong: A Web-Based Survey.

    PubMed

    Kwok, Janette; Leung, Eva; Wong, William; Leung, Kate; Lee, Cheuk Kwong; Lam, Wendy; Ip, Patrick

    2015-10-08

    Hematopoietic stem cell transplantation (HSCT) has become increasingly common for treatment of severe hematological disorders. However, the number of compatible hematopoietic stem cell (HSC) donors is usually limited. Expanding donor pool size would enhance matching success by increasing donor frequency and introducing allelic diversity within the registry. Identifying factors that affect public willingness towards HSC donation allows better strategic recruitment planning to facilitate donor pool expansion. Previous studies in white populations showed knowledge, family attitude, trust towards the healthcare system, fear, self-identity, and social identity are important factors related to HSC donation intention. However, given the differences in cultural and society values that exist across different regions, in particular between the East and West, whether these factors influence HSC donation willingness in Hong Kong remained to be determined. The objective of this study was to identify factors associated with HSC donation motivation in Hong Kong. A large-scale, cross-sectional, observational study involving 3479 local participants. There is a positive correlation of HSC donation intention with younger age (18-32, OR: 1.80, p≤0·001) and higher education (OR: 1·47, p≤0.001). Better HSCT knowledge is also related to greater HSC donation intention (OR: 2.55, p£0.001). Our data suggests HSCT education could help to improve donor recruitment and that more resources should be allocated for public education.

  3. JC Virus Multiplication in Human Hematopoietic Progenitor Cells Requires the NF-1 Class D Transcription Factor

    PubMed Central

    Monaco, Maria Chiara G.; Sabath, Bruce F.; Durham, Linda C.; Major, Eugene O.

    2001-01-01

    JCV, a small DNA virus of the polyomavirus family, has been shown to infect glial cells of the central nervous system, hematopoietic progenitor cells, and immune system lymphocytes. A family of DNA binding proteins called nuclear factor-1 (NF-1) has been linked with site-coding specific transcription of cellular and viral genes and replication of some viruses, including JC virus (JCV). It is unclear which NF-1 gene product must be expressed by cells to promote JCV multiplication. Previously, it was shown that elevated levels of NF-1 class D mRNA were expressed by human brain cells that are highly susceptible to JCV infection but not by JCV nonpermissive HeLa cells. Recently, we reported that CD34+ precursor cells of the KG-1 line, when treated with the phorbol ester phorbol 12-myristate 13-acetate (PMA), differentiated to cells with macrophage-like characteristics and lost susceptibility to JCV infection. These studies have now been extended by asking whether loss of JCV susceptibility by PMA-treated KG-1 cells is linked with alterations in levels of NF-1 class D expression. Using reverse transcription-PCR, we have found that PMA-treated KG-1 cells express mRNA that codes for all four classes of NF-1 proteins, although different levels of RNA expression were observed in the hematopoietic cells differentiated into macrophages. Northern hybridization confirms that the expression of NF-1 class D gene is lower in JCV nonpermissive PMA-treated KG-1 cells compared with non-PMA-treated cells. Further, using gel mobility shift assays, we were able to show the induction of specific NF-1–DNA complexes in KG-1 cells undergoing PMA treatment. The binding increases in direct relation to the duration of PMA treatment. These results suggest that the binding pattern of NF-1 class members may change in hematopoietic precursor cells, such as KG-1, as they undergo differentiation to macrophage-like cells. Transfection of PMA-treated KG-1 cells with an NF-1 class D expression vector

  4. On hematopoietic stem cell fate.

    PubMed

    Metcalf, Donald

    2007-06-01

    Multipotential hematopoietic stem cells (HSCs) maintain blood-cell formation throughout life. Here, Metcalf considers the origin and heterogeneity of HSCs, their ability to self-generate, and their commitment to the various hematopoietic lineages.

  5. Hematopoietic progenitor cells grow on 3T3 fibroblast monolayers that overexpress growth arrest-specific gene-6 (GAS6)

    PubMed Central

    Dormady, Shane P.; Zhang, Xin-Min; Basch, Ross S.

    2000-01-01

    Pluripotential hematopoietic stem cells grow in close association with bone marrow stromal cells, which play a critical role in sustaining hematopoiesis in long-term bone marrow cultures. The mechanisms through which stromal cells act to support pluripotential hematopoietic stem cells are largely unknown. This study demonstrates that growth arrest-specific gene-6 (GAS6) plays an important role in this process. GAS6 is a ligand for the Axl (Ufo/Ark), Sky (Dtk/Tyro3/Rse/Brt/Tif), and Mer (Eyk) family of tyrosine kinase receptors and binds to these receptors via tandem G domains at its C terminus. After translation, GAS6 moves to the lumen of the endoplasmic reticulum, where it is extensively γ-carboxylated. The carboxylation process is vitamin K dependent, and current evidence suggests that GAS6 must be γ-carboxylated to bind and activate any of the cognate tyrosine kinase receptors. Here, we show that expression of GAS6 is highly correlated with the capacity of bone marrow stromal cells to support hematopoiesis in culture. Nonsupportive stromal cell lines express little to no GAS6, whereas supportive cell lines express high levels of GAS6. Transfection of the cDNA encoding GAS6 into 3T3 fibroblasts is sufficient to render this previously nonsupportive cell line capable of supporting long-term hematopoietic cultures. 3T3 cells, genetically engineered to stably express GAS6 (GAS6-3T3), produce a stromal layer that supports the generation of colony-forming units in culture (CFU-c) for up to 6 wk. Hematopoietic support by genetically engineered 3T3 is not vitamin K dependent, and soluble recombinant GAS6 does not substitute for coculturing the hematopoietic progenitors with genetically modified 3T3 cells. PMID:11050245

  6. Posttraumatic Growth, Social Support and Social Constraint in Hematopoietic Stem Cell Transplant Survivors

    PubMed Central

    Nenova, Maria; DuHamel, Katherine; Zemon, Vance; Rini, Christine; Redd, William H.

    2013-01-01

    Objective The relation between posttraumatic growth (PTG) and aspects of the social context, such as social support and social constraint, continues to be unclear in cancer survivors. Social-cognitive processing theory is a useful framework for examining the effect of the social context on PTG. In theory, support interactions may either facilitate or hinder cognitive processing and thus lead to different PTG outcomes. The current study tested the hypothesis that emotional support and instrumental support would each explain a unique amount of the variance in PTG in distressed hematopoietic stem cell transplant (HSCT) survivors. Additionally, it was predicted that social constraint on cancer-related disclosure would be negatively with PTG. Methods Forty-nine distressed HSCT survivors with a spouse or partner completed the posttraumatic growth inventory (PTGI) and measures of social support received from their spouse/partner and social constraint from people close to them as part of a larger clinical trial. Results Both emotional and instrumental social support were positively correlated with PTG and social constraint on disclosure was not associated with PTG. Contrary to hypotheses, instrumental support was the only unique social contextual predictor of PTG. Conclusions: The results of this study highlighted the importance of examining the effects of subtypes of social support on PTG separately. Findings are discussed in the context of the cognitive (i.e. processing of the traumatic event) versus non-cognitive (i.e. buffering stress) pathways between the social context and PTG. Future research directions are presented. PMID:21972000

  7. Hematopoietic Stem Cells Therapies.

    PubMed

    Chivu-Economescu, Mihaela; Rubach, Martin

    2017-01-01

    Stem cell-based therapies are recognized as a new way to treat various diseases and injuries, with a wide range of health benefits. The goal is to heal or replace diseased or destroyed organs or body parts with healthy new cells provided by stem cell transplantation. The current practical form of stem cell therapy is the hematopoietic stem cells transplant applied for the treatment of hematological disorders. There are over 2100 clinical studies in progress concerning hematopoietic stem cell therapies. All of them are using hematopoietic stem cells to treat various diseases like: cancers, leukemia, lymphoma, cardiac failure, neural disorders, auto-immune diseases, immunodeficiency, metabolic or genetic disorders. Several challenges are to be addressed prior to developing and applying large scale cell therapies: 1) to explain and control the mechanisms of differentiation and development toward a specific cell type needed to treat the disease, 2) to obtain a sufficient number of desired cell type for transplantation, 3) to overcome the immune rejection and 4) to show that transplanted cells fulfill their normal functions in vivo after transplants.

  8. Efficiency and Risk Factors for CMV Transmission in Seronegative Hematopoietic Stem Cell Recipients

    PubMed Central

    Pergam, Steven A.; Xie, Hu; Sandhu, Ravinder; Pollack, Margaret; Smith, Jeremy; Stevens-Ayers, Terry; Ilieva, Valeria; Kimball, Louise E.; Huang, Meei-Li; Hayes, Tracy S.; Corey, Lawrence; Boeckh, Michael J.

    2012-01-01

    Cytomegalovirus (CMV) transmission via stem cells or marrow in CMV donor seropositive/recipient seronegative (D+/R−) hematopoietic cell transplantation (HCT) is surprisingly inefficient, and factors associated with transmission in these high-risk HCT recipients are unknown. In a retrospective cohort of D+/R− HCT recipients, cumulative incidence curve estimates were used to determine posttransplantation rates of CMV and multivariable Cox proportional models to assess risk factors associated with transmission. A total of 447 patients from 1995 to 2007 were eligible for enrollment. Overall, 85 of 447 (19.0%) acquired CMV at a median of 49 days (IQR 41–60) posttransplantation. CMV disease before day 100 occurred in 6 of 447 (1.3%) patients and in 7 of 447 (1.6%) after day 100. The donor graft, specifically the total nucleated cell count (adjusted hazard ratio [HR] 2.7; 95% confidence interval [CI], 1.4–4.7, P = .0002), was the only factor associated with CMV transmission in multivariable analyses. Notably, the source stem cells (marrow versus peripheral blood stem cell [PBSC]), screening method, and graft-versus-host disease (GVHD) were not associated with transmission. Thus, a highly cellular graft was the only identifiable risk factor associated with CMV transmission, suggesting that viral genomic content of the donor graft determines transmission efficiency in D+/R− HCT recipients. PMID:22387334

  9. Factors associated with optimized tacrolimus dosing in hematopoietic stem cell transplantation

    PubMed Central

    Butts, Allison R; Brown, Victoria T; McBride, Lauren D; Bolaños-Meade, Javier; Bryk, Amy W

    2015-01-01

    Objective The primary objective was to analyze the initial tacrolimus concentrations achieved in allogeneic hematopoietic stem cell transplantation patients using the institutional dosing strategy of 1 mg IV daily initiated on day +5. The secondary objectives were to ascertain the tacrolimus dose, days of therapy, and dose changes necessary to achieve a therapeutic concentration, and to identify patient-specific factors that influence therapeutic dose. The relationships between the number of pre-therapeutic days and incidence of graft-versus-host disease and graft failure were delineated. Methods A retrospective chart review included adult allogeneic hematopoietic stem cell patients who received tacrolimus for graft-versus-host disease prophylaxis in 2012. Descriptive statistics, linear and logistic regression, and graphical analyses were utilized. Results Ninety-nine patients met the inclusion criteria. The first concentration was subtherapeutic (<10 ng/ml) in 97 patients (98%). The median number of days of tacrolimus needed to achieve a therapeutic trough was 10 with a median of two dose changes. The median therapeutic dose was 1.6 mg IV daily. Approximately 75% of patients became therapeutic on ≤2 mg IV tacrolimus daily. No relationship was found between therapeutic dose and any patient-specific factor tested, including weight. No relationship was found between the number of days of therapy required to achieve a therapeutic trough and incidence of graft-versus-host disease or graft failure. Conclusion An initial flat tacrolimus dose of 1 mg IV daily is a suboptimal approach to achieve therapeutic levels at this institution. A dose of 1.6 mg or 2 mg IV daily is a reasonable alternative to the current institutional practice. PMID:25802301

  10. Factors associated with optimized tacrolimus dosing in hematopoietic stem cell transplantation.

    PubMed

    Butts, Allison R; Brown, Victoria T; McBride, Lauren D; Bolaños-Meade, Javier; Bryk, Amy W

    2016-04-01

    The primary objective was to analyze the initial tacrolimus concentrations achieved in allogeneic hematopoietic stem cell transplantation patients using the institutional dosing strategy of 1 mg IV daily initiated on day +5. The secondary objectives were to ascertain the tacrolimus dose, days of therapy, and dose changes necessary to achieve a therapeutic concentration, and to identify patient-specific factors that influence therapeutic dose. The relationships between the number of pre-therapeutic days and incidence of graft-versus-host disease and graft failure were delineated. A retrospective chart review included adult allogeneic hematopoietic stem cell patients who received tacrolimus for graft-versus-host disease prophylaxis in 2012. Descriptive statistics, linear and logistic regression, and graphical analyses were utilized. Ninety-nine patients met the inclusion criteria. The first concentration was subtherapeutic (<10 ng/ml) in 97 patients (98%). The median number of days of tacrolimus needed to achieve a therapeutic trough was 10 with a median of two dose changes. The median therapeutic dose was 1.6 mg IV daily. Approximately 75% of patients became therapeutic on ≤ 2 mg IV tacrolimus daily. No relationship was found between therapeutic dose and any patient-specific factor tested, including weight. No relationship was found between the number of days of therapy required to achieve a therapeutic trough and incidence of graft-versus-host disease or graft failure. An initial flat tacrolimus dose of 1 mg IV daily is a suboptimal approach to achieve therapeutic levels at this institution. A dose of 1.6 mg or 2 mg IV daily is a reasonable alternative to the current institutional practice. © The Author(s) 2015.

  11. Impaired growth, hematopoietic colony formation, and ribosome maturation in human cells depleted of Shwachman-Diamond syndrome protein SBDS.

    PubMed

    Sezgin, Gulay; Henson, Adrianna L; Nihrane, Abdallah; Singh, Sharon; Wattenberg, Max; Alard, Pascale; Ellis, Steven R; Liu, Johnson M

    2013-02-01

    Shwachman-Diamond syndrome (SDS), associated with SBDS mutations, is characterized by pancreatic exocrine dysfunction and marrow failure. Sdo1, the yeast ortholog of SBDS, is implicated in maturation of the 60S ribosomal subunit, with delayed export of 60S-like particles from the nucleoplasm when depleted. Sdo1 is needed for release of the anti-subunit association factor Tif6 from 60S subunits, and Tif6 may not be recycled to the nucleus when Sdo1 is absent. To clarify the role of SBDS in human ribosome function, TF-1 erythroleukemia and A549 lung carcinoma cells were transfected with vectors expressing RNAi against SBDS. Growth and hematopoietic colony forming potential of TF-1 knockdown cells were markedly hindered when compared to controls. To analyze the effect of SBDS on 60S subunit maturation in A549 cells, subunit localization was assessed by transfection with a vector expressing a fusion between human RPL29 and GFP: we found a higher percentage of SBDS-depleted cells with nuclear localization of 60S subunits. Polysome analysis of TF-1 knockdown cells showed a decrease in free 60S and 80S subunits. We also analyzed the levels of eIF6 (human ortholog of Tif6) following near-complete knockdown of SBDS in TF-1 cells and found an approximately 20% increase in the amount of eIF6 associated with the 60S subunit. We conclude that knockdown of SBDS leads to growth inhibition and defects in ribosome maturation, suggesting a role for wild-type SBDS in nuclear export of pre-60S subunits. Furthermore, knockdown of SBDS may interfere with eIF6 recycling. Copyright © 2012 Wiley Periodicals, Inc.

  12. Sindbis viral vectors target hematopoietic malignant cells.

    PubMed

    Suzme, R; Tseng, J-C; Levin, B; Ibrahim, S; Meruelo, D; Pellicer, A

    2012-11-01

    Sindbis viral vectors target and inhibit the growth of various solid tumors in mouse models. However, their efficacy against blood cancer has not been well established. Here, we show that Sindbis vectors infect and efficiently trigger apoptosis in mouse BW5147 malignant hematopoietic T-cells, but only at low levels in human lymphoma and leukemia cells (Jurkat, Karpas, CEM, DHL and JB). The Mr 37/67 kD laminin receptor (LAMR) has been suggested to be the receptor for Sindbis virus. However, JB cells, which are infected by Sindbis at low efficiency, express high levels of LAMR, revealing that additional factors are involved in Sindbis tropism. To test the infectivity and therapeutic efficacy of Sindbis vectors against malignant hematopoietic cells in vivo, we injected BW5147 cells intraperitoneally into (C3HXAKR) F1 hybrid mice. We found that Sindbis vectors targeted the tumors and significantly prolonged survival of tumor-bearing mice. We also tested the Sindbis vectors in a transgenic CD4-Rgr model, which spontaneously develop thymic lymphomas. However, infectivity in this model was less efficient. Taken together, these results demonstrate that Sindbis vectors have the potential to target and kill hematopoietic malignancies in mice, but further research is needed to evaluate the mechanism underlining the susceptibility of human lymphoid malignancies to Sindbis therapy.

  13. [Hematopoietic growth factor EPO has neuro-protective and neuro-trophic effects--review].

    PubMed

    Zhou, Zhuo-Yan; Yang, Mo; Fok, Tai-Fai

    2005-04-01

    Erythropoietin (EPO) is an acidic glycoprotein that was first detected as a hematopoietic factor and its synthesis is triggered in response to cellular hypoxia-sensing. EPO binds to type I cytokine receptors, which associate with the non-receptor tyrosine kinase Jak2, and thereby activate Stat 5a/5b, Ras/MAPK, and PI3-K/Akt signaling pathways. The recent discovery shows that there is a specific EPO/EPO-receptor system in the central nervous system (CNS), independently of the haematopoietic system. Hypoxia and anemia can up-regulate EPO/EPOR expressions in the CNS. Further studies demonstrate that EPO has substantial neuro-protective effects and acts as a neurotrophic factor on central cholinergic neurons, influencing their differentiation and regeneration. EPO also exerts neuro-protective activities in different models of brain damage in vivo and in vitro, such as hypoxia, cerebral ischaemia and sub-arachnoid haemorrhage. EPO may also be involved in synaptic plasticity via the inhibition or stimulation of various neurotransmitters. Therefore, human recombinant EPO that activate its receptors in the central nervous system might be utilized in the future clinical practice involving neuroprotection and brain repair.

  14. Risk Factors for Delirium in Patients Undergoing Hematopoietic Stem Cell Transplantation

    PubMed Central

    Weckmann, Michelle T.; Gingrich, Roger; Mills, James A.; Hook, Larry; Beglinger, Leigh J.

    2013-01-01

    Background Delirium is common following hematopoietic stem-cell transplantation (HSCT) and is associated with increased morbidity and mortality. Early recognition and treatment have been shown to improve long term outcomes. We sought to investigate the relationship between potential risk-factors and the development of delirium following HSCT. Methods Fifty-four inpatients admitted for HSCT were assessed prospectively for delirium every 2-3 days through their inpatient stay using standardized delirium and neuropsychological measures. Patient’s self-reports of medical history, medical records, and neurocognitive and psychiatric assessments were used to identify risk factors. Both pre- and post-HSCT risk factors were examined. Results Delirium incidence was 35% and occurred with highest frequency in the 2 weeks following transplant. The only pre-transplantation risk factors was lower oxygen saturation (p=0.003). Post-transplantation risk factors for delirium included higher creatinine (p<0.0001), higher blood urea nitrogen levels (p=0.005), lower creatinine clearance (p=0.0006), lower oxygen saturation (p=0.001), lower hemoglobin (p=0.04) and lower albumin (p=0.03). There was no observed association with level of cognitive performance, transplant type, disease severity, medical co-morbidity index, age or conditioning regimen. Conclusion Routine laboratory values can assist in the identification of high risk patients before delirium onset to improve early detection and treatment of delirium following HSCT. PMID:22860240

  15. The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel

    PubMed Central

    Mahadik, B.P.; Haba, S. Pedron; Skertich, L.J.; Harley, B.A.C.

    2015-01-01

    Hematopoietic stem cells (HSCs) are a rare stem cell population found primarily in the bone marrow and responsible for the production of the body’s full complement of blood and immune cells. Used clinically to treat a range of hematopoietic disorders, there is a significant need to identify approaches to selectively expand their numbers ex vivo. Here we describe a methacrylamide-functionalized gelatin (GelMA) hydrogel for in vitro culture of primary murine HSCs. Stem cell factor (SCF) is a critical biomolecular component of native HSC niches in vivo and is used in large dosages in cell culture media for HSC expansion in vitro. We report a photochemistry based approach to covalently immobilize SCF within GelMA hydrogels via acrylate-functionalized polyethylene glycol (PEG) tethers. PEG-functionalized SCF retains the native bioactivity of SCF but can be stably incorporated and retained within the GelMA hydrogel over 7 days. Freshly-isolated murine HSCs cultured in GelMA hydrogels containing covalently-immobilized SCF showed reduced proliferation and improved selectivity for maintaining primitive HSCs. Comparatively, soluble SCF within the GelMA hydrogel network induced increased proliferation of differentiating hematopoietic cells. We used a microfluidic templating approach to create GelMA hydrogels containing gradients of immobilized SCF that locally direct HSC response. Together, we report a biomaterial platform to examine the effect of the local presentation of soluble vs. matrix-immobilized biomolecular signals on HSC expansion and lineage specification. This approach may be a critical component of a biomaterial-based artificial bone marrow to provide the correct sequence of niche signals to grow HSCs in the laboratory. PMID:26232879

  16. Cancer cells. 3: Growth factors and transformation

    SciTech Connect

    Feramisco, J.; Ozanne, B.; Stiles, C.

    1985-01-01

    This book contains over 50 papers. Some of the titles are: Structure of Human Epidermal Growth Factor and Expression of Normal and Variant mRNAs in Epdermoid Carcinoma Cells; Tyrosine Kinase Activity Associated with the v-erb-B Gene Product; Cloning and Characterization of Human Epidermal Growth Factor-Receptor Gene Sequences in A431 Carcinoma Cells; Anti-oncogenes and the Suppression of Tumor Formation; and Normal Human sis/PDGF-2 Gene Expression Induces Cellular Transformation.

  17. Long-active granulocyte colony-stimulating factor for peripheral blood hematopoietic progenitor cell mobilization.

    PubMed

    Martino, Massimo; Laszlo, Daniele; Lanza, Francesco

    2014-06-01

    Peg-filgrastim (PEG-FIL), a polyethylene glycol-conjugated form of granulocyte colony-stimulating factor (G-CSF), has been introduced in clinical practice and is effective in shortening the time of neutropenia after cytotoxic chemotherapy. G-CSF has emerged as the preferred cytokine for hematopoietic progenitor cells' (HPC) mobilization. Nevertheless, data on the ability of PEG-FIL in this field have been published. We review publications in the field with the goal of providing an overview of this approach. PEG-FIL may be able to mobilize CD34(+) cells in a more timely fashion than G-CSF, with the advantages of only a single-dose administration, an earlier start and a reduction in the number of apheresis procedures. The main controversies concern the dosage of the drug and the optimal dose. In the context of chemo-mobilization, a single dose of 6 mg PEG-FIL seems effective in terms of HPC's mobilization and there is no increase in this effect if the dose is doubled to 12 mg. Steady-state mobilization requires higher doses of PEG-FIL and this approach is not cost-effective when compared with G-CSF. The experiences with PEG-FIL in the healthy donor setting are very limited.

  18. Prolonged Shedding of Human Coronavirus in Hematopoietic Cell Transplant Recipients: Risk Factors and Viral Genome Evolution.

    PubMed

    Ogimi, Chikara; Greninger, Alexander L; Waghmare, Alpana A; Kuypers, Jane M; Shean, Ryan C; Xie, Hu; Leisenring, Wendy M; Stevens-Ayers, Terry L; Jerome, Keith R; Englund, Janet A; Boeckh, Michael

    2017-07-15

    Recent data suggest that human coronavirus (HCoV) pneumonia is associated with significant mortality in hematopoietic cell transplant (HCT) recipients. Investigation of risk factors for prolonged shedding and intrahost genome evolution may provide critical information for development of novel therapeutics. We retrospectively reviewed HCT recipients with HCoV detected in nasal samples by polymerase chain reaction (PCR). HCoV strains were identified using strain-specific PCR. Shedding duration was defined as time between first positive and first negative sample. Logistic regression analyses were performed to evaluate factors for prolonged shedding (≥21 days). Metagenomic next-generation sequencing (mNGS) was conducted when ≥4 samples with cycle threshold values of <28 were available. Seventeen of 44 patients had prolonged shedding. Among 31 available samples, 35% were OC43, 32% were NL63, 19% were HKU1, and 13% were 229E; median shedding duration was similar between strains (P = .79). Bivariable logistic regression analyses suggested that high viral load, receipt of high-dose steroids, and myeloablative conditioning were associated with prolonged shedding. mNGS among 5 subjects showed single-nucleotide polymorphisms from OC43 and NL63 starting 1 month following onset of shedding. High viral load, high-dose steroids, and myeloablative conditioning were associated with prolonged shedding of HCoV in HCT recipients. Genome changes were consistent with the expected molecular clock of HCoV.

  19. An essential role for the hematopoietic transcription factor Ikaros in hypothalamic–pituitary-mediated somatic growth

    PubMed Central

    Ezzat, Shereen; Mader, Rene; Fischer, Sandra; Yu, ShunJiang; Ackerley, Cameron; Asa, Sylvia L.

    2006-01-01

    Ikaros transcription factors play critical functions in the control of lymphohematopoiesis and immune regulation. Family members contain multiple zinc fingers that mediate DNA binding and homooligomerization or heterooligomerization. Ikaros is abundantly expressed in pituitary mammosomatotrophs, where it deacetylates histone 3 sites on the proximal growth hormone (GH) promoter to silence gene expression. Ikaros-null mice display stunted growth with reduced circulating levels of the GH target factor insulin-like growth factor I (IGF-I). Ikaros-deficient mice have small anterior pituitary glands with a disproportionately reduced somatotroph population. Systemic administration of GH results in increased IGF-I levels and enhanced somatic growth. In contrast, reconstitution with WT lymphocytes was not sufficient to rescue the stunted growth phenotype of Ikaros-deficient mice. Ikaros was identified in mouse hypothalamic arcuate nuclei, where it colocalized with GH-releasing hormone (GHRH); in contrast, Ikaros-null mice lack GHRH immunoreactivity in the hypothalamus. Overexpression of Ikaros enhanced GHRH promoter activity and induced endogenous GHRH gene expression. These findings unmask a wider role for Ikaros in the neuroendocrine system, highlighting a critical contribution to the development of the hypothalamic–pituitary somatotrophic axis. PMID:16467156

  20. Synergy of interleukin 1 and granulocyte colony-stimulating factor: in vivo stimulation of stem-cell recovery and hematopoietic regeneration following 5-fluorouracil treatment of mice

    SciTech Connect

    Moore, M.A.S.; Warren, D.J.

    1987-10-01

    The human bladder carcinoma cell line 5637 produces hematopoietic growth factors (granulocyte and granulocyte/macrophage colony-stimulating factors (G-CSF and GM-CSF)) and hemopoietin 1, which synergizes with CSFs to stimulate colony formation by primitive hematopoietic stem cells in 5-fluorouracil-treated mouse bone marrow. Molecular and functional properties of hemopoietin 1 identified it as identical to interleukin 1..cap alpha.. (IL-1..cap alpha..). When bone marrow cells from 5-fluorouracil-treated mice were cultured in suspension for 7 days with recombinant human IL-1..cap alpha.. and/or G-CSF, it was found that the two factors synergized to enhance recovery of myelopoietic cells and colony-forming cells of both high and low proliferative potential. G-CSF alone did not sustain these populations, but the combination had greater-than-additive stimulating capacity. In vivo, 5-fluorouracil (150 mg/kg) produced profound myelosuppression and delayed neutrophil regeneration for up to 2 weeks in C3H/HeJ mice. Daily administration of recombinant human G-CSF or human IL-1..cap alpha.. accelerated recovery of stem cells, progenitor cells, and blood neutrophils by up to 4 days in 5-fluorouracil-treated C3H/HeJ and B6D2F/sub 1/ mice. The combination of IL-1..cap alpha.. and G-CSF acted synergistically, reducing neutropenia and accelerating recovery of normal neutrophil numbers by up to 7 days. These results indicate the possible therapeutic potential of combination therapy with IL-1 and hematopoietic growth factors such as G-CSF in the treatment of chemotherapy- or radiation-induced myelosuppression.

  1. Influence of Conventional Cardiovascular Risk Factors and Lifestyle Characteristics on Cardiovascular Disease After Hematopoietic Cell Transplantation

    PubMed Central

    Chow, Eric J.; Baker, K. Scott; Lee, Stephanie J.; Flowers, Mary E.D.; Cushing-Haugen, Kara L.; Inamoto, Yoshihiro; Khera, Nandita; Leisenring, Wendy M.; Syrjala, Karen L.; Martin, Paul J.

    2014-01-01

    Purpose To determine the influence of modifiable lifestyle factors on the risk of cardiovascular disease after hematopoietic cell transplantation (HCT). Patients and Methods HCT survivors of ≥ 1 year treated from 1970 to 2010 (n = 3,833) were surveyed from 2010 to 2011 on current cardiovascular health and related lifestyle factors (smoking, diet, recreational physical activity). Responses (n = 2,362) were compared with those from a matched general population sample (National Health and Nutrition Examination Survey [NHANES]; n = 1,192). Results Compared with NHANES participants, HCT survivors (median age, 55.9 years; median 10.8 years since HCT; 71.3% allogeneic) had higher rates of cardiomyopathy (4.0% v 2.6%), stroke (4.8% v 3.3%), dyslipidemia (33.9% v 22.3%), and diabetes (14.3% v 11.7%; P < .05 for all comparisons). Prevalence of hypertension was similar (27.9% v 30.0%), and survivors were less likely to have ischemic heart disease (6.1% v 8.9%; P < .01). Among HCT survivors, hypertension, dyslipidemia, and diabetes were independent risk factors for ischemic heart disease and cardiomyopathy, and smoking was associated with ischemic heart disease and diabetes (odds ratios [ORs], 1.8 to 2.1; P = .02). Obesity was a risk factor for post-transplantation hypertension, dyslipidemia, and diabetes (ORs ≥ 2.0; P < .001). In contrast, lower fruit/vegetable intake was associated with greater risk of dyslipidemia and diabetes (ORs, 1.4 to 1.8; P ≤ .01), and lower physical activity level was associated with greater risk of hypertension and diabetes (ORs, 1.4 to 1.5; P < .05). Healthier lifestyle characteristics among HCT survivors attenuated risk of all cardiovascular conditions assessed. Conclusion Attention of clinicians to conventional cardiovascular risk factors and modifiable lifestyle characteristics offers hope of reducing serious cardiovascular morbidity after HCT. PMID:24297944

  2. The Impact of Growth Hormone Therapy on the Apoptosis Assessment in CD34+ Hematopoietic Cells from Children with Growth Hormone Deficiency.

    PubMed

    Kawa, Miłosz Piotr; Stecewicz, Iwona; Piecyk, Katarzyna; Paczkowska, Edyta; Rogińska, Dorota; Sobuś, Anna; Łuczkowska, Karolina; Pius-Sadowska, Ewa; Gawrych, Elżbieta; Petriczko, Elżbieta; Walczak, Mieczysław; Machaliński, Bogusław

    2017-01-07

    Growth hormone (GH) modulates hematopoietic cell homeostasis and is associated with apoptosis control, but with limited mechanistic insights. Aim of the study was to determine whether GH therapeutic supplementation (GH-TS) could affect apoptosis of CD34+ cells enriched in hematopoietic progenitor cells of GH deficient (GHD) children. CD34+ cells from peripheral blood of 40 GHD children were collected before and in 3rd and 6th month of GH-TS and compared to 60 controls adjusted for bone age, sex, and pubertal development. Next, apoptosis assessment via different molecular techniques was performed. Finally, to comprehensively characterize apoptosis process, global gene expression profile was determined using genome-wide RNA microarray technology. Results showed that GH-TS significantly reduced spontaneous apoptosis in CD34+ cells (p < 0.01) and results obtained using different methods to detect early and late apoptosis in analyzed cells population were consistent. GH-TS was also associated with significant downregulation of several members of TNF-alpha superfamily and other genes associated with apoptosis and stress response. Moreover, the significant overexpression of cyto-protective and cell cycle-associated genes was detected. These findings suggest that recombinant human GH has a direct anti-apoptotic activity in hematopoietic CD34+ cells derived from GHD subjects in course of GH-TS.

  3. The Impact of Growth Hormone Therapy on the Apoptosis Assessment in CD34+ Hematopoietic Cells from Children with Growth Hormone Deficiency

    PubMed Central

    Kawa, Miłosz Piotr; Stecewicz, Iwona; Piecyk, Katarzyna; Paczkowska, Edyta; Rogińska, Dorota; Sobuś, Anna; Łuczkowska, Karolina; Pius-Sadowska, Ewa; Gawrych, Elżbieta; Petriczko, Elżbieta; Walczak, Mieczysław; Machaliński, Bogusław

    2017-01-01

    Growth hormone (GH) modulates hematopoietic cell homeostasis and is associated with apoptosis control, but with limited mechanistic insights. Aim of the study was to determine whether GH therapeutic supplementation (GH-TS) could affect apoptosis of CD34+ cells enriched in hematopoietic progenitor cells of GH deficient (GHD) children. CD34+ cells from peripheral blood of 40 GHD children were collected before and in 3rd and 6th month of GH-TS and compared to 60 controls adjusted for bone age, sex, and pubertal development. Next, apoptosis assessment via different molecular techniques was performed. Finally, to comprehensively characterize apoptosis process, global gene expression profile was determined using genome-wide RNA microarray technology. Results showed that GH-TS significantly reduced spontaneous apoptosis in CD34+ cells (p < 0.01) and results obtained using different methods to detect early and late apoptosis in analyzed cells population were consistent. GH-TS was also associated with significant downregulation of several members of TNF-alpha superfamily and other genes associated with apoptosis and stress response. Moreover, the significant overexpression of cyto-protective and cell cycle-associated genes was detected. These findings suggest that recombinant human GH has a direct anti-apoptotic activity in hematopoietic CD34+ cells derived from GHD subjects in course of GH-TS. PMID:28067847

  4. HEMORRHAGIC CYSTITIS AFTER ALLOGENEIC HEMATOPOIETIC CELL TRANSPLANTATION: RISK FACTORS, GRAFT SOURCE, AND SURVIVAL

    PubMed Central

    Lunde, Laura E.; Dasaraju, Sandhyarani; Cao, Qing; Cohn, Claudia S.; Reding, Mark; Bejanyan, Nelli; Trottier, Bryan; Rogosheske, John; Brunstein, Claudio; Warlick, Erica; Young, Jo Anne H.; Weisdorf, Daniel J.; Ustun, Celalettin

    2017-01-01

    Although hemorrhagic cystitis (HC) is a common complication of allogeneic hematopoietic cell transplantation (alloHCT), its risk factors and effects on survival are not well-known. We evaluated HC in a large cohort (n=1321, 2003 – 2012) receiving alloHCT from all graft sources, including umbilical cord blood (UCB). We compared HC patients with non-HC (control) patients and examined clinical variables at HC onset and resolution. Of these 1321 patients, 219 (16.6%) developed HC at a median of 22 days after alloHCT. BK viruria was detected in 90% of 109 tested HC patients. Median duration of HC was 27 days. At the time of HC diagnosis, acute graft-versus-host disease (GVHD), fever, severe thrombocytopenia, and steroid use were more frequent than at the time of HC resolution. In univariate analysis, male sex, age <20 years, myeloablative conditioning with cyclophosphamide and acute GVHD were associated with HC. In multivariate analysis, HC was significantly more common in males and HLA-mismatched UCB graft recipients. Severe grade HC (grade III–IV) was associated with increased treatment-related mortality (TRM) but not with overall survival at 1 year. HC remains hazardous and therefore better prophylaxis and early interventions to limit its severity are still needed. PMID:26168069

  5. Risk factors for acute GVHD and survival after hematopoietic cell transplantation

    PubMed Central

    Arora, Mukta; Flowers, Mary E. D.; Chao, Nelson J.; McCarthy, Philip L.; Cutler, Corey S.; Urbano-Ispizua, Alvaro; Pavletic, Steven Z.; Haagenson, Michael D.; Zhang, Mei-Jie; Antin, Joseph H.; Bolwell, Brian J.; Bredeson, Christopher; Cahn, Jean-Yves; Cairo, Mitchell; Gale, Robert Peter; Gupta, Vikas; Lee, Stephanie J.; Litzow, Mark; Weisdorf, Daniel J.; Horowitz, Mary M.; Hahn, Theresa

    2012-01-01

    Risk factors for acute GVHD (AGVHD), overall survival, and transplant-related mortality were evaluated in adults receiving allogeneic hematopoietic cell transplants (1999-2005) from HLA-identical sibling donors (SDs; n = 3191) or unrelated donors (URDs; n = 2370) and reported to the Center for International Blood and Marrow Transplant Research, Minneapolis, MN. To understand the impact of transplant regimen on AGVHD risk, 6 treatment categories were evaluated: (1) myeloablative conditioning (MA) with total body irradiation (TBI) + PBSCs, (2) MA + TBI + BM, (3) MA + nonTBI + PBSCs, (4) MA + nonTBI + BM, (5) reduced intensity conditioning (RIC) + PBSCs, and (6) RIC + BM. The cumulative incidences of grades B-D AGVHD were 39% (95% confidence interval [CI], 37%-41%) in the SD cohort and 59% (95% CI, 57%-61%) in the URD cohort. Patients receiving SD transplants with MA + nonTBI + BM and RIC + PBSCs had significantly lower risks of grades B-D AGVHD than patients in other treatment categories. Those receiving URD transplants with MA + TBI + BM, MA + nonTBI + BM, RIC + BM, or RIC + PBSCs had lower risks of grades B-D AGVHD than those in other treatment categories. The 5-year probabilities of survival were 46% (95% CI, 44%-49%) with SD transplants and 33% (95% CI, 31%-35%) with URD transplants. Conditioning intensity, TBI and graft source have a combined effect on risk of AGVHD that must be considered in deciding on a treatment strategy for individual patients. PMID:22010102

  6. Risk factors for acute GVHD and survival after hematopoietic cell transplantation.

    PubMed

    Jagasia, Madan; Arora, Mukta; Flowers, Mary E D; Chao, Nelson J; McCarthy, Philip L; Cutler, Corey S; Urbano-Ispizua, Alvaro; Pavletic, Steven Z; Haagenson, Michael D; Zhang, Mei-Jie; Antin, Joseph H; Bolwell, Brian J; Bredeson, Christopher; Cahn, Jean-Yves; Cairo, Mitchell; Gale, Robert Peter; Gupta, Vikas; Lee, Stephanie J; Litzow, Mark; Weisdorf, Daniel J; Horowitz, Mary M; Hahn, Theresa

    2012-01-05

    Risk factors for acute GVHD (AGVHD), overall survival, and transplant-related mortality were evaluated in adults receiving allogeneic hematopoietic cell transplants (1999-2005) from HLA-identical sibling donors (SDs; n = 3191) or unrelated donors (URDs; n = 2370) and reported to the Center for International Blood and Marrow Transplant Research, Minneapolis, MN. To understand the impact of transplant regimen on AGVHD risk, 6 treatment categories were evaluated: (1) myeloablative conditioning (MA) with total body irradiation (TBI) + PBSCs, (2) MA + TBI + BM, (3) MA + nonTBI + PBSCs, (4) MA + nonTBI + BM, (5) reduced intensity conditioning (RIC) + PBSCs, and (6) RIC + BM. The cumulative incidences of grades B-D AGVHD were 39% (95% confidence interval [CI], 37%-41%) in the SD cohort and 59% (95% CI, 57%-61%) in the URD cohort. Patients receiving SD transplants with MA + nonTBI + BM and RIC + PBSCs had significantly lower risks of grades B-D AGVHD than patients in other treatment categories. Those receiving URD transplants with MA + TBI + BM, MA + nonTBI + BM, RIC + BM, or RIC + PBSCs had lower risks of grades B-D AGVHD than those in other treatment categories. The 5-year probabilities of survival were 46% (95% CI, 44%-49%) with SD transplants and 33% (95% CI, 31%-35%) with URD transplants. Conditioning intensity, TBI and graft source have a combined effect on risk of AGVHD that must be considered in deciding on a treatment strategy for individual patients.

  7. Risk factors for recurrent Clostridium difficile infection in allogeneic hematopoietic cell transplant recipients.

    PubMed

    Mani, S; Rybicki, L; Jagadeesh, D; Mossad, S B

    2016-05-01

    Clostridium difficile infection (CDI) is one of the leading causes of hospital-acquired infections in recent times. Hematopoietic stem cell transplantation (HSCT) confers increased risk for CDI because of prolonged hospital stay, immunosuppression, the need to use broad-spectrum antibiotics and a complex interplay of preparative regimen and GvHD-induced gut mucosal damage. Our study evaluated risk factors (RF) for recurrent CDI in HSCT recipients given the ubiquity of traditional RF for CDI in this population. Of the 499 allogeneic HSCT recipients transplanted between 2005 and 2012, 61 (12%) developed CDI within 6 months before transplant or 2 years after transplant and were included in the analysis. Recurrent CDI occurred in 20 (33%) patients. One year incidence of CDI recurrence was 31%. Multivariable analyses identified the number of antecedent antibiotics other than those used to treat CDI as the only significant RF for recurrence (hazard ratio 1.96, 95% confidence interval 1.09-3.52, P=0.025). Most recurrences occurred within 6 months of the first CDI, and the recurrence of CDI was associated with a trend for increased risk of mortality. This prompts the need for further investigation into secondary prophylaxis to prevent recurrent CDI.

  8. Hematopoietic and Leukemic Stem Cells Have Distinct Dependence on Tcf1 and Lef1 Transcription Factors.

    PubMed

    Yu, Shuyang; Li, Fengyin; Xing, Shaojun; Zhao, Tianyan; Peng, Weiqun; Xue, Hai-Hui

    2016-05-20

    Hematopoietic and leukemic stem cells (HSCs and LSCs) have self-renewal ability to maintain normal hematopoiesis and leukemia propagation, respectively. Tcf1 and Lef1 transcription factors are expressed in HSCs, and targeting both factors modestly expanded the size of the HSC pool due to diminished HSC quiescence. Functional defects of Tcf1/Lef1-deficient HSCs in multi-lineage blood reconstitution was only evident under competitive conditions or when subjected to repeated regenerative stress. These are mechanistically due to direct positive regulation of Egr and Tcf3 by Tcf1 and Lef1, and significantly, forced expression of Egr1 in Tcf1/Lef1-deficient HSCs restored HSC quiescence. In a preclinical CML model, loss of Tcf1/Lef1 did not show strong impact on leukemia initiation and progression. However, when transplanted into secondary recipients, Tcf1/Lef1-deficient LSCs failed to propagate CML. By induced deletion of Tcf1 and Lef1 in pre-established CML, we further demonstrated an intrinsic requirement for these factors in LSC self-renewal. When combined with imatinib therapy, genetic targeting of Tcf1 and Lef1 potently diminished LSCs and conferred better protection to the CML recipients. LSCs are therefore more sensitive to loss of Tcf1 and Lef1 than HSCs in their self-renewal capacity. The differential requirements in HSCs and LSCs thus identify Tcf1 and Lef1 transcription factors as novel therapeutic targets in treating hematological malignancies, and inhibition of Tcf1/Lef1-regulated transcriptional programs may thus provide a therapeutic window to eliminate LSCs with minimal side effect on normal HSC functions.

  9. Prognostic factors for early severe pulmonary complications after hematopoietic stem cell transplantation.

    PubMed

    Ho, V T; Weller, E; Lee, S J; Alyea, E P; Antin, J H; Soiffer, R J

    2001-01-01

    Pulmonary complications are a significant cause of early mortality (before day 100) after bone marrow transplantation (BMT). To identify factors associated with development of early post-BMT severe pulmonary complications (SPCs), we conducted a retrospective review of the medical records of 339 consecutive patients who underwent hematopoietic stem cell transplantation for hematologic disorders and identified pulmonary complications that occurred before day 60 posttransplantation. SPCs, defined as (1) diagnosis of diffuse alveolar hemorrhage, (2) need for mechanical ventilation, or (3) death from respiratory failure, occurred in 48 (24%) of 199 patients receiving allogeneic transplants and 4 (2.9%) of 140 patients receiving autologous transplants (P < .001). Multiple clinical variables were analyzed to determine their influence on the development of SPCs in allogeneic marrow recipients. The method of graft-versus-host disease (GVHD) prophylaxis was the single most important factor affecting SPC incidence. Of patients who received cyclosporine/methotrexate (CYA/MTX) as GVHD prophylaxis, 33% experienced SPCs compared with 8% of those receiving T-cell depletion (TCD) alone (P < .0001). Multivariate analysis confirmed that TCD was associated with a lower risk of SPCs (relative risk [RR], 0.18; P = .0006). In addition to GVHD prophylaxis, a reduced pretransplantation FEV1 (forced expiratory volume in 1 second) (< or = 80% of predicted) was associated with an increased risk for SPCs (odds ratio, 4.4; P = .0025). Grades 2 to 4 acute GVHD, tobacco use, age > or = 50 years, sex, unrelated donor, cytomegalovirus serologic status, disease status at transplantation, pretransplantation carbon monoxide diffusing capacity, and total body irradiation were not associated with development of SPCs. We conclude that autologous BMT is associated with a significantly lower incidence of SPCs compared with allogeneic BMT and that for allogeneic BMT, GVHD prophylaxis using TCD is associated

  10. Changing Factors associated with Parent Activation after Pediatric Hematopoietic Stem Cell Transplant

    PubMed Central

    Pennarola, Brian W.; Rodday, Angie Mae; Bingen, Kristin; Schwartz, Lisa A.; Patel, Sunita K.; Syrjala, Karen L.; Mayer, Deborah K.; Ratichek, Sara J.; Guinan, Eva C.; Kupst, Mary Jo; Hibbard, Judith H.; Parsons, Susan K.

    2015-01-01

    Purpose To identify factors associated with parent activation in parents of children undergoing pediatric hematopoietic stem cell transplant (HSCT) in the 6 months following HSCT, and to address if their association with parent activation changes over time. Methods Measures for this analysis, including the Parent Patient Activation Measure (Parent-PAM), were completed by parents (N=198) prior to their child’s HSCT preparative regimen and again at 6 months post-HSCT. Clinical data were also collected. A repeated measures model was built to estimate the association between clinical and demographic factors and parent well-being on Parent-PAM scores. Interactions with time were considered to test for changing effects over time. Results Throughout the HSCT course, older parent age was associated with lower Parent-PAM scores (β=−0.29, p=0.02) and never being married was associated with higher scores (versus married, β=12.27, p=0.03). While higher parent emotional functioning scores were not associated with activation at baseline, they were important at 6 months (baseline: β=−0.002, p=0.96; interaction: β=0.14, p=0.03). At baseline longer duration of illness was associated with increased activation, but this effect diminished with time (baseline: β=3.29, p=0.0002; interaction: β=−2.40, p=0.02). Activation levels dropped for parents of children who went from private to public insurance (baseline: β=2.95, p=0.53; interaction: β=−13.82, p=0.004). Clinical events did not affect Parent-PAM scores. Conclusions Our findings reveal important changes in the factors associated with parent activation in the first 6 months after pediatric HSCT. These findings may reflect the emotional and financial toll of pediatric HSCT on parent activation. PMID:25519755

  11. Risk factor analysis of autoimmune hemolytic anemia after allogeneic hematopoietic stem cell transplantation in children.

    PubMed

    Chang, Tsung-Yen; Jaing, Tang-Her; Wen, Yu-Chuan; Huang, I-Anne; Chen, Shih-Hsiang; Tsay, Pei-Kwei

    2016-11-01

    Autoimmune hemolytic anemia (AIHA) is a clinically relevant complication after allogeneic hematopoietic stem cell transplantation (HSCT). Currently, there is no established consensus regarding the optimal therapeutic approach. Whether AIHA contributes to increased mortality is still somewhat controversial.We investigated the incidence, risk factors, and outcome of post-transplant AIHA in 265 consecutive pediatric patients undergoing allo-HSCT over a 17-year period. Onset of AIHA was calculated from the first documented detection of AIHA by either clinical symptoms or positive direct agglutinin test. Resolution of AIHA was defined as normalization of hemoglobin and biochemical markers of hemolysis with sustained transfusion independence.We identified 15 cases of AIHA after allo-HSCT (incidence rate, 6%). Ten (67%) of these patients had a positive direct antiglobulin test. Data were obtained for 9 boys and 6 girls after a median follow-up of 53 months (range 4-102). The median age was 5.1 years (range 0.5-15.4) at the time of HSCT and the median time to emergence was 149 days (range 42-273). No significant risk factor for post-transplant AIHA has emerged from our data to date. In the majority (14 of 15; 93%) of AIHA patients, multiple agents for treatment were required, with 12 of 15 (80%) patients achieving complete resolution of AIHA. No splenectomy was performed in any of our patients.For various reasons, post-transplantation AIHA poses an extraordinary challenge to transplant physicians. Despite the advancements in diagnostic tools, therapeutic challenges remain due to the myriad interacting pathways in AIHA.

  12. Risk factor analysis of autoimmune hemolytic anemia after allogeneic hematopoietic stem cell transplantation in children

    PubMed Central

    Chang, Tsung-Yen; Jaing, Tang-Her; Wen, Yu-Chuan; Huang, I-Anne; Chen, Shih-Hsiang; Tsay, Pei-Kwei

    2016-01-01

    Abstract Autoimmune hemolytic anemia (AIHA) is a clinically relevant complication after allogeneic hematopoietic stem cell transplantation (HSCT). Currently, there is no established consensus regarding the optimal therapeutic approach. Whether AIHA contributes to increased mortality is still somewhat controversial. We investigated the incidence, risk factors, and outcome of post-transplant AIHA in 265 consecutive pediatric patients undergoing allo-HSCT over a 17-year period. Onset of AIHA was calculated from the first documented detection of AIHA by either clinical symptoms or positive direct agglutinin test. Resolution of AIHA was defined as normalization of hemoglobin and biochemical markers of hemolysis with sustained transfusion independence. We identified 15 cases of AIHA after allo-HSCT (incidence rate, 6%). Ten (67%) of these patients had a positive direct antiglobulin test. Data were obtained for 9 boys and 6 girls after a median follow-up of 53 months (range 4–102). The median age was 5.1 years (range 0.5–15.4) at the time of HSCT and the median time to emergence was 149 days (range 42–273). No significant risk factor for post-transplant AIHA has emerged from our data to date. In the majority (14 of 15; 93%) of AIHA patients, multiple agents for treatment were required, with 12 of 15 (80%) patients achieving complete resolution of AIHA. No splenectomy was performed in any of our patients. For various reasons, post-transplantation AIHA poses an extraordinary challenge to transplant physicians. Despite the advancements in diagnostic tools, therapeutic challenges remain due to the myriad interacting pathways in AIHA. PMID:27861376

  13. Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors.

    PubMed

    Karamitros, Dimitris; Patmanidi, Alexandra L; Kotantaki, Panoraia; Potocnik, Alexandre J; Bähr-Ivacevic, Tomi; Benes, Vladimir; Lygerou, Zoi; Kioussis, Dimitris; Taraviras, Stavros

    2015-01-01

    Balancing stem cell self-renewal and initiation of lineage specification programs is essential for the development and homeostasis of the hematopoietic system. We have specifically ablated geminin in the developing murine hematopoietic system and observed profound defects in the generation of mature blood cells, leading to embryonic lethality. Hematopoietic stem cells (HSCs) accumulated in the fetal liver following geminin ablation, while committed progenitors were reduced. Genome-wide transcriptome analysis identified key HSC transcription factors as being upregulated upon geminin deletion, revealing a gene network linked with geminin that controls fetal hematopoiesis. In order to obtain mechanistic insight into the ability of geminin to regulate transcription, we examined Hoxa9 as an example of a key gene in definitive hematopoiesis. We demonstrate that in human K562 cells geminin is associated with HOXA9 regulatory elements and its absence increases HOXA9 transcription similarly to that observed in vivo. Moreover, silencing geminin reduced recruitment of the PRC2 component SUZ12 to the HOXA9 locus and resulted in an increase in RNA polymerase II recruitment and H3K4 trimethylation (H3K4me3), whereas the repressive marks H3K9me3 and H3K27me3 were reduced. The chromatin landscape was also modified at the regulatory regions of HOXA10 and GATA1. K562 cells showed a reduced ability to differentiate to erythrocytes and megakaryocytes upon geminin silencing. Our data suggest that geminin is indispensable for fetal hematopoiesis and regulates the generation of a physiological pool of stem and progenitor cells in the fetal hematopoietic system.

  14. Cell cycle regulation in hematopoietic stem cells.

    PubMed

    Pietras, Eric M; Warr, Matthew R; Passegué, Emmanuelle

    2011-11-28

    Hematopoietic stem cells (HSCs) give rise to all lineages of blood cells. Because HSCs must persist for a lifetime, the balance between their proliferation and quiescence is carefully regulated to ensure blood homeostasis while limiting cellular damage. Cell cycle regulation therefore plays a critical role in controlling HSC function during both fetal life and in the adult. The cell cycle activity of HSCs is carefully modulated by a complex interplay between cell-intrinsic mechanisms and cell-extrinsic factors produced by the microenvironment. This fine-tuned regulatory network may become altered with age, leading to aberrant HSC cell cycle regulation, degraded HSC function, and hematological malignancy.

  15. Factors associated with improved outcomes after second allogeneic hematopoietic cell transplantation for relapsed pediatric leukemia.

    PubMed

    Menon, Neethu N; Jenkins, Lydia M; Cui, Haiyan; Jenkins, Craig; Anwer, Faiz; Yeager, Andrew M; Katsanis, Emmanuel

    2016-03-01

    A second allogeneic (allo) hematopoietic cell transplant (HCT) is an important therapeutic consideration for patients relapsing after their first. We conducted a retrospective review of 41 pediatric patients with leukemia that underwent a second allo-HCT at our institution. Overall, 53.7 and 43.9 % of patients were alive and disease-free at 1 and 5 years, respectively, after the second allo-HCT. The factors affecting outcome by both univariate and multivariate analysis were interval between transplants and the use of a myeloablative conditioning (MAC) regimen prior to second transplant. Outcomes were inferior in patients who received their second transplant <6 months from their first HCT when compared to patients in whom the interval between HCTs was 6-12 or more than 12 months. Interval between HCTs was also significant when each type of leukemia (acute lymphoblastic leukemia (ALL) n = 21, acute myelogenous leukemia (AML) n = 11, and chronic myelogenous leukemia (CML) n = 7) was analyzed separately. In univariate analysis, use of the same donor and use of a matched sibling donor resulted in significant improved outcome. There was not a significant association between disease-free survival (DFS) and age, remission status, use of total body irradiation (TBI) before second HCT, or type of leukemia. Second allogeneic HCT can be a curative therapeutic option for leukemia patients relapsing after their first transplant. As more targeted therapies have become available, patients that relapse after first HCT are more likely to achieve remission. Therefore, it is anticipated that there will be more candidates for second HCT with improved performance and remission status, ultimately leading to a better outcome with the second HCT.

  16. Nutritional status of allogeneic hematopoietic stem cell transplantation recipients: influencing risk factors and impact on survival.

    PubMed

    El-Ghammaz, Amro Mohamed Sedky; Ben Matoug, Rima; Elzimaity, Maha; Mostafa, Nevine

    2017-04-24

    Patients subjected to allogeneic hematopoietic stem cell transplantation (HSCT) are at increased nutritional risk which in turn may alter their outcome. For providing good nutritional care for patients, it is important to analyze risk factors influencing nutritional status during and after HSCT. Fifty patients undergoing allogeneic HSCT were subjected to nutritional status assessment by using the patient-generated subjective global assessment (PG-SGA) at initial admission, day 30 and day 180. Two patients (4%) had malnutrition at admission, 36 (72%) at day 30, and 24 (48%) at day 180. At day 30, comorbidity index higher than 0 and fever lasting for more than 1 week had a significant impact on nutritional status (P = .004 and P = .006, respectively). Regarding day 180, comorbidity index higher than 0 and presence of ≥grade II acute gastrointestinal graft versus host disease (GI GVHD) significantly influenced nutritional status (P = .017 and P = .026, respectively). Well-nourished patients at admission and day 180 had a significantly higher overall survival (OS) in comparison to malnourished patients (P < .001 and P = .012, respectively). Nutritional status at admission and day 180 had a significant influence on OS in multivariate analysis (P = .039 and P = .032, respectively). Allogeneic HSCT patients having high comorbidity index, developing prolonged fever, and experiencing ≥grade II acute GI GVHD suffer from worsening in their nutritional status during hospitalization and after discharge. Also, nutritional status at admission and day 180 significantly influences their survival.

  17. Differential expression of the transcription factor ARID3a in lupus patient hematopoietic progenitor cells.

    PubMed

    Ratliff, Michelle L; Ward, Julie M; Merrill, Joan T; James, Judith A; Webb, Carol F

    2015-02-01

    Although hematopoietic stem/progenitor cells (HSPCs) are used for transplantation, characterization of the multiple subsets within this population in humans has lagged behind similar studies in mice. We found that expression of the DNA-binding protein, ARID3a, in mouse stem cells was important for normal development of hematopoietic lineages; however, progenitors expressing ARID3a in humans have not been defined. We previously showed increased numbers of ARID3a(+) B cells in nearly half of systemic lupus erythematosus (SLE) patients, and total numbers of ARID3a(+) B cells were associated with increased disease severity. Because expression of ARID3a in those SLE patients occurred throughout all B cell subsets, we hypothesized that ARID3a expression in patient HSPCs might also be increased relative to expression in healthy controls. Our data now show that ARID3a expression is not limited to any defined subset of HSPCs in either healthy controls or SLE patients. Numbers of ARID3a(+) HSPCs in SLE patients were increased over numbers of ARID3a(+) cells in healthy controls. Although all SLE-derived HSPCs exhibited poor colony formation in vitro compared with controls, SLE HSPCs with high numbers of ARID3a(+) cells yielded increased numbers of cells expressing the early progenitor marker, CD34. SLE HSPCs with high numbers of ARID3a(+) cells also more readily generated autoantibody-producing cells than HSPCs with lower levels of ARID3a in a humanized mouse model. These data reveal new functions for ARID3a in early hematopoiesis and suggest that knowledge regarding ARID3a levels in HSPCs could be informative for applications requiring transplantation of those cells. Copyright © 2015 by The American Association of Immunologists, Inc.

  18. Differential Expression of the Transcription Factor ARID3a in Lupus Patient Hematopoietic Progenitor Cells1

    PubMed Central

    Ratliff, Michelle L.; Ward, Julie M.; Merrill, Joan T.; James, Judith A.; Webb, Carol F.

    2014-01-01

    Although hematopoietic progenitor/stem cells (HPSCs) are used for transplantation, characterization of the multiple subsets within this population in man has lagged behind similar studies in mice. We found that expression of the DNA-binding protein, ARID3a, in mouse stem cells was important for normal development of hematopoietic lineages; however, progenitors expressing ARID3a in man have not been defined. We previously showed increased numbers of ARID3a+ B cells in nearly half of systemic lupus erythematosus (SLE) patients, and that total numbers of ARID3a+ B cells were associated with increased disease severity. Because expression of ARID3a in those SLE patients occurred throughout all B cell subsets, we hypothesized that ARID3a expression in patient HSPCs might also be increased relative to expression in healthy controls. Our data now show that ARID3a expression is not limited to any defined subset of HPSCs in either healthy controls or SLE patients. Numbers of ARID3a+ HSPCs in SLE patients were increased over numbers of ARID3a+ cells in healthy controls. While all SLE-derived HPSCs exhibited poor colony formation in vitro compared to controls, SLE HPSCs with high numbers of ARID3a+ cells yielded increased numbers of cells expressing the early progenitor marker, CD34. SLE HPSCs with high numbers of ARID3a+ cells also more readily generated autoantibody producing cells than HPSCs with lower levels of ARID3a in a humanized mouse model. These data reveal new functions for ARID3a in early hematopoiesis and suggest that knowledge regarding ARID3a levels in HPSCs could be informative for applications requiring transplantation of those cells. PMID:25535283

  19. Multipotent adult progenitor cells improve the hematopoietic function in myelodysplasia.

    PubMed

    Roobrouck, Valerie D; Wolfs, Esther; Delforge, Michel; Broekaert, Dorien; Chakraborty, Soumen; Sels, Kathleen; Vanwelden, Thomas; Holvoet, Bryan; Lhoest, Larissa; Khurana, Satish; Pandey, Shubham; Hoornaert, Chloé; Ponsaerts, Peter; Struys, Tom; Boeckx, Nancy; Vandenberghe, Peter; Deroose, Christophe M; Verfaillie, Catherine M

    2017-06-01

    Myelodysplastic syndromes (MDS) are a group of clonal stem cell disorders affecting the normal hematopoietic differentiation process and leading to abnormal maturation and differentiation of all blood cell lineages. Treatment options are limited, and there is an unmet medical need for effective therapies for patients with severe cytopenias. We demonstrate that multipotent adult progenitor cells (MAPC) improve the function of hematopoietic progenitors derived from human MDS bone marrow (BM) by significantly increasing the frequency of primitive progenitors as well as the number of myeloid colonies. This effect was more pronounced in a non-contact culture, indicating the importance of soluble factors produced by the MAPC cells. Moreover, the cells did not stimulate the growth of the abnormal MDS clone, as shown by fluorescent in situ hybridization analysis on BM cells from patients with a known genetic abnormality. We also demonstrate that MAPC cells can provide stromal support for patient-derived hematopoietic cells. When MAPC cells were intravenously injected into a mouse model of MDS, they migrated to the site of injury and increased the hematopoietic function in diseased mice. The preclinical studies undertaken here indicate an initial proof of concept for the use of MAPC cell therapy in patients with MDS-related severe and symptomatic cytopenias and should pave the way for further investigation in clinical trials. Copyright © 2017. Published by Elsevier Inc.

  20. Platelet factor 4 promotes adhesion of hematopoietic progenitor cells and binds IL-8: novel mechanisms for modulation of hematopoiesis.

    PubMed

    Dudek, Arkadiusz Z; Nesmelova, Irina; Mayo, Kevin; Verfaillie, Catherine M; Pitchford, Simon; Slungaard, Arne

    2003-06-15

    Platelet factor 4 (PF4) is an abundant platelet alpha-granule C-X-C chemokine that has weak chemotactic potency but strongly inhibits hematopoiesis through an unknown mechanism. We find that PF4 binds to human CD34+ hematopoietic progenitor cells (HPCs) with a median effective concentration of 1 microg/mL but not after exposure to chondroitinase ABC. PF4 enhances adhesion of HPCs to intact stroma. Committed progenitors also adhere avidly to immobilized PF4. This adhesion is time-dependent, requires metabolic activity, causes cytoskeletal rearrangement, and induces cell-cycle inhibition. Using extracellular acidification rate to indicate transmembrane signaling, we find that interleukin-8 (IL-8), but not PF4, activates CD34+ progenitors, and PF4 blocks IL-8-mediated activation. Surface plasmon resonance analysis shows that PF4 binds IL-8 with high (dissociation constant [Kd] = 42 nM) affinity. Nuclear magnetic resonance analysis of IL-8 and PF4 in solution confirms this interaction. We conclude that PF4 has the capacity to influence hematopoiesis through mechanisms not mediated by a classical high-affinity, 7-transmembrane domain chemokine receptor. Instead, PF4 may modulate the hematopoietic milieu both directly, by promoting progenitor adhesion and quiescence through interaction with an HPC chondroitin sulfate-containing moiety, and indirectly, by binding to or interfering with signaling caused by other, hematopoietically active chemokines, such as IL-8.

