Science.gov

Sample records for hematopoietic cell growth factors

  1. Transforming Growth Factor β Drives Hemogenic Endothelium Programming and the Transition to Hematopoietic Stem Cells.

    PubMed

    Monteiro, Rui; Pinheiro, Philip; Joseph, Nicola; Peterkin, Tessa; Koth, Jana; Repapi, Emmanouela; Bonkhofer, Florian; Kirmizitas, Arif; Patient, Roger

    2016-08-22

    Hematopoietic stem cells (HSCs) are self-renewing multipotent stem cells that generate mature blood lineages throughout life. They, together with hematopoietic progenitor cells (collectively known as HSPCs), emerge from hemogenic endothelium in the floor of the embryonic dorsal aorta by an endothelial-to-hematopoietic transition (EHT). Here we demonstrate that transforming growth factor β (TGFβ) is required for HSPC specification and that it regulates the expression of the Notch ligand Jagged1a in endothelial cells prior to EHT, in a striking parallel with the epithelial-to-mesenchymal transition (EMT). The requirement for TGFβ is two fold and sequential: autocrine via Tgfβ1a and Tgfβ1b produced in the endothelial cells themselves, followed by a paracrine input of Tgfβ3 from the notochord, suggesting that the former programs the hemogenic endothelium and the latter drives EHT. Our findings have important implications for the generation of HSPCs from pluripotent cells in vitro. PMID:27499523

  2. Bone marrow hematopoietic stem cells behavior with or without growth factors in trauma hemorrhagic shock

    PubMed Central

    Kumar, Manoj; Bhoi, Sanjeev; Mohanty, Sujata; Kamal, Vineet Kumar; Rao, D. N.; Mishra, Pravas; Galwankar, Sagar

    2016-01-01

    Background: Hemorrhagic shock (HS) is the major leading cause of death after trauma. Up to 50% of early deaths are due to massive hemorrhage. Excessive release of pro-inflammatory cytokine and hypercatecholamine induces hematopoietic progenitor cells (HPCs) apoptosis, leading to multiorgan failure and death. However, still, result remains elusive for hematopoietic stem cells (HSCs) behavior in trauma HS (T/HS). Objectives: Therefore, our aim was to evaluate the in vitro HSCs behavior with or without recombinant human erythropoietin (rhEPO), recombinant human granulocyte macrophage-colony-stimulating factor (rhGM-CSF), recombinant human interleukin-3 (rhIL-3) alone, and combination with rhEPO + rhGM-CSF + rhIL-3 (EG3) in T/HS patients. Methodology: Bone marrow (BM) aspirates (n = 14) were collected from T/HS patients, those survived on day 3. BM cells were cultured for HPCs: Colony-forming unit-erythroid (CFU-E), burst-forming unit-erythroid (BFU-E), and colony-forming unit-granulocyte, monocyte/macrophage colonies growth. HPCs were counted with or without rhEPO, rhGM-CSF, rhIL-3 alone, and combination with EG3 in T/HS patients. Results: BM HSCs growth significantly suppressed in T/HS when compared with control group (P < 0.05). In addition, CFU-E and BFU-E colony growth were increased with additional growth factor (AGF) (rhEPO, rhGM-CSF, and rhIL-3) as compared to baseline (without AGF) (P < 0.05). Conclusion: Suppressed HPCs may be reactivated by addition of erythropoietin, GM-CSF, IL-3 alone and with combination in T/HS. PMID:27722113

  3. Anandamide, a natural ligand for the peripheral cannabinoid receptor is a novel synergistic growth factor for hematopoietic cells.

    PubMed

    Valk, P; Verbakel, S; Vankan, Y; Hol, S; Mancham, S; Ploemacher, R; Mayen, A; Löwenberg, B; Delwel, R

    1997-08-15

    We recently demonstrated that the gene encoding the peripheral cannabinoid receptor (Cb2) may be a proto-oncogene involved in murine myeloid leukemias. We show here that Cb2 may have a role in hematopoietic development. RNAse protection analysis showed that Cb2 is normally expressed in spleen and thymus. Cb2 mRNA is also expressed in 45 of 51 cell lines of distinct hematopoietic lineages, ie, myeloid, macrophage, mast, B-lymphoid, T-lymphoid, and erythroid cells. The effect of the fatty acid anandamide, an endogenous ligand for cannabinoid receptors, on primary murine marrow cells and hematopoietic growth factor (HGF)-dependent cell lines was then investigated. In vitro colony cultures of normal mouse bone marrow cells showed anandamide to potentiate interleukin-3 (IL-3)-induced colony growth markedly. Whereas HGFs alone stimulate proliferation of the various cell lines in serum-free culture only weakly, anandamide enhances the proliferative response of the cell lines to HGFs profoundly. This was apparent for responses induced by IL-3, granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor, and erythropoietin. Anandamide was already effective at concentrations as low as 0.1 to 0.3 micromol/L and plateau effects were reached at 0.3 to 3 micromol/L. The addition of anandamide as single growth factor had no effect. The costimulatory effect of anandamide was not evident when cells were cultured with fetal calf serum (FCS), suggesting that FCS contains anandamide or another ligand capable of activating the peripheral cannabinoid receptor. Other cannabinoid ligands did not enhance the proliferative responsiveness of hematopoietic cells to HGFs. Transfection experiments of Cb2 in myeloid 32D cells showed that anandamide specifically activates proliferation through activation of the peripheral cannabinoid receptor. Anandamide appears to be a novel and synergistic growth stimulator for hematopoietic cells. PMID:9269762

  4. H4 Histamine Receptors Mediate Cell Cycle Arrest in Growth Factor-Induced Murine and Human Hematopoietic Progenitor Cells

    PubMed Central

    Petit-Bertron, Anne-France; Machavoine, François; Defresne, Marie Paule; Gillard, Michel; Chatelain, Pierre; Mistry, Prakash

    2009-01-01

    The most recently characterized H4 histamine receptor (H4R) is expressed preferentially in the bone marrow, raising the question of its role during hematopoiesis. Here we show that both murine and human progenitor cell populations express this receptor subtype on transcriptional and protein levels and respond to its agonists by reduced growth factor-induced cell cycle progression that leads to decreased myeloid, erythroid and lymphoid colony formation. H4R activation prevents the induction of cell cycle genes through a cAMP/PKA-dependent pathway that is not associated with apoptosis. It is mediated specifically through H4R signaling since gene silencing or treatment with selective antagonists restores normal cell cycle progression. The arrest of growth factor-induced G1/S transition protects murine and human progenitor cells from the toxicity of the cell cycle-dependent anticancer drug Ara-C in vitro and reduces aplasia in a murine model of chemotherapy. This first evidence for functional H4R expression in hematopoietic progenitors opens new therapeutic perspectives for alleviating hematotoxic side effects of antineoplastic drugs. PMID:19662098

  5. The hematopoietic growth factor "erythropoietin" enhances the therapeutic effect of mesenchymal stem cells in Alzheimer's disease.

    PubMed

    Khairallah, M I; Kassem, L A; Yassin, N A; El Din, M A Gamal; Zekri, M; Attia, M

    2014-01-01

    Alzheimer's disease is a neurodegenerative disorder clinically characterized by cognitive dysfunction and by deposition of amyloid plaques, neurofibrillary tangles in the brain. The study investigated the therapeutic effect of combined mesenchymal stem cells and erythropoietin on Alzheimer's disease. Five groups of mice were used: control group, Alzheimer's disease was induced in four groups by a single intraperitoneal injection of 0.8 mg kg(-1) lipopolysaccharide and divided as follows: Alzheimer's disease group, mesenchymal stem cells treated group by injecting mesenchymal stem cells into the tail vein (2 x 10(6) cells), erythropoietin treated group (40 microg kg(-1) b.wt.) injected intraperitoneally 3 times/week for 5 weeks and mesenchymal stem cells and erythropoietin treated group. Locomotor activity and memory were tested using open field and Y-maze. Histological, histochemical, immunohistochemical studies, morphometric measurements were examined in brain sections of all groups. Choline transferase activity, brain derived neurotrophic factor expression and mitochondrial swellings were assessed in cerebral specimens. Lipopolysaccharide decreased locomotor activity, memory, choline transferase activity and brain derived neurotrophic factor. It increased mitochondrial swelling, apoptotic index and amyloid deposition. Combined mesenchymal stem cells and erythropoietin markedly improved all these parameters. This study proved the effective role of mesenchymal stem cells in relieving Alzheimer's disease symptoms and manifestations; it highlighted the important role of erythropoietin in the treatment of Alzheimer's disease.

  6. Soluble factor cross-talk between human bone marrow-derived hematopoietic and mesenchymal cells enhances in vitro CFU-F and CFU-O growth and reveals heterogeneity in the mesenchymal progenitor cell compartment.

    PubMed

    Baksh, Dolores; Davies, John E; Zandstra, Peter W

    2005-11-01

    The homeostatic adult bone marrow (BM) is a complex tissue wherein physical and biochemical interactions serve to maintain a balance between the hematopoietic and nonhematopoietic compartments. To focus on soluble factor interactions occurring between mesenchymal and hematopoietic cells, a serum-free adhesion-independent culture system was developed that allows manipulation of the growth of both mesenchymal and hematopoietic human BM-derived progenitors and the balance between these compartments. Factorial experiments demonstrated a role for stem cell factor (SCF) and interleukin 3 (IL-3) in the concomitant growth of hematopoietic (CD45+) and nonhematopoietic (CD45-) cells, as well as their derivatives. Kinetic tracking of IL-3alpha receptor (CD123) and SCF receptor (CD117) expression on a sorted CD45- cell population revealed the emergence of CD45-CD123+ cells capable of osteogenesis. Of the total fibroblast colony-forming units (CFU-Fs) and osteoblast colony-forming units (CFU-O), approximately 24% of CFU-Fs and about 22% of CFU-Os were recovered from this population. Cell-sorting experiments demonstrated that the CD45+ cell population secreted soluble factors that positively affect the survival and proliferation of CFU-Fs and CFU-Os generated from the CD45- cells. Together, our results provide insight into the intercellular cytokine network between hematopoietic and mesenchymal cells and provide a strategy to mutually culture both mesenchymal and hematopoietic cells in a defined scalable bioprocess.

  7. Enhanced genetic modification of adult growth factor mobilized peripheral blood hematopoietic stem and progenitor cells with rapamycin.

    PubMed

    Li, Lijing; Torres-Coronado, Mónica; Gu, Angel; Rao, Anitha; Gardner, Agnes M; Epps, Elizabeth W; Gonzalez, Nancy; Tran, Chy-Anh; Wu, Xiwei; Wang, Jin-Hui; DiGiusto, David L

    2014-10-01

    Genetic modification of adult human hematopoietic stem and progenitor cells (HSPCs) with lentiviral vectors leads to long-term gene expression in the progeny of the HSPCs and has been used to successfully treat several monogenic diseases. In some cases, the gene-modified cells have a selective growth advantage over nonmodified cells and eventually are the dominant engrafted population. However, in disease indications for which the gene-modified cells do not have a selective advantage, optimizing transduction of HSPC is paramount to successful stem cell-based gene therapy. We demonstrate here that transduction of adult CD34+ HSPCs with lentiviral vectors in the presence of rapamycin, a widely used mTORC1 inhibitor, results in an approximately threefold increase in stable gene marking with minimal effects on HSPC growth and differentiation. Using this approach, we have demonstrated that we can enhance the frequency of gene-modified HSPCs that give rise to clonogenic progeny in vitro without excessive increases in the number of vector copies per cell or changes in integration pattern. The genetic marking of HSPCs and expression of transgenes is durable, and transplantation of gene-modified HSPCs into immunodeficient mice results in high levels of gene marking of the lymphoid and myeloid progeny in vivo. The prior safe clinical history of rapamycin in other applications supports the use of this compound to generate gene-modified autologous HSPCs for our HIV gene therapy clinical trials.

  8. Hematopoietic growth factors in drug-induced agranulocytosis.

    PubMed

    Pavithran, K; Thomas, M

    2002-05-01

    Drug-induced agranulocytosis (DIA) is a potentially fatal disorder. Hematopoietic growth factors have been used in the treatment of DIA. We report nine cases of DIA treated with granulocyte macrophage - colony stimulating factor (GM-CSF) in a dose of 300 microg/day. All the patients had evidence of systemic infection. Mean time to reach an absolute neutrophil count of 0.5 x 10(9)/L was three days. One patient succumbed to the disease. The cause of death was multiorgan failure. No adverse events were observed with GM-CSF. We conclude that hematopoietic growth factors are useful in shortening the period of neutropenia and reducing morbidity and mortality in these patients.

  9. Insulin-Like Growth Factor 1 Mitigates Hematopoietic Toxicity After Lethal Total Body Irradiation

    SciTech Connect

    Zhou, Dunhua; Deoliveira, Divino; Kang, Yubin; Choi, Seung S.; Li, Zhiguo; Chao, Nelson J.; Chen, Benny J.

    2013-03-15

    Purpose: To investigate whether and how insulin-like growth factor 1 (IGF-1) mitigates hematopoietic toxicity after total body irradiation. Methods and Materials: BALB/c mice were irradiated with a lethal dose of radiation (7.5 Gy) and treated with IGF-1 at a dose of 100 μg/dose intravenously once a day for 5 consecutive days starting within 1 hour after exposure. Survival and hematopoietic recovery were monitored. The mechanisms by which IGF-1 promotes hematopoietic recovery were also studied by use of an in vitro culture system. Results: IGF-1 protected 8 of 20 mice (40%) from lethal irradiation, whereas only 2 of 20 mice (10%) in the saline control group survived for more than 100 days after irradiation. A single dose of IGF-1 (500 μg) was as effective as daily dosing for 5 days. Positive effects were noted even when the initiation of treatment was delayed as long as 6 hours after irradiation. In comparison with the saline control group, treatment with IGF-1 significantly accelerated the recovery of both platelets and red blood cells in peripheral blood, total cell numbers, hematopoietic stem cells, and progenitor cells in the bone marrow when measured at day 14 after irradiation. IGF-1 protected both hematopoietic stem cells and progenitor cells from radiation-induced apoptosis and cell death. In addition, IGF-1 was able to facilitate the proliferation and differentiation of nonirradiated and irradiated hematopoietic progenitor cells. Conclusions: IGF-1 mitigates radiation-induced hematopoietic toxicity through protecting hematopoietic stem cells and progenitor cells from apoptosis and enhancing proliferation and differentiation of the surviving hematopoietic progenitor cells.

  10. Megakaryocyte growth and development factor is a potent growth factor for primitive hematopoietic progenitors in the human fetus.

    PubMed

    Muench, Marcus O; Bárcena, Alicia

    2004-06-01

    Megakaryocyte growth and development factor (MGDF), or thrombopoietin, has received considerable attention as a therapeutic agent for treating thrombocytopenia or for its use in the ex vivo culture of hematopoietic stem cells. MGDF is known to support the growth of a broad spectrum of hematopoietic precursors obtained from adult or neonatal tissues, but its effects on the growth of fetal progenitors and stem cells has not been studied. Human CD38(+)CD34(2+) progenitors and CD38(-)CD34(2+) cells, a population that contains stem cells, were isolated from midgestation liver and grown under defined conditions with MGDF and various cytokines known to support the growth of primitive hematopoietic precursors. In clonal assays of colony-forming cells (CFCs), MGDF supported the growth of 15-25% of candidate stem cells when combined with granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor (GM-CSF), flk-2/flt3 ligand, or stem cell factor. MGDF was observed to strongly support the early stages of hematopoiesis and expansion of high proliferative potential CFCs. More mature progenitors were expanded nearly 78-fold in 1 wk of culture with MGDF+SCF+GM-CSF. MGDF alone was also found to support the short-term (2 d) survival of CD38(-)CD34(2+) high proliferative potential CFCs. The effects of MGDF were more modest on CD38(+)CD34(2+) progenitors with only additive increases in colony formation being observed. These findings suggest that MGDF administration in fetuses and neonates may strongly affect the growth and mobilization of primitive hematopoietic progenitors and that MGDF may find use in the ex vivo growth and expansion of fetal stem cells.

  11. Insulin-Like Growth Factor 1 Mitigates Hematopoietic Toxicity after Lethal Total Body Irradiation

    PubMed Central

    Zhou, Dunhua; Deoliveira, Divino; Kang, Yubin; Choi, Seung S.; Li, Zhiguo; Chao, Nelson J.; Chen, Benny J.

    2012-01-01

    Purpose To investigate whether and how insulin-like growth factor 1 (IGF-1) mitigates hematopoietic toxicity after total body irradiation. Methods and Materials BALB/c mice were irradiated with a lethal dose of radiation (7.5 Gy) and treated with IGF-1 at a dose of 100 μg/dose intravenously once a day for five consecutive days starting within one hour post exposure. Survival and hematopoietic recovery were monitored. The mechanisms by which IGF-1 promotes hematopoietic recovery were also studied using an in vitro culture system. Results IGF-1 protected 8 out of 20 mice (40%) from lethal irradiation while only 2 out of 20 mice (10%) in the saline control group survived for more than 100 days after irradiation. A single dose of IGF-1 (500 μg) was as effective as daily dosing for five days. Positive effects were noted even when the initiation of treatment was delayed up to six hours post irradiation. Compared with the saline control group, treatment with IGF-1 significantly accelerated the recovery of both platelets and red cells in peripheral blood, total cell numbers as well as hematopoietic stem cells and progenitors in the bone marrow when measured at day 14 post-irradiation. IGF-1 protected both hematopoietic stem cells and progenitors from radiation-induced apoptosis and cell death. In addition, IGF-1 was able to facilitate the proliferation and differentiation of non-irradiated and irradiated hematopoietic progenitors. Conclusions IGF-1 mitigates radiation-induced hematopoietic toxicity through protecting hematopoietic stem and progenitor cells from apoptosis and enhancing proliferation and differentiation of the surviving hematopoietic progenitors. PMID:23021438

  12. Quantitative trait analysis reveals transforming growth factor-beta2 as a positive regulator of early hematopoietic progenitor and stem cell function.

    PubMed

    Langer, Jessica C; Henckaerts, Els; Orenstein, Jonathan; Snoeck, Hans-Willem

    2004-01-01

    Elucidation of pathways involved in mouse strain-dependent variation in the hematopoietic stem cell (HSC) compartment may reveal novel mechanisms relevant in vivo. Here, we demonstrate genetically determined variation in the proliferation of lin-Sca1++kit+ (LSK) primitive hematopoietic progenitor cells in response to transforming growth factor-beta (TGF-beta) 2, the dose response of which was biphasic with a stimulatory effect at low concentrations. In contrast, the dose responses of TGF-beta1 or -beta3 were inhibitory and did not show mouse strain-dependent variation. A quantitative trait locus (QTL) for the effect of TGF-beta2 was identified on chromosome 4 overlapping with a QTL regulating the frequency of LSK cells. These overlapping QTL were corroborated by the observation that the frequency of LSK cells is lower in adult Tgfb2+/- mice than in wild-type littermates, indicating that TGF-beta2 is a genetically determined positive regulator LSK number in vivo. Furthermore, adult Tgfb2+/- mice have a defect in competitive repopulation potential that becomes more pronounced upon serial transplantation. In fetal TGF-beta2-deficient HSCs, a defect only appears after serial reconstitution. These data suggest that TGF-beta2 can act cell autonomously and is important for HSCs that have undergone replicative stress. Thus, TGF-beta2 is a novel, genetically determined positive regulator of adult HSCs.

  13. Wnt3a Protein Reduces Growth Factor-Driven Expansion of Human Hematopoietic Stem and Progenitor Cells in Serum-Free Cultures

    PubMed Central

    Duinhouwer, Lucia E.; Tüysüz, Nesrin; Rombouts, Elwin W. J. C.; ter Borg, Mariette N. D.; Mastrobattista, Enrico; Spanholtz, Jan; Cornelissen, Jan J.; ten Berge, Derk; Braakman, Eric

    2015-01-01

    Ex vivo expansion of hematopoietic stem and progenitor cells (HSPC) is a promising approach to improve insufficient engraftment after umbilical cord blood stem cell transplantation (UCB-SCT). Although culturing HSPC with hematopoietic cytokines results in robust proliferation, it is accompanied with extensive differentiation and loss of self-renewal capacity. Wnt signaling has been implicated in regulating HSPC fate decisions in vivo and in promoting HSPC self-renewal by inhibition of differentiation, but the effects of Wnt on the ex vivo expansion of HSPC are controversial. Here, we demonstrate that exogenous Wnt3a protein suppresses rather than promotes the expansion of UCB-derived CD34+ cells in serum free expansion cultures. The reduced expansion was also observed in cultures initiated with Lin-CD34+CD38lowCD45RA-CD90+ cells which are highly enriched in HSC and was also observed in response to activation of beta-catenin signaling by GSK3 inhibition. The presence of Wnt3a protein during the culture reduced the frequency of multilineage CFU-GEMM and the long-term repopulation ability of the expanded HSPC. These data suggest that Wnt signaling reduces expansion of human HSPC in growth factor-driven expansion cultures by promoting differentiation of HSPC. PMID:25807521

  14. Wnt3a protein reduces growth factor-driven expansion of human hematopoietic stem and progenitor cells in serum-free cultures.

    PubMed

    Duinhouwer, Lucia E; Tüysüz, Nesrin; Rombouts, Elwin W J C; Ter Borg, Mariette N D; Mastrobattista, Enrico; Spanholtz, Jan; Cornelissen, Jan J; Ten Berge, Derk; Braakman, Eric

    2015-01-01

    Ex vivo expansion of hematopoietic stem and progenitor cells (HSPC) is a promising approach to improve insufficient engraftment after umbilical cord blood stem cell transplantation (UCB-SCT). Although culturing HSPC with hematopoietic cytokines results in robust proliferation, it is accompanied with extensive differentiation and loss of self-renewal capacity. Wnt signaling has been implicated in regulating HSPC fate decisions in vivo and in promoting HSPC self-renewal by inhibition of differentiation, but the effects of Wnt on the ex vivo expansion of HSPC are controversial. Here, we demonstrate that exogenous Wnt3a protein suppresses rather than promotes the expansion of UCB-derived CD34+ cells in serum free expansion cultures. The reduced expansion was also observed in cultures initiated with Lin-CD34+CD38lowCD45RA-CD90+ cells which are highly enriched in HSC and was also observed in response to activation of beta-catenin signaling by GSK3 inhibition. The presence of Wnt3a protein during the culture reduced the frequency of multilineage CFU-GEMM and the long-term repopulation ability of the expanded HSPC. These data suggest that Wnt signaling reduces expansion of human HSPC in growth factor-driven expansion cultures by promoting differentiation of HSPC.

  15. Hematopoietic Growth Factors, Signaling and the Chronic Myeloproliferative Disorders

    PubMed Central

    Kaushansky, Kenneth

    2006-01-01

    The chronic myeloproliferative diseases (CMDs) are a group of conditions characterized by unregulated blood cell production, that due either to excessive numbers of erythrocytes, leukocytes or platelets, or their defective function cause symptoms and signs of fatigue, headache, ruddy cyanosis, hemorrhage, abdominal distension, and the complications of vascular thrombosis. In the late 19th century Vaquez provided the first description of polycythemia vera (PV) and Hueck defined idiopathic myelofibrosis (IMF). In 1920, di Guglielmo established criteria for patients with essential thrombocythemia (ET). In 1951 Dameshek argued that these disorders, along with chronic myelogenous leukemia (CML) display many similar clinical and laboratory features (1), and grouped them. In 2002 the World Health Organization expanded the definition of CMDs to also include chronic neutrophilic leukemia (CNL), chronic eosinophilic leukemia/hypereosinophilic syndrome (CEL/HES) and systemic mast cell disorder (SMCD; 2). While the molecular pathogenesis of CML is well known (3), and the causes of CEL/HES and SMCD have been identified in about half of all cases (4,5), until very recently the etiologies of the three classically defined CMDs, PV, IMF and ET, were poorly understood. Each of these disorders is characterized by excessive hematopoiesis, a process usually dependent on one or more hematopoietic growth factors (HGFs). This review will focus on how our knowledge of the molecular mechanisms by which HGFs are produced, bind cell surface receptors and transduce survival and proliferative signals have provided the platform on which the multiple origins of CMDs can be understood and novel therapeutic interventions designed. PMID:17055768

  16. In vitro growth of hematopoietic progenitors and stromal bone marrow cells from patients with multiple myeloma.

    PubMed

    Martínez-Jaramillo, Guadalupe; Vela-Ojeda, Jorge; Flores-Guzmán, Patricia; Mayani, Hector

    2011-02-01

    In the present study we have determined the content of hematopoietic and stromal progenitors in multiple myeloma (MM) bone marrow, and assessed their in vitro growth. Marrow cells were obtained from 17 MM patients at the time of diagnosis, and from 6 hematologically normal subjects. When mononuclear cells (MNC) from MM marrow were cultured, reduced numbers of hematopoietic progenitors were detected and their growth in long-term cultures was deficient, as compared to cultures of normal cells. When cell fractions enriched for CD34(+) Lin(-) cells were obtained, the levels of hematopoietic progenitors from MM marrow were within the normal range, and so was their growth kinetics in liquid suspension cultures. The levels of fibroblast progenitors in MM were not statistically different from those in normal marrow; however, their proliferation potential was significantly reduced. Conditioned media from MM-derived MNC and stroma cells contained factors that inhibited normal progenitor cell growth. Our observations suggest that hematopoietic progenitors in MM marrow are intrinsically normal; however, their growth in LTMC may be hampered by the presence of abnormal accessory and stroma cells. These results suggest that besides its role in the generation of osteolytic lesions and the expansion of the myeloma clone, the marrow microenvironment in MM may have a negative effect on hematopoiesis. PMID:20621354

  17. Transcription factor-mediated reprogramming toward hematopoietic stem cells

    PubMed Central

    Ebina, Wataru; Rossi, Derrick J

    2015-01-01

    De novo generation of human hematopoietic stem cells (HSCs) from renewable cell types has been a long sought-after but elusive goal in regenerative medicine. Paralleling efforts to guide pluripotent stem cell differentiation by manipulating developmental cues, substantial progress has been made recently toward HSC generation via combinatorial transcription factor (TF)-mediated fate conversion, a paradigm established by Yamanaka's induction of pluripotency in somatic cells by mere four TFs. This review will integrate the recently reported strategies to directly convert a variety of starting cell types toward HSCs in the context of hematopoietic transcriptional regulation and discuss how these findings could be further developed toward the ultimate generation of therapeutic human HSCs. PMID:25712209

  18. ETS transcription factors in hematopoietic stem cell development.

    PubMed

    Ciau-Uitz, Aldo; Wang, Lu; Patient, Roger; Liu, Feng

    2013-12-01

    Hematopoietic stem cells (HSCs) are essential for the maintenance of the hematopoietic system. However, these cells cannot be maintained or created in vitro, and very little is known about their generation during embryogenesis. Many transcription factors and signaling pathways play essential roles at various stages of HSC development. Members of the ETS ('E twenty-six') family of transcription factors are recognized as key regulators within the gene regulatory networks governing hematopoiesis, including the ontogeny of HSCs. Remarkably, although all ETS transcription factors bind the same DNA consensus sequence and overlapping tissue expression is observed, individual ETS transcription factors play unique roles in the development of HSCs. Also, these transcription factors are recurrently used throughout development and their functions are context-dependent, increasing the challenge of studying their mechanism of action. Critically, ETS factors also play roles under pathological conditions, such as leukemia and, therefore, deciphering their mechanism of action will not only enhance our knowledge of normal hematopoiesis, but also inform protocols for their creation in vitro from pluripotent stem cells and the design of new therapeutic approaches for the treatment of malignant blood cell diseases. In this review, we summarize the key findings on the roles of ETS transcription factors in HSC development and discuss novel mechanisms by which they could control hematopoiesis.

  19. Growth and development after hematopoietic cell transplant in children.

    PubMed

    Sanders, J E

    2008-01-01

    Hematopoietic cell transplantation (HCT) following high-dose chemotherapy or chemoradiotherapy for children with malignant or nonmalignant hematologic disorders has resulted in an increasing number of long-term disease-free survivors. The preparative regimens include high doses of alkylating agents, such as CY with or without BU, and may include TBI. These agents impact the neuroendocrine system in growing children and their subsequent growth and development. Children receiving high-dose CY or BUCY have normal thyroid function, but those who receive TBI-containing regimens may develop thyroid function abnormalities. Growth is not impacted by chemotherapy-only preparative regimens, but TBI is likely to result in growth hormone deficiency and decreased growth rates that need to be treated with synthetic growth hormone therapy. Children who receive high-dose CY-only have normal development through puberty, whereas those who receive BUCY have a high incidence of delayed pubertal development. Following fractionated TBI preparative regimens, approximately half of the patients have normal pubertal development. These data demonstrate that the growth and development problems after HCT are dependent upon the preparative regimen received. All children should be followed for years after HCT for detection of growth and development abnormalities that are treatable with appropriate hormone therapy.

  20. Hematopoietic colony formation from human growth factor-dependent TF1 cells and human cord blood myeloid progenitor cells depends on SHP2 phosphatase function.

    PubMed

    Broxmeyer, Hal E; Etienne-Julan, Maryse; Gotoh, Akihiko; Braun, Stephen E; Lu, Li; Cooper, Scott; Feng, Gen-Sheng; Li, Xing Jun; Chan, Rebecca J

    2013-03-15

    The protein tyrosine phosphatase, SHP2, is widely expressed; however, previous studies demonstrated that hematopoietic cell development more stringently requires Shp2 expression compared to other tissues. Furthermore, somatic gain-of-function SHP2 mutants are commonly found in human myeloid leukemias. Given that pharmacologic inhibitors to SHP2 phosphatase activity are currently in development as putative antileukemic agents, we conducted a series of experiments examining the necessity of SHP2 phosphatase activity for human hematopoiesis. Anti-sense oligonucleotides to human SHP2 coding sequences reduced human cord blood- and human cell line, TF1-derived colony formation. Expression of truncated SHP2 bearing its Src homology 2 (SH2) domains, but lacking the phosphatase domain similarly reduced human cord blood- and TF1-derived colony formation. Mechanistically, expression of truncated SHP2 reduced the interaction between endogenous, full-length SHP2 with the adapter protein, Grb2. To verify the role of SHP2 phosphatase function in human hematopoietic cell development, human cord blood CD34+ cells were transduced with a leukemia-associated phosphatase gain-of-function SHP2 mutant or with a phosphatase dead SHP2 mutant, which indicated that increased phosphatase function enhanced, while decreased SHP2 phosphatase function reduced, human cord blood-derived colonies. Collectively, these findings indicate that SHP2 phosphatase function regulates human hematopoietic cell development and imply that the phosphatase component of SHP2 may serve as a pharmacologic target in human leukemias bearing increased SHP2 phosphatase activity.

  1. Nf1 regulates hematopoietic progenitor cell growth and ras signaling in response to multiple cytokines.

    PubMed

    Zhang, Y Y; Vik, T A; Ryder, J W; Srour, E F; Jacks, T; Shannon, K; Clapp, D W

    1998-06-01

    Neurofibromin, the protein encoded by the NF1 tumor-suppressor gene, negatively regulates the output of p21(ras) (Ras) proteins by accelerating the hydrolysis of active Ras-guanosine triphosphate to inactive Ras-guanosine diphosphate. Children with neurofibromatosis type 1 (NF1) are predisposed to juvenile chronic myelogenous leukemia (JCML) and other malignant myeloid disorders, and heterozygous Nf1 knockout mice spontaneously develop a myeloid disorder that resembles JCML. Both human and murine leukemias show loss of the normal allele. JCML cells and Nf1-/- hematopoietic cells isolated from fetal livers selectively form abnormally high numbers of colonies derived from granulocyte-macrophage progenitors in cultures supplemented with low concentrations of granulocyte-macrophage colony stimulating factor (GM-CSF). Taken together, these data suggest that neurofibromin is required to downregulate Ras activation in myeloid cells exposed to GM-CSF. We have investigated the growth and proliferation of purified populations of hematopoietic progenitor cells isolated from Nf1 knockout mice in response to the cytokines interleukin (IL)-3 and stem cell factor (SCF), as well as to GM-CSF. We found abnormal proliferation of both immature and lineage-restricted progenitor populations, and we observed increased synergy between SCF and either IL-3 or GM-CSF in Nf1-/- progenitors. Nf1-/- fetal livers also showed an absolute increase in the numbers of immature progenitors. We further demonstrate constitutive activation of the Ras-Raf-MAP (mitogen-activated protein) kinase signaling pathway in primary c-kit+ Nf1-/- progenitors and hyperactivation of MAP kinase after growth factor stimulation. The results of these experiments in primary hematopoietic cells implicate Nf1 as playing a central role in regulating the proliferation and survival of primitive and lineage-restricted myeloid progenitors in response to multiple cytokines by modulating Ras output.

  2. Immune suppressor factor confers stromal cell line with enhanced supporting activity for hematopoietic stem cells

    SciTech Connect

    Nakajima, Hideaki . E-mail: hnakajim@ims.u-tokyo.ac.jp; Shibata, Fumi; Fukuchi, Yumi; Goto-Koshino, Yuko; Ito, Miyuki; Urano, Atsushi; Nakahata, Tatsutoshi; Aburatani, Hiroyuki; Kitamura, Toshio

    2006-02-03

    Immune suppressor factor (ISF) is a subunit of the vacuolar ATPase proton pump. We earlier identified a short form of ISF (ShIF) as a stroma-derived factor that supports cytokine-independent growth of mutant Ba/F3 cells. Here, we report that ISF/ShIF supports self-renewal and expansion of primary hematopoietic stem cells (HSCs). Co-culture of murine bone marrow cells with a stromal cell line overexpressing ISF or ShIF (MS10/ISF or MS10/ShIF) not only enhanced their colony-forming activity and the numbers of long-term culture initiating cells, but also maintained the competitive repopulating activity of HSC. This stem cell supporting activity depended on the proton-transfer function of ISF/ShIF. Gene expression analysis of ISF/ShIF-transfected cell lines revealed down-regulation of secreted frizzled-related protein-1 and tissue inhibitor of metalloproteinase-3, and the restoration of their expressions in MS10/ISF cells partially reversed its enhanced LTC-IC supporting activity to a normal level. These results suggest that ISF/ShIF confers stromal cells with enhanced supporting activities for HSCs by modulating Wnt-activity and the extracellular matrix.

  3. Aberrant Levels of Hematopoietic/Neuronal Growth and Differentiation Factors in Euthyroid Women at Risk for Autoimmune Thyroid Disease

    PubMed Central

    Massolt, Elske T.; Effraimidis, Grigoris; Korevaar, Tim I. M.; Wiersinga, Wilmar M.; Visser, W. Edward; Peeters, Robin P.; Drexhage, Hemmo A.

    2016-01-01

    Background Subjects at risk for major mood disorders have a higher risk to develop autoimmune thyroid disease (AITD) and vice-versa, implying a shared pathogenesis. In mood disorder patients, an abnormal profile of hematopoietic/neuronal growth factors is observed, suggesting that growth/differentiation abnormalities of these cell lineages may predispose to mood disorders. The first objective of our study was to investigate whether an aberrant profile of these hematopoietic/neuronal growth factors is also detectable in subjects at risk for AITD. A second objective was to study the inter relationship of these factors with previously determined and published growth factors/cytokines in the same subjects. Methods We studied 64 TPO-Ab-negative females with at least 1 first- or second-degree relative with AITD, 32 of whom did and 32 who did not seroconvert to TPO-Ab positivity in 5-year follow-up. Subjects were compared with 32 healthy controls (HCs). We measured serum levels of brain-derived neurotrophic factor (BDNF), Stem Cell Factor (SCF), Insulin-like Growth Factor-Binding Protein 2 (IGFBP-2), Epidermal Growth Factor (EGF) and IL-7 at baseline. Results BDNF was significantly lower (8.2 vs 18.9 ng/ml, P<0.001), while EGF (506.9 vs 307.6 pg/ml, P = 0.003) and IGFBP-2 (388.3 vs 188.5 ng/ml, P = 0.028) were significantly higher in relatives than in HCs. Relatives who seroconverted in the next 5 years had significantly higher levels of SCF than non-seroconverters (26.5 vs 16.7 pg/ml, P = 0.017). In a cluster analysis with the previously published growth factors/cytokines SCF clustered together with IL-1β, IL-6 and CCL-3, of which high levels also preceded seroconversion. Conclusion Relatives of AITD patients show aberrant serum levels of 4 hematopoietic/neuronal growth factors similar to the aberrancies found in mood disorder patients, suggesting that shared growth and differentiation defects in both the hematopoietic and neuronal system may underlie thyroid

  4. Association between Plasma Endothelin-1, Transforming Growth Factor-β, Fibroblast Growth Factor, and Nitric Oxide Levels and Liver Injury in Hematopoietic Stem Cell Transplantation Recipients with Persistent Iron Overload after Transplantation.

    PubMed

    Akı, Şahika Zeynep; Suyanı, Elif; Cengiz, Mustafa; Özenirler, Seren; Elbeğ, Şehri; Paşaoğlu, Hatice; Sucak, Gülsan Türköz

    2015-05-01

    Graft-versus-host disease, iron overload, and infections are the major causes of liver dysfunction in allogeneic hematopoietic stem cell transplantation (AHSCT) recipients. We investigated the relationship between serum iron parameters and the levels of transforming growth factor-β (TGF-β), fibroblast growth factor (FGF), endothelin-1 (ET-1), and nitric oxide (NO) as predictors of chronic liver injury in 54 AHSCT recipients who survived at least a year after transplantation. Serum samples from patients were obtained for the evaluation of ET-1, TGF-β, FGF, NO, and nontransferrin bound iron at the first year follow-up visit using commercially available ELISA kits. Patients were categorized depending on serum ferritin and transferrin saturation levels. The parameters were compared between the groups, and survival analysis was also performed. Most of the AHSCT recipients (81.5%) were in complete remission during the study. After a median follow-up time of 73 months (range, 13 to 109 months), 72.2% of the patients were alive. Mean serum levels of ET-1, NO, TGF-β, and FGF were 81.54 ± 21.62 μmol/mL, 31.82 ± 26.42 μmol/mL, 2.56 ± 0.77 ng/mL, and 50.31 ± 32.69 pg/mL, respectively. Nineteen patients (35.2% of the cohort) had serum ferritin levels higher than 1000 ng/mL. Mean serum levels of ET-1, NO, TGF-β, and FGF were similar in patients with serum ferritin levels below or above 1000 ng/mL (P > .05). Serum ferritin levels were positively correlated with serum alanine aminotransferase (r = .284, P = .042) and γ-glutamyl transferase (r = .271, P = .05) levels and were negatively correlated with serum albumin levels (r = .295, P = .034). There was a significant positive correlation between serum transferrin saturation and alanine aminotransferase levels (r = .305, P = .03). Serum ET-1 level was positively correlated with alkaline phosphatase levels (r = .304, P = .026). In univariate Cox regression analysis serum levels of iron parameters, ET-1, NO, TGF-β, and

  5. Feasibility of marrow harvesting from pediatric sibling donors without hematopoietic growth factors and allotransfusion.

    PubMed

    Yabe, M; Morimoto, T; Shimizu, T; Koike, T; Takakura, H; Ohtsubo, K; Fukumura, A; Kato, S; Yabe, H

    2014-07-01

    We retrospectively studied 108 marrow harvests from 105 pediatric sibling donors. The median age of donors was 8 years (range: 1-15) and the median body weight was 27 kg (range: 10-100). The volumes of aspirated marrow were 5.0-23.8 mL/kg donor body weight, and harvested bone marrow volume exceeded 15 mL/kg in 42% of the donors. A total of 100 autologous blood donations were performed, and eight donors had red cells salvaged from their harvests reinfused. The median Hb levels before and after harvests were 12.3 g/dL (range: 10.0-14.7) and 11.0 g/dL (range: 8.9-13.8), respectively. None of the donors received allogeneic blood transfusions or hematopoietic growth factors such as EPO and G-CSF before or after collection. Transplanted dose was 1.4-10.8 × 10(8) cells/kg recipient body weight without differences due to donor age. Higher concentrations of nucleated and CD34(+) cells were obtained from younger donors. All donors tolerated the procedures well, with no serious complications. Thus, children may safely donate marrow for allogeneic transplantation, and the yields of nucleated cells for engraftment are substantial. PMID:24777192

  6. Induction of hematopoietic and endothelial cell program orchestrated by ETS transcription factor ER71/ETV2

    PubMed Central

    Liu, Fang; Li, Daofeng; Yu, Yik Yeung Lawrence; Kang, Inyoung; Cha, Min-Ji; Kim, Ju Young; Park, Changwon; Watson, Dennis K; Wang, Ting; Choi, Kyunghee

    2015-01-01

    The ETS factor ETV2 (aka ER71) is essential for the generation of the blood and vascular system, as ETV2 deficiency leads to a complete block in blood and endothelial cell formation and embryonic lethality in the mouse. However, the ETV2-mediated gene regulatory network and signaling governing hematopoietic and endothelial cell development are poorly understood. Here, we map ETV2 global binding sites and carry out in vitro differentiation of embryonic stem cells, and germ line and conditional knockout mouse studies to uncover mechanisms involved in the hemangiogenic fate commitment from mesoderm. We show that ETV2 binds to enhancers that specify hematopoietic and endothelial cell lineages. We find that the hemangiogenic progenitor population in the developing embryo can be identified as FLK1highPDGFRα−. Notably, these hemangiogenic progenitors are exclusively sensitive to ETV2-dependent FLK1 signaling. Importantly, ETV2 turns on other Ets genes, thereby establishing an ETS hierarchy. Consequently, the hematopoietic and endothelial cell program initiated by ETV2 is maintained partly by other ETS factors through an ETS switching mechanism. These findings highlight the critical role that transient ETV2 expression plays in the regulation of hematopoietic and endothelial cell lineage specification and stability. PMID:25802403

  7. Induction of hematopoietic and endothelial cell program orchestrated by ETS transcription factor ER71/ETV2.

    PubMed

    Liu, Fang; Li, Daofeng; Yu, Yik Yeung Lawrence; Kang, Inyoung; Cha, Min-Ji; Kim, Ju Young; Park, Changwon; Watson, Dennis K; Wang, Ting; Choi, Kyunghee

    2015-05-01

    The ETS factor ETV2 (aka ER71) is essential for the generation of the blood and vascular system, as ETV2 deficiency leads to a complete block in blood and endothelial cell formation and embryonic lethality in the mouse. However, the ETV2-mediated gene regulatory network and signaling governing hematopoietic and endothelial cell development are poorly understood. Here, we map ETV2 global binding sites and carry out in vitro differentiation of embryonic stem cells, and germ line and conditional knockout mouse studies to uncover mechanisms involved in the hemangiogenic fate commitment from mesoderm. We show that ETV2 binds to enhancers that specify hematopoietic and endothelial cell lineages. We find that the hemangiogenic progenitor population in the developing embryo can be identified as FLK1(high)PDGFRα(-). Notably, these hemangiogenic progenitors are exclusively sensitive to ETV2-dependent FLK1 signaling. Importantly, ETV2 turns on other Ets genes, thereby establishing an ETS hierarchy. Consequently, the hematopoietic and endothelial cell program initiated by ETV2 is maintained partly by other ETS factors through an ETS switching mechanism. These findings highlight the critical role that transient ETV2 expression plays in the regulation of hematopoietic and endothelial cell lineage specification and stability.

  8. Common elements in interleukin 4 and insulin signaling pathways in factor-dependent hematopoietic cells.

    PubMed

    Wang, L M; Keegan, A D; Li, W; Lienhard, G E; Pacini, S; Gutkind, J S; Myers, M G; Sun, X J; White, M F; Aaronson, S A

    1993-05-01

    Interleukin 4 (IL-4), insulin, and insulin-like growth factor I (IGF-I) efficiently induced DNA synthesis in the IL-3-dependent murine myeloid cell lines FDC-P1 and FDC-P2. Although these factors could not individually sustain long-term growth of these lines, a combination of IL-4 with either insulin or IGF-I did support continuous growth. The principal tyrosine-phosphorylated substrate observed in FDC cells stimulated with IL-4, previously designated 4PS, was of the same size (170 kDa) as the major substrate phosphorylated in response to insulin or IGF-I. These substrates had phosphopeptides of the same size when analyzed by digestion with Staphylococcus aureus V8 protease, and each tightly associated with the 85-kDa component of phosphatidylinositol 3-kinase after factor stimulation. IRS-1, the principal substrate phosphorylated in response to insulin or IGF-I stimulation in nonhematopoietic cells, is similar in size to 4PS. However, anti-IRS-1 antibodies failed to efficiently precipitate 4PS, and some phosphopeptides generated by V8 protease digestion of IRS-1 were distinct in size from the phosphopeptides of 4PS. Nevertheless, IL-4, insulin, and IGF-I were capable of stimulating tyrosine phosphorylation of IRS-1 in FDC cells that expressed this substrate as a result of transfection. These findings indicate that (i) IL-4, insulin, and IGF-I use signal transduction pathways in FDC lines that have at least one major feature in common, the rapid tyrosine phosphorylation of 4PS, and (ii) insulin and IGF-I stimulation of hematopoietic cell lines leads to the phosphorylation of a substrate that may be related to but is not identical to IRS-1.

  9. [Hematopoietic stem cells and hematopoietic neoplasias].

    PubMed

    Wickenhauser, C

    2002-11-01

    Pluripotent hematopoietic stem cells have been defined as cells with extensive self-renewal capacity and lympho-hematopoietic differentiation potential. Clonal selection of a stem cell as a first step in the progression to neoplasia can be achieved by an alteration of this self-renewal potency. Our current understanding of the pathogenesis of the myeloproliferative disorders including acute myeloid leukemias, chronic myeloproliferative disorders (CMPD) and myelodysplastic syndromes (MDS), is based on the assumption that they represent a clonal disorder resulting from transformation of a hematopoietic stem cell. However, when performing methods for determining X-chromosome inactivation in female patients as a clonality marker, a significant minority of the patients with Philadelphia chromosome negative (Ph(-)) CMPD and MDS exhibit polyclonal proliferation. The implications of these results are not yet clarified and the lack of a proven target cell impairs the understanding of the underlying molecular defect. In this context, altered response to cytokine stimulation in vitro provides indirect information concerning molecular dysregulation. A subset of patients with MPD present with translocations that facilitate molecular investigation and clonality proof. They nearly always result in rearrangements of at least one transcription factor gene. Most of these fusion genes are constitutively active, sending out continuous proliferative and antiapoptotic signals or activate an overlapping set of signalling pathways. The classical example for a balanced translocation is the t(9;22) bcr-abl aberration in chronic myelogeneous leukemia. Many other karyotypic abnormalities have also been associated with CMPD and MDS and involve deletions of chromosomes 20q, 13q, 1q, 7q and 5q as well as trisomy of 8 and 9. Our increased understanding of the hematopoietic stem cell compartment and the molecular basis of regulation of its self-renewal and differentiation bears a direct impact on

  10. Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors

    PubMed Central

    Riddell, Jonah; Gazit, Roi; Garrison, Brian S.; Guo, Guoji; Saadatpour, Assieh; Mandal, Pankaj K.; Ebina, Wataru; Volchkov, Pavel; Yuan, Guo-Cheng; Orkin, Stuart H.; Rossi, Derrick J.

    2014-01-01

    Hematopoietic stem cells (HSCs) sustain blood formation throughout life and are the functional units of bone marrow transplantation. We show that transient expression of six transcription factors RUNX1T1, HLF, LMO2, PRDM5, PBX1, and ZFP37 imparts multi-lineage transplantation potential onto otherwise committed lymphoid and myeloid progenitors, and myeloid effector cells. Inclusion of MYC-N and MEIS1, and use of polycistronic viruses increase reprogramming efficacy. The reprogrammed cells, designated induced-HSCs (iHSCs), possess clonal multi-lineage differentiation potential, reconstitute stem/progenitor compartments, and are serially transplantable. Single-cell analysis revealed that iHSCs derived under optimal conditions exhibit a gene expression profile that is highly similar to endogenous HSCs. These findings demonstrate that expression of a set of defined factors is sufficient to activate the gene networks governing HSC functional identity in committed blood cells. Our results raise the prospect that blood cell reprogramming may be a strategy for derivation of transplantable stem cells for clinical application. PMID:24766805

  11. Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors.

    PubMed

    Riddell, Jonah; Gazit, Roi; Garrison, Brian S; Guo, Guoji; Saadatpour, Assieh; Mandal, Pankaj K; Ebina, Wataru; Volchkov, Pavel; Yuan, Guo-Cheng; Orkin, Stuart H; Rossi, Derrick J

    2014-04-24

    Hematopoietic stem cells (HSCs) sustain blood formation throughout life and are the functional units of bone marrow transplantation. We show that transient expression of six transcription factors Run1t1, Hlf, Lmo2, Prdm5, Pbx1, and Zfp37 imparts multilineage transplantation potential onto otherwise committed lymphoid and myeloid progenitors and myeloid effector cells. Inclusion of Mycn and Meis1 and use of polycistronic viruses increase reprogramming efficacy. The reprogrammed cells, designated induced-HSCs (iHSCs), possess clonal multilineage differentiation potential, reconstitute stem/progenitor compartments, and are serially transplantable. Single-cell analysis revealed that iHSCs derived under optimal conditions exhibit a gene expression profile that is highly similar to endogenous HSCs. These findings demonstrate that expression of a set of defined factors is sufficient to activate the gene networks governing HSC functional identity in committed blood cells. Our results raise the prospect that blood cell reprogramming may be a strategy for derivation of transplantable stem cells for clinical application.

  12. Distinct Stromal Cell Factor Combinations Can Separately Control Hematopoietic Stem Cell Survival, Proliferation, and Self-Renewal

    PubMed Central

    Wohrer, Stefan; Knapp, David J.H.F.; Copley, Michael R.; Benz, Claudia; Kent, David G.; Rowe, Keegan; Babovic, Sonja; Mader, Heidi; Oostendorp, Robert A.J.; Eaves, Connie J.

    2014-01-01

    Summary Hematopoietic stem cells (HSCs) are identified by their ability to sustain prolonged blood cell production in vivo, although recent evidence suggests that durable self-renewal (DSR) is shared by HSC subtypes with distinct self-perpetuating differentiation programs. Net expansions of DSR-HSCs occur in vivo, but molecularly defined conditions that support similar responses in vitro are lacking. We hypothesized that this might require a combination of factors that differentially promote HSC viability, proliferation, and self-renewal. We now demonstrate that HSC survival and maintenance of DSR potential are variably supported by different Steel factor (SF)-containing cocktails with similar HSC-mitogenic activities. In addition, stromal cells produce other factors, including nerve growth factor and collagen 1, that can antagonize the apoptosis of initially quiescent adult HSCs and, in combination with SF and interleukin-11, produce >15-fold net expansions of DSR-HSCs ex vivo within 7 days. These findings point to the molecular basis of HSC control and expansion. PMID:24910437

  13. Risk-factor analysis of poor graft function after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Xiao, Yang; Song, Jiayin; Jiang, Zujun; Li, Yonghua; Gao, Yang; Xu, Wenning; Lu, Ziyuan; Wang, Yaochun; Xiao, Haowen

    2014-01-01

    The objective of this study was to investigate the main risk factors for poor graft function (PGF) after allogeneic hematopoietic stem cell transplantation (allo-HSCT), to allow the improvement of transplantation outcomes through preventive measures. Clinical data for 124 patients who received allo-HSCT were analyzed retrospectively. There were 83 males (66.9%) and 41 females (33.1%) with a median age of 28 years (4-60 years). The median follow-up time was 7 months (1-116 months). Factors analyzed included age, gender, disease diagnosis, source of hematopoietic stem cells, donor type, human leukocyte antigen (HLA) matching, conditioning regimen, numbers of infused mononuclear cells and CD34(+) cells, donor-recipient sex and blood-type matching, prophylactic treatment of graft-versus-host disease (GVHD), grades of GVHD, Epstein-Barr virus or cytomegalovirus (CMV) infection, post-transplantation lymphoproliferative disorders and hepatic veno-occlusive disease. Data were analyzed by univariate and multivariate conditional logistic regression analyses. Among the 124 patients who underwent allo-HSCT, 15 developed PGF (12.1%). Univariate logistic regression analysis identified age, donor-recipient blood type and CMV infection (in 30 days) as potential risk factors for PGF. Multivariate analysis of factors with P<0.1 in univariate analysis showed that age, donor-recipient blood type and CMV infection (in 30 days) were significant risk factors for PGF. Patients were divided into subgroups based on age <20, 20-30, 30-40, and >40 years. The risk of PGF increased 2.747-fold (odds ratio (OR)=2.625, 95% confidence interval: 1.411-5.347) for each increment in age level. Patients with mismatched blood type (OR=4.051) or CMV infection (OR=9.146) had an increased risk of PGF. We conclude that age, donor-recipient blood-type matching and CMV infection are major risk factors for PGF after allo-HSCT.

  14. Hematopoietic progenitor cells grow on 3T3 fibroblast monolayers that overexpress growth arrest-specific gene-6 (GAS6).

    PubMed

    Dormady, S P; Zhang, X M; Basch, R S

    2000-10-24

    Pluripotential hematopoietic stem cells grow in close association with bone marrow stromal cells, which play a critical role in sustaining hematopoiesis in long-term bone marrow cultures. The mechanisms through which stromal cells act to support pluripotential hematopoietic stem cells are largely unknown. This study demonstrates that growth arrest-specific gene-6 (GAS6) plays an important role in this process. GAS6 is a ligand for the Axl (Ufo/Ark), Sky (Dtk/Tyro3/Rse/Brt/Tif), and Mer (Eyk) family of tyrosine kinase receptors and binds to these receptors via tandem G domains at its C terminus. After translation, GAS6 moves to the lumen of the endoplasmic reticulum, where it is extensively gamma-carboxylated. The carboxylation process is vitamin K dependent, and current evidence suggests that GAS6 must be gamma-carboxylated to bind and activate any of the cognate tyrosine kinase receptors. Here, we show that expression of GAS6 is highly correlated with the capacity of bone marrow stromal cells to support hematopoiesis in culture. Nonsupportive stromal cell lines express little to no GAS6, whereas supportive cell lines express high levels of GAS6. Transfection of the cDNA encoding GAS6 into 3T3 fibroblasts is sufficient to render this previously nonsupportive cell line capable of supporting long-term hematopoietic cultures. 3T3 cells, genetically engineered to stably express GAS6 (GAS6-3T3), produce a stromal layer that supports the generation of colony-forming units in culture (CFU-c) for up to 6 wk. Hematopoietic support by genetically engineered 3T3 is not vitamin K dependent, and soluble recombinant GAS6 does not substitute for coculturing the hematopoietic progenitors with genetically modified 3T3 cells. PMID:11050245

  15. Growth factors

    SciTech Connect

    Golde, D.W.; Herschman, H.R.; Lusis, A.J.; Groopman, J.E.

    1980-05-01

    Humoral regulation of somatic and hematopoietic cell growth has been intensely investigated during the past decade. Growth hormone is unique because it regulates the size of the person within the constraints of the genetic program. The somatomedins and insulin growth factors are low molecular weight polypeptides believed to mediate some functions of growth hormone. Epithelial growth factor and nerve growth factor are well-characterized polypeptides that influence the growth and differentiation of epithelial and neural tissues and interact with specific cell surface receptors. The hematopoietins are a family of polypeptide hormones that specifically regulate the proliferation and differentiation of stem cells giving rise to erythrocytes, granulocytes, monocytes, megakaryocytes, and B and T lymphocytes. Platelet-derived growth factor modulates the proliferation of fibroblasts in vitro and may have a role in the development of atherosclerosis and myelofibrosis. New knowledge on the biochemistry and physiology of growth factors will probably have a substantial impact on our understanding of human diseases involving abnormal cell growth.

  16. Growth of human mast cells from bone marrow and peripheral blood-derived CD34(+) pluripotent hematopoietic cells.

    PubMed

    Bandara, Geethani; Metcalfe, Dean D; Kirshenbaum, Arnold S

    2015-01-01

    Human mast cells (HuMCs) are derived from CD34(+) pluripotent hematopoietic cells which are KIT (CD117)(+) and FcεRI(-), and lack lineage-specific surface markers. Bone marrow and peripheral blood are the two readily available sources for obtaining CD34(+) cells from which HuMCs can be cultured. CD34(+) cells are isolated and enriched by magnetic separation columns and stored under specific conditions until ready for use. Alternatively, enriched CD34(+) cells may be immediately cultured in serum-free culture media containing recombinant human (rh) stem cell factor (SCF), rhIL-6, and rhIL-3 (added only during the first week). Weekly hemidepletions and removal of adherent cells and/or debris enables the investigator to obtain HuMC cultures, identified by Wright-Giemsa and acidic toluidine blue stains, by 8-10 weeks.

  17. Ubiquitous Expression of MAKORIN-2 in Normal and Malignant Hematopoietic Cells and Its Growth Promoting Activity

    PubMed Central

    Lee, King Yiu; Chan, Kathy Yuen Yee; Tsang, Kam Sze; Chen, Yang Chao; Kung, Hsiang-fu; Ng, Pak Cheung; Li, Chi Kong; Leung, Kam Tong; Li, Karen

    2014-01-01

    Makorin-2 (MKRN2) is a highly conserved protein and yet its functions are largely unknown. We investigated the expression levels of MKRN2 and RAF1 in normal and malignant hematopoietic cells, and leukemia cell lines. We also attempted to delineate the role of MKRN2 in umbilical cord blood CD34+ stem/progenitor cells and K562 cell line by over-expression and inhibition of MKRN2 through lentivirus transduction and shRNA nucleofection, respectively. Our results provided the first evidence on the ubiquitous expression of MKRN2 in normal hematopoietic cells, embryonic stem cell lines, primary leukemia and leukemic cell lines of myeloid, lymphoid, erythroid and megakaryocytic lineages. The expression levels of MKRN2 were generally higher in primary leukemia samples compared with those in age-matched normal BM cells. In all leukemia subtypes, there was no significant correlation between expression levels of MKRN2 and RAF1. sh-MKRN2-silenced CD34+ cells had a significantly lower proliferation capacity and decreased levels of the early stem/progenitor subpopulation (CFU-GEMM) compared with control cultures. Over-expression of MKRN2 in K562 cells increased cell proliferation. Our results indicated possible roles of MKRN2 in normal and malignant hematopoiesis. PMID:24675897

  18. Differential effects of culture conditions on the migration pattern of stromal cell-derived factor-stimulated hematopoietic stem cells.

    PubMed

    Weidt, Corinna; Niggemann, Bernd; Hatzmann, Wolfgang; Zänker, Kurt S; Dittmar, Thomas

    2004-01-01

    Evidence is mounting that hematopoietic stem cells (HSCs) play a critical role in bone marrow regeneration and tissue renewal, for which migration is an obvious prerequisite. Computer-aided analysis and a three-dimensional collagen matrix assay enabled us to analyze single-cell migratory characteristics of stromal cell-derived factor-1 alpha (SDF-1 alpha)-stimulated cord blood-derived HSCs. We defined and resolved specific migratory parameters in spontaneous and SDF-1 alpha-induced migration of these cells. The addition of interleukin 6 to the culture medium led to differential SDF-1 alpha-stimulated migratory response, which comprised a recruitment of nonmoving cells and an increase in speed and frequency of pauses but a decrease in pause duration. We were thus able to decipher the exact parameters that result in an increase in the migration of HSCs and demonstrate that extensive analysis of single-cell behavior is elementary in the study of stem cell migration.

  19. Rumba and Haus3 are essential factors for the maintenance of hematopoietic stem/progenitor cells during zebrafish hematopoiesis.

    PubMed

    Du, Linsen; Xu, Jin; Li, Xiuling; Ma, Ning; Liu, Yanmei; Peng, Jinrong; Osato, Motomi; Zhang, Wenqing; Wen, Zilong

    2011-02-01

    The hallmark of vertebrate definitive hematopoiesis is the establishment of the hematopoietic stem/progenitor cell (HSPC) pool during embryogenesis. This process involves a defined ontogenic switching of HSPCs in successive hematopoietic compartments and is evolutionarily conserved from teleost fish to human. In zebrafish, HSPCs originate from the ventral wall of the dorsal aorta (VDA), from which they subsequently mobilize to an intermediate hematopoietic site known as the caudal hematopoietic tissue (CHT) and finally colonize the kidney for adult hematopoiesis. Despite substantial understanding of the ontogeny of HSPCs, the molecular basis governing migration, colonization and maintenance of HSPCs remains to be explored fully. Here, we report the isolation and characterization of two zebrafish mutants, rumba(hkz1) and samba(hkz2), that are defective in generating definitive hematopoiesis. We find that HSPC initiation in the VDA and subsequent homing to the CHT are not affected in these two mutants. However, the further development of HSPCs in the CHT is compromised in both mutants. Positional cloning reveals that Rumba is a novel nuclear C2H2 zinc-finger factor with unknown function and samba encodes an evolutionarily conserved protein that is homologous to human augmin complex subunit 3 (HAUS3). Furthermore, we show that these two factors independently regulate cell cycle progression of HSPCs and are cell autonomously required for HPSC development in the CHT. Our study identifies Rumba and Haus3 as two essential regulators of HSPC maintenance during zebrafish fetal hematopoiesis.

  20. The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel.

    PubMed

    Mahadik, Bhushan P; Pedron Haba, Sara; Skertich, Luke J; Harley, Brendan A C

    2015-10-01

    Hematopoietic stem cells (HSCs) are a rare stem cell population found primarily in the bone marrow and responsible for the production of the body's full complement of blood and immune cells. Used clinically to treat a range of hematopoietic disorders, there is a significant need to identify approaches to selectively expand their numbers ex vivo. Here we describe a methacrylamide-functionalized gelatin (GelMA) hydrogel for in vitro culture of primary murine HSCs. Stem cell factor (SCF) is a critical biomolecular component of native HSC niches in vivo and is used in large dosages in cell culture media for HSC expansion in vitro. We report a photochemistry based approach to covalently immobilize SCF within GelMA hydrogels via acrylate-functionalized polyethylene glycol (PEG) tethers. PEG-functionalized SCF retains the native bioactivity of SCF but can be stably incorporated and retained within the GelMA hydrogel over 7 days. Freshly-isolated murine HSCs cultured in GelMA hydrogels containing covalently-immobilized SCF showed reduced proliferation and improved selectivity for maintaining primitive HSCs. Comparatively, soluble SCF within the GelMA hydrogel network induced increased proliferation of differentiating hematopoietic cells. We used a microfluidic templating approach to create GelMA hydrogels containing gradients of immobilized SCF that locally direct HSC response. Together, we report a biomaterial platform to examine the effect of the local presentation of soluble vs. matrix-immobilized biomolecular signals on HSC expansion and lineage specification. This approach may be a critical component of a biomaterial-based artificial bone marrow to provide the correct sequence of niche signals to grow HSCs in the laboratory.

  1. The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel

    PubMed Central

    Mahadik, B.P.; Haba, S. Pedron; Skertich, L.J.; Harley, B.A.C.

    2015-01-01

    Hematopoietic stem cells (HSCs) are a rare stem cell population found primarily in the bone marrow and responsible for the production of the body’s full complement of blood and immune cells. Used clinically to treat a range of hematopoietic disorders, there is a significant need to identify approaches to selectively expand their numbers ex vivo. Here we describe a methacrylamide-functionalized gelatin (GelMA) hydrogel for in vitro culture of primary murine HSCs. Stem cell factor (SCF) is a critical biomolecular component of native HSC niches in vivo and is used in large dosages in cell culture media for HSC expansion in vitro. We report a photochemistry based approach to covalently immobilize SCF within GelMA hydrogels via acrylate-functionalized polyethylene glycol (PEG) tethers. PEG-functionalized SCF retains the native bioactivity of SCF but can be stably incorporated and retained within the GelMA hydrogel over 7 days. Freshly-isolated murine HSCs cultured in GelMA hydrogels containing covalently-immobilized SCF showed reduced proliferation and improved selectivity for maintaining primitive HSCs. Comparatively, soluble SCF within the GelMA hydrogel network induced increased proliferation of differentiating hematopoietic cells. We used a microfluidic templating approach to create GelMA hydrogels containing gradients of immobilized SCF that locally direct HSC response. Together, we report a biomaterial platform to examine the effect of the local presentation of soluble vs. matrix-immobilized biomolecular signals on HSC expansion and lineage specification. This approach may be a critical component of a biomaterial-based artificial bone marrow to provide the correct sequence of niche signals to grow HSCs in the laboratory. PMID:26232879

  2. Sinusoidal obstruction syndrome after allogeneic hematopoietic stem cell transplantation: Incidence, risk factors and outcomes.

    PubMed

    Yakushijin, K; Atsuta, Y; Doki, N; Yokota, A; Kanamori, H; Miyamoto, T; Ohwada, C; Miyamura, K; Nawa, Y; Kurokawa, M; Mizuno, I; Mori, T; Onizuka, M; Taguchi, J; Ichinohe, T; Yabe, H; Morishima, Y; Kato, K; Suzuki, R; Fukuda, T

    2016-03-01

    This retrospective study was conducted in Japan to determine the incidence, risk factors and outcomes of sinusoidal obstruction syndrome (SOS) after allogeneic hematopoietic stem cell transplantation (HSCT). Among 4290 patients undergoing allogeneic HSCT between 1999 and 2010, 462 were diagnosed with SOS according to the Seattle criteria (cumulative incidence, 10.8%). The cumulative incidence of SOS diagnosed by the modified Seattle criteria was 9.3%. Of 462 patients, 107 met the Baltimore criteria and 168 had severe SOS with renal and/or respiratory failure. The median onset for SOS was 12 days after HSCT (range, -2-30). Overall survival at day 100 was 32% for SOS and 15% for severe SOS. Multivariate analyses showed that significant independent risk factors for SOS were the number of HSCTs, age, performance status, hepatitis C virus-seropositivity, advanced disease status and myeloablative regimen. SOS was highly associated with overall mortality (hazard ratio, 2.09; P<0.001). Our retrospective survey showed that the cumulative incidence of SOS in Japan was 10.8%, similar to that previously reported in Western countries, and that the overall survival of patients who developed SOS was low. Furthermore, several risk factors were identified. Preventive and therapeutic strategies for high-risk SOS patients must be established to improve overall survival. PMID:26595082

  3. Risk factors and prognosis of hepatic acute GvHD after allogeneic hematopoietic cell transplantation.

    PubMed

    Arai, Y; Kanda, J; Nakasone, H; Kondo, T; Uchida, N; Fukuda, T; Ohashi, K; Kaida, K; Iwato, K; Eto, T; Kanda, Y; Nakamae, H; Nagamura-Inoue, T; Morishima, Y; Hirokawa, M; Atsuta, Y; Murata, M

    2016-01-01

    Hepatic acute GvHD (aGvHD) is associated with high mortality owing to poor response to immunosuppressive therapy. The pathogenesis of hepatic aGvHD differs from that of other lesions, and specific risk factors related to pre-transplant liver conditions should be determined. We conducted a cohort study by using a Japanese transplant registry database (N=8378). Of these subjects, 1.5% had hepatitis C virus Ab (HCV-Ab) and 9.4% had liver dysfunction (elevated transaminase or bilirubin levels) before hematopoietic cell transplantation (HCT). After HCT, the cumulative incidence of hepatic aGvHD was 6.7%. On multivariate analyses, HCV-Ab positivity (hazard ratio (HR), 1.93; P=0.02) and pre-transplant liver dysfunction (HR, 1.85; P<0.01), as well as advanced HCT risk, unrelated donors, HLA mismatch and cyclosporine as GvHD prophylaxis, were significant risk factors for hepatic aGvHD, whereas hepatitis B virus surface Ag was not. Hepatic aGvHD was a significant risk factor for low overall survival and high transplant-related mortality in all aGvHD grades (P<0.01). This study is the first to show the relationship between pre-transplant liver conditions and hepatic aGvHD. A prospective study is awaited to validate the results of this study and establish a new strategy especially for high-risk patients. PMID:26367230

  4. CD133 is a modifier of hematopoietic progenitor frequencies but is dispensable for the maintenance of mouse hematopoietic stem cells

    PubMed Central

    Arndt, Kathrin; Grinenko, Tatyana; Mende, Nicole; Reichert, Doreen; Portz, Melanie; Ripich, Tatsiana; Carmeliet, Peter; Corbeil, Denis; Waskow, Claudia

    2013-01-01

    Pentatransmembrane glycoprotein prominin-1 (CD133) is expressed at the cell surface of multiple somatic stem cells, and it is widely used as a cell surface marker for the isolation and characterization of human hematopoietic stem cells (HSCs) and cancer stem cells. CD133 has been linked on a cell biological basis to stem cell-fate decisions in human HSCs and emerges as an important physiological regulator of stem cell maintenance and expansion. Its expression and physiological relevance in the murine hematopoietic system is nevertheless elusive. We show here that CD133 is expressed by bone marrow-resident murine HSCs and myeloid precursor cells with the developmental propensity to give rise to granulocytes and monocytes. However, CD133 is dispensable for the pool size and function of HSCs during steady-state hematopoiesis and after transplantation, demonstrating a substantial species difference between mouse and man. Blood cell numbers in the periphery are normal; however, CD133 appears to be a modifier for the development of growth-factor responsive myeloerythroid precursor cells in the bone marrow under steady state and mature red blood cells after hematopoietic stress. Taken together, these studies show that CD133 is not a critical regulator of hematopoietic stem cell function in mouse but that it modifies frequencies of growth-factor responsive hematopoietic progenitor cells during steady state and after myelotoxic stress in vivo. PMID:23509298

  5. Peri-Transplant Psychosocial Factors and Neutrophil Recovery following Hematopoietic Stem Cell Transplantation

    PubMed Central

    Knight, Jennifer M.; Moynihan, Jan A.; Lyness, Jeffrey M.; Xia, Yinglin; Tu, Xin; Messing, Susan; Hunter, Bryan C.; Huang, Li-Shan; Obi, Rosemary O.; Gaisser, D'Arcy; Liesveld, Jane L.; Sahler, Olle Jane Z.

    2014-01-01

    Objective Multiple psychosocial factors appear to affect cancer progression in various populations; however, research investigating the relationship between psychosocial factors and outcomes following hematopoietic stem cell transplantation (HCT) is scarce. Subject to adverse immunological and psychological conditions, HCT patients may be especially vulnerable to psychosomatic health sequelae; therefore, we studied whether optimism and anxiety influence the pertinent clinical outcome of days to neutrophil engraftment (DTE). Method 54 adults undergoing either autologous or allogeneic HCT completed self-report questionnaires measuring optimism and anxiety. We assessed the association between these psychosocial variables and DTE. Results Greater optimism and less anxiety were associated with the favorable outcome of fewer DTE in autologous HCT recipients, though this relationship was no longer significant when reducing the sample size to only subjects who filled out their baseline survey by the time of engraftment. Conclusion Our findings are suggestive that optimism and anxiety may be associated with time to neutrophil recovery in autologous, but not allogeneic, adult HCT recipients. Further investigation in larger, more homogeneous subjects with consistent baseline sampling is warranted. PMID:24915544

  6. Synergy of interleukin 1 and granulocyte colony-stimulating factor: in vivo stimulation of stem-cell recovery and hematopoietic regeneration following 5-fluorouracil treatment of mice

    SciTech Connect

    Moore, M.A.S.; Warren, D.J.

    1987-10-01

    The human bladder carcinoma cell line 5637 produces hematopoietic growth factors (granulocyte and granulocyte/macrophage colony-stimulating factors (G-CSF and GM-CSF)) and hemopoietin 1, which synergizes with CSFs to stimulate colony formation by primitive hematopoietic stem cells in 5-fluorouracil-treated mouse bone marrow. Molecular and functional properties of hemopoietin 1 identified it as identical to interleukin 1..cap alpha.. (IL-1..cap alpha..). When bone marrow cells from 5-fluorouracil-treated mice were cultured in suspension for 7 days with recombinant human IL-1..cap alpha.. and/or G-CSF, it was found that the two factors synergized to enhance recovery of myelopoietic cells and colony-forming cells of both high and low proliferative potential. G-CSF alone did not sustain these populations, but the combination had greater-than-additive stimulating capacity. In vivo, 5-fluorouracil (150 mg/kg) produced profound myelosuppression and delayed neutrophil regeneration for up to 2 weeks in C3H/HeJ mice. Daily administration of recombinant human G-CSF or human IL-1..cap alpha.. accelerated recovery of stem cells, progenitor cells, and blood neutrophils by up to 4 days in 5-fluorouracil-treated C3H/HeJ and B6D2F/sub 1/ mice. The combination of IL-1..cap alpha.. and G-CSF acted synergistically, reducing neutropenia and accelerating recovery of normal neutrophil numbers by up to 7 days. These results indicate the possible therapeutic potential of combination therapy with IL-1 and hematopoietic growth factors such as G-CSF in the treatment of chemotherapy- or radiation-induced myelosuppression.

