Science.gov

Sample records for hematopoietic myeloid precursors

  1. CpG methylation patterns and decitabine treatment response in acute myeloid leukemia cells and normal hematopoietic precursors

    PubMed Central

    Negrotto, Soledad; Ng, Kwok Peng; Jankowska, Ania M.; Bodo, Juraj; Gopalan, Banu; Guinta, Kathryn; Mulloy, James C.; Hsi, Eric; Maciejewski, Jaroslaw; Saunthararajah, Yogen

    2011-01-01

    The DNA hypomethylating drug decitabine maintains normal hematopoietic stem cell (HSC) self-renewal but induces terminal differentiation in acute myeloid leukemia (AML) cells. The basis for these contrasting cell-fates, and for selective CpG hypomethylation by decitabine, is poorly understood. Promoter CpGs, with methylation measured by microarray, were classified by the direction of methylation change with normal myeloid maturation. In AML cells, the methylation pattern at maturation-responsive CpG suggested at least partial maturation. Consistent with partial maturation, in gene expression analyses, AML cells expressed high levels of the key lineage-specifying factor CEBPA, but relatively low levels of the key late-differentiation driver CEBPE. In methylation analysis by mass-spectrometry, CEBPE promoter CpG that are usually hypomethylated during granulocyte maturation were significantly hypermethylated in AML cells. Decitabine treatment induced cellular differentiation of AML cells, and the largest methylation decreases were at CpG that are hypomethylated with myeloid maturation, including CEBPE promoter CpG. In contrast, decitabine-treated normal HSC retained immature morphology, and methylation significantly decreased at CpG that are less methylated in immature cells. High expression of lineage-specifying factor and aberrant epigenetic repression of some key late-differentiation genes distinguishes AML cells from normal HSC and could explain the contrasting differentiation and methylation responses to decitabine. PMID:21836612

  2. Gene transfer to pre-hematopoietic and committed hematopoietic precursors in the early mouse Yolk Sac: a comparative study between in situ electroporation and retroviral transduction

    PubMed Central

    Giroux, Sébastien JD; Alves-Leiva, Celmar; Lécluse, Yann; Martin, Patrick; Albagli, Olivier; Godin, Isabelle

    2007-01-01

    Background Hematopoietic development in vertebrate embryos results from the sequential contribution of two pools of precursors independently generated. While intra-embryonic precursors harbour the features of hematopoietic stem cells (HSC), precursors formed earlier in the yolk sac (YS) display limited differentiation and self-renewal potentials. The mechanisms leading to the generation of the precursors in both sites are still largely unknown, as are the molecular basis underlying their different potential. A possible approach to assess the role of candidate genes is to transfer or modulate their expression/activity in both sites. We thus designed and compared transduction protocols to target either native extra-embryonic precursors, or hematopoietic precursors. Results One transduction protocol involves transient modification of gene expression through in situ electroporation of the prospective blood islands, which allows the evolution of transfected mesodermal cells in their "normal" environment, upon organ culture. Following in situ electroporation of a GFP reporter construct into the YS cavity of embryos at post-streak (mesodermal/pre-hematopoietic precursors) or early somite (hematopoietic precursors) stages, high GFP expression levels as well as a good preservation of cell viability is observed in YS explants. Moreover, the erythro-myeloid progeny typical of the YS arises from GFP+ mesodermal cells or hematopoietic precursors, even if the number of targeted precursors is low. The second approach, based on retroviral transduction allows a very efficient transduction of large precursor numbers, but may only be used to target 8 dpc YS hematopoietic precursors. Again, transduced cells generate a progeny quantitatively and qualitatively similar to that of control YS. Conclusion We thus provide two protocols whose combination may allow a thorough study of both early and late events of hematopoietic development in the murine YS. In situ electroporation constitutes

  3. Hematopoietic Cell Transplantation Outcomes in Monosomal Karyotype Myeloid Malignancies.

    PubMed

    Pasquini, Marcelo C; Zhang, Mei-Jie; Medeiros, Bruno C; Armand, Philippe; Hu, Zhen-Huan; Nishihori, Taiga; Aljurf, Mahmoud D; Akpek, Görgün; Cahn, Jean-Yves; Cairo, Mitchell S; Cerny, Jan; Copelan, Edward A; Deol, Abhinav; Freytes, César O; Gale, Robert Peter; Ganguly, Siddhartha; George, Biju; Gupta, Vikas; Hale, Gregory A; Kamble, Rammurti T; Klumpp, Thomas R; Lazarus, Hillard M; Luger, Selina M; Liesveld, Jane L; Litzow, Mark R; Marks, David I; Martino, Rodrigo; Norkin, Maxim; Olsson, Richard F; Oran, Betul; Pawarode, Attaphol; Pulsipher, Michael A; Ramanathan, Muthalagu; Reshef, Ran; Saad, Ayman A; Saber, Wael; Savani, Bipin N; Schouten, Harry C; Ringdén, Olle; Tallman, Martin S; Uy, Geoffrey L; Wood, William A; Wirk, Baldeep; Pérez, Waleska S; Batiwalla, Minoo; Weisdorf, Daniel J

    2016-02-01

    The presence of monosomal karyotype (MK+) in acute myeloid leukemia (AML) is associated with dismal outcomes. We evaluated the impact of MK+ in AML (MK+AML, n = 240) and in myelodysplastic syndrome (MDS) (MK+MDS, n = 221) on hematopoietic cell transplantation outcomes compared with other cytogenetically defined groups (AML, n = 3360; MDS, n = 1373) as reported to the Center for International Blood and Marrow Transplant Research from 1998 to 2011. MK+ AML was associated with higher disease relapse (hazard ratio, 1.98; P < .01), similar transplantation-related mortality (TRM) (hazard ratio, 1.01; P = .90), and worse survival (hazard ratio, 1.67; P < .01) compared with those outcomes for other cytogenetically defined AML. Among patients with MDS, MK+ MDS was associated with higher disease relapse (hazard ratio, 2.39; P < .01), higher TRM (hazard ratio, 1.80; P < .01), and worse survival (HR, 2.02; P < .01). Subset analyses comparing chromosome 7 abnormalities (del7/7q) with or without MK+ demonstrated higher mortality for MK+ disease in for both AML (hazard ratio, 1.72; P < .01) and MDS (hazard ratio, 1.79; P < .01). The strong negative impact of MK+ in myeloid malignancies was observed in all age groups and using either myeloablative or reduced-intensity conditioning regimens. Alternative approaches to mitigate disease relapse in this population are needed.

  4. Hematopoietic Cell Transplantation Outcomes in Monosomal Karyotype Myeloid Malignancies

    PubMed Central

    Pasquini, Marcelo C.; Zhang, Mei-Jie; Medeiros, Bruno C.; Armand, Philippe; Hu, Zhen-Huan; Nishihori, Taiga; Aljurf, Mahmoud D.; Akpek, Görgün; Cahn, Jean-Yves; Cairo, Mitchell S.; Cerny, Jan; Copelan, Edward A.; Deol, Abhinav; Freytes, César O.; Gale, Robert Peter; Ganguly, Siddhartha; George, Biju; Gupta, Vikas; Hale, Gregory A.; Kamble, Rammurti T.; Klumpp, Thomas R.; Lazarus, Hillard M.; Luger, Selina M.; Liesveld, Jane L.; Litzow, Mark R.; Marks, David I.; Martino, Rodrigo; Norkin, Maxim; Olsson, Richard F.; Oran, Betul; Pawarode, Attaphol; Pulsipher, Michael A.; Ramanathan, Muthalagu; Reshef, Ran; Saad, Ayman A.; Saber, Wael; Savani, Bipin N.; Schouten, Harry C.; Ringdén, Olle; Tallman, Martin S.; Uy, Geoffrey L.; Wood, William A.; Wirk, Baldeep; Pérez, Waleska S.; Batiwalla, Minoo; Weisdorf, Daniel J.

    2015-01-01

    The presence of monosomal karyotype (MK+) in acute myeloid leukemia (AML) is associated with dismal outcomes. We evaluated the impact of MK+ in AML (MK+AML, N=240) and in myelodysplastic syndrome (MK+MDS, N=221) on hematopoietic cell transplantation (HCT) outcomes compared to other cytogenetically defined groups (AML, N=3,360; MDS, N=1,373) as reported to the Center for International Blood and Marrow Transplant Research (CIBMTR) from 1998 to 2011. MK+AML was associated with higher disease relapse (hazard ratio [HR] 1.98, p<0.01), similar transplant related mortality (TRM, HR 1.01, p=0.9) and worse survival (HR 1.67, p<0.01) compared to other cytogenetically defined AML. Among patients with MDS, MK+MDS was associated with higher disease relapse (HR 2.39, p<0.01), higher TRM (HR 1.80, p<0.01) and worse survival (HR 2.02, p<0.01). Subset analyses comparing chromosome 7 abnormalities (del7/7q) with or without MK+ demonstrated higher mortality for MK+ disease in for both AML (HR 1.72, p<0.01) and MDS (HR1.79, p<0.01). The strong negative impact of MK+ in myeloid malignancies was observed in all age groups and using either myeloablative or reduced intensity conditioning regimens. Alternative approaches to mitigate disease relapse in this population are needed. PMID:26327629

  5. Vav promotes differentiation of human tumoral myeloid precursors

    SciTech Connect

    Bertagnolo, Valeria; Brugnoli, Federica; Mischiati, Carlo; Sereni, Alessia; Bavelloni, Alberto; Carini, Cinzia; Capitani, Silvano . E-mail: cps@unife.it

    2005-05-15

    Vav is one of the genetic markers that correlate with the differentiation of hematopoietic cells. In T and B cells, it appears crucial for both development and functions, while, in non-lymphoid hematopoietic cells, Vav seems not involved in cell maturation, but rather in the response of mature cells to agonist-dependent proliferation and phagocytosis. We have previously demonstrated that the amount and the tyrosine phosphorylation of Vav are up-regulated in both whole cells and nuclei of tumoral promyelocytes induced to granulocytic maturation by ATRA and that tyrosine-phosphorylated Vav does not display any ATRA-induced GEF activity but contributes to the regulation of PI 3-K activity. In this study, we report that Vav accumulates in nuclei of ATRA-treated APL-derived cells and that the down-modulation of Vav prevents differentiation of tumoral promyelocytes, indicating that it is a key molecule in ATRA-dependent myeloid maturation. On the other hand, the overexpression of Vav induces an increased expression of surface markers of granulocytic differentiation without affecting the maturation-related changes of the nuclear morphology. Consistent with an effect of Vav on the transcriptional machinery, array profiling shows that the inhibition of the Syk-dependent tyrosine phosphorylation of Vav reduces the number of ATRA-induced genes. Our data support the unprecedented notion that Vav plays crucial functions in the maturation process of myeloid cells, and suggest that Vav can be regarded as a potential target for the therapeutic treatment of myeloproliferative disorders.

  6. Characterization of the Murine Myeloid Precursor Cell Line MuMac-E8

    PubMed Central

    Fricke, Stephan; Riemschneider, Sina; Kohlschmidt, Janine; Hilger, Nadja; Fueldner, Christiane; Knauer, Jens; Sack, Ulrich; Emmrich, Frank; Lehmann, Jörg

    2014-01-01

    Starting point for the present work was the assumption that the cell line MuMac-E8 represents a murine cell population with stem cell properties. Preliminary studies already pointed to the expression of stem-cell associated markers and a self-regenerative potential of the cells. The cell line MuMac-E8 should be examined for their differential stage within stem cell hierarchy. MuMac-E8 cells were derived from a chimeric mouse model of arthritis. It could be shown that MuMac-E8 cells express mRNA of some genes associated with pluripotent stem cells (Nanog, Nucleostemin), of genes for hematopoietic markers (EPCR, Sca-1, CD11b, CD45), for the mesenchymal marker CD105 and of genes for the neural markers Pax-6 and Ezrin. In methylcellulose and May-Grünwald-Giemsa staining, hematopoietic colonies were obtained but the hematopoietic system of lethally irradiated mice could not be rescued. Osteogenic differentiation was not detectable. Thus, it became evident that MuMac-E8 represents not a stem cell line. However, MuMac-E8 cells expressed several myeloid surface markers (i.e. CD11b, F4/80, CD14, CD64), showed phagocytosis and is capable of producing nitric oxide. Thus, this cell line seems to be arrested an advanced stage of myeloid differentiation. Adherence data measured by impedance-based real-time cell analysis together with cell morphology data suggested that MuMac-E8 represents a new macrophage precursor cell line exhibiting weak adherence. This cell line is suitable as an in-vitro model for testing of macrophage functions. Moreover, it might be also useful for differentiation or reprogramming studies. PMID:25546418

  7. Systematic analysis of hematopoietic gene expression profiles for prognostic prediction in acute myeloid leukemia

    PubMed Central

    Varn, Frederick S.; Andrews, Erik H.; Cheng, Chao

    2015-01-01

    Acute myeloid leukemia (AML) is a hematopoietic disorder initiated by the leukemogenic transformation of myeloid cells into leukemia stem cells (LSCs). Preexisting gene expression programs in LSCs can be used to assess their transcriptional similarity to hematopoietic cell types. While this relationship has previously been examined on a small scale, an analysis that systematically investigates this relationship throughout the hematopoietic hierarchy has yet to be implemented. We developed an integrative approach to assess the similarity between AML patient tumor profiles and a collection of 232 murine hematopoietic gene expression profiles compiled by the Immunological Genome Project. The resulting lineage similarity scores (LSS) were correlated with patient survival to assess the relationship between hematopoietic similarity and patient prognosis. This analysis demonstrated that patient tumor similarity to immature hematopoietic cell types correlated with poor survival. As a proof of concept, we highlighted one cell type identified by our analysis, the short-term reconstituting stem cell, whose LSSs were significantly correlated with patient prognosis across multiple datasets, and showed distinct patterns in patients stratified by traditional clinical variables. Finally, we validated our use of murine profiles by demonstrating similar results when applying our method to human profiles. PMID:26598031

  8. Systematic analysis of hematopoietic gene expression profiles for prognostic prediction in acute myeloid leukemia.

    PubMed

    Varn, Frederick S; Andrews, Erik H; Cheng, Chao

    2015-11-24

    Acute myeloid leukemia (AML) is a hematopoietic disorder initiated by the leukemogenic transformation of myeloid cells into leukemia stem cells (LSCs). Preexisting gene expression programs in LSCs can be used to assess their transcriptional similarity to hematopoietic cell types. While this relationship has previously been examined on a small scale, an analysis that systematically investigates this relationship throughout the hematopoietic hierarchy has yet to be implemented. We developed an integrative approach to assess the similarity between AML patient tumor profiles and a collection of 232 murine hematopoietic gene expression profiles compiled by the Immunological Genome Project. The resulting lineage similarity scores (LSS) were correlated with patient survival to assess the relationship between hematopoietic similarity and patient prognosis. This analysis demonstrated that patient tumor similarity to immature hematopoietic cell types correlated with poor survival. As a proof of concept, we highlighted one cell type identified by our analysis, the short-term reconstituting stem cell, whose LSSs were significantly correlated with patient prognosis across multiple datasets, and showed distinct patterns in patients stratified by traditional clinical variables. Finally, we validated our use of murine profiles by demonstrating similar results when applying our method to human profiles.

  9. Successful Hematopoietic Cell Transplantation in a Patient With X-linked Agammaglobulinemia and Acute Myeloid Leukemia

    PubMed Central

    Abu-Arja, Rolla F.; Chernin, Leah R.; Abusin, Ghada; Auletta, Jeffery; Cabral, Linda; Egler, Rachel; Ochs, Hans D.; Torgerson, Troy R.; Lopez-Guisa, Jesus; Hostoffer, Robert W.; Tcheurekdjian, Haig; Cooke, Kenneth R.

    2016-01-01

    X-linked agammaglobulinemia (XLA) is a primary immunodeficiency characterized by marked reduction in all classes of serum immunoglobulins and the near absence of mature CD19+ B-cells. Although malignancy has been observed in patients with XLA, we present the first reported case of acute myeloid leukemia (AML) in a patient with XLA. We also demonstrate the complete correction of the XLA phenotype following allogeneic hematopoietic cell transplantation for treatment of the patient’s leukemia. PMID:25900577

  10. Hematopoietic myeloid cell differentiation diminishes nucleotide excision repair.

    PubMed

    Aoki, Yuki; Sato, Ayako; Mizutani, Shuki; Takagi, Masatoshi

    2014-09-01

    Myeloid cell differentiation is the process by which stem cells develop into mature monocytes or granulocytes. This process is achieved by the sequential activation of variety of genes. Disruption of this process can result in immunodeficiency, bone marrow failure syndrome, or leukemia. Acute promyelocytic leukemia (APL) is characterized by the t(15;17) translocation and can be treated by a combination of all-trans retinoic acid (ATRA) and anthracycline. This treatment can induce leukemic cell differentiation, leading to extremely high remission rates. XAB2, a molecule involved in nucleotide excision repair (NER), is downregulated during granulocyte differentiation and shows reduced expression in NB4 APL-derived cells in vitro. Differentiation of APL by ATRA treatment reduced XAB2 expression levels in vivo. These observations suggest that cellular differentiation is associated with reduced NER activity and provides new insights into combined differentiation induction. NB4 cells were more susceptible than the immature myeloid leukemic cell lines, Kasumi-3 and Kasumi-1, to the DNA interstrand crosslinking agent cisplatin.

  11. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia.

    PubMed

    Vyas, Paresh; Appelbaum, Frederick R; Craddock, Charles

    2015-01-01

    Allogeneic stem cell transplantation is an increasingly important treatment option in the management of adult acute myeloid leukemia (AML). The major causes of treatment failure remain disease relapse and treatment toxicity. In this review, Dr Vyas presents an overview of important recent data defining molecular factors associated with treatment failure in AML. He also identifies the emerging importance of leukemia stem cell biology in determining both response to therapy and relapse risk in AML. Dr Appelbaum discusses advances in the design and delivery of both myeloablative and reduced-intensity conditioning regimens, highlighting novel strategies with the potential to improve outcome. Dr Craddock discusses the development of both novel conditioning regimens and post-transplantation strategies aimed at reducing the risk of disease relapse.

  12. Reprint of: Allogeneic hematopoietic cell transplantation for acute myeloid leukemia.

    PubMed

    Vyas, Paresh; Appelbaum, Frederick R; Craddock, Charles

    2015-02-01

    Allogeneic stem cell transplantation is an increasingly important treatment option in the management of adult acute myeloid leukemia (AML). The major causes of treatment failure remain disease relapse and treatment toxicity. In this review, Dr Vyas presents an overview of important recent data defining molecular factors associated with treatment failure in AML. He also identifies the emerging importance of leukemia stem cell biology in determining both response to therapy and relapse risk in AML. Dr Appelbaum discusses advances in the design and delivery of both myeloablative and reduced-intensity conditioning regimens, highlighting novel strategies with the potential to improve outcome. Dr Craddock discusses the development of both novel conditioning regimens and post-transplantation strategies aimed at reducing the risk of disease relapse.

  13. Secondary Philadelphia chromosome and erythrophagocytosis in a relapsed acute myeloid leukemia after hematopoietic cell transplantation

    PubMed Central

    Kelemen, Katalin; Galani, Komal; Conley, Christopher R.; Greipp, Patricia T.