  1. Neurologic complications after allogeneic hematopoietic stem cell transplantation in children: analysis of prognostic factors.

    PubMed

    Kang, Ji-Man; Kim, Yae-Jean; Kim, Ju Youn; Cho, Eun Joo; Lee, Jee Hun; Lee, Mun Hyang; Lee, Soo-Hyun; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2015-06-01

    Neurologic complications are serious complications after hematopoietic stem cell transplantation (HSCT) and significantly contribute to morbidity and mortality. The purpose of this study was to investigate the clinical features and prognosis in pediatric patients who had neurologic complications after allogeneic HSCT. We retrospectively reviewed the medical records of children and adolescents (19 years old or younger) who underwent allogeneic HSCT at our institution from 2000 to 2012. A total of 383 patients underwent 430 allogeneic transplantations. Among them, 73 episodes of neurologic complications occurred in 70 patients. The cumulative incidence of neurologic complications at day 400 was 20.0%. Almost two thirds of the episodes (63.0%, 46 of 73) occurred within 100 days after transplantation. Calcineurin inhibitor-related neurotoxicity was observed as the most common cause of neurotoxicity (47.9%, 35 of 73) and was significantly associated with earlier onset neurologic complications, seizure, and tremor. It also showed a significant association with lower probability of headache, abnormality of cranial nerve, and neurologic sequelae. In a multivariate analysis, days to neutrophil engraftment after HSCT, extensive chronic graft-versus-host disease (GVHD) and the existence of neurologic sequelae were identified as risk factors for mortality in patients who had neurologic complications (hazard ratio [HR], 1.08; 95% confidence interval [CI], 1.02 to 1.15; P = .011; HR, 5.98; 95% CI, 1.71 to 20.90; P = .005; and HR, 4.37; 95% CI, 1.12 to 17.05; P = .034, respectively). However, there was no significant difference in the 5-year overall survival between the patients who had neurologic complications without sequelae and the patients who did not have any neurologic complications (57.3% versus 61.8%, P = .906). In conclusion, we found that the major significant risk factors for mortality in pediatric recipients with neurologic complications were the existence of

  2. Endoglin expression level discriminates long-term hematopoietic from short-term clonogenic progenitor cells in the aorta

    PubMed Central

    Roques, Marion; Durand, Charles; Gautier, Rodolphe; Canto, Pierre-Yves; Petit-Cocault, Laurence; Yvernogeau, Laurent; Dunon, Dominique; Souyri, Michèle; Jaffredo, Thierry

    2012-01-01

    CD105 is an auxiliary receptor for the transforming growth factor beta superfamily, highly expressed on proliferating endothelial cells and adult hematopoietic stem cells. Because CD105 mRNA expression was reported in the developing aortic region, we further characterized its expression profile in the aorta and examined the hematopoietic potential of CD105+ cells. Aortic endothelial cells, intra-aortic hematopoietic cell clusters and the purified cell fraction enriched in progenitor/hematopoietic stem cell activity expressed CD105. Aortic hematopoietic short-term clonogenic progenitors were highly enriched in the CD105intermediate population whereas more immature long-term progenitors/hematopoietic stem cells are contained within the CD105high population. This places CD105 on the short list of molecules discriminating short-term versus long-term progenitors in the aorta. Furthermore, decreasing transforming growth factor beta signaling increases the number of clonogenic progenitors. This suggests that CD105 expression level defines a hierarchy among aortic hematopoietic cells allowing purification of clonogenic versus more immature hematopoietic progenitors, and that the transforming growth factor beta pathway plays a critical role in this process. PMID:22271899

  3. Identification of key factors regulating self-renewal and differentiation in EML hematopoietic precursor cells by RNA-sequencing analysis.

    PubMed

    Zong, Shan; Deng, Shuyun; Chen, Kenian; Wu, Jia Qian

    2014-11-11

    Hematopoietic stem cells (HSCs) are used clinically for transplantation treatment to rebuild a patient's hematopoietic system in many diseases such as leukemia and lymphoma. Elucidating the mechanisms controlling HSCs self-renewal and differentiation is important for application of HSCs for research and clinical uses. However, it is not possible to obtain large quantity of HSCs due to their inability to proliferate in vitro. To overcome this hurdle, we used a mouse bone marrow derived cell line, the EML (Erythroid, Myeloid, and Lymphocytic) cell line, as a model system for this study. RNA-sequencing (RNA-Seq) has been increasingly used to replace microarray for gene expression studies. We report here a detailed method of using RNA-Seq technology to investigate the potential key factors in regulation of EML cell self-renewal and differentiation. The protocol provided in this paper is divided into three parts. The first part explains how to culture EML cells and separate Lin-CD34+ and Lin-CD34- cells. The second part of the protocol offers detailed procedures for total RNA preparation and the subsequent library construction for high-throughput sequencing. The last part describes the method for RNA-Seq data analysis and explains how to use the data to identify differentially expressed transcription factors between Lin-CD34+ and Lin-CD34- cells. The most significantly differentially expressed transcription factors were identified to be the potential key regulators controlling EML cell self-renewal and differentiation. In the discussion section of this paper, we highlight the key steps for successful performance of this experiment. In summary, this paper offers a method of using RNA-Seq technology to identify potential regulators of self-renewal and differentiation in EML cells. The key factors identified are subjected to downstream functional analysis in vitro and in vivo.

  4. A synthetic three-dimensional niche system facilitates generation of functional hematopoietic cells from human-induced pluripotent stem cells.

    PubMed

    Xu, Yulin; Shan, Wei; Li, Xia; Wang, Binsheng; Liu, Senquan; Wang, Yebo; Long, Yan; Tie, Ruxiu; Wang, Limengmeng; Cai, Shuyang; Zhang, Hao; Lin, Yu; Zhang, Mingming; Zheng, Weiyan; Luo, Yi; Yu, Xiaohong; Yee, Jiing-Kuan; Ji, Junfeng; Huang, He

    2016-09-29

    The efficient generation of hematopoietic stem cells (HSCs) from human-induced pluripotent stem cells (iPSCs) holds great promise in personalized transplantation therapies. However, the derivation of functional and transplantable HSCs from iPSCs has had very limited success thus far. We developed a synthetic 3D hematopoietic niche system comprising nanofibers seeded with bone marrow (BM)-derived stromal cells and growth factors to induce functional hematopoietic cells from human iPSCs in vitro. Approximately 70 % of human CD34(+) hematopoietic cells accompanied with CD43(+) progenitor cells could be derived from this 3D induction system. Colony-forming-unit (CFU) assay showed that iPSC-derived CD34(+) cells formed all types of hematopoietic colonies including CFU-GEMM. TAL-1 and MIXL1, critical transcription factors associated with hematopoietic development, were expressed during the differentiation process. Furthermore, iPSC-derived hematopoietic cells gave rise to both lymphoid and myeloid lineages in the recipient NOD/SCID mice after transplantation. Our study underscores the importance of a synthetic 3D niche system for the derivation of transplantable hematopoietic cells from human iPSCs in vitro thereby establishing a foundation towards utilization of human iPSC-derived HSCs for transplantation therapies in the clinic.

  5. Hematopoietic pre-B cell leukemia transcription factor interacting protein is overexpressed in gastric cancer and promotes gastric cancer cell proliferation, migration, and invasion

    PubMed Central

    Feng, Yingying; Li, Ling; Zhang, Xiaomei; Zhang, Yunjing; Liang, Yingchun; Lv, Jinjing; Fan, Zhongyi; Guo, Jing; Hong, Tian; Ji, Beibei; Ji, Quanbo; Mei, Guohui; Ding, Lihua; Zhang, Shu; Xu, Xiaojie; Ye, Qinong

    2015-01-01

    Hematopoietic pre-B cell leukemia transcription factor interacting protein (HPIP) has been shown to play an important role in the development and progression of some cancers. However, the role of HPIP in gastric cancer (GC) is unclear. Here, we show that HPIP is upregulated in most GC patients and promotes GC cell proliferation, migration, and invasion. In GC patients, HPIP positively associates with tumor size and nodal metastasis, and negatively associates with tumor differentiation. Hematopoietic pre-B cell leukemia transcription factor interacting protein increases GC cell proliferation through activation of G1/S and G2/M cell cycle transitions, accompanied by a marked increase of the positive cell cycle regulators, including cyclin D1, cyclin A, and cyclin B1. Hematopoietic pre-B cell leukemia transcription factor interacting protein enhances GC cell migration and invasion, and modulates epithelial–mesenchymal transition, which plays a key role in cancer cell migration and invasion. These data underscore the critical role of HPIP in GC cell proliferation and progression and suggest that HPIP inhibition may be a useful therapeutic strategy for GC treatment. PMID:26211905

  6. Transcriptional regulation of the cyclin D1 promoter by STAT5: its involvement in cytokine-dependent growth of hematopoietic cells.

    PubMed Central

    Matsumura, I; Kitamura, T; Wakao, H; Tanaka, H; Hashimoto, K; Albanese, C; Downward, J; Pestell, R G; Kanakura, Y

    1999-01-01

    STAT5 is a member of a family of transcription factors that participate in the signal transduction pathways of many hormones and cytokines. Although STAT5 is suggested to play a crucial role in the biological effects of cytokines, its downstream target(s) associated with cell growth control is largely unknown. In a human interleukin-3 (IL-3)-dependent cell line F-36P-mpl, the induced expression of dominant-negative (dn)-STAT5 and of dn-ras led to inhibition of IL-3-dependent cell growth, accompanying the reduced expression of cyclin D1 mRNA. Also, both constitutively active forms of STAT5A (1*6-STAT5A) and ras (H-rasG12V) enabled F-36P-mpl cells to proliferate without added growth factors. In NIH 3T3 cells, 1*6-STAT5A and H-rasG12V individually and cooperatively transactivated the cyclin D1 promoter in luciferase assays. Both dn-STAT5 and dn-ras suppressed IL-3-induced cyclin D1 promoter activities in F-36P-mpl cells. Using a series of mutant cyclin D1 promoters, 1*6-STAT5A was found to transactivate the cyclin D1 promoter through the potential STAT-binding sequence at -481 bp. In electrophoretic mobility shift assays, STAT5 bound to the element in response to IL-3. Furthermore, the inhibitory effect of dn-STAT5 on IL-3-dependent growth was restored by expression of cyclin D1. Thus STAT5, in addition to ras signaling, appears to mediate transcriptional regulation of cyclin D1, thereby contributing to cytokine-dependent growth of hematopoietic cells. PMID:10064602

  7. MicroRNA-30 inhibits antiapoptotic factor Mcl-1 in mouse and human hematopoietic cells after radiation exposure.

    PubMed

    Li, Xiang Hong; Ha, Cam T; Xiao, Mang

    2016-06-01

    We previously reported that microRNA-30 (miR-30) expression was initiated by radiation-induced proinflammatory factor IL-1β and NFkB activation in mouse and human hematopoietic cells. However, the downstream effectors of miR-30 and its specific role in radiation-induced cell death are not well understood. In the present study, we evaluated effects of radiation on miR-30 expression and activation of intrinsic apoptotic pathway Bcl-2 family factors in in vivo mouse and in vitro human hematopoietic cells. CD2F1 mice and human CD34+ cells were exposed to different doses of gamma-radiation. In addition to survival studies, mouse blood, bone marrow (BM) and spleen cells and human CD34+ cells were collected at 4 h, and 1, 3 and 4 days after irradiation to determine apoptotic and stress response signals. Our results showed that mouse serum miR-30, DNA damage marker γ-H2AX in BM, and Bim, Bax and Bak expression, cytochrome c release, and caspase-3 and -7 activation in BM and/or spleen cells were upregulated in a radiation dose-dependent manner. Antiapoptotic factor Mcl-1 was significantly downregulated, whereas Bcl-2 was less changed or unaltered in the irradiated mouse cells and human CD34+ cells. Furthermore, a putative miR-30 binding site was found in the 3' UTR of Mcl-1 mRNA. miR-30 directly inhibits the expression of Mcl-1 through binding to its target sequence, which was demonstrated by a luciferase reporter assay, and the finding that Mcl-1 was uninhibited by irradiation in miR-30 knockdown CD34+ cells. Bcl-2 expression was not affected by miR-30. Our data suggest miR-30 plays a key role in radiation-induced apoptosis through directly targeting Mcl-1in hematopoietic cells.

  8. Muscle-derived hematopoietic stem cells are hematopoietic in origin

    PubMed Central

    McKinney-Freeman, Shannon L.; Jackson, Kathyjo A.; Camargo, Fernando D.; Ferrari, Giuliana; Mavilio, Fulvio; Goodell, Margaret A.

    2002-01-01

    It has recently been shown that mononuclear cells from murine skeletal muscle contain the potential to repopulate all major peripheral blood lineages in lethally irradiated mice, but the origin of this activity is unknown. We have fractionated muscle cells on the basis of hematopoietic markers to show that the active population exclusively expresses the hematopoietic stem cell antigens Sca-1 and CD45. Muscle cells obtained from 6- to 8-week-old C57BL/6-CD45.1 mice and enriched for cells expressing Sca-1 and CD45 were able to generate hematopoietic but not myogenic colonies in vitro and repopulated multiple hematopoietic lineages of lethally irradiated C57BL/6-CD45.2 mice. These data show that muscle-derived hematopoietic stem cells are likely derived from the hematopoietic system and are a result not of transdifferentiation of myogenic stem cells but instead of the presence of substantial numbers of hematopoietic stem cells in the muscle. Although CD45-negative cells were highly myogenic in vitro and in vivo, CD45-positive muscle-derived cells displayed only very limited myogenic activity and only in vivo. PMID:11830662

  9. Dual requirement for the ETS transcription factors Fli-1 and Erg in hematopoietic stem cells and the megakaryocyte lineage.

    PubMed

    Kruse, Elizabeth A; Loughran, Stephen J; Baldwin, Tracey M; Josefsson, Emma C; Ellis, Sarah; Watson, Dennis K; Nurden, Paquita; Metcalf, Donald; Hilton, Douglas J; Alexander, Warren S; Kile, Benjamin T

    2009-08-18

    Fli-1 and Erg are closely related members of the Ets family of transcription factors. Both genes are translocated in human cancers, including Ewing's sarcoma, leukemia, and in the case of Erg, more than half of all prostate cancers. Although evidence from mice and humans suggests that Fli-1 is required for megakaryopoiesis, and that Erg is required for normal adult hematopoietic stem cell (HSC) regulation, their precise physiological roles remain to be defined. To elucidate the relationship between Fli-1 and Erg in hematopoiesis, we conducted an analysis of mice carrying mutations in both genes. Our results demonstrate that there is a profound genetic interaction between Fli-1 and Erg. Double heterozygotes displayed phenotypes more dramatic than single heterozygotes: severe thrombocytopenia, with a significant deficit in megakaryocyte numbers and evidence of megakaryocyte dysmorphogenesis, and loss of HSCs accompanied by a reduction in the number of committed hematopoietic progenitor cells. These results illustrate an indispensable requirement for both Fli-1 and Erg in normal HSC and megakaryocyte homeostasis, and suggest these transcription factors may coregulate common target genes.

  10. Dual requirement for the ETS transcription factors Fli-1 and Erg in hematopoietic stem cells and the megakaryocyte lineage

    PubMed Central

    Kruse, Elizabeth A.; Loughran, Stephen J.; Baldwin, Tracey M.; Josefsson, Emma C.; Ellis, Sarah; Watson, Dennis K.; Nurden, Paquita; Metcalf, Donald; Hilton, Douglas J.; Alexander, Warren S.; Kile, Benjamin T.

    2009-01-01

    Fli-1 and Erg are closely related members of the Ets family of transcription factors. Both genes are translocated in human cancers, including Ewing's sarcoma, leukemia, and in the case of Erg, more than half of all prostate cancers. Although evidence from mice and humans suggests that Fli-1 is required for megakaryopoiesis, and that Erg is required for normal adult hematopoietic stem cell (HSC) regulation, their precise physiological roles remain to be defined. To elucidate the relationship between Fli-1 and Erg in hematopoiesis, we conducted an analysis of mice carrying mutations in both genes. Our results demonstrate that there is a profound genetic interaction between Fli-1 and Erg. Double heterozygotes displayed phenotypes more dramatic than single heterozygotes: severe thrombocytopenia, with a significant deficit in megakaryocyte numbers and evidence of megakaryocyte dysmorphogenesis, and loss of HSCs accompanied by a reduction in the number of committed hematopoietic progenitor cells. These results illustrate an indispensable requirement for both Fli-1 and Erg in normal HSC and megakaryocyte homeostasis, and suggest these transcription factors may coregulate common target genes. PMID:19666492

  11. [Hematopoietic growth factors in primary and therapy-related bone marrow insufficiency].

    PubMed

    Hansen, B; Hippe, E; Jacobsen, G K; Johnsen, H E

    1992-06-08

    This investigation is retrospective and comprises 20 patients with bone-marrow insufficiency. During the period 1.4.1988-1.3.1991, these patients were treated with erythropoietin (Epo), the granulocyte-macrophage-colony-stimulating factor (GM-CSF) or the granulocyte-colony-stimulating factor (G-CSF). Thirteen patients had primary bone-marrow insufficiency: six had the myelodysplastic syndrome, three had primary myelofibrosis, two aplastic anemia and two myelomatosis. On account of dominating symptoms of anemia, five patients received Epo while eight received GM-CSF as part of an extensive clinical trial of this preparation. Seven patients with relapse of the haematological malignant disease had bone-marrow insufficiency and pancytopenia secondary to intensive chemotherapy/irradiation: four of these patients received GM-CSF and two received G-CSF with the object of increasing bone-marrow regeneration and to render further chemotherapy possible. One patient received GM-CSF with the object of improving bone-marrow function after autologous bone-marrow transplantation. Treatment with Epo for ten months combined with treatment with interferon for six months resulted in normalization of the haemoglobin concentration in one patient with bone-marrow insufficiency on account of primary myelofibrosis. Treatment with Epo for briefer periods in lower doses was without effect in four other patients with primary bone-marrow insufficiency. Treatment with GM-CSF and G-CSF resulted in neutrophil leukocytosis in 12 out of 15 patients (80%) and, in six out of 14 patients (43%), increased marrow cellularity was demonstrated by means of histological examination of the bone-marrow. One patient showed normal haemoglobin levels during treatment with GM-CSF.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Hematopoietic growth factors support in the elderly cancer patients treated with antiblastic chemotherapy.

    PubMed

    Rupolo, Maurizio; Lleshi, Arben; Cacopardo, Bruno; Michieli, Mariagrazia; Berretta, Massimiliano

    2013-11-01

    The 60% of tumors affected patients >65years of age and the future previsions are considering an amount of 70% after 2030. Elderly Patients presents multiple comorbidity, polipharmacy, and disability. Geriatric assessment helps physicians to take the best therapeutic decisions. Clinical conditions influence efficacy and tolerability of chemotherapy. Prophylactic use of G-CSF after chemotherapy lowers the rate and length of severe neutropenia , and decreases the episodes of febrile neutropenia. Anemia is a hematologic condition associated with ageing , but is frequently associated to concomitant chronic disease. Stem cells display increasing resistance to erythropoietin in the elderly patients and this is connected with the onset of pro-inflammatory cytokines characteristic of this age . Anemia is a common adverse event in cancer patients receiving chemotherapy. Several of the symptoms associated with anemia, such as fatigue, syncope, palpitations and dyspnea, reduce patient activity and have a profound effect on the quality of life [QOL]. Considering the unfit or frail status of elderly patient the at home use of peg-filgrastim and weekly or three weekly erythropoietin administration could be preferred for this setting of patients that lack of specialized nursing care or facilities. Further studies, considering the several differences in health organizations in vary countries, could be held to state the real impact of the biosimilars in comparison to the long acting originators in the reduction of costs in this group of patients.

  13. Ex vivo expansion of human hematopoietic stem and progenitor cells

    PubMed Central

    Dahlberg, Ann; Delaney, Colleen

    2011-01-01

    Despite progress in our understanding of the growth factors that support the progressive maturation of the various cell lineages of the hematopoietic system, less is known about factors that govern the self-renewal of hematopoietic stem and progenitor cells (HSPCs), and our ability to expand human HSPC numbers ex vivo remains limited. Interest in stem cell expansion has been heightened by the increasing importance of HSCs in the treatment of both malignant and nonmalignant diseases, as well as their use in gene therapy. To date, most attempts to ex vivo expand HSPCs have used hematopoietic growth factors but have not achieved clinically relevant effects. More recent approaches, including our studies in which activation of the Notch signaling pathway has enabled a clinically relevant ex vivo expansion of HSPCs, have led to renewed interest in this arena. Here we briefly review early attempts at ex vivo expansion by cytokine stimulation followed by an examination of our studies investigating the role of Notch signaling in HSPC self-renewal. We will also review other recently developed approaches for ex vivo expansion, primarily focused on the more extensively studied cord blood–derived stem cell. Finally, we discuss some of the challenges still facing this field. PMID:21436068

  14. Making a Hematopoietic Stem Cell.

    PubMed

    Daniel, Michael G; Pereira, Carlos-Filipe; Lemischka, Ihor R; Moore, Kateri A

    2016-03-01

    Previous attempts to either generate or expand hematopoietic stem cells (HSCs) in vitro have involved either ex vivo expansion of pre-existing patient or donor HSCs or de novo generation from pluripotent stem cells (PSCs), comprising both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). iPSCs alleviated ESC ethical issues but attempts to generate functional mature hematopoietic stem and progenitor cells (HSPCs) have been largely unsuccessful. New efforts focus on directly reprogramming somatic cells into definitive HSCs and HSPCs. To meet clinical needs and to advance drug discovery and stem cell therapy, alternative approaches are necessary. In this review, we synthesize the strategies used and the key findings made in recent years by those trying to make an HSC. Published by Elsevier Ltd.

  15. The hematopoietic cell-specific transcription factor PU.1 is critical for expression of CD11c.

    PubMed

    Yashiro, Takuya; Kasakura, Kazumi; Oda, Yoshihito; Kitamura, Nao; Inoue, Akihito; Nakamura, Shusuke; Yokoyama, Hokuto; Fukuyama, Kanako; Hara, Mutsuko; Ogawa, Hideoki; Okumura, Ko; Nishiyama, Makoto; Nishiyama, Chiharu

    2017-02-01

    PU.1 is a hematopoietic cell-specific transcription factor belonging to the Ets family, which plays an important role in the development of dendritic cells (DCs). CD11c (encoded by Itgax) is well established as a characteristic marker of hematopoietic lineages including DCs. In the present study, we analyzed the role of PU.1 (encoded by Spi-1) in the expression of CD11c. When small interfering RNA (siRNA) for Spi-1 was introduced into bone marrow-derived DCs (BMDCs), the mRNA level and cell surface expression of CD11c were dramatically reduced. Using reporter assays, the TTCC sequence at -56/-53 was identified to be critical for PU.1-mediated activation of the promoter. An EMSA showed that PU.1 directly bound to this region. ChIP assays demonstrated that a significant amount of PU.1 bound to this region on chromosomal DNA in BMDCs, which was decreased in LPS-stimulated BMDCs in accordance with the reduced levels of mRNAs of Itgax and Spi-1, and the histone acetylation degree. Enforced expression of exogenous PU.1 induced the expression of the CD11c protein on the cell surface of mast cells, whereas control transfectants rarely expressed CD11c. Quantitative RT-PCR also showed that the expression of a transcription factor Irf4, which is a partner molecule of PU.1, was reduced in PU.1-knocked down BMDCs. IRF4 transactivated the Itgax gene in a synergistic manner with PU.1. Taken together, these results indicate that PU.1 functions as a positive regulator of CD11c gene expression by directly binding to the Itgax promoter and through transactivation of the Irf4 gene. © The Japanese Society for Immunology. 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Epigenetic Regulation of Hematopoietic Stem Cells

    PubMed Central

    Sharma, Shilpa; Gurudutta, Gangenahalli

    2016-01-01

    Hematopoietic stem cells are endowed with a distinct potential to bolster self-renewal and to generate progeny that differentiate into mature cells of myeloid and lymphoid lineages. Both hematopoietic stem cells and mature cells have the same genome, but their gene expression is controlled by an additional layer of epigenetics such as DNA methylation and post-translational histone modifications, enabling each cell-type to acquire various forms and functions. Until recently, several studies have largely focussed on the transcription factors andniche factors for the understanding of the molecular mechanisms by which hematopoietic cells replicate and differentiate. Several lines of emerging evidence suggest that epigenetic modifications eventually result in a defined chromatin structure and an “individual” gene expression pattern, which play an essential role in the regulation of hematopoietic stem cell self-renewal and differentiation. Distinct epigenetic marks decide which sets of genes may be expressed and which genes are kept silent. Epigenetic mechanisms are interdependent and ensure lifelong production of blood and bone marrow, thereby contributing to stem cell homeostasis. The epigenetic analysis of hematopoiesis raises the exciting possibility that chromatin structure is dynamic enough for regulated expression of genes. Though controlled chromatin accessibility plays an essential role in maintaining blood homeostasis; mutations in chromatin impacts on the regulation of genes critical to the development of leukemia. In this review, we explored the contribution of epigenetic machinery which has implications for the ramification of molecular details of hematopoietic self-renewal for normal development and underlying events that potentially co-operate to induce leukemia. PMID:27426084

  17. Factors Associated With Parental Activation in Pediatric Hematopoietic Stem Cell Transplant

    PubMed Central

    Pennarola, Brian W.; Rodday, Angie Mae; Mayer, Deborah K.; Ratichek, Sara J.; Davies, Stella M.; Syrjala, Karen L.; Patel, Sunita; Bingen, Kristin; Kupst, Mary Jo; Schwartz, Lisa; Guinan, Eva C.; Hibbard, Judith H.; Parsons, Susan K.

    2014-01-01

    Patient activation, the extension of self-efficacy into self-management, is an essential component of effective chronic care. In pediatric populations, caregiver activation is also needed for proper disease management. This study investigates the relationships between parental activation and other characteristics of parent–child dyads (N = 198) presenting for pediatric hematopoietic stem cell transplant. Parental activation concerning their child’s health was assessed using the Parent Patient Activation Measure (Parent-PAM), a modified version of the well-validated Patient Activation Measure (PAM). Using hierarchical linear regression and following the Belsky process model for determining parenting behaviors, a multivariate model was created for parental activation on behalf of their child that showed that the parent’s age, rating of their own general health, self-activation, and duration of the child’s illness were significantly related to Parent-PAM score. Our findings characterize a potentially distinct form of activation in a parent–child cohort preparing for a demanding clinical course. PMID:22203645

  18. Granulocyte-colony stimulating factor for hematopoietic stem cell donation from healthy female donors during pregnancy and lactation: what do we know?

    PubMed

    Pessach, Ilias; Shimoni, Avichai; Nagler, Arnon

    2013-01-01

    BACKGROUND Hematopoietic growth factors (HGFs) are mostly used as supportive measures to reduce infectious complications associated with neutropenia. Over the past decade, the use of HGFs became a common method for mobilizing human CD34+ stem cells, either for autologous or allogeneic transplantation. However, since their introduction the long-term safety of the procedure has become a major focus of discussion and research. Most information refers to healthy normal donors and data concerning pregnant and lactating women are scarce. The clinical question, which is the core of this review, is whether stem cell donation, preceded by administration of granulocyte-colony stimulating factor (G-CSF) for mobilization, is a safe procedure for pregnant donors. METHODS Literature searches were performed in Pubmed for English language articles published before the end of May 2012, focusing on G-CSF administration during pregnancy, lactation and hematopoietic stem cell donation. Searches included animal and human studies. RESULTS Data from animals (n = 15 studies) and women (n = 46 studies) indicate that G-CSF crosses the placenta, stimulates fetal granulopoiesis, improves neonatal survival mostly for very immature infants, promotes trophoblast growth and placental metabolism and has an anti-abortive role. Granulocyte macrophage-CSF is a key cytokine in the maternal immune tolerance towards the implanted embryo and exerts protective long-term programming effects to preimplantation embryos. The available data suggest that probably CSFs should not be administered during the time of most active organogenesis (first trimester), except perhaps for the first week during which implantation takes place. Provided CSF is administered during the second and third trimesters, it appears to be safe, and pregnant women receiving the CSF treatment can become hematopoietic stem cell donors. There are also risks related to the anesthesia, which is required for the bone marrow aspiration. During

  19. The involvement of hematopoietic pre-B cell leukemia transcription factor-interacting protein in regulating epithelial-mesenchymal transition of human spinal glioblastoma.

    PubMed

    Wang, Deliang; Wang, Li; Zhou, Yi; Zhao, Xinjun; Xiong, Hui

    2016-05-01

    To date, hematopoietic pre-B cell leukemia transcription factor-interacting protein (HPIP), a co-repressor for the transcription factor PBX, has been involved into the initiation and onset in a wide variety of cancers. However, the molecular mechanisms underlying HPIP-induced epithelial-mesenchymal transition (EMT) in the spinal glioblastoma have been under investigation. In the present study, spinal glioblastoma tissues, U87, and U251 cell lines were used and subjected to in vitro assays, such as RT-PCR, and Western blot. Here, in vitro assays revealed that HPIP mRNA and protein were highly expressed in five cases of spinal glioblastoma tissues, compared with non-tumor tissues. Subsequently, in vitro experiments demonstrated HPIP promoted the U87 and U251 cell growth and regulated the G1/S phase transitions in U87 and U251 cell cycle, respectively, accompanied by the increased expression of cyclin A2, cyclin B1, and cyclin D1. Furthermore, HPIP increased the expression of N-cadherin, Slug, and MMP2, and decreased the expression of E-cadherin. By contrast, knockdown of HPIP reversed HPIP-induced EMT biomarkers, migration, and invasion in U87 and U251 cells. In conclusion, our findings identified HPIP plays an important role in the progression and EMT of spinal glioblastoma, by which cell growth is improved. Thus, HPIP gene or protein could act as a useful target in the clinical practice.

  20. Guanine nucleotide exchange factor Vav1 regulates perivascular homing and bone marrow retention of hematopoietic stem and progenitor cells.

    PubMed

    Sanchez-Aguilera, Abel; Lee, Yun-Jung; Lo Celso, Cristina; Ferraro, Francesca; Brumme, Kristina; Mondal, Subhanjan; Kim, Chaekyun; Dorrance, Adrienne; Luo, Hongbo R; Scadden, David T; Williams, David A

    2011-06-07

    Engraftment and maintenance of hematopoietic stem and progenitor cells (HSPC) depend on their ability to respond to extracellular signals from the bone marrow microenvironment, but the critical intracellular pathways integrating these signals remain poorly understood. Furthermore, recent studies provide contradictory evidence of the roles of vascular versus osteoblastic niche components in HSPC function. To address these questions and to dissect the complex upstream regulation of Rac GTPase activity in HSPC, we investigated the role of the hematopoietic-specific guanine nucleotide exchange factor Vav1 in HSPC localization and engraftment. Using intravital microscopy assays, we demonstrated that transplanted Vav1(-/-) HSPC showed impaired early localization near nestin(+) perivascular mesenchymal stem cells; only 6.25% of Vav1(-/-) HSPC versus 45.8% of wild-type HSPC were located less than 30 μm from a nestin(+) cell. Abnormal perivascular localization correlated with decreased retention of Vav1(-/-) HSPC in the bone marrow (44-60% reduction at 48 h posttransplant, compared with wild-type) and a very significant defect in short- and long-term engraftment in competitive and noncompetitive repopulation assays (<1.5% chimerism of Vav1(-/-) cells vs. 53-63% for wild-type cells). The engraftment defect of Vav1(-/-) HSPC was not related to alterations in proliferation, survival, or integrin-mediated adhesion. However, Vav1(-/-) HSPC showed impaired responses to SDF1α, including reduced in vitro migration in time-lapse microscopy assays, decreased circadian and pharmacologically induced mobilization in vivo, and dysregulated Rac/Cdc42 activation. These data suggest that Vav1 activity is required specifically for SDF1α-dependent perivascular homing of HSPC and suggest a critical role for this localization in retention and subsequent engraftment.

  1. Guanine nucleotide exchange factor Vav1 regulates perivascular homing and bone marrow retention of hematopoietic stem and progenitor cells

    PubMed Central

    Sanchez-Aguilera, Abel; Lee, Yun-Jung; Lo Celso, Cristina; Ferraro, Francesca; Brumme, Kristina; Mondal, Subhanjan; Kim, Chaekyun; Dorrance, Adrienne; Luo, Hongbo R.; Scadden, David T.; Williams, David A.

    2011-01-01

    Engraftment and maintenance of hematopoietic stem and progenitor cells (HSPC) depend on their ability to respond to extracellular signals from the bone marrow microenvironment, but the critical intracellular pathways integrating these signals remain poorly understood. Furthermore, recent studies provide contradictory evidence of the roles of vascular versus osteoblastic niche components in HSPC function. To address these questions and to dissect the complex upstream regulation of Rac GTPase activity in HSPC, we investigated the role of the hematopoietic-specific guanine nucleotide exchange factor Vav1 in HSPC localization and engraftment. Using intravital microscopy assays, we demonstrated that transplanted Vav1−/− HSPC showed impaired early localization near nestin+ perivascular mesenchymal stem cells; only 6.25% of Vav1−/− HSPC versus 45.8% of wild-type HSPC were located less than 30 μm from a nestin+ cell. Abnormal perivascular localization correlated with decreased retention of Vav1−/− HSPC in the bone marrow (44–60% reduction at 48 h posttransplant, compared with wild-type) and a very significant defect in short- and long-term engraftment in competitive and noncompetitive repopulation assays (<1.5% chimerism of Vav1−/− cells vs. 53–63% for wild-type cells). The engraftment defect of Vav1−/− HSPC was not related to alterations in proliferation, survival, or integrin-mediated adhesion. However, Vav1−/− HSPC showed impaired responses to SDF1α, including reduced in vitro migration in time-lapse microscopy assays, decreased circadian and pharmacologically induced mobilization in vivo, and dysregulated Rac/Cdc42 activation. These data suggest that Vav1 activity is required specifically for SDF1α-dependent perivascular homing of HSPC and suggest a critical role for this localization in retention and subsequent engraftment. PMID:21606370

  2. Src family kinase mediated negative regulation of hematopoietic stem cell mobilization involves both intrinsic and microenvironmental factors

    PubMed Central

    Borneo, Jovencio; Munugalavadla, Veerendra; Sims, Emily Catherine; Vemula, Sasidhar; Orschell, Christie M.; Yoder, Merv; Kapur, Reuben

    2007-01-01

    Objective The intracellular signals that contribute to G-CSF receptor induced stem cell mobilization are poorly characterized. Methods We show enhanced G-CSF induced mobilization of stem cells in mice deficient in the expression of Src family kinases (SFK−/−), which is associated with hypersensitivity of SFK−/− bone marrow cells to G-CSF as well as sustained activation of Stat3. Results A proteome map of the bone marrow fluid derived from wildtype and SFK−/− mice revealed a significant global reduction in the number of proteins in SFK−/− mice compared to controls, which was associated with elevated MMP-9 levels, reduced SDF-1 expression, and enhanced break down of VCAM-1. Transplantation of wildtype or SFK−/− stem cells into wildtype mice and treatment with G-CSF recapitulated the G-CSF induced increase in stem cell mobilization noted in SFK−/− non-transplanted mice; however, the increase was significantly less. G-CSF treatment of SFK−/− mice engrafted with wildtype stem cells also demonstrated a modest increase in stem cell mobilization compared to controls, however the observed increase was greatest in mice completely devoid of SFKs. Conclusions These data suggest an involvement of both hematopoietic intrinsic and microenvironmental factors in Src kinase mediated mobilization of stem cells and identify Src kinases as potential targets for modulating stem cell mobilization. PMID:17588471

  3. [Stem cells and growth factors in wound healing].

    PubMed

    Pikuła, Michał; Langa, Paulina; Kosikowska, Paulina; Trzonkowski, Piotr

    2015-01-02

    Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing. Among the most important cells which take part in wound healing the following cells need to be distinguished: epidermal stem cells, dermal precursor of fibroblasts, adipose-derived stem cells as well as bone marrow cells. The activity of these cells is strictly regulated by various growth factors, inter alia epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), vascular endothelial growth factor (VEGF). Any disorders in functioning of stem cells and biological activity of growth factors may lead to the defects in wound healing, for instance delayed wound healing or creation of hypertrophic scars. Therefore, knowledge concerning the mechanisms of wound healing is extremely essential from clinical point of view. In this review the current state of the knowledge of the role of stem cells and growth factors in the process of wound healing has been presented. Moreover, some clinical aspects of wound healing as well as the possibility of the therapy based on stem cells and growth factors have included.

  4. The PlagL2 transcription factor activates Mpl transcription and signaling in hematopoietic progenitor and leukemia cells

    PubMed Central

    Landrette, Sean F; Madera, Dmitri; He, Feng; Castilla, Lucio H

    2010-01-01

    Cytokine signaling pathways are frequent targets of oncogenic mutations in acute myeloid leukemia, promoting proliferation and survival. We have previously shown that the transcription factor PLAGL2 promotes proliferation and cooperates with the leukemia fusion protein Cbfβ-SMMHC in acute myeloid leukemia development. Here we show that PLAGL2 upregulates expression of the thrombopoietin receptor Mpl, using 2 consensus sites in its proximal promoter. We also show that Mpl overexpression efficiently cooperates with Cbfβ-SMMHC in development of leukemia in mice. Finally, we demonstrate that PlagL2-expressing leukemic cells show hyper-activation of Jak2 and downstream STAT5, Akt and Erk1/2 pathways in response to Tpo ligand. These results show that PlagL2 expression activates expression of Mpl in hematopoietic progenitors, and that upregulation of wild type Mpl provides an oncogenic signal in cooperation with CBFβ-SMMHC in mice. PMID:21263445

  5. Pericytes, integral components of adult hematopoietic stem cell niches.

    PubMed

    Sá da Bandeira, D; Casamitjana, J; Crisan, M

    2017-03-01

    The interest in perivascular cells as a niche for adult hematopoietic stem cells (HSCs) is significantly growing. In the adult bone marrow (BM), perivascular cells and HSCs cohabit. Among perivascular cells, pericytes are precursors of mesenchymal stem/stromal cells (MSCs) that are capable of differentiating into osteoblasts, adipocytes and chondrocytes. In situ, pericytes are recognised by their localisation to the abluminal side of the blood vessel wall and closely associated with endothelial cells, in combination with the expression of markers such as CD146, neural glial 2 (NG2), platelet derived growth factor receptor β (PDGFRβ), α-smooth muscle actin (α-SMA), nestin (Nes) and/or leptin receptor (LepR). However, not all pericytes share a common phenotype: different immunophenotypes can be associated with distinct mesenchymal features, including hematopoietic support. In adult BM, arteriolar and sinusoidal pericytes control HSC behaviour, maintenance, quiescence and trafficking through paracrine effects. Different groups identified and characterized hematopoietic supportive pericyte subpopulations using various markers and mouse models. In this review, we summarize recent work performed by others to understand the role of the perivascular niche in the biology of HSCs in adults, as well as their importance in the development of therapies.

  6. [Effects of blood serum from rats with combined radiation-thermal injury on the bone marrow hematopoietic progenitor cells growth].

    PubMed

    Ran, Xin-Ze; Su, Yong-Ping; Zheng, Huai-En; Guo, Chao-Hua; Liu, Du-Hu; Zhou, Yan-Hong; Liu, Xiao-Hong; Ai, Guo-Ping

    2005-02-01

    To observe the effects of blood serum from rats with radiation injury, thermal injury and combined radiation-thermal lesions on growth of hematopoietic progenitor cells and the change of their serum cytokine levels, total body irradiation of rats was performed with 12 Gy gamma ray from a (60)Co source, and 30% total body surface area III degree thermal lesion on the back was inflicted with a 5 kW bromotungsten lamp. The blood serum from these animals was collected at 3, 12, 24, 48, 72 and 96 hours after injury. Then the blood serum was added to the culture medium of erythrocyte progenitor cells (CFU-E, BFU-E) or granulocyte-macrophage progenitor cells (CFU-GM) at final concentration of 10 microg/ml. The results showed that the colony number of CFU-E, BFU-E and CFU-GM formed after addition of the blood serum from rats with thermal or combined radiation-thermal injury was significantly higher than that from normal rats at 3, 12, 24, 48, 72 and 96 hours after injury and reached its peak value at 24 hours after injury (342.8, 261.6 and 228.4% respectively from burned rats, 252.4, 205.1 and 174.2% respectively from rats with combined radiation-thermal injury as compared with that of normal rats). However, a few CFU-E, BFU-E or CFU-GM formation was found after addition of the blood serum from irradiated rats. At the same time, the level of TNF alpha and IL-6 in serum of burn group and combined radiation-thermal injury group was markedly higher than that of normal group, even more higher than that of irradiation injury group (P < 0.01). It is concluded that the blood serum from rats with thermal lesion or combined radiation-thermal injury improves the growth of erythrocyte and granulocyte progenitor cells. On the contrary, the blood serum from the irradiated rats shows the inhibiting effects, definitely related to their serum cytokines changes.

  7. Mesenchymal stromal cells and hematopoietic stem cell transplantation.

    PubMed

    Bernardo, Maria Ester; Fibbe, Willem E

    2015-12-01

    Mesenchymal stromal cells (MSCs) comprise a heterogeneous population of multipotent cells that can be isolated from various human tissues and culture-expanded ex vivo for clinical use. Due to their immunoregulatory properties and their ability to secrete growth factors, MSCs play a key role in the regulation of hematopoiesis and in the modulation of immune responses against allo- and autoantigens. In light of these properties, MSCs have been employed in clinical trials in the context of hematopoietic stem cell transplantation (HSCT) to facilitate engraftment of hematopoietic stem cells (HSCs) and to prevent graft failure, as well as to treat steroid-resistant acute graft-versus-host disease (GvHD). The available clinical evidence derived from these studies indicates that MSC administration is safe. Moreover, promising preliminary results in terms of efficacy have been reported in some clinical trials, especially in the treatment of acute GvHD. In this review we critically discuss recent advances in MSC therapy by reporting on the most relevant studies in the field of HSCT. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  8. Plasticity of hematopoietic stem cells.

    PubMed

    Ogawa, Makio; LaRue, Amanda C; Mehrotra, Meenal

    2015-01-01

    Almost two decades ago, a number of cell culture and preclinical transplantation studies suggested the striking concept of the tissue-reconstituting ability of hematopoietic stem cells (HSCs). While this heralded an exciting time of radically new therapies for disorders of many organs and tissues, the concept was soon mired by controversy and remained dormant. This chapter provides a brief review of evidence for HSC plasticity including our findings based on single HSC transplantation in mouse. These studies strongly support the concept that HSCs are pluripotent and may be the source for the majority, if not all, of the cell types in our body.

  9. Osteonecrosis in Children after Allogeneic Hematopoietic Cell Transplantation: Study of Prevalence, Risk Factors, and Longitudinal Changes Using MR Imaging

    PubMed Central

    Sharma, Shelly; Leung, Wing-Hang; Deqing, Pei; Yang, Jie; Rochester, Richard; Britton, Lunetha; Neel, Michael D.; Ness, Kirsten K.; Kaste, Sue C.

    2011-01-01

    Osteonecrosis after hematopoietic stem cell transplantation (HCT) has seldom been addressed in pediatric populations. At our institution, since January 2002, children undergoing allogeneic HCT (alloHCT) receive yearly follow-up magnetic resonance imaging (MR) of hips and knees. To estimate the prevalence, longitudinal changes and associated risk factors for osteonecrosis after alloHCT, we reviewed MRs for children who underwent single alloHCT during the study period. We analyzed 149 of 344 patients who had post HCT MRI imaging performed [84 males; median age11 years (range, 0.5–21years)], median follow-up time was 32.6 months (range, 2.8–97.2 months). Forty-four (29.5%) developed osteonecrosis of hips and/or knees; of those, 20 (45%) had at least 30% epiphyseal involvement. In 23 (52%) osteonecrosis lesions were identified in the first, and 43 (98%) by the third yearly scan. Knees were more frequently involved than hips; severity of osteonecrosis was greater in hips. Those who had pre-alloHCT osteonecrosis, two patients’ hips and six patients’ knees resolved completely; three patients’ osteonecrosis lesions regressed after alloHCT. On risk factor analysis, age at time of alloHCT (p=0.051) and osteonecrosis identified by MRs before alloHCT (p=0.001) were the primary risk factors. This analysis shows that preventive strategies for osteonecrosis in this population should focus on measures to minimize risk factors before alloHCT. PMID:22158389

  10. Human parainfluenza virus infection after hematopoietic stem cell transplantation: risk factors, management, mortality, and changes over time.

    PubMed

    Ustun, Celalettin; Slabý, Jiří; Shanley, Ryan M; Vydra, Jan; Smith, Angela R; Wagner, John E; Weisdorf, Daniel J; Young, Jo-Anne H

    2012-10-01

    Human parainfluenza viruses (HPIVs) are uncommon, yet high-risk pathogens after hematopoietic stem cell transplant (HCT). We evaluated 5178 pediatric and adult patients undergoing HCT between 1974 and 2010 to determine the incidence, risk factors, response to treatment, and outcome of HPIV infection as well as any change in frequency or character of HPIV infection over time. HPIV was identified in 173 patients (3.3%); type 3 was most common (66%). HPIV involved upper respiratory tract infection (URTI; 57%), lower respiratory tract infection (LRTI; 9%), and both areas of the respiratory tract (34%), at a median of 62 days after transplantation. In more recent years, HPIV has occurred later after HCT, whereas the proportion with nosocomial infection and mortality decreased. Over the last decade, HPIV was more common in older patients and in those receiving reduced intensity conditioning (RIC). RIC was a significant risk factor for later (beyond day +30). HPIV infections, and this association was strongest in patients with URTI. HCT using a matched unrelated donor (MURD), mismatched related donor (MMRD), age 10 to 19 years, and graft-versus-host disease (GVHD) were all risk factors for HPIV infections. LRTI, early (<30 days), age 10 to 19 years, MMRD, steroid use, and coinfection with other pathogens were risk factors for mortality. The survival of patients with LRTI, especially very early infections, was poor regardless of ribavirin treatment. HPIV incidence remains low, but may have delayed onset associated with RIC regimens and improving survival. Effective prophylaxis and treatment for HPIV are needed.

  11. Effect of The Receptor Activator of Nuclear Factor кB and RANK Ligand on In Vitro Differentiation of Cord Blood CD133+ Hematopoietic Stem Cells to Osteoclasts

    PubMed Central

    Kalantari, Nasim; Abroun, Saeid; Soleimani, Masoud; Kaviani, Saeid; Azad, Mehdi; Eskandari, Fatemeh; Habibi, Hossein

    2016-01-01

    Objective Receptor activator of nuclear factor-kappa B ligand (RANKL) appears to be an osteoclast-activating factor, bearing an important role in the pathogenesis of multiple myeloma. Some studies demonstrated that U-266 myeloma cell line and primary myeloma cells expressed RANK and RANKL. It had been reported that the expression of myeloid and monocytoid markers was increased by co-culturing myeloma cells with hematopoietic stem cells (HSCs). This study also attempted to show the molecular mechanism of RANK and RANKL on differentiation capability of human cord blood HSC to osteoclast, as well as expression of calcitonin receptor (CTR) on cord blood HSC surface. Materials and Methods In this experimental study, CD133+ hematopoietic stem cells were isolated from umbilical cord blood and cultured in the presence of macrophage colony-stimulating factor (M-CSF) and RANKL. Osteoclast differentiation was characterized by using tartrate-resistant acid phosphatase (TRAP) staining, giemsa staining, immunophenotyping, and reverse transcription-polymerase chain reaction (RT-PCR) assay for specific genes. Results Hematopoietic stem cells expressed RANK before and after differentiation into osteoclast. Compared to control group, flow cytometric results showed an increased expression of RANK after differentiation. Expression of CTR mRNA showed TRAP reaction was positive in some differentiated cells, including osteoclast cells. Conclusion Presence of RANKL and M-CSF in bone marrow could induce HSCs differentiation into osteoclast. PMID:27602313

  12. Risk factors and prognostic scale for cytomegalovirus (CMV) infection in CMV-seropositive patients after allogeneic hematopoietic cell transplantation.

    PubMed

    Cohen, L; Yeshurun, M; Shpilberg, O; Ram, R

    2015-08-01

    We aimed to study the risk factors for first and subsequent cytomegalovirus (CMV) infection among patients who are CMV seropositive and underwent allogeneic hematopoietic cell transplantation (HCT). We performed an historical cohort study of all sequential CMV-seropositive patients who underwent allogeneic HCT at a single center. Between May 2007 and December 2012, 121 patients fulfilled inclusion criteria. Multivariate model identified myeloablative preparative regimen (hazard ratio [HR] = 4.297, P = 0.033) and acute graft-versus-host disease (GVHD) prior to infection (HR = 5.091, P = 0.021) as risk factors for first CMV infection. The cumulative incidences of first CMV infection for patients with 0, 1, and 2 risk factors were 52%, 71%, and 91%, respectively. Multivariate analysis identified the diagnosis of lymphoma/myeloma (HR = 3.5, P = 0.049) and GVHD (HR = 1.280, P = 0.045) as risk factors for subsequent CMV infection. High graft CD3 stem cell dose was associated with a trend of lower rate of subsequent CMV infection (HR = 0.543, P = 0.056). The cumulative incidences for subsequent CMV infection in patients with 0, 1, and 2-3 risk factors were 11%, 41%, and 77%, respectively. In conclusion, in CMV-seropositive patients, myeloablative conditioning and acute GVHD are risk factors for first CMV infection, while lymphoma/myeloma, ongoing GVHD, and low CD3 graft content are risk factors for subsequent infection. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Connective tissue growth factor is expressed in bone marrow stromal cells and promotes interleukin-7-dependent B lymphopoiesis

    PubMed Central

    Cheung, Laurence C.; Strickland, Deborah H.; Howlett, Meegan; Ford, Jette; Charles, Adrian K.; Lyons, Karen M.; Brigstock, David R.; Goldschmeding, Roel; Cole, Catherine H.; Alexander, Warren S.; Kees, Ursula R.

    2014-01-01

    Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis. PMID:24727816

  14. Hepatic Veno-Occlusive Disease after Hematopoietic Stem Cell Transplantation: Risk Factors and Stratification, Prophylaxis, and Treatment.

    PubMed

    Dalle, Jean-Hugues; Giralt, Sergio A

    2016-03-01

    Hepatic veno-occlusive disease (VOD), also known as sinusoidal obstruction syndrome (SOS), can develop in a subset of patients, primarily after myeloablative hematopoietic stem cell transplantation, but it also may occur after reduced-intensity conditioning. Severe VOD/SOS, typically characterized by multiorgan failure, has been associated with a mortality rate greater than 80%. Therefore, an accurate and prompt diagnosis of VOD/SOS is essential for early initiation of appropriate therapy to improve clinical outcomes. Moreover, some studies have support the use of prophylaxis for patients who are at high risk of developing VOD/SOS. This review summarizes risk factors associated with development of VOD/SOS, including pretransplantation patient characteristics and factors related to stem cell transplantation, that can facilitate patient stratification according to risk. The incidence of VOD/SOS, clinical features, and diagnostic criteria are reviewed. Data on emerging treatment strategies for patients with VOD/SOS are discussed in the context of recent treatment guidelines. Additionally, options for prophylaxis in individuals who are at increased risk are presented. Although historically only those patients with moderate to severe VOD/SOS have been treated, early therapy and prophylaxis may be appropriate for many patients and may have the potential to improve patients' outcomes and survival, including for those with nonsevere disease.

  15. Minor ABO-mismatches are risk factors for acute graft-versus-host disease in hematopoietic stem cell transplant patients.

    PubMed

    Ludajic, Katarina; Balavarca, Yesilda; Bickeböller, Heike; Rosenmayr, Agathe; Fischer, Gottfried F; Faé, Ingrid; Kalhs, Peter; Pohlreich, David; Kouba, Michal; Dobrovolna, Marie; Greinix, Hildegard T

    2009-11-01

    We investigated the impact of ABO and Rhesus (Rh) blood group matching on the outcome of hematopoietic stem cell transplantation (HSCT) of 154 patients matched at 10/10 HLA loci with unrelated donors. ABO and Rh, as potential risk factors, were modeled with the clinical outcome--acute and chronic graft-versus-host disease (aGVHD, cGVHD), relapse, treatment-related mortality (TRM), and overall survival (OS)--by simple, multiple, and competing risk analyses. We found that minor ABO-mismatches represent a significant risk factor for aGVHD (II-IV) with an estimated risk increase of almost 3-fold (hazard ratio [HR]=2.92, 95% confidence interval [CI]: 1.43-5.95, P=.003), and even 4-fold for aGVHD (III-IV) (HR=4.24, 95% CI: 1.70-10.56, P=.002), but not for other transplant endpoints. No significant association of the Rh matching status with any of the HSCT endpoints was seen. These results suggest that ABO minor mismatches may play a role in aGvHD pathophysiology, possibly by providing the setting for T cell activation and antibody mediated damage. To decrease the risk of aGVHD, ABO matching should be considered in HSCT.

  16. [The investigation of hematopoietic capacity of HPP-CFC derived from murine embryonic stem cells in vitro and in vivo].

    PubMed

    Liu, Bing; Hou, Chun-Mei; Wu, Ying; Zhang, Shuang-Xi; Mao, Ning

    2003-05-01

    The hematopoietic system of the mouse arises from extraembryonic mesoderm that migrate through primitive streak to the presumptive yolk sac at day 7.0 of gestation. However, the mechanisms regulating mesoderm commitment to hematopoietic lineages remain poorly understood. Previous studies demonstrated that the development kinetics and growth factor responsiveness of hematopoietic precursors derived from embryonic stem cells (ES cells) is similar to that found in the yolk sac, indicating that the onset of hematopoiesis within the embryoid bodies (EBs) parallels that found in the embryo. Furthermore, in vitro differentiation of ES cells to hematopoietic cells is valuable for establishment of therapeutic clone against a variety of hematological disorders. Despite the identification of multipotential hematopoietic progenitors in EBs, a subset of more primitive progenitors, identical to the high proliferative potential colony-forming cells (HPP-CFC) derived from human and murine hematopoietic tissues, have not been clearly identified regarding particular their replating potential in vitro. HPP-CFC is among the most primitive hematopoietic multipotent precursors cultured in vitro. In this study, our aim was to investigate the in vitro and in vivo hematopoietic capacity of HPP-CFC within the day 12 EBs, rather than the expansion of more committed progenitors. In this study the HPP-CFC could be detected within EBs differentiated for 5 to 14 days of murine ES cells, but the development dynamics of the HPP-CFC differed greatly among distinct serum lots. Qualitatively HPP-CFC is capable of forming secondary colonies. As to our expectation the ES cells-derived HPP-CFC demonstrated similar regeneration capacity to those from yolk sac, giving rise to secondary granulocyte, erythrocyte, macrophage and mast cells, however largely differed from the counterparts of adult bone marrow. In addition, by RT-PCR ES cells-derived HPP-CFC were found to express transcription factors

  17. CCR7 is involved in BCR-ABL/STAP-2-mediated cell growth in hematopoietic Ba/F3 cells.

    PubMed

    Kubo, Kaori; Iwakami, Masashi; Muromoto, Ryuta; Inagaki, Takuya; Kitai, Yuichi; Kon, Shigeyuki; Sekine, Yuichi; Oritani, Kenji; Matsuda, Tadashi

    2015-08-07

    Chronic myeloid leukemia is a clonal disease characterized by the presence of the Philadelphia chromosome and its oncogenic product, BCR-ABL, which activates multiple pathways involved in cell survival, growth promotion, and disease progression. We previously reported that in murine hematopoietic Ba/F3 cells, signal transducing adaptor protein-2 (STAP-2) binds to BCR-ABL and up-regulates BCR-ABL phosphorylation, leading to enhanced activation of its downstream signaling molecules. The binding of STAP-2 to BCR-ABL also influenced the expression levels of chemokine receptors, such as CXCR4 and CCR7. For the induction of CCR7 expression, signals mediated by the MAPK/ERK pathway were critical in Ba/F3 cells expressing BCR-ABL and STAP-2. In addition, STAP-2 cooperated with BCR-ABL to induce the production of CCR7 ligands, CCL19 and CCL21. Our results demonstrate a contribution of CCR7 to STAP-2-dependent enhancement of BCR-ABL-mediated cell growth in Ba/F3 cells.

  18. Protease-Activated Receptor 1 and Hematopoietic Cell Tissue Factor Are Required for Hepatic Steatosis in Mice Fed a Western Diet

    PubMed Central

    Kassel, Karen M.; Owens, A. Phillip; Rockwell, Cheryl E.; Sullivan, Bradley P.; Wang, Ruipeng; Tawfik, Ossama; Li, Guodong; Guo, Grace L.; Mackman, Nigel; Luyendyk, James P.

    2011-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of obesity and metabolic syndrome and contributes to increased risk of cardiovascular disease and liver-related morbidity and mortality. Indeed, obese patients with metabolic syndrome generate greater amounts of thrombin, an indication of coagulation cascade activation. However, the role of the coagulation cascade in Western diet–induced NAFLD has not been investigated. Using an established mouse model of Western diet–induced NAFLD, we tested whether the thrombin receptor protease-activated receptor 1 (PAR-1) and hematopoietic cell–derived tissue factor (TF) contribute to hepatic steatosis. In association with hepatic steatosis, plasma thrombin-antithrombin levels and hepatic fibrin deposition increased significantly in C57Bl/6J mice fed a Western diet for 3 months. PAR-1 deficiency reduced hepatic inflammation, particularly monocyte chemoattractant protein-1 expression and macrophage accumulation. In addition, PAR-1 deficiency was associated with reduced steatosis in mice fed a Western diet, including reduced liver triglyceride accumulation and CD36 expression. Similar to PAR-1 deficiency, hematopoietic cell TF deficiency was associated with reduced inflammation and reduced steatosis in livers of low-density lipoprotein receptor–deficient mice fed a Western diet. Moreover, hematopoietic cell TF deficiency reduced hepatic fibrin deposition. These studies indicate that PAR-1 and hematopoietic cell TF are required for liver inflammation and steatosis in mice fed a Western diet. PMID:21907177

  19. Pre-transplant risk factors for cryptogenic organizing pneumonia/bronchiolitis obliterans organizing pneumonia after hematopoietic cell transplantation.

    PubMed

    Nakasone, H; Onizuka, M; Suzuki, N; Fujii, N; Taniguchi, S; Kakihana, K; Ogawa, H; Miyamura, K; Eto, T; Sakamaki, H; Yabe, H; Morishima, Y; Kato, K; Suzuki, R; Fukuda, T

    2013-10-01

    Cryptogenic organizing pneumonia (COP), previously known as bronchiolitis obliterans organizing pneumonia (BOOP), is a significant complication after allogeneic hematopoietic SCT (HCT). However, the pathogenesis of this complication has not yet been elucidated. Therefore, we identified the pre-transplant risk factors for the development of COP/BOOP using the Japan transplant registry database between 2005 and 2009. Among 9550 eligible recipients, 193 experienced COP/BOOP (2%). HLA disparity (odds ratio (OR) 1.51, P=0.05), female-to-male HCT (OR 1.53, P=0.023), and PBSC transplant (OR 1.84, P=0.0076) were significantly associated with an increased risk of COP/BOOP. On the other hand, BU-based myeloablative conditioning (OR 0.52, P=0.033), or fludarabine-based reduced-intensity conditioning (OR 0.50, P=0.0011) in comparison with a TBI-based regimen and in vivo T-cell depletion (OR 0.46, P=0.055) were associated with a lower risk. Of the 193 patients with COP/BOOP, 77 died, including non-relapse death in 46 (59%). Pulmonary failure and fatal infection accounted for 41% (n=19) and 26% (n=12) of the non-relapse death. Allogeneic immunity and conditioning toxicity could be associated with COP/BOOP. Prospective studies are required to elucidate the true risk factors for COP/BOOP and to develop a prophylactic approach.

  20. Hepatic veno-occlusive disease in children after hematopoietic stem cell transplantation: incidence, risk factors, and outcome.

    PubMed

    Lee, S H; Yoo, K H; Sung, K W; Koo, H H; Kwon, Y J; Kwon, M M; Park, H J; Park, B-K; Kim, Y Y; Park, J A; Im, H J; Seo, J J; Kang, H J; Shin, H Y; Ahn, H S

    2010-08-01

    Four hundred and sixty-seven hematopoietic stem cell transplantations (HSCTs) (217 autologous and 250 allogeneic HSCT) were performed in 374 children at four pediatric HSCT centers in Korea from January 2005 to December 2007. Among 467 transplants, veno-occlusive disease (VOD) developed in 72 transplants (15.4%) at a median of 10 days after HSCT. Multivariate analysis showed that BU or TBI-containing regimen (P=0.002), VOD prophylaxis without lipo-prostaglandin E1 (PGE1) (P=0.012), number of previous HSCT (P=0.014), and pretransplant serum ferritin (P=0.018) were independent risk factors for developing VOD. Mean serum ferritin levels were significantly higher in HSCT with VOD (2109.6+/-2842.5 ng/ml) than in HSCT without VOD (1315.9+/-1094.4 ng/ml) (P<0.001). The relative risk of death within 100 days of HSCT in transplants with VOD compared with transplants without VOD was 3.39 (confidence interval: 1.78-6.45). Our results suggest that lipo-PGE1 might have a protective effect against the development of VOD, and pretransplant serum ferritin could act as a risk factor for VOD. A larger prospective study is needed to confirm a possible role of lipo-PGE1 and iron chelation therapy in reducing the incidence of VOD.

  1. [Fibroblast growth factor-2].

    PubMed

    Faitová, J

    2004-01-01

    Fibroblast growth factor-2 is a member of a large family of proteins that bind heparin and heparan sulfate and modulate the function of a wide range of cell types. FGF-2 occurs in several isoforms resulting from alternative initiations of traslation: an 18 kDa cytoplasmic isoform and four larger molecular weight nuclear isoforms (22, 22.5, 24 and 34 kDa). It acts mainly through a paracrine/autocrine mechanism involving high affinity transmembrane receptors and heparan sulfate proteoglycan low affinity receptors. It is expressed mostly in tissues of mesoderm and neuroectoderm origin, and plays an important role in mesoderm induction, stimulates the growth and development of the new blood vessels (angiogenesis), normal wound healing and tissue development. FGF-2 positively regulates hematopoiesis by acting on various cellular targets: stromal cells, early and committed hematopoietic progenitors and possibly some mature blood cells. FGF-2 is a potent hematopoietic growth factor that is likely to play an important role in physiological and pathological hematopoiesis.