  7. Risk factors for recurrent Clostridium difficile infection in allogeneic hematopoietic cell transplant recipients.

    PubMed

    Mani, S; Rybicki, L; Jagadeesh, D; Mossad, S B

    2016-05-01

    Clostridium difficile infection (CDI) is one of the leading causes of hospital-acquired infections in recent times. Hematopoietic stem cell transplantation (HSCT) confers increased risk for CDI because of prolonged hospital stay, immunosuppression, the need to use broad-spectrum antibiotics and a complex interplay of preparative regimen and GvHD-induced gut mucosal damage. Our study evaluated risk factors (RF) for recurrent CDI in HSCT recipients given the ubiquity of traditional RF for CDI in this population. Of the 499 allogeneic HSCT recipients transplanted between 2005 and 2012, 61 (12%) developed CDI within 6 months before transplant or 2 years after transplant and were included in the analysis. Recurrent CDI occurred in 20 (33%) patients. One year incidence of CDI recurrence was 31%. Multivariable analyses identified the number of antecedent antibiotics other than those used to treat CDI as the only significant RF for recurrence (hazard ratio 1.96, 95% confidence interval 1.09-3.52, P=0.025). Most recurrences occurred within 6 months of the first CDI, and the recurrence of CDI was associated with a trend for increased risk of mortality. This prompts the need for further investigation into secondary prophylaxis to prevent recurrent CDI. PMID:26726944

  8. Hematopoietic and Leukemic Stem Cells Have Distinct Dependence on Tcf1 and Lef1 Transcription Factors.

    PubMed

    Yu, Shuyang; Li, Fengyin; Xing, Shaojun; Zhao, Tianyan; Peng, Weiqun; Xue, Hai-Hui

    2016-05-20

    Hematopoietic and leukemic stem cells (HSCs and LSCs) have self-renewal ability to maintain normal hematopoiesis and leukemia propagation, respectively. Tcf1 and Lef1 transcription factors are expressed in HSCs, and targeting both factors modestly expanded the size of the HSC pool due to diminished HSC quiescence. Functional defects of Tcf1/Lef1-deficient HSCs in multi-lineage blood reconstitution was only evident under competitive conditions or when subjected to repeated regenerative stress. These are mechanistically due to direct positive regulation of Egr and Tcf3 by Tcf1 and Lef1, and significantly, forced expression of Egr1 in Tcf1/Lef1-deficient HSCs restored HSC quiescence. In a preclinical CML model, loss of Tcf1/Lef1 did not show strong impact on leukemia initiation and progression. However, when transplanted into secondary recipients, Tcf1/Lef1-deficient LSCs failed to propagate CML. By induced deletion of Tcf1 and Lef1 in pre-established CML, we further demonstrated an intrinsic requirement for these factors in LSC self-renewal. When combined with imatinib therapy, genetic targeting of Tcf1 and Lef1 potently diminished LSCs and conferred better protection to the CML recipients. LSCs are therefore more sensitive to loss of Tcf1 and Lef1 than HSCs in their self-renewal capacity. The differential requirements in HSCs and LSCs thus identify Tcf1 and Lef1 transcription factors as novel therapeutic targets in treating hematological malignancies, and inhibition of Tcf1/Lef1-regulated transcriptional programs may thus provide a therapeutic window to eliminate LSCs with minimal side effect on normal HSC functions. PMID:27044748

  9. Changing Factors associated with Parent Activation after Pediatric Hematopoietic Stem Cell Transplant

    PubMed Central

    Pennarola, Brian W.; Rodday, Angie Mae; Bingen, Kristin; Schwartz, Lisa A.; Patel, Sunita K.; Syrjala, Karen L.; Mayer, Deborah K.; Ratichek, Sara J.; Guinan, Eva C.; Kupst, Mary Jo; Hibbard, Judith H.; Parsons, Susan K.

    2015-01-01

    Purpose To identify factors associated with parent activation in parents of children undergoing pediatric hematopoietic stem cell transplant (HSCT) in the 6 months following HSCT, and to address if their association with parent activation changes over time. Methods Measures for this analysis, including the Parent Patient Activation Measure (Parent-PAM), were completed by parents (N=198) prior to their child’s HSCT preparative regimen and again at 6 months post-HSCT. Clinical data were also collected. A repeated measures model was built to estimate the association between clinical and demographic factors and parent well-being on Parent-PAM scores. Interactions with time were considered to test for changing effects over time. Results Throughout the HSCT course, older parent age was associated with lower Parent-PAM scores (β=−0.29, p=0.02) and never being married was associated with higher scores (versus married, β=12.27, p=0.03). While higher parent emotional functioning scores were not associated with activation at baseline, they were important at 6 months (baseline: β=−0.002, p=0.96; interaction: β=0.14, p=0.03). At baseline longer duration of illness was associated with increased activation, but this effect diminished with time (baseline: β=3.29, p=0.0002; interaction: β=−2.40, p=0.02). Activation levels dropped for parents of children who went from private to public insurance (baseline: β=2.95, p=0.53; interaction: β=−13.82, p=0.004). Clinical events did not affect Parent-PAM scores. Conclusions Our findings reveal important changes in the factors associated with parent activation in the first 6 months after pediatric HSCT. These findings may reflect the emotional and financial toll of pediatric HSCT on parent activation. PMID:25519755

  10. Angiogenic factors are associated with development of acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Nie, Di-min; Wu, Qiu-ling; Zhu, Xia-xia; Zhang, Ran; Zheng, Peng; Fang, Jun; You, Yong; Zhong, Zhao-dong; Xia, Ling-hui; Hong, Mei

    2015-10-01

    Acute graft-versus-host disease (aGVHD) is a serious complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the mechanisms of aGVHD are not well understood. We aim to investigate the roles of the three angiogenic factors: angiopoietin-1 (Ang-1), Ang-2 and vascular endothelial growth factor (VEGF) in the development of aGVHD. Twenty-one patients who underwent allo-HSCT were included in our study. The dynamic changes of Ang-1, Ang-2 and VEGF were monitored in patients before and after allo-HSCT. In vitro, endothelial cells (ECs) were treated with TNF-β in the presence or absence of Ang-1, and then the Ang-2 level in the cell culture medium and the tubule formation by ECs were evaluated. After allo-HSCT, Ang-1, Ang-2 and VEGF all exhibited significant variation, suggesting these factors might be involved in the endothelial damage in transplantation. Patients with aGVHD had lower Ang-1 level at day 7 but higher Ang-2 level at day 21 than those without aGVHD, implying that Ang-1 may play a protective role in early phase yet Ang-2 is a promotion factor to aGVHD. In vitro, TNF-β promoted the release of Ang-2 by ECs and impaired tubule formation of ECs, which were both weakened by Ang-1, suggesting that Ang-1 may play a protective role in aGVHD by influencing the secretion of Ang-2, consistent with our in vivo tests. It is concluded that monitoring changes of these factors following allo-HSCT might help to identify patients at a high risk for aGVHD. PMID:26489624

  11. Risk factors for mortality in patients with bloodstream infections during the pre-engraftment period after hematopoietic stem cell transplantation

    PubMed Central

    Karpov, Igor; Milanovich, Natalia; Uss, Anatoly; Iskrov, Igor

    2016-01-01

    Background Bloodstream infections (BSI) remain a frequent complication during the pre-engraftment period after hematopoietic stem cell transplantation (HSCT), resulting in high mortality rates. This study evaluated risk factors for mortality in hematopoietic stem cell transplant recipients with BSI in the pre-engraftment period. Methods This prospective case control study was performed at the Center of Hematology and Bone Marrow Transplantation in Minsk, Republic of Belarus. Data relating to patient age and gender, date and type of transplantation, conditioning chemotherapy regimen, microorganisms isolated from blood, and antibacterial therapy were prospectively collected from all hematopoietic stem cell recipients with microbiologically proven cases of BSI in the pre-engraftment period. The primary outcome was all-cause 30-day mortality after onset of febrile neutropenia. Results A total of 135 adult patients with microbiologically proven BSI after HSCT were studied, with 65.2% of cases caused by gram-negative microorganisms and 21.5% by non-fermenting bacteria. Inadequate empiric antibacterial therapy and isolation of carbapenem-resistant non-fermenting gram-negative bacteria (Acinetobacter baumannii and Pseudomonas aeruginosa) were independently associated with increased all-cause 30-day mortality in these patients. Conclusion The risk factors for mortality in adult patients with BSI in the pre-engraftment period after HSCT were inadequacy of empirical antibacterial therapy and isolation of carbapenem-resistant A. baumannii or P. aeruginosa. PMID:27382554

  12. Risk factors for short term thyroid dysfunction after hematopoietic stem cell transplantation in children

    PubMed Central

    Jung, You Jin; Jeon, Yeon Jin; Cho, Won Kyoung; Lee, Jae Wook; Chung, Nack-Gyun; Jung, Min Ho; Cho, Bin

    2013-01-01

    Purpose The purpose of this study was to evaluate short-term thyroid dysfunction and related risk factors in pediatric patients who underwent hematopoietic stem cell transplantation (HSCT) during childhood. Methods We studied 166 patients (100 boys and 66 girls) who underwent HSCT at the Catholic HSCT Center from January 2004 through December 2009. The mean age at HSCT was 10.0±4.8 years. Thyroid function of the patients was tested before and during 3 months of HSCT. Results Out of 166 patients, 165 (99.4%) underwent allotransplantation. Acute graft-versus-host disease (GVHD, grades II to IV) developed in 76 patients. Conditioning regimens before HSCT include total body irradiation (n=57), busulfan (n=80), and reduced intensity (n=29). Forty-five (27.1%) had thyroid dysfunction during 3 months after HSCT (29 euthyroid sick syndrome [ESS], 6 subclinical hyperthyroidism, 4 subclinical hypothyroidism, 3 hypothyroxinemia, 2 overt hyperthyroidism, and 1 high T4 syndrome). In a univariate logistic regression analysis, age at HSCT (P=0.002) and acute GVHD (P=0.009) had statistically significant relationships with thyroid dysfunction during 3 months after HSCT. Also, in a univariate logistic regression analysis, ESS (P=0.014) showed a strong statistically significant association with mortality. Conclusion In our study 27.1% patients experienced thyroid dysfunction during 3 months after HSCT. Increase in age and acute GVHD may be risk factors for thyroid dysfunction during 3 months after HSCT. There was a significant association between ESS and mortality. PMID:23908670

  13. Establishment of an adherent cell feeder layer from human umbilical cord blood for support of long-term hematopoietic progenitor cell growth.

    PubMed Central

    Ye, Z Q; Burkholder, J K; Qiu, P; Schultz, J C; Shahidi, N T; Yang, N S

    1994-01-01

    Previous attempts to establish a stromal cell feeder layer from human umbilical cord blood (HUCB) have met with very limited success. It has been suggested that there is an insufficient number of stromal precursor cells in HUCB to form a hematopoietic-supporting feeder layer in primary cultures. The present study shows that HUCB does contain a significant accessory cell population that routinely develops into a confluent, adherent cell layer under defined primary culture conditions. HUCB-derived adherent layers were shown to support long-term hematopoietic activity for an average of 4 months. This was achieved by using a customized coverslip with a modified surface structure as the cell attachment substratum and using a specialized culture feeding regime. We have characterized the various cell types (including fibroblasts, macrophages, and endothelial cells) and extracellular matrix proteins (including fibronectin, collagen III, and laminin) that were present in abundance in the HUCB-derived adherent cell layer. In contrast, oil red O-staining fat cells were rarely detected. ELISA and bioassays showed that stem cell factor and interleukin 6 were produced by the HUCB stromal cell cultures, but interleukin 3 or granulocyte/macrophage colony-stimulating factor was not detected. Application of this hematopoietic culture system to transgenic and gene therapy studies of stem cells is discussed. Images PMID:7527553

  14. Factor VIII delivered by hematopoietic stem cell-derived B cells corrects the phenotype of hemophilia A mice

    PubMed Central

    Ramezani, Ali; Zweier-Renn, Lynnsey A.; Hawley, Robert G.

    2011-01-01

    Summary The main impediments to clinical application of hematopoietic stem cell (HSC) gene therapy for treatment of hemophilia A are the bone marrow transplant-related risks and the potential for insertional mutagenesis caused by retroviral vectors. To circumvent these limitations, we have adapted a nonmyeloablative conditioning regimen and directed factor VIII (FVIII) protein synthesis to B lineage cells using an insulated lentiviral vector containing an immunoglobulin heavy chain enhancer-promoter. Transplantation of lentiviral vector-modified HSCs resulted in therapeutic levels of FVIII in the circulation of all transplanted mice for the duration of the study (6 months). Immunostaining of spleen cells showed that the majority of FVIII was synthesized by B220+ B cells and CD138+ plasma cells. Subsequent challenge with recombinant FVIII elicited at most a minor anti-FVIII antibody response, demonstrating induction of immune hyporesponsiveness. All transplant recipients exhibited clot formation and survived tail clipping, indicating correction of their hemophilic phenotype. Therapeutic levels of FVIII could be transferred to secondary recipients by bone marrow transplantation, confirming gene transfer into long-term repopulating HSCs. Moreover, short-term therapeutic FVIII levels could also be achieved in secondary recipients by adoptive transfer of HSC-derived splenic B cells. Our findings support pursuit of B cell-directed protein delivery as a potential clinical approach to treat hemophilia A and other disorders correctable by systemically distributed proteins. PMID:21264447

  15. Risk factors for molecular detection of adenovirus in pediatric hematopoietic stem cell transplantation recipients.

    PubMed

    Watson, Theresa; MacDonald, David; Song, Xiaoyan; Bromwich, Kira; Campos, Joseph; Sande, Jane; DeBiasi, Roberta L

    2012-08-01

    Adenovirus (AdV) infections are a major cause of morbidity and mortality in patients undergoing hematopoietic stem cell transplantation (HSCT). To evaluate the use of molecular AdV testing in HSCT at our institution and identify risk factors for AdV viremia and disease, we performed a retrospective cohort study of all HSCT recipients who had undergone AdV polymerase chain reaction testing over a 2-year period. Two cohorts were identified: cohort 1, comprising patients testing positive for AdV (n = 7) and cohort 2, comprising patients testing negative (n = 36). Overall patient characteristics were not statistically significantly different between the 2 cohorts. A comparison of cohort 1 and cohort 2 identified the following medication exposures as risk factors influencing AdV status: preparatory regimens using fludarabine (relative risk [RR], 8.73; 95% confidence interval [CI], 1.18-64.27; P = .006), melphalan (RR, 3.47; 95% CI, 0.76-15.94: P = .08), and/or cyclophosphamide (RR, 0.18; 95% CI, 0.02-1.4; P = .05), and GVHD prophylaxis with methylprednisone (RR, 3.73; 95% CI, 1.01-13.9; P = .04). AdV-positive patients had higher grades of GVHD and higher rates of GVHD of the gastrointestinal tract (RR, 4; 95% CI, 1.18-13.5; P = .03) compared with AdV-negative patients. Four of the 7 AdV-positive patients had concomitant clinical manifestations of disease, including pneumonia, diarrhea, and/or disseminated disease. Clinical outcomes in symptomatic patients included resolution of disease in 2 patients and death in 2 patients. All 7 AdV-positive patients received antiviral therapy, including 1 patient with severe disseminated disease that resolved after administration of liposomal cidofovir. Our study at a large pediatric HSCT center provides important preliminary data for the development of a prospective trial destined to identify specific HCST patient subpopulations that might benefit most from molecular screening and early preemptive therapy. PMID:22281300

  16. Serum after autologous transplantation stimulates proliferation and expansion of human hematopoietic progenitor cells.

    PubMed

    Walenda, Thomas; Bokermann, Gudrun; Jost, Edgar; Galm, Oliver; Schellenberg, Anne; Koch, Carmen M; Piroth, Daniela M; Drescher, Wolf; Brümmendorf, Tim H; Wagner, Wolfgang

    2011-01-01

    Regeneration after hematopoietic stem cell transplantation (HSCT) depends on enormous activation of the stem cell pool. So far, it is hardly understood how these cells are recruited into proliferation and self-renewal. In this study, we have addressed the question if systemically released factors are involved in activation of hematopoietic stem and progenitor cells (HPC) after autologous HSCT. Serum was taken from patients before chemotherapy, during neutropenia and after hematopoietic recovery. Subsequently, it was used as supplement for in vitro culture of CD34(+) cord blood HPC. Serum taken under hematopoietic stress (4 to 11 days after HSCT) significantly enhanced proliferation, maintained primitive immunophenotype (CD34(+), CD133(+), CD45(-)) for more cell divisions and increased colony forming units (CFU) as well as the number of cobblestone area-forming cells (CAFC). The stimulatory effect decays to normal levels after hematopoietic recovery (more than 2 weeks after HSCT). Chemokine profiling revealed a decline of several growth-factors during neutropenia, including platelet-derived growth factors PDGF-AA, PDGF-AB and PDGF-BB, whereas expression of monocyte chemotactic protein-1 (MCP-1) increased. These results demonstrate that systemically released factors play an important role for stimulation of hematopoietic regeneration after autologous HSCT. This feedback mechanism opens new perspectives for in vivo stimulation of the stem cell pool. PMID:21437259

  17. Epigenetic Regulation of Hematopoietic Stem Cells.

    PubMed

    Sharma, Shilpa; Gurudutta, Gangenahalli

    2016-05-30

    Hematopoietic stem cells are endowed with a distinct potential to bolster self-renewal and to generate progeny that differentiate into mature cells of myeloid and lymphoid lineages. Both hematopoietic stem cells and mature cells have the same genome, but their gene expression is controlled by an additional layer of epigenetics such as DNA methylation and post-translational histone modifications, enabling each cell-type to acquire various forms and functions. Until recently, several studies have largely focussed on the transcription factors andniche factors for the understanding of the molecular mechanisms by which hematopoietic cells replicate and differentiate. Several lines of emerging evidence suggest that epigenetic modifications eventually result in a defined chromatin structure and an "individual" gene expression pattern, which play an essential role in the regulation of hematopoietic stem cell self-renewal and differentiation. Distinct epigenetic marks decide which sets of genes may be expressed and which genes are kept silent. Epigenetic mechanisms are interdependent and ensure lifelong production of blood and bone marrow, thereby contributing to stem cell homeostasis. The epigenetic analysis of hematopoiesis raises the exciting possibility that chromatin structure is dynamic enough for regulated expression of genes. Though controlled chromatin accessibility plays an essential role in maintaining blood homeostasis; mutations in chromatin impacts on the regulation of genes critical to the development of leukemia. In this review, we explored the contribution of epigenetic machinery which has implications for the ramification of molecular details of hematopoietic self-renewal for normal development and underlying events that potentially co-operate to induce leukemia.

  18. Granulocyte-colony stimulating factor for hematopoietic stem cell donation from healthy female donors during pregnancy and lactation: what do we know?

    PubMed

    Pessach, Ilias; Shimoni, Avichai; Nagler, Arnon

    2013-01-01

    BACKGROUND Hematopoietic growth factors (HGFs) are mostly used as supportive measures to reduce infectious complications associated with neutropenia. Over the past decade, the use of HGFs became a common method for mobilizing human CD34+ stem cells, either for autologous or allogeneic transplantation. However, since their introduction the long-term safety of the procedure has become a major focus of discussion and research. Most information refers to healthy normal donors and data concerning pregnant and lactating women are scarce. The clinical question, which is the core of this review, is whether stem cell donation, preceded by administration of granulocyte-colony stimulating factor (G-CSF) for mobilization, is a safe procedure for pregnant donors. METHODS Literature searches were performed in Pubmed for English language articles published before the end of May 2012, focusing on G-CSF administration during pregnancy, lactation and hematopoietic stem cell donation. Searches included animal and human studies. RESULTS Data from animals (n = 15 studies) and women (n = 46 studies) indicate that G-CSF crosses the placenta, stimulates fetal granulopoiesis, improves neonatal survival mostly for very immature infants, promotes trophoblast growth and placental metabolism and has an anti-abortive role. Granulocyte macrophage-CSF is a key cytokine in the maternal immune tolerance towards the implanted embryo and exerts protective long-term programming effects to preimplantation embryos. The available data suggest that probably CSFs should not be administered during the time of most active organogenesis (first trimester), except perhaps for the first week during which implantation takes place. Provided CSF is administered during the second and third trimesters, it appears to be safe, and pregnant women receiving the CSF treatment can become hematopoietic stem cell donors. There are also risks related to the anesthesia, which is required for the bone marrow aspiration. During

  19. [Stem cells and growth factors in wound healing].

    PubMed

    Pikuła, Michał; Langa, Paulina; Kosikowska, Paulina; Trzonkowski, Piotr

    2015-01-02

    Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing. Among the most important cells which take part in wound healing the following cells need to be distinguished: epidermal stem cells, dermal precursor of fibroblasts, adipose-derived stem cells as well as bone marrow cells. The activity of these cells is strictly regulated by various growth factors, inter alia epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), vascular endothelial growth factor (VEGF). Any disorders in functioning of stem cells and biological activity of growth factors may lead to the defects in wound healing, for instance delayed wound healing or creation of hypertrophic scars. Therefore, knowledge concerning the mechanisms of wound healing is extremely essential from clinical point of view. In this review the current state of the knowledge of the role of stem cells and growth factors in the process of wound healing has been presented. Moreover, some clinical aspects of wound healing as well as the possibility of the therapy based on stem cells and growth factors have included.

  20. Hematopoietic effect of deer antler extract fermented by Bacillus subtilis on murine marrow cells

    PubMed Central

    Park, Yooheon; Choi, Hyeon-Son; Lee, Hyun-Sun

    2015-01-01

    BACKGROUND/OBJECTIVES We examined the chemical composition and the effect of fermented deer antler on hematopoietic factors in bone marrow cells. MATERIALS/METHODS For the preparation of fermented deer antler extract (FAB), fermentation was carried out using Bacillus subtilis at 30℃ for 7 days. The hematopoietic effect of FAB was investigated hematopoietic factors in marrow cells. RESULTS The contents of total sugar, sulfated glycosaminoglycans, and uronic acid and the dry weight gradually increased with fermentation time. The sialic acid content (from 0.14 mg/mL to 0.54 mg/mL) was the highest on the 4th day of fermentation after which it decreased. The proliferating activity of bone marrow cells increased with fermentation times. The levels of various hematopoietic growth factors were determined to verify the beneficial effect of deer antler extract fermented by B. subtilis on hematopoiesis. FAB increased the number of stem cell factors and granulocyte colony-stimulating factor in bone marrow cells. In addition, FAB augmented the burst-forming unit erythroid and total colonies in splenocyte-conditioned medium compared with non-fermented antler extract (NFA). However, FAB did not affect the mRNA levels of erythropoietin, an important factor for erythropoiesis. CONCLUSIONS FAB, like NFA, did not directly affect hematopoiesis, but contributed to hematopoiesis by stimulating the production of hematopoietic factors. PMID:26425273

  1. Plasticity of hematopoietic stem cells.

    PubMed

    Ogawa, Makio; LaRue, Amanda C; Mehrotra, Meenal

    2015-01-01

    Almost two decades ago, a number of cell culture and preclinical transplantation studies suggested the striking concept of the tissue-reconstituting ability of hematopoietic stem cells (HSCs). While this heralded an exciting time of radically new therapies for disorders of many organs and tissues, the concept was soon mired by controversy and remained dormant. This chapter provides a brief review of evidence for HSC plasticity including our findings based on single HSC transplantation in mouse. These studies strongly support the concept that HSCs are pluripotent and may be the source for the majority, if not all, of the cell types in our body. PMID:26590762

  2. Mesenchymal stromal cells and hematopoietic stem cell transplantation.

    PubMed

    Bernardo, Maria Ester; Fibbe, Willem E

    2015-12-01

    Mesenchymal stromal cells (MSCs) comprise a heterogeneous population of multipotent cells that can be isolated from various human tissues and culture-expanded ex vivo for clinical use. Due to their immunoregulatory properties and their ability to secrete growth factors, MSCs play a key role in the regulation of hematopoiesis and in the modulation of immune responses against allo- and autoantigens. In light of these properties, MSCs have been employed in clinical trials in the context of hematopoietic stem cell transplantation (HSCT) to facilitate engraftment of hematopoietic stem cells (HSCs) and to prevent graft failure, as well as to treat steroid-resistant acute graft-versus-host disease (GvHD). The available clinical evidence derived from these studies indicates that MSC administration is safe. Moreover, promising preliminary results in terms of efficacy have been reported in some clinical trials, especially in the treatment of acute GvHD. In this review we critically discuss recent advances in MSC therapy by reporting on the most relevant studies in the field of HSCT.

  3. Effect of The Receptor Activator of Nuclear Factor кB and RANK Ligand on In Vitro Differentiation of Cord Blood CD133+ Hematopoietic Stem Cells to Osteoclasts

    PubMed Central

    Kalantari, Nasim; Abroun, Saeid; Soleimani, Masoud; Kaviani, Saeid; Azad, Mehdi; Eskandari, Fatemeh; Habibi, Hossein

    2016-01-01

    Objective Receptor activator of nuclear factor-kappa B ligand (RANKL) appears to be an osteoclast-activating factor, bearing an important role in the pathogenesis of multiple myeloma. Some studies demonstrated that U-266 myeloma cell line and primary myeloma cells expressed RANK and RANKL. It had been reported that the expression of myeloid and monocytoid markers was increased by co-culturing myeloma cells with hematopoietic stem cells (HSCs). This study also attempted to show the molecular mechanism of RANK and RANKL on differentiation capability of human cord blood HSC to osteoclast, as well as expression of calcitonin receptor (CTR) on cord blood HSC surface. Materials and Methods In this experimental study, CD133+ hematopoietic stem cells were isolated from umbilical cord blood and cultured in the presence of macrophage colony-stimulating factor (M-CSF) and RANKL. Osteoclast differentiation was characterized by using tartrate-resistant acid phosphatase (TRAP) staining, giemsa staining, immunophenotyping, and reverse transcription-polymerase chain reaction (RT-PCR) assay for specific genes. Results Hematopoietic stem cells expressed RANK before and after differentiation into osteoclast. Compared to control group, flow cytometric results showed an increased expression of RANK after differentiation. Expression of CTR mRNA showed TRAP reaction was positive in some differentiated cells, including osteoclast cells. Conclusion Presence of RANKL and M-CSF in bone marrow could induce HSCs differentiation into osteoclast.

  4. Effect of The Receptor Activator of Nuclear Factor кB and RANK Ligand on In Vitro Differentiation of Cord Blood CD133+ Hematopoietic Stem Cells to Osteoclasts

    PubMed Central

    Kalantari, Nasim; Abroun, Saeid; Soleimani, Masoud; Kaviani, Saeid; Azad, Mehdi; Eskandari, Fatemeh; Habibi, Hossein

    2016-01-01

    Objective Receptor activator of nuclear factor-kappa B ligand (RANKL) appears to be an osteoclast-activating factor, bearing an important role in the pathogenesis of multiple myeloma. Some studies demonstrated that U-266 myeloma cell line and primary myeloma cells expressed RANK and RANKL. It had been reported that the expression of myeloid and monocytoid markers was increased by co-culturing myeloma cells with hematopoietic stem cells (HSCs). This study also attempted to show the molecular mechanism of RANK and RANKL on differentiation capability of human cord blood HSC to osteoclast, as well as expression of calcitonin receptor (CTR) on cord blood HSC surface. Materials and Methods In this experimental study, CD133+ hematopoietic stem cells were isolated from umbilical cord blood and cultured in the presence of macrophage colony-stimulating factor (M-CSF) and RANKL. Osteoclast differentiation was characterized by using tartrate-resistant acid phosphatase (TRAP) staining, giemsa staining, immunophenotyping, and reverse transcription-polymerase chain reaction (RT-PCR) assay for specific genes. Results Hematopoietic stem cells expressed RANK before and after differentiation into osteoclast. Compared to control group, flow cytometric results showed an increased expression of RANK after differentiation. Expression of CTR mRNA showed TRAP reaction was positive in some differentiated cells, including osteoclast cells. Conclusion Presence of RANKL and M-CSF in bone marrow could induce HSCs differentiation into osteoclast. PMID:27602313

  5. Mouse gene targeting reveals an essential role of mTOR in hematopoietic stem cell engraftment and hematopoiesis.

    PubMed

    Guo, Fukun; Zhang, Shuangmin; Grogg, Matthew; Cancelas, Jose A; Varney, Melinda E; Starczynowski, Daniel T; Du, Wei; Yang, Jun-Qi; Liu, Wei; Thomas, George; Kozma, Sara; Pang, Qishen; Zheng, Yi

    2013-09-01

    mTOR integrates signals from nutrients and growth factors to control protein synthesis, cell growth, and survival. Although mTOR has been established as a therapeutic target in hematologic malignancies, its physiological role in regulating hematopoiesis remains unclear. Here we show that conditional gene targeting of mTOR causes bone marrow failure and defects in multi-lineage hematopoiesis including myelopoiesis, erythropoiesis, thrombopoiesis, and lymphopoiesis. mTOR deficiency results in loss of quiescence of hematopoietic stem cells, leading to a transient increase but long-term exhaustion and defective engraftment of hematopoietic stem cells in lethally irradiated recipient mice. Furthermore, ablation of mTOR causes increased apoptosis in lineage-committed blood cells but not hematopoietic stem cells, indicating a differentiation stage-specific function. These results demonstrate that mTOR is essential for hematopoietic stem cell engraftment and multi-lineage hematopoiesis.

  6. Mouse gene targeting reveals an essential role of mTOR in hematopoietic stem cell engraftment and hematopoiesis

    PubMed Central

    Guo, Fukun; Zhang, Shuangmin; Grogg, Matthew; Cancelas, Jose A.; Varney, Melinda E.; Starczynowski, Daniel T.; Du, Wei; Yang, Jun-Qi; Liu, Wei; Thomas, George; Kozma, Sara; Pang, Qishen; Zheng, Yi

    2013-01-01

    mTOR integrates signals from nutrients and growth factors to control protein synthesis, cell growth, and survival. Although mTOR has been established as a therapeutic target in hematologic malignancies, its physiological role in regulating hematopoiesis remains unclear. Here we show that conditional gene targeting of mTOR causes bone marrow failure and defects in multi-lineage hematopoiesis including myelopoiesis, erythropoiesis, thrombopoiesis, and lymphopoiesis. mTOR deficiency results in loss of quiescence of hematopoietic stem cells, leading to a transient increase but long-term exhaustion and defective engraftment of hematopoietic stem cells in lethally irradiated recipient mice. Furthermore, ablation of mTOR causes increased apoptosis in lineage-committed blood cells but not hematopoietic stem cells, indicating a differentiation stage-specific function. These results demonstrate that mTOR is essential for hematopoietic stem cell engraftment and multi-lineage hematopoiesis. PMID:23716557

  7. Vascular endothelial growth factor B, a novel growth factor for endothelial cells.

    PubMed Central

    Olofsson, B; Pajusola, K; Kaipainen, A; von Euler, G; Joukov, V; Saksela, O; Orpana, A; Pettersson, R F; Alitalo, K; Eriksson, U

    1996-01-01

    We have isolated and characterized a novel growth factor for endothelial cells, vascular endothelial growth factor B (VEGF-B), with structural similarities to vascular endothelial growth factor (VEGF) and placenta growth factor. VEGF-B was particularly abundant in heart and skeletal muscle and was coexpressed with VEGF in these and other tissues. VEGF-B formed cell-surface-associated disulfide-linked homodimers and heterodimerized with VEGF when coexpressed. Conditioned medium from transfected 293EBNA cells expressing VEGF-B stimulated DNA synthesis in endothelial cells. Our results suggest that VEGF-B has a role in angiogenesis and endothelial cell growth, particularly in muscle. Images Fig. 3 Fig. 4 Fig. 5 PMID:8637916

  8. AP-1 (Fos/Jun) transcription factors in hematopoietic differentiation and apoptosis.

    PubMed

    Liebermann, D A; Gregory, B; Hoffman, B

    1998-03-01

    A combination of in vitro and in vivo molecular genetic approaches have provided evidence to suggest that AP-1 (Fos/Jun) transcription factors play multiple roles in functional development of hematopoietic precursor cells into mature blood cells along most, if not all, of the hematopoietic cell lineages. This includes the monocyte/macrophage, granulocyte, megakaryocyte, mastocyte and erythroid lineages. In addition, studies using c-fos knockout mice have established a unique role for Fos, as a member of the AP-1 transcription factor complex, in determining the differentiation and activity of progenitors of the osteoclast lineage, a population of bone-forming cells which are of hematopoietic origin as well. Evidence has also accumulated to implicate AP-1 (Fos/Jun) transcription factor complexes as both positive and negative modulators of distinct apoptotic pathways in many cell types, including cells of hematopoietic origin. Fos/Jun have been implicated as positive modulators of apoptosis induced in hematopoietic progenitor cells of the myeloid lineage, a function that may relate to the control of blood cell homeostasis, as well as in programmed cell death associated with terminal differentiation of many other cell types, and apoptosis associated with withdrawal of growth/survival factors. On the other hand, the study of apoptosis induced in mammalian cells has implicated AP-1 in the protection against apoptosis induced by DNA-damaging agents. However, evidence to the contrary has been obtained as well, suggesting that AP-1 may function to modulate stress-induced apoptosis either positively or negatively, depending on the microenvironment and the cell type in which the stress stimulus is induced.

  9. Chronic variable stress activates hematopoietic stem cells

    PubMed Central

    Courties, Gabriel; Dutta, Partha; Iwamoto, Yoshiko; Zaltsman, Alex; von zur Muhlen, Constantin; Bode, Christoph; Fricchione, Gregory L.; Denninger, John; Lin, Charles P.; Vinegoni, Claudio; Libby, Peter; Swirski, Filip K.; Weissleder, Ralph; Nahrendorf, Matthias

    2014-01-01

    Exposure to psychosocial stress is a risk factor for many diseases, including atherosclerosis1,2. While incompletely understood, interaction between the psyche and the immune system provides one potential mechanism linking stress and disease inception and progression. Known crosstalk between the brain and immune system includes the hypothalamic–pituitary–adrenal axis, which centrally drives glucocorticoid production in the adrenal cortex, and the sympathetic–adrenal–medullary axis, which controls stress–induced catecholamine release in support of the fight–or–flight reflex3,4. It remains unknown however if chronic stress changes hematopoietic stem cell activity. Here we show that stress increases proliferation of these most primitive progenitors, giving rise to higher levels of disease–promoting inflammatory leukocytes. We found that chronic stress induced monocytosis and neutrophilia in humans. While investigating the source of leukocytosis in mice, we discovered that stress activates upstream hematopoietic stem cells. Sympathetic nerve fibers release surplus noradrenaline, which uses the β3 adrenergic receptor to signal bone marrow niche cells to decrease CXCL12 levels. Consequently, elevated hematopoietic stem cell proliferation increases output of neutrophils and inflammatory monocytes. When atherosclerosis–prone ApoE−/− mice encounter chronic stress, accelerated hematopoiesis promotes plaque features associated with vulnerable lesions that cause myocardial infarction and stroke in humans. PMID:24952646

  10. Risk factors for vancomycin-resistant enterococcus bacteremia and its influence on survival after allogeneic hematopoietic cell transplantation.

    PubMed

    Tavadze, M; Rybicki, L; Mossad, S; Avery, R; Yurch, M; Pohlman, B; Duong, H; Dean, R; Hill, B; Andresen, S; Hanna, R; Majhail, N; Copelan, E; Bolwell, B; Kalaycio, M; Sobecks, R

    2014-10-01

    Vancomycin-resistant enterococcus (VRE) is a well-known infectious complication among immunocompromised patients. We performed a retrospective analysis to identify risk factors for the development of VRE bacteremia (VRE-B) within 15 months after allogeneic hematopoietic cell transplantation (alloHCT) and to determine its prognostic importance for other post-transplant outcomes. Eight hundred consecutive adult patients who underwent alloHCT for hematologic diseases from 1997 to 2011 were included. Seventy-six (10%) developed VRE-B at a median of 46 days post transplant. Year of transplant, higher HCT comorbidity score, a diagnosis of ALL, unrelated donor and umbilical cord blood donor were all significant risk factors on multivariable analysis for the development of VRE-B. Sixty-seven (88%) died within a median of 1.1 months after VRE-B, but only four (6%) of these deaths were attributable to VRE. VRE-B was significantly associated with worse OS (hazard ratio 4.28, 95% confidence interval 3.23-5.66, P<0.001) in multivariable analysis. We conclude that the incidence of VRE-B after alloHCT has increased over time and is highly associated with mortality, although not usually attributable to VRE infection. Rather than being the cause, this may be a marker for a complicated post-transplant course. Strategies to further enhance immune reconstitution post transplant and strict adherence to infection prevention measures are warranted. PMID:25111516

  11. Effects of growth hormone therapeutic supplementation on hematopoietic stem/progenitor cells in children with growth hormone deficiency: focus on proliferation and differentiation capabilities.

    PubMed

    Kawa, M P; Stecewicz, I; Piecyk, K; Pius-Sadowska, E; Paczkowska, E; Rogińska, D; Sobuś, A; Łuczkowska, K; Gawrych, E; Petriczko, E; Walczak, M; Machaliński, B

    2015-09-01

    We investigated the direct effects of growth hormone (GH) replacement therapy (GH-RT) on hematopoiesis in children with GH deficiency (GHD) with the special emphasis on proliferation and cell cycle regulation. Peripheral blood (PB) was collected from sixty control individuals and forty GHD children before GH-RT and in 3rd and 6th month of GH-RT to measure hematological parameters and isolate CD34(+)-enriched hematopoietic progenitor cells (HPCs). Selected parameters of PB were analyzed by hematological analyzer. Moreover, collected HPCs were used to analyze GH receptor (GHR) and IGF1 expression, clonogenicity, and cell cycle activity. Finally, global gene expression profile of collected HPCs was analyzed using genome-wide RNA microarrays. GHD resulted in a decrease in several hematological parameters related to RBCs and significantly diminished clonogenicity of erythroid progenies. In contrast, GH-RT stimulated increases in clonogenic growth of erythroid lineage and RBC counts as well as significant up-regulation of cell cycle-propagating genes, including MAP2K1, cyclins D1/E1, PCNA, and IGF1. Likewise, GH-RT significantly modified GHR expression in isolated HPCs and augmented systemic IGF1 levels. Global gene expression analysis revealed significantly higher expression of genes associated with cell cycle, proliferation, and differentiation in HPCs from GH-treated subjects. (i) GH-RT significantly augments cell cycle progression in HPCs and increases clonogenicity of erythroid progenitors; (ii) GHR expression in HPCs is modulated by GH status; (iii) molecular mechanisms by which GH influences hematopoiesis might provide a basis for designing therapeutic interventions for hematological complications related to GHD.

  12. Connective tissue growth factor is expressed in bone marrow stromal cells and promotes interleukin-7-dependent B lymphopoiesis.

    PubMed

    Cheung, Laurence C; Strickland, Deborah H; Howlett, Meegan; Ford, Jette; Charles, Adrian K; Lyons, Karen M; Brigstock, David R; Goldschmeding, Roel; Cole, Catherine H; Alexander, Warren S; Kees, Ursula R

    2014-07-01

    Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis.

  13. Incidence, risk factors, and outcome of bacteremia following autologous hematopoietic stem cell transplantation in 720 adult patients.

    PubMed

    Piñana, José Luis; Montesinos, Pau; Martino, Rodrigo; Vazquez, Lourdes; Rovira, Montserrat; López, Javier; Batlle, Montserrat; Figuera, Ángela; Barba, Pere; Lahuerta, Juan José; Debén, Guillermo; Perez-Lopez, Cristina; García, Raimundo; Rosique, Pedro; Lavilla, Esperanza; Gascón, Adriana; Martínez-Cuadrón, David; Sanz, Miguel Ángel

    2014-02-01

    Bacteremia is the most frequent infectious complication during neutropenia in patients receiving autologous hematopoietic stem cell transplantation (ASCT). The objective of this study was to analyze the incidence, characteristics, risk factors, and outcome of bacteremia during the early period after ASCT. A total of 720 patients undergoing ASCT in two observational prospective consecutive multicenter studies of the Programa Español para el Tratamiento de las Hemopatías group were analyzed. Bacteremia occurred in 20 % of patients. Coagulase-negative Staphylococcus was the most frequent (66 %) among the gram-positive agents and Escherichia coli (49 %) among the gram-negative agents. Multivariate analysis showed that the length of neutropenia <1 × 10(9)/L (more than 9 days) [relative risk (RR) of 2.6, p < 0.001] was the sole risk factor for overall bacteremia. We identified the length of neutropenia <1 × 10(9)/L (more than 9 days) (RR 4.98, p < 0.001) and the use of prophylactic fluoroquinolones (RR 0.46, p < 0.01) as specific risk factors for gram-negative bacteremia. Risk factors for gram-positive bacteremia were the use of total parenteral nutrition (RR 1.92, p < 0.01) and deep neutropenia (<0.1 × 10(9)/L), with duration over 5 days (RR 1.67, p < 0.027). Bacteremia showed an increased morbidity with no impact on neither overall nor infectious related mortality. The identification of such risk factors may be helpful to implement prophylactic and therapeutic risk-adapted strategies to reduce the incidence of bacteremia in ASCT. PMID:23995612

  14. Radioimmunotherapy for hematopoietic cell transplantation.

    PubMed

    Jurcic, Joseph G

    2013-04-01

    Radioimmunotherapy (RIT) represents an attractive strategy to deliver radiation selectively to tumor and other target organs while minimizing toxicity to normal tissues. RIT with β-particle-emitting isotopes targeting CD33, CD45 and CD66 can potentially allow intensification of conditioning before hematopoietic cell transplantation (HCT) in leukemia. Similarly, RIT directed against CD20 has shown promise in the setting of autologous and allogeneic HCT for B-cell lymphomas. α-particle immunotherapy with isotopes such as bismuth-213, actinium-225 and astatinine-211 offers the possibility of more selective and efficient killing of target cells while sparing the surrounding normal cells. Pretargeting strategies may further improve target:normal organ dose ratios. While RIT has demonstrated significant antitumor activity, ultimately, randomized studies will be required to determine if conditioning regimens that include this therapeutic modality can improve patient outcomes after HCT. PMID:23557421

  15. Genetic modification of bone-marrow mesenchymal stem cells and hematopoietic cells with human coagulation factor IX-expressing plasmids.

    PubMed

    Sam, Mohammad Reza; Azadbakhsh, Azadeh Sadat; Farokhi, Farrah; Rezazadeh, Kobra; Sam, Sohrab; Zomorodipour, Alireza; Haddad-Mashadrizeh, Aliakbar; Delirezh, Nowruz; Mokarizadeh, Aram

    2016-05-01

    Ex-vivo gene therapy of hemophilias requires suitable bioreactors for secretion of hFIX into the circulation and stem cells hold great potentials in this regard. Viral vectors are widely manipulated and used to transfer hFIX gene into stem cells. However, little attention has been paid to the manipulation of hFIX transgene itself. Concurrently, the efficacy of such a therapeutic approach depends on determination of which vectors give maximal transgene expression. With this in mind, TF-1 (primary hematopoietic lineage) and rat-bone marrow mesenchymal stem cells (BMSCs) were transfected with five hFIX-expressing plasmids containing different combinations of two human β-globin (hBG) introns inside the hFIX-cDNA and Kozak element and hFIX expression was evaluated by different methods. In BMSCs and TF-1 cells, the highest hFIX level was obtained from the intron-less and hBG intron-I,II containing plasmids respectively. The highest hFIX activity was obtained from the cells that carrying the hBG intron-I,II containing plasmids. BMSCs were able to produce higher hFIX by 1.4 to 4.7-fold increase with activity by 2.4 to 4.4-fold increase compared to TF-1 cells transfected with the same constructs. BMSCs and TF-1 cells could be effectively bioengineered without the use of viral vectors and hFIX minigene containing hBG introns could represent a particular interest in stem cell-based gene therapy of hemophilias. PMID:26928674

  16. Genetic modification of bone-marrow mesenchymal stem cells and hematopoietic cells with human coagulation factor IX-expressing plasmids.

    PubMed

    Sam, Mohammad Reza; Azadbakhsh, Azadeh Sadat; Farokhi, Farrah; Rezazadeh, Kobra; Sam, Sohrab; Zomorodipour, Alireza; Haddad-Mashadrizeh, Aliakbar; Delirezh, Nowruz; Mokarizadeh, Aram

    2016-05-01

    Ex-vivo gene therapy of hemophilias requires suitable bioreactors for secretion of hFIX into the circulation and stem cells hold great potentials in this regard. Viral vectors are widely manipulated and used to transfer hFIX gene into stem cells. However, little attention has been paid to the manipulation of hFIX transgene itself. Concurrently, the efficacy of such a therapeutic approach depends on determination of which vectors give maximal transgene expression. With this in mind, TF-1 (primary hematopoietic lineage) and rat-bone marrow mesenchymal stem cells (BMSCs) were transfected with five hFIX-expressing plasmids containing different combinations of two human β-globin (hBG) introns inside the hFIX-cDNA and Kozak element and hFIX expression was evaluated by different methods. In BMSCs and TF-1 cells, the highest hFIX level was obtained from the intron-less and hBG intron-I,II containing plasmids respectively. The highest hFIX activity was obtained from the cells that carrying the hBG intron-I,II containing plasmids. BMSCs were able to produce higher hFIX by 1.4 to 4.7-fold increase with activity by 2.4 to 4.4-fold increase compared to TF-1 cells transfected with the same constructs. BMSCs and TF-1 cells could be effectively bioengineered without the use of viral vectors and hFIX minigene containing hBG introns could represent a particular interest in stem cell-based gene therapy of hemophilias.

  17. PHYSICAL ACTIVITY, FITNESS, AND CARDIOMETABOLIC RISK FACTORS IN ADULT SURVIVORS OF CHILDHOOD CANCER WITH A HISTORY OF HEMATOPOIETIC CELL TRANSPLANTATION

    PubMed Central

    Slater, Megan E.; Steinberger, Julia; Ross, Julie A.; Kelly, Aaron S.; Chow, Eric J.; Koves, Ildiko H.; Hoffmeister, Paul; Sinaiko, Alan R.; Petryk, Anna; Moran, Antoinette; Lee, Jill; Chow, Lisa S.; Baker, K. Scott

    2015-01-01

    Purpose Along with other childhood cancer survivors (CCS), hematopoietic cell transplantation (HCT) survivors are at high risk of treatment-related late effects, including cardiovascular disease and diabetes. Cardiometabolic risk factor abnormalities may be exacerbated by inadequate physical activity (PA). Relationships between PA and cardiometabolic risk factors have not been well described in CCS with HCT. Methods PA (self-report), mobility (Timed Up and Go test), endurance (six-minute walk test), handgrip strength, and cardiometabolic risk factors were measured in 119 HCT survivors and 66 sibling controls aged ≥18 years. Adjusted comparisons between HCT survivors and controls and between categories of low and high PA, mobility, endurance, and strength were performed with linear regression. Results Among HCT survivors, the high PA group had lower waist circumference (WC) (81.9±2.5 v 88.6±3.1 cm±standard error (SE), P=.009) than the low PA group, while the high endurance group had lower WC (77.8±2.6 v 87.8±2.5 cm±SE, P=.0001) and percent fat mass (33.6±1.8 v 39.4±1.7 %±SE, P=.0008) and greater insulin sensitivity (IS) (10.9±1.0 v 7.42±1.14 mg/kg/min±SE via euglycemic insulin clamp, P=.001) than the low endurance group. Differences were greater in HCT survivors than in controls for WC between low and high PA groups, triglycerides between low and high mobility groups, and WC, systolic blood pressure, and IS between low and high endurance groups (all Pinteraction <.05). Conclusions Higher endurance was associated with a more favorable cardiometabolic profile in HCT survivors, suggesting that interventions directed to increase endurance in survivors may reduce the risk of future cardiovascular disease. PMID:25865649

  18. Expression Levels of Histone Deacetylases Determine the Cell Fate of Hematopoietic Progenitors*

    PubMed Central

    Wada, Taeko; Kikuchi, Jiro; Nishimura, Noriko; Shimizu, Rumi; Kitamura, Toshio; Furukawa, Yusuke

    2009-01-01

    Histone deacetylases (HDACs) are globally implicated in the growth and differentiation of mammalian cells; however, relatively little is known about their specific roles in hematopoiesis. In this study, we investigated the expression of HDACs in human hematopoietic cells and their functions during hematopoiesis. The expression of HDACs was very low in hematopoietic progenitor cells, which was accompanied by histone hyperacetylation. HDACs were detectable in more differentiated progenitors and erythroid precursors but down-regulated in mature myeloid cells especially granulocytes. In contrast, acute myeloid leukemias showed HDAC overexpression and histone hypoacetylation. Transcription of the HDAC1 gene was repressed by CCAAT/enhancer binding proteins during myeloid differentiation, and activated by GATA-1 during erythro-megakaryocytic differentiation. Small interfering RNA-mediated knockdown of HDAC1 enhanced myeloid differentiation in immature hematopoietic cell lines and perturbed erythroid differentiation in progenitor cells. Myeloid but not erythro-megakaryocytic differentiation was blocked in mice transplanted with HDAC1-overexpressing hematopoietic progenitor cells. These findings suggest that HDAC is not merely an auxiliary factor of genetic elements but plays a direct role in the cell fate decision of hematopoietic progenitors. PMID:19736310

  19. New insights into the regulation by RUNX1 and GFI1(s) proteins of the endothelial to hematopoietic transition generating primordial hematopoietic cells

    PubMed Central

    Thambyrajah, Roshana; Patel, Rahima; Mazan, Milena; Lie-a-Ling, Michael; Lilly, Andrew; Eliades, Alexia; Menegatti, Sara; Garcia-Alegria, Eva; Florkowska, Magdalena; Batta, Kiran; Kouskoff, Valerie; Lacaud, Georges

    2016-01-01

    ABSTRACT The first hematopoietic cells are generated very early in ontogeny to support the growth of the embryo and to provide the foundation to the adult hematopoietic system. There is a considerable therapeutic interest in understanding how these first blood cells are generated in order to try to reproduce this process in vitro. This would allow generating blood products, or hematopoietic cell populations from embryonic stem (ES) cells, induced pluripotent stem cells or through directed reprogramming. Recent studies have clearly established that the first hematopoietic cells originate from a hemogenic endothelium (HE) through an endothelial to hematopoietic transition (EHT). The molecular mechanisms underlining this transition remain largely unknown with the exception that the transcription factor RUNX1 is critical for this process. In this Extra Views report, we discuss our recent studies demonstrating that the transcriptional repressors GFI1 and GFI1B have a critical role in the EHT. We established that these RUNX1 transcriptional targets are actively implicated in the downregulation of the endothelial program and the loss of endothelial identity during the formation of the first blood cells. In addition, our results suggest that GFI1 expression provides an ideal novel marker to identify, isolate and study the HE cell population. PMID:27399214

  20. Hematopoietic stem cell mobilization: updated conceptual renditions

    PubMed Central

    Bonig, H; Papayannopoulou, T

    2013-01-01

    Despite its specific clinical relevance, the field of hematopoietic stem cell mobilization has received broad attention, owing mainly to the belief that pharmacologic stem cell mobilization might provide clues as to how stem cells are retained in their natural environment, the bone marrow ‘niche’. Inherent to this knowledge is also the desire to optimally engineer stem cells to interact with their target niche (such as after transplantation), or to lure malignant stem cells out of their protective niches (in order to kill them), and in general to decipher the niche’s structural components and its organization. Whereas, with the exception of the recent addition of CXCR4 antagonists to the armamentarium for mobilization of patients refractory to granulocyte colony-stimulating factor alone, clinical stem cell mobilization has not changed significantly over the last decade or so, much effort has been made trying to explain the complex mechanism(s) by which hematopoietic stem and progenitor cells leave the marrow. This brief review will report some of the more recent advances about mobilization, with an attempt to reconcile some of the seemingly inconsistent data in mobilization and to interject some commonalities among different mobilization regimes. PMID:22951944

  1. Parasitic Infections in Hematopoietic Stem Cell Transplantation.

    PubMed

    Jarque, Isidro; Salavert, Miguel; Pemán, Javier

    2016-01-01

    Parasitic infections are rarely documented in hematopoietic stem cell transplant recipients. However they may be responsible for fatal complications that are only diagnosed at autopsy. Increased awareness of the possibility of parasitic diseases both in autologous and allogeneic stem cell transplant patients is relevant not only for implementing preventive measures but also for performing an early diagnosis and starting appropriate therapy for these unrecognized but fatal infectious complications in hematopoietic transplant recipients. In this review, we will focus on parasitic diseases occurring in this population especially those with major clinical relevance including toxoplasmosis, American trypanosomiasis, leishmaniasis, malaria, and strongyloidiasis, among others, highlighting the diagnosis and management in hematopoietic transplant recipients. PMID:27413527

  2. Parasitic Infections in Hematopoietic Stem Cell Transplantation

    PubMed Central

    Jarque, Isidro; Salavert, Miguel; Pemán, Javier

    2016-01-01

    Parasitic infections are rarely documented in hematopoietic stem cell transplant recipients. However they may be responsible for fatal complications that are only diagnosed at autopsy. Increased awareness of the possibility of parasitic diseases both in autologous and allogeneic stem cell transplant patients is relevant not only for implementing preventive measures but also for performing an early diagnosis and starting appropriate therapy for these unrecognized but fatal infectious complications in hematopoietic transplant recipients. In this review, we will focus on parasitic diseases occurring in this population especially those with major clinical relevance including toxoplasmosis, American trypanosomiasis, leishmaniasis, malaria, and strongyloidiasis, among others, highlighting the diagnosis and management in hematopoietic transplant recipients. PMID:27413527

  3. Hepatitis B virus infection status is an independent risk factor for multiple myeloma patients after autologous hematopoietic stem cell transplantation.

    PubMed

    Li, Juan; Liu, Junru; Huang, Beihui; Zheng, Dong; Chen, Mei; Zhou, Zhenhai; Xu, Duorong; Zou, Waiyi

    2013-06-01

    The purposes of this study were to evaluate the infection by hepatitis B virus (HBV) and its impact on survival and to provide a clinical reference for monitoring and treating HBV during and after autologous hematopoietic stem cell transplantation (ASCT) in patients with multiple myeloma (MM). A retrospective analysis of HBV infections was performed in 70 MM patients who received a sequential bortezomib-containing induction therapy and ASCT in our department from June 2006 to February 2012. Among the 70 patients in our study, 11 cases (15.7 %) were hepatitis B surface antigen positive (HBsAg+), and 23 cases (33.3 %) were hepatitis B core antibody positive (HBcAb+). Eight cases were HBsAg, hepatitis B e antibody (HBeAb), and HBcAb positive, while one case was HBsAg, hepatitis B e antigen (HBeAg), and HBcAb positive. The median follow-up times for the HBsAg+ group and the HBsAg-negative (HBsAg-) group were 27.0 (7.6-85.2) months and 28.7 (7.1-111.0) months, respectively. The 1-year, 2-year, and 3-year overall survival rates of the HBsAg+ group were 90.9, 80.8, and 34.6 %, respectively, and the median survival time was 31.2 months (95 % CI, 24.8-37.6). The 1-year, 2-year, and 3-year overall survival rates of the HBsAg- group were 98.2, 94, and 84.6 %, respectively, while the median survival time was not yet available. There was a statistically significant difference (p=0.008) in the overall survival rate between the two groups. By Cox regression analysis, we found that the HBsAg+ status was a prognostic factor, which could independently influence the overall survival rate for ASCT. In conclusion, the HBsAg+ status is an independent risk factor for patients with MM receiving ASCT. The application of standard antiviral treatment might help to overcome this risk factor. PMID:23436046

  4. Role of SOX17 in hematopoietic development from human embryonic stem cells.

    PubMed

    Nakajima-Takagi, Yaeko; Osawa, Mitsujiro; Oshima, Motohiko; Takagi, Haruna; Miyagi, Satoru; Endoh, Mitsuhiro; Endo, Takaho A; Takayama, Naoya; Eto, Koji; Toyoda, Tetsuro; Koseki, Haruhiko; Nakauchi, Hiromitsu; Iwama, Atsushi

    2013-01-17

    To search for genes that promote hematopoietic development from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), we overexpressed several known hematopoietic regulator genes in hESC/iPSC-derived CD34(+)CD43(-) endothelial cells (ECs) enriched in hemogenic endothelium (HE). Among the genes tested, only Sox17, a gene encoding a transcription factor of the SOX family, promoted cell growth and supported expansion of CD34(+)CD43(+)CD45(-/low) cells expressing the HE marker VE-cadherin. SOX17 was expressed at high levels in CD34(+)CD43(-) ECs compared with low levels in CD34(+)CD43(+)CD45(-) pre-hematopoietic progenitor cells (pre-HPCs) and CD34(+)CD43(+)CD45(+) HPCs. Sox17-overexpressing cells formed semiadherent cell aggregates and generated few hematopoietic progenies. However, they retained hemogenic potential and gave rise to hematopoietic progenies on inactivation of Sox17. Global gene-expression analyses revealed that the CD34(+)CD43(+)CD45(-/low) cells expanded on overexpression of Sox17 are HE-like cells developmentally placed between ECs and pre-HPCs. Sox17 overexpression also reprogrammed both pre-HPCs and HPCs into HE-like cells. Genome-wide mapping of Sox17-binding sites revealed that Sox17 activates the transcription of key regulator genes for vasculogenesis, hematopoiesis, and erythrocyte differentiation directly. Depletion of SOX17 in CD34(+)CD43(-) ECs severely compromised their hemogenic activity. These findings suggest that SOX17 plays a key role in priming hemogenic potential in ECs, thereby regulating hematopoietic development from hESCs/iPSCs.

  5. The role of CD44 in fetal and adult hematopoietic stem cell regulation.

    PubMed

    Cao, Huimin; Heazlewood, Shen Y; Williams, Brenda; Cardozo, Daniela; Nigro, Julie; Oteiza, Ana; Nilsson, Susan K

    2016-01-01

    Throughout development, hematopoietic stem cells migrate to specific microenvironments, where their fate is, in part, extrinsically controlled. CD44 standard as a member of the cell adhesion molecule family is extensively expressed within adult bone marrow and has been previously reported to play important roles in adult hematopoietic regulation via CD44 standard-ligand interactions. In this manuscript, CD44 expression and function are further assessed and characterized on both fetal and adult hematopoietic stem cells. Using a CD44(-/-) mouse model, conserved functional roles of CD44 are revealed throughout development. CD44 is critical in the maintenance of hematopoietic stem and progenitor pools, as well as in hematopoietic stem cell migration. CD44 expression on hematopoietic stem cells as well as other hematopoietic cells within the bone marrow microenvironment is important in the homing and lodgment of adult hematopoietic stem cells isolated from the bone/bone marrow interface. CD44 is also involved in fetal hematopoietic stem cell migration out of the liver, via a process involving stromal cell-derived factor-1α. The absence of CD44 in neonatal bone marrow has no impact on the size of the long-term reconstituting hematopoietic stem cell pool, but results in an enhanced long-term engraftment potential of hematopoietic stem cells.

  6. Autocrine growth factors for human tumor clonogenic cells.

    PubMed

    Hamburger, A W; White, C P

    1985-11-01

    A human epithelial-derived cell line, SW-13, releases a soluble substance that functions as an autocrine growth factor. SW-13 cells, derived from a human adenocarcinoma of the adrenal cortex, form a few small colonies when suspended in soft agar at low densities. The number of colonies increased significantly when either viable SW-13 cells or serum-free medium conditioned by SW-13 cells (CM) was added to agar underlayers. CM increased colony formation in a dose-dependent fashion. Clonal growth at low cell densities was dependent on the presence of both horse serum and SW-13 CM. Neither activity alone was capable of sustaining growth. Even when cells were plated at high densities CM could not substitute for serum, but could reduce the threshold serum concentration. The results suggest that autocrine and serum-derived factors act in concert to maintain clonal growth of epithelial tumor cells in soft agar.

  7. SBR-Blood: systems biology repository for hematopoietic cells.

    PubMed

    Lichtenberg, Jens; Heuston, Elisabeth F; Mishra, Tejaswini; Keller, Cheryl A; Hardison, Ross C; Bodine, David M

    2016-01-01

    Extensive research into hematopoiesis (the development of blood cells) over several decades has generated large sets of expression and epigenetic profiles in multiple human and mouse blood cell types. However, there is no single location to analyze how gene regulatory processes lead to different mature blood cells. We have developed a new database framework called hematopoietic Systems Biology Repository (SBR-Blood), available online at http://sbrblood.nhgri.nih.gov, which allows user-initiated analyses for cell type correlations or gene-specific behavior during differentiation using publicly available datasets for array- and sequencing-based platforms from mouse hematopoietic cells. SBR-Blood organizes information by both cell identity and by hematopoietic lineage. The validity and usability of SBR-Blood has been established through the reproduction of workflows relevant to expression data, DNA methylation, histone modifications and transcription factor occupancy profiles. PMID:26590403

  8. Slug deficiency enhances self-renewal of hematopoietic stem cells during hematopoietic regeneration.

    PubMed

    Sun, Yan; Shao, Lijian; Bai, Hao; Wang, Zack Z; Wu, Wen-Shu

    2010-03-01

    Both extrinsic and intrinsic mechanisms tightly govern hematopoietic stem cell (HSC) decisions of self-renewal and differentiation. However, transcription factors that can selectively regulate HSC self-renewal division after stress remain to be identified. Slug is an evolutionarily conserved zinc-finger transcription factor that is highly expressed in primitive hematopoietic cells and is critical for the radioprotection of these key cells. We studied the effect of Slug in the regulation of HSCs in Slug-deficient mice under normal and stress conditions using serial functional assays. Here, we show that Slug deficiency does not disturb hematopoiesis or alter HSC homeostasis and differentiation in bone marrow but increases the numbers of primitive hematopoietic cells in the extramedullary spleen site. Deletion of Slug enhances HSC repopulating potential but not its homing and differentiation ability. Furthermore, Slug deficiency increases HSC proliferation and repopulating potential in vivo after myelosuppression and accelerates HSC expansion during in vitro culture. Therefore, we propose that Slug is essential for controlling the transition of HSCs from relative quiescence under steady-state condition to rapid proliferation under stress conditions. Our data suggest that inhibition of Slug in HSCs may present a novel strategy for accelerating hematopoietic recovery, thus providing therapeutic benefits for patients after clinical myelosuppressive treatment.

  9. The ARID Family Transcription Factor Bright Is Required for both Hematopoietic Stem Cell and B Lineage Development▿

    PubMed Central

    Webb, Carol F.; Bryant, James; Popowski, Melissa; Allred, Laura; Kim, Dongkoon; Harriss, June; Schmidt, Christian; Miner, Cathrine A.; Rose, Kira; Cheng, Hwei-Ling; Griffin, Courtney; Tucker, Philip W.

    2011-01-01

    Bright/Arid3a has been characterized both as an activator of immunoglobulin heavy-chain transcription and as a proto-oncogene. Although Bright expression is highly B lineage stage restricted in adult mice, its expression in the earliest identifiable hematopoietic stem cell (HSC) population suggests that Bright might have additional functions. We showed that >99% of Bright−/− embryos die at midgestation from failed hematopoiesis. Bright−/− embryonic day 12.5 (E12.5) fetal livers showed an increase in the expression of immature markers. Colony-forming assays indicated that the hematopoietic potential of Bright−/− mice is markedly reduced. Rare survivors of lethality, which were not compensated by the closely related paralogue Bright-derived protein (Bdp)/Arid3b, suffered HSC deficits in their bone marrow as well as B lineage-intrinsic developmental and functional deficiencies in their peripheries. These include a reduction in a natural antibody, B-1 responses to phosphocholine, and selective T-dependent impairment of IgG1 class switching. Our results place Bright/Arid3a on a select list of transcriptional regulators required to program both HSC and lineage-specific differentiation. PMID:21199920

  10. Autologous hematopoietic stem cell transplantation for pediatric solid tumors.

    PubMed

    Hale, Gregory A

    2005-10-01

    While advances in the treatment of pediatric cancers have increased cure rates, children with metastatic or recurrent solid tumors have a dismal prognosis despite initial transient responses to therapy. Autologous hematopoietic stem cell transplantation takes advantage of the steep dose-response relationship observed with many chemotherapeutic agents. While clearly demonstrated to improve outcomes in patients with metastatic neuroblastoma, autologous hematopoietic stem cell transplantation is also frequently used to treat patients with other high-risk diseases such as Ewing sarcoma, osteosarcoma, rhabdomyosarcoma, Wilms' tumor, retinoblastoma, germ cell tumors, lymphomas and brain tumors. Most published experience consists of retrospective, single-arm studies; randomized clinical trials are lacking, due in part to the rarity of pediatric cancers treatable by autologous hematopoietic stem cell transplantation. These published literature demonstrate that autologous hematopoietic stem cell transplantation results in most cases in equivalent or superior outcomes when compared with conventional therapies. However, patient heterogeneity, patient selection, graft characteristics and processing and the varied conditioning regimens are additional factors to consider. Since the inception of autologous hematopoietic stem cell transplantation, regimen-related toxicity has markedly decreased and the vast majority of treatment failures are now due to disease recurrence. Prospective clinical trials are needed to identify specific high-risk patient populations, with randomization (when possible) to compare outcomes of patients undergoing autologous hematopoietic stem cell transplantation with those receiving standard therapy. In addition, investigators need to better define the role of autologous hematopoietic stem cell transplantation in these solid tumors, particularly in combination with other therapeutic modalities such as immunotherapy and novel cell processing methodologies.

  11. Economics of hematopoietic cell transplantation.

    PubMed

    Khera, Nandita; Zeliadt, Steven B; Lee, Stephanie J

    2012-08-23

    Given the rapidly rising healthcare costs, it is important to understand the economic costs of hematopoietic cell transplantation (HCT), a procedure that is being used more frequently in the treatment of various hematologic disorders. Studies have reported a wide range of costs for HCT, from $36 000 to $88 000 (USD) for a single autologous transplantation for the initial hospitalization, to $200 000 (USD) or more for a myeloablative allogeneic procedure involving an unrelated donor. Common posttransplantation complications, such as infections and GVHD, have been shown to be significant cost drivers. Comparisons across studies are limited by differences in patient populations, cost ascertainment methods, and length of follow-up. This article summarizes the current state of knowledge about costs and cost-effectiveness of HCT, highlighting the challenges in conducting these studies and identifying important areas for future research. We discuss the need for more value-based assessments of HCT using high-quality approaches to measuring costs and outcomes so that potential future efforts to contain costs are well informed and appropriate.

  12. Effects of insulin-like growth factor-1 on B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Yamada, Hiroyuki; Iijima, Kazutoshi; Tomita, Osamu; Taguchi, Tomoko; Miharu, Masashi; Kobayashi, Kenichiro; Okita, Hajime; Saito, Masahiro; Shimizu, Toshiaki; Kiyokawa, Nobutaka

    2013-01-01

    Insulin-like growth factor-1 (IGF-1) is known to be a major growth factor with effects on various cell types, including hematopoietic cells, as well as neoplasms, and is regulated by IGF-binding proteins (IGFBPs). In this study, we investigated the effects of IGF-1 on B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells. When the expression of IGF-1R in clinical samples of BCP-ALL was examined, five of thirty-two cases showed IGF-1R expression, whereas IGF-1R was expressed in most BCP-ALL cell lines. We observed that IGF-1 enhanced the proliferation of BCP-ALL cell lines that can be partially inhibited by IGFBP-1, -3, and -4, but not other IGFBPs. IGF-1 also partially inhibited dexamethasone-induced apoptosis, but not apoptosis mediated by VP-16 and irradiation. Interestingly, the proliferative effect of IGF-1 was partially blocked by inhibitors of MAPK and AKT, whereas the inhibition of dexamethasone-induced apoptosis was completely blocked by both inhibitors. Our data indicate that IGF-1 is involved in cell proliferation and apoptosis regulation in BCP-ALL cells. Since some BCP-ALL cases express IGF-1R, it appears to be a plausible target for prognostic evaluation and may represent a new therapeutic strategy.

  13. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth

    PubMed Central

    1992-01-01

    Hepatocyte Growth Factor (HGF, also known as Scatter Factor) is a powerful mitogen or motility factor in different cells, acting through the tyrosine kinase receptor encoded by the MET protooncogene. Endothelial cells express the MET gene and expose at the cell surface the mature protein (p190MET) made of a 50 kD (alpha) subunit disulfide linked to a 145-kD (beta) subunit. HGF binding to endothelial cells identifies two sites with different affinities. The higher affinity binding site (Kd = 0.35 nM) corresponds to the p190MET receptor. Sub- nanomolar concentrations of HGF, but not of a recombinant inactive precursor, stimulate the receptor kinase activity, cell proliferation and motility. HGF induces repairs of a wound in endothelial cell monolayer. HGF stimulates the scatter of endothelial cells grown on three-dimensional collagen gels, inducing an elongated phenotype. In the rabbit cornea, highly purified HGF promotes neovascularization at sub-nanomolar concentrations. HGF lacks activities related to hemostasis-thrombosis, inflammation and endothelial cells accessory functions. These data show that HGF is an in vivo potent angiogenic factor and in vitro induces endothelial cells to proliferate and migrate. PMID:1383237

  14. Signal, Transduction, and the Hematopoietic Stem Cell

    PubMed Central

    Louria-Hayon, Igal

    2014-01-01

    The hematopoietic stem cell (HSC) is a unique cell positioned highest in the hematopoietic hierarchical system. The HSC has the ability to stay in quiescence, to self-renew, or to differentiate and generate all lineages of blood cells. The path to be actualized is influenced by signals that derive from the cell’s microenvironment, which activate molecular pathways inside the cell. Signaling pathways are commonly organized through inducible protein–protein interactions, mediated by adaptor proteins that link activated receptors to cytoplasmic effectors. This review will focus on the signaling molecules and how they work in concert to determine the HSC’s fate. PMID:25386349

  15. Production of minimally disturbed synchronous cultures of hematopoietic cells

    NASA Technical Reports Server (NTRS)

    Thornton, Maureen; Eward, Kathryn Leigh; Helmstetter, Charles E.; Edward, K. L. (Principal Investigator)

    2002-01-01

    A method is describedforproducing sizable quantities of synchronously dividing, minimally disturbed mammalian cells. Cultures were grown immobilized on surfaces such that cell division within the population resulted in the continuous release of synchronous newborn cells. As judged by the quality and duration of synchronous growth, cell size distributions, and DNA compositions, newborn mouse L1210 cells grew with a very high level of synchrony without overt evidence of growth disturbances. The technology should be applicable to a variety of hematopoietic cells, as evidenced by similar results with human MOLT-4 and U937 cell lines.

  16. Transcriptional down-regulation of epidermal growth factor receptors by nerve growth factor treatment of PC12 cells.

    PubMed

    Shibutani, M; Lazarovici, P; Johnson, A C; Katagiri, Y; Guroff, G

    1998-03-20

    Treatment of PC12 cells with nerve growth factor leads to a decrease in the number of epidermal growth factor receptors on the cell membrane. The mRNA for the epidermal growth factor receptor decreases in a comparable fashion. This decrease appears due to a decrease in the transcription of the epidermal growth factor receptor gene because first, there is no difference in the stability of the epidermal growth factor receptor mRNA, second, newly transcribed epidermal growth factor receptor mRNA is decreased in nerve growth factor-differentiated cells, and third, constructs containing the promoter region of the epidermal growth factor receptor gene are transcribed much less readily in nerve growth factor-differentiated cells than in untreated cells. The decreases in mRNA are not seen in the p140(trk)-deficient variant PC12nnr5 cells nor in cells containing either dominant-negative Ras or dominant-negative Src. Treatment with nerve growth factor also increases the cellular content of GCF2, a putative transcription factor inhibitory for the transcription of the epidermal growth factor receptor gene. The increase in GCF2, like the decrease in the epidermal growth factor receptor mRNA, is not seen in PC12nnr5 cells nor in cells expressing either dominant-negative Ras or dominant-negative Src. The results suggest that nerve growth factor-induced down-regulation of the epidermal growth factor receptor is under transcriptional control, is p140(trk)-, Ras-, and Src-dependent, and may involve transcriptional repression by GCF2.

  17. In utero hematopoietic cell transplantation for hemoglobinopathies

    PubMed Central

    Derderian, S. Christopher; Jeanty, Cerine; Walters, Mark C.; Vichinsky, Elliott; MacKenzie, Tippi C.

    2014-01-01

    In utero hematopoietic cell transplantation (IUHCTx) is a promising strategy to circumvent the challenges of postnatal hematopoietic stem cell (HSC) transplantation. The goal of IUHCTx is to introduce donor cells into a naïve host prior to immune maturation, thereby inducing donor–specific tolerance. Thus, this technique has the potential of avoiding host myeloablative conditioning with cytotoxic agents. Over the past two decades, several attempts at IUHCTx have been made to cure numerous underlying congenital anomalies with limited success. In this review, we will briefly review the history of IUHCTx and give a perspective on alpha thalassemia major, one target disease for its clinical application. PMID:25628564

  18. Assaying binding of nerve growth factor to cell surface receptors

    SciTech Connect

    Vale, R.D.; Shooter, E.M.

    1985-01-01

    The paper describes methods both for the radioiodination of nerve growth factor (NGF) and for assaying NFG receptors by reversible binding techniques. Preparation of (/sup 125/I)NGF along with a rapid method for determining the amount of cell-bound ligand have allowed the detection of NGF receptors on a number of cell types.

  19. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis.

    PubMed Central

    Connolly, D T; Heuvelman, D M; Nelson, R; Olander, J V; Eppley, B L; Delfino, J J; Siegel, N R; Leimgruber, R M; Feder, J

    1989-01-01

    Vascular permeability factor (VPF) is an Mr 40-kD protein that has been purified from the conditioned medium of guinea pig line 10 tumor cells grown in vitro, and increases fluid permeability from blood vessels when injected intradermally. Addition of VPF to cultures of vascular endothelial cells in vitro unexpectedly stimulated cellular proliferation. VPF promoted the growth of new blood vessels when administered into healing rabbit bone grafts or rat corneas. The identity of the growth factor activity with VPF was established in four ways: (a) the molecular weight of the activity in preparative SDS-PAGE was the same as VPF (Mr approximately 40 kD); (b) multiple isoforms (pI greater than or equal to 8) for both VPF and the growth-promoting activity were observed; (c) a single, unique NH2-terminal amino acid sequence was obtained; (d) both growth factor and permeability-enhancing activities were immunoadsorbed using antipeptide IgG that recognized the amino terminus of VPF. Furthermore, 125I-VPF was shown to bind specifically and with high affinity to endothelial cells in vitro and could be chemically cross-linked to a high-molecular weight cell surface receptor, thus demonstrating a mechanism whereby VPF can interact directly with endothelial cells. Unlike other endothelial cell growth factors, VPF did not stimulate [3H]thymidine incorporation or promote growth of other cell types including mouse 3T3 fibroblasts or bovine smooth muscle cells. VPF, therefore, appears to be unique in its ability to specifically promote increased vascular permeability, endothelial cell growth, and angio-genesis. Images PMID:2478587

  20. Proteoglycan synthesis by hematopoietic progenitor cells

    SciTech Connect

    Minguell, J.J.; Tavassoli, M. )

    1989-05-15

    The synthesis of proteoglycans (PG) by hematopoietic stromal cells has been reported. But PG synthesis by hematopoietic progenitor cells has not been explored. We have studied synthesis, cellular distribution, and molecular characteristics of PG by a cloned interleukin-3 (IL-3)-dependent hematopoietic progenitor cell line, FDCP-1, which is cloned from murine long-term marrow cultures. Under appropriate conditions the cell can differentiate into granulocytes and macrophages, and therefore, can be considered CFU-GM equivalent. The pattern of PG synthesis was studied by 35SO4 labeling. FDCP-1 cells actively synthesize PG, which are distributed in the intracellular, membrane-associated (MP), and extracellular pools. After purification of the 35S-labeled material by ion-exchange and gel filtration techniques, a single chondroitin sulfate-PG (CIS-PG) was observed to be present in the three studied pools. By Sepharose CL-4B chromatography, this PG has a Kav of 0.47, which after alkaline treatment is shifted to a Kav of 0.67. This indicates the proteoglycan nature of the 35SO4-labeled material. The MP CIS-PG is not stable. It is released to the culture medium where it is subsequently processed. However, in the presence of hematopoietic stromal cells D2X, the stability of MP proteoglycan of FDCP-1 cells is enhanced, suggesting that the synthesis of PG by progenitor cells and its accumulation in the membrane may have a role in the interaction between progenitor and stromal cells.