    2015-01-01

    The acquisition of Philadelphia chromosome (Ph) as a secondary change during the course of hematopoietic malignancies is rare and is associated with poor prognosis. Few cases of secondary Ph have been reported after hematopoietic cell transplantation (HCT). A secondary Ph at relapse is of clinical importance because it provides a therapeutic target for tyrosine kinase inhibitors along with or in replacement of chemotherapy. We describe a case of relapsed acute myeloid leukemia after HCT that developed a BCR/ABL-1 translocation along with erythrophagocytosis by blasts as a secondary change at the time of relapse. The progression of this patient's myeloid neoplasm from myelodysplastic syndrome to acute myeloid leukemia and relapsed AML after HCT was accompanied by a stepwise cytogenetic evolution: a deletion 20q abnormality subsequently acquired deletion 7q and, finally, at relapse after HCT, a secondary Ph was gained. The relationship between the secondary Ph and the erythrophagocytosis by blasts is not clear. We review the possible pathogenesis and cytogenetic associations of erythrophagocytosis by blasts, a rare feature in acute leukemias. PMID:25074248

  14. B-myb is an essential regulator of hematopoietic stem cell and myeloid progenitor cell development

    PubMed Central

    Baker, Stacey J.; Ma’ayan, Avi; Lieu, Yen K.; John, Premila; Reddy, M. V. Ramana; Chen, Edward Y.; Duan, Qiaonan; Snoeck, Hans-Willem; Reddy, E. Premkumar

    2014-01-01

    The B-myb (MYBL2) gene is a member of the MYB family of transcription factors and is involved in cell cycle regulation, DNA replication, and maintenance of genomic integrity. However, its function during adult development and hematopoiesis is unknown. We show here that conditional inactivation of B-myb in vivo results in depletion of the hematopoietic stem cell (HSC) pool, leading to profound reductions in mature lymphoid, erythroid, and myeloid cells. This defect is autonomous to the bone marrow and is first evident in stem cells, which accumulate in the S and G2/M phases. B-myb inactivation also causes defects in the myeloid progenitor compartment, consisting of depletion of common myeloid progenitors but relative sparing of granulocyte–macrophage progenitors. Microarray studies indicate that B-myb–null LSK+ cells differentially express genes that direct myeloid lineage development and commitment, suggesting that B-myb is a key player in controlling cell fate. Collectively, these studies demonstrate that B-myb is essential for HSC and progenitor maintenance and survival during hematopoiesis. PMID:24516162

  15. B-myb is an essential regulator of hematopoietic stem cell and myeloid progenitor cell development.

    PubMed

    Baker, Stacey J; Ma'ayan, Avi; Lieu, Yen K; John, Premila; Reddy, M V Ramana; Chen, Edward Y; Duan, Qiaonan; Snoeck, Hans-Willem; Reddy, E Premkumar

    2014-02-25

    The B-myb (MYBL2) gene is a member of the MYB family of transcription factors and is involved in cell cycle regulation, DNA replication, and maintenance of genomic integrity. However, its function during adult development and hematopoiesis is unknown. We show here that conditional inactivation of B-myb in vivo results in depletion of the hematopoietic stem cell (HSC) pool, leading to profound reductions in mature lymphoid, erythroid, and myeloid cells. This defect is autonomous to the bone marrow and is first evident in stem cells, which accumulate in the S and G2/M phases. B-myb inactivation also causes defects in the myeloid progenitor compartment, consisting of depletion of common myeloid progenitors but relative sparing of granulocyte-macrophage progenitors. Microarray studies indicate that B-myb-null LSK(+) cells differentially express genes that direct myeloid lineage development and commitment, suggesting that B-myb is a key player in controlling cell fate. Collectively, these studies demonstrate that B-myb is essential for HSC and progenitor maintenance and survival during hematopoiesis.

  16. Secondary Philadelphia chromosome and erythrophagocytosis in a relapsed acute myeloid leukemia after hematopoietic cell transplantation.

    PubMed

    Kelemen, Katalin; Galani, Komal; Conley, Christopher R; Greipp, Patricia T

    2014-06-01

    The acquisition of the Philadelphia chromosome (Ph) as a secondary change during the course of hematopoietic malignancies is rare and is associated with poor prognosis. Few cases of secondary Ph have been reported after hematopoietic cell transplantation (HCT). A secondary Ph at relapse is of clinical importance because it provides a therapeutic target for tyrosine kinase inhibitors along with or in replacement of chemotherapy. We describe a case of relapsed acute myeloid leukemia (AML) after HCT that developed a BCR-ABL1 translocation along with erythrophagocytosis by blasts as a secondary change at the time of relapse. The progression of this patient's myeloid neoplasm from myelodysplastic syndrome to AML to relapsed AML after HCT was accompanied by a stepwise cytogenetic evolution: A deletion 20q abnormality subsequently acquired a deletion 7q and, finally, at relapse after HCT, a secondary Ph was gained. The relationship between the secondary Ph and the erythrophagocytosis by blasts is not clear. We review the possible pathogenesis and cytogenetic associations of erythrophagocytosis by blasts, a rare feature in acute leukemias.

  17. Clonal evolution of preleukemic hematopoietic stem cells in acute myeloid leukemia.

    PubMed

    Sykes, Stephen M; Kokkaliaris, Konstantinos D; Milsom, Michael D; Levine, Ross L; Majeti, Ravindra

    2015-12-01

    Acute myeloid leukemia (AML) is an aggressive blood cancer that results from an abnormal expansion of uncontrollably proliferating myeloid progenitors that have lost the capacity to differentiate. AML encompasses many genetically distinct subtypes that predominantly develop de novo. However, AML can also arise from premalignant myeloid conditions, such as myelodysplastic syndrome (MDS) and myeloproliferative neoplasms (MPNs), or develop as the result of exposure to genotoxic agents used to treat unrelated malignancies. Although numerous distinct cytogenetic and molecular abnormalities associated with AML were discovered prior to the turn of the millennium, recent advances in whole genome sequencing and global genomic approaches have resulted in an explosion of newly identified molecular abnormalities. However, even with these advances, our understanding of how these mutations contribute to the etiology, pathogenesis, and therapeutic responses of AML remains largely unknown. Recently the International Society for Experimental Hematology (ISEH) hosted a webinar entitled "Clonal Evolution of Pre-Leukemic Hematopoietic Stem Cells (HSCs) in AML" in which two AML mavens, Ross Levine, MD, and Ravindra Majeti, MD, PhD, discussed some of their recent, groundbreaking studies that have shed light on how many of these newly identified mutations contribute to leukemogenesis and therapy resistance in AML. Here, we provide a brief overview of this webinar and discuss the basic scientific and clinical implications of the data presented.

  18. CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells

    PubMed Central

    Vacca, Paola; Vitale, Chiara; Montaldo, Elisa; Conte, Romana; Cantoni, Claudia; Fulcheri, Ezio; Darretta, Valeria; Moretta, Lorenzo; Mingari, Maria Cristina

    2011-01-01

    Natural killer (NK) cells are the main lymphoid population in the maternal decidua during the first trimester of pregnancy. Decidual NK (dNK) cells display a unique functional profile and play a key role in promoting tissue remodeling, neoangiogenesis, and immune modulation. However, little information exists on their origin and development. Here we discovered CD34+ hematopoietic precursors in human decidua (dCD34+). We show that dCD34+ cells differ from cord blood- or peripheral blood-derived CD34+ precursors. The expression of IL-15/IL-2 receptor common β-chain (CD122), IL-7 receptor α-chain (CD127), and mRNA for E4BP4 and ID2 transcription factors suggested that dCD34+ cells are committed to the NK cell lineage. Moreover, they could undergo in vitro differentiation into functional (i.e., IL-8– and IL-22–producing) CD56brightCD16−KIR+/− NK cells in the presence of growth factors or even upon coculture with decidual stromal cells. Their NK cell commitment was further supported by the failure to undergo myeloid differentiation in the presence of GM-CSF. Our findings strongly suggest that decidual NK cells may directly derive from CD34+ cell precursors present in the decidua upon specific cellular interactions with components of the decidual microenvironment. PMID:21248224

  19. Role of gadd45 in myeloid cells in response to hematopoietic stress.

    PubMed

    Hoffman, Barbara; Liebermann, Dan A

    2007-01-01

    The gadd45 family of genes is rapidly induced by different stressors, including differentiation-inducing cytokines, and there is a large body of evidence that their cognate proteins are key players in cellular stress responses. Induction of gadd45 genes at the onset of myeloid differentiation suggested that Gadd45 protein(s) play a role in hematopoiesis, yet no apparent abnormalities were observed in either the bone marrow or peripheral blood compartments of mice deficient for either gadd45a or gadd45b. However, under conditions of hematological stress, including acute stimulation with cytokines, myelo-ablation and inflammation, both gadd45a-deficient and gadd45b-deficient mice exhibited deficiencies. This topic is discussed within the context of what is known about Gadd45 proteins in stress signaling, hematopoietic development and the innate immune response.

  20. The preferentially expressed antigen in melanoma (PRAME) inhibits myeloid differentiation in normal hematopoietic and leukemic progenitor cells

    PubMed Central

    Guthrie, Katherine A.; Cummings, Carrie L.; Sabo, Kathleen; Wood, Brent L.; Gooley, Ted; Yang, Taimei; Epping, Mirjam T.; Shou, Yaping; Pogosova-Agadjanyan, Era; Ladne, Paula; Stirewalt, Derek L.; Abkowitz, Janis L.; Radich, Jerald P.

    2009-01-01

    The preferentially expressed antigen in melanoma (PRAME) is expressed in several hematologic malignancies, but either is not expressed or is expressed at only low levels in normal hematopoietic cells, making it a target for cancer therapy. PRAME is a tumor-associated antigen and has been described as a corepressor of retinoic acid signaling in solid tumor cells, but its function in hematopoietic cells is unknown. PRAME mRNA expression increased with chronic myeloid leukemia (CML) disease progression and its detection in late chronic-phase CML patients before tyrosine kinase inhibitor therapy was associated with poorer therapeutic responses and ABL tyrosine kinase domain point mutations. In leukemia cell lines, PRAME protein expression inhibited granulocytic differentiation only in cell lines that differentiate along this lineage after all-trans retinoic acid (ATRA) exposure. Forced PRAME expression in normal hematopoietic progenitors, however, inhibited myeloid differentiation both in the presence and absence of ATRA, and this phenotype was reversed when PRAME was silenced in primary CML progenitors. These observations suggest that PRAME inhibits myeloid differentiation in certain myeloid leukemias, and that its function in these cells is lineage and phenotype dependent. Lastly, these observations suggest that PRAME is a target for both prognostic and therapeutic applications. PMID:19625708

  1. Hematopoietic cell crisis: An early stage of evolving myeloid leukemia following radiation exposure

    SciTech Connect

    Seed, T.M.

    1990-01-01

    Under select radiological conditions, chronic radiation exposure elicits a high incidence of myeloproliferative disease, principally myeloid leukemia (ML), in beagles. Previously we demonstrated that for full ML expression, a four-stage preclinical sequence is required, namely (1) suppression, (2) recovery, (3) accommodation, and (4) preleukemic transition. Within this pathological sequence, a critical early event has been identified as the acquisition of radioresistance by hematopoietic progenitors that serves to mediate a newfound regenerative hematopoietic capacity. As such, this event sets the stage'' for preleukemic progression by initiating progression from preclinical phase 1 to 2. Due to the nature of target cell suppression, the induction of crisis, and the outgrowth of progenitors with altered phenotypes, this preleukemic event resembles the immortalization'' step of the in vitro transformation sequence following induction with either physical and chemical carcinogens. The radiological, temporal, and biological dictates governing this event have been extensively evaluated and will be discussed in light of their role in the induction and progression of chronic radiation leukemia. 35 refs., 2 tabs.

  2. Reduced-intensity conditioning allogeneic hematopoietic-cell transplantation for older patients with acute myeloid leukemia

    PubMed Central

    Goyal, Gaurav; Gundabolu, Krishna; Vallabhajosyula, Saraschandra; Silberstein, Peter T.; Bhatt, Vijaya Raj

    2016-01-01

    Elderly patients (>60 years) with acute myeloid leukemia have a poor prognosis with a chemotherapy-alone approach. Allogeneic hematopoietic-cell transplantation (HCT) can improve overall survival (OS). However, myeloablative regimens can have unacceptably high transplant-related mortality (TRM) in an unselected group of older patients. Reduced-intensity conditioning (RIC) or nonmyeloablative (NMA) conditioning regimens preserve the graft-versus-leukemia effects but reduce TRM. NMA regimens result in minimal cytopenia and may not require stem cell support for restoring hematopoiesis. RIC regimens, intermediate in intensity between NMA and myeloablative regimens, can cause prolonged myelosuppresion and usually require stem cell support. A few retrospective and prospective studies suggest a possibility of lower risk of relapse with myeloablative HCT in fit older patients with lower HCT comorbidity index; however, RIC and NMA HCTs have an important role in less-fit patients and those with significant comorbidities because of lower TRM. Whether early tapering of immunosuppression, monitoring of minimal residual disease, and post-transplant maintenance therapy can improve the outcomes of RIC and NMA HCT in elderly patients will require prospective trials. PMID:27247754

  3. YKL-40 in allogeneic hematopoietic cell transplantation after acute myeloid leukemia and myelodysplastic syndrome

    PubMed Central

    Kornblit, Brian; Wang, Tao; Lee, Stephanie J.; Spellman, Stephen R.; Zhu, Xiaochun; Fleischhauer, Katharina; Müller, Carlheinz; Verneris, Michael R.; Müller, Klaus; Johansen, Julia S.; Vindelov, Lars; Garred, Peter

    2016-01-01

    YKL-40, also called chitinase3-like-1 protein, is an inflammatory biomarker which has been associated with disease severity in inflammatory and malignant diseases, including acute myeloid leukemia (AML), multiple myeloma and lymphomas. The objective of the current study was to assess the prognostic value of pre-transplant recipient and donor plasma YKL-40 concentrations in patients with AML (n=624) or myelodysplastic syndrome (MDS) (n=157) treated with allogeneic hematopoietic cell transplantation (HCT). In recipients, the plasma YKL-40 concentrations were increased when the HCT-comorbidity index was ≥5 (p=0.028). There were no significant associations between plasma YKL-40 concentrations in recipients and any outcome measures. In donors with YKL-40 plasma concentrations above the age adjusted 95th percentile a trend towards increased grade II-IV acute graft versus host disease in recipients was observed (adjusted hazard ratio 1.39 (95% confidence interval 1.00–1.94), P=0.050), with no significant associations with overall survival, treatment-related mortality or relapse. In conclusion, our study shows that YKL-40 does not aid risk stratification of patients undergoing allogeneic HCT, but suggests that YKL-40 may aid donor selection when multiple, otherwise equal, donors are available. PMID:27427920

  4. Up-front allogeneic hematopoietic cell transplantation in acute myeloid leukemia arising from the myelodysplastic syndrome.

    PubMed

    Choi, Yunsuk; Kim, Sung-Doo; Park, Young-Hoon; Lee, Jae Seok; Kim, Dae-Young; Lee, Jung-Hee; Lee, Kyoo-Hyung; Seol, Miee; Lee, Young-Shin; Kang, Young-Ah; Jeon, Mijin; Jung, Ah Rang; Lee, Je-Hwan

    2015-01-01

    In patients with secondary acute myeloid leukemia (s-AML) arising from the myelodysplastic syndrome (MDS), treatment outcome is unsatisfactory. We compared up-front allogeneic hematopoietic cell transplantation (HCT) to induction chemotherapy (IC) as an initial treatment in patients with s-AML arising from MDS. This retrospective study included 85 patients who were diagnosed with s-AML arising from MDS; 11 patients proceeded to up-front HCT without IC (HCT group) and 74 received IC (IC group) as an initial treatment for s-AML, 28 of whom subsequently underwent HCT. In the IC group, 41.9% achieved complete remission (CR) compared to 81.8% in the HCT group (p = 0.013). The HCT group showed a significantly longer event-free survival (EFS) than the IC group (median 29.2 vs. 5.2 months, p = 0.042). Overall survival of the HCT group was higher than that of the IC group, but the difference was not statistically significant (median 34.6 vs. 7.6 months, p = 0.149). After adjustment for other clinical factors, outcome in the HCT group was significantly better than in the IC group in terms of CR rate (hazard ratio, HR, 11.195; p = 0.007) and EFS (HR, 0.384; p = 0.029). Up-front HCT is a viable option in s-AML arising from MDS if an appropriate donor is available.

  5. CD117 expression in gammopathies is associated with an altered maturation of the myeloid and lymphoid hematopoietic cell compartments and favorable disease features

    PubMed Central

    Schmidt-Hieber, Martin; Pérez-Andrés, Martin; Paiva, Bruno; Flores-Montero, Juan; Perez, Jose J.; Gutierrez, Norma C.; Vidriales, Maria-Belen; Matarraz, Sergio; San Miguel, Jesus F.; Orfao, Alberto

    2011-01-01

    Aberrant CD117 expression is associated with a favorable outcome in multiple myeloma. We analyzed 106 patients with symptomatic multiple myeloma (n=50), smoldering multiple myeloma (n=38) and monoclonal gammopathy of undetermined significance (n=18) to elucidate biological features of CD117+ versus CD117− monoclonal gammopathies. CD117+ (mono)clonal plasma cells were detected in 30% symptomatic multiple myeloma, 45% smoldering multiple myeloma and 72% monoclonal gammopathy of undetermined significance patients. CD117 expression was associated with higher percentages of normal bone marrow plasma cells, CD117+ myeloid precursors and CD38+ B lymphocytes in all monoclonal gammopathies. Conversely, the number of bone marrow CD34+ myeloid cells and peripheral blood neutrophils was reduced among CD117+ multiple myeloma but not monoclonal gammopathy of undetermined significance patients. CD117 expression by (mono)clonal plasma cells is associated with uniquely altered patterns of production of hematopoietic bone marrow cells with decreased peripheral blood neutrophil counts and persistence of normal residual bone marrow plasma cells. PMID:20971816

  6. Testicular myeloid sarcoma: case report

    PubMed Central

    Zago, Luzia Beatriz Ribeiro; Ladeia, Antônio Alexandre Lisbôa; Etchebehere, Renata Margarida; de Oliveira, Leonardo Rodrigues

    2013-01-01

    Myeloid sarcomas are extramedullary solid tumors composed of immature granulocytic precursor cells. In association with acute myeloid leukemia and other myeloproliferative disorders, they may arise concurrently with compromised bone marrow related to acute myeloid leukemia, as a relapsed presentation, or occur as the first manifestation. The testicles are considered to be an uncommon site for myeloid sarcomas. No therapeutic strategy has been defined as best but may include chemotherapy, radiotherapy and/or hematopoietic stem cell transplantation. This study reports the evolution of a patient with testicular myeloid sarcoma as the first manifestation of acute myeloid leukemia. The patient initially refused medical treatment and died five months after the clinical condition started. PMID:23580888

  7. Myeloablative Versus Reduced-Intensity Hematopoietic Cell Transplantation for Acute Myeloid Leukemia and Myelodysplastic Syndromes.

    PubMed

    Scott, Bart L; Pasquini, Marcelo C; Logan, Brent R; Wu, Juan; Devine, Steven M; Porter, David L; Maziarz, Richard T; Warlick, Erica D; Fernandez, Hugo F; Alyea, Edwin P; Hamadani, Mehdi; Bashey, Asad; Giralt, Sergio; Geller, Nancy L; Leifer, Eric; Le-Rademacher, Jennifer; Mendizabal, Adam M; Horowitz, Mary M; Deeg, H Joachim; Horwitz, Mitchell E

    2017-04-10

    Purpose The optimal regimen intensity before allogeneic hematopoietic cell transplantation (HCT) is unknown. We hypothesized that lower treatment-related mortality (TRM) with reduced-intensity conditioning (RIC) would result in improved overall survival (OS) compared with myeloablative conditioning (MAC). To test this hypothesis, we performed a phase III randomized trial comparing MAC with RIC in patients with acute myeloid leukemia or myelodysplastic syndromes. Patients and Methods Patients age 18 to 65 years with HCT comorbidity index ≤ 4 and < 5% marrow myeloblasts pre-HCT were randomly assigned to receive MAC (n = 135) or RIC (n = 137) followed by HCT from HLA-matched related or unrelated donors. The primary end point was OS 18 months post-random assignment based on an intent-to-treat analysis. Secondary end points included relapse-free survival (RFS) and TRM. Results Planned enrollment was 356 patients; accrual ceased at 272 because of high relapse incidence with RIC versus MAC (48.3%; 95% CI, 39.6% to 56.4% and 13.5%; 95% CI, 8.3% to 19.8%, respectively; P < .001). At 18 months, OS for patients in the RIC arm was 67.7% (95% CI, 59.1% to 74.9%) versus 77.5% (95% CI, 69.4% to 83.7%) for those in the MAC arm (difference, 9.8%; 95% CI, -0.8% to 20.3%; P = .07). TRM with RIC was 4.4% (95% CI, 1.8% to 8.9%) versus 15.8% (95% CI, 10.2% to 22.5%) with MAC ( P = .002). RFS with RIC was 47.3% (95% CI, 38.7% to 55.4%) versus 67.8% (95% CI, 59.1% to 75%) with MAC ( P < .01). Conclusion OS was higher with MAC, but this was not statistically significant. RIC resulted in lower TRM but higher relapse rates compared with MAC, with a statistically significant advantage in RFS with MAC. These data support the use of MAC as the standard of care for fit patients with acute myeloid leukemia or myelodysplastic syndromes.

  8. Therapy-related acute myeloid leukemia and myelodysplastic syndrome after hematopoietic cell transplantation for lymphoma.