  2. Relationships among symptoms, psychosocial factors and health-related quality of life in hematopoietic stem cell transplant survivors

    PubMed Central

    Kenzik, Kelly; Huang, I-Chan; Rizzo, J. Douglas; Shenkman, Elizabeth; Wingard, John

    2015-01-01

    Objective To evaluate the mediating effect of depressive symptoms on the relationship between physical symptoms and health-related quality of life (HRQOL) in hematopoietic stem cell transplant survivors (HSCT); and to test a conceptual model of psychosocial factors, in addition to physical and psychological symptoms, that might contribute to HRQOL. Methods This is a secondary data analysis using subjects (N=662) identified from the Center for International Blood and Marrow Transplant Research for HSCT survivors who were treated in 40 North American Medical Centers. Data were collected through mailed surveys, phone interviews, and medical records. We used structural equation modeling to test the mediating role of depressive symptoms on the relationship of physical symptoms with HRQOL. We also tested comprehensive pathways from physical symptoms to HRQOL by adding other psychosocial factors including optimism, coping, and social constraints. Results In the depressive symptom mediation analyses, physical symptoms had a stronger direct effect on physical HRQOL (b=−0.98, p<0.001) than depressive symptoms (b=0.23, p>0.05). Depressive symptoms were associated with mental HRQOL and mediated the relationship between physical symptoms and mental HRQOL. In the comprehensive pathway analyses, physical symptoms remained the most significant factor to be associated with physical HRQOL. In contrast, depressive symptoms had a direct effect (b=−0.76, p<0.001) on mental HRQOL and were a significant mediator. Psychosocial factors were directly associated with mental HRQOL and indirectly associated with mental HRQOL through depressive symptoms. Conclusion Physical symptoms are most strongly associated with physical HRQOL; while depressive symptoms and psychosocial factors impact mental HRQOL more than physical HRQOL. Interventions targeting physical/psychological symptoms and psychosocial factors may improve HRQOL of HSCT survivors. PMID:25193598

  3. Risk factors for Epstein-Barr virus-related post-transplant lymphoproliferative disease after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Uhlin, Michael; Wikell, Helena; Sundin, Mikael; Blennow, Ola; Maeurer, Markus; Ringden, Olle; Winiarski, Jacek; Ljungman, Per; Remberger, Mats; Mattsson, Jonas

    2014-02-01

    Allogeneic hematopoietic stem cell transplantation is a successful treatment for hematologic malignancies and a variety of genetic and metabolic disorders. In the period following stem cell transplantation, the immune-compromised milieu allows opportunistic pathogens to thrive. Epstein-Barr virus-associated post-transplant lymphoproliferative disease can be a life-threatening complication for transplanted patients because of suppressed T-cell-mediated immunity. We analyzed possible risk factors associated with post-transplant lymphoproliferative disease in a cohort of over 1,000 patients. The incidence of post-transplant lymphoproliferative disease was 4%. Significant risk factors identified by multivariate analysis were: human leukocyte antigen-mismatch (P<0.001), serological Epstein-Barr virus mismatch recipient-/donor+ (P<0.001), use of reduced intensity conditioning (P=0.002), acute graft-versus-host disease grade II to IV (P=0.006), pre-transplant splenectomy (P=0.008) and infusion of mesenchymal stromal cells (P=0.015). The risk of post-transplant lymphoproliferative disease has increased in more recent years, from less than 2% before 1998 to more than 6% after 2011. Additionally, we show that long-term survival of patients with post-transplant lymphoproliferative disease is poor despite initial successful treatment. The 3-year survival rate among the 40 patients with post-transplant lymphoproliferative disease was 20% as opposed to 62% among patients without post-transplant lymphoproliferative disease (P<0.001). The study identifies patients at risk of post-transplant lymphoproliferative disease after transplantation in need of pre-emptive measures.

  4. Severe sepsis in hematopoietic stem cell transplant recipients*.

    PubMed

    Kumar, Gagan; Ahmad, Shahryar; Taneja, Amit; Patel, Jayshil; Guddati, Achuta Kumar; Nanchal, Rahul

    2015-02-01

    Severe sepsis requires timely management and has high mortality if care is delayed. Hematopoietic stem cell transplant recipients are more likely to be immunocompromised and are predisposed to serious infections. Reports of outcomes of severe sepsis in this population are limited to data from single, tertiary care centers, and national outcomes data are missing. Retrospective analysis of an administrative database. Twenty percent of community hospitals in United States, excluding federal hospitals. Patients with severe sepsis. None. We used International Classification of Diseases, 9th Edition, Clinical Modification codes indicating the presence of sepsis and organ system failure to identify hospitalizations for severe sepsis between 2000 and 2008. We also used International Classification of Diseases, 9th Edition, Clinical Modification codes to identify hematopoietic stem cell transplant recipients. We compared outcomes of hematopoietic stem cell transplant recipients with severe sepsis during engraftment and subsequent admissions with a non-hematopoietic stem cell transplant cohort and excluded solid-organ transplantation from this cohort. We used mixed effect, multivariate logistic regression modeling with propensity score adjustment to examine factors associated with mortality of severe sepsis in hematopoietic stem cell transplant recipients. A total of 21,898 hematopoietic stem cell transplant recipients with severe sepsis were identified. The frequency of severe sepsis in hematopoietic stem cell transplant recipients was five times higher when compared with the non-hematopoietic stem cell transplant cohort. The unadjusted mortality was 32.9% in non-hematopoietic stem cell transplant cohort, which was similar to autologous hematopoietic stem cell transplant recipients (30.1%) and those who did not develop graft-versus-host disease (35%). Mortality was significantly higher in allogeneic transplants (55.1%, p < 0.001) and in those who developed graft

  5. Incidence, risk factors, and outcome of bacteremia following autologous hematopoietic stem cell transplantation in 720 adult patients.

    PubMed

    Piñana, José Luis; Montesinos, Pau; Martino, Rodrigo; Vazquez, Lourdes; Rovira, Montserrat; López, Javier; Batlle, Montserrat; Figuera, Ángela; Barba, Pere; Lahuerta, Juan José; Debén, Guillermo; Perez-Lopez, Cristina; García, Raimundo; Rosique, Pedro; Lavilla, Esperanza; Gascón, Adriana; Martínez-Cuadrón, David; Sanz, Miguel Ángel

    2014-02-01

    Bacteremia is the most frequent infectious complication during neutropenia in patients receiving autologous hematopoietic stem cell transplantation (ASCT). The objective of this study was to analyze the incidence, characteristics, risk factors, and outcome of bacteremia during the early period after ASCT. A total of 720 patients undergoing ASCT in two observational prospective consecutive multicenter studies of the Programa Español para el Tratamiento de las Hemopatías group were analyzed. Bacteremia occurred in 20 % of patients. Coagulase-negative Staphylococcus was the most frequent (66 %) among the gram-positive agents and Escherichia coli (49 %) among the gram-negative agents. Multivariate analysis showed that the length of neutropenia <1 × 10(9)/L (more than 9 days) [relative risk (RR) of 2.6, p < 0.001] was the sole risk factor for overall bacteremia. We identified the length of neutropenia <1 × 10(9)/L (more than 9 days) (RR 4.98, p < 0.001) and the use of prophylactic fluoroquinolones (RR 0.46, p < 0.01) as specific risk factors for gram-negative bacteremia. Risk factors for gram-positive bacteremia were the use of total parenteral nutrition (RR 1.92, p < 0.01) and deep neutropenia (<0.1 × 10(9)/L), with duration over 5 days (RR 1.67, p < 0.027). Bacteremia showed an increased morbidity with no impact on neither overall nor infectious related mortality. The identification of such risk factors may be helpful to implement prophylactic and therapeutic risk-adapted strategies to reduce the incidence of bacteremia in ASCT.

  6. Genetic modification of bone-marrow mesenchymal stem cells and hematopoietic cells with human coagulation factor IX-expressing plasmids.

    PubMed

    Sam, Mohammad Reza; Azadbakhsh, Azadeh Sadat; Farokhi, Farrah; Rezazadeh, Kobra; Sam, Sohrab; Zomorodipour, Alireza; Haddad-Mashadrizeh, Aliakbar; Delirezh, Nowruz; Mokarizadeh, Aram

    2016-05-01

    Ex-vivo gene therapy of hemophilias requires suitable bioreactors for secretion of hFIX into the circulation and stem cells hold great potentials in this regard. Viral vectors are widely manipulated and used to transfer hFIX gene into stem cells. However, little attention has been paid to the manipulation of hFIX transgene itself. Concurrently, the efficacy of such a therapeutic approach depends on determination of which vectors give maximal transgene expression. With this in mind, TF-1 (primary hematopoietic lineage) and rat-bone marrow mesenchymal stem cells (BMSCs) were transfected with five hFIX-expressing plasmids containing different combinations of two human β-globin (hBG) introns inside the hFIX-cDNA and Kozak element and hFIX expression was evaluated by different methods. In BMSCs and TF-1 cells, the highest hFIX level was obtained from the intron-less and hBG intron-I,II containing plasmids respectively. The highest hFIX activity was obtained from the cells that carrying the hBG intron-I,II containing plasmids. BMSCs were able to produce higher hFIX by 1.4 to 4.7-fold increase with activity by 2.4 to 4.4-fold increase compared to TF-1 cells transfected with the same constructs. BMSCs and TF-1 cells could be effectively bioengineered without the use of viral vectors and hFIX minigene containing hBG introns could represent a particular interest in stem cell-based gene therapy of hemophilias. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  7. Novel strategies for improving hematopoietic reconstruction after allogeneic hematopoietic stem cell transplantation or intensive chemotherapy.

    PubMed

    Baron, Frédéric; Nagler, Arnon

    2017-02-01

    High-dose conditioning regimens for allogeneic hematopoietic cell transplantation (allo-HCT) as well as intensive poly-chemotherapy for acute myeloid leukemia (AML) induce prolonged periods of neutropenia. The duration of the neutropenia is particularly long following umbilical cord blood transplantation (UCBT). Areas covered: After briefly reviewing the impact of hematopoietic growth factors administration to hasten hematologic reconstitution after allo-HCT or intensive AML chemotherapy, this article summarizes recent approaches that have been investigated to prompt hematologic reconstruction after UCBT or intensive AML chemotherapy. Expert opinion: In the allo-HCT setting, administration of G-CSF or GM-CSF shortened the duration of the neutropenia but failed to decrease infection-related mortality or to improve survival. Novel approaches to hasten hematological reconstruction after UCBT such as double UCBT with expansion of one of the 2 UCB units with Notch ligand, mesenchymal stromal cells, nicotinamide, or StemRegenin 1, co-transplanting a single UCB unit with HLA-haploidentical CD34+ cells, or increasing UCB HSC homing to marrow niches via direct intra bone UCB administration, pulse treatment with dmPGE2 or enforced fucosylation are promising and deserve further investigations in prospective phase III studies. In the AML setting, G-CSF or GM-CSF administration after intensive chemotherapy decreased the duration of the neutropenia without improving survival.

  8. Analysis of factors affecting development of carpal tunnel syndrome in patients with Hurler syndrome after hematopoietic cell transplantation.

    PubMed

    Khanna, G; Van Heest, A E; Agel, J; Bjoraker, K; Grewal, S; Abel, S; Krivit, W; Peters, C; Orchard, P J

    2007-03-01

    Children with Hurler syndrome (mucopolysaccharidosis type IH (MPSIH)) have skeletal, joint and soft tissue abnormalities that may persist or progress after hematopoietic stem cell transplantation (HSCT). We report our single center experience with development of carpal tunnel syndrome (CTS) in 43 children with MPSIH after HSCT. Twenty-three children (59%) developed CTS following HSCT; 19 of the 39 children with enzyme activity in the normal or heterozygous range developed CTS (49%), whereas all four children with low heterozygous or absent enzyme activity developed CTS after HSCT. Fourteen of 19 related donor marrow recipients, eight of 19 of those receiving an unrelated donor graft and one of five unrelated cord blood recipients developed CTS. The mean age at surgical release was 4.8 years. With each year increase in age at HSCT, there was a 55% increased risk. Age and enzyme activity after HSCT were significant factors in the development of CTS. Transplantation by 2 years of age reduced the risk of developing CTS by 46%; higher enzyme activity led to a 78% reduction in the risk of developing CTS. However, children transplanted for MPSIH remain at risk for the development of CTS, and should be monitored on an ongoing basis by nerve conduction velocity testing.

  9. Quality of Life After Hematopoietic Stem Cell Transplantation in Pediatric Survivors: Comparison With Healthy Controls and Risk Factors.

    PubMed

    Liu, Ying-Mei; Jaing, Tang-Her; Chen, Yueh-Chih; Tang, Siew-Tzuh; Li, Chung-Yi; Wen, Yu-Chuan; Chang, Hsueh-Ling; Chen, Mei-Ling

    Hematopoietic stem cell transplantation has prolonged life for children with life-threatening diseases. Quality of life is an essential outcome for evaluating the long-term effects of transplantation. The aims of this study were to compare the quality of life of children posttransplantation to that of healthy peers and explore the variables associated with the quality of life of posttransplant children. A cross-sectional study was conducted with 43 pediatric transplantation survivors and 43 age- and sex-matched healthy peers. The mean age of the transplant group was 12.06 years. The mean time since transplant was 3.73 years. After covariate adjustment, there was no difference between posttransplant and healthy children in each domain and overall quality of life, except for physical functioning where the posttransplant children had lower scores than did the healthy group. Chronic graft-versus-host disease was found to be the primary factor associated with poor posttransplant overall quality of life and emotional and social functioning. Sociodemographic variables, symptom distress, and caregiver depression were not correlated with posttransplant quality of life. The quality of life of pediatric transplantation survivors was comparable to that of healthy peers. The finding that children after transplant may achieve quality of life similar to their healthy peers is important information for parents to consider as they consider treatment options. For those sick children who cannot regularly attend school, their emotional and social functioning should be closely monitored.

  10. Expression Levels of Histone Deacetylases Determine the Cell Fate of Hematopoietic Progenitors*

    PubMed Central

    Wada, Taeko; Kikuchi, Jiro; Nishimura, Noriko; Shimizu, Rumi; Kitamura, Toshio; Furukawa, Yusuke

    2009-01-01

    Histone deacetylases (HDACs) are globally implicated in the growth and differentiation of mammalian cells; however, relatively little is known about their specific roles in hematopoiesis. In this study, we investigated the expression of HDACs in human hematopoietic cells and their functions during hematopoiesis. The expression of HDACs was very low in hematopoietic progenitor cells, which was accompanied by histone hyperacetylation. HDACs were detectable in more differentiated progenitors and erythroid precursors but down-regulated in mature myeloid cells especially granulocytes. In contrast, acute myeloid leukemias showed HDAC overexpression and histone hypoacetylation. Transcription of the HDAC1 gene was repressed by CCAAT/enhancer binding proteins during myeloid differentiation, and activated by GATA-1 during erythro-megakaryocytic differentiation. Small interfering RNA-mediated knockdown of HDAC1 enhanced myeloid differentiation in immature hematopoietic cell lines and perturbed erythroid differentiation in progenitor cells. Myeloid but not erythro-megakaryocytic differentiation was blocked in mice transplanted with HDAC1-overexpressing hematopoietic progenitor cells. These findings suggest that HDAC is not merely an auxiliary factor of genetic elements but plays a direct role in the cell fate decision of hematopoietic progenitors. PMID:19736310

  11. Factors associated with bronchiolitis obliterans syndrome and chronic graft-versus-host disease after allogeneic hematopoietic cell transplantation

    PubMed Central

    Gazourian, Lee; Rogers, Angela J.; Ibanga, Ruby; Weinhouse, Gerald L.; Pinto-Plata, Victor; Ritz, Jerome; Soiffer, Robert J.; Antin, Joseph H.; Washko, George R.; Baron, Rebecca M.; Ho, Vincent T.

    2015-01-01

    Bronchiolitis obliterans syndrome (BOS) is a form of chronic graft vs. host disease (cGVHD) and a highly morbid pulmonary complication after allogeneic hematopoietic stem cell transplantation (HSCT). We assessed the prevalence and risk factors for BOS and cGVHD in a cohort of HSCT recipients, including those who received reduced intensity conditioning (RIC) HSCT. Between January 1, 2000 and June 30, 2010, all patients who underwent allogeneic HSCT at our institution (n = 1854) were retrospectively screened for the development of BOS by PFT criteria. We matched the BOS cases with two groups of control patients: (1) patients who had concurrent cGVHD without BOS and (2) those who developed neither cGVHD nor BOS. Comparisons between BOS patients and controls were conducted using t-test or Fisher’s exact tests. Multivariate regression analysis was performed to examine factors associated with BOS diagnosis. All statistical analyses were performed using SAS 9.2. We identified 89 patients (4.8%) meeting diagnostic criteria for BOS at a median time of 491 days (range: 48–2067) after HSCT. Eighty-six (97%) of our BOS cohort had extra-pulmonary cGVHD. In multivariate analysis compared to patients without cGVHD, patients who received busulfan-based conditioning, had unrelated donors, and had female donors were significantly more likely to develop BOS, while ATG administration was associated with a lower risk of BOS. Our novel results suggest that busulfan conditioning, even in RIC transplantation, could be an important risk factor for BOS and cGVHD. PMID:24375545

  12. New insights into the regulation by RUNX1 and GFI1(s) proteins of the endothelial to hematopoietic transition generating primordial hematopoietic cells.

    PubMed

    Thambyrajah, Roshana; Patel, Rahima; Mazan, Milena; Lie-A-Ling, Michael; Lilly, Andrew; Eliades, Alexia; Menegatti, Sara; Garcia-Alegria, Eva; Florkowska, Magdalena; Batta, Kiran; Kouskoff, Valerie; Lacaud, Georges

    2016-08-17

    The first hematopoietic cells are generated very early in ontogeny to support the growth of the embryo and to provide the foundation to the adult hematopoietic system. There is a considerable therapeutic interest in understanding how these first blood cells are generated in order to try to reproduce this process in vitro. This would allow generating blood products, or hematopoietic cell populations from embryonic stem (ES) cells, induced pluripotent stem cells or through directed reprogramming. Recent studies have clearly established that the first hematopoietic cells originate from a hemogenic endothelium (HE) through an endothelial to hematopoietic transition (EHT). The molecular mechanisms underlining this transition remain largely unknown with the exception that the transcription factor RUNX1 is critical for this process. In this Extra Views report, we discuss our recent studies demonstrating that the transcriptional repressors GFI1 and GFI1B have a critical role in the EHT. We established that these RUNX1 transcriptional targets are actively implicated in the downregulation of the endothelial program and the loss of endothelial identity during the formation of the first blood cells. In addition, our results suggest that GFI1 expression provides an ideal novel marker to identify, isolate and study the HE cell population.

  13. New insights into the regulation by RUNX1 and GFI1(s) proteins of the endothelial to hematopoietic transition generating primordial hematopoietic cells

    PubMed Central

    Thambyrajah, Roshana; Patel, Rahima; Mazan, Milena; Lie-a-Ling, Michael; Lilly, Andrew; Eliades, Alexia; Menegatti, Sara; Garcia-Alegria, Eva; Florkowska, Magdalena; Batta, Kiran; Kouskoff, Valerie; Lacaud, Georges

    2016-01-01

    ABSTRACT The first hematopoietic cells are generated very early in ontogeny to support the growth of the embryo and to provide the foundation to the adult hematopoietic system. There is a considerable therapeutic interest in understanding how these first blood cells are generated in order to try to reproduce this process in vitro. This would allow generating blood products, or hematopoietic cell populations from embryonic stem (ES) cells, induced pluripotent stem cells or through directed reprogramming. Recent studies have clearly established that the first hematopoietic cells originate from a hemogenic endothelium (HE) through an endothelial to hematopoietic transition (EHT). The molecular mechanisms underlining this transition remain largely unknown with the exception that the transcription factor RUNX1 is critical for this process. In this Extra Views report, we discuss our recent studies demonstrating that the transcriptional repressors GFI1 and GFI1B have a critical role in the EHT. We established that these RUNX1 transcriptional targets are actively implicated in the downregulation of the endothelial program and the loss of endothelial identity during the formation of the first blood cells. In addition, our results suggest that GFI1 expression provides an ideal novel marker to identify, isolate and study the HE cell population. PMID:27399214

  14. Hematopoietic progenitor cell mobilization for autologous transplantation – a literature review

    PubMed Central

    Salvino, Marco Aurélio; Ruiz, Jefferson

    2015-01-01

    The use of high-dose chemotherapy with autologous support of hematopoietic progenitor cells is an effective strategy to treat various hematologic neoplasms, such as non-Hodgkin lymphomas and multiple myeloma. Mobilized peripheral blood progenitor cells are the main source of support for autologous transplants, and collection of an adequate number of hematopoietic progenitor cells is a critical step in the autologous transplant procedure. Traditional strategies, based on the use of growth factors with or without chemotherapy, have limitations even when remobilizations are performed. Granulocyte colony-stimulating factor is the most widely used agent for progenitor cell mobilization. The association of plerixafor, a C-X-C Chemokine receptor type 4 (CXCR4) inhibitor, to granulocyte colony stimulating factor generates rapid mobilization of hematopoietic progenitor cells. A literature review was performed of randomized studies comparing different mobilization schemes in the treatment of multiple myeloma and lymphomas to analyze their limitations and effectiveness in hematopoietic progenitor cell mobilization for autologous transplant. This analysis showed that the addition of plerixafor to granulocyte colony stimulating factor is well tolerated and results in a greater proportion of patients with non-Hodgkin lymphomas or multiple myeloma reaching optimal CD34+ cell collections with a smaller number of apheresis compared the use of granulocyte colony stimulating factor alone. PMID:26969772

  15. Reprogramming Human Endothelial to Hematopoietic Cells Requires Vascular Induction

    PubMed Central

    Sandler, Vladislav M.; Lis, Raphael; Liu, Ying; Kedem, Alon; James, Daylon; Elemento, Olivier; Butler, Jason M.; Scandura, Joseph M.; Rafii, Shahin

    2014-01-01

    Summary Generating engraftable human hematopoietic cells from autologous tissues promises new therapies for blood diseases. Directed differentiation of pluripotent stem cells yields hematopoietic cells that poorly engraft. Here, we devised a method to phenocopy the vascular-niche microenvironment of hemogenic cells, thereby enabling reprogramming of human endothelial cells (ECs) into engraftable hematopoietic cells without transition through a pluripotent intermediate. Highly purified non-hemogenic human umbilical vein-ECs (HUVECs) or adult dermal microvascular ECs (hDMECs) were transduced with transcription factors (TFs), FOSB, GFI1, RUNX1, and SPI1 (FGRS), and then propagated on serum-free instructive vascular niche monolayers to induce outgrowth of hematopoietic colonies containing cells with functional and immunophenotypic features of multipotent progenitor cells (MPP). These reprogrammed ECs- into human-MPPs (rEC-hMPPs) acquire colony-forming cell (CFC) potential and durably engraft in immune-deficient mice after primary and secondary transplantation, producing long-term rEC-hMPP-derived myeloid (granulocytic/monocytic, erythroid, megakaryocytic) and lymphoid (NK, B) progeny. Conditional expression of FGRS transgenes, combined with vascular-induction, activates endogenous FGRS genes endowing rEC-hMPPs with a transcriptional and functional profile similar to self-renewing MPPs. Our approach underscores the role of inductive cues from vascular-niche in orchestrating and sustaining hematopoietic specification and may prove useful for engineering autologous hematopoietic grafts to treat inherited and acquired blood disorders. PMID:25030167

  16. Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells

    PubMed Central

    2013-01-01

    Pluripotent stem cells, both embryonic stem cells and induced pluripotent stem cells, are undifferentiated cells that can self-renew and potentially differentiate into all hematopoietic lineages, such as hematopoietic stem cells (HSCs), hematopoietic progenitor cells and mature hematopoietic cells in the presence of a suitable culture system. Establishment of pluripotent stem cells provides a comprehensive model to study early hematopoietic development and has emerged as a powerful research tool to explore regenerative medicine. Nowadays, HSC transplantation and hematopoietic cell transfusion have successfully cured some patients, especially in malignant hematological diseases. Owing to a shortage of donors and a limited number of the cells, hematopoietic cell induction from pluripotent stem cells has been regarded as an alternative source of HSCs and mature hematopoietic cells for intended therapeutic purposes. Pluripotent stem cells are therefore extensively utilized to facilitate better understanding in hematopoietic development by recapitulating embryonic development in vivo, in which efficient strategies can be easily designed and deployed for the generation of hematopoietic lineages in vitro. We hereby review the current progress of hematopoietic cell induction from embryonic stem/induced pluripotent stem cells. PMID:23796405

  17. Ischemic stroke activates hematopoietic bone marrow stem cells.

    PubMed

    Courties, Gabriel; Herisson, Fanny; Sager, Hendrik B; Heidt, Timo; Ye, Yuxiang; Wei, Ying; Sun, Yuan; Severe, Nicolas; Dutta, Partha; Scharff, Jennifer; Scadden, David T; Weissleder, Ralph; Swirski, Filip K; Moskowitz, Michael A; Nahrendorf, Matthias

    2015-01-30

    The mechanisms leading to an expanded neutrophil and monocyte supply after stroke are incompletely understood. To test the hypothesis that transient middle cerebral artery occlusion (tMCAO) in mice leads to activation of hematopoietic bone marrow stem cells. Serial in vivo bioluminescence reporter gene imaging in mice with tMCAO revealed that bone marrow cell cycling peaked 4 days after stroke (P<0.05 versus pre tMCAO). Flow cytometry and cell cycle analysis showed activation of the entire hematopoietic tree, including myeloid progenitors. The cycling fraction of the most upstream hematopoietic stem cells increased from 3.34%±0.19% to 7.32%±0.52% after tMCAO (P<0.05). In vivo microscopy corroborated proliferation of adoptively transferred hematopoietic progenitors in the bone marrow of mice with stroke. The hematopoietic system's myeloid bias was reflected by increased expression of myeloid transcription factors, including PU.1 (P<0.05), and by a decline in lymphocyte precursors. In mice after tMCAO, tyrosine hydroxylase levels in sympathetic fibers and bone marrow noradrenaline levels rose (P<0.05, respectively), associated with a decrease of hematopoietic niche factors that promote stem cell quiescence. In mice with genetic deficiency of the β3 adrenergic receptor, hematopoietic stem cells did not enter the cell cycle in increased numbers after tMCAO (naive control, 3.23±0.22; tMCAO, 3.74±0.33, P=0.51). Ischemic stroke activates hematopoietic stem cells via increased sympathetic tone, leading to a myeloid bias of hematopoiesis and higher bone marrow output of inflammatory Ly6C(high) monocytes and neutrophils. © 2014 American Heart Association, Inc.

  18. Cord blood hematopoietic cells from preterm infants display altered DNA methylation patterns.

    PubMed

    de Goede, Olivia M; Lavoie, Pascal M; Robinson, Wendy P

    2017-01-01

    Premature infants are highly vulnerable to infection. This is partly attributable to the preterm immune system, which differs from that of the term neonate in cell composition and function. Multiple studies have found differential DNA methylation (DNAm) between preterm and term infants' cord blood; however, interpretation of these studies is limited by the confounding factor of blood cell composition. This study evaluates the epigenetic impact of preterm birth in isolated hematopoietic cell populations, reducing the concern of cell composition differences. Genome-wide DNAm was measured using the Illumina 450K array in T cells, monocytes, granulocytes, and nucleated red blood cells (nRBCs) isolated from cord blood of 5 term and 5 preterm (<31 weeks gestational age) newborns. DNAm of hematopoietic cells was compared globally across the 450K array and through site-specific linear modeling. Nucleated red blood cells (nRBCs) showed the most extensive changes in DNAm, with 9258 differentially methylated (DM) sites (FDR < 5%, |Δβ| > 0.10) discovered between preterm and term infants compared to the <1000 prematurity-DM sites identified in white blood cell populations. The direction of DNAm change with gestational age at these prematurity-DM sites followed known patterns of hematopoietic differentiation, suggesting that term hematopoietic cell populations are more epigenetically mature than their preterm counterparts. Consistent shifts in DNAm between preterm and term cells were observed at 25 CpG sites, with many of these sites located in genes involved in growth and proliferation, hematopoietic lineage commitment, and the cytoskeleton. DNAm in preterm and term hematopoietic cells conformed to previously identified DNAm signatures of fetal liver and bone marrow, respectively. This study presents the first genome-wide mapping of epigenetic differences in hematopoietic cells across the late gestational period. DNAm differences in hematopoietic cells between term

  19. Hematopoietic cell regulation of osteoblast proliferation and differentiation.

    PubMed

    Bethel, Monique; Srour, Edward F; Kacena, Melissa A

    2011-06-01

    The last several decades have revealed numerous interactions between cells of the hematopoietic lineage and osteoblasts (OBs) of the mesenchymal lineage. For example, OBs are important players in the hematopoietic stem cell (HSC) niche and OBs are known to impact osteoclast (OC) development. Thus, although much is known regarding the impact OBs have on hematopoietic cells, less is known about the impact of hematopoietic cells on OBs. Here we will review this reciprocal relationship: the effects of hematopoietic cells on OBs. Specifically, we will examine the impact of hematopoietic cells such as HSCs, lymphocytes, and megakaryocytes, as well as the hematopoietic cell-derived OCs on OB proliferation, differentiation, and function.

  20. Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells

    PubMed Central

    Himburg, Heather A; Muramoto, Garrett G; Daher, Pamela; Meadows, Sarah K; Russell, J Lauren; Doan, Phuong; Chi, Jen-Tsan; Salter, Alice B; Lento, William E; Reya, Tannishtha; Chao, Nelson; Chute, John P

    2013-01-01

    Hematopoietic stem cell (HSC) self-renewal is regulated by both intrinsic and extrinsic signals. Although some of the pathways that regulate HSC self-renewal have been uncovered, it remains largely unknown whether these pathways can be triggered by deliverable growth factors to induce HSC growth or regeneration. Here we show that pleiotrophin, a neurite outgrowth factor with no known function in hematopoiesis, efficiently promotes HSC expansion in vitro and HSC regeneration in vivo. Treatment of mouse bone marrow HSCs with pleiotrophin caused a marked increase in long-term repopulating HSC counts in culture, as measured in competitive repopulating assays. Treatment of human cord blood CD34+CDCD38−Lin− cells with pleiotrophin also substantially increased severe combined immunodeficient (SCID)-repopulating cell counts in culture, compared to input and cytokine-treated cultures. Systemic administration of pleiotrophin to irradiated mice caused a pronounced expansion of bone marrow stem and progenitor cells in vivo, indicating that pleiotrophin is a regenerative growth factor for HSCs. Mechanistically, pleiotrophin activated phosphoinositide 3-kinase (PI3K) signaling in HSCs; antagonism of PI3K or Notch signaling inhibited pleiotrophin-mediated expansion of HSCs in culture. We identify the secreted growth factor pleiotrophin as a new regulator of both HSC expansion and regeneration PMID:20305662

  1. Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells.

    PubMed

    Himburg, Heather A; Muramoto, Garrett G; Daher, Pamela; Meadows, Sarah K; Russell, J Lauren; Doan, Phuong; Chi, Jen-Tsan; Salter, Alice B; Lento, William E; Reya, Tannishtha; Chao, Nelson J; Chute, John P

    2010-04-01

    Hematopoietic stem cell (HSC) self-renewal is regulated by both intrinsic and extrinsic signals. Although some of the pathways that regulate HSC self-renewal have been uncovered, it remains largely unknown whether these pathways can be triggered by deliverable growth factors to induce HSC growth or regeneration. Here we show that pleiotrophin, a neurite outgrowth factor with no known function in hematopoiesis, efficiently promotes HSC expansion in vitro and HSC regeneration in vivo. Treatment of mouse bone marrow HSCs with pleiotrophin caused a marked increase in long-term repopulating HSC numbers in culture, as measured in competitive repopulating assays. Treatment of human cord blood CD34(+)CDCD38(-)Lin(-) cells with pleiotrophin also substantially increased severe combined immunodeficient (SCID)-repopulating cell counts in culture, compared to input and cytokine-treated cultures. Systemic administration of pleiotrophin to irradiated mice caused a pronounced expansion of bone marrow stem and progenitor cells in vivo, indicating that pleiotrophin is a regenerative growth factor for HSCs. Mechanistically, pleiotrophin activated phosphoinositide 3-kinase (PI3K) signaling in HSCs; antagonism of PI3K or Notch signaling inhibited pleiotrophin-mediated expansion of HSCs in culture. We identify the secreted growth factor pleiotrophin as a new regulator of both HSC expansion and regeneration.

  2. Adrenaline administration promotes the efficiency of granulocyte colony stimulating factor-mediated hematopoietic stem and progenitor cell mobilization in mice.

    PubMed

    Chen, Chong; Cao, Jiang; Song, Xuguang; Zeng, Lingyu; Li, Zhenyu; Li, Yong; Xu, Kailin

    2013-01-01

    A high dose of granulocyte colony stimulating factor (G-CSF) is widely used to mobilize hematopoietic stem and progenitor cells (HSPC), but G-CSF is relatively inefficient and may cause adverse effects. Recently, adrenaline has been found to play important roles in HSPC mobilization. In this study, we explored whether adrenaline combined with G-CSF could induce HSPC mobilization in a mouse model. Mice were treated with adrenaline and either a high or low dose of G-CSF alone or in combination. Peripheral blood HSPC counts were evaluated by flow cytometry. Levels of bone marrow SDF-1 were measured by ELISA, the transcription of CXCR4 and SDF-1 was measured by real-time RT-PCR, and CXCR4 protein was detected by Western blot. Our results showed that adrenaline alone fails to mobilize HSPCs into the peripheral blood; however, when G-CSF and adrenaline are combined, the WBC counts and percentages of HSPCs are significantly higher compared to those in mice that received G-CSF alone. The combined use of adrenaline and G-CSF not only accelerated HSPC mobilization, but also enabled the efficient mobilization of HSPCs into the peripheral blood at lower doses of G-CSF. Adrenaline/G-CSF treatment also extensively downregulated levels of SDF-1 and CXCR4 in mouse bone marrow. These results demonstrated that adrenaline combined with G-CSF can induce HSPC mobilization by down-regulating the CXCR4/SDF-1 axis, indicating that the use of adrenaline may enable the use of reduced dosages or durations of G-CSF treatment, minimizing G-CSF-associated complications.

  3. Hematopoietic Cell Regulation of Osteoblast Proliferation and Differentiation

    PubMed Central

    Bethel, Monique; Srour, Edward F.

    2011-01-01

    The last several decades have revealed numerous interactions between cells of the hematopoietic lineage and osteoblasts (OBs) of the mesenchymal lineage. For example, OBs are important players in the hematopoietic stem cell (HSC) niche and OBs are known to impact osteoclast (OC) development. Thus, although much is known regarding the impact OBs have on hematopoietic cells, less is known about the impact of hematopoietic cells on OBs. Here we will review this reciprocal relationship: the effects of hematopoietic cells on OBs. Specifically, we will examine the impact of hematopoietic cells such as HSCs, lymphocytes, and megakaryocytes, as well as the hematopoietic cell–derived OCs on OB proliferation, differentiation, and function. PMID:21360286

  4. Parasitic Infections in Hematopoietic Stem Cell Transplantation

    PubMed Central

    Jarque, Isidro; Salavert, Miguel; Pemán, Javier

    2016-01-01

    Parasitic infections are rarely documented in hematopoietic stem cell transplant recipients. However they may be responsible for fatal complications that are only diagnosed at autopsy. Increased awareness of the possibility of parasitic diseases both in autologous and allogeneic stem cell transplant patients is relevant not only for implementing preventive measures but also for performing an early diagnosis and starting appropriate therapy for these unrecognized but fatal infectious complications in hematopoietic transplant recipients. In this review, we will focus on parasitic diseases occurring in this population especially those with major clinical relevance including toxoplasmosis, American trypanosomiasis, leishmaniasis, malaria, and strongyloidiasis, among others, highlighting the diagnosis and management in hematopoietic transplant recipients. PMID:27413527

  5. Endocannabinoids as positive or negative factors in hematopoietic cell migration and differentiation.

    PubMed

    Patinkin, Deborah; Milman, Garry; Breuer, Aviva; Fride, Ester; Mechoulam, Raphael

    2008-10-24

    The ethanolamides of arachidonic, myristic and linoleic acids reduce bone marrow cell migration, while the 2-glyceryl esters of these acids enhance migration. Thus the 2 major endocannabinoids, anandamide (arachidonoyl ethanolamide) and 2-AG (2-arachidonoyl glycerol), whose structural difference lies in the nature of the end-group alone, work in opposite directions. The endocannabinoid arachidonoyl serine, a vasodilator, also reduces migration. The effect of 2-AG is mediated, in part at least, through the cannabinoid receptors, while the effect of anandamide, as well as the rest of the compounds assayed, are not mediated through them. Almost all cannabinoids tested, including anandamide and 2-AG, lead to approximate doubling of CFU-GEMM (colony-forming unit: granulocyte, erythrocyte, macrophage, megakaryocyte) colonies. The effect of anandamide is considerably more potent than that of 2-AG. A surprising dose-response increase of erythroid cells is noted in cultures with the ester cannabinoids (in the absence of the cytokine erythropoietin), while a considerable dose-response augmentation of megakaryocytes is noted in cultures with the ethanolamide cannabinoids (in the presence of erythropoietin). This is suggestive of some cross-talk between two different regulatory systems, one governed by glycoprotein ligands and the other by endocannabinoids.

  6. The role of CD44 in fetal and adult hematopoietic stem cell regulation.

    PubMed

    Cao, Huimin; Heazlewood, Shen Y; Williams, Brenda; Cardozo, Daniela; Nigro, Julie; Oteiza, Ana; Nilsson, Susan K

    2016-01-01

    Throughout development, hematopoietic stem cells migrate to specific microenvironments, where their fate is, in part, extrinsically controlled. CD44 standard as a member of the cell adhesion molecule family is extensively expressed within adult bone marrow and has been previously reported to play important roles in adult hematopoietic regulation via CD44 standard-ligand interactions. In this manuscript, CD44 expression and function are further assessed and characterized on both fetal and adult hematopoietic stem cells. Using a CD44(-/-) mouse model, conserved functional roles of CD44 are revealed throughout development. CD44 is critical in the maintenance of hematopoietic stem and progenitor pools, as well as in hematopoietic stem cell migration. CD44 expression on hematopoietic stem cells as well as other hematopoietic cells within the bone marrow microenvironment is important in the homing and lodgment of adult hematopoietic stem cells isolated from the bone/bone marrow interface. CD44 is also involved in fetal hematopoietic stem cell migration out of the liver, via a process involving stromal cell-derived factor-1α. The absence of CD44 in neonatal bone marrow has no impact on the size of the long-term reconstituting hematopoietic stem cell pool, but results in an enhanced long-term engraftment potential of hematopoietic stem cells.

  7. The role of CD44 in fetal and adult hematopoietic stem cell regulation

    PubMed Central

    Cao, Huimin; Heazlewood, Shen Y.; Williams, Brenda; Cardozo, Daniela; Nigro, Julie; Oteiza, Ana; Nilsson, Susan K.

    2016-01-01

    Throughout development, hematopoietic stem cells migrate to specific microenvironments, where their fate is, in part, extrinsically controlled. CD44 standard as a member of the cell adhesion molecule family is extensively expressed within adult bone marrow and has been previously reported to play important roles in adult hematopoietic regulation via CD44 standard-ligand interactions. In this manuscript, CD44 expression and function are further assessed and characterized on both fetal and adult hematopoietic stem cells. Using a CD44−/− mouse model, conserved functional roles of CD44 are revealed throughout development. CD44 is critical in the maintenance of hematopoietic stem and progenitor pools, as well as in hematopoietic stem cell migration. CD44 expression on hematopoietic stem cells as well as other hematopoietic cells within the bone marrow microenvironment is important in the homing and lodgment of adult hematopoietic stem cells isolated from the bone/bone marrow interface. CD44 is also involved in fetal hematopoietic stem cell migration out of the liver, via a process involving stromal cell-derived factor-1α. The absence of CD44 in neonatal bone marrow has no impact on the size of the long-term reconstituting hematopoietic stem cell pool, but results in an enhanced long-term engraftment potential of hematopoietic stem cells. PMID:26546504

  8. Is ABO mismatch another risk factor for allogeneic hematopoietic stem cell transplantation in pediatric thalassemic patients?

    PubMed

    Atay, Didem; Erbey, Fatih; Akcay, Arzu; Ozturk, Gulyuz

    2015-09-01

    The ABO incompatibility between donor and recipient is not considered a barrier to successful allogeneic HSCT. Nevertheless, conflicting data still exist about the influence of ABO incompatibility on transplant outcome in pediatric patients with thalassemia. Fifty-one children with beta-thalassemia major who underwent allogeneic HSCT were enrolled this study. Twenty-three of them (45%) received an ABO-incompatible transplant [minor ABO mismatch: six (26%), major ABO mismatch: fourteen (61%), and bidirectional mismatch: three (13%)]. In this study, ABO incompatibility did not significantly impair GVHD, VOD, neutrophil and platelet engraftment, TRM, OS and TFS. Particularly in major and bidirectional ABO-mismatched patients, a delayed erythroid recovery was recorded as compared to the group receiving an ABO-compatible graft (median time, 31 and 38 days vs. 19.5 days; p: 0.02 and p: 0.03). Median time to red cell transfusion independence was significantly longer in major ABO-incompatible patients (median time, 87 days vs. 32 days; p: 0.001). Therefore, whenever feasible, major ABO-mismatched donors should be avoided in HSCT recipients, to prevent delayed erythroid recovery with prolonged RBC transfusion needs and impaired quality of life.

  9. Leukemia microvesicles affect healthy hematopoietic stem cells.

    PubMed

    Razmkhah, Farnaz; Soleimani, Masoud; Mehrabani, Davood; Karimi, Mohammad Hossein; Amini Kafi-Abad, Sedigheh; Ramzi, Mani; Iravani Saadi, Mahdiyar; Kakoui, Javad

    2017-02-01

    Microvesicles are released by different cell types and shuttle mRNAs and microRNAs which have the possibility to transfer genetic information to a target cell and alter its function. Acute myeloid leukemia is a malignant disorder, and leukemic cells occupy all the bone marrow microenvironment. In this study, we investigate the effect of leukemia microvesicles on healthy umbilical cord blood hematopoietic stem cells to find evidence of cell information transferring. Leukemia microvesicles were isolated from acute myeloid leukemia patients and were co-incubated with healthy hematopoietic stem cells. After 7 days, cell count, hematopoietic stem cell-specific cluster of differentiation (CD) markers, colony-forming unit assay, and some microRNA gene expressions were assessed. Data showed a higher number of hematopoietic stem cells after being treated with leukemia microvesicles compared with control (treated with no microvesicles) and normal (treated with normal microvesicles) groups. Also, increased levels of microRNA-21 and microRNA-29a genes were observed in this group, while colony-forming ability was still maintained and high ranges of CD34(+), CD34(+)CD38(-), CD90(+), and CD117(+) phenotypes were observed as stemness signs. Our results suggest that leukemia microvesicles are able to induce some effects on healthy hematopoietic stem cells such as promoting cell survival and some microRNAs deregulation, while stemness is maintained.

  10. SBR-Blood: systems biology repository for hematopoietic cells.

    PubMed

    Lichtenberg, Jens; Heuston, Elisabeth F; Mishra, Tejaswini; Keller, Cheryl A; Hardison, Ross C; Bodine, David M

    2016-01-04

    Extensive research into hematopoiesis (the development of blood cells) over several decades has generated large sets of expression and epigenetic profiles in multiple human and mouse blood cell types. However, there is no single location to analyze how gene regulatory processes lead to different mature blood cells. We have developed a new database framework called hematopoietic Systems Biology Repository (SBR-Blood), available online at http://sbrblood.nhgri.nih.gov, which allows user-initiated analyses for cell type correlations or gene-specific behavior during differentiation using publicly available datasets for array- and sequencing-based platforms from mouse hematopoietic cells. SBR-Blood organizes information by both cell identity and by hematopoietic lineage. The validity and usability of SBR-Blood has been established through the reproduction of workflows relevant to expression data, DNA methylation, histone modifications and transcription factor occupancy profiles.

  11. Sulfhydryl dependence in primary explant hematopoietic cells. Inhibition of growth in vitro with vitamin B12 compounds.

    PubMed Central

    Toohey, J I

    1975-01-01

    Primary explants of P388, EL-4, and L1210 murine leukemia cells and of normal mouse bone marrow are shown to require sulfhydryl compounds for proliferation in vitro. Nine extablished cell lines show no stimulation by these compounds. Leukemia cells can lose the sulfhydryl dependence after various periods of adaptation to in vitro culture. Various sulfhydryl compounds have widely differing potencies in promoting in vitro proliferation of dependent cells. The effect appears to be specific for sulfhydryl groups in the reduced form. Vitamin B12 compounds inhibit the growth of sulfhydryl-requiring cells, apparently by catalyzing the oxidation of the sulfhydryl groups. PMID:1054516

  12. Secretion of basic fibroblast growth factor (FGF-2) by WEHI-3B myelomonocytic leukemia cells.

    PubMed

    Pessina, Augusto; Gagliardi, Giuseppina; Croera, Cristina; Foti, Paola; Dassi, Cristina; Brambilla, Paolo; Neri, Maria Grazia

    2002-09-01

    In order to investigate the role of Fibroblast Growth Factors in hematopoietic cells, we studied the expression of FGF-1, FGF-2, FGF-3, FGF-4, FGF-5 and FGF-6 mRNAs both in murine myelomonocytic leukemia WEHI-3B and in a murine stromal cell line SR-4987. Secretion of FGF-2 in the cell culture supernatant was also studied. Expression of mRNA encoding for the above-mentioned FGFs was analyzed by RT-PCR. The production of FGF-2 in the conditioned media of WEHI-3B and SR-4987 cell cultures was evaluated by techniques of affinity chromatography, chromatofocusing and immunoblotting. The biological activity of FGF-2 was checked on SR-4987 cells by a agar clonogenic assay. In both cell lines mRNA was found encoding for FGF-1, FGF-2 and FGF-6 and WEHI-3B cells express also mRNA for FGF-3 (int-2) and FGF-4 (K-FGF/hst). Furthermore, supernatant from WEHI-3B cells was found to stimulate dramatically the agar clonogenicity of SR-4987 cells which have a very poor basal capacity for growth in agar. The clonogenic activity of WEHI-3B conditioned medium is due to FGF-2 secreted into cell culture supernatant whereas SR-4987 cells, although express FGF-2 mRNA, do not seem able to secrete this factor. The expression in myeloid leukemia cells of oncogene-related factors such as FGF-3, FGF-4 and FGF-6 together with the secretion of FGF-2 able to support a positive regulation of bone marrow stromal cells function suggest that FGFs may have an important role in sustaining the leukemogenic process and related disorders.

  13. Effects of Growth Factors on Dental Stem/ProgenitorCells

    PubMed Central

    Kim, Sahng G.; Solomon, Charles; Zheng, Ying; Suzuki, Takahiro; Mo, Chen; Song, Songhee; Jiang, Nan; Cho, Shoko; Zhou, Jian; Mao, Jeremy J.

    2014-01-01

    Synopsis The primary goal of regenerative endodontics is to restore the vitality and functions of the dentin-pulp complex, as opposed to filing of the root canal with bioinert materials. Structural restoration is also important but is likely secondary to vitality and functions. Myriads growth factors regulate multiple cellular functions including migration, proliferation, differentiation and apoptosis of several cell types that are intimately involved in dentin-pulp regeneration: odontoblasts, interstitial fibroblasts, vascular-endothelial cells and sprouting nerve fibers. Recent work showing that growth factor delivery, without cell transplantation, can yield pulp-dentin like tissues in vivo provides one of the tangible pathways for regenerative endodontics. This review synthesizes our knowledge on a multitude of growth factors that are known or anticipated to be efficacious in dental pulp-dentin regeneration. PMID:22835538

  14. Late Cardiovascular Complications after Hematopoietic Cell Transplantation

    PubMed Central

    Chow, Eric J.; Wong, Kenneth; Lee, Stephanie J.; Cushing-Haugen, Kara L.; Flowers, Mary E.D.; Friedman, Debra L.; Leisenring, Wendy M.; Martin, Paul J.; Mueller, Beth A.; Baker, K. Scott

    2014-01-01

    PURPOSE To better understand the combined effects of pre-transplant, transplant, and post-transplant factors in determining risks of serious cardiovascular disease following hematopoietic cell transplantation (HCT). METHODS Hospitalizations and deaths associated with serious cardiovascular outcomes were identified among 1,379 Washington State residents who received HCT (57% allogeneic; 43% autologous) at a single center from 1985–2005, survived ≥2 years, and followed through 2008. Using a nested-case-cohort design, relationships (hazard ratios, HR) between potential risk factors and outcomes were examined among affected survivors and a randomly selected sub-cohort (n=509). RESULTS After 7.0 years median follow-up (range 2.0–23.7), the 10-year cumulative incidence of ischemic heart disease, cardiomyopathy, stroke, and all-cause cardiovascular death was 3.8%, 6.0%, 3.5%, and 3.7%, respectively. In multivariable analysis, increased pre-transplant anthracyclines was associated with cardiomyopathy. Active chronic graft vs. host disease was associated with cardiovascular death (HR 4.0, 95% CI 1.1–14.7); risk was otherwise similar between autologous vs. allogeneic HCT recipients. Independent of therapeutic exposures, pre-transplant smoking, hypertension, dyslipidemia, diabetes, and obesity conferred additional risk of all outcomes except stroke (HR ≥1.5 for each additional risk factor, p<0.03). Hypertension and dyslipidemia at one year with persistence of these conditions two or more years following HCT also were associated with independent risks of multiple outcomes. CONCLUSION Hematopoietic cell transplant survivors with pre-existing or newly developed and persistent cardiovascular risk factors remain at greater risk of subsequent serious cardiovascular disease compared with other survivors, independent of chemo- and radiotherapy exposures. These survivors should receive appropriate follow-up and be considered for primary intervention. PMID:24565992

  15. Endothelial cells mediate the regeneration of hematopoietic stem cells

    PubMed Central

    Li, Bei; Bailey, Alexis S.; Jiang, Shuguang; Liu, Bin; Goldman, Devorah C.; Fleming, William H.

    2010-01-01

    Recent studies suggest that endothelial cells are a critical component of the normal hematopoietic microenvironment. Therefore, we sought to determine whether primary endothelial cells have the capacity to repair damaged hematopoietic stem cells. Highly purified populations of primary CD31+ microvascular endothelial cells isolated from the brain or lung did not express the pan hematopoietic marker CD45, hematopoietic lineage markers, or the progenitor marker c-kit and did not give rise hematopoietic cells in vitro or in vivo. Remarkably, the transplantation of small numbers of these microvascular endothelial cells consistently restored hematopoiesis following bone marrow lethal doses of irradiation. Analysis of the peripheral blood of rescued recipients demonstrated that both short term and long term multilineage hematopoietic reconstitution was exclusively of host origin. Secondary transplantation studies revealed that microvascular endothelial cell-mediated hematopoietic regeneration also occurs at the level of the hematopoietic stem cell. These findings suggest a potential therapeutic role for microvascular endothelial cells in the self-renewal and repair of adult hematopoietic stem cells. PMID:19720572

  16. [Hematopoietic stem cell transplantation in autoimmune diseases].

    PubMed

    Albarracín, Flavio; López Meiller, María José; Naswetter, Gustavo; Longoni, Héctor

    2008-01-01

    Transplantation of hematopoietic stem cells, which are capable of self renewal and reconstitution of all types of blood cells, can be a treatment for numerous potential lethal diseases, including leukemias and lymphomas. It may now be applicable for the treatment of severe autoimmune diseases, such as therapy-resistant multiple sclerosis, lupus and systemic sclerosis. Studies in animal models show that the transfer of hematopoietic stem cells can reverse autoimmunity. The outcome of ongoing clinical trials, as well as of studies in patients and animal models, will help to determine the role that stem-cell transplantation can play in the treatment of autoimmune diseases.

  17. Production of minimally disturbed synchronous cultures of hematopoietic cells

    NASA Technical Reports Server (NTRS)

    Thornton, Maureen; Eward, Kathryn Leigh; Helmstetter, Charles E.; Edward, K. L. (Principal Investigator)

    2002-01-01

    A method is describedforproducing sizable quantities of synchronously dividing, minimally disturbed mammalian cells. Cultures were grown immobilized on surfaces such that cell division within the population resulted in the continuous release of synchronous newborn cells. As judged by the quality and duration of synchronous growth, cell size distributions, and DNA compositions, newborn mouse L1210 cells grew with a very high level of synchrony without overt evidence of growth disturbances. The technology should be applicable to a variety of hematopoietic cells, as evidenced by similar results with human MOLT-4 and U937 cell lines.

  18. Production of minimally disturbed synchronous cultures of hematopoietic cells

    NASA Technical Reports Server (NTRS)

    Thornton, Maureen; Eward, Kathryn Leigh; Helmstetter, Charles E.; Edward, K. L. (Principal Investigator)

    2002-01-01

    A method is describedforproducing sizable quantities of synchronously dividing, minimally disturbed mammalian cells. Cultures were grown immobilized on surfaces such that cell division within the population resulted in the continuous release of synchronous newborn cells. As judged by the quality and duration of synchronous growth, cell size distributions, and DNA compositions, newborn mouse L1210 cells grew with a very high level of synchrony without overt evidence of growth disturbances. The technology should be applicable to a variety of hematopoietic cells, as evidenced by similar results with human MOLT-4 and U937 cell lines.

  19. In Vivo Isolation and Characterization of Stem Cells with Diverse Phenotypes Using Growth Factor Impregnated Biomatrices

    PubMed Central

    Grimaldi, Annalisa; Bianchi, Cristiano; Greco, Gabriella; Tettamanti, Gianluca; Noonan, Douglas M.; Valvassori, Roberto; de Eguileor, Magda

    2008-01-01

    Background The stimulation to differentiate into specific cell types for somatic stem cells is largely due to a series of internal and external signals coming from the microenvironment that surrounds the stem cell. Even though intensive research has been made, the basic mechanisms of plasticity and/or the molecules regulating stem cells proliferation and differentiation are not completely determined. Potential answers concerning the problems could be derived from the studies of stem cells in culture. Methodology/Principle Findings We combine a new procedure (using the matrigel biopolymer supplemented with a selected cytokine/growth factor) with classic techniques such as light, confocal and electron microscopy, immunohistochemistry and cell culture, to perform an analysis on stem cells involved in the leech (Hirudo medicinalis) repair tissues. The leech has a relative anatomical simplicity and is a reliable model for studying a variety of basic events, such as tissue repair, which has a striking similarity with vertebrate responses. Our data demonstrate that the injection of an appropriate combination of the matrigel biopolymer supplemented with a selected cytokine/growth factor in the leech Hirudo medicinalis is a remarkably effective tool for isolating a specific cell population in vivo. A comparative analysis of biopolymer in vivo sorted stem cells indicates that VEGF recruited cells of a hematopoietic/endothelial phenotype whereas MCP-1/CCL2 isolated cells that were of an early myeloid lineage. Conclusion Our paper describes, for the first time, a method allowing not only the isolation of a specific cell population in relation to the cytokine utilized but also the possibility to culture a precise cell type whose isolation is otherwise quite difficult. This approach could be broadly applied to isolate stem cells of diverse origins based on the recruitment stimuli employed. PMID:18382683

  20. Heparan sulfate mimetics can efficiently mobilize long-term hematopoietic stem cells

    PubMed Central

    Di Giacomo, Fabio; Lewandowski, Daniel; Cabannes, Eric; Nancy-Portebois, Vanessa; Petitou, Maurice; Fichelson, Serge; Romeo, Paul-Henri

    2012-01-01

    Background Although mobilization of hematopoietic stem cells and hematopoietic progenitor cells can be achieved with a combination of granulocyte colony-stimulating factor and plerixafor (AMD3100), improving approaches for hematopoietic progenitor cell mobilization is clinically important. Design and Methods Heparan sulfate proteoglycans are ubiquitous macromolecules associated with the extracellular matrix that regulates biology of hematopoietic stem cells. We studied the effects of a new family of synthetic oligosaccharides mimicking heparan sulfate on hematopoietic stem cell mobilization. These oligosaccharides were administered intravenously alone or in combination with granulocyte colony-stimulating factor and/or AMD3100 in mice. Mobilized hematopoietic cells were counted and phenotyped at different times and the ability of mobilized hematopoietic stem cells to reconstitute long-term hematopoiesis was determined by competitive transplantation into syngenic lethally irradiated mice followed by secondary transplantation. Results Mimetics of heparan sulfate induced rapid mobilization of B-lymphocytes, T-lymphocytes, hematopoietic stem cells and hematopoietic progenitor cells. They increased the mobilization of hematopoietic stem cells and hematopoietic progenitor cells more than 3-fold when added to the granulocyte colony-stimulating factor/AMD3100 association. Hematopoietic stem cells mobilized by mimetics of heparan sulfate or by the granulocyte colony-stimulating factor/AMD3100/mimetics association were as effective as hematopoietic stem cells mobilized by the granulocyte colony-stimulating factor/AMD3100 association for primary and secondary hematopoietic reconstitution of lethally irradiated mice. Conclusions This new family of mobilizing agents could alone or in combination with granulocyte colony-stimulating factor and/or AMD3100 mobilize a high number of hematopoietic stem cells that were able to maintain long-term hematopoiesis. These results strengthen

  1. Osteonecrosis in children after allogeneic hematopoietic cell transplantation: study of prevalence, risk factors and longitudinal changes using MR imaging.

    PubMed

    Sharma, S; Leung, W-H; Deqing, P; Yang, J; Rochester, R; Britton, L; Neel, M D; Ness, K K; Kaste, S C

    2012-08-01

    Osteonecrosis after hematopoietic SCT (HCT) has seldom been addressed in pediatric populations. At our institution, since January 2002, children undergoing allogeneic HCT (alloHCT) receive yearly follow-up magnetic resonance imaging (MR) of hips and knees. To estimate the prevalence, longitudinal changes and associated risk factors for osteonecrosis after alloHCT, we reviewed MRs for children who underwent single alloHCT during the study period. We analyzed 149 of 344 patients who had post-HCT MR imaging performed (84 males; median age 11 years (range, 0.5-21 years)), median follow-up time was 32.6 months (range, 2.8-97.2 months). In all, 44 (29.5%) developed osteonecrosis of hips and/or knees; of those, 20 (45%) had at least 30% epiphyseal involvement. In 23 (52%), osteonecrosis lesions were identified in the first and in 43 (98%) by the third yearly scan. Knees were more frequently involved than hips; severity of osteonecrosis was greater in hips. Those who had pre-alloHCT osteonecrosis, two patients' hips and six patients' knees resolved completely; three patients' osteonecrosis lesions regressed after alloHCT. On risk factor analysis, age at time of alloHCT (P=0.051) and osteonecrosis identified by MRs before alloHCT (P=0.001) were the primary risk factors. This analysis shows that preventive strategies for osteonecrosis in this population should focus on measures to minimize risk factors before alloHCT.

  2. Collection of more hematopoietic progenitor cells with large volume leukapheresis in patients with multiple myeloma.

    PubMed

    Desikan, K R; Jagannath, S; Siegel, D; Nelson, J; Bracy, D; Barlogie, B; Tricot, G

    1998-02-01

    Reinfusion of mobilized peripheral blood stem cells (PBSC) after high dose chemotherapy accelerates hematopoietic recovery. Because of the relatively low content of hematopoietic progenitors in the peripheral blood even after mobilization, multiple leukapheresis procedures are necessary to reach the required target number of CD34 cells to ensure prompt engraftment post-transplantation. Our previous studies have shown that the highest proportions of hematopoietic progenitors cells (CD34) are collected during the first three days of apheresis, whereas peak levels of myeloma cells are observed during subsequent days. Therefore, large volume leukapheresis (LVL), defined as processing of greater than 3 blood volumes or a total of at least 15 liters, was explored in 23 myeloma patients, undergoing 91 procedures; 14 patients were mobilized with high dose cyclophosphamide (6g/m2) and hematopoietic growth factors and 9 with G-CSF only. CD34 yields were measured separately for the first and last two hours of collection. We observed no decrease in CD34 cells/kg during the last two hours of collection and when the LVL collections were compared to historical matched controls, mobilized with the same regimen, the median quantity of CD34 cells/kg/liter collected remained equivalent during all days of apheresis. When compared to G-CSF only, mobilization with high dose cyclophosphamide appeared to result in superior hematopoietic stem cell collections. Interestingly, the G-CSF group experienced a progressive decrease in platelets during consecutive days of LVL, while the opposite was seen in the cyclophosphamide group. LVL procedures were not associated with a higher complication rate than standard volume apheresis. We conclude that LVL procedures allow collection of more CD34 cell per session while not jeopardizing progenitor cell collections during subsequent sessions. Since more CD34 cells are collected, fewer days are required to attain the optimal target of progenitor cells

  3. Hematopoietic stem cells are pluripotent and not just "hematopoietic".

    PubMed

    Ogawa, Makio; LaRue, Amanda C; Mehrotra, Meenal

    2013-06-01

    Over a decade ago, several preclinical transplantation studies suggested the striking concept of the tissue-reconstituting ability (often referred to as HSC plasticity) of hematopoietic stem cells (HSCs). While this heralded an exciting time of radically new therapies for disorders of many organs and tissues, the concept was soon mired in controversy and remained dormant for almost a decade. This commentary provides a concise review of evidence for HSC plasticity, including more recent findings based on single HSC transplantation in mouse and clinical transplantation studies. There is strong evidence for the concept that HSCs are pluripotent and are the source for the majority, if not all, of the cell types in our body. Also discussed are some biological and experimental issues that need to be considered in the future investigation of HSC plasticity.

  4. Acute exercise mobilizes hematopoietic stem and progenitor cells and alters the mesenchymal stromal cell secretome.

    PubMed

    Emmons, Russell; Niemiro, Grace M; Owolabi, Olatomide; De Lisio, Michael

    2016-03-15

    Transplantation of hematopoietic stem and progenitor cells (HSPC), collected from peripheral blood, is the primary treatment for many hematological malignancies; however, variable collection efficacy with current protocols merits further examination into factors responsible for HSPC mobilization. HSPCs primarily reside within the bone marrow and are regulated by mesenchymal stromal cells (MSC). Exercise potently and transiently mobilizes HSPCs from the bone marrow into peripheral circulation. Thus the purpose of the present study was to evaluate potential factors in the bone marrow responsible for HSPC mobilization, investigate potential sites of HSPC homing, and assess changes in bone marrow cell populations following exercise. An acute exercise bout increased circulating HSPCs at 15 min (88%, P < 0.001) that returned to baseline at 60 min. Gene expression for HSPC homing factors (CXCL12, vascular endothelial growth factor-a, and angiopoietin-1) were increased at 15 min in skeletal muscle and HSPC content was increased in the spleen 48 h postexercise (45%, P < 0.01). Acute exercise did not alter HSPCs or MSCs quantity in the bone marrow; however, proliferation of HSPCs (40%, P < 0.001), multipotent progenitors (40%, P < 0.001), short-term hematopoietic stem cells (61%, P < 0.001), long-term hematopoietic stem cells (55%, P = 0.002), and MSCs (20%, P = 0.01) increased postexercise. Acute exercise increased the content of the mobilization agent granulocyte-colony stimulating factor, as well as stem cell factor, interleukin-3, and thrombopoeitin in conditioned media collected from bone marrow stromal cells 15 min postexercise. These findings suggest that the MSC secretome is responsible for HSPC mobilization and proliferation; concurrently, HSPCs are homing to extramedullary sites following exercise. Copyright © 2016 the American Physiological Society.