  1. Growth Factor-Free Pre-vascularization of Cell Sheets for Tissue Engineering.

    PubMed

    Costa, Marina; Pirraco, Rogério P; Cerqueira, Mariana T; Reis, Rui L; Marques, Alexandra P

    2016-01-01

    The therapeutic efficacy of tissue-engineered constructs is often compromised by inadequate inosculation and neo-vascularization. This problem is considered one of the biggest hurdles in the field and finding a solution is currently the focus of a great fraction of the research community. Many of the methodologies designed to address this issue propose the use of endothelial cells and angiogenic growth factors, or combinations of both, to accelerate neo-vascularization after transplantation. However, an adequate solution is still elusive. In this context, we describe a methodology that combines the use of the stromal vascular fraction (SVF) isolated from adipose tissue with low oxygen culture to produce pre-vascularized cell sheets as angiogenic tools for Tissue Engineering. The herein proposed approach takes advantage of the SVF angiogenic nature conferred by adipose stem cells, endothelial progenitors, endothelial and hematopoietic cells, and pericytes and further potentiates it using low oxygen, or hypoxic, culture. Freshly isolated nucleated SVF cells are cultured in hyperconfluent conditions under hypoxia (pO2 = 5 %) for up to 5 days in medium without extrinsic growth factors enabling the generation of contiguous sheets as described by the cell sheet engineering technique. Flow cytometry and immunocytochemistry allow confirming the phenotype of the different cell types composing the cell-sheets as well the organization of the CD31(+) cells in branched and highly complex tube-like structures. Overall, a simple and flexible approach to promote growth factor-free pre-vascularization of cell sheets for tissue engineering (TE) applications is described. PMID:27250706

  2. Efficient infection of primitive hematopoietic stem cells by modified adenovirus.

    PubMed

    Yotnda, P; Onishi, H; Heslop, H E; Shayakhmetov, D; Lieber, A; Brenner, M; Davis, A

    2001-06-01

    Almost all studies of adenoviral vector-mediated gene transfer have made use of the adenovirus type 5 (Ad5). Unfortunately, Ad5 has been ineffective at infecting hematopoietic progenitor cells (HPC). Chimeric Ad5/F35 vectors that have been engineered to substitute the shorter-shafted fiber protein from Ad35 can efficiently infect committed hematopoietic cells and we now show highly effective gene transfer to primitive progenitor subsets. An Ad5GFP and Ad5/F35GFP vector was added to CD34(+) and CD34(-)lineage(-) (lin(-)) HPC. Only 5-20% of CD34(+) and CD34(-)lin(-) cells expressed GFP after Ad5 exposure. In contrast, with the Ad5/F35 vector, 30-70% of the CD34(+), 50-70% of the CD34(-)lin(-) and up to 60% of the CD38(-) HPC expressed GFP and there was little evident cellular toxicity. Because of these improved results, we also analyzed the ability of Ad5/F35 virus to infect the hoechst negative 'side population' (SP) of marrow cells, which appear to be among the very earliest multipotent HPC. Between 51% and 80% of marrow SP cells expressed GFP. The infected populations retained their ability to form colonies in two short-term culture systems, with no loss of viability. We also studied the transfer and expression of immunomodulatory genes, CD40L (cell surface expression) and interleukin-2 (secreted). Both were expressed at immunomodulatory levels for >5 days. The ability of Ad5/F35 to deliver transgenes to primitive HPC with high efficiency and low toxicity in the absence of growth factors provides an improved means of studying the consequences of transient gene expression in these cells.

  3. Nonmyeloablative allogeneic hematopoietic cell transplantation

    PubMed Central

    Storb, Rainer; Sandmaier, Brenda M.

    2016-01-01

    Most hematological malignancies occur in older patients. Until recently these patients and those with comorbidities were not candidates for treatment with allogeneic hematopoietic transplantation because they were unable to tolerate the heretofore used high-dose conditioning regimens. The finding that many of the cures achieved with allogeneic hematopoietic transplantation were due to graft-versus-tumor effects led to the development of less toxic and well-tolerated reduced intensity and nonmyeloablative regimens. These regimens enabled allogeneic engraftment, thereby setting the stage for graft-versus-tumor effects. This review summarizes the encouraging early results seen with the new regimens and discusses the two hurdles that need to be overcome for achieving even greater success, disease relapse and graft-versus-host disease. PMID:27132278

  4. Ongoing graft-versus-host disease is a risk factor for azoospermia after allogeneic hematopoietic stem cell transplantation: a survey of the Late Effects Working Party of the European Group for Blood and Marrow Transplantation

    PubMed Central

    Rovó, Alicia; Aljurf, Mahmoud; Chiodi, Sandra; Spinelli, Simonetta; Salooja, Nina; Sucak, Gülsan; Hunter, Ann; Kim, Tan Swee; Socié, Gérard; van Lint, Maria Teresa; Passweg, Jakob R.; Arat, Mutlu; Badoglio, Manuela; Tichelli, André

    2013-01-01

    The aim of this study was to assess the degree of spermatogenesis defects in sperm analysis in long-term male survivors after allogeneic hematopoietic stem cell transplantation in order to identify the risk factors related to potential infertility after hematopoietic stem cell transplantation and to provide data on longitudinal sperm recovery after hematopoietic stem cell transplantation. Here, the Late Effects Working Party of the European Group for Blood and Marrow Transplantation reports data of sperm analysis from 224 males who underwent hematopoietic stem cell transplantation. Median time between transplantation and sperm analysis was 63 months (8–275 months). At last sperm analysis, presence of any degree of spermatozoa was reported in 70 (31%) and complete azoospermia in 154 (69%) patients. In multivariate analysis, being conditioned with total body irradiation (RR 7.1; 95% CI: 3.4–14.8) and age over 25 years at transplantation (RR 2.4; 95% CI: 1.09–5.2) were significantly associated with higher risk for azoospermia. In patients not conditioned with total body irradiation, ongoing chronic graft-versus-host disease is the main adverse factor for sperm recovery (RR of 3.11; 95% CI: 1.02–9.47; P=0.045). Already established risk factors, such as total body irradiation and age older than 25 years at hematopoietic stem cell transplantation, were seen to be the most relevant adverse risk factor for sperm production after hematopoietic stem cell transplantation. Furthermore, for the first time, ongoing graft-versus-host disease has been shown to be the most relevant adverse factor for sperm recovery, particularly in patients conditioned without total body irradiation. We also introduce a useful scoring system to predict the probability of male long-term survivors’ azoospermia. PMID:22929982

  5. Mobilization and collection of CD34+ cells for autologous transplantation of peripheral blood hematopoietic progenitor cells in children: analysis of two different granulocyte-colony stimulating factor doses

    PubMed Central

    Eid, Kátia Aparecida de Brito; Miranda, Eliana Cristina Martins; Aguiar, Simone dos Santos

    2015-01-01

    Introduction The use of peripheral hematopoietic progenitor cells (HPCs) is the cell choice in autologous transplantation. The classic dose of granulocyte-colony stimulating factor (G-CSF) for mobilization is a single daily dose of 10 μg/kg of patient body weight. There is a theory that higher doses of granulocyte-colony stimulating factor applied twice daily could increase the number of CD34+ cells collected in fewer leukapheresis procedures. Objective The aim of this study was to compare a fractionated dose of 15 μg G-CSF/kg of body weight and the conventional dose of granulocyte-colony stimulating factor in respect to the number of leukapheresis procedures required to achieve a minimum collection of 3 × 106 CD34+ cells/kg body weight. Methods Patients were divided into two groups: Group 10 – patients who received a single daily dose of 10 μg G-CSF/kg body weight and Group 15 – patients who received a fractioned dose of 15 μg G-CSF/kg body weight daily. The leukapheresis procedure was carried out in an automated cell separator. The autologous transplantation was carried out when a minimum number of 3 × 106 CD34+ cells/kg body weight was achieved. Results Group 10 comprised 39 patients and Group 15 comprised 26 patients. A total of 146 apheresis procedures were performed: 110 (75.3%) for Group 10 and 36 (24.7%) for Group 15. For Group 10, a median of three (range: 1–7) leukapheresis procedures and a mean of 8.89 × 106 CD34+ cells/kg body weight (±9.59) were collected whereas for Group 15 the corresponding values were one (range: 1–3) and 5.29 × 106 cells/kg body weight (±4.95). A statistically significant difference was found in relation to the number of apheresis procedures (p-value <0.0001). Conclusions To collect a minimum target of 3 × 106 CD34+ cells/kg body weight, the administration of a fractionated dose of 15 μg G-CSF/kg body weight significantly decreased the number of leukapheresis procedures performed. PMID:26041417

  6. Ex vivo expansion of hematopoietic stem cells.

    PubMed

    Xie, JingJing; Zhang, ChengCheng

    2015-09-01

    Ex vivo expansion of hematopoietic stem cells (HSCs) would benefit clinical applications in several aspects, to improve patient survival, utilize cord blood stem cells for adult applications, and selectively propagate stem cell populations after genetic manipulation. In this review we summarize and discuss recent advances in the culture systems of mouse and human HSCs, which include stroma/HSC co-culture, continuous perfusion and fed-batch cultures, and those supplemented with extrinsic ligands, membrane transportable transcription factors, complement components, protein modification enzymes, metabolites, or small molecule chemicals. Some of the expansion systems have been tested in clinical trials. The optimal condition for ex vivo expansion of the primitive and functional human HSCs is still under development. An improved understanding of the mechanisms for HSC cell fate determination and the HSC culture characteristics will guide development of new strategies to overcome difficulties. In the future, development of a combination treatment regimen with agents that enhance self-renewal, block differentiation, and improve homing will be critical. Methods to enhance yields and lower cost during collection and processing should be employed. The employment of an efficient system for ex vivo expansion of HSCs will facilitate the further development of novel strategies for cell and gene therapies including genome editing.

  7. Melanoma Stem Cells and Metastasis: Mimicking Hematopoietic Cell Trafficking?

    PubMed Central

    Lee, Nayoung; Barthel, Steven R.; Schatton, Tobias

    2014-01-01

    Malignant melanoma is a highly metastatic cancer that bears responsibility for the majority of skin cancer-related deaths. Amidst the research efforts to better understand melanoma progression, there has been increasing evidence that hints at a role for a subpopulation of virulent cancer cells, termed malignant melanoma stem or initiating cells (MMICs), in metastasis formation. MMICs are characterized by their preferential ability to initiate and propagate tumor growth and their selective capacity for self-renewal and differentiation into less tumorigenic melanoma cells. The frequency of MMICs has been shown to correlate with poor clinical prognosis in melanoma. Additionally, MMICs are enriched among circulating tumor cells (CTCs) in the peripheral blood of cancer patients, suggesting that MMICs may be a critical player in the metastatic cascade. Although these links exist between MMICs and metastatic disease, the mechanisms by which MMICs may advance metastatic progression are only beginning to be elucidated. Recent studies have shown that MMICs express molecules critical for hematopoietic cell maintenance and trafficking, providing a possible explanation for how circulating MMICs could drive melanoma dissemination. We therefore propose that MMICs might fuel melanoma metastasis by exploiting homing mechanisms commonly utilized by hematopoietic cells. Here we review the biological properties of MMICs and the existing literature on their metastatic potential. We will discuss possible mechanisms by which MMICs might initiate metastases in the context of established knowledge of cancer stem cells (CSCs) in other cancers and of hematopoietic homing molecules, with a particular focus on selectins, integrins, chemokines, and chemokine receptors known to be expressed by melanoma cells. Biological understanding of how these molecules might be utilized by MMICs to propel the metastatic cascade could critically impact the development of more effective therapies for advanced

  8. Dasatinib promotes the activation of quiescent hematopoietic stem cells in mice.

    PubMed

    Duyvestyn, Johanna M; Taylor, Samuel J; Dagger, Samantha A; Langdon, Wallace Y

    2016-05-01

    Dasatinib is an orally available broad-spectrum tyrosine kinase inhibitor that is widely used to treat chronic myeloid leukemia. It is also in clinical trials for the treatment of other malignancies, including solid tumors. Despite its wide use, little is known of its effects on normal hematopoietic stem and progenitor cells. Here, we study wild-type mice dosed with dasatinib and find that it causes the transient induction of proliferation of quiescent hematopoietic stem cells (HSCs). This finding was unexpected given the ability of dasatinib to inhibit c-Kit signaling and promote cell cycle arrest in many cell types. The transient induction of HSC proliferation in dasatinib-dosed mice coincided with a marked induction in the expression of Sca-1 and phospho-S6. Also evident at this time was a rapid but transient loss of lineage-committed hematopoietic progenitors that express high levels of c-Kit and the induction of stem cell factor in the serum. These findings suggest that activation of quiescent HSCs is part of a rapid rescue response that restores hematopoietic progenitors to pretreatment levels. This restoration coincides with HSCs returning to quiescence, and the expression of Sca-1 and phospho-S6 reverting to pre-treatment levels, even though dasatinib dosing is maintained. These data suggest that equilibrium is reached between the opposing forces of dasatinib and hematopoietic growth factors. The transient induction of HSC proliferation provided a window of opportunity whereby these cells became sensitive to killing by the cytotoxic drug 5-fluorouracil. PMID:26921649

  9. Potent agonists of a hematopoietic stem cell cytokine receptor, c-Mpl.

    PubMed

    Tarasova, Anna; Haylock, David N; Meagher, Laurence; Be, Cheang Ly; White, Jacinta; Nilsson, Susan K; Andrade, Jessica; Cartledge, Kellie; Winkler, David A

    2013-05-01

    Several growth factors feature prominently in the control of hematopoiesis. Thrombopoietin, a class I hematopoietic cytokine, plays critical roles in regulating hematopoietic stem cell numbers and also stimulates the production and differentiation of megakaryocytes, the bone marrow cells that ultimately produce platelets. Thrombopoietin interacts with the c-Mpl cell-surface receptor. Recently, several peptide and small-molecule agonists and antagonists of c-Mpl have been reported. We conducted a bioinformatics and molecular modeling study aimed at understanding the agonist activities of peptides that bind to c-Mpl, and developed new potent peptide agonists with low nanomolar activity. These agonists also show very high activity in human CD34(+) primary cell cultures, and doubled the mean blood platelet counts when injected into mice.

  10. Keratinocyte growth factor and hepatocyte growth factor/scatter factor are heparin-binding growth factors for alveolar type II cells in fibroblast-conditioned medium.

    PubMed Central

    Panos, R J; Rubin, J S; Csaky, K G; Aaronson, S A; Mason, R J

    1993-01-01

    Epithelial-mesenchymal interactions mediate aspects of normal lung growth and development and are important in the restoration of normal alveolar architecture after lung injury. To determine if fibroblasts are a source of soluble growth factors for alveolar type II cells, we investigated the effect of fibroblast-conditioned medium (CM) on alveolar type II cell DNA synthesis. Serum-free CM from confluent adult human lung fibroblasts was concentrated fivefold by lyophilization. Type II cells were isolated from adult rats by elastase dissociation and incubated with [3H]thymidine and varying dilutions of concentrated CM and serum from day 1 to 3 of culture. Stimulation of type II cell DNA synthesis by fibroblast-CM was maximal after 48 h of conditioning and required the presence of serum. The activity of the CM was eliminated by boiling and by treatment with trypsin, pepsin, or dithiothreitol and was additive with saturating concentrations of acidic fibroblast growth factor, epidermal growth factor, and insulin. The growth factor activity bound to heparin-Sepharose and was eluted with 0.6 and 1.0 M NaCl. Neutralizing antibody studies demonstrated that the primary mitogens isolated in the 0.6 and 1.0 M NaCl fractions were keratinocyte growth factor (KGF, fibroblast growth factor 7) and hepatocyte growth factor/scatter factor (HGF/SF), respectively. HGF/SF was demonstrated in the crude CM and KGF was detected in the 0.6 M NaCl eluent by immunoblotting. Northern blot analysis confirmed that the lung fibroblasts expressed both KGF and HGF/SF transcripts. Human recombinant KGF and HGF/SF induced a concentration- and serum-dependent increase in rat alveolar type II cell DNA synthesis. We conclude that adult human lung fibroblasts produce at least two soluble heparin-binding growth factors, KGF and HGF/SF, which promote DNA synthesis and proliferation of rat alveolar type II cells in primary culture. KGF and HGF/SF may be important stimuli for alveolar type II cell

  11. Supportive Care of Hematopoietic Cell Transplant Patients

    PubMed Central

    Jim, Heather S. L.; Syrjala, Karen L.; Rizzo, Doug

    2012-01-01

    Hematopoietic cell transplant survivors face a number of challenges including low energy and stamina, “chemo-brain” and emotional distress, and late effects that can compromise functioning or lead to early mortality. This session will review the most recent interventions and recommendations to avoid or mitigate these complications. PMID:22226095

  12. Chicken stem cell factor enhances primordial germ cell proliferation cooperatively with fibroblast growth factor 2.

    PubMed

    Miyahara, Daichi; Oishi, Isao; Makino, Ryuichi; Kurumisawa, Nozomi; Nakaya, Ryuma; Ono, Tamao; Kagami, Hiroshi; Tagami, Takahiro

    2016-04-22

    An in vitro culture system of chicken primordial germ cells (PGCs) has been recently developed, but the growth factor involved in the proliferation of PGCs is largely unknown. In the present study, we investigated the growth effects of chicken stem cell factor (chSCF) on the in vitro proliferation of chicken PGCs. We established two feeder cell lines (buffalo rat liver cells; BRL cells) that stably express the putative secreted form of chSCF (chSCF1-BRL) and membrane bound form of chSCF (chSCF2-BRL). Cultured PGC lines were incubated on chSCF1 or chSCF2-BRL feeder cells with fibroblast growth factor 2 (FGF2), and growth effects of each chSCF isoform were investigated. The in vitro proliferation rate of the PGCs cultured on chSCF2-BRL at 20 days of culture was more than threefold higher than those cultured on chSCF1-BRL cells and more than fivefold higher than those cultured on normal BRL cells. Thus, use of chSCF2-BRL feeder layer was effective for in vitro proliferation of chicken PGCs. However, the acceleration of PGC proliferation on chSCF2-BRL was not observed without FGF2, suggesting that chSCF2 would act as a proliferation co-factor of FGF2. We transferred the PGCs cultured on chSCF2-BRL cells to recipient embryos, generated germline chimeric chickens and assessed the germline competency of cultured PGCs by progeny test. Donor-derived progenies were obtained, and the frequency of germline transmission was 3.39%. The results of this study demonstrate that chSCF2 induces hyperproliferation of chicken PGCs retaining germline competency in vitro in cooperation with FGF2. PMID:26727404

  13. Nonpermissive HLA-DPB1 disparity is a significant independent risk factor for mortality after unrelated hematopoietic stem cell transplantation.

    PubMed

    Crocchiolo, Roberto; Zino, Elisabetta; Vago, Luca; Oneto, Rosi; Bruno, Barbara; Pollichieni, Simona; Sacchi, Nicoletta; Sormani, Maria Pia; Marcon, Jessica; Lamparelli, Teresa; Fanin, Renato; Garbarino, Lucia; Miotti, Valeria; Bandini, Giuseppe; Bosi, Alberto; Ciceri, Fabio; Bacigalupo, Andrea; Fleischhauer, Katharina

    2009-08-13

    The importance of donor-recipient human leukocyte antigen (HLA)-DPB1 matching for the clinical outcome of unrelated hematopoietic stem cell transplantation (HSCT) is controversial. We have previously described an algorithm for nonpermissive HLA-DPB1 disparities involving HLA-DPB1*0901,*1001,*1701,*0301,*1401,*4501, based on T-cell alloreactivity patterns. By revisiting the immunogenicity of HLA-DPB1*02, a modified algorithm was developed and retrospectively tested in 621 unrelated HSCTs facilitated through the Italian Registry for oncohematologic adult patients. The modified algorithm proved to be markedly more predictive of outcome than the original one, with significantly higher Kaplan-Meier probabilities of 2-year survival in permissive compared with nonpermissive transplantations (55% vs 39%, P = .005). This was the result of increased adjusted hazards of nonrelapse mortality (hazard ratio [HR] = 1.74; confidence interval [CI], 1.19-2.53; P = .004) but not of relapse (HR = 1.02; CI, 0.73-1.42; P = .92). The increase in the hazards of overall mortality by nonpermissive HLA-DPB1 disparity was similar in 10 of 10 (HR = 2.12; CI, 1.23-3.64; P = .006) and 9 of 10 allele-matched transplantations (HR = 2.21; CI, 1.28-3.80; P = .004), both in early-stage and in advanced-stage disease. These data call for revisiting current HLA matching strategies for unrelated HSCT, suggesting that searches should be directed up-front toward identification of HLA-DPB1 permissive, 10 of 10 or 9 of 10 matched donors. PMID:19515726

  14. Regulation of human amnion cell growth and morphology by sera, plasma, and growth factors.

    PubMed

    Gaffney, E V; Grimaldi, M A

    1981-01-01

    The requirements of human epithelial cells derived from the amnion membrane for serum factors were investigated. The growth promoting effects of human whole blood serum (WBS), platelet-poor defibrinogenated plasma, and plasma-derived serum (PDS) were examined in primary cultures of these ectodermal cells. The numbers of population doublings recorded after 10 days in the presence of 10% WBS, defibrinogenated plasma, or PDS were 2.3, 2.0 or 1.5, respectively. Although dialysis of sera or plasma had little effect on growth promotion, it markedly decreased the capacity of plasma to maintain cells in culture beyond 10 days. The differences in growth activities could not be attributed to the presence of anticoagulant in plasma and PDS or to the presence of excess calcium in PDS. Platelet lysates and purified platelet-derived growth factor had no effect on growth. Amnion cell growth was enhanced by epidermal growth factor (EGF) or hydrocortisone, but the glucocorticoid did not condition cells to respond to growth factors. Insulin and fibroblast growth factor singly or in combination had no effect on cell replication. Giant cell formation accompanied maintenance in hydrocortisone with defibrinogenated plasma and PDS. Discrete regions of dense population appeared in the presence of hydrocortisone, EGF, and undialyzed supplements.

  15. Effects of growth factors on temporomandibular joint disc cells.

    PubMed

    Detamore, Michael S; Athanasiou, Kyriacos A

    2004-07-01

    The effects of growth factors on cartilaginous tissues are well documented. An exception is the temporomandibular joint (TMJ) disc, where data for growth factor effects on proliferation and biosynthesis are very limited. The purpose of this study was to quantify proliferation of and synthesis by TMJ disc cells cultured in monolayer with either platelet derived growth factor-AB (PDGF), basic fibroblast growth factor (bFGF) or insulin-like growth factor-I (IGF), at either a low (10 ng/ml) or high (100 ng/ml) concentration. Proliferation was assessed with a DNA quantitation technique, collagen synthesis was measured via a hydroxyproline assay, and GAG synthesis was determined with a dimethylmethylene blue dye binding assay at 14 days. Overall, the most beneficial growth factor was bFGF, which was most potent in increasing proliferation and GAG synthesis, and also effective in promoting collagen synthesis. At the high concentration, bFGF resulted in 96% more cells than the control and 30 to 45% more cells than PDGF and IGF. PDGF and bFGF were the most potent upregulators of GAG synthesis, producing 2-3 times more GAG than the control. IGF had no significant effect on GAG production, although at its higher concentration it increased collagen production by 4.5 times over the control. Collagen synthesis was promoted by bFGF at its lower concentration, with levels 4.2 times higher than the control, whereas PDGF had no significant effect on collagen production. In general, higher concentrations increased proliferation, whereas lower concentrations favoured biosynthesis. PMID:15126139

  16. Lis1 regulates asymmetric division in hematopoietic stem cells and in leukemia

    PubMed Central

    Zimdahl, Bryan; Ito, Takahiro; Blevins, Allen; Bajaj, Jeevisha; Konuma, Takaaki; Weeks, Joi; Koechlein, Claire S.; Kwon, Hyog Young; Arami, Omead; Rizzieri, David; Broome, H. Elizabeth; Chuah, Charles; Oehler, Vivian G.; Sasik, Roman; Hardiman, Gary; Reya, Tannishtha

    2014-01-01

    Cell fate can be controlled through asymmetric division and segregation of protein determinants. But the regulation of this process in the hematopoietic system is poorly understood. Here we show that the dynein binding protein Lis1 (Pafah1b1) is critically required for blood formation and hematopoietic stem cell function. Conditional deletion of Lis1 in the hematopoietic system led to a severe bloodless phenotype, depletion of the stem cell pool and embryonic lethality. Further, the loss of Lis1 accelerated cell differentiation, in part through defects in spindle positioning and inheritance of cell fate determinants. Finally, deletion of Lis1 blocked propagation of myeloid leukemia and led to a marked improvement in animal survival, suggesting that Lis1 is also required for oncogenic growth. These data identify a key role for Lis1 in hematopoietic stem cells, and mark the directed control of asymmetric division as a critical regulator of normal and malignant hematopoietic development. PMID:24487275

  17. The regulation of hematopoietic stem cell populations

    PubMed Central

    Mayani, Hector

    2016-01-01

    Evidence presented over the last few years indicates that the hematopoietic stem cell (HSC) compartment comprises not just one but a number of different cell populations. Based on HSCs’ proliferation and engraftment potential, it has been suggested that there are two classes of HSC, with long- and short-term engraftment potential. HSC heterogeneity seems to involve differentiation capacities as well, since it has been shown that some HSC clones are able to give rise to both myeloid and lymphoid progeny, whereas others are lymphoid deficient. It has been recognized that HSC function depends on intrinsic cell regulators, which are modulated by external signals. Among the former, we can include transcription factors and non-coding RNAs as well as epigenetic modifiers. Among the latter, cytokines and extracellular matrix molecules have been implicated. Understanding the elements and mechanisms that regulate HSC populations is of significant relevance both in biological and in clinical terms, and research in this area still has to face several complex and exciting challenges. PMID:27408695

  18. A Dominant-Negative Isoform of IKAROS Expands Primitive Normal Human Hematopoietic Cells

    PubMed Central

    Beer, Philip A.; Knapp, David J.H.F.; Kannan, Nagarajan; Miller, Paul H.; Babovic, Sonja; Bulaeva, Elizabeth; Aghaeepour, Nima; Rabu, Gabrielle; Rostamirad, Shabnam; Shih, Kingsley; Wei, Lisa; Eaves, Connie J.

    2014-01-01

    Summary Disrupted IKAROS activity is a recurrent feature of some human leukemias, but effects on normal human hematopoietic cells are largely unknown. Here, we used lentivirally mediated expression of a dominant-negative isoform of IKAROS (IK6) to block normal IKAROS activity in primitive human cord blood cells and their progeny. This produced a marked (10-fold) increase in serially transplantable multipotent IK6+ cells as well as increased outputs of normally differentiating B cells and granulocytes in transplanted immunodeficient mice, without producing leukemia. Accompanying T/natural killer (NK) cell outputs were unaltered, and erythroid and platelet production was reduced. Mechanistically, IK6 specifically increased human granulopoietic progenitor sensitivity to two growth factors and activated CREB and its targets (c-FOS and Cyclin B1). In more primitive human cells, IK6 prematurely initiated a B cell transcriptional program without affecting the hematopoietic stem cell-associated gene expression profile. Some of these effects were species specific, thus identifying novel roles of IKAROS in regulating normal human hematopoietic cells. PMID:25418728

  19. Extracellular vesicle miR-7977 is involved in hematopoietic dysfunction of mesenchymal stromal cells via poly(rC) binding protein 1 reduction in myeloid neoplasms

    PubMed Central

    Horiguchi, Hiroto; Kobune, Masayoshi; Kikuchi, Shohei; Yoshida, Masahiro; Murata, Masaki; Murase, Kazuyuki; Iyama, Satoshi; Takada, Kohichi; Sato, Tsutomu; Ono, Kaoru; Hashimoto, Akari; Tatekoshi, Ayumi; Kamihara, Yusuke; Kawano, Yutaka; Miyanishi, Koji; Sawada, Norimasa; Kato, Junji

    2016-01-01

    The failure of normal hematopoiesis is observed in myeloid neoplasms. However, the precise mechanisms governing the replacement of normal hematopoietic stem cells in their niche by myeloid neoplasm stem cells have not yet been clarified. Primary acute myeloid leukemia and myelodysplastic syndrome cells induced aberrant expression of multiple hematopoietic factors including Jagged-1, stem cell factor and angiopoietin-1 in mesenchymal stem cells even in non-contact conditions, and this abnormality was reverted by extracellular vesicle inhibition. Importantly, the transfer of myeloid neoplasm-derived extracellular vesicles reduced the hematopoietic supportive capacity of mesenchymal stem cells. Analysis of extracellular vesicle microRNA indicated that several species, including miR-7977 from acute myeloid leukemia cells, were higher than those from normal CD34+ cells. Remarkably, the copy number of miR-7977 in bone marrow interstitial fluid was elevated not only in acute myeloid leukemia, but also in myelodysplastic syndrome, as compared with lymphoma without bone marrow localization. The transfection of the miR-7977 mimic reduced the expression of the posttranscriptional regulator, poly(rC) binding protein 1, in mesenchymal stem cells. Moreover, the miR-7977 mimic induced aberrant reduction of hematopoietic growth factors in mesenchymal stem cells, resulting in decreased hematopoietic-supporting capacity of bone marrow CD34+ cells. Furthermore, the reduction of hematopoietic growth factors including Jagged-1, stem cell factor and angiopoietin-1 were reverted by target protection of poly(rC) binding protein 1, suggesting that poly(rC) binding protein 1 could be involved in the stabilization of several growth factors. Thus, miR-7977 in extracellular vesicles may be a critical factor that induces failure of normal hematopoiesis via poly(rC) binding protein 1 suppression. PMID:26802051

  20. Development of neural crest cells expressing nerve growth factor receptors

    SciTech Connect

    Greiner, C.A.

    1987-01-01

    The present study examines the ontogeny of the nerve growth factor receptor of neural crest cells in vitro and the phenotypic nature of the neural crest cells expressing this receptor. /sup 125/I-NGF binding assays and autoradiographic and immunofluorescence techniques have demonstrated the presence of a subpopulation of quail neural crest cells that express specific NGF receptors after 3-4 days in vitro. This subpopulations represents approximately 28% of the cells in 5-day primary cultures and 30-35% of the cells in secondary cultures; these cells generally exhibited a flattened, phase-dark morphology. Approximately one-third of these cells also labeled with a 2 hr pulse of /sup 3/H thymidine. Catecholamine-containing neural crest cells generally lacked NGF receptors. NGF receptor-positive cells also failed to demonstrate somatostatin-, neuron-specific enolase-, or S-100-like immunoreactivity. Melanocytes do not appear to express NGF receptors. Exogenous nerve growth factor did not influence the morphology or mitotic status of the cells in culture.

  1. Regulation of stem cells in the zebra fish hematopoietic system.

    PubMed

    Huang, H-T; Zon, L I

    2008-01-01

    Hematopoietic stem cells (HSCs) have been used extensively as a model for stem cell biology. Stem cells share the ability to self-renew and differentiate into multiple cell types, making them ideal candidates for tissue regeneration or replacement therapies. Current applications of stem cell technology are limited by our knowledge of the molecular mechanisms that control their proliferation and differentiation, and various model organisms have been used to fill these gaps. This chapter focuses on the contributions of the zebra fish model to our understanding of stem cell regulation within the hematopoietic system. Studies in zebra fish have been valuable for identifying new genetic and signaling factors that affect HSC formation and development with important implications for humans, and new advances in the zebra fish toolbox will allow other aspects of HSC behavior to be investigated as well, including migration, homing, and engraftment.

  2. The LMO2 oncogene regulates DNA replication in hematopoietic cells

    PubMed Central

    Sincennes, Marie-Claude; Humbert, Magali; Grondin, Benoît; Lisi, Véronique; Veiga, Diogo F. T.; Haman, André; Cazaux, Christophe; Mashtalir, Nazar; Affar, EL Bachir; Verreault, Alain; Hoang, Trang

    2016-01-01

    Oncogenic transcription factors are commonly activated in acute leukemias and subvert normal gene expression networks to reprogram hematopoietic progenitors into preleukemic stem cells, as exemplified by LIM-only 2 (LMO2) in T-cell acute lymphoblastic leukemia (T-ALL). Whether or not these oncoproteins interfere with other DNA-dependent processes is largely unexplored. Here, we show that LMO2 is recruited to DNA replication origins by interaction with three essential replication enzymes: DNA polymerase delta (POLD1), DNA primase (PRIM1), and minichromosome 6 (MCM6). Furthermore, tethering LMO2 to synthetic DNA sequences is sufficient to transform these sequences into origins of replication. We next addressed the importance of LMO2 in erythroid and thymocyte development, two lineages in which cell cycle and differentiation are tightly coordinated. Lowering LMO2 levels in erythroid progenitors delays G1-S progression and arrests erythropoietin-dependent cell growth while favoring terminal differentiation. Conversely, ectopic expression in thymocytes induces DNA replication and drives these cells into cell cycle, causing differentiation blockade. Our results define a novel role for LMO2 in directly promoting DNA synthesis and G1-S progression. PMID:26764384

  3. Hematopoietic stem cell origin of connective tissues.

    PubMed

    Ogawa, Makio; Larue, Amanda C; Watson, Patricia M; Watson, Dennis K

    2010-07-01

    Connective tissue consists of "connective tissue proper," which is further divided into loose and dense (fibrous) connective tissues and "specialized connective tissues." Specialized connective tissues consist of blood, adipose tissue, cartilage, and bone. In both loose and dense connective tissues, the principal cellular element is fibroblasts. It has been generally believed that all cellular elements of connective tissue, including fibroblasts, adipocytes, chondrocytes, and bone cells, are generated solely by mesenchymal stem cells. Recently, a number of studies, including those from our laboratory based on transplantation of single hematopoietic stem cells, strongly suggested a hematopoietic stem cell origin of these adult mesenchymal tissues. This review summarizes the experimental evidence for this new paradigm and discusses its translational implications.

  4. Hematopoietic stem cell engineering at a crossroads.

    PubMed

    Rivière, Isabelle; Dunbar, Cynthia E; Sadelain, Michel

    2012-02-01

    The genetic engineering of hematopoietic stem cells is the basis for potentially treating a large array of hereditary and acquired diseases, and stands as the paradigm for stem cell engineering in general. Recent clinical reports support the formidable promise of this approach but also highlight the limitations of the technologies used to date, which have on occasion resulted in clonal expansion, myelodysplasia, or leukemogenesis. New research directions, predicated on improved vector designs, targeted gene delivery or the therapeutic use of pluripotent stem cells, herald the advent of safer and more effective hematopoietic stem cell therapies that may transform medical practice. In this review, we place these recent advances in perspective, emphasizing the solutions emerging from a wave of new technologies and highlighting the challenges that lie ahead.

  5. Hematopoietic stem cell engineering at a crossroads

    PubMed Central

    Rivière, Isabelle; Dunbar, Cynthia E.

    2012-01-01

    The genetic engineering of hematopoietic stem cells is the basis for potentially treating a large array of hereditary and acquired diseases, and stands as the paradigm for stem cell engineering in general. Recent clinical reports support the formidable promise of this approach but also highlight the limitations of the technologies used to date, which have on occasion resulted in clonal expansion, myelodysplasia, or leukemogenesis. New research directions, predicated on improved vector designs, targeted gene delivery or the therapeutic use of pluripotent stem cells, herald the advent of safer and more effective hematopoietic stem cell therapies that may transform medical practice. In this review, we place these recent advances in perspective, emphasizing the solutions emerging from a wave of new technologies and highlighting the challenges that lie ahead. PMID:22096239

  6. Cutting the brakes on hematopoietic regeneration by blocking TGFβ to limit chemotherapy-induced myelosuppression.

    PubMed

    Brenet, Fabienne; Scandura, Joseph M

    2015-01-01

    Hematopoietic stressors such as infection, bleeding, or toxic injury trigger a hematopoietic adaptation that sacrifices hematopoietic stem and progenitor cell (HSPC) quiescence to meet an urgent need for new blood cell production. Once the hematopoietic demands are adequately met, homeostasis must be restored. Transforming growth factor β (TGFβ) signaling is a central mediator mandating the return of HSPCs to quiescence after stress. Blockade of TGFβ signaling after hematopoietic stress delays the return of cycling HSPCs to quiescence and in so doing promotes hematopoietic stem cell (HSC) self-renewal and accelerates hematopoietic reconstitution. These findings open the door to new therapeutics that modulate the hematopoietic adaptation to stress. In this review, we will discuss the complex context-dependent activities of TGFβ in hematopoiesis and the potential benefits and limitations of using TGFβ pathway inhibitors to promote multilineage hematopoietic reconstitution after myelosuppressive chemotherapy.

  7. Cutting the brakes on hematopoietic regeneration by blocking TGFβ to limit chemotherapy-induced myelosuppression.

    PubMed

    Brenet, Fabienne; Scandura, Joseph M

    2015-01-01

    Hematopoietic stressors such as infection, bleeding, or toxic injury trigger a hematopoietic adaptation that sacrifices hematopoietic stem and progenitor cell (HSPC) quiescence to meet an urgent need for new blood cell production. Once the hematopoietic demands are adequately met, homeostasis must be restored. Transforming growth factor β (TGFβ) signaling is a central mediator mandating the return of HSPCs to quiescence after stress. Blockade of TGFβ signaling after hematopoietic stress delays the return of cycling HSPCs to quiescence and in so doing promotes hematopoietic stem cell (HSC) self-renewal and accelerates hematopoietic reconstitution. These findings open the door to new therapeutics that modulate the hematopoietic adaptation to stress. In this review, we will discuss the complex context-dependent activities of TGFβ in hematopoiesis and the potential benefits and limitations of using TGFβ pathway inhibitors to promote multilineage hematopoietic reconstitution after myelosuppressive chemotherapy. PMID:27308454

  8. Factors associated with hematopoietic cell transplantation (HCT) among patients in a population-based study of myelodysplastic syndrome (MDS) in Minnesota.

    PubMed

    Smith, Angela R; Warlick, Erica D; Roesler, Michelle A; Poynter, Jenny N; Richardson, Michaela; Nguyen, Phuong; Cioc, Adina; Hirsch, Betsy; Ross, Julie A

    2015-10-01

    Myelodysplastic syndrome (MDS) is a clonal hematopoietic stem cell disorder characterized by dysplastic changes in the bone marrow, ineffective erythropoiesis, and an increased risk of developing acute myeloid leukemia. Treatment planning for patients with MDS is a complex process, and we sought to better characterize hematopoietic cell transplantation (HCT) outcomes and the factors that play into decision-making regarding referral of adults with MDS for definitive therapy with HCT. Patients enrolled in a population-based study of MDS between April 2010 and January 2013 who underwent HCT within the first year after enrollment were included in this analysis. Age- and risk-matched MDS patient controls also enrolled during that time period were used as a comparison. Survival was significantly better in the HCT group (48 vs. 21 %, log-rank p value 0.009). Non-HCT patients were more likely to have comorbidities, and HCT patients were more likely to have a college degree and an income >$80,000. All three of these variables were independently associated with HCT, but none impacted survival. Patients with MDS in our study who underwent HCT had better survival than a comparable group of patients who did not undergo HCT. With refined treatment techniques, more patients may be able to be considered for this therapy. More work needs to be done to determine why education and income appear to impact the decision to pursue HCT, but these factors may impact referral to an academic center where aggressive therapy like HCT is more likely to be considered.

  9. FGF7 supports hematopoietic stem and progenitor cells and niche-dependent myeloblastoma cells via autocrine action on bone marrow stromal cells in vitro

    SciTech Connect

    Ishino, Ruri; Minami, Kaori; Tanaka, Satowa; Nagai, Mami; Matsui, Keiji; Hasegawa, Natsumi; Roeder, Robert G.; Asano, Shigetaka; Ito, Mitsuhiro

    2013-10-11

    Highlights: •FGF7 is downregulated in MED1-deficient mesenchymal cells. •FGF7 produced by mesenchymal stromal cells is a novel hematopoietic niche molecule. •FGF7 supports hematopoietic progenitor cells and niche-dependent leukemia cells. •FGF7 activates FGFR2IIIb of bone marrow stromal cells in an autocrine manner. •FGF7 indirectly acts on hematopoietic cells lacking FGFR2IIIb via stromal cells. -- Abstract: FGF1 and FGF2 support hematopoietic stem and progenitor cells (HSPCs) under stress conditions. In this study, we show that fibroblast growth factor (FGF7) may be a novel niche factor for HSPC support and leukemic growth. FGF7 expression was attenuated in mouse embryonic fibroblasts (MEFs) deficient for the MED1 subunit of the Mediator transcriptional coregulator complex. When normal mouse bone marrow (BM) cells were cocultured with Med1{sup +/+} MEFs or BM stromal cells in the presence of anti-FGF7 antibody, the growth of BM cells and the number of long-time culture-initiating cells (LTC-ICs) decreased significantly. Anti-FGF7 antibody also attenuated the proliferation and cobblestone formation of MB1 stromal cell-dependent myeloblastoma cells. The addition of recombinant FGF7 to the coculture of BM cells and Med1{sup −/−} MEFs increased BM cells and LTC-ICs. FGF7 and its cognate receptor, FGFR2IIIb, were undetectable in BM cells, but MEFs and BM stromal cells expressed both. FGF7 activated downstream targets of FGFR2IIIb in Med1{sup +/+} and Med1{sup −/−} MEFs and BM stromal cells. Taken together, we propose that FGF7 supports HSPCs and leukemia-initiating cells indirectly via FGFR2IIIb expressed on stromal cells.

  10. Heterogeneity of epidermal growth factor binding kinetics on individual cells.

    PubMed Central

    Chung, J C; Sciaky, N; Gross, D J

    1997-01-01

    Binding of fluorescein-conjugated epidermal growth factor (EGF) to individual A431 cells at 4 degrees C is measured by a quantitative fluorescence imaging technique. After background fluorescence and cell autofluorescence photobleaching corrections, the kinetic data are fit to simple models of one monovalent site and two independent monovalent sites, both of which include a first-order dye photobleaching process. Model simulations and the results from data analysis indicate that the one-monovalent-site model does not describe EGF binding kinetics at the single-cell level, whereas the two-site model is consistent with, but not proved by, the single-cell binding data. In addition, the kinetics of binding of fluorescein-EGF to different cells from the same coverslip often differ significantly from each other, indicating cell-to-cell variations in the binding properties of the EGF receptor. PMID:9251825

  11. Nerve growth factor enhances Clara cell proliferation after lung injury.

    PubMed

    Sonar, S S; Schwinge, D; Kilic, A; Yildirim, A O; Conrad, M L; Seidler, K; Müller, B; Renz, H; Nockher, W A

    2010-07-01

    The lung epithelia facilitate wound closure by secretion of various cytokines and growth factors. Nerve growth factor (NGF) has been well described in airway inflammation; however, its likely role in lung repair has not been examined thus far. To investigate the repair function of NGF, experiments were performed in vitro using cultured alveolar epithelial cells and in vivo using a naphthalene-induced model of Clara epithelial cell injury. Both in vitro and in vivo experiments revealed airway epithelial cell proliferation following injury to be dependent on NGF and the expression of its receptor, tropomyosin-receptor-kinase A. Additionally, NGF also augmented in vitro migration of alveolar type II cells. In vivo, transgenic mice over-expressing NGF in Clara cells (NGFtg) did not reveal any proliferation or alteration in Clara cell phenotype. However, following Clara cell specific injury, proliferation was increased in NGFtg and impaired upon inhibition of NGF. Furthermore, NGF also promoted the expression of collagen I and fibronectin in vitro and in vivo during repair, where significantly higher levels were measured in re-epithelialising NGFtg mice. Our study demonstrates that NGF promotes the proliferation of lung epithelium in vitro and the renewal of Clara cells following lung injury in vivo.

  12. Proinflammatory signaling regulates hematopoietic stem cell emergence

    PubMed Central

    Espín-Palazón, Raquel; Stachura, David L.; Campbell, Clyde A.; García-Moreno, Diana; Cid, Natasha Del; Kim, Albert D.; Candel, Sergio; Meseguer, José; Mulero, Victoriano; Traver, David

    2014-01-01

    Summary Hematopoietic stem cells (HSCs) underlie the production of blood and immune cells for the lifetime of an organism. In vertebrate embryos, HSCs arise from the unique transdifferentiation of hemogenic endothelium comprising the floor of the dorsal aorta during a brief developmental window. To date, this process has not been replicated in vitro from pluripotent precursors, partly because the full complement of required signaling inputs remains to be determined. Here, we show that TNFR2 via TNFα activates the Notch and NF-κB signaling pathways to establish HSC fate, indicating a requirement for inflammatory signaling in HSC generation. We determine that primitive neutrophils are the major source of TNFα, assigning a role for transient innate immune cells in establishing the HSC program. These results demonstrate that proinflammatory signaling, in the absence of infection, is utilized by the developing embryo to generate the lineal precursors of the adult hematopoietic system. PMID:25416946

  13. Making sense of hematopoietic stem cell niches

    PubMed Central

    Boulais, Philip E.

    2015-01-01

    The hematopoietic stem cell (HSC) niche commonly refers to the pairing of hematopoietic and mesenchymal cell populations that regulate HSC self-renewal, differentiation, and proliferation. Anatomic localization of the niche is a dynamic unit from the developmental stage that allows proliferating HSCs to expand before they reach the bone marrow where they adopt a quiescent phenotype that protects their integrity and functions. Recent studies have sought to clarify the complexity behind the HSC niche by assessing the contributions of specific cell populations to HSC maintenance. In particular, perivascular microenvironments in the bone marrow confer distinct vascular niches that regulate HSC quiescence and the supply of lineage-committed progenitors. Here, we review recent data on the cellular constituents and molecular mechanisms involved in the communication between HSCs and putative niches. PMID:25762174

  14. NCI, NHLBI/PBMTC first international conference on late effects after pediatric hematopoietic cell transplantation: endocrine challenges-thyroid dysfunction, growth impairment, bone health, & reproductive risks.

    PubMed

    Dvorak, Christopher C; Gracia, Clarisa R; Sanders, Jean E; Cheng, Edward Y; Baker, K Scott; Pulsipher, Michael A; Petryk, Anna

    2011-12-01

    The endocrine system is highly susceptible to damage by high-dose chemotherapy and/or irradiation before hematopoietic cell transplantation (HCT) during childhood. The specific endocrine organs most affected by HCT include the thyroid gland, the pituitary, and the gonads. In addition, hormones that support development and stability of the skeletal system are also affected. Insufficiency of thyroid hormone is 1 of the most common late sequelae of HCT, and occurs more often in young children. Deficiency in the pituitary's production of growth hormone is a problem of unique concern to the pediatric population. The reproductive risks of HCT depend on the patient's gender and pubertal status at the time of HCT. Pubertal or gonadal failure frequently occurs, especially in females. Infertility risks for both genders remain high, whereas methods of fertility preservation are limited in all but postpubertal males. Bone health post-HCT can be compromised by low bone mineral density as well as avascular necrosis, but the data on both problems in the pediatric HCT population are limited. In this paper, the current state of knowledge, gaps in that knowledge, and recommendations for future research are addressed in detail for each of these systems.

  15. Risk factors and outcome of graft failure after HLA matched and mismatched unrelated donor hematopoietic stem cell transplantation: a study on behalf of SFGM-TC and SFHI.

    PubMed

    Cluzeau, T; Lambert, J; Raus, N; Dessaux, K; Absi, L; Delbos, F; Devys, A; De Matteis, M; Dubois, V; Filloux, M; Fort, M; Hau, F; Jollet, I; Labalette, M; Masson, D; Mercier, B; Pedron, B; Perrier, P; Picard, C; Quainon, F; Ramounau-Pigot, A; Renac, V; Van Endert, P; Charron, D; Peffault de la Tour, R; Taupin, J L; Loiseau, P

    2016-05-01

    Graft failure remains a severe complication of hematopoietic stem cell transplantation (HSCT). Several risk factors have already been published. In this study, we re-evaluated them in a large cohort who had the benefit of the recent experience in HSCT (2006-2012). Data from 4684 unrelated donor HSCT from 2006 to 2012 were retrospectively collected from centers belonging to the French Society for Stem Cell Transplantation. Among the 2716 patients for whom HLA typing was available, 103 did not engraft leading to a low rate of no engraftment at 3.8%. In univariate analysis, only type of disease and status of disease at transplant for malignant diseases remained significant risk factors (P=0.04 and P<0.0001, respectively). In multivariate analysis, only status of disease was a significant risk factor (P<0.0001). Among the 61 patients who did not engraft and who were mismatched for 1 HLA class I and/or HLA-DP, 5 donor-specific antibodies (DSAs) were detected but only 1 was clearly involved in graft failure, for the others their role was more questionable. Second HSCT exhibited a protective although not statistically significant effect on OS (hazard ratio=0.57 [0.32-1.02]). In conclusion, only one parameter (disease status before graft) remains risk factor for graft failure in this recent cohort. PMID:26855158

  16. Cytokines and growth factors which regulate bone cell function

    NASA Astrophysics Data System (ADS)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  17. Culture materials affect ex vivo expansion of hematopoietic progenitor cells.

    PubMed

    LaIuppa, J A; McAdams, T A; Papoutsakis, E T; Miller, W M

    1997-09-01

    Ex vivo expansion of hematopoietic cells is important for applications such as cancer treatment, gene therapy, and transfusion medicine. While cell culture systems are widely used to evaluate the biocompatibility of materials for implantation, the ability of materials to support proliferation of primary human cells in cultures for reinfusion into patients has not been addressed. We screened a variety of commercially available polymer (15 types), metal (four types), and glass substrates for their ability to support expansion of hematopoietic cells when cultured under conditions that would be encountered in a clinical setting. Cultures of peripheral blood (PB) CD34+ cells and mononuclear cells (MNC) were evaluated for expansion of total cells and colony-forming unit-granulocyte monocyte (CFU-GM; progenitors committed to the granulocyte and/or monocyte lineage). Human hematopoietic cultures in serum-free medium were found to be extremely sensitive to the substrate material. The only materials tested that supported expansion at or near the levels of polystyrene were tissue culture polystyrene, Teflon perfluoroalkoxy, Teflon fluorinated ethylene propylene, cellulose acetate, titanium, new polycarbonate, and new polymethylpentene. MNC were less sensitive to the substrate materials than the primitive CD34+ progenitors, although similar trends were seen for expansion of the two cell populations on the substrates tested. CFU-GM expansion was more sensitive to substrate materials than was total cell expansion. The detrimental effects of a number of the materials on hematopoietic cultures appear to be caused by protein adsorption and/or leaching of toxins. Factors such as cleaning, sterilization, and reuse significantly affected the performance of some materials as culture substrates. We also used PB CD34+ cell cultures to examine the biocompatibility of gas-permeable cell culture and blood storage bags and several types of tubing commonly used with biomedical equipment

  18. Hematopoietic stem cell transplantation for HIV cure.

    PubMed

    Kuritzkes, Daniel R

    2016-02-01

    The apparent cure of an HIV-infected person following hematopoietic stem cell transplantation (HSCT) from an allogeneic donor homozygous for the ccr5Δ32 mutation has stimulated the search for strategies to eradicate HIV or to induce long-term remission without requiring ongoing antiretroviral therapy. A variety of approaches, including allogeneic HSCT from CCR5-deficient donors and autologous transplantation of genetically modified hematopoietic stem cells, are currently under investigation. This Review covers the experience with HSCT in HIV infection to date and provides a survey of ongoing work in the field. The challenges of developing HSCT for HIV cure in the context of safe, effective, and convenient once-daily antiretroviral therapy are also discussed.

  19. Co-stimulation of gastrointestinal tumour cell growth by gastrin, transforming growth factor alpha and insulin like growth factor-I.

    PubMed Central

    Durrant, L. G.; Watson, S. A.; Hall, A.; Morris, D. L.

    1991-01-01

    Epidermal growth factor receptors and insulin like growth factor-I receptors were co-expressed on two gastric and three colorectal tumour cell lines. Previous studies have shown that gastrin receptors were also expressed at a low level or two of these cell lines. Both TGF alpha and IGF-I promoted cell growth in all of the cell lines tested. The cell doubling time of a colorectal cell line was reduced from 48 to 30-34 h. Furthermore the effects of the growth factors were additive. Each growth factor also increased the response of the cells to gastrin, but a combination of both growth factors and gastrin did not further increase growth. PMID:1846553

  20. Endocrinopathies after Allogeneic and Autologous Transplantation of Hematopoietic Stem Cells

    PubMed Central

    Muscogiuri, Giovanna; Palomba, Stefano; Serio, Bianca; Sessa, Mariarosaria; Giudice, Valentina; Ferrara, Idalucia; Tauchmanovà, Libuse; Colao, Annamaria; Selleri, Carmine

    2014-01-01

    Early and late endocrine disorders are among the most common complications in survivors after hematopoietic allogeneic- (allo-) and autologous- (auto-) stem cell transplant (HSCT). This review summarizes main endocrine disorders reported in literature and observed in our center as consequence of auto- and allo-HSCT and outlines current options for their management. Gonadal impairment has been found early in approximately two-thirds of auto- and allo-HSCT patients: 90–99% of women and 60–90% of men. Dysfunctions of the hypothalamus-pituitary-growth hormone/insulin growth factor-I axis, hypothalamus-pituitary-thyroid axis, and hypothalamus-pituitary-adrenal axis were documented as later complicances, occurring in about 10, 30, and 40–50% of transplanted patients, respectively. Moreover, overt or subclinical thyroid complications (including persistent low-T3 syndrome, chronic thyroiditis, subclinical hypo- or hyperthyroidism, and thyroid carcinoma), gonadal failure, and adrenal insufficiency may persist many years after HSCT. Our analysis further provides evidence that main recognized risk factors for endocrine complications after HSCT are the underlying disease, previous pretransplant therapies, the age at HSCT, gender, total body irradiation, posttransplant derangement of immune system, and in the allogeneic setting, the presence of graft-versus-host disease requiring prolonged steroid treatment. Early identification of endocrine complications can greatly improve the quality of life of long-term survivors after HSCT. PMID:24883377

  1. Endocrinopathies after allogeneic and autologous transplantation of hematopoietic stem cells.

    PubMed

    Orio, Francesco; Muscogiuri, Giovanna; Palomba, Stefano; Serio, Bianca; Sessa, Mariarosaria; Giudice, Valentina; Ferrara, Idalucia; Tauchmanovà, Libuse; Colao, Annamaria; Selleri, Carmine

    2014-01-01

    Early and late endocrine disorders are among the most common complications in survivors after hematopoietic allogeneic- (allo-) and autologous- (auto-) stem cell transplant (HSCT). This review summarizes main endocrine disorders reported in literature and observed in our center as consequence of auto- and allo-HSCT and outlines current options for their management. Gonadal impairment has been found early in approximately two-thirds of auto- and allo-HSCT patients: 90-99% of women and 60-90% of men. Dysfunctions of the hypothalamus-pituitary-growth hormone/insulin growth factor-I axis, hypothalamus-pituitary-thyroid axis, and hypothalamus-pituitary-adrenal axis were documented as later complicances, occurring in about 10, 30, and 40-50% of transplanted patients, respectively. Moreover, overt or subclinical thyroid complications (including persistent low-T3 syndrome, chronic thyroiditis, subclinical hypo- or hyperthyroidism, and thyroid carcinoma), gonadal failure, and adrenal insufficiency may persist many years after HSCT. Our analysis further provides evidence that main recognized risk factors for endocrine complications after HSCT are the underlying disease, previous pretransplant therapies, the age at HSCT, gender, total body irradiation, posttransplant derangement of immune system, and in the allogeneic setting, the presence of graft-versus-host disease requiring prolonged steroid treatment. Early identification of endocrine complications can greatly improve the quality of life of long-term survivors after HSCT. PMID:24883377

  2. Vascular endothelial growth factor, platelet-derived endothelial cell growth factor and angiogenesis in non-small-cell lung cancer

    PubMed Central

    O'Byrne, K J; Koukourakis, M I; Giatromanolaki, A; Cox, G; Turley, H; Steward, W P; Gatter, K; Harris, A L

    2000-01-01

    High microvessel density, an indirect measure of angiogenesis, has been shown to correlate with increased tumour size, lymph node involvement and poor prognosis in non-small-cell lung cancer (NSCLC). Tumour cell vascular endothelial growth factor (VEGF) and platelet-derived endothelial cell growth factor (PD-ECGF) expression correlate with angiogenesis and a poor outcome in this disease. In a retrospective study VEGF and PD-ECGF expression and microvessel density were evaluated immunohistochemically in surgically resected specimens (T1–3, N0–2) from 223 patients with operable NSCLC using the VG1, P-GF.44C and JC70 monoclonal antibodies respectively. High VEGF immunoreactivity was seen in 104 (46.6%) and PD-ECGF in 72 (32.3%) cases and both were associated with high vascular grade tumours (P = 0.009 and P = 0.05 respectively). Linear regression analysis revealed a weak positive correlation between VEGF and PD-ECGF expression in cancer cells (r = 0.21;P = 0.002). Co-expression of VEGF and PD-ECGF was not associated with a higher microvessel density than VEGF or PD-ECGF only expressing tumours. Furthermore a proportion of high vascular grade tumours expressed neither growth factor. Univariate analysis revealed tumour size, nodal status, microvessel density and VEGF and PD-ECGF expression as significant prognostic factors. Tumour size (P< 0.02) and microvessel density (P< 0.04) remained significant on multivariate analysis. In conclusion, VEGF and PD-ECGF are important angiogenic growth factors and have prognostic significance in NSCLC. Furthermore the study underlines the prognostic significance of microvessel density in operable NSCLC. © 2000 Cancer Research Campaign PMID:10780522

  3. Acute myeloid leukemia cells polarize macrophages towards a leukemia supporting state in a Growth factor independence 1 dependent manner

    PubMed Central

    Al-Matary, Yahya S.; Botezatu, Lacramioara; Opalka, Bertram; Hönes, Judith M.; Lams, Robert F.; Thivakaran, Aniththa; Schütte, Judith; Köster, Renata; Lennartz, Klaus; Schroeder, Thomas; Haas, Rainer; Dührsen, Ulrich; Khandanpour, Cyrus

    2016-01-01

    The growth of malignant cells is not only driven by cell-intrinsic factors, but also by the surrounding stroma. Monocytes/Macrophages play an important role in the onset and progression of solid cancers. However, little is known about their role in the development of acute myeloid leukemia, a malignant disease characterized by an aberrant development of the myeloid compartment of the hematopoietic system. It is also unclear which factors are responsible for changing the status of macrophage polarization, thus supporting the growth of malignant cells instead of inhibiting it. We report herein that acute myeloid leukemia leads to the invasion of acute myeloid leukemia-associated macrophages into the bone marrow and spleen of leukemic patients and mice. In different leukemic mouse models, these macrophages support the in vitro expansion of acute myeloid leukemia cell lines better than macrophages from non-leukemic mice. The grade of macrophage infiltration correlates in vivo with the survival of the mice. We found that the transcriptional repressor Growth factor independence 1 is crucial in the process of macrophage polarization, since its absence impedes macrophage polarization towards a leukemia supporting state and favors an anti-tumor state both in vitro and in vivo. These results not only suggest that acute myeloid leukemia-associated macrophages play an important role in the progression of acute myeloid leukemia, but also implicate Growth factor independence 1 as a pivotal factor in macrophage polarization. These data may provide new insights and opportunities for novel therapies for acute myeloid leukemia. PMID:27390361

  4. Oxidized low-density lipoprotein induces hematopoietic stem cell senescence.

    PubMed

    Zhang, Xian-Ping; Zhang, Gui-Hai; Wang, Yu-Ying; Liu, Jun; Wei, Qiang; Xu, Chun-Yan; Wang, Jian-Wei; Wang, Ya-Ping

    2013-09-01

    We have investigated oxidized low-density lipoprotein (ox-LDL) induced senescence in hematopoietic stem cells (HCs). Mouse Sca-1+ HCs were separated and purified using the magnetic activated cell sorting technique. Ox-LDL induced significant senescence in HCs measured by SA-β-Gal staining, and reduced CFU-Mix colony-forming capacity, arresting cells at G0/G1 phase. In agreement with the cell cycle arrest, ox-LDL markedly reduced the expression of CDK4, cyclin D, and cyclin E. As possible contributing factors for cell senescence, ox-LDL also induced cellular oxidative stress and reduced telomerase activity.

  5. Hematopoietic management in oncology practice. Part 2. Erythropoietic factors.

    PubMed

    Glaspy, John A

    2003-12-01

    As the major regulator of erythropoiesis in man, erythropoietin inhibits the programmed cell death of committed erythroid precursors. In cancer patients, a relative erythropoietin deficiency is coupled with a decreased responsiveness to the substance mediated by the effects of inflammatory cytokines on the marrow and on ferrokinetics, leading to a high incidence of anemia. Two recombinant human erythropoietin (rhEPO) preparations--epoetin alfa (Epogen, Procrit) and epoetin beta (Marogen)--as well as a modified erythropoietic compound (darbepoetin alfa [Aranesp]) are in clinical use. Part 2 of this two-part series on hematopoietic agents reviews the use of these erythropoietic factors and their effect on the anemia that develops in cancer patients. Thrombopoietic factors and progenitor cell-mobilizing factors are also briefly addressed. PMID:14723012

  6. Growth factors and stem cells as treatments for stroke recovery.

    PubMed

    Cairns, Kevin; Finklestein, Seth P

    2003-02-01

    Both polypeptide growth factors and stem cell populations from bone marrow and umbilical cord blood hold promise as treatments to enhance neurologic recovery after stroke. Growth factors may exert their effects through stimulation of neural sprouting and enhancement of endogenous progenitor cell proliferation, migration, and differentiation in brain. Exogenous stem cells may exert their effects by acting as miniature "factories" for trophic substances in the poststroke brain. The combination of growth factors and stem cells may be more effective than either treatment alone. Stroke recovery represents a new and relatively untested target for stroke therapeutics. Whereas acute stroke treatments focus on agents that dissolve blot clots (thrombolytics) and antagonize cell death (neuroprotective agents), stroke recovery treatments are likely to enhance structural and functional reorganization (plasticity) of the damaged brain. Successful clinical trials of stroke recovery-promoting agents are likely to be quite different from trials testing acute stroke therapies. In particular, the time window of effective treatment to enhance stroke recovery is likely to be far longer than that for acute stroke treatments, perhaps days or weeks rather than minutes or hours after stroke. This longer time window means that time is available for careful screening and testing of potential subjects for stroke recovery trials, both in terms of size and location of cerebral infarcts and in type and severity of neurologic deficits. Detailed baseline information can be obtained for each patient against which eventual clinical outcome can be compared. Finally, separate and detailed outcome measures can be obtained in both the sensorimotor and cognitive neurologic spheres, because it is possible that these two kinds of function may recover differently or be differentially responsive to recovery-promoting treatments. Stroke recovery represents an important and underexplored opportunity for the

  7. Fetal liver hepatic progenitors are supportive stromal cells for hematopoietic stem cells.

    PubMed

    Chou, Song; Lodish, Harvey F

    2010-04-27

    Previously we showed that the ~2% of fetal liver cells reactive with an anti-CD3epsilon monoclonal antibody support ex vivo expansion of both fetal liver and bone marrow hematopoietic stem cells (HSCs); these cells express two proteins important for HSC ex vivo expansion, IGF2, and angiopoietin-like 3. Here we show that these cells do not express any CD3 protein and are not T cells; rather, we purified these HSC-supportive stromal cells based on the surface phenotype of SCF(+)DLK(+). Competitive repopulating experiments show that SCF(+)DLK(+) cells support the maintenance of HSCs in ex vivo culture. These are the principal fetal liver cells that express not only angiopoietin-like 3 and IGF2, but also SCF and thrombopoietin, two other growth factors important for HSC expansion. They are also the principal fetal liver cells that express CXCL12, a factor required for HSC homing, and also alpha-fetoprotein (AFP), indicating that they are fetal hepatic stem or progenitor cells. Immunocytochemistry shows that >93% of the SCF(+) cells express DLK and Angptl3, and a portion of SCF(+) cells also expresses CXCL12. Thus SCF(+)DLK(+) cells are a highly homogenous population that express a complete set of factors for HSC expansion and are likely the primary stromal cells that support HSC expansion in the fetal liver.

  8. Expression of Coxsackievirus and Adenovirus Receptor Separates Hematopoietic and Cardiac Progenitor Cells in Fetal Liver Kinase 1-Expressing Mesoderm

    PubMed Central

    Tashiro, Katsuhisa; Hirata, Nobue; Okada, Atsumasa; Yamaguchi, Tomoko; Takayama, Kazuo; Mizuguchi, Hiroyuki

    2015-01-01

    In developing embryos or in vitro differentiation cultures using pluripotent stem cells (PSCs), such as embryonic stem cells and induced pluripotent stem cells, fetal liver kinase 1 (Flk1)-expressing mesodermal cells are thought to be a heterogeneous population that includes hematopoietic progenitors, endothelial progenitors, and cardiac progenitors. However, information on cell surface markers for separating these progenitors in Flk1+ cells is currently limited. In the present study, we show that distinct types of progenitor cells in Flk1+ cells could be separated according to the expression of coxsackievirus and adenovirus receptor (CAR, also known as CXADR), a tight junction component molecule. We found that mouse and human PSC- and mouse embryo-derived Flk1+ cells could be subdivided into Flk1+CAR+ cells and Flk1+CAR− cells. The progenitor cells with cardiac potential were almost entirely restricted to Flk1+CAR+ cells, and Flk1+CAR− cells efficiently differentiated into hematopoietic cells. Endothelial differentiation potential was observed in both populations. Furthermore, from the expression of CAR, Flk1, and platelet-derived growth factor receptor-α (PDGFRα), Flk1+ cells could be separated into three populations (Flk1+PDGFRα−CAR− cells, Flk1+PDGFRα−CAR+ cells, and Flk1+PDGFRα+CAR+ cells). Flk1+PDGFRα+ cells and Flk1+PDGFRα− cells have been reported as cardiac and hematopoietic progenitor cells, respectively. We identified a novel population (Flk1+PDGFRα−CAR+ cells) with the potential to differentiate into not only hematopoietic cells and endothelial cells but also cardiomyocytes. Our findings indicate that CAR would be a novel and prominent marker for separating PSC- and embryo-derived Flk1+ mesodermal cells with distinct differentiation potentials. PMID:25762001

  9. Incidence, risk factors and clinical outcome of leukemia relapses with loss of the mismatched HLA after partially incompatible hematopoietic stem cell transplantation.

    PubMed

    Crucitti, L; Crocchiolo, R; Toffalori, C; Mazzi, B; Greco, R; Signori, A; Sizzano, F; Chiesa, L; Zino, E; Lupo Stanghellini, M T; Assanelli, A; Carrabba, M G; Marktel, S; Marcatti, M; Bordignon, C; Corti, C; Bernardi, M; Peccatori, J; Bonini, C; Fleischhauer, K; Ciceri, F; Vago, L

    2015-05-01

    Genomic loss of the mismatched human leukocyte antigen (HLA) is a recently described mechanism of leukemia immune escape and relapse after allogeneic hematopoietic stem cell transplantation (HSCT). Here we first evaluated its incidence, risk factors and outcome in 233 consecutive transplants from partially HLA-mismatched related and unrelated donors (MMRD and MMUD, respectively). We documented 84 relapses, 23 of which with HLA loss. All the HLA loss relapses occurred after MMRD HSCT, and 20/23 in patients with acute myeloid leukemia. Upon MMRD HSCT, HLA loss variants accounted for 33% of the relapses (23/69), occurring later than their 'classical' counterparts (median: 307 vs 88 days, P<0.0001). Active disease at HSCT increased the risk of HLA loss (hazard ratio (HR): 10.16; confidence interval (CI): 2.65-38.92; P=0.001), whereas older patient ages had a protective role (HR: 0.16; CI: 0.05-0.46; P=0.001). A weaker association with HLA loss was observed for graft T-cell dose and occurrence of chronic graft-versus-host disease. Outcome after 'classical' and HLA loss relapses was similarly poor, and second transplantation from a different donor appeared to provide a slight advantage for survival. In conclusion, HLA loss is a frequent mechanism of evasion from T-cell alloreactivity and relapse in patients with myeloid malignancies transplanted from MMRDs, warranting routine screening in this transplantation setting.

  10. Fibroblast growth factor-10 is a mitogen for urothelial cells

    SciTech Connect

    Bagai, Shelly; Rubio, Eric; Cheng, Jang-Fang; Sweet, Robert; Thomas, Regi; Fuchs, Elaine; Grady, Richard; Mitchell, Michael; Bassuk, James A.

    2002-02-01

    Fibroblast Growth Factor (FGF)-10 plays an important role in regulating growth, differentiation, and repair of the urothelium. This process occurs through a paracrine cascade originating in the mesenchyme (lamina propria) and targeting the epithelium (urothelium). In situ hybridization analysis demonstrated that (i) fibroblasts of the human lamina propria were the cell type that synthesized FGF-10 RNA and (ii) the FGF-10 gene is located at the 5p12-p13 locus of chromosome 5. Recombinant (r) preparations of human FGF-10 were found to induce proliferation of human urothelial cells in vitro and of transitional epithelium of wild-type and FGF7-null mice in vivo. Mechanistic studies with human cells indicated two modes of FGF-10 action: (i) translocation of rFGF-10 into urothelial cell nuclei and (ii) a signaling cascade that begins with the heparin-dependent phosphorylation of tyrosine residues of surface transmembrane receptors. The normal urothelial phenotype, that of quiescence, is proposed to be typified by negligible levels of FGF-10. During proliferative phases, levels of FGF-10 rise at the urothelial cell surface and/or within urothelial cell nuclei. An understanding of how FGF-10 works in conjunction with these other processes will lead to better management of many diseases of the bladder and urinary tract.

  11. Role of fibroblast growth factor receptors in astrocytic stem cells

    PubMed Central

    Galvez-Contreras, Alma Y.; Gonzalez-Castaneda, Rocio E; Luquin, Sonia; Gonzalez-Perez, Oscar

    2012-01-01

    There are two well-defined neurogenic regions in the adult brain, the subventricular zone (SVZ) lining the lateral wall of the lateral ventricles and, the subgranular zone (SGZ) in the dentate gyrus at the hippocampus. Within these neurogenic regions, there are neural stem cells with astrocytic characteristics, which actively respond to the basic fibroblast growth factor (bFGF, FGF2 or FGF-β) by increasing their proliferation, survival and differentiation, both in vivo and in vitro. FGF2 binds to fibroblast growth factor receptors 1 to 4 (FGFR1, FGFR2, FGFR3, FGFR4). Interestingly, these receptors are differentially expressed in neurogenic progenitors. During development, FGFR-1 and FGFR-2 drive oligodendrocytes and motor neuron specification. In particular, FGFR-1 determines oligodendroglial and neuronal cell fate, whereas FGFR-2 is related to oligodendrocyte specification. In the adult SVZ, FGF-2 promotes oligodendrogliogenesis and myelination. FGF-2 deficient mice show a reduction in the number of new neurons in the SGZ, which suggests that FGFR-1 is important for neuronal cell fate in the adult hippocampus. In human brain, FGF-2 appears to be an important component in the anti-depressive effect of drugs. In summary, FGF2 is an important modulator of the cell fate of neural precursor and, promotes oligodendrogenesis. In this review, we describe the expression pattern of FGFR2 and its role in neural precursors derived from the SVZ and the SGZ. PMID:22347841

  12. Mobilization of hematopoietic progenitor cells with granulocyte colony stimulating factors for autologous transplant in hematologic malignancies: a single center experience

    PubMed Central

    Gabús, Raul; Borelli, Gabriel; Ferrando, Martín; Bódega, Enrique; Citrín, Estela; Jiménez, Constanza Olivera; Álvarez, Ramón

    2011-01-01

    Background In 2006 the Hematology Service of Hospital Maciel published its experience with peripheral blood progenitor cell harvesting for autologous stem cell transplantation using Filgen JP (Clausen Filgrastim). After mobilization with a mean filgrastim dose of 78 mcg/Kg, 4.7 x 106 CD34+ cells/Kg were obtained by apheresis. Age above 50, multiple myeloma as underlying disease and a malignancy that was not in remission were identified as frequent characteristics among patients showing complex mobilization. Objective The aim of this study was to compare stem cell mobilization using different brands of filgrastim. Methods One hundred and fifty-seven mobilizations performed between 1997 and 2006 were analyzed. This retrospective analysis comparative two groups of patients: those mobilized with different brands of filgrastim (Group A) and those who received Filgen JP (Clausen Filgrastim) as mobilizing agent (Group B). A cluster analysis technique was used to identify four clusters of individuals with different behaviors differentiated by age, total dose of filgrastim required, number of apheresis and harvested CD34+ cells. Results The mean total dose of filgrastim administered was 105 mcg/Kg, the median number of apheresis was 2 procedures and the mean number of harvested stem cells was 4.98 x 106 CD34+ cells/Kg. No significant differences were observed between Groups A and B regarding the number of apheresis, harvested CD34+ cells and number of mobilization failures, however the total dose of filgrastim was significantly lower in Group B. Conclusions Among other factors, the origin of the cytokine used as mobilizing agent is an element to be considered when evaluating CD34+ cell mobilization results. PMID:23049356

  13. Brain, Behavior, and Immunity: Biobehavioral influences on recovery following hematopoietic stem cell transplantation

    Cancer.gov

    Review of hematopoietic stem cell transplantation and its potential “window of opportunity” during which interventions targeting stress-related behavioral factors can influence the survival, health, and well-being of recipients.