    PubMed

    Yamasaki, S; Suzuki, R; Hatano, K; Fukushima, K; Iida, H; Morishima, S; Suehiro, Y; Fukuda, T; Uchida, N; Uchiyama, H; Ikeda, H; Yokota, A; Tsukasaki, K; Yamaguchi, H; Kuroda, J; Nakamae, H; Adachi, Y; Matsuoka, K-I; Nakamura, Y; Atsuta, Y; Suzumiya, J

    2017-04-03

    Therapy-related acute myeloid leukemia and myelodysplastic syndrome (t-AML/MDS) represent severe late effects in patients receiving hematopoietic cell transplantation (HCT) for lymphoma. The choice between high-dose therapy with autologous HCT and allogeneic HCT with reduced-intensity conditioning remains controversial in patients with relapsed lymphoma. We retrospectively analyzed incidence and risk factors for the development of t-AML/MDS in lymphoma patients treated with autologous or allogeneic HCT. A total of 13 810 lymphoma patients who received autologous (n=9963) or allogeneic (n=3847) HCT between 1985 and 2012 were considered. At a median overall survival (OS) of 52 and 46 months in autologous and allogeneic HCT groups, respectively, lymphoma patients receiving autologous HCT (1.38% at 3 years after autologous HCT) had a significant risk for developing t-AML/MDS compared to allogeneic HCT (0.37% at 3 years after allogeneic HCT, P<0.001). Significant risk factors for the development of t-AML/MDS after autologous and allogeneic HCT were high-stage risk at HCT (P=0.04) or secondary malignancies (P<0.001) and receiving cord blood stem cell (P=0.03) or involved field radiotherapy (P=0.002), respectively. Strategies that carefully select lymphoma patients for autologous HCT, by excluding lymphoma patients with high-stage risk at HCT, may allow the identification of individual lymphoma patients at particular high risk for t-AML/MDS.Bone Marrow Transplantation advance online publication, 3 April 2017; doi:10.1038/bmt.2017.52.

  9. Extracellular vesicle miR-7977 is involved in hematopoietic dysfunction of mesenchymal stromal cells via poly(rC) binding protein 1 reduction in myeloid neoplasms

    PubMed Central

    Horiguchi, Hiroto; Kobune, Masayoshi; Kikuchi, Shohei; Yoshida, Masahiro; Murata, Masaki; Murase, Kazuyuki; Iyama, Satoshi; Takada, Kohichi; Sato, Tsutomu; Ono, Kaoru; Hashimoto, Akari; Tatekoshi, Ayumi; Kamihara, Yusuke; Kawano, Yutaka; Miyanishi, Koji; Sawada, Norimasa; Kato, Junji

    2016-01-01

    The failure of normal hematopoiesis is observed in myeloid neoplasms. However, the precise mechanisms governing the replacement of normal hematopoietic stem cells in their niche by myeloid neoplasm stem cells have not yet been clarified. Primary acute myeloid leukemia and myelodysplastic syndrome cells induced aberrant expression of multiple hematopoietic factors including Jagged-1, stem cell factor and angiopoietin-1 in mesenchymal stem cells even in non-contact conditions, and this abnormality was reverted by extracellular vesicle inhibition. Importantly, the transfer of myeloid neoplasm-derived extracellular vesicles reduced the hematopoietic supportive capacity of mesenchymal stem cells. Analysis of extracellular vesicle microRNA indicated that several species, including miR-7977 from acute myeloid leukemia cells, were higher than those from normal CD34+ cells. Remarkably, the copy number of miR-7977 in bone marrow interstitial fluid was elevated not only in acute myeloid leukemia, but also in myelodysplastic syndrome, as compared with lymphoma without bone marrow localization. The transfection of the miR-7977 mimic reduced the expression of the posttranscriptional regulator, poly(rC) binding protein 1, in mesenchymal stem cells. Moreover, the miR-7977 mimic induced aberrant reduction of hematopoietic growth factors in mesenchymal stem cells, resulting in decreased hematopoietic-supporting capacity of bone marrow CD34+ cells. Furthermore, the reduction of hematopoietic growth factors including Jagged-1, stem cell factor and angiopoietin-1 were reverted by target protection of poly(rC) binding protein 1, suggesting that poly(rC) binding protein 1 could be involved in the stabilization of several growth factors. Thus, miR-7977 in extracellular vesicles may be a critical factor that induces failure of normal hematopoiesis via poly(rC) binding protein 1 suppression. PMID:26802051

  10. Successful cell-mediated cytokine-activated immunotherapy for relapsed acute myeloid leukemia after hematopoietic stem cell transplantation.

    PubMed

    Gesundheit, Benjamin; Shapira, Michael Y; Resnick, Igor B; Amar, Avraham; Kristt, Don; Dray, Lilianne; Budowski, Einat; Or, Reuven

    2009-03-01

    Acute myeloid leukemia (AML) is an extremely aggressive disease with a high relapse rate even after allogeneic hematopoietic stem cell transplantation (HSCT). We report the successful outcome of cell-mediated cytokine-activated immunotherapy in a high-risk pediatric AML patient who relapsed shortly after allogeneic HSCT. Donor lymphocyte infusion along with interferon induced a graft-versus-leukemia effect, presenting as a reversible episode of graft-versus-host disease, which led to stable complete donor chimerism and total eradication of AML for over 24 months, at the time of this report. The curative potential of immunotherapy in hematological malignancies is discussed.

  11. Decitabine maintains hematopoietic precursor self-renewal by preventing repression of stem cell genes by a differentiation inducing stimulus

    PubMed Central

    Hu, Zhenbo; Negrotto, Soledad; Gu, Xiaorong; Mahfouz, Reda; Ng, Kwok Peng; Ebrahem, Quteba; Copelan, Edward; Singh, Harinder; Maciejewski, Jaroslaw P; Saunthararajah, Yogen

    2010-01-01

    The cytosine analogue decitabine alters hematopoietic differentiation. For example, decitabine treatment increases self-renewal of normal hematopoietic stem cells. The mechanisms underlying decitabine induced shifts in differentiation are poorly understood, but likely relate to the ability of decitabine to deplete the chromatin-modifying enzyme DNA methyl-transferase 1 (DNMT1) that plays a central role in transcription repression. HOXB4 is a transcription factor that promotes hematopoietic stem cell self-renewal. In hematopoietic precursors induced to differentiate by the lineage-specifying transcription factor Pu.1, or by the cytokine granulocyte-colony stimulating factor (G-CSF), there is rapid repression of HOXB4 and other stem cell genes. Depletion of DNMT1 using shRNA or decitabine prevents HOXB4 repression by Pu.1 or G-CSF, and maintains hematopoietic precursor self-renewal. In contrast, depletion of DNMT1 by decitabine six hours after the differentiation stimulus, that is, after repression of HOXB4 has occurred, augments differentiation. Therefore, DNMT1 is required for the early repression of stem cell genes that occurs in response to a differentiation stimulus, providing a mechanistic explanation for the observation that decitabine can maintain or increase hematopoietic stem cell self-renewal in the presence of a differentiation stimulus. Using decitabine to deplete DNMT1 after this early repression phase does not impair progressive differentiation. PMID:20501800

  12. Acute Myeloid Leukaemia of Donor Cell Origin Developing 17 Years after Allogenic Hematopoietic Cell Transplantation for Acute Promyelocytic Leukaemia

    PubMed Central

    Jiménez, Pilar; Alvarez, J. Carlos; Garrido, Pilar; Lorente, J. Antonio; Palacios, Jorge; Ruiz-Cabello, Francisco

    2012-01-01

    Donor cell leukaemia (DCL) is a rare complication of allogenic hematopoietic cell transplantation (HCT). We report the case of a female patient with acute promyelocytic leukaemia (APL), FAB type M3, who developed acute myeloid leukaemia (AML) type M5 of donor origin 17 years after allogenic bone marrow transplantation (BMT) from her HLA-matched sister. Morphology and immunophenotyping showed differences with the initial leukaemia, and short tandem repeat (STR) analysis confirmed donor-type haematopoiesis. Interphase fluorescence in situ hybridisation (FISH) showed an 11q23 deletion. Given that the latency period between transplant and development of leukaemia was the longest reported to date, we discuss the mechanisms underlying delayed leukaemia onset. PMID:23675279

  13. PSTPIP2 deficiency in mice causes osteopenia and increased differentiation of multipotent myeloid precursors into osteoclasts

    PubMed Central

    Nacu, Viorel; Charles, Julia F.; Henne, William M.; McMahon, Harvey T.; Nandi, Sayan; Ketchum, Halley; Harris, Renee; Nakamura, Mary C.

    2012-01-01

    Missense mutations that reduce or abrogate myeloid cell expression of the F-BAR domain protein, proline serine threonine phosphatase-interacting protein 2 (PSTPIP2), lead to autoinflammatory disease involving extramedullary hematopoiesis, skin and bone lesions. However, little is known about how PSTPIP2 regulates osteoclast development. Here we examined how PSTPIP2 deficiency causes osteopenia and bone lesions, using the mouse PSTPIP2 mutations, cmo, which fails to express PSTPIP2 and Lupo, in which PSTPIP2 is dysfunctional. In both models, serum levels of the pro-osteoclastogenic factor, MIP-1α, were elevated and CSF-1 receptor (CSF-1R)–dependent production of MIP-1α by macrophages was increased. Treatment of cmo mice with a dual specificity CSF-1R and c-Kit inhibitor, PLX3397, decreased circulating MIP-1α and ameliorated the extramedullary hematopoiesis, inflammation, and osteopenia, demonstrating that aberrant myelopoiesis drives disease. Purified osteoclast precursors from PSTPIP2-deficient mice exhibit increased osteoclastogenesis in vitro and were used to probe the structural requirements for PSTPIP2 suppression of osteoclast development. PSTPIP2 tyrosine phosphorylation and a functional F-BAR domain were essential for PSTPIP2 inhibition of TRAP expression and osteoclast precursor fusion, whereas interaction with PEST-type phosphatases was only required for suppression of TRAP expression. Thus, PSTPIP2 acts as a negative feedback regulator of CSF-1R signaling to suppress inflammation and osteoclastogenesis. PMID:22923495

  14. Cytogenetic Evolution in Myeloid Neoplasms at Relapse after Allogeneic Hematopoietic Cell Transplantation: Association with Previous Chemotherapy and Effect on Survival.

    PubMed

    Ertz-Archambault, Natalie; Kosiorek, Heidi; Slack, James L; Lonzo, Melissa L; Greipp, Patricia T; Khera, Nandita; Kelemen, Katalin

    2017-02-09

    Cytogenetic evolution (CGE) in patients with myeloid neoplasms who relapsed after an allogeneic (allo) hematopoietic cell transplantation (HCT) has been evaluated by only few studies. The effect of the CGE on survival of relapsed allo-HCT recipients is not clear. The effect of previously received chemotherapy to induce CGE in this patient population has not been studied. The aims of our study are to (1) characterize the patterns of cytogenetic change in patients with myeloid neoplasms who relapsed after an allo-HCT, (2) evaluate the effect of CGE on survival, and (3) explore the association of CGE with previous chemotherapy (including the lines of salvage therapy, type of induction, and conditioning therapy). Of 49 patients with a myeloid malignancy (27 acute myeloid leukemia [AML], 19 myelodysplastic syndrome [MDS]/myeloproliferative neoplasm [MPN], and 3 chronic myelogenous leukemia) who relapsed after an allo-HCT, CGE was observed in 25 (51%), whereas 24 patients had unchanged cytogenetic findings at relapse. The CGE group carried more cytogenetic abnormalities at original diagnosis. The most frequent cytogenetic change was the acquisition of 3 or more new chromosomal abnormalities followed by acquisition of unbalanced abnormalities, aneuploidy, and emergence of apparently new clones unrelated to the original clone. The CGE cohort had higher proportion of MDS and MPN and fewer patients with de novo AML. Disease risk assessment category showed a trend to higher frequency of high-risk patients in the CGE group, though the difference was not statistically significant. Time from diagnosis to transplantation and time from transplantation to relapse were not different between the CGE and non-CGE groups. CGE and non-CGE cohorts had similar exposures to salvage therapy and to induction chemotherapy, as well as similar conditioning regimens; thus, no particular type of chemotherapy emerged as a predisposing factor to CGE. CGE was associated with significantly shortened

  15. Retrovirus-Mediated Expression of E2A-PBX1 Blocks Lymphoid Fate but Permits Retention of Myeloid Potential in Early Hematopoietic Progenitors

    PubMed Central

    Woodcroft, Mark W.; Nanan, Kyster; Thompson, Patrick; Tyryshkin, Kathrin; Smith, Steven P.; Slany, Robert K.; LeBrun, David P.

    2015-01-01

    The oncogenic transcription factor E2A-PBX1 is expressed consequent to chromosomal translocation 1;19 and is an important oncogenic driver in cases of pre-B-cell acute lymphoblastic leukemia (ALL). Elucidating the mechanism by which E2A-PBX1 induces lymphoid leukemia would be expedited by the availability of a tractable experimental model in which enforced expression of E2A-PBX1 in hematopoietic progenitors induces pre-B-cell ALL. However, hematopoietic reconstitution of irradiated mice with bone marrow infected with E2A-PBX1-expressing retroviruses consistently gives rise to myeloid, not lymphoid, leukemia. Here, we elucidate the hematopoietic consequences of forced E2A-PBX1 expression in primary murine hematopoietic progenitors. We show that introducing E2A-PBX1 into multipotent progenitors permits the retention of myeloid potential but imposes a dense barrier to lymphoid development prior to the common lymphoid progenitor stage, thus helping to explain the eventual development of myeloid, and not lymphoid, leukemia in transplanted mice. Our findings also indicate that E2A-PBX1 enforces the aberrant, persistent expression of some genes that would normally have been down-regulated in the subsequent course of hematopoietic maturation. We show that enforced expression of one such gene, Hoxa9, a proto-oncogene associated with myeloid leukemia, partially reproduces the phenotype produced by E2A-PBX1 itself. Existing evidence suggests that the 1;19 translocation event takes place in committed B-lymphoid progenitors. However, we find that retrovirus-enforced expression of E2A-PBX1 in committed pro-B-cells results in cell cycle arrest and apoptosis. Our findings indicate that the neoplastic phenotype induced by E2A-PBX1 is determined by the developmental stage of the cell into which the oncoprotein is introduced. PMID:26098938

  16. Inflammation- and tumor-induced anorexia and weight loss require MyD88 in hematopoietic/myeloid cells but not in brain endothelial or neural cells.

    PubMed

    Ruud, Johan; Wilhelms, Daniel Björk; Nilsson, Anna; Eskilsson, Anna; Tang, Yan-Juan; Ströhle, Peter; Caesar, Robert; Schwaninger, Markus; Wunderlich, Thomas; Bäckhed, Fredrik; Engblom, David; Blomqvist, Anders

    2013-05-01

    Loss of appetite is a hallmark of inflammatory diseases. The underlying mechanisms remain undefined, but it is known that myeloid differentiation primary response gene 88 (MyD88), an adaptor protein critical for Toll-like and IL-1 receptor family signaling, is involved. Here we addressed the question of determining in which cells the MyD88 signaling that results in anorexia development occurs by using chimeric mice and animals with cell-specific deletions. We found that MyD88-knockout mice, which are resistant to bacterial lipopolysaccharide (LPS)-induced anorexia, displayed anorexia when transplanted with wild-type bone marrow cells. Furthermore, mice with a targeted deletion of MyD88 in hematopoietic or myeloid cells were largely protected against LPS-induced anorexia and displayed attenuated weight loss, whereas mice with MyD88 deletion in hepatocytes or in neural cells or the cerebrovascular endothelium developed anorexia and weight loss of similar magnitude as wild-type mice. Furthermore, in a model for cancer-induced anorexia-cachexia, deletion of MyD88 in hematopoietic cells attenuated the anorexia and protected against body weight loss. These findings demonstrate that MyD88-dependent signaling within the brain is not required for eliciting inflammation-induced anorexia. Instead, we identify MyD88 signaling in hematopoietic/myeloid cells as a critical component for acute inflammatory-driven anorexia, as well as for chronic anorexia and weight loss associated with malignant disease.

  17. Generation of Valpha14 NKT cells in vitro from hematopoietic precursors residing in bone marrow and peripheral blood.

    PubMed

    Shimamura, Michio; Kobayashi, Kumi; Watanabe, Hiroko; Huang, Yi-Ying; Okamoto, Naoki; Kanie, Osamu; Goji, Hiroshi; Kobayashi, Masumi

    2004-03-01

    We previously reported the generation of Valpha14 invariant TCR+ (Valpha14i) NK1.1+ natural killer T (NKT) cells in the cytokine-activated suspension culture of murine fetal liver cells. In this study, we attempted to apply this finding to the induction of Valpha14i NKT cell differentiation in the culture of hematopoietic precursors residing in bone marrow or peripheral blood. Preferential generation of NKT cells was found in the culture of Thy-1(+)-depleted bone marrow cells in the presence of culture supernatant from Con A-stimulated spleen T cells and a combination of recombinant IL-3, IL-4, IL-7 and GM-CSF. NKT cell development from peripheral blood hematopoietic precursors was induced when they were cultured on stromal cell monolayers prepared from Thy-1(+)-depleted bone marrow or fetal liver cells, suggesting that certain environments derived from hematopoietic organs are required for the induction of NKT cells from precursors in vitro. A significant fraction of NKT cells generated in the culture were positive for staining with CD1-alpha-galactosylceramide tetramer, indicating that Valpha14i NKT cells were the major subset among the NKT cells. The present methods for obtaining NKT cells in the culture of bone marrow or peripheral blood cells are applicable to the treatment of patients suffering from diseases with numerical and functional disorders of NKT cells.

  18. Antagonizing Retinoic Acid Receptors Increases Myeloid Cell Production by Cultured Human Hematopoietic Stem Cells.

    PubMed

    Brown, Geoffrey; Marchwicka, Aleksandra; Cunningham, Alan; Toellner, Kai-Michael; Marcinkowska, Ewa

    2017-02-01

    Activities of the retinoic acid receptor (RAR)α and RARγ are important to hematopoiesis. Here, we have investigated the effects of receptor selective agonists and antagonists on the primitive human hematopoietic cell lines KG1 and NB-4 and purified normal human hematopoietic stem cells (HSCs). Agonizing RARα (by AGN195183) was effective in driving neutrophil differentiation of NB-4 cells and this agonist synergized with a low amount (10 nM) of 1α,25-dihydroxyvitamin D3 to drive monocyte differentiation of NB-4 and KG1 cells. Treatment of cultures of human HSCs (supplemented with stem cell factor ± interleukin 3) with an antagonist of all RARs (AGN194310) or of RARα (AGN196996) prolonged the lifespan of cultures, up to 55 days, and increased the production of neutrophils and monocytes. Slowing down of cell differentiation was not observed, and instead, hematopoietic stem and progenitor cells had expanded in number. Antagonism of RARγ (by AGN205728) did not affect cultures of HSCs. Studies of CV-1 and LNCaP cells transfected with RAR expression vectors and a reporter vector revealed that RARγ and RARβ are activated by sub-nM all-trans retinoic acid (EC50-0.3 nM): ~50-fold more is required for activation of RARα (EC50-16 nM). These findings further support the notion that the balance of expression and activity of RARα and RARγ are important to hematopoietic stem and progenitor cell expansion and differentiation.

  19. Busulfan and melphalan as conditioning regimen for allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia in first complete remission

    PubMed Central

    Bueno, Nadjanara Dorna; Dulley, Frederico Luiz; Saboya, Rosaura; Amigo Filho, José Ulysses; Coracin, Fabio Luiz; Chamone, Dalton de Alencar Fischer

    2011-01-01

    Background Allogeneic hematopoietic stem cell transplantation with HLA-identical donors has been established for the treatment of acute myeloid leukemia patients for over 30 years with a cure rate of 50% to 60%. Objectives To analyze the overall survival of patients and identify factors that influence the outcomes of this type of transplant in patients in 1st complete remission who received a busulfan and melphalan combination as conditioning regimen. Methods Twenty-five consecutive patients with acute myeloid leukemia were enrolled between 2003 and 2008. The median age was 34 years old (Range: 16 - 57 years). All patients received cyclosporine and methotrexate for prophylaxis against graft-versus-host disease. Median neutrophil engraftment time was 16 days (Range: 7 - 22 days) and 17 days (Range: 7 - 46 days) for platelets. Sinusoidal obstructive syndrome was observed in three patients, seven had grade II acute graft-versus-host disease and one extensive chronic graft-versus-host disease. Results The overall survival by the Kaplan-Meier method was 48% after 36 months with a plateau at 36 months after transplantation. Intensive consolidation with high-dose arabinoside resulted in an improved survival (p-value = 0.0001), as did grade II acute graft-versus-host disease (p-value = 0.0377) and mild chronic graft-versus-host disease (p-value < 0.0001). Thirteen patients died, five due to infection within 100 days of transplant, two due to hemorrhages, one to infection and graftversus-host disease and three relapses followed by renal failure (one) and infection (two). The cause of death could not be determined for two patients. Conclusion The busulfan and melphalan conditioning regimen is as good as other conditioning regimens providing an excellent survival rate. PMID:23049292

  20. Recruitment of myeloid but not endothelial precursor cells facilitates tumor re-growth after local irradiation

    PubMed Central

    Kozin, Sergey V.; Kamoun, Walid S.; Huang, Yuhui; Dawson, Michelle R.; Jain, Rakesh K.; Duda, Dan G.