  5. Aging Hematopoietic Stem Cells Make Their History.

    PubMed

    Fast, Eva Maria; Zon, Leonard Ira

    2016-11-21

    A major hallmark of aging is a decline in tissue regeneration. In a recent issue of Cell, Bernitz and colleagues (2016) determine the divisional history of hematopoietic stem cells (HSCs) to be a key player of regenerative potential in the aging mouse. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Chicken stem cell factor enhances primordial germ cell proliferation cooperatively with fibroblast growth factor 2

    PubMed Central

    MIYAHARA, Daichi; OISHI, Isao; MAKINO, Ryuichi; KURUMISAWA, Nozomi; NAKAYA, Ryuma; ONO, Tamao; KAGAMI, Hiroshi; TAGAMI, Takahiro

    2015-01-01

    An in vitro culture system of chicken primordial germ cells (PGCs) has been recently developed, but the growth factor involved in the proliferation of PGCs is largely unknown. In the present study, we investigated the growth effects of chicken stem cell factor (chSCF) on the in vitro proliferation of chicken PGCs. We established two feeder cell lines (buffalo rat liver cells; BRL cells) that stably express the putative secreted form of chSCF (chSCF1-BRL) and membrane bound form of chSCF (chSCF2-BRL). Cultured PGC lines were incubated on chSCF1 or chSCF2-BRL feeder cells with fibroblast growth factor 2 (FGF2), and growth effects of each chSCF isoform were investigated. The in vitro proliferation rate of the PGCs cultured on chSCF2-BRL at 20 days of culture was more than threefold higher than those cultured on chSCF1-BRL cells and more than fivefold higher than those cultured on normal BRL cells. Thus, use of chSCF2-BRL feeder layer was effective for in vitro proliferation of chicken PGCs. However, the acceleration of PGC proliferation on chSCF2-BRL was not observed without FGF2, suggesting that chSCF2 would act as a proliferation co-factor of FGF2. We transferred the PGCs cultured on chSCF2-BRL cells to recipient embryos, generated germline chimeric chickens and assessed the germline competency of cultured PGCs by progeny test. Donor-derived progenies were obtained, and the frequency of germline transmission was 3.39%. The results of this study demonstrate that chSCF2 induces hyperproliferation of chicken PGCs retaining germline competency in vitro in cooperation with FGF2. PMID:26727404

  7. Nonmyeloablative allogeneic hematopoietic cell transplantation

    PubMed Central

    Storb, Rainer; Sandmaier, Brenda M.

    2016-01-01

    Most hematological malignancies occur in older patients. Until recently these patients and those with comorbidities were not candidates for treatment with allogeneic hematopoietic transplantation because they were unable to tolerate the heretofore used high-dose conditioning regimens. The finding that many of the cures achieved with allogeneic hematopoietic transplantation were due to graft-versus-tumor effects led to the development of less toxic and well-tolerated reduced intensity and nonmyeloablative regimens. These regimens enabled allogeneic engraftment, thereby setting the stage for graft-versus-tumor effects. This review summarizes the encouraging early results seen with the new regimens and discusses the two hurdles that need to be overcome for achieving even greater success, disease relapse and graft-versus-host disease. PMID:27132278

  8. Differential requirements for survivin in hematopoietic cell development.

    PubMed

    Gurbuxani, Sandeep; Xu, Yanfei; Keerthivasan, Ganesan; Wickrema, Amittha; Crispino, John D

    2005-08-09

    Although erythroid cells and megakaryocytes arise from a common progenitor, their terminal maturation follows very different paths; erythroid cells undergo cell-cycle exit and enucleation, whereas megakaryocytes continue to progress through the cell cycle but skip late stages of mitosis to become polyploid cells. In our efforts to identify genes that participate in this process, we discovered that survivin, a member of the inhibitor of apoptosis family that also has an essential role in cytokinesis, is differentially expressed during erythroid versus megakaryocyte development. Erythroid cells express survivin throughout their maturation, whereas megakaryocytes express approximately 4-fold lower levels of survivin mRNA and no detectable protein. To investigate the role of survivin in these lineages, we overexpressed or knocked down survivin from mouse bone marrow cells and then examined erythroid and megakaryocyte development. These studies revealed that overexpression of survivin antagonized megakaryocyte growth, maturation, and polyploidization but had no effect on erythroid development. This block in polyploidization was accompanied by increased expression of p21 and decreased expression of megakaryocyte genes such as von Willebrand factor and beta(1)-tubulin. In contrast, a reduction in survivin expression interfered with the formation of erythroid cells but not megakaryocytes. Last, consistent with the requirement for survivin in the survival of proliferating cells, survivin-deficient hematopoietic progenitors failed to give rise to either erythroid or megakaryocytic colonies. Together, these studies show that whereas survivin expression is essential for megakaryocyte and erythroid progenitors, its down-regulation is required for terminal differentiation of megakaryocytes.

  9. Hematopoietic progenitor cell regulation by CD4+CD25+ T cells.

    PubMed

    Urbieta, Maite; Barao, Isabel; Jones, Monica; Jurecic, Roland; Panoskaltsis-Mortari, Angela; Blazar, Bruce R; Murphy, William J; Levy, Robert B

    2010-06-10

    CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) possess the capacity to modulate both adaptive and innate immune responses. We hypothesized that Tregs could regulate hematopoiesis based on cytokine effector molecules they can produce. The studies here demonstrate that Tregs can affect the differentiation of myeloid progenitor cells. In vitro findings demonstrated the ability of Tregs to inhibit the differentiation of interleukin-3 (IL-3)/stem cell factor (colony-forming unit [CFU]-IL3)-driven progenitor cells. Inhibitory effects were mediated by a pathway requiring cell-cell contact, major histocompatibility complex class II expression on marrow cells, and transforming growth factor-beta. Importantly, depletion of Tregs in situ resulted in enhanced CFU-IL3 levels after bone marrow transplantation. Cotransplantation of CD4(+)FoxP3(+)(gfp) Tregs together with bone marrow was found to diminish CFU-IL3 responses after transplantation. To address the consequence of transplanted Tregs on differentiated progeny from these CFU 2 weeks after hematopoietic stem cell transplantation, peripheral blood complete blood counts were performed and examined for polymorphonuclear leukocyte content. Recipients of cotransplanted Tregs exhibited diminished neutrophil counts. Together, these findings illustrate that both recipient and donor Tregs can influence hematopoietic progenitor cell activity after transplantation and that these cells can alter responses outside the adaptive and innate immune systems.

  10. Pituitary follicular cells produce basic fibroblast growth factor

    SciTech Connect

    Ferrara, N.; Schweigerer, L.; Neufeld, G.; Mitchell, R.; Gospodarowicz, D.

    1987-08-01

    Cultured monolayers of bovine pituitary follicular cells, which transport ions, contain high amounts of mitogenic activity for endothelial cells which, on the basis of gene expression analysis, heparin-Sepharose elution profile, bioassay, immunoblotting, radioimmunoassay, and radioreceptor assay, has been identified as basic fibroblast growth factor (bFGF). These data indicate that follicular cells may be a major source of bFGF in the pituitary gland. Considering that bFGF has been proposed to play a role in paracrine regulation of pituitary hormone secretion, the data also suggest that these cells may exert important local regulatory functions.

  11. Nerve growth factor and epidermal growth factor stimulate clusterin gene expression in PC12 cells.

    PubMed Central

    Gutacker, C; Klock, G; Diel, P; Koch-Brandt, C

    1999-01-01

    Clusterin (apolipoprotein J) is an extracellular glycoprotein that might exert functions in development, cell death and lipid transport. Clusterin gene expression is elevated at sites of tissue remodelling, such as differentiation and apoptosis; however, the signals responsible for this regulation have not been identified. We use here the clusterin gene as a model system to examine expression in PC12 cells under the control of differentiation and proliferation signals produced by nerve growth factor (NGF) and by epidermal growth factor (EGF) respectively. NGF induced clusterin mRNA, which preceded neurite outgrowth typical of neuronal differentiation. EGF also activated the clusterin mRNA, demonstrating that both proliferation and differentiation signals regulate the gene. To localize NGF- and EGF-responsive elements we isolated the clusterin promoter and tested it in PC12 cell transfections. A 2.5 kb promoter fragment and two 1.5 and 0.3 kb deletion mutants were inducible by NGF and EGF. The contribution to this response of a conserved activator protein 1 (AP-1) motif located in the 0.3 kb fragment was analysed by mutagenesis. The mutant promoter was not inducible by NGF or EGF, which identifies the AP-1 motif as an element responding to both factors. Binding studies with PC12 nuclear extracts showed that AP-1 binds to this sequence in the clusterin promoter. These findings suggest that NGF and EGF, which give differential gene regulation in PC12 cells, resulting in neuronal differentiation and proliferation respectively, use the common Ras/extracellular signal-regulated kinase/AP-1 signalling pathway to activate clusterin expression. PMID:10215617

  12. Hematopoietic stem cell fate decisions are regulated by Wnt antagonists: comparisons and current controversies.

    PubMed

    Cain, Corey J; Manilay, Jennifer O

    2013-01-01

    Wingless and int (Wnt) proteins are secreted proteins that are important for regulating hematopoietic stem cell self-renewal and differentiation in the bone marrow microenvironment in mice. The mechanisms by which Wnt signaling regulates these hematopoietic cell fate decisions are not fully understood. Secreted Wnt antagonists, which are expressed in bone and bone marrow stromal cells, either bind to Wnt ligands directly or block Wnt receptors and co-receptors to halt Wnt-mediated signal transduction in both osteolineage and hematopoietic cell types. Secreted frizzled related proteins-1 and -2, Wnt inhibitory factor-1, Dickkopf-1, and Sclerostin are Wnt antagonists that influence hematopoietic cell fate decisions in the bone marrow niche. In this review, we compare and contrast the roles of these Wnt antagonists and their effects on hematopoietic development in mice, and also discuss the clinical significance of targeting Wnt antagonists within the context of hematopoietic disease.

  13. Insulin-like growth factor and epidermal growth factor signaling in breast cancer cell growth: focus on endocrine resistant disease.

    PubMed

    Voudouri, Kallirroi; Berdiaki, Aikaterini; Tzardi, Maria; Tzanakakis, George N; Nikitovic, Dragana

    2015-01-01

    Breast cancer is the most common type of cancer for women worldwide with a lifetime risk amounting to a staggering total of 10%. It is well established that the endogenous synthesis of insulin-like growth factor (IGF) and epidermal growth factor (EGF) polypeptide growth factors are closely correlated to malignant transformation and all the steps of the breast cancer metastatic cascade. Numerous studies have demonstrated that both estrogens and growth factors stimulate the proliferation of steroid-dependent tumor cells, and that the interaction between these signaling pathways occurs at several levels. Importantly, the majority of breast cancer cases are estrogen receptor- (ER-) positive which have a more favorable prognosis and pattern of recurrence with endocrine therapy being the backbone of treatment. Unfortunately, the majority of patients progress to endocrine therapy resistant disease (acquired resistance) whereas a proportion of patients may fail to respond to initial therapy (de novo resistance). The IGF-I and EGF downstream signaling pathways are closely involved in the process of progression to therapy resistant disease. Modifications in the bioavailability of these growth factors contribute critically to disease progression. In the present review therefore, we will discuss in depth how IGF and EGF signaling participate in breast cancer pathogenesis and progression to endocrine resistant disease.

  14. Ongoing graft-versus-host disease is a risk factor for azoospermia after allogeneic hematopoietic stem cell transplantation: a survey of the Late Effects Working Party of the European Group for Blood and Marrow Transplantation.

    PubMed

    Rovó, Alicia; Aljurf, Mahmoud; Chiodi, Sandra; Spinelli, Simonetta; Salooja, Nina; Sucak, Gülsan; Hunter, Ann; Kim, Tan Swee; Socié, Gérard; van Lint, Maria Teresa; Passweg, Jakob R; Arat, Mutlu; Badoglio, Manuela; Tichelli, André

    2013-03-01

    The aim of this study was to assess the degree of spermatogenesis defects in sperm analysis in long-term male survivors after allogeneic hematopoietic stem cell transplantation in order to identify the risk factors related to potential infertility after hematopoietic stem cell transplantation and to provide data on longitudinal sperm recovery after hematopoietic stem cell transplantation. Here, the Late Effects Working Party of the European Group for Blood and Marrow Transplantation reports data of sperm analysis from 224 males who underwent hematopoietic stem cell transplantation. Median time between transplantation and sperm analysis was 63 months (8-275 months). At last sperm analysis, presence of any degree of spermatozoa was reported in 70 (31%) and complete azoospermia in 154 (69%) patients. In multivariate analysis, being conditioned with total body irradiation (RR 7.1; 95% CI: 3.4-14.8) and age over 25 years at transplantation (RR 2.4; 95% CI: 1.09-5.2) were significantly associated with higher risk for azoospermia. In patients not conditioned with total body irradiation, ongoing chronic graft-versus-host disease is the main adverse factor for sperm recovery (RR of 3.11; 95% CI: 1.02-9.47; P=0.045). Already established risk factors, such as total body irradiation and age older than 25 years at hematopoietic stem cell transplantation, were seen to be the most relevant adverse risk factor for sperm production after hematopoietic stem cell transplantation. Furthermore, for the first time, ongoing graft-versus-host disease has been shown to be the most relevant adverse factor for sperm recovery, particularly in patients conditioned without total body irradiation. We also introduce a useful scoring system to predict the probability of male long-term survivors' azoospermia.

  15. Ongoing graft-versus-host disease is a risk factor for azoospermia after allogeneic hematopoietic stem cell transplantation: a survey of the Late Effects Working Party of the European Group for Blood and Marrow Transplantation

    PubMed Central

    Rovó, Alicia; Aljurf, Mahmoud; Chiodi, Sandra; Spinelli, Simonetta; Salooja, Nina; Sucak, Gülsan; Hunter, Ann; Kim, Tan Swee; Socié, Gérard; van Lint, Maria Teresa; Passweg, Jakob R.; Arat, Mutlu; Badoglio, Manuela; Tichelli, André

    2013-01-01

    The aim of this study was to assess the degree of spermatogenesis defects in sperm analysis in long-term male survivors after allogeneic hematopoietic stem cell transplantation in order to identify the risk factors related to potential infertility after hematopoietic stem cell transplantation and to provide data on longitudinal sperm recovery after hematopoietic stem cell transplantation. Here, the Late Effects Working Party of the European Group for Blood and Marrow Transplantation reports data of sperm analysis from 224 males who underwent hematopoietic stem cell transplantation. Median time between transplantation and sperm analysis was 63 months (8–275 months). At last sperm analysis, presence of any degree of spermatozoa was reported in 70 (31%) and complete azoospermia in 154 (69%) patients. In multivariate analysis, being conditioned with total body irradiation (RR 7.1; 95% CI: 3.4–14.8) and age over 25 years at transplantation (RR 2.4; 95% CI: 1.09–5.2) were significantly associated with higher risk for azoospermia. In patients not conditioned with total body irradiation, ongoing chronic graft-versus-host disease is the main adverse factor for sperm recovery (RR of 3.11; 95% CI: 1.02–9.47; P=0.045). Already established risk factors, such as total body irradiation and age older than 25 years at hematopoietic stem cell transplantation, were seen to be the most relevant adverse risk factor for sperm production after hematopoietic stem cell transplantation. Furthermore, for the first time, ongoing graft-versus-host disease has been shown to be the most relevant adverse factor for sperm recovery, particularly in patients conditioned without total body irradiation. We also introduce a useful scoring system to predict the probability of male long-term survivors’ azoospermia. PMID:22929982

  16. Mobilization and collection of CD34+ cells for autologous transplantation of peripheral blood hematopoietic progenitor cells in children: analysis of two different granulocyte-colony stimulating factor doses

    PubMed Central

    Eid, Kátia Aparecida de Brito; Miranda, Eliana Cristina Martins; Aguiar, Simone dos Santos

    2015-01-01

    Introduction The use of peripheral hematopoietic progenitor cells (HPCs) is the cell choice in autologous transplantation. The classic dose of granulocyte-colony stimulating factor (G-CSF) for mobilization is a single daily dose of 10 μg/kg of patient body weight. There is a theory that higher doses of granulocyte-colony stimulating factor applied twice daily could increase the number of CD34+ cells collected in fewer leukapheresis procedures. Objective The aim of this study was to compare a fractionated dose of 15 μg G-CSF/kg of body weight and the conventional dose of granulocyte-colony stimulating factor in respect to the number of leukapheresis procedures required to achieve a minimum collection of 3 × 106 CD34+ cells/kg body weight. Methods Patients were divided into two groups: Group 10 – patients who received a single daily dose of 10 μg G-CSF/kg body weight and Group 15 – patients who received a fractioned dose of 15 μg G-CSF/kg body weight daily. The leukapheresis procedure was carried out in an automated cell separator. The autologous transplantation was carried out when a minimum number of 3 × 106 CD34+ cells/kg body weight was achieved. Results Group 10 comprised 39 patients and Group 15 comprised 26 patients. A total of 146 apheresis procedures were performed: 110 (75.3%) for Group 10 and 36 (24.7%) for Group 15. For Group 10, a median of three (range: 1–7) leukapheresis procedures and a mean of 8.89 × 106 CD34+ cells/kg body weight (±9.59) were collected whereas for Group 15 the corresponding values were one (range: 1–3) and 5.29 × 106 cells/kg body weight (±4.95). A statistically significant difference was found in relation to the number of apheresis procedures (p-value <0.0001). Conclusions To collect a minimum target of 3 × 106 CD34+ cells/kg body weight, the administration of a fractionated dose of 15 μg G-CSF/kg body weight significantly decreased the number of leukapheresis procedures performed. PMID:26041417

  17. Hepatocyte growth factor-modulated rat Leydig cell functions.

    PubMed

    Del Bravo, Jessica; Catizone, Angela; Ricci, Giulia; Galdieri, Michela

    2007-01-01

    Hepatocyte growth factor (HGF) regulates many cellular functions acting through c-Met, its specific tyrosine kinase receptor. We previously reported that in prepuberal rats HGF is secreted by the peritubular myoid cells during the entire postnatal testicular development and by the Sertoli cells only at puberty. We have also demonstrated that germ cells at different stages of development express c-Met and that HGF modulates germ cell proliferation and apoptosis. In the present article, we extend our study to the interstitial compartment of the testis and demonstrate that the c-Met protein is present on Leydig cells. The receptor is functionally active as demonstrated by the detected effects of HGF. We report in this article that HGF significantly increases the amount of testosterone secreted by the Leydig cells and decreases the number of Leydig cells undergoing apoptosis. The antiapoptotic effect of HGF is mediated by caspase-3 activity because the amount of the active fragment of the enzyme is decreased in Leydig cells cultured in the presence of HGF. However, treatment with the growth factor does not modify the expression levels of caspase-3 mRNA. These data indicate that HGF regulates the functional activities of Leydig cells. Interestingly, the steroidogenetic activity of the cells is increased by HGF in cultured explants of testicular tissues as well as the antiapoptotic effect of HGF. Therefore, our data indicate that HGF has a crucial role in the regulation of male fertility.

  18. Melanoma Stem Cells and Metastasis: Mimicking Hematopoietic Cell Trafficking?

    PubMed Central

    Lee, Nayoung; Barthel, Steven R.; Schatton, Tobias

    2014-01-01

    Malignant melanoma is a highly metastatic cancer that bears responsibility for the majority of skin cancer-related deaths. Amidst the research efforts to better understand melanoma progression, there has been increasing evidence that hints at a role for a subpopulation of virulent cancer cells, termed malignant melanoma stem or initiating cells (MMICs), in metastasis formation. MMICs are characterized by their preferential ability to initiate and propagate tumor growth and their selective capacity for self-renewal and differentiation into less tumorigenic melanoma cells. The frequency of MMICs has been shown to correlate with poor clinical prognosis in melanoma. Additionally, MMICs are enriched among circulating tumor cells (CTCs) in the peripheral blood of cancer patients, suggesting that MMICs may be a critical player in the metastatic cascade. Although these links exist between MMICs and metastatic disease, the mechanisms by which MMICs may advance metastatic progression are only beginning to be elucidated. Recent studies have shown that MMICs express molecules critical for hematopoietic cell maintenance and trafficking, providing a possible explanation for how circulating MMICs could drive melanoma dissemination. We therefore propose that MMICs might fuel melanoma metastasis by exploiting homing mechanisms commonly utilized by hematopoietic cells. Here we review the biological properties of MMICs and the existing literature on their metastatic potential. We will discuss possible mechanisms by which MMICs might initiate metastases in the context of established knowledge of cancer stem cells (CSCs) in other cancers and of hematopoietic homing molecules, with a particular focus on selectins, integrins, chemokines, and chemokine receptors known to be expressed by melanoma cells. Biological understanding of how these molecules might be utilized by MMICs to propel the metastatic cascade could critically impact the development of more effective therapies for advanced

  19. Mobilization and homing of hematopoietic stem cells.

    PubMed

    Suárez-Álvarez, Beatriz; López-Vázquez, Antonio; López-Larrea, Carlos

    2012-01-01

    Hematopoietic stem cells (HSC) are a population of precursor cells that posses the capacity for self-renewal and multilineage differentiation. In the bone marrow (BM), HSCs warrant blood cell homeostasis, but at the same time a stable pool of functional cells must be constantly maintained. For this, HSCs constitute a model in which subpopulations of quiescent and active adult stem cells co-exist in the same tissue, in specific microenvironment called stem-cell "niches." These microenvironments keep the stem cells at quiescent (osteoblastic niche) for its self-renewal and activate the stem cells (vascular niche) for proliferation and/or injury repair, maintaining a dynamic balance between self-renewal and differentiation. HSC reside in the bone marrow but can be forces into the blood, a process termed mobilization used clinically to harvest large number of cells for transplantation. At the same time, homing to the BM is necessary to optimize cell engraftment. Here, we summarize current understanding of HSC niche characteristics, and the physiological and pathological mechanisms that guide HSC mobilization both within the BM and to distant niches in the periphery. Mobilization and Homing are mirror process depending on an interplay between chemokines, chemokine receptors, intracellular signaling, adhesion moleculas and proteases. The interaction between SDF-1/CXCL12 and its receptor CXCR4 is critical to retain HSCs within the bone marrow. Current mobilization strategies used in clinic, mainly G-CSF cytokine, are well tolerated but often produce suboptimal number of collected HSCs. Novel agents (AMD3100, stem cell factor, GROßT.) are being developed to enhance the mobilization to modify the signaling into the niche and boost the stem cell harvest, increasing the number of HSCs available for the transplant.

  20. Characterizing human herpes virus 6 following hematopoietic stem cell transplantation.

    PubMed

    Perissinotti, Anthony J; Gulbis, Alison; Shpall, Elizabeth J; Howell, Joshua

    2015-04-01

    Human herpes virus 6 reactivation occurs in approximately 50% of patients following hematopoietic stem cell transplant, however, the significance of human herpes virus 6 reactivation remains uncertain. A retrospective study was conducted analyzing clinical data of patients testing positive for human herpes virus 6 by quantitative polymerase chain reaction following hematopoietic stem cell transplant from 1 January 1998 to 1 October 2011. Data retrieved were used to describe the clinical course and outcome of human herpes virus 6 positive hematopoietic stem cell transplant patients. Sixty patients were identified who tested positive for human herpes virus 6 by polymerase chain reaction following hematopoietic stem cell transplant. A high proportion of patients were identified in this cohort with acute myeloid leukemia (28.3%), active disease (65%), transplanted with a matched unrelated donor (30%), ≥ 1 antigen mismatched (28.3%) matched unrelated donor, or an umbilical cord graft (25%), and those who received antithymocyte globulin (42.4%). Thirty-eight (63.3%) patients were treated for human herpes virus 6 with foscarnet alone or in combination with intravenous immunoglobulin, whereas 18 (30%) did not require treatment survival at Day 100 was 73.3%. This study suggests human herpes virus 6 reactivation occurs shortly after hematopoietic stem cell transplant (median of 25 days (interquartile range, 20-31.75) after hematopoietic stem cell transplant). Many potential risk factors are described in this report. Treatment of human herpes virus 6 predominately consisted of foscarnet with or without intravenous immunoglobulin; however, treatment of human herpes virus 6 was not always warranted. Furthermore, the effect of treatment on patient outcomes is uncertain. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  1. Ex vivo expansion of hematopoietic stem cells.

    PubMed

    Xie, JingJing; Zhang, ChengCheng

    2015-09-01

    Ex vivo expansion of hematopoietic stem cells (HSCs) would benefit clinical applications in several aspects, to improve patient survival, utilize cord blood stem cells for adult applications, and selectively propagate stem cell populations after genetic manipulation. In this review we summarize and discuss recent advances in the culture systems of mouse and human HSCs, which include stroma/HSC co-culture, continuous perfusion and fed-batch cultures, and those supplemented with extrinsic ligands, membrane transportable transcription factors, complement components, protein modification enzymes, metabolites, or small molecule chemicals. Some of the expansion systems have been tested in clinical trials. The optimal condition for ex vivo expansion of the primitive and functional human HSCs is still under development. An improved understanding of the mechanisms for HSC cell fate determination and the HSC culture characteristics will guide development of new strategies to overcome difficulties. In the future, development of a combination treatment regimen with agents that enhance self-renewal, block differentiation, and improve homing will be critical. Methods to enhance yields and lower cost during collection and processing should be employed. The employment of an efficient system for ex vivo expansion of HSCs will facilitate the further development of novel strategies for cell and gene therapies including genome editing.

  2. Artificially controlled aggregation of proteins and targeting in hematopoietic cells.

    PubMed

    Rosen, Hanna; Gao, Ying; Johnsson, Ellinor; Olsson, Inge

    2003-11-01

    The targeting mechanisms for granule proteins in hematopoietic cells are largely unknown. Aggregation is believed to be important for protein sorting-for-entry and sorting-by-retention in endocrine and neuroendocrine cells. We asked whether artificially induced multimerization/aggregation of chimeric proteins could affect their sorting in hematopoietic cells. A system was used that permits ligand-controlled intracellular oligomerization of hybrid proteins containing the FK506-binding protein (FKBP). The hybrid proteins ELA-(FKBP)3 with neutrophil elastase (ELA) and (FKBP*)4-FCS-hGH with a furin cleavage site (FCS) and human growth hormone (hGH) were expressed in the myeloblastic 32D and the rat basophilic leukemia (RBL-1) hematopoietic cell lines. ELA alone is normally targeted to secretory lysosomes. However, the hybrid proteins and ligand-induced aggregates of them were constitutively secreted and not targeted. The hGH that was released at the FCS in (FKBP*)4-FCS-hGH was also constitutively secreted. We conclude that protein multimerization/aggregation per se is not enough to facilitate sorting-for-entry to secretory lysosomes in hematopoietic cells and that improperly folded proteins may be eliminated from sorting by constitutive secretion.

  3. Epo and non-hematopoietic cells: what do we know?

    PubMed

    Ogunshola, Omolara O; Bogdanova, Anna Yu

    2013-01-01

    The hematopoietic growth factor erythropoietin (Epo) circulates in plasma and controls the oxygen carrying capacity of the blood (Fisher. Exp Biol Med (Maywood) 228:1-14, 2003). Epo is produced primarily in the adult kidney and fetal liver and was originally believed to play a role restricted to stimulation of early erythroid precursor proliferation, inhibition of apoptosis, and differentiation of the erythroid lineage. Early studies showed that mice with targeted deletion of Epo or the Epo receptor (EpoR) show impaired erythropoiesis, lack mature erythrocytes, and die in utero around embryonic day 13.5 (Wu et al. Cell 83:59-67, 1995; Lin et al. Genes Dev. 10:154-164, 1996). These animals also exhibited heart defects, abnormal vascular development as well as increased apoptosis in the brain suggesting additional functions for Epo signaling in normal development of the central nervous system and heart. Now, in addition to its well-known role in erythropoiesis, a diverse array of cells have been identified that produce Epo and/or express the Epo-R including endothelial cells, smooth muscle cells, and cells of the central nervous system (Masuda et al. J Biol Chem. 269:19488-19493, 1994; Marti et al. Eur J Neurosci. 8:666-676, 1996; Bernaudin et al. J Cereb Blood Flow Metab. 19:643-651, 1999; Li et al. Neurochem Res. 32:2132-2141, 2007). Endogenously produced Epo and/or expression of the EpoR gives rise to autocrine and paracrine signaling in different organs particularly during hypoxia, toxicity, and injury conditions. Epo has been shown to regulate a variety of cell functions such as calcium flux (Korbel et al. J Comp Physiol B. 174:121-128, 2004) neurotransmitter synthesis and cell survival (Velly et al. Pharmacol Ther. 128:445-459, 2010; Vogel et al. Blood. 102:2278-2284, 2003). Furthermore Epo has neurotrophic effects (Grimm et al. Nat Med. 8:718-724, 2002; Junk et al. Proc Natl Acad Sci U S A. 99:10659-10664, 2002), can induce an angiogenic phenotype in cultured

  4. ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic specification

    PubMed Central

    Taoudi, Samir; Bee, Thomas; Hilton, Adrienne; Knezevic, Kathy; Scott, Julie; Willson, Tracy A.; Collin, Caitlin; Thomas, Tim; Voss, Anne K.; Kile, Benjamin T.; Alexander, Warren S.; Pimanda, John E.; Hilton, Douglas J.

    2011-01-01

    Although many genes are known to be critical for early hematopoiesis in the embryo, it remains unclear whether distinct regulatory pathways exist to control hematopoietic specification versus hematopoietic stem cell (HSC) emergence and function. Due to their interaction with key regulators of hematopoietic commitment, particular interest has focused on the role of the ETS family of transcription factors; of these, ERG is predicted to play an important role in the initiation of hematopoiesis, yet we do not know if or when ERG is required. Using in vitro and in vivo models of hematopoiesis and HSC development, we provide strong evidence that ERG is at the center of a distinct regulatory program that is not required for hematopoietic specification or differentiation but is critical for HSC maintenance during embryonic development. We show that, from the fetal period, ERG acts as a direct upstream regulator of Gata2 and Runx1 gene activity. Without ERG, physiological HSC maintenance fails, leading to the rapid exhaustion of definitive hematopoiesis. PMID:21245161

  5. Hematopoietic reconstitution by multipotent adult progenitor cells: precursors to long-term hematopoietic stem cells

    PubMed Central

    Serafini, Marta; Dylla, Scott J.; Oki, Masayuki; Heremans, Yves; Tolar, Jakub; Jiang, Yuehua; Buckley, Shannon M.; Pelacho, Beatriz; Burns, Terry C.; Frommer, Sarah; Rossi, Derrick J.; Bryder, David; Panoskaltsis-Mortari, Angela; O'Shaughnessy, Matthew J.; Nelson-Holte, Molly; Fine, Gabriel C.; Weissman, Irving L.; Blazar, Bruce R.; Verfaillie, Catherine M.

    2007-01-01

    For decades, in vitro expansion of transplantable hematopoietic stem cells (HSCs) has been an elusive goal. Here, we demonstrate that multipotent adult progenitor cells (MAPCs), isolated from green fluorescent protein (GFP)-transgenic mice and expanded in vitro for >40–80 population doublings, are capable of multilineage hematopoietic engraftment of immunodeficient mice. Among MAPC-derived GFP+CD45.2+ cells in the bone marrow of engrafted mice, HSCs were present that could radioprotect and reconstitute multilineage hematopoiesis in secondary and tertiary recipients, as well as myeloid and lymphoid hematopoietic progenitor subsets and functional GFP+ MAPC-derived lymphocytes that were functional. Although hematopoietic contribution by MAPCs was comparable to control KTLS HSCs, approximately 103-fold more MAPCs were required for efficient engraftment. Because GFP+ host-derived CD45.1+ cells were not observed, fusion is not likely to account for the generation of HSCs by MAPCs. PMID:17227908

  6. Ezh2 Controls an Early Hematopoietic Program and Growth and Survival Signaling in Early T Cell Precursor Acute Lymphoblastic Leukemia.

    PubMed

    Danis, Etienne; Yamauchi, Taylor; Echanique, Kristen; Zhang, Xi; Haladyna, Jessica N; Riedel, Simone S; Zhu, Nan; Xie, Huafeng; Orkin, Stuart H; Armstrong, Scott A; Bernt, Kathrin M; Neff, Tobias

    2016-03-01

    Early T cell precursor acute lymphoblastic leukemia (ETP-ALL) is an aggressive subtype of ALL distinguished by stem-cell-associated and myeloid transcriptional programs. Inactivating alterations of Polycomb repressive complex 2 components are frequent in human ETP-ALL, but their functional role is largely undefined. We have studied the involvement of Ezh2 in a murine model of NRASQ61K-driven leukemia that recapitulates phenotypic and transcriptional features of ETP-ALL. Homozygous inactivation of Ezh2 cooperated with oncogenic NRASQ61K to accelerate leukemia onset. Inactivation of Ezh2 accentuated expression of genes highly expressed in human ETP-ALL and in normal murine early thymic progenitors. Moreover, we found that Ezh2 contributes to the silencing of stem-cell- and early-progenitor-cell-associated genes. Loss of Ezh2 also resulted in increased activation of STAT3 by tyrosine 705 phosphorylation. Our data mechanistically link Ezh2 inactivation to stem-cell-associated transcriptional programs and increased growth/survival signaling, features that convey an adverse prognosis in patients. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. The hematopoietic defect in PNH is not due to defective stroma, but is due to defective progenitor cells.

    PubMed

    Nishimura, Jun-ichi; Ware, Russell E; Burnette, Angela; Pendleton, Andrew L; Kitano, Kiyoshi; Hirota, Toshiyuki; Machii, Takashi; Kitani, Teruo; Smith, Clay A; Rosse, Wendell F

    2002-01-01

    Although paroxysmal nocturnal hemoglobinuria (PNH) is often associated with aplastic anemia (AA), the nature of the pathogenetic link between PNH and AA remains unclear. Moreover, the PIG-A mutation appears to be necessary but not sufficient for the development of PNH, suggesting other factors are involved. The ability of PNH marrow cells to form in vitro hematopoietic colonies and the ability of PNH marrow to generate stroma that could support hematopoiesis of normal or PNH marrow in cross culture were investigated. PNH marrow from both post-Ficoll and post-lineage depleted hematopoietic progenitor cells grew similarly significantly fewer colonies than normal marrow. Sorting of CD59(+) and CD59(-) CD34(+) CD38(-) cells from patients with PNH showed similarly impaired clonogenic efficiency, indicating that the hematopoietic defect in PNH does not directly relate to GPI-anchored protein expression. PNH marrow readily grew stroma similar to marrow from normal donors. Cross culture experiments revealed that PNH stroma appears to function normally in vitro; it can support growth of normal marrow cells as well as normal stroma does, but neither PNH nor normal stroma could support the growth of PNH marrow cells. The hematopoietic defect in PNH is not due to defective stroma, but is due to defective progenitor cell growth related to additional unknown factors.

  8. Rapamycin promotes Schwann cell migration and nerve growth factor secretion

    PubMed Central

    Liu, Fang; Zhang, Haiwei; Zhang, Kaiming; Wang, Xinyu; Li, Shipu; Yin, Yixia

    2014-01-01

    Rapamycin, similar to FK506, can promote neural regeneration in vitro. We assumed that the mechanisms of action of rapamycin and FK506 in promoting peripheral nerve regeneration were similar. This study compared the effects of different concentrations of rapamycin and FK506 on Schwann cells and investigated effects and mechanisms of rapamycin on improving peripheral nerve regeneration. Results demonstrated that the lowest rapamycin concentration (1.53 nmol/L) more significantly promoted Schwann cell migration than the highest FK506 concentration (100μmol/L). Rapamycin promoted the secretion of nerve growth factors and upregulated growth-associated protein 43 expression in Schwann cells, but did not significantly affect Schwann cell proliferation. Therefore, rapamycin has potential application in peripheral nerve regeneration therapy. PMID:25206862

  9. Mir-218 contributes to the transformation of 5-Aza/GF induced umbilical cord mesenchymal stem cells into hematopoietic cells through the MITF pathway.

    PubMed

    Hu, Kaimeng; Xu, Chen; Ni, Haitao; Xu, Zhenyu; Wang, Yue; Xu, Sha; Ji, Kaihong; Xiong, Jun; Liu, Houqi

    2014-07-01

    Experiments with 5'-azacytidine and hematopoietic growth factor approved for the transformation of human mesenchymal cells into hematopoietic cells have demonstrated that cell fate can be dramatically altered by changing the epigenetic state of cells. Here, we demonstrate that umbilical cord-derived human mesenchymal stem cells (uMSC) are easily accessible and could be induced into cells with hematopoietic function. Furthermore, we focused on the crucial miRNAs and relative transcription factors (TFs) in our study. We show that combined Aza/GF incubation can increase expression of miR-218, miR-150, and miR-451. Accordingly, miR-218 overexpression achieved an increase in expression of CD34 (3-13%), CD45 (50-65%), CD133 and c-Kit in uMSCs that cultured with Aza/GF. The expression of the relevant transcriptional factors, such as HoxB4 and NF-Ya, was higher than in the negative control group or miR-218 inhibitor transfected group, and microphthalmia-associated transcription factor (MITF) is regarded to be a direct target of miR-218, as demonstrated by luciferase assays. Overexpression of miR-218 might, in conjunction with the MITF, upregulate the expression of NF-Ya and HoxB4, which induce a hematopoietic state. We concluded that miR-218 might have a role in the transformation of hematopoietic cells through the MITF pathway.

  10. Hematopoiesis on cellulose ester membranes. XI. Induction of new bone and a hematopoietic microenvironment by matrix factors secreted by marrow stromal cells.

    PubMed

    Knospe, W H; Husseini, S G; Fried, W

    1989-07-01

    Cellulose ester membranes (CEM) were coated with stromal cells from bone marrow (BM) or bone and implanted intraperitoneally (IP) in CAF1 mice for intervals of 1 to 6 months. Previous studies indicated that matrix factors [glycoproteins (GPs), proteoglycans (PGs), and glycosaminoglycans (GAGs)] were secreted by the regenerating stromal cells and adsorbed by the CEM. After 1 to 6 months, the CEMs were removed, scraped free of adherent cells, and irradiated in vitro with 40 Gy. The scraped and irradiated CEMs were then reimplanted IP or subcutaneously (SC) for periods of 1 to 6 months in secondary syngeneic murine hosts. They were then removed for histologic study. CEMs reimplanted in SC sites developed bone and hematopoiesis as early as 1 month after implantation. Maximum hematopoiesis and bone formation was observed after 3 months. CEMs coated during the initial implantation with bone-derived stromal cells contained more bone and hematopoietic cells than did CEMs coated with marrow-derived stromal cells after SC implementation. Neither the CEMs coated with bone stromal cells nor those coated with marrow stromal cells developed new bone or trilineal hematopoiesis after being implanted IP. A few CEMs contained small foci of granulopoiesis only. We conclude that noncellular matrix substances deposited on CEMs by bone, and to a lesser degree by marrow cells, can induce prestromal cells in the SC tissues to produce a microenvironment suitable for trilineal hematopoiesis.

  11. Lis1 regulates asymmetric division in hematopoietic stem cells and in leukemia

    PubMed Central

    Zimdahl, Bryan; Ito, Takahiro; Blevins, Allen; Bajaj, Jeevisha; Konuma, Takaaki; Weeks, Joi; Koechlein, Claire S.; Kwon, Hyog Young; Arami, Omead; Rizzieri, David; Broome, H. Elizabeth; Chuah, Charles; Oehler, Vivian G.; Sasik, Roman; Hardiman, Gary; Reya, Tannishtha

    2014-01-01

    Cell fate can be controlled through asymmetric division and segregation of protein determinants. But the regulation of this process in the hematopoietic system is poorly understood. Here we show that the dynein binding protein Lis1 (Pafah1b1) is critically required for blood formation and hematopoietic stem cell function. Conditional deletion of Lis1 in the hematopoietic system led to a severe bloodless phenotype, depletion of the stem cell pool and embryonic lethality. Further, the loss of Lis1 accelerated cell differentiation, in part through defects in spindle positioning and inheritance of cell fate determinants. Finally, deletion of Lis1 blocked propagation of myeloid leukemia and led to a marked improvement in animal survival, suggesting that Lis1 is also required for oncogenic growth. These data identify a key role for Lis1 in hematopoietic stem cells, and mark the directed control of asymmetric division as a critical regulator of normal and malignant hematopoietic development. PMID:24487275

  12. Dual control of cell growth by somatomedins and platelet-derived growth factor.

    PubMed Central

    Stiles, C D; Capone, G T; Scher, C D; Antoniades, H N; Van Wyk, J J; Pledger, W J

    1979-01-01

    Quiescent BALB/c 3T3 cells exposed briefly to a platelet-derived growth factor (PDGF) become "competent" to replicate their DNA but do not "progress" into S phase unless incubated with growth factors contained in platelet-poor plasma. Plasma from hypophysectomized rats is deficient in progression activity; it does not stimulate PDGF-treated competent cells to synthesize DNA, demonstrating that somatomedin C is required for progression. Various growth factors were tested for progression activity and competence activity by using BALB/c 3T3 tissue culture assays. Multiplication stimulating activity and other members of the somatomedin family of growth factors are (like somatomedin C) potent mediators of progression. Other mitogenic agents, such as fibroblast growth factor, are (like PDGF) potent inducers of competence. Growth factors with potent progression activity have little or no competence activity and vice versa. In contrast, simian virus 40 provides both competence and progression activity. Coordinate control of BALB/c 3T3 cell growth in vitro by competence factors and somatomedins may be a specific example of a common pattern of growth regulation in animal tissues. PMID:312500

  13. Extracellular vesicle miR-7977 is involved in hematopoietic dysfunction of mesenchymal stromal cells via poly(rC) binding protein 1 reduction in myeloid neoplasms

    PubMed Central

    Horiguchi, Hiroto; Kobune, Masayoshi; Kikuchi, Shohei; Yoshida, Masahiro; Murata, Masaki; Murase, Kazuyuki; Iyama, Satoshi; Takada, Kohichi; Sato, Tsutomu; Ono, Kaoru; Hashimoto, Akari; Tatekoshi, Ayumi; Kamihara, Yusuke; Kawano, Yutaka; Miyanishi, Koji; Sawada, Norimasa; Kato, Junji

    2016-01-01

    The failure of normal hematopoiesis is observed in myeloid neoplasms. However, the precise mechanisms governing the replacement of normal hematopoietic stem cells in their niche by myeloid neoplasm stem cells have not yet been clarified. Primary acute myeloid leukemia and myelodysplastic syndrome cells induced aberrant expression of multiple hematopoietic factors including Jagged-1, stem cell factor and angiopoietin-1 in mesenchymal stem cells even in non-contact conditions, and this abnormality was reverted by extracellular vesicle inhibition. Importantly, the transfer of myeloid neoplasm-derived extracellular vesicles reduced the hematopoietic supportive capacity of mesenchymal stem cells. Analysis of extracellular vesicle microRNA indicated that several species, including miR-7977 from acute myeloid leukemia cells, were higher than those from normal CD34+ cells. Remarkably, the copy number of miR-7977 in bone marrow interstitial fluid was elevated not only in acute myeloid leukemia, but also in myelodysplastic syndrome, as compared with lymphoma without bone marrow localization. The transfection of the miR-7977 mimic reduced the expression of the posttranscriptional regulator, poly(rC) binding protein 1, in mesenchymal stem cells. Moreover, the miR-7977 mimic induced aberrant reduction of hematopoietic growth factors in mesenchymal stem cells, resulting in decreased hematopoietic-supporting capacity of bone marrow CD34+ cells. Furthermore, the reduction of hematopoietic growth factors including Jagged-1, stem cell factor and angiopoietin-1 were reverted by target protection of poly(rC) binding protein 1, suggesting that poly(rC) binding protein 1 could be involved in the stabilization of several growth factors. Thus, miR-7977 in extracellular vesicles may be a critical factor that induces failure of normal hematopoiesis via poly(rC) binding protein 1 suppression. PMID:26802051

  14. Cytokines and growth factors which regulate bone cell function

    NASA Astrophysics Data System (ADS)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  15. The role of osteoblasts in regulating hematopoietic stem cell activity and tumor metastasis.

    PubMed

    Neiva, K; Sun, Y-X; Taichman, R S

    2005-10-01

    Bone marrow stromal cells are critical regulators of hematopoiesis. Osteoblasts are part of the stromal cell support system in bone marrow and may be derived from a common precursor. Several studies suggested that osteoblasts regulate hematopoiesis, yet the entire mechanism is not understood. It is clear, however, that both hematopoietic precursors and osteoblasts interact for the production of osteoclasts and the activation of resorption. We observed that hematopoietic stem cells (HSCs) regulate osteoblastic secretion of various growth factors, and that osteoblasts express some soluble factors exclusively in the presence of HSCs. Osteoblasts and hematopoietic cells are closely associated with each other in the bone marrow, suggesting a reciprocal relationship between them to develop the HSC niche. One critical component regulating the niche is stromal-derived factor-1 (SDF-1) and its receptor CXCR4 which regulates stem cell homing and, as we have recently demonstrated, plays a crucial role in facilitating those tumors which metastasize to bone. Osteoblasts produce abundant amounts of SDF-1 and therefore osteoblasts play an important role in metastasis. These findings are discussed in the context of the role of osteoblasts in marrow function in health and disease.

  16. FGF signaling specifies hematopoietic stem cells through its regulation of somitic Notch signaling

    PubMed Central

    Lee, Yoonsung; Manegold, Jennifer E; Kim, Albert D; Pouget, Claire; Stachura, David L; Clements, Wilson K; Traver, David

    2014-01-01

    Hematopoietic stem cells (HSCs) derive from hemogenic endothelial cells of the primitive dorsal aorta (DA) during vertebrate embryogenesis. The molecular mechanisms governing this unique endothelial to hematopoietic transition remain unclear. Here, we demonstrate a novel requirement for fibroblast growth factor (FGF) signaling in HSC emergence. This requirement is non-cell-autonomous, and acts within the somite to bridge the Wnt and Notch signaling pathways. We previously demonstrated that Wnt16 regulates the somitic expression of two Notch ligands, deltaC (dlc) and deltaD (dld), whose combined function is required for HSC fate. How Wnt16 connects to Notch function has remained an open question. Our current studies demonstrate that FGF signaling, via FGF receptor 4 (Fgfr4), mediates a signal transduction pathway between Wnt16 and Dlc, but not Dld, to regulate HSC specification. Our findings demonstrate that FGF signaling acts as a key molecular relay within the developmental HSC niche to instruct HSC fate. PMID:25428693

  17. Deficiency of Src family kinases compromises the repopulating ability of hematopoietic stem cells

    PubMed Central

    Orschell, Christie M.; Borneo, Jovencio; Munugalavadla, Veerendra; Ma, Peilin; Sims, Emily; Ramdas, Baskar; Yoder, Mervin C.; Kapur, Reuben

    2015-01-01

    Objective Src family kinases (SFK) have been implicated in regulating growth factor and integrin-induced proliferation, migration, and gene expression in multiple cell types. However, little is known about the role of these kinases in the growth, homing, and engraftment potential of hematopoietic stem and progenitor cells. Results Here we show that loss of hematopoietic-specific SFKs Hck, Fgr, and Lyn results in increased number of Sca-1+Lin− cells in the bone marrow, which respond differentially to cytokine-induced growth in vitro and manifest a significant defect in the long-term repopulating potential in vivo. Interestingly, a significant increase in expression of adhesion molecules, known to coincide with the homing potential of wild-type bone marrow cells is also observed on the surface of SFK−/− cells, although, this increase did not affect the homing potential of more primitive Lin−Sca-1+ SFK−/− cells. The stem cell–repopulating defect observed in mice transplanted with SFK−/− bone marrow cells is due to the loss of Lyn Src kinase, because deficiency of Lyn, but not Hck or Fgr, recapitulated the long-term stem cell defect observed in mice transplanted with SFK−/− bone marrow cells. Conclusions Taken together, our results demonstrate an essential role for Lyn kinase in positively regulating the long-term and multilineage engraftment of stem cells, which is distinct from its role in mature B cells and myeloid cells. PMID:18346837

  18. FGF7 supports hematopoietic stem and progenitor cells and niche-dependent myeloblastoma cells via autocrine action on bone marrow stromal cells in vitro

    SciTech Connect

    Ishino, Ruri; Minami, Kaori; Tanaka, Satowa; Nagai, Mami; Matsui, Keiji; Hasegawa, Natsumi; Roeder, Robert G.; Asano, Shigetaka; Ito, Mitsuhiro

    2013-10-11

    Highlights: •FGF7 is downregulated in MED1-deficient mesenchymal cells. •FGF7 produced by mesenchymal stromal cells is a novel hematopoietic niche molecule. •FGF7 supports hematopoietic progenitor cells and niche-dependent leukemia cells. •FGF7 activates FGFR2IIIb of bone marrow stromal cells in an autocrine manner. •FGF7 indirectly acts on hematopoietic cells lacking FGFR2IIIb via stromal cells. -- Abstract: FGF1 and FGF2 support hematopoietic stem and progenitor cells (HSPCs) under stress conditions. In this study, we show that fibroblast growth factor (FGF7) may be a novel niche factor for HSPC support and leukemic growth. FGF7 expression was attenuated in mouse embryonic fibroblasts (MEFs) deficient for the MED1 subunit of the Mediator transcriptional coregulator complex. When normal mouse bone marrow (BM) cells were cocultured with Med1{sup +/+} MEFs or BM stromal cells in the presence of anti-FGF7 antibody, the growth of BM cells and the number of long-time culture-initiating cells (LTC-ICs) decreased significantly. Anti-FGF7 antibody also attenuated the proliferation and cobblestone formation of MB1 stromal cell-dependent myeloblastoma cells. The addition of recombinant FGF7 to the coculture of BM cells and Med1{sup −/−} MEFs increased BM cells and LTC-ICs. FGF7 and its cognate receptor, FGFR2IIIb, were undetectable in BM cells, but MEFs and BM stromal cells expressed both. FGF7 activated downstream targets of FGFR2IIIb in Med1{sup +/+} and Med1{sup −/−} MEFs and BM stromal cells. Taken together, we propose that FGF7 supports HSPCs and leukemia-initiating cells indirectly via FGFR2IIIb expressed on stromal cells.

  19. The regulation of hematopoietic stem cell populations

    PubMed Central

    Mayani, Hector

    2016-01-01

    Evidence presented over the last few years indicates that the hematopoietic stem cell (HSC) compartment comprises not just one but a number of different cell populations. Based on HSCs’ proliferation and engraftment potential, it has been suggested that there are two classes of HSC, with long- and short-term engraftment potential. HSC heterogeneity seems to involve differentiation capacities as well, since it has been shown that some HSC clones are able to give rise to both myeloid and lymphoid progeny, whereas others are lymphoid deficient. It has been recognized that HSC function depends on intrinsic cell regulators, which are modulated by external signals. Among the former, we can include transcription factors and non-coding RNAs as well as epigenetic modifiers. Among the latter, cytokines and extracellular matrix molecules have been implicated. Understanding the elements and mechanisms that regulate HSC populations is of significant relevance both in biological and in clinical terms, and research in this area still has to face several complex and exciting challenges. PMID:27408695

  20. The LMO2 oncogene regulates DNA replication in hematopoietic cells

    PubMed Central

    Sincennes, Marie-Claude; Humbert, Magali; Grondin, Benoît; Lisi, Véronique; Veiga, Diogo F. T.; Haman, André; Cazaux, Christophe; Mashtalir, Nazar; Affar, EL Bachir; Verreault, Alain; Hoang, Trang

    2016-01-01

    Oncogenic transcription factors are commonly activated in acute leukemias and subvert normal gene expression networks to reprogram hematopoietic progenitors into preleukemic stem cells, as exemplified by LIM-only 2 (LMO2) in T-cell acute lymphoblastic leukemia (T-ALL). Whether or not these oncoproteins interfere with other DNA-dependent processes is largely unexplored. Here, we show that LMO2 is recruited to DNA replication origins by interaction with three essential replication enzymes: DNA polymerase delta (POLD1), DNA primase (PRIM1), and minichromosome 6 (MCM6). Furthermore, tethering LMO2 to synthetic DNA sequences is sufficient to transform these sequences into origins of replication. We next addressed the importance of LMO2 in erythroid and thymocyte development, two lineages in which cell cycle and differentiation are tightly coordinated. Lowering LMO2 levels in erythroid progenitors delays G1-S progression and arrests erythropoietin-dependent cell growth while favoring terminal differentiation. Conversely, ectopic expression in thymocytes induces DNA replication and drives these cells into cell cycle, causing differentiation blockade. Our results define a novel role for LMO2 in directly promoting DNA synthesis and G1-S progression. PMID:26764384

  1. The LMO2 oncogene regulates DNA replication in hematopoietic cells.

    PubMed

    Sincennes, Marie-Claude; Humbert, Magali; Grondin, Benoît; Lisi, Véronique; Veiga, Diogo F T; Haman, André; Cazaux, Christophe; Mashtalir, Nazar; Affar, El Bachir; Verreault, Alain; Hoang, Trang

    2016-02-02

    Oncogenic transcription factors are commonly activated in acute leukemias and subvert normal gene expression networks to reprogram hematopoietic progenitors into preleukemic stem cells, as exemplified by LIM-only 2 (LMO2) in T-cell acute lymphoblastic leukemia (T-ALL). Whether or not these oncoproteins interfere with other DNA-dependent processes is largely unexplored. Here, we show that LMO2 is recruited to DNA replication origins by interaction with three essential replication enzymes: DNA polymerase delta (POLD1), DNA primase (PRIM1), and minichromosome 6 (MCM6). Furthermore, tethering LMO2 to synthetic DNA sequences is sufficient to transform these sequences into origins of replication. We next addressed the importance of LMO2 in erythroid and thymocyte development, two lineages in which cell cycle and differentiation are tightly coordinated. Lowering LMO2 levels in erythroid progenitors delays G1-S progression and arrests erythropoietin-dependent cell growth while favoring terminal differentiation. Conversely, ectopic expression in thymocytes induces DNA replication and drives these cells into cell cycle, causing differentiation blockade. Our results define a novel role for LMO2 in directly promoting DNA synthesis and G1-S progression.

  2. Expression of ets family genes in hematopoietic-cells.

    PubMed

    Romanospica, V; Suzuki, H; Georgiou, P; Chen, S; Ascione, R; Papas, T; Bhat, N

    1994-03-01

    We have examined the expression of the ets family of transcription factors in different types of hematopoietic cells. Our results demonstrate that several members of the ets gene family are expressed differentially in hematopoietic cells. During phorbol ester induced differentiation of HL60 cells, ETS2, PEA3, as well as GABPalpha and GABPbeta mRNAs are coordinately induced. During the activation of T-cells, ETS2 proteins are induced; however, the expression of the ETS1 and ERGB gene products are reduced. These results demonstrate that the regulation of ets family of genes is complex and depends on cell type. This observation leads to the conclusion that the regulation of ets target genes, will be dependent, in part, upon the type of ets genes expressed in each particular cell type.

  3. Mast Cells Synthesize, Store, and Release Nerve Growth Factor

    NASA Astrophysics Data System (ADS)

    Leon, A.; Buriani, A.; dal Toso, R.; Fabris, M.; Romanello, S.; Aloe, L.; Levi-Montalcini, R.

    1994-04-01

    Mast cells and nerve growth factor (NGF) have both been reported to be involved in neuroimmune interactions and tissue inflammation. In many peripheral tissues, mast cells interact with the innervating fibers. Changes in the behaviors of both of these elements occur after tissue injury/inflammation. As such conditions are typically associated with rapid mast cell activation and NGF accumulation in inflammatory exudates, we hypothesized that mast cells may be capable of producing NGF. Here we report that (i) NGF mRNA is expressed in adult rat peritoneal mast cells; (ii) anti-NGF antibodies clearly stain vesicular compartments of purified mast cells and mast cells in histological sections of adult rodent mesenchymal tissues; and (iii) medium conditioned by peritoneal mast cells contains biologically active NGF. Mast cells thus represent a newly recognized source of NGF. The known actions of NGF on peripheral nerve fibers and immune cells suggest that mast cell-derived NGF may control adaptive/reactive responses of the nervous and immune systems toward noxious tissue perturbations. Conversely, alterations in normal mast cell behaviors may provoke maladaptive neuroimmune tissue responses whose consequences could have profound implications in inflammatory disease states, including those of an autoimmune nature.

  4. Regulation of skeletal muscle stem cells by fibroblast growth factors.

    PubMed

    Pawlikowski, Bradley; Vogler, Thomas Orion; Gadek, Katherine; Olwin, Bradley B

    2017-03-01

    Fibroblast growth factors (FGFs) are essential for self-renewal of skeletal muscle stem cells (satellite cells) and required for maintenance and repair of skeletal muscle. Satellite cells express high levels of FGF receptors 1 and 4, low levels of FGF receptor 3, and little or no detectable FGF receptor 2. Of the multiple FGFs that influence satellite cell function in culture, FGF2 and FGF6 are the only members that regulate satellite cell function in vivo by activating ERK MAPK, p38α/β MAPKs, PI3 kinase, PLCγ and STATs. Regulation of FGF signaling is complex in satellite cells, requiring Syndecan-4, a heparan sulfate proteoglycan, as well as ß1-integrin and fibronectin. During aging, reduced responsiveness to FGF diminishes satellite cell self-renewal, leading to impaired skeletal muscle regeneration and depletion of satellite cells. Mislocalization of ß1-integrin, reductions in fibronectin, and alterations in heparan sulfate content all contribute to reduced FGF responsiveness in satellite cells. How these cell surface proteins regulate satellite cell self-renewal is incompletely understood. Here we summarize the current knowledge, highlighting the role(s) for FGF signaling in skeletal muscle regeneration, satellite cell behavior, and age-induced muscle wasting. Developmental Dynamics, 2017. © 2017 Wiley Periodicals, Inc.

  5. Hepatocyte growth factor, vascular endothelial growth factor, glial cell-derived neurotrophic factor and nerve growth factor are differentially affected by early chronic ethanol or red wine intake.

    PubMed

    Fiore, Marco; Mancinelli, Rosanna; Aloe, Luigi; Laviola, Giovanni; Sornelli, Federica; Vitali, Mario; Ceccanti, Mauro

    2009-08-10

    Ethanol intake during pregnancy and lactation induces severe changes in brain and liver throughout mechanisms involving growth factors. These are signaling molecules regulating survival, differentiation, maintenance and connectivity of brain and liver cells. Ethanol is an element of red wine which contains also compounds with antioxidant properties. Aim of the study was to investigate differences in hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), glial cell-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) in brain areas and liver by ELISA of 1-month-old male mice exposed perinatally to ethanol at 11 vol.% or to red wine at same ethanol concentration. Ethanol was administered before and during pregnancy up to pups' weaning. Ethanol per se elevated HGF in liver and cortex, potentiated liver VEGF, reduced GDNF in the liver and decreased NGF content in hippocampus and cortex in the offspring. We did not find changes in HGF or NGF due to red wine exposure. However, we revealed elevation in VEGF levels in liver and reduced GDNF in the cortex of animals exposed to red wine but the VEGF liver increase was more marked in animals exposed to ethanol only compared to the red wine group. In conclusion the present findings in the mouse show differences in ethanol-induced toxicity when ethanol is administered alone or in red wine that may be related to compounds with antioxidant properties present in the red wine.

  6. NCI, NHLBI/PBMTC first international conference on late effects after pediatric hematopoietic cell transplantation: endocrine challenges-thyroid dysfunction, growth impairment, bone health, & reproductive risks.

    PubMed

    Dvorak, Christopher C; Gracia, Clarisa R; Sanders, Jean E; Cheng, Edward Y; Baker, K Scott; Pulsipher, Michael A; Petryk, Anna

    2011-12-01

    The endocrine system is highly susceptible to damage by high-dose chemotherapy and/or irradiation before hematopoietic cell transplantation (HCT) during childhood. The specific endocrine organs most affected by HCT include the thyroid gland, the pituitary, and the gonads. In addition, hormones that support development and stability of the skeletal system are also affected. Insufficiency of thyroid hormone is 1 of the most common late sequelae of HCT, and occurs more often in young children. Deficiency in the pituitary's production of growth hormone is a problem of unique concern to the pediatric population. The reproductive risks of HCT depend on the patient's gender and pubertal status at the time of HCT. Pubertal or gonadal failure frequently occurs, especially in females. Infertility risks for both genders remain high, whereas methods of fertility preservation are limited in all but postpubertal males. Bone health post-HCT can be compromised by low bone mineral density as well as avascular necrosis, but the data on both problems in the pediatric HCT population are limited. In this paper, the current state of knowledge, gaps in that knowledge, and recommendations for future research are addressed in detail for each of these systems. Copyright © 2011 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  7. NCI, NHLBI/PBMTC First International Conference on Late Effects after Pediatric Hematopoietic Cell Transplantation: Endocrine Challenges--Thyroid Dysfunction, Growth Impairment, Bone Health, & Reproductive Risks

    PubMed Central

    Dvorak, Christopher C.; Gracia, Clarisa R.; Sanders, Jean E.; Cheng, Edward Y.; Baker, K. Scott; Pulsipher, Michael A.; Petryk, Anna

    2011-01-01

    The endocrine system is highly susceptible to damage by high-dose chemotherapy and/or irradiation prior to hematopoietic cell transplantation (HCT) during childhood. The specific endocrine organs most affected by HCT include the thyroid gland, the pituitary, and the gonads. In addition, hormones that support development and stability of the skeletal system are also affected. Insufficiency of thyroid hormone is one of the most common late sequelae of HCT, and occurs more often in young children. Deficiency in the pituitary’s production of growth hormone is a problem of unique concern to the pediatric population. The reproductive risks of HCT depend on the patient’s gender and pubertal status at the time of HCT. Pubertal or gonadal failure frequently occurs, especially in females. Infertility risks for both genders remain high, while methods of fertility preservation are limited in all but post-pubertal males. Bone health post-HCT can be compromised by low bone mineral density as well as avascular necrosis, but the data on both problems in the pediatric HCT population are limited. In this paper, the current state of knowledge, gaps in that knowledge, and recommendations for future research are addressed in detail for each of these systems. PMID:22005649

  8. Hematopoietic stem cell engineering at a crossroads.

    PubMed

    Rivière, Isabelle; Dunbar, Cynthia E; Sadelain, Michel

    2012-02-02

    The genetic engineering of hematopoietic stem cells is the basis for potentially treating a large array of hereditary and acquired diseases, and stands as the paradigm for stem cell engineering in general. Recent clinical reports support the formidable promise of this approach but also highlight the limitations of the technologies used to date, which have on occasion resulted in clonal expansion, myelodysplasia, or leukemogenesis. New research directions, predicated on improved vector designs, targeted gene delivery or the therapeutic use of pluripotent stem cells, herald the advent of safer and more effective hematopoietic stem cell therapies that may transform medical practice. In this review, we place these recent advances in perspective, emphasizing the solutions emerging from a wave of new technologies and highlighting the challenges that lie ahead.

  9. Hematopoietic stem cell engineering at a crossroads

    PubMed Central

    Rivière, Isabelle; Dunbar, Cynthia E.