  14. Hematopoietic specification from human pluripotent stem cells: current advances and challenges toward de novo generation of hematopoietic stem cells.

    PubMed

    Slukvin, Igor I

    2013-12-12

    Significant advances in cellular reprogramming technologies and hematopoietic differentiation from human pluripotent stem cells (hPSCs) have already enabled the routine production of multiple lineages of blood cells in vitro and opened novel opportunities to study hematopoietic development, model genetic blood diseases, and manufacture immunologically matched cells for transfusion and cancer immunotherapy. However, the generation of hematopoietic cells with robust and sustained multilineage engraftment has not been achieved. Here, we highlight the recent advances in understanding the molecular and cellular pathways leading to blood development from hPSCs and discuss potential approaches that can be taken to facilitate the development of technologies for de novo production of hematopoietic stem cells.

  15. The HDAC inhibitor Givinostat modulates the hematopoietic transcription factors NFE2 and C-MYB in JAK2(V617F) myeloproliferative neoplasm cells.

    PubMed

    Amaru Calzada, Ariel; Todoerti, Katia; Donadoni, Luca; Pellicioli, Anna; Tuana, Giacomo; Gatta, Raffaella; Neri, Antonino; Finazzi, Guido; Mantovani, Roberto; Rambaldi, Alessandro; Introna, Martino; Lombardi, Luigia; Golay, Josée

    2012-08-01

    We investigated the mechanism of action of the histone deacetylase inhibitor Givinostat (GVS) in Janus kinase 2 (JAK2)(V617F) myeloproliferative neoplasm (MPN) cells. GVS inhibited colony formation and proliferation and induced apoptosis at doses two- to threefold lower in a panel of JAK2(V617F) MPN compared to JAK2 wild-type myeloid leukemia cell lines. By global gene expression analysis, we observed that at 6 hours, GVS modulated 293 common genes in the JAK2(V617F) cell lines HEL and UKE1, of which 19 are implicated in cell cycle regulation and 33 in hematopoiesis. In particular, the hematopoietic transcription factors NFE2 and C-MYB were downmodulated by the drug specifically in JAK2(V617F) cells at both the RNA and protein level. GVS also inhibited JAK2-signal transducer and activator of transcription 5-extracellular signal-regulated kinase 1/2 phosphorylation, but modulation of NFE2 and C-MYB was JAK2-independent, as shown using the JAK2 inhibitor TG101209. GVS had a direct effect on the NFE2 promoters, as demonstrated by specific enrichment of associated histone H3 acetylated at lysine 9. Modulation by GVS of NFE2 was also observed in freshly isolated CD34(+) cells from MPN patients, and was accompanied by inhibition of their proliferation and differentiation toward the erythroid lineage. We conclude that GVS acts on MPN cells through dual JAK2-signal transducer and activator of transcription 5-extracellular signal-regulated kinase 1/2 inhibition and downmodulation of NFE2 and C-MYB transcription. PMID:22579713

  16. Sleep disruption impairs hematopoietic stem cell transplantation in mice

    PubMed Central

    Rolls, Asya; Pang, Wendy W.; Ibarra, Ingrid; Colas, Damien; Bonnavion, Patricia; Korin, Ben; Heller, H. Craig; Weissman, Irving L.; de Lecea, Luis

    2015-01-01

    Many of the factors affecting the success of hematopoietic cell transplantation are still unknown. Here we show in mice that donor’s sleep deprivation reduces the ability of its hematopoietic stem cells (HSCs) to engraft and reconstitute the blood and bone marrow of an irradiated recipient by more than 50%. We demonstrate that sleep deprivation downregulates the expression of microRNA (miR)-19b, a negative regulator of the suppressor of cytokine signaling (SOCS) genes, which inhibit HSC migration and homing. Accordingly, HSCs from sleep-deprived mice have higher levels of SOCS genes expression, lower migration capacity in vitro and reduced homing to the bone marrow in vivo. Recovery of sleep after sleep deprivation restored the reconstitution potential of the HSCs. Taken together, this study provides insights into cellular and molecular mechanisms underlying the effects of sleep deprivation on HSCs, emphasizing the potentially critical role of donor sleep in the success of bone marrow transplantation. PMID:26465715

  17. bantam miRNA is important for Drosophila blood cell homeostasis and a regulator of proliferation in the hematopoietic progenitor niche

    SciTech Connect

    Lam, Victoria; Tokusumi, Tsuyoshi; Tokusumi, Yumiko; Schulz, Robert A.

    2014-10-24

    Highlights: • bantam miRNA is endogenously expressed in the hematopoietic progenitor niche. • bantam is necessary and sufficient to induce cellular proliferation in the PSC. • bantam is upstream of the Insulin Receptor signaling pathway. • A model for positive regulation of hematopoietic niche growth is proposed. - Abstract: The Drosophila hematopoietic system is utilized in this study to gain novel insights into the process of growth control of the hematopoietic progenitor niche in blood development. The niche microenvironment is an essential component controlling the balance between progenitor populations and differentiated, mature blood cells and has been shown to lead to hematopoietic malignancies in humans when misregulated. MicroRNAs are one class of regulators associated with blood malignancies; however, there remains a relative paucity of information about the role of miRNAs in the niche. Here we demonstrate that bantam miRNA is endogenously active in the Drosophila hematopoietic progenitor niche, the posterior signaling center (PSC), and functions in the primary hematopoietic organ, the lymph gland, as a positive regulator of growth. Loss of bantam leads to a significant reduction in the PSC and overall lymph gland size, as well as a loss of the progenitor population and correlative premature differentiation of mature hemocytes. Interestingly, in addition to being essential for proper lymph gland development, we have determined bantam to be a novel upstream component of the insulin signaling cascade in the PSC and have unveiled dMyc as one factor central to bantam activity. These important findings identify bantam as a new hematopoietic regulator, place it in an evolutionarily conserved signaling pathway, present one way in which it is regulated, and provide a mechanism through which it facilitates cellular proliferation in the hematopoietic niche.

  18. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3

    PubMed Central

    Rimmelé, Pauline; Liang, Raymond; Bigarella, Carolina L; Kocabas, Fatih; Xie, Jingjing; Serasinghe, Madhavika N; Chipuk, Jerry; Sadek, Hesham; Zhang, Cheng Cheng; Ghaffari, Saghi

    2015-01-01

    Hematopoietic stem cells (HSC) are primarily dormant but have the potential to become highly active on demand to reconstitute blood. This requires a swift metabolic switch from glycolysis to mitochondrial oxidative phosphorylation. Maintenance of low levels of reactive oxygen species (ROS), a by-product of mitochondrial metabolism, is also necessary for sustaining HSC dormancy. Little is known about mechanisms that integrate energy metabolism with hematopoietic stem cell homeostasis. Here, we identify the transcription factor FOXO3 as a new regulator of metabolic adaptation of HSC. ROS are elevated in Foxo3−/− HSC that are defective in their activity. We show that Foxo3−/− HSC are impaired in mitochondrial metabolism independent of ROS levels. These defects are associated with altered expression of mitochondrial/metabolic genes in Foxo3−/− hematopoietic stem and progenitor cells (HSPC). We further show that defects of Foxo3−/− HSC long-term repopulation activity are independent of ROS or mTOR signaling. Our results point to FOXO3 as a potential node that couples mitochondrial metabolism with HSC homeostasis. These findings have critical implications for mechanisms that promote malignant transformation and aging of blood stem and progenitor cells. PMID:26209246

  19. ETS Transcription Factor ETV2/ER71/Etsrp in Hematopoietic and Vascular Development.

    PubMed

    Sumanas, S; Choi, K

    2016-01-01

    Effective establishment of the hematopoietic and vascular systems is prerequisite for successful embryogenesis. The ETS transcription factor Etv2 has proven to be essential for hematopoietic and vascular development. Etv2 expression marks the onset of the hematopoietic and vascular development and its deficiency leads to an absolute block in hematopoietic and vascular development. Etv2 is transiently expressed during development and is mainly expressed in testis in adults. Consistent with its expression pattern, Etv2 is transiently required for the generation of the optimal levels of the hemangiogenic cell population. Deletion of this gene after the hemangiogenic progenitor formation leads to normal hematopoietic and vascular development. Mechanistically, ETV2 induces the hemangiogenic program by activating blood and endothelial cell lineage specifying genes and enhancing VEGF signaling. Moreover, ETV2 establishes an ETS hierarchy by directly activating other Ets genes, which in the face of transient Etv2 expression, presumably maintain blood and endothelial cell program initiated by ETV2 through an ETS switching mechanism. Current studies suggest that the hemangiogenic progenitor population is exclusively sensitive to ETV2-dependent FLK1 signaling. Any perturbation in the ETV2, VEGF, and FLK1 balance causing insufficient hemangiogenic progenitor cell generation would lead to defects in hematopoietic and endothelial cell development.

  20. Epigenetic regulation of hematopoietic stem cell aging

    SciTech Connect

    Beerman, Isabel

    2014-12-10

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.

  1. Fancb deficiency impairs hematopoietic stem cell function.

    PubMed

    Du, Wei; Amarachintha, Surya; Erden, Ozlem; Wilson, Andrew; Meetei, Amom Ruhikanta; Andreassen, Paul R; Namekawa, Satoshi H; Pang, Qishen

    2015-01-01

    Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure, variable congenital malformations and a predisposition to malignancies. FANCB (also known as FAAP95), is the only X-linked FA gene discovered thus far. In the present study, we investigated hematopoiesis in adult Fancb deficient (Fancb(-/y)) mice and found that Fancb(-/y) mice have decreased hematopoietic stem cell (HSC) quiescence accompanied by reduced progenitor activity in vitro and reduced repopulating capacity in vivo. Like other FA mouse models previously reported, the hematopoietic system of Fancb(-/y) mice is hypersensitive to DNA cross-linking agent mitomycin C (MMC), which induces bone marrow failure in Fancb(-/y) mice. Furthermore, Fancb(-/y) BM exhibits slower recovery kinetics and less tolerance to myelotoxic stress induced by 5-fluorouracil than wild-type littermates. RNA-seq analysis reveals altered expression of genes involved in HSC function and cell cycle regulation in Fancb(-/y) HSC and progenitor cells. Thus, this Fancb(-/y) mouse model provides a novel approach for studying the critical role of the FA pathway not only in germ cell development but also in the maintenance of HSC function. PMID:26658157

  2. Human Term Placenta as a Source of Hematopoietic Cells

    PubMed Central

    Serikov, Vladimir; Hounshell, Catherine; Larkin, Sandra; Green, William; Ikeda, Hirokazu; Walters, Mark C.

    2012-01-01

    The main barrier to a broader clinical application of umbilical cord blood (UCB) transplantation is its limiting cellular content. Thus, the discovery of hematopoietic progenitor cells in murine placental tissue led us investigate whether the human placenta contains hematopoietic cells, sites of hematopoiesis, and to develop a procedure of processing and storing placental hematopoietic cells for transplantation. Here we show that the human placenta contains large numbers of CD34-expressing hematopoietic cells, with the potential to provide a cellular yield several-fold greater than that of a typical UCB harvest. Cells from fresh or cryopreserved placental tissue generated erythroid and myeloid colonies in culture, and also produced lymphoid cells after transplantation in immunodeficient mice. These results suggest that human placenta could become an important new source of hematopoietic cells for allogeneic transplantation. PMID:19429852

  3. Foxo-mediated Bim transcription is dispensable for the apoptosis of hematopoietic cells that is mediated by this BH3-only protein

    PubMed Central

    Herold, Marco J; Rohrbeck, Leona; Lang, Mathias J; Grumont, Raelene; Gerondakis, Steve; Tai, Lin; Bouillet, Philippe; Kaufmann, Thomas; Strasser, Andreas

    2013-01-01

    The BH3-only protein Bim is a critical initiator of apoptosis in hematopoietic cells. Bim is upregulated in response to growth factor withdrawal and in vitro studies have implicated the transcription factor Foxo3a as a critical inducer. To test the importance of this regulation in vivo, we generated mice with mutated Foxo-binding sites within the Bim promoters (BimΔFoxo/ΔFoxo). Contrary to Bim-deficient mice, BimΔFoxo/ΔFoxo mice had a normal hematopoietic system. Moreover, cytokine-dependent haematopoietic cells from BimΔFoxo/ΔFoxo and wt mice died at similar rates. These results indicate that regulation of Bim by Foxo transcription factors is not critical for the killing of hematopoietic cells. PMID:24060902

  4. Growth and differentiation in cultured human thyroid cells: effects of epidermal growth factor and thyrotropin.

    PubMed

    Errick, J E; Ing, K W; Eggo, M C; Burrow, G N

    1986-01-01

    Human thyroid cells were grown and subcultured in vitro to examine their responses to known hormones and growth factors, and to serum. The cells were obtained from surgical specimens and were either neoplastic or nonneoplastic. The effects of culture conditions on cell growth were measured by changes in cell numbers and by stimulation of [3H]thymidine incorporation. The results showed that serum (0.5%) was essential for cell proliferation, and that a mixture of insulin (10 micrograms/ml), transferrin (5 micrograms/ml), hydrocortisone (10 micrograms/ml), somatostatin (10 ng/ml), and glycyl-histidyl-lysine (10 ng/ml) enhanced the effect of serum. Maximum growth of the cells was obtained when epidermal growth factor was present at 10(-9) M. Differentiation was measured by production of thyroglobulin, which was found to be stimulated by thyrotropin. This system provides a means to study the hormonal control of growth and differentiation in human thyroid cells. PMID:3511027

  5. Divergent effects of epidermal growth factor and transforming growth factors on a human endometrial carcinoma cell line.

    PubMed

    Korc, M; Haussler, C A; Trookman, N S

    1987-09-15

    Epidermal growth factor (EGF), at concentrations ranging from 0.83 to 4.98 nM, markedly inhibited the proliferation of RL95-2 cells that were seeded at low plating densities (4.7 X 10(3) cells/cm2). Under the same incubation conditions, 16.6 pM EGF enhanced cell proliferation. At high plating densities (2.5 X 10(4) cells/cm2) 0.83 nM EGF also stimulated cell proliferation. Both the inhibitory and stimulatory effects of EGF were mimicked by transforming growth factor-alpha (TGF-alpha). However, the inhibitory action of TGF-alpha was always greater that of EGF. Binding studies with 125I-labeled TGF-alpha indicated that maximal cell surface binding of TGF-alpha occurred at 15 min, whereas maximal internalization occurred at 45 min. Both cell surface and internalized radioactivity declined sharply thereafter. Analysis of radioactivity released into the incubation medium during pulse-chase experiments indicated that RL95-2 cells extensively degraded both TGF-alpha and EGF. The lysosomotropic compound methylamine arrested the generation of low-molecular-weight degradation products of EGF, but not of TGF-alpha. In contrast to EGF and TGF-alpha, transforming growth factor-beta (TGF-beta) inhibited the proliferation of RL95-2 cells that were seeded at either low or high plating densities. Further, transforming growth factor-beta induced the appearance of large cuboidal cells that were readily distinguished from cells treated with either EGF or TGF-alpha. These findings point to complex regulatory actions of growth factors on the proliferation of RL95-2 cells and suggest that the processing of TGF-alpha following EGF receptor activation is distinct from the processing of EGF. PMID:3497713

  6. Stem cell growth factor receptor in canine vs. feline osteosarcomas

    PubMed Central

    Wolfesberger, Birgitt; Fuchs-Baumgartinger, Andrea; Hlavaty, Juraj; Meyer, Florian R.; Hofer, Martin; Steinborn, Ralf; Gebhard, Christiane; Walter, Ingrid

    2016-01-01

    Osteosarcoma is considered the most common bone cancer in cats and dogs, with cats having a much better prognosis than dogs, since the great majority of dogs with osteosarcoma develop distant metastases. In search of a factor possibly contributing to this disparity, the stem cell growth factor receptor KIT was targeted, and the messenger (m)RNA and protein expression levels of KIT were compared in canine vs. feline osteosarcomas, as well as in normal bone. The mRNA expression of KIT was quantified by reverse transcription-quantitative polymerase chain reaction, and was observed to be significantly higher in canine (n=14) than in feline (n=5) osteosarcoma samples (P<0.001). KIT protein expression was evaluated by immunohistochemistry, which revealed that 21% of canine osteosarcoma samples did not exhibit KIT staining in their neoplastic cells, while in 14% of samples, a score of 1 (<10% positive tumour cells) was observed, and in 50% and 14% of samples, a score of 2 (10–50% positivity) and 3 (>50% positivity), respectively, was observed. By contrast, the cancer cells of all the feline bone tumour samples analysed were entirely negative for KIT. Notably, canine and feline osteocytes of healthy bone tissue lacked any KIT expression. These results could be the first evidence that KIT may be involved in the higher aggressiveness of canine osteosarcoma compared with feline osteosarcoma.

  7. Stem cell growth factor receptor in canine vs. feline osteosarcomas

    PubMed Central

    Wolfesberger, Birgitt; Fuchs-Baumgartinger, Andrea; Hlavaty, Juraj; Meyer, Florian R.; Hofer, Martin; Steinborn, Ralf; Gebhard, Christiane; Walter, Ingrid

    2016-01-01

    Osteosarcoma is considered the most common bone cancer in cats and dogs, with cats having a much better prognosis than dogs, since the great majority of dogs with osteosarcoma develop distant metastases. In search of a factor possibly contributing to this disparity, the stem cell growth factor receptor KIT was targeted, and the messenger (m)RNA and protein expression levels of KIT were compared in canine vs. feline osteosarcomas, as well as in normal bone. The mRNA expression of KIT was quantified by reverse transcription-quantitative polymerase chain reaction, and was observed to be significantly higher in canine (n=14) than in feline (n=5) osteosarcoma samples (P<0.001). KIT protein expression was evaluated by immunohistochemistry, which revealed that 21% of canine osteosarcoma samples did not exhibit KIT staining in their neoplastic cells, while in 14% of samples, a score of 1 (<10% positive tumour cells) was observed, and in 50% and 14% of samples, a score of 2 (10–50% positivity) and 3 (>50% positivity), respectively, was observed. By contrast, the cancer cells of all the feline bone tumour samples analysed were entirely negative for KIT. Notably, canine and feline osteocytes of healthy bone tissue lacked any KIT expression. These results could be the first evidence that KIT may be involved in the higher aggressiveness of canine osteosarcoma compared with feline osteosarcoma. PMID:27698817

  8. Binding, sequestration, and processing of epidermal growth factor and nerve growth factor by PC12 cells. [Rats

    SciTech Connect

    Chandler, C.E.; Herschman, H.R.

    1983-03-01

    Th rat PC12 pheochromocytoma cell line exhibits biological responses to both nerve growth factor (NGF) and epidermal growth factor (EGF). The existence of receptors and biological responses on a common cell for these two well-characterized polypeptide growth factors makes this an attractive system for comparison of ligand binding and processing. Both NGF and EGF are bound to PC12 cells in a competable form at 4/sup 0/C. At 37/sup 0/C both ligands are ''sequestered,'' but at different rates and to different extents. While sequestration happens rapidly and nearly quantitatively for bound EGF, the dissociation reaction appears to compete favorably with NFG sequestration. Both EGF and NGF are degraded by PC12 cells. Sequestered EGF, however, is degraded to a greater extent than sequestered NGF.

  9. Vascular Endothelial Growth Factor A Regulates the Secretion of Different Angiogenic Factors in Lung Cancer Cells.

    PubMed

    Frezzetti, Daniela; Gallo, Marianna; Roma, Cristin; D'Alessio, Amelia; Maiello, Monica R; Bevilacqua, Simona; Normanno, Nicola; De Luca, Antonella

    2016-07-01

    Vascular endothelial growth factor A (VEGFA) is one of the main mediators of angiogenesis in non-small cell lung cancer (NSCLC). Recently, it has been described an autocrine feed-forward loop in NSCLC cells in which tumor-derived VEGFA promoted the secretion of VEGFA itself, amplifying the proangiogenic signal. In order to investigate the role of VEGFA in lung cancer progression, we assessed the effects of recombinant VEGFA on proliferation, migration, and secretion of other angiogenic factors in A549, H1975, and HCC827 NSCLC cell lines. We found that VEGFA did not affect NSCLC cell proliferation and migration. On the other hand, we demonstrated that VEGFA not only produced a strong and persistent increase of VEGFA itself but also significantly induced the secretion of a variety of angiogenic factors, including follistatin (FST), hepatocyte growth factor (HGF), angiopoietin-2 (ANGPT2), granulocyte-colony stimulating factor (G-CSF), interleukin (IL)-8, leptin (LEP), platelet/endothelial cell adhesion molecule 1 (PECAM-1), and platelet-derived growth factor bb (PDGF-BB). PI3K/AKT, RAS/ERK, and STAT3 signalling pathways were found to mediate the effects of VEGFA in NSCLC cell lines. We also observed that VEGFA regulation mainly occurred at post-transcriptional level and that NSCLC cells expressed different isoforms of VEGFA. Collectively, our data suggested that VEGFA contributes to lung cancer progression by inducing a network of angiogenic factors, which might offer potential for therapeutic intervention. PMID:26542886

  10. Endothelial cells mitigate DNA damage and promote the regeneration of hematopoietic stem cells after radiation injury

    PubMed Central

    Zachman, Derek K.; Leon, Ronald P.; Das, Prerna; Goldman, Devorah C.; Hamlin, Kimberly L.; Guha, Chandan; Fleming, William H.

    2014-01-01

    Endothelial cells (ECs) are an essential component of the hematopoietic microenvironment, which maintains and regulates hematopoietic stem cells (HSCs). Although ECs can support the regeneration of otherwise lethally-irradiated HSCs, the mechanisms are not well understood. To further understand this phenomenon, we studied HSC regeneration from irradiated bone marrow using co-culture with human aortic endothelial cells (HAECs). Co-culture with HAECs induced a 24-fold expansion of long-term HSCs (CD150+, lineagelo, Sca-1+, c-Kit+; CD150+LSK cells) in vitro. These cells gave rise to functional hematopoietic stem and progenitor cells (HSPCs) with colony-forming activity, multilineage reconstitution and serial transplantation potential. Furthermore, HAECs significantly reduced DNA damage in irradiated LSK cells within 24 hours. Remarkably, we were able to delay the exposure of irradiated bone marrow to the regenerative, HAEC-derived signals for up to 48 hours and still rescue functional HSCs. G-CSF is the gold standard for promoting hematopoietic regeneration in vivo. However, when compared to HAECs, in vitro G-CSF treatment promoted lineage differentiation and regenerated 5-fold fewer CD150+LSK cells. Together, our results show that HAECs are powerful, direct mitigators of HSC injury and DNA damage. Identification of the HAEC-derived factors that rescue HSCs may lead to improved therapies for hematopoietic regeneration after radiation injury. PMID:23939266

  11. Role of growth factors in the growth of normal and transformed cells

    SciTech Connect

    Lokeshwar, V.B.

    1989-01-01

    Growth factors play an important role in the growth of normal cells. However, their untimely and/or excess production leads to neoplastic transformation. The role of growth factors in the growth of normal cells was studied by investigating the mechanism of transmodulation of the cell surface EGF receptor number by protamine. Protamine increased the EGF stimulated mitogenic response in Swiss mouse 3T3 cells and A431 cells by increasing the number of functionally active EGF receptors. Protamine also increased EGF receptor number in plasma membranes and solubilized membranes. This was evidenced by an increase in both {sup 125}I-EGF-EGF-receptor complex and EGF stimulated phosphorylation of the EGF receptor. The solubilized EGF receptor was retained on a protamine-agarose gel indicating that protamine might increase EGF receptor number by directly activating cryptic EGF receptors in the plasma membranes. The role of growth factors in neoplastic transformation was studied by investigating the role of the oncogene v-sis in the growth of Simian sarcoma virus (SSV) transformed cells. The product of the oncogene v-sis is 94% homologous to the B chain of PDGF. This study found that (i) v-sis gene product is synthesized as a 32 kDa unglycosylated monomer which is glycosylated, dimerized and proteolytically processed into p36, p72, p68, p58, p44 and p27 mol. wt. species respectively. (ii) p36, p72, p68 and p58 are very likely formed in the endoplasmic reticulum and/or Golgi complex. A fraction of newly synthesized p72, p68 and p58 is degraded intracellularly at a fast rate. (iii) p44 is a secretory product which remains tightly associated with the cell surface. p44 is recaptured by the cells through interaction with cell surface PDGF receptors and degraded into p27. (iv) During long term cultures p44 is extracellularly cleaved into a 27 kDa product.

  12. Aberrant epigenetic regulators control expansion of human CD34+ hematopoietic stem/progenitor cells

    PubMed Central

    Faridi, Farnaz; Ponnusamy, Kanagaraju; Quagliano-Lo Coco, Isabell; Chen-Wichmann, Linping; Grez, Manuel; Henschler, Reinhard; Wichmann, Christian

    2013-01-01

    Transcription is a tightly regulated process ensuring the proper expression of numerous genes regulating all aspects of cellular behavior. Transcription factors regulate multiple genes including other transcription factors that together control a highly complex gene network. The transcriptional machinery can be “hijacked” by oncogenic transcription factors, thereby leading to malignant cell transformation. Oncogenic transcription factors manipulate a variety of epigenetic control mechanisms to fulfill gene regulatory and cell transforming functions. These factors assemble epigenetic regulators at target gene promoter sequences, thereby disturbing physiological gene expression patterns. Retroviral vector technology and the availability of “healthy” human hematopoietic CD34+ progenitor cells enable the generation of pre-leukemic cell models for the analysis of aberrant human hematopoietic progenitor cell expansion mediated by leukemogenic transcription factors. This review summarizes recent findings regarding the mechanism by which leukemogenic gene products control human hematopoietic CD34+ progenitor cell expansion by disrupting the normal epigenetic program. PMID:24348510

  13. Endothelial cells mitigate DNA damage and promote the regeneration of hematopoietic stem cells after radiation injury.

    PubMed

    Zachman, Derek K; Leon, Ronald P; Das, Prerna; Goldman, Devorah C; Hamlin, Kimberly L; Guha, Chandan; Fleming, William H

    2013-11-01

    Endothelial cells (ECs) are an essential component of the hematopoietic microenvironment, which maintains and regulates hematopoietic stem cells (HSCs). Although ECs can support the regeneration of otherwise lethally-irradiated HSCs, the mechanisms are not well understood. To further understand this phenomenon, we studied HSC regeneration from irradiated bone marrow using co-culture with human aortic ECs (HAECs). Co-culture with HAECs induced a 24-fold expansion of long-term HSCs (CD150(+), lineage(lo), Sca-1(+), c-Kit(+); CD150(+)LSK cells) in vitro. These cells gave rise to functional hematopoietic stem and progenitor cells (HSPCs) with colony-forming activity, multilineage reconstitution and serial transplantation potential. Furthermore, HAECs significantly reduced DNA damage in irradiated LSK cells within 24h. Remarkably, we were able to delay the exposure of irradiated bone marrow to the regenerative, HAEC-derived signals for up to 48h and still rescue functional HSCs. G-CSF is the gold standard for promoting hematopoietic regeneration in vivo. However, when compared to HAECs, in vitro G-CSF treatment promoted lineage differentiation and regenerated 5-fold fewer CD150(+)LSK cells. Together, our results show that HAECs are powerful, direct mitigators of HSC injury and DNA damage. Identification of the HAEC-derived factors that rescue HSCs may lead to improved therapies for hematopoietic regeneration after radiation injury. PMID:23939266

  14. Mobilization of hematopoietic progenitor cells in patients with liver cirrhosis

    PubMed Central

    Gehling, Ursula M; Willems, Marc; Schlagner, Kathleen; Benndorf, Ralf A; Dandri, Maura; Petersen, Jörg; Sterneck, Martina; Pollok, Joerg-Matthias; Hossfeld, Dieter K; Rogiers, Xavier

    2010-01-01

    AIM: To test the hypothesis that liver cirrhosis is associated with mobilization of hematopoietic progenitor cells. METHODS: Peripheral blood samples from 72 patients with liver cirrhosis of varying etiology were analyzed by flow cytometry. Identified progenitor cell subsets were immunoselected and used for functional assays in vitro. Plasma levels of stromal cell-derived factor-1 (SDF-1) were measured using an enzyme linked immunosorbent assay. RESULTS: Progenitor cells with a CD133+/CD45+/CD14+ phenotype were observed in 61% of the patients. Between 1% and 26% of the peripheral blood mononuclear cells (MNCs) displayed this phenotype. Furthermore, a distinct population of c-kit+ progenitor cells (between 1% and 38 % of the MNCs) could be detected in 91% of the patients. Additionally, 18% of the patients showed a population of progenitor cells (between 1% and 68% of the MNCs) that was characterized by expression of breast cancer resistance protein-1. Further phenotypic analysis disclosed that the circulating precursors expressed CXC chemokine receptor 4, the receptor for SDF-1. In line with this finding, elevated plasma levels of SDF-1 were present in all patients and were found to correlate with the number of mobilized CD133+ progenitor cells. CONCLUSION: These data indicate that in humans, liver cirrhosis leads to recruitment of various populations of hematopoietic progenitor cells that display markers of intrahepatic progenitor cells. PMID:20066741

  15. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    NASA Technical Reports Server (NTRS)

    Ohi, Seigo; Roach, Allana-Nicole; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2003-01-01

    It is hypothesized that the hematopoietic stem cell therapy (HSCT) might countermeasure various space-caused disorders so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using animal models of disorders (hindlimb suspension unloading system and beta-thalassemia), the HSCT was tested for muscle loss, immunodeficiency and space anemia. The results indicate feasibility of HSCT for these disorders. To facilitate the HSCT in space, growth of HSCs were optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  16. Engraftment of a clonal bone marrow stromal cell line in vivo stimulates hematopoietic recovery from total body irradiation.

    PubMed Central

    Anklesaria, P; Kase, K; Glowacki, J; Holland, C A; Sakakeeny, M A; Wright, J A; FitzGerald, T J; Lee, C Y; Greenberger, J S

    1987-01-01

    Whether bone marrow stromal cells of donors contribute physiologically to hematopoietic stem cell reconstitution after marrow transplantation is unknown. To determine the transplantability of nonhematopoietic marrow stromal cells, stable clonal stromal cell line (GB1/6) expressing the a isoenzyme of glucose-6-phosphate isomerase (Glu6PI-a, D-glucose-6-phosphate ketol-isomerase; EC 5.3.1.9) was derived from murine long-term bone marrow cultures and made resistant to neomycin analogue G418 by retroviral gene transfer. GB1/6 cells were fibronectin+, laminin+, and collagen-type IV+ and collagen type I-; these GB1/6 cells supported in vitro growth of hematopoietic stem cells forming colony-forming units of spleen cells (CFU-S) and of granulocytes, erythrocytes, and macrophage/megakarocytes (CFU-GEMM) in the absence of detectable growth factors interleukin 3 (multi-colony-stimulating factor), granulocyte/macrophage colony-stimulating factor, granulocyte-stimulating factor, or their poly(A)+ mRNAs. The GB1/6 cells produced macrophage colony-stimulating factor constitutively. Recipient C57BL/6J (glucose-6-phosphate isomerase b) mice that received 3-Gy total-body irradiation and 13 Gy to the right hind limb were injected i.v. with GB1/6 cells. Engrafted mice demonstrated donor-originating Glu6PI-a+ stromal cells in marrow sinuses in situ 2 mo after transplantation and a significantly enhanced hematopoietic recovery compared with control irradiated nontransplanted mice. Continuous (over numerous passages) marrow cultures derived from transplanted mice demonstrated G418-resistant, Glu6PI-a+ stromal colony-forming cells and greater cumulative production of multipotential stem cells of recipient origin compared with cultures established from irradiated, nontransplanted control mice. These data are evidence for physiological function in vivo of a transplanted bone marrow stromal cell line. Images PMID:2890167

  17. Donor Dependent Variations in Hematopoietic Differentiation among Embryonic and Induced Pluripotent Stem Cell Lines.

    PubMed

    Féraud, Olivier; Valogne, Yannick; Melkus, Michael W; Zhang, Yanyan; Oudrhiri, Noufissa; Haddad, Rima; Daury, Aurélie; Rocher, Corinne; Larbi, Aniya; Duquesnoy, Philippe; Divers, Dominique; Gobbo, Emilie; Brunet de la Grange, Philippe; Louache, Fawzia; Bennaceur-Griscelli, Annelise; Mitjavila-Garcia, Maria Teresa

    2016-01-01

    Hematopoiesis generated from human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) are unprecedented resources for cell therapy. We compared hematopoietic differentiation potentials from ES and iPS cell lines originated from various donors and derived them using integrative and non-integrative vectors. Significant differences in differentiation toward hematopoietic lineage were observed among ES and iPS. The ability of engraftment of iPS or ES-derived cells in NOG mice varied among the lines with low levels of chimerism. iPS generated from ES cell-derived mesenchymal stem cells (MSC) reproduce a similar hematopoietic outcome compared to their parental ES cell line. We were not able to identify any specific hematopoietic transcription factors that allow to distinguish between good versus poor hematopoiesis in undifferentiated ES or iPS cell lines. There is a relatively unpredictable variation in hematopoietic differentiation between ES and iPS cell lines that could not be predicted based on phenotype or gene expression of the undifferentiated cells. These results demonstrate the influence of genetic background in variation of hematopoietic potential rather than the reprogramming process.

  18. Donor Dependent Variations in Hematopoietic Differentiation among Embryonic and Induced Pluripotent Stem Cell Lines

    PubMed Central

    Féraud, Olivier; Valogne, Yannick; Melkus, Michael W.; Zhang, Yanyan; Oudrhiri, Noufissa; Haddad, Rima; Daury, Aurélie; Rocher, Corinne; Larbi, Aniya; Duquesnoy, Philippe; Divers, Dominique; Gobbo, Emilie; Brunet de la Grange, Philippe; Louache, Fawzia; Bennaceur-Griscelli, Annelise; Mitjavila-Garcia, Maria Teresa

    2016-01-01

    Hematopoiesis generated from human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) are unprecedented resources for cell therapy. We compared hematopoietic differentiation potentials from ES and iPS cell lines originated from various donors and derived them using integrative and non-integrative vectors. Significant differences in differentiation toward hematopoietic lineage were observed among ES and iPS. The ability of engraftment of iPS or ES-derived cells in NOG mice varied among the lines with low levels of chimerism. iPS generated from ES cell-derived mesenchymal stem cells (MSC) reproduce a similar hematopoietic outcome compared to their parental ES cell line. We were not able to identify any specific hematopoietic transcription factors that allow to distinguish between good versus poor hematopoiesis in undifferentiated ES or iPS cell lines. There is a relatively unpredictable variation in hematopoietic differentiation between ES and iPS cell lines that could not be predicted based on phenotype or gene expression of the undifferentiated cells. These results demonstrate the influence of genetic background in variation of hematopoietic potential rather than the reprogramming process. PMID:26938212

  19. Fibroblast growth factor 8 increases breast cancer cell growth by promoting cell cycle progression and by protecting against cell death

    SciTech Connect

    Nilsson, Emeli M.; Brokken, Leon J.S.; Haerkoenen, Pirkko L.

    2010-03-10

    Fibroblast growth factor 8 (FGF-8) is expressed in a large proportion of breast cancers, whereas its level in normal mammary gland epithelium is low. Previous studies have shown that FGF-8b stimulates breast cancer cell growth in vitro and in vivo. To explore the mechanisms by which FGF-8b promotes growth, we studied its effects on cell cycle regulatory proteins and signalling pathways in mouse S115 and human MCF-7 breast cancer cells. We also studied the effect of FGF-8b on cell survival. FGF-8b induced cell cycle progression and up-regulated particularly cyclin D1 mRNA and protein in S115 cells. Silencing cyclin D1 with siRNA inhibited most but not all FGF-8b-induced proliferation. Inhibition of the FGF-8b-activated ERK/MAPK pathway decreased FGF-8b-stimulated proliferation. Blocking the constitutively active PI3K/Akt and p38 MAPK pathways also lowered FGF-8b-induced cyclin D1 expression and proliferation. Corresponding results were obtained in MCF-7 cells. In S115 and MCF-7 mouse tumours, FGF-8b increased cyclin D1 and Ki67 levels. Moreover, FGF-8b opposed staurosporine-induced S115 cell death which effect was blocked by inhibiting the PI3K/Akt pathway but not the ERK/MAPK pathway. In conclusion, our results suggest that FGF-8b increases breast cancer cell growth both by stimulating cell cycle progression and by protecting against cell death.

  20. End stage renal disease serum contains a specific renal cell growth factor

    SciTech Connect

    Klotz, L.H.; Kulkarni, C.; Mills, G. )

    1991-01-01

    End stage renal disease (ESRD) kidneys display abnormal growth characterized by a continuum of cystic disease, adenoma and carcinoma. This study evaluates the hypothesis that serum of patients with ESRD contains increased amounts of a growth factor which specifically induces proliferation of renal cells. ESRD sera compared to sera from normal controls induced a two to three-fold increase in the proliferative rate of renal cell carcinoma cell lines and normal kidney explants compared to cell lines from other sites. The increased proliferative activity of ESRD sera on renal cells was paralleled by an increase in cytosolic free calcium. The growth factor activity was encoded by a polypeptide of between 15 and 30 kd. The activity of ESRD sera on renal cells was not mimicked or inhibited by epidermal growth factor, basic fibroblast growth factor and platelet derived growth factor indicating that the renal cell specific growth factor activity in ESRD is different from these factors.

  1. Cryopreservation of hematopoietic stem/progenitor cells for therapeutic use.

    PubMed

    Watt, Suzanne M; Austin, Eric; Armitage, Sue

    2007-01-01

    To date, more than 25,000 hematopoietic transplants have been carried out across Europe for hematological disorders, the majority being for hematological malignancies. At least 70% of these are autologous transplants, the remaining 30% being allogeneic, which are sourced from related (70% of the allogeneic) or unrelated donors. Peripheral blood mobilized with granulocyte colony stimulating factor is the major source of stem cells for transplantation, being used in approx 95% of autologous transplants and in approx 65% of allogeneic transplants. Other cell sources used for transplantation are bone marrow and umbilical cord blood. One crucial advance in the treatment of these disorders has been the development of the ability to cryopreserve hematopoietic stem cells for future transplantation. For bone marrow and mobilized peripheral blood, the majority of cryopreserved harvests come from autologous collections that are stored prior to a planned infusion following further treatment of the patient or at the time of a subsequent relapse. Other autologous harvests are stored as backup or "rainy day" harvests, the former specifically being intended to rescue patients who develop graft failure following an allogeneic transplant or who may require this transplant at a later date. Allogeneic bone marrow and mobilized peripheral blood are less often cryopreserved than autologous harvests. This is in contrast to umbilical cord blood that may be banked for directed or sibling (related) hematopoietic stem cell transplants, for allogeneic unrelated donations, and for autologous donations. Allogeneic unrelated donations are of particular use for providing a source of hematopoietic stem cells for ethnic minorities, patients with rare human leukocyte antigen types, or where the patient urgently requires a transplant and cannot wait for the weeks to months required to prepare a bone marrow donor. There are currently more than 200,000 banked umbilical cord blood units registered with

  2. [The methods used to collect hematopoietic stem cells].

    PubMed

    Hequet, O

    2011-04-01

    The methods used to collect hematopoietic stem cells in their natural environment (bone marrow or cord blood) or in the peripheral blood after stimulation are well-defined and ruled both to ensure the donor security and perform a quality hematopoietic transplantation. Safety of the familial or non-familial donor must be ensured not only during the collection but also on a medium- or a long-term basis. The stem cells amount in a graft and its characterisation depend on the collection site of hematopoietic stem cells and on the technique used. The knowledge of conditions influencing these amounts allows optimising the hematopoietic stem cells collection while preventing conditions in which the donor safety could be decreased. The collection site also influences the collection of significant amounts of other blood cells. This knowledge conditions the preparation procedures of the graft in cell therapy units or the management of per- or post-transplantations complications in haematology units. Thus, hematopoietic transplantations concern not only hematological units but also the teams involved in various stages of donor selection, hematopoietic stem cells collection and graft preparation. In order to allow an appropriate care of both donor and recipient, a concomitant knowledge of all the stages involved in hematopoietic collection conditions, characterisation of collected cells, hematological diseases and conditioning must be brought to hematological, collection and cell therapy teams. PMID:21397542

  3. Endothelial Cell-Derived Basic Fibroblast Growth Factor: Synthesis and Deposition into Subendothelial Extracellular Matrix

    NASA Astrophysics Data System (ADS)

    Vlodavsky, Israel; Folkman, Judah; Sullivan, Robert; Fridman, Rafael; Ishai-Michaeli, Rivka; Sasse, Joachim; Klagsbrun, Michael

    1987-04-01

    Bovine aortic and corneal endothelial cells synthesize a growth factor that remains mostly cell-associated but can also be extracted from the subendothelial extracellular matrix (ECM) deposited by these cells. The endothelial cell-derived growth factors extracted from cell lysates and from the extracellular matrix appear to be structurally related to basic fibroblast growth factor by the criteria that they (i) bind to heparin-Sepharose and are eluted at 1.4-1.6 M NaCl, (ii) have a molecular weight of about 18,400, (iii) cross-react with anti-basic fibroblast growth factor antibodies when analyzed by electrophoretic blotting and immunoprecipitation, and (iv) are potent mitogens for bovine aortic and capillary endothelial cells. It is suggested that endothelium can store growth factors capable of autocrine growth promotion in two ways: by sequestering growth factor within the cell and by incorporating it into the underlying extracellular matrix.

  4. The Hematopoietic Stem Cell Therapy for Exploration of Space

    NASA Technical Reports Server (NTRS)

    Roach, Allana Nicole; Brezo, Jelena

    2002-01-01

    Astronauts experience severe/invasive disorders caused by space environments. These include hematological/cardiac abnormalities, bone and muscle losses, immunodeficiency, neurological disorders and cancer. While the cause of these symptoms are not yet fully delineated, one possible explanation could be the inhibition of hematopoietic stem cell (HSC) growth and hematopoiesis in space. HSCs differentiate into all types of blood cells, and growing evidence indicates that the HSCs also have the ability to transdifferentiate to various tissues, including muscle, skin, liver, neuronal cells and possibly bone. Therefore, a hypothesis was advanced in this laboratory that the hematopoietic stem cell-based therapy, herein called the hematopoietic stem cell therapy (HSCT), could mitigate some of the disorders described above. Due to the magnitude of this project our laboratory has subdivided it into 3 sections: a) HSCT for space anemia; b) HSCT for muscle and bone losses; and c) HSCT for immunodeficiency. Toward developing the HSCT protocol for space anemia, the HSC transplantation procedure was established using a mouse model of beta thalassemia. In addition, the NASA Rotating Wall Vessel (RWV) culture system was used to grow HSCs in space condition. To investigate the HSCT for muscle loss and bone loss, donor HSCs were genetically marked either by transfecting the beta-galactosidase-containing plasmid, pCMV.SPORT-beta-gal or by preparing from b-galactosidase transgenic mice. The transdifferentiation of HSCs to muscle is traced by the reporter gene expression in the hindlimb suspended mice with some positive outcome, as studied by the X-gal staining procedure. The possible structural contribution of HSCs against muscle loss is being investigated histochemically.

  5. Insulin-like growth factor II mediates epidermal growth factor-induced mitogenesis in cervical cancer cells.

    PubMed Central

    Steller, M A; Delgado, C H; Zou, Z

    1995-01-01

    There is increasing evidence that activation of the insulin-like growth factor I (IGF-I) receptor plays a major role in the control of cellular proliferation of many cell types. We studied the mitogenic effects of IGF-I, IGF-II, and epidermal growth factor (EGF) on growth-arrested HT-3 cells, a human cervical cancer cell line. All three growth factors promoted dose-dependent increases in cell proliferation. In untransformed cells, EGF usually requires stimulation by a "progression" factor such as IGF-I, IGF-II, or insulin (in supraphysiologic concentrations) in order to exert a mitogenic effect. Accordingly, we investigated whether an autocrine pathway involving IGF-I or IGF-II participated in the EGF-induced mitogenesis of HT-3 cells. With the RNase protection assay, IGF-I mRNA was not detected. However, IGF-II mRNA increased in a time-dependent manner following EGF stimulation. The EGF-induced mitogenesis was abrogated in a dose-dependent manner by IGF-binding protein 5 (IGFBP-5), which binds to IGF-II and neutralizes it. An antisense oligonucleotide to IGF-II also inhibited the proliferative response to EGF. In addition, prolonged, but not short-term, stimulation with EGF resulted in autophosphorylation of the IGF-I receptor, and coincubations with both EGF and IGFBP-5 attenuated this effect. These data demonstrate that autocrine secretion of IGF-II in HT-3 cervical cancer cells can participate in EGF-induced mitogenesis and suggest that autocrine signals involving the IGF-I receptor occur "downstream" of competence growth factor receptors such as the EGF receptor. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8618825

  6. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    PubMed

    Coste, Cécile; Neirinckx, Virginie; Gothot, André; Wislet, Sabine; Rogister, Bernard

    2015-01-01

    Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC) function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL) 12-abundant reticular (CAR) cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs), which have been recently identified as neural crest-derived cells (NCSCs). Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system.

  7. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    PubMed Central

    Coste, Cécile; Neirinckx, Virginie; Gothot, André; Wislet, Sabine; Rogister, Bernard

    2015-01-01

    Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC) function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL) 12-abundant reticular (CAR) cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs), which have been recently identified as neural crest-derived cells (NCSCs). Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system. PMID:26136659

  8. Synergistic activation of cells by Epstein-Barr virus and B-cell growth factor.

    PubMed Central

    Hutt-Fletcher, L M

    1987-01-01

    Infection with Epstein-Barr virus (EBV) is initiated by virus binding to the C3dg-C3d receptor CR2. Several workers have implicated this receptor in the control of B-cell activation by examining the effects of antibodies to CR2 and isolated C3d on B-cell proliferation and differentiation. We report here on the activating effects of irradiated EBV, which retains its capacity to bind to CR2 but loses its ability to function as a T-independent B-cell activator. EBV synergized with B-cell growth factor in the induction of uptake of tritiated thymidine by T cell-depleted leukocytes from seronegative donors but did not induce secretion of immunoglobulin. Synergism could be inhibited with an anti-viral antibody that inhibited binding of EBV to CR2. No similar synergism was found between EBV and recombinant interleukin 2, interleukin 1 alpha, or gamma interferon or with the lipid A fraction of bacterial lipopolysaccharide. EBV may thus initiate B-cell activation as it binds to CR2. Infectious virus may, under normal circumstances, induce the cell to make those growth factors necessary to support B-cell proliferation; the difficulty of transforming cells with transfected EBV DNA may in part reflect the absence of an activation event provided by intact virus as it attaches to CR2. The synergism of EBV and B-cell growth factor more clearly distinguishes the effects of B-cell growth factor from those of interleukin 1 and interleukin 2 in other models of B-cell activation. Thus, this may be a useful model for further delineation of unique effects of B-cell growth factor on B-cell function. PMID:3027404

  9. Cord blood-derived CD34+ hematopoietic cells with low mitochondrial mass are enriched in hematopoietic repopulating stem cell function.

    PubMed

    Romero-Moya, Damia; Bueno, Clara; Montes, Rosa; Navarro-Montero, Oscar; Iborra, Francisco J; López, Luis Carlos; Martin, Miguel; Menendez, Pablo

    2013-07-01

    The homeostasis of the hematopoietic stem/progenitor cell pool relies on a fine-tuned balance between self-renewal, differentiation and proliferation. Recent studies have proposed that mitochondria regulate these processes. Although recent work has contributed to understanding the role of mitochondria during stem cell differentiation, it remains unclear whether the mitochondrial content/function affects human hematopoietic stem versus progenitor function. We found that mitochondrial mass correlates strongly with mitochondrial membrane potential in CD34(+) hematopoietic stem/progenitor cells. We, therefore, sorted cord blood CD34(+) cells on the basis of their mitochondrial mass and analyzed the in vitro homeostasis and clonogenic potential as well as the in vivo repopulating potential of CD34(+) cells with high (CD34(+) Mito(High)) versus low (CD34(+) Mito(Low)) mitochondrial mass. The CD34(+) Mito(Low) fraction contained 6-fold more CD34(+)CD38(-) primitive cells and was enriched in hematopoietic stem cell function, as demonstrated by its significantly greater hematopoietic reconstitution potential in immuno-deficient mice. In contrast, the CD34(+) Mito(High) fraction was more enriched in hematopoietic progenitor function with higher in vitro clonogenic capacity. In vitro differentiation of CD34(+) Mito(Low) cells was significantly delayed as compared to that of CD34(+) Mito(High) cells. The eventual complete differentiation of CD34(+) Mito(Low) cells, which coincided with a robust expansion of the CD34(-) differentiated progeny, was accompanied by mitochondrial adaptation, as shown by significant increases in ATP production and expression of the mitochondrial genes ND1 and COX2. In conclusion, cord blood CD34(+) cells with low levels of mitochondrial mass are enriched in hematopoietic repopulating stem cell function whereas high levels of mitochondrial mass identify hematopoietic progenitors. A mitochondrial response underlies hematopoietic stem/progenitor cell

  10. Cord blood-derived CD34+ hematopoietic cells with low mitochondrial mass are enriched in hematopoietic repopulating stem cell function

    PubMed Central

    Romero-Moya, Damia; Bueno, Clara; Montes, Rosa; Navarro-Montero, Oscar; Iborra, Francisco J.; López, Luis Carlos; Martin, Miguel; Menendez, Pablo

    2013-01-01

    The homeostasis of the hematopoietic stem/progenitor cell pool relies on a fine-tuned balance between self-renewal, differentiation and proliferation. Recent studies have proposed that mitochondria regulate these processes. Although recent work has contributed to understanding the role of mitochondria during stem cell differentiation, it remains unclear whether the mitochondrial content/function affects human hematopoietic stem versus progenitor function. We found that mitochondrial mass correlates strongly with mitochondrial membrane potential in CD34+ hematopoietic stem/progenitor cells. We, therefore, sorted cord blood CD34+ cells on the basis of their mitochondrial mass and analyzed the in vitro homeostasis and clonogenic potential as well as the in vivo repopulating potential of CD34+ cells with high (CD34+ MitoHigh) versus low (CD34+ MitoLow) mitochondrial mass. The CD34+ MitoLow fraction contained 6-fold more CD34+CD38− primitive cells and was enriched in hematopoietic stem cell function, as demonstrated by its significantly greater hematopoietic reconstitution potential in immuno-deficient mice. In contrast, the CD34+ MitoHigh fraction was more enriched in hematopoietic progenitor function with higher in vitro clonogenic capacity. In vitro differentiation of CD34+ MitoLow cells was significantly delayed as compared to that of CD34+ MitoHigh cells. The eventual complete differentiation of CD34+ MitoLow cells, which coincided with a robust expansion of the CD34− differentiated progeny, was accompanied by mitochondrial adaptation, as shown by significant increases in ATP production and expression of the mitochondrial genes ND1 and COX2. In conclusion, cord blood CD34+ cells with low levels of mitochondrial mass are enriched in hematopoietic repopulating stem cell function whereas high levels of mitochondrial mass identify hematopoietic progenitors. A mitochondrial response underlies hematopoietic stem/progenitor cell differentiation and proliferation of

  11. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    SciTech Connect

    Montesano, Roberto Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hitherto unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.

  12. Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells.

    PubMed

    Poh, Ashleigh R; O'Donoghue, Robert J J; Ernst, Matthias

    2015-06-30

    The hematopoietic cell kinase (HCK) is a member of the SRC family of cytoplasmic tyrosine kinases (SFKs), and is expressed in cells of the myeloid and B-lymphocyte cell lineages. Excessive HCK activation is associated with several types of leukemia and enhances cell proliferation and survival by physical association with oncogenic fusion proteins, and with functional interactions with receptor tyrosine kinases. Elevated HCK activity is also observed in many solid malignancies, including breast and colon cancer, and correlates with decreased patient survival rates. HCK enhances the secretion of growth factors and pro-inflammatory cytokines from myeloid cells, and promotes macrophage polarization towards a wound healing and tumor-promoting alternatively activated phenotype. Within tumor associated macrophages, HCK stimulates the formation of podosomes that facilitate extracellular matrix degradation, which enhance immune and epithelial cell invasion. By virtue of functional cooperation between HCK and bona fide oncogenic tyrosine kinases, excessive HCK activation can also reduce drug efficacy and contribute to chemo-resistance, while genetic ablation of HCK results in minimal physiological consequences in healthy mice. Given its known crystal structure, HCK therefore provides an attractive therapeutic target to both, directly inhibit the growth of cancer cells, and indirectly curb the source of tumor-promoting changes in the tumor microenvironment. PMID:26087188

  13. Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells.

    PubMed

    Poh, Ashleigh R; O'Donoghue, Robert J J; Ernst, Matthias

    2015-06-30

    The hematopoietic cell kinase (HCK) is a member of the SRC family of cytoplasmic tyrosine kinases (SFKs), and is expressed in cells of the myeloid and B-lymphocyte cell lineages. Excessive HCK activation is associated with several types of leukemia and enhances cell proliferation and survival by physical association with oncogenic fusion proteins, and with functional interactions with receptor tyrosine kinases. Elevated HCK activity is also observed in many solid malignancies, including breast and colon cancer, and correlates with decreased patient survival rates. HCK enhances the secretion of growth factors and pro-inflammatory cytokines from myeloid cells, and promotes macrophage polarization towards a wound healing and tumor-promoting alternatively activated phenotype. Within tumor associated macrophages, HCK stimulates the formation of podosomes that facilitate extracellular matrix degradation, which enhance immune and epithelial cell invasion. By virtue of functional cooperation between HCK and bona fide oncogenic tyrosine kinases, excessive HCK activation can also reduce drug efficacy and contribute to chemo-resistance, while genetic ablation of HCK results in minimal physiological consequences in healthy mice. Given its known crystal structure, HCK therefore provides an attractive therapeutic target to both, directly inhibit the growth of cancer cells, and indirectly curb the source of tumor-promoting changes in the tumor microenvironment.

  14. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    PubMed Central

    Kosan, Christian; Godmann, Maren

    2016-01-01

    All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function. PMID:26798358

  15. Bone Marrow Cells in Acute Lymphoblastic Leukemia Create a Proinflammatory Microenvironment Influencing Normal Hematopoietic Differentiation Fates

    PubMed Central

    Vilchis-Ordoñez, Armando; Contreras-Quiroz, Adriana; Dorantes-Acosta, Elisa; Reyes-López, Alfonso; Quintela-Nuñez del Prado, Henry Martin; Venegas-Vázquez, Jorge; Mayani, Hector; Ortiz-Navarrete, Vianney; López-Martínez, Briceida; Pelayo, Rosana

    2015-01-01

    B-cell acute lymphoblastic leukemia (B-ALL) is a serious public health problem in the pediatric population worldwide, contributing to 85% of deaths from childhood cancers. Understanding the biology of the disease is crucial for its clinical management and the development of therapeutic strategies. In line with that observed in other malignancies, chronic inflammation may contribute to a tumor microenvironment resulting in the damage of normal processes, concomitant to development and maintenance of neoplastic cells. We report here that hematopoietic cells from bone marrow B-ALL have the ability to produce proinflammatory and growth factors, including TNFα, IL-1β, IL-12, and GM-CSF that stimulate proliferation and differentiation of normal stem and progenitor cells. Our findings suggest an apparently distinct CD13+CD33+ population of leukemic cells contributing to a proinflammatory microenvironment that may be detrimental to long-term normal hematopoiesis within B-ALL bone marrow. PMID:26090405

  16. The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells.

    PubMed

    Sitnicka, E; Lin, N; Priestley, G V; Fox, N; Broudy, V C; Wolf, N S; Kaushansky, K

    1996-06-15

    In this study, we explored whether thrombopoietin (Tpo) has a direct in vitro effect on the proliferation and differentiation of long-term repopulating hematopoietic stem cells (LTR-HSC). We previously reported a cell separation method that uses the fluorescence-activated cell sorter selection of low Hoescht 33342/low Rhodamine 123 (low Ho/low Rh) fluorescence cell fractions that are highly enriched for LTR-HSC and can reconstitute lethally irradiated recipients with fewer than 20 cells. Low Ho/low Rh cells clone with high proliferative potential in vitro in the presence of stem cell factor (SCF) + interleukin-3 (IL-3) + IL-6 (90% to 100% HPP-CFC). Tpo alone did not induce proliferation of these low Ho/low Rh cells. However, in combination with SCF or IL-3, Tpo had several synergistic effects on cell proliferation. When Tpo was added to single growth factors (either SCF or IL-3 or the combination of both), the time required for the first cell division of low Ho/low Rh cells was significantly shortened and their cloning efficiency increased substantially. Moreover, the subsequent clonal expansion at the early time points of culture was significantly augmented by Tpo. Low Ho/low Rh cells, when assayed in agar directly after sorting, did not form megakaryocyte colonies in any growth condition tested. Several days of culture in the presence of multiple cytokines were required to obtain colony-forming units-megakaryocyte (CFU-Mk). In contrast, more differentiated, low Ho/high Rh cells, previously shown to contain short-term repopulating hematopoietic stem cells (STR-HSC), were able to form megakaryocyte colonies in agar when cultured in Tpo alone directly after sorting. These data establish that Tpo acts directly on primitive hematopoietic stem cells selected using the Ho/Rh method, but this effect is dependent on the presence of pluripotent cytokines. These cells subsequently differentiate into CFU-Mk, which are capable of responding to Tpo alone. Together with the

  17. Use of autologous hematopoietic cell transplantation as initial therapy in multiple myeloma and the impact of socio-geo-demographic factors in the era of novel agents.

    PubMed

    Al-Hamadani, Mohammed; Hashmi, Shahrukh K; Go, Ronald S

    2014-08-01

    Very effective combination chemotherapy using novel agents has become available in multiple myeloma (MM). Its impact on the use of high-dose chemotherapy and autologous hematopoietic stem cell transplantation (AHCT) as part of initial therapy is unknown. Using the National Cancer Data Base, we studied the rate of upfront AHCT use among 137,409 newly diagnosed MM patients from 1998 to 2010 in the United States and determined whether disparity exists among various sociodemographic as well as geographic subgroups. Overall, 12,378 (9.0%) patients received AHCT as part of initial treatment. The use of upfront AHCT increased steadily from 5.2% in 1998 to 12.1% in 2010 (trend test, P < 0.001), with no sign of plateau. This was seen across all socio-geo-demographic subgroups except among patients treated in the Northeast where the rate fell from 8.7% in 1998 to 6.6% in 2010. In multivariable analysis, patients with the following characteristics were the least likely to receive AHCT (odds ratio): year of diagnosis from 1998 to 2003 before the era of novel agents (0.67), older age (0.35), Black race (0.58), Hispanic ethnicity (0.78), low level of education or annual household income (0.55), residence in a metro area (0.66), no or unknown medical insurance (0.30), treatment at a community cancer center (0.16), and treatment facility located in the Northeast region (0.54). Even after the introduction of novel agents, the rate of upfront AHCT in MM continues to increase annually. Significant disparities exist dependent on demographic, social, and geographic factors.

  18. The SKI proto-oncogene enhances the in vivo repopulation of hematopoietic stem cells and causes myeloproliferative disease.

    PubMed

    Singbrant, Sofie; Wall, Meaghan; Moody, Jennifer; Karlsson, Göran; Chalk, Alistair M; Liddicoat, Brian; Russell, Megan R; Walkley, Carl R; Karlsson, Stefan

    2014-04-01

    The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced a gene signature associated with hematopoietic stem cells and myeloid differentiation, as well as hepatocyte growth factor signaling. Here we demonstrate that, in contrast to what has generally been assumed, the significant impact of SKI on hematopoiesis is independent of its ability to inhibit TGF-beta signaling. Instead, myeloid progenitors expressing SKI are partially dependent on functional hepatocyte growth factor signaling. Collectively our results demonstrate that SKI is an important regulator of hematopoietic stem cell activity and its overexpression leads to myeloproliferative disease.

  19. Stem cells, growth factors and scaffolds in craniofacial regenerative medicine

    PubMed Central

    Tollemar, Viktor; Collier, Zach J.; Mohammed, Maryam K.; Lee, Michael J.; Ameer, Guillermo A.; Reid, Russell R.

    2015-01-01

    Current reconstructive approaches to large craniofacial skeletal defects are often complicated and challenging. Critical-sized defects are unable to heal via natural regenerative processes and require surgical intervention, traditionally involving autologous bone (mainly in the form of nonvascularized grafts) or alloplasts. Autologous bone grafts remain the gold standard of care in spite of the associated risk of donor site morbidity. Tissue engineering approaches represent a promising alternative that would serve to facilitate bone regeneration even in large craniofacial skeletal defects. This strategy has been tested in a myriad of iterations by utilizing a variety of osteoconductive scaffold materials, osteoblastic stem cells, as well as osteoinductive growth factors and small molecules. One of the major challenges facing tissue engineers is creating a scaffold fulfilling the properties necessary for controlled bone regeneration. These properties include osteoconduction, osetoinduction, biocompatibility, biodegradability, vascularization, and progenitor cell retention. This review will provide an overview of how optimization of the aforementioned scaffold parameters facilitates bone regenerative capabilities as well as a discussion of common osteoconductive scaffold materials. PMID:27239485

  20. VEGF-A/VEGFR Inhibition Restores Hematopoietic Homeostasis in the Bone Marrow and Attenuates Tumor Growth.

    PubMed

    O'Donnell, Rebekah K; Falcon, Beverly; Hanson, Jeff; Goldstein, Whitney E; Perruzzi, Carole; Rafii, Shahin; Aird, William C; Benjamin, Laura E

    2016-02-01

    Antiangiogenesis-based cancer therapies, specifically those targeting the VEGF-A/VEGFR2 pathway, have been approved for subsets of solid tumors. However, these therapies result in an increase in hematologic adverse events. We surmised that both the bone marrow vasculature and VEGF receptor-positive hematopoietic cells could be impacted by VEGF pathway-targeted therapies. We used a mouse model of spontaneous breast cancer to decipher the mechanism by which VEGF pathway inhibition alters hematopoiesis. Tumor-bearing animals, while exhibiting increased angiogenesis at the primary tumor site, showed signs of shrinkage in the sinusoidal bone marrow vasculature accompanied by an increase in the hematopoietic stem cell-containing Lin-cKit(+)Sca1(+) (LKS) progenitor population. Therapeutic intervention by targeting VEGF-A, VEGFR2, and VEGFR3 inhibited tumor growth, consistent with observed alterations in the primary tumor vascular bed. These treatments also displayed systemic effects, including reversal of the tumor-induced shrinkage of sinusoidal vessels and altered population balance of hematopoietic stem cells in the bone marrow, manifested by the restoration of sinusoidal vessel morphology and hematopoietic homeostasis. These data indicate that tumor cells exert an aberrant systemic effect on the bone marrow microenvironment and VEGF-A/VEGFR targeting restores bone marrow function.

  1. Imatinib alters cell viability but not growth factors levels in TM4 Sertoli cells

    PubMed Central

    Hashemnia, Seyyed Mohammad Reza; Atari-Hajipirloo, Somayeh; Roshan-Milani, Shiva; Valizadeh, Nasim; Mahabadi, Sonya; Kheradmand, Fatemeh

    2016-01-01

    Background: The anticancer agent imatinib (IM) is a small molecular analog of ATP that inhibits tyrosine kinase activity of platelet derived growth factors (PDGFs) and stem cell factor (SCF) receptor in cancer cells. However these factors have a key role in regulating growth and development of normal Sertoli, Leydig and germ cells. Objective: The aim of this study was to determine cell viability, PDGF and SCF levels in mouse normal Sertoli cells exposed to IM. Materials and Methods: In this experimental study, the mouse TM4 Sertoli cells were treated with 0, 2.5, 5, 10 and 20 μM IM for 2, 4 or 6 days. The cell viability and growth factors levels were assessed by MTT and ELISA methods, respectively. For statistical analysis, One-Way ANOVA was performed. Results: IM showed significant decrease in Sertoli cell viability compared to control group (p=0.001). However, IM increased PDGF and SCF level insignificantly (p>0.05). Conclusion: Results suggested that IM treatment induced a dose dependent reduction of cell viability in Sertoli cells. It seems that treatment with this anticancer drug is involved in the fertility process. Further studies are needed to evaluate the role of PDGF and SCF in this cell. PMID:27738659

  2. Fetal liver stromal cells promote hematopoietic cell expansion

    SciTech Connect

    Zhou, Kun; Hu, Caihong; Zhou, Zhigang; Huang, Lifang; Liu, Wenli; Sun, Hanying

    2009-09-25

    Future application of hematopoietic stem and progenitor cells (HSPCs) in clinical therapies largely depends on their successful expansion in vitro. Fetal liver (FL) is a unique hematopoietic organ in which hematopoietic cells markedly expand in number, but the mechanisms involved remain unclear. Stromal cells (StroCs) have been suggested to provide a suitable cellular environment for in vitro expansion of HSPCs. In this study, murine StroCs derived from FL at E14.5, with a high level of Sonic hedgehog (Shh) and Wnt expression, were found to have an increased ability to support the proliferation of HSPCs. This effect was inhibited by blocking Shh signaling. Supplementation with soluble Shh-N promoted the proliferation of hematopoietic cells by activating Wnt signaling. Our findings suggest that FL-derived StroCs support proliferation of HSPCs via Shh inducing an autocrine Wnt signaling loop. The use of FL-derived StroCs and regulation of the Shh pathway might further enhance HPSC expansion.

  3. Nordihydroguaiaretic Acid Inhibits Insulin-Like Growth Factor Signaling, Growth, and Survival in Human Neuroblastoma Cells

    PubMed Central

    Meyer, Gary E.; Chesler, Louis; Liu, Dandan; Gable, Karissa; Maddux, Betty A.; Goldenberg, David D.; Youngren, Jack F.; Goldfine, Ira D.; Weiss, William A.; Matthay, Katherine K.; Rosenthal, Stephen M.

    2010-01-01

    Neuroblastoma is a common pediatric malignancy that metastasizes to the liver, bone, and other organs. Children with metastatic disease have a less than 50% chance of survival with current treatments. Insulin-like growth factors (IGFs) stimulate neuroblastoma growth, survival, and motility, and are expressed by neuroblastoma cells and the tissues they invade. Thus, therapies that disrupt the effects of IGFs on neuroblastoma tumorigenesis may slow disease progression. We show that NVP-AEW541, a specific inhibitor of the IGF-I receptor (IGF-IR), potently inhibits neuroblastoma growth in vitro. Nordihydroguaiaretic acid (NDGA), a phenolic compound isolated from the creosote bush (Larrea divaricata), has anti-tumor properties against a number of malignancies, has been shown to inhibit the phosphorylation and activation of the IGF-IR in breast cancer cells, and is currently in Phase I trials for prostate cancer. In the present study in neuroblastoma, NDGA inhibits IGF-I-mediated activation of the IGF-IR and disrupts activation of ERK and Akt signaling pathways induced by IGF-I. NDGA inhibits growth of neuroblastoma cells and induces apoptosis at higher doses, causing IGF-I-resistant activation of caspase-3 and a large increase in the fraction of sub-G0 cells. In addition, NDGA inhibits the growth of xenografted human neuroblastoma tumors in nude mice. These results indicate that NDGA may be useful in the treatment of neuroblastoma and may function in part via disruption of IGF-IR signaling. PMID:17486636

  4. Nordihydroguaiaretic acid inhibits insulin-like growth factor signaling, growth, and survival in human neuroblastoma cells.

    PubMed

    Meyer, Gary E; Chesler, Louis; Liu, Dandan; Gable, Karissa; Maddux, Betty A; Goldenberg, David D; Youngren, Jack F; Goldfine, Ira D; Weiss, William A; Matthay, Katherine K; Rosenthal, Stephen M

    2007-12-15

    Neuroblastoma is a common pediatric malignancy that metastasizes to the liver, bone, and other organs. Children with metastatic disease have a less than 50% chance of survival with current treatments. Insulin-like growth factors (IGFs) stimulate neuroblastoma growth, survival, and motility, and are expressed by neuroblastoma cells and the tissues they invade. Thus, therapies that disrupt the effects of IGFs on neuroblastoma tumorigenesis may slow disease progression. We show that NVP-AEW541, a specific inhibitor of the IGF-I receptor (IGF-IR), potently inhibits neuroblastoma growth in vitro. Nordihydroguaiaretic acid (NDGA), a phenolic compound isolated from the creosote bush (Larrea divaricata), has anti-tumor properties against a number of malignancies, has been shown to inhibit the phosphorylation and activation of the IGF-IR in breast cancer cells, and is currently in Phase I trials for prostate cancer. In the present study in neuroblastoma, NDGA inhibits IGF-I-mediated activation of the IGF-IR and disrupts activation of ERK and Akt signaling pathways induced by IGF-I. NDGA inhibits growth of neuroblastoma cells and induces apoptosis at higher doses, causing IGF-I-resistant activation of caspase-3 and a large increase in the fraction of sub-G0 cells. In addition, NDGA inhibits the growth of xenografted human neuroblastoma tumors in nude mice. These results indicate that NDGA may be useful in the treatment of neuroblastoma and may function in part via disruption of IGF-IR signaling.

  5. Effects of basic fibroblast growth factor and insulin-like growth factor on cultured cartilage cells from skate Raja porasa

    NASA Astrophysics Data System (ADS)

    Fan, Tingjun; Jin, Lingyun; Wang, Xiaofeng

    2003-12-01

    Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24°C. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.

  6. Activation of adenosine A(3) receptors potentiates stimulatory effects of IL-3, SCF, and GM-CSF on mouse granulocyte-macrophage hematopoietic progenitor cells.

    PubMed

    Hofer, M; Vacek, A; Pospísil, M; Holá, J; Streitová, D; Znojil, V

    2009-01-01

    Adenosine A(3) receptor agonist N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) has been tested from the point of view of potentiating the effects of hematopoietic growth factors interleukin-3 (IL-3), stem cell factor (SCF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and granulocyte colony-stimulating factor (G-CSF) on the growth of hematopoietic progenitor cells for granulocytes and macrophages (GM-CFC) in suspension of normal mouse bone marrow cells in vitro. IB-MECA alone induced no GM-CFC growth. Significant elevation of numbers of GM-CFC evoked by the combinations of IB-MECA with IL-3, SCF, or GM-CSF as compared with these growth factors alone has been noted. Combination of IB-MECA with G-CSF did not induce significantly higher numbers of GM-CFC in comparison with G-CSF alone. Joint action of three drugs, namely of IB-MECA + IL-3 + GM-CSF, produced significantly higher numbers of GM-CFC in comparison with the combinations of IB-MECA + IL-3, IB-MECA + GM-CSF, or IL-3 + GM-CSF. These results give evidence of a significant role of selective activation of adenosine A(3) receptors in stimulation of the growth of granulocyte/ macrophage hematopoietic progenitor cells.

  7. The aryl hydrocarbon receptor nuclear translocator is an essential regulator of murine hematopoietic stem cell viability

    PubMed Central

    Krock, Bryan L.; Eisinger-Mathason, Tzipora S.; Giannoukos, Dionysios N.; Shay, Jessica E.; Gohil, Mercy; Lee, David S.; Nakazawa, Michael S.; Sesen, Julie; Skuli, Nicolas

    2015-01-01

    Hypoxia-inducible factors (HIFs) are master regulators of the transcriptional response to low oxygen and play essential roles in embryonic development, tissue homeostasis, and disease. Recent studies have demonstrated that hematopoietic stem cells (HSCs) within the bone marrow localize to a hypoxic niche and that HIF-1α promotes HSC adaptation to stress. Because the related factor HIF-2α is also expressed in HSCs, the combined role of HIF-1α and HIF-2α in HSC maintenance is unclear. To this end, we have conditionally deleted the HIF-α dimerization partner, the aryl hydrocarbon receptor nuclear translocator (ARNT) in the hematopoietic system to ablate activity of both HIF-1α and HIF-2α and assessed the functional consequence of ARNT deficiency on fetal liver and adult hematopoiesis. We determined that ARNT is essential for adult and fetal HSC viability and homeostasis. Importantly, conditional knockout of both Hif-1α and Hif-2α phenocopied key aspects of these HSC phenotypes, demonstrating that the impact of Arnt deletion is primarily HIF dependent. ARNT-deficient long-term HSCs underwent apoptosis, potentially because of reduced B-cell lymphoma 2 (BCL-2) and vascular endothelial growth factor A (VEGF-A) expression. Our results suggest that HIF activity may regulate HSC homeostasis through these prosurvival factors. PMID:25855602

  8. The Ah receptor regulates growth factor expression in head and neck squamous cell carcinoma cell lines.

    PubMed

    John, Kaarthik; Lahoti, Tejas S; Wagner, Kelly; Hughes, Jarod M; Perdew, Gary H

    2014-10-01

    Previous studies in head and neck squamous cell carcinoma (HNSCC) cell lines have revealed that the Ah receptor (AHR) plays a significant role in mediating the "aggressive" phenotype of these cells, which includes enhanced inflammatory signaling (e.g., IL6) and migratory potential. Here we sought to identify putative novel targets of the AHR associated with enhanced tumor invasiveness. Global gene expression analysis identified a number of genes that are repressed upon treatment of OSC-19 or HN30 cells with an AHR antagonist. Three growth factors were targets of AHR activity; amphiregulin (AREG), epiregulin (EREG), and platelet-derived growth factor A (PDGFA) were repressed by an AHR antagonist and further examined. Quantitative PCR analysis, ELISA, and siRNA-mediated knock down of AHR revealed an attenuation of basal and/or induced levels of expression of these growth factors in two HNSCC lines, following AHR antagonism. In silico analysis revealed that these growth factors possess dioxin-like response elements. Two other AHR ligands, 6-formylindolo[3,2-b]carbazole and benzo(a)pyrene (BP) also elicited similar responses. In conclusion, this study identified AREG, EREG, and PDGFA as growth factor targets of AHR activity associated with metastatic phenotype of HNSCC cells, suggesting that attenuation of AHR activity may be a therapeutic strategy.

  9. Roles of insulinlike growth factor 1 (IGF-1) and the IGF-1 receptor in epidermal growth factor-stimulated growth of 3T3 cells.