    2010-01-01

    Tumor neovascularization and growth may be promoted by recruitment of bone marrow-derived cells (BMDCs), which include endothelial precursor cells (EPCs) and “vascular modulatory” myelomonocytic (CD11b+) cells. BMDCs may also drive tumor re-growth after certain chemotherapeutic and vascular disruption treatments. In this study, we evaluated the role of BMDC recruitment in breast and lung carcinoma xenograft models after local irradiation (LI). We depleted the bone marrow by including whole body irradiation (WBI) of 6Gy as part of a total tumor dose of 21Gy, and compared the growth delay with the one achieved after LI of 21Gy. In both models, including WBI induced longer tumor growth delays. Moreover, including WBI increased lung tumor control probability by LI. Exogenous delivery of BMDCs from radiation-naïve donors partially abrogated the WBI effect. Myeloid BMDCs, primarily macrophages, rapidly accumulated in tumors after LI. Intratumoral expression of SDF-1α, a chemokine that promotes tissue retention of BMDCs, was noted 2 days after LI. Conversely, treatment with an inhibitor of SDF-1α receptor CXCR4 (AMD3100) with LI significantly delayed tumor re-growth. However, when administered starting from 5 days post-LI, AMD3100 treatment was ineffective. Lastly, with restorative bone marrow transplantation of Tie2-GFP-labeled BMDC population we observed an increased number of monocytes but not EPCs in tumors that recurred following LI. Our results suggest that an increase in intratumoral SDF-1α triggered by local irradiation recruits myelomonocyte/macrophage which promote tumor re-growth. PMID:20631066

  1. Role of reduced-intensity conditioning allogeneic hematopoietic cell transplantation in older patients with de novo acute myeloid leukemia.

    PubMed

    Yamasaki, Satoshi; Hirakawa, Akihiro; Aoki, Jun; Uchida, Naoyuki; Fukuda, Takahiro; Ogawa, Hiroyasu; Ohashi, Kazuteru; Kondo, Tadakazu; Eto, Tetsuya; Kanamori, Heiwa; Okumura, Hirokazu; Iwato, Koji; Ichinohe, Tatsuo; Kanda, Junya; Onizuka, Makoto; Kuwatsuka, Yachiyo; Yanada, Masamitsu; Atsuta, Yoshiko; Takami, Akiyoshi; Yano, Shingo

    2017-02-01

    Reduced-intensity conditioning (RIC) regimens extend the therapeutic use of allogeneic hematopoietic cell transplantation (HCT) to older patients. The survival trend in 2325 patients aged >50 years presenting with de novo acute myeloid leukemia (AML) who underwent first reduced-intensity HCT (RIC-HCT) was assessed by retrospectively analyzing outcomes between 2000 and 2013. The annual number of RIC-HCTs in Japan was higher in the 2008-2013 period (n = 205/year [1229/6 years]) than in the 2000-2007 period (n = 137/year [1096/8 years]). Overall and disease-free survival were higher in the 2008-2013 period (P < 0.001) because of the improvement in transplant-related mortality (TRM). Survival regarding RIC-HCT for AML has improved over time, with an increased number of RIC-HCTs in patients with a Karnofsky performance status (KPS) ≥80. However, TRM remains high and the relapse rate has not improved over time. Multivariate analyses showed that a KPS ≥80 and complete remission at HCT were associated with less TRM and relapse, and better survival regardless of age ≥65 years. Accurate timing and prospective identification of patients at risk of TRM may aid the development of risk-adapted strategies for RIC-HCT in AML patients regardless of age.

  2. Pretransplant NPM1 MRD levels predict outcome after allogeneic hematopoietic stem cell transplantation in patients with acute myeloid leukemia.

    PubMed

    Kayser, S; Benner, A; Thiede, C; Martens, U; Huber, J; Stadtherr, P; Janssen, J W G; Röllig, C; Uppenkamp, M J; Bochtler, T; Hegenbart, U; Ehninger, G; Ho, A D; Dreger, P; Krämer, A

    2016-07-29

    The objective was to evaluate the prognostic impact of pre-transplant minimal residual disease (MRD) as determined by real-time quantitative polymerase chain reaction in 67 adult NPM1-mutated acute myeloid leukemia patients receiving allogeneic hematopoietic stem cell transplantation (HSCT). Twenty-eight of the 67 patients had a FLT3-ITD (42%). Median age at transplantation was 54.7 years, median follow-up for survival from time of allografting was 4.9 years. At transplantation, 31 patients were in first, 20 in second complete remission (CR) and 16 had refractory disease (RD). Pre-transplant NPM1 MRD levels were measured in 39 CR patients. Overall survival (OS) for patients transplanted in CR was significantly longer as compared to patients with RD (P=0.004), irrespective of whether the patients were transplanted in first or second CR (P=0.74). There was a highly significant difference in OS after allogeneic HSCT between pre-transplant MRD-positive and MRD-negative patients (estimated 5-year OS rates of 40 vs 89%; P=0.007). Multivariable analyses on time to relapse and OS revealed pre-transplant NPM1 MRD levels >1% as an independent prognostic factor for poor survival after allogeneic HSCT, whereas FLT3-ITD had no impact. Notably, outcome of patients with pre-transplant NPM1 MRD positivity >1% was as poor as that of patients transplanted with RD.

  3. Outcome of allogeneic hematopoietic stem cell transplantation in adult patients with acute myeloid leukemia harboring trisomy 8.

    PubMed

    Konuma, Takaaki; Kondo, Tadakazu; Yamashita, Takuya; Uchida, Naoyuki; Fukuda, Takahiro; Ozawa, Yukiyasu; Ohashi, Kazuteru; Ogawa, Hiroyasu; Kato, Chiaki; Takahashi, Satoshi; Kanamori, Heiwa; Eto, Tetsuya; Nakaseko, Chiaki; Kohno, Akio; Ichinohe, Tatsuo; Atsuta, Yoshiko; Takami, Akiyoshi; Yano, Shingo

    2017-03-01

    Trisomy 8 (+8) is one of the most common cytogenetic abnormalities in adult patients with acute myeloid leukemia (AML). However, the outcome of allogeneic hematopoietic stem cell transplantation (HSCT) in adult patients with AML harboring +8 remains unclear. To evaluate, the outcome and prognostic factors in patients with AML harboring +8 as the only chromosomal abnormality or in association with other abnormalities, we retrospectively analyzed the Japanese registration data of 631 adult patients with AML harboring +8 treated with allogeneic HSCT between 1990 and 2013. In total, 388 (61%) patients were not in remission at the time of HSCT. With a median follow-up of 38.5 months, the probability of overall survival and the cumulative incidence of relapse at 3 years were 40 and 34%, respectively. In the multivariate analysis, two or more additional cytogenetic abnormalities and not being in remission at the time of HSCT were significantly associated with a higher overall mortality and relapse. Nevertheless, no significant impact on the outcome was observed in cases with one cytogenetic abnormality in addition to +8. Although more than 60% of the patients received HSCT when not in remission, allogeneic HSCT offered a curative option for adult patients with AML harboring +8.

  4. Total Body Irradiation without Chemotherapy as Conditioning for an Allogeneic Hematopoietic Cell Transplantation for Adult Acute Myeloid Leukemia

    PubMed Central

    Altouri, Sultan; Allan, David; Atkins, Harry; Huebsch, Lothar; Maze, Dawn; Samant, Rajiv; Bredeson, Christopher

    2016-01-01

    Current therapies for acute myeloid leukemia (AML), failing induction, are rarely effective. We report our experience in 4 patients with AML who received 16 Gy TBI prior to allogeneic hematopoietic cell transplantation (alloHCT), between June 2010 and May 2011. Patients were 20 to 55 years of age, 2 with relapsed disease and 2 with AML failing induction. An HLA-matched graft from related or unrelated donor was infused on day 0. All but one, who received a CD34+-selected graft, received methotrexate and tacrolimus +/− antithymocyte globulin, as GVHD prophylaxis. The other patient received tacrolimus alone. Neutrophil and platelet engraftment occurred at a median of 18 and 14 days, respectively. Patients were discharged at a median of 28 days. There were no unexpected toxicities in the first 30 days. One patient had cytomegalovirus (CMV) viremia and anorexia, at two months. One patient had grade 2 acute GVHD of the skin. One patient developed chronic GVHD of the eyes, mouth, skin, joints, and lung at 4 months. Two patients died from relapse of their leukemia at days 65 and 125. Two patients remain in remission beyond day 1500. 16 Gy TBI followed by an alloHCT for AML, failing induction, is feasible and tolerable. PMID:27957357

  5. The hematopoietic transcription factor PU.1 regulates RANK gene expression in myeloid progenitors

    SciTech Connect

    Kwon, Oh Hyung; Lee, Chong-Kil; Lee, Young Ik; Paik, Sang-Gi; Lee, Hyun-Jun . E-mail: hjlee7@kribb.re.kr

    2005-09-23

    Osteoclasts are bone resorbing cells of hematopoietic origin. The hematopoietic transcription factor PU.1 is critical for osteoclastogenesis; however, the molecular mechanisms of PU.1-regulated osteoclastogenesis have not been explored. Here, we present evidence that the receptor activator of nuclear factor {kappa}B (RANK) gene that has been shown to be crucial for osteoclastogenesis is a transcriptional target of PU.1. The PU.1 {sup -/-} progenitor cells failed to express the RANK gene and reconstitution of PU.1 in these cells induced RANK expression. Treatment of the PU.1 reconstituted cells with M-CSF and RANKL further augmented the RANK gene expression. To explore the regulatory mechanism of the RANK gene expression by PU.1, we have cloned the human RANK promoter. Transient transfection assays have revealed that the 2.2-kb RANK promoter was functional in a monocyte line RAW264.7, whereas co-transfection of PU.1 transactivated the RANK promoter in HeLa cells. Taken together, these results suggest that PU.1 regulates the RANK gene transcription and this may represent one of the key roles of PU.1 in osteoclast differentiation.

  6. Evaluation of expression profiles of hematopoietic stem cell, endothelial cell, and myeloid cell antigens in spontaneous and chemically induced hemangiosarcomas and hemangiomas in mice.

    PubMed

    Kakiuchi-Kiyota, Satoko; Crabbs, Torrie A; Arnold, Lora L; Pennington, Karen L; Cook, Jon C; Malarkey, David E; Cohen, Samuel M

    2013-07-01

    It is unclear whether the process of spontaneous and chemically induced hemangiosarcoma and hemangioma formation in mice involves the transformation of differentiated endothelial cells (ECs) or recruitment of multipotential bone marrow-derived hematopoietic stem cells or endothelial progenitor cells (EPCs), which show some degree of endothelial differentiation. In the present study, immunohistochemical staining for hematopoietic stem cell markers (CD45 and CD34), EC markers (vascular endothelial growth factor receptor 2 [VEGFR2], CD31, and factor VIII-related antigen), and a myeloid lineage marker (CD14) was employed to better define the origin of hemangiosarcomas and hemangiomas in mice. Staining was negative for CD45, factor VIII-related antigen, and CD14 and positive for CD34, VEGFR2, and CD31, indicating that mouse hemangiosarcomas and hemangiomas are composed of cells derived from EPCs expressing CD34, VEGFR2, and CD31 but not factor VIII-related antigen. The lack of CD45 expression suggests that mouse vascular tumors may arise from EPCs that are at a stage later than hematopoietic stem cells. Since factor VIII-related antigen expression is known to occur later than CD31 expression in EPCs, our observations may indicate that these tumor cells are arrested at a stage prior to complete differentiation.  In addition, myeloid lineage cells do not appear to contribute to hemangiosarcoma and hemangioma formation in mice.

  7. Myeloid derived suppressor cells in transplantation.

    PubMed

    Lees, Jason R; Azimzadeh, Agnes M; Bromberg, Jonathan S

    2011-10-01

    Myeloid derived suppressor cells (MDSC) are a heterogeneous population of hematopoietic derived cell precursors that can suppress immune responses in a variety of inflammatory settings. Here we review recent studies detailing expansion of phenotypically and functionally disparate MDSC. Findings related to MDSC accumulation, activation, and mechanisms utilized in immune suppression are presented. Further, we discuss recent reports that suggest MDSC are expanded during transplantation and that modulation of MDSC can participate in preventing graft rejection.

  8. Caffeine affects the biological responses of human hematopoietic cells of myeloid lineage via downregulation of the mTOR pathway and xanthine oxidase activity

    PubMed Central

    Abooali, Maryam; Yasinska, Inna M.; Casely-Hayford, Maxwell A.; Berger, Steffen M.; Fasler-Kan, Elizaveta; Sumbayev, Vadim V.

    2015-01-01

    Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells. PMID:26384306

  9. Caffeine affects the biological responses of human hematopoietic cells of myeloid lineage via downregulation of the mTOR pathway and xanthine oxidase activity.

    PubMed

    Gibbs, Bernhard F; Gonçalves Silva, Isabel; Prokhorov, Alexandr; Abooali, Maryam; Yasinska, Inna M; Casely-Hayford, Maxwell A; Berger, Steffen M; Fasler-Kan, Elizaveta; Sumbayev, Vadim V

    2015-10-06

    Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells.

  10. New experimental and theoretical investigations of hematopoietic stem cells and chronic myeloid leukemia

    PubMed Central

    Roeder, Ingo; d’Inverno, Mark

    2013-01-01

    We report on a focused workshop of The Leukemia and Lymphoma Society that was held at Goldsmiths, University of London in 2008. During this workshop we discussed new clinical and experimental data in chronic myeloid leukemia (CML) research, particularly focusing on the validity (or otherwise) of corresponding mathematical models and simulations. We were specifically interested in whether the models could shed light on any of the fundamental mechanisms underlying this disease. Moreover, we were aiming to form a new community of clinicians and modelers looking at this disease and to define a common language and theoretical framework within which collaboration could flourish. The workshop showed the role that models can play, not just in trying to fit to existing data or predicting what individual mechanisms or system behaviors might occur, but also in challenging the orthodoxy of the concept of a stem cell and concepts such as “differentiation” and “determination”. For years the prevailing view of a stem cell has been an entity (object) with a fixed set of behaviors and with a pre-determined fate. New perspectives in modeling, coupled with the new data that are being accumulated in the genesis of CML and its treatment, questions these assumptions. We propose how we can reach a consensus about a functional view of stem cells in a more continuous and flexible way and how, within this context, we can investigate the significance of modeling results and how they might impact on our interpretation of experimental observations and the development of new clinical strategies. This paper reports on the workshop and the state-of-the-art models and data from experimental and clinical trials, and sets out a roadmap for more interdisciplinary collaboration between modelers, wet-lab experimentalists, and clinicians interested in CML. It is our strong belief that a more integrated and coherent interdisciplinary approach will further advance the treatment of CML in future

  11. Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors

    PubMed Central

    Green, Danielle E.; Rubin, Clinton T.

    2014-01-01

    The rising levels of radiation exposure, specifically for medical treatments and accidental exposures, have added great concern for the long term risks of bone fractures. Both the bone marrow and bone architecture are devastated following radiation exposure. Even sub-lethal doses cause a deficit to the bone marrow microenvironment, including a decline in hematopoietic cells, and this deficit occurs in a dose dependent fashion. Certain cell phenotypes though are more susceptible to radiation damage, with mesenchymal stem cells being more resilient than the hematopoietic stem cells. The decline in total bone marrow hematopoietic cells is accompanied with elevated adipocytes into the marrow cavity, thereby inhibiting hematopoiesis and recovery of the bone marrow microenvironment. Poor bone marrow is also associated with a decline in bone architectural quality. Therefore, the ability to maintain the bone marrow microenvironment would hinder much of the trabecular bone loss caused by radiation exposure, ultimately decreasing some comorbidities in patients exposed to radiation. PMID:24607941

  12. EP300-ZNF384 fusion gene product up-regulates GATA3 gene expression and induces hematopoietic stem cell gene expression signature in B-cell precursor acute lymphoblastic leukemia cells.

    PubMed

    Yaguchi, Akinori; Ishibashi, Takeshi; Terada, Kazuki; Ueno-Yokohata, Hitomi; Saito, Yuya; Fujimura, Junya; Shimizu, Toshiaki; Ohki, Kentaro; Manabe, Atsushi; Kiyokawa, Nobutaka

    2017-04-04

    ZNF384-related fusion genes are associated with a distinct subgroup of B-cell precursor acute lymphoblastic leukemias in childhood, with a frequency of approximately 3-4%. We previously identified a novel EP300-ZNF384 fusion gene. Patients with the ZNF384-related fusion gene exhibit a hematopoietic stem cell (HSC) gene expression signature and characteristic immunophenotype with negative or low expression of CD10 and aberrant expression of myeloid antigens, such as CD33 and CD13. However, the molecular basis of this pathogenesis remains completely unknown. In the present study, we examined the biological effects of EP300-ZNF384 expression induced by retrovirus-mediated gene transduction in an REH B-cell precursor acute lymphoblastic leukemia cell line, and observed the acquisition of the HSC gene expression signature and an up-regulation of GATA3 gene expression, as assessed by microarray analysis. In contrast, the gene expression profile induced by wild-type ZNF384 in REH cells was significantly different from that by EP300-ZNF384 expression. Together with the results of reporter assays, which revealed the enhancement of GATA3-promoter activity by EP300-ZNF384 expression, these findings suggest that EP300-ZNF384 mediates GATA3 gene expression and may be involved in the acquisition of the HSC gene expression signature and characteristic immunophenotype in B-cell precursor acute lymphoblastic leukemia cells.

  13. CBFB and MYH11 in inv(16)(p13q22) of Acute Myeloid Leukemia Display Close Spatial Proximity in Interphase Nuclei of Human Hematopoietic Stem Cells

    PubMed Central

    Weckerle, Allison B.; Santra, Madhumita; Ng, Maggie C.Y.; Koty, Patrick P.; Wang, Yuh-Hwa

    2013-01-01

    To gain a better understanding of the mechanism of chromosomal translocations in cancer, we investigated the spatial proximity between CBFB and MYH11 genes involved in inv(16)(p13q22) found in acute myeloid leukemia patients. Previous studies have demonstrated a role for spatial genome organization in the formation of tumorigenic abnormalities. The non-random localization of chromosomes and, more specifically, of genes appears to play a role in the mechanism of chromosomal translocations. Here, two-color fluorescence in situ hybridization and confocal microscopy were used to measure the interphase distance between CBFB and MYH11 in hematopoietic stem cells, where inv(16)(p13q22) is believed to occur, leading to leukemia development. The measured distances in hematopoietic stem cells were compared to mesenchymal stem cells, peripheral blood lymphocytes and fibroblasts, as spatial genome organization is determined to be cell-type specific. Results indicate that CBFB and MYH11 are significantly closer in hematopoietic stem cells compared to all other cell types examined. Furthermore, the CBFB-MYH11 distance is significantly reduced compared to CBFB and a control locus in hematopoietic stem cells, although separation between CBFB and the control is ~70% of that between CBFB and MYH11 on metaphase chromosomes. Hematopoietic stem cells were also treated with fragile site-inducing chemicals since both genes contain translocation breakpoints within these regions. However, treatment with fragile site-inducing chemicals did not significantly affect the interphase distance. Consistent with previous studies, our results suggest that gene proximity may play a role in the formation of cancer-causing rearrangements, providing insight into the mechanism of chromosomal abnormalities in human tumors. PMID:21638519

  14. Identification of key factors regulating self-renewal and differentiation in EML hematopoietic precursor cells by RNA-sequencing analysis.

    PubMed

    Zong, Shan; Deng, Shuyun; Chen, Kenian; Wu, Jia Qian

    2014-11-11

    Hematopoietic stem cells (HSCs) are used clinically for transplantation treatment to rebuild a patient's hematopoietic system in many diseases such as leukemia and lymphoma. Elucidating the mechanisms controlling HSCs self-renewal and differentiation is important for application of HSCs for research and clinical uses. However, it is not possible to obtain large quantity of HSCs due to their inability to proliferate in vitro. To overcome this hurdle, we used a mouse bone marrow derived cell line, the EML (Erythroid, Myeloid, and Lymphocytic) cell line, as a model system for this study. RNA-sequencing (RNA-Seq) has been increasingly used to replace microarray for gene expression studies. We report here a detailed method of using RNA-Seq technology to investigate the potential key factors in regulation of EML cell self-renewal and differentiation. The protocol provided in this paper is divided into three parts. The first part explains how to culture EML cells and separate Lin-CD34+ and Lin-CD34- cells. The second part of the protocol offers detailed procedures for total RNA preparation and the subsequent library construction for high-throughput sequencing. The last part describes the method for RNA-Seq data analysis and explains how to use the data to identify differentially expressed transcription factors between Lin-CD34+ and Lin-CD34- cells. The most significantly differentially expressed transcription factors were identified to be the potential key regulators controlling EML cell self-renewal and differentiation. In the discussion section of this paper, we highlight the key steps for successful performance of this experiment. In summary, this paper offers a method of using RNA-Seq technology to identify potential regulators of self-renewal and differentiation in EML cells. The key factors identified are subjected to downstream functional analysis in vitro and in vivo.