    2012-01-01

    The genetic engineering of hematopoietic stem cells is the basis for potentially treating a large array of hereditary and acquired diseases, and stands as the paradigm for stem cell engineering in general. Recent clinical reports support the formidable promise of this approach but also highlight the limitations of the technologies used to date, which have on occasion resulted in clonal expansion, myelodysplasia, or leukemogenesis. New research directions, predicated on improved vector designs, targeted gene delivery or the therapeutic use of pluripotent stem cells, herald the advent of safer and more effective hematopoietic stem cell therapies that may transform medical practice. In this review, we place these recent advances in perspective, emphasizing the solutions emerging from a wave of new technologies and highlighting the challenges that lie ahead. PMID:22096239

  10. Hematopoietic stem cell origin of connective tissues.

    PubMed

    Ogawa, Makio; Larue, Amanda C; Watson, Patricia M; Watson, Dennis K

    2010-07-01

    Connective tissue consists of "connective tissue proper," which is further divided into loose and dense (fibrous) connective tissues and "specialized connective tissues." Specialized connective tissues consist of blood, adipose tissue, cartilage, and bone. In both loose and dense connective tissues, the principal cellular element is fibroblasts. It has been generally believed that all cellular elements of connective tissue, including fibroblasts, adipocytes, chondrocytes, and bone cells, are generated solely by mesenchymal stem cells. Recently, a number of studies, including those from our laboratory based on transplantation of single hematopoietic stem cells, strongly suggested a hematopoietic stem cell origin of these adult mesenchymal tissues. This review summarizes the experimental evidence for this new paradigm and discusses its translational implications.

  11. Factors associated with hematopoietic cell transplantation (HCT) among patients in a population-based study of myelodysplastic syndrome (MDS) in Minnesota.

    PubMed

    Smith, Angela R; Warlick, Erica D; Roesler, Michelle A; Poynter, Jenny N; Richardson, Michaela; Nguyen, Phuong; Cioc, Adina; Hirsch, Betsy; Ross, Julie A

    2015-10-01

    Myelodysplastic syndrome (MDS) is a clonal hematopoietic stem cell disorder characterized by dysplastic changes in the bone marrow, ineffective erythropoiesis, and an increased risk of developing acute myeloid leukemia. Treatment planning for patients with MDS is a complex process, and we sought to better characterize hematopoietic cell transplantation (HCT) outcomes and the factors that play into decision-making regarding referral of adults with MDS for definitive therapy with HCT. Patients enrolled in a population-based study of MDS between April 2010 and January 2013 who underwent HCT within the first year after enrollment were included in this analysis. Age- and risk-matched MDS patient controls also enrolled during that time period were used as a comparison. Survival was significantly better in the HCT group (48 vs. 21 %, log-rank p value 0.009). Non-HCT patients were more likely to have comorbidities, and HCT patients were more likely to have a college degree and an income >$80,000. All three of these variables were independently associated with HCT, but none impacted survival. Patients with MDS in our study who underwent HCT had better survival than a comparable group of patients who did not undergo HCT. With refined treatment techniques, more patients may be able to be considered for this therapy. More work needs to be done to determine why education and income appear to impact the decision to pursue HCT, but these factors may impact referral to an academic center where aggressive therapy like HCT is more likely to be considered.

  12. Multivariate analyses of prognostic factors associated with hematopoietic recovery in autograft patients with different sources of progenitor cells. A GATMO experience. Argintine Group of Bone Marrow Transplant.

    PubMed

    Pavlovsky, S; Koziner, B; Milone, G; Lastiri, F; Bayo, R; Fernández, I; Dengra, C; Martinez Rolón, J; Feldman, L; Kusminsky, G; Corrado, C; Bullorsky, E; Milone, J; Garcia, J J; Cerutti, I; Saporito, G; Robinson, A; Canepa, C

    1996-09-01

    To evaluate in a multivariate analysis the prognostic factors associated with hematopoietic recovery and the supportive care requirements after autotransplant of progenitor cells (PC) from various sources: bone marrow (BMPC), BMPC & peripheral blood (PBPC), and PBPC alone. A total of 570 patients with hematological malignancies and solid tumors underwent high-dose therapy followed by autotransplant. PBPC were obtained after mobilization with chemotherapy and/or cytokines. One-hundred five patients received BMPC, 217 received BMPC & PBPC and 248 PBPC alone; all of the patients received G-CSF or GM-CSF after infusion. In a multivariate analysis the recovery of neutrophils was adversely associated with low numbers of nucleated cells infused (P < 0.13), bone marrow progenitor cell source, and diagnosis of multiple myeloma and acute leukemia (P < 0.001). The factors that adversely affected platelet recovery were low number of nucleated cells and diagnosis of multiple myeloma and acute leukemia (P < 0.001). We conclude that BMPC adversely affect neutrophil recovery while low numbers of nucleated cells and diagnosis of multiple myeloma and acute leukemia adversely affect both neutrophil and platelet recovery.

  13. Acute myeloid leukemia cells polarize macrophages towards a leukemia supporting state in a Growth factor independence 1 dependent manner

    PubMed Central

    Al-Matary, Yahya S.; Botezatu, Lacramioara; Opalka, Bertram; Hönes, Judith M.; Lams, Robert F.; Thivakaran, Aniththa; Schütte, Judith; Köster, Renata; Lennartz, Klaus; Schroeder, Thomas; Haas, Rainer; Dührsen, Ulrich; Khandanpour, Cyrus

    2016-01-01

    The growth of malignant cells is not only driven by cell-intrinsic factors, but also by the surrounding stroma. Monocytes/Macrophages play an important role in the onset and progression of solid cancers. However, little is known about their role in the development of acute myeloid leukemia, a malignant disease characterized by an aberrant development of the myeloid compartment of the hematopoietic system. It is also unclear which factors are responsible for changing the status of macrophage polarization, thus supporting the growth of malignant cells instead of inhibiting it. We report herein that acute myeloid leukemia leads to the invasion of acute myeloid leukemia-associated macrophages into the bone marrow and spleen of leukemic patients and mice. In different leukemic mouse models, these macrophages support the in vitro expansion of acute myeloid leukemia cell lines better than macrophages from non-leukemic mice. The grade of macrophage infiltration correlates in vivo with the survival of the mice. We found that the transcriptional repressor Growth factor independence 1 is crucial in the process of macrophage polarization, since its absence impedes macrophage polarization towards a leukemia supporting state and favors an anti-tumor state both in vitro and in vivo. These results not only suggest that acute myeloid leukemia-associated macrophages play an important role in the progression of acute myeloid leukemia, but also implicate Growth factor independence 1 as a pivotal factor in macrophage polarization. These data may provide new insights and opportunities for novel therapies for acute myeloid leukemia. PMID:27390361

  14. Growth Factor-Activated Stem Cell Circuits and Stromal Signals Cooperatively Accelerate Non-Integrated iPSC Reprogramming of Human Myeloid Progenitors

    PubMed Central

    Park, Tea Soon; Huo, Jeffrey S.; Peters, Ann; Talbot, C. Conover; Verma, Karan; Zimmerlin, Ludovic; Kaplan, Ian M.; Zambidis, Elias T.

    2012-01-01

    Nonviral conversion of skin or blood cells into clinically useful human induced pluripotent stem cells (hiPSC) occurs in only rare fractions (∼0.001%–0.5%) of donor cells transfected with non-integrating reprogramming factors. Pluripotency induction of developmentally immature stem-progenitors is generally more efficient than differentiated somatic cell targets. However, the nature of augmented progenitor reprogramming remains obscure, and its potential has not been fully explored for improving the extremely slow pace of non-integrated reprogramming. Here, we report highly optimized four-factor reprogramming of lineage-committed cord blood (CB) myeloid progenitors with bulk efficiencies of ∼50% in purified episome-expressing cells. Lineage-committed CD33+CD45+CD34− myeloid cells and not primitive hematopoietic stem-progenitors were the main targets of a rapid and nearly complete non-integrated reprogramming. The efficient conversion of mature myeloid populations into NANOG+TRA-1-81+ hiPSC was mediated by synergies between hematopoietic growth factor (GF), stromal activation signals, and episomal Yamanaka factor expression. Using a modular bioinformatics approach, we demonstrated that efficient myeloid reprogramming correlated not to increased proliferation or endogenous Core factor expressions, but to poised expression of GF-activated transcriptional circuits that commonly regulate plasticity in both hematopoietic progenitors and embryonic stem cells (ESC). Factor-driven conversion of myeloid progenitors to a high-fidelity pluripotent state was further accelerated by soluble and contact-dependent stromal signals that included an implied and unexpected role for Toll receptor-NFκB signaling. These data provide a paradigm for understanding the augmented reprogramming capacity of somatic progenitors, and reveal that efficient induced pluripotency in other cell types may also require extrinsic activation of a molecular framework that commonly regulates self

  15. Proinflammatory signaling regulates hematopoietic stem cell emergence

    PubMed Central

    Espín-Palazón, Raquel; Stachura, David L.; Campbell, Clyde A.; García-Moreno, Diana; Cid, Natasha Del; Kim, Albert D.; Candel, Sergio; Meseguer, José; Mulero, Victoriano; Traver, David

    2014-01-01

    Summary Hematopoietic stem cells (HSCs) underlie the production of blood and immune cells for the lifetime of an organism. In vertebrate embryos, HSCs arise from the unique transdifferentiation of hemogenic endothelium comprising the floor of the dorsal aorta during a brief developmental window. To date, this process has not been replicated in vitro from pluripotent precursors, partly because the full complement of required signaling inputs remains to be determined. Here, we show that TNFR2 via TNFα activates the Notch and NF-κB signaling pathways to establish HSC fate, indicating a requirement for inflammatory signaling in HSC generation. We determine that primitive neutrophils are the major source of TNFα, assigning a role for transient innate immune cells in establishing the HSC program. These results demonstrate that proinflammatory signaling, in the absence of infection, is utilized by the developing embryo to generate the lineal precursors of the adult hematopoietic system. PMID:25416946

  16. Epidemiology of Acute Respiratory Distress Syndrome Following Hematopoietic Stem Cell Transplantation.

    PubMed

    Yadav, Hemang; Nolan, Matthew E; Bohman, John K; Cartin-Ceba, Rodrigo; Peters, Steve G; Hogan, William J; Gajic, Ognjen; Kor, Daryl J

    2016-06-01

    -important outcomes. Most cases of acute respiratory distress syndrome following hematopoietic stem cell transplantation do not meet criteria for a more specific post-transplantation pulmonary syndrome. These findings highlight the need to better understand the risk factors underlying acute respiratory distress syndrome in this population, thereby facilitating the development of effective prevention strategies.

  17. Alloantigen presenting function of normal human CD34+ hematopoietic cells.

    PubMed

    Rondelli, D; Andrews, R G; Hansen, J A; Ryncarz, R; Faerber, M A; Anasetti, C

    1996-10-01

    The identification of the CD34 molecule, expressed almost exclusively on human hematopoietic stem cells and committed progenitors, and the development of CD34-specific monoclonal antibodies have made procurement of relatively pure populations of CD34+ marrow cells for autologous transplantation feasible. Characterization of the immunogenicity of CD34+ marrow cells may facilitate the design of successful strategies to use these cells for allogeneic transplantation. CD34+ marrow cells from normal volunteers were enriched to greater than 98% purity by immunoaffinity chromatography on column followed by fluorescence-activated cell sorting. Purified CD34+ cells were tested for expression of HLA-DR and other accessory molecules, and function in hematopoietic colony growth and mixed leukocyte culture (MLC) assays. Greater than 95% CD34+ cells were positive for HLA-DR and 74% +/- 10% were highly positive for CD18, the common beta-chain of a leukointegrin family. CD34+/CD18- cells were small, agranular lymphocytes which contained the majority of precursors for colony-forming cells detected in long-term cultures. They produced almost no stimulation of purified T cells from HLA-DR-incompatible individuals in bulk MLC or in limiting dilution assay. In contrast, CD34+/CD18+ cells were large, were enriched for cells forming mixed colonies in short- but not long-term assays, and were capable of stimulating allogeneic T cells. CD86, a natural ligand for the T-cell activation molecule CD28, was coexpressed with CD18 in 6% +/- 3% of CD34+ cells. CD34+/CD86+ cells, but not CD34+/CD86- cells, exhibited strong alloantigen presenting function. Thus, pluripotent hematopoietic activity and alloantigen presenting function are attributes of distinct subsets of CD34+ marrow cells. CD34+/CD18- or CD34+/CD86- cells may be more effective than either the whole CD34+ population or unseparated marrow in engrafting allogeneic recipients and may also facilitate induction of tolerance.

  18. [Proteins support stem cells - use of protein therapeutics in hematopoietic stem cell transplantation].

    PubMed

    Meyer, Sara Christina; Stern, Martin

    2011-11-01

    Hematopoietic stem cell transplantation (HSCT) has evolved from a largely experimental therapeutic approach three decades ago to a well-established therapy today for many malignant and non-malignant disorders of the hematopoietic and the immune system. Although it is per se a therapy by transmission of cells, protein therapeutics such as growth factors and antibodies are relevant in all phases of a HSCT and substantially contribute to the success of this often only curative treatment. This review discusses HSCT with a particular focus on the protein therapeutics involved. Granulocyte colony stimulating factor (G-CSF) for mobilization of stem cells to the peripheral blood, the polyclonal anti-T-cell globulin (ATG) and the monoclonal antibodies alemtuzumab and etanercept for prophylaxis and therapy of graft versus host disease (GvHD) are highlighted. Also rituximab, palivizumab and polyclonal intravenous immunoglobulins for treating infections in post-transplant patients are discussed. Since our understanding of cell surface receptors, cytokine and signaling pathways is increasing, there will emerge new targets for directed therapy by proteins in the future. They may have the potential to further improve the success and to widen theapplication of HSCT.

  19. CD133+ cell selection is an alternative to CD34+ cell selection for ex vivo expansion of hematopoietic stem cells.

    PubMed

    Kobari, L; Giarratana, M C; Pflumio, F; Izac, B; Coulombel, L; Douay, L

    2001-04-01

    CD133 is a new stem cell antigen that may provide an alternative to CD34 for the selection and expansion of hematopoietic cells for transplantation. This study compared the expansion capacities of CD133(+) and CD34(+) cells isolated from the same cord blood (CB) samples. After 14 days culture in stroma-free, serum-free medium in the presence of stem cell factor (SCF), Flt3-1, megakaryocyte growth and development factor (MGDF), and granulocyte colony-stimulating factor (G-CSF), the CD133(+) and CD34(+) fractions displayed comparable expansion of the myeloid compartment (CFC, LTC-IC, and E-LTC-IC). The expansion of CD133(+) CB cells was up to 1262-fold for total cells, 99-fold for CD34(+) cells, 109-fold for CD34(+) CD133(+) cells, 133-fold for CFU-GM, 14.5-fold for LTC-IC, and 7.5-fold for E-LTC-IC. Moreover, the expanded population was able to generate lymphoid B (CD19(+)), NK (CD56(+)), and T (CD4(+) CD8(+)) cells in liquid or fetal thymic organ cultures, while expression of the homing antigen CXCR4 was similar on expanded and nonexpanded CD133(+) or CD34(+) cells. Thus, the CD133(+) subset could be expanded in the same manner as the CD34(+) subset and conserved its multilineage capacity, which would support the relevance of CD133 for clinical hematopoietic selection.

  20. Culture materials affect ex vivo expansion of hematopoietic progenitor cells.

    PubMed

    LaIuppa, J A; McAdams, T A; Papoutsakis, E T; Miller, W M

    1997-09-05

    Ex vivo expansion of hematopoietic cells is important for applications such as cancer treatment, gene therapy, and transfusion medicine. While cell culture systems are widely used to evaluate the biocompatibility of materials for implantation, the ability of materials to support proliferation of primary human cells in cultures for reinfusion into patients has not been addressed. We screened a variety of commercially available polymer (15 types), metal (four types), and glass substrates for their ability to support expansion of hematopoietic cells when cultured under conditions that would be encountered in a clinical setting. Cultures of peripheral blood (PB) CD34+ cells and mononuclear cells (MNC) were evaluated for expansion of total cells and colony-forming unit-granulocyte monocyte (CFU-GM; progenitors committed to the granulocyte and/or monocyte lineage). Human hematopoietic cultures in serum-free medium were found to be extremely sensitive to the substrate material. The only materials tested that supported expansion at or near the levels of polystyrene were tissue culture polystyrene, Teflon perfluoroalkoxy, Teflon fluorinated ethylene propylene, cellulose acetate, titanium, new polycarbonate, and new polymethylpentene. MNC were less sensitive to the substrate materials than the primitive CD34+ progenitors, although similar trends were seen for expansion of the two cell populations on the substrates tested. CFU-GM expansion was more sensitive to substrate materials than was total cell expansion. The detrimental effects of a number of the materials on hematopoietic cultures appear to be caused by protein adsorption and/or leaching of toxins. Factors such as cleaning, sterilization, and reuse significantly affected the performance of some materials as culture substrates. We also used PB CD34+ cell cultures to examine the biocompatibility of gas-permeable cell culture and blood storage bags and several types of tubing commonly used with biomedical equipment

  1. Nerve growth factor protects against aluminum-mediated cell death.

    PubMed

    Ohyashiki, Takao; Satoh, Eiko; Okada, Morihiro; Takadera, Tsuneo; Sahara, Masako

    2002-07-15

    In the present study, we examined the effect of two salts of aluminum (Al), aluminum maltolate (Almal) and aluminum chloride (AlCl(3)), on the cell viability of PC12 cells in the absence and presence of nerve growth factor (NGF). A 72-h exposure of PC12 cells to Almal (300 microM) resulted in a marked increase of lactic dehydrogenase (LDH) release from the cells and a decrease of 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) activity. These results indicate that Almal induces a decrease in the cell viability. Under the same conditions, Almal also caused DNA ladder formation and chromatin condensation. In contrast, AlCl(3) did not showed an increased LDH release and a decreased MTT activity in the concentration range of the salt tested (0.1-1 mM). The extent of LDH release and MTT activity decrease induced by Almal treatment closely depended on the amount of Almal incorporated into the cells. An increase in the fluorescence intensity of 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate, di(acetoxymethyl ester) (C-DCDHF-DA) which was loaded into the cell by Almal treatment and its prevention by pyrrolodine dithiocarbamate, a potent antioxidant, suggested that Almal-induced cell death partly proceeds via reactive oxygen species (ROS) production. NGF effectively inhibited the increase of LDH release and the decrease of MTT activity, as well as DNA fragmentation and chromatin condensation. However, NGF did not inhibit the increase of C-DCDHF-DA fluorescence in the cells induced by Almal treatment. From these results, it is suggested that ROS production associated with accumulation of Al is one possible important factor in the onset of Al neurotoxicity via apoptotic cell death and that NGF protects against cell degeneration associated with Al accumulation, but independently of ROS production.

  2. Aging of hematopoietic stem cells: DNA damage and mutations?

    PubMed

    Moehrle, Bettina M; Geiger, Hartmut

    2016-10-01

    Aging in the hematopoietic system and the stem cell niche contributes to aging-associated phenotypes of hematopoietic stem cells (HSCs), including leukemia and aging-associated immune remodeling. Among others, the DNA damage theory of aging of HSCs is well established, based on the detection of a significantly larger amount of γH2AX foci and a higher tail moment in the comet assay, both initially thought to be associated with DNA damage in aged HSCs compared with young cells, and bone marrow failure in animals devoid of DNA repair factors. Novel data on the increase in and nature of DNA mutations in the hematopoietic system with age, the quality of the DNA damage response in aged HSCs, and the nature of γH2AX foci question a direct link between DNA damage and the DNA damage response and aging of HSCs, and rather favor changes in epigenetics, splicing-factors or three-dimensional architecture of the cell as major cell intrinsic factors of HSCs aging. Aging of HSCs is also driven by a strong contribution of aging of the niche. This review discusses the DNA damage theory of HSC aging in the light of these novel mechanisms of aging of HSCs. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  3. Endocrinopathies after Allogeneic and Autologous Transplantation of Hematopoietic Stem Cells

    PubMed Central

    Muscogiuri, Giovanna; Palomba, Stefano; Serio, Bianca; Sessa, Mariarosaria; Giudice, Valentina; Ferrara, Idalucia; Tauchmanovà, Libuse; Colao, Annamaria; Selleri, Carmine

    2014-01-01

    Early and late endocrine disorders are among the most common complications in survivors after hematopoietic allogeneic- (allo-) and autologous- (auto-) stem cell transplant (HSCT). This review summarizes main endocrine disorders reported in literature and observed in our center as consequence of auto- and allo-HSCT and outlines current options for their management. Gonadal impairment has been found early in approximately two-thirds of auto- and allo-HSCT patients: 90–99% of women and 60–90% of men. Dysfunctions of the hypothalamus-pituitary-growth hormone/insulin growth factor-I axis, hypothalamus-pituitary-thyroid axis, and hypothalamus-pituitary-adrenal axis were documented as later complicances, occurring in about 10, 30, and 40–50% of transplanted patients, respectively. Moreover, overt or subclinical thyroid complications (including persistent low-T3 syndrome, chronic thyroiditis, subclinical hypo- or hyperthyroidism, and thyroid carcinoma), gonadal failure, and adrenal insufficiency may persist many years after HSCT. Our analysis further provides evidence that main recognized risk factors for endocrine complications after HSCT are the underlying disease, previous pretransplant therapies, the age at HSCT, gender, total body irradiation, posttransplant derangement of immune system, and in the allogeneic setting, the presence of graft-versus-host disease requiring prolonged steroid treatment. Early identification of endocrine complications can greatly improve the quality of life of long-term survivors after HSCT. PMID:24883377

  4. Hematopoietic Cell Transplantation after Solid Organ Transplantation.

    PubMed

    Doney, Kristine C; Mielcarek, Marco; Stewart, F Marc; Appelbaum, Frederick R

    2015-12-01

    Solid organ transplantation (SOT) followed by hematopoietic cell transplantation (HCT) has been used to treat a single disease with multiorgan involvement or 2 separate diseases, the first requiring SOT and the second often a possible complication of SOT. Results of such serial transplants have been reported sporadically in the literature, usually as single case studies. Thirteen autologous and 27 allogeneic HCTs after SOT published previously are summarized. A more detailed review is provided for an additional 16 patients transplanted at a single institution, 8 of whom had autologous and 8 of whom had allogeneic HCT after SOT. Five of 8 autologous transplant recipients are alive a median of 4.6 years after HCT. Four of 8 allogeneic HCT recipients are alive a median of 8.7 years after HCT. In carefully selected patients, HCT after SOT is feasible and associated with a low incidence of either solid organ or hematopoietic cell rejection.

  5. DNA methylation profiling of hematopoietic stem cells.

    PubMed

    Begtrup, Amber Hogart

    2014-01-01

    DNA methylation is a key epigenetic mark that is essential for properly functioning hematopoietic stem cells. Determining where functionally relevant DNA methylation marks exist in the genome is crucial to understanding the role that methylation plays in hematopoiesis. This chapter describes a method to profile DNA methylation by selectively enriching methylated DNA sequences that are bound in vitro by methyl-binding domain (MBD) proteins. The MBD-pulldown approach selects for DNA sequences that have the potential to be "read" by the endogenous machinery involved in epigenetic regulation. Furthermore, this approach is feasible with very small quantities of DNA, and is compatible with the use of any downstream high-throughput sequencing approach. This technique offers a reliable, simple, and powerful tool for exploration of the role of DNA methylation in hematopoietic stem cells.

  6. High-dose ifosfamide/carboplatin/etoposide: maximum tolerable doses, toxicities, and hematopoietic recovery after autologous stem cell reinfusion.

    PubMed

    Fields, K K; Elfenbein, G J; Perkins, J B; Janssen, W E; Ballester, O F; Hiemenz, J W; Zorsky, P E; Kronish, L E; Foody, M C

    1994-10-01

    We treated 115 patients in a phase I/II dose-escalation study of ifosfamide/carboplatin/etoposide (ICE) followed by autologous stem cell rescue. Patients treated had a variety of diagnoses, including breast cancer (high-risk stage II disease with eight or more positive nodes, stage III disease, and responsive metastatic disease), non-Hodgkin's lymphoma, Hodgkin's disease, acute leukemia in first remission, and various solid tumors that were responsive to induction therapy. Patients received autologous bone marrow stem cells or peripheral blood stem cells primed by one of several methods. The maximum tolerated dose of ICE was determined to be ifosfamide 20,100 mg/m2, carboplatin 1,800 mg/m2, and etoposide 3,000 mg/m2 when administered as a 6-day regimen. The dose-limiting toxicities included acute renal failure, severe central nervous system toxicity, and "leaky capillary syndrome" with hypoalbuminemia, profound fluid overload, and pulmonary insufficiency. Analysis of hematologic recovery based on stem cell source and influence of hematopoietic growth factor administration was undertaken. Hematopoietic growth factor use significantly reduced neutrophil engraftment time for patients receiving bone marrow stem cells, with evidence of earlier recovery times for patients receiving granulocyte colony-stimulating factor compared with granulocyte-macrophage colony-stimulating factor. Neutrophil recovery times varied based on the source of stem cells used, with the earliest engraftment times seen for patients receiving peripheral blood stem cells primed with cyclophosphamide and granulocyte colony-stimulating factor. Platelet recovery times were not statistically different for any of the subsets. In conclusion, the maximum tolerated dose of ICE has been defined, and the source of stem cells and the use of hematopoietic growth factors influence hematopoietic recovery.

  7. Interferon and tumor necrosis factor as humoral mechanisms coupling hematopoietic activity to inflammation and injury.

    PubMed

    Askenasy, Nadir

    2015-01-01

    Enhanced hematopoiesis accompanies systemic responses to injury and infection. Tumor necrosis factor (TNF) produced by injured cells and interferons (IFNs) secreted by inflammatory cells is a co-product of the process of clearance of debris and removal of still viable but dysfunctional cells. Concomitantly, these cytokines induce hematopoietic stem and progenitor cell (HSPC) activity as an intrinsic component of the systemic response. The proposed scenario includes induction of HSPC activity by type I (IFNα/β) and II (IFNγ) receptors within the quiescent bone marrow niches rendering progenitors responsive to additional signals. TNFα converges as a non-selective stimulant of HSPC activity and both cytokines synergize with other growth factors in promoting differentiation. These physiological signaling pathways of stress hematopoiesis occur quite frequent and do not cause HSPC extinction. The proposed role of IFNs and TNFs in stress hematopoiesis commends revision of their alleged involvement in bone marrow failure syndromes.

  8. Vascular endothelial growth factor enhances macrophage clearance of apoptotic cells

    PubMed Central

    Dalal, Samay; Horstmann, Sarah A.; Richens, Tiffany R.; Tanaka, Takeshi; Doe, Jenna M.; Boe, Darren M.; Voelkel, Norbert F.; Taraseviciene-Stewart, Laimute; Janssen, William J.; Lee, Chun G.; Elias, Jack A.; Bratton, Donna; Tuder, Rubin M.; Henson, Peter M.; Vandivier, R. William

    2012-01-01

    Efficient clearance of apoptotic cells from the lung by alveolar macrophages is important for the maintenance of tissue structure and function. Lung tissue from humans with emphysema contains increased numbers of apoptotic cells and decreased levels of vascular endothelial growth factor (VEGF). Mice treated with VEGF receptor inhibitors have increased numbers of apoptotic cells and develop emphysema. We hypothesized that VEGF regulates apoptotic cell clearance by alveolar macrophages (AM) via its interaction with VEGF receptor 1 (VEGF R1). Our data show that the uptake of apoptotic cells by murine AMs and human monocyte-derived macrophages is inhibited by depletion of VEGF and that VEGF activates Rac1. Antibody blockade or pharmacological inhibition of VEGF R1 activity also decreased apoptotic cell uptake ex vivo. Conversely, overexpression of VEGF significantly enhanced apoptotic cell uptake by AMs in vivo. These results indicate that VEGF serves a positive regulatory role via its interaction with VEGF R1 to activate Rac1 and enhance AM apoptotic cell clearance. PMID:22307908

  9. Sinonasal disorders in hematopoietic stem cell transplantation.

    PubMed

    Bento, Lucas Ricci; Ortiz, Erica; Nicola, Ester Maria Danieli; Vigorito, Afonso C; Sakano, Eulalia

    2014-01-01

    hematopoietic stem cell transplantation (HSCT) is associated with more respiratory infections due to immunosuppression. this study aimed to verify the frequency of rhinosinusitis after HSCT, and the association between rhinosinusitis and chronic graft vs. host disease (GVHD) and type of transplantation, clinical treatment, surgical treatment, and survival. this was a retrospective study in a tertiary university hospital. A total of 95 patients with hematological diseases undergoing HSCT between 1996 and 2011 were selected. chronic myeloid leukemia was the most prevalent disease. The type of transplant most often performed was the allogenic type (85.26%). The frequency of rhinosinusitis was 36%, with no difference between the autologous and the allogenic types. Chronic GVHD occurred in 30% of patients. Patients with GVHD had a higher frequency and recurrence of rhinosinusitis, in addition to more frequent need for endoscopic sinusectomy and decreased overall survival. there was a higher frequency of rhinosinusitis in HSCT and GVHD. The type of transplant does not appear to predispose to the occurrence of rhinosinusitis. GVHD seems to be an aggravating factor and requires a more stringent treatment. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  10. Granulocyte Colony-Stimulating Factor Induces Osteoblast Inhibition by B Lymphocytes and Osteoclast Activation by T Lymphocytes during Hematopoietic Stem/Progenitor Cell Mobilization.

    PubMed

    Li, Sidan; Li, Tianshou; Chen, Yongbing; Nie, Yinchao; Li, Changhong; Liu, Lanting; Li, Qiaochuan; Qiu, Lugui

    2015-08-01

    In the bone marrow (BM), hematopoietic stem and progenitor cells (HSPCs) reside in specialized niches near osteoblast cells at the endosteum. HSPCs that egress to peripheral blood are widely used for transplant, and mobilization is most commonly performed with recombinant human granulocyte colony-stimulating factor (G-CSF). However, the cellular targets of G-CSF that initiate the mobilization cascade and bone remodeling are not completely understood. Here, we examined whether T and B lymphocytes modulate the bone niche and influence HSPC mobilization. We used T and B defective mice to show that G-CSF-induced mobilization of HSPCs correlated with B lymphocytes but poorly with T lymphocytes. In addition, we found that defective B lymphocytes prevent G-CSF-mediated osteoblast disruption, and further study showed BM osteoblasts were reduced coincident with mobilization, induced by elevated expression of dickkopf1 of BM B lymphocytes. BM T cells were also involved in G-CSF-induced osteoclast activation by regulating the Receptor Activator of Nuclear Factor-κ B Ligand/Osteoprotegerin (RANKL/OPG) axis. These data provide evidence that BM B and T lymphocytes play a role in G-CSF-induced HSPC mobilization by regulating bone remodeling.

  11. Recipient CTLA-4*CT60-AA genotype is a prognostic factor for acute graft-versus-host disease in hematopoietic stem cell transplantation for thalassemia.

    PubMed

    Orrù, Sandro; Orrù, Nicola; Manolakos, Emmanouil; Littera, Roberto; Caocci, Giovanni; Giorgiani, Giovanna; Bertaina, Alice; Pagliara, Daria; Giardini, Claudio; Nesci, Sonia; Locatelli, Franco; Carcassi, Carlo; La Nasa, Giorgio

    2012-03-01

    Polymorphisms of the cytotoxic T-lymphocyte antigen-4 gene (CTLA-4) have been associated with autoimmune diseases and it has recently been reported that donor genotypes correlate with the outcome of allogeneic hematopoietic stem cell transplantation in leukemia patients. With the aim of confirming this finding in thalassemia patients, we investigated the influence of genotype distribution of 3 CTLA-4 gene polymorphisms in 72 thalassemia patients and their unrelated donors. A significant association was observed for recipient CT60-AA genotype and onset of grade II-IV (63.2% vs 24.5%; p = 0.001) and grade III-IV (36.4% vs 7.6%; p = 0.005) acute graft-versus-host disease (aGVHD). The same association was observed for the 88-base-pair allele of the CTLA-4 (AT)n polymorphism, which was determined to be in complete linkage disequilibrium with the CT60 A allele. Multinomial Cox regression demonstrated that this association was independent of CT60 donor genotypes or other risk factors (p = 0.016; hazard ratio = 2.8). Our data confirm that the genetic variability in CTLA-4 is an important prognostic factor for aGVHD and suggest that some of the risk factors for this complication are generated by recipient cells that persist after the myeloablative conditioning regimen. Copyright © 2012 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  12. Late cardiovascular complications after hematopoietic cell transplantation.

    PubMed

    Chow, Eric J; Wong, Kenneth; Lee, Stephanie J; Cushing-Haugen, Kara L; Flowers, Mary E D; Friedman, Debra L; Leisenring, Wendy M; Martin, Paul J; Mueller, Beth A; Baker, K Scott

    2014-06-01

    The authors sought to better understand the combined effects of pretransplant, transplant, and post-transplant factors in determining risks of serious cardiovascular disease after hematopoietic cell transplantation (HCT). Hospitalizations and deaths associated with serious cardiovascular outcomes were identified among 1379 Washington State residents who received HCT (57% allogeneic and 43% autologous) at a single center from 1985 to 2005, survived ≥ 2 years, and followed through 2008. Using a nested case-cohort design, relationships (hazard ratios [HRs]) between potential risk factors and outcomes were examined among affected survivors and a randomly selected subcohort (N = 509). After 7.0 years of median follow-up (range, 2.0 to 23.7), the 10-year cumulative incidence of ischemic heart disease, cardiomyopathy, stroke, and all-cause cardiovascular death was 3.8%, 6.0%, 3.5%, and 3.7%, respectively. In multivariable analysis, increased pretransplant anthracycline was associated with cardiomyopathy. Active chronic graft-versus-host disease was associated with cardiovascular death (HR, 4.0; 95% confidence interval, 1.1 to 14.7); risk was otherwise similar between autologous versus allogeneic HCT recipients. Independent of therapeutic exposures, pretransplant smoking, hypertension, dyslipidemia, diabetes, and obesity conferred additional risk of all outcomes except stroke (HR ≥ 1.5 for each additional risk factor, P < .03). Hypertension and dyslipidemia at 1 year with persistence of these conditions 2 or more years after HCT also were associated with independent risks of multiple outcomes. HCT survivors with preexisting or newly developed and persistent cardiovascular risk factors remain at greater risk of subsequent serious cardiovascular disease compared with other survivors, independent of chemo- and radiotherapy exposures. These survivors should receive appropriate follow-up and be considered for primary intervention. Copyright © 2014 American Society for

  13. Cell and molecular biology of epidermal growth factor receptor.

    PubMed

    Ceresa, Brian P; Peterson, Joanne L

    2014-01-01

    The epidermal growth factor receptor (EGFR) has been one of the most intensely studied cell surface receptors due to its well-established roles in developmental biology, tissue homeostasis, and cancer biology. The EGFR has been critical for creating paradigms for numerous aspects of cell biology, such as ligand binding, signal transduction, and membrane trafficking. Despite this history of discovery, there is a continual stream of evidence that only the surface has been scratched. New ways of receptor regulation continue to be identified, each of which is a potential molecular target for manipulating EGFR signaling and the resultant changes in cell and tissue biology. This chapter is an update on EGFR-mediated signaling, and describes some recent developments in the regulation of receptor biology.

  14. The biology of hematopoietic stem cells.

    PubMed

    Szilvassy, Stephen J

    2003-01-01

    Rarely has so much interest from the lay public, government, biotechnology industry, and special interest groups been focused on the biology and clinical applications of a single type of human cell as is today on stem cells, the founder cells that sustain many, if not all, tissues and organs in the body. Granting organizations have increasingly targeted stem cells as high priority for funding, and it appears clear that the evolving field of tissue engineering and regenerative medicine will require as its underpinning a thorough understanding of the molecular regulation of stem cell proliferation, differentiation, self-renewal, and aging. Despite evidence suggesting that embryonic stem (ES) cells might represent a more potent regenerative reservoir than stem cells collected from adult tissues, ethical considerations have redirected attention upon primitive cells residing in the bone marrow, blood, brain, liver, muscle, and skin, from where they can be harvested with relative sociological impunity. Among these, it is arguably the stem and progenitor cells of the mammalian hematopoietic system that we know most about today, and their intense study in rodents and humans over the past 50 years has culminated in the identification of phenotypic and molecular genetic markers of lineage commitment and the development of functional assays that facilitate their quantitation and prospective isolation. This review focuses exclusively on the biology of hematopoietic stem cells (HSCs) and their immediate progeny. Nevertheless, many of the concepts established from their study can be considered fundamental tenets of an evolving stem cell paradigm applicable to many regenerating cellular systems.

  15. Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine.

    PubMed Central

    Paul, S R; Bennett, F; Calvetti, J A; Kelleher, K; Wood, C R; O'Hara, R M; Leary, A C; Sibley, B; Clark, S C; Williams, D A

    1990-01-01

    Hematopoiesis occurs in close association with a complex network of cells loosely termed the hematopoietic microenvironment. Analysis of the mechanisms of microenvironmental regulation of hematopoiesis has been hindered by the complexity of the microenvironment as well as the heterogeneity of hematopoietic stem cells and early progenitor cells. We have established immortalized primate bone marrow-derived stromal cell lines to facilitate analysis of the interactions of hematopoietic cells with the microenvironment in a large animal species. One such line, PU-34, was found to produce a variety of growth factors, including an activity that stimulates the proliferation of an interleukin 6-dependent murine plasmacytoma cell line. A cDNA encoding the plasmacytoma stimulatory activity was isolated through functional expression cloning in mammalian cells. The nucleotide sequence contained a single long reading frame of 597 nucleotides encoding a predicted 199-amino acid polypeptide. The amino acid sequence of this cytokine, designated interleukin 11 (IL-11), did not display significant similarity with any other sequence in the GenBank data base. Preliminary biological characterization indicates that in addition to stimulating plasmacytoma proliferation, IL-11 stimulates the T-cell-dependent development of immunoglobulin-producing B cells and synergizes with IL-3 in supporting murine megakaryocyte colony formation. These properties implicate IL-11 as an additional multifunctional regulator in the hematopoietic microenvironment. Images PMID:2145578

  16. Increased levels of NOTCH1, NF-kappaB, and other interconnected transcription factors characterize primitive sets of hematopoietic stem cells.

    PubMed

    Panepucci, Rodrigo Alexandre; Oliveira, Lucila Habib B; Zanette, Dalila Luciola; Viu Carrara, Rita de Cassia; Araujo, Amélia Goes; Orellana, Maristela Delgado; Bonini de Palma, Patrícia Vianna; Menezes, Camila C B O; Covas, Dimas Tadeu; Zago, Marco Antonio

    2010-03-01

    As previously shown, higher levels of NOTCH1 and increased NF-kappaB signaling is a distinctive feature of the more primitive umbilical cord blood (UCB) CD34+ hematopoietic stem cells (HSCs), as compared to bone marrow (BM). Differences between BM and UCB cell composition also account for this finding. The CD133 marker defines a more primitive cell subset among CD34+ HSC with a proposed hemangioblast potential. To further evaluate the molecular basis related to the more primitive characteristics of UCB and CD133+ HSC, immunomagnetically purified human CD34+ and CD133+ cells from BM and UCB were used on gene expression microarrays studies. UCB CD34+ cells contained a significantly higher proportion of CD133+ cells than BM (70% and 40%, respectively). Cluster analysis showed that BM CD133+ cells grouped with the UCB cells (CD133+ and CD34+) rather than to BM CD34+ cells. Compared with CD34+ cells, CD133+ had a higher expression of many transcription factors (TFs). Promoter analysis on all these TF genes revealed a significantly higher frequency (than expected by chance) of NF-kappaB-binding sites (BS), including potentially novel NF-kappaB targets such as RUNX1, GATA3, and USF1. Selected transcripts of TF related to primitive hematopoiesis and self-renewal, such as RUNX1, GATA3, USF1, TAL1, HOXA9, HOXB4, NOTCH1, RELB, and NFKB2 were evaluated by real-time PCR and were all significantly positively correlated. Taken together, our data indicate the existence of an interconnected transcriptional network characterized by higher levels of NOTCH1, NF-kappaB, and other important TFs on more primitive HSC sets.

  17. Fetal liver hepatic progenitors are supportive stromal cells for hematopoietic stem cells.

    PubMed

    Chou, Song; Lodish, Harvey F

    2010-04-27

    Previously we showed that the ~2% of fetal liver cells reactive with an anti-CD3epsilon monoclonal antibody support ex vivo expansion of both fetal liver and bone marrow hematopoietic stem cells (HSCs); these cells express two proteins important for HSC ex vivo expansion, IGF2, and angiopoietin-like 3. Here we show that these cells do not express any CD3 protein and are not T cells; rather, we purified these HSC-supportive stromal cells based on the surface phenotype of SCF(+)DLK(+). Competitive repopulating experiments show that SCF(+)DLK(+) cells support the maintenance of HSCs in ex vivo culture. These are the principal fetal liver cells that express not only angiopoietin-like 3 and IGF2, but also SCF and thrombopoietin, two other growth factors important for HSC expansion. They are also the principal fetal liver cells that express CXCL12, a factor required for HSC homing, and also alpha-fetoprotein (AFP), indicating that they are fetal hepatic stem or progenitor cells. Immunocytochemistry shows that >93% of the SCF(+) cells express DLK and Angptl3, and a portion of SCF(+) cells also expresses CXCL12. Thus SCF(+)DLK(+) cells are a highly homogenous population that express a complete set of factors for HSC expansion and are likely the primary stromal cells that support HSC expansion in the fetal liver.

  18. Oxidized low-density lipoprotein induces hematopoietic stem cell senescence.

    PubMed

    Zhang, Xian-Ping; Zhang, Gui-Hai; Wang, Yu-Ying; Liu, Jun; Wei, Qiang; Xu, Chun-Yan; Wang, Jian-Wei; Wang, Ya-Ping

    2013-09-01

    We have investigated oxidized low-density lipoprotein (ox-LDL) induced senescence in hematopoietic stem cells (HCs). Mouse Sca-1+ HCs were separated and purified using the magnetic activated cell sorting technique. Ox-LDL induced significant senescence in HCs measured by SA-β-Gal staining, and reduced CFU-Mix colony-forming capacity, arresting cells at G0/G1 phase. In agreement with the cell cycle arrest, ox-LDL markedly reduced the expression of CDK4, cyclin D, and cyclin E. As possible contributing factors for cell senescence, ox-LDL also induced cellular oxidative stress and reduced telomerase activity.

  19. Effects of hepatocyte growth factor on glutathione synthesis, growth, and apoptosis is cell density-dependent

    SciTech Connect

    Yang Heping; Magilnick, Nathaniel; Xia Meng; Lu, Shelly C.

    2008-01-15

    Hepatocyte growth factor (HGF) is a potent hepatocyte mitogen that exerts opposing effects depending on cell density. Glutathione (GSH) is the main non-protein thiol in mammalian cells that modulates growth and apoptosis. We previously showed that GSH level is inversely related to cell density of hepatocytes and is positively related to growth. Our current work examined whether HGF can modulate GSH synthesis in a cell density-dependent manner and how GSH in turn influence HGF's effects. We found HGF treatment of H4IIE cells increased cell GSH levels only under subconfluent density. The increase in cell GSH under low density was due to increased transcription of GSH synthetic enzymes. This correlated with increased protein levels and nuclear binding activities of c-Jun, c-Fos, p65, p50, Nrf1 and Nrf2 to the promoter region of these genes. HGF acts as a mitogen in H4IIE cells under low cell density and protects against tumor necrosis factor {alpha} (TNF{alpha})-induced apoptosis by limiting JNK activation. However, HGF is pro-apoptotic under high cell density and exacerbates TNF{alpha}-induced apoptosis by potentiating JNK activation. The increase in cell GSH under low cell density allows HGF to exert its full mitogenic effect but is not necessary for its anti-apoptotic effect.

  20. Donor selection in T cell-replete haploidentical hematopoietic stem cell transplantation: knowns, unknowns, and controversies.

    PubMed

    Ciurea, Stefan O; Champlin, Richard E

    2013-02-01

    Multiple donors are generally available for haploidentical hematopoietic stem cell transplantation. Here we discuss the factors that should be considered when selecting donors for this type of transplantation according to the currently available evidence. Donor-specific anti-HLA antibodies (DSAs) increase the risk of graft failure and should be avoided whenever possible. Strategies to manage recipients with DSAs are discussed. One should choose a full haplotype mismatch rather than a better-matched donor and maximize the dose of infused hematopoietic cells. Donor age and sex are other important factors. Other factors, including predicted natural killer cell alloreactivity and consideration of noninherited maternal alleles, are more controversial. Larger studies are needed to further clarify the role of these factors for donor selection in haploidentical hematopoietic stem cell transplantation.

  1. A Defined, Feeder-Free, Serum-Free System to Generate In Vitro Hematopoietic Progenitors and Differentiated Blood Cells from hESCs and hiPSCs

    PubMed Central

    Salvagiotto, Giorgia; Burton, Sarah; Daigh, Christine A.; Rajesh, Deepika; Slukvin, Igor I.; Seay, Nicholas J.

    2011-01-01

    Human ESC and iPSC are an attractive source of cells of high quantity and purity to be used to elucidate early human development processes, for drug discovery, and in clinical cell therapy applications. To efficiently differentiate pluripotent cells into a pure population of hematopoietic progenitors we have developed a new 2-dimentional, defined and highly efficient protocol that avoids the use of feeder cells, serum or embryoid body formation. Here we showed that a single matrix protein in combination with growth factors and a hypoxic environment is sufficient to generate from pluripotent cells hematopoietic progenitors capable of differentiating further in mature cell types of different lineages of the blood system. We tested the differentiation method using hESCs and 9 iPSC lines generated from different tissues. These data indicate the robustness of the protocol providing a valuable tool for the generation of clinical-grade hematopoietic cells from pluripotent cells. PMID:21445267

  2. Aging, Clonality and Rejuvenation of Hematopoietic Stem Cells

    PubMed Central

    Akunuru, Shailaja; Geiger, Hartmut

    2016-01-01

    Aging is associated with reduced organ function and increased disease incidence. Hematopoietic stem cell (HSC) aging driven by both cell intrinsic and extrinsic factors is linked to impaired HSC self-renewal and regeneration, aging-associated immune remodeling, and increased leukemia incidence. Compromised DNA damage responses and increased production of reactive oxygen species have been previously causatively attributed to HSC aging. However, recent paradigm-shifting concepts such as global epigenetic and cytoskeletal polarity shifts, cellular senescence, as well as clonal selection of HSCs upon aging provide new insights into HSC aging mechanisms. Rejuvenating agents that can reprogram the epigenetic status of aged HSCs or senolytic drugs that selectively deplete senescent cells provide promising translational avenues for attenuating hematopoietic aging and potentially, alleviating aging-associated immune remodeling and myeloid malignancies. PMID:27380967

  3. Aging, Clonality, and Rejuvenation of Hematopoietic Stem Cells.

    PubMed

    Akunuru, Shailaja; Geiger, Hartmut

    2016-08-01

    Aging is associated with reduced organ function and increased disease incidence. Hematopoietic stem cell (HSC) aging driven by both cell intrinsic and extrinsic factors is linked to impaired HSC self-renewal and regeneration, aging-associated immune remodeling, and increased leukemia incidence. Compromised DNA damage responses and the increased production of reactive oxygen species (ROS) have been previously causatively attributed to HSC aging. However, recent paradigm-shifting concepts, such as global epigenetic and cytoskeletal polarity shifts, cellular senescence, as well as the clonal selection of HSCs upon aging, provide new insights into HSC aging mechanisms. Rejuvenating agents that can reprogram the epigenetic status of aged HSCs or senolytic drugs that selectively deplete senescent cells provide promising translational avenues for attenuating hematopoietic aging and, potentially, alleviating aging-associated immune remodeling and myeloid malignancies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Expression of Coxsackievirus and Adenovirus Receptor Separates Hematopoietic and Cardiac Progenitor Cells in Fetal Liver Kinase 1-Expressing Mesoderm

    PubMed Central

    Tashiro, Katsuhisa; Hirata, Nobue; Okada, Atsumasa; Yamaguchi, Tomoko; Takayama, Kazuo; Mizuguchi, Hiroyuki

    2015-01-01

    In developing embryos or in vitro differentiation cultures using pluripotent stem cells (PSCs), such as embryonic stem cells and induced pluripotent stem cells, fetal liver kinase 1 (Flk1)-expressing mesodermal cells are thought to be a heterogeneous population that includes hematopoietic progenitors, endothelial progenitors, and cardiac progenitors. However, information on cell surface markers for separating these progenitors in Flk1+ cells is currently limited. In the present study, we show that distinct types of progenitor cells in Flk1+ cells could be separated according to the expression of coxsackievirus and adenovirus receptor (CAR, also known as CXADR), a tight junction component molecule. We found that mouse and human PSC- and mouse embryo-derived Flk1+ cells could be subdivided into Flk1+CAR+ cells and Flk1+CAR− cells. The progenitor cells with cardiac potential were almost entirely restricted to Flk1+CAR+ cells, and Flk1+CAR− cells efficiently differentiated into hematopoietic cells. Endothelial differentiation potential was observed in both populations. Furthermore, from the expression of CAR, Flk1, and platelet-derived growth factor receptor-α (PDGFRα), Flk1+ cells could be separated into three populations (Flk1+PDGFRα−CAR− cells, Flk1+PDGFRα−CAR+ cells, and Flk1+PDGFRα+CAR+ cells). Flk1+PDGFRα+ cells and Flk1+PDGFRα− cells have been reported as cardiac and hematopoietic progenitor cells, respectively. We identified a novel population (Flk1+PDGFRα−CAR+ cells) with the potential to differentiate into not only hematopoietic cells and endothelial cells but also cardiomyocytes. Our findings indicate that CAR would be a novel and prominent marker for separating PSC- and embryo-derived Flk1+ mesodermal cells with distinct differentiation potentials. PMID:25762001

  5. Inhibition of Nb2 T-lymphoma cell growth by transforming growth factor-beta.

    PubMed Central

    Rayhel, E J; Prentice, D A; Tabor, P S; Flurkey, W H; Geib, R W; Laherty, R F; Schnitzer, S B; Chen, R; Hughes, J P

    1988-01-01

    Transforming growth factor-beta (TGF-beta) inhibits proliferation of Nb2 cells, a rat T lymphoma, in response to lactogens and interleukin-2. Prostaglandins may play an important role in the pathway through which TGF-beta exerts its inhibitory actions, because prostaglandin E2 also inhibits proliferation of Nb2 cells, and indomethacin, an inhibitor of prostaglandin synthesis, reverses the inhibitory effects of TGF-beta on Nb2 cell proliferation. PMID:3262338

  6. Interleukin-3/granulocyte macrophage colony-stimulating factor receptor promotes stem cell expansion, monocytosis, and atheroma macrophage burden in mice with hematopoietic ApoE deficiency.

    PubMed

    Wang, Mi; Subramanian, Manikandan; Abramowicz, Sandra; Murphy, Andrew J; Gonen, Ayelet; Witztum, Joseph; Welch, Carrie; Tabas, Ira; Westerterp, Marit; Tall, Alan R

    2014-05-01

    Coronary heart disease is associated with monocytosis. Studies using animal models of monocytosis and atherosclerosis such as ApoE(-/-) mice have shown bone marrow (BM) hematopoietic stem and multipotential progenitor cell (HSPC) expansion, associated with increased cell surface expression of the common β subunit of the granulocyte macrophage colony-stimulating factor/interleukin-3 receptor (CBS) on HSPCs. ApoE(-/-) mice also display increased granulocyte macrophage colony-stimulating factor-dependent monocyte production in the spleen. We investigated the role of the CBS in cholesterol-driven HSPC expansion, monocytosis, and atherosclerosis. Ldlr(-/-) mice were transplanted with ApoE(-/-)Cbs(-/-) or ApoE(-/-) BM followed by Western-type diet feeding. Compared with ApoE(-/-) BM-transplanted controls, ApoE(-/-)Cbs(-/-) BM-transplanted mice had reduced BM and splenic HSPC proliferation, fewer blood monocytes and neutrophils, and reduced macrophage content and area of early atherosclerotic lesions. More advanced lesions showed diminished macrophage and collagen content; however, lesion size was unchanged, reflecting an increase in necrotic core area, associated with a marked decrease in Abcg1 expression and increased macrophage apoptosis. Compared with wild-type mice, Western-type diet-fed ApoE(-/-) mice showed increased CBS expression on granulocyte macrophage colony-stimulating factor-producing innate response activator B cells and expansion of this population. ApoE(-/-)Cbs(-/-) BM-transplanted Ldlr(-/-) mice showed a marked decrease in innate response activator B cells compared with ApoE(-/-) BM-transplanted Ldlr(-/-) controls. Increased levels of CBS on HSPCs and splenic innate response activator B cells lead to expansion of these populations in ApoE(-/-) BM-transplanted Ldlr(-/-) mice, contributing to monocytosis and increased lesional macrophage content. However, in more advanced lesions, the CBS also has a role in atherosclerotic plaque stabilization.

  7. Prognostic factor and quality of life analysis in 160 patients aged > or =60 years with hematologic neoplasias treated with allogeneic hematopoietic cell transplantation.

    PubMed

    Deschler, Barbara; Binek, Kristin; Ihorst, Gabriele; Marks, Reinhard; Wäsch, Ralph; Bertz, Hartmut; Finke, Jürgen

    2010-07-01

    Toxicity-reduced conditioning is a curative treatment option for medically compromised or elderly patients ineligible for myeloablative hematopoietic cell transplantation (HCT). The aim of this study was to detect prognostic factors for overall survival (OS) and to evaluate quality of life (QOL) in a large homogeneous cohort of 160 consecutive patients aged > or =60 years treated with allogeneic HCT. We evaluated age, sex, performance status, comorbidities, pulmonary function, lactic dehydrogenase concentration, type of donor, disease status, CD34(+) cells transplanted, cytomegalovirus status, time from diagnosis to HCT, and the development of acute and chronic graft-versus-host disease (GVHD). All patients who survived for > or =6 months (n = 79) were asked to complete a QOL survey. All patients (median age, 64.7 years; range, 60.1-76 years) received pretransplantation conditioning with fludarabine, BCNU, and melphalan. With a median follow-up of 35 months, the 1-year OS was 62.4% and 3-year OS was 47.4%. Multivariate analysis revealed compromised performance status as the most significant negative prognostic parameter for OS (P < .003), whereas male donor (P = .008) and chronic GVHD (P = .024) were associated with better OS. The 89% of survivors who returned the QOL questionnaire rated their global QOL as good-to-excellent despite impaired functional capabilities and such symptoms as fatigue, dyspnea, and loss of appetite. The main prognostic factor was performance status, not age. Our data suggest that toxicity-reduced conditioning offers a chance for enhanced OS with an adequate QOL.

  8. Role of growth factors in the growth of normal and transformed cells

    SciTech Connect

    Lokeshwar, V.B.

    1989-01-01

    Growth factors play an important role in the growth of normal cells. However, their untimely and/or excess production leads to neoplastic transformation. The role of growth factors in the growth of normal cells was studied by investigating the mechanism of transmodulation of the cell surface EGF receptor number by protamine. Protamine increased the EGF stimulated mitogenic response in Swiss mouse 3T3 cells and A431 cells by increasing the number of functionally active EGF receptors. Protamine also increased EGF receptor number in plasma membranes and solubilized membranes. This was evidenced by an increase in both {sup 125}I-EGF-EGF-receptor complex and EGF stimulated phosphorylation of the EGF receptor. The solubilized EGF receptor was retained on a protamine-agarose gel indicating that protamine might increase EGF receptor number by directly activating cryptic EGF receptors in the plasma membranes. The role of growth factors in neoplastic transformation was studied by investigating the role of the oncogene v-sis in the growth of Simian sarcoma virus (SSV) transformed cells. The product of the oncogene v-sis is 94% homologous to the B chain of PDGF. This study found that (i) v-sis gene product is synthesized as a 32 kDa unglycosylated monomer which is glycosylated, dimerized and proteolytically processed into p36, p72, p68, p58, p44 and p27 mol. wt. species respectively. (ii) p36, p72, p68 and p58 are very likely formed in the endoplasmic reticulum and/or Golgi complex. A fraction of newly synthesized p72, p68 and p58 is degraded intracellularly at a fast rate. (iii) p44 is a secretory product which remains tightly associated with the cell surface. p44 is recaptured by the cells through interaction with cell surface PDGF receptors and degraded into p27. (iv) During long term cultures p44 is extracellularly cleaved into a 27 kDa product.

  9. Cholesterol and hematopoietic stem cells: inflammatory mediators of atherosclerosis.

    PubMed

    Lang, Jennifer K; Cimato, Thomas R

    2014-05-01

    Atherosclerosis causing heart attack and stroke is the leading cause of death in the modern world. Therapy for end-stage atherosclerotic disease using CD34(+) hematopoietic cells has shown promise in human clinical trials, and the in vivo function of hematopoietic and progenitor cells in atherogenesis is becoming apparent. Inflammation plays a central role in the pathogenesis of atherosclerosis. Cholesterol is a modifiable risk factor in atherosclerosis, but in many patients cholesterol levels are only mildly elevated. Those with high cholesterol levels often have elevated circulating monocyte and neutrophil counts. How cholesterol affects inflammatory cell levels was not well understood. Recent findings have provided new insight into the interaction among hematopoietic stem cells, cholesterol, and atherosclerosis. In mice, high cholesterol levels or inactivation of cholesterol efflux transporters have multiple effects on hematopoietic stem cells (HSPCs), including promoting their mobilization into the bloodstream, increasing proliferation, and differentiating HSPCs to the inflammatory monocytes and neutrophils that participate in atherosclerosis. Increased levels of interleukin-23 (IL-23) stimulate IL-17 production, resulting in granulocyte colony-stimulating factor (G-CSF) secretion, which subsequently leads to HSPC release into the bloodstream. Collectively, these findings clearly link elevated cholesterol levels to increased circulating HSPC levels and differentiation to inflammatory cells that participate in atherosclerosis. Seminal questions remain to be answered to understand how cholesterol affects HSPC-mobilizing cytokines and the role they play in atherosclerosis. Translation of findings in animal models to human subjects may include HSPCs as new targets for therapy to prevent or regress atherosclerosis in patients.

  10. Thiazolidinediones enhance vascular endothelial growth factor expression and induce cell growth inhibition in non-small-cell lung cancer cells

    PubMed Central

    2010-01-01

    Background It is known that thiazolidinediones are involved in regulating the expression of various genes, including the vascular endothelial growth factor (VEGF) gene via peroxisome proliferator-activated receptor γ (PPARγ); VEGF is a prognostic biomarker for non-small-cell lung cancer (NSCLC). Methods In this study, we investigated the effects of troglitazone and ciglitazone on the mRNA expression of VEGF and its receptors in human NSCLC cell lines, RERF-LC-AI, SK-MES-1, PC-14, and A549. These mRNA expressions were evaluated by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis. We also studied the effect of Je-11, a VEGF inhibitor, on the growth of these cells. Results In NSCLC cells, thiazolidinediones increased the mRNA expression of VEGF and neuropilin-1, but not that of other receptors such as fms-like tyrosine kinase and kinase insert domain receptor-1. Furthermore, the PPARγ antagonist GW9662 completely reversed this thiazolidinedione-induced increase in VEGF expression. Furthermore, the addition of VEGF inhibitors into the culture medium resulted in the reversal of thiazolidinedione-induced growth inhibition. Conclusions Our results indicated that thiazolidinediones enhance VEGF and neuropilin-1 expression and induce the inhibition of cell growth. We propose the existence of a pathway for arresting cell growth that involves the interaction of thiazolidinedione-induced VEGF and neuropilin-1 in NSCLC. PMID:20214829

  11. Localization of hematopoietic cells in the bullfrog (Lithobates catesbeianus).

    PubMed

    de Abreu Manso, Pedro Paulo; de Brito-Gitirana, Lycia; Pelajo-Machado, Marcelo

    2009-08-01

    Amphibians represent the first phylogenetic group to possess hematopoietic bone marrow. However, adult amphibian hematopoiesis has only been described in a few species and with conflicting data. Bone marrow, kidney, spleen, liver, gut, stomach, lung, tegument, and heart were therefore collected from adult Lithobates catesbeianus and investigated by light microscopy and immunohistochemical methods under confocal laser microscopy. Our study demonstrated active hematopoiesis in the bone marrow of vertebrae, femur, and fingers and in the kidney, but no hematopoietic activity inside other organs including the spleen and liver. Blood cells were identified as a heterogeneous cell population constituted by heterophils, basophils, eosinophils, monocytes, erythrocytic cells, lymphocytes, and their precursors. Cellular islets of the thrombocytic lineage occurred near sinusoids of the bone marrow. Antibodies against CD34, CD117, stem cell antigen, erythropoietin receptor, and the receptor for granulocyte colony-stimulating factor identified some cell populations, and some circulating immature cells were seen in the bloodstream. Thus, on the basis of these phylogenetic features, we propose that L. catesbeianus can be used as an important model for hematopoietic studies, since this anuran exhibits hematopoiesis characteristics both of lower vertebrates (renal hematopoiesis) and of higher vertebrates (bone marrow hematopoiesis).

  12. In vivo gene targeting of IL-3 into immature hematopoietic cells through CD117 receptor mediated antibody gene delivery

    PubMed Central

    Chapel, Alain; Deas, Olivier; Bensidhoum, Morad; François, Sabine; Mouiseddine, Moubarak; Poncet, Pascal; Dürrbach, Antoine; Aigueperse, Jocelyne; Gourmelon, Patrick; Gorin, Norbert C; Hirsch, François; Thierry, Dominique

    2004-01-01

    Background Targeted gene transfection remains a crucial issue to permit the real development of genetic therapy. As such, in vivo targeted transfection of specific subsets of hematopoietic stem cells might help to sustain hematopoietic recovery from bone marrow aplasia by providing local production of growth factors. Methods Balb/C mice were injected intravenously, with an anti-mouse c-kit (CD117) monoclonal antibody chemically coupled to a human IL-3 gene-containing plasmid DNA. Mice were sacrificed for tissue analyses at various days after injection of the conjugates. Results By ELISA, the production of human IL-3 was evidenced in the sera of animals 5 days after treatment. Cytofluorometric analysis after in vivo transfection of a reporter gene eGFP demonstrated transfection of CD117+/Sca1+ hematopoietic immature cells. By PCR analysis of genomic DNA and RNA using primer specific pIL3 sequences, presence and expression of the human IL-3-transgene were detected in the bone marrow up to 10 days in transfected mice but not in control animals. Conclusions These data clearly indicate that antibody-mediated endocytosis gene transfer allows the expression of the IL-3 transgene into hematopoietic immature cells, in vivo. While availability of marketed recombinant growth factors is restricted, this targeting strategy should permit delivery of therapeutic genes to tissues of interest through systemic delivery. In particular, the ability to specifically target growth factor expression into repopulating hematopoietic stem cells may create new opportunities for the treatment of primary or radiation-induced marrow failures. PMID:15509303

  13. Incidence, risk factors and clinical outcome of leukemia relapses with loss of the mismatched HLA after partially incompatible hematopoietic stem cell transplantation.