    PubMed Central

    Pietrzkowski, Z; Sell, C; Lammers, R; Ullrich, A; Baserga, R

    1992-01-01

    BALB/c3T3 cells are exquisitely growth regulated and require platelet-derived growth factor, epidermal growth factor (EGF), and insulinlike growth factor 1 (IGF-1) for growth. When BALB/c3T3 cells are transfected with plasmids constitutively expressing both EGF and the human IGF-1 receptor mRNAs, the cells are capable of growing in serum-free medium without the addition of any exogenous growth factor. These cells, called p5 cells, can grow for prolonged periods in serum-free medium. BALB/c3T3 cells transfected with only the IGF-1 receptor expression plasmid (p6 cells) do not grow in serum-free medium but do grow if IGF-1 (or insulin in supraphysiological concentrations) is added. p6 cells also grow in response to EGF, confirming that the combination of EGF and an overexpressed IGF-1 receptor is sufficient for the growth of 3T3 cells. We have found that in EGF-stimulated p6 cells there is an increase in the expression of IGF-1 mRNA, that IGF-1 is secreted into the medium, and that the growth of p5 cells and EGF-stimulated p6 cells is inhibited by exposure to antisense oligodeoxynucleotides to IGF-1 receptor RNA. Finally, while cells constitutively expressing both EGF and EGF receptor RNAs grow, albeit modestly, in serum-free medium, their growth is also inhibited by an antisense oligodeoxynucleotide to IGF-1 receptor RNA. In contrast, in cells overexpressing the IGF-1 receptor, IGF-1-mediated cell growth occurs independently of the platelet-derived growth factor and EGF receptors (Z. Pietrzkowski, R. Lammers, G. Carpenter, A. M. Soderquist, M. Limardo, P. D. Phillips, A. Ullrich, and R. Baserga, Cell Growth Differ. 3:199-205, 1992, and this paper). These data indicate that an important role for EGF is participation in the activation of an autocrine loop based on the IGF-1-IGF-1 receptor interaction, which is obligatory for the proliferation of 3T3 cells. Images PMID:1324408

  10. Gene regulatory networks controlling hematopoietic progenitor niche cell production and differentiation in the Drosophila lymph gland.

    PubMed

    Tokusumi, Yumiko; Tokusumi, Tsuyoshi; Shoue, Douglas A; Schulz, Robert A

    2012-01-01

    Hematopoiesis occurs in two phases in Drosophila, with the first completed during embryogenesis and the second accomplished during larval development. The lymph gland serves as the venue for the final hematopoietic program, with this larval tissue well-studied as to its cellular organization and genetic regulation. While the medullary zone contains stem-like hematopoietic progenitors, the posterior signaling center (PSC) functions as a niche microenvironment essential for controlling the decision between progenitor maintenance versus cellular differentiation. In this report, we utilize a PSC-specific GAL4 driver and UAS-gene RNAi strains, to selectively knockdown individual gene functions in PSC cells. We assessed the effect of abrogating the function of 820 genes as to their requirement for niche cell production and differentiation. 100 genes were shown to be essential for normal niche development, with various loci placed into sub-groups based on the functions of their encoded protein products and known genetic interactions. For members of three of these groups, we characterized loss- and gain-of-function phenotypes. Gene function knockdown of members of the BAP chromatin-remodeling complex resulted in niche cells that do not express the hedgehog (hh) gene and fail to differentiate filopodia believed important for Hh signaling from the niche to progenitors. Abrogating gene function of various members of the insulin-like growth factor and TOR signaling pathways resulted in anomalous PSC cell production, leading to a defective niche organization. Further analysis of the Pten, TSC1, and TSC2 tumor suppressor genes demonstrated their loss-of-function condition resulted in severely altered blood cell homeostasis, including the abundant production of lamellocytes, specialized hemocytes involved in innate immune responses. Together, this cell-specific RNAi knockdown survey and mutant phenotype analyses identified multiple genes and their regulatory networks required for

  11. Role of polypeptide growth factors in phenotypic transformation of normal rat kidney cells

    SciTech Connect

    van Zoelen, E.J.J.; van Oostwaard, T.M.J.; de Laat, S.W.

    1988-01-05

    A serum-free assay has been established for studying the role of polypeptide growth factors in inducing loss of density-dependent inhibition of growth of normal rat kidney (NRK) cells. The process has been characterized by measuring the time course of (/sup 3/H)thymidine incorporation into confluent, quiescent NRK cultures stimulated by defined polypeptide growth factors, in combination with cell counting studies, increases in DNA content, and cell cycle analysis by means of a fluorescence-activated cell sorter. It is shown that none of the growth factors tested is able to induce loss of density-dependent inhibition of growth by itself, but strong synergism was observed when combinations of growth factors were tested. None of the above factors was found to be essential, however, since any combination of three of the above four growth factors strongly induced the process. Strong parallels were observed between the growth factor requirements for inducing loss of density-dependent inhibition of growth under serum-free conditions and the requirements for induction of anchorage-independent proliferation under growth factor-defined assay conditions. This indicates that most likely the same cellular processes underlie these two aspects of phenotypic transformation, although data indicate that anchorage-independent proliferation may be a more restricted property of phenotypic transformation than loss of density dependence of proliferation. It is concluded that phenotypic transformation of NRK cells does not require specific polypeptide growth factors, but reflects the ability of these cells to respond to multiple growth factors.

  12. Stimulatory effect of luteinizing hormone, insulin-like growth factor-1, and epidermal growth factor on vascular endothelial growth factor production in cultured bubaline luteal cells.

    PubMed

    Chouhan, V S; Dangi, S S; Babitha, V; Verma, M R; Bag, S; Singh, G; Sarkar, M

    2015-10-15

    The purpose of this study was to evaluate the temporal (24, 48, and 72 hours) and dose-dependent (0, 5, 10, and 100 ng/mL of LH, insulin-like growth factor 1 [IGF-1], and EGF) in vitro expression and secretion patterns of vascular endothelial growth factor (VEGF) in luteal cell culture during different stages of estrous cycle in water buffaloes. Corpus luteum samples from ovaries of early luteal phase (ELP; Days 1-4), midluteal phase (Days 5-10), and late luteal phase (Days 11-16) were collected from a local slaughterhouse. The samples were then processed and cultured in (serum containing) appropriate cell culture medium and incubated separately with three factors (LH, IGF-1, or EGF) at the previously mentioned three dose-duration combinations. At the end of the respective incubation periods, VEGF was assayed in the spent culture medium by ELISA, whereas the cultured cells were used for VEGF mRNA expression by quantitative real-time polymerase chain reaction. The results of the present study disclosed dose- and time-dependent stimulatory effects of LH, IGF-1, and EGF on VEGF production in bubaline luteal cells. The VEGF expression and secretion from the cultured luteal cells were highest during the ELP, intermediate in the midluteal phase, and lowest in the late luteal phase of the estrous cycle for all the three tested factors. Comparison of the results of the three treatments depicted EGF as the most potent stimulating factor followed by IGF-1 and LH. Immunocytochemistry findings in luteal cell culture of ELP agreed with the VEGF expression and secretion. In conclusion, mRNA expression, protein secretion, and immunolocalization of VEGF data clearly indicated for the first time that LH, IGF-1, and EGF play an important role in stimulating luteal angiogenesis in buffalo CL. The highest expression and secretion of VEGF in the ELP might be associated with the development of blood vessels in early growth of CL, which in turn gets augmented by the aforementioned

  13. Stimulatory effect of luteinizing hormone, insulin-like growth factor-1, and epidermal growth factor on vascular endothelial growth factor production in cultured bubaline luteal cells.

    PubMed

    Chouhan, V S; Dangi, S S; Babitha, V; Verma, M R; Bag, S; Singh, G; Sarkar, M

    2015-10-15

    The purpose of this study was to evaluate the temporal (24, 48, and 72 hours) and dose-dependent (0, 5, 10, and 100 ng/mL of LH, insulin-like growth factor 1 [IGF-1], and EGF) in vitro expression and secretion patterns of vascular endothelial growth factor (VEGF) in luteal cell culture during different stages of estrous cycle in water buffaloes. Corpus luteum samples from ovaries of early luteal phase (ELP; Days 1-4), midluteal phase (Days 5-10), and late luteal phase (Days 11-16) were collected from a local slaughterhouse. The samples were then processed and cultured in (serum containing) appropriate cell culture medium and incubated separately with three factors (LH, IGF-1, or EGF) at the previously mentioned three dose-duration combinations. At the end of the respective incubation periods, VEGF was assayed in the spent culture medium by ELISA, whereas the cultured cells were used for VEGF mRNA expression by quantitative real-time polymerase chain reaction. The results of the present study disclosed dose- and time-dependent stimulatory effects of LH, IGF-1, and EGF on VEGF production in bubaline luteal cells. The VEGF expression and secretion from the cultured luteal cells were highest during the ELP, intermediate in the midluteal phase, and lowest in the late luteal phase of the estrous cycle for all the three tested factors. Comparison of the results of the three treatments depicted EGF as the most potent stimulating factor followed by IGF-1 and LH. Immunocytochemistry findings in luteal cell culture of ELP agreed with the VEGF expression and secretion. In conclusion, mRNA expression, protein secretion, and immunolocalization of VEGF data clearly indicated for the first time that LH, IGF-1, and EGF play an important role in stimulating luteal angiogenesis in buffalo CL. The highest expression and secretion of VEGF in the ELP might be associated with the development of blood vessels in early growth of CL, which in turn gets augmented by the aforementioned

  14. Regulation of intestinal epithelial cell growth by transforming growth factor type. beta

    SciTech Connect

    Barnard, J.A.; Beauchamp, R.D.; Coffey, R.J.; Moses, H.L. )

    1989-03-01

    A nontransformed rat jejunal crypt cell line (IEC-6) expresses transforming growth factor type {beta}1 (TGF-{beta}1) mRNA, secretes latent {sup 125}I-labeled TGF-{beta}1 to specific, high-affinity cell surface receptors. IEC-6 cell growth is markedly inhibited by TGF-{beta}1 and TGF-{beta}2 with half-maximal inhibition occurring between 0.1 and 1.0 ng of TGF-{beta}1 per ml. TGF-{beta}1-mediated growth inhibition is not associated with the appearance of biochemical markers of enterocyte differentiation such as alkaline phosphatase expression and sucrase activity. TGF-{beta}1 increases steady-state levels of its own mRNA expression within 8 hr of treatment of rapidly growing IEC-6 cells. In freshly isolated rat jejunal enterocytes that are sequentially eluted from the crypt villus axis, TGF-{beta}1 mRNA expression is most abundant in terminally differentiated villus tip cells and least abundant in the less differentiated, mitotically active crypt cells. The authors conclude that TGF-{beta}1 is an autoregulated growth inhibitor in IEC-6 cells that potentially functions in an autocrine manner. In the rat jejunal epithelium, TGF-{beta}1 expression is most prominently localized to the villus tip--i.e., the region of the crypt villus unit that is characterized by the terminally differentiated phenotype. These data suggest that TGF-{beta}1 may function in coordination of the rapid cell turnover typical for the intestinal epithelium.

  15. Cell cycle regulation of hematopoietic stem or progenitor cells.

    PubMed

    Hao, Sha; Chen, Chen; Cheng, Tao

    2016-05-01

    The highly regulated process of blood production is achieved through the hierarchical organization of hematopoietic stem cell (HSC) subsets and their progenies, which differ in self-renewal and differentiation potential. Genetic studies in mice have demonstrated that cell cycle is tightly controlled by the complex interplay between extrinsic cues and intrinsic regulatory pathways involved in HSC self-renewal and differentiation. Deregulation of these cellular programs may transform HSCs or hematopoietic progenitor cells (HPCs) into disease-initiating stem cells, and can result in hematopoietic malignancies such as leukemia. While previous studies have shown roles for some cell cycle regulators and related signaling pathways in HSCs and HPCs, a more complete picture regarding the molecular mechanisms underlying cell cycle regulation in HSCs or HPCs is lacking. Based on accumulated studies in this field, the present review introduces the basic components of the cell cycle machinery and discusses their major cellular networks that regulate the dormancy and cell cycle progression of HSCs. Knowledge on this topic would help researchers and clinicians to better understand the pathogenesis of relevant blood disorders and to develop new strategies for therapeutic manipulation of HSCs.

  16. Cell cycle measurement of mouse hematopoietic stem/progenitor cells.

    PubMed

    Chitteti, Brahmananda Reddy; Srour, Edward F

    2014-01-01

    Lifelong production of blood cells is sustained by hematopoietic stem cells (HSC). HSC reside in a mitotically quiescent state within specialized areas of the bone marrow (BM) microenvironment known as the hematopoietic niche (HN). HSC enter into active phases of cell cycle in response to intrinsic and extrinsic biological cues thereby undergoing differentiation or self-renewal divisions. Quiescent and mitotically active HSC have different metabolic states and different functional abilities such as engraftment and BM repopulating potential following their transplantation into conditioned recipients. Recent studies reveal that various cancers also utilize the same mechanisms of quiescence as normal stem cells and preserve the root of malignancy thus contributing to relapse and metastasis. Therefore, exploring the stem cell behavior and function in conjunction with their cell cycle status has significant clinical implications in HSC transplantation and in treating cancers. In this chapter, we describe methodologies to isolate or analytically measure the frequencies of quiescent (G0) and active (G1, S, and G2-M) hematopoietic progenitor and stem cells among murine BM cells.

  17. Hematopoietic stem cell characterization and isolation.

    PubMed

    Rossi, Lara; Challen, Grant A; Sirin, Olga; Lin, Karen Kuan-Yin; Goodell, Margaret A

    2011-01-01

    Hematopoietic stem cells (HSCs) are defined by the capabilities of multi-lineage differentiation and long-term self-renewal. Both these characteristics contribute to maintain the homeostasis of the system and allow the restoration of hematopoiesis after insults, such as infections or therapeutic ablation. Reconstitution after lethal irradiation strictly depends on a third, fundamental property of HSCs: the capability to migrate under the influence of specific chemokines. Directed by a chemotactic compass, after transplant HSCs find their way to the bone marrow, where they eventually home and engraft. HSCs represent a rare population that primarily resides in the bone marrow with an estimated frequency of 0.01% of total nucleated cells. Separating HSCs from differentiated cells that reside in the bone marrow has been the focus of intense investigation for years. In this chapter, we will describe in detail the strategy routinely used by our laboratory to purify murine HSCs, by exploiting their antigenic phenotype (KSL), combined with the physiological capability to efficiently efflux the vital dye Hoechst 33342, generating the so-called Side Population, or SP.

  18. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion.

    PubMed

    Gorin, Caroline; Rochefort, Gael Y; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Muller, Laurent; Chaussain, Catherine; Germain, Stéphane

    2016-03-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF.

  19. Novel Regulation of Fibroblast Growth Factor 2 (FGF2)-mediated Cell Growth by Polysialic Acid*

    PubMed Central

    Ono, Sayaka; Hane, Masaya; Kitajima, Ken; Sato, Chihiro

    2012-01-01

    Polysialic acid (polySia) is a unique polysaccharide that modifies neural cell adhesion molecule (NCAM) spatiotemporally. Recently, we demonstrated that polySia functions as a reservoir for several neurotrophic factors and neurotransmitters. Here, we showed the direct interaction between polySia and fibroblast growth factor-2 (FGF2) by native-PAGE, gel filtration, and surface plasmon resonance. The minimum chain length of polySia required for the interaction with FGF2 was 17. Compared with heparan sulfate, a well known glycosaminoglycan capable of forming a complex with FGF2, polySia formed a larger complex with distinct properties in facilitating oligomerization of FGF2, as well as in binding to FGF receptors. In polySia-NCAM-expressing NIH-3T3 cells, which were established by transfecting cells with either of the plasmids for the expression of the polysialyltransferases ST8SiaII/STX and ST8SiaIV/PST that can polysialylate NCAM, FGF2-stimulated cell growth, but not cell survival, was inhibited. Taken together, these results suggest that polySia-NCAM might be involved in the regulation of FGF2-FGF receptor signaling through the direct binding of FGF2 in a manner distinct from heparan sulfate. PMID:22158871

  20. Hospital infection control in hematopoietic stem cell transplant recipients.

    PubMed Central

    Dykewicz, C. A.

    2001-01-01

    Guidelines for Preventing Opportunistic Infections Among Hematopoietic Stem Cell Transplant Recipients contains a section on hospital infection control including evidence-based recommendations regarding ventilation, construction, equipment, plants, play areas and toys, health-care workers, visitors, patient skin and oral care, catheter-related infections, drug-resistant organisms, and specific nosocomial infections. These guidelines are intended to reduce the number and severity of hospital infections in hematopoietic stem cell transplant recipients. PMID:11294720

  1. Hematopoietic stem cells: interplay with immunity

    PubMed Central

    Zhang, Cheng Cheng

    2012-01-01

    Ample evidence indicated that hematopoietic stem cells (HSCs) receive signaling from infection or other immune responses to adjust their differentiation and self-renewal. More recent reports also suggested that, while the bone marrow microenvironment or niche may provide the immune privilege for HSCs, HSCs can present surface immune inhibitors per se to suppress innate immunity and adaptive immunity to evade potential immune surveillance and attack. These findings support the hypothesis that HSCs are capable of interacting with the immune system as signal “receivers” and signal “providers”. On the one hand, HSCs are capable of directly sensing the signals from the immune system through their surface receptors to modulate their self-renewal and differentiation (“in” signaling); on the other hand, HSCs display surface immune inhibitory molecules to evade the attack from the innate and adaptive immune systems (“out” signaling). The continuing investigation of the interplay between HSCs and immunity may lead to the open-up of a new research filed – the immunology of stem cells. PMID:23226622

  2. Growth factors have a protective effect on neomycin-induced hair cell loss.

    PubMed

    Lou, Xiangxin; Yuan, Huihua; Xie, Jing; Wang, Xianliu; Yang, Liangliang; Zhang, Yanzhong

    2015-01-01

    We have demonstrated that selected growth factors are involved in regulating survival and proliferation of progenitor cells derived from the neonatal rat organ of Corti (OC). The protective and regenerative effects of these defined growth factors on the injured organ of Corti were therefore investigated. The organ of Corti dissected from the Wistar rat pups (P3-P5) was split into apical, middle, and basal parts, explanted and cultured with or without neomycin and growth factors. Insulin-like growth factor-1 (IGF-1), fibroblast growth factor-2 (FGF-2), and epidermal growth factor (EGF) protected the inner hair cells (IHCs) and outer hair cells (OHCs) from neomycin ototoxicity. Using EGF, IGF-1, and FGF-2 alone induced no protective effect on the survival of auditory hair cells. Combining 2 growth factors (EGF + IGF-1, EGF + FGF-2, or IGF-1 + FGF-2) gave statistically protective effects. Similarly, combining all three growth factors effectively protected auditory hair cells from the ototoxic insult. None of the growth factors induced regeneration of hair cells in the explants injured with neomycin. Thus various combinations of the three defined factors (IGF-1, FGF-2, and EGF) can protect the auditory hair cells from the neomycin-induced ototoxic damage, but no regeneration was seen. This offers a possible novel approach to the treatment of hearing loss.

  3. Apoptotic Death of Hematopoietic Tumor Cells through Potentiated and Sustained Adhesion to Fibronectin via VLA-4*

    PubMed Central

    Saito, Yohei; Owaki, Toshiyuki; Matsunaga, Takuya; Saze, Mizue; Miura, Shogo; Maeda, Mao; Eguchi, Mayu; Tanaka, Rika; Taira, Junichi; Kodama, Hiroaki; Goto, Sumio; Niitsu, Yoshiroh; Terada, Hiroshi; Fukai, Fumio

    2010-01-01

    It has been postulated that inactivated β1-integrins are involved in the disordered growth of hematopoietic tumor cells. We recently found that TNIIIA2, a peptide derived from tenascin-C, strongly activates β1-integrins through binding with syndecan-4. We show here that Ramos Burkitt's lymphoma cells can survive and grow in suspension but undergo apoptosis when kept adhering to fibronectin by stimulation with TNIIIA2. Other integrin activators, Mg2+ and TS2/16 (an integrin-activating antibody), were also capable of inducing apoptosis. The inactivation of ERK1/2 and Akt and the subsequent activation of Bad were involved in the apoptosis. The results using other hematopoietic tumor cell lines expressing different levels of fibronectin receptors (VLA-4 and VLA-5) showed that potentiated and sustained adhesion to fibronectin via VLA-4 causally induces apoptosis also in various types of hematopoietic tumor cells in addition to Ramos cells. Because TNIIIA2 requires syndecan-4 as a membrane receptor for activation of β1-integrins, it induced apoptosis preferentially in hematopoietic tumor cells, which expressed both VLA-4 and syndecan-4 as membrane receptors mediating the effects of fibronectin and TNIIIA2, respectively. Therefore, normal peripheral blood cells, such as neutrophils, monocytes, and lymphocytes, which poorly expressed syndecan-4, were almost insusceptible to TNIIIA2-induced apoptosis. The TNIIIA2-related matricryptic site of TN-C could contribute, once exposed, to preventing prolonged survival of hematopoietic malignant progenitors through potentiated and sustained activation of VLA-4. PMID:20007695

  4. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells.

    PubMed

    Zhang, Cheng Cheng; Kaba, Megan; Ge, Guangtao; Xie, Kathleen; Tong, Wei; Hug, Christopher; Lodish, Harvey F

    2006-02-01

    Successful ex vivo expansion of hematopoietic stem cells (HSCs) would greatly benefit the treatment of disease and the understanding of crucial questions of stem cell biology. Here we show, using microarray studies, that the HSC-supportive mouse fetal liver CD3(+) cells specifically express the proteins angiopoietin-like 2 (Angptl2) and angiopoietin-like 3 (Angptl3). We observed a 24- or 30-fold net expansion of long-term HSCs by reconstitution analysis when we cultured highly enriched HSCs for 10 days in the presence of Angptl2 or Angptl3 together with saturating levels of other growth factors. The coiled-coil domain of Angptl2 was capable of stimulating expansion of HSCs. Furthermore, angiopoietin-like 5, angiopoietin-like 7 and microfibril-associated glycoprotein 4 also supported expansion of HSCs in culture.

  5. Growth differentiation factor 15 stimulates rapamycin-sensitive ovarian cancer cell growth and invasion

    PubMed Central

    Griner, Samantha E.; Joshi, Jayashree P.; Nahta, Rita

    2015-01-01

    Identification of novel molecular markers and therapeutic targets may improve survival rates for patients with ovarian cancer. In the current study, immunohistochemical (IHC) analysis of two human ovarian tumor tissue arrays showed high staining for GDF15 in a majority of tissues. Exogenous stimulation of ovarian cancer cell lines with recombinant human GDF15 (rhGDF15) or stable overexpression of a GDF15 expression plasmid promoted anchorage-independent growth, increased invasion, and up-regulation of matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF). MMP inhibition suppressed GDF15-mediated invasion. In addition, IHC analysis of human ovarian tumor tissue arrays indicated that GDF15 expression correlated significantly with high MMP2 and MMP9 expression. Exogenous and endogenous GDF15 over-expression stimulated phosphorylation of p38, Erk1/2, and Akt. Pharmacologic inhibition of p38, MEK, or PI3K suppressed GDF15-stimulated growth. Further, proliferation, growth, and invasion of GDF15 stable clones were blocked by rapamycin. IHC analysis demonstrated significant correlation between GDF15 expression and phosphorylation of mTOR. Finally, knockdown of endogenous GDF15 or neutralization of secreted GDF15 suppressed invasion and growth of a GDF15-over-expressing ovarian cancer cell line. These data indicate that GDF15 over-expression, which occurred in a majority of human ovarian cancers, promoted rapamycin-sensitive invasion and growth of ovarian cancer cells. Inhibition of mTOR may be an effective therapeutic strategy for ovarian cancers that over-express GDF15. Future studies should examine GDF15 as a novel molecular target for blocking ovarian cancer progression. PMID:23085437

  6. Immune Reconstitution After Antithymocyte Globulin-Conditioned Hematopoietic Cell Transplantation

    PubMed Central

    Bosch, Mark; Dhadda, Manveer; Hoegh-Petersen, Mette; Liu, Yiping; Hagel, Laura M; Podgorny, Peter; Ugarte-Torres, Alejandra; Khan, Faisal M.; Luider, Joanne; Auer-Grzesiak, Iwona; Mansoor, Adnan; Russell, James A; Daly, Andrew; Stewart, Douglas A.; Maloney, David; Boeckh, Michael; Storek, Jan

    2013-01-01

    Background Antithymocyte globulin (ATG) has been increasingly used to prevent graft-vs-host disease (GVHD), however, its impact on immune reconstitution is relatively unknown. Here we studied (1) immune reconstitution after ATG-conditioned hematopoietic cell transplantation (HCT), (2) determined factors influencing the reconstitution, and (3) compared it to non-ATG-conditioned HCT. Methods Immune cell subset counts were determined at 1–24 months posttransplant in 125 HCT recipients who received ATG during conditioning. The subset counts were also determined in 46 non-ATG-conditioned patients (similarly treated). Results (1) Reconstitution after ATG-conditioned HCT was fast for innate immune cells, intermediate for B cells and CD8 T cells, and very slow for CD4 T cells and invariant NKT (iNKT) cells. (2) Faster reconstitution after ATG-conditioned HCT was associated with higher number of cells of the same subset transferred with the graft in case of memory B cells, naïve CD4 T cells, naïve CD8 T cells, iNKT cells and myeloid dendritic cells; lower recipient age in case of naïve CD4 T cells and naïve CD8 T cells; cytomegalovirus recipient seropositivity in case of memory/effector T cells; absence of GVHD in case of naïve B cells; lower ATG serum levels in case of most T cell subsets including iNKT cells, and higher ATG levels in case of NK cells and B cells. (3) Compared to non-ATG-conditioned HCT, reconstitution after ATG-conditioned HCT was slower for CD4 T cells, and faster for NK cells and B cells. Conclusions ATG worsens reconstitution of CD4 T cells but improves reconstitution of NK and B cells. PMID:22985195

  7. Imatinib and Nilotinib Inhibit Hematopoietic Progenitor Cell Growth, but Do Not Prevent Adhesion, Migration and Engraftment of Human Cord Blood CD34+ Cells

    PubMed Central

    Belle, Ludovic; Bruck, France; Foguenne, Jacques; Gothot, André; Beguin, Yves; Baron, Frédéric; Briquet, Alexandra

    2012-01-01

    Background The availability of tyrosine kinase inhibitors (TKIs) has considerably changed the management of Philadelphia chromosome positive leukemia. The BCR-ABL inhibitor imatinib is also known to inhibit the tyrosine kinase of the stem cell factor receptor, c-Kit. Nilotinib is 30 times more potent than imatinib towards BCR-ABL in vitro. Studies in healthy volunteers and patients with chronic myelogenous leukemia or gastrointestinal stromal tumors have shown that therapeutic doses of nilotinib deliver drug levels similar to those of imatinib. The aim of this study was to compare the inhibitory effects of imatinib and nilotinib on proliferation, differentiation, adhesion, migration and engraftment capacities of human cord blood CD34+ cells. Design and Methods After a 48-hour cell culture with or without TKIs, CFC, LTC-IC, migration, adhesion and cell cycle analysis were performed. In a second time, the impact of these TKIs on engraftment was assessed in a xenotransplantation model using NOD/SCID/IL-2Rγ (null) mice. Results TKIs did not affect LTC-IC frequencies despite in vitro inhibition of CFC formation due to inhibition of CD34+ cell cycle entry. Adhesion of CD34+ cells to retronectin was reduced in the presence of either imatinib or nilotinib but only at high concentrations. Migration through a SDF-1α gradient was not changed by cell culture in the presence of TKIs. Finally, bone marrow cellularity and human chimerism were not affected by daily doses of imatinib and nilotinib in a xenogenic transplantation model. No significant difference was seen between TKIs given the equivalent affinity of imatinib and nilotinib for KIT. Conclusions These data suggest that combining non-myeloablative conditioning regimen with TKIs starting the day of the transplantation could be safe. PMID:23285088

  8. Analysis of Cell Cycle Status of Murine Hematopoietic Stem Cells.

    PubMed

    Szade, Krzysztof; Bukowska-Strakova, Karolina; Zukowska, Monika; Jozkowicz, Alicja; Dulak, Józef

    2016-01-01

    Hematopoietic stem cells (HSC) act as paradigmatic tissue-specific adult stem cells. While they are quiescent in steady-state conditions, they enter the cell cycle and proliferate in stress conditions and during tissue regeneration. Therefore, analysis of cell cycle status of HSC is crucial for understanding their biology. However, due to low number of HSC in tissue and need to use many surface markers for their identification, analysis of their cycle status is technically complicated. Here, we presented our simple strategy to analyze cell cycle of strictly defined LKS CD48(-)CD150(+)CD34(-) HSC, together with Ki67 and DAPI staining by flow cytometry.

  9. Hematopoietic stem cells: potential new applications for translational medicine.

    PubMed

    Felfly, Hady; Haddad, Gabriel G

    2014-01-01

    Cerebral Artery Occlusion (MCAO). Ischemia/reperfusion resulted in a major infarct that propagated over time to encompass ~70% of the affected hemisphere. When two doses of HSCs were injected at 2h and 24h after the reperfusion, 40% of mice survived, visible neurological defects disappeared, and the infarct size was reduced by two to four fold. Histological examination of brains in surviving mice revealed very few donor cells in the recipient brains, decreased total neurons count and increased glial cell numbers. These data suggest that the neuro-protection was not dependent on cell-supplementation, but rather the protection is manifested likely through growth factor secretion. Combined, these studies create a novel HSCT approach that has proved efficient for the treatment of various disorders. A "window of opportunity" exists for each disease where the donor cells should be administered, and multiple injections of donor HSCs can rescue diseases that would otherwise not be treatable. We hypothesize that the initial injection primes the affected tissue, and subsequent ones help in repair. This new strategy has opened the way for a new era of HSCT for the potential treatments and possibly cures of many diseases.

  10. Human Olfactory Mucosa Multipotent Mesenchymal Stromal Cells Promote Survival, Proliferation, and Differentiation of Human Hematopoietic Cells

    PubMed Central

    Diaz-Solano, Dylana; Wittig, Olga; Ayala-Grosso, Carlos; Pieruzzini, Rosalinda

    2012-01-01

    Multipotent mesenchymal stromal cells (MSCs) from the human olfactory mucosa (OM) are cells that have been proposed as a niche for neural progenitors. OM-MSCs share phenotypic and functional properties with bone marrow (BM) MSCs, which constitute fundamental components of the hematopoietic niche. In this work, we investigated whether human OM-MSCs may promote the survival, proliferation, and differentiation of human hematopoietic stem cells (HSCs). For this purpose, human bone marrow cells (BMCs) were co-cultured with OM-MSCs in the absence of exogenous cytokines. At different intervals, nonadherent cells (NACs) were harvested from BMC/OM-MSC co-cultures, and examined for the expression of blood cell markers by flow cytometry. OM-MSCs supported the survival (cell viability >90%) and proliferation of BMCs, after 54 days of co-culture. At 20 days of co-culture, flow cytometric and microscopic analyses showed a high percentage (73%) of cells expressing the pan-leukocyte marker CD45, and the presence of cells of myeloid origin, including polymorphonuclear leukocytes, monocytes, basophils, eosinophils, erythroid cells, and megakaryocytes. Likewise, T (CD3), B (CD19), and NK (CD56/CD16) cells were detected in the NAC fraction. Colony-forming unit–granulocyte/macrophage (CFU-GM) progenitors and CD34+ cells were found, at 43 days of co-culture. Reverse transcriptase–polymerase chain reaction (RT-PCR) studies showed that OM-MSCs constitutively express early and late-acting hematopoietic cytokines (i.e., stem cell factor [SCF] and granulocyte- macrophage colony-stimulating factor [GM-CSF]). These results constitute the first evidence that OM-MSCs may provide an in vitro microenvironment for HSCs. The capacity of OM-MSCs to support the survival and differentiation of HSCs may be related with the capacity of OM-MSCs to produce hematopoietic cytokines. PMID:22471939

  11. Human olfactory mucosa multipotent mesenchymal stromal cells promote survival, proliferation, and differentiation of human hematopoietic cells.

    PubMed

    Diaz-Solano, Dylana; Wittig, Olga; Ayala-Grosso, Carlos; Pieruzzini, Rosalinda; Cardier, Jose E

    2012-11-20

    Multipotent mesenchymal stromal cells (MSCs) from the human olfactory mucosa (OM) are cells that have been proposed as a niche for neural progenitors. OM-MSCs share phenotypic and functional properties with bone marrow (BM) MSCs, which constitute fundamental components of the hematopoietic niche. In this work, we investigated whether human OM-MSCs may promote the survival, proliferation, and differentiation of human hematopoietic stem cells (HSCs). For this purpose, human bone marrow cells (BMCs) were co-cultured with OM-MSCs in the absence of exogenous cytokines. At different intervals, nonadherent cells (NACs) were harvested from BMC/OM-MSC co-cultures, and examined for the expression of blood cell markers by flow cytometry. OM-MSCs supported the survival (cell viability >90%) and proliferation of BMCs, after 54 days of co-culture. At 20 days of co-culture, flow cytometric and microscopic analyses showed a high percentage (73%) of cells expressing the pan-leukocyte marker CD45, and the presence of cells of myeloid origin, including polymorphonuclear leukocytes, monocytes, basophils, eosinophils, erythroid cells, and megakaryocytes. Likewise, T (CD3), B (CD19), and NK (CD56/CD16) cells were detected in the NAC fraction. Colony-forming unit-granulocyte/macrophage (CFU-GM) progenitors and CD34(+) cells were found, at 43 days of co-culture. Reverse transcriptase-polymerase chain reaction (RT-PCR) studies showed that OM-MSCs constitutively express early and late-acting hematopoietic cytokines (i.e., stem cell factor [SCF] and granulocyte- macrophage colony-stimulating factor [GM-CSF]). These results constitute the first evidence that OM-MSCs may provide an in vitro microenvironment for HSCs. The capacity of OM-MSCs to support the survival and differentiation of HSCs may be related with the capacity of OM-MSCs to produce hematopoietic cytokines.

  12. The pros and cons of split-dose granulocyte colony-stimulating factor alone rather than a single high dose for hematopoietic progenitor cell mobilization in small children (< 15 kg) with solid tumors.

    PubMed

    Merlin, Etienne; Piguet, Christophe; Auvrignon, Anne; Rubie, Hervé; Deméocq, François; Kanold, Justyna

    2006-07-01

    Hematopoietic progenitor cells were mobilized in 34 children with solid tumors weighing < or = 15 kg using granulocyte colony-stimulating factor alone at the doses of 10, 20 or 2 x 12 microg/kg/day. The mobilization with 2 x 12 microg/kg/day was more efficient than that with 10 mg/kg/day. Although the superiority of the split-dose compared to the single, high daily dose (20 microg/kg/day) was not statistically significant, our results suggest that the 2 x 12 microg/kg/day regimen is interesting.

  13. Hematopoietic stem cells: can old cells learn new tricks?

    PubMed

    Ho, Anthony D; Punzel, Michael

    2003-05-01

    Since the establishment of cell lines derived from human embryonic stem (ES) cells, it has been speculated that out of such "raw material," we could some day produce all sorts of replacement parts for the human body. Human pluripotent stem cells can be isolated from embryonic, fetal, or adult tissues. Enormous self-renewal capacity and developmental potential are the characteristics of ES cells. Somatic stem cells, especially those derived from hematopoietic tissues, have also been reported to exhibit developmental potential heretofore not considered possible. The initial evidences for the plasticity potential of somatic stem cells were so encouraging that the opponents of ES cell research used them as arguments for restricting ES cell research. In the past months, however, critical issues have been raised challenging the validity and the interpretation of the initial data. Whereas hematopoietic stem-cell therapy has been a clinical reality for almost 40 years, there is still a long way to go in basic research before novel therapy strategies with stem cells as replacement for other organ systems can be established. Given the present status, we should keep all options open for research in ES cells and adult stem cells to appreciate the complexity of their differentiation pathways and the relative merits of various types of stem cells for regenerative medicine. PMID:12714568

  14. Iron overload in hematopoietic cell transplantation.

    PubMed

    Majhail, N S; Lazarus, H M; Burns, L J

    2008-06-01

    Iron overload, primarily related to RBC transfusions, is a relatively common complication in hematopoietic cell transplant (HCT) recipients. Iron overload increases the risk of infections, veno-occlusive disease and hepatic dysfunction post transplant. Elevated pretransplant ferritin levels have been reported to increase the risk of nonrelapse mortality following HCT and might influence the risk of acute and chronic GVHD. Serum ferritin is sensitive but not specific for iron overload and is a poor predictor of body iron burden. Estimation of hepatic iron content with a liver biopsy or magnetic resonance imaging should be considered prior to initiating therapy for post transplant iron overload. A subgroup of transplant survivors with mild iron overload and no end-organ damage may not need therapy. Phlebotomy is the treatment of choice with iron-chelation therapy reserved for patients not eligible for phlebotomy. Natural history, evolution and treatment of iron overload in transplant survivors have not been adequately investigated and more studies are needed to determine its impact on short-term and long-term morbidity and mortality. PMID:18438425

  15. Multiple conformational states of a new hematopoietic cytokine (megakaryocyte growth and development factor): pH- and urea-induced denaturation.

    PubMed

    Hamburger, J B; Chen, E; Narhi, L O; Wu, G M; Brems, D N

    1998-09-01

    The effect of pH and urea on the conformation of recombinant human megakaryocyte growth and development factor (rHuMGDF) was determined by circular dichroism, intrinsic fluorescence spectroscopy, and equilibrium ultracentrifugation. The conformation of rHuMGDF was dependent on pH and urea concentration. Multiple folding forms were evidenced by multiple pH-induced transitions and urea-induced equilibrium transitions that deviated from a simple two-state process. In neutral to alkaline pH, rHuMGDF exists as a monomer, but an acid-induced conformational state self-associates to form a soluble aggregate. A folding intermediate(s) was observed with a more stable secondary structure than tertiary structure and was dependent on the pH of the urea-induced denaturation. The differences in the stabilities of the folding states were most distinct in the pH range of 4.5 to 6.5. The presence of intermediates in the folding pathway of rHuMGDF are similar to findings of previous studies of related growth factors that share a common three-dimensional structure.

  16. Unrelated hematopoietic stem cell registry and the role of the Hematopoietic Stem Cell Bank

    PubMed Central

    Beom, Su-Hee; Kim, Eung Jo; Kim, Miok

    2016-01-01

    Background The hematopoietic stem cell bank has been actively recruiting registrants since 1994. This study systematically reviews its operations and outcomes over the last 20 years. Methods Retrospective data on a total of 47,711 registrants were reviewed. Relevant data were processed using PASW Statistics for Windows, version 18.0. Results As of 2013, the Korean Network for Organ Sharing database contained 265,307 registrants. Of these, 49,037 (18%) registrants committed to hematopoietic cell donation from 1994 to 2013. Fifty-seven percent of the registrants were men, and 43% were women. The reasons for opting out of the registry included refusal to donate (70%), family refusal (28%), and others (2%). The donation willingness of registrants was significantly higher than those who refused to receive a mail to confirm their continued enrollment (χ2=6.103, P=0.013). The bank successfully coordinated a total of 512 donors among newly matched donors from 1995 to 2013, of which the bone marrow and peripheral blood stem cell accounted for 40.8% and 59.2% of the total donations, respectively. Conclusion Our recruitment activities focus on promoting voluntary registration and the importance of updating personal contact information. We expect that these data may be useful for diverse studies and demonstrate the positive impacts on the donation program. PMID:27382555

  17. Desensitization for solid organ and hematopoietic stem cell transplantation.

    PubMed

    Zachary, Andrea A; Leffell, Mary S

    2014-03-01

    Desensitization protocols are being used worldwide to enable kidney transplantation across immunologic barriers, i.e. antibody to donor HLA or ABO antigens, which were once thought to be absolute contraindications to transplantation. Desensitization protocols are also being applied to permit transplantation of HLA mismatched hematopoietic stem cells to patients with antibody to donor HLA, to enhance the opportunity for transplantation of non-renal organs, and to treat antibody-mediated rejection. Although desensitization for organ transplantation carries an increased risk of antibody-mediated rejection, ultimately these transplants extend and enhance the quality of life for solid organ recipients, and desensitization that permits transplantation of hematopoietic stem cells is life saving for patients with limited donor options. Complex patient factors and variability in treatment protocols have made it difficult to identify, precisely, the mechanisms underlying the downregulation of donor-specific antibodies. The mechanisms underlying desensitization may differ among the various protocols in use, although there are likely to be some common features. However, it is likely that desensitization achieves a sort of immune detente by first reducing the immunologic barrier and then by creating an environment in which an autoregulatory process restricts the immune response to the allograft.

  18. Desensitization for solid organ and hematopoietic stem cell transplantation

    PubMed Central

    Zachary, Andrea A; Leffell, Mary S

    2014-01-01

    Desensitization protocols are being used worldwide to enable kidney transplantation across immunologic barriers, i.e. antibody to donor HLA or ABO antigens, which were once thought to be absolute contraindications to transplantation. Desensitization protocols are also being applied to permit transplantation of HLA mismatched hematopoietic stem cells to patients with antibody to donor HLA, to enhance the opportunity for transplantation of non-renal organs, and to treat antibody-mediated rejection. Although desensitization for organ transplantation carries an increased risk of antibody-mediated rejection, ultimately these transplants extend and enhance the quality of life for solid organ recipients, and desensitization that permits transplantation of hematopoietic stem cells is life saving for patients with limited donor options. Complex patient factors and variability in treatment protocols have made it difficult to identify, precisely, the mechanisms underlying the downregulation of donor-specific antibodies. The mechanisms underlying desensitization may differ among the various protocols in use, although there are likely to be some common features. However, it is likely that desensitization achieves a sort of immune detente by first reducing the immunologic barrier and then by creating an environment in which an autoregulatory process restricts the immune response to the allograft. PMID:24517434

  19. Exercise as an Adjuvant Therapy for Hematopoietic Stem Cell Mobilization

    PubMed Central

    Emmons, Russell; Niemiro, Grace M.; De Lisio, Michael

    2016-01-01

    Hematopoietic stem cell transplant (HSCT) using mobilized peripheral blood hematopoietic stem cells (HSPCs) is the only curative strategy for many patients suffering from hematological malignancies. HSPC collection protocols rely on pharmacological agents to mobilize HSPCs to peripheral blood. Limitations including variable donor responses and long dosing protocols merit further investigations into adjuvant therapies to enhance the efficiency of HSPCs collection. Exercise, a safe and feasible intervention in patients undergoing HSCT, has been previously shown to robustly stimulate HSPC mobilization from the bone marrow. Exercise-induced HSPC mobilization is transient limiting its current clinical potential. Thus, a deeper investigation of the mechanisms responsible for exercise-induced HSPC mobilization and the factors responsible for removal of HSPCs from circulation following exercise is warranted. The present review will describe current research on exercise and HSPC mobilization, outline the potential mechanisms responsible for exercise-induced HSPC mobilization, and highlight potential sites for HSPC homing following exercise. We also outline current barriers to the implementation of exercise as an adjuvant therapy for HSPC mobilization and suggest potential strategies to overcome these barriers. PMID:27123008

  20. The effects of vitamin D binding protein-macrophage activating factor and colony-stimulating factor-1 on hematopoietic cells in normal and osteopetrotic rats.

    PubMed

    Benis, K A; Schneider, G B

    1996-10-15

    Osteopetrosis is a heterogeneous group of bone disorders characterized by the failure of osteoclasts to resorb bone and by several immunological defects including macrophage dysfunction. Two compounds, colony-stimulating factor-1 (CSF-1) and vitamin D-binding protein-macrophage activating factor (DBP-MAF) were used in the present study to evaluate their effects on the peritoneal population of cells and on cells within the bone marrow microenvironment in normal and incisors absent (ia) osteopetrotic rats. Previous studies in this laboratory have demonstrated that administration of DBP-MAF to newborn ia animals results in a substantial increase in bone marrow cavity size due to upregulated osteoclast function. To study the effects of these compounds on the macrophage/osteoclast precursors, DBP-MAF, CSF-1, and the combination of these compounds were given to newborn ia and normal littermate animals. Both the normal and mutant phenotypes responded similarly when treated with these compounds. Rats exhibited a profound shift toward the macrophage lineage from the neutrophil lineage when compared with vehicle-treated control animals after treatment with these compounds. In the in vivo peritoneal lavage study, animals received injections of CSF-1, DBP-MAF or DBP-MAF/CSF-1 over a 4-week period. The various types of cells in the peritoneal cavity were then enumerated. The in vitro study consisted of cells isolated from the bone marrow microenvironment and cultured on feeder layers of CSF-1, DBP-MAF, or DBP-MAF/CSF-1 for colony enumeration. The increase in macrophage numbers at the expense of neutrophil numbers could be seen in both the in vivo and in vitro experiments. The macrophage/osteoclast and neutrophil lineages have a common precursor, the granulocyte/macrophage colony-forming cell (GM-CFC). With the addition of CSF-1, the GM-CFC precursor may be induced into the macrophage/osteoclast lineage rather than the granulocyte lineage. This increased pool of cells in the

  1. Proliferative responses and binding properties of hematopoietic cells transfected with low-affinity receptors for leukemia inhibitory factor, oncostatin M, and ciliary neurotrophic factor.

    PubMed Central

    Gearing, D P; Ziegler, S F; Comeau, M R; Friend, D; Thoma, B; Cosman, D; Park, L; Mosley, B

    1994-01-01

    Specific low-affinity receptors for leukemia inhibitory factor (LIF), oncostatin M (OSM; gp130), and ciliary neurotrophic factor (CNTF; receptor alpha, CNTFR alpha) may be utilized in various combinations to generate high-affinity binding sites and signal transduction. We have tested the ability of combinations of these receptors to transduce a proliferative signal in BAF-B03 cells. Coexpression of the LIF receptor and gp130 in these cells conferred high-affinity LIF and OSM binding and responsiveness to LIF and OSM. These cells also responded to CNTF in the absence of detectable binding. The further addition of CNTFR alpha conferred high-affinity CNTF binding and enhanced responsiveness to CNTF but did not modify responses to LIF or OSM. Coexpression of LIF receptor and CNTFR alpha resulted in a nonfunctional high-affinity binding site. These data are consistent with a role for the CNTFR alpha in enhancing CNTF action but the CNTFR alpha is not absolutely required for CNTF action and suggest a wider range of targets for CNTF. PMID:8302840

  2. Proliferation-independent growth factor modulation of the radiation sensitivity of human prostate cells

    SciTech Connect

    Howard, S.P.; Groch, K.M.; Lindstrom, M.J.

    1995-08-01

    The survival of human prostatic epithelial cells irradiated in different physiological states is reported. Exponentially growing cells and contact-inhibited cells grown and irradiated in the presence of the growth factors epidermal growth factor (EGF) and bovine pituitary extract (bPE) had overlapping radiation dose-cell survival curves. However, when EGF and bPE were removed from exponentially growing cells before irradiation, an increase in radiosensitivity was observed if the cells were replated into medium containing growth factors (EGF and bPE) immediately after irradiation. Treating cells with the nonspecific growth factor receptor antagonist suramin had similar effects as did growth factor deprivation. In contrast, when growth factor-deprived cells were maintained in this same medium for 12 h postirradiation, an increase in radiation survival was observed. This increase in survival is attributed to the repair of potentially lethal damage (PLD). Both the increase in radiosensitivity induced by deprivation of growth factor before irradiation and the repair of PLD caused by deprivation of growth factor after irradiation were independent of changes in cellular proliferation. 22 refs., 1 fig., 2 tab.

  3. Nerve growth factor: role in growth, differentiation and controlling cancer cell development.

    PubMed

    Aloe, Luigi; Rocco, Maria Luisa; Balzamino, Bijorn Omar; Micera, Alessandra

    2016-01-01

    Recent progress in the Nerve Growth Factor (NGF) research has shown that this factor acts not only outside its classical domain of the peripheral and central nervous system, but also on non-neuronal and cancer cells. This latter observation has led to divergent hypothesis about the role of NGF, its specific distribution pattern within the tissues and its implication in induction as well as progression of carcinogenesis. Moreover, other recent studies have shown that NGF has direct clinical relevance in certain human brain neuron degeneration and a number of human ocular disorders. These studies, by suggesting that NGF is involved in a plethora of physiological function in health and disease, warrant further investigation regarding the true role of NGF in carcinogenesis. Based on our long-lasting experience in the physiopathology of NGF, we aimed to review previous and recent in vivo and in vitro NGF studies on tumor cell induction, progression and arrest. Overall, these studies indicate that the only presence of NGF is unable to generate cell carcinogenesis, both in normal neuronal and non-neuronal cells/tissues. However, it cannot be excluded the possibility that the co-expression of NGF and pro-carcinogenic molecules might open to different consequence. Whether NGF plays a direct or an indirect role in cell proliferation during carcinogenesis remains to demonstrate. PMID:27439311

  4. Embryonic hematopoiesis in vertebrate somites gives rise to definitive hematopoietic stem cells.

    PubMed

    Qiu, Juhui; Fan, Xiaoying; Wang, Yixia; Jin, Hongbin; Song, Yixiao; Han, Yang; Huang, Shenghong; Meng, Yaping; Tang, Fuchou; Meng, Anming

    2016-08-01

    Hematopoietic stem cells (HSCs) replenish all types of blood cells. It is debating whether HSCs in adults solely originate from the aorta-gonad-mesonephros (AGM) region, more specifically, the dorsal aorta, during embryogenesis. Here, we report that somite hematopoiesis, a previously unwitnessed hematopoiesis, can generate definitive HSCs (dHSCs) in zebrafish. By transgenic lineage tracing, we found that a subset of cells within the forming somites emigrate ventromedially and mix with lateral plate mesoderm-derived primitive hematopoietic cells before the blood circulation starts. These somite-derived hematopoietic precursors and stem cells (sHPSCs) subsequently enter the circulation and colonize the kidney of larvae and adults. RNA-seq analysis reveals that sHPSCs express hematopoietic genes with sustained expression of many muscle/skeletal genes. Embryonic sHPSCs transplanted into wild-type embryos expand during growth and survive for life time with differentiation into various hematopoietic lineages, indicating self-renewal and multipotency features. Therefore, the embryonic origin of dHSCs in adults is not restricted to the AGM.

  5. CD166 regulates human and murine hematopoietic stem cells and the hematopoietic niche

    PubMed Central

    Chitteti, Brahmananda Reddy; Kobayashi, Michihiro; Cheng, Yinghua; Zhang, Huajia; Poteat, Bradley A.; Broxmeyer, Hal E.; Pelus, Louis M.; Hanenberg, Helmut; Zollman, Amy; Kamocka, Malgorzata M.; Carlesso, Nadia; Cardoso, Angelo A.; Kacena, Melissa A.

    2014-01-01

    We previously showed that immature CD166+ osteoblasts (OB) promote hematopoietic stem cell (HSC) function. Here, we demonstrate that CD166 is a functional HSC marker that identifies both murine and human long-term repopulating cells. Both murine LSKCD48−CD166+CD150+ and LSKCD48−CD166+CD150+CD9+ cells, as well as human Lin−CD34+CD38−CD49f+CD166+ cells sustained significantly higher levels of chimerism in primary and secondary recipients than CD166− cells. CD166−/− knockout (KO) LSK cells engrafted poorly in wild-type (WT) recipients and KO bone marrow cells failed to radioprotect lethally irradiated WT recipients. CD166−/− hosts supported short-term, but not long-term WT HSC engraftment, confirming that loss of CD166 is detrimental to the competence of the hematopoietic niche. CD166−/− mice were significantly more sensitive to hematopoietic stress. Marrow-homed transplanted WT hematopoietic cells lodged closer to the recipient endosteum than CD166−/− cells, suggesting that HSC-OB homophilic CD166 interactions are critical for HSC engraftment. STAT3 has 3 binding sites on the CD166 promoter and STAT3 inhibition reduced CD166 expression, suggesting that both CD166 and STAT3 may be functionally coupled and involved in HSC competence. These studies illustrate the significance of CD166 in the identification and engraftment of HSC and in HSC-niche interactions, and suggest that CD166 expression can be modulated to enhance HSC function. PMID:24740813

  6. Transfer of hematopoietic stem cells encoding autoantigen prevents autoimmune diabetes.

    PubMed

    Steptoe, Raymond J; Ritchie, Janine M; Harrison, Leonard C

    2003-05-01

    Bone marrow or hematopoietic stem cell transplantation is a potential treatment for autoimmune disease. The clinical application of this approach is, however, limited by the risks associated with allogeneic transplantation. In contrast, syngeneic transplantation would be safe and have wide clinical application. Because T cell tolerance can be induced by presenting antigen on resting antigen-presenting cells (APCs), we reasoned that hematopoietic stem cells engineered to express autoantigen in resting APCs could be used to prevent autoimmune disease. Proinsulin is a major autoantigen associated with pancreatic beta cell destruction in humans with type 1 diabetes (T1D) and in autoimmune NOD mice. Here, we demonstrate that syngeneic transplantation of hematopoietic stem cells encoding proinsulin transgenically targeted to APCs totally prevents the development of spontaneous autoimmune diabetes in NOD mice. This antigen-specific immunotherapeutic strategy could be applied to prevent T1D and other autoimmune diseases in humans. PMID:12727927

  7. The Hematopoietic Stem Cell Therapy for Exploration of Space

    NASA Astrophysics Data System (ADS)

    Ohi, S.

    Departments of Biochemistry &Molecular Biology, Genetics &Human Genetics, Pediatrics &Child Long-duration space missions require countermeasures against severe/invasive disorders in astronauts that are caused by space environments, such as hematological/cardiac abnormalities, bone/muscle losses, immunodeficiency, neurological disorders, and cancer. Some, if not all, of these disorders may be amenable to hematopoietic stem cell therapy and gene therapy. Growing evidence indicates that hematopoietic stem cells (HSCs) possess extraordinary plasticity to differentiate not only to all types of blood cells but also to various tissues, including bone, muscle, skin, liver and neuronal cells. Therefore, our working hypothesis is that the hematopoietic stem cell-based therapy, herein called as the hematopoietic stem cell therapy (HSCT), might provide countermeasure/prevention for hematological abnormalities, bone and muscle losses in space, thereby maintaining astronauts' homeostasis. Our expertise lies in recombinant adeno-associated virus (rAAV)-mediated gene therapy for the hemoglobinopathies, -thalassemia and sickle cell disease (Ohi S, Kim BC, J Pharm Sci 85: 274-281, 1996; Ohi S, et al. Grav Space Biol Bull 14: 43, 2000). As the requisite steps in this protocol, we established procedures for purification of HSCs from both mouse and human bone marrow in 1 G. Furthermore, we developed an easily harvestable, long-term liquid suspension culture system, which lasts more than one year, for growing/expanding HSCs without stromal cells. Human globin cDNAs/gene were efficiently expressed from the rAAVs in the mouse HSCs in culture. Additionally, the NASA Rotating Wall Vessel (RWV) culture system is being optimized for the HSC growth/expansion. Thus, using these technologies, the above hypothesis is being investigated by the ground-based experiments as follows: 1) -thalassemic mice (C57BL/6-Hbbth/Hbbth, Hbd-minor) are transplanted with normal isologous HSCs to correct the

  8. Discovery of survival factor for primitive chronic myeloid leukemia cells using induced pluripotent stem cells

    PubMed Central

    Suknuntha, Kran; Ishii, Yuki; Tao, Lihong; Hu, Kejin; McIntosh, Brian E.; Yang, David; Swanson, Scott; Stewart, Ron; Wang, Jean Y.J.; Thomson, James; Slukvin, Igor

    2016-01-01

    A definitive cure for chronic myeloid leukemia (CML) requires identifying novel therapeutic targets to eradicate leukemia stem cells (LSCs). However, the rarity of LSCs within the primitive hematopoietic cell compartment remains a major limiting factor for their study in humans. Here we show that primitive hematopoietic cells with typical LSC features, including adhesion defect, increased long-term survival and proliferation, and innate resistance to tyrosine kinase inhibitor (TKI) imatinib, can be generated de novo from reprogrammed primary CML cells. Using CML iPSC-derived primitive leukemia cells, we discovered olfactomedin 4 (OLFM4) as a novel factor that contributes to survival and growth of somatic lin−CD34+ cells from bone marrow of patients with CML in chronic phase, but not primitive hematopoietic cells from normal bone marrow. Overall, this study shows the feasibility and advantages of using reprogramming technology to develop strategies for targeting primitive leukemia cells. PMID:26561938

  9. Discovery of survival factor for primitive chronic myeloid leukemia cells using induced pluripotent stem cells.

    PubMed

    Suknuntha, Kran; Ishii, Yuki; Tao, Lihong; Hu, Kejin; McIntosh, Brian E; Yang, David; Swanson, Scott; Stewart, Ron; Wang, Jean Y J; Thomson, James; Slukvin, Igor

    2015-11-01

    A definitive cure for chronic myeloid leukemia (CML) requires identifying novel therapeutic targets to eradicate leukemia stem cells (LSCs). However, the rarity of LSCs within the primitive hematopoietic cell compartment remains a major limiting factor for their study in humans. Here we show that primitive hematopoietic cells with typical LSC features, including adhesion defect, increased long-term survival and proliferation, and innate resistance to tyrosine kinase inhibitor (TKI) imatinib, can be generated de novo from reprogrammed primary CML cells. Using CML iPSC-derived primitive leukemia cells, we discovered olfactomedin 4 (OLFM4) as a novel factor that contributes to survival and growth of somatic lin(-)CD34(+) cells from bone marrow of patients with CML in chronic phase, but not primitive hematopoietic cells from normal bone marrow. Overall, this study shows the feasibility and advantages of using reprogramming technology to develop strategies for targeting primitive leukemia cells. PMID:26561938

  10. Coordinated Regulation of Apoptosis and Cell Proliferation by Transforming Growth Factor β1 in Cultured Uterine Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Rotello, Rocco J.; Lieberman, Rita C.; Purchio, Anthony F.; Gerschenson, Lazaro E.

    1991-04-01

    Cell and tissue growth is regulated through a complex interplay of stimulatory and inhibitory signals. We describe two biological actions of transforming growth factor β 1 (TGF-β 1) in primary cultures of rabbit uterine epithelial cells: (i) inhibition of cell proliferation and (ii) a concomitant increase in cells undergoing apoptosis (programmed cell death). It is proposed that proliferation and apoptosis together comprise normal cell growth regulation.

  11. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGFβ)-dependent smooth muscle cell phenotype modulation.

    PubMed

    Chen, Pei-Yu; Qin, Lingfeng; Li, Guangxin; Tellides, George; Simons, Michael

    2016-01-01

    Smooth muscle cells (SMCs) in normal blood vessels exist in a highly differentiate state characterized by expression of SMC-specific contractile proteins ("contractile phenotype"). Following blood vessel injury in vivo or when cultured in vitro in the presence of multiple growth factors, SMC undergo a phenotype switch characterized by the loss of contractile markers and appearance of expression of non-muscle proteins ("proliferative phenotype"). While a number of factors have been reported to modulate this process, its regulation remains uncertain. Here we show that induction of SMC FGF signaling inhibits TGFβ signaling and converts contractile SMCs to the proliferative phenotype. Conversely, inhibition of SMC FGF signaling induces TGFβ signaling converting proliferating SMCs to the contractile phenotype, even in the presence of various growth factors in vitro or vascular injury in vivo. The importance of this signaling cross-talk is supported by in vivo data that show that an SMC deletion of a pan-FGF receptor adaptor Frs2α (fibroblast growth factor receptor substrate 2 alpha) in mice profoundly reduces neointima formation and vascular remodelling following carotid artery ligation. These results demonstrate that FGF-TGFβ signaling antagonism is the primary regulator of the SMC phenotype switch. Manipulation of this cross-talk may be an effective strategy for treatment of SMC-proliferation related diseases. PMID:27634335

  12. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGFβ)-dependent smooth muscle cell phenotype modulation

    PubMed Central

    Chen, Pei-Yu; Qin, Lingfeng; Li, Guangxin; Tellides, George; Simons, Michael

    2016-01-01

    Smooth muscle cells (SMCs) in normal blood vessels exist in a highly differentiate state characterized by expression of SMC-specific contractile proteins (“contractile phenotype”). Following blood vessel injury in vivo or when cultured in vitro in the presence of multiple growth factors, SMC undergo a phenotype switch characterized by the loss of contractile markers and appearance of expression of non-muscle proteins (“proliferative phenotype”). While a number of factors have been reported to modulate this process, its regulation remains uncertain. Here we show that induction of SMC FGF signaling inhibits TGFβ signaling and converts contractile SMCs to the proliferative phenotype. Conversely, inhibition of SMC FGF signaling induces TGFβ signaling converting proliferating SMCs to the contractile phenotype, even in the presence of various growth factors in vitro or vascular injury in vivo. The importance of this signaling cross-talk is supported by in vivo data that show that an SMC deletion of a pan-FGF receptor adaptor Frs2α (fibroblast growth factor receptor substrate 2 alpha) in mice profoundly reduces neointima formation and vascular remodelling following carotid artery ligation. These results demonstrate that FGF-TGFβ signaling antagonism is the primary regulator of the SMC phenotype switch. Manipulation of this cross-talk may be an effective strategy for treatment of SMC-proliferation related diseases. PMID:27634335

  13. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    NASA Astrophysics Data System (ADS)

    Ohi, Seigo; Roach, Allana-Nicole; Ramsahai, Shweta; Kim, Bak C.; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2004-02-01

    Astronauts experience severe/invasive disorders caused by space environments. These include hematological and cardiac abnormalities, bone and muscle losses, immunodeficiency, neurological disorders and cancer. Exploiting the extraordinary plasticity of hematopoietic stem cells (HSCs), which differentiate not only to all types of blood cells, but also to various tissues, including muscle, bone, skin, liver, and neuronal cells, we advanced a hypothesis that some of the space-caused disorders might be amenable to hematopoietic stem cell therapy (HSCT) so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using mouse models of human anemia (β-thalassemia) and spaceflight (hindlimb suspension unloading system), we have obtained feasibility results of HSCT for space anemia, muscle loss, and immunodeficiency. For example, the β-thalassemic mice were successfully transplanted with isologous HSCs, resulting in chimerism of hemoglobin species and alleviation of the hemoglobinopathy. In the case of HSCT for muscle loss, β-galactosidase-marked HSCs, which were prepared from β-galactosidase-transgenic mice, were detected by the X-gal wholemount staining procedure in the hindlimbs of unloaded mice following transplantation. Histochemical and physical analyses indicated structural contribution of HSCs to the muscle. To investigate HSCT for immunodeficiency, β-galactosidase-transformed Escherichia coli was used as the reporter bacteria, and infected to control and the hindlimb suspended mice. Results of the X-gal stained tissues indicated that the HSCT could help eliminate the E. coli infection. In an effort to facilitate the HSCT in space, growth of HSCs has been optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  14. Cell growth on immobilized cell growth factor. 7. Protein-free cell culture by using growth-factor-immobilized polymer membrane.

    PubMed

    Liu, S Q; Ito, Y; Imanishi, Y

    1993-02-01

    A protein-free culture of anchorage-dependent cells, mouse fibroblast cells, STO and 3T3-L1 and fibroic sarcoma cells, Swiss albino HSDM1C1, grown on a cell-growth protein, insulin, and/or a cell-adhesion protein, collagen, which are immobilized or coimmobilized on surface-hydrolyzed poly(methyl methacrylate) membrane, was investigated. By adding metal ions and lipids to the culture medium, a protein-free culture medium was composed, which was potent in promoting cell proliferation similarly to serum-containing culture medium. In particular, with insulin/collagen-coimmobilized membrane, a protein-free culture was established without detachment of growing cells over a long period. These protein-immobilized membranes could be used repeatedly. PMID:7763456

  15. Peptide growth factors, part B

    SciTech Connect

    Barnes, D.; Sirbasku, D.A.

    1987-01-01

    This book discusses the following topics: Platelet-Derived Growth Factor;Nerve and Glial Growth Factors;PC12 Pheochromocytoma Cells;Techniques for the Study of Growth Factor Activity;Genetic Approaches and Biological Effects.

  16. Hematopoietic Cell Transplantation for Myelodysplastic Syndromes.

    PubMed

    Bhatt, Vijaya Raj; Steensma, David P

    2016-09-01

    Allogeneic hematopoietic cell transplantation (HCT) offers the only potential cure for patients with myelodysplastic syndromes (MDS). However, with current approaches to HCT, many older patients with comorbidities are poor HCT candidates, and treatment-related morbidity and mortality may offset benefit for patients with lower-risk disease. Consequently, selection of patients with MDS for HCT should take into consideration disease risk category including mutational status, HCT comorbidity index, functional status, donor options, and available institutional resources. Formal geriatric assessment may further guide use of HCT and, if HCT is chosen, selection of conditioning intensity. Patients with higher-risk MDS should be considered for HCT at the time of diagnosis, whereas expectant nontransplant management is more appropriate for those with lower-risk disease. A high blast burden at the time of HCT increases the risk of subsequent relapse; however, the role of pretransplant cytoreductive therapy and the regimen of choice remain controversial. Patients with MDS younger than 65 years and with an HCT comorbidity index ≤ 4 may benefit from more intense conditioning regimens. The presence of complex or monosomal karyotype or mutations in TP53, DNMT3A, or other genes identify patients with poorer outcomes following HCT. Patients with TP53 mutations have particularly poor survival, and should be enrolled in clinical trials whenever possible. Several important HCT studies are ongoing and will better define the role of HCT in MDS as well as the value of pretransplant cytoreductive therapy or post-transplant relapse-prevention strategies. Given the apparent underuse of HCT in eligible patients and low enrollment in MDS HCT clinical trials to date, timely referral of patients with MDS to such trials and HCT programs is critical. PMID:27621329

  17. Multiple Mechanisms are Responsible for Transactivation of the Epidermal Growth Factor Receptor in Mammary Epithelial Cells

    SciTech Connect

    Rodland, Karin D.; Bollinger, Nikki; Ippolito, Danielle L.; Opresko, Lee; Coffey, Robert J.; Zangar, Richard C.; Wiley, H. S.

    2008-11-14

    REVIEW ENTIRE DOCUMENT AT: https://pnlweb.pnl.gov/projects/bsd/ERICA%20Manuscripts%20for%20Review/KD%20Rodland%20D7E80/HMEC_transactivation_ms01_15+Figs.pdf ABSTRACT: Using a single nontransformed strain of human mammary epithelial cells, we found that the ability of multiple growth factors and cytokines to induce ERK phosphorylation was dependent on EGFR activity. These included lysophosphatidic acid (LPA), uridine triphosphate, growth hormone, vascular endothelial growth factor, insulin-like growth factor-1 (IGF-1), and tumor necrosis factoralpha. In contrast, hepatocyte growth factor could stimulate ERK phosphorylation independent of EGFR activity...

  18. In search of human hematopoietic stem cell identity.

    PubMed

    Ivanovs, Andrejs; Medvinsky, Alexander

    2015-01-01

    Better insight into hematopoietic stem cell (HSC) development in the human embryo and fetus is crucial for translational research. In this issue of Cell Stem Cell, Prashad et al. (2014) describe a novel surface marker for human fetal liver HSCs, glycosylphosphatidylinositol-anchored protein GPI-80, that is functionally required for their self-renewal.

  19. Cellular complexity of the bone marrow hematopoietic stem cell niche.

    PubMed

    Calvi, Laura M; Link, Daniel C

    2014-01-01

    The skeleton serves as the principal site for hematopoiesis in adult terrestrial vertebrates. The function of the hematopoietic system is to maintain homeostatic levels of all circulating blood cells, including myeloid cells, lymphoid cells, red blood cells, and platelets. This action requires the daily production of more than 500 billion blood cells. The vast majority of these cells are synthesized in the bone marrow, where they arise from a limited number of hematopoietic stem cells (HSCs) that are multipotent and capable of extensive self-renewal. These attributes of HSCs are best demonstrated by marrow transplantation, where even a single HSC can repopulate the entire hematopoietic system. HSCs are therefore adult stem cells capable of multilineage repopulation, poised between cell fate choices which include quiescence, self-renewal, differentiation, and apoptosis. While HSC fate choices are in part determined by multiple stochastic fluctuations of cell autonomous processes, according to the niche hypothesis, signals from the microenvironment are also likely to determine stem cell fate. While it had long been postulated that signals within the bone marrow could provide regulation of hematopoietic cells, it is only in the past decade that advances in flow cytometry and genetic models have allowed for a deeper understanding of the microenvironmental regulation of HSCs. In this review, we will highlight the cellular regulatory components of the HSC niche.

  20. Effects of mycobacterial infection on proliferation of hematopoietic precursor cells.

    PubMed

    Choi, Hong-Hee; Kim, Kwang-Kyu; Kim, Kwang Dong; Kim, Hwa-Jung; Jo, Eun-Kyeong; Song, Chang-Hwa

    2011-12-01

    Bacterial infection can affect hematopoietic precursor cells in bone marrow, because the infected tissues produce various cytokines and chemokines. Little is known about hematopoietic precursor cells, including hematopoietic stem cells and their progenitors, during mycobacterial infection. Here, we showed that mycobacterial infections result in the expansion of not only the lin-c-kit+sca-1+ (LKS+) cell population, but also granulocyte-monocyte progenitor cells in a chronic murine tuberculosis model. Interestingly, stimulation of LKS+ cells with attenuated Mycobacterium tuberculosis H37Ra culture filtrate (RaCF) was significantly stronger than that by virulent H37Rv culture filtrate (RvCF). Lower TNF-α and IL-6 levels were observed in RvCF-stimulated bone marrow cells. Neutralization of TNF-α or IL-6 in RaCF-stimulated bone marrow cells markedly suppressed LKS+ cell clonal expansion. Additionally, numbers of LKS+ cells were lower in TLR2(-/-) and MyD88(-/-) mice after mycobacterial infection. Taken together, LKS+ cell proliferation related to mycobacterial virulence may be related to the secretion of TNF-α and IL-6 associated with TLR signaling. Expansion of hematopoietic progenitor cells may, therefore, play an important role during mycobacterial infection.

  1. The effect of lithium on hematopoietic, mesenchymal and neural stem cells.

    PubMed

    Ferensztajn-Rochowiak, Ewa; Rybakowski, Janusz K

    2016-04-01

    Lithium has been used in modern psychiatry for more than 65 years, constituting a cornerstone for the long-term treatment of bipolar disorder. A number of biological properties of lithium have been discovered, including its hematological, antiviral and neuroprotective effects. In this article, a systematic review of the effect of lithium on hematopoietic, mesenchymal and neural stem cells is presented. The beneficial effects of lithium on the level of hematopoietic stem cells (HSC) and growth factors have been reported since 1970s. Lithium improves homing of stem cells, the ability to form colonies and HSC self-renewal. Lithium also exerts a favorable influence on the proliferation and maintenance of mesenchymal stem cells (MSC). Studies on the effect of lithium on neurogenesis have indicated an increased proliferation of progenitor cells in the dentate gyrus of the hippocampus and enhanced mitotic activity of Schwann cells. This may be connected with the neuroprotective and neurotrophic effects of lithium, reflected in an improvement in synaptic plasticity promoting cell survival and inhibiting apoptosis. In clinical studies, lithium treatment increases cerebral gray matter, mainly in the frontal lobes, hippocampus and amygdala. Recent findings also suggest that lithium may reduce the risk of dementia and exert a beneficial effect in neurodegenerative diseases. The most important mediators and signaling pathways of lithium action are the glycogen synthase kinase-3 and Wnt/β-catenin pathways. Recently, to study of bipolar disorder pathogenesis and the mechanism of lithium action, the induced pluripotent stem cells (iPSC) obtained from bipolar patients have been used.

  2. Organotypic Cultures of Intervertebral Disc Cells: Responses to Growth Factors and Signaling Pathways Involved.

    PubMed

    Pratsinis, Harris; Kletsas, Dimitris

    2015-01-01

    Intervertebral disc (IVD) degeneration is strongly associated with low back pain, a major cause of disability worldwide. An in-depth understanding of IVD cell physiology is required for the design of novel regenerative therapies. Accordingly, aim of this work was the study of IVD cell responses to mitogenic growth factors in a three-dimensional (3D) organotypic milieu, comprising characteristic molecules of IVD's extracellular matrix. In particular, annulus fibrosus (AF) cells were cultured inside collagen type-I gels, while nucleus pulposus (NP) cells in chondroitin sulfate A (CSA) supplemented collagen gels, and the effects of Platelet-Derived Growth Factor (PDGF), basic Fibroblast Growth Factor (bFGF), and Insulin-Like Growth Factor-I (IGF-I) were assessed. All three growth factors stimulated DNA synthesis in both AF and NP 3D cell cultures, with potencies similar to those observed previously in monolayers. CSA supplementation inhibited basal DNA synthesis rates, without affecting the response to growth factors. ERK and Akt were found to be phosphorylated following growth factor stimulation. Blockade of these two signaling pathways using pharmacologic inhibitors significantly, though not completely, inhibited growth factor-induced DNA synthesis. The proposed culture systems may prove useful for further in vitro studies aiming at future interventions for IVD regeneration. PMID:26583105

  3. Organotypic Cultures of Intervertebral Disc Cells: Responses to Growth Factors and Signaling Pathways Involved

    PubMed Central

    Pratsinis, Harris; Kletsas, Dimitris

    2015-01-01

    Intervertebral disc (IVD) degeneration is strongly associated with low back pain, a major cause of disability worldwide. An in-depth understanding of IVD cell physiology is required for the design of novel regenerative therapies. Accordingly, aim of this work was the study of IVD cell responses to mitogenic growth factors in a three-dimensional (3D) organotypic milieu, comprising characteristic molecules of IVD's extracellular matrix. In particular, annulus fibrosus (AF) cells were cultured inside collagen type-I gels, while nucleus pulposus (NP) cells in chondroitin sulfate A (CSA) supplemented collagen gels, and the effects of Platelet-Derived Growth Factor (PDGF), basic Fibroblast Growth Factor (bFGF), and Insulin-Like Growth Factor-I (IGF-I) were assessed. All three growth factors stimulated DNA synthesis in both AF and NP 3D cell cultures, with potencies similar to those observed previously in monolayers. CSA supplementation inhibited basal DNA synthesis rates, without affecting the response to growth factors. ERK and Akt were found to be phosphorylated following growth factor stimulation. Blockade of these two signaling pathways using pharmacologic inhibitors significantly, though not completely, inhibited growth factor-induced DNA synthesis. The proposed culture systems may prove useful for further in vitro studies aiming at future interventions for IVD regeneration. PMID:26583105

  4. Regulation of serotonin transporter gene expression in human glial cells by growth factors.

    PubMed

    Kubota, N; Kiuchi, Y; Nemoto, M; Oyamada, H; Ohno, M; Funahashi, H; Shioda, S; Oguchi, K

    2001-04-01

    The aims of this study were to identify monoamine transporters expressed in human glial cells, and to examine the regulation of their expression by stress-related growth factors. The expression of serotonin transporter mRNA was detected by reverse transcriptase-polymerase chain reaction in normal human astrocytes, whereas the dopamine transporter (DAT) and the norepinephrine transporter (NET) were not detected. The cDNA sequence of the "glial" serotonin transporter in astrocytes was consistent with that reported for the "neuronal" serotonin transporter (SERT). Moreover, we also demonstrated SERT expression in glial fibrillary acidic protein-positive cells by immunocytochemical staining in normal human astrocytes. Serotonin transporter gene expression was also detected in glioma-derived cell lines (A172, KG-1-C and KGK). Addition of basic fibroblast growth factor (bFGF) or epidermal growth factor (EGF) for 2 days increased serotonin transporter gene expression in astrocytes and JAR (human choriocarcinoma cell line). Basic fibroblast growth factor, but not epidermal growth factor, increased specific [3H]serotonin uptake in astrocytes in a time (1-4 days)- and concentration (20-100 ng/ml)-dependent manner. The expression of genes for basic fibroblast growth factor and epidermal growth factor receptors was detected in astrocytes. These findings suggest that the expression of the serotonin transporter in human glial cells is positively regulated by basic fibroblast growth factor. PMID:11301061

  5. Cytotoxic effects of acrylamide in nerve growth factor or fibroblast growth factor 1-induced neurite outgrowth in PC12 cells.