  15. In vitro activation of the rhesus macaque myeloid alpha-defensin precursor proRMAD-4 by neutrophil serine proteinases.

    PubMed

    Kamdar, Karishma; Maemoto, Atsuo; Qu, Xiaoqing; Young, Steven K; Ouellette, André J

    2008-11-21

    Alpha-defensins are mammalian antimicrobial peptides expressed mainly by cells of myeloid lineage or small intestinal Paneth cells. The peptides are converted from inactive 8.5-kDa precursors to membrane-disruptive forms by post-translational proteolytic events. Because rhesus myeloid pro-alpha-defensin-4 (proRMAD-4((20-94))) lacks bactericidal peptide activity in vitro, we tested whether neutrophil azurophil granule serine proteinases, human neutrophil elastase (NE), cathepsin G (CG), and proteinase-3 (P3) have in vitro convertase activity. Only NE cleaved proRMAD-4((20-94)) at the native RMAD-4 N terminus to produce fully processed, bactericidal RMAD-4((62-94)). The final CG cleavage product was RMAD-4((55-94)), and P3 produced both RMAD-4((55-94)) and RMAD-4(57-94). Nevertheless, NE, CG, and P3 digests of proRMAD4 and purified RMAD-4((62-94)), RMAD-4((55-94)), and RMAD-4(57-94) peptides had equivalent in vitro bactericidal activities. Bactericidal peptide activity assays of proRMAD-4((20-94)) variants containing complete charge-neutralizing D/E to N/Q or D/E to A substitutions showed that (DE/NQ)-proRMAD-4((20-94)) and (DE/A)-proRMAD-4((20-94)) were as active as mature RMAD-4((62-94)). Therefore, proregion Asp and Glu side chains inhibit the RMAD-4 component of full-length proRMAD-4((20-94)), perhaps by a combination of charge-neutralizing and hydrogen-bonding interactions. Although native RMAD-4((62-94)) resists NE, CG, and P3 proteolysis completely, RMAD-4((62-94)) variants with disulfide pairing disruptions or lacking disulfide bonds were degraded extensively, evidence that the disulfide array protects the alpha-defensin moiety from degradation by the myeloid converting enzymes. These in vitro analyses support the conclusion that rhesus macaque myeloid pro-alpha-defensins are converted to active forms by serine proteinases that co-localize in azurophil granules.

  16. Repercussion of Megakaryocyte-Specific Gata1 Loss on Megakaryopoiesis and the Hematopoietic Precursor Compartment

    PubMed Central

    Meinders, Marjolein; Hoogenboezem, Mark; Scheenstra, Maaike R.; De Cuyper, Iris M.; Papadopoulos, Petros; Németh, Tamás; Mócsai, Attila; van den Berg, Timo K.; Kuijpers, Taco W.

    2016-01-01

    During hematopoiesis, transcriptional programs are essential for the commitment and differentiation of progenitors into the different blood lineages. GATA1 is a transcription factor expressed in several hematopoietic lineages and essential for proper erythropoiesis and megakaryopoiesis. Megakaryocyte-specific genes, such as GP1BA, are known to be directly regulated by GATA1. Mutations in GATA1 can lead to dyserythropoietic anemia and pseudo gray-platelet syndrome. Selective loss of Gata1 expression in adult mice results in macrothrombocytopenia with platelet dysfunction, characterized by an excess of immature megakaryocytes. To specifically analyze the impact of Gata1 loss in mature committed megakaryocytes, we generated Gata1-Lox|Pf4-Cre mice (Gata1cKOMK). Consistent with previous findings, Gata1cKOMK mice are macrothrombocytopenic with platelet dysfunction. Supporting this notion we demonstrate that Gata1 regulates directly the transcription of Syk, a tyrosine kinase that functions downstream of Clec2 and GPVI receptors in megakaryocytes and platelets. Furthermore, we show that Gata1cKOMK mice display an additional aberrant megakaryocyte differentiation stage. Interestingly, these mice present a misbalance of the multipotent progenitor compartment and the erythroid lineage, which translates into compensatory stress erythropoiesis and splenomegaly. Despite the severe thrombocytopenia, Gata1cKOMK mice display a mild reduction of TPO plasma levels, and Gata1cKOMK megakaryocytes show a mild increase in Pf4 mRNA levels; such a misbalance might be behind the general hematopoietic defects observed, affecting locally normal TPO and Pf4 levels at hematopoietic stem cell niches. PMID:27152938

  17. In Vivo Deletion of the Cebpa +37 kb Enhancer Markedly Reduces Cebpa mRNA in Myeloid Progenitors but Not in Non-Hematopoietic Tissues to Impair Granulopoiesis

    PubMed Central

    Guo, Hong; Cooper, Stacy; Friedman, Alan D.

    2016-01-01

    The murine Cebpa gene contains a +37 kb, evolutionarily conserved 440 bp enhancer that directs high-level expression to myeloid progenitors in transgenic mice. The enhancer is bound and activated by Runx1, Scl, GATA2, C/EBPα, c-Myb, Pu.1, and additional Ets factors in myeloid cells. CRISPR/Cas9-mediated replacement of the wild-type enhancer with a variant mutant in its seven Ets sites leads to 20-fold reduction of Cebpa mRNA in the 32Dcl3 myeloid cell line. To determine the effect of deleting the enhancer in vivo, we now characterize C57BL/6 mice in which loxP sites flank a 688 bp DNA segment containing the enhancer. CMV-Cre mediated germline deletion resulted in diminution of the expected number of viable Enh(f/f);CMV-Cre offspring, with 28-fold reduction in marrow Cebpa mRNA but normal levels in liver, lung, adipose, intestine, muscle, and kidney. Cre-transduction of lineage-negative marrow cells in vitro reduced Cebpa mRNA 12-fold, with impairment of granulocytic maturation, morphologic blast accumulation, and IL-3 dependent myeloid colony replating for >12 generations. Exposure of Enh(f/f);Mx1-Cre mice to pIpC led to 14-fold reduction of Cebpa mRNA in GMP or CMP, 30-fold reduction in LSK, and <2-fold reduction in the LSK/SLAM subset. FACS analysis of marrow from these mice revealed 10-fold reduced neutrophils, 3-fold decreased GMP, and 3-fold increased LSK cells. Progenitor cell cycle progression was mildly impaired. Granulocyte and B lymphoid colony forming units were reduced while monocytic and erythroid colonies were increased, with reduced Pu.1 and Gfi1 and increased Egr1 and Klf4 in GMP. Finally, competitive transplantation indicated preservation of functional long-term hematopoietic stem cells upon enhancer deletion and confirmed marrow-intrinsic impairment of granulopoiesis and B cell generation with LSK and monocyte lineage expansion. These findings demonstrate a critical role for the +37 kb Cebpa enhancer for hematopoietic-specific Cebpa expression

  18. Novel Use of All-trans-Retinoic Acid in a Model of Lipopolysaccharide-immunosuppression to Decrease the Generation of Myeloid-derived Suppressor Cells by Reducing the Proliferation of CD34+ Precursor Cells.

    PubMed

    Martire-Greco, Daiana; Rodriguez-Rodrigues, Nahuel; Castillo, Luis A; Vecchione, María Belén; de Campos-Nebel, Marcelo; Moreno, Marlina Córdoba; Meiss, Roberto; Vermeulen, Mónica; Landoni, Veronica I; Fernandez, Gabriela C

    2016-11-25

    All-trans-Retinoic Acid (ATRA) is a derivative of vitamin A with anti-proliferative properties. Endotoxin shock and subsequent immunosuppression (IS) by lipopolysaccharide (LPS) stimulates myelopoiesis with expansion of myeloid-derived suppressor cells (MDSC). Since we have previously shown that ATRA reverses the IS state by decreasing functional MDSC, our aim was to investigate if ATRA was able to modulate MDSC generation by regulating myelopoiesis in murine hematopoietic organs. We found that ATRA administration in vivo and in vitro decreased the number of CD34+ precursor cells that were increased in IS mice. When we studied the cellular mechanisms involved, we did not find any differences in apoptosis of CD34+ precursors or in the differentiation of these cells to their mature counterparts. Surprisingly, ATRA decreased precursor proliferation, in vitro and in vivo, as assessed by a reduction in the size and number of colony forming units (CFU) generated from CD34+ cells and by a decreased incorporation of H-thymidine. Moreover, ATRA administration to IS mice decreased the number of MDSC in the spleen, with a restoration of T lymphocyte proliferation and a restitution of the histological architecture. Our results indicate, for the first time, a new use of ATRA to abolish LPS-induced myelopoiesis, affecting the proliferation of precursor cells, and in consequence, decreasing MDSC generation, having a direct impact on the improvement of immune competence. Administration of ATRA could overcome the immunosuppressive state generated by sepsis that often leads to opportunistic life-threatening infections. Therefore, ATRA could be considered a complementary treatment to enhance immune responses.

  19. Characteristics of Myeloid Differentiation and Maturation Pathway Derived from Human Hematopoietic Stem Cells Exposed to Different Linear Energy Transfer Radiation Types

    PubMed Central

    Monzen, Satoru; Yoshino, Hironori; Kasai-Eguchi, Kiyomi; Kashiwakura, Ikuo

    2013-01-01

    Exposure of hematopoietic stem/progenitor cells (HSPCs) to ionizing radiation causes a marked suppression of mature functional blood cell production in a linear energy transfer (LET)- and/or dose-dependent manner. However, little information about LET effects on the proliferation and differentiation of HSPCs has been reported. With the aim of characterizing the effects of different types of LET radiations on human myeloid hematopoiesis, in vitro hematopoiesis in Human CD34+ cells exposed to carbon-ion beams or X-rays was compared. Highly purified CD34+ cells exposed to each form of radiation were plated onto semi-solid culture for a myeloid progenitor assay. The surviving fractions of total myeloid progenitors, colony-forming cells (CFC), exposed to carbon-ion beams were significantly lower than of those exposed to X-rays, indicating that CFCs are more sensitive to carbon-ion beams (D0 = 0.65) than to X-rays (D0 = 1.07). Similar sensitivities were observed in granulocyte-macrophage and erythroid progenitors, respectively. However, the sensitivities of mixed-type progenitors to both radiation types were similar. In liquid culture for 14 days, no significant difference in total numbers of mononuclear cells was observed between non-irradiated control culture and cells exposed to 0.5 Gy X-rays, whereas 0.5 Gy carbon-ion beams suppressed cell proliferation to 4.9% of the control, a level similar to that for cells exposed to 1.5 Gy X-rays. Cell surface antigens associated with terminal maturation, such as CD13, CD14, and CD15, on harvest from the culture of X-ray-exposed cells were almost the same as those from the non-irradiated control culture. X-rays increased the CD235a+ erythroid-related fraction, whereas carbon-ion beams increased the CD34+CD38− primitive cell fraction and the CD13+CD14+/−CD15− fraction. These results suggest that carbon-ion beams inflict severe damage on the clonal growth of myeloid HSPCs, although the intensity of cell surface

  20. Characteristics of myeloid differentiation and maturation pathway derived from human hematopoietic stem cells exposed to different linear energy transfer radiation types.

    PubMed

    Monzen, Satoru; Yoshino, Hironori; Kasai-Eguchi, Kiyomi; Kashiwakura, Ikuo

    2013-01-01

    Exposure of hematopoietic stem/progenitor cells (HSPCs) to ionizing radiation causes a marked suppression of mature functional blood cell production in a linear energy transfer (LET)- and/or dose-dependent manner. However, little information about LET effects on the proliferation and differentiation of HSPCs has been reported. With the aim of characterizing the effects of different types of LET radiations on human myeloid hematopoiesis, in vitro hematopoiesis in Human CD34(+) cells exposed to carbon-ion beams or X-rays was compared. Highly purified CD34(+) cells exposed to each form of radiation were plated onto semi-solid culture for a myeloid progenitor assay. The surviving fractions of total myeloid progenitors, colony-forming cells (CFC), exposed to carbon-ion beams were significantly lower than of those exposed to X-rays, indicating that CFCs are more sensitive to carbon-ion beams (D(0) = 0.65) than to X-rays (D(0) = 1.07). Similar sensitivities were observed in granulocyte-macrophage and erythroid progenitors, respectively. However, the sensitivities of mixed-type progenitors to both radiation types were similar. In liquid culture for 14 days, no significant difference in total numbers of mononuclear cells was observed between non-irradiated control culture and cells exposed to 0.5 Gy X-rays, whereas 0.5 Gy carbon-ion beams suppressed cell proliferation to 4.9% of the control, a level similar to that for cells exposed to 1.5 Gy X-rays. Cell surface antigens associated with terminal maturation, such as CD13, CD14, and CD15, on harvest from the culture of X-ray-exposed cells were almost the same as those from the non-irradiated control culture. X-rays increased the CD235a(+) erythroid-related fraction, whereas carbon-ion beams increased the CD34(+)CD38(-) primitive cell fraction and the CD13(+)CD14(+/-)CD15(-) fraction. These results suggest that carbon-ion beams inflict severe damage on the clonal growth of myeloid HSPCs, although the intensity of cell surface

  1. Of birds and mice: hematopoietic stem cell development.

    PubMed

    Godin, Isabelle; Cumano, Ana

    2005-01-01

    For many years it has been assumed that the ontogeny of the mammalian hematopoietic system involves sequential transfers of hematopoietic stem cells (HSCs) generated in the yolk sac blood islands, to successive hematopoietic organs as these become active in the embryo (fetal liver, thymus, spleen and eventually bone marrow). Very little was known about early events related to hematopoiesis that could take place during the 4.5 day gap separating the appearance of the yolk sac blood islands and the stage of a fully active fetal liver. Experiments performed in birds documented that the yolk sac only produce erythro-myeloid precursors that become extinct after the emergence of a second wave of intra-embryonic HSCs from the region neighbouring the dorsal aorta. The experimental approaches undertaken over the last ten years in the murine model, which are reviewed here, led to the conclusion that the rules governing avian hematopoietic development basically apply to higher vertebrates.

  2. Evaluation of hematopoietic cells and myeloid/erythroid ratio in the bone marrow of the pheasant (Phasianus colchicus).

    PubMed

    Tadjalli, Mina; Nazifi, Saeed; Haghjoo, Rahil

    2013-01-01

    In order to study the normal hematopoiesis, cellular components and myeloid/erythroid (M/E) ratio in the bone marrow of the pheasant (Phasianus colchicus), bone marrow samples were collected from the proximal tibiotarsus bone of 16 clinically healthy adult pheasant. The bone marrow smears were stained using the Giemsa stain. The results indicated that the development and formation of blood cells in the bone marrow of pheasant were similar to other birds, whereas the morphology of the cells was similar to chickens, ducks, quail, and black-head gull. The mean M/E ratio was 1.24, the mean erythroid percentage was 42.24, the mean myeloid percentage was 52.62, and the mean percentage of all other cells percentage was 5.38. There was no significant difference in any of the cellular composition between male and female.

  3. CD79a is heterogeneously expressed in neoplastic and normal myeloid precursors and megakaryocytes in an antibody clone-dependent manner.

    PubMed

    Bhargava, Parul; Kallakury, Bhaskar V S; Ross, Jeffrey S; Azumi, Norio; Bagg, Adam

    2007-08-01

    CD79a, a component of the B-cell antigen receptor complex, can also be expressed in certain non-B-cell malignancies. The reported frequency of CD79a expression in acute myeloid leukemias (AML) ranges from 0% to 90%. We evaluated 39 bone marrow biopsy specimens (29 AML and 10 normal cases) using 5 different commercially available anti-CD79a monoclonal antibody (MoAb) clones. Of 7 acute promyelocytic leukemia (APL) cases, 6 (86%) stained for CD79a with clones HM47/A9 (Novocastra, Newcastle Upon Tyne, England) and HM57 (DAKO, Carpinteria, CA) but were negative with clones 11E3 (Novocastra), and JCB117 (DAKO). Half of 6 acute megakaryoblastic leukemia (AMKL) cases and normal megakaryocytes in 14 (67%) of 21 cases were immunoreactive using clone 11D10 (Novocastra). Approximately one third of non-APL/non-AMKL AML and myeloid precursors in normal marrow specimens stained with clones HM57 and 11D10. This heterogeneity of CD79a expression in AML, megakaryocytes, and myeloid precursors is MoAb clone-dependent, likely owing to different epitope detection, and may be of diagnostic usefulness.

  4. Myeloid Precursors in the Bone Marrow of Mice after a 30-Day Space Mission on a Bion-M1 Biosatellite.

    PubMed

    Sotnezova, E V; Markina, E A; Andreeva, E R; Buravkova, L B

    2017-02-01

    The content of myeloid stem CFU in bone marrow karyocytes from the tibial bone of C57Bl/6 mice was evaluated after a 30-day Bion-M1 pace flight/ground control experiment and subsequent 7-day recovery period. After the space flight, we observed a significant decrease in the number of erythroid progenitors in the bone marrow, including common myeloid precursor - granulocyte, erythrocyte, monocyte/macrophage, megakaryocyte CFU. After 7-day readaptation, CFU level in flight animals did not recover completely. In the ground control, the count of erythroid burst-forming units was higher than in vivarium animals. Comparison of the changes observed in fight and ground experiments demonstrated effects associated space flight factors and manifesting in suppression of the bone marrow erythropoiesis.

  5. Extracellular ATP induces apoptosis through P2X7R activation in acute myeloid leukemia cells but not in normal hematopoietic stem cells

    PubMed Central

    Salvestrini, Valentina; Orecchioni, Stefania; Talarico, Giovanna; Reggiani, Francesca; Mazzetti, Cristina; Bertolini, Francesco; Orioli, Elisa; Adinolfi, Elena; Virgilio, Francesco Di; Pezzi, Annalisa; Cavo, Michele

    2017-01-01

    Recent studies have shown that high ATP levels exhibit direct cytotoxic effects on several cancer cells types. Among the receptors engaged by ATP, P2×7R is the most consistently expressed by tumors. P2×7R is an ATP-gated ion channel that could drive the opening of a non-selective pore, triggering cell-death signal. We previously demonstrated that acute myeloid leukemia (AML) cells express high level of P2×7R. Here, we show that P2×7R activation with high dose ATP induces AML blast cells apoptosis. Moreover, P2×7R is also expressed on leukemic stem/progenitor cells (LSCs) which are sensitive to ATP-mediated cytotoxicity. Conversely, this cytotoxic effect was not observed on normal hematopoietic stem/progenitor cells (HSCs). Notably, the antileukemic activity of ATP was also observed in presence of bone marrow stromal cells and its addition to the culture medium enhanced cytosine arabinoside cytotoxicity despite stroma-induced chemoresistance. Xenotransplant experiments confirmed ATP antineoplastic activity in vivo. Overall, our results demonstrate that P2×7R stimulation by ATP induced a therapeutic response in AML at the LSC level while the normal stem cell compartment was not affected. These results provide evidence that ATP would be promising for developing innovative therapy for AML. PMID:27980223

  6. Hematopoietic stem cells and progenitors of chronic myeloid leukemia express leukemia-associated antigens: implications for the graft-versus-leukemia effect and peptide vaccine-based immunotherapy

    PubMed Central

    Yong, Agnes S. M.; Keyvanfar, Keyvan; Eniafe, Rhoda; Savani, Bipin N.; Rezvani, Katayoun; Sloand, Elaine M.; Goldman, John M.; Barrett, A. John

    2008-01-01

    The cure of chronic myeloid leukemia (CML) patients following allogeneic stem cell transplantation (SCT) is attributed to graft-versus-leukemia (GVL) effects targeting alloantigens and/or leukemia-associated antigens (LAA) on leukemia cells. To assess the potential of LAA-peptide vaccines in eliminating leukemia in CML patients, we measured WT1, PR3, ELA2 and PRAME expression in CD34+ progenitor subpopulations in CML patients and compared them with minor histocompatibility antigens (mHAgs) HA1 and SMCY. All CD34+ subpopulations expressed similar levels of mHAgs irrespective of disease phase, suggesting that in the SCT setting, mHAgs are the best target for GVL. Furthermore, WT1 was consistently overexpressed in advanced phase (AdP) CML in all CD34+ subpopulations, and mature progenitors of chronic phase (CP) CML compared to healthy individuals. PRAME overexpression was limited to more mature AdP-CML progenitors only. Conversely, only CP-CML progenitors had PR3 overexpression, suggesting that PR1-peptide vaccines are only appropriate in CP-CML. Surface expression of WT1 protein in the most primitive hematopoietic stem cells in AdP-CML suggest that they could be targets for WT1 peptide-based vaccines, which in combination with PRAME, could additionally improve targeting differentiated progeny, and benefit patients responding suboptimally to tyrosine kinase inhibitors, or enhance GVL effects in SCT patients. PMID:18548092

  7. Role of mTORC1-S6K1 signaling pathway in regulation of hematopoietic stem cell and acute myeloid leukemia.

    PubMed

    Ghosh, Joydeep; Kapur, Reuben

    2017-03-22

    Dysregulation of the mechanistic target of rapamycin complex 1 (mTORC1)-p70 ribosomal protein kinase 1 (S6K1) signaling pathway occurs frequently in acute myeloid leukemia (AML) patients. This pathway also plays a critical role in maintaining normal cellular processes. Given the importance of leukemia stem cells (LSC) in the development of minimal residual disease (MRD), it is critical to use therapeutic interventions that target LSC population to prevent disease relapse. mTORC1-S6K1 pathway has been identified as an important regulator of hematopoietic stem cell (HSC) and LSC functions. Both HSC and LSC functions require regulation of key cellular processes including proliferation, metabolism and autophagy, which are regulated by mTORC1 pathway. Despite mTORC1-S6K1 pathway being a critical regulator of AML initiation and progression, inhibitors of this pathway alone have yielded mixed results in clinical studies. Recent studies have identified strategies to develop new mTORC1-S6K1 inhibitors like RapaLink-1, which could circumvent the drug resistance observed in AML cells as well as in LSC. In this article, we review recent advances made in identifying the role of different components of this pathway in the regulation of HSC and LSC along with possible therapeutic approaches.