    PubMed

    Crucitti, L; Crocchiolo, R; Toffalori, C; Mazzi, B; Greco, R; Signori, A; Sizzano, F; Chiesa, L; Zino, E; Lupo Stanghellini, M T; Assanelli, A; Carrabba, M G; Marktel, S; Marcatti, M; Bordignon, C; Corti, C; Bernardi, M; Peccatori, J; Bonini, C; Fleischhauer, K; Ciceri, F; Vago, L

    2015-05-01

    Genomic loss of the mismatched human leukocyte antigen (HLA) is a recently described mechanism of leukemia immune escape and relapse after allogeneic hematopoietic stem cell transplantation (HSCT). Here we first evaluated its incidence, risk factors and outcome in 233 consecutive transplants from partially HLA-mismatched related and unrelated donors (MMRD and MMUD, respectively). We documented 84 relapses, 23 of which with HLA loss. All the HLA loss relapses occurred after MMRD HSCT, and 20/23 in patients with acute myeloid leukemia. Upon MMRD HSCT, HLA loss variants accounted for 33% of the relapses (23/69), occurring later than their 'classical' counterparts (median: 307 vs 88 days, P<0.0001). Active disease at HSCT increased the risk of HLA loss (hazard ratio (HR): 10.16; confidence interval (CI): 2.65-38.92; P=0.001), whereas older patient ages had a protective role (HR: 0.16; CI: 0.05-0.46; P=0.001). A weaker association with HLA loss was observed for graft T-cell dose and occurrence of chronic graft-versus-host disease. Outcome after 'classical' and HLA loss relapses was similarly poor, and second transplantation from a different donor appeared to provide a slight advantage for survival. In conclusion, HLA loss is a frequent mechanism of evasion from T-cell alloreactivity and relapse in patients with myeloid malignancies transplanted from MMRDs, warranting routine screening in this transplantation setting.

  14. Stem cell growth factor receptor in canine vs. feline osteosarcomas

    PubMed Central

    Wolfesberger, Birgitt; Fuchs-Baumgartinger, Andrea; Hlavaty, Juraj; Meyer, Florian R.; Hofer, Martin; Steinborn, Ralf; Gebhard, Christiane; Walter, Ingrid

    2016-01-01

    Osteosarcoma is considered the most common bone cancer in cats and dogs, with cats having a much better prognosis than dogs, since the great majority of dogs with osteosarcoma develop distant metastases. In search of a factor possibly contributing to this disparity, the stem cell growth factor receptor KIT was targeted, and the messenger (m)RNA and protein expression levels of KIT were compared in canine vs. feline osteosarcomas, as well as in normal bone. The mRNA expression of KIT was quantified by reverse transcription-quantitative polymerase chain reaction, and was observed to be significantly higher in canine (n=14) than in feline (n=5) osteosarcoma samples (P<0.001). KIT protein expression was evaluated by immunohistochemistry, which revealed that 21% of canine osteosarcoma samples did not exhibit KIT staining in their neoplastic cells, while in 14% of samples, a score of 1 (<10% positive tumour cells) was observed, and in 50% and 14% of samples, a score of 2 (10–50% positivity) and 3 (>50% positivity), respectively, was observed. By contrast, the cancer cells of all the feline bone tumour samples analysed were entirely negative for KIT. Notably, canine and feline osteocytes of healthy bone tissue lacked any KIT expression. These results could be the first evidence that KIT may be involved in the higher aggressiveness of canine osteosarcoma compared with feline osteosarcoma. PMID:27698817

  15. Risk Factors and Outcomes of Infections by Multidrug-Resistant Gram-Negative Bacteria in Patients Undergoing Hematopoietic Stem Cell Transplantation.

    PubMed

    Patriarca, Francesca; Cigana, Chiara; Massimo, Dozzo; Lazzarotto, Davide; Geromin, Antonella; Isola, Miriam; Battista, Marta Lisa; Medeot, Marta; Cerno, Michela; Sperotto, Alessandra; Candoni, Anna; Crapis, Massimo; Sartor, Assunta; Scarparo, Claudio; Bassetti, Matteo; Fanin, Renato

    2017-02-01

    The objective of this study was to determine risk factors and outcomes of infections by multidrug-resistant gram-negative (MDR GN) bacteria in 241 recipients of hematopoietic stem cell transplantation (HSCT). The cumulative incidence of infections was 10.5% (95% CI, 12.0% to 25.8%), with 57% of infections occurring during the period of severe neutropenia (neutrophil count < .1 × 10(6)/L). In multivariate analysis, allogeneic transplant and colonization with MDR GN bacteria at admission to the transplant unit were significantly associated with an increased risk of infection. Although we observed neither transplant-related mortality (TRM) nor deaths due to infections by MDR GN bacteria after autologous transplant, in the allogeneic setting a significant difference was reported in terms of overall survival (OS) and TRM between patients who developed infections and those who did not (1-year OS, 39% versus 68%; 1-year TRM, 42% versus 19%). In multivariate analysis, refractory disease and development of grades III to IV graft-versus-host disease (GVHD) were factors that affected both TRM and OS, whereas occurrence of infections by MDR GN pathogens significantly reduced OS. We conclude that eligibility to allogeneic HSCT in MDR GN bacteria carriers should be carefully evaluated together with all other factors that independently influence outcome (disease status, donor, and GVHD risk). Copyright © 2017. Published by Elsevier Inc.

  16. Elastase induces lung epithelial cell autophagy through placental growth factor

    PubMed Central

    Hou, Hsin-Han; Cheng, Shih-Lung; Chung, Kuei-Pin; Kuo, Mark Yen-Ping; Yeh, Cheng-Chang; Chang, Bei-En; Lu, Hsuan-Hsuan; Wang, Hao-Chien; Yu, Chong-Jen

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is a devastating disease, which is associated with increasing mortality and morbidity. Therefore, there is a need to clearly define the COPD pathogenic mechanism and to explore effective therapies. Previous studies indicated that cigarette smoke (CS) induces autophagy and apoptosis in lung epithelial (LE) cells. Excessive ELANE/HNE (elastase, neutrophil elastase), a factor involved in protease-antiprotease imbalance and the pathogenesis of COPD, causes LE cell apoptosis and upregulates the expression of several stimulus-responsive genes. However, whether or not elastase induces autophagy in LE cell remains unknown. The level of PGF (placental growth factor) is higher in COPD patients than non-COPD controls. We hypothesize that elastase induces PGF expression and causes autophagy in LE cells. In this study, we demonstrated that porcine pancreatic elastase (PPE) induced PGF expression and secretion in LE cells in vitro and in vivo. The activation of MAPK8/JNK1 (mitogen-activated protein kinase 8) and MAPK14/p38alpha MAPK signaling pathways was involved in the PGF mediated regulation of the TSC (tuberous sclerosis complex) pathway and autophagy in LE cells. Notably, PGF-induced MAPK8 and MAPK14 signaling pathways mediated the inactivation of MTOR (mechanistic target of rapamycin), the upregulation of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β) and the increase of autophagosome formation in mice. Furthermore, the PPE-induced autophagy promotes further apoptosis in vitro and in vivo. In summary, elastase-induced autophagy promotes LE cell apoptosis and pulmonary emphysema through the upregulation of PGF. PGF and its downstream MAPK8 and MAPK14 signaling pathways are potential therapeutic targets for the treatment of emphysema and COPD. PMID:24988221

  17. Emergent Complications in the Pediatric Hematopoietic Stem Cell Transplant Patient

    PubMed Central

    Munchel, Ashley; Chen, Allen; Symons, Heather

    2014-01-01

    Hematopoietic cell transplantation is the only potentially curative option for a variety of pediatric malignant and nonmalignant disorders. Despite advances in transplantation biology and immunology as well as in posttransplant management that have contributed to improved survival and decreased transplant-related mortality, hematopoietic cell transplantation does not come without significant risk of complications. When patients who have undergone hematopoietic cell transplantation present to the emergency department, it is important to consider a variety of therapy-related complications to optimize management and outcome. In this article, we use clinical cases to highlight some of the more common emergent complications after hematopoietic cell transplantation. PMID:25411564

  18. The granulin-epithelin precursor/PC-cell-derived growth factor is a growth factor for epithelial ovarian cancer.

    PubMed

    Jones, Monica Brown; Michener, Chad M; Blanchette, James O; Kuznetsov, Vladimir A; Raffeld, Mark; Serrero, Ginette; Emmert-Buck, Michael R; Petricoin, Emanuel F; Krizman, David B; Liotta, Lance A; Kohn, Elise C

    2003-01-01

    The role of growth factors in ovarian cancer development and progression is complex and multifactorial. We hypothesized that new growth factors may be identified through the molecular analysis of ovarian tumors as they exist in their native environment. RNA extracted from microdissected serous low malignant potential (LMP) and invasive ovarian tumors was used to construct cDNA libraries. A total of 7300 transcripts were randomly chosen for sequencing, and those transcripts were statistically evaluated. Reverse transcription-PCR and immunohistochemistry were used to validate the findings in tumor tissue samples. Ovarian cancer cell lines were used to test gene effects on monolayer growth, proliferative capacity, and density-independent growth. Analysis of the pooled library transcripts revealed 26 genes differentially expressed between LMP and invasive ovarian cancers. The granulin-epithelin precursor [GEP/PC-cell derived growth factor (PCDGF)] was expressed only in the invasive ovarian cancer libraries (P < 0.028) and was absent in the LMP libraries (0 of 2872 clones). All of the invasive tumor epithelia, 20% of the LMP tumor epithelia, and all of the stroma from both subsets expressed GEP by reverse transcription-PCR. Immunohistochemical staining for GEP was diffuse and cytosolic in invasive ovarian cancer tumor cells compared with occasional, punctate, and apical staining in LMP tumor epithelia. Antisense transfection of GEP into ovarian cancer cell lines resulted in down-regulation of GEP production, reduction in cell growth (P < 0.002), decrease in the S-phase fraction (P < 0.04), and loss of density-independent growth potential (P < 0.01). cDNA library preparation from microdissected tumor epithelium provided a selective advantage for the identification of growth factors for epithelial ovarian cancer. Differential granulin expression in tumor samples and the antiproliferative effects of its antisense down-regulation suggest that GEP may be a new autocrine

  19. Brain, Behavior, and Immunity: Biobehavioral influences on recovery following hematopoietic stem cell transplantation

    Cancer.gov

    Review of hematopoietic stem cell transplantation and its potential “window of opportunity” during which interventions targeting stress-related behavioral factors can influence the survival, health, and well-being of recipients.

  20. Immunogenomics of hematopoietic stem cell transplantation.

    PubMed

    Charron, Dominique

    2005-04-01

    Recipients of allogeneic hematopoietic stem cell transplantation (HSCT) incur the risk of graft-versus-host disease even when the donor is a sibling who shares the Major Histocompatibility Antigens. Therefore, even the perfect HLA match does not represent the optimal genetic match between donors and recipients in HSCT. In addition to the HLA complex other genetic systems operate and affect the outcome of HSCT. These include minor histocompatibility systems (Martin P. Applicability of matching for minor histocompatibility antigens in human bone marrow transplantation. In: Roopenian DC, Simpson E, editors. Minor histocompatibility antigens: From the laboratory to the clinic. Georgetown: Landis Bioscience; 2000. p. 97-103) (inducing bona fide allogeneic responses) as well as a series of functional polymorphisms in cytokines and chemokines and receptors genes (Transplantation 1997;64:553). Among the items affecting the outcome of HSCT the incidence and severity of infections have an important impact. Polymorphisms of genes controlling both arms of the immune responses to pathogens (innate versus cognate) are strong candidates for susceptibility factors to infection in allogeneic transplantation. These include the MHC alleles (HLA class I, class II, MIC) CD1, Toll and TLR genes MBP, MPO genes, ...). In addition to the NK alloreactivity induced by HLA class I epitopes mismatching (a common situation in HSCT) variations in the genotype of the KIR genes (Tissue Antigens 2001;57:358) may also be encountered between the donor and the recipient leading to potentially harmful or beneficial combinations. An integrated knowledge of the role and hierarchy of the most important genetic factors (MHC and non-MHC) will provide the rationale for a comprehensive matching in HSCT (Curr Opin Hematol 3 (1996) 416). This short review provides a panorama of this strategic issue for further development of HSCT.

  1. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation.

    PubMed Central

    Frödin, M; Gammeltoft, S

    1994-01-01

    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h and immunocytochemical staining of cell nuclei. After 6 days in culture in the absence of growth factors, nuclear BrdUrd incorporation was detected in 30% of fetal chromaffin cells, 1.5% of neonatal cells, and 0.1% of adult cells. Addition of 10 nM IGF-I or IGF-II increased the fraction of BrdUrd-labeled nuclei to 50% of fetal, 20% of neonatal, and 2% of adult chromaffin cells. The ED50 value of IGF-I- and IGF-II-stimulated BrdUrd labeling in neonatal chromaffin cells was 0.3 nM and 0.8 nM, respectively. In neonatal and adult chromaffin cells, addition of 1 nM bFGF or 2 nM NGF stimulated nuclear BrdUrd incorporation to approximately the same level as 10 nM IGF-I or IGF-II. However, the response to bFGF or NGF in combination with either IGF-I or IGF-II was more than additive, indicating that the combined effect of the IGFs and bFGF or NGF is synergistic. The degree of synergism was 2- to 4-fold in neonatal chromaffin cells and 10- to 20-fold in adult chromaffin cells compared with the effect of each growth factor alone. In contrast, the action of bFGF and NGF added together in the absence of IGFs was not synergistic or additive. IGF-II acted also as a survival factor on neonatal chromaffin cells and the cell survival was further improved when bFGF or NGF was added together with IGF-II. In conclusion, we propose that IGF-I and IGF-II act in synergy with bFGF and NGF to stimulate proliferation and survival of chromaffin cells during neonatal growth and adult maintenance of the adrenal medulla. Our findings may have implications for improving the survival of chromaffin cell implants in diseased human brain. PMID:8127879

  2. Enhanced Growth of amniotic fluid cells in presence of fibroblast growth factor.

    PubMed

    Porreco, R P; Bradshaw, C; Sarkar, S; Jones, O W

    1980-01-01

    A shorter period of time between amniocentesis and cytogenetic diagnosis is of considerable clinical usefulness. Fibroblast growth factor (FGF), a potent mitogen for cells of mesodermal origin, was used to enhance the growth rate of primary cultures of amniotic fluid-derived cells. At the initial harvest and at 5 scored metaphases, culture dishes incubated with FGF showed a 9-day advantage as a group when compared with their untreated, paired controls. In addition, less variability was encountered in the growth time of the FGF-treated dishes; 97% of these treated dishes were harvested initially between 10 and 20 days, while only 48% of the control dishes were harvested initially during this time period. Success was also noted in the recovery of failing cultures. The addition of FGF to the standard enriched medium used in amniotic fluid cell cultures has shortened the processing time and provided a more uniform growth rate in the majority of cultures studied.

  3. Optimization of equine infectious anemia derived vectors for hematopoietic cell lineage gene transfer.

    PubMed

    O'Rourke, J P; Olsen, J C; Bunnell, B A

    2005-01-01

    Gene transfer into hematopoietic cells may allow correction of a variety of hematopoietic and metabolic disorders. Optimized HIV-1 based lentiviral vectors have been developed for improved gene transfer and transgene expression into hematopoietic cells. However, the use of HIV-1 based vectors for human gene therapy may be limited due to ethical and biosafety issues. We report that vectors based on the non-primate equine infectious anemia virus (EIAV) transduce a variety of human hematopoietic cell lines and primary blood cells. To investigate optimization of gene expression in hematopoietic cells, we compared a variety of post-transcriptional elements and promoters in the context of EIAV vectors. We observed cell specific increase in the number of transgene expressing cells with the different post-transcriptional elements, whereas the use of elongation factor alpha 1 (EFalpha1) promoter resulted in significant increases in both the number of transgene expressing cells and the level of transgene protein in all cell types tested. We then demonstrate increased transduction of hematopoietic cells using a second-generation EIAV vector containing a self-inactivating EIAV LTR and the EIAV central polypurine tract (cppt). These data suggest that optimized EIAV vectors may be a suitable alternative to HIV-1 vectors for use in hematopoietic gene therapy.

  4. Defibrotide prevents the activation of macrovascular and microvascular endothelia caused by soluble factors released to blood by autologous hematopoietic stem cell transplantation.

    PubMed

    Palomo, Marta; Diaz-Ricart, Maribel; Rovira, Montserrat; Escolar, Ginés; Carreras, Enric

    2011-04-01

    Endothelial activation and damage occur in association with autologous hematopoietic stem cell transplantation (HSCT). Several of the early complications associated with HSCT seem to have a microvascular location. Through the present study, we have characterized the activation and damage of endothelial cells of both macro (HUVEC) and microvascular (HMEC) origin, occurring early after autologous HSCT, and the potential protective effect of defibrotide (DF). Sera samples from patients were collected before conditioning (Pre), at the time of transplantation (day 0), and at days 7, 14, and 21 after autologous HSCT. Changes in the expression of endothelial cell receptors at the surface, presence and reactivity of extracellular adhesive proteins, and the signaling pathways involved were analyzed. The expression of ICAM-1 at the cell surface increased progressively in both HUVEC and HMEC. However, a more prothrombotic profile was denoted for HMEC, in particular at the time of transplantation (day 0), reflecting the deleterious effect of the conditioning treatment on the endothelium, especially at a microvascular location. Interestingly, this observation correlated with a higher increase in the expression of both tissue factor and von Willebrand factor on the extracellular matrix, together with activation of intracellular p38 MAPK and Akt. Previous exposure and continuous incubation of cells with DF prevented the signs of activation and damage induced by the autologous sera. These observations corroborate that conditioning treatment in autologous HSCT induces a proinflammatory and a prothrombotic phenotype, especially at a microvascular location, and indicate that DF has protective antiinflammatory and antithrombotic effects in this setting. Copyright © 2011 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  5. Regulation of transferrin receptor expression at the cell surface by insulin-like growth factors, epidermal growth factor and platelet-derived growth factor

    SciTech Connect

    Davis, R.J.; Kuck, L.; Faucher, M.; Czech, M.P.

    1986-05-01

    Addition of platelet-derived growth factor (PDGF), recombinant insulin-like growth factor I (rIGF-I) or epidermal growth factor (EGF) to BALB/c 3T3 fibroblasts causes a marked increase in the binding of (/sup 125/I) diferric transferrin to cell surface receptors. This effect is very rapid and is complete within 5 minutes. The effect is transient with (/sup 125/I) diferric transferrin binding returning to control values within 25 minutes. In contrast, PDGF and rIGF-I cause a prolonged stimulation of (/sup 125/I) diferric transferrin binding that could be observed up to 2 hours. The increase in the binding of (/sup 125/I) diferric transferrin caused by growth factors was investigated by analysis of the binding isotherm. EGF, PDGF and rIGF-I were found to increase the cell surface expression of transferrin receptors rather than to alter the affinity of the transferrin receptors. Furthermore, PDGF and rIGF-I stimulated the sustained uptake of (/sup 59/Fe) diferric transferrin by BALB/c 3T3 fibroblasts. Thus, the effect of these growth factors to increase the cell surface expression of the transferrin receptor appears to have an important physiological consequence.

  6. Evaluation of expression profiles of hematopoietic stem cell, endothelial cell, and myeloid cell antigens in spontaneous and chemically induced hemangiosarcomas and hemangiomas in mice.

    PubMed

    Kakiuchi-Kiyota, Satoko; Crabbs, Torrie A; Arnold, Lora L; Pennington, Karen L; Cook, Jon C; Malarkey, David E; Cohen, Samuel M

    2013-07-01

    It is unclear whether the process of spontaneous and chemically induced hemangiosarcoma and hemangioma formation in mice involves the transformation of differentiated endothelial cells (ECs) or recruitment of multipotential bone marrow-derived hematopoietic stem cells or endothelial progenitor cells (EPCs), which show some degree of endothelial differentiation. In the present study, immunohistochemical staining for hematopoietic stem cell markers (CD45 and CD34), EC markers (vascular endothelial growth factor receptor 2 [VEGFR2], CD31, and factor VIII-related antigen), and a myeloid lineage marker (CD14) was employed to better define the origin of hemangiosarcomas and hemangiomas in mice. Staining was negative for CD45, factor VIII-related antigen, and CD14 and positive for CD34, VEGFR2, and CD31, indicating that mouse hemangiosarcomas and hemangiomas are composed of cells derived from EPCs expressing CD34, VEGFR2, and CD31 but not factor VIII-related antigen. The lack of CD45 expression suggests that mouse vascular tumors may arise from EPCs that are at a stage later than hematopoietic stem cells. Since factor VIII-related antigen expression is known to occur later than CD31 expression in EPCs, our observations may indicate that these tumor cells are arrested at a stage prior to complete differentiation.  In addition, myeloid lineage cells do not appear to contribute to hemangiosarcoma and hemangioma formation in mice.

  7. bantam miRNA is important for Drosophila blood cell homeostasis and a regulator of proliferation in the hematopoietic progenitor niche

    SciTech Connect

    Lam, Victoria; Tokusumi, Tsuyoshi; Tokusumi, Yumiko; Schulz, Robert A.

    2014-10-24

    Highlights: • bantam miRNA is endogenously expressed in the hematopoietic progenitor niche. • bantam is necessary and sufficient to induce cellular proliferation in the PSC. • bantam is upstream of the Insulin Receptor signaling pathway. • A model for positive regulation of hematopoietic niche growth is proposed. - Abstract: The Drosophila hematopoietic system is utilized in this study to gain novel insights into the process of growth control of the hematopoietic progenitor niche in blood development. The niche microenvironment is an essential component controlling the balance between progenitor populations and differentiated, mature blood cells and has been shown to lead to hematopoietic malignancies in humans when misregulated. MicroRNAs are one class of regulators associated with blood malignancies; however, there remains a relative paucity of information about the role of miRNAs in the niche. Here we demonstrate that bantam miRNA is endogenously active in the Drosophila hematopoietic progenitor niche, the posterior signaling center (PSC), and functions in the primary hematopoietic organ, the lymph gland, as a positive regulator of growth. Loss of bantam leads to a significant reduction in the PSC and overall lymph gland size, as well as a loss of the progenitor population and correlative premature differentiation of mature hemocytes. Interestingly, in addition to being essential for proper lymph gland development, we have determined bantam to be a novel upstream component of the insulin signaling cascade in the PSC and have unveiled dMyc as one factor central to bantam activity. These important findings identify bantam as a new hematopoietic regulator, place it in an evolutionarily conserved signaling pathway, present one way in which it is regulated, and provide a mechanism through which it facilitates cellular proliferation in the hematopoietic niche.

  8. Polymicrobial bacterial or fungal infections: incidence, spectrum of infection, risk factors, and clinical outcomes from a large hematopoietic stem cell transplant center.

    PubMed

    Trifilio, S; Zhou, Z; Fong, J L; Zomas, A; Liu, D; Zhao, C; Zhang, J; Mehta, J

    2015-04-01

    Infections cause significant morbidity and mortality for patients who undergo hematopoietic stem cell transplantation (HSCT). Cancer patients who develop polymicrobial infection (PI) are at increased risk for poor clinical outcomes, yet very limited data have been published within the HSCT setting. An observational study of 901 stem cell transplant recipients was conducted at Northwestern Memorial Hospital to identify the incidence, risk factors and outcomes for HSCT recipients who develop infection(s) with multiple bacterial or fungal organisms. Among 901 HSCT recipients reviewed (675 autografts and 226 allografts), 237 patients (27%) had microbiologically documented microorganisms isolated, including 179 patients (76%) with monomicrobial infection and 59 patients (24%) with multiple microorganisms, of which 34 (14%) were classified as PI, and 25 (10%) as multiple distinct episodes of infection. The results show co-infection with multiple organisms during HSCT is relatively rare; however, these patients are at an increased risk for the development of acute graft-versus-host disease, delayed engraftment, and overall mortality. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. The release of soluble factors contributing to endothelial activation and damage after hematopoietic stem cell transplantation is not limited to the allogeneic setting and involves several pathogenic mechanisms.

    PubMed

    Palomo, Marta; Diaz-Ricart, Maribel; Carbo, Carla; Rovira, Montserrat; Fernandez-Aviles, Francesc; Escolar, Gines; Eissner, Günther; Holler, Ernst; Carreras, Enric

    2009-05-01

    This study evaluated the relative impact of the intensity of the conditioning regimen and the alloreactivity in the endothelial dysfunction occurring after allogeneic hematopoietic stem cell transplantation (allo-HSCT). It involved a comparative analysis of the effect of incubating human umbilical vein endothelial cells (ECs) with serum samples from patients receiving autologous HSCT (auto-HSCT) or unrelated donor allo-HSCT. In both groups, blood samples were collected through a central line before conditioning (Pre), before transplantation (day 0), and at days 7, 14, and 21 after transplantation. Changes in the expression of EC receptors and adhesion proteins, adhesion of leukocytes and platelets under flow, and signaling pathways were analyzed. Endothelial activation and damage were observed in both groups, but with differing patterns. All markers of endothelial dysfunction demonstrated a progressive increase from day Pre to day 14 in the auto-HSCT group and exhibited 2 peaks of maximal expression (at days 0 and 21) in the allo-HSCT group. Both treatments induced a proinflammatory state (ie, expression of adhesion receptors, leukocyte adhesion, and p38 MAPK activation) and cell proliferation (ie, morphology and activation of ErK42/44). Prothrombotic changes (ie, von Willebrand factor expression and platelet adhesion) predominated after allo-HSCT, and a proapoptotic tendency (ie, activation of SAPK/JNK) was seen only in this group. These findings indicate that endothelial activation and damage after HSCT also occur in the autologous setting and affect macrovascular ECs. After the initial damage induced by the conditioning regimen, other factors, such as granulocyte colony-stimulating factor (G-CSF) toxicity, engraftment, and alloreactivity, may contribute to the endothelial damage seen during HSCT. Further studies are needed to explore the association between this endothelial damage and the vascular complications associated with HSCT.

  10. Fibroblast growth factor 8 increases breast cancer cell growth by promoting cell cycle progression and by protecting against cell death

    SciTech Connect

    Nilsson, Emeli M.; Brokken, Leon J.S.; Haerkoenen, Pirkko L.

    2010-03-10

    Fibroblast growth factor 8 (FGF-8) is expressed in a large proportion of breast cancers, whereas its level in normal mammary gland epithelium is low. Previous studies have shown that FGF-8b stimulates breast cancer cell growth in vitro and in vivo. To explore the mechanisms by which FGF-8b promotes growth, we studied its effects on cell cycle regulatory proteins and signalling pathways in mouse S115 and human MCF-7 breast cancer cells. We also studied the effect of FGF-8b on cell survival. FGF-8b induced cell cycle progression and up-regulated particularly cyclin D1 mRNA and protein in S115 cells. Silencing cyclin D1 with siRNA inhibited most but not all FGF-8b-induced proliferation. Inhibition of the FGF-8b-activated ERK/MAPK pathway decreased FGF-8b-stimulated proliferation. Blocking the constitutively active PI3K/Akt and p38 MAPK pathways also lowered FGF-8b-induced cyclin D1 expression and proliferation. Corresponding results were obtained in MCF-7 cells. In S115 and MCF-7 mouse tumours, FGF-8b increased cyclin D1 and Ki67 levels. Moreover, FGF-8b opposed staurosporine-induced S115 cell death which effect was blocked by inhibiting the PI3K/Akt pathway but not the ERK/MAPK pathway. In conclusion, our results suggest that FGF-8b increases breast cancer cell growth both by stimulating cell cycle progression and by protecting against cell death.

  11. Modulation of growth and differentiation of eosinophils from human peripheral blood CD34+ cells by IL5 and other growth factors.

    PubMed

    Shalit, M; Sekhsaria, S; Malech, H L

    1995-01-01

    Small numbers of CD34+ primitive hematopoietic progenitors are found in normal human peripheral blood. These cells differentiate to myeloid or lymphoid lineage under the influence of different growth factors. We investigated the effects of IL5 and other growth factors on the production of eosinophils from peripheral blood CD34+ cells. CD34+ cells were enriched from normal donors by apheresis and positive selection using an affinity column and plated in agarose with different combinations of cytokines. At 14 days of growth a triple stain technique was used to identify eosinophil, monocyte, and neutrophil colonies. IL5 alone did not support colony growth from CD34+ cells. In contrast, GM-CSF and IL3 alone or together without added IL5 supported the generation of more than 50% pure eosinophil colonies. Addition of IL5 did not change the total number of colonies, but increased the fraction of pure eosinophil colonies to over 70%. Addition of G-CSF reduced the percentage of eosinophil colonies and increased the percentage of neutrophil colonies. Under the best conditions for eosinophil colony growth (IL3+GM-CSF+IL5), the addition of interferon-alpha or bacterial lipopolysaccharide inhibited colony growth by 51 and 58%, respectively. Addition of interferon-gamma, tumor necrosis factor-alpha, or dexamethasone had no effect on eosinophil colonies. Since IL5 alone did not support colony growth from CD34+ cells, we determined when IL5-responsive cells appeared in culture. Cells were grown initially with IL3 + GM-CSF in suspension, washed, and plated in agarose with IL5 alone. Only when progenitors were grown at least 3 days could IL5 serve as the single growth factor supporting pure eosinophil colony growth (47 colonies/10(4) cells plated at Day 3 and 134 colonies/10(4) cells at Day 7). We used neutralizing anti-IL5 antibodies to demonstrate that this late acting IL5 growth effect was specific, and that differentiation of eosinophils in the presence of IL3 + GM-CSF was IL5

  12. Intestinal smooth muscle cell maintenance by basic fibroblast growth factor.

    PubMed

    Lee, Min; Wu, Benjamin M; Stelzner, Matthias; Reichardt, Holger M; Dunn, James C Y

    2008-08-01

    Intestinal tissue engineering is a potential therapy for patients with short bowel syndrome. Tissue engineering scaffolds that promote smooth muscle cell proliferation and angiogenesis are essential toward the regeneration of functional smooth muscles for peristalsis and motility. Since basic fibroblast growth factor (bFGF) can stimulate smooth muscle proliferation and angiogenesis, the delivery of bFGF was employed to stimulate proliferation and survival of primary intestinal smooth muscle cells. Two methods of local bFGF delivery were examined: the incorporation of bFGF into the collagen coating and the encapsulation of bFGF into poly(D,L-lactic-co-glycolic acid) microspheres. Cell-seeded scaffolds were implanted into the omentum and were retrieved after 4, 14, and 28 days. The seeded cells proliferated from day 4 to day 14 in all implants; however, at 28 days, significantly higher density of implanted cells and blood vessels was observed, when 10 microg of bFGF was incorporated into the collagen coating of scaffolds as compared to scaffolds with either no bFGF or 1 microg of bFGF in collagen. Microsphere encapsulation of 1 microg of bFGF produced similar effects as 10 microg of bFGF mixed in collagen and was more effective than the delivery of 1 microg of bFGF by collagen incorporation. The majority of the implanted cells also expressed alpha-smooth muscle actin. Scaffolds coated with microsphere-encapsulated bFGF and seeded with smooth muscle cells may be a useful platform for the regeneration of the intestinal smooth muscle.

  13. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways

    PubMed Central

    Wee, Ping; Wang, Zhixiang

    2017-01-01

    The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly upregulated in cancers such as in non-small-cell lung cancer, metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Various mechanisms mediate the upregulation of EGFR activity, including common mutations and truncations to its extracellular domain, such as in the EGFRvIII truncations, as well as to its kinase domain, such as the L858R and T790M mutations, or the exon 19 truncation. These EGFR aberrations over-activate downstream pro-oncogenic signaling pathways, including the RAS-RAF-MEK-ERK MAPK and AKT-PI3K-mTOR pathways. These pathways then activate many biological outputs that are beneficial to cancer cell proliferation, including their chronic initiation and progression through the cell cycle. Here, we review the molecular mechanisms that regulate EGFR signal transduction, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression. We focus on the induction of CYCLIN D expression, CDK4/6 activation, and the repression of cyclin-dependent kinase inhibitor proteins (CDKi) by EGFR signaling pathways. We also discuss the successes and challenges of EGFR-targeted therapies, and the potential for their use in combination with CDK4/6 inhibitors. PMID:28513565

  14. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3

    PubMed Central

    Rimmelé, Pauline; Liang, Raymond; Bigarella, Carolina L; Kocabas, Fatih; Xie, Jingjing; Serasinghe, Madhavika N; Chipuk, Jerry; Sadek, Hesham; Zhang, Cheng Cheng; Ghaffari, Saghi

    2015-01-01

    Hematopoietic stem cells (HSC) are primarily dormant but have the potential to become highly active on demand to reconstitute blood. This requires a swift metabolic switch from glycolysis to mitochondrial oxidative phosphorylation. Maintenance of low levels of reactive oxygen species (ROS), a by-product of mitochondrial metabolism, is also necessary for sustaining HSC dormancy. Little is known about mechanisms that integrate energy metabolism with hematopoietic stem cell homeostasis. Here, we identify the transcription factor FOXO3 as a new regulator of metabolic adaptation of HSC. ROS are elevated in Foxo3−/− HSC that are defective in their activity. We show that Foxo3−/− HSC are impaired in mitochondrial metabolism independent of ROS levels. These defects are associated with altered expression of mitochondrial/metabolic genes in Foxo3−/− hematopoietic stem and progenitor cells (HSPC). We further show that defects of Foxo3−/− HSC long-term repopulation activity are independent of ROS or mTOR signaling. Our results point to FOXO3 as a potential node that couples mitochondrial metabolism with HSC homeostasis. These findings have critical implications for mechanisms that promote malignant transformation and aging of blood stem and progenitor cells. PMID:26209246

  15. End stage renal disease serum contains a specific renal cell growth factor

    SciTech Connect

    Klotz, L.H.; Kulkarni, C.; Mills, G. )

    1991-01-01

    End stage renal disease (ESRD) kidneys display abnormal growth characterized by a continuum of cystic disease, adenoma and carcinoma. This study evaluates the hypothesis that serum of patients with ESRD contains increased amounts of a growth factor which specifically induces proliferation of renal cells. ESRD sera compared to sera from normal controls induced a two to three-fold increase in the proliferative rate of renal cell carcinoma cell lines and normal kidney explants compared to cell lines from other sites. The increased proliferative activity of ESRD sera on renal cells was paralleled by an increase in cytosolic free calcium. The growth factor activity was encoded by a polypeptide of between 15 and 30 kd. The activity of ESRD sera on renal cells was not mimicked or inhibited by epidermal growth factor, basic fibroblast growth factor and platelet derived growth factor indicating that the renal cell specific growth factor activity in ESRD is different from these factors.

  16. Placental growth factor is a survival factor for tumor endothelial cells and macrophages.

    PubMed

    Adini, Avner; Kornaga, Tad; Firoozbakht, Farshid; Benjamin, Laura E

    2002-05-15

    The vascular endothelial growth factor (VEGF)-related factor, placental growth factor (PlGF),has been shown recently to play an important role in pathological VEGF-driven angiogenesis. In this study, we examine the effects of mPlGF/PlGF-2 overexpression in tumors grown from glioma cells containing a tetracycline-regulated mPlGF cDNA. Overexpression of mPlGF leads to increased tumor growth and vascular survival. When tetracycline is used to abruptly withdraw mPlGF overexpression, we see increased apoptosis in both vascular cells and macrophages. In addition, PlGF-2 induces survival gene expression and inhibits apoptosis in vitro. Thus, we propose that PlGF-2 contributes to tumor angiogenesis by providing increased survival function to endothelial cells and macrophages.

  17. Increased transduction efficiency of primary hematopoietic cells by physical colocalization of retrovirus and target cells.

    PubMed

    Hutchings, M; Moriwaki, K; Dilloo, D; Hoffmann, T; Kimbrough, S; Johnsen, H E; Brenner, M K; Heslop, H E

    1998-06-01

    Efficient gene transfer into hematopoietic stem cells offers a number of potential therapeutic applications. However, the relatively low titer of retroviral supernatants and the requirement for cell division to ensure integration have meant that transduction efficiency has been low. We have modified a flowthrough approach to cell transduction and have been able consistently to increase gene transfer efficiency into human hematopoietic progenitor cells. We transduced CD34 cells with retroviral vectors encoding a truncated nerve growth factor receptor (NGFR) or neo. Retroviral supernatant was pulled through 0.2-micron polycarbonated membranes, followed by placement of cells on the filter. In the absence of cytokines, the transduction efficiency of CD34 cells with a NGFR vector was increased 3-11-fold over that obtained at an identical MOI in liquid culture to produce 11%-44% transduction. Furthermore, both Thy1+ and Thy1- subsets in a total CD34 population were transduced with similar efficiency, and transduction with a neo vector, as measured by G418 resistance in clonogenic assays, increased 1.5-5-fold. The mechanism by which gene transfer is improved may reflect colocalization of cells and retrovirus. Costaining of cells transduced on the filter with an NGFR retrovirus with both an NGFR antibody and a gp70 antibody that recognizes viral coat protein revealed high-level coexpression. The levels of in vitro gene transfer we obtain are equivalent to those observed when CD34 cells are cocultured in liquid culture with cytokines. However, culture with cytokines may commit CD34 cells to differentiation and has produced disappointingly low levels of subsequent in vivo gene transfer. Gene marking studies using distinguishable retroviral vectors will provide a means of learning whether the effects of flowthrough transduction genuinely enhance the efficiency of gene transfer to human marrow-repopulating cells.

  18. Foxo-mediated Bim transcription is dispensable for the apoptosis of hematopoietic cells that is mediated by this BH3-only protein.

    PubMed

    Herold, Marco J; Rohrbeck, Leona; Lang, Mathias J; Grumont, Raelene; Gerondakis, Steve; Tai, Lin; Bouillet, Philippe; Kaufmann, Thomas; Strasser, Andreas

    2013-11-01

    The BH3-only protein Bim is a critical initiator of apoptosis in hematopoietic cells. Bim is upregulated in response to growth factor withdrawal and in vitro studies have implicated the transcription factor Foxo3a as a critical inducer. To test the importance of this regulation in vivo, we generated mice with mutated Foxo-binding sites within the Bim promoters (Bim(ΔFoxo/ΔFoxo)). Contrary to Bim-deficient mice, Bim(ΔFoxo/ΔFoxo) mice had a normal hematopoietic system. Moreover, cytokine-dependent haematopoietic cells from Bim(ΔFoxo/ΔFoxo) and wt mice died at similar rates. These results indicate that regulation of Bim by Foxo transcription factors is not critical for the killing of hematopoietic cells.

  19. Hepatocyte Growth Factor/Scatter Factor Released during Peritonitis Is Active on Mesothelial Cells

    PubMed Central

    Rampino, Teresa; Cancarini, Giovanni; Gregorini, Marilena; Guallini, Paola; Maggio, Milena; Ranghino, Andrea; Soccio, Grazia; Dal Canton, Antonio

    2001-01-01

    Peritonitis causes mesothelial detachment that may result in persistent peritoneal denudation and fibrosis. We investigated whether hepatocyte growth factor (HGF), a scatter factor that induces detachment from substrate and fibroblastic transformation of several cell types, is produced during peritonitis and is active on mesothelial cells. We studied 18 patients on peritoneal dialysis, 9 uncomplicated, 9 with peritonitis. HGF was measured in serum, peritoneal fluid, and supernatant of peripheral blood mononuclear cells and peritoneal mononuclear cells. Primary culture of human peritoneal mesothelial cells and the human mesothelial cell line MeT-5A were conditioned with recombinant HGF, serum, and peritoneal fluid. HGF levels were significantly higher in serum and peritoneal fluid of peritonitic than uncomplicated patients. Mononuclear cells of peritonitic patients produced more HGF than cells of uncomplicated patients. Recombinant HGF, serum, and peritoneal fluid of peritonitic patients caused mesothelial cell growth, detachment, transformation from epithelial to fibroblast-like shape, overexpression of vimentin, and synthesis of type I and III collagen. In conclusion, HGF released during peritonitis causes a change in mesothelial cell phenotype and function. HGF may affect the healing process facilitating repair through mesothelial cell growth, but may contribute to peritoneal fibrosis inducing cell detachment with mesothelial denudation and collagen synthesis. PMID:11583955

  20. Nerve growth factor is involved in the supportive effect by bone marrow--derived stromal cells of the factor-dependent human cell line UT-7.

    PubMed

    Auffray, I; Chevalier, S; Froger, J; Izac, B; Vainchenker, W; Gascan, H; Coulombel, L

    1996-09-01

    We previously demonstrated that murine MS-5 and SI/SI4 cell lines induce the proliferation of human factor-dependent UT-7 cells in the absence of normally required human cytokines and also stimulate the differentiation of CD34+/CD38-LTC-ICs. We report in this study that the effect of MS-5 cells on UT-7 cells can be completely explained by the synergistic action of nerve growth factor (NGF) and stem cell factor (SCF) produced by these murine stromal cells. Purified murine NGF was able to support short-term clone formation and long-term growth of UT-7 cells in suspension cultures as efficiently as rhu-granulocyte-macrophage colony-stimulating factor. NGF action was mediated through the TrkA receptor, in which messenger RNA (mRNA) was easily detected in UT-7 cells by Northern blot. MS-5 cells strongly expressed NGF mRNA in Northern blot, and direct implication of MS-5-derived NGF in the induction of UT-7 cells proliferation was demonstrated in inhibition assays with an anti-NGF monoclonal antibody (MoAb) that neutralized by 84% +/- 4.1% (n = 5) UT-7 clone formation. However, NGF did not act alone, and several arguments demonstrated the synergistic action of MS-5-derived SCF: (1) an anti-c-kit partially inhibited UT-7 cells clone formation in coculture assays, (2) SCF and NGF synergized in an H3-TdR incorporation assay, and (3) the stimulatory effect of 10x-concentrated MS-5 supernatant was completely inhibited by an anti-c-kit but not by an anti-NGF, and levels of soluble NGF (1.2 ng/mL) detected by enzyme-linked immunosorbent assay in 10x supernatant of MS-5 cells cultures were below the biologically active concentrations. In contrast, although MS-5 cells also promoted the differentiation of very primitive CD34+/CD38- human stem cells both in colony assays and long-term cultures, we could not incriminate MS-5-derived NGF in the observed effect: an anti-NGF MoAb did not inhibit the synergistic effect of MS-5 cells in colony assays or long-term cultures nor did soluble

  1. ETS Transcription Factor ETV2/ER71/Etsrp in Hematopoietic and Vascular Development.

    PubMed

    Sumanas, S; Choi, K

    2016-01-01

    Effective establishment of the hematopoietic and vascular systems is prerequisite for successful embryogenesis. The ETS transcription factor Etv2 has proven to be essential for hematopoietic and vascular development. Etv2 expression marks the onset of the hematopoietic and vascular development and its deficiency leads to an absolute block in hematopoietic and vascular development. Etv2 is transiently expressed during development and is mainly expressed in testis in adults. Consistent with its expression pattern, Etv2 is transiently required for the generation of the optimal levels of the hemangiogenic cell population. Deletion of this gene after the hemangiogenic progenitor formation leads to normal hematopoietic and vascular development. Mechanistically, ETV2 induces the hemangiogenic program by activating blood and endothelial cell lineage specifying genes and enhancing VEGF signaling. Moreover, ETV2 establishes an ETS hierarchy by directly activating other Ets genes, which in the face of transient Etv2 expression, presumably maintain blood and endothelial cell program initiated by ETV2 through an ETS switching mechanism. Current studies suggest that the hemangiogenic progenitor population is exclusively sensitive to ETV2-dependent FLK1 signaling. Any perturbation in the ETV2, VEGF, and FLK1 balance causing insufficient hemangiogenic progenitor cell generation would lead to defects in hematopoietic and endothelial cell development.

  2. Epigenetic regulation of hematopoietic stem cell aging

    SciTech Connect

    Beerman, Isabel

    2014-12-10

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.

  3. Human Term Placenta as a Source of Hematopoietic Cells

    PubMed Central

    Serikov, Vladimir; Hounshell, Catherine; Larkin, Sandra; Green, William; Ikeda, Hirokazu; Walters, Mark C.

    2012-01-01

    The main barrier to a broader clinical application of umbilical cord blood (UCB) transplantation is its limiting cellular content. Thus, the discovery of hematopoietic progenitor cells in murine placental tissue led us investigate whether the human placenta contains hematopoietic cells, sites of hematopoiesis, and to develop a procedure of processing and storing placental hematopoietic cells for transplantation. Here we show that the human placenta contains large numbers of CD34-expressing hematopoietic cells, with the potential to provide a cellular yield several-fold greater than that of a typical UCB harvest. Cells from fresh or cryopreserved placental tissue generated erythroid and myeloid colonies in culture, and also produced lymphoid cells after transplantation in immunodeficient mice. These results suggest that human placenta could become an important new source of hematopoietic cells for allogeneic transplantation. PMID:19429852

  4. Density-dependent regulation of growth of BSC-1 cells in cell culture: control of growth by serum factors.

    PubMed Central

    Holley, R W; Armour, R; Baldwin, J H; Brown, K D; Yeh, Y C

    1977-01-01

    BSC-1 cells grow slowly, to high cell density, in medium with 0.1% calf serum. An increase in the serum concentration increases both the growth rate of the cells and the final cell density. The serum can be replaced to some extent by epidermal growth factor (EGF). Initiation of DNA synthesis in BSC-1 cells that have spread into a "wound" in a crowded cell layer requires the addition of a trace of serum or EGF, if the cells have previously been deprived of serum. The binding of 125I-labeled EGF to low-density and high-density BSC-1 cells has been studied. Binding is faster to low-density cells. Cells at low cell density also bind much more EGF per cell than cells at high cell density. The fraction of bound 125I-labeled EGF that is present on the cell surface as intact EGF is larger at low than at high cell density. The results indicate that the number of available EGF receptors per cell decreases drastically as the cell density increases. It is suggested that a decrease in the number of available EGF receptor sites per cell, and the accompanying decrease in sensitivity of the cells to EGF, contributes to density-dependent regulation of growth of these cells. Images PMID:303774

  5. Analysis of the hematopoietic stem cell niche.

    PubMed

    Lo Celso, Cristina; Klein, Rachael J; Scadden, David T

    2007-11-01

    Hematopoietic stem cells (HSCs) continuously replenish all blood cell lineages not only to maintain the normal rapid turnover of differentiated cells but also to respond to injury and stress. Cell-extrinsic mechanisms are critical determinants of the fine balance between HSC self-renewal and differentiation. The bone marrow microenvironment has emerged as a new area of intense study to identify which of its many components constitute the HSC niche and regulate HSC fate. While HSCs have been isolated, characterized and used in clinical practice for many years thanks to the development of very specific assays and technology (i.e., bone marrow transplants and fluorescence activated cell sorting), study of the HSC niche has evolved by combining experimental designs developed in different fields. In this unit we describe a collection of protocols spanning a wide range of techniques that can help every researcher tackling questions regarding the nature of the HSC niche. Copyright 2007 by John Wiley & Sons, Inc.

  6. Vascular endothelial growth factor stimulates osteoblastic differentiation of cultured human periosteal-derived cells expressing vascular endothelial growth factor receptors.

    PubMed

    Hah, Young-Sool; Jun, Jin-Su; Lee, Seong-Gyun; Park, Bong-Wook; Kim, Deok Ryong; Kim, Uk-Kyu; Kim, Jong-Ryoul; Byun, June-Ho

    2011-02-01

    Angiogenesis plays an important role in bone development and postnatal bone fracture repair. Vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptors (VEGFRs) are primarily involved in angiogenesis. This study investigated the expression of VEGF isoforms, VEGFR-1, and VEGFR-2 during the osteoblastic differentiation of cultured human periosteal-derived cells. In addition, the effect of exogenous VEGF on the osteoblastic differentiation of cultured human periosteal-derived cells was also examined. The expression of the VEGF isoforms (VEGF(121), VEGF(165), VEGF(189), and VEGF(206)), VEGFR-1, and VEGFR-2 was observed in the periosteal-derived cells. Administration of KRN633, a VEGFR-1 and VEGFR-2 inhibitor, decreased the alkaline phosphatase (ALP) activity during the osteoblastic differentiation of cultured human periosteal-derived cells. However, the administration of VEGFR2 Kinase Inhibitor IV, a VEGFR-2 inhibitor, did not affect the ALP activity. The addition of recombinant human VEGF(165) elevated the ALP activity and increased the calcium content in the periosteal-derived cells. Treating the periosteal-derived cells with recombinant human VEGF(165) resulted in an increase in Runx2 transactivation in the periosteal-derived cells. These results suggest that exogenous VEGF stimulates the osteoblastic differentiation of cultured human periosteal-derived cells and VEGF might act as an autocrine growth factor for the osteoblastic differentiation of cultured human periosteal-derived cells.

  7. Hematopoietic stem cell transplantation for osteopetrosis.

    PubMed

    Steward, Colin G

    2010-02-01

    Osteopetrosis is the generic name for a group of diseases caused by deficient formation or function of osteoclasts, inherited in either autosomal recessive or dominant fashion. Osteopetrosis varies in severity from a disease that may kill infants to an incidental radiological finding in adults. It is increasingly clear that prognosis is governed by which gene is affected, making detailed elucidation of the cause of the disease a critical component of optimal care, including the decision on whether hematopoietic stem cell transplantation is appropriate. This article reviews the characteristics and management of osteopetrosis.

  8. Hematopoietic Stem Cell Expansion and Gene Therapy

    PubMed Central

    Watts, Korashon Lynn; Adair, Jennifer; Kiem, Hans-Peter

    2012-01-01

    Hematopoietic stem cell (HSC) gene therapy remains a highly attractive treatment option for many disorders including hematologic conditions, immunodeficiencies including HIV/AIDS, and other genetic disorders like lysosomal storage diseases, among others. In this review, we discuss the successes, side effects, and limitations of current gene therapy protocols. In addition, we describe the opportunities presented by implementing ex vivo expansion of gene-modified HSCs, as well as summarize the most promising ex vivo expansion techniques currently available. We conclude by discussing how some of the current limitations of HSC gene therapy could be overcome by combining novel HSC expansion strategies with gene therapy. PMID:21999373

  9. Endothelial cells mitigate DNA damage and promote the regeneration of hematopoietic stem cells after radiation injury

    PubMed Central

    Zachman, Derek K.; Leon, Ronald P.; Das, Prerna; Goldman, Devorah C.; Hamlin, Kimberly L.; Guha, Chandan; Fleming, William H.

    2014-01-01

    Endothelial cells (ECs) are an essential component of the hematopoietic microenvironment, which maintains and regulates hematopoietic stem cells (HSCs). Although ECs can support the regeneration of otherwise lethally-irradiated HSCs, the mechanisms are not well understood. To further understand this phenomenon, we studied HSC regeneration from irradiated bone marrow using co-culture with human aortic endothelial cells (HAECs). Co-culture with HAECs induced a 24-fold expansion of long-term HSCs (CD150+, lineagelo, Sca-1+, c-Kit+; CD150+LSK cells) in vitro. These cells gave rise to functional hematopoietic stem and progenitor cells (HSPCs) with colony-forming activity, multilineage reconstitution and serial transplantation potential. Furthermore, HAECs significantly reduced DNA damage in irradiated LSK cells within 24 hours. Remarkably, we were able to delay the exposure of irradiated bone marrow to the regenerative, HAEC-derived signals for up to 48 hours and still rescue functional HSCs. G-CSF is the gold standard for promoting hematopoietic regeneration in vivo. However, when compared to HAECs, in vitro G-CSF treatment promoted lineage differentiation and regenerated 5-fold fewer CD150+LSK cells. Together, our results show that HAECs are powerful, direct mitigators of HSC injury and DNA damage. Identification of the HAEC-derived factors that rescue HSCs may lead to improved therapies for hematopoietic regeneration after radiation injury. PMID:23939266

  10. Incidence, risk factors, and long-term outcomes of sclerotic graft-versus-host disease after allogeneic hematopoietic cell transplantation.

    PubMed

    Uhm, Jieun; Hamad, Nada; Shin, Elizabeth M; Michelis, Fotios V; Shanavas, Mohamed; Gupta, Vikas; Kuruvilla, John; Lipton, Jeffrey H; Messner, Hans A; Seftel, Matthew; Kim, Dennis Dong Hwan

    2014-11-01

    Sclerotic chronic graft-versus-host disease (sclGVHD) is associated with significant morbidity and a poor quality of life. We reviewed 502 patients diagnosed with chronic GVHD and analyzed the incidence and risk factors of sclGVHD and long-term outcomes and immunosuppressive therapy (IST) cessation in patients with sclGVHD. With a median onset at 18 months the cumulative incidence of sclGVHD was estimated at 22.6% at 5 years (95% confidence interval, 18.6% to 26.8%). Univariate and multivariate analysis identified 2 risk factors for sclGVHD: non-T cell depletion (hazard ratio [HR] 9.09, P < .001) and peripheral blood stem cell (HR 3.87, P < .001). Overall survival (OS) at 5 years was significantly better in the sclGVHD group (88.1%) compared with the non-sclGVHD group (62.7%; P < .001), as were nonrelapse mortality (7.3% versus 21.5% at 5 years) and relapse rates (9.1% versus 19.3% at 5 years). There was no difference in the rate of IST cessation at 5 years (44.8% versus 49.9%, P = .312), but there was a trend of longer IST duration in the sclGVHD group compared with the non-sclGVHD group (median 71.6 months versus 62.9 months). In conclusion, T cell depletion and graft source affect the risk of sclGVHD. SclGVHD did not adversely affect long-term outcomes or IST duration.

  11. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival.

    PubMed

    Tiong, Kai Hung; Tan, Boon Shing; Choo, Heng Lungh; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Tan, Si Hoey; Khor, Nelson Tze Woei; Wong, Shew Fung; See, Sze-Jia; Tan, Yuen-Fen; Rosli, Rozita; Cheong, Soon-Keng; Leong, Chee-Onn

    2016-09-06

    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.

  12. Epidermal Growth Factor Receptor Cell Survival Signaling Requires Phosphatidylcholine Biosynthesis

    PubMed Central

    Crook, Matt; Upadhyay, Awani; Ido, Liyana J.; Hanna-Rose, Wendy

    2016-01-01

    Identification of pro-cell survival signaling pathways has implications for cancer, cardiovascular, and neurodegenerative disease. We show that the Caenorhabditis elegans epidermal growth factor receptor LET-23 (LET-23 EGFR) has a prosurvival function in counteracting excitotoxicity, and we identify novel molecular players required for this prosurvival signaling. uv1 sensory cells in the C. elegans uterus undergo excitotoxic death in response to activation of the OSM-9/OCR-4 TRPV channel by the endogenous agonist nicotinamide. Activation of LET-23 EGFR can effectively prevent this excitotoxic death. We investigate the roles of signaling pathways known to act downstream of LET-23 EGFR in C. elegans and find that the LET-60 Ras/MAPK pathway, but not the IP3 receptor pathway, is required for efficient LET-23 EGFR activity in its prosurvival function. However, activation of LET-60 Ras/MAPK pathway does not appear to be sufficient to fully mimic LET-23 EGFR activity. We screen for genes that are required for EGFR prosurvival function and uncover a role for phosphatidylcholine biosynthetic enzymes in EGFR prosurvival function. Finally, we show that exogenous application of phosphatidylcholine is sufficient to prevent some deaths in this excitotoxicity model. Our work implicates regulation of lipid synthesis downstream of EGFR in cell survival and death decisions. PMID:27605519

  13. Differential effects of hepatocyte growth factor and keratinocyte growth factor on corneal epithelial cell cycle protein expression, cell survival, and growth

    PubMed Central

    Chandrasekher, Gudiseva; Pothula, Swetha; Bazan, Haydee.E.P.

    2014-01-01

    Purpose Hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) are secreted in the cornea in response to injury. In this study, we investigated the HGF- and KGF-mediated effect on the expression of cell cycle and apoptosis controlling proteins, cell survival, and growth in the corneal epithelium to better understand the possible role of their signaling mechanisms in repairing epithelial injuries. Methods The cell survival capability of HGF and KGF in epithelial primary cultures was evaluated by using a staurosporine-induced apoptosis model. Apoptosis was quantified with image analysis following nuclear staining with Hoechst fluorescent dye and DNA laddering. Western immunoblotting was used to study the effect of growth factors on the expression of cell cycle- and apoptosis-regulating proteins. Results HGF and KGF protected cells from apoptosis for a short duration (10 h), but only KGF exhibited cell survival capability and maintained cell growth for a longer period (24 h). The onset of apoptosis was accompanied by a significant increase in cell cycle inhibitor p27kip. HGF and KGF suppressed p27kip levels in the apoptosis environment; however, KGF- but not HGF-dependent downregulation in p27kip expression was sustained for a longer duration. Inhibition of phosphatidylinositol 3-kinase/Akt activation blocked HGF- and KGF-mediated control of p27kip expression. Further, when compared to HGF, the presence of KGF produced significant downregulation of p53 and poly(adenosine diphosphate-ribose) polymerase, the key proteins involved in apoptosis and blocked the degradation of G1/S cell cycle progression checkpoint protein retinoblastoma. HGF and KGF upregulated the levels of p21cip, cyclins A, D, and E and cyclin-dependent kinases (CDK2 and CDK4) as well, but the KGF-mediated effect on the expression of these molecules lasted longer. Conclusions Sustained effect of KGF on cell survival and proliferation could be attributed to its ability to inhibit p53

  14. Differential effects of hepatocyte growth factor and keratinocyte growth factor on corneal epithelial cell cycle protein expression, cell survival, and growth.

    PubMed

    Chandrasekher, Gudiseva; Pothula, Swetha; Maharaj, Glenn; Bazan, Haydee E P

    2014-01-01

    Hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) are secreted in the cornea in response to injury. In this study, we investigated the HGF- and KGF-mediated effect on the expression of cell cycle and apoptosis controlling proteins, cell survival, and growth in the corneal epithelium to better understand the possible role of their signaling mechanisms in repairing epithelial injuries. The cell survival capability of HGF and KGF in epithelial primary cultures was evaluated by using a staurosporine-induced apoptosis model. Apoptosis was quantified with image analysis following nuclear staining with Hoechst fluorescent dye and DNA laddering. Western immunoblotting was used to study the effect of growth factors on the expression of cell cycle- and apoptosis-regulating proteins. HGF and KGF protected cells from apoptosis for a short duration (10 h), but only KGF exhibited cell survival capability and maintained cell growth for a longer period (24 h). The onset of apoptosis was accompanied by a significant increase in cell cycle inhibitor p27(kip). HGF and KGF suppressed p27(kip) levels in the apoptosis environment; however, KGF- but not HGF-dependent downregulation in p27(kip) expression was sustained for a longer duration. Inhibition of phosphatidylinositol 3-kinase/Akt activation blocked HGF- and KGF-mediated control of p27(kip) expression. Further, when compared to HGF, the presence of KGF produced significant downregulation of p53 and poly(adenosine diphosphate-ribose) polymerase, the key proteins involved in apoptosis and blocked the degradation of G1/S cell cycle progression checkpoint protein retinoblastoma. HGF and KGF upregulated the levels of p21(cip), cyclins A, D, and E and cyclin-dependent kinases (CDK2 and CDK4) as well, but the KGF-mediated effect on the expression of these molecules lasted longer. Sustained effect of KGF on cell survival and proliferation could be attributed to its ability to inhibit p53, retinoblastoma, caspases, and p

  15. Effect of transforming growth factor-β1 on human intrahepatic cholangiocarcinoma cell growth

    PubMed Central

    Shimizu, Tetsuya; Yokomuro, Shigeki; Mizuguchi, Yoshiaki; Kawahigashi, Yutaka; Arima, Yasuo; Taniai, Nobuhiko; Mamada, Yasuhiro; Yoshida, Hiroshi; Akimaru, Koho; Tajiri, Takashi

    2006-01-01

    AIM: To elucidate the biological effects of transforming growth factor-β1 (TGF-β1) on intrahepatic cholan-giocarcinoma (ICC). METHODS: We investigated the effects of TGF-β1 on human ICC cell lines (HuCCT1, MEC, and HuH-28) by monitoring the influence of TGF-β1 on tumor growth and interleukin-6 (IL-6) expression in ICC cells. RESULTS: All three human ICC cell lines produced TGF-β1 and demonstrated accelerated growth in the presence of TGF-β1 with no apoptotic effect. Studies on HuCCT1 revealed a TGF-β1-induced stimulation of the expression of TGF-β1, as well as a decrease in TGF-β1 mRNA expression induced by neutralizing anti-TGF-β1 antibody. These results indicate that TGF-β1 stimulates the production and function of TGF-β1 in an autocrine fashion. Further, IL-6 secretion was observed in all three cell lines and exhibited an inhibitory response to neutralizing anti-TGF-β1 antibody. Experiments using HuCCT1 revealed a TGF-β1-induced acceleration of IL-6 protein expression and mRNA levels. These findings demonstrate a functional interaction between TGF-β1 and IL-6. All three cell lines proliferated in the presence of IL-6. In contrast, TGF-β1 induced no growth effect in HuCCT1 in the presence of small interfering RNA against a specific cell surface receptor of IL-6 and signal transducer and activator of transcription-3. CONCLUSION: ICC cells produce TGF-β1 and confer a TGF-β1-induced growth effect in an autocrine fashion. TGF-β1 activates IL-6 production, and the functional interaction between TGF-β1 and IL-6 contributes to ICC cell growth by TGF-β1. PMID:17072955

  16. The hepatocyte growth factor (HGF)-MET receptor tyrosine kinase signaling pathway: Diverse roles in modulating immune cell functions.

    PubMed

    Ilangumaran, Subburaj; Villalobos-Hernandez, Alberto; Bobbala, Diwakar; Ramanathan, Sheela

    2016-06-01

    Hepatocyte growth factor (HGF) signaling via the MET receptor is essential for embryonic development and tissue repair. On the other hand, deregulated MET signaling promotes tumor progression in diverse types of cancers. Even though oncogenic MET signaling remains the major research focus, the HGF-MET axis has also been implicated in diverse aspects of immune cell development and functions. In the presence of other hematopoietic growth factors, HGF promotes the development of erythroid, myeloid and lymphoid lineage cells and thrombocytes. In monocytes and macrophages responding to inflammatory stimuli, induction of autocrine HGF-MET signaling can contribute to tissue repair via stimulating anti-inflammatory cytokine production. HGF-MET signaling can also modulate adaptive immune response by facilitating the migration of Langerhans cells and dendritic cells to draining lymph nodes. However, MET signaling has also been shown to induce tolerogenic dendritic cells in mouse models of graft-versus-host disease and experimental autoimmune encephalomyelitis. HGF-MET axis is also implicated in promoting thymopoiesis and the survival and migration of B lymphocytes. Recent studies have shown that MET signaling induces cardiotropism in activated T lymphocytes. Further understanding of the HGF-MET axis in the immune system would allow its therapeutic manipulation to improve immune cell reconstitution, restore immune homeostasis and to treat immuno-inflammatory diseases.

  17. Gs signaling in osteoblasts and hematopoietic stem cells.

    PubMed

    Kronenberg, Henry M

    2010-03-01

    The heterotrimeric G protein Gs is a major mediator of the actions of several G protein-coupled receptors that target cells of the osteoblast lineage. For this reason, we generated chimeric mice with normal host cells and cells derived from embryonic stem cells missing the gene encoding the alpha subunit of Gs. While the mutant cells contributed to cortical osteoblasts and to hematopoietic cells in the liver, the marrow space contained few if any osteoblasts or hematopoietic cells missing Gs. Subsequent studies using the Cre-lox approach to delete Gsalpha from early cells of the osteoblast lineage and from hematopoietic stem cells were performed. These studies demonstrated the crucial roles of Gsalpha in osteoblastic cells in regulating the differentiation of osteoblasts and in supporting B-cell development as well as the essential role for Gsalpha in hematopoietic stem cells in allowing the homing of these cells to the marrow.