    PubMed

    Chen, Jong-Hang; Lee, Don-Ching; Chiu, Ing-Ming

    2014-03-01

    Acrylamide is a neurological and reproductive toxicant in humans and laboratory animals; however, the neuron developmental toxicity of acrylamide remains unclear. The aims of this study are to investigate the cytotoxicity and neurite outgrowth inhibition of acrylamide in nerve growth factor (NGF)- or fibroblast growth factor 1 (FGF1)-mediated neural development of PC12 cells. MTS assay showed that acrylamide treatment suppresses NGF- or FGF1-induced PC12 cell proliferation in a time- and dose-dependent manner. Quantification of neurite outgrowth demonstrated that 0.5 mM acrylamide treatment resulted in significant decrease in differentiation of NGF- or FGF1-stimulated PC12 cells. This decrease is accompanied with the reduced expression of growth-associated protein-43, a neuronal marker. Moreover, relative levels of pERK, pAKT, pSTAT3 and pCREB were increased within 5-10 min when PC12 cells were treated with NGF or FGF1. Acrylamide (0.5 mM) decreases the NGF-induced activation of AKT-CREB but not ERK-STAT3 within 20 min. Similarly, acrylamide (0.5 mM) decreases the FGF1-induced activation of AKT-CREB within 20 min. In contrast to the NGF treatment, the ERK-STAT3 activation that was induced by FGF1 was slightly reduced by 0.5 mM acrylamide. We further showed that PI3K inhibitor (LY294002), but not MEK inhibitor (U0126), could synergize with acrylamide (0.5 mM) to reduce the cell viability and neurite outgrowth in NGF- or FGF1-stimulated PC12 cells. Moreover, acrylamide (0.5 mM) increased reactive oxygen species (ROS) activities in NGF- or FGF1-stimulated PC12 cells. This increase was reversed by Trolox (an ROS scavenging agent) co-treatment. Together, our findings reveal that NGF- or FGF1-stimulation of the neuronal differentiation of PC12 cells is attenuated by acrylamide through the inhibition of PI3K-AKT-CREB signaling, along with the production of ROS.

  6. Electrochemical control of growth factor presentation to steer neural stem cell differentiation.

    PubMed

    Herland, Anna; Persson, Kristin M; Lundin, Vanessa; Fahlman, Mats; Berggren, Magnus; Jager, Edwin W H; Teixeira, Ana I

    2011-12-23

    Let it grow: The conjugated polymer poly(3,4-ethylenedioxythiophene) (PEDOT) was synthesized with heparin as the counterion to form a cell culture substrate. The surface of PEDOT:heparin in the neutral state associated biologically active growth factors. Electrochemical in situ oxidation of PEDOT during live cell culture decreased the bioavailability of the growth factor and created an exact onset of neural stem cell differentiation.

  7. Sexual Health in Hematopoietic Stem Cell Transplant Recipients

    PubMed Central

    Li, Zhuoyan; Mewawalla, Prerna; Stratton, Pamela; Yong, Agnes S.M.; Shaw, Bronwen E.; Hashmi, Shahrukh; Jagasia, Madan; Mohty, Mohamad; Majhail, Navneet S.; Savani, Bipin N.; Rovó, Alicia

    2016-01-01

    Hematopoietic stem cell transplantation (HSCT) plays a central role in patients with malignant and, increasingly, nonmalignant conditions. As the number of transplants increases and the survival rate improves, long-term complications are important to recognize and treat to maintain quality of life. Sexual dysfunction is a commonly described but relatively often underestimated complication after HSCT. Conditioning regimens, generalized or genital graft-versus-host disease, medications, and cardiovascular complications as well as psychosocial problems are known to contribute significantly to physical and psychological sexual dysfunction. Moreover, it is often a difficult topic for patients, their significant others, and health care providers to discuss. Early recognition and management of sexual dysfunction after HSCT can lead to improved quality of life and outcomes for patients and their partners. This review focuses on the risk factors for and treatment of sexual dysfunction after transplantation and provides guidance concerning how to approach and manage a patient with sexual dysfunction after HSCT. PMID:26372459

  8. Late cytomegalovirus infection after hematopoietic stem cell transplantation: case reports

    PubMed Central

    Pinheiro, Sâmara Grapiuna; de Matos, Sócrates Bezerra; Botura, Mônica Borges; Meyer, Roberto; Lima, Fernanda Washington de Mendonça

    2013-01-01

    Cytomegalovirus is related to high rates of morbidity and mortality after hematopoietic stem cell transplantation. This report highlights the importance of adequate monitoring and management of this infection. We report on two cases of patients with late subclinical cytomegalovirus infection. These patients were monitored for antigenemia by indirect immunofluorescence assay. Active cytomegalovirus infection is most common in the first three months after transplantation however the cases reported herein show the importance of monitoring for active infection after Day +100 post-transplantation. Early detection of active infection enables quick preemptive therapy. In conclusion, we emphasize that patients with risk factors for developing severe or late cytomegalovirus disease should be monitored for more than 100 post-transplant days as late active infection is a reality. PMID:24478611

  9. Growth factor induced proliferation, migration, and lumen formation of rat endometrial epithelial cells in vitro

    PubMed Central

    ISLAM, Md. Rashedul; YAMAGAMI, Kazuki; YOSHII, Yuka; YAMAUCHI, Nobuhiko

    2016-01-01

    Endometrial modulation is essential for the preservation of normal uterine physiology, and this modulation is driven by a number of growth factors. The present study investigated the mitogenic, motogenic, and morphogenic effects of epidermal growth factor (EGF) and hepatocyte growth factor (HGF) on rat endometrial epithelial (REE) cells. The REE cells were isolated and cultured and then characterized based on their morphology and their expression of epithelial cell markers. The MTT assay revealed that EGF and HGF induce proliferation of REE cells. Consistent with increased proliferation, we found that the cell cycle regulatory factor Cyclin D1 was also upregulated upon EGF and HGF addition. REE cell migration was prompted by EGF, as observed with the Oris Cell Migration Assay. The morphogenic impact of growth factors on REE cells was studied in a three-dimensional BD Matrigel cell culture system, wherein these growth factors also increased the frequency of lumen formation. In summary, we show that EGF and HGF have a stimulatory effect on REE cells, promoting proliferation, cell migration, and lumen formation. Our findings provide important insights that further the understanding of endometrial regeneration and its regulation. PMID:26946922

  10. Management of Uterine Bleeding During Hematopoietic Stem Cell Transplantation

    PubMed Central

    Purisch, Stephanie E.; Shanis, Dana; Zerbe, Christa; Merideth, Melissa; Cuellar-Rodriguez, Jennifer; Stratton, Pamela

    2013-01-01

    BACKGROUND Hematopoietic stem cell transplant is an effective treatment strategy for a variety of hematologic disorders, but patients are at risk for dysfunctional coagulation and abnormal bleeding. Gynecologists are often consulted before transplant for management of abnormal uterine bleeding, which may be particularly challenging in this context. CASE A premenopausal woman with MonoMAC (a rare adult-onset immunodeficiency syndrome characterized by monocytopenia and Mycobacterium avium complex infections resulting from mutations in GATA2, a crucial gene in early hematopoiesis) presented with pancytopenia, evolving leukemia, and recent strokes, necessitating anticoagulation. During preparation for hematopoietic stem cell transplant, she experienced prolonged menorrhagia requiring transfusions. Surgical therapy was contraindicated, and medical management was successful only when combined with balloon tamponade. CONCLUSION Balloon tamponade may be a potentially life-saving adjunct to medical therapy for control of uterine hemorrhage before hematopoietic stem cell transplant. PMID:23344397

  11. Purification of autocrine growth factor from conditioned medium of rat sarcoma (XC) cells.

    PubMed

    Checiówna, D; Klein, A

    1996-01-01

    Transformation of rat cells by Rous sarcoma virus(es) induced the release of growth factors into serum-free conditioned media. An PR-RSV-transformed rat cell line, XC, produced and released polypeptide factors which promote anchorage-dependent and anchorage-independent growth of XC cells. One of the autocrine factors of XC cells was purified to homogeneity by four-step procedure: ultrafiltration, ion-exchange chromatography on MonoS, reverse-phase chromatography on Spherisorb ODS2 and gel filtration on Superose 12. The factor gave a single band on SDS-electrophoresis on polyacrylamide gel and was assumed to have a molecular weight of 16 kDa. The factor is a potent mitogen for XC cells; half-maximal stimulation of DNA synthesis was achieved at a concentration of 0.8 ng/ml. The peptide is probably one of the family of EGF-like heparin-binding growth factors.

  12. Mesenchymal Stem Cells in Hematopoietic Stem Cell Transplantation

    PubMed Central

    Battiwalla, Minoo; Hematti, Peiman

    2009-01-01

    Mesenchymal stromal/stem cells (MSCs) of bone marrow (BM) origin not only provide the supportive microenvironmental niche for hematopoietic stem cells (HSCs) but are also capable of differentiating into various cell types of mesenchymal origin, such as bone, fat, and cartilage. In vitro and in vivo data suggest that MSCs have low inherent immunogenicity, modulate/suppress immunological responses through interactions with immune cells, and home to damaged tissues to participate in regeneration processes through their diverse biological properties. MSCs derived from BM are being evaluated for a wide range of clinical applications including disorders as diverse as myocardial infarction or newly diagnosed diabetes mellitus type-1. However, their use in HSC transplantation, either for enhancement of hematopoietic engraftment or for treatment/prevention of graft versus host disease, is far ahead of other indications. Ease of isolation and ex vivo expansion of MSCs, combined with their intriguing immunomodulatory properties, and their impressive record of safety in a wide variety of clinical trials make these cells promising candidates for further investigation. PMID:19728189

  13. Hepatocyte growth factor is a mouse fetal Leydig cell terminal differentiation factor.

    PubMed

    Ricci, Giulia; Guglielmo, Maria Cristina; Caruso, Maria; Ferranti, Francesca; Canipari, Rita; Galdieri, Michela; Catizone, Angela

    2012-06-01

    The hepatocyte growth factor (HGF) is a pleiotropic cytokine and a well-known regulator of mouse embryonic organogenesis. In previous papers, we have shown the expression pattern of HGF and its receptor, C-MET, during the different stages of testis prenatal development. We demonstrated that C-MET is expressed in fetal Leydig cells (FLCs) and that HGF stimulates testosterone secretion in organ culture of late fetal testes. In the present study, we analyzed the proliferation rate, apoptotic index, and differentiation of FLCs in testicular organ culture of 17.5 days postcoitum (17.5 dpc) embryos to clarify the physiological role of HGF in late testis organogenesis. Based on our data, we conclude the following: 1) HGF acts as an antiapoptotic factor that is able to reduce the number of apoptotic FLCs and testicular caspase-3 active fragment; 2) HGF does not affect FLC proliferation; 3) HGF significantly increases expression of insulin-like 3 (INSL3), a marker of Leydig cell terminal differentiation, without affecting 3beta-hydroxysteroid dehydrogenase (3betaHSD) expression; 4) HGF significantly decreases the expression of nestin, a marker of Leydig cell progenitors; and 5) HGF significantly increases the number of fully developed FLCs. Taken together, these observations demonstrate that HGF is able to act in vitro as a survival and differentiation factor in FLC population.

  14. Hematopoietic Stem-Cell Transplantation for Advanced Systemic Mastocytosis

    PubMed Central

    Ustun, Celalettin; Reiter, Andreas; Scott, Bart L.; Nakamura, Ryotaro; Damaj, Gandhi; Kreil, Sebastian; Shanley, Ryan; Hogan, William J.; Perales, Miguel-Angel; Shore, Tsiporah; Baurmann, Herrad; Stuart, Robert; Gruhn, Bernd; Doubek, Michael; Hsu, Jack W.; Tholouli, Eleni; Gromke, Tanja; Godley, Lucy A.; Pagano, Livio; Gilman, Andrew; Wagner, Eva Maria; Shwayder, Tor; Bornhäuser, Martin; Papadopoulos, Esperanza B.; Böhm, Alexandra; Vercellotti, Gregory; Van Lint, Maria Teresa; Schmid, Christoph; Rabitsch, Werner; Pullarkat, Vinod; Legrand, Faezeh; Yakoub-agha, Ibrahim; Saber, Wael; Barrett, John; Hermine, Olivier; Hagglund, Hans; Sperr, Wolfgang R.; Popat, Uday; Alyea, Edwin P.; Devine, Steven; Deeg, H. Joachim; Weisdorf, Daniel; Akin, Cem; Valent, Peter

    2014-01-01

    Purpose Advanced systemic mastocytosis (SM), a fatal hematopoietic malignancy characterized by drug resistance, has no standard therapy. The effectiveness of allogeneic hematopoietic stem-cell transplantation (alloHCT) in SM remains unknown. Patients and Methods In a global effort to define the value of HCT in SM, 57 patients with the following subtypes of SM were evaluated: SM associated with clonal hematologic non–mast cell disorders (SM-AHNMD; n = 38), mast cell leukemia (MCL; n = 12), and aggressive SM (ASM; n = 7). Median age of patients was 46 years (range, 11 to 67 years). Donors were HLA-identical (n = 34), unrelated (n = 17), umbilical cord blood (n = 2), HLA-haploidentical (n = 1), or unknown (n = 3). Thirty-six patients received myeloablative conditioning (MAC), and 21 patients received reduced-intensity conditioning (RIC). Results Responses in SM were observed in 40 patients (70%), with complete remission in 16 patients (28%). Twelve patients (21%) had stable disease, and five patients (9%) had primary refractory disease. Overall survival (OS) at 3 years was 57% for all patients, 74% for patients with SM-AHNMD, 43% for those with ASM, and 17% for those with MCL. The strongest risk factor for poor OS was MCL. Survival was also lower in patients receiving RIC compared with MAC and in patients having progression compared with patients having stable disease or response. Conclusion AlloHCT was associated with long-term survival in patients with advanced SM. Although alloHCT may be considered as a viable and potentially curative therapeutic option for advanced SM in the meantime, given that this is a retrospective analysis with no control group, the definitive role of alloHCT will need to be determined by a prospective trial. PMID:25154823

  15. Growth factor and ultrasound-assisted bioreactor synergism for human mesenchymal stem cell chondrogenesis

    PubMed Central

    Thakurta, Sanjukta Guha; Budhiraja, Gaurav

    2015-01-01

    Ultrasound at 5.0 MHz was noted to be chondro-inductive, with improved SOX-9 gene and COL2A1 protein expression in constructs that allowed for cell-to-cell contact. To achieve tissue-engineered cartilage using macroporous scaffolds, it is hypothesized that a combination of ultrasound at 5.0 MHz and transforming growth factor-β3 induces human mesenchymal stem cell differentiation to chondrocytes. Expression of miR-145 was used as a metric to qualitatively assess the efficacy of human mesenchymal stem cell conversion. Our results suggest that in group 1 (no transforming growth factor-β3, no ultrasound), as anticipated, human mesenchymal stem cells were not efficiently differentiated into chondrocytes, judging by the lack of decrease in the level of miR-145 expression. Human mesenchymal stem cells differentiated into chondrocytes in group 2 (transforming growth factor-β3, no ultrasound) and group 3 (transforming growth factor-β3, ultrasound) with group 3 having a 2-fold lower miR-145 when compared to group 2 at day 7, indicating a higher conversion to chondrocytes. Transforming growth factor-β3–induced chondrogenesis with and without ultrasound stimulation for 14 days in the ultrasound-assisted bioreactor was compared and followed by additional culture in the absence of growth factors. The combination of growth factor and ultrasound stimulation (group 3) resulted in enhanced COL2A1, SOX-9, and ACAN protein expression when compared to growth factor alone (group 2). No COL10A1 protein expression was noted. Enhanced cell proliferation and glycosaminoglycan deposition was noted with the combination of growth factor and ultrasound stimulation. These results suggest that ultrasound at 5.0 MHz could be used to induce chondrogenic differentiation of mesenchymal stem cells for cartilage tissue engineering. PMID:25610590

  16. The Cain and Abl of Epithelial-Mesenchymal Transition and Transforming Growth Factor-β in Mammary Epithelial Cells

    PubMed Central

    Allington, Tressa M.; Schiemann, William P.

    2010-01-01

    Transforming growth factor-β (TGF-β) normally inhibits breast cancer development by preventing mammary epithelial cell (MEC) proliferation, by inducing MEC apoptosis, and by creating cell microenvironments that maintain MEC homeostasis and prevent their uncontrolled growth and motility. Mammary tumorigenesis elicits dramatic alterations in MEC architecture and microenvironment integrity, which collectively counteract the tumor-suppressing activities of TGF-β and enable its stimulation of breast cancer invasion and metastasis. How malignant MECs overcome the cytostatic actions imposed by normal microenvironments and TGF-β, and how abnormal microenvironments conspire with TGF-β to stimulate the development and progression of mammary tumors remains largely undefined. These knowledge gaps have prevented science and medicine from implementing treatments effective in simultaneously targeting abnormal cellular microenvironments, and in antagonizing the oncogenic activities of TGF-β in developing and progressing breast cancers. c-Abl is a ubiquitously expressed nonreceptor protein tyrosine kinase that essentially oversees all aspects of cell physiology, including the regulation of cell proliferation, migration and adhesion, as well as that of cell survival. Thus, the biological functions of c-Abl are highly reminiscent of those attributed to TGF-β, including the ability to function as either a suppressor or promoter of tumorigenesis. Interestingly, while dysregulated Abl activity clearly promotes tumorigenesis in hematopoietic cells, an analogous role for c-Abl in regulating solid tumor development, including those of the breast, remains controversial. Here, we review the functions of c-Abl in regulating breast cancer development and progression, and in alleviating the oncogenic activities of TGF-β and its stimulation of epithelial-mesenchymal transition during mammary tumorigenesis. PMID:21051857

  17. The Cain and Abl of epithelial-mesenchymal transition and transforming growth factor-β in mammary epithelial cells.

    PubMed

    Allington, Tressa M; Schiemann, William P

    2011-01-01

    Transforming growth factor-β (TGF-β) normally inhibits breast cancer development by preventing mammary epithelial cell (MEC) proliferation, by inducing MEC apoptosis, and by creating cell microenvironments that maintain MEC homeostasis and prevent their uncontrolled growth and motility. Mammary tumorigenesis elicits dramatic alterations in MEC architecture and microenvironment integrity, which collectively counteract the tumor-suppressing activities of TGF-β and enable its stimulation of breast cancer invasion and metastasis. How malignant MECs overcome the cytostatic actions imposed by normal microenvironments and TGF-β, and how abnormal microenvironments conspire with TGF-β to stimulate the development and progression of mammary tumors remains largely undefined. These knowledge gaps have prevented science and medicine from implementing treatments effective in simultaneously targeting abnormal cellular microenvironments, and in antagonizing the oncogenic activities of TGF-β in developing and progressing breast cancers. c-Abl is a ubiquitously expressed nonreceptor protein tyrosine kinase that essentially oversees all aspects of cell physiology, including the regulation of cell proliferation, migration and adhesion, as well as that of cell survival. Thus, the biological functions of c-Abl are highly reminiscent of those attributed to TGF-β, including the ability to function as either a suppressor or promoter of tumorigenesis. Interestingly, while dysregulated Abl activity clearly promotes tumorigenesis in hematopoietic cells, an analogous role for c-Abl in regulating solid tumor development, including those of the breast, remains controversial. Here, we review the functions of c-Abl in regulating breast cancer development and progression, and in alleviating the oncogenic activities of TGF-β and its stimulation of epithelial-mesenchymal transition during mammary tumorigenesis.

  18. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells

    SciTech Connect

    Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh; Hwang, Pyoung-Han; Yi, Ho-Keun; Nam, Sang-Yun; Lee, Dae-Yeol

    2009-07-17

    c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, and IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.

  19. Red blood cell-incompatible allogeneic hematopoietic progenitor cell transplantation.

    PubMed

    Rowley, S D; Donato, M L; Bhattacharyya, P

    2011-09-01

    Transplantation of hematopoietic progenitor cells from red cell-incompatible donors occurs in 30-50% of patients. Immediate and delayed hemolytic transfusion reactions are expected complications of red cell-disparate transplantation and both ABO and other red cell systems such as Kidd and rhesus can be involved. The immunohematological consequences of red cell-incompatible transplantation include delayed red blood cell recovery, pure red cell aplasia and delayed hemolysis from viable lymphocytes carried in the graft ('passenger lymphocytes'). The risks of these reactions, which may be abrupt in onset and fatal, are ameliorated by graft processing and proper blood component support. Red blood cell antigens are expressed on endothelial and epithelial tissues in the body and could serve to increase the risk of GvHD. Mouse models indicate that blood cell antigens may function as minor histocompatibility antigens affecting engraftment. Similar observations have been found in early studies of human transplantation for transfused recipients, although current conditioning and immunosuppressive regimens appear to overcome this affect. No deleterious effects from the use of red cell-incompatible hematopoietic grafts on transplant outcomes, such as granulocyte and platelet engraftments, the incidences of acute or chronic GvHD, relapse risk or OS, have been consistently demonstrated. Most studies, however, include limited number of patients, varying diagnoses and differing treatment regimens, complicating the detection of an effect of ABO-incompatible transplantation. Classification of patients by ABO phenotype ignoring the allelic differences of these antigens also may obscure the effect of red cell-incompatible transplantation on transplant outcomes. PMID:21897398

  20. Expression of insulin-like growth factor family genes in clear cell renal cell carcinoma

    PubMed Central

    Białożyt, Michał; Plato, Marta; Mazurek, Urszula; Braczkowska, Bogumiła

    2016-01-01

    Aim of the study Despite significant progress in the pathology of clear cell renal cell carcinoma (ccRCC), diagnostic and predictive factors of major importance have not been discovered. Some hopes are associated with insulin-like growth factors. The aim of the study was to compare the expression of genes for insulin-like growth factor family in tumours and in tissue of kidneys without cancer. Material and methods Fifty-two patients years with clear cell renal cell cancer were qualified to the study group; patients nephrectomised because of hydronephrosis were included in the control group. Expression of genes were evaluated by RT-PCR. Results Expression of IGFR-1 gene in tumour accounts for about 60% of cases. The incidence is higher than in corresponding adjacent non-cancerous kidney tissues and higher (but with no statistical significance) than in kidney without cancer. Expression of IGFR-2 gene in tumours has not been established. The incidence of the expression in corresponding adjacent non-cancerous kidney tissues is small. Expression of this gene has been present in all specimens from kidneys without cancer. Expression of IGFBP-3 gene ascertained in all (except four) cases of ccRCC and in the majority of clippings from adjacent tissue. It was not found in kidneys from the control group. IGF-1, IGF-2, and IGFR-1 mRNA copy numbers in ccRCC were higher than in the material from the control group PMID:27358591

  1. REDUCED INTENSITY CONDITIONING FOR ALLOGENEIC HEMATOPOIETIC CELL TRANSPLANTATION: CURRENT PERSPECTIVES

    PubMed Central

    Sandmaier, Brenda M.; Mackinnon, Stephen; Childs, Richard W.

    2007-01-01

    Allogeneic hematopoietic cell transplantation after myeloablative conditioning is an effective therapy for patients with hematologic malignancies. In an attempt to extend this therapy to older patients or those with comorbidities, reduced intensity or truly nonmyeloablative regimens have been developed over the last decade. The principle underlying reduced intensity regimens is to provide some tumor kill with lessened regimen-related morbidity and mortality, then rely on graft-versus-tumor (GVT) effects to eradicate remaining malignant cells, while nonmyeloablative regimens rely primarily on GVT effects. In this article, three representative approaches are described, demonstrating the clinical application for both hematopoietic and non-hematopoietic malignancies. Current challenges include controlling graft-versus-host disease while allowing GVT to occur. In the future, clinical trials using reduced intensity and nonmyeloablative conditioning will be compared to myeloablative conditioning in selected malignancies to extend the application to standard risk patients. PMID:17222778

  2. Growth factor signalling.

    PubMed

    de Laat, S W; Boonstra, J; Defize, L H; Kruijer, W; van der Saag, P T; Tertoolen, L G; van Zoelen, E J; den Hertog, J

    1999-01-01

    Signalling between cells in the developing vertebrate embryo is essential for normal embryonic development. In the mid 1970's, signal transduction research started at the Hubrecht Laboratory with special emphasis on analysis of the signalling mechanisms that direct cell proliferation and differentiation. The introduction of in vitro model systems contributed tremendously to the success of the signal transduction research at the Hubrecht Laboratory. Initially neuroblastoma cell lines, and later embryonal carcinoma and embryonal stem cells played an important role in identification of the molecular key players in developmental signalling. For instance, embryonal carcinoma cells were used to identify and characterise polypeptide growth factors. Growth factor signalling research was extended to analysis of growth factor receptor activation. Moreover, the second messenger systems that are linked to growth factor receptors were studied, as well as the nuclear responses to growth factor receptor activation. Finally, the role of growth factor signalling in differentiation was established using embryonal carcinoma cells. Here, we will review work that was characteristic for the growth factor receptor signalling research that was done at the Hubrecht Laboratory between 1980 and the early 1990's.

  3. Cell growth on immobilized cell growth factor. 8. Protein-free cell culture on insulin-immobilized microcarriers.

    PubMed

    Ito, Y; Uno, T; Liu, S Q; Imanishi, Y

    1992-12-01

    In order to develop a new protein-free cell culture system, microcarriers immobilized with insulin were synthesized. For the synthesis, glass and polyacrylamide beads were treated for the introduction of amino groups on the surface, and insulin was immobilized on the surface by using several method. Anchorage-dependent cells. mouse fibroblast cells STO and fibroic sarcoma cells HSDM(1)C(1), and the anchorage-independent cells, mouse hybridoma cells SJK132-20 and RDP 45/20 were cultivated on the microcarriers immobilized with insulin. The insulin-immobilized microcarriers did not have any effect on the proliferation of the anchorage independent cells but promoted the growth of anchorage-dependent cells remarkably. The activity of immobilized insulin was larger than that of free or adsorbed insulin. The repeated use of the insulin-immobilized microcarrier was possible, and the promotion activity in the the repeated use was greater than that in the use.

  4. Hematopoietic cell transplantation: a curative option for sickle cell disease.

    PubMed

    Krishnamurti, Lakshmanan

    2007-12-01

    Sickle cell disease is associated with considerable morbidity and premature mortality. Hematopoietic cell transplantation offers the possibility of cure and is associated with excellent results in pediatric patients receiving stem cell transplantation from a matched sibling donor. Reduced intensity conditioning regimen have the potential to further reduce regimen related morbidity and mortality. Improved understanding of the natural history of complications such as stroke and pulmonary hypertension, effects of treatments, such as hydroxyurea and blood transfusions, as well as the impact of transplantation on organ damage are likely to influence the timing and indication of transplantation. Improvements in preparative regimen may enable the safe use of alternate source of stem cells such as unrelated matched donors and further improve the applicability and acceptability of this treatment. PMID:18092247

  5. Targeting Cancer Stem Cell Plasticity Through Modulation of Epidermal Growth Factor and Insulin-Like Growth Factor Receptor Signaling in Head and Neck Squamous Cell Cancer

    PubMed Central

    Leong, Hui Sun; Chong, Fui Teen; Sew, Pui Hoon; Lau, Dawn P.; Wong, Bernice H.; Teh, Bin-Tean

    2014-01-01

    Emerging data suggest that cancer stem cells (CSCs) exist in equilibrium with differentiated cells and that stochastic transitions between these states can account for tumor heterogeneity and drug resistance. The aim of this study was to establish an in vitro system that recapitulates stem cell plasticity in head and neck squamous cell cancers (HNSCCs) and identify the factors that play a role in the maintenance and repopulation of CSCs. Tumor spheres were established using patient-derived cell lines via anchorage-independent cell culture techniques. These tumor spheres were found to have higher aldehyde dehydrogenase (ALD) cell fractions and increased expression of Kruppel-like factor 4, SRY (sex determining region Y)-box 2, and Nanog and were resistant to γ-radiation, 5-fluorouracil, cisplatin, and etoposide treatment compared with monolayer culture cells. Monolayer cultures were subject to single cell cloning to generate clones with high and low ALD fractions. ALDHigh clones showed higher expression of stem cell and epithelial-mesenchymal transition markers compared with ALDLow clones. ALD fractions, representing stem cell fractions, fluctuated with serial passaging, equilibrating at a level specific to each cell line, and could be augmented by the addition of epidermal growth factor (EGF) and/or insulin. ALDHigh clones showed increased EGF receptor (EGFR) and insulin-like growth factor-1 receptor (IGF-1R) phosphorylation, with increased activation of downstream pathways compared with ALDLow clones. Importantly, blocking these pathways using specific inhibitors against EGFR and IGF-1R reduced stem cell fractions drastically. Taken together, these results show that HNSCC CSCs exhibit plasticity, with the maintenance of the stem cell fraction dependent on the EGFR and IGF-1R pathways and potentially amenable to targeted therapeutics. PMID:25024430

  6. The insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 induces apoptosis in acute myeloid leukemia cells exhibiting autocrine insulin-like growth factor-I secretion.

    PubMed

    Tazzari, P L; Tabellini, G; Bortul, R; Papa, V; Evangelisti, C; Grafone, T; Martinelli, G; McCubrey, J A; Martelli, A M

    2007-05-01

    Insulin-like growth factor-I (IGF-I) and its receptor (IGF-IR) have been implicated in the pathophysiology of many human cancers, including those of hematopoietic lineage. We investigated the therapeutic potential of the novel IGF-IR tyrosine kinase activity inhibitor, NVP-AEW541, on human acute myeloid leukemia (AML) cells. NVP-AEW541 was tested on a HL60 cell subclone, which is dependent on autocrine secretion of IGF-I for survival and drug resistance, as well as primary drug resistant leukemia cells. NVP-AEW541 treatment (24 h) induced dephosphorylation of IGF-IR. NVP-AEW541 also caused Akt dephosphorylation and changes in the expression of key regulatory proteins of the cell cycle. At longer incubation times (48 h), NVP-AEW541-induced apoptotic cell death, as demonstrated by caspase-3 cleavage. Apoptosis was accompanied by decreased expression of anti-apoptotic proteins. NVP-AEW541 enhanced sensitivity of HL60 cells to either cytarabine or etoposide. Moreover, NVP-AEW541 reduced the clonogenic capacity of AML CD34(+) cells cultured in the presence of IGF-I. Chemoresistant AML blasts displayed enhanced IGF-I secretion, and were sensitized to etoposide-induced apoptosis by NVP-AEW541. Our findings indicate that NVP-AEW541 might be a promising therapeutic agent for the treatment of those AML cases characterized by IGF-I autocrine secretion.

  7. Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells.

    PubMed Central

    Kuwabara, K; Ogawa, S; Matsumoto, M; Koga, S; Clauss, M; Pinsky, D J; Lyn, P; Leavy, J; Witte, L; Joseph-Silverstein, J

    1995-01-01

    Wound repair and tumor vascularization depend upon blood vessel growth into hypoxic tissue. Although hypoxia slows endothelial cell (EC) proliferation and suppresses EC basic fibroblast growth factor (bFGF) expression, we report that macrophages (MPs) exposed to PO2 approximately 12-14 torr (1 torr = 133.3 Pa) synthesize and release in a time-dependent manner platelet-derived growth factor (PDGF) and acidic/basic FGFs (a/bFGFs), which stimulate the growth of hypoxic ECs. Chromatography of hypoxic MP-conditioned medium on immobilized heparin with an ascending NaCl gradient resolved three peaks of mitogenic activity: activity of the first peak was neutralized by antibody to PDGF; activity of the second peak was neutralized by antibody to aFGF; and activity of the third peak was neutralized by antibody to bFGF. Metabolically labeled lysates and supernatants from MPs exposed to hypoxia showed increased synthesis and release of immunoprecipitable PDGF and a/bFGF in the absence of changes in cell viability. Possible involvement of a heme-containing oxygen sensor in MP elaboration of growth factors was suggested by the induction of bFGF and PDGF by normoxic MPs exposed to nickel or cobalt, although metabolic inhibitors such as sodium azide were without effect. These results suggest a paracrine model in which hypoxia stimulates MP release of PDGF and a/bFGF, inducing EC proliferation and potentially promoting angiogenesis in hypoxic environments. Images Fig. 1 Fig. 3 Fig. 4 PMID:7538678

  8. Segmentation of vascular structures and hematopoietic cells in 3D microscopy images and quantitative analysis

    NASA Astrophysics Data System (ADS)

    Mu, Jian; Yang, Lin; Kamocka, Malgorzata M.; Zollman, Amy L.; Carlesso, Nadia; Chen, Danny Z.

    2015-03-01

    In this paper, we present image processing methods for quantitative study of how the bone marrow microenvironment changes (characterized by altered vascular structure and hematopoietic cell distribution) caused by diseases or various factors. We develop algorithms that automatically segment vascular structures and hematopoietic cells in 3-D microscopy images, perform quantitative analysis of the properties of the segmented vascular structures and cells, and examine how such properties change. In processing images, we apply local thresholding to segment vessels, and add post-processing steps to deal with imaging artifacts. We propose an improved watershed algorithm that relies on both intensity and shape information and can separate multiple overlapping cells better than common watershed methods. We then quantitatively compute various features of the vascular structures and hematopoietic cells, such as the branches and sizes of vessels and the distribution of cells. In analyzing vascular properties, we provide algorithms for pruning fake vessel segments and branches based on vessel skeletons. Our algorithms can segment vascular structures and hematopoietic cells with good quality. We use our methods to quantitatively examine the changes in the bone marrow microenvironment caused by the deletion of Notch pathway. Our quantitative analysis reveals property changes in samples with deleted Notch pathway. Our tool is useful for biologists to quantitatively measure changes in the bone marrow microenvironment, for developing possible therapeutic strategies to help the bone marrow microenvironment recovery.

  9. Unraveling Growth Factor Signaling and Cell Cycle Progression in Individual Fibroblasts.

    PubMed

    Gross, Sean M; Rotwein, Peter

    2016-07-01

    Cultured cells require the actions of growth factors to enter the cell cycle, but how individual members of a population respond to the same stimulus remains unknown. Here we have employed continuous monitoring by live cell imaging in a dual-reporter cell model to investigate the regulation of short-term growth factor signaling (protein kinase B (PKB/Akt) activity) and longer-term progression through the cell cycle (cyclin-dependent kinase 2 activity). In the total population, insulin-like growth factor-I (IGF-I)-enhanced cell cycle entry by >5-fold compared with serum-free medium (from 13.5 to 78%), but at the single cell level we observed a broad distribution in the timing of G1 exit (4-24 h, mean ∼12 h) that did not vary with either the amount or duration of IGF-I treatment. Cells that failed to re-enter the cell cycle exhibited similar responses to IGF-I in terms of integrated Akt activity and migration distance compared with those that did. We made similar observations with EGF, PDGF-AA, and PDGF-BB. As potential thresholds of growth factor-mediated cell cycle progression appeared to be heterogeneous within the population, the longer-term proliferative outcomes of individual cells to growth factor stimulation could not be predicted based solely on acute Akt signaling responses, no matter how robust these might be. Thus, although we could define a relationship at the population level between growth factor-induced Akt signaling dynamics and cell cycle progression, we could not predict the fate of individual cells. PMID:27226630

  10. Contact- and growth factor-dependent survival in a canine marrow-derived stromal cell line.

    PubMed

    Huss, R; Hoy, C A; Deeg, H J

    1995-05-01

    Cell-cell interactions and the presence of growth factors such as stem cell factor (SCF; or c-kit ligand) or interleukin-6 (IL-6) are involved in the proliferation and differentiation of the canine marrow-derived stromal cell line DO64. In the presence of SCF, stromal cells are induced to differentiate, but not to proliferate. In contrast, in the presence of IL-6, stromal cells are induced to proliferate rather than to differentiate in culture. Both SCF and IL-6 are produced by the stromal cells themselves and, thus, act as autocrine factors. In addition, DO64 cells also interact physically with each other in culture when grown under optimal culture conditions (70% to 90% cell confluence and in the presence of serum), thereby supporting proliferation and maintaining viability. Under conditions of lower cell density or low serum or growth factor concentrations in culture, DO64 cells tend to aggregate and form clusters. This increase in local cell concentration is associated with preservation of viability, presumably because of the accumulation of autocrine factors. If no signal, neither intercellular nor soluble, is provided, and DO64 cells are not able to reach a critical cell density or to produce sufficient factors in an autocrine fashion, the cells cease to proliferate and eventually die.

  11. Hepatocyte growth factor induces tubulogenesis of primary renal proximal tubular epithelial cells.

    PubMed

    Bowes, R C; Lightfoot, R T; Van De Water, B; Stevens, J L

    1999-07-01

    Hepatocyte growth factor (HGF)-induced tubulogenesis has been demonstrated with renal epithelial cell lines grown in collagen gels but not with primary cultured renal proximal tubular epithelial cells (RPTEs). We show that HGF selectively induces proliferation and branching morphogenesis of primary cultured rat RPTEs. Additional growth factors including fibroblast growth factor (FGF)-1, epidermal growth factor (EGF), FGF-7, or insulin-like growth factor-1 (IGF-1) did not selectively induce tubulogenesis. However, when administered in combination, these factors initiated branching morphogenesis comparable to HGF alone and greatly augmented HGF-induced proliferation and branching. Microscopic analysis revealed that branching RPTEs were undergoing tubulogenesis and formed a polarized epithelium. TGF-beta1 blocked HGF- or growth factor cocktail (GFC; HGF, FGF-1, EGF, IGF-1)-induced proliferation and branching morphogenesis. Adding TGF-beta1 after GFC-induced tubulogenesis had occurred caused a progressive regression of the tubular structures, a response associated with an increase in apoptosis of the RPTEs. Primary cultured RPTEs are capable of undergoing HGF-induced tubulogenesis. Unlike cell lines, combinations of growth factors differentially augment the response. PMID:10362020

  12. Different Protein Kinase C Isoforms Determine Growth Factor Specificity in Neuronal Cells

    PubMed Central

    Corbit, Kevin C.; Soh, Jae-Won; Yoshida, Keiko; Eves, Eva M.; Weinstein, I. Bernard; Rosner, Marsha Rich

    2000-01-01

    Although mitogenic and differentiating factors often activate a number of common signaling pathways, the mechanisms leading to their distinct cellular outcomes have not been elucidated. In a previous report, we demonstrated that mitogen-activated protein (MAP) kinase (ERK) activation by the neurogenic agents fibroblast growth factor (FGF) and nerve growth factor is dependent on protein kinase Cδ (PKCδ), whereas MAP kinase activation in response to the mitogen epidermal growth factor (EGF) is independent of PKCδ in rat hippocampal (H19-7) and pheochromocytoma (PC12) cells. We now show that EGF activates MAP kinase through a PKCζ-dependent pathway involving phosphatidylinositol 3-kinase and PDK1 in H19-7 cells. PKCζ, like PKCδ, acts upstream of MEK, and PKCζ can potentiate Raf-1 activation by EGF. Inhibition of PKCζ also blocks EGF-induced DNA synthesis as monitored by bromodeoxyuridine incorporation in H19-7 cells. Finally, in embryonic rat brain hippocampal cell cultures, inhibitors of PKCζ or PKCδ suppress MAP kinase activation by EGF or FGF, respectively, indicating that these factors activate distinct signaling pathways in primary as well as immortalized neural cells. Taken together, these results implicate different PKC isoforms as determinants of growth factor signaling specificity within the same cell. Furthermore, these data provide a mechanism whereby different growth factors can differentially activate a common signaling intermediate and thereby generate biological diversity. PMID:10891480

  13. Does hematopoietic stem cell transplantation benefit infants with acute leukemia?

    PubMed Central

    Sison, Edward Allan R.; Brown, Patrick

    2015-01-01

    A 6-month-old girl was diagnosed with acute lymphoblastic leukemia (ALL). She has completed induction therapy and is currently in first complete remission (CR1). You are asked by your resident if hematopoietic stem cell transplantation (HSCT) would benefit infants with acute leukemia. PMID:24319238

  14. Expansion of human cord blood hematopoietic stem cells for transplantation.

    PubMed

    Chou, Song; Chu, Pat; Hwang, William; Lodish, Harvey

    2010-10-01

    A recent Science paper reported a purine derivative that expands human cord blood hematopoietic stem cells in culture (Boitano et al., 2010) by antagonizing the aryl hydrocarbon receptor. Major problems need to be overcome before ex vivo HSC expansion can be used clinically.

  15. Lentiviral Hematopoietic Stem Cell Gene Therapy in Inherited Metabolic Disorders

    PubMed Central

    2014-01-01

    Abstract After more than 20 years of development, lentiviral hematopoietic stem cell gene therapy has entered the stage of initial clinical implementation for immune deficiencies and storage disorders. This brief review summarizes the development and applications, focusing on the lysosomal enzyme deficiencies, especially Pompe disease. PMID:25184354

  16. Hematopoietic stem cells burn fat to prevent exhaustion.

    PubMed

    Lallemand-Breitenbach, Valerie; de Thé, Hugues

    2012-10-01

    Ito et al. (2012) recently report in Nature Medicine that fatty acid oxidation (FAO) regulated by PPARδ controls asymmetric division in hematopoietic stem cells (HSCs). This metabolic mechanism prevents HSC exhaustion and is downstream of the promyelocytic leukemia protein PML, suggesting therapeutic implications for HSC function and disease.

  17. Antagonism between MCL-1 and PUMA governs stem/progenitor cell survival during hematopoietic recovery from stress

    PubMed Central

    Delbridge, Alex R. D.; Opferman, Joseph T.; Grabow, Stephanie

    2015-01-01

    Understanding the critical factors that govern recovery of the hematopoietic system from stress, such as during anticancer therapy and bone marrow transplantation, is of clinical significance. We investigated the importance of the prosurvival proteins myeloid cell leukemia-1 (MCL-1) and B-cell lymphoma–extra large (BCL-XL) in stem/progenitor cell survival and fitness during hematopoietic recovery from stress. Loss of a single Mcl-1 allele, which reduced MCL-1 protein levels, severely compromised hematopoietic recovery from myeloablative challenge and following bone marrow transplantation, whereas BCL-XL was dispensable in both contexts. We identified inhibition of proapoptotic p53 upregulated modulator of apoptosis (PUMA) as the key role of MCL-1 in both settings, with Mcl-1+/−;Puma−/− mice completely protected from the deleterious effects of loss of 1 Mcl-1 allele. These results reveal the molecular mechanisms that govern cell survival during hematopoietic recovery from stress. PMID:25847014

  18. Homing in hematopoietic stem cells: focus on regulatory role of CXCR7 on SDF1a/CXCR4 axis

    PubMed Central

    Asri, Amir; Sabour, Javid; Atashi, Amir; Soleimani, Masoud

    2016-01-01

    Hematopoietic stem cells (HSCs) form a rare population of multipotent stem cells, which give rise to all hematopoietic lineages. HSCs home to bone marrow niches and circulate between blood and bone marrow. Many factors, especially SDF1a, affect the circulation of HSCs, but these have not been fully recognized. SDF1a has been shown to bind CXCR7 in addition to CXCR4 and can also function as SDF1a/CXCR4 modulator. CXCR7 plays a role in HSCs homing via SDF1a gradient and is a mediator of CXCR4/SDF1a axis. This review describes the current concepts and questions concerning CXCR7/CXCR4/SDF1a axis as an important key in hematopoietic stem cells homing with particular emphasis on CXCR7 receptor. Homing of HSCs is an essential step for successful hematopoietic stem cell transplantation. PMID:27092040

  19. Designer blood: creating hematopoietic lineages from embryonic stem cells

    PubMed Central

    Olsen, Abby L.; Stachura, David L.; Weiss, Mitchell J.

    2006-01-01

    Embryonic stem (ES) cells exhibit the remarkable capacity to become virtually any differentiated tissue upon appropriate manipulation in culture, a property that has been beneficial for studies of hematopoiesis. Until recently, the majority of this work used murine ES cells for basic research to elucidate fundamental properties of blood-cell development and establish methods to derive specific mature lineages. Now, the advent of human ES cells sets the stage for more applied pursuits to generate transplantable cells for treating blood disorders. Current efforts are directed toward adapting in vitro hematopoietic differentiation methods developed for murine ES cells to human lines, identifying the key interspecies differences in biologic properties of ES cells, and generating ES cell-derived hematopoietic stem cells that are competent to repopulate adult hosts. The ultimate medical goal is to create patient-specific and generic ES cell lines that can be expanded in vitro, genetically altered, and differentiated into cell types that can be used to treat hematopoietic diseases. PMID:16254136

  20. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews

    PubMed Central

    Xiong, Liu-lin; Chen, Zhi-wei; Wang, Ting-hua

    2016-01-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews. PMID:27212919

  1. Osteoblasts and Bone Marrow Mesenchymal Stromal Cells Control Hematopoietic Stem Cell Migration and Proliferation in 3D In Vitro Model

    PubMed Central

    de Barros, Ana Paula D. N.; Takiya, Christina M.; Garzoni, Luciana R.; Leal-Ferreira, Mona Lisa; Dutra, Hélio S.; Chiarini, Luciana B.; Meirelles, Maria Nazareth; Borojevic, Radovan; Rossi, Maria Isabel D.

    2010-01-01

    Background Migration, proliferation, and differentiation of hematopoietic stem cells (HSCs) are dependent upon a complex three-dimensional (3D) bone marrow microenvironment. Although osteoblasts control the HSC pool, the subendosteal niche is complex and its cellular composition and the role of each cell population in HSC fate have not been established. In vivo models are complex and involve subtle species-specific differences, while bidimensional cultures do not reflect the 3D tissue organization. The aim of this study was to investigate in vitro the role of human bone marrow–derived mesenchymal stromal cells (BMSC) and active osteoblasts in control of migration, lodgment, and proliferation of HSCs. Methodology/Principal Findings A complex mixed multicellular spheroid in vitro model was developed with human BMSC, undifferentiated or induced for one week into osteoblasts. A clear limit between the two stromal cells was established, and deposition of extracellular matrix proteins fibronectin, collagens I and IV, laminin, and osteopontin was similar to the observed in vivo. Noninduced BMSC cultured as spheroid expressed higher levels of mRNA for the chemokine CXCL12, and the growth factors Wnt5a and Kit ligand. Cord blood and bone marrow CD34+ cells moved in and out the spheroids, and some lodged at the interface of the two stromal cells. Myeloid colony-forming cells were maintained after seven days of coculture with mixed spheroids, and the frequency of cycling CD34+ cells was decreased. Conclusions/Significance Undifferentiated and one-week osteo-induced BMSC self-assembled in a 3D spheroid and formed a microenvironment that is informative for hematopoietic progenitor cells, allowing their lodgment and controlling their proliferation. PMID:20161704

  2. Endothelial Cell Protein C Receptor Opposes Mesothelioma Growth Driven by Tissue Factor

    PubMed Central

    Keshava, Shiva; Sahoo, Sanghamitra; Tucker, Torry A.; Idell, Steven; Rao, L. Vijaya Mohan; Pendurthi, Usha R.

    2013-01-01

    The pro-coagulant protein Tissue Factor (TF, F3) is a powerful growth promoter in many tumors but its mechanism of action is not well understood. More generally, it is unknown whether hemostatic factors expressed on tumor cells influence TF-mediated effects on cancer progression. In this study, we investigated the influence of TF, endothelial cell protein C receptor (EPCR, PROCR) and protease activated receptor-1 (PAR1, F2R) on the growth of malignant pleural mesothelioma (MPM), using human MPM cells that lack or express TF, EPCR or PAR1 and an orthotopic nude mouse model of MPM. Intrapleural administration of MPM cells expressing TF and PAR1 but lacking EPCR and PAR2 (F2RL1) generated large tumors in the pleural cavity. Suppression of TF or PAR1 expression in these cells markedly reduced tumor growth. In contrast, TF overexpression in non-aggressive MPM cells that expressed EPCR and PAR1 with minimal levels of TF did not increase their limited tumorigenicity. More importantly, ectopic expression of EPCR in aggressive MPM cells attenuated their growth potential, whereas EPCR silencing in non-aggressive MPM cells engineered to overexpress TF increased their tumorigenicity. Immunohistochemical analyses revealed that EPCR expression in tumor cells reduced tumor cell proliferation and enhanced apoptosis. Overall, our results enlighten the mechanism by which TF promotes tumor growth through PAR1, and they show how EPCR can attenuate the growth of TF-expressing tumor cells. PMID:23539451

  3. Bcl11a Deficiency Leads to Hematopoietic Stem Cell Defects with an Aging-like Phenotype.

    PubMed

    Luc, Sidinh; Huang, Jialiang; McEldoon, Jennifer L; Somuncular, Ece; Li, Dan; Rhodes, Claire; Mamoor, Shahan; Hou, Serena; Xu, Jian; Orkin, Stuart H

    2016-09-20

    B cell CLL/lymphoma 11A (BCL11A) is a transcription factor and regulator of hemoglobin switching that has emerged as a promising therapeutic target for sickle cell disease and thalassemia. In the hematopoietic system, BCL11A is required for B lymphopoiesis, yet its role in other hematopoietic cells, especially hematopoietic stem cells (HSCs) remains elusive. The extensive expression of BCL11A in hematopoiesis implicates context-dependent roles, highlighting the importance of fully characterizing its function as part of ongoing efforts for stem cell therapy and regenerative medicine. Here, we demonstrate that BCL11A is indispensable for normal HSC function. Bcl11a deficiency results in HSC defects, typically observed in the aging hematopoietic system. We find that downregulation of cyclin-dependent kinase 6 (Cdk6), and the ensuing cell-cycle delay, correlate with HSC dysfunction. Our studies define a mechanism for BCL11A in regulation of HSC function and have important implications for the design of therapeutic approaches to targeting BCL11A. PMID:27653684

  4. Pak2 regulates hematopoietic progenitor cell proliferation, survival and differentiation

    PubMed Central

    Zeng, Yi; Broxmeyer, Hal E.; Staser, Karl; Chitteti, Brahmananda Reddy; Park, Su-Jung; Hahn, Seongmin; Cooper, Scott; Sun, Zejin; Jiang, Li; Yang, XianLin; Yuan, Jin; Kosoff, Rachelle; Sandusky, George; Srour, Edward F.; Chernoff, Jonathan; Clapp, Wade

    2015-01-01

    p21-activated kinase 2 (Pak2), a serine/threonine kinase, has been previously shown to be essential for hematopoietic stem cell (HSC) engraftment. However, Pak2 modulation of long-term hematopoiesis and lineage commitment remain unreported. Utilizing a conditional Pak2 knock out (KO) mouse model, we found that disruption of Pak2 in HSCs induced profound leukopenia and a mild macrocytic anemia. Although loss of Pak2 in HSCs leads to less efficient short- and long-term competitive hematopoiesis than wild type (WT) cells, it does not affect HSC self-renewal per se. Pak2 disruption decreased the survival and proliferation of multi-cytokine stimulated immature progenitors. Loss of Pak2 skewed lineage differentiation toward granulocytopoiesis and monocytopoiesis in mice as evidenced by 1) a three to six-fold increase in the percentage of peripheral blood granulocytes and a significant increase in the percentage of granulocyte-monocyte progenitors (GMPs) in mice transplanted with Pak2-disrupted BM; 2) Pak2-disrupted BM and c-kit+ cells yielded higher numbers of more mature subsets of granulocyte-monocyte colonies and polymophonuclear neutrophils (PMNs), respectively, when cultured in the presence of granulocyte-macrophage colony stimulating factor (GM-CSF). Pak2 disruption resulted respectively in decreased and increased gene expression of transcription factors JunB and c-Myc, which may suggest underlying mechanisms by which Pak2 regulates granulocyte-monocyte lineage commitment. Furthermore, Pak2 disruption led to 1) higher percentage of CD4+CD8+ double positive T cells and lower percentages of CD4+CD8− or CD4−CD8+ single positive T cells in thymus and 2) decreased numbers of mature B cells and increased numbers of Pre-Pro B cells in BM, suggesting defects in lymphopoiesis. PMID:25586960

  5. Effect of Growth Factors on the Proliferation and Gene Expression of Human Meibomian Gland Epithelial Cells

    PubMed Central

    Liu, Shaohui; Kam, Wendy R.; Ding, Juan; Hatton, Mark P.; Sullivan, David A.

    2013-01-01

    Purpose. We hypothesize that growth factors, including epidermal growth factor (EGF) and bovine pituitary extract (BPE), induce proliferation, but not differentiation (e.g., lipid accumulation), of human meibomian gland epithelial cells. We also hypothesize that these actions involve a significant upregulation of genes linked to cell cycle processes, and a significant downregulation of genes associated with differentiation. Our objective was to test these hypotheses. Methods. Immortalized human meibomian gland and conjunctival epithelial cells were cultured for varying time periods in the presence or absence of EGF, BPE, EGF + BPE, or serum, followed by cell counting, neutral lipid staining, or RNA isolation for molecular biological procedures. Results. Our studies show that growth factors stimulate a significant, time-dependent proliferation of human meibomian gland epithelial cells. These effects are associated with a significant upregulation of genes linked to cell cycle, DNA replication, ribosomes, and translation, and a significant decrease in those related to cell differentiation, tissue development, lipid metabolic processes, and peroxisome proliferator-activated receptor signaling. Serum-induced differentiation, but not growth factor-related proliferation, elicits a pronounced lipid accumulation in human meibomian gland epithelial cells. This lipogenic response is unique, and is not duplicated by human conjunctival epithelial cells. Conclusions. Our results demonstrate that EGF and BPE stimulate human meibomian gland epithelial cells to proliferate. Further, our findings show that action is associated with an upregulation of cell cycle and translation ontologies, and a downregulation of genetic pathways linked to differentiation and lipid biosynthesis. PMID:23493293

  6. Growth factor(s) produced during infection with an adenovirus variant stimulates proliferation of nonestablished epithelial cells.

    PubMed

    Quinlan, M P; Sullivan, N; Grodzicker, T

    1987-05-01

    Infection of primary baby rat kidney cells with an adenovirus variant that encodes only the 12S gene of the E1A region, adenovirus type 5 (Ad5) 12S, results in the production of a growth factor that stimulates primary epithelial cells to proliferate. Increased epithelial cell DNA synthesis and proliferation is detectable between 24 and 36 hr after the addition of conditioned medium from Ad5 12S infected cells and not from cells infected with an E1A deletion mutant virus, Ad5 dl312. This mitogenic factor(s) is effective in the absence of serum and can override the inhibitory effect of serum on primary epithelial cells. Furthermore, there is a requirement for the continued presence of the growth factor(s) in the Ad5 12S conditioned medium to maintain epithelial cell proliferation, and the conditioned medium can maintain these cells in a proliferative state for at least 6 wk. The stimulatory activity in Ad5 12S conditioned medium is associated with large molecular weight complexes, from which it can be released by 4 M NaCl. Several characteristics of the growth factor(s) indicate that it is a unique mitogen for epithelial cells. PMID:2953026

  7. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform

    PubMed Central

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W.; Werner, Carsten; Pompe, Tilo

    2016-01-01

    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin. PMID:27535453

  8. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform

    NASA Astrophysics Data System (ADS)

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W.; Werner, Carsten; Pompe, Tilo

    2016-08-01

    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin.

  9. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform.

    PubMed

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W; Werner, Carsten; Pompe, Tilo

    2016-01-01

    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin. PMID:27535453

  10. Control of proliferation of human vascular endothelial cells. Characterization of the response of human umbilical vein endothelial cells to fibroblast growth factor, epidermal growth factor, and thrombin.

    PubMed

    Gospodarowicz, D; Brown, K D; Birdwell, C R; Zetter, B R

    1978-06-01

    Because the response of human endothelial cells to growth factors and conditioning agents has broad implications for our understanding of wound healing angiogenesis, and human atherogenesis, we have investigated the responses of these cells to the fibroblast (FGF) and epidermal growth factors (EGF), as well as to the protease thrombin, which has been previously shown to potentiate the growth response of other cell types of FGF and EGF. Because the vascular endothelial cells that form the inner lining of blood vessels may be expected to be exposed to high thrombin concentrations after trauma or in pathological states associated with thrombosis, they are of particular interest with respect to the physiological role of this protease in potentiating cell proliferation. Our results indicate that human vascular endothelial cells respond poorly to either FGF or thrombin alone. In contrast, when cells are maintained in the presence of thrombin, their proliferative response to FGF is greatly increased even in cultures seeded at a density as low as 3 cells/mm2. Human vascular endothelial cells also respond to EGF and thrombin, although their rate of proliferation is much slower than when maintained with FGF and thrombin. In contrast, bovine vascular endothelial cells derived from vascular territories as diverse as the bovine heart, aortic arch, and umbilical vein respond maximally to FGF alone and neither respond to nor bind EGF. Furthermore, the response of bovine vascular endothelial cells to FGF was not potentiated by thrombin, indicating that the set of factors controlling the proliferation of vascular endothelial cells could be species-dependent. The requirement of cultured human vascular endothelial cells for thrombin could explain why the human cells, in contrast to bovine endothelial cells, are so difficult to maintain in tissue culture. Our results demonstrate that by using FGF and thrombin one can develop cultures of human vascular endothelial cells capable of

  11. In vitro production of functional immune cells derived from human hematopoietic stem cells

    PubMed Central

    Payuhakrit, Witchuda; Panichakul, Tasanee; Charoenphon, Natthawut; Chalermsaenyakorn, Panus; Jaovisidha, Adithep; Wongborisuth, Chokdee; Udomsangpetch, Rachanee

    2015-01-01

    Hematopoietic stem cells (HSC) from cord blood are potentially high sources for transplantation due to their low immunogenicity and the presence of the multipotent cells. These cells are capable of differentiating to produce various lineages of blood cells under specific conditions. We have enriched highly purified CD34+ cells from cord blood, determined in vitro growth of the cells in culture systems in the absence (condition A) or presence of GM-CSF and G-CSF (condition B), and determined the profile of immune cells during the period of cultivation by using flow cytometry. PhytohemagglutininA (PHA) was used as a mitogen to stimulate T lymphocytes derived from hematopoietic stem cells. GM-CSF and G-CSF prolonged the survival of the growing cells and also maintained expansion of cells in blastic stage. By day 12 of cultivation, when cell numbers peaked, various types of immune cells had appeared (CD14+ cells, CD40+HLA-DR+ cells, CD3+CD56+ cells, CD19+ cells, CD3+CD4+ cells, CD3+CD8+cells and CD3-CD56+). A significantly higher percentage of monocytes (p = 0.002) were observed under culture with GM-CSF, G-CSF when compared with culture without GM-CSF, G-CSF. In addition, T lymphocytes derived from HSC responded to 50 µg/ml of PHA. This is the first report showing the complete differentiation and proliferation of immune cells derived from CD34+ HSC under in vitro culture conditions. Lymphocytes, monocytes, dendritic cells and polymorph nuclear cells derived from HSC in vitro are unique, and thus may benefit various studies such as innate immunity and pathophysiology of immune disorders. PMID:26933404

  12. Improved Survival and Hematopoietic Differentiation of Murine Embryonic Stem Cells on Electrospun Polycaprolactone Nanofiber

    PubMed Central

    Dehdilani, Nima; Shamsasenjan, Karim; Movassaghpour, Aliakbar; Akbarzadehlaleh, Parvin; Amoughli Tabrizi, Bahram; Parsa, Hamed; Sabagi, Fatemeh

    2016-01-01

    Objective Three-dimensional (3D) biomimetic nanofiber scaffolds have widespread ap- plications in biomedical tissue engineering. They provide a suitable environment for cel- lular adhesion, survival, proliferation and differentiation, guide new tissue formation and development, and are one of the outstanding goals of tissue engineering. Electrospinning has recently emerged as a leading technique for producing biomimetic scaffolds with mi- cro to nanoscale topography and a high porosity similar to the natural extracellular matrix (ECM). These scaffolds are comprised of synthetic and natural polymers for tissue engi- neering applications. Several kinds of cells such as human embryonic stem cells (hESCs) and mouse ESCs (mESCs) have been cultured and differentiated on nanofiber scaffolds. mESCs can be induced to differentiate into a particular cell lineage when cultured as em- bryoid bodies (EBs) on nano-sized scaffolds. Materials and Methods We cultured mESCs (2500 cells/100 µl) in 96-well plates with knockout Dulbecco’s modified eagle medium (DMEM-KO) and Roswell Park Memorial Institute-1640 (RPMI-1640), both supplemented with 20% ESC grade fetal bovine serum (FBS) and essential factors in the presence of leukemia inhibitory factor (LIF). mESCs were seeded at a density of 2500 cells/100 µl onto electrospun polycaprolactone (PCL) nanofibers in 96-well plates. The control group comprised mESCs grown on tissue cul- ture plates (TCP) at a density of 2500 cells/100 µl. Differentiation of mESCs into mouse hematopoietic stem cells (mHSCs) was performed by stem cell factor (SCF), interleukin-3 (IL-3), IL-6 and Fms-related tyrosine kinase ligand (Flt3-L) cytokines for both the PCL and TCP groups. We performed an experimental study of mESCs differentiation. Results PCL was compared to conventional TCP for survival and differentiation of mESCs to mHSCs. There were significantly more mESCs in the PCL group. Flowcyto- metric analysis revealed differences in hematopoietic

  13. Atrial natriuretic factor inhibits mitogen-induced growth in aortic smooth muscle cells.

    PubMed

    Baldini, P M; De Vito, P; Fraziano, M; Mattioli, P; Luly, P; Di Nardo, P

    2002-10-01

    Atrial natriuretic factor (ANF) is a polypeptide able to affect cardiovascular homeostasis exhibiting diuretic, natriuretic, and vasorelaxant activities. ANF shows antimitogenic effects in different cell types acting through R(2) receptor. Excessive proliferation of smooth muscle cells is a common phenomenon in diseases such as atherosclerosis, but the role of growth factors in the mechanism which modulate this process has yet to be clarified. The potential antimitogenic role of ANF on the cell growth induced by growth factors appears very intriguing. Aim of the present study was to investigate the possible involvement of ANF on rat aortic smooth muscle (RASM) cells proliferation induced by known mitogens and the mechanism involved. Our data show that ANF, at physiological concentration range, inhibits RASM cell proliferation induced by known mitogens such as PDGF and insulin, and the effect seems to be elicited through the modulation of phosphatidic acid (PA) production and MAP kinases involvement.

  14. Update of hematopoietic cell transplantation for sickle cell disease

    PubMed Central

    Walters, Mark C.

    2016-01-01

    Purpose of review Hematopoietic cell transplantation (HCT) is a curative therapy for sickle cell disease (SCD) that is utilized very rarely because of limited allogeneic donor availability, limited healthcare resources needed to expand the treatment to regions in the world where most affected individuals reside, and by a view among SCD experts that HCT lacks the evidential rigor with short and long-term toxicity profiles that together might support its broader application. Recent findings In this update, recent advances focused on donor selection, reduced toxicity preparation for HCT, and treatment of young adults will be presented. The current status of conventional bone marrow transplantation with a human leukocyte antigen-identical sibling donor is summarized. Summary HCT for SCD is curative in almost all children who have a human leukocyte antigen-matched sibling donor. The future of this therapy will hinge on expanding the number of individuals who might be treated. PMID:25767957

  15. Appropriate nonwoven filters effectively capture human peripheral blood cells and mesenchymal stem cells, which show enhanced production of growth factors.

    PubMed

    Hori, Hideo; Iwamoto, Ushio; Niimi, Gen; Shinzato, Masanori; Hiki, Yoshiyuki; Tokushima, Yasuo; Kawaguchi, Kazunori; Ohashi, Atsushi; Nakai, Shigeru; Yasutake, Mikitomo; Kitaguchi, Nobuya

    2015-03-01

    Scaffolds, growth factors, and cells are three essential components in regenerative medicine. Nonwoven filters, which capture cells, provide a scaffold that localizes and concentrates cells near injured tissues. Further, the cells captured on the filters are expected to serve as a local supply of growth factors. In this study, we investigated the growth factors produced by cells captured on nonwoven filters. Nonwoven filters made of polyethylene terephthalate (PET), biodegradable polylactic acid (PLA), or chitin (1.2-22 μm fiber diameter) were cut out as 13 mm disks and placed into cell-capturing devices. Human mesenchymal stem cells derived from adipose tissues (h-ASCs) and peripheral blood cells (h-PBCs) were captured on the filter and cultured to evaluate growth factor production. The cell-capture rates strongly depended on the fiber diameter and the number of filter disks. Nonwoven filter disks were composed of PET or PLA fibers with fiber diameters of 1.2-1.8 μm captured over 70% of leukocytes or 90% of h-ASCs added. The production of vascular endothelial growth factor (VEGF), transforming growth factor β1, and platelet-derived growth factor AB were significantly enhanced by the h-PBCs captured on PET or PLA filters. h-ASCs on PLA filters showed significantly enhanced production of VEGF. These enhancements varied with the combination of the nonwoven filter and cells. Because of the enhanced growth factor production, the proliferation of human fibroblasts increased in conditioned medium from h-PBCs on PET filters. This device consisting of nonwoven filters and cells should be investigated further for possible use in the regeneration of impaired tissues.

  16. Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation

    PubMed Central

    Iwasaki, Hiromi; Somoza, Chamorro; Shigematsu, Hirokazu; Duprez, Estelle A.; Iwasaki-Arai, Junko; Mizuno, Shin-ichi; Arinobu, Yojiro; Geary, Kristin; Zhang, Pu; Dayaram, Tajhal; Fenyus, Maris L.; Elf, Shannon; Chan, Susan; Kastner, Philippe; Huettner, Claudia S.; Murray, Richard; Tenen, Daniel G.; Akashi, Koichi

    2005-01-01

    The PU.1 transcription factor is a key regulator of hematopoietic development, but its role at each hematopoietic stage remains unclear. In particular, the expression of PU.1 in hematopoietic stem cells (HSCs) could simply represent “priming” of genes related to downstream myelolymphoid lineages. By using a conditional PU.1 knock-out model, we here show that HSCs express PU.1, and its constitutive expression is necessary for maintenance of the HSC pool in the bone marrow. Bone marrow HSCs disrupted with PU.1 in situ could not maintain hematopoiesis and were outcompeted by normal HSCs. PU.1-deficient HSCs also failed to generate the earliest myeloid and lymphoid progenitors. PU.1 disruption in granulocyte/monocyte-committed progenitors blocked their maturation but not proliferation, resulting in myeloblast colony formation. PU.1 disruption in common lymphoid progenitors, however, did not prevent their B-cell maturation. In vivo disruption of PU.1 in mature B cells by the CD19-Cre locus did not affect B-cell maturation, and PU.1-deficient mature B cells displayed normal proliferation in response to mitogenic signals including the cross-linking of surface immunoglobulin M (IgM). Thus, PU.1 plays indispensable and distinct roles in hematopoietic development through supporting HSC self-renewal as well as commitment and maturation of myeloid and lymphoid lineages. PMID:15914556

  17. Practice variation in physician referral for allogeneic hematopoietic cell transplantation.

    PubMed

    Pidala, J; Craig, B M; Lee, S J; Majhail, N; Quinn, G; Anasetti, C

    2013-01-01

    Hematological malignancy patients not referred by their primary hematologist/medical oncologist suffer disparate access to allogeneic hematopoietic cell transplantation (HCT). However, investigation into physician, system and patient factors relevant to this decision making is lacking. We surveyed a national randomized sample of practicing hematologists/medical oncologists identified through the AMA (American Medical Association) masterfile. A modified Dillman approach was utilized to encourage survey response. From 1200 surveyed, a total of 113 physicians responded. In all, 68% were male, 62% identified as White/non-Hispanic, 79% practiced in non-academic settings and 80% reported spending 75-100% of their professional effort in clinical care. Using clinical vignettes, we detected significantly increased odds for HCT non-referral according to age (age 60 vs 30, odds ratio (OR) 8.3, 95% confidence interval (CI): 5.9-11.7, P<0.0001), insurance coverage (no coverage vs coverage, OR 6.9, 95% CI: 5.2-9.1, P<0.0001) and race (African-American vs Caucasian, OR 2.4, 95% CI: 1.9-2.9, P<0.0001). Physician (perception of HCT risks), system (insurance coverage) and patient (age, social support and co-morbid illness) factors were strongly endorsed by respondents as important determinants of their HCT referral practices. These data speak to important factors relevant to HCT referral practices, and highlight several opportunities for education and intervention to reduce current disparities.

  18. Basic fibroblast growth factor supports expansion of mouse compact bone-derived mesenchymal stem cells (MSCs) and regeneration of bone from MSC in vivo.

    PubMed

    Yamachika, Eiki; Tsujigiwa, Hidetsugu; Matsubara, Masakazu; Hirata, Yasuhisa; Kita, Kenichiro; Takabatake, Kiyofumi; Mizukawa, Nobuyoshi; Kaneda, Yoshihiro; Nagatsuka, Hitoshi; Iida, Seiji

    2012-04-01

    Some progress has been made in development of methods to regenerate bone from cultured cells, however no method is put to practical use. Here, we developed methods to isolate, purify, and expand mesenchymal stem cells (MSCs) from mouse compact bone that may be used to regenerate bone in vivo. These cells were maintained in long-term culture and were capable of differentiating along multiple lineages, including chondrocyte, osteocyte, and adipocyte trajectories. We used standard cell isolation and culture methods to establish cell cultures from mouse compact bone and bone marrow. Cultures were grown in four distinct media to determine the optimal composition of culture medium for bone-derived MSCs. Putative MSCs were subjected to flow cytometry, alkaline phosphatase assays, immunohistochemical staining, and several differentiation assays to assess cell identity, protein expression, and developmental potential. Finally, we used an in vivo bone formation assay to determine whether putative MSCs were capable of regenerating bone. We found that compact bone of mice was a better source of MCSs than the bone marrow, that growth in plastic flasks served to purify MSCs from hematopoietic cells, and that MSCs grown in basic fibroblast growth factor (bFGF)-conditioned medium were, based on multiple criteria, superior to those grown in leukemia inhibitory factor-conditioned medium. Moreover, we found that the MSCs isolated from compact bone and grown in bFGF-conditioned medium were capable of supporting bone formation in vivo. The methods and results described here have implications for understanding MSC biology and for clinical purpose.

  19. Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin.

    PubMed

    Palchaudhuri, Rahul; Saez, Borja; Hoggatt, Jonathan; Schajnovitz, Amir; Sykes, David B; Tate, Tiffany A; Czechowicz, Agnieszka; Kfoury, Youmna; Ruchika, Fnu; Rossi, Derrick J; Verdine, Gregory L; Mansour, Michael K; Scadden, David T

    2016-07-01

    Hematopoietic stem cell transplantation (HSCT) offers curative therapy for patients with hemoglobinopathies, congenital immunodeficiencies, and other conditions, possibly including AIDS. Autologous HSCT using genetically corrected cells would avoid the risk of graft-versus-host disease (GVHD), but the genotoxicity of conditioning remains a substantial barrier to the development of this approach. Here we report an internalizing immunotoxin targeting the hematopoietic-cell-restricted CD45 receptor that effectively conditions immunocompetent mice. A single dose of the immunotoxin, CD45-saporin (SAP), enabled efficient (>90%) engraftment of donor cells and full correction of a sickle-cell anemia model. In contrast to irradiation, CD45-SAP completely avoided neutropenia and anemia, spared bone marrow and thymic niches, enabling rapid recovery of T and B cells, preserved anti-fungal immunity, and had minimal overall toxicity. This non-genotoxic conditioning method may provide an attractive alternative to current conditioning regimens for HSCT in the treatment of non-malignant blood diseases. PMID:27272386

  20. TGF-β Inhibition Rescues Hematopoietic Stem Cell Defects and Bone Marrow Failure in Fanconi Anemia.

    PubMed

    Zhang, Haojian; Kozono, David E; O'Connor, Kevin W; Vidal-Cardenas, Sofia; Rousseau, Alix; Hamilton, Abigail; Moreau, Lisa; Gaudiano, Emily F; Greenberger, Joel; Bagby, Grover; Soulier, Jean; Grompe, Markus; Parmar, Kalindi; D'Andrea, Alan D

    2016-05-01

    Fanconi anemia (FA) is an inherited DNA repair disorder characterized by progressive bone marrow failure (BMF) from hematopoietic stem and progenitor cell (HSPC) attrition. A greater understanding of the pathogenesis of BMF could improve the therapeutic options for FA patients. Using a genome-wide shRNA screen in human FA fibroblasts, we identify transforming growth factor-β (TGF-β) pathway-mediated growth suppression as a cause of BMF in FA. Blocking the TGF-β pathway improves the survival of FA cells and rescues the proliferative and functional defects of HSPCs derived from FA mice and FA patients. Inhibition of TGF-β signaling in FA HSPCs results in elevated homologous recombination (HR) repair with a concomitant decrease in non-homologous end-joining (NHEJ), accounting for the improvement in cellular growth. Together, our results suggest that elevated TGF-β signaling contributes to BMF in FA by impairing HSPC function and may be a potential therapeutic target for the treatment of FA.