  8. High rate of hematological responses to sorafenib in FLT3-ITD acute myeloid leukemia relapsed after allogeneic hematopoietic stem cell transplantation.

    PubMed

    De Freitas, Tiago; Marktel, Sarah; Piemontese, Simona; Carrabba, Matteo G; Tresoldi, Cristina; Messina, Carlo; Lupo Stanghellini, Maria Teresa; Assanelli, Andrea; Corti, Consuelo; Bernardi, Massimo; Peccatori, Jacopo; Vago, Luca; Ciceri, Fabio

    2016-06-01

    Relapse represents the most significant cause of failure of allogeneic hematopoietic stem cell transplantation (HSCT) for FLT3-ITD-positive acute myeloid leukemia (AML), and available therapies are largely unsatisfactory. In this study, we retrospectively collected data on the off-label use of the tyrosine kinase inhibitor sorafenib, either alone or in association with hypomethylating agents and adoptive immunotherapy, in 13 patients with post-transplantation FLT3-ITD-positive AML relapses. Hematological response was documented in 12 of 13 patients (92%), and five of 13 (38%) achieved complete bone marrow remission. Treatment was overall manageable in the outpatient setting, although all patients experienced significant adverse events, especially severe cytopenias (requiring a donor stem cell boost in five patients) and typical hand-foot syndrome. None of the patients developed graft-vs.-host disease following sorafenib alone, whereas this was frequently observed when this was given in association with donor T-cell infusions. Six patients are alive and in remission at the last follow-up, and four could be bridged to a second allogeneic HSCT, configuring a 65 ± 14% overall survival at 100 d from relapse. Taken together, our data suggest that sorafenib might represent a valid treatment option for patients with FLT3-ITD-positive post-transplantation relapses, manageable also in combination with other therapeutic strategies.

  9. HIF-2α protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress.

    PubMed

    Rouault-Pierre, Kevin; Lopez-Onieva, Lourdes; Foster, Katie; Anjos-Afonso, Fernando; Lamrissi-Garcia, Isabelle; Serrano-Sanchez, Martin; Mitter, Richard; Ivanovic, Zoran; de Verneuil, Hubert; Gribben, John; Taussig, David; Rezvani, Hamid Reza; Mazurier, Frédéric; Bonnet, Dominique

    2013-11-07

    Hematopoietic stem and progenitor cells (HSPCs) are exposed to low levels of oxygen in the bone marrow niche, and hypoxia-inducible factors (HIFs) are the main regulators of cellular responses to oxygen variation. Recent studies using conditional knockout mouse models have unveiled a major role for HIF-1α in the maintenance of murine HSCs; however, the role of HIF-2α is still unclear. Here, we show that knockdown of HIF-2α, and to a much lesser extent HIF-1α, impedes the long-term repopulating ability of human CD34(+) umbilical cord blood cells. HIF-2α-deficient HSPCs display increased production of reactive oxygen species (ROS), which subsequently stimulates endoplasmic reticulum (ER) stress and triggers apoptosis by activation of the unfolded-protein-response (UPR) pathway. HIF-2α deregulation also significantly decreased engraftment ability of human acute myeloid leukemia (AML) cells. Overall, our data demonstrate a key role for HIF-2α in the maintenance of human HSPCs and in the survival of primary AML cells.

  10. Transcription factor complex formation and chromatin fine structure alterations at the murine c-fms (CSF-1 receptor) locus during maturation of myeloid precursor cells

    PubMed Central

    Tagoh, Hiromi; Himes, Roy; Clarke, Deborah; Leenen, Pieter J.M.; Riggs, Arthur D.; Hume, David; Bonifer, Constanze

    2002-01-01

    Expression of the gene for the macrophage colony stimulating factor receptor (CSF-1R), c-fms, has been viewed as a hallmark of the commitment of multipotent precursor cells to macrophages. Lineage-restricted expression of the gene is controlled by conserved elements in the proximal promoter and within the first intron. To investigate the developmental regulation of c-fms at the level of chromatin structure, we developed an in vitro system to examine the maturation of multipotent myeloid precursor cells into mature macrophages. The dynamics of chromatin fine structure alterations and transcription factor occupancy at the c-fms promoter and intronic enhancer was examined by in vivo DMS and UV-footprinting. We show that the c-fms gene is already transcribed at low levels in early myeloid precursors on which no CSF-1R surface expression can be detected. At this stage of myelopoiesis, the formation of transcription factor complexes on the promoter was complete. By contrast, occupancy of the enhancer was acutely regulated during macrophage differentiation. Our data show that cell-intrinsic differentiation decisions at the c-fms locus precede the appearance of c-fms on the cell surface. They also suggest that complex lineage-specific enhancers such as the c-fms intronic enhancer regulate local chromatin structure through the coordinated assembly and disassembly of distinct transcription factor complexes. PMID:12101129

  11. Ipilimumab and Decitabine in Treating Patients With Relapsed or Refractory Myelodysplastic Syndrome or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-02-06

    Chimerism; Hematopoietic Cell Transplantation Recipient; Myelodysplastic Syndrome With Excess Blasts-1; Myelodysplastic Syndrome With Excess Blasts-2; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  12. Comparable outcomes post allogeneic hematopoietic cell transplant for patients with de novo or secondary acute myeloid leukemia in first remission.

    PubMed

    Michelis, F V; Atenafu, E G; Gupta, V; Kim, D D; Kuruvilla, J; Lipton, J H; Loach, D; Seftel, M D; Uhm, J; Alam, N; Lambie, A; McGillis, L; Messner, H A

    2015-07-01

    Secondary AML (sAML) has a poor prognosis with conventional chemotherapy alone. Allogeneic hematopoietic cell transplantation (HCT) is beneficial for high-risk AML. Data comparing outcomes of transplants for patients with de novo and sAML are limited. We compared outcomes of patients transplanted for de novo and sAML in first complete remission and investigated the effect of age, HCT comorbidity index (HCT-CI) and karyotype in both groups. A total of 264 patients with de novo (n=180) and sAML (n=84) underwent allogeneic HCT between 1999 and 2013. Median age at transplant was 51 years (range 18-71), median follow-up of survivors was 77 months. Evaluation of all patients demonstrated no significant difference between de novo and sAML for overall survival (P=0.18), leukemia-free survival (P=0.17), cumulative incidence of relapse (P=0.51) and non-relapse mortality (P=0.42). Multivariable and propensity score analyses confirmed the comparable outcomes between de novo and sAML post transplant. Although sAML demonstrates outcomes inferior to de novo AML treated with chemotherapy alone, outcomes following allogeneic HCT are comparable between the two groups.

  13. Allogeneic Hematopoietic Cell Transplant for Acute Myeloid Leukemia: No Impact of Pre-transplant Extramedullary Disease on Outcome

    PubMed Central

    Goyal, Sagun D.; Zhang, Mei-Jie; Wang, Hai-Lin; Akpek, Görgün; Copelan, Edward A.; Freytes, César; Gale, Robert Peter; Hamadani, Mehdi; Inamoto, Yoshihiro; Kamble, Rammurti T.; Lazarus, Hillard M.; Marks, David I.; Nishihori, Taiga; Olsson, Richard F.; Reshef, Ran; Ritchie, David S.; Saber, Wael; Savani, Bipin N.; Seber, Adriana; Shea, Thomas C.; Tallman, Martin S.; Wirk, Baldeep; Bunjes, Donald W.; Devine, Steven M.; de Lima, Marcos; Weisdorf, Daniel J.; Uy, Geoffrey L.

    2015-01-01

    The impact of extramedullary disease (EMD) in AML on the outcomes of allogeneic hematopoietic cell transplantation (alloHCT) is unknown. Using data from the Center for International Blood and Marrow Transplant Research (CIBMTR) we compared the outcomes of patients who had EMD of AML at any time prior to transplant to a cohort of AML patients without EMD. We reviewed data AML from 9,797 patients including 814 with EMD from 310 reporting centers and 44 different countries who underwent alloHCT between and 1995–2010. The primary outcome was overall survival (OS) after alloHCT. Secondary outcomes included leukemia-free survival (LFS), relapse rate, and treatment-related mortality (TRM). In a multivariate analysis, the presence of EMD did not affect either OS (HR 1.00, 95% CI 0.91–1.09), LFS (0.98, 0.89–1.09), TRM (RR 0.92, 95% CI 0.80–1.16, p=0.23) or relapse (RR =1.03, 95% CI, 0.92–1.16; p=0.62). Furthermore, the outcome of patients with EMD was not influenced by the location, timing of EMD, or intensity of conditioning regimen. The presence of EMD in AML does not affect transplant outcomes and should not be viewed as an independent adverse prognostic feature. PMID:25915806

  14. Impact of Cranial Irradiation Added to Intrathecal Conditioning in Hematopoietic Cell Transplantation in Adult Acute Myeloid Leukemia With Central Nervous System Involvement

    SciTech Connect

    Mayadev, Jyoti S.; Douglas, James G.; Storer, Barry E.; Appelbaum, Frederick R.; Storb, Rainer

    2011-05-01

    Purpose: Neither the prognostic importance nor the appropriate management of central nervous system (CNS) involvement is known for patients with acute myeloid leukemia (AML) undergoing hematopoietic cell transplantation (HCT). We examined the impact of a CNS irradiation boost to standard intrathecal chemotherapy (ITC). Methods and Materials: From 1995 to 2005, a total of 648 adult AML patients received a myeloablative HCT: 577 patients were CNS negative (CNS-), and 71 were CNS positive (CNS+). Of the 71 CNS+ patients, 52 received intrathecal chemotherapy alone (CNS+ITC), and 19 received ITC plus an irradiation boost (CNS+RT). Results: The CNS-, CNS+ITC, and CNS+RT patients had 1- and 5-year relapse-free survivals (RFS) of 43% and 35%, 15% and 6%, and 37% and 32%, respectively. CNS+ITC patients had a statistically significant worse RFS compared with CNS- patients (hazard ratio [HR], 2.65; 95% confidence interval [CI], 2.0-3.6; p < 0.0001). CNS+RT patients had improved relapse free survival over that of CNS+ITC patients (HR, 0.45; 95% CI, 0.2-0.8; p = 0.01). The 1- and 5-year overall survivals (OS) of patients with CNS-, CNS+ITC, and CNS+RT, were 50% and 38%, 21% and 6%, and 53% and 42%, respectively. The survival of CNS+RT were significantly better than CNS+ITC patients (p = 0.004). After adjusting for known risk factors, CNS+RT patients had a trend toward lower relapse rates and reduced nonrelapse mortality. Conclusions: CNS+ AML is associated with a poor prognosis. The role of a cranial irradiation boost to intrathecal chemotherapy appears to mitigate the risk of CNS disease, and needs to be further investigated to define optimal treatment strategies.

  15. Minimal Residual Disease as a Predictive Factor for Relapse after Allogeneic Hematopoietic Stem Cell Transplant in Adult Patients with Acute Myeloid Leukemia in First and Second Complete Remission

    PubMed Central

    Grubovikj, Rada M.; Alavi, Asif; Koppel, Ahrin; Territo, Mary; Schiller, Gary J.

    2012-01-01

    Allogeneic hematopoietic stem cell transplantation (allo-SCT) is potentially curative for patients with high-risk leukemia, but disease recurrence remains the leading cause of treatment failure. Our objective was to determine the impact of minimal residual disease (MRD) by any technique in adult patients with acute myeloid leukemia (AML) in morphologic first and second complete remission undergoing allo-SCT. Fifty nine patients were eligible for the study of 160 patients transplanted over ten years. For the MRD assessment we used multiparametric flow cytometry, cytogenetics and fluorescent in situ hybridization; 19 patients (32.2%) were identified as MRD positive. Patients with MRD had a consistently worse outcome over those without MRD, with 3-years leukemia-free survival (LFS) of 15.8% vs. 62.4% and overall survival (OS) of 17.5% vs. 62.3%. Relapse rate was significantly higher in MRD-positive patients; 3 years relapse rate in MRD-positive patients was 57.9% vs. 15.1% in MRD-negative patients. Detection of MRD in complete remission was associated with increased overall mortality (HR = 3.3; 95% CI: 1.45–7.57; p = 0.0044) and relapse (HR = 5.26; 95% CI: 2.0–14.0; p = 0.001), even after controlling for other risk factors. Our study showed that for patients in morphologic complete remission the presence of MRD predicts for significantly increased risk of relapse and reduced LFS and OS. PMID:24213327

  16. CBFB and MYH11 in inv(16)(p13q22) of acute myeloid leukemia displaying close spatial proximity in interphase nuclei of human hematopoietic stem cells.

    PubMed

    Weckerle, Allison B; Santra, Madhumita; Ng, Maggie C Y; Koty, Patrick P; Wang, Yuh-Hwa

    2011-09-01

    To gain a better understanding of the mechanism of chromosomal translocations in cancer, we investigated the spatial proximity between CBFB and MYH11 genes involved in inv(16)(p13q22) found in patients with acute myeloid leukemia. Previous studies have demonstrated a role for spatial genome organization in the formation of tumorigenic abnormalities. The nonrandom localization of chromosomes and, more specifically, of genes appears to play a role in the mechanism of chromosomal translocations. Here, two-color fluorescence in situ hybridization and confocal microscopy were used to measure the interphase distance between CBFB and MYH11 in hematopoietic stem cells (HSCs), where inv(16)(p13q22) is believed to occur, leading to leukemia development. The measured distances in HSCs were compared with mesenchymal stem cells, peripheral blood lymphocytes, and fibroblasts, as spatial genome organization is determined to be cell-type specific. Results indicate that CBFB and MYH11 are significantly closer in HSCs compared with all other cell types examined. Furthermore, the CBFB-MYH11 distance is significantly reduced compared with CBFB and a control locus in HSCs, although separation between CBFB and the control is ∼70% of that between CBFB and MYH11 on metaphase chromosomes. HSCs were also treated with fragile site-inducing chemicals because both the genes contain translocation breakpoints within these regions. However, treatment with fragile site-inducing chemicals did not significantly affect the interphase distance. Consistent with previous studies, our results suggest that gene proximity may play a role in the formation of cancer-causing rearrangements, providing insight into the mechanism of chromosomal abnormalities in human tumors.

  17. Hematopoietic stem cell-derived myeloid and plasmacytoid DC-based vaccines are highly potent inducers of tumor-reactive T cell and NK cell responses ex vivo.

    PubMed

    Thordardottir, Soley; Schaap, Nicolaas; Louer, Elja; Kester, Michel G D; Falkenburg, J H Frederik; Jansen, Joop; Radstake, Timothy R D; Hobo, Willemijn; Dolstra, Harry

    2017-01-01

    Because of the potent graft-versus-tumor (GVT) effect, allogeneic stem cell transplantation (alloSCT) can be a curative therapy for hematological malignancies. However, relapse remains the most frequent cause of treatment failure, illustrating the necessity for development of adjuvant post-transplant therapies to boost GVT immunity. Dendritic cell (DC) vaccination is a promising strategy in this respect, in particular, where distinct biologic functions of naturally occurring DC subsets, i.e. myeloid DCs (mDCs) and plasmacytoid DCs (pDCs), are harnessed. However, it is challenging to obtain high enough numbers of primary DC subsets from blood for immunotherapy due to their low frequencies. Therefore, we present here an ex vivo GMP-compliant cell culture protocol for generating different DC subsets from CD34(+) hematopoietic stem and progenitor cells (HSPCs) of alloSCT donor origin. High numbers of BDCA1(+) mDCs and pDCs could be generated, sufficient for multiple vaccination cycles. These HSPC-derived DC subsets were highly potent in inducing antitumor immune responses in vitro. Notably, HSPC-derived BDCA1(+) mDCs were superior in eliciting T cell responses. They efficiently primed naïve T cells and robustly expanded patient-derived minor histocompatibility antigen (MiHA)-specific T cells. Though the HSPC-pDCs also efficiently induced T cell responses, they exhibited superior capacity in activating NK cells. pDC-primed NK cells highly upregulated TRAIL and possessed strong cytolytic capacity against tumor cells. Collectively, these findings indicate that HSPC-derived DC vaccines, comprising both mDCs and pDCs, may possess superior potential to boost antitumor immunity post alloSCT, due to their exceptional T cell and NK cell stimulatory capacity.

  18. Mixed T Lymphocyte Chimerism after Allogeneic Hematopoietic Transplantation Is Predictive for Relapse of Acute Myeloid Leukemia and Myelodysplastic Syndromes.

    PubMed

    Lee, Hans C; Saliba, Rima M; Rondon, Gabriela; Chen, Julianne; Charafeddine, Yasmeen; Medeiros, L Jeffrey; Alatrash, Gheath; Andersson, Borje S; Popat, Uday; Kebriaei, Partow; Ciurea, Stefan; Oran, Betul; Shpall, Elizabeth; Champlin, Richard

    2015-11-01

    Chimerism testing after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) represents a promising tool for predicting disease relapse, although its precise role in this setting remains unclear. We investigated the predictive value of T lymphocyte chimerism analysis at 90 to 120 days after allo-HSCT in 378 patients with AML/MDS who underwent busulfan/fludarabine-based myeloablative preparative regimens. Of 265 (70%) patients with available T lymphocyte chimerism data, 43% of patients in first or second complete remission (CR1/CR2) at the time of transplantation had complete (100%) donor T lymphocytes at day +90 to +120 compared with 60% of patients in the non-CR1/CR2 cohort (P = .005). In CR1/CR2 patients, donor T lymphocyte chimerism ≤ 85% at day +90 to +120 was associated with a higher frequency of 3-year disease progression (29%; 95% confidence interval [CI], 18% to 46% versus 15%; 95% CI, 9% to 23%; hazard ratio [HR], 2.1; P = .04). However, in the more advanced, non-CR1/CR2 cohort, mixed T lymphocyte chimerism was not associated with relapse (37%; 95% CI, 20% to 66% versus 34%; 95% CI, 25% to 47%; HR, 1.3; P = .60). These findings demonstrate that early T lymphocyte chimerism testing at day +90 to +120 is a useful approach for predicting AML/MDS disease recurrence in patients in CR1/CR2 at the time of transplantation.

  19. Hematopoietic stem and progenitor cells: their mobilization and homing to bone marrow and peripheral tissue.

    PubMed

    Schulz, Christian; von Andrian, Ulrich H; Massberg, Steffen

    2009-01-01

    Hematopoietic stem and progenitor cells (HSPCs) are a rare population of precursor cells that possess the capacity for self-renewal and multilineage differentiation. In the bone marrow (BM), HSPCs warrant blood cell homeostasis. In addition, they may also replenish tissue-resident myeloid cells and directly participate in innate immune responses once they home to peripheral tissues. In this review, we summarize recent data on the signaling molecules that modulate the mobilization of HSPCs from BM and their migration to peripheral tissues.

  20. Normal Hematopoietic Progenitor Subsets Have Distinct Reactive Oxygen Species, BCL2 and Cell-Cycle Profiles That Are Decoupled from Maturation in Acute Myeloid Leukemia

    PubMed Central

    Hills, Robert K.; Knapper, Steve; Steadman, Lora; Qureshi, Ushna; Rector, Jerrald L.; Bradbury, Charlotte; Russell, Nigel H.; Vyas, Paresh; Burnett, Alan K.; Grimwade, David; Hole, Paul S.; Freeman, Sylvie D.