  18. Parainfluenza virus type 3 Ab in allogeneic hematopoietic cell transplant recipients: factors influencing post-transplant Ab titers and associated outcomes.

    PubMed

    Seo, S; Xie, H; Karron, R A; Thumar, B; Englund, J A; Leisenring, W M; Stevens-Ayers, T; Boeckh, M; Campbell, A P

    2014-09-01

    Parainfluenza virus type 3 (PIV-3) can cause severe respiratory illness among hematopoietic cell transplantation (HCT) recipients. Factors associated with PIV-3-specific Ab level, and the association between PIV-3 Ab levels and clinical outcomes in HCT recipients who acquire PIV-3 infection, are unknown. We evaluated PIV-3-specific hemagglutination inhibition Ab levels and clinical outcomes among 172 patients with PIV-3 infection following HCT. In a multivariable linear regression model, high post-transplantation Ab levels were independently associated with higher pre-transplantation recipient titer (mean difference 0.38 (95% confidence interval (CI), 0.26, 0.50), P<0.001). Significant associations between pre-HCT Ab titers in both patients and donors and occurrence of lower respiratory tract disease (LRD) after HCT were not observed. In conclusion, low pre-transplantation titers are associated with low Ab levels after HCT. The relationship between PIV-3 Ab levels and outcomes remain uncertain. Further study is needed to prospectively evaluate the dynamics of PIV-3-specific Ab responses and the relative contribution of PIV-3-specific Ab to protection from infection acquisition and progression to LRD.

  19. Analysis of the variable factors influencing tacrolimus blood concentration during the switch from continuous intravenous infusion to oral administration after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Suetsugu, Kimitaka; Ikesue, Hiroaki; Miyamoto, Toshihiro; Shiratsuchi, Motoaki; Yamamoto-Taguchi, Nanae; Tsuchiya, Yuichi; Matsukawa, Kumi; Uchida, Mayako; Watanabe, Hiroyuki; Akashi, Koichi; Masuda, Satohiro

    2017-03-01

    The aim of this retrospective study was to identify variable factors affecting tacrolimus blood concentration during the switch from continuous intravenous infusion to twice-daily oral administration in allogeneic hematopoietic stem cell transplant recipients (n = 73). The blood concentration/dose ratio of tacrolimus immediately before the change from continuous infusion (C/Div) was compared with that between 3 and 5 days after the change to oral administration (C/Dpo). Median (C/Dpo)/(C/Div) was 0.21 (range 0.04-0.58). Multiple regression analysis showed that concomitant use of oral itraconazole or voriconazole significantly increased the (C/Dpo)/(C/Div) of tacrolimus (p = 0.002), probably owing to the inhibition of enterohepatic cytochrome P450 3A4. In addition, 5 of 18 (28%) patients who had the lowest quartile (C/Dpo)/(C/Div) values developed acute graft-versus-host-disease (GVHD), which was significantly higher than in others [5 of 55 (9%) patients, p = 0.045]. Although the switch from intravenous to oral administration at a ratio of 1:5 appeared to be appropriate, a lower conversion ratio was suitable in patients taking oral itraconazole or voriconazole. In patients whose blood concentration decreases after the switch, the development of GVHD should be monitored and tacrolimus dosage should be readjusted to maintain an appropriate blood concentration.

  20. Effects of Hematopoietic Stem Cell Age on CML Disease Progression

    DTIC Science & Technology

    2006-03-01

    leukemias . In contrast, recipients of old, transduced bone marrow developed leukemia with infrequent lymphoid involvement. Ongoing studies are aimed at...identifying the leukemia stem cells in the young and old bone marrow. 15. SUBJECT TERMS Hematopoietic Stem Cells, Chronic Myeloid Leukemia ...8 4 INTRODUCTION Chronic myeloid leukemia (CML) is a clonal hematopoietic malignancy characterized by myeloid hyperplasia

  1. [Aspergillus galactomannan detection in allogenic hematopoietic cell transplantation].

    PubMed

    Rovira Tarrats, Montserrat; Puig de la Bellacasa, Jorge

    2003-09-01

    Invasive aspergillosis has become the leading cause of death after allogeneic hematopoietic stem cell transplantation. This is partially due to the lack of a prompt diagnosis. Recently the detection of Aspergillus galactomannan antigen by means an ELISA technique in serum has been described. The objective of this study was to validate its usefulness in the allogeneic hematopoietic stem cell transplantation setting.

  2. GSTA1 Genetic Variants and Conditioning Regimen: Missing Key Factors in Dosing Guidelines of Busulfan in Pediatric Hematopoietic Stem Cell Transplantation.

    PubMed

    Nava, Tiago; Rezgui, Mohamed A; Uppugunduri, Chakradhara R S; Curtis, Patricia Huezo-Diaz; Théoret, Yves; Duval, Michel; Daudt, Liane E; Ansari, Marc; Krajinovic, Maja; Bittencourt, Henrique

    2017-08-12

    Busulfan (Bu) is a key component of conditioning regimens used before hematopoietic stem cell transplantation (SCT) in children. Different predictive methods have been used to calculate the first dose of Bu. To evaluate the necessity of further improvements, we retrospectively analyzed the currently available weight- and age-based guidelines to calculate the first doses in 101 children who underwent allogenic SCT in CHU Sainte-Justine, Montreal, after an intravenous Bu-containing conditioning regimen according to genetic and clinical factors. The measured areas under the curve (AUCs) were within target (900 to 1500 µM/min) in 38.7% of patients after the administration of the first dose calculated based on age and weight, as locally recommended. GSTA1 diplotypes linked to poor Bu metabolism (G3) and fludarabine-containing regimens were the only factors associated with AUC within target (OR, 4.7 [95% CI, 1.1 to 19.8, P = .04]; and OR, 9.9 [95% CI, 1.6 to 61.7, P = .01], respectively). From the 11 methods selected for dose calculation, the percentage of AUCs within the target varied between 16% and 74%. In some models G3 was associated with AUCs within the therapeutic and the toxic range, whereas rapid metabolizers (G1) were correlated with subtherapeutic AUCs when different methods were used. These associations were confirmed by clearance-prediction analysis, in which GSTA1 diplotypes consistently influenced the prediction errors of the methods. These findings suggest that these factors should be considered in Bu dose prediction in addition to the anthropometric data from patients. Furthermore, our data indicated that GSTA1 diplotypes was a factor that should be included in future population pharmacokinetic models, including similar conditioning regiments, to improve the prediction of Bu exposure after its initial dose. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  3. Vascular Endothelial Cell Growth Factor A Acts via Platelet-Derived Growth Factor Receptor α To Promote Viability of Cells Enduring Hypoxia

    PubMed Central

    Pennock, Steven; Kim, Leo A.

    2016-01-01

    Vascular endothelial cell growth factor A (VEGF) is a biologically and therapeutically important growth factor because it promotes angiogenesis in response to hypoxia, which underlies a wide variety of both physiological and pathological settings. We report here that both VEGF receptor 2 (VEGFR2)-positive and -negative cells depended on VEGF to endure hypoxia. VEGF enhanced the viability of platelet-derived growth factor receptor α (PDGFRα)-positive and VEGFR2-negative cells by enabling indirect activation of PDGFRα, thereby reducing the level of p53. We conclude that the breadth of VEGF's influence extends beyond VEGFR-positive cells and propose a plausible mechanistic explanation of this phenomenon. PMID:27325673

  4. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    SciTech Connect

    Montesano, Roberto Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hitherto unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.

  5. Heparin-binding epidermal growth factor-like growth factor regulates fibroblast growth factor-2 expression in aortic smooth muscle cells.

    PubMed

    Peifley, K A; Alberts, G F; Hsu, D K; Feng, S L; Winkles, J A

    1996-08-01

    Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a vascular smooth muscle cell (SMC) mitogen and chemotactic factor that is expressed by endothelial cells, SMCs, monocytes/macrophages, and T lymphocytes. Both the membrane-anchored HB-EGF precursor and the secreted mature HB-EGF protein are biologically active; thus, HB-EGF may stimulate SMC growth via autocrine, paracrine, and juxtacrine mechanisms. In the present study, we report that HB-EGF treatment of serum-starved at aortic SMCs can induce fibroblast growth factor (FGF)-2 (basic FGF) gene expression but not FGF-1 (acidic FGF) gene expression. Increased FGF-2 mRNA expression is first detectable at 1 hour after HB-EGF addition, and maximal FGF-2 mRNA levels, corresponding to an approximately 46-fold level of induction, are present at 4 hours. The effect of HB-EGF on FGF-2 mRNA levels appears to be mediated primarily by a transcriptional mechanism and requires de novo synthesized proteins. HB-EGF induction of FGF-2 mRNA levels can be inhibited by treating cells with the anti-inflammatory glucocorticoid dexamethasone or the glycosaminoglycan heparin. Finally, Western blot analyses indicate that HB-EGF-treated SMCs also produce an increased amount of FGF-2 protein. These results indicate that HB-EGF expressed at sites of vascular injury or inflammation in vivo may upregulate FGF-2 production by SMCs.

  6. Synergistic activation of cells by Epstein-Barr virus and B-cell growth factor.

    PubMed Central

    Hutt-Fletcher, L M

    1987-01-01

    Infection with Epstein-Barr virus (EBV) is initiated by virus binding to the C3dg-C3d receptor CR2. Several workers have implicated this receptor in the control of B-cell activation by examining the effects of antibodies to CR2 and isolated C3d on B-cell proliferation and differentiation. We report here on the activating effects of irradiated EBV, which retains its capacity to bind to CR2 but loses its ability to function as a T-independent B-cell activator. EBV synergized with B-cell growth factor in the induction of uptake of tritiated thymidine by T cell-depleted leukocytes from seronegative donors but did not induce secretion of immunoglobulin. Synergism could be inhibited with an anti-viral antibody that inhibited binding of EBV to CR2. No similar synergism was found between EBV and recombinant interleukin 2, interleukin 1 alpha, or gamma interferon or with the lipid A fraction of bacterial lipopolysaccharide. EBV may thus initiate B-cell activation as it binds to CR2. Infectious virus may, under normal circumstances, induce the cell to make those growth factors necessary to support B-cell proliferation; the difficulty of transforming cells with transfected EBV DNA may in part reflect the absence of an activation event provided by intact virus as it attaches to CR2. The synergism of EBV and B-cell growth factor more clearly distinguishes the effects of B-cell growth factor from those of interleukin 1 and interleukin 2 in other models of B-cell activation. Thus, this may be a useful model for further delineation of unique effects of B-cell growth factor on B-cell function. PMID:3027404

  7. Autocrine growth inhibition by transforming growth factor β-1 (TGFβ-1) in human neuroendocrine tumour cells

    PubMed Central

    Wimmel, A; Wiedenmann, B; Rosewicz, S

    2003-01-01

    Background and aim: The role of transforming growth factor β-1 (TGFβ-1) in neuroendocrine tumour biology is currently unknown. We therefore examined the expression and biological significance of TGFβ signalling components in neuroendocrine tumours (NETs) of the gastroenteropancreatic (GEP) tract. Methods: Expression of TGFβ-1 and its receptors, Smads and Smad regulated proteins, was examined in surgically resected NET specimens and human NET cell lines by immunohistochemistry, reverse transcriptase-polymerase chain reaction, immunoblotting, and ELISA. Activation of TGFβ-1 dependent promoters was tested by transactivation assays. Growth regulation was evaluated by cell numbers, soft agar assays, and cell cycle analysis using flow cytometry. The role of endogenous TGFβ was assessed by a TGFβ neutralising antibody and stable transfection of a dominant negative TGFβR II receptor construct. Results: Coexpression of TGFβ-1 and its receptors TGFβR I and TGFβR II was detected in 67% of human NETs and in all three NET cell lines examined. NET cell lines expressed the TGFβ signal transducers Smad 2, 3, and 4. In two of the three cell lines, TGFβ-1 treatment resulted in transactivation of a TGFβ responsive reporter construct as well as inhibition of c-myc and induction of p21(WAF1) expression. TGFβ-1 inhibited anchorage dependent and independent growth in a time and dose dependent manner in TGFβ-1 responsive cell lines. TGFβ-1 mediated growth inhibition was due to G1 arrest without evidence of induction of apoptosis. Functional inactivation of endogenous TGFβ revealed the existence of an autocrine antiproliferative loop in NET cells. Conclusions: Neuroendocrine tumour cells of the gastroenteropancreatic tract are subject to paracrine and autocrine growth inhibition by TGFβ-1, which may account in part for the low proliferative index of this tumour entity. PMID:12912863

  8. Isoproterenol inhibits fibroblast growth factor-2-induced growth of renal epithelial cells.

    PubMed

    Izevbigie, E B; Gutkind, J S; Ray, P E

    2000-08-01

    The signal transduction pathways modulating bFGF effects in renal tubular epithelial cells (RTEc) are not completely understood. Since the cAMP and the mitogen-activated protein kinase (MAPK) pathways can modulate the growth of RTEc, we studied whether two cAMP elevating agents, isoproterenol and 8-bromo-cAMP, would modulate basic fibroblast growth factor (bFGF) induction of MAPK activity (ERK-2) and cell proliferation in human renal proximal tubular epithelial cells (RPTEc) and Madin-Darby canine kidney cells (MDCK clone EI1). Isoproterenol, but not bFGF, stimulated cAMP production in RPTEc and MDCKEI1 cells. bFGF, isoproterenol, and 8-bromo-cAMP alone increased ERK-2 activity in both cell types. However, isoproterenol and 8-bromo-cAMP partially inhibited the bFGF induction of ERK-2 activity, but only isoproterenol inhibited the proliferation of both cell types. PD098059 (25 microM), an inhibitor of MAPK kinase (MEK 1/2), blocked the bFGF mitogenic effects, but did not affect the 8-bromo-cAMP-induced mitogenic effects in MDCKEI1 cells. These findings suggest that activation of ERK-2 is required but not sufficient for mitogenesis in RTEc. We conclude that isoproterenol inhibits the growth-promoting effects of bFGF in RTEc via MEK-dependent and -independent pathways.

  9. Mobilization of hematopoietic progenitor cells in patients with liver cirrhosis

    PubMed Central

    Gehling, Ursula M; Willems, Marc; Schlagner, Kathleen; Benndorf, Ralf A; Dandri, Maura; Petersen, Jörg; Sterneck, Martina; Pollok, Joerg-Matthias; Hossfeld, Dieter K; Rogiers, Xavier

    2010-01-01

    AIM: To test the hypothesis that liver cirrhosis is associated with mobilization of hematopoietic progenitor cells. METHODS: Peripheral blood samples from 72 patients with liver cirrhosis of varying etiology were analyzed by flow cytometry. Identified progenitor cell subsets were immunoselected and used for functional assays in vitro. Plasma levels of stromal cell-derived factor-1 (SDF-1) were measured using an enzyme linked immunosorbent assay. RESULTS: Progenitor cells with a CD133+/CD45+/CD14+ phenotype were observed in 61% of the patients. Between 1% and 26% of the peripheral blood mononuclear cells (MNCs) displayed this phenotype. Furthermore, a distinct population of c-kit+ progenitor cells (between 1% and 38 % of the MNCs) could be detected in 91% of the patients. Additionally, 18% of the patients showed a population of progenitor cells (between 1% and 68% of the MNCs) that was characterized by expression of breast cancer resistance protein-1. Further phenotypic analysis disclosed that the circulating precursors expressed CXC chemokine receptor 4, the receptor for SDF-1. In line with this finding, elevated plasma levels of SDF-1 were present in all patients and were found to correlate with the number of mobilized CD133+ progenitor cells. CONCLUSION: These data indicate that in humans, liver cirrhosis leads to recruitment of various populations of hematopoietic progenitor cells that display markers of intrahepatic progenitor cells. PMID:20066741

  10. Epidermal Growth Factor-Like Growth Factors Prevent Apoptosis of Alcohol-Exposed Human Placental Cytotrophoblast Cells1

    PubMed Central

    Wolff, Garen S.; Chiang, Po Jen; Smith, Susan M.; Romero, Roberto; Armant, D. Randall

    2007-01-01

    Maternal alcohol abuse during pregnancy can produce an array of birth defects comprising fetal alcohol syndrome. A hallmark of fetal alcohol syndrome is intrauterine growth retardation, which is associated with elevated apoptosis of placental cytotrophoblast cells. Using a human first trimester cytotrophoblast cell line, we examined the relationship between exposure to ethanol and cytotrophoblast survival, as well as the ameliorating effects of epidermal growth factor (EGF)-like growth factors produced by human cytotrophoblast cells. After exposure to 0–100 mM ethanol, cell death was quantified by the TUNEL method, and expression of the nuclear proliferation marker, Ki67, was measured by immunohistochemistry. The mode of cell death was determined by assessing annexin V binding, caspase 3 activation, pyknotic nuclear morphology, reduction of TUNEL by caspase inhibition, and cellular release of lactate dehydrogenase. Ethanol significantly reduced proliferation and increased cell death approximately 2.5-fold through the apoptotic pathway within 1–2 h of exposure to 50 mM alcohol. Exposure to 25–50 mM ethanol significantly increased transforming growth factor alpha (TGFA) and heparin-binding EGF-like growth factor (HBEGF), but not EGF or amphiregulin (AREG). When cytotrophoblasts were exposed concurrently to 100 mM ethanol and 1 nM HBEGF or TGFA, the increase in apoptosis was prevented, while EGF ameliorated at 10 nM and AREG was weakly effective. HBEGF survival-promoting activity required ligation of either of its cognate receptors, HER1 or HER4. These findings reveal the potential for ethanol to rapidly induce cytotrophoblast apoptosis. However, survival factor induction could provide cytotrophoblasts with an endogenous cytoprotective mechanism. PMID:17392498

  11. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    NASA Technical Reports Server (NTRS)

    Ohi, Seigo; Roach, Allana-Nicole; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2003-01-01

    It is hypothesized that the hematopoietic stem cell therapy (HSCT) might countermeasure various space-caused disorders so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using animal models of disorders (hindlimb suspension unloading system and beta-thalassemia), the HSCT was tested for muscle loss, immunodeficiency and space anemia. The results indicate feasibility of HSCT for these disorders. To facilitate the HSCT in space, growth of HSCs were optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  12. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    NASA Technical Reports Server (NTRS)

    Ohi, Seigo; Roach, Allana-Nicole; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2003-01-01

    It is hypothesized that the hematopoietic stem cell therapy (HSCT) might countermeasure various space-caused disorders so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using animal models of disorders (hindlimb suspension unloading system and beta-thalassemia), the HSCT was tested for muscle loss, immunodeficiency and space anemia. The results indicate feasibility of HSCT for these disorders. To facilitate the HSCT in space, growth of HSCs were optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  13. Correlation of umbilical cord blood hormones and growth factors with stem cell potential: implications for the prenatal origin of breast cancer hypothesis

    PubMed Central

    Savarese, Todd M; Strohsnitter, William C; Low, Hoi Pang; Liu, Qin; Baik, Inkyung; Okulicz, William; Chelmow, David P; Lagiou, Pagona; Quesenberry, Peter J; Noller, Kenneth L; Hsieh, Chung-Cheng

    2007-01-01

    Introduction Prenatal levels of mitogens may influence the lifetime breast cancer risk by driving stem cell proliferation and increasing the number of target cells, and thereby increasing the chance of mutation events that initiate oncogenesis. We examined in umbilical cord blood the correlation of potential breast epithelial mitogens, including hormones and growth factors, with hematopoietic stem cell concentrations serving as surrogates of overall stem cell potential. Methods We analyzed cord blood samples from 289 deliveries. Levels of hormones and growth factors were correlated with concentrations of stem cell and progenitor populations (CD34+ cells, CD34+CD38- cells, CD34+c-kit+ cells, and granulocyte–macrophage colony-forming units). Changes in stem cell concentration associated with each standard deviation change in mitogens and the associated 95% confidence intervals were calculated from multiple regression analysis. Results Cord blood plasma levels of insulin-like growth factor-1 (IGF-1) were strongly correlated with all the hematopoietic stem and progenitor concentrations examined (one standard-deviation increase in IGF-1 being associated with a 15–19% increase in stem/progenitor concentrations, all P < 0.02). Estriol and insulin-like growth factor binding protein-3 levels were positively and significantly correlated with some of these cell populations. Sex hormone-binding globulin levels were negatively correlated with these stem/progenitor pools. These relationships were stronger in Caucasians and Hispanics and were weaker or not present in Asian-Americans and African-Americans. Conclusion Our data support the concept that in utero mitogens may drive the expansion of stem cell populations. The correlations with IGF-1 and estrogen are noteworthy, as both are crucial for mammary gland development. PMID:17501995

  14. [Pegfilgrastim in hematopoietic stem cell transplantation].

    PubMed

    Fernández Alvarez, R

    2010-12-01

    Pegylation implies progress in filgrastim therapy. The addition of one molecule of polyethylene glycol (PEG) increases the drug's half-life by reducing renal excretion. A single dose of pegfilgrastim is equivalent to a daily administration of G-CSF for recovering from neutropenia after cancer chemotherapy. Pegfilgrastim is also useful to mobilize hematopoietic stem cells. Several studies have researched its efficacy in this context, in patients with myeloma or lymphoma. Outcomes suggest that it has an efficacy similar to daily G-CSF. In allogeneic donors, a single 12-mg dose of pegfilgrastim produces sufficient increase of CD34+ in peripheral blood, with acceptable toxicity. There is interest on the data about the various functional and biologic properties of hematopoietic stem cells mobilized with pegfilgrastim compared to G-CSF, and on the effect that these differences may have on the graft composition. The administration of a single dose of pegfilgrastim after autologous transplantation has been shown to shorten the time for leukocyte recovery in a manner similar to G-CSF

  15. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion

    PubMed Central

    Gorin, Caroline; Rochefort, Gael Y.; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Germain, Stéphane

    2016-01-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF. Significance The results from the present study show that fibroblast growth factor-2 (FGF-2) priming is more

  16. Generation of hematopoietic stem cells from human embryonic stem cells using a defined, stepwise, serum-free, and serum replacement-free monolayer culture method

    PubMed Central

    Kim, So-Jung; Jung, Ji-Won; Ha, Hye-Yeong; Koo, Soo Kyung; Kim, Eung-Gook

    2017-01-01

    Background Embryonic stem cells (ESCs) can be expanded infinitely in vitro and have the potential to differentiate into hematopoietic stem cells (HSCs); thus, they are considered a useful source of cells for HSC production. Although several technical in vitro methods for engineering HSCs from pluripotent stem cells have been developed, clinical application of HSCs engineered from pluripotent stem cells is restricted because of the possibility of xenogeneic contamination resulting from the use of murine materials. Methods Human ESCs (CHA-hES15) were cultured on growth factor-reduced Matrigel-coated dishes in the mTeSR1 serum-free medium. When the cells were 70% confluent, we initiated HSC differentiation by three methods involving (1) knockout serum replacement (KSR), cytokines, TGFb1, EPO, and FLT3L; (2) KSR, cytokines, and bFGF; or (3) cytokines and bFGF. Results Among the three differentiation methods, the minimal number of cytokines without KSR resulted in the greatest production of HSCs. The optimized method resulted in a higher proportion of CD34+CD43+ hematopoietic progenitor cells (HPCs) and CD34+CD45+ HPCs compared to the other methods. In addition, the HSCs showed the potential to differentiate into multiple lineages of hematopoietic cells in vitro. Conclusion In this study, we optimized a two-step, serum-free, animal protein-free, KSR-free, feeder-free, chemically defined monolayer culture method for generation of HSCs and hematopoietic stem and progenitor cells (HSPCs) from human ESCs. PMID:28401100

  17. Growth factor-dependent initiation of DNA replication in nuclei isolated from an interleukin 3-dependent murine myeloid cell line.

    PubMed

    Munshi, N C; Gabig, T G

    1990-01-01

    To study the proliferative response of hematopoietic cells to growth factors at the molecular level, we developed a cell-free system for growth factor-dependent initiation of genomic DNA replication. Nuclei were isolated from the IL-3-dependent cell line NFS/N1-H7 after a 10-h period of IL-3 deprivation. Cytosolic and membrane-containing subcellular fractions were prepared from proliferating NFS/N1-H7 cells. Nuclei from the nonproliferating cells (+/- IL-3) showed essentially no incorporation of [3H]thymidine during a 16-h incubation with a mixture of unlabeled GTP, ATP, UTP, CTP, dGTP, dATP, dCTP, and [3H]dTTP. When the combination of IL-3, a cytosolic fraction, and a membrane-containing fraction from proliferating cells was added to nuclei from nonproliferating cells, a burst of [3H]thymidine incorporation into DNA began after a 12-h lag period, attained a maximal rate at 16 h, and reached a level of 860 pmol thymidine/10(6) nuclei at 24 h (corresponding to replication of approximately 56% total mouse genomic DNA). This DNA synthesis was inhibited approximately 90% by the specific DNA polymerase alpha inhibitor aphidicolin. Deletion of a single cellular component or IL-3 from the system resulted in a marked reduction of DNA replication (-membrane, 80 +/- 4%; -cytosol, 90% +/- 4%; -IL-3, 74 +/- 7% inhibition). This model requires a growth factor (IL-3), a sedimentable cell fraction containing its receptor and possibly additional membrane-associated components, and a cytosolic fraction. It appears to recapitulate the molecular events required for progression from early G1 to S phase of the cell cycle induced by IL-3 binding to its receptor.

  18. Growth factor-dependent initiation of DNA replication in nuclei isolated from an interleukin 3-dependent murine myeloid cell line.

    PubMed Central

    Munshi, N C; Gabig, T G

    1990-01-01

    To study the proliferative response of hematopoietic cells to growth factors at the molecular level, we developed a cell-free system for growth factor-dependent initiation of genomic DNA replication. Nuclei were isolated from the IL-3-dependent cell line NFS/N1-H7 after a 10-h period of IL-3 deprivation. Cytosolic and membrane-containing subcellular fractions were prepared from proliferating NFS/N1-H7 cells. Nuclei from the nonproliferating cells (+/- IL-3) showed essentially no incorporation of [3H]thymidine during a 16-h incubation with a mixture of unlabeled GTP, ATP, UTP, CTP, dGTP, dATP, dCTP, and [3H]dTTP. When the combination of IL-3, a cytosolic fraction, and a membrane-containing fraction from proliferating cells was added to nuclei from nonproliferating cells, a burst of [3H]thymidine incorporation into DNA began after a 12-h lag period, attained a maximal rate at 16 h, and reached a level of 860 pmol thymidine/10(6) nuclei at 24 h (corresponding to replication of approximately 56% total mouse genomic DNA). This DNA synthesis was inhibited approximately 90% by the specific DNA polymerase alpha inhibitor aphidicolin. Deletion of a single cellular component or IL-3 from the system resulted in a marked reduction of DNA replication (-membrane, 80 +/- 4%; -cytosol, 90% +/- 4%; -IL-3, 74 +/- 7% inhibition). This model requires a growth factor (IL-3), a sedimentable cell fraction containing its receptor and possibly additional membrane-associated components, and a cytosolic fraction. It appears to recapitulate the molecular events required for progression from early G1 to S phase of the cell cycle induced by IL-3 binding to its receptor. Images PMID:2104881

  19. Donor Dependent Variations in Hematopoietic Differentiation among Embryonic and Induced Pluripotent Stem Cell Lines

    PubMed Central

    Féraud, Olivier; Valogne, Yannick; Melkus, Michael W.; Zhang, Yanyan; Oudrhiri, Noufissa; Haddad, Rima; Daury, Aurélie; Rocher, Corinne; Larbi, Aniya; Duquesnoy, Philippe; Divers, Dominique; Gobbo, Emilie; Brunet de la Grange, Philippe; Louache, Fawzia; Bennaceur-Griscelli, Annelise; Mitjavila-Garcia, Maria Teresa

    2016-01-01

    Hematopoiesis generated from human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) are unprecedented resources for cell therapy. We compared hematopoietic differentiation potentials from ES and iPS cell lines originated from various donors and derived them using integrative and non-integrative vectors. Significant differences in differentiation toward hematopoietic lineage were observed among ES and iPS. The ability of engraftment of iPS or ES-derived cells in NOG mice varied among the lines with low levels of chimerism. iPS generated from ES cell-derived mesenchymal stem cells (MSC) reproduce a similar hematopoietic outcome compared to their parental ES cell line. We were not able to identify any specific hematopoietic transcription factors that allow to distinguish between good versus poor hematopoiesis in undifferentiated ES or iPS cell lines. There is a relatively unpredictable variation in hematopoietic differentiation between ES and iPS cell lines that could not be predicted based on phenotype or gene expression of the undifferentiated cells. These results demonstrate the influence of genetic background in variation of hematopoietic potential rather than the reprogramming process. PMID:26938212

  20. Stem cells, growth factors and scaffolds in craniofacial regenerative medicine

    PubMed Central

    Tollemar, Viktor; Collier, Zach J.; Mohammed, Maryam K.; Lee, Michael J.; Ameer, Guillermo A.; Reid, Russell R.

    2015-01-01

    Current reconstructive approaches to large craniofacial skeletal defects are often complicated and challenging. Critical-sized defects are unable to heal via natural regenerative processes and require surgical intervention, traditionally involving autologous bone (mainly in the form of nonvascularized grafts) or alloplasts. Autologous bone grafts remain the gold standard of care in spite of the associated risk of donor site morbidity. Tissue engineering approaches represent a promising alternative that would serve to facilitate bone regeneration even in large craniofacial skeletal defects. This strategy has been tested in a myriad of iterations by utilizing a variety of osteoconductive scaffold materials, osteoblastic stem cells, as well as osteoinductive growth factors and small molecules. One of the major challenges facing tissue engineers is creating a scaffold fulfilling the properties necessary for controlled bone regeneration. These properties include osteoconduction, osetoinduction, biocompatibility, biodegradability, vascularization, and progenitor cell retention. This review will provide an overview of how optimization of the aforementioned scaffold parameters facilitates bone regenerative capabilities as well as a discussion of common osteoconductive scaffold materials. PMID:27239485

  1. Effects of basic fibroblast growth factor and insulin-like growth factor on cultured cartilage cells from skate Raja porasa

    NASA Astrophysics Data System (ADS)

    Fan, Tingjun; Jin, Lingyun; Wang, Xiaofeng

    2003-12-01

    Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24°C. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.

  2. Imatinib alters cell viability but not growth factors levels in TM4 Sertoli cells

    PubMed Central

    Hashemnia, Seyyed Mohammad Reza; Atari-Hajipirloo, Somayeh; Roshan-Milani, Shiva; Valizadeh, Nasim; Mahabadi, Sonya; Kheradmand, Fatemeh

    2016-01-01

    Background: The anticancer agent imatinib (IM) is a small molecular analog of ATP that inhibits tyrosine kinase activity of platelet derived growth factors (PDGFs) and stem cell factor (SCF) receptor in cancer cells. However these factors have a key role in regulating growth and development of normal Sertoli, Leydig and germ cells. Objective: The aim of this study was to determine cell viability, PDGF and SCF levels in mouse normal Sertoli cells exposed to IM. Materials and Methods: In this experimental study, the mouse TM4 Sertoli cells were treated with 0, 2.5, 5, 10 and 20 μM IM for 2, 4 or 6 days. The cell viability and growth factors levels were assessed by MTT and ELISA methods, respectively. For statistical analysis, One-Way ANOVA was performed. Results: IM showed significant decrease in Sertoli cell viability compared to control group (p=0.001). However, IM increased PDGF and SCF level insignificantly (p>0.05). Conclusion: Results suggested that IM treatment induced a dose dependent reduction of cell viability in Sertoli cells. It seems that treatment with this anticancer drug is involved in the fertility process. Further studies are needed to evaluate the role of PDGF and SCF in this cell. PMID:27738659

  3. Heparin-binding epidermal growth factor-like growth factor/diphtheria toxin receptor expression by acute myeloid leukemia cells.

    PubMed

    Vinante, F; Rigo, A; Papini, E; Cassatella, M A; Pizzolo, G

    1999-03-01

    Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is an EGF family member expressed by numerous cell types that binds to EGF receptor 1 (HER-1) or 4 (HER-4) inducing mitogenic and/or chemotactic activities. Membrane-bound HB-EGF retains growth activity and adhesion capabilities and the unique property of being the receptor for diphtheria toxin (DT). The interest in studying HB-EGF in acute leukemia stems from these mitogenic, chemotactic, and receptor functions. We analyzed the expression of HB-EGF in L428, Raji, Jurkat, Karpas 299, L540, 2C8, HL-60, U937, THP-1, ML-3, and K562 cell lines and in primary blasts from 12 acute myeloid leukemia (AML) cases, by reverse-transcriptase polymerase chain reaction (RT-PCR) and Northern blot and by the evaluation of sensitivity to DT. The release of functional HB-EGF was assessed by evaluation of its proliferative effects on the HB-EGF-sensitive Balb/c 3T3 cell line. HB-EGF was expressed by all myeloid and T, but not B (L428, Raji), lymphoid cell lines tested, as well as by the majority (8 of 12) of ex vivo AML blasts. Cell lines (except for the K562 cell line) and AML blasts expressing HB-EGF mRNA underwent apoptotic death following exposure to DT, thus demonstrating the presence of the HB-EGF molecule on their membrane. Leukemic cells also released a fully functional HB-EGF molecule that was mitogenic for the Balb/c 3T3 cell line. Factors relevant to the biology of leukemic growth, such as tumor necrosis factor-alpha (TNF-alpha), 1alpha,25-(OH)2D3, and especially all-trans retinoic acid (ATRA), upregulated HB-EGF mRNA in HL-60 or ML-3 cells. Granulocyte-macrophage colony-stimulating factor (GM-CSF) induced HB-EGF mRNA and acquisition of sensitivity to DT in one previously HB-EGF-negative leukemia case. Moreover, the U937 and Karpas 299 cell lines expressed HER-4 mRNA. This work shows that HB-EGF is a growth factor produced by primary leukemic cells and regulated by ATRA, 1alpha, 25-(OH)2D3, and GM-CSF.

  4. Epidermal growth factor and hepatocyte growth factor receptors collaborate to induce multiple biological responses in bovine mammary epithelial cells.

    PubMed

    Accornero, P; Martignani, E; Miretti, S; Starvaggi Cucuzza, L; Baratta, M

    2009-08-01

    The aim of this work was to explore whether epidermal growth factor (EGF) and hepatocyte growth factor (HGF) could increase the biological responses of a mammary epithelial cell line of bovine origin when added simultaneously. We also investigated a possible molecular mechanism underlying this cooperation. The development of mammary gland requires several circulating and locally produced hormones. Hepatocyte growth factor and its tyrosine kinase receptor, mesenchymal-epithelial transition factor (MET), are expressed and temporally regulated during mammary development and differentiation. Epidermal growth factor receptor and its ligands have also been implicated in the growth and morphogenesis of the mammary epithelium. Both EGF and HGF seem to exert a morphogenic program in this tissue; therefore, we hypothesized that these cytokines could act cooperatively in bovine mammary epithelial cells. We have already shown that the bovine BME-UV cell line, a nontumorigenic mammary epithelial line, expresses both MET and EGF receptor. Simultaneous treatment with HGF and EGF elicited an increase in proliferation, dispersion, degradation of extracellular matrix, and motility. Following EGF treatment, BME-UV mammary cells exhibited an increase in MET expression at both the mRNA and protein levels. Long-term treatment of BME-UV cells with HGF and EGF together increased the level of activation of the extracellular signal-regulated kinase 1/2 and protein kinase B signaling pathways when compared with HGF or EGF alone. These data outline a possible cooperative role of the EGF and HGF pathways and indicate that cross-talk between their respective receptors may modulate mammary gland development in the cow.

  5. Modeling the effect of insulin-like growth factor-1 on human cell growth.

    PubMed

    Phillips, Gemma M A; Shorten, Paul R; Wake, Graeme C; Guan, Jian

    2015-01-01

    Insulin-like growth factor-1 (IGF-1) plays a key role in human growth and development. The interactions of IGF-1 with IGF-1 receptors and IGF-1 binding proteins (IGFBPs) regulate IGF-1 function. Recent research suggests that a metabolite of IGF-1, cyclo-glycyl-proline (cGP), has a role in regulating IGF-1 homeostasis. A component of this interaction is believed to be the competitive binding of IGF-1 and cGP to IGFBPs. In this paper we describe a mathematical model of the interaction between IGF-1 and cGP on human cell growth. The model can be used to understand the interaction between IGF-1, IGFBPs, cGP and IGF-1 receptors along with the kinetics of cell growth. An explicit model of the known interactions between IGF-1, cGP, IGFBPs, IGF-1 receptors explained a large portion of the variance in cell growth (R(2) = 0.83). An implicit model of the interactions between IGF-1, cGP, IGFBPs, IGF-1 receptors that included a hypothesized feedback of cGP on IGF-1 receptors explained nonlinear features of interaction between IGF-1 and cGP not described by the explicit model (R(2) = 0.84). The model also explained the effect of IGFBP antibody on the interaction between cGP and IGF-1 (R(2) = 0.78). This demonstrates that the competitive binding of IGF-1 and cGP to IGFBPs plays a large role in the interaction between IGF-1 and cGP, but that other factors potentially play a role in the interaction between cGP and IGF-1. These models can be used to predict the complex interaction between IGF-1 and cGP on human cell growth and form a basis for further research in this field.

  6. Regulatory Systems in Bone Marrow for Hematopoietic Stem/Progenitor Cells Mobilization and Homing

    PubMed Central

    Alvarez, P.; Carrillo, E.; Vélez, C.; Hita-Contreras, F.; Martínez-Amat, A.; Rodríguez-Serrano, F.; Boulaiz, H.; Ortiz, R.; Melguizo, C.; Prados, J.; Aránega, A.

    2013-01-01

    Regulation of hematopoietic stem cell release, migration, and homing from the bone marrow (BM) and of the mobilization pathway involves a complex interaction among adhesion molecules, cytokines, proteolytic enzymes, stromal cells, and hematopoietic cells. The identification of new mechanisms that regulate the trafficking of hematopoietic stem/progenitor cells (HSPCs) cells has important implications, not only for hematopoietic transplantation but also for cell therapies in regenerative medicine for patients with acute myocardial infarction, spinal cord injury, and stroke, among others. This paper reviews the regulation mechanisms underlying the homing and mobilization of BM hematopoietic stem/progenitor cells, investigating the following issues: (a) the role of different factors, such as stromal cell derived factor-1 (SDF-1), granulocyte colony-stimulating factor (G-CSF), and vascular cell adhesion molecule-1 (VCAM-1), among other ligands; (b) the stem cell count in peripheral blood and BM and influential factors; (c) the therapeutic utilization of this phenomenon in lesions in different tissues, examining the agents involved in HSPCs mobilization, such as the different forms of G-CSF, plerixafor, and natalizumab; and (d) the effects of this mobilization on BM-derived stem/progenitor cells in clinical trials of patients with different diseases. PMID:23844360

  7. Regulatory systems in bone marrow for hematopoietic stem/progenitor cells mobilization and homing.

    PubMed

    Alvarez, P; Carrillo, E; Vélez, C; Hita-Contreras, F; Martínez-Amat, A; Rodríguez-Serrano, F; Boulaiz, H; Ortiz, R; Melguizo, C; Prados, J; Aránega, A

    2013-01-01

    Regulation of hematopoietic stem cell release, migration, and homing from the bone marrow (BM) and of the mobilization pathway involves a complex interaction among adhesion molecules, cytokines, proteolytic enzymes, stromal cells, and hematopoietic cells. The identification of new mechanisms that regulate the trafficking of hematopoietic stem/progenitor cells (HSPCs) cells has important implications, not only for hematopoietic transplantation but also for cell therapies in regenerative medicine for patients with acute myocardial infarction, spinal cord injury, and stroke, among others. This paper reviews the regulation mechanisms underlying the homing and mobilization of BM hematopoietic stem/progenitor cells, investigating the following issues: (a) the role of different factors, such as stromal cell derived factor-1 (SDF-1), granulocyte colony-stimulating factor (G-CSF), and vascular cell adhesion molecule-1 (VCAM-1), among other ligands; (b) the stem cell count in peripheral blood and BM and influential factors; (c) the therapeutic utilization of this phenomenon in lesions in different tissues, examining the agents involved in HSPCs mobilization, such as the different forms of G-CSF, plerixafor, and natalizumab; and (d) the effects of this mobilization on BM-derived stem/progenitor cells in clinical trials of patients with different diseases.

  8. Expansion and homing of umbilical cord blood hematopoietic stem and progenitor cells for clinical transplantation.

    PubMed

    Bari, Sudipto; Seah, Kevin Kwee Hong; Poon, Zhiyong; Cheung, Alice Man Sze; Fan, Xiubo; Ong, Shin-Yeu; Li, Shang; Koh, Liang Piu; Hwang, William Ying Khee

    2015-06-01

    The successful expansion of hematopoietic stem and progenitor cells (HSPCs) from umbilical cord blood (UCB) for transplantation could revolutionize clinical practice by improving transplantation-related outcomes and making available UCB units that have suboptimal cell doses for transplantation. New cytokine combinations appear able to promote HSPC growth with minimal differentiation into mature precursors and new agents, such as insulin-like growth factor-binding protein 2, are being used in clinical trials. Molecules that simulate the HSPC niche, such as Notch ligand, have also shown promise. Further improvements have been made with the use of mesenchymal stromal cells, which have made possible UCB expansion without a potentially deleterious prior CD34/CD133 cell selection step. Chemical molecules, such as copper chelators, nicotinamide, and aryl hydrocarbon antagonists, have shown excellent outcomes in clinical studies. The use of bioreactors could further add to HSPC studies in future. Drugs that could improve HSPC homing also appear to have potential in improving engraftment times in UCB transplantation. Technologies to expand HSPC from UCB and to enhance the homing of these cells appear to have attained the goal of accelerating hematopoietic recovery. Further discoveries and clinical studies are likely to make the goal of true HSPC expansion a reality for many applications in future.

  9. Cryopreservation of hematopoietic stem/progenitor cells for therapeutic use.

    PubMed

    Watt, Suzanne M; Austin, Eric; Armitage, Sue

    2007-01-01

    To date, more than 25,000 hematopoietic transplants have been carried out across Europe for hematological disorders, the majority being for hematological malignancies. At least 70% of these are autologous transplants, the remaining 30% being allogeneic, which are sourced from related (70% of the allogeneic) or unrelated donors. Peripheral blood mobilized with granulocyte colony stimulating factor is the major source of stem cells for transplantation, being used in approx 95% of autologous transplants and in approx 65% of allogeneic transplants. Other cell sources used for transplantation are bone marrow and umbilical cord blood. One crucial advance in the treatment of these disorders has been the development of the ability to cryopreserve hematopoietic stem cells for future transplantation. For bone marrow and mobilized peripheral blood, the majority of cryopreserved harvests come from autologous collections that are stored prior to a planned infusion following further treatment of the patient or at the time of a subsequent relapse. Other autologous harvests are stored as backup or "rainy day" harvests, the former specifically being intended to rescue patients who develop graft failure following an allogeneic transplant or who may require this transplant at a later date. Allogeneic bone marrow and mobilized peripheral blood are less often cryopreserved than autologous harvests. This is in contrast to umbilical cord blood that may be banked for directed or sibling (related) hematopoietic stem cell transplants, for allogeneic unrelated donations, and for autologous donations. Allogeneic unrelated donations are of particular use for providing a source of hematopoietic stem cells for ethnic minorities, patients with rare human leukocyte antigen types, or where the patient urgently requires a transplant and cannot wait for the weeks to months required to prepare a bone marrow donor. There are currently more than 200,000 banked umbilical cord blood units registered with

  10. Isolation of small, primitive human hematopoietic stem cells: distribution of cell surface cytokine receptors and growth in SCID-Hu mice.

    PubMed

    Wagner, J E; Collins, D; Fuller, S; Schain, L R; Berson, A E; Almici, C; Hall, M A; Chen, K E; Okarma, T B; Lebkowski, J S

    1995-07-15

    Human CD34+ cells were subfractionated into three size classes using counterflow centrifugal elutriation followed by immunoadsorption to polystyrene cell separation devices. The three CD34+ cell fractions (Fr), Fr 25/29, Fr 33/37, and Fr RO, had mean sizes of 8.5, 9.3 and 13.5 microns, respectively. The majority of cells in the large Fr RO CD34+ cell population expressed the committed stage antigens CD33, CD19, CD38, or HLA-DR and contained the majority of granulocyte-macrophage colony-forming units (CFU-GM), burst-forming units-erythroid (BFU-E), and CFU-mixed lineage (GEMM). In contrast, the small Fr 25/29 CD34+ cells were devoid of committed cell surface antigens and lacked colony-forming activity. When seeded to allogeneic stroma, Fr RO CD34+ cells produced few CFU-GM at week 5, whereas cells from the Fr 25/29 CD34+ cell population showed a 30- to 55-fold expansion of myeloid progenitors at this same time point. Furthermore, CD34+ cells from each size fraction supported ontogeny of T cells in human thymus/liver grafts in severe combined immunodeficient (SCID) mice. Upon cell cycle analyses, greater than 97% of the Fr 25/29 CD34+ cells were in G0/G1 phase, whereas greater proportions of the two larger CD34+ cell fractions were in active cell cycle. Binding of the cytokines interleukin (IL)-1 alpha, IL-3, IL-6, stem cell factor (SCF), macrophage inhibitory protein (MIP)-1 alpha, granulocyte colony-stimulating factor (G-CSF), and granulocyte-macrophage (GM)-CSF to these CD34+ cell populations was also analyzed by flow cytometry. As compared with the larger CD34+ cell fractions, cells in the small Fr 25/29 CD34+ cell population possessed the highest numbers of receptors for SCF, MIP1 alpha, and IL-1 alpha. Collectively, these results indicate that the Fr 25/29 CD34+ cell is a very primitive, quiescent progenitor cell population possessing a high number of receptors for SCF and MIP1 alpha and capable of yielding both myeloid and lymphoid lineages when placed in

  11. Role of polypeptide growth factors in phenotypic transformation of normal rat kidney cells

    SciTech Connect

    van Zoelen, E.J.J.; van Oostwaard, T.M.J.; de Laat, S.W.

    1988-01-05

    A serum-free assay has been established for studying the role of polypeptide growth factors in inducing loss of density-dependent inhibition of growth of normal rat kidney (NRK) cells. The process has been characterized by measuring the time course of (/sup 3/H)thymidine incorporation into confluent, quiescent NRK cultures stimulated by defined polypeptide growth factors, in combination with cell counting studies, increases in DNA content, and cell cycle analysis by means of a fluorescence-activated cell sorter. It is shown that none of the growth factors tested is able to induce loss of density-dependent inhibition of growth by itself, but strong synergism was observed when combinations of growth factors were tested. None of the above factors was found to be essential, however, since any combination of three of the above four growth factors strongly induced the process. Strong parallels were observed between the growth factor requirements for inducing loss of density-dependent inhibition of growth under serum-free conditions and the requirements for induction of anchorage-independent proliferation under growth factor-defined assay conditions. This indicates that most likely the same cellular processes underlie these two aspects of phenotypic transformation, although data indicate that anchorage-independent proliferation may be a more restricted property of phenotypic transformation than loss of density dependence of proliferation. It is concluded that phenotypic transformation of NRK cells does not require specific polypeptide growth factors, but reflects the ability of these cells to respond to multiple growth factors.

  12. Intercellular propagation of individually programmed growth bursts in FRTL-5 cells. Implications for interpreting growth factor actions

    SciTech Connect

    Derwahl, M.; Studer, H.; Huber, G.; Gerber, H.; Peter, H.J. )

    1990-11-01

    Five methods are commonly used to quantify FRTL-5 cells' and other thyrocytes' growth in vitro and the impact of growth inhibiting or stimulating maneuvers: Total cell count, mitotic index, DNA measurement, total (3H)thymidine incorporation, and the fraction of (3H)thymidine labeled cells. All of them assess cell growth as though all cells were homogeneous with an identical response to growth factors. We demonstrate here that this assumption is not valid. Rather, some intrinsically growth-prone cells appear to pass a growth signal to neighboring cells so that variably sized colonies of synchronized cells within each cluster growing from monodispersed cells are formed. This is true for FRTL-5 cells growing in vitro in monolayers and in three-dimensional, collagen embedded spheroids. The pattern is the same when cell suspensions or collagen-embedded spheroids are implanted onto nude mice. Patches with alternating high and low growth become particularly prominent in the large tumor-like organoids grown from monodispersed cells in nude mice. The pattern much reminds of similar observations in growing intact thyroids. Since there is no significant correlation between the fraction of (3H)thymidine labeled cells and the size of two- or three-dimensional clusters in any experiment, growth of signal-spreading cells is assumed to occur in leaps and bounds. Growth velocity in each subclone of a cell population depends on the mean interval between bursts of replications and on the number of cells synchronized by cell-to-cell diffusion of the growth signal emanating from one dividing cell. Thus, growth-promoting and growth-inhibiting factors may not only act on the mean interval between successive growth bursts, but they may also change cell-to-cell spreading of growth signals.

  13. Hematopoietic (stem) cell development - how divergent are the roads taken?

    PubMed

    Kauts, Mari-Liis; Vink, Chris S; Dzierzak, Elaine

    2016-11-01

    The development of the hematopoietic system during early embryonic stages occurs in spatially and temporally distinct waves. Hematopoietic stem cells (HSC), the most potent and self-renewing cells of this system, are produced in the final 'definitive' wave of hematopoietic cell generation. In contrast to HSCs in the adult, which differentiate via intermediate progenitor populations to produce functional blood cells, the generation of hematopoietic cells in the embryo prior to HSC generation occurs in the early waves by producing blood cells without intermediate progenitors (such as the 'primitive' hematopoietic cells). The lineage relationship between the early hematopoietic cells and the cells giving rise to HSCs, the genetic networks controlling their emergence, and the precise temporal determination of HSC fate remain topics of intense research and debate. This Review article discusses the current knowledge on the step-wise embryonic establishment of the adult hematopoietic system, examines the roles of pivotal intrinsic regulators in this process, and raises questions concerning the temporal onset of HSC fate determination. © 2016 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  14. Hematopoietic stem cells for cancer immunotherapy.

    PubMed

    Gschweng, Eric; De Oliveira, Satiro; Kohn, Donald B

    2014-01-01

    Hematopoietic stem cells (HSCs) provide an attractive target for immunotherapy of cancer and leukemia by the introduction of genes encoding T-cell receptors (TCRs) or chimeric antigen receptors (CARs) directed against tumor-associated antigens. HSCs engraft for long-term blood cell production and could provide a continuous source of targeted anti-cancer effector cells to sustain remissions. T cells produced de novo from HSCs may continuously replenish anti-tumor T cells that have become anergic or exhausted from ex vivo expansion or exposure to the intratumoral microenvironment. In addition, transgenic T cells produced in vivo undergo allelic exclusion, preventing co-expression of an endogenous TCR that could mis-pair with the introduced TCR chains and blunt activity or even cause off-target reactivity. CAR-engineered HSCs may produce myeloid and natural killer cells in addition to T cells expressing the CAR, providing broader anti-tumor activity that arises quickly after transplant and does not solely require de novo thymopoiesis. Use of TCR- or CAR-engineered HSCs would likely require cytoreductive conditioning to achieve long-term engraftment, and this approach may be used in clinical settings where autologous HSC transplant is being performed to add a graft-versus-tumor effect. Results of experimental and preclinical studies performed to date are reviewed.

  15. Incidence, risk factors and outcome of pre engraftment Gram-negative bacteremia after allogeneic and autologous hematopoietic stem cell transplantation: an Italian prospective multicenter survey.

    PubMed

    Girmenia, Corrado; Bertaina, Alice; Piciocchi, Alfonso; Carotti, Alessandra; Algarotti, Alessandra; Busca, Alessandro; Cattaneo, Chiara; Raiola, Anna Maria; Guidi, Stefano; Iori, Anna Paola; Candoni, Anna; Irrera, Giuseppe; Milone, Giuseppe; Marcacci, Giampaolo; Scimè, Rosanna; Musso, Maurizio; Cudillo, Laura; Sica, Simona; Castagna, Luca; Corradini, Paolo; Marchesi, Francesco; Pastore, Domenico; Alessandrino, Emilio Paolo; Annaloro, Claudio; Ciceri, Fabio; Santarone, Stella; Nassi, Luca; Farina, Claudio; Viscoli, Claudio; Rossolini, Gian Maria; Bonifazi, Francesca; Rambaldi, Alessandro; Italiano, Gruppo

    2017-08-03

    Gram-negative bacteremia (GNB) is a major cause of morbidity and mortality in Hematopoietic Stem Cell Transplant (HSCT) and updated epidemiological investigation is advisable. We prospectively evaluated the epidemiology of pre-engraftment GNB in 1,118 allogeneic HSCT (allo-HSCT) and 1,625 autologous HSCT (auto-HSCT) among 54 transplant centers during 2014 (SIGNB-GITMO-AMCLI study). Using logistic regression methods we identified risk factors for GNB and evaluated the impact of GNB on the 4-month overall-survival after transplant. SIGNB-GITMO-AMCLI is registered with ClinicalTrials.gov, number NCT02088840. The cumulative incidence of pre-engraftment GNB was 17.3% in allo-HSCT and 9% in auto-HSCT. Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa were the most common isolates. By multivariate analysis variables associated with GNB were a diagnosis of acute leukemia, a transplant from HLA-mismatched donor and from cord-blood, older age and duration of severe neutropenia in allo-HSCT, and a diagnosis of lymphoma, older age and no antibacterial prophylaxis in auto-HSCT. A pre-transplant infection by a resistant pathogen was significantly associated with an increased risk of post-transplant infection by the same microorganism in allo-HSCT. Colonization by resistant Gram-negative bacteria was significantly associated with an increased rate of infection by the same pathogen in both transplant procedures. GNB was independently associated with increased mortality at 4-months both in allo-HSCT (HR 2.13, 95% CI 1.45-3.13;p=.0001) and auto-HSCT (HR 2.43, 95% CI 1.22-4.84;p=.012). Pre-engraftment GNB is an independent factor associated with increased mortality at four months from auto-HSCT and allo-HSCT. Previous infectious history and colonization monitoring represent major indicators of GNB.

  16. Colonization Rate and Risk Factors of Vancomycin-Resistant Enterococci among Patients Received Hematopoietic Stem Cell Transplantation in Shiraz, Southern Iran

    PubMed Central

    Kaveh, M.; Bazargani, A.; Ramzi, M.; Sedigh Ebrahim-Saraie, H.; Heidari, H.

    2016-01-01

    Background: Infections caused by antimicrobial-resistant bacteria are associated with increased mortality and health care costs. Enterococci have been recognized as a clinically important pathogen in hospitalized patients. Vancomycin-resistant enterococci (VRE) infections cause significant morbidity and mortality among patients undergoing transplantation. Objective: To identify epidemiology of VRE colonization and related risk factors among patients with hematological malignancies after hematopoietic stem cell transplantation (HSCT). Methods: This cross-sectional study was performed on 42 patients who underwent bone-marrow transplantation between July 2013 and March 2014. A stool sample was taken from each patient 3–5 days after transplantation and cultured on appropriate media. Suspected colonies of enterococci were detected to species level by their culture characteristics, biochemical reactions and molecular features. VRE were confirmed via phenotypic and genotypic methods. Results: VRE were detected in 14 (33%) of studied samples. 10 (71%) of the detected VRE isolates were identified as high level vancomycin-resistant E. faecium with minimum inhibitory concentration (MIC) of ≥256 μg/mL of vancomycin; 3 isolates were E. galinarum and 1 was E. casseliflavus with an MIC of 8–16 μg/mL. VanA was dominant phenotype and all VRE isolates with high-level of vancomycin resistance had vanA gene. VRE isolation was mostly observed in patients with acute lymphoblastic leukemia (ALL) than other diseases. Moreover, antibiotic prophylaxis and hospitalization were independent risk factors for acquisition of VRE after transplantation. Conclusion: We found high level of vancomycin-resistance in E. faecium isolates obtained from HSCT patients. The vancomycin-resistant isolates of E. faecium had vanA and/or simultaneously vanB genes. PMID:28078058

  17. The Hematopoietic Stem Cell Therapy for Exploration of Space

    NASA Technical Reports Server (NTRS)

    Roach, Allana Nicole; Brezo, Jelena

    2002-01-01

    Astronauts experience severe/invasive disorders caused by space environments. These include hematological/cardiac abnormalities, bone and muscle losses, immunodeficiency, neurological disorders and cancer. While the cause of these symptoms are not yet fully delineated, one possible explanation could be the inhibition of hematopoietic stem cell (HSC) growth and hematopoiesis in space. HSCs differentiate into all types of blood cells, and growing evidence indicates that the HSCs also have the ability to transdifferentiate to various tissues, including muscle, skin, liver, neuronal cells and possibly bone. Therefore, a hypothesis was advanced in this laboratory that the hematopoietic stem cell-based therapy, herein called the hematopoietic stem cell therapy (HSCT), could mitigate some of the disorders described above. Due to the magnitude of this project our laboratory has subdivided it into 3 sections: a) HSCT for space anemia; b) HSCT for muscle and bone losses; and c) HSCT for immunodeficiency. Toward developing the HSCT protocol for space anemia, the HSC transplantation procedure was established using a mouse model of beta thalassemia. In addition, the NASA Rotating Wall Vessel (RWV) culture system was used to grow HSCs in space condition. To investigate the HSCT for muscle loss and bone loss, donor HSCs were genetically marked either by transfecting the beta-galactosidase-containing plasmid, pCMV.SPORT-beta-gal or by preparing from b-galactosidase transgenic mice. The transdifferentiation of HSCs to muscle is traced by the reporter gene expression in the hindlimb suspended mice with some positive outcome, as studied by the X-gal staining procedure. The possible structural contribution of HSCs against muscle loss is being investigated histochemically.

  18. Regulation of intestinal epithelial cell growth by transforming growth factor type. beta

    SciTech Connect

    Barnard, J.A.; Beauchamp, R.D.; Coffey, R.J.; Moses, H.L. )

    1989-03-01

    A nontransformed rat jejunal crypt cell line (IEC-6) expresses transforming growth factor type {beta}1 (TGF-{beta}1) mRNA, secretes latent {sup 125}I-labeled TGF-{beta}1 to specific, high-affinity cell surface receptors. IEC-6 cell growth is markedly inhibited by TGF-{beta}1 and TGF-{beta}2 with half-maximal inhibition occurring between 0.1 and 1.0 ng of TGF-{beta}1 per ml. TGF-{beta}1-mediated growth inhibition is not associated with the appearance of biochemical markers of enterocyte differentiation such as alkaline phosphatase expression and sucrase activity. TGF-{beta}1 increases steady-state levels of its own mRNA expression within 8 hr of treatment of rapidly growing IEC-6 cells. In freshly isolated rat jejunal enterocytes that are sequentially eluted from the crypt villus axis, TGF-{beta}1 mRNA expression is most abundant in terminally differentiated villus tip cells and least abundant in the less differentiated, mitotically active crypt cells. The authors conclude that TGF-{beta}1 is an autoregulated growth inhibitor in IEC-6 cells that potentially functions in an autocrine manner. In the rat jejunal epithelium, TGF-{beta}1 expression is most prominently localized to the villus tip--i.e., the region of the crypt villus unit that is characterized by the terminally differentiated phenotype. These data suggest that TGF-{beta}1 may function in coordination of the rapid cell turnover typical for the intestinal epithelium.

  19. Estrogens and Insulin-Like Growth Factor 1 Modulate Neoplastic Cell Growth in Human Cholangiocarcinoma

    PubMed Central

    Alvaro, Domenico; Barbaro, Barbara; Franchitto, Antonio; Onori, Paolo; Glaser, Shannon S.; Alpini, Gianfranco; Francis, Heather; Marucci, Luca; Sterpetti, Paola; Ginanni-Corradini, Stefano; Onetti Muda, Andrea; Dostal, David E.; De Santis, Adriano; Attili, Adolfo F.; Benedetti, Antonio; Gaudio, Eugenio

    2006-01-01

    We investigated the expression of estrogen receptors (ERs), insulin-like growth factor 1 (IGF-1), and IGF-1R (receptor) in human cholangiocarcinoma and cholangiocarcinoma cell lines (HuH-28, TFK-1, Mz-ChA-1), evaluating the role of estrogens and IGF-1 in the modulation of neoplastic cell growth. ER-α, ER-β, IGF-1, and IGF-1R were expressed (immunohistochemistry) in all biopsies (18 of 18) of intrahepatic cholangiocarcinoma. ER-α was expressed (Western blot) only by the HuH-28 cell line (intrahepatic cholangiocarcinoma), whereas ER-β, IGF-1, and IGF-1R were expressed in the three cell lines examined. In serum-deprived HuH-28 cells, serum readmission induced stimulation of cell proliferation that was inhibited by ER and IGF-1R antagonists. 17β-Estradiol and IGF-1 stimulated proliferation of HuH-28 cells to a similar extent to that of MCF7 (breast cancer) but greater than that of TFK-1 and Mz-ChA-1, inhibiting apoptosis and exerting additive effects. These effects of 17β-estradiol and IGF-1 were associated with enhanced protein expression of ER-α, phosphorylated (p)-ERK1/2 and pAKT but with decreased expression of ER-β. Finally, transfection of IGF-1R anti-sense oligonucleotides in HuH-28 cells markedly decreased cell proliferation. In conclusion, human intrahepatic cholangiocarcinomas express receptors for estrogens and IGF-1, which cooperate in the modulation of cell growth and apoptosis. Modulation of ER and IGF-1R could represent a strategy for the management of cholangiocarcinoma. PMID:16936263

  20. Distinct signaling programs control human hematopoietic stem cell survival and proliferation

    PubMed Central

    Hammond, Colin A.; Aghaeepour, Nima; Miller, Paul H.; Pellacani, Davide; Beer, Philip A.; Sachs, Karen; Qiao, Wenlian; Wang, WeiJia; Humphries, R. Keith; Sauvageau, Guy; Zandstra, Peter W.; Bendall, Sean C.; Nolan, Garry P.; Hansen, Carl

    2017-01-01

    Several growth factors (GFs) that together promote quiescent human hematopoietic stem cell (HSC) expansion ex vivo have been identified; however, the molecular mechanisms by which these GFs regulate the survival, proliferation. and differentiation of human HSCs remain poorly understood. We now describe experiments in which we used mass cytometry to simultaneously measure multiple surface markers, transcription factors, active signaling intermediates, viability, and cell-cycle indicators in single CD34+ cord blood cells before and up to 2 hours after their stimulation with stem cell factor, Fms-like tyrosine kinase 3 ligand, interleukin-3, interleukin-6, and granulocyte colony-stimulating factor (5 GFs) either alone or combined. Cells with a CD34+CD38−CD45RA−CD90+CD49f+ (CD49f+) phenotype (∼10% HSCs with >6-month repopulating activity in immunodeficient mice) displayed rapid increases in activated STAT1/3/5, extracellular signal-regulated kinase 1/2, AKT, CREB, and S6 by 1 or more of these GFs, and β-catenin only when the 5 GFs were combined. Certain minority subsets within the CD49f+ compartment were poorly GF-responsive and, among the more GF-responsive subsets of CD49f+ cells, different signaling intermediates correlated with the levels of the myeloid- and lymphoid-associated transcription factors measured. Phenotypically similar, but CD90−CD49f− cells (MPPs) contained lower baseline levels of multiple signaling intermediates than the CD90+CD49f+ cells, but showed similar response amplitudes to the same GFs. Importantly, we found activation or inhibition of AKT and β-catenin directly altered immediate CD49f+ cell survival and proliferation. These findings identify rapid signaling events that 5 GFs elicit directly in the most primitive human hematopoietic cell types to promote their survival and proliferation. PMID:27827829

  1. Distinct signaling programs control human hematopoietic stem cell survival and proliferation.

    PubMed

    Knapp, David J H F; Hammond, Colin A; Aghaeepour, Nima; Miller, Paul H; Pellacani, Davide; Beer, Philip A; Sachs, Karen; Qiao, Wenlian; Wang, WeiJia; Humphries, R Keith; Sauvageau, Guy; Zandstra, Peter W; Bendall, Sean C; Nolan, Garry P; Hansen, Carl; Eaves, Connie J

    2017-01-19

    Several growth factors (GFs) that together promote quiescent human hematopoietic stem cell (HSC) expansion ex vivo have been identified; however, the molecular mechanisms by which these GFs regulate the survival, proliferation. and differentiation of human HSCs remain poorly understood. We now describe experiments in which we used mass cytometry to simultaneously measure multiple surface markers, transcription factors, active signaling intermediates, viability, and cell-cycle indicators in single CD34(+) cord blood cells before and up to 2 hours after their stimulation with stem cell factor, Fms-like tyrosine kinase 3 ligand, interleukin-3, interleukin-6, and granulocyte colony-stimulating factor (5 GFs) either alone or combined. Cells with a CD34(+)CD38(-)CD45RA(-)CD90(+)CD49f(+) (CD49f(+)) phenotype (∼10% HSCs with >6-month repopulating activity in immunodeficient mice) displayed rapid increases in activated STAT1/3/5, extracellular signal-regulated kinase 1/2, AKT, CREB, and S6 by 1 or more of these GFs, and β-catenin only when the 5 GFs were combined. Certain minority subsets within the CD49f(+) compartment were poorly GF-responsive and, among the more GF-responsive subsets of CD49f(+) cells, different signaling intermediates correlated with the levels of the myeloid- and lymphoid-associated transcription factors measured. Phenotypically similar, but CD90(-)CD49f(-) cells (MPPs) contained lower baseline levels of multiple signaling intermediates than the CD90(+)CD49f(+) cells, but showed similar response amplitudes to the same GFs. Importantly, we found activation or inhibition of AKT and β-catenin directly altered immediate CD49f(+) cell survival and proliferation. These findings identify rapid signaling events that 5 GFs elicit directly in the most primitive human hematopoietic cell types to promote their survival and proliferation.