  1. Dietary restriction improves repopulation but impairs lymphoid differentiation capacity of hematopoietic stem cells in early aging.

    PubMed

    Tang, Duozhuang; Tao, Si; Chen, Zhiyang; Koliesnik, Ievgen Oleksandrovich; Calmes, Philip Gerald; Hoerr, Verena; Han, Bing; Gebert, Nadja; Zörnig, Martin; Löffler, Bettina; Morita, Yohei; Rudolph, Karl Lenhard

    2016-04-01

    Dietary restriction (DR) improves health, delays tissue aging, and elongates survival in flies and worms. However, studies on laboratory mice and nonhuman primates revealed ambiguous effects of DR on lifespan despite improvements in health parameters. In this study, we analyzed consequences of adult-onset DR (24 h to 1 yr) on hematopoietic stem cell (HSC) function. DR ameliorated HSC aging phenotypes, such as the increase in number of HSCs and the skewing toward myeloid-biased HSCs during aging. Furthermore, DR increased HSC quiescence and improved the maintenance of the repopulation capacity of HSCs during aging. In contrast to these beneficial effects, DR strongly impaired HSC differentiation into lymphoid lineages and particularly inhibited the proliferation of lymphoid progenitors, resulting in decreased production of peripheral B lymphocytes and impaired immune function. The study shows that DR-dependent suppression of growth factors and interleukins mediates these divergent effects caused by DR. Supplementation of insulin-like growth factor 1 partially reverted the DR-induced quiescence of HSCs, whereas IL-6/IL-7 substitutions rescued the impairment of B lymphopoiesis exposed to DR. Together, these findings delineate positive and negative effects of long-term DR on HSC functionality involving distinct stress and growth signaling pathways.

  2. Cells from the adult corneal stroma can be reprogrammed to a neuron-like cell using exogenous growth factors

    SciTech Connect

    Greene, Carol Ann Chang, Chuan-Yuan; Fraser, Cameron J.; Nelidova, Dasha E.; Chen, Jing A.; Lim, Angela; Brebner, Alex; McGhee, Jennifer; Sherwin, Trevor; Green, Colin R.

    2014-03-10

    Cells thought to be stem cells isolated from the cornea of the eye have been shown to exhibit neurogenic potential. We set out to uncover the identity and location of these cells within the cornea and to elucidate their neuronal protein and gene expression profile during the process of switching to a neuron-like cell. Here we report that every cell of the adult human and rat corneal stroma is capable of differentiating into a neuron-like cell when treated with neurogenic differentiation specifying growth factors. Furthermore, the expression of genes regulating neurogenesis and mature neuronal structure and function was increased. The switch from a corneal stromal cell to a neuron-like cell was also shown to occur in vivo in intact corneas of living rats. Our results clearly indicate that lineage specifying growth factors can affect changes in the protein and gene expression profiles of adult cells, suggesting that possibly many adult cell populations can be made to switch into another type of mature cell by simply modifying the growth factor environment. - Highlights: • Adult corneal stromal cells can differentiated into neuron-like cells. • Neuronal specification of the adult stromal cell population is stochastic. • Neuronal specification in an adult cell population can be brought about by growth factors.

  3. Three-Dimensional Analysis of the Effect of Epidermal Growth Factor on Cell-Cell Adhesion in Epithelial Cell Clusters

    PubMed Central

    Notbohm, J.; Kim, J.-H.; Asthagiri, A.R.; Ravichandran, G.

    2012-01-01

    The effect that growth factors such as epidermal growth factor (EGF) have on cell-cell adhesion is of interest in the study of cellular processes such as epithelial-mesenchymal transition. Because cell-cell adhesions cannot be measured directly, we use three-dimensional traction force microscopy to measure the tractions applied by clusters of MCF-10A cells to a compliant substrate beneath them before and after stimulating the cells with EGF. To better interpret the results, a finite element model, which simulates a cluster of individual cells adhered to one another and to the substrate with linear springs, is developed to better understand the mechanical interaction between the cells in the experiments. The experiments and simulations show that the cluster of cells acts collectively as a single unit, indicating that cell-cell adhesion remains strong before and after stimulation with EGF. In addition, the experiments and model emphasize the importance of three-dimensional measurements and analysis in these experiments. PMID:22455915

  4. Neurotherapeutic Effect of Cord Blood Derived CD45+ Hematopoietic Cells in Mice after Traumatic Brain Injury

    PubMed Central

    Arien-Zakay, Hadar; Gincberg, Galit; Nagler, Arnon; Cohen, Gadi; Liraz-Zaltsman, Sigal; Trembovler, Victoria; Alexandrovich, Alexander G.; Matok, Ilan; Galski, Hanan; Elchalal, Uriel; Lelkes, Peter I.; Shohami, Esther

    2014-01-01

    Abstract Treatment of traumatic brain injury (TBI) is still an unmet need. Cell therapy by human umbilical cord blood (HUCB) has shown promising results in animal models of TBI and is under evaluation in clinical trials. HUCB contains different cell populations but to date, only mesenchymal stem cells have been evaluated for therapy of TBI. Here we present the neurotherapeutic effect, as evaluated by neurological score, using a single dose of HUCB-derived mononuclear cells (MNCs) upon intravenous (IV) administration one day post-trauma in a mouse model of closed head injury (CHI). Delayed (eight days post-trauma) intracerebroventricular administration of MNCs showed improved neurobehavioral deficits thereby extending the therapeutic window for treating TBI. Further, we demonstrated for the first time that HUCB-derived pan-hematopoietic CD45 positive (CD45+) cells, isolated by magnetic sorting and characterized by expression of CD45 and CD11b markers (96–99%), improved the neurobehavioral deficits upon IV administration, which persisted for 35 days. The therapeutic effect was in a direct correlation to a reduction in the lesion volume and decreased by pre-treatment of the cells with anti-human-CD45 antibody. At the site of brain injury, 1.5-2 h after transplantation, HUCB-derived cells were identified by near infrared scanning and immunohistochemistry using anti-human-CD45 and anti-human-nuclei antibodies. Nerve growth factor and vascular endothelial growth factor levels were differentially expressed in both ipsilateral and contralateral brain hemispheres, thirty-five days after CHI, measured by enzyme-linked immunosorbent assay. These findings indicate the neurotherapeutic potential of HUCB-derived CD45+ cell population in a mouse model of TBI and propose their use in the clinical setting of human TBI. PMID:24640955

  5. Transforming growth factor beta (TGF-β) isomers influence cell detachment of MG-63 bone cells.

    PubMed

    Sefat, Farshid; Khaghani, Seyed Ali; Nejatian, Touraj; Genedy, Mohammed; Abdeldayem, Ali; Moghaddam, Zoha Salehi; Denyer, Morgan C T; Youseffi, Mansour

    2015-12-01

    Bone repair and wound healing are modulated by different stimuli. There is evidence that Transforming Growth Factor-beta (TGF-β) super-family of cytokines have significant effects on bone structure by regulating the replication and differentiation of chondrocytes, osteoblasts and osteoclasts. There is also significant evidence that interactions with extracellular matrix molecules influence cell behaviour. In this study cell surface attachment was examined via a trypsinization assay using various TGF-β isomers in which the time taken to trypsinize cells from the surface provided a means of assessing the strength of attachment. Three TGF-β isomers (TGF-β1, 2 and 3), four combined forms (TGF-β(1+2), TGF-β(1+3), TGF-β(2+3) and TGF-β(1+2+3)) along with four different controls (BSA, HCl, BSA/HCl and negative control) were investigated in this study. The results indicated that treatment with TGF-β1, 2, 3 and HCl decreased cell attachment, however, this effect was significantly greater in the case of TGF-β3 (p<0.001) indicating perhaps that TGF-β3 does not act alone in cell detachment, but instead functions synergistically with signalling pathways that are dependent on the availability of hydrogen ions. Widefield Surface Plasmon Resonance (WSPR) microscope was also used to investigate cell surface interactions.

  6. FES/FER kinase signaling in hematopoietic cells and leukemias.

    PubMed

    Craig, Andrew W B

    2012-01-01

    FES and FES-related (FER) comprise a unique subfamily of protein-tyrosine kinases (PTKs) that signal downstream of several classes of receptors involved in regulating hematopoietic cell development, survival, migration, and inflammatory mediator release. Activated alleles of FES are potent inducers of myeloid differentiation, however FES-deficient mice have only subtle differences in hematopoiesis. This may reflect overlapping function of other kinases such as FER. Studies of FES- and FER-deficient mice have revealed more prominent roles in regulating the activation of mature innate immune cells, including macrophages and mast cells. Recently, new insights into regulation of FES/FER kinases has emerged with the characterization of their N-terminal phospholipid-binding and membrane targeting FER/CIP4 homology-Bin/Amphyphysin/Rvs (F-BAR) and F-BAR extension (FX) domains. The F-BAR/FX domains regulate subcellular localization and FES/FER kinase activation. FES kinase activity is also enhanced upon ligand binding to its SH2 domain, which may lead to further phosphorylation of the same ligand, or other ligand-associated proteins. In mast cells, SH2 ligands of FES/FER include KIT receptor PTK, and the high affinity IgE receptor (FceRI) that trigger rapid activation of FES/FER and signaling to regulators of the actin cytoskeleton and membrane trafficking. Recently, FES/FER have also been implicated in growth and survival signaling in leukemias driven by oncogenic KIT and FLT3 receptors. With further definition of their roles in immune cells and their progenitors, FES/FER may emerge as relevant therapeutic targets in inflammatory diseases and leukemias.

  7. Polycomb-group proteins in hematopoietic stem cell regulation and hematopoietic neoplasms.

    PubMed

    Radulović, V; de Haan, G; Klauke, K

    2013-03-01

    The equilibrium between self-renewal and differentiation of hematopoietic stem cells is regulated by epigenetic mechanisms. In particular, Polycomb-group (PcG) proteins have been shown to be involved in this process by repressing genes involved in cell-cycle regulation and differentiation. PcGs are histone modifiers that reside in two multi-protein complexes: Polycomb Repressive Complex 1 and 2 (PRC1 and PRC2). The existence of multiple orthologs for each Polycomb gene allows the formation of a multitude of distinct PRC1 and PRC2 sub-complexes. Changes in the expression of individual PcG genes are likely to cause perturbations in the composition of the PRC, which affect PRC enzymatic activity and target selectivity. An interesting recent development is that aberrant expression of, and mutations in, PcG genes have been shown to occur in hematopoietic neoplasms, where they display both tumor-suppressor and oncogenic activities. We therefore comprehensively reviewed the latest research on the role of PcG genes in normal and malignant blood cell development. We conclude that future research to elucidate the compositional changes of the PRCs and methods to intervene in PRC assembly will be of great therapeutic relevance to combat hematological malignancies.

  8. Involvement of Connective Tissue Growth Factor (CTGF) in Insulin-like Growth Factor-I (IGF1) Stimulation of Proliferation of a Bovine Mammary Epithelial Cell Line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin-like growth factor I (IGF1) plays an important role in mammary gland development and lactation in part by stimulating proliferation of the milk-producing epithelial cells. In this study, we used the bovine mammary epithelial cell line MAC-T cells as a model to understand the mechanism by whi...

  9. (Lymph)angiogenic influences on hematopoietic cells in acute myeloid leukemia

    PubMed Central

    Lee, Ji Yoon; Kim, Hee-Je

    2014-01-01

    The purpose of this review is to provide an overview of the effect of (lymph)angiogenic cytokines on hematopoietic cells involved in acute myeloid leukemia (AML). Like angiogenesis, lymphangiogenesis occurs in pathophysiological conditions but not in healthy adults. AML is closely associated with the vasculature system, and the interplay between lymphangiogenic cytokines maintains leukemic blast survival in the bone marrow (BM). Once AML is induced, proangiogenic cytokines function as angiogenic or lymphangiogenic factors and affect hematopoietic cells, including BM-derived immune cells. Simultaneously, the representative cytokines, VEGFs and their receptors are expressed on AML blasts in vascular and osteoblast niches in both the BM and the peripheral circulation. After exposure to (lymph)angiogenic cytokines in leukemogenesis and infiltration, immune cell phenotypes and functions are affected. These dynamic behaviors in the BM reflect the clinical features of AML. In this review, we note the importance of lymphangiogenic factors and their receptors in hematopoietic cells in AML. Understanding the functional characterization of (lymph)angiogenic factors in the BM niche in AML will also be helpful in interrupting the engraftment of leukemic stem cells and for enhancing immune cell function by modulating the tumor microenvironment. PMID:25412683

  10. Hexamethylenebisacetamide (HMBA) is a growth factor for human, ovine and porcine thyroid cells.

    PubMed

    Fayet, G; Amphoux-Fazekas, T; Aouani, A; Hovsépian, S

    1996-03-01

    Hexamethylenebisacetamide (HMBA) provokes in murine erythroleukemia cells (MELC) a commitment to terminal differentiation leading to the activation of the expression of hemoglobin. HMBA has been tested also in other cells from colon cancer, melanoma or lung cancer. However it has not yet been tested in the thyroid. We demonstrate in this paper that HMBA in kinetics and concentration-response experiments increases the proliferation of human thyroid cells isolated from Graves'-Basedow patients. It also acts like a growth factor for ovine and porcine thyroid cells, respectively, from the OVNIS line and the ATHOS line. This molecule which is a differentiating factor in the MELC system and a growth factor in human thyroid cell cultures represents a potential to get human thyroid cell lines expressing specialized functions. PMID:8734479

  11. Accelerating immune reconstitution after hematopoietic stem cell transplantation

    PubMed Central

    Tzannou, Ifigeneia; Leen, Ann M

    2014-01-01

    Viral infections remain a significant cause of morbidity and mortality after hematopoietic stem cell transplantation. Pharmacologic agents are effective against some pathogens, but they are costly and can be associated with significant toxicities. Thus, many groups have investigated adoptive T-cell transfer as a means of hastening immune reconstitution and preventing and treating viral infections. This review discusses the immunotherapeutic strategies that have been explored. PMID:25505959

  12. Effects of epidermal growth factor on neural crest cells in tissue culture

    SciTech Connect

    Erickson, C.A.; Turley, E.A.

    1987-04-01

    Epidermal growth factor (EGF) stimulates the release of hyaluronic acid (HA) and chondroitin sulfate proteoglycan (CSPG) from quail trunk neural crest cultures in a dose-dependent fashion. It also promotes the expression of cell-associated heparan sulfate proteoglycan (HSPG) as detected by immunofluorescence and immunoprecipitation of the /sup 3/H-labeled proteoglycan. Furthermore, EGF stimulates (/sup 3/H)thymidine incorporation into total cell DNA. These results raise the possibility that EGF or an analogous growth factor is involved in regulation of neural crest cell morphogenesis.

  13. Crosstalk between adipose-derived stem cells and chondrocytes: when growth factors matter.

    PubMed

    Zhong, Juan; Guo, Bin; Xie, Jing; Deng, Shuwen; Fu, Na; Lin, Shiyu; Li, Guo; Lin, Yunfeng; Cai, Xiaoxiao

    2016-01-01

    Adipose-derived stem cells (ASCs) and mesenchymal stem cells are promising for tissue repair because of their multilineage differentiation capacity. Our previous data confirmed that the implantation of mixed ASCs and chondrocytes into cartilage defects induced desirable in vivo healing outcomes. However, the paracrine action of ASCs on chondrocytes needs to be further elucidated. In this study, we established a co-culture system to achieve cell-to-cell and cell-to-tissue crosstalk and explored the soluble growth factors in both ASCs and chondrocytes supplemented with 1% fetal bovine serum to mimic the physiological microenvironment. In ASCs, we screened for growth factors by semi-quantitative PCR and quantitative real-time PCR and found that the expression of bone morphogenetic protein 2 (BMP-2), vascular endothelial growth factor B (VEGFB), hypoxia inducible factor-1α (HIF-1α), fibroblast growth factor-2 (FGF-2), and transforming growth factor-β1 significantly increased after co-culture in comparison with mono-culture. In chondrocytes, VEGFA was significantly enhanced after co-culture. Unexpectedly, the expression of collagen II and aggrecan was significantly down-regulated in the co-culture group compared with the mono-culture group. Meanwhile, among all the growth factors screened, we found that the BMP family members BMP-2, BMP-4, and BMP-5 were down-regulated and that VEGFB, HIF-1α, FGF-2, and PDGF were significantly decreased after co-culture. These results suggest that crosstalk between ASCs and chondrocytes is a pathway through the regulated growth factors that might have potential in cartilage repair and regeneration and could be useful for tissue engineering. PMID:26848404

  14. Crosstalk between adipose-derived stem cells and chondrocytes: when growth factors matter

    PubMed Central

    Zhong, Juan; Guo, Bin; Xie, Jing; Deng, Shuwen; Fu, Na; Lin, Shiyu; Li, Guo; Lin, Yunfeng; Cai, Xiaoxiao

    2016-01-01

    Adipose-derived stem cells (ASCs) and mesenchymal stem cells are promising for tissue repair because of their multilineage differentiation capacity. Our previous data confirmed that the implantation of mixed ASCs and chondrocytes into cartilage defects induced desirable in vivo healing outcomes. However, the paracrine action of ASCs on chondrocytes needs to be further elucidated. In this study, we established a co-culture system to achieve cell-to-cell and cell-to-tissue crosstalk and explored the soluble growth factors in both ASCs and chondrocytes supplemented with 1% fetal bovine serum to mimic the physiological microenvironment. In ASCs, we screened for growth factors by semi-quantitative PCR and quantitative real-time PCR and found that the expression of bone morphogenetic protein 2 (BMP-2), vascular endothelial growth factor B (VEGFB), hypoxia inducible factor-1α (HIF-1α), fibroblast growth factor-2 (FGF-2), and transforming growth factor-β1 significantly increased after co-culture in comparison with mono-culture. In chondrocytes, VEGFA was significantly enhanced after co-culture. Unexpectedly, the expression of collagen II and aggrecan was significantly down-regulated in the co-culture group compared with the mono-culture group. Meanwhile, among all the growth factors screened, we found that the BMP family members BMP-2, BMP-4, and BMP-5 were down-regulated and that VEGFB, HIF-1α, FGF-2, and PDGF were significantly decreased after co-culture. These results suggest that crosstalk between ASCs and chondrocytes is a pathway through the regulated growth factors that might have potential in cartilage repair and regeneration and could be useful for tissue engineering. PMID:26848404

  15. [Bone and Stem Cells. Bone marrow microenvironment niches for hematopoietic stem and progenitor cells].

    PubMed

    Nagasawa, Takashi

    2014-04-01

    In bone marrow, the special microenvironments known as niches control proliferation and differentiation of hematopoietic stem and progenitor cells (HSPCs) . However, the identity and functions of the niches has been a subject of longstanding debate. Although it has been reported previously that osteoblasts lining the bone surface act as HSC niches, their precise role in HSC maintenance remains unclear. On the other hand, the adipo-osteogenic progenitors with long processes, termed CXCL12-abundant reticular (CAR) cells, which preferentially express the chemokine CXCL12, stem cell factor (SCF) , leptin receptor and PDGF receptor-β were identified in the bone marrow. Recent studies revealed that endothelial cells of bone marrow vascular sinuses and CAR cells provided niches for HSCs. The identity and functions of various other candidate HSC niche cells, including nestin-expressing cells and Schwann cells would also be discussed in this review.

  16. Therapeutic modulation of growth factors and cytokines in regenerative medicine.

    PubMed

    Ioannidou, Effie

    2006-01-01

    Regeneration that takes place in the human body is limited throughout life. Therefore, when organs are irreparably damaged, they are usually replaced with an artificial device or donor organ. The term "regenerative medicine" covers the restoration or replacement of cells, tissues, and organs. Stem cells play a major role in regenerative medicine by providing the way to repopulate organs damaged by disease. Stem cells have the ability to self renew and to regenerate cells of diverse lineages within the tissue in which they reside. Stem cells could originate from embryos or adult tissues. Growth factors are proteins that may act locally or systemically to affect the growth of cells in several ways. Various cell activities, including division, are influenced by growth factors. Cytokines are a family of low-molecular-weight proteins that are produced by numerous cell types and are responsible for regulating the immune response, inflammation, tissue remodeling and cellular differentiation. Target cells of growth factors and cytokines are mesenchymal, epithelial and endothelial cells. These molecules frequently have overlapping activities and can act in an autocrine or paracrine fashion. A complex network of growth factors and cytokines guides cellular differentiation and regeneration in all organs and tissues. The aim of this paper is to review the role of growth factors and cytokines in different organs or systems and explore their therapeutic application in regenerative medicine. The role of stem cells combined with growth factors and cytokines in the regeneration of vascular and hematopoietic, neural, skeletal, pancreatic, periodontal, and mucosal tissue is reviewed. There is evidence that supports the use of growth factors and cytokines in the treatment of neurological diseases, diabetes, cardiovascular disease, periodontal disease, cancer and its complication, oral mucositis. After solving the ethical issues and establishing clear and reasonable regulations

  17. A specific PTPRC/CD45 phosphorylation event governed by stem cell chemokine CXCL12 regulates primitive hematopoietic cell motility.

    PubMed

    Williamson, Andrew J K; Pierce, Andrew; Jaworska, Ewa; Zhou, Cong; Aspinall-O'Dea, Mark; Lancashire, Lee; Unwin, Richard D; Abraham, Sheela A; Walker, Michael J; Cadecco, Sara; Spooncer, Elaine; Holyoake, Tessa L; Whetton, Anthony D

    2013-11-01

    CXCL12 governs cellular motility, a process deregulated by hematopoietic stem cell oncogenes such as p210-BCR-ABL. A phosphoproteomics approach to the analysis of a hematopoietic progenitor cell line treated with CXCL12 and the Rac 1 and 2 inhibitor NSC23766 has been employed to objectively discover novel mechanisms for regulation of stem cells in normal and malignant hematopoiesis. The proteomic data sets identified new aspects of CXCL12-mediated signaling and novel features of stem cell regulation. We also identified a novel phosphorylation event in hematopoietic progenitor cells that correlated with motile response and governed by the chemotactic factor CXCL12. The novel phosphorylation site on PTPRC/CD45; a protein tyrosine phosphatase, was validated by raising an antibody to the site and also using a mass spectrometry absolute quantification strategy. Site directed mutagenesis and inhibitor studies demonstrated that this single phosphorylation site governs hematopoietic progenitor cell and lymphoid cell motility, lies downstream from Rac proteins and potentiates Src signaling. We have also demonstrated that PTPRC/CD45 is down-regulated in leukemogenic tyrosine kinase expressing cells. The use of discovery proteomics has enabled further understanding of the regulation of PTPRC/CD45 and its important role in cellular motility in progenitor cells.

  18. Effects of transforming growth factor beta and epidermal growth factor on cell proliferation and the formation of bone nodules in isolated fetal rat calvaria cells.

    PubMed

    Antosz, M E; Bellows, C G; Aubin, J E

    1989-08-01

    When cells enzymatically isolated from fetal rat calvaria (RC cells) are cultured in vitro in the presence of ascorbic acid and Na beta-glycerophosphate, discrete three-dimensional nodules form with the histologic, immunohistochemical, and ultrastructural characteristics of bone (Bellows et al; Calcified Tissue International 38:143-154, 1986; Bhargava et al., Bone, 9:155-163, 1988). Quantitation of the number of bone nodules that forms provides a colony assay for osteoprogenitor cells present in the RC population (Bellows and Aubin, Develop. Biol., 133:8-13, 1989). Continuous culture with either epidermal growth factor (EGF) or transforming growth factor beta (TGF-beta) results in dose-dependent inhibition of bone nodule formation; however, the former causes increased proliferation and saturation density, while the latter reduces both parameters. Addition of EGF (48 h pulse, 2-200 ng/ml) to RC cells at day 1 after plating results in increased proliferation and population saturation density and an increased number of bone nodules formed. Similar pulses at confluence and in postconfluent multilayered cultures when nodules first begin forming (approx. day 11) inhibited bone nodule formation and resulted in a smaller stimulation of cell proliferation. Forty-eight hour pulses of TGF-beta (0.01-1 ng/ml) reduced bone nodule formation and proliferation at all times examined, with pulses on day 1 causing maximum inhibition. The effects of pulses with TGF-beta and EGF on inhibition of nodule formation are independent of the presence of serum in the culture medium during the pulse. The data suggest that whereas EGF can either stimulate or inhibit the formation of bone nodules depending upon the time and duration of exposure, TGF-B inhibits bone nodule formation under all conditions tested. Moreover, these effects on osteoprogenitor cell differentiation do not always correlate with the effects of the growth factors on RC cell proliferation. PMID:2787326

  19. Secondary solid cancer screening following hematopoietic cell transplantation.

    PubMed

    Inamoto, Y; Shah, N N; Savani, B N; Shaw, B E; Abraham, A A; Ahmed, I A; Akpek, G; Atsuta, Y; Baker, K S; Basak, G W; Bitan, M; DeFilipp, Z; Gregory, T K; Greinix, H T; Hamadani, M; Hamilton, B K; Hayashi, R J; Jacobsohn, D A; Kamble, R T; Kasow, K A; Khera, N; Lazarus, H M; Malone, A K; Lupo-Stanghellini, M T; Margossian, S P; Muffly, L S; Norkin, M; Ramanathan, M; Salooja, N; Schoemans, H; Wingard, J R; Wirk, B; Wood, W A; Yong, A; Duncan, C N; Flowers, M E D; Majhail, N S

    2015-08-01

    Hematopoietic stem cell transplant (HCT) recipients have a substantial risk of developing secondary solid cancers, particularly beyond 5 years after HCT and without reaching a plateau overtime. A working group was established through the Center for International Blood and Marrow Transplant Research and the European Group for Blood and Marrow Transplantation with the goal to facilitate implementation of cancer screening appropriate to HCT recipients. The working group reviewed guidelines and methods for cancer screening applicable to the general population and reviewed the incidence and risk factors for secondary cancers after HCT. A consensus approach was used to establish recommendations for individual secondary cancers. The most common sites include oral cavity, skin, breast and thyroid. Risks of cancers are increased after HCT compared with the general population in skin, thyroid, oral cavity, esophagus, liver, nervous system, bone and connective tissues. Myeloablative TBI, young age at HCT, chronic GVHD and prolonged immunosuppressive treatment beyond 24 months were well-documented risk factors for many types of secondary cancers. All HCT recipients should be advised of the risks of secondary cancers annually and encouraged to undergo recommended screening based on their predisposition. Here we propose guidelines to help clinicians in providing screening and preventive care for secondary cancers among HCT recipients.

  20. Secondary solid cancer screening following hematopoietic cell transplantation

    PubMed Central

    Inamoto, Y; Shah, NN; Savani, BN; Shaw, BE; Abraham, AA; Ahmed, IA; Akpek, G; Atsuta, Y; Baker, KS; Basak, GW; Bitan, M; DeFilipp, Z; Gregory, TK; Greinix, HT; Hamadani, M; Hamilton, BK; Hayashi, RJ; Jacobsohn, DA; Kamble, RT; Kasow, KA; Khera, N; Lazarus, HM; Malone, AK; Lupo-Stanghellini, MT; Margossian, SP; Muffly, LS; Norkin, M; Ramanathan, M; Salooja, N; Schoemans, H; Wingard, JR; Wirk, B; Wood, WA; Yong, A; Duncan, CN; Flowers, MED; Majhail, NS

    2016-01-01

    Hematopoietic stem cell transplant (HCT) recipients have a substantial risk of developing secondary solid cancers, particularly beyond 5 years after HCT and without reaching a plateau overtime. A working group was established through the Center for International Blood and Marrow Transplant Research and the European Group for Blood and Marrow Transplantation with the goal to facilitate implementation of cancer screening appropriate to HCT recipients. The working group reviewed guidelines and methods for cancer screening applicable to the general population and reviewed the incidence and risk factors for secondary cancers after HCT. A consensus approach was used to establish recommendations for individual secondary cancers. The most common sites include oral cavity, skin, breast and thyroid. Risks of cancers are increased after HCT compared with the general population in skin, thyroid, oral cavity, esophagus, liver, nervous system, bone and connective tissues. Myeloablative TBI, young age at HCT, chronic GVHD and prolonged immunosuppressive treatment beyond 24 months were well-documented risk factors for many types of secondary cancers. All HCT recipients should be advised of the risks of secondary cancers annually and encouraged to undergo recommended screening based on their predisposition. Here we propose guidelines to help clinicians in providing screening and preventive care for secondary cancers among HCT recipients. PMID:25822223

  1. Regulation of smooth muscle cell growth by endothelium-derived factors.

    PubMed Central

    Scott-Burden, T; Vanhoutte, P M

    1994-01-01

    The endothelium is a source of molecules that either stimulate or inhibit the proliferation of the underlying smooth muscle cells. In the normal, healthy vessel wall the smooth muscle cells are quiescent, but they proliferate when damage to the endothelium occurs. The implication of such observations is that although the endothelium provides a source of growth factors, their stimulatory activity on smooth muscle cells is countered by endothelium-derived growth inhibitors. The inhibitors appear to comprise at least 3 distinct types of molecules: heparin/heparan sulfate; transforming growth factor beta; and nitric oxide. Each molecule inhibits growth of cultured smooth muscle cells by mechanisms that remain to be elucidated and are discussed in this communication. Heparin/heparan sulfate is the most thoroughly characterized of the 3, and has been used for clinical intervention to prevent restenosis. Transforming growth factor beta exhibits bimodal activity on growth, acting as a stimulant at low levels and as an inhibitor at elevated concentrations. Nitric oxide mediated vasorelaxation is dependent upon activation of soluble guanylate cyclase. Because elevation of cyclic guanosine monophosphate in smooth muscle cells depresses their proliferation, nitric oxide would appear to possess the properties necessary to inhibit vascular smooth muscle cell proliferation. PMID:8180516

  2. Hematopoietic Stem Cell Transplantation for CD3δ deficiency

    PubMed Central

    Marcus, Nufar; Takada, Hidetoshi; Law, Jason; Cowan, Morton J; Gil, Juana; Regueiro, Jose; Lopez de Sabando, Diego Plaza; Lopez-Granados, Eduardo; Dalal, Jignesh; Friedrich, Wilhelm; Manfred, Hoenig; Hanson, I. Celine; Grunebaum, Eyal; Shearer, William T; Roifman, Chaim M.

    2012-01-01

    Background CD3δ deficiency is a fatal form of severe combined immunodeficiency which can be cured by hematopoietic stem cell transplantation (HSCT). The presence of a thymus loaded with T cell progenitors in these patients may require special considerations in choosing the regimen of conditioning and the type of HSCT. Objectives To study the outcome of CD3δ deficiency using various modalities of stem cell transplantation. Methods We analyzed data on 13 patients with CD3δ deficiency who underwent HSCT in 7 centers. HSCT was performed using different sources of donor stem cells as well as various conditioning regimens. Results Two patients who received stem cells from matched related donors and survived, both needed substantial conditioning in order to engraft. Only one of six other patients who received a related mismatched donor (MMRD) transplant survived, two of them had no conditioning while the others received various combinations of conditioning regimens. Three other patients received stem cells from a matched unrelated donor (MUD), survived and enjoyed full immune reconstitution. Two other patients received unrelated cord blood without conditioning. One of them has had a partial but stable engraftment, while the other engrafted well but is only 12 months after HSCT. We also report here for the first time that patients with CD3δ deficiency can present with typical features of Omenn syndrome. Conclusions HSCT is a successful treatment for patients with CD3δ deficiency. The small number of patients in this report prevent definitive statements on the importance of survival factors, but several are suggested: 1) HLA matched donor transplants are associated with superior reconstitution and survival than mismatched donor transplants; 2) substantial conditioning appears necessary; 3) early diagnosis and absence of opportunistic infections. PMID:21757226

  3. Characterization of release of basic fibroblast growth factor from bovine retinal endothelial cells in monolayer cultures.

    PubMed Central

    Brooks, R A; Burrin, J M; Kohner, E M

    1991-01-01

    Release of basic fibroblast growth factor (bFGF) was investigated in bovine retinal endothelial cells (BREC) maintained in monolayer culture. Confluent cells released bFGF into serum-free culture medium or medium containing 5% serum at rates of up to 105.2 and 61.3 pM/day respectively. bFGF release coincided with a decrease in monolayer cell number and increases in lactate dehydrogenase (LDH) concentration and cells and cell-debris particles in the medium, which suggested that cell damage and lysis were responsible for growth-factor release. Maximum bFGF release at 24 h (230 +/- 10 pM) occurred when the cells were treated with lipopolysaccharide (10 micrograms/ml), which also produced the greatest changes in parameters of cell damage. Sub-confluent cells showed little overt damage at 24 h, but released bFGF (78 +/- 20 pM) along with LDH, indicating that some cell lysis had occurred. Insulin-like growth factor 1 (IGF-1) was also released into serum-free culture medium at a rate of 0.34 nM/day, but not into medium containing serum or when the cells were treated with lipopolysaccharide. This implies that the mechanism of IGF-1 release is different from that of bFGF and is not related to cell damage. Culture medium conditioned by BREC stimulated the proliferation of these cells, as measured by an increase in their incorporation of [methyl-3H]thymidine from 7550 +/- 479 to 10467 +/- 924 d.p.m. These results demonstrate that bFGF is released from damaged BREC and that medium conditioned by these cells can stimulate retinal-endothelial-cell proliferation. This strengthens the case for an involvement of this growth factor in retinal neovascularization. Images Fig. 1. PMID:2039465

  4. Growth factors and hormones which affect survival, growth, and differentiation of the MCF-7 stem cells and their descendants

    SciTech Connect

    Resnicoff, M.; Medrano, E.E. )

    1989-03-01

    The human breast tumor cell line was separated by Percoll density gradient centrifugation into six different subpopulations, A to F, of which (E) appears to contain the stem cells on the basis of several criteria. The authors analyzed the response of the isolated subpopulations to insulin, thrombin, PGF{sub 2{alpha}}, estradiol, and 13-cis-retinal. They demonstrate that the first two growth factors stimulate ({sup 3}H)thymidine incorporation in the more differentiated subpopulations (D and F), while PGF{sub 2{alpha}} has mitogenic activity in subpopulations C and D. In the absence of any added growth factor, estradiol has the extreme and transient capacity of allowing the stem cell to detach from the tissue culture dish and to grow in suspension as multicellular aggregates (MCF-7/SE cells). 13-cis-Retinal acts as a negative modulator of differentiation and protects the cells from the inhibitory and differentiation activity in Na-butyrate.

  5. IGF-1-mediated osteoblastic niche expansion enhances long-term hematopoietic stem cell engraftment after murine bone marrow transplantation.

    PubMed

    Caselli, Anna; Olson, Timothy S; Otsuru, Satoru; Chen, Xiaohua; Hofmann, Ted J; Nah, Hyun-Duck; Grisendi, Giulia; Paolucci, Paolo; Dominici, Massimo; Horwitz, Edwin M

    2013-10-01

    The efficiency of hematopoietic stem cell (HSC) engraftment after bone marrow (BM) transplantation depends largely on the capacity of the marrow microenvironment to accept the transplanted cells. While radioablation of BM damages osteoblastic stem cell niches, little is known about their restoration and mechanisms governing their receptivity to engraft transplanted HSCs. We previously reported rapid restoration and profound expansion of the marrow endosteal microenvironment in response to marrow radioablation. Here, we show that this reorganization represents proliferation of mature endosteal osteoblasts which seem to arise from a small subset of high-proliferative, relatively radio-resistant endosteal cells. Multiple layers of osteoblasts form along the endosteal surface within 48 hours after total body irradiation, concomitant with a peak in marrow cytokine expression. This niche reorganization fosters homing of the transplanted hematopoietic cells to the host marrow space and engraftment of long-term-HSC. Inhibition of insulin-like growth factor (IGF)-1-receptor tyrosine kinase signaling abrogates endosteal osteoblast proliferation and donor HSC engraftment, suggesting that the cytokine IGF-1 is a crucial mediator of endosteal niche reorganization and consequently donor HSC engraftment. Further understanding of this novel mechanism of IGF-1-dependent osteoblastic niche expansion and HSC engraftment may yield clinical applications for improving engraftment efficiency after clinical HSC transplantation.

  6. Heterogeneity of cytokine and growth factor gene expression in human melanoma cells with different metastatic potentials.

    PubMed

    Singh, R K; Gutman, M; Radinsky, R

    1995-01-01

    The purpose of this study was to determine the mRNA expression level of multiple cytokine and growth factor genes in human malignant melanoma. Melanoma cells were isolated from several surgical specimens, adapted to growth in culture, characterized for their ability to produce experimental metastases in nude mice, and assessed for cytokine and growth factor steady-state gene expression. Highly metastatic in vivo- and in vitro-derived variants isolated from a single melanoma, A375, were also analyzed. Northern blot analyses revealed that all melanomas analyzed constitutively expressed steady-state mRNA transcripts for the growth and angiogenic factors, basic fibroblast growth factor (bFGF), and transforming growth factor alpha (TGF-alpha), which correlated with metastatic propensity. Only one highly metastatic melanoma, TXM-1, originally isolated from a lymph node metastasis, expressed mRNA transcripts specific for monocyte chemotactic and activating factor (MCAF) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Similarly, of the nine melanomas examined, only TXM-1 expressed interleukin (IL)-1 alpha, IL-1 beta, and IL-6, important immunomodulatory cytokines. These data demonstrate the differential and heterogeneous expression of cytokine and growth factor genes in human malignant melanoma. PMID:7648437

  7. The Role of Tumor Cell-Derived Connective Tissue Growth Factor (CTGF/CCN2) in Pancreatic Tumor Growth

    PubMed Central

    Bennewith, Kevin L.; Huang, Xin; Ham, Christine M.; Graves, Edward E.; Erler, Janine T.; Kambham, Neeraja; Feazell, Jonathan; Yang, George P.; Koong, Albert

    2009-01-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted subcutaneously. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by PET imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed co-localization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer. PMID:19179545

  8. Interactions between stromal cell--derived keratinocyte growth factor and epithelial transforming growth factor in immune-mediated crypt cell hyperplasia.

    PubMed Central

    Bajaj-Elliott, M; Poulsom, R; Pender, S L; Wathen, N C; MacDonald, T T

    1998-01-01

    Immune reactions in the gut are associated with increased epithelial cell proliferation. Here we have studied the role of keratinocyte growth factor (KGF; FGF7) and transforming growth factor-alpha (TGF-alpha) in the epithelial cell hyperplasia seen in explants of fetal human small intestine after activation of lamina propria T cells with the superantigen Staphylococcus aureus enterotoxin B (SEB). After the addition of SEB to the explants there is a 10-fold increase in KGF mRNA by 72 h of culture. KGF transcripts were abundant in the lamina propria using in situ hybridization and the culture supernatants contained elevated amounts of KGF protein. SEB had no direct effect on KGF mRNA and protein production by cultured lamina propria mesenchymal cells, but both were upregulated by TNF-alpha. Accompanying the increase in KGF there was also an increase in TGF-alpha precursor proteins in the culture supernatants and the phosphorylated form of the EGFR receptor was also detected in the tissue. Increased TGF-alpha precursor proteins were also detected in the supernatants of control explants stimulated with KGF alone. The direct addition of KGF and TGF-alpha enhanced epithelial cell proliferation and antibodies against KGF and TGF-alpha partially inhibited SEB-induced crypt hyperplasia. These results suggest molecular cross-talk between the KGF/KGFR and the TGF-alpha/EGFR in immune-mediated crypt cell hyperplasia. PMID:9788959

  9. The role of biosimilar granulocyte colony stimulating factor (GCSF) Zarzio for progenitor cell mobilization and the treatment of therapy-induced neutropenia in adult hematopoietic stem cell transplantation.

    PubMed

    Severson, Cherie C

    2015-01-01

    Originator GCSF (Neupogen) has been used to mobilize progenitor stem cells and treat therapy-induced neutropenia in Canadian stem cell transplant settings for years. Although its benefit is not in question, viable alternatives are available. Biosimilar GCSF (Zarzio) is widely in use in Europe since 2009 and was recently approved in the U.S.for the same five indications as Neupogen. Zarzio is reported as safe, equally efficacious, more accessible and cost effective without negatively impacting patient outcomes. This paper summarizes the supporting evidence. PMID:26897866

  10. Ascitic fluid from human ovarian cancer patients contains growth factors necessary for intraperitoneal growth of human ovarian adenocarcinoma cells.

    PubMed Central

    Mills, G B; May, C; Hill, M; Campbell, S; Shaw, P; Marks, A

    1990-01-01

    Human ovarian cancer, the leading cause of death from gynecologic malignancy, tends to remain localized to the peritoneal cavity until late in the disease. In established disease, ascitic fluid accumulates in the peritoneal cavity. We have previously demonstrated that this ascitic fluid is a potent source of in vitro mitogenic activity including at least one unique growth factor. We now report that the human ovarian adenocarcinoma line, HEY, can be induced to grow intraperitoneally in immunodeficient nude mice in the presence (23/28 mice), but not absence (0/21 mice) of ascitic fluid from ovarian cancer patients. Ascitic fluid from patients with benign disease did not have similar effects on intraperitoneal growth of HEY cells (1/15 mice). Once tumors were established by injections of exogenous ascitic fluid, they could progress in the absence of additional injections of ascitic fluid. The mice eventually developed ascitic fluid which contained potent growth factor activity, suggesting that the tumors eventually produced autologous growth factors. This nude mouse model provides a system to study the action of ovarian cancer growth factors on tumor growth in vivo and to evaluate preclinically, therapeutic approaches designed to counteract the activity of these growth factors. PMID:2394835

  11. Regulation of hematopoietic stem cells in the niche.

    PubMed

    Zhao, Meng; Li, LinHeng

    2015-12-01

    Hematopoiesis provides a suitable model for understanding adult stem cells and their niche. Hematopoietic stem cells (HSCs) continuously produce blood cells through orchestrated proliferation, self-renewal, and differentiation in the bone marrow (BM). Within the BM exists a highly organized microenvironment termed "niche" where stem cells reside and are maintained. HSC niche is the first evidence that a microenvironment contributes to protecting stem cell integrity and functionality in mammals. Although multiple models exist, recent progress has principally elucidated the cellular complexity of the HSC niche that maintains and regulates HSCs in BM. Here we introduce the development and summarize the achievements of HSC niche studies.

  12. Mitogenic properties of insulin-like growth factors I and II, insulin-like growth factor binding protein-3 and epidermal growth factor on human breast stromal cells in primary culture.

    PubMed

    Strange, Karen S; Wilkinson, Darcy; Edin, Glenn; Emerman, Joanne T

    2004-03-01

    Insulin-like growth factors I and II (IGF-I and IGF-II) are growth factors implicated in both normal mammary gland development and breast cancer. We have previously reported on the effects of components of the IGF system on breast epithelial cells. Since data suggests that stromal-epithelial interactions play a crucial role in breast cancer, we have now investigated the mitogenic properties of IGF-I, IGF-II, insulin-like growth factor binding protein-3 (IGFBP-3) and epidermal growth factor (EGF) on human breast stromal cells in primary culture. We show that, under serum-free conditions, stromal cells are stimulated to grow in response to IGF-I and IGF-II in a dose-dependent manner. IGF-I and EGF, a potent stimulator of human breast epithelial cell growth in primary culture and also associated with breast cancer, appear to stimulate stromal cell growth in a synergistic manner. IGFBP-3 does not inhibit the stimulation of growth by IGF-I, or IGF-I plus EGF. However, IGFBP-3 does inhibit the stimulation of growth by IGF-II. In contrast to our previous results with human breast epithelial cells, IGFBP-3 does not have an IGF-independent inhibitory effect on stromal cell growth. This study is the first to address the effects of IGF-I, IGF-II and IGFBP-3 alone and in combination with EGF on human breast stromal cell growth in primary culture. Characterizing the role of the IGF system in both normal breast epithelial cells and stromal cells will aid in our understanding of the mechanisms behind the role of the IGF system in breast cancer.

  13. Immunological Basis of Bone Marrow Failure after Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Masouridi-Levrat, Stavroula; Simonetta, Federico; Chalandon, Yves

    2016-01-01

    Bone marrow failure (BMF) syndromes are severe complications of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In this paper, we distinguish two different entities, the graft failure (GF) and the poor graft function (PGF), and we review the current understanding of the interactions between the immune and hematopoietic compartments in these conditions. We first discuss how GF occurs as the result of classical alloreactive immune responses mediated by residual host cellular and humoral immunity persisting after conditioning and prevented by host and donor regulatory T cells. We next summarize the current knowledge about the contribution of inflammatory mediators to the development of PGF. In situations of chronic inflammation complicating allo-HSCT, such as graft-versus-host disease or infections, PGF seems to be essentially the result of a sustained impairment of hematopoietic stem cells (HSC) self-renewal and proliferation caused by inflammatory mediators, such as interferon-γ (IFN-γ) and tumor necrosis factor-α, and of induction of apoptosis through the Fas/Fas ligand pathway. Interestingly, the production of inflammatory molecules leads to a non-MHC restricted, bystander inhibition of hematopoiesis, therefore, representing a promising target for immunological interventions. Finally, we discuss immune-mediated impairment of bone marrow microenvironment as a potential mechanism hampering hematopoietic recovery. Better understanding of immunological mechanisms responsible for BMF syndromes after allo-HSCT may lead to the development of more efficient immunotherapeutic interventions. PMID:27695456

  14. Immunological Basis of Bone Marrow Failure after Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Masouridi-Levrat, Stavroula; Simonetta, Federico; Chalandon, Yves

    2016-01-01

    Bone marrow failure (BMF) syndromes are severe complications of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In this paper, we distinguish two different entities, the graft failure (GF) and the poor graft function (PGF), and we review the current understanding of the interactions between the immune and hematopoietic compartments in these conditions. We first discuss how GF occurs as the result of classical alloreactive immune responses mediated by residual host cellular and humoral immunity persisting after conditioning and prevented by host and donor regulatory T cells. We next summarize the current knowledge about the contribution of inflammatory mediators to the development of PGF. In situations of chronic inflammation complicating allo-HSCT, such as graft-versus-host disease or infections, PGF seems to be essentially the result of a sustained impairment of hematopoietic stem cells (HSC) self-renewal and proliferation caused by inflammatory mediators, such as interferon-γ (IFN-γ) and tumor necrosis factor-α, and of induction of apoptosis through the Fas/Fas ligand pathway. Interestingly, the production of inflammatory molecules leads to a non-MHC restricted, bystander inhibition of hematopoiesis, therefore, representing a promising target for immunological interventions. Finally, we discuss immune-mediated impairment of bone marrow microenvironment as a potential mechanism hampering hematopoietic recovery. Better understanding of immunological mechanisms responsible for BMF syndromes after allo-HSCT may lead to the development of more efficient immunotherapeutic interventions.

  15. Heparan sulfate inhibits hematopoietic stem and progenitor cell migration and engraftment in mucopolysaccharidosis I.

    PubMed

    Watson, H Angharad; Holley, Rebecca J; Langford-Smith, Kia J; Wilkinson, Fiona L; van Kuppevelt, Toin H; Wynn, Robert F; Wraith, J Edmond; Merry, Catherine L R; Bigger, Brian W

    2014-12-26

    Mucopolysaccharidosis I Hurler (MPSI-H) is a pediatric lysosomal storage disease caused by genetic deficiencies in IDUA, coding for α-l-iduronidase. Idua(-/-) mice share similar clinical pathology with patients, including the accumulation of the undegraded glycosaminoglycans (GAGs) heparan sulfate (HS), and dermatan sulfate (DS), progressive neurodegeneration, and dysostosis multiplex. Hematopoietic stem cell transplantation (HSCT) is the most effective treatment for Hurler patients, but reduced intensity conditioning is a risk factor in transplantation, suggesting an underlying defect in hematopoietic cell engraftment. HS is a co-receptor in the CXCL12/CXCR4 axis of hematopoietic stem and progenitor cell (HSPC) migration to the bone marrow (BM), but the effect of HS alterations on HSPC migration, or the functional role of HS in MPSI-H are unknown. We demonstrate defective WT HSPC engraftment and migration in Idua(-/-) recipient BM, particularly under reduced intensity conditioning. Both intra- but especially extracellular Idua(-/-) BM HS was significantly increased and abnormally sulfated. Soluble heparinase-sensitive GAGs from Idua(-/-) BM and specifically 2-O-sulfated HS, elevated in Idua(-/-) BM, both inhibited CXCL12-mediated WT HSPC transwell migration, while DS had no effect. Thus we have shown that excess overly sulfated extracellular HS binds, and sequesters CXCL12, limiting hematopoietic migration and providing a potential mechanism for the limited scope of HSCT in Hurler disease.

  16. ATF4 plays a pivotal role in the development of functional hematopoietic stem cells in mouse fetal liver.

    PubMed

    Zhao, Yunze; Zhou, Jie; Liu, Dan; Dong, Fang; Cheng, Hui; Wang, Weili; Pang, Yakun; Wang, Yajie; Mu, Xiaohuan; Ni, Yanli; Li, Zhuan; Xu, Huiyu; Hao, Sha; Wang, Xiaochen; Ma, Shihui; Wang, Qian-fei; Xiao, Guozhi; Yuan, Weiping; Liu, Bing; Cheng, Tao

    2015-11-19

    The fetal liver (FL) serves as a predominant site for expansion of functional hematopoietic stem cells (HSCs) during mouse embryogenesis. However, the mechanisms for HSC development in FL remain poorly understood. In this study, we demonstrate that deletion of activating transcription factor 4 (ATF4) significantly impaired hematopoietic development and reduced HSC self-renewal in FL. In contrast, generation of the first HSC population in the aorta-gonad-mesonephros region was not affected. The migration activity of ATF4(-/-) HSCs was moderately reduced. Interestingly, the HSC-supporting ability of both endothelial and stromal cells in FL was significantly compromised in the absence of ATF4. Gene profiling using RNA-seq revealed downregulated expression of a panel of cytokines in ATF4(-/-) stromal cells, including angiopoietin-like protein 3 (Angptl3) and vascular endothelial growth factor A (VEGFA). Addition of Angptl3, but not VEGFA, partially rescued the repopulating defect of ATF4(-/-) HSCs in the culture. Furthermore, chromatin immunoprecipitation assay in conjunction with silencing RNA-mediated silencing and complementary DNA overexpression showed transcriptional control of Angptl3 by ATF4. To summarize, ATF4 plays a pivotal role in functional expansion and repopulating efficiency of HSCs in developing FL, and it acts through upregulating transcription of cytokines such as Angptl3 in the microenvironment.

  17. Tunable interplay between epidermal growth factor and cell–cell contact governs the spatial dynamics of epithelial growth

    PubMed Central

    Kim, Jin-Hong; Kushiro, Keiichiro; Graham, Nicholas A.; Asthagiri, Anand R.

    2009-01-01

    Contact-inhibition of proliferation constrains epithelial tissue growth, and the loss of contact-inhibition is a hallmark of cancer cells. In most physiological scenarios, cell–cell contact inhibits proliferation in the presence of other growth-promoting cues, such as soluble growth factors (GFs). How cells quantitatively reconcile the opposing effects of cell–cell contact and GFs, such as epidermal growth factor (EGF), remains unclear. Here, using quantitative analysis of single cells within multicellular clusters, we show that contact is not a “master switch” that overrides EGF. Only when EGF recedes below a threshold level, contact inhibits proliferation, causing spatial patterns in cell cycle activity within epithelial cell clusters. Furthermore, we demonstrate that the onset of contact-inhibition and the timing of spatial patterns in proliferation may be reengineered. Using micropatterned surfaces to amplify cell–cell interactions, we induce contact-inhibition at a higher threshold level of EGF. Using a complementary molecular genetics approach to enhance cell–cell interactions by overexpressing E-cadherin also increases the threshold level of EGF at which contact-inhibition is triggered. These results lead us to propose a state diagram in which epithelial cells transition from a contact-uninhibited state to a contact-inhibited state at a critical threshold level of EGF, a property that may be tuned by modulating the extent of cell–cell contacts. This quantitative model of contact-inhibition has direct implications for how tissue size may be determined and deregulated during development and tumor formation, respectively, and provides design principles for engineering epithelial tissue growth in applications such as tissue engineering. PMID:19549816

  18. Epidermal growth factor promotes proliferation of dermal papilla cells via Notch signaling pathway.

    PubMed

    Zhang, Haihua; Nan, Weixiao; Wang, Shiyong; Zhang, Tietao; Si, Huazhe; Wang, Datao; Yang, Fuhe; Li, Guangyu

    2016-08-01

    The effect of epidermal growth factor (EGF) on the development and growth of hair follicle is controversial. In the present study, 2-20 ng/ml EGF promoted the growth of mink hair follicles in vitro, whereas 200 ng/ml EGF inhibited follicle growth. Further, dermal papilla (DP) cells, a group of mesenchymal cells that govern hair follicle development and growth, were isolated and cultured in vitro. Treatment with or forced expression of EGF accelerated proliferation and induced G1/S transition in DP cells. Moreover, EGF upregulated the expression of DP mesenchymal genes, such as alkaline phosphatase (ALP) and insulin-like growth factor (IGF-1), as well as the Notch pathway molecules including Notch1, Jagged1, Hes1 and Hes5. In addition, inhibition of Notch signaling pathway by DAPT significantly reduced the basal and EGF-enhanced proliferation rate, and also suppressed cell cycle progression. We also show that the expression of several follicle-regulatory genes, such as Survivin and Msx2, were upregulated by EGF, and was inhibited by DAPT. In summary, our study demonstrates that the concentration of EGF is critical for the switch between hair follicle growth and inhibition, and EGF promotes DP cell proliferation via Notch signaling pathway.

  19. Binding, internalization, and degradation of basic fibroblast growth factor in human microvascular endothelial cells

    SciTech Connect

    Bikfalvi, A.; Dupuy, E.; Inyang, A.L.; Tobelem, G. ); Fayein, N.; Courtois, Y. ); Leseche, G. )

    1989-03-01

    The binding, internalization, and degradation of basic fibroblast growth factor (bFGF) in human omental microvascular endothelial cells (HOME cells) were investigated. Binding studies of bFGF in human endothelial cells have not yet been reported. Basic FGF bound to HOME cells. The number of low-affinity binding sites was found to be variable. Washing the cells with 2 M phosphate-buffered saline removed completely {sup 125}I-bFGF bound to low-affinity binding sites but decreased also the high-affinity binding. The majority of the surface-bound {sup 125}I-bFGF was removed by washing the cells with acetic acid buffer at pH 3. At this temperature, degradation of the internalized ligand was followed after 1 hour by the appearance of three major bands of 15,000 10,000, and 8,000 Da and was inhibited by chloroquine. These results demonstrated two classes of binding sites for bFGF in HOME cells; the number of high-affinity binding sites being larger than the number reported for bovine capillary endothelial cells. The intracellular processing of bFGF in HOME cells seems to be different from that of heparin binding growth factor-1 in murine lung capillary endothelial cells and of eye-derived growth factor-1 in Chinese hamster fibroblasts.

  20. Epithelial differentiation of metanephric mesenchymal cells after stimulation with hepatocyte growth factor or embryonic spinal cord.

    PubMed Central

    Karp, S L; Ortiz-Arduan, A; Li, S; Neilson, E G

    1994-01-01

    Mammalian kidney emerges from metanephric mesenchyme following the insertion of a migrating ureteric bud. The pattern morphology of mesenchymal specialization during tubular segmentation is remarkably complex, and the relative contribution of pattern gradients from the microenvironment versus the instructive role of individual cells is not known. We have started to examine the differentiation of metanephric mesenchyme using cultures of metanephric ridge (MMR) cells from day 13.5 mouse embryos to investigate the conversion of mesenchyme toward kidney epithelium in vitro. One of our mesenchymal clones, MMR1, expresses little Pax2, uvomorulin, or cytokeratin but does express neural cell adhesion molecule, bc12, and desmin; these are properties consistent with an early stem cell. Coculture of MMR1 cells with embryonic spinal cord leads to the induction of a more differentiated cell phenotype characterized by decreased expression of neural cell adhesion molecule, the appearance of uvomorulin, and the emergence of cytokeratin, all consistent with an evolution toward epithelium. We were also able to detect the hepatocyte growth factor receptor c-met on MMR1 cells by indirect immunofluorescence. When MMR1 cells were stimulated with hepatocyte growth factor, neural cell adhesion molecule expression decreased and uvomorulin appeared. This effect of hepatocyte growth factor, as a single cytokine, may be important in the early assemblage of kidney, since we were able to detect mRNA transcripts encoding c-met from mouse embryo metanephric kidneys. Images PMID:8202482

  1. Polycomb group proteins in hematopoietic stem cell aging and malignancies.

    PubMed

    Klauke, Karin; de Haan, Gerald

    2011-07-01

    Protection of the transcriptional "stemness" network is important to maintain a healthy hematopoietic stem cells (HSCs) compartment during the lifetime of the organism. Recent evidence shows that fundamental changes in the epigenetic status of HSCs might be one of the driving forces behind many age-related HSC changes and might pave the way for HSC malignant transformation and subsequent leukemia development, the incidence of which increases exponentially with age. Polycomb group (PcG) proteins are key epigenetic regulators of HSC cellular fate decisions and are often found to be misregulated in human hematopoietic malignancies. In this review, we speculate that PcG proteins balance HSC aging against the risk of developing cancer, since a disturbance in PcG genes and proteins affects several important cellular processes such as cell fate decisions, senescence, apoptosis, and DNA damage repair.

  2. Facilitating cells: Translation of hematopoietic chimerism to achieve clinical tolerance.

    PubMed

    Ildstad, Suzanne T; Leventhal, Joseph; Wen, Yujie; Yolcu, Esma

    2015-04-01

    For over 50 y the association between hematopoietic chimerism and tolerance has been recognized. This originated with the brilliant observation by Dr. Ray Owen that freemartin cattle twins that shared a common placental blood supply were red blood cell chimeras, which led to the discovery that hematopoietic chimerism resulted in actively acquired tolerance. This was first confirmed in neonatal mice by Medawar et al. and subsequently in adult rodents. Fifty years later this concept has been successfully translated to solid organ transplant recipients in the clinic. The field is new, but cell-based therapies are being used with increasing frequency to induce tolerance and immunomodulation. The future is bright. This review focuses on chimerism and tolerance: past, present and prospects for the future.

  3. Interleukin-8 as an autocrine growth factor for human colon carcinoma cells in vitro.

    PubMed

    Brew, R; Erikson, J S; West, D C; Kinsella, A R; Slavin, J; Christmas, S E

    2000-01-01

    Cell lines derived from human colon carcinomas secrete interleukin 8 (IL-8) in vitro and this chemokine has also been detected immunohistochemically in human colon carcinoma specimens, in which it is tumour cell associated. In these experiments, IL-8 was shown to comprise an important component of the angiogenic activity of colon carcinoma cell line supernatants. The effect of modulating IL-8 activity upon the growth of the colon carcinoma cell lines HCT116A, HT29 and CaCo2 was investigated. Supplementing endogenously produced IL-8 by recombinant chemokine led to stimulation of cell growth. Neutralization of the effect of endogenously produced IL-8, either with the specific antagonist peptide AcRRWWCR or with blocking anti-IL-8 antibody, resulted in around 50% inhibition of cell growth (P<0.05). All of the colon carcinoma cell lines tested expressed mRNA for both IL-8RA and RB when grown at confluence. At the protein level, all cell lines expressed IL-8RA. Expression of IL-8RB was weak, although increased expression was seen in HCT116A cells as they approached confluence. Antibodies to IL-8RA and RB did not affect proliferation at low cell density but were strongly inhibitory when cells were cultured at a higher density. These data suggest that IL-8 acts as an autocrine growth factor for colon carcinoma cell lines and would support the concept that a similar autocrine loop operates in vivo.

  4. Stromal inhibition of prostatic epithelial cell proliferation not mediated by transforming growth factor beta.

    PubMed Central

    Kooistra, A.; van den Eijnden-van Raaij, A. J.; Klaij, I. A.; Romijn, J. C.; Schröder, F. H.

    1995-01-01

    The paracrine influence of prostatic stroma on the proliferation of prostatic epithelial cells was investigated. Stromal cells from the human prostate have previously been shown to inhibit anchorage-dependent as well as anchorage-independent growth of the prostatic tumour epithelial cell lines PC-3 and LNCaP. Antiproliferative activity, mediated by a diffusible factor in the stromal cell conditioned medium, was found to be produced specifically by prostatic stromal cells. In the present study the characteristics of this factor were examined. It is demonstrated that prostate stroma-derived inhibiting factor is an acid- and heat-labile, dithiothreitol-sensitive protein. Although some similarities with type beta transforming growth factor (TGF-beta)-like inhibitors are apparent, evidence is presented that the factor is not identical to TGF-beta or to the TGF-beta-like factors activin and inhibin. Absence of TGF-beta activity was shown by the lack of inhibitory response of the TGF-beta-sensitive mink lung cell line CCL-64 to prostate stromal cell conditioned medium and to concentrated, partially purified preparations of the inhibitor. Furthermore, neutralising antibodies against TGF-beta 1 or TGF-beta 2 did not cause a decline in the level of PC-3 growth inhibition caused by partially purified inhibitor. Using Northern blot analyses, we excluded the involvement of inhibin or activin. It is concluded that the prostate stroma-derived factor may be a novel growth inhibitor different from any of the currently described inhibiting factors. Images Figure 5 PMID:7543773

  5. Mental Status Changes after Hematopoietic Stem Cell Transplantation

    PubMed Central

    Chang, Grace; Meadows, Mary-Ellen; Orav, E. John; Antin, Joseph H.

    2009-01-01

    Background The growing numbers of survivors of innovative cancer treatments such as hematopoietic stem cell transplantation (HSCT) often report subsequent cognitive difficulties. The purpose of this study is to evaluate and compare neurocognitive changes in patients with chronic myelogenous leukemia (CML) or primary myelodysplastic syndrome (MDS) after allogeneic HSCT or other therapies. Methods Prospective cohort study employing serial evaluations of attention, concentration, memory, mood and quality of life in a consecutive sample of 106 eligible patients with CML (n=91) or MDS (n=15) at enrollment, and then 12 and 18 months after HSCT or other therapy. Results The three evaluations were completed by 98%, 95%, and 89% of surviving participants, respectively. Among all patients, there was significant improvement in memory over 18 months. For example, the 45 people receiving HSCT (42 with CML, 3 with MDS) compared favorably to those who had other treatment on most measures of neuropsychological function, except they had improved mental health (p=.034), worse physical function (p=.049), and more difficulty with coordination and fine motor speed bilaterally (dominant, p=.005, and non-dominant hands, p=.0019). CML patients overall had improved phonemic fluency (p=.014). Conclusions Time and diagnosis may be important factors when assessing neurocognitive and other changes. Complaints about “chemobrain” following HSCT merit further study, as deficits may actually pre-date initiation of treatment and then subsequently improve. Study results could reassure prospective HSCT recipients since it compares favorably to other treatments when mental status side effects are considered. PMID:19551887

  6. Dyslipidemia after allogeneic hematopoietic stem cell transplantation: evaluation and management.

    PubMed

    Griffith, Michelle L; Savani, Bipin N; Boord, Jeffrey B

    2010-08-26

    Currently, approximately 15,000 to 20,000 patients undergo allogeneic hematopoietic stem cell transplantation (HSCT) annually throughout the world, with the number of long-term survivors increasing rapidly. In long-term follow-up after transplantation, the focus of care moves beyond cure of the original disease to the identification and treatment of late effects after HSCT. One of the more serious complications is therapy-related cardiovascular disease. Long-term survivors after HSCT probably have an increased risk of premature cardiovascular events. Cardiovascular complications related to dyslipidemia and other risk factors account for a significant proportion of late nonrelapse morbidity and mortality. This review addresses the risk and causes of dyslipidemia and impact on cardiovascular complications after HSCT. Immunosuppressive therapy, chronic graft-versus-host disease, and other long-term complications influence the management of dyslipidemia. There are currently no established guidelines for evaluation and management of dyslipidemia in HSCT patients; in this review, we have summarized our suggested approach in the HSCT population.

  7. Clinical guide to fertility preservation in hematopoietic cell transplant recipients

    PubMed Central

    Joshi, S; Savani, BN; Chow, EJ; Gilleece, MH; Halter, J; Jacobsohn, DA; Pidala, J; Quinn, GP; Cahn, J-Y; Jakubowski, AA; Kamani, NR; Lazarus, HM; Rizzo, JD; Schouten, HC; Socie, G; Stratton, P; Sorror, ML; Warwick, AB; Wingard, JR; Loren, AW; Majhail, NS

    2014-01-01

    With broadening indications, more options for hematopoietic cell transplantation (HCT) and improvement in survival, the number of long-term HCT survivors is expected to increase steadily. Infertility is a frequent problem that long-term HCT survivors and their partners face and it can negatively impact on the quality of life. The most optimal time to address fertility issues is before the onset of therapy for the underlying disease; however, fertility preservation should also be addressed before HCT in all children and patients of reproductive age, with referral to a reproductive specialist for patients interested in fertility preservation. In vitro fertilization (IVF) and embryo cryopreservation, oocyte cryopreservation and ovarian tissue banking are acceptable methods for fertility preservation in adult women/pubertal females. Sperm banking is the preferred method for adult men/pubertal males. Frequent barriers to fertility preservation in HCT recipients may include the perception of lack of time to preserve fertility given an urgency to move ahead with transplant, lack of patient–physician discussion because of several factors (for example, time constraints, lack of knowledge), inadequate access to reproductive specialists, and costs and lack of insurance coverage for fertility preservation. There is a need to raise awareness in the medical community about fertility preservation in HCT recipients. PMID:24419521

  8. Genotoxicity of retroviral hematopoietic stem cell gene therapy

    PubMed Central

    Trobridge, Grant D

    2012-01-01

    Introduction Retroviral vectors have been developed for hematopoietic stem cell (HSC) gene therapy and have successfully cured X-linked severe combined immunodeficiency (SCID-X1), adenosine deaminase deficiency (ADA-SCID), adrenoleukodystrophy, and Wiskott-Aldrich syndrome. However, in HSC gene therapy clinical trials, genotoxicity mediated by integrated vector proviruses has led to clonal expansion, and in some cases frank leukemia. Numerous studies have been performed to understand the molecular basis of vector-mediated genotoxicity with the aim of developing safer vectors and safer gene therapy protocols. These genotoxicity studies are critical to advancing HSC gene therapy. Areas covered This review provides an introduction to the mechanisms of retroviral vector genotoxicity. It also covers advances over the last 20 years in designing safer gene therapy vectors, and in integration site analysis in clinical trials and large animal models. Mechanisms of retroviral-mediated genotoxicity, and the risk factors that contribute to clonal expansion and leukemia in HSC gene therapy are introduced. Expert opinion Continued research on virus–host interactions and next-generation vectors should further improve the safety of future HSC gene therapy vectors and protocols. PMID:21375467

  9. Hematopoietic stem cell transplantation for infantile osteopetrosis

    PubMed Central

    Fasth, Anders L.; Le Rademacher, Jennifer; He, Wensheng; Boelens, Jaap Jan; Horwitz, Edwin M.; Al-Seraihy, Amal; Ayas, Mouhab; Bonfim, Carmem M.; Boulad, Farid; Lund, Troy; Buchbinder, David K.; Kapoor, Neena; O’Brien, Tracey A.; Perez, Miguel A. Diaz; Veys, Paul A.; Eapen, Mary

    2015-01-01

    We report the international experience in outcomes after related and unrelated hematopoietic transplantation for infantile osteopetrosis in 193 patients. Thirty-four percent of transplants used grafts from HLA-matched siblings, 13% from HLA-mismatched relatives, 12% from HLA-matched, and 41% from HLA-mismatched unrelated donors. The median age at transplantation was 12 months. Busulfan and cyclophosphamide was the most common conditioning regimen. Long-term survival was higher after HLA-matched sibling compared to alternative donor transplantation. There were no differences in survival after HLA-mismatched related, HLA-matched unrelated, or mismatched unrelated donor transplantation. The 5- and 10-year probabilities of survival were 62% and 62% after HLA-matched sibling and 42% and 39% after alternative donor transplantation (P = .01 and P = .002, respectively). Graft failure was the most common cause of death, accounting for 50% of deaths after HLA-matched sibling and 43% of deaths after alternative donor transplantation. The day-28 incidence of neutrophil recovery was 66% after HLA-matched sibling and 61% after alternative donor transplantation (P = .49). The median age of surviving patients is 7 years. Of evaluable surviving patients, 70% are visually impaired; 10% have impaired hearing and gross motor delay. Nevertheless, 65% reported performance scores of 90 or 100, and in 17%, a score of 80 at last contact. Most survivors >5 years are attending mainstream or specialized schools. Rates of veno-occlusive disease and interstitial pneumonitis were high at 20%. Though allogeneic transplantation results in long-term survival with acceptable social function, strategies to lower graft failure and hepatic and pulmonary toxicity are urgently needed. PMID:26012570

  10. Embryonic Stem Cell Growth Factors Regulate eIF2α Phosphorylation.

    PubMed

    Friend, Kyle; Brooks, Hunter A; Propson, Nicholas E; Thomson, James A; Kimble, Judith

    2015-01-01

    Growth factors and transcription factors are well known to regulate pluripotent stem cells, but less is known about translational control in stem cells. Here, we use embryonic stem cells (ESCs) to investigate a connection between ESC growth factors and eIF2α-mediated translational control (eIF2α phosphorylation promotes protein expression from mRNAs with upstream open-reading frames, or uORFs). We find abundant phosphorylated P-eIF2α (P-eIF2α) in both pluripotent mouse and human ESCs, but little P-eIF2α in ESCs triggered to differentiate. We show that the growth factors LIF (leukemia inhibitory factor) and BMP4 (bone morphogenic protein 4) both maintain P-eIF2α in mESCs, but use distinct mechanisms: LIF inhibits an eIF2α phosphatase whereas BMP4 activates an eIF2α kinase. The mRNAs encoding the pluripotency factors Nanog and c-Myc possess uORFs while Oct4 mRNA does not. We find that salubrinal, a chemical that increases eIF2α phosphorylation, promotes Nanog and c-Myc expression, but not Oct4 expression. These experiments connect ESC growth factors to eIF2α phosphorylation and suggest a chemical substitute for LIF to enhance Nanog and c-Myc expression. PMID:26406898

  11. Embryonic Stem Cell Growth Factors Regulate eIF2α Phosphorylation

    PubMed Central

    Friend, Kyle; Brooks, Hunter A.; Propson, Nicholas E.; Thomson, James A.; Kimble, Judith

    2015-01-01

    Growth factors and transcription factors are well known to regulate pluripotent stem cells, but less is known about translational control in stem cells. Here, we use embryonic stem cells (ESCs) to investigate a connection between ESC growth factors and eIF2α-mediated translational control (eIF2α phosphorylation promotes protein expression from mRNAs with upstream open-reading frames, or uORFs). We find abundant phosphorylated P-eIF2α (P-eIF2α) in both pluripotent mouse and human ESCs, but little P-eIF2α in ESCs triggered to differentiate. We show that the growth factors LIF (leukemia inhibitory factor) and BMP4 (bone morphogenic protein 4) both maintain P-eIF2α in mESCs, but use distinct mechanisms: LIF inhibits an eIF2α phosphatase whereas BMP4 activates an eIF2α kinase. The mRNAs encoding the pluripotency factors Nanog and c-Myc possess uORFs while Oct4 mRNA does not. We find that salubrinal, a chemical that increases eIF2α phosphorylation, promotes Nanog and c-Myc expression, but not Oct4 expression. These experiments connect ESC growth factors to eIF2α phosphorylation and suggest a chemical substitute for LIF to enhance Nanog and c-Myc expression. PMID:26406898

  12. Interaction of insulin-like growth factor I with porcine thyroid cells cultured in monolayer

    SciTech Connect

    Saji, M.; Tsushima, T.; Isozaki, O.; Murakami, H.; Ohba, Y.; Sato, K.; Arai, M.; Mariko, A.; Shizume, K.

    1987-08-01

    The interaction of insulin-like growth factor I (IGF-I) with porcine thyroid cells cultured in monolayer was studied. Specific binding of (/sup 125/I)iodo-IGF-I to thyroid cells was a reversible process dependent on the time and temperature of incubation. A steady state was achieved in 18 h at 4 C and averaged 14.2 +/- 2% (mean +/- SD)/10(6) cells. Binding of (/sup 125/I)iodo-IGF-I was inhibited by unlabeled IGF-I; half-maximal inhibition occurred at concentrations of 2-5 ng/ml. Multiplication-stimulating activity (rat IGF-II) and pork insulin had relative potencies of 1:20 and 1:300 compared with IGF-I. Scatchard analysis of binding data revealed a single class of IGF-I receptors with a Ka of 4.3 X 10(10) M-1, 49,000 binding sites were estimated per cell. Affinity cross-linking and autoradiography demonstrated the presence of type I IGF receptors. Thyroid cells also had specific receptors for insulin, but specific binding of (/sup 125/I)iodoinsulin was much lower than that of (/sup 125/I)iodo-IGF-I. Preincubation of thyroid cells with IGF-I or insulin caused a concentration-dependent decrease in (/sup 125/I)iodo-IGF-I binding due to an apparent loss of receptors. Preincubation with epidermal growth factor, fibroblast growth factor, platelet-derived growth factor, or TSH did not alter subsequent binding of (/sup 125/I)iodo-IGF-I. Low concentrations of IGF-I stimulated DNA synthesis and proliferation of thyroid cells and acted synergistically with epidermal growth factor. Multiplication-stimulating activity and insulin had relative potencies in stimulating DNA synthesis comparable to their abilities to inhibit the binding of (/sup 125/I)iodo-IGF-I to thyroid cells.