    2016-01-01

    In acute myeloid leukemia (AML) quiescence and low oxidative state, linked to BCL2 mitochondrial regulation, endow leukemic stem cells (LSC) with treatment-resistance. LSC in CD34+ and more mature CD34− AML have heterogeneous immunophenotypes overlapping with normal stem/progenitor cells (SPC) but may be differentiated by functional markers. We therefore investigated the oxidative/reactive oxygen species (ROS) profile, its relationship with cell-cycle/BCL2 for normal SPC, and whether altered in AML and myelodysplasia (MDS). In control BM (n = 24), ROS levels were highest in granulocyte-macrophage progenitors (GMP) and CD34− myeloid precursors but megakaryocyte-erythroid progenitors had equivalent levels to CD34+CD38low immature-SPC although they were ki67high. BCL2 upregulation was specific to GMPs. This profile was also observed for CD34+SPC in MDS-without-excess-blasts (MDS-noEB, n = 12). Erythroid CD34− precursors were, however, abnormally ROS-high in MDS-noEB, potentially linking oxidative stress to cell loss. In pre-treatment AML (n = 93) and MDS-with-excess-blasts (MDS-RAEB) (n = 14), immunophenotypic mature-SPC had similar ROS levels to co-existing immature-SPC. However ROS levels varied between AMLs; Flt3ITD+/NPM1wild-type CD34+SPC had higher ROS than NPM1mutated CD34+ or CD34− SPC. An aberrant ki67lowBCL2high immunophenotype was observed in CD34+AML (most prominent in Flt3ITD AMLs) but also in CD34− AMLs and MDS-RAEB, suggesting a shared redox/pro-survival adaptation. Some patients had BCL2 overexpression in CD34+ ROS-high as well as ROS-low fractions which may be indicative of poor early response to standard chemotherapy. Thus normal SPC subsets have distinct ROS, cell-cycle, BCL2 profiles that in AML /MDS-RAEB are decoupled from maturation. The combined profile of these functional properties in AML subpopulations may be relevant to differential treatment resistance. PMID:27669008

  1. Genetically distinct leukemic stem cells in human CD34- acute myeloid leukemia are arrested at a hemopoietic precursor-like stage.

    PubMed

    Quek, Lynn; Otto, Georg W; Garnett, Catherine; Lhermitte, Ludovic; Karamitros, Dimitris; Stoilova, Bilyana; Lau, I-Jun; Doondeea, Jessica; Usukhbayar, Batchimeg; Kennedy, Alison; Metzner, Marlen; Goardon, Nicolas; Ivey, Adam; Allen, Christopher; Gale, Rosemary; Davies, Benjamin; Sternberg, Alexander; Killick, Sally; Hunter, Hannah; Cahalin, Paul; Price, Andrew; Carr, Andrew; Griffiths, Mike; Virgo, Paul; Mackinnon, Stephen; Grimwade, David; Freeman, Sylvie; Russell, Nigel; Craddock, Charles; Mead, Adam; Peniket, Andrew; Porcher, Catherine; Vyas, Paresh

    2016-07-25

    Our understanding of the perturbation of normal cellular differentiation hierarchies to create tumor-propagating stem cell populations is incomplete. In human acute myeloid leukemia (AML), current models suggest transformation creates leukemic stem cell (LSC) populations arrested at a progenitor-like stage expressing cell surface CD34. We show that in ∼25% of AML, with a distinct genetic mutation pattern where >98% of cells are CD34(-), there are multiple, nonhierarchically arranged CD34(+) and CD34(-) LSC populations. Within CD34(-) and CD34(+) LSC-containing populations, LSC frequencies are similar; there are shared clonal structures and near-identical transcriptional signatures. CD34(-) LSCs have disordered global transcription profiles, but these profiles are enriched for transcriptional signatures of normal CD34(-) mature granulocyte-macrophage precursors, downstream of progenitors. But unlike mature precursors, LSCs express multiple normal stem cell transcriptional regulators previously implicated in LSC function. This suggests a new refined model of the relationship between LSCs and normal hemopoiesis in which the nature of genetic/epigenetic changes determines the disordered transcriptional program, resulting in LSC differentiation arrest at stages that are most like either progenitor or precursor stages of hemopoiesis.

  2. Genetically distinct leukemic stem cells in human CD34− acute myeloid leukemia are arrested at a hemopoietic precursor-like stage

    PubMed Central

    Quek, Lynn; Garnett, Catherine; Karamitros, Dimitris; Stoilova, Bilyana; Doondeea, Jessica; Kennedy, Alison; Metzner, Marlen; Ivey, Adam; Sternberg, Alexander; Hunter, Hannah; Price, Andrew; Virgo, Paul; Grimwade, David; Freeman, Sylvie; Russell, Nigel; Mead, Adam

    2016-01-01

    Our understanding of the perturbation of normal cellular differentiation hierarchies to create tumor-propagating stem cell populations is incomplete. In human acute myeloid leukemia (AML), current models suggest transformation creates leukemic stem cell (LSC) populations arrested at a progenitor-like stage expressing cell surface CD34. We show that in ∼25% of AML, with a distinct genetic mutation pattern where >98% of cells are CD34−, there are multiple, nonhierarchically arranged CD34+ and CD34− LSC populations. Within CD34− and CD34+ LSC–containing populations, LSC frequencies are similar; there are shared clonal structures and near-identical transcriptional signatures. CD34− LSCs have disordered global transcription profiles, but these profiles are enriched for transcriptional signatures of normal CD34− mature granulocyte–macrophage precursors, downstream of progenitors. But unlike mature precursors, LSCs express multiple normal stem cell transcriptional regulators previously implicated in LSC function. This suggests a new refined model of the relationship between LSCs and normal hemopoiesis in which the nature of genetic/epigenetic changes determines the disordered transcriptional program, resulting in LSC differentiation arrest at stages that are most like either progenitor or precursor stages of hemopoiesis. PMID:27377587

  3. Dissection of the major hematopoietic quantitative trait locus in chromosome 6q23.3 identifies miR-3662 as a novel player in hematopoiesis and acute myeloid leukemia

    PubMed Central

    Maharry, Sophia E.; Walker, Christopher J.; Liyanarachchi, Sandya; Mehta, Sujay; Patel, Mitra; Bainazar, Maryam A.; Huang, Xiaomeng; Lankenau, Malori A.; Hoag, Kevin W.; Ranganathan, Parvathi; Garzon, Ramiro; Blachly, James S.; Guttridge, Denis C.; Bloomfield, Clara D.; de la Chapelle, Albert; Eisfeld, Ann-Kathrin

    2016-01-01

    Chromosomal aberrations and multiple genome-wide association studies (GWASs) have established a major hematopoietic quantitative trait locus in chromosome 6q23.3. The locus comprises an active enhancer region, in which some of the associated SNPs alter transcription factor binding. We now identify microRNA-3662 as a new functional driver contributing to the associated phenotypes. The GWAS SNPs are strongly associated with higher miR-3662 expression. Genome editing of rs66650371, a three base pair deletion, suggests a functional link between the SNP genotype and the abundance of miR-3662. Increasing miR-3662’s abundance increases colony formation in hematopoietic progenitor cells, particularly the erythroid lineage. In contrast, miR-3662 is not expressed in acute myeloid leukemia cells and its overexpression has potent anti-leukemic effects in vitro and in vivo. Mechanistically, miR-3662 directly targets NF-ĸB-mediated transcription. Thus, miR-3662 is a new player of the hematopoietic 6q23.3 locus. PMID:27354268

  4. Myeloid-derived suppressor cells: mechanisms of action and recent advances in their role in transplant tolerance.

    PubMed

    Dilek, Nahzli; Vuillefroy de Silly, Romain; Blancho, Gilles; Vanhove, Bernard

    2012-01-01

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature hematopoietic precursors known to suppress immune responses in infection, chronic inflammation, cancer, and autoimmunity. In this paper, we review recent findings detailing their mode of action and discuss recent reports that suggest that MDSC are also expanded during transplantation and that modulation of MDSC can participate in preventing graft rejection as well as graft-versus-host disease.

  5. NUP98 gene fusions and hematopoietic malignancies: common themes and new biologic insights

    PubMed Central

    Gough, Sheryl M.; Slape, Christopher I.

    2011-01-01

    Structural chromosomal rearrangements of the Nucleoporin 98 gene (NUP98), primarily balanced translocations and inversions, are associated with a wide array of hematopoietic malignancies. NUP98 is known to be fused to at least 28 different partner genes in patients with hematopoietic malignancies, including acute myeloid leukemia, chronic myeloid leukemia in blast crisis, myelodysplastic syndrome, acute lymphoblastic leukemia, and bilineage/biphenotypic leukemia. NUP98 gene fusions typically encode a fusion protein that retains the amino terminus of NUP98; in this context, it is important to note that several recent studies have demonstrated that the amino-terminal portion of NUP98 exhibits transcription activation potential. Approximately half of the NUP98 fusion partners encode homeodomain proteins, and at least 5 NUP98 fusions involve known histone-modifying genes. Several of the NUP98 fusions, including NUP98-homeobox (HOX)A9, NUP98-HOXD13, and NUP98-JARID1A, have been used to generate animal models of both lymphoid and myeloid malignancy; these models typically up-regulate HOXA cluster genes, including HOXA5, HOXA7, HOXA9, and HOXA10. In addition, several of the NUP98 fusion proteins have been shown to inhibit differentiation of hematopoietic precursors and to increase self-renewal of hematopoietic stem or progenitor cells, providing a potential mechanism for malignant transformation. PMID:21948299

  6. Differential sensitivity of T lymphocytes and hematopoietic precursor cells to photochemotherapy with 8-methoxypsoralen and ultraviolet A light.

    PubMed

    Mabed, Mohamed; Coffe, Christian; Racadot, Evelyne; Angonin, Regis; Pavey, Jean-Jaques; Tiberghien, Pierre; Herve, Patrick

    2006-01-01

    The combination of 8-methoxypsoralen (8-MOP) and long wave ultraviolet radiation (UV-A) has immunomodulatory effects and might abolish both graft-vs-host and host-vs-graft reactions after allogeneic hematopoietic stem cell transplantation. In the present study, we have confirmed the sensitivity of T lymphocytes to 8-MOP treatment plus UV-A exposure as evidenced by the abrogation of the alloreactivity in mixed lymphocyte cultures as well as the inhibition of the response to phytohemagglutinin A. However, the clonogenic capacity of the bone marrow hematopoietic progenitors was inhibited with UV-A doses lower than the doses needed to inhibit T-lymphocytes alloreactivity. Moreover, long-term bone marrow cultures showed that 8-MOP plus UV-A treatment had detrimental effects on the more immature bone marrow stem cells. These data were confirmed when murine bone marrow graft was treated with 8-MOP, exposed to UV-A, then transplanted into semiallogeneic recipient mice. The treated cells could not maintain their clonogenic capacity in vivo resulting in death of all animals. Taken together, these data show that ex vivo 8-MOP plus UV-A treatment of the marrow graft cannot be used to prevent post-bone marrow transplantation alloreactivity.

  7. The human Smoothened inhibitor PF-04449913 induces exit from quiescence and loss of multipotent Drosophila hematopoietic progenitor cells

    PubMed Central

    Giangrande, Angela; Martinelli, Giovanni; Guadagnuolo, Viviana; Simonetti, Giorgia; Perini, Giovanni; Bernardoni, Roberto

    2016-01-01

    The efficient treatment of hematological malignancies as Acute Myeloid Leukemia, myelofibrosis and Chronic Myeloid Leukemia, requires the elimination of cancer-initiating cells and the prevention of disease relapse through targeting pathways that stimulate generation and maintenance of these cells. In mammals, inhibition of Smoothened, the key mediator of the Hedgehog signaling pathway, reduces Chronic Myeloid Leukemia progression and propagation. These findings make Smo a candidate target to inhibit maintenance of leukemia-initiating cells. In Drosophila melanogaster the same pathway maintains the hematopoietic precursor cells of the lymph gland, the hematopoietic organ that develops in the larva. Using Drosophila as an in vivo model, we investigated the mode of action of PF-04449913, a small-molecule inhibitor of the human Smo protein. Drosophila larvae fed with PF-04449913 showed traits of altered hematopoietic homeostasis. These include the development of melanotic nodules, increase of circulating hemocytes, the size increase of the lymph gland and accelerated differentiation of blood cells likely due to the exit of multi-potent precursors from quiescence. Importantly, the Smo inhibition can lead to the complete loss of hematopoietic precursors. We conclude that PF-04449913 inhibits Drosophila Smo blocking the Hh signaling pathway and causing the loss of hematopoietic precursor cells. Interestingly, this is the effect expected in patients treated with PF-04449913: number decrease of cancer initiating cells in the bone marrow to reduce the risk of leukemia relapse. Altogether our results indicate that Drosophila comprises a model system for the in vivo study of molecules that target evolutionary conserved pathways implicated in human hematological malignancies. PMID:27486815

  8. Homeostatic action of adenosine A3 and A1 receptor agonists on proliferation of hematopoietic precursor cells.

    PubMed

    Hofer, Michal; Pospísil, Milan; Znojil, Vladimír; Holá, Jirina; Streitová, Denisa; Vacek, Antonín

    2008-07-01

    Two adenosine receptor agonists, N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) and N6-cyclopentyladenosine (CPA), which selectively activate adenosine A3 and A1 receptors, respectively, were tested for their ability to influence proliferation of granulocytic and erythroid cells in femoral bone marrow of mice using morphological criteria. Agonists were given intraperitoneally to mice in repeated isomolar doses of 200 nmol/kg. Three variants of experiments were performed to investigate the action of the agonists under normal resting state of mice and in phases of cell depletion and subsequent regeneration after treatment with the cytotoxic drug 5-fluorouracil. In the case of granulopoiesis, IB-MECA 1) increased by a moderate but significant level proliferation of cells under normal resting state; 2) strongly increased proliferation of cells in the cell depletion phase; but 3) did not influence cell proliferation in the regeneration phase. CPA did not influence cell proliferation under normal resting state and in the cell depletion phase, but strongly suppressed the overshooting cell proliferation in the regeneration phase. The stimulatory effect of IB-MECA on cell proliferation of erythroid cells was observed only when this agonist was administered during the cell depletion phase. CPA did not modulate erythroid proliferation in any of the functional states investigated, probably due to the lower demand for cell production as compared with granulopoiesis. The results indicate opposite effects of the two adenosine receptor agonists on proliferation of hematopoietic cells and suggest the plasticity and homeostatic role of the adenosine receptor expression.

  9. Myeloid cell origins, differentiation, and clinical implications

    PubMed Central

    Weiskopf, Kipp; Schnorr, Peter J.; Pang, Wendy W.; Chao, Mark P.; Chhabra, Akanksha; Seita, Jun; Feng, Mingye; Weissman, Irving L.

    2016-01-01

    The hematopoietic stem cell (HSC) is a multipotent stem cell that resides in the bone marrow and has the ability to form all of the cells of the blood and immune system. Since its first purification in 1988, additional studies have refined the phenotype and functionality of HSCs and characterized all of their downstream progeny. The hematopoietic lineage is divided into two main branches: the myeloid and lymphoid arms. The myeloid arm is characterized by the Common Myeloid Progenitor and all of its resulting cell types. The stages of hematopoiesis have been defined in both mice and humans. During embryological development, the earliest hematopoiesis takes place in yolk sac blood islands then migrates to the fetal liver and hematopoietic organs. Some adult myeloid populations develop directly from yolk sac progenitors without apparent bone marrow intermediates, such as tissue resident macrophages. Hematopoiesis also changes over time, with a bias of the dominating HSCs towards myeloid development as animals age. Defects in myelopoiesis contribute to many hematologic disorders, and some of these can be overcome with therapies that target the aberrant stage of development. Furthermore, insights into myeloid development have informed us of mechanisms of programmed cell removal. The CD47/SIRPα axis, a myeloid-specific immune checkpoint, limits macrophage removal of HSCs but can be exploited by hematologic and solid malignancies. Therapeutics targeting CD47 represent a new strategy for treating cancer. Overall, an understanding of hematopoiesis and myeloid cell development has implications for regenerative medicine, hematopoietic cell transplantation, malignancy, and many other diseases. PMID:27763252

  10. Antigen receptor-redirected T cells derived from hematopoietic precursor cells lack expression of the endogenous TCR/CD3 receptor and exhibit specific antitumor capacities

    PubMed Central

    Van Caeneghem, Yasmine; De Munter, Stijn; Tieppo, Paola; Goetgeluk, Glenn; Weening, Karin; Verstichel, Greet; Bonte, Sarah; Taghon, Tom; Leclercq, Georges; Kerre, Tessa; Debets, Reno; Vermijlen, David; Abken, Hinrich; Vandekerckhove, Bart

    2017-01-01

    ABSTRACT Recent clinical studies indicate that adoptive T-cell therapy and especially chimeric antigen receptor (CAR) T-cell therapy is a very potent and potentially curative treatment for B-lineage hematologic malignancies. Currently, autologous peripheral blood T cells are used for adoptive T-cell therapy. Adoptive T cells derived from healthy allogeneic donors may have several advantages; however, the expected occurrence of graft versus host disease (GvHD) as a consequence of the diverse allogeneic T-cell receptor (TCR) repertoire expressed by these cells compromises this approach. Here, we generated T cells from cord blood hematopoietic progenitor cells (HPCs) that were transduced to express an antigen receptor (AR): either a CAR or a TCR with or without built-in CD28 co-stimulatory domains. These AR-transgenic HPCs were culture-expanded on an OP9-DL1 feeder layer and subsequently differentiated to CD5+CD7+ T-lineage precursors, to CD4+ CD8+ double positive cells and finally to mature AR+ T cells. The AR+ T cells were largely naive CD45RA+CD62L+ T cells. These T cells had mostly germline TCRα and TCRβ loci and therefore lacked surface-expressed CD3/TCRαβ complexes. The CD3− AR-transgenic cells were mono-specific, functional T cells as they displayed specific cytotoxic activity. Cytokine production, including IL-2, was prominent in those cells bearing ARs with built-in CD28 domains. Data sustain the concept that cord blood HPC derived, in vitro generated allogeneic CD3− AR+ T cells can be used to more effectively eliminate malignant cells, while at the same time limiting the occurrence of GvHD.

  11. Mobilization of hematopoietic stem cells into the peripheral blood.

    PubMed

    Damon, Lloyd E; Damon, Lauren E

    2009-12-01

    Hematopoietic stem cells can be mobilized out of the bone marrow into the blood for the reconstitution of hematopoiesis following high-dose therapy. Methods to improve mobilization efficiency and yields are rapidly emerging. Traditional methods include chemotherapy with or without myeloid growth factors. Plerixafor, a novel agent that disrupts the CXCR4-CXCL12 bond, the primary hematopoietic stem cell anchor in the bone marrow, has recently been US FDA-approved for mobilizing hematopoietic stem cells in patients with non-Hodgkin lymphoma and multiple myeloma. Plerixafor and myeloid growth factors as single agents appear safe to use in family or volunteer hematopoietic stem cells donors. Plerixafor mobilizes leukemic stem cells and is not approved for use in patients with acute leukemia. Patients failing to mobilize adequate hematopoietic stem cells with myeloid growth factors can often be successfully mobilized with chemotherapy plus myeloid growth factors or with plerixafor and granulocyte colony-stimulating factor.

  12. Allogeneic hematopoietic cell transplantation after conditioning with I-131-anti-CD45 antibody plus fludarabine and low-dose total body irradiation for elderly patients with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome.

    SciTech Connect

    Pagel, John M.; Gooley, T. A.; Rajendran, Joseph G.; Fisher, Darrell R.; Wilson, Wendy A.; Sandmaier, B. M.; Matthews, D. C.; Deeg, H. Joachim; Gopal, Ajay K.; Martin, P. J.; Storb, R.; Press, Oliver W.; Appelbaum, Frederick R.

    2009-12-24

    We conducted a study to estimate the maximum tolerated dose (MTD) of I-131-anti-CD45 antibody (Ab; BC8) that can be combined with a standard reduced-intensity conditioning regimen before allogeneic hematopoietic cell transplantation. Fifty-eight patients older than 50 years with advanced acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS) were treated with (131)I-BC8 Ab and fludarabine plus 2 Gy total body irradiation. Eighty-six percent of patients had AML or MDS with greater than 5% marrow blasts at the time of transplantation. Treatment produced a complete remission in all patients, and all had 100% donor-derived CD3(+) and CD33(+) cells in the blood by day 28 after the transplantation. The MTD of I-131-BC8 Ab delivered to liver was estimated to be 24 Gy. Seven patients (12%) died of nonrelapse causes by day 100. The estimated probability of recurrent malignancy at 1 year is 40%, and the 1-year survival estimate is 41%. These results show that CD45-targeted radiotherapy can be safely combined with a reduced-intensity conditioning regimen to yield encouraging overall survival for older, high-risk patients with AML or MDS. This study was registered at www.clinicaltrials.gov as #NCT00008177.