  2. Depressed immunity and impaired proliferation of hematopoietic progenitor cells in patients with complete spinal cord injury.

    PubMed

    Iversen, P O; Hjeltnes, N; Holm, B; Flatebo, T; Strom-Gundersen, I; Ronning, W; Stanghelle, J; Benestad, H B

    2000-09-15

    The bone marrow is supplied with both sensory and autonomic neurons, but their roles in regulating hematopoietic and immunocompetent cells are unknown. Leukocyte growth and activity in patients with stable and complete spinal cord injuries were studied. The innervation of the bone marrow below the injury level lacked normal supraspinal activity, that is, a decentralized bone marrow. Lymphocyte functions were markedly decreased in injured patients. Long-term colony formation of all hematopoietic cell lineages, including dendritic cells, by decentralized bone marrow cells was substantially reduced. It was concluded that nonspecific and adaptive lymphocyte-mediated immunity and growth of early hematopoietic progenitor cells are impaired in patients with spinal cord injuries. Possibly, this reflects cellular defects caused by the malfunctioning neuronal regulation of immune and bone marrow function.

  3. Fast and Efficient Neural Conversion of Human Hematopoietic Cells

    PubMed Central

    Castaño, Julio; Menendez, Pablo; Bruzos-Cidon, Cristina; Straccia, Marco; Sousa, Amaia; Zabaleta, Lorea; Vazquez, Nerea; Zubiarrain, Amaia; Sonntag, Kai-Christian; Ugedo, Luisa; Carvajal-Vergara, Xonia; Canals, Josep Maria; Torrecilla, Maria; Sanchez-Pernaute, Rosario; Giorgetti, Alessandra

    2014-01-01

    Summary Neurons obtained directly from human somatic cells hold great promise for disease modeling and drug screening. Available protocols rely on overexpression of transcription factors using integrative vectors and are often slow, complex, and inefficient. We report a fast and efficient approach for generating induced neural cells (iNCs) directly from human hematopoietic cells using Sendai virus. Upon SOX2 and c-MYC expression, CD133-positive cord blood cells rapidly adopt a neuroepithelial morphology and exhibit high expansion capacity. Under defined neurogenic culture conditions, they express mature neuronal markers and fire spontaneous action potentials that can be modulated with neurotransmitters. SOX2 and c-MYC are also sufficient to convert peripheral blood mononuclear cells into iNCs. However, the conversion process is less efficient and resulting iNCs have limited expansion capacity and electrophysiological activity upon differentiation. Our study demonstrates rapid and efficient generation of iNCs from hematopoietic cells while underscoring the impact of target cells on conversion efficiency. PMID:25458894

  4. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    PubMed Central

    Coste, Cécile; Neirinckx, Virginie; Gothot, André; Wislet, Sabine; Rogister, Bernard

    2015-01-01

    Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC) function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL) 12-abundant reticular (CAR) cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs), which have been recently identified as neural crest-derived cells (NCSCs). Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system. PMID:26136659

  5. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    PubMed

    Coste, Cécile; Neirinckx, Virginie; Gothot, André; Wislet, Sabine; Rogister, Bernard

    2015-01-01

    Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC) function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL) 12-abundant reticular (CAR) cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs), which have been recently identified as neural crest-derived cells (NCSCs). Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system.

  6. Expanded Hematopoietic Progenitor Cells Reselected for High Aldehyde Dehydrogenase Activity Demonstrate Islet Regenerative Functions.

    PubMed

    Seneviratne, Ayesh K; Bell, Gillian I; Sherman, Stephen E; Cooper, Tyler T; Putman, David M; Hess, David A

    2016-04-01

    Human umbilical cord blood (UCB) hematopoietic progenitor cells (HPC) purified for high aldehyde dehydrogenase activity (ALDH(hi) ) stimulate islet regeneration after transplantation into mice with streptozotocin-induced β cell deletion. However, ALDH(hi) cells represent a rare progenitor subset and widespread use of UCB ALDH(hi) cells to stimulate islet regeneration will require progenitor cell expansion without loss of islet regenerative functions. Here we demonstrate that prospectively purified UCB ALDH(hi) cells expand efficiently under serum-free, xeno-free conditions with minimal growth factor supplementation. Consistent with the concept that ALDH-activity is decreased as progenitor cells differentiate, kinetic analyses over 9 days revealed the frequency of ALDH(hi) cells diminished as culture time progressed such that total ALDH(hi) cell number was maximal (increased 3-fold) at day 6. Subsequently, day 6 expanded cells (bulk cells) were sorted after culture to reselect differentiated progeny with low ALDH-activity (ALDH(lo) subset) from less differentiated progeny with high ALDH-activity (ALDH(hi) subset). The ALDH(hi) subset retained primitive cell surface marker coexpression (32.0% ± 7.0% CD34(+) /CD38(-) cells, 37.0% ± 6.9% CD34(+) /CD133(+) cells), and demonstrated increased hematopoietic colony forming cell function compared with the ALDH(lo) subset. Notably, bulk cells or ALDH(lo) cells did not possess the functional capacity to lower hyperglycemia after transplantation into streptozotocin-treated NOD/SCID mice. However, transplantation of the repurified ALDH(hi) subset significantly reduced hyperglycemia, improved glucose tolerance, and increased islet-associated cell proliferation and capillary formation. Thus, expansion and delivery of reselected UCB cells that retain high ALDH-activity after short-term culture represents an improved strategy for the development of cellular therapies to enhance islet regeneration in situ.

  7. Production of epithelial cell growth factors by lamina propria mononuclear cells.

    PubMed Central

    Lowes, J R; Priddle, J D; Jewell, D P

    1992-01-01

    The effects of lamina propria mononuclear cell culture supernatant on epithelial cell DNA synthesis were studied using cells isolated from patients with inflammatory bowel disease and normal controls. Supernatants from resting and phytohaemagglutinin stimulated cells were studied and supernatants that strongly promoted DNA synthesis were pooled, and growth factor activity partially characterised. The effects of recombinant interleukins-1 beta,2,3,interferon-gamma, and granulocyte macrophage colony stimulating factor were tested in the same system. Resting lamina propria mononuclear cells produce factors that increase DNA synthesis. Production of these factors is increased by phytohaemagglutinin stimulation. No significant differences were found in production of these factors between patients with inflammatory bowel disease and normal controls. The molecular weight of the active factor(s) lies in the region 31-48 kD. Chromatofocusing produced two peaks of activity, one in the region pk 5.5 and one around pk 6.4. The activity was heat and acid pH labile. Activity was not destroyed, however, by 0.05% trypsin. Recombinant granulocyte macrophage colony stimulating factor was a weak stimulus to epithelial DNA synthesis, interleukin-1 beta was weakly inhibitory but other cytokines tested did not have any effect. Granulocyte macrophage colony stimulating factor is probably important in controlling epithelial cell growth. PMID:1740274

  8. Production of epithelial cell growth factors by lamina propria mononuclear cells.

    PubMed

    Lowes, J R; Priddle, J D; Jewell, D P

    1992-01-01

    The effects of lamina propria mononuclear cell culture supernatant on epithelial cell DNA synthesis were studied using cells isolated from patients with inflammatory bowel disease and normal controls. Supernatants from resting and phytohaemagglutinin stimulated cells were studied and supernatants that strongly promoted DNA synthesis were pooled, and growth factor activity partially characterised. The effects of recombinant interleukins-1 beta,2,3,interferon-gamma, and granulocyte macrophage colony stimulating factor were tested in the same system. Resting lamina propria mononuclear cells produce factors that increase DNA synthesis. Production of these factors is increased by phytohaemagglutinin stimulation. No significant differences were found in production of these factors between patients with inflammatory bowel disease and normal controls. The molecular weight of the active factor(s) lies in the region 31-48 kD. Chromatofocusing produced two peaks of activity, one in the region pk 5.5 and one around pk 6.4. The activity was heat and acid pH labile. Activity was not destroyed, however, by 0.05% trypsin. Recombinant granulocyte macrophage colony stimulating factor was a weak stimulus to epithelial DNA synthesis, interleukin-1 beta was weakly inhibitory but other cytokines tested did not have any effect. Granulocyte macrophage colony stimulating factor is probably important in controlling epithelial cell growth.

  9. Small Molecule Protection of Bone Marrow Hematopoietic Stem Cells

    DTIC Science & Technology

    2016-10-01

    Award Number: W81XWH-14-1-0297 TITLE: Small Molecule Protection of Bone Marrow Hematopoietic Stem Cells PRINCIPAL INVESTIGATOR: Raymond J...Molecule Protection of Bone Marrow Hematopoietic Stem Cells Stem Cells ’ 5a. CONTRACT NUMBER W81XWH-14-1-0297 W81XWH-14-1-0297 W81XWH-14-1-0297 5b...hematopoietic stem cells (HSCs) from damage or killing by endogenous aldehydes. Proof-of-concept for these experiments has been developed using isogenic

  10. Cord blood-derived CD34+ hematopoietic cells with low mitochondrial mass are enriched in hematopoietic repopulating stem cell function

    PubMed Central

    Romero-Moya, Damia; Bueno, Clara; Montes, Rosa; Navarro-Montero, Oscar; Iborra, Francisco J.; López, Luis Carlos; Martin, Miguel; Menendez, Pablo

    2013-01-01

    The homeostasis of the hematopoietic stem/progenitor cell pool relies on a fine-tuned balance between self-renewal, differentiation and proliferation. Recent studies have proposed that mitochondria regulate these processes. Although recent work has contributed to understanding the role of mitochondria during stem cell differentiation, it remains unclear whether the mitochondrial content/function affects human hematopoietic stem versus progenitor function. We found that mitochondrial mass correlates strongly with mitochondrial membrane potential in CD34+ hematopoietic stem/progenitor cells. We, therefore, sorted cord blood CD34+ cells on the basis of their mitochondrial mass and analyzed the in vitro homeostasis and clonogenic potential as well as the in vivo repopulating potential of CD34+ cells with high (CD34+ MitoHigh) versus low (CD34+ MitoLow) mitochondrial mass. The CD34+ MitoLow fraction contained 6-fold more CD34+CD38− primitive cells and was enriched in hematopoietic stem cell function, as demonstrated by its significantly greater hematopoietic reconstitution potential in immuno-deficient mice. In contrast, the CD34+ MitoHigh fraction was more enriched in hematopoietic progenitor function with higher in vitro clonogenic capacity. In vitro differentiation of CD34+ MitoLow cells was significantly delayed as compared to that of CD34+ MitoHigh cells. The eventual complete differentiation of CD34+ MitoLow cells, which coincided with a robust expansion of the CD34− differentiated progeny, was accompanied by mitochondrial adaptation, as shown by significant increases in ATP production and expression of the mitochondrial genes ND1 and COX2. In conclusion, cord blood CD34+ cells with low levels of mitochondrial mass are enriched in hematopoietic repopulating stem cell function whereas high levels of mitochondrial mass identify hematopoietic progenitors. A mitochondrial response underlies hematopoietic stem/progenitor cell differentiation and proliferation of

  11. Risk factors associated with liver injury and impact of liver injury on transplantation-related mortality in pediatric recipients of allogeneic hematopoietic stem cell transplantation.

    PubMed

    Radhakrishnan, Kavita; Bishop, Jacquelyn; Jin, Zhezhen; Kothari, Komal; Bhatia, Monica; George, Diane; Garvin, James H; Martinez, Mercedes; Ovchinsky, Nadia; Lobritto, Steven; Elsayed, Yasmin; Satwani, Prakash

    2013-06-01

    In adults, hepatic complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT) are associated with significant morbidity and transplantation-related mortality (TRM). However, there is a paucity of parallel data on the incidence of, and risk factors for, liver injury (LI) and the impact of LI on TRM in pediatric allo-HSCT recipients. We compared total bilirubin, direct bilirubin, and alanine aminotransferase values before allo-HSCT and at 1 month, day +100, and 12 months after allo-HSCT in 248 patients who received either a myeloablative conditioning (MAC) regimen (n = 109) or a reduced-toxicity/reduced-intensity conditioning (RTC/RIC) regimen (n = 139). LI was defined as grade ≥ 2 hyperbilirubinemia according to the National Cancer Institute's Common Terminology Criteria for Adverse Events 3.0/4.0 (total bilirubin, >1.95 mg/dL, 1.5 times above the upper limit of normal for our laboratory). Univariate and multivariate logistic regression models were used to identify risk factors for LI and TRM. The incidence of LI at 1 month after allo-HSCT was 14.1%. The median bilirubin level was 3.5 mg/dL (range, 1.97 to 32.2 mg/dL). Only LI as defined by total bilirubin level, but not by direct bilirubin or alanine aminotransferase level, was found to be a significant predictor for TRM. The 1-year TRM was 60.7% (95% confidence interval, 42.6% to 78.7%) in patients with LI at 1 month after allo-HSCT, compared with 14.6% (95% confidence interval, 9.9% to 19.4%) (P < .0001) in patients those who did not have liver injury. Multivariate analysis identified age (P = .03), total body irradiation (P = .007), bacterial bloodstream infection (BBSI) (P = .001), and invasive fungal infection (IFI) (P = .002) as significant risk factors for developing LI at 1 month. On multivariate analysis for risk factors for TRM, only LI at 1 month after allo-HSCT (P < .0001), primary graft failure (P = .001), BBSI (P = .003), and systemic viral infection (P = .04) were identified

  12. Bone Marrow Cells in Acute Lymphoblastic Leukemia Create a Proinflammatory Microenvironment Influencing Normal Hematopoietic Differentiation Fates

    PubMed Central

    Vilchis-Ordoñez, Armando; Contreras-Quiroz, Adriana; Dorantes-Acosta, Elisa; Reyes-López, Alfonso; Quintela-Nuñez del Prado, Henry Martin; Venegas-Vázquez, Jorge; Mayani, Hector; Ortiz-Navarrete, Vianney; López-Martínez, Briceida; Pelayo, Rosana

    2015-01-01

    B-cell acute lymphoblastic leukemia (B-ALL) is a serious public health problem in the pediatric population worldwide, contributing to 85% of deaths from childhood cancers. Understanding the biology of the disease is crucial for its clinical management and the development of therapeutic strategies. In line with that observed in other malignancies, chronic inflammation may contribute to a tumor microenvironment resulting in the damage of normal processes, concomitant to development and maintenance of neoplastic cells. We report here that hematopoietic cells from bone marrow B-ALL have the ability to produce proinflammatory and growth factors, including TNFα, IL-1β, IL-12, and GM-CSF that stimulate proliferation and differentiation of normal stem and progenitor cells. Our findings suggest an apparently distinct CD13+CD33+ population of leukemic cells contributing to a proinflammatory microenvironment that may be detrimental to long-term normal hematopoiesis within B-ALL bone marrow. PMID:26090405

  13. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews.

    PubMed

    Xiong, Liu-Lin; Chen, Zhi-Wei; Wang, Ting-Hua

    2016-04-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  14. Distinct Brca1 Mutations Differentially Reduce Hematopoietic Stem Cell Function.

    PubMed

    Mgbemena, Victoria E; Signer, Robert A J; Wijayatunge, Ranjula; Laxson, Travis; Morrison, Sean J; Ross, Theodora S

    2017-01-24

    BRCA1 is a well-known DNA repair pathway component and a tissue-specific tumor suppressor. However, its role in hematopoiesis is uncertain. Here, we report that a cohort of patients heterozygous for BRCA1 mutations experienced more hematopoietic toxicity from chemotherapy than those with BRCA2 mutations. To test whether this reflects a requirement for BRCA1 in hematopoiesis, we generated mice with Brca1 mutations in hematopoietic cells. Mice homozygous for a null Brca1 mutation in the embryonic hematopoietic system (Vav1-iCre;Brca1(F22-24/F22-24)) developed hematopoietic defects in early adulthood that included reduced hematopoietic stem cells (HSCs). Although mice homozygous for a huBRCA1 knockin allele (Brca1(BRCA1/BRCA1)) were normal, mice with a mutant huBRCA1/5382insC allele and a null allele (Mx1-Cre;Brca1(F22-24/5382insC)) had severe hematopoietic defects marked by a complete loss of hematopoietic stem and progenitor cells. Our data show that Brca1 is necessary for HSC maintenance and normal hematopoiesis and that distinct mutations lead to different degrees of hematopoietic dysfunction.

  15. The SKI proto-oncogene enhances the in vivo repopulation of hematopoietic stem cells and causes myeloproliferative disease.

    PubMed

    Singbrant, Sofie; Wall, Meaghan; Moody, Jennifer; Karlsson, Göran; Chalk, Alistair M; Liddicoat, Brian; Russell, Megan R; Walkley, Carl R; Karlsson, Stefan

    2014-04-01

    The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced a gene signature associated with hematopoietic stem cells and myeloid differentiation, as well as hepatocyte growth factor signaling. Here we demonstrate that, in contrast to what has generally been assumed, the significant impact of SKI on hematopoiesis is independent of its ability to inhibit TGF-beta signaling. Instead, myeloid progenitors expressing SKI are partially dependent on functional hepatocyte growth factor signaling. Collectively our results demonstrate that SKI is an important regulator of hematopoietic stem cell activity and its overexpression leads to myeloproliferative disease.

  16. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    PubMed Central

    Kosan, Christian; Godmann, Maren

    2016-01-01

    All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function. PMID:26798358

  17. FDA review summary: Mozobil in combination with granulocyte colony-stimulating factor to mobilize hematopoietic stem cells to the peripheral blood for collection and subsequent autologous transplantation.

    PubMed

    Brave, Michael; Farrell, Ann; Ching Lin, Sue; Ocheltree, Terrance; Pope Miksinski, Sarah; Lee, Shwu-Luan; Saber, Haleh; Fourie, Jeanne; Tornoe, Christoffer; Booth, Brian; Yuan, Weishi; He, Kun; Justice, Robert; Pazdur, Richard

    2010-01-01

    On December 15, 2008, the US Food and Drug Administration approved plerixafor (Mozobil; Genzyme Corp.), a new small-molecule inhibitor of the CXCR4 chemokine receptor, for use in combination with granulocyte colony-stimulating factor (G-CSF) to mobilize hematopoietic stem cells (HSC) to the peripheral blood for collection and subsequent autologous transplantation in patients with non-Hodgkin's lymphoma (NHL) and multiple myeloma (MM). This summary reviews the database supporting this approval. The safety and efficacy of plerixafor were demonstrated by 2 multicenter, randomized, placebo-controlled studies in patients with NHL and MM who were eligible for autologous HSC transplantation. The primary efficacy end points were the collection of > or = 5 x 10(6) CD34+ cells/kg from the peripheral blood in 4 or fewer apheresis sessions in patients with NHL or > or = 6 x 10(6) CD34+ cells/kg from the peripheral blood in 2 or fewer apheresis sessions in patients with MM. The 2 randomized studies combined enrolled 600 patients (298 with NHL and 302 with MM). Fifty-nine percent of patients with NHL who were mobilized with G-CSF and plerixafor had peripheral blood HSC collections of > or = 5 x 10(6) CD34+ cells/kg in 4 or fewer apheresis sessions, compared with 20% of patients with NHL who were mobilized with G-CSF and placebo (p < 0.001). Seventy-two percent of patients with MM who were mobilized with Mozobil and G-CSF had peripheral blood HSC collections of > or = 6 x 10(6) CD34+ cells/kg in 2 or fewer apheresis sessions, compared with 34% of patients with MM who were mobilized with placebo and G-CSF (p < 0.001). Common adverse reactions included diarrhea, nausea, vomiting, flatulence, injection site reactions, fatigue, arthralgia, headache, dizziness, and insomnia. This report describes the Food and Drug Administration review supporting the approval of plerixafor. Copyright 2010 S. Karger AG, Basel.

  18. Recent advances in hematopoietic stem cell transplantation.

    PubMed

    Norkin, Maxim; Wingard, John R

    2017-01-01

    Hematopoietic cell transplantation (HCT), once used as a last-resort therapy, is now considered a lifesaving procedure for thousands of patients with life-threatening diseases worldwide and is frequently used early in the course of treatment for diseases destined to be uncontrollable by non-HCT therapies. Incremental advances leading to reduction of post-transplant morbidity and mortality by better control of graft versus host disease (GVHD), infections, and regimen-related toxicities, coupled with greater donor options, not only significantly increased the utilization and success of this procedure but also allowed many of these patients to enjoy healthy and productive lives after HCT. Emerging concepts in the field are now focused on the expansion of available donor options, further reduction of transplant-related toxicity, and decrease in post-transplant relapse.

  19. Recent advances in hematopoietic stem cell transplantation

    PubMed Central

    Norkin, Maxim; Wingard, John R

    2017-01-01

    Hematopoietic cell transplantation (HCT), once used as a last-resort therapy, is now considered a lifesaving procedure for thousands of patients with life-threatening diseases worldwide and is frequently used early in the course of treatment for diseases destined to be uncontrollable by non-HCT therapies. Incremental advances leading to reduction of post-transplant morbidity and mortality by better control of graft versus host disease (GVHD), infections, and regimen-related toxicities, coupled with greater donor options, not only significantly increased the utilization and success of this procedure but also allowed many of these patients to enjoy healthy and productive lives after HCT. Emerging concepts in the field are now focused on the expansion of available donor options, further reduction of transplant-related toxicity, and decrease in post-transplant relapse. PMID:28663793

  20. Tuberculosis in Hematopoietic Stem Cell Transplant Recipients

    PubMed Central

    Ramos, Jéssica Fernandes; Batista, Marjorie Vieira; Costa, Silvia Figueiredo

    2013-01-01

    Literature on tuberculosis (TB) occurring in recipients of Hematopoietic Stem Cell Transplant (HSCT) is scanty even in countries where TB is common. Most reports of TB in HSCT patients were from ASIA, in fact the TB incidence ranging from 0.0014 (USA) to 16% (Pakistan). There are few reports of TB diagnosis during the first two weeks after HSCT; most of cases described in the literature occurred after 90 days of HSCT, and the lung was the organ most involved. The mortality ranged from 0 to 50% and is higher in allogeneic HSCT than in autologous. There is no consensus regarding the screening with tuberculin skin test or QuantiFERON-TB gold, primary prophylaxis for latent TB, and whether the epidemiologic query should be emphasized in developing countries with high prevalence of TB. PMID:24363876

  1. Management issues in hematopoietic stem cell transplantation.

    PubMed

    Rice, Robert David; Bailey, Gay

    2009-05-01

    To describe the leadership and management challenges of creating and maintaining a comprehensive hematopoietic stem cell transplant program. Research studies, review articles, databases, and web sites. Nurses at all levels of practice must conceptualize and execute expert specialized care through all phases of transplantation. Attention must be paid to specialized functions such as care coordination and case management, as well as scope of practice. Focus must be given to quality assessment and improvement. As the field of transplant grows and evolves, expert nursing leadership will be required to manage the continuum of care as patients move between health care settings. The increased emphasis on outpatient care, cost containment, and consumer and regulatory demand for quality will continue to challenge nurse leaders to manage creative enterprises.

  2. Impaired hematopoietic progenitor cells in trauma hemorrhagic shock.

    PubMed

    Kumar, Manoj; Bhoi, Sanjeev

    2016-01-01

    Hemorrhagic shock (HS) is the major cause of death during trauma. Mortality due to HS is about 50%. Dysfunction of hematopoietic progenitor cells (HPCs) has been observed during severe trauma and HS. HS induces the elevation of cytokines, granulocyte-colony stimulating factor (G-CSF), peripheral blood HPCs, and circulating catecholamines, and decreases the expression of erythropoietin receptor connected with suppression of HPCs. Impaired HPCs may lead to persistent anemia and risk of susceptibility to infection, sepsis, and MOF. There is a need to reactivate impaired HPCs during trauma hemorrhagic shock.

  3. Mutual effects of growth hormone and growth factors on avian skeletal muscle satellite cells.

    PubMed

    Hodik, V; Mett, A; Halevy, O

    1997-10-01

    Chicken growth hormone (cGH) has been shown to affect chicken skeletal muscle satellite cell proliferation and differentiation in vitro. This study describes the interactions of cGH with basic fibroblast growth factor (bFGF) and insulin-like growth factor I (IGF-I). Both cGH and bFGF induced cGH receptor (cGH-R) gene expression as well as that of the avian FGF receptor, FREK, when added at low concentrations to satellite cells. bFGF caused a rapid induction of cGH-R mRNA. Combinations of low levels of bFGF and cGH caused a further increase in receptor mRNA expression levels, relative to that caused by each peptide alone, and their effect on DNA synthesis was synergistic. However, combinations of cGH and bFGF at high concentrations decreased cGH-R and FREK mRNA levels and DNA synthesis in a dose-dependent manner. These results imply that the mutual effects of bFGF and cGH on satellite cell proliferation are receptor-mediated and that each peptide regulates both receptors gene expression. IGF-I induced DNA synthesis in satellite cells but did not affect cGH-R gene expression at any of the concentrations tested. Coincubation of 3.5 ng/ml cGH and various concentrations of IGF-I did not significantly change DNA synthesis relative to the effect of cGH alone. However, combinations with high levels of cGH abolished it. Similar time-course (up to 6 hr) induction of DNA synthesis in serum-starved cells was observed in the presence of cGH or IGF-I, suggesting that cGH affects satellite cell proliferation in an IGF-I-independent manner.

  4. Fetal liver stromal cells promote hematopoietic cell expansion

    SciTech Connect

    Zhou, Kun; Hu, Caihong; Zhou, Zhigang; Huang, Lifang; Liu, Wenli; Sun, Hanying

    2009-09-25

    Future application of hematopoietic stem and progenitor cells (HSPCs) in clinical therapies largely depends on their successful expansion in vitro. Fetal liver (FL) is a unique hematopoietic organ in which hematopoietic cells markedly expand in number, but the mechanisms involved remain unclear. Stromal cells (StroCs) have been suggested to provide a suitable cellular environment for in vitro expansion of HSPCs. In this study, murine StroCs derived from FL at E14.5, with a high level of Sonic hedgehog (Shh) and Wnt expression, were found to have an increased ability to support the proliferation of HSPCs. This effect was inhibited by blocking Shh signaling. Supplementation with soluble Shh-N promoted the proliferation of hematopoietic cells by activating Wnt signaling. Our findings suggest that FL-derived StroCs support proliferation of HSPCs via Shh inducing an autocrine Wnt signaling loop. The use of FL-derived StroCs and regulation of the Shh pathway might further enhance HPSC expansion.

  5. Minimal Residual Disease as a Predictive Factor for Relapse after Allogeneic Hematopoietic Stem Cell Transplant in Adult Patients with Acute Myeloid Leukemia in First and Second Complete Remission

    PubMed Central

    Grubovikj, Rada M.; Alavi, Asif; Koppel, Ahrin; Territo, Mary; Schiller, Gary J.

    2012-01-01

    Allogeneic hematopoietic stem cell transplantation (allo-SCT) is potentially curative for patients with high-risk leukemia, but disease recurrence remains the leading cause of treatment failure. Our objective was to determine the impact of minimal residual disease (MRD) by any technique in adult patients with acute myeloid leukemia (AML) in morphologic first and second complete remission undergoing allo-SCT. Fifty nine patients were eligible for the study of 160 patients transplanted over ten years. For the MRD assessment we used multiparametric flow cytometry, cytogenetics and fluorescent in situ hybridization; 19 patients (32.2%) were identified as MRD positive. Patients with MRD had a consistently worse outcome over those without MRD, with 3-years leukemia-free survival (LFS) of 15.8% vs. 62.4% and overall survival (OS) of 17.5% vs. 62.3%. Relapse rate was significantly higher in MRD-positive patients; 3 years relapse rate in MRD-positive patients was 57.9% vs. 15.1% in MRD-negative patients. Detection of MRD in complete remission was associated with increased overall mortality (HR = 3.3; 95% CI: 1.45–7.57; p = 0.0044) and relapse (HR = 5.26; 95% CI: 2.0–14.0; p = 0.001), even after controlling for other risk factors. Our study showed that for patients in morphologic complete remission the presence of MRD predicts for significantly increased risk of relapse and reduced LFS and OS. PMID:24213327

  6. Vancomycin-resistant Enterococcus colonization and bloodstream infection: prevalence, risk factors, and the impact on early outcomes after allogeneic hematopoietic cell transplantation in patients with acute myeloid leukemia.

    PubMed

    Hefazi, Mehrdad; Damlaj, Moussab; Alkhateeb, Hassan B; Partain, Daniel K; Patel, Robin; Razonable, Raymund R; Gastineau, Dennis A; Al-Kali, Aref; Hashmi, Shahrukh K; Hogan, William J; Litzow, Mark R; Patnaik, Mrinal M

    2016-12-01

    Screening for vancomycin-resistant Enterococcus (VRE) is performed at many transplant centers, but data on the impact of VRE colonization and bloodstream infection (BSI) on hematopoietic cell transplantation (HCT) outcomes remain conflicting. Consecutive adults with acute myeloid leukemia who underwent allogeneic HCT between 2004 and 2014 were retrospectively reviewed. Patients were screened by perirectal PCR swabs targeting vanA and vanB twice weekly while inpatient. Of a total of 203 patients (median age 54 years), 73 (36%) were VRE colonized prior to HCT, 23 (11%) became colonized within the first 100 days, and 107 (53%) remained non-colonized through day 100 post HCT. A landmark analysis on HCT day 0 revealed no significant difference in overall survival according to pre-transplant colonization status (P=.20). However, patients with subsequent VRE colonization within the first 100 days of HCT had a significantly worse survival on both univariable (P=.04) and multivariable (P=.03) analyses. During the first 30 days post HCT, 11 (5% of total and 11% of the VRE colonized) patients developed VRE BSI. Ten (91%) of these had screened positive for VRE colonization before the bacteremia. Age ≥60 years, HCT-comorbidity index ≥3, and VRE colonization were independent risk factors for VRE BSI on multivariable analysis (P=.04, .03, .003, respectively). Only 1 (9%) patient with VRE BSI died within the first 100 days post HCT. VRE colonization is a surrogate marker and not an independent predictor of worse outcomes post HCT. VRE BSI is associated with increased morbidity, but does not impact post-HCT survival. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Fusion of the erythropoietin receptor and the Friend spleen focus-forming virus gp55 glycoprotein transforms a factor-dependent hematopoietic cell line.

    PubMed Central

    Showers, M O; DeMartino, J C; Saito, Y; D'Andrea, A D

    1993-01-01

    The Friend spleen focus-forming virus (SFFV) gp55 glycoprotein binds to the erythropoietin receptor (EPO-R), causing constitutive receptor signaling and the first stage of Friend erythroleukemia. We have used three independent strategies to further define this transforming molecular interaction. First, using a retroviral selection strategy, we have isolated the cDNAs encoding three fusion polypeptides containing regions of both EPO-R and gp55. These fusion proteins, like full-length gp55, transformed the Ba/F3 factor-dependent hematopoietic cell line and localized the transforming activity of gp55 to its transmembrane domain. Second, we have isolated a mutant of gp55 (F-gp55-M1) which binds, but fails to activate, EPO-R. We have compared the transforming activity of this gp55 mutant with the EPO-R-gp55 fusion proteins and with other variants of gp55, including wild-type polycythemia Friend gp55 and Rauscher gp55. All of the fusion polypeptides and mutant gp55 polypeptides were expressed at comparable levels, and all coimmunoprecipitated with wild-type EPO-R, but only the Friend gp55 and the EPO-R-gp55 fusion proteins constitutively activated wild-type EPO-R. Third, we have examined the specificity of the EPO-R-gp55 interaction by comparing the differential activation of murine and human EPO-R by gp55. Wild-type gp55 had a highly specific interaction with murine EPO-R; gp55 bound, but did not activate, human EPO-R. Images PMID:8423798

  8. Fusion of the erythropoietin receptor and the Friend spleen focus-forming virus gp55 glycoprotein transforms a factor-dependent hematopoietic cell line.

    PubMed

    Showers, M O; DeMartino, J C; Saito, Y; D'Andrea, A D

    1993-02-01

    The Friend spleen focus-forming virus (SFFV) gp55 glycoprotein binds to the erythropoietin receptor (EPO-R), causing constitutive receptor signaling and the first stage of Friend erythroleukemia. We have used three independent strategies to further define this transforming molecular interaction. First, using a retroviral selection strategy, we have isolated the cDNAs encoding three fusion polypeptides containing regions of both EPO-R and gp55. These fusion proteins, like full-length gp55, transformed the Ba/F3 factor-dependent hematopoietic cell line and localized the transforming activity of gp55 to its transmembrane domain. Second, we have isolated a mutant of gp55 (F-gp55-M1) which binds, but fails to activate, EPO-R. We have compared the transforming activity of this gp55 mutant with the EPO-R-gp55 fusion proteins and with other variants of gp55, including wild-type polycythemia Friend gp55 and Rauscher gp55. All of the fusion polypeptides and mutant gp55 polypeptides were expressed at comparable levels, and all coimmunoprecipitated with wild-type EPO-R, but only the Friend gp55 and the EPO-R-gp55 fusion proteins constitutively activated wild-type EPO-R. Third, we have examined the specificity of the EPO-R-gp55 interaction by comparing the differential activation of murine and human EPO-R by gp55. Wild-type gp55 had a highly specific interaction with murine EPO-R; gp55 bound, but did not activate, human EPO-R.

  9. [Origin of Hematopoietic Stem Cells in Bone Marrow--Endothelial to Hematopoietic Transition (EHT)?].

    PubMed

    Wang, Fen; Yuan, Yan; Chen, Tong

    2015-06-01

    In contrast to primitive hematopoiesis, during embryonic definitive hematopoiesis, it has been demonstrated that multilineage hematopoietic stem/progenitor cells (HSPCs) arise from hemogenic endothelium, and the endothelial to hematopoietic transition (EHT) exists within the yolk sac, placenta, AGM, mouse head vascular and extraembryonic vessels. However, whether hemogenic endothelial cells contribute to blood cell development at other sites of definitive hematopoiesis, including fetal liver and bone marrow, remains largely unknown. Recently, more and more researches showed that hematopoiesis within bone marrow had a close relationship with vascular endothelium development, too. This review summarizes the mechanism of EHT during embryo development, and discuss whether EHT exists in adult hematopoiesis.

  10. Isolation and analysis of hematopoietic stem cells from the placenta.

    PubMed

    Gekas, Christos; E Rhodes, Katrin; K A Mikkola, Hanna

    2008-06-24

    Hematopoietic stem cells (HSCs) have the ability to self-renew and generate all cell types of the blood lineages throughout the lifetime of an individual. All HSCs emerge during embryonic development, after which their pool size is maintained by self-renewing cell divisions. Identifying the anatomical origin of HSCs and the critical developmental events regulating the process of HSC development has been complicated as many anatomical sites participate during fetal hematopoiesis. Recently, we identified the placenta as a major hematopoietic organ where HSCs are generated and expanded in unique microenvironmental niches (Gekas, et al 2005, Rhodes, et al 2008). Consequently, the placenta is an important source of HSCs during their emergence and initial expansion. In this article, we show dissection techniques for the isolation of murine placenta from E10.5 and E12.5 embryos, corresponding to the developmental stages of initiation of HSCs and the peak in the size of the HSC pool in the placenta, respectively. In addition, we present an optimized protocol for enzymatic and mechanical dissociation of placental tissue into single-cell suspension for use in flow cytometry or functional assays. We have found that use of collagenase for single-cell suspension of placenta gives sufficient yields of HSCs. An important factor affecting HSC yield from the placenta is the degree of mechanical dissociation prior to, and duration of, enzymatic treatment. We also provide a protocol for the preparation of fixed-frozen placental tissue sections for the visualization of developing HSCs by immunohistochemistry in their precise cellular niches. As hematopoietic specific antigens are not preserved during preparation of paraffin embedded sections, we routinely use fixed frozen sections for localizing placental HSCs and progenitors.

  11. The aryl hydrocarbon receptor nuclear translocator is an essential regulator of murine hematopoietic stem cell viability.

    PubMed

    Krock, Bryan L; Eisinger-Mathason, Tzipora S; Giannoukos, Dionysios N; Shay, Jessica E; Gohil, Mercy; Lee, David S; Nakazawa, Michael S; Sesen, Julie; Skuli, Nicolas; Simon, M Celeste

    2015-05-21

    Hypoxia-inducible factors (HIFs) are master regulators of the transcriptional response to low oxygen and play essential roles in embryonic development, tissue homeostasis, and disease. Recent studies have demonstrated that hematopoietic stem cells (HSCs) within the bone marrow localize to a hypoxic niche and that HIF-1α promotes HSC adaptation to stress. Because the related factor HIF-2α is also expressed in HSCs, the combined role of HIF-1α and HIF-2α in HSC maintenance is unclear. To this end, we have conditionally deleted the HIF-α dimerization partner, the aryl hydrocarbon receptor nuclear translocator (ARNT) in the hematopoietic system to ablate activity of both HIF-1α and HIF-2α and assessed the functional consequence of ARNT deficiency on fetal liver and adult hematopoiesis. We determined that ARNT is essential for adult and fetal HSC viability and homeostasis. Importantly, conditional knockout of both Hif-1α and Hif-2α phenocopied key aspects of these HSC phenotypes, demonstrating that the impact of Arnt deletion is primarily HIF dependent. ARNT-deficient long-term HSCs underwent apoptosis, potentially because of reduced B-cell lymphoma 2 (BCL-2) and vascular endothelial growth factor A (VEGF-A) expression. Our results suggest that HIF activity may regulate HSC homeostasis through these prosurvival factors.

  12. The aryl hydrocarbon receptor nuclear translocator is an essential regulator of murine hematopoietic stem cell viability

    PubMed Central

    Krock, Bryan L.; Eisinger-Mathason, Tzipora S.; Giannoukos, Dionysios N.; Shay, Jessica E.; Gohil, Mercy; Lee, David S.; Nakazawa, Michael S.; Sesen, Julie; Skuli, Nicolas

    2015-01-01

    Hypoxia-inducible factors (HIFs) are master regulators of the transcriptional response to low oxygen and play essential roles in embryonic development, tissue homeostasis, and disease. Recent studies have demonstrated that hematopoietic stem cells (HSCs) within the bone marrow localize to a hypoxic niche and that HIF-1α promotes HSC adaptation to stress. Because the related factor HIF-2α is also expressed in HSCs, the combined role of HIF-1α and HIF-2α in HSC maintenance is unclear. To this end, we have conditionally deleted the HIF-α dimerization partner, the aryl hydrocarbon receptor nuclear translocator (ARNT) in the hematopoietic system to ablate activity of both HIF-1α and HIF-2α and assessed the functional consequence of ARNT deficiency on fetal liver and adult hematopoiesis. We determined that ARNT is essential for adult and fetal HSC viability and homeostasis. Importantly, conditional knockout of both Hif-1α and Hif-2α phenocopied key aspects of these HSC phenotypes, demonstrating that the impact of Arnt deletion is primarily HIF dependent. ARNT-deficient long-term HSCs underwent apoptosis, potentially because of reduced B-cell lymphoma 2 (BCL-2) and vascular endothelial growth factor A (VEGF-A) expression. Our results suggest that HIF activity may regulate HSC homeostasis through these prosurvival factors. PMID:25855602

  13. The Hematopoietic Transcription Factor AML1 (RUNX1) Is Negatively Regulated by the Cell Cycle Protein Cyclin D3

    PubMed Central

    Peterson, Luke F.; Boyapati, Anita; Ranganathan, Velvizhi; Iwama, Atsushi; Tenen, Daniel G.; Tsai, Schickwann; Zhang, Dong-Er

    2005-01-01

    The family of cyclin D proteins plays a crucial role in the early events of the mammalian cell cycle. Recent studies have revealed the involvement of AML1 transactivation activity in promoting cell cycle progression through the induction of cyclin D proteins. This information in combination with our previous observation that a region in AML1 between amino acids 213 and 289 is important for its function led us to investigate prospective proteins associating with this region. We identified cyclin D3 by a yeast two-hybrid screen and detected AML1 interaction with the cyclin D family by both in vitro pull-down and in vivo coimmunoprecipitation assays. Furthermore, we demonstrate that cyclin D3 negatively regulates the transactivation activity of AML1 in a dose-dependent manner by competing with CBFβ for AML1 association, leading to a decreased binding affinity of AML1 for its target DNA sequence. AML1 and its fusion protein AML1-ETO have been shown to shorten and prolong the mammalian cell cycle, respectively. In addition, AML1 promotes myeloid cell differentiation. Thus, our observations suggest that the direct association of cyclin D3 with AML1 functions as a putative feedback mechanism to regulate cell cycle progression and differentiation. PMID:16287839

  14. Biology and Flow Cytometry of Proangiogenic Hematopoietic Progenitors Cells

    PubMed Central

    Rose, Jonathan A.; Erzurum, Serpil; Asosingh, Kewal

    2015-01-01

    During development hematopoiesis and neovascularization are closely linked to each other via a common bipotent stem cell called the hemangioblast that gives rise to both hematopoietic cells and endothelial cells. In postnatal life this functional connection between the vasculature and hematopoiesis is maintained by a subset of hematopoietic progenitor cells endowed with the capacity to differentiate into potent proangiogenic cells. These proangiogenic hematopoietic progenitors comprise a specific subset of bone marrow-derived cells that homes to sites of neovascularization and possess potent paracrine angiogenic activity. There is emerging evidence that this subpopulation of hematopoietic progenitors plays a critical role in vascular health and disease. Their angiogenic activity is distinct from putative “endothelial progenitor cells” that become structural cells of the endothelium by differentiation into endothelial cells. Proangiogenic hematopoietic progenitor cell research requires multi-disciplinary expertise in flow cytometry, hematology and vascular biology. This review provides a comprehensive overview of proangiogenic hematopoietic progenitor cell biology and flow cytometric methods to detect these cells in the peripheral blood circulation and bone marrow. PMID:25418030

  15. Synergistic induction of neurite outgrowth by nerve growth factor or epidermal growth factor and interleukin-6 in PC12 cells.

    PubMed

    Wu, Y Y; Bradshaw, R A

    1996-05-31

    Native PC12 cells respond differentially to nerve growth factor (NGF) but not interleukin-6 (IL-6); PC12-E2 cells, a stable variant, respond to both stimuli (and more rapidly to NGF). Neither responds to epidermal growth factor (EGF). NGF primarily induces the RAS/extracellular signal-regulated kinase (ERK) pathway and IL-6 activates a JAK (Janus tyrosine kinase)/STAT (signal transducers and activators of transcription) response. EGF also stimulates RAS/ERK but in a transient manner. When either cell type is treated with combinations of NGF, EGF, and IL-6, at concentrations that produce modest or no response, a substantial augmentation of neurite outgrowth is observed. With PC12-E2 cells, a subthreshold concentration of IL-6 increases NGF response by approximately 2-3-fold after 1-2 days; the increase with EGF is more pronounced. Native PC12 cells show even greater synergistic effects with NGF and IL-6. The most dramatic effect was observed with low levels of EGF, where IL-6 increased the percentage of responsive cells from zero to approximately 60% after 3 days. In addition, two neural-specific transcripts, GAP-43 and SCG-10, are synergistically increased by the combinations of growth factors. Importantly, IL-6 does not enhance ERK phosphorylation in the presence of either NGF or EGF. In contrast, NGF and EGF, in the presence or absence of IL-6, cause mobility shifts of Stat3 that are consistent with serine phosphorylations. Although these modifications do not lead to activation and translocation by themselves, in the presence of the tyrosine phosphorylation induced by IL-6, they may play a role in the synergistic responses. These observations suggest a differentially regulated two-stage mechanism for the differentiative response of PC12 cells to NGF.

  16. The transcription factor early growth response factor-1 (EGR-1) promotes apoptosis of neuroblastoma cells.

    PubMed Central

    Pignatelli, Miguel; Luna-Medina, Rosario; Pérez-Rendón, Arturo; Santos, Angel; Perez-Castillo, Ana

    2003-01-01

    Early growth response factor-1 (EGR-1) is an immediate early gene, which is rapidly activated in quiescent cells by mitogens or in postmitotic neurons after depolarization. EGR-1 has been involved in diverse biological functions such as cell growth, differentiation and apoptosis. Here we report that enforced expression of the EGR-1 gene induces apoptosis, as determined by flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP-fluorescein nick-end labelling (TUNEL) analysis, in murine Neuro2A cells. In accordance with this role of EGR-1 in cell death, antisense oligonucleotides increase cell viability in cells cultured in the absence of serum. This apoptotic activity of the EGR-1 appears to be mediated by p73, a member of the p53 family of proteins, since an increase in the amount of p73 is observed in clones stably expressing the EGR-1 protein. We also observed an increase in the transcriptional activity of the mdm2 promoter in cells overexpressing EGR-1, which is paralleled by a marked decrease in the levels of p53 protein, therefore excluding a role of this protein in mediating EGR-1-induced apoptosis. Our results suggest that EGR-1 is an important factor involved in neuronal apoptosis. PMID:12755686

  17. FAM20: an evolutionarily conserved family of secreted proteins expressed in hematopoietic cells

    PubMed Central

    Nalbant, Demet; Youn, Hyewon; Nalbant, S Isil; Sharma, Savitha; Cobos, Everardo; Beale, Elmus G; Du, Yang; Williams, Simon C

    2005-01-01

    Background Hematopoiesis is a complex developmental process controlled by a large number of factors that regulate stem cell renewal, lineage commitment and differentiation. Secreted proteins, including the hematopoietic growth factors, play critical roles in these processes and have important biological and clinical significance. We have employed representational difference analysis to identify genes that are differentially expressed during experimentally induced myeloid differentiation in the murine EML hematopoietic stem cell line. Results One identified clone encoded a previously unidentified protein of 541 amino acids that contains an amino terminal signal sequence but no other characterized domains. This protein is a member of family of related proteins that has been named family with sequence similarity 20 (FAM20) with three members (FAM20A, FAM20B and FAM20C) in mammals. Evolutionary comparisons revealed the existence of a single FAM20 gene in the simple vertebrate Ciona intestinalis and the invertebrate worm Caenorhabditis elegans and two genes in two insect species, Drosophila melanogaster and Anopheles gambiae. Six FAM20 family members were identified in the genome of the pufferfish, Fugu rubripes and five members in the zebrafish, Danio rerio. The mouse Fam20a protein was ectopically expressed in a mammalian cell line and found to be a bona fide secreted protein and efficient secretion was dependent on the integrity of the signal sequence. Expression analysis revealed that the Fam20a gene was indeed differentially expressed during hematopoietic differentiation and that the other two family members (Fam20b and Fam20c) were also expressed during hematcpoiesis but that their mRNA levels did not vary significantly. Likewise FAM20A was expressed in more limited set of human tissues than the other two family members. Conclusions The FAM20 family represents a new family of secreted proteins with potential functions in regulating differentiation and function of

  18. High-grade cytomegalovirus antigenemia after hematopoietic stem cell transplantation.

    PubMed

    Asano-Mori, Y; Oshima, K; Sakata-Yanagimoto, M; Nakagawa, M; Kandabashi, K; Izutsu, K; Hangaishi, A; Motokura, T; Chiba, S; Kurokawa, M; Hirai, H; Kanda, Y

    2005-11-01

    Clinical impact of high-grade (HG) cytomegalovirus (CMV) antigenemia after hematopoietic stem cell transplantation has not been clarified. Therefore, in order to investigate the risk factors and outcome for HG-CMV antigenemia, we retrospectively analyzed the records of 154 Japanese adult patients who underwent allogeneic hematopoietic stem cell transplantation for the first time from 1995 to 2002 at the University of Tokyo Hospital. Among 107 patients who developed positive CMV antigenemia at any level, 74 received risk-adapted preemptive therapy with ganciclovir (GCV), and 17 of these developed HG-antigenemia defined as > or = 50 positive cells per two slides. The use of systemic corticosteroids at > or = 0.5 mg/kg/day at the initiation of GCV was identified as an independent significant risk factor for HG-antigenemia. Seven of the 17 HG-antigenemia patients developed CMV disease, with a cumulative incidence of 49.5%, which was significantly higher than that in the low-grade antigenemia patients (4%, P<0.001). However, overall survival was almost equivalent in the two groups. In conclusion, the development of HG-antigenemia appeared to depend on the profound immune suppression of the recipient. Although CMV disease frequently developed in HG-antigenemia patients, antiviral therapy could prevent a fatal outcome.

  19. The hematopoietic chemokine CXCL12 promotes integration of human endothelial colony forming cell-derived cells into immature vessel networks.

    PubMed

    Newey, Sarah E; Tsaknakis, Grigorios; Khoo, Cheen P; Athanassopoulos, Thanassi; Camicia, Rosalba; Zhang, Youyi; Grabowska, Rita; Harris, Adrian L; Roubelakis, Maria G; Watt, Suzanne M

    2014-11-15

    Proangiogenic factors, vascular endothelial growth factor (VEGF), and fibroblast growth factor-2 (FGF-2) prime endothelial cells to respond to "hematopoietic" chemokines and cytokines by inducing/upregulating expression of the respective chemokine/cytokine receptors. Coculture of human endothelial colony forming cell (ECFC)-derived cells with human stromal cells in the presence of VEGF and FGF-2 for 14 days resulted in upregulation of the "hematopoietic" chemokine CXCL12 and its CXCR4 receptor by day 3 of coculture. Chronic exposure to the CXCR4 antagonist AMD3100 in this vasculo/angiogenesis assay significantly reduced vascular tubule formation, an observation recapitulated by delayed AMD3100 addition. While AMD3100 did not affect ECFC-derived cell proliferation, it did demonstrate a dual action. First, over the later stages of the 14-day cocultures, AMD3100 delayed tubule organization into maturing vessel networks, resulting in enhanced endothelial cell retraction and loss of complexity as defined by live cell imaging. Second, at earlier stages of cocultures, we observed that AMD3100 significantly inhibited the integration of exogenous ECFC-derived cells into established, but immature, vascular networks. Comparative proteome profiler array analyses of ECFC-derived cells treated with AMD3100 identified changes in expression of potential candidate molecules involved in adhesion and/or migration. Blocking antibodies to CD31, but not CD146 or CD166, reduced the ECFC-derived cell integration into these extant vascular networks. Thus, CXCL12 plays a key role not only in endothelial cell sensing and guidance, but also in promoting the integration of ECFC-derived cells into developing vascular networks.

  20. Risk Factors for Subsequent Central Nervous System Tumors in Pediatric Allogeneic Hematopoietic Cell Transplant: A Study from the Center for International Blood and Marrow Transplant Research (CIBMTR).

    PubMed

    Gabriel, Melissa; Shaw, Bronwen E; Brazauskas, Ruta; Chen, Min; Margolis, David A; Sengelov, Henrik; Dahlberg, Ann; Ahmed, Ibrahim A; Delgado, David; Lazarus, Hillard M; Gibson, Brenda; Myers, Kasiani C; Kamble, Rammurti T; Abdel-Mageed, Aly; Li, Chi-Kong; Flowers, Mary E D; Battiwalla, Minoo; Savani, Bipin N; Majhail, Navneet; Shaw, Peter J

    2017-08-01

    Survivors of hematopoietic cell transplantation (HCT) are at risk of subsequent solid tumors, including central nervous system (CNS) tumors. The risk of CNS tumors after HCT in pediatric HCT recipients is not known. We evaluated the incidence and risk factors for CNS tumors in pediatric recipients of allogeneic HCT reported to the Center for International Blood and Marrow Transplant Research between 1976 and 2008. A case control design was used. There were no CNS tumors in the nonmalignant cohort (n = 4543) or in those undergoing HCT for solid tumors (n = 26). There were 59 CNS tumors in 8720 patients transplanted for hematologic malignancies. In comparison with the general population, pediatric HCT recipients with hematologic malignancies had a 33 times higher than expected rate of CNS tumors (95% confidence interval, 22.98 to 45.77; P < .0001). The cumulative incidence of subsequent CNS tumors was 1.29% (95% confidence interval .87 to 1.87) at 20 years after HCT. Significant risk factors in the entire cohort were having an unrelated donor (HR, 3.35; P = .0002) and CNS disease before HCT for both acute lymphoblastic leukemia (HR, 8.21; P = .0003) and acute myeloid leukemia (HR, 6.21; P = .0174). Analysis of the matched cohort showed having an unrelated donor transplant (HR, 4.79; P = .0037), CNS disease before HCT (HR, 7.67; P = .0064), and radiotherapy exposure before conditioning (HR, 3.7; P = .0234) to be significant risk factors. Chronic graft-versus-host disease was associated with a lower risk (HR, .29; P = .0143). Survivors of HCT for nonmalignant diseases did not show an increased incidence of CNS tumors, whereas survivors of hematologic malignancies have a markedly increased incidence of CNS tumors that warrants lifelong surveillance. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  1. Cell cycle regulation of hematopoietic stem or progenitor cells.

    PubMed

    Hao, Sha; Chen, Chen; Cheng, Tao

    2016-05-01

    The highly regulated process of blood production is achieved through the hierarchical organization of hematopoietic stem cell (HSC) subsets and their progenies, which differ in self-renewal and differentiation potential. Genetic studies in mice have demonstrated that cell cycle is tightly controlled by the complex interplay between extrinsic cues and intrinsic regulatory pathways involved in HSC self-renewal and differentiation. Deregulation of these cellular programs may transform HSCs or hematopoietic progenitor cells (HPCs) into disease-initiating stem cells, and can result in hematopoietic malignancies such as leukemia. While previous studies have shown roles for some cell cycle regulators and related signaling pathways in HSCs and HPCs, a more complete picture regarding the molecular mechanisms underlying cell cycle regulation in HSCs or HPCs is lacking. Based on accumulated studies in this field, the present review introduces the basic components of the cell cycle machinery and discusses their major cellular networks that regulate the dormancy and cell cycle progression of HSCs. Knowledge on this topic would help researchers and clinicians to better understand the pathogenesis of relevant blood disorders and to develop new strategies for therapeutic manipulation of HSCs.

  2. Hematopoietic stem cell transplantation for people with sickle cell disease.

    PubMed

    Oringanje, Chioma; Nemecek, Eneida; Oniyangi, Oluseyi

    2016-05-19

    Sickle cell disease is a genetic disorder involving a defect in the red blood cells due to its sickled hemoglobin. The main therapeutic interventions include preventive and supportive measures. Hematopoietic stem cell transplantations are carried out with the aim of replacing the defective cells and their progenitors (hematopoietic (i.e. blood forming) stem cells) in order to correct the disorder. This is an update of a previously published review. To determine whether stem cell transplantation can improve survival and prevent symptoms and complications associated with sickle cell disease. To examine the risks of stem cell transplantation against the potential long-term gain for people with sickle cell disease. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Group's Haemoglobinopathies Trials Register complied from electronic searches of the Cochrane Central Register of Controlled Trials (CENTRAL) (updated each new issue of The Cochrane Library) and quarterly searches of MEDLINE.Unpublished work was identified by searching the abstract books of major conference proceedings and we conducted a search of the website: www.ClinicalTrials.gov.Date of the most recent search of the Group's Haemoglobinopathies Trials Register: 06 October 2015. Randomized controlled and quasi-randomized studies that compared any method of stem cell transplantation with either each other or with any of the preventive or supportive interventions (e.g. periodic blood transfusion, use of hydroxyurea, antibiotics, pain relievers, supplemental oxygen) in people with sickle cell disease irrespective of the type of sickle cell disease, gender and setting. No relevant trials were identified. Ten trials were identified by the initial search and none for the update. None of these trials were suitable for inclusion in this review. Reports on the use of hematopoietic stem cell transplantation improving survival and preventing symptoms and complications associated with sickle cell

  3. Fibroblast growth factor-2 regulates the cell function of human dental pulp cells.

    PubMed

    Shimabukuro, Yoshio; Ueda, Maki; Ozasa, Masao; Anzai, Jun; Takedachi, Masahide; Yanagita, Manabu; Ito, Masako; Hashikawa, Tomoko; Yamada, Satoru; Murakami, Shinya

    2009-11-01

    Homeostasis and tissue repair of dentin-pulp complex are attributed to dental pulp tissue and several growth factors. Dental pulp cells play a pivotal role in homeostasis of dentin-pulp complex and tissue responses after tooth injury. Among these cytokines, fibroblast growth factor (FGF)-2 has multifunctional biologic activity and is known as a signaling molecule that induces tissue regeneration. In this study, we examined the effects of FGF-2 on growth, migration, and differentiation of human dental pulp cells (HDPC). HDPC were isolated from healthy dental pulp. Cellular response was investigated by [(3)H]-thymidine incorporation into DNA. Cytodifferentiation was examined by alkaline phosphatase (ALPase) assay and cytochemical staining of calcium by using alizarin red. Migratory activity was determined by counting the cells migrating into cleared area that had introduced with silicon block. FGF-2 activated HDPC growth and migration but suppressed ALPase activity and calcified nodule formation. Interestingly, HDPC, which had been pretreated with FGF-2, showed increased ALPase activity and calcified nodule formation when subsequently cultured without FGF-2. These results suggest that FGF-2 potentiates cell growth and accumulation of HDPC that notably did not disturb cytodifferentiation of the cells later. Thus, FGF-2 is a favorable candidate for pulp capping agent. These results provide new evidence for the possible involvement of FGF-2 not only in homeostasis but also in regeneration of dentin-pulp complex.

  4. Transforming growth factor-beta as a differentiating factor for cultured smooth muscle cells.

    PubMed

    Gawaziuk, J P; X; Sheikh, F; Cheng, Z-Q; Cattini, P A; Stephens, N L

    2007-10-01

    The aim of the present study was to determine whether the development of supercontractile smooth muscle cells, contributing to the nonspecific hyperreactivity of airways in asthmatic patients, is due to transforming growth factor (TGF)-beta. In cultured smooth muscle cells starved by removal of 10% foetal bovine serum for 7 days, growth arrest was seen; 30% became elongated and demonstrated super contractility. Study of conditioned medium suggested that the differentiating factor was TGF-beta. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was carried out on conditioned medium from the arrested cells. Two protein bands were identified as matrix metalloproteinase (MMP)-2 and TGF-beta1. To determine second messenger signalling by SMAD2, Western blotting and confocal microscopy were employed. Conditioned medium from arrested cultures showed the presence of MMP-2 and TGF-beta1, as revealed by SDS-PAGE; 68- and 25-kDa bands were seen. Differentiation was confirmed by upregulation of marker proteins, smooth muscle type myosin heavy chain and myosin light chain kinase. Confirmation was obtained by downregulating these proteins with decorin treatment, which reduces the levels of active TGF-beta and an adenoviral dominant-negative vector coding for a mutated type II TGF-beta-receptor. Activation of second messenger signalling was demonstrated immunocytochemically by the presence of phosphorylated SMAD2 and SMAD4. Transforming growth factor-beta is likely to be the differentiating factor responsible for the development of these supercontractile smooth muscle cells. The development of such cells in vivo after cessation of an asthmatic attack could contribute to the nonspecific hyperreactivity of airways seen in patients.

  5. Fetal stromal niches enhance human embryonic stem cell-derived hematopoietic differentiation and globin switch.

    PubMed

    Lee, King Yiu; Fong, Benny Shu Pan; Tsang, Kam Sze; Lau, Tze Kin; Ng, Pak Cheung; Lam, Audrey Carmen; Chan, Kathy Yuen Yee; Wang, Chi Chiu; Kung, Hsiang Fu; Li, Chi Kong; Li, Karen

    2011-01-01

    Hematopoiesis during mammalian embryonic development has been perceived as a migratory phenomenon, from the yolk sac blood island to the aorta-gonad-mesonephros (AGM) region, fetal liver (FL), and subsequently, the fetal bone marrow. In this study, we investigated the effects of primary stromal cells from fetal hematopoietic niches and their conditioned media (CM), applied singly or in sequential orders, on induction of human embryonic stem cells, H1, H9, and H14 lines, to hematopoietic cells. Our results demonstrated that stromal support of FL, AGM + FL, and AGM + FL + fetal bone marrow significantly increased the proliferation of embryoid bodies (EB) at day 18 of hematopoietic induction in the presence of thrombopoietin, stem cell factor, and Flt-3 ligand. AGM + FL also increased hematopoietic colony-forming unit (CFU) formation. CM did not enhance EB proliferation but CM of FL and AGM + FL significantly increased the density of total CFU and early erythroid (burst-forming unit) progenitors. Increased commitment to the hematopoietic lineage was demonstrated by enhanced expressions of CD45, alpha-, beta-, and gamma-globins in CFU at day 32, compared with EB at day 18. CM of FL significantly increased these globin expressions, indicating enhanced switches from embryonic to fetal and adult erythropoiesis. Over 50% and 10% of cells derived from CFU expressed CD45 and beta-globin proteins, respectively. Expressions of