  13. Long-term in vivo provision of antigen-specific T cell immunity by programming hematopoietic stem cells

    NASA Astrophysics Data System (ADS)

    Yang, Lili; Baltimore, David

    2005-03-01

    A method to genetically program mouse hematopoietic stem cells to develop into functional CD8 or CD4 T cells of defined specificity in vivo is described. For this purpose, a bicistronic retroviral vector was engineered that efficiently delivers genes for both and chains of T cell receptor (TCR) to hematopoietic stem cells. When modified cell populations were used to reconstruct the hematopoietic lineages of recipient mice, significant percentages of antigen-specific CD8 or CD4 T cells were observed. These cells expressed normal surface markers and responded to peptide antigen stimulation by proliferation and cytokine production. Moreover, they could mature into memory cells after peptide stimulation. Using TCRs specific for a model tumor antigen, we found that the recipient mice were able to partially resist a challenge with tumor cells carrying the antigen. By combining cells modified with CD8- and CD4-specific TCRs, and boosting with dendritic cells pulsed with cognate peptides, complete suppression of tumor could be achieved and even tumors that had become established would regress and be eliminated after dendritic cell/peptide immunization. This methodology of "instructive immunotherapy" could be developed for controlling the growth of human tumors and attacking established pathogens.

  14. Reduction of Nup107 attenuates the growth factor signaling in the senescent cells

    SciTech Connect

    Kim, Sung Young; Kang, Hyun Tae; Choi, Hae Ri; Park, Sang Chul

    2010-10-08

    Research highlights: {yields} Decreased expression of Nup107 in aged cells and organs. {yields} Depletion of Nup107 results in impaired nuclear translocation of p-ERK. {yields} Depletion of Nup107 affects downstream effectors of ERK signaling. {yields} Depletion of Nup107 inhibits cell proliferation of oligodendroglioma cells. -- Abstract: Hypo-responsiveness to growth factors is a fundamental feature of cellular senescence. In this study, we found markedly decreased level of Nup107, a key scaffold protein in nuclear pore complex assembly, in senescent human diploid fibroblasts as well as in organs of aged mice. Depletion of Nup107 by specific siRNA in young human diploid fibroblasts prevented the effective nuclear translocation of phosphorylated extracellular signal-regulated kinase (ERK) following epidermal growth factor (EGF) stimulation, and decreased the expression of c-Fos in consequence. The disturbances in ERK signaling in Nup107 depleted cells closely mirror the similar changes in senescent cells. Knockdown of Nup107 in anaplastic oligodendroglioma cells caused cell death, rather than growth retardation, indicating a greater sensitivity to Nup107 depletion in cancer cells than in normal cells. These findings support the notion that Nup107 may contribute significantly to the regulation of cell fate in aged and transformed cells by modulating nuclear trafficking of signal molecules.

  15. Retroviral transduction of hematopoietic progenitors derived from human embryonic stem cells.

    PubMed

    Menendez, Pablo; Wang, Lisheng; Cerdan, Chantal; Bhatia, Mickie

    2006-01-01

    It has been recently identified that cytokines and BMP-4 promote hematopoiesis from human embryonic stem cells (hESC) and that, before hematopoietic commitment, a rare subpopulation of cells lacking CD45, but expressing PECAM-1, Flk-1, and VE-cadherin (hereinafter termed CD45(neg)PFV precursors), are exclusively responsible for hematopoietic cell fate on cytokine stimulation. Efficient strategies to stably transduce these hematopoietic precursors specifically generated from hESCs would provide a novel and desirable tool to study hematopoietic development through the introduction and characterization of candidate genes suspected to regulate self-renewal processes of hESC-derived hematopoietic cells or dynamically track hESC-derived hematopoietic stem cells in vivo. To date, only transient transfection and stable transduction using lentiviral vectors have been reported in undifferentiated hESC followed by random and spontaneous differentiation into different cell types. However, protocols for stable transduction of hematopoietic progenitors prospectively derived from hESC need to be developed yet. In the present chapter, we described detailed methods on the recently characterized and optimized GALV-pseudotyped retroviral gene transfer strategy to stably transduce the hematopoietic progenitor cells prospectively derived from CD45(neg)PFV hemogenic precursors as a vital tool to study hematopoietic development and to characterize candidate genes suspected to eventually confer robust and sustained repopulating ability to hESC-derived hematopoietic cells.

  16. Hematopoietic Stem and Immune Cells in Chronic HIV Infection.

    PubMed

    Zhang, Jielin; Crumpacker, Clyde

    2015-01-01

    Hematopoietic stem cell (HSC) belongs to multipotent adult somatic stem cells. A single HSC can reconstitute the entire blood system via self-renewal, differentiation into all lineages of blood cells, and replenishment of cells lost due to attrition or disease in a person's lifetime. Although all blood and immune cells derive from HSC, immune cells, specifically immune memory cells, have the properties of HSC on self-renewal and differentiation into lineage effector cells responding to the invading pathogens. Moreover, the interplay between immune memory cell and viral pathogen determines the course of a viral infection. Here, we state our point of view on the role of blood stem and progenitor cell in chronic HIV infection, with a focus on memory CD4 T-cell in the context of HIV/AIDS eradication and cure. PMID:26300920

  17. Cell-intrinsic in vivo requirement for the E47-p21 pathway in long-term hematopoietic stem cells.

    PubMed

    Santos, Patricia M; Ding, Ying; Borghesi, Lisa

    2014-01-01

    Major regulators of long-term hematopoietic stem cell (LT-HSC) self-renewal and proliferation have been identified, but knowledge of their in vivo interaction in a linear pathway is lacking. In this study, we show a direct genetic link between the transcription factor E47 and the major cell cycle regulator p21 in controlling LT-HSC integrity in vivo under repopulation stress. Numerous studies have shown that E47 activates p21 transcription in hematopoietic subsets in vitro, and we now reveal the in vivo relevance of the E47-p21 pathway by reducing the gene dose of each factor individually (E47(het) or p21(het)) versus in tandem (E47(het)p21(het)). E47(het)p21(het) LT-HSCs and downstream short-term hematopoietic stem cells exhibit hyperproliferation and preferential susceptibility to mitotoxin compared to wild-type or single haploinsufficient controls. In serial adoptive transfers that rigorously challenge self-renewal, E47(het)p21(het) LT-HSCs dramatically and progressively decline, indicating the importance of cell-intrinsic E47-p21 in preserving LT-HSCs under stress. Transient numeric recovery of downstream short-term hematopoietic stem cells enabled the production of functionally competent myeloid but not lymphoid cells, as common lymphoid progenitors were decreased, and peripheral lymphocytes were virtually ablated. Thus, we demonstrate a developmental compartment-specific and lineage-specific requirement for the E47-p21 pathway in maintaining LT-HSCs, B cells, and T cells under hematopoietic repopulation stress in vivo.

  18. Enhanced generation of myeloid lineages in hematopoietic differentiation from embryonic stem cells by silencing transcriptional repressor Twist-2.

    PubMed

    Sharabi, Andrew B; Lee, Sung-Hyung; Goodell, Margaret A; Huang, Xue F; Chen, Si-Yi

    2009-12-01

    The self-renewal and multilineage differentiation of embryonic stem cells (ESC) is largely governed by transcription factors or repressors. Extensive efforts have focused on elucidating critical factors that control the differentiation of specific cell lineages, for instance, myeloid lineages in hematopoietic development. In this study, we found that Twist-2, a basic helix-loop-helix (bHLH) transcription factor, plays a critical role in inhibiting the differentiation of ESC. Murine ES cells, in which Twist-2 expression is silenced by lentivirally delivered shRNA, exhibit an enhanced formation of primary embryoid bodies (EB) and enhanced differentiation into mesodermally derived hematopoietic colonies. Furthermore, Twist-2 silenced (LV-siTwist-2) ESC display significantly increased generation of myeloid lineages (Gr-1(+) and F4/80(+) cells) during in vitro hematopoietic differentiation. Treatment with the Toll-like receptor (TLR) 4 ligand synergistically stimulates the generation of primary EB formation as well as of hematopoietic progenitors differentiated from LV-siTwist-2 ES cells. Thus, this study reveals the critical role of the transcriptional repressor Twist-2 in regulating the development of myeloid lineage in hematopoietic differentiation from ESC. This study also suggests a potential strategy for directional differentiation of ESC by inhibiting a transcriptional repressor.

  19. Identification of a novel variant hepatocyte growth factor secreted by spleen-derived stromal cells.

    PubMed

    Miau, L H; Jan, Y W; Shen, B J; Tsai, W H; Lee, H S; Lee, S C

    1996-06-25

    Stromal cells can interact with parenchymal cells by secreting various cytokines to affect the growth, differentiation or movement of the latter. Here we report the identification and characterization of a novel variant hepatocyte growth factor (HGF) from the conditioned medium of stromal cells derived from mouse spleen. Compared to human HGF, it has much lower heparin-binding activity and lacks the beta-chain. Its molecular weight, 70 kDa, is very close to that of the alpha-chain of HGF. Human HGF homologue was not found in the conditioned medium. The conditioned medium of stromal cells, like recombinant HGF, could inhibit the growth of rat hepatoma cells. The inhibitory activity was presumably attributed to this novel HGF because the inhibitory activity, as the existence of this novel HGF, was confined to the identical fractions after heparin-column chromatography. Furthermore, this activity could be specifically abrogated by neutralizing anti-HGF antibodies.

  20. Prophylaxis and treatment of acute lymphoblastic leukemia relapse after allogeneic hematopoietic stem cell transplantation

    PubMed Central

    Chen, Runzhe; Campbell, Jos L; Chen, Baoan

    2015-01-01

    Relapse of acute lymphoblastic leukemia remains a major cause of death in patients following allogeneic hematopoietic stem cell transplantation. Several factors may affect the concurrence and outcome of relapse, which include graft-versus-host disease, minimal residual disease or intrinsic factors of the disease, and transplantation characteristics. The mainstay of relapse prevention and treatment is donor leukocyte infusions, targeted therapies, second transplantation, and other novel therapies. In this review, we mainly focus on addressing the impact of graft-versus-host disease on relapse and the prophylaxis and treatment of acute lymphoblastic leukemia relapse following allogeneic hematopoietic stem cell transplantation. We also make recommendations for critical strategies to prevent relapse after transplantation and challenges that must be addressed to ensure success. PMID:25709473

  1. Regulation of pancreatic islet beta-cell mass by growth factor and hormone signaling.

    PubMed

    Huang, Yao; Chang, Yongchang

    2014-01-01

    Dysfunction and destruction of pancreatic islet beta cells is a hallmark of diabetes. Better understanding of cellular signals in beta cells will allow development of therapeutic strategies for diabetes, such as preservation and expansion of beta-cell mass and improvement of beta-cell function. During the past several decades, the number of studies analyzing the molecular mechanisms, including growth factor/hormone signaling pathways that impact islet beta-cell mass and function, has increased exponentially. Notably, somatolactogenic hormones including growth hormone (GH), prolactin (PRL), and insulin-like growth factor-1 (IGF-1) and their receptors (GHR, PRLR, and IGF-1R) are critically involved in beta-cell growth, survival, differentiation, and insulin secretion. In this chapter, we focus more narrowly on GH, PRL, and IGF-1 signaling, and GH-IGF-1 cross talk. We also discuss how these signaling aspects contribute to the regulation of beta-cell proliferation and apoptosis. In particular, our novel findings of GH-induced formation of GHR-JAK2-IGF-1R protein complex and synergistic effects of GH and IGF-1 on beta-cell signaling, proliferation, and antiapoptosis lead to a new concept that IGF-1R may serve as a proximal component of GH/GHR signaling.

  2. Chimeric Aptamer-Gelatin Hydrogels as an Extracellular Matrix Mimic for Loading Cells and Growth Factors

    PubMed Central

    Zhang, Xiaolong; Battig, Mark R.; Chen, Niancao; Gaddes, Erin R.; Duncan, Katelyn L.; Wang, Yong

    2016-01-01

    It is important to synthesize materials to recapitulate critical functions of biological systems for a variety of applications such as tissue engineering and regenerative medicine. The purpose of this study was to synthesize a chimeric hydrogel as a promising extracellular matrix (ECM) mimic using gelatin, a nucleic acid aptamer and polyethylene glycol (PEG). This hydrogel had a macroporous structure that was highly permeable for fast molecular transport. Despite its high permeability, it could strongly sequester and sustainably release growth factors with high bioactivity. Notably, growth factors retained in the hydrogel could maintain ~50% bioactivity during a 14-day release test. It also provided cells with effective binding sites, which led to high efficiency of cell loading into the macroporous hydrogel matrix. When cells and growth factors were co-loaded into the chimeric hydrogel, living cells could still be observed by day 14 in a static serum-reduced culture condition. Thus, this chimeric aptamer-gelatin hydrogel constitutes a promising biomolecular ECM mimic for loading cells and growth factors. PMID:26791559

  3. Recovery from severe hematopoietic suppression using recombinant human granulocyte-macrophage colony-stimulating factor

    SciTech Connect

    Monroy, R.L.; Skelly, R.R.; Taylor, P.; Dubois, A.; Donahue, R.E.; MacVittie, T.J.

    1988-06-01

    The ability of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) to enhance recovery of a radiation-suppressed hematopoietic system was evaluated in a nonuniform radiation exposure model using the rhesus monkey. Recombinant human GM-CSF treatment for 7 days after a lethal, nonuniform radiation exposure of 800 cGy was sufficient to enhance hematopoietic reconstitution, leading to an earlier recovery. Monkeys were treated with 72,000 U/kg/day of rhGM-CSF delivered continuously through an Alzet miniosmotic pump implanted subcutaneously on day 3. Treated monkeys demonstrated effective granulocyte and platelet levels in the peripheral blood, 4 and 7 days earlier, respectively, than control monkeys. Granulocyte-macrophage colony-forming unit (CFU-GM) activity in the bone marrow was monitored to evaluate the effect of rhGM-CSF on marrow recovery. Treatment with rhGM-CSF led to an early recovery of CFU-GM activity suggesting that rhGM-CSF acted on an earlier stem cell population to generate CFU-GM. Thus, the effect of rhGM-CSF on hematopoietic regeneration, granulocyte recovery, and platelet recovery are evaluated in this paper.

  4. Recovery from severe hematopoietic suppression using recombinant human granulocyte-macrophage colony-stimulating factor

    SciTech Connect

    Monroy, R.L.; Skelly, R.R.; Taylor, P.; Dubois, A.; Donahue, R.E.

    1988-01-01

    The ability of recombinant human granulocytemacrophage colony-stimulating factor (rhGM-CSF) to enhance recovery of a radiation-suppressed hematopoietic system was evaluated in a nonuniform radiation-exposure model using the rhesus monkey. Recombinant human GM-CSF treatment for 7 days after a lethal, nonuniform radiation exposure of 800 cGy was sufficient to enhance hematopoietic reconstitution, leading to an earlier recovery. Monkeys were treated with 72,000 U/kg/day of rhGm-CSF delivered continuously through an Alzet mini-osmotic pump implanted subcutaneously on day 3. Treated monkeys demonstrated effective granulocyte and platelet levels in the peripheral blood, 4 and 7 days earlier, respectively, than control monkeys. Granulocyte-macrophage colony-forming unit (CFU-GM) activity in the bone marrow was monitored to evaluate the effect of rhGM-CSF on marrow recovery. Treatment with rhGM-CSF led to an early recovery of CFU-GM activity suggesting that rhGM-CSF acted on an earlier stem cell population to generate CFU-GM. Thus, the effect of rhGM-CSF on hematopoietic regeneration, granulocyte recovery, and platelet recovery are evaluated.

  5. [Research Progress on the Development and Regulation of Embryonic Hematopoietic Stem Cells].

    PubMed

    Mu, Weiyun; Yao, Weijuan

    2015-10-01

    Hematopoietic stem cells (HSCs) are tissue specific stem cells that replenish all mature blood lineages during the lifetime of an individual. Hematopoietic cell clusters in the aorta of vertebrate embryos play a pivotal role in the formation of the adult blood system. Recently, people have learned a lot about the embryonic HSCs on their development and homing. During their differentiation, HSCs are regulated by the transcription factors, such as Runx1 and Notch signaling pathway, etc. MicroRNAs also regulate the self-renewal and differentiation of hematopoietic stem/progenitor cells on the post-transcriptional levels. Since the onset of circulation, the formation of HSCs and their differentiation into blood cells, especially red blood cells, are regulated by the hemodynamic forces. It would be of great significance if we could treat hematologic diseases with induced HSCs in vitro on the basis of fully understanding of hemotopoietic stem cell development. This review is focused on the advances in the research of HSCs' development and regulation.

  6. Mutual Interference between Cytomegalovirus and Reconstitution of Protective Immunity after Hematopoietic Cell Transplantation.

    PubMed

    Reddehase, Matthias J

    2016-01-01

    Hematopoietic cell transplantation (HCT) is a therapy option for aggressive forms of hematopoietic malignancies that are resistant to standard antitumoral therapies. Hematoablative treatment preceding HCT, however, opens a "window of opportunity" for latent Cytomegalovirus (CMV) by releasing it from immune control with the consequence of reactivation of productive viral gene expression and recurrence of infectious virus. A "window of opportunity" for the virus represents a "window of risk" for the patient. In the interim between HCT and reconstitution of antiviral immunity, primarily mediated by CD8(+) T cells, initially low amounts of reactivated virus can expand exponentially, disseminate to essentially all organs, and cause multiple organ CMV disease, with interstitial pneumonia (CMV-IP) representing the most severe clinical manifestation. Here, I will review predictions originally made in the mouse model of experimental HCT and murine CMV infection, some of which have already paved the way to translational preclinical research and promising clinical trials of a preemptive cytoimmunotherapy of human CMV disease. Specifically, the mouse model has been pivotal in providing "proof of concept" for preventing CMV disease after HCT by adoptive transfer of preselected, virus epitope-specific effector and memory CD8(+) T cells bridging the critical interim. However, CMV is not a "passive antigen" but is a pathogen that actively interferes with the reconstitution of protective immunity by infecting bone marrow (BM) stromal cells that otherwise form niches for hematopoiesis by providing the structural microenvironment and by producing hematopoietically active cytokines, the hemopoietins. Depending on the precise conditions of HCT, reduced homing of transplanted hematopoietic stem- and progenitor cells to infected BM stroma and impaired colony growth and lineage differentiation can lead to "graft failure." In consequence, uncontrolled virus spread causes morbidity and

  7. Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.

    PubMed

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K

    2011-10-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. PMID:21640721

  8. Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.

    PubMed

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K

    2011-10-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis.

  9. Mutual induction of growth factor gene expression by epidermal-dermal cell interaction

    PubMed Central

    1993-01-01

    Epithelial-mesenchymal interactions control epidermal growth and differentiation, but little is known about the mechanisms of this interaction. We have examined the effects of human dermal microvascular endothelial cells (DMEC) and fibroblasts on keratinocytes in conventional (feeder layer) and organotypic cocultures (lifted collagen gels) and demonstrated the induction of paracrine growth factor gene expression. Clonal keratinocyte growth was similarly stimulated in cocultures with irradiated DMEC and fibroblasts as feeder cells. This effect is most probably caused by induction of growth factor expression in cocultured dermal cells. Keratinocytes stimulated mRNA levels for KGF and IL-6 in both mesenchymal cell types and GM-CSF in fibroblasts. The feeder effect could not be replaced by conditioned media or addition of isolated growth factors. In organotypic cocultures with keratinocytes growing on collagen gels (repopulated with dermal cells), a virtually normal epidermis was formed within 7 to 10 d. Keratinocyte proliferation was drastically stimulated by dermal cells (histone 3 mRNA expression and BrdU labeling) which continued to proliferate as well in the gel. Expression of all typical differentiation markers was provoked in the reconstituted epithelium, though with different localization as compared to normal epidermis. Keratins K1 and K10 appeared coexpressed but delayed, reflecting conditions in epidermal hyperplasia. Keratin localization and proliferation were normalized under in vivo conditions, i.e., in surface transplants on nude mice. From these data it is concluded that epidermal homeostasis is in part controlled by complex reciprocally induced paracrine acting factors in concert with cell-cell interactions and extracellular matrix influences. PMID:8320264

  10. Gene-modified hematopoietic stem cells for cancer immunotherapy.

    PubMed

    Larson, Sarah; De Oliveira, Satiro N

    2014-01-01

    The rapid expansion of available cancer immunotherapies has resulted in favorable early outcomes. Specifically the use of gene therapy to introduce chimeric antigen receptors (CARs) and T cell receptors (TCRs) in T cells creates new immunotherapy options for patients. While showing early success with these approaches, limitations remain that can be overcome by the use of modification of hematopoietic stem cells (HSCs) to express CARs and TCRs. With modern gene therapy technologies, increased safety and control of the modification of the HSCs can be achieved through the use of a suicide gene.

  11. Hematopoietic stem cells, progenitor cells and leukemic stem cells in adult myeloproliferative neoplasms.

    PubMed

    Ng, Ashley P

    2013-05-01

    The understanding of myeloproliferative neoplasms has changed dramatically since Dameshek proposed his classification over 50 years ago. Our knowledge of the types of cells which constitute the hematopoietic system and of how they are regulated has also appreciated significantly over this time. This review relates what is currently known about the acquired genetic mutations associated with adult myeloproliferative neoplasms to how they lead to the hematopoietic perturbations of myeloproliferative disease. There is a particular focus on how stem and progenitor cell compartments are affected by BCR-ABL1 and JAK2V617F mutations, and the particular issue of resistance of leukemic stem cells to conventional and targeted therapies. PMID:23013358

  12. Hematopoietic stem cell transplantation: clinical use and perspectives.

    PubMed

    Barriga, Francisco; Ramírez, Pablo; Wietstruck, Angélica; Rojas, Nicolás

    2012-01-01

    Hematopoietic stem cell transplantation is the accepted therapy of choice for a variety of malignant and non-malignant diseases in children and adults. Initially developed as rescue therapy for a patient with cancer after high doses of chemotherapy and radiation as well as the correction of severe deficiencies in the hematopoietic system, it has evolved into an adoptive immune therapy for malignancies and autoimmune disorders. The procedure has helped to obtain key information about the bone marrow environment, the biology of hematopoietic stem cells and histocompatibility. The development of this new discipline has allowed numerous groups working around the world to cure patients of diseases previously considered lethal. Together with the ever growing list of volunteer donors and umbilical cord blood banks, this has resulted in life saving therapy for thousands of patients yearly. We present an overview of the procedure from its cradle to the most novel applications, as well as the results of the HSC transplant program developed at our institution since 1989. PMID:23283440

  13. Total body irradiation selectively induces murine hematopoietic stem cell senescence.

    PubMed

    Wang, Yong; Schulte, Bradley A; LaRue, Amanda C; Ogawa, Makio; Zhou, Daohong

    2006-01-01

    Exposure to ionizing radiation (IR) and certain chemotherapeutic agents not only causes acute bone marrow (BM) suppression but also leads to long-term residual hematopoietic injury. This latter effect has been attributed to damage to hematopoietic stem cell (HSC) self-renewal. Using a mouse model, we investigated whether IR induces senescence in HSCs, as induction of HSC senescence can lead to the defect in HSC self-renewal. It was found that exposure of C57BL/6 mice to a sublethal dose (6.5 Gy) of total body irradiation (TBI) resulted in a sustained quantitative and qualitative reduction of LKS+ HSCs. In addition, LKS+ HSCs from irradiated mice exhibited an increased expression of the 2 commonly used biomarkers of cellular senescence, p16(Ink4a) and SA-beta-gal. In contrast, no such changes were observed in irradiated LKS- hematopoietic progenitor cells. These results provide the first direct evidence demonstrating that IR exposure can selectively induce HSC senescence. Of interest, the induction of HSC senescence was associated with a prolonged elevation of p21(Cip1/Waf1), p19(Arf), and p16(Ink4a) mRNA expression, while the expression of p27(Kip1) and p18(Ink4c) mRNA was not increased following TBI. This suggests that p21(Cip1/Waf1), p19(Arf), and p16(Ink4a) may play an important role in IR-induced senescence in HSCs.

  14. Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors.

    PubMed

    Takayama, Naoya; Nishikii, Hidekazu; Usui, Joichi; Tsukui, Hiroko; Sawaguchi, Akira; Hiroyama, Takashi; Eto, Koji; Nakauchi, Hiromitsu

    2008-06-01

    Human embryonic stem cells (hESCs) could potentially represent an alternative source for blood transfusion therapies and a promising tool for studying the ontogeny of hematopoiesis. When we cultured hESCs on either C3H10T1/2 or OP-9 cells to facilitate hematopoiesis, we found that exogenous administration of vascular endothelial growth factor promoted the emergence of sac-like structures, which we named embryonic stem cell-derived sacs (ES-sacs). These ES-sacs consisted of multiple cysts demarcated by cellular monolayers that retained some of the properties of endothelial cells. The spherical cells inside ES-sacs expressed primarily CD34, along with VE-cadherin, CD31, CD41a, and CD45, and were able to form hematopoietic colonies in semisolid culture and to differentiate into mature megakaryocytes by day 24 in the presence of thrombopoietin. Apparently, ES-sacs provide a suitable environment for hematopoietic progenitors. Relatively large numbers of mature megakaryocytes could be induced from the hematopoietic progenitors within ES-sacs, which were then able to release platelets that displayed integrin alpha IIb beta 3 activation and spreading in response to ADP or thrombin. This novel protocol thus provides a means of generating platelets from hESCs, which could serve as the basis for efficient production of platelets for clinical transfusion and studies of thrombopoiesis.

  15. Tumor necrosis factor alpha induces the expression of transforming growth factor alpha and the epidermal growth factor receptor in human pancreatic cancer cells.

    PubMed Central

    Schmiegel, W; Roeder, C; Schmielau, J; Rodeck, U; Kalthoff, H

    1993-01-01

    Recombinant human tumor necrosis factor (TNF)-alpha increased the expression of epidermal growth factor receptor (EGFR) mRNA and protein in all of six human pancreatic carcinoma cell lines tested. In addition, TNF-alpha increased the expression of an EGFR ligand, transforming growth factor (TGF)-alpha, at the mRNA and protein level in all cell lines. Increased expression of EGFR protein was associated with elevated steady-state EGFR mRNA levels. Nuclear run-on analysis showed that increase in EGFR mRNA was due to an increased rate of transcription. Induction of EGFR mRNA expression by TNF-alpha was abrogated by cycloheximide but occurred independently of TNF-alpha-induced production of TGF-alpha protein. Protein kinase A or Gi-type guanine nucleotide-binding proteins were not involved in this process as assessed by using appropriate stimulators and inhibitors of these signal transduction pathways. By contrast, staurosporine, an inhibitor of protein kinase C, partially inhibited, and 4-bromophenacyl bromide, a phospholipase inhibitor, completely inhibited TNF-alpha-dependent EGFR mRNA expression. The phospholipase C-specific inhibitor tricyclodecan-9-yl xanthogenate did not alter TNF-alpha-dependent EGFR mRNA expression, suggesting that phospholipase A2 is involved in the modulation of EGFR expression by TNF-alpha. The simultaneous induction of a ligand/receptor system by TNF-alpha suggests that this cytokine modulates autocrine growth-regulatory pathways in pancreatic cancer cells. Images PMID:8430098

  16. Adding to the Mix: Fibroblast Growth Factor and Platelet-derived Growth Factor Receptor Pathways as Targets in Non–small Cell Lung Cancer

    PubMed Central

    Kono, Scott A.; Heasley, Lynn E.; Doebele, Robert C.; Camidge, D. Ross

    2012-01-01

    The treatment of advanced non–small cell lung cancer (NSCLC) increasingly involves the use of molecularly targeted therapy with activity against either the tumor directly, or indirectly, through activity against host-derived mechanisms of tumor support such as angiogenesis. The most well studied signaling pathway associated with angiogenesis is the vascular endothelial growth factor (VEGF) pathway, and the only antiangiogenic agent currently approved for the treatment of NSCLC is bevacizumab, an antibody targeted against VEGF. More recently, preclinical data supporting the role of fibroblast growth factor receptor (FGFR) and platelet-derived growth factor receptor (PDGFR) signaling in angiogenesis have been reported. The platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) pathways may also stimulate tumor growth directly through activation of downstream mitogenic signaling cascades. In addition, 1 or both of these pathways have been associated with resistance to agents targeting the epidermal growth factor receptor (EGFR) and VEGF. A number of agents that target FGF and/or PDGF signaling are now in development for the treatment of NSCLC. This review will summarize the potential molecular roles of PDGFR and FGFR in tumor growth and angiogenesis, as well as discuss the current clinical status of PDGFR and FGFR inhibitors in clinical development. PMID:22165970

  17. Runx1 deficiency decreases ribosome biogenesis and confers stress resistance to hematopoietic stem and progenitor cells

    PubMed Central

    Cai, Xiongwei; Gao, Long; Teng, Li; Ge, Jingping; Oo, Zaw Min; Kumar, Ashish R.; Gilliland, D. Gary; Mason, Philip J.; Tan, Kai; Speck, Nancy A.

    2015-01-01

    Summary The transcription factor RUNX1 is frequently mutated in myelodysplastic syndrome and leukemia. RUNX1 mutations can be early events, creating pre-leukemic stem cells that expand in the bone marrow. Here we show, counter-intuitively, that Runx1 deficient hematopoietic stem and progenitor cells (HSPCs) have a slow growth, low biosynthetic, small cell phenotype and markedly reduced ribosome biogenesis (Ribi). The reduced Ribi involved decreased levels of rRNA and many mRNAs encoding ribosome proteins. Runx1 appears to directly regulate Ribi; Runx1 is enriched on the promoters of genes encoding ribosome proteins, and binds the ribosomal DNA repeats. Runx1 deficient HSPCs have lower p53 levels, reduced apoptosis, an attenuated unfolded protein response, and accordingly are resistant to genotoxic and endoplasmic reticulum stress. The low biosynthetic activity and corresponding stress resistance provides a selective advantage to Runx1 deficient HSPCs, allowing them to expand in the bone marrow and outcompete normal HSPCs. PMID:26165925

  18. Controlled delivery of mesenchymal stem cells and growth factors using a nanofiber scaffold for tendon repair

    PubMed Central

    Manning, CN; Schwartz, AG; Liu, W; Xie, J; Havlioglu, N; Sakiyama-Elbert, SE; Silva, MJ; Xia, Y; Gelberman, RH; Thomopoulos, S

    2013-01-01

    Outcomes after tendon repair are often unsatisfactory, despite improvements in surgical techniques and rehabilitation methods. Recent studies aimed at enhancing repair have targeted the paucicellular nature of tendon for enhancing repair; however, most approaches for delivering growth factors and cells have not been designed for dense connective tissues such as tendon. Therefore, we developed a scaffold capable of delivering growth factors and cells in a surgically manageable form for tendon repair. The growth factor PDGF-BB along with adipose-derived mesenchymal stem cells (ASCs) was incorporated into a heparin/fibrin-based delivery system (HBDS). This hydrogel was then layered with an electrospun nanofiber poly-lactic-co-glycolic acid (PLGA) backbone. The HBDS allowed for the concurrent delivery of PDGF-BB and ASCs in a controlled manner, while the PLGA backbone provided structural integrity for surgical handling and tendon implantation. In vitro studies verified that the cells remained viable, and that sustained growth factor release was achieved. In vivo studies in a large animal tendon model verified that the approach was clinically relevant, and that the cells remained viable in the tendon repair environment. Only a mild immunoresponse was seen at dissection, histologically, and at the mRNA level; fluorescently-labeled ASCs and the scaffold were found at the repair site 9 days postoperatively; and increased total DNA was observed in ASC-treated tendons. The novel layered scaffold has the potential for improving tendon healing due to its ability to deliver both cells and growth factors simultaneously in a surgically convenient manner. PMID:23416576

  19. Leukemia cell microvesicles promote survival in umbilical cord blood hematopoietic stem cells

    PubMed Central

    Razmkhah, Farnaz; Soleimani, Masoud; Mehrabani, Davood; Karimi, Mohammad Hossein; Kafi-abad, Sedigheh Amini

    2015-01-01

    Microvesicles can transfer their contents, proteins and RNA, to target cells and thereby transform them. This may induce apoptosis or survival depending on cell origin and the target cell. In this study, we investigate the effect of leukemic cell microvesicles on umbilical cord blood hematopoietic stem cells to seek evidence of apoptosis or cell survival. Microvesicles were isolated from both healthy donor bone marrow samples and Jurkat cells by ultra-centrifugation and were added to hematopoietic stem cells sorted from umbilical cord blood samples by magnetic associated cell sorting (MACS) technique. After 7 days, cell count, cell viability, flow cytometry analysis for hematopoietic stem cell markers and qPCR for P53 gene expression were performed. The results showed higher cell number, higher cell viability rate and lower P53 gene expression in leukemia group in comparison with normal and control groups. Also, CD34 expression as the most important hematopoietic stem cell marker, did not change during the treatment and lineage differentiation was not observed. In conclusion, this study showed anti-apoptotic effect of leukemia cell derived microvesicles on umbilical cord blood hematopoietic stem cells. PMID:26862318

  20. Microliter-bioreactor array with buoyancy-driven stirring for human hematopoietic stem cell culture

    PubMed Central

    Luni, Camilla; Feldman, Hope C.; Pozzobon, Michela; De Coppi, Paolo; Meinhart, Carl D.; Elvassore, Nicola

    2010-01-01

    This work presents the development of an array of bioreactors where finely controlled stirring is provided at the microliter scale (100–300 μl). The microliter-bioreactor array is useful for performing protocol optimization in up to 96 parallel experiments of hematopoietic stem cell (HSC) cultures. Exploring a wide range of experimental conditions at the microliter scale minimizes cost and labor. Once the cell culture protocol is optimized, it can be applied to large-scale bioreactors for stem cell production at the clinical level. The controlled stirring inside the wells of a standard 96-well plate is provided by buoyancy-driven thermoconvection. The temperature and velocity fields within the culture volume are determined with numerical simulations. The numerical results are verified with experimental velocity measurements using microparticle image velocimetry (μPIV) and are used to define feasible experimental conditions for stem cell cultures. To test the bioreactor array’s functionality, human umbilical cord blood-derived CD34+ cells were cultured for 7 days at five different stirring conditions (0.24–0.58 μm∕s) in six repeated experiments. Cells were characterized in terms of proliferation, and flow cytometry measurements of viability and CD34 expression. The microliter-bioreactor array demonstrates its ability to support HSC cultures under stirred conditions without adversely affecting the cell behavior. Because of the highly controlled operative conditions, it can be used to explore culture conditions where the mass transport of endogenous and exogenous growth factors is selectively enhanced, and cell suspension provided. While the bioreactor array was developed for culturing HSCs, its application can be extended to other cell types. PMID:20824067

  1. Strategies for Controlled Delivery of Growth Factors and Cells for Bone Regeneration

    PubMed Central

    Vo, Tiffany N.; Kasper, F. Kurtis; Mikos, Antonios G.

    2012-01-01

    The controlled delivery of growth factors and cells within biomaterial carriers can enhance and accelerate functional bone formation. The carrier system can be designed with preprogrammed release kinetics to deliver bioactive molecules in a localized, spatiotemporal manner most similar to the natural wound healing process. The carrier can also act as an extracellular matrix-mimicking substrate for promoting osteoprogenitor cellular infiltration and proliferation for integrative tissue repair. This review discusses the role of various regenerative factors involved in bone healing and their appropriate combinations with different delivery systems for augmenting bone regeneration. The general requirements of protein, cell and gene therapy are described, with elaboration on how the selection of materials, configurations and processing affects growth factor and cell delivery and regenerative efficacy in both in vitro and in vivo applications for bone tissue engineering. PMID:22342771

  2. Growth Factors and Stem Cells for the Management of Anterior Cruciate Ligament Tears

    PubMed Central

    Rizzello, Giacomo; Longo, Umile Giuseppe; Petrillo, Stefano; Lamberti, Alfredo; Khan, Wasim Sardar; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    The anterior cruciate ligament (ACL) is fundamental for the knee joint stability. ACL tears are frequent, especially during sport activities, occurring mainly in young and active patients. Nowadays, the gold standard for the management of ACL tears remains the surgical reconstruction with autografts or allografts. New strategies are being developed to resolve the problems of ligament grafting and promote a physiological healing process of ligamentous tissue without requiring surgical reconstruction. Moreover, these strategies can be applicable in association surgical reconstruction and may be useful to promote and accelerate the healing process. The use of growth factors and stem cells seems to offer a new and fascinating solution for the management of ACL tears. The injection of stem cell and/or growth factors in the site of ligamentous injury can potentially enhance the repair process of the physiological tissue. These procedures are still at their infancy, and more in vivo and in vitro studies are required to clarify the molecular pathways and effectiveness of growth factors and stem cells therapy for the management of ACL tears. This review aims to summarize the current knowledge in the field of growth factors and stem cells for the management of ACL tears. PMID:23248722

  3. Sgk3 links growth factor signaling to maintenance of progenitor cells in the hair follicle.

    PubMed

    Alonso, Laura; Okada, Hitoshi; Pasolli, Hilda Amalia; Wakeham, Andrew; You-Ten, Annick Itie; Mak, Tak W; Fuchs, Elaine

    2005-08-15

    Tyrosine kinase growth factor receptor signaling influences proliferation, survival, and apoptosis. Hair follicles undergo cycles of proliferation and apoptotic regression, offering an excellent paradigm to study how this transition is governed. Several factors are known to affect the hair cycle, but it remains a mystery whether Akt kinases that are downstream of growth factor signaling impact this equilibrium. We now show that an Akt relative, Sgk (serum and glucocorticoid responsive kinase) 3, plays a critical role in this process. Hair follicles of mice lacking Sgk3 fail to mature normally. Proliferation is reduced, apoptosis is increased, and follicles prematurely regress. Maintenance of the pool of transiently amplifying matrix cells is impaired. Intriguingly, loss of Sgk3 resembles the gain of function of epidermal growth factor signaling. Using cultured primary keratinocytes, we find that Sgk3 functions by negatively regulating phosphatidylinositol 3 kinase signaling. Our results reveal a novel and important function for Sgk3 in controlling life and death in the hair follicle.

  4. Biology of hematopoietic stem cells and progenitors: implications for clinical application.

    PubMed

    Kondo, Motonari; Wagers, Amy J; Manz, Markus G; Prohaska, Susan S; Scherer, David C; Beilhack, Georg F; Shizuru, Judith A; Weissman, Irving L

    2003-01-01

    Stem cell biology is scientifically, clinically, and politically a current topic. The hematopoietic stem cell, the common ancestor of all types of blood cells, is one of the best-characterized stem cells in the body and the only stem cell that is clinically applied in the treatment of diseases such as breast cancer, leukemias, and congenital immunodeficiencies. Multicolor cell sorting enables the purification not only of hematopoietic stem cells, but also of their downstream progenitors such as common lymphoid progenitors and common myeloid progenitors. Recent genetic approaches including gene chip technology have been used to elucidate the gene expression profile of hematopoietic stem cells and other progenitors. Although the mechanisms that control self-renewal and lineage commitment of hematopoietic stem cells are still ambiguous, recent rapid advances in understanding the biological nature of hematopoietic stem and progenitor cells have broadened the potential application of these cells in the treatment of diseases. PMID:12615892

  5. Intrinsic autoimmune capacities of hematopoietic cells from female New Zealand hybrid mice

    PubMed Central

    David, Alexandria; Trigunaite, Abhishek; MacLeod, Megan K.; Johnson, Angela C.; Marrack, Philippa; Jørgensen, Trine N.

    2014-01-01

    Most systemic autoimmune diseases occur more frequently in females than in males. This is particularly evident in Sjögren’s Syndrome, Systemic Lupus Erythromatosis (SLE) and thyroid autoimmunity, where the ratio of females to males ranges from 20:1 to 8:1. Our understanding of the etiology of SLE implies important roles for genetics, environmental factors and sex hormones, but the relative significance of each remains unknown. Using the New Zealand hybrid mouse model system of SLE we present here a new fetal liver chimera-based system in which we can segregate effects of immune system genes from that of sex hormones in vivo. We show that female hematopoietic cells express an intrinsic capacity to drive lupus-like disease in both male and female recipient mice, suggesting that this capacity is hormone independent. Particularly, only chimeric mice with a female hematopoietic system showed significantly increased numbers of germinal center B cells, memory B cells and plasma cells followed by a spontaneous loss of tolerance to nuclear components and hence elevated serum anti-nuclear autoantibodies. A protective effect of testosterone was noted with regards to disease onset, not disease incidence. Thus, genetic factors encoded within the female hematopoietic system can effectively drive lupus-like disease even in male recipients. PMID:24477163

  6. The combination of epidermal growth factor and transforming growth factor-beta induces novel phenotypic changes in mouse liver stem cell lines.

    PubMed

    Isfort, R J; Cody, D B; Stuard, S B; Randall, C J; Miller, C; Ridder, G M; Doersen, C J; Richards, W G; Yoder, B K; Wilkinson, J E; Woychik, R P

    1997-12-01

    Mouse liver stem cell (oval cell) lines were investigated in order to determine the role which two families of growth and differentiation factors (GDFs), epidermal growth factor (EGF) family and transforming growth factor beta (TGF-beta) family, play in liver regeneration. EGF family members, including EGF, amphiregulin, betacellulin, heparin-binding epidermal growth factor, and TGF-alpha, were mitogenic for oval cell lines while TGF-beta family members, including TGF-beta1, TGF-beta2 and TGF-beta3, inhibited mitogenesis and induced apoptosis in oval cell lines. Surprisingly, the combination of EGF family members and TGF-ss family members resulted in neither proliferation nor apoptosis but instead in a novel cellular response, cellular scattering in tissue culture and morphological differentiation in Matrigel. Analysis of the signal transduction pathways activated by exposure of oval cell lines to either EGF, EGF+TGF-beta, or TGF-beta indicated that novel combinations of intracellular signals result following stimulation of the cells with the combination of EGF+TGF-beta. These data reveal that the dynamics of synergistic GDF action following tissue injury and regeneration results in a new level of complexity not obvious from the study of individual GDFs.

  7. Collagenase-3 (MMP-13) Expression in Chondrosarcoma Cells and Its Regulation by Basic Fibroblast Growth Factor

    PubMed Central

    Uría, José A.; Balbín, Milagros; López, José M.; Alvarez, Jesús; Vizoso, Francisco; Takigawa, Masaharu; López-Otín, Carlos

    1998-01-01

    Human collagenase-3 (MMP-13) is a member of the matrix metalloproteinase family of enzymes that was originally identified in breast carcinomas and subsequently detected during fetal ossification and in arthritic processes. In this work, we have found that collagenase-3 is produced by HCS-2/8 human chondrosarcoma cells. An analysis of the ability of different cytokines and growth factors to induce the expression of collagenase-3 in these cells revealed that basic fibroblast growth factor (bFGF or FGF-2) strongly up-regulated the expression of this gene. By contrast, other factors, including interleukin-1β and transforming growth factor-β, previously found to induce collagenase-3 expression in other cell types, did not exhibit any effect on the expression of this gene in chondrosarcoma cells. Further analysis of the bFGF-induced expression of collagenase-3 in human chondrosarcoma cells revealed that its effect was time and dose dependent, but independent of the de novo synthesis of proteins. Western blot analysis revealed that the up-regulatory effect of bFGF on collagenase-3 was also reflected at the protein level as demonstrated by the increase of immunoreactive protein in the conditioned medium of HCS-2/8 cells treated with bFGF. Immunohistochemical analysis of the presence of collagenase-3 in a series of 8 benign and 16 malignant cartilage-forming neoplasms revealed that all analyzed malignant chondrosarcomas stained positively for collagenase-3, whereas only 2 of 8 benign lesions produced this protease. In addition, the finding that bFGF was detected in all analyzed chondrosarcomas, together with the above in vitro studies on HCS-2/8 cells, suggest that this growth factor may be an in vivo modulator of collagenase-3 expression in these malignant tumors. These results extend the pattern of tumor types with ability to produce this matrix metalloproteinase and suggest that collagenase-3 up-regulation may contribute to the progression of human chondrosarcomas

  8. Proangiogenic factor PlGF programs CD11b(+) myelomonocytes in breast cancer during differentiation of their hematopoietic progenitors.

    PubMed

    Laurent, Julien; Hull, Eveline Faes-van't; Touvrey, Cedric; Kuonen, François; Lan, Qiang; Lorusso, Girieca; Doucey, Marie-Agnès; Ciarloni, Laura; Imaizumi, Natsuko; Alghisi, Gian Carlo; Fagiani, Ernesta; Zaman, Khalil; Stupp, Roger; Shibuya, Masabumi; Delaloye, Jean-François; Christofori, Gerhard; Ruegg, Curzio

    2011-06-01

    Tumor-mobilized bone marrow-derived CD11b(+) myeloid cells promote tumor angiogenesis, but how and when these cells acquire proangiogenic properties is not fully elucidated. Here, we show that CD11b(+) myelomonocytic cells develop proangiogenic properties during their differentiation from CD34(+) hematopoietic progenitors and that placenta growth factor (PlGF) is critical in promoting this education. Cultures of human CD34(+) progenitors supplemented with conditioned medium from breast cancer cell lines or PlGF, but not from nontumorigenic breast epithelial lines, generate CD11b(+) cells capable of inducing endothelial cell sprouting in vitro and angiogenesis in vivo. An anti-Flt-1 mAb or soluble Flt-1 abolished the generation of proangiogenic activity during differentiation from progenitor cells. Moreover, inhibition of metalloproteinase activity, but not VEGF, during the endothelial sprouting assay blocked sprouting induced by these proangiogenic CD11b(+) myelomonocytes. In a mouse model of breast cancer, circulating CD11b(+) cells were proangiogenic in the sprouting assays. Silencing of PlGF in tumor cells prevented the generation of proangiogenic activity in circulating CD11b(+) cells, inhibited tumor blood flow, and slowed tumor growth. Peripheral blood of breast cancer patients at diagnosis, but not of healthy individuals, contained elevated levels of PlGF and circulating proangiogenic CD11b(+) myelomonocytes. Taken together, our results show that cancer cells can program proangiogenic activity in CD11b(+) myelomonocytes during differentiation of their progenitor cells in a PlGF-dependent manner. These findings impact breast cancer biology, detection, and treatment.

  9. Effect of basic fibroblast growth factor in mouse embryonic stem cell culture and osteogenic differentiation.

    PubMed

    Rose, Laura C; Fitzsimmons, Ross; Lee, Poh; Krawetz, Roman; Rancourt, Derrick E; Uludağ, Hasan

    2013-05-01

    Embryonic stem cells are actively explored as a cell source in tissue engineering and regenerative medicine involving bone repair. Basic fibroblast growth factor (bFGF) has been a valuable growth factor to support the culture of human stem cells as well as their osteogenic differentiation, but the influence of bFGF on mouse embryonic stem (mES) cells is not known. Towards this goal, D3 cells were treated with bFGF during maintenance conditions and during spontaneous and osteogenic differentiation. In feeder-free monolayers, up to 40 ng/ml of exogenous bFGF did not support self-renewal of mES without LIF during cell expansion. During spontaneous differentiation in high-density cultures, bFGF stimulated cell proliferation under certain conditions but did not influence differentiation, as judged by stage-specific embryonic antigen-1 expression. The addition of bFGF reduced the alkaline phosphatase (ALP) activity associated with osteoblast activity during differentiation induced by osteogenic supplements, although the extent of mineralization was unaffected by bFGF. The bFGF increased the mesenchymal stem cell marker Sca-1 in an mES cell population and led to an enhanced increase in osteocalcin and runx2 expression in combination with BMP-2. These results suggest that bFGF could be utilized to expand the cell population in high-density cultures in addition to enriching the BMP-2 responsiveness of mES cells. PMID:22674886

  10. Indomethacin interferes with epidermal growth factor binding and proliferative response of gastric KATO III cells.

    PubMed

    Fujiwara, Y; Schmassmann, A; Arakawa, T; Halter, F; Tarnawski, A

    1995-01-01

    Indomethacin induces gastric ulcerations and decreases cell proliferation in the gastric ulcer margin. Since epithelial cell proliferation is under control of epidermal growth factor (EGF), we studied whether indomethacin may affect specific binding of [125I]-EGF to its receptors in cultured human gastric KATO III cells. To assess effects of EGF, indomethacin and their combination on cell proliferation, KATO III cells were incubated for 24 h with either (a) vehicle (b) indomethacin (doses from 10(-5) to 10(-3) M), EGF (doses 0.01, 0.05 or 0.1 microgram/ml) or (d) a combination of b and c, and the bromodeoxyuridine labeling index was determined. Indomethacin in a dose which did not affect cell viability significantly (by 21.5%) decreased [125I]-EGF binding to the KATO III cells and decreased the bromodeoxyuridine labeling index. Epidermal growth factor significantly increased cell proliferation and increased the labeling index from 28.9 +/- 0.6% in the vehicle group to 36.2 +/- 0.5%. Co-treatment with indomethacin significantly reduced the proliferative response of KATO III cells to EGF. In conclusion, indomethacin, in a dose which does not affect cell viability, decreased binding of EGF to cultured gastric KATO III cells and decreased their proliferative response to EGF. PMID:8549878

  11. A distinct glycoform of CD44 is an L-selectin ligand on human hematopoietic cells

    PubMed Central

    Dimitroff, Charles J.; Lee, Jack Y.; Fuhlbrigge, Robert C.; Sackstein, Robert

    2000-01-01

    We previously have obtained operational evidence of a hematopoietic cell L-selectin ligand expressed on normal human hematopoietic cells and on leukemic blasts. Using a technique developed in our laboratory for analyzing and identifying adhesion molecules, we show here that hematopoietic cell L-selectin ligand is a specialized glycoform of CD44. This L-selectin ligand activity of CD44 requires sialofucosylated N-linked glycans and is sulfation-independent. These data provide important insights on the structural biology of CD44 and reveal a role for this protein as an L-selectin ligand on human hematopoietic cells. PMID:11095749

  12. Lateral diffusion of nerve growth factor receptor: modulation by ligand-binding and cell-associated factors.

    PubMed Central

    Venkatakrishnan, G; McKinnon, C A; Ross, A H; Wolf, D E

    1990-01-01

    We compared the properties in human melanoma cell line A875 and rat pheochromocytoma cell line PC12 of nerve growth factor receptor (NGFr). We also analyzed NGFr and a truncated NGFR lacking the cytoplasmic domain, which were transiently expressed in COS cells. The full-length NGFR expressed in COS cells bound nerve growth factor (NGF) with positive cooperativity, but A875 NGFr and truncated NGFr in COS cells did not display positive cooperativity. The anti-human NGFr monoclonal antibody NGFR5 was characterized and found not to compete with NGF for binding to NGFr. Fabs were prepared from NGFR5 and 192, an anti-rat NGFR monoclonal antibody that was previously shown not to compete with NGF for binding. Fluorescein-labeled Fabs were used to measure the distribution and lateral diffusion of the NGFr. NGFr expressed on COS and A875 cells are diffusely distributed, but NGFr on the surface of PC12 cells appeared, for some cells, to be patched. In A875 cells, 51% of the NGFr was free to diffuse with diffusion coefficient (D) approximately 7 X 10(-10) cm2/s. In COS cells, 43% diffused with D approximately 5 X 10(-10) cm2/s. There was no significant difference in diffusibility between the full-length NGFr and the truncated NGFr. We compared NGFr diffusion on PC12 cells in suspension or adherent to collagen-coated coverslips. For suspension cells, we obtained 32% recovery with D approximately 2.5 X 10(-9) cm2/s. On adherent cells, we obtained 17% recovery with 6 X 10(-9) cm2/s. Binding of NGF enhanced lateral diffusion of NGFr in A875 cells and in PC12 cells in suspension but did not alter lateral diffusion of NGFr in COS cells or in adherent PC12 cells. NGF had no effect on the diffusing fraction or the distribution of NGFR for any cell line. Images PMID:1964090

  13. Growth factors for nanobacteria

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Neva; Kajander, E. Olavi

    1999-12-01

    Nanobacteria are novel microorganisms recently isolated from fetal bovine serum and blood of cows and humans. These coccoid, gram negative bacteria in alpha-2 subgroup of Proteobacteria grow slowly under mammalian cell culture conditions but not in common media for microbes. Now we have found two different kinds of culture supplement preparations that improve their growth and make them culturable in the classical sense. These are supernatant fractions of conditioned media obtained from 1 - 3 months old nanobacteria cultures and from about a 2 weeks old Bacillus species culture. Both improved multiplication and particle yields and the latter increased their resistance to gentamicin. Nanobacteria cultured with any of the methods shared similar immunological property, structure and protein pattern. The growth supporting factors were heat-stabile and nondialyzable, and dialysis improved the growth promoting action. Nanobacteria formed stony colonies in a bacteriological medium supplemented with the growth factors. This is an implication that nanobacterial growth is influenced by pre-existing bacterial flora.

  14. Financial burden in recipients of allogeneic hematopoietic cell transplantation.

    PubMed

    Khera, Nandita; Chang, Yu-hui; Hashmi, Shahrukh; Slack, James; Beebe, Timothy; Roy, Vivek; Noel, Pierre; Fauble, Veena; Sproat, Lisa; Tilburt, Jon; Leis, Jose F; Mikhael, Joseph

    2014-09-01

    Although allogeneic hematopoietic cell transplantation (HCT) is an expensive treatment for hematological disorders, little is known about the financial consequences for the patients who undergo this procedure. We analyzed factors associated with its financial burden and its impact on health behaviors of allogeneic HCT recipients. A questionnaire was retrospectively mailed to 482 patients who underwent allogeneic HCT from January 2006 to June 2012 at the Mayo Clinic, to collect information regarding current financial concerns, household income, employment, insurance, out-of-pocket expenses, and health and functional status. A multivariable logistic regression analysis identified factors associated with financial burden and treatment nonadherence. Of the 268 respondents (56% response rate), 73% reported that their sickness had hurt them financially. All patients for whom the insurance information was available (missing, n = 13) were insured. Forty-seven percent of respondents experienced financial burden, such as household income decreased by >50%, selling/mortgaging home, or withdrawing money from retirement accounts. Three percent declared bankruptcy. Younger age and poor current mental and physical functioning increased the likelihood of financial burden. Thirty-five percent of patients reported deleterious health behaviors because of financial constraints. These patients were likely to be younger, have lower education, and with a longer time since HCT. Being employed decreased the likelihood of experiencing financial burden and treatment nonadherence due to concern about costs. A significant proportion of allogeneic HCT survivors experience financial hardship despite insurance coverage. Future research should investigate potential interventions to help at-risk patients and prevent adverse financial outcomes after this life-saving procedure.

  15. Hypoxia and Metabolic Properties of Hematopoietic Stem Cells

    PubMed Central

    2014-01-01

    Abstract Significance: The effect of redox signaling on hematopoietic stem cell (HSC) function is not clearly understood. Recent Advances: A growing body of evidence suggests that adult HSCs reside in the hypoxic bone marrow microenvironment or niche during homeostasis. It was recently shown that primitive HSCs in the bone marrow prefer to utilize anaerobic glycolysis to meet their energy demands and have lower rates of oxygen consumption and lower ATP levels. Hypoxia-inducible factor-α (Hif-1α) is a master regulator of cellular metabolism. With hundreds of downstream target genes and crosstalk with other signaling pathways, it regulates various aspects of metabolism from the oxidative stress response to glycolysis and mitochondrial respiration. Hif-1α is highly expressed in HSCs, where it regulates their function and metabolic phenotype. However, the regulation of Hif-1α in HSCs is not entirely understood. The homeobox transcription factor myeloid ecotropic viral integration site 1 (Meis1) is expressed in the most primitive HSCs populations, and it is required for primitive hematopoiesis. Recent reports suggest that Meis1 is required for normal adult HSC function by regulating the metabolism and redox state of HSCs transcriptionally through Hif-1α and Hif-2α. Critical Issues: Given the profound effect of redox status on HSC function, it is critical to fully characterize the intrinsic, and microenvironment-related mechanisms of metabolic and redox regulation in HSCs. Future Directions: Future studies will be needed to elucidate the link between HSC metabolism and HSC fates, including quiescence, self-renewal, differentiation, apoptosis, and migration. Antioxid. Redox Signal. 20, 1891–1901. PMID:23621582

  16. A reappraisal of ICU and long-term outcome of allogeneic hematopoietic stem cell transplantation patients and reassessment of prognosis factors: results of a 5-year cohort study (2009-2013).

    PubMed

    Platon, L; Amigues, L; Ceballos, P; Fegueux, N; Daubin, D; Besnard, N; Larcher, R; Landreau, L; Agostini, C; Machado, S; Jonquet, O; Klouche, K

    2016-02-01

    Epidemiology and prognosis of complications related to allogeneic hematopoietic stem cell transplant (HSCT) recipients requiring admission to intensive care unit (ICU) have not been reassessed precisely in the past few years. We performed a retrospective single-center study on 318 consecutive HSCT patients (2009-2013), analyzing outcome and factors prognostic of ICU admission. Among these patients, 73 were admitted to the ICU. In all, 32 patients (40.3%) died in ICU, 46 at hospital discharge (63%) and 61 (83.6%) 1 year later. Survivors had a significantly lower sequential organ failure assessment (SOFA) score, serum lactate and bilirubin upon ICU admission. Catecholamine support, mechanical ventilation (MV) and/or renal replacement therapy during ICU stay, a delayed organ support and an active graft versus host disease (GvHD) significantly worsen the outcome. By multivariate analysis, the worsening of SOFA score from days 1 to 3, the need for MV and the occurrence of an active GvHD were predictive of mortality. In conclusion, the incidence of HSCT-related complications requiring an admission to an ICU was at 22%, with an ICU mortality rate of 44%, and 84% 1 year later. A degradation of SOFA score at day 3 of ICU, need of MV and occurrence of an active GvHD are main predictive factors of mortality.

  17. A reappraisal of ICU and long-term outcome of allogeneic hematopoietic stem cell transplantation patients and reassessment of prognosis factors: results of a 5-year cohort study (2009-2013).

    PubMed

    Platon, L; Amigues, L; Ceballos, P; Fegueux, N; Daubin, D; Besnard, N; Larcher, R; Landreau, L; Agostini, C; Machado, S; Jonquet, O; Klouche, K

    2016-02-01

    Epidemiology and prognosis of complications related to allogeneic hematopoietic stem cell transplant (HSCT) recipients requiring admission to intensive care unit (ICU) have not been reassessed precisely in the past few years. We performed a retrospective single-center study on 318 consecutive HSCT patients (2009-2013), analyzing outcome and factors prognostic of ICU admission. Among these patients, 73 were admitted to the ICU. In all, 32 patients (40.3%) died in ICU, 46 at hospital discharge (63%) and 61 (83.6%) 1 year later. Survivors had a significantly lower sequential organ failure assessment (SOFA) score, serum lactate and bilirubin upon ICU admission. Catecholamine support, mechanical ventilation (MV) and/or renal replacement therapy during ICU stay, a delayed organ support and an active graft versus host disease (GvHD) significantly worsen the outcome. By multivariate analysis, the worsening of SOFA score from days 1 to 3, the need for MV and the occurrence of an active GvHD were predictive of mortality. In conclusion, the incidence of HSCT-related complications requiring an admission to an ICU was at 22%, with an ICU mortality rate of 44%, and 84% 1 year later. A degradation of SOFA score at day 3 of ICU, need of MV and occurrence of an active GvHD are main predictive factors of mortality. PMID:26569092

  18. Hepatocyte growth factor protects human endothelial cells against advanced glycation end products-induced apoposis

    SciTech Connect

    Zhou Yijun . E-mail: zhou-yijun@hotmail.com; Wang Jiahe; Zhang Jin

    2006-06-02

    Advanced glycation end products (AGEs) form by a non-enzymatic reaction between reducing sugars and biological proteins, which play an important role in the pathogenesis of atherosclerosis. In this study, we assessed AGEs effects on human umbilical vein endothelial cells (HUVECs) growth, proliferation and apoptosis. Additionally, we investigated whether hepatocyte growth factor (HGF), an anti-apoptotic factor for endothelial cells, prevents AGEs-induced apoptosis of HUVECs. HUVECs were treated with AGEs in the presence or absence of HGF. Treatment of HUVECs with AGEs changed cell morphology, decreased cell viability, and induced DNA fragmentation, leading to apoptosis. Apoptosis was induced by AGEs in a dose- and time-dependent fashion. AGEs markedly elevated Bax and decreased NF-{kappa}B, but not Bcl-2 expression. Additionally, AGEs significantly inhibited cell growth through a pro-apoptotic action involving caspase-3 and -9 activations in HUVECs. Most importantly, pretreatment with HGF protected against AGEs-induced cytotoxicity in the endothelial cells. HGF significantly promoted the expression of Bcl-2 and NF-{kappa}B, while decreasing the activities of caspase-3 and -9 without affecting Bax level. Our data suggest that AGEs induce apoptosis in endothelial cells. HGF effectively attenuate AGEs-induced endothelial cell apoptosis. These findings provide new perspectives in the role of HGF in cardiovascular disease.

  19. The effect of retinal pigment epithelial cell patch size on growth factor expression

    SciTech Connect

    Vargis, Elizabeth A.; Peterson, Cristen B.; Morrell-Falvey, Jennifer L.; Retterer, Scott T.; Collier, Charles Patrick

    2014-01-30

    The spatial organization of retinal pigment epithelial (RPE) cells grown in culture was controlled using micropatterning techniques in order to examine the effect of patch size on cell health and differentiation. Understanding this effect is a critical step in the development of multiplexed high throughput fluidic assays and provides a model for replicating disease states associated with the deterioration of retinal tissue during age-related macular degeneration (AMD). Microcontact printing of fibronectin on polystyrene and glass substrates was used to promote cell attachment, forming RPE patches of controlled size and shape. These colonies mimic the effect of atrophy and loss-of-function that occurs in the retina during degenerative diseases such as AMD. After 72 hours of cell growth, levels of vascular endothelial growth factor (VEGF), an important biomarker of AMD, were measured. Cells were counted and morphological indicators of cell viability and tight junction formation were assessed via fluorescence microscopy. As a result, up to a twofold increase of VEGF expression per cell was measured as colony size decreased, suggesting that the local microenvironment of, and connections between, RPE cells influences growth factor expression leading to the initiation and progression of diseases such as AMD.

  20. The effect of retinal pigment epithelial cell patch size on growth factor expression

    DOE PAGES

    Vargis, Elizabeth A.; Peterson, Cristen B.; Morrell-Falvey, Jennifer L.; Retterer, Scott T.; Collier, Charles Patrick

    2014-01-30

    The spatial organization of retinal pigment epithelial (RPE) cells grown in culture was controlled using micropatterning techniques in order to examine the effect of patch size on cell health and differentiation. Understanding this effect is a critical step in the development of multiplexed high throughput fluidic assays and provides a model for replicating disease states associated with the deterioration of retinal tissue during age-related macular degeneration (AMD). Microcontact printing of fibronectin on polystyrene and glass substrates was used to promote cell attachment, forming RPE patches of controlled size and shape. These colonies mimic the effect of atrophy and loss-of-function thatmore » occurs in the retina during degenerative diseases such as AMD. After 72 hours of cell growth, levels of vascular endothelial growth factor (VEGF), an important biomarker of AMD, were measured. Cells were counted and morphological indicators of cell viability and tight junction formation were assessed via fluorescence microscopy. As a result, up to a twofold increase of VEGF expression per cell was measured as colony size decreased, suggesting that the local microenvironment of, and connections between, RPE cells influences growth factor expression leading to the initiation and progression of diseases such as AMD.« less

  1. Adipose Stem Cell Microbeads as Production Sources for Chondrogenic Growth Factors

    PubMed Central

    Lee, Christopher S.D.; Nicolini, Anthony M.; Watkins, Elyse A.; Burnsed, Olivia A.; Boyan, Barbara D.; Schwartz, Zvi

    2014-01-01

    Microencapsulating stem cells in injectable microbeads can enhance delivery and localization, but their ability to act as growth factor production sources is still unknown. To address this concern, growth factor mRNA levels and production from alginate microbeads with encapsulated human adipose stem cells (ASC microbeads) cultured in both growth and chondrogenic media (GM and CM) were measured over a two week period. Human ASCs in microbeads were either commercially purchased (Lonza) or isolated from six human donors and compared to human ASCs on tissue culture polystyrene (TCPS). The effects of crosslinking and alginate compositions on growth factor mRNA levels and production were also determined. Secretion profiles of IGF-I, TGF-β3 and VEGF-A from commercial human ASC microbeads were linear and at a significantly higher rate than TCPS cultures over two weeks. For human ASCs derived from different donors, microencapsulation increased pthlh and both IGF-I and TGF-β3 secretion. CM decreased fgf2 and VEGF-A secretion from ASC microbeads derived from the same donor population. Crosslinking microbeads in BaCl2 instead of CaCl2 did not eliminate microencapsulation’s beneficial effects, but did decrease IGF-I production. Increasing the guluronate content of the alginate microbead increased IGF-I retention. Decreasing alginate molecular weight eliminated the effects microencapsulation had on increasing IGF-I secretion. This study demonstrated that microencapsulation can enhance chondrogenic growth factor production and that chondrogenic medium treatment can decrease angiogenic growth factor production from ASCs, making these cells a potential source for paracrine factors that can stimulate cartilage regeneration. PMID:25705097

  2. Pentoxifylline inhibits hypoxia-induced upregulation of tumor cell tissue factor and vascular endothelial growth factor.

    PubMed

    Amirkhosravi, A; Meyer, T; Warnes, G; Amaya, M; Malik, Z; Biggerstaff, J P; Siddiqui, F A; Sherman, P; Francis, J L

    1998-10-01

    Tissue factor (TF), the membrane glycoprotein that initiates blood coagulation, is constitutively expressed by many tumor cells and is implicated in peri-tumor fibrin deposition and hypercoagulability in cancer. Upregulation of tumor TF correlates with enhanced metastatic potential. Furthermore, TF has been colocalized with VEGF in breast cancer, specially at sites of early angiogenesis. There are no data on the effect of hypoxia on tumor cell TF expression. Since hypoxia is known to stimulate VEGF production, we studied whether this also induces tumor cell TF expression. Confluent monolayers of A375 melanoma, MCF-7 breast carcinoma and A549 lung carcinoma were cultured in either 95% air, 5% CO2 (normoxic) or 95% N2, 5% CO2 (hypoxic; 25-30 mmHg) for 24 h. Procoagulant activity (PCA) was measured by amidolytic and clotting assays, surface TF antigen by flow cytometry, early apoptosis by annexin V binding and VEGF levels in culture supernatants by ELISA. Hypoxia significantly increased tumor cell PCA in all three cell lines tested and TF antigen on A375 cells was increased four-fold (P <0.05). Pentoxifylline (PTX), a methylxanthine derivative, significantly inhibited the hypoxia-induced increase in PCA as well as VEGF release in all three cell lines tested. In A375 cells, PTX significantly inhibited TF antigen expression by both normoxic and hypoxic cells. Hypoxia induced a slight (5%) but not significant, increase in early apoptosis. Intravenous injection of hypoxic A375 cells into nude rats produced more pronounced thrombocytopenia (n = 5, P <0.01) and more lung metastases (n = 3, P <0.05) compared to normoxic cells. We conclude that hypoxia increases TF expression by malignant cells which enhances tumor cell-platelet binding and hematogenous metastasis. Hypoxia-induced upregulation of TF appears to parallel that of VEGF, although the mechanism remains unclear.

  3. Pentoxifylline inhibits hypoxia-induced upregulation of tumor cell tissue factor and vascular endothelial growth factor.

    PubMed

    Amirkhosravi, A; Meyer, T; Warnes, G; Amaya, M; Malik, Z; Biggerstaff, J P; Siddiqui, F A; Sherman, P; Francis, J L

    1998-10-01

    Tissue factor (TF), the membrane glycoprotein that initiates blood coagulation, is constitutively expressed by many tumor cells and is implicated in peri-tumor fibrin deposition and hypercoagulability in cancer. Upregulation of tumor TF correlates with enhanced metastatic potential. Furthermore, TF has been colocalized with VEGF in breast cancer, specially at sites of early angiogenesis. There are no data on the effect of hypoxia on tumor cell TF expression. Since hypoxia is known to stimulate VEGF production, we studied whether this also induces tumor cell TF expression. Confluent monolayers of A375 melanoma, MCF-7 breast carcinoma and A549 lung carcinoma were cultured in either 95% air, 5% CO2 (normoxic) or 95% N2, 5% CO2 (hypoxic; 25-30 mmHg) for 24 h. Procoagulant activity (PCA) was measured by amidolytic and clotting assays, surface TF antigen by flow cytometry, early apoptosis by annexin V binding and VEGF levels in culture supernatants by ELISA. Hypoxia significantly increased tumor cell PCA in all three cell lines tested and TF antigen on A375 cells was increased four-fold (P <0.05). Pentoxifylline (PTX), a methylxanthine derivative, significantly inhibited the hypoxia-induced increase in PCA as well as VEGF release in all three cell lines tested. In A375 cells, PTX significantly inhibited TF antigen expression by both normoxic and hypoxic cells. Hypoxia induced a slight (5%) but not significant, increase in early apoptosis. Intravenous injection of hypoxic A375 cells into nude rats produced more pronounced thrombocytopenia (n = 5, P <0.01) and more lung metastases (n = 3, P <0.05) compared to normoxic cells. We conclude that hypoxia increases TF expression by malignant cells which enhances tumor cell-platelet binding and hematogenous metastasis. Hypoxia-induced upregulation of TF appears to parallel that of VEGF, although the mechanism remains unclear. PMID:9798977

  4. Hematopoietic stem cell niche maintenance during homeostasis and regeneration

    PubMed Central

    Mendelson, Avital; Frenette, Paul S

    2015-01-01

    The bone marrow niche has mystified scientists for many years, leading to widespread investigation to shed light into its molecular and cellular composition. Considerable efforts have been devoted toward uncovering the regulatory mechanisms of hematopoietic stem cell (HSC) niche maintenance. Recent advances in imaging and genetic manipulation of mouse models have allowed the identification of distinct vascular niches that have been shown to orchestrate the balance between quiescence, proliferation and regeneration of the bone marrow after injury. Here we highlight the recently discovered intrinsic mechanisms, microenvironmental interactions and communication with surrounding cells involved in HSC regulation, during homeostasis and in regeneration after injury and discuss their implications for regenerative therapy. PMID:25100529

  5. Role of hematopoietic stem cell transplantation in multiple myeloma.

    PubMed

    Garcia, Ima N

    2015-02-01

    High-dose therapy followed by autologous stem cell transplantation (ASCT) has been the standard frontline consolidative therapy for patients with newly diagnosed multiple myeloma (MM) for > 2 decades. This approach has resulted in higher complete response (CR) rates and increased event-free survival and overall survival (OS) compared with conventional chemotherapy. The emergence of novel agent-based therapy combined with ASCT has revolutionized MM therapy by improving the CR rates and OS, raising questions concerning the role of hematopoietic stem cell transplantation in this setting.

  6. Monocarboxylate transporter 1 contributes to growth factor-induced tumor cell migration independent of transporter activity

    PubMed Central

    Gray, Alana L.; Coleman, David T.; Shi, Runhua; Cardelli, James A.

    2016-01-01

    Tumor progression to metastatic disease contributes to the vast majority of incurable cancer. Understanding the processes leading to advanced stage cancer is important for the development of future therapeutic strategies. Here, we establish a connection between tumor cell migration, a prerequisite to metastasis, and monocarboxylate transporter 1 (MCT1). MCT1 transporter activity is known to regulate aspects of tumor progression and, as such, is a clinically relevant target for treating cancer. Knockdown of MCT1 expression caused decreased hepatocyte growth factor (HGF)-induced as well as epidermal growth factor (EGF)-induced tumor cell scattering and wound healing. Western blot analysis suggested that MCT1 knockdown (KD) hinders signaling through the HGF receptor (c-Met) but not the EGF receptor. Exogenous, membrane-permeable MCT1 substrates were not able to rescue motility in MCT1 KD cells, nor was pharmacologic inhibition of MCT1 able to recapitulate decreased cell motility as seen with MCT1 KD cells, indicating transporter activity of MCT1 was dispensable for EGF- and HGF-induced motility. These results indicate MCT1 expression, independent of transporter activity, is required for growth factor-induced tumor cell motility. The findings presented herein suggest a novel function for MCT1 in tumor progression independent of its role as a monocarboxylate transporter. PMID:27127175

  7. In vitro inhibitory effects of imatinib mesylate on stromal cells and hematopoietic progenitors from bone marrow

    PubMed Central

    Soares, P.B.; Jeremias, T.S.; Alvarez-Silva, M.; Licínio, M.A.; Santos-Silva, M.C.; Vituri, C.L.

    2012-01-01

    Imatinib mesylate (IM) is used to treat chronic myeloid leukemia (CML) because it selectively inhibits tyrosine kinase, which is a hallmark of CML oncogenesis. Recent studies have shown that IM inhibits the growth of several non-malignant hematopoietic and fibroblast cells from bone marrow (BM). The aim of the present study was to evaluate the effects of IM on stromal and hematopoietic progenitor cells, specifically in the colony-forming units of granulocyte/macrophage (CFU-GM), using BM cultures from 108 1.5- to 2-month-old healthy Swiss mice. The results showed that low concentrations of IM (1.25 µM) reduced the growth of CFU-GM in clonogenic assays. In culture assays with stromal cells, fibroblast proliferation and α-SMA expression by immunocytochemistry analysis were also reduced in a concentration-dependent manner, with a survival rate of approximately 50% with a dose of 2.5 µM. Cell viability and morphology were analyzed using MTT and staining with acrydine orange/ethidium bromide. Most cells were found to be viable after treatment with 5 µM IM, although there was gradual growth inhibition of fibroblastic cells while the number of round cells (macrophage-like cells) increased. At higher concentrations (15 µM), the majority of cells were apoptotic and cell growth ceased completely. Oil red staining revealed the presence of adipocytes only in untreated cells (control). Cell cycle analysis of stromal cells by flow cytometry showed a blockade at the G0/G1 phases in groups treated with 5-15 µM. These results suggest that IM differentially inhibits the survival of different types of BM cells since toxic effects were achieved. PMID:23011404