  13. Allogeneic hematopoietic cell transplantation after conditioning with 131I-anti-CD45 antibody plus fludarabine and low-dose total body irradiation for elderly patients with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome.

    PubMed

    Pagel, John M; Gooley, Theodore A; Rajendran, Joseph; Fisher, Darrell R; Wilson, Wendy A; Sandmaier, Brenda M; Matthews, Dana C; Deeg, H Joachim; Gopal, Ajay K; Martin, Paul J; Storb, Rainer F; Press, Oliver W; Appelbaum, Frederick R

    2009-12-24

    We conducted a study to estimate the maximum tolerated dose (MTD) of (131)I-anti-CD45 antibody (Ab; BC8) that can be combined with a standard reduced-intensity conditioning regimen before allogeneic hematopoietic cell transplantation. Fifty-eight patients older than 50 years with advanced acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS) were treated with (131)I-BC8 Ab and fludarabine plus 2 Gy total body irradiation. Eighty-six percent of patients had AML or MDS with greater than 5% marrow blasts at the time of transplantation. Treatment produced a complete remission in all patients, and all had 100% donor-derived CD3(+) and CD33(+) cells in the blood by day 28 after the transplantation. The MTD of (131)I-BC8 Ab delivered to liver was estimated to be 24 Gy. Seven patients (12%) died of nonrelapse causes by day 100. The estimated probability of recurrent malignancy at 1 year is 40%, and the 1-year survival estimate is 41%. These results show that CD45-targeted radiotherapy can be safely combined with a reduced-intensity conditioning regimen to yield encouraging overall survival for older, high-risk patients with AML or MDS. This study was registered at www.clinicaltrials.gov as #NCT00008177.

  14. Outcome of Second Allogeneic Hematopoietic Cell Transplantation after Relapse of Myeloid Malignancies following Allogeneic Hematopoietic Cell Transplantation: A Retrospective Cohort on Behalf of the Grupo Español de Trasplante Hematopoyetico.

    PubMed

    Orti, Guillermo; Sanz, Jaime; Bermudez, Arancha; Caballero, Dolores; Martinez, Carmen; Sierra, Jorge; Cabrera Marin, José R; Espigado, Ildefonso; Solano, Carlos; Ferrà, Christelle; García-Noblejas, Ana; Jimenez, Santiago; Sampol, Antonia; Yañez, Lucrecia; García-Gutiérrez, Valentin; Pascual, Maria Jesus; Jurado, Manuel; Moraleda, José M; Valcarcel, David; Sanz, Miguel A; Carreras, Enric; Duarte, Rafael F

    2016-03-01

    Allogeneic stem cell transplantation (allo-HCT) represents the most effective immunotherapy for acute myeloid leukemia (AML) and myeloid malignancies. However, disease relapse remains the most common cause of treatment failure. By performing a second allo-HCT, durable remission can be achieved in some patients. However, a second allo-HCT is of no benefit for the majority of patients, so this approach requires further understanding. We present a retrospective cohort of 116 patients diagnosed with AML, myelodysplastic syndromes, and myeloproliferative disorders who consecutively underwent a second allo-HCT for disease relapse. The median age was 38 years (range, 4 to 69 years). Sixty-three patients were alive at last follow-up. The median follow-up of the whole cohort was 193 days (range, 2 to 6724 days) and the median follow-up of survivors was 1628 days (range, 52 to 5518 days). Overall survival (OS) at 5 years was 32% (SE ± 4.7%). Multivariate analysis identified active disease status (P < .001) and second allo-HCT < 430 days (the median of the time to second transplantation) after the first transplantation (P < .001) as factors for poor prognosis, whereas the use of an HLA-identical sibling donor for the second allo-HCT was identified as a good prognostic factor (P < .05) for OS. The use of myeloablative conditioning (P = .01), active disease (P = .02), and a donor other than an HLA-identical sibling (others versus HLA-identical siblings) (P = .009) were factors statistically significant for nonrelapse mortality in multivariate analysis. Time to second transplantation was statistically significant (P = .001) in the relapse multivariate analysis, whereas multivariate analysis identified active disease status (P < .001) and time to second transplantation (P < .001) as poor prognosis factors for disease-free survival. This study confirms active disease and early relapse as dismal prognostic factors for a second allo-HCT. Using a different donor at second allo

  15. Isolated Hoxa9 overexpression predisposes to the development of lymphoid but not myeloid leukemia.

    PubMed

    Beachy, Sarah H; Onozawa, Masahiro; Silverman, Deborah; Chung, Yang Jo; Rivera, Mariela Martinez; Aplan, Peter D

    2013-06-01

    Hoxa9 is expressed in hematopoietic stem and progenitor cells, although this expression is usually diminished as these cells undergo differentiation. In addition, aberrant expression of Hoxa9 is strongly associated with both T cell and myeloid leukemia in mice and humans. Despite this strong association, enforced expression of Hoxa9 in murine bone marrow or thymus has only shown a modest ability to transform cells. To investigate this question, we used Vav regulatory elements to generate a transgenic mouse that targets Hoxa9 overexpression to all hematopoietic tissues. High-level expression of the Hoxa9 transgene in the hematopoietic compartment was associated with embryonic lethality, as no pups from founders that expressed high levels of the transgene were born live. However, offspring of an additional founder line, which expressed lower levels of Hoxa9, developed a precursor T cell lymphoblastic leukemia/lymphoma, accompanied by spontaneous Notch1 mutations. In contrast to most murine models of leukemia associated with Hoxa9 overexpression, the Vav-Hoxa9 mice did not overexpress other Hoxa cluster genes, mir196b (a microRNA that is embedded in the Hoxa locus), Meis1, or Pbx3. The Hoxa9 transgenic mouse reported in this study provides a suitable system for the study of Hoxa9 collaborators that drive myeloid and lymphoid malignant transformation.

  16. Casiopeina III-Ea, a copper-containing small molecule, inhibits the in vitro growth of primitive hematopoietic cells from chronic myeloid leukemia.

    PubMed

    Chavez-Gonzalez, Antonieta; Centeno-Llanos, Sandra; Moreno-Lorenzana, Dafne; Sandoval-Esquivel, Miguel Angel; Aviles-Vazquez, Socrates; Bravo-Gomez, María Elena; Ruiz-Azuara, Lena; Ayala-Sanchez, Manuel; Torres-Martinez, Hector; Mayani, Hector

    2017-01-01

    Several novel compounds have been developed for the treatment of different types of leukemia. In the present study, we have assessed the in vitro effects of Casiopeina III-Ea, a copper-containing small molecule, on cells from patients with Chronic Myeloid Leukemia (CML). We included primary CD34(+) Lineage-negative (Lin(-)) cells selected from CML bone marrow, as well as the K562 and MEG01 cell lines. Bone marrow cells obtained from normal individuals - both total mononuclear cells as well as CD34(+) Lin(-) cells- were used as controls. IC50 corresponded to 0.5μM for K562 cells, 0.63μM for MEG01 cells, 0.38μM for CML CD34(+) lin(-) cells, and 1.0μM for normal CD34(+) lin(-) cells. Proliferation and expansion were also inhibited to significantly higher extents in cultures of CML cells as compared to their normal counterparts. All these effects seemed to occur via a bcr-abl transcription-independent mechanism that involved a delay in cell division, an increase in cell death, generation of Reactive Oxygen Species and changes in cell cycle. Our results demonstrate that Casiopeina III-Ea possesses strong antileukemic activity in vitro, and warrant further preclinical (animal) studies to assess such effects in vivo.

  17. Second line azacitidine for elderly or infirmed patients with acute myeloid leukemia (AML) not eligible for allogeneic hematopoietic cell transplantation-a retrospective national multicenter study.

    PubMed

    Ram, Ron; Gatt, Moshe; Merkel, Drorit; Helman, Ilana; Inbar, Tsofia; Nagler, Arnon; Avivi, Irit; Ofran, Yishai

    2017-04-01

    Elderly and infirm patients with acute myeloid leukemia (AML) with either induction refractory or relapse disease may benefit from treatment with azacitidine. We retrospectively reviewed the data from five tertiary centers in Israel, treated between 2009 and 2015. Thirty-four patients (median age 74 years) were identified. Sixty-two percent of the patients had relapsed disease and 38% had refractory disease. Median time of follow-up was 12.1 months. Out of a total of 327 courses, incidence of infectious episodes was 6%. Eighteen percent experienced major bleeding. Thirty-two percent of the patients achieved morphologic complete remission, and 26% had stabilization of disease during at least three courses. At 12 and 18 months after the first course of azacitidine, 33 and 10% of the patients were progression-free, respectively. Incidences of overall survival at 12 and 24 months were 54.5 and 16%, respectively. Age <75 years was associated with better overall survival. Normal leukocyte count at the first dose of azacitidine and standard doses of azacitidine were both associated with a better progression-free and overall survival. We conclude that azacitidine is feasible in patients who have failed induction chemotherapy and may be associated with prolongation of survival. A prospective trial to validate these results is warranted.

  18. Reduced-intensity allogeneic hematopoietic stem cell transplantation for myelodysplastic syndrome and acute myeloid leukemia with multilineage dysplasia using fludarabine, busulphan, and alemtuzumab (FBC) conditioning.

    PubMed

    Ho, Aloysius Y L; Pagliuca, Antonio; Kenyon, Michelle; Parker, Jane E; Mijovic, Aleksandar; Devereux, Stephen; Mufti, Ghulam J

    2004-09-15

    Reduced-intensity conditioned (RIC) hematopoietic stem cell transplantation (HSCT) has improved the accessibility of transplantation in patients previously ineligible. We report the results of allografting following conditioning with fludarabine, busulphan, and alemtuzumab in 62 patients with myelodysplastic syndromes (MDSs) (matched sibling donors [24] or volunteer unrelated donors [VUDs, 38]). The median age for sibling recipients was 56 years (range, 41-70 years) and for VUD recipients, 52 years (range, 22-65 years), with a median follow-up (survivors) of 524 days (range, 93-1392 days) and 420 days (range, 53-1495 days), respectively. The nonrelapse mortality (NRM) at days 100, 200, and 360 was 0%, 5%, and 5%, respectively, for siblings and 11%, 17%, and 21%, respectively, for VUD. The overall survival at one year was 73% for siblings and 71% for VUDs, with a disease-free survival (DFS) of 61% and 59%, respectively. The prognostic significance of the International Prognostic Scoring System (IPSS) was preserved. Of recipients, 86% achieved full-donor chimerism. The cumulative incidence at day 100 of grades III to IV graft-versus-host disease (GVHD) for VUD recipients was 9% and for sibling recipients, 0%. There were 26 patients (16 sibling and 10 VUD) who received donor lymphocyte infusion (DLI) at a median of 273 days (range, 126-1323 days). RIC allogeneic HSCT using this protocol appears to be safe and permits durable donor engraftment. Longer follow-up is required to confirm any potential survival advantage.

  19. Myeloid-derived suppressor cells adhere to physiologic STAT3- vs STAT5-dependent hematopoietic programming, establishing diverse tumor-mediated mechanisms of immunologic escape.

    PubMed

    Cohen, Peter A; Ko, Jennifer S; Storkus, Walter J; Spencer, Christopher D; Bradley, Judy M; Gorman, Jessica E; McCurry, Dustin B; Zorro-Manrique, Soroya; Dominguez, Anna Lucia; Pathangey, Latha B; Rayman, Patricia A; Rini, Brian I; Gendler, Sandra J; Finke, James H

    2012-01-01

    The receptor tyrosine kinase inhibitor, sunitinib, is astonishingly effective in its capacity to reduce MDSCs in peripheral tissues such as blood (human) and spleen (mouse), restoring responsiveness of bystander T lymphocytes to TcR stimulation. Sunitinib blocks proliferation of undifferentiated MDSCs and decreases survival of more differentiated neutrophilic MDSC (n-MDSC) progeny. Ironically, sunitinib's profound effects are observed even in a total absence of detectable anti-tumor therapeutic response. This is best explained by the presence of disparate MDSC-conditioning stimuli within individual body compartments, allowing sensitivity and resistance to sunitinib to coexist within the same mouse or patient. The presence or absence of GM-CSF is likely the major determinant in each compartment, given that GM-CSF's capacity to preempt STAT3-dependent with dominant STAT5-dependent hematopoietic programming confers sunitinib resistance and redirects differentiation from the n-MDSC lineage to the more versatile monocytoid (m-MDSC) lineage. The clinical sunitinib experience underscores that strategies for MDSC and Treg depletions must be mindful of disparities among body compartments to avoid sanctuary effects. Ironically, m-MDSCs manifesting resistance to sunitinib also have the greatest potential to differentiate into tumoricidal accessory cells, by virtue of their capacity to respond to T cell-secreted IFN-γ or to TLR agonists with nitric oxide and peroxynitrate production.

  20. Outcome of children with high-risk acute myeloid leukemia given autologous or allogeneic hematopoietic cell transplantation in the aieop AML-2002/01 study.

    PubMed

    Locatelli, F; Masetti, R; Rondelli, R; Zecca, M; Fagioli, F; Rovelli, A; Messina, C; Lanino, E; Bertaina, A; Favre, C; Giorgiani, G; Ripaldi, M; Ziino, O; Palumbo, G; Pillon, M; Pession, A; Rutella, S; Prete, A

    2015-02-01

    We analyzed the outcome of 243 children with high-risk (HR) AML in first CR1 enrolled in the AIEOP-2002/01 protocol, who were given either allogeneic (ALLO; n=141) or autologous (AUTO; n=102) hematopoietic SCT (HSCT), depending on the availability of a HLA-compatible sibling. Infants, patients with AML-M7, or complex karyotype or those with FLT3-ITD, were eligible to be transplanted also from alternative donors. All patients received a myeloablative regimen combining busulfan, cyclophosphamide and melphalan; [corrected] AUTO-HSCT patients received BM cells in most cases, while in children given ALLO-HSCT stem cell source was BM in 96, peripheral blood in 19 and cord blood in 26. With a median follow-up of 57 months (range 12-130), the probability of disease-free survival (DFS) was 73% and 63% in patients given either ALLO- or AUTO-HSCT, respectively (P=NS). Although the cumulative incidence (CI) of relapse was lower in ALLO- than in AUTO-HSCT recipients (17% vs 28%, respectively; P=0.043), the CI of TRM was 7% in both groups. Patients transplanted with unrelated donor cord blood had a remarkable 92.3% 8-year DFS probability. Altogether, these data confirm that HSCT is a suitable option for preventing leukemia recurrence in HR children with CR1 AML.

  1. Unmanipulated Haploidentical Hematopoietic Stem Cell Transplantation in First Complete Remission Can Abrogate the Poor Outcomes of Children with Acute Myeloid Leukemia Resistant to the First Course of Induction Chemotherapy.

    PubMed

    Mo, Xiao-Dong; Zhang, Xiao-Hui; Xu, Lan-Ping; Wang, Yu; Yan, Chen-Hua; Chen, Huan; Chen, Yu-Hong; Han, Wei; Wang, Feng-Rong; Wang, Jing-Zhi; Liu, Kai-Yan; Huang, Xiao-Jun

    2016-12-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is an important therapy option for children with acute myeloid leukemia (AML) resistant to the first course of induction chemotherapy (IC1st). We aimed to identify the efficacy of unmanipulated haploidentical HSCT (haplo-HSCT) in children with AML in the first complete remission and whether children resistant (IC1st-resistant; n = 38) or sensitive (IC1st-sensitive; n = 59) to the IC1st can achieve comparable outcomes. The cumulative incidence of grades III to IV acute graft-versus-host disease (GVHD) and severe chronic GVHD was .0% versus 20.1% (P = .038) and 21.7% versus 13.2% (P = .238), respectively, for the IC1st-resistant and IC1st-sensitive groups. The 3-year cumulative incidence of relapse and nonrelapse mortality was 22.2% versus 7.6% (P = .061) and 5.3% versus 10.8% (P = .364), respectively, for the IC1st-resistant and IC1st-sensitive groups. The 3-year probability of overall survival and disease-free survival was 76.3% versus 83.0% (P = .657) and 72.5% versus 81.6% (P = .396), respectively, for the IC1st-resistant and IC1st-sensitive groups. Multivariate analysis failed to show significant differences in survival rates between the groups. Thus, our results show that unmanipulated haplo-HSCT may overcome the poor prognostic significance of IC1st-resistance in children with AML, and it is valid as a postremission treatment for children with IC1st-resistant AML lacking an HLA-matched donor.

  2. Comparison of Reduced-Intensity and Myeloablative Conditioning Regimens for Allogeneic Hematopoietic Stem Cell Transplantation in Patients with Acute Myeloid Leukemia and Acute Lymphoblastic Leukemia: A Meta-Analysis

    PubMed Central

    Ismail, Nor-Azimah; Mohd-Idris, Mohd-Razif; Jamaluddin, Fariza Wan; Tumian, NorRafeah; Sze-Wei, Ernie Yap; Muhammad, Norasiah; Nai, Ming Lai

    2014-01-01

    Currently, the indications to perform reduced-intensity conditioning allogeneic hematopoietic stem cell transplant (RIC-HCT) are based on data derived mainly from large registry and single-centre retrospective studies. Thus, at the present time, there is limited direct evidence supporting the current practice in selecting patients with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) for RIC versus myeloablative conditioning (MAC) transplants. To determine the relationship between dose intensity of conditioning regimen and survival outcomes after allografting in AML/ALL patients, we performed a meta-analysis of 23 clinical trials reported between 1990 and 2013 involving 15,258 adult patients that compare survival outcomes after RIC-HCT versus MAC-HCT. RIC-HCT resulted in comparable <2-year and 2–6 year overall survival (OS) rates post-transplantation even though the RIC-HCT recipients were older and had more active disease than MAC-HCT recipients. The 2–6 year progression-free survival (PFS), nonrelapse mortality, acute graft-versus-host disease (GvHD) and chronic GvHD rates were reduced after RIC-HCT, but relapse rate was increased. Similar outcomes were observed regardless of disease type and status at transplantation. Odds ratio for all outcomes remained comparable with or without performing separate analyses for the year of HCT and for retrospective versus prospective studies. Among RIC-HCT recipients, survival rates were superior if patients were in CR at transplantation. Significant inter-study heterogeneity for aGvHD data and publication bias for PFS data were observed. This meta-analysis showed no OS benefit of MAC-HCT over RIC-HCT across the entire cohort of patients suggesting that RIC-HCT could be an effective therapeutic option for AML/ALL patients who are ineligible for MAC-HCT and CR status is preferred before RIC-HCT. PMID:25072307

  3. Cytomegalovirus Reactivation after Allogeneic Hematopoietic Stem Cell Transplantation is Associated with a Reduced Risk of Relapse in Patients with Acute Myeloid Leukemia Who Survived to Day 100 after Transplantation: The Japan Society for Hematopoietic Cell Transplantation Transplantation-related Complication Working Group.

    PubMed

    Takenaka, Katsuto; Nishida, Tetsuya; Asano-Mori, Yuki; Oshima, Kumi; Ohashi, Kazuteru; Mori, Takehiko; Kanamori, Heiwa; Miyamura, Koichi; Kato, Chiaki; Kobayashi, Naoki; Uchida, Naoyuki; Nakamae, Hirohisa; Ichinohe, Tatsuo; Morishima, Yasuo; Suzuki, Ritsuro; Yamaguchi, Takuhiro; Fukuda, Takahiro

    2015-11-01

    Cytomegalovirus (CMV) infection is a major infectious complication after allogeneic hematopoietic cell transplantation (allo-HSCT). Recently, it was reported that CMV reactivation is associated with a decreased risk of relapse in patients with acute myeloid leukemia (AML). The aim of this study was to evaluate the impact of early CMV reactivation on the incidence of disease relapse after allo-HSCT in a large cohort of patients. The Japan Society for Hematopoietic Cell Transplantation's Transplantation-Related Complication Working Group retrospectively surveyed the database of the Transplant Registry Unified Management Program at the Japan Society for Hematopoietic Cell Transplantation. Patients with AML (n = 1836), acute lymphoblastic leukemia (ALL, n = 911), chronic myeloid leukemia (CML, n = 223), and myelodysplastic syndrome (MDS, n = 569) who underwent their first allo-HSCT from HLA-matched related or unrelated donors between 2000 and 2009 and who survived without disease relapse until day 100 after transplantation were analyzed. Patients who received umbilical cord blood transplantation were not included. Patients underwent surveillance by pp65 antigenemia from the time of engraftment, and the beginning of preemptive therapy was defined as CMV reactivation. Cox proportional hazards models were used to evaluate the risk factors of relapse, nonrelapse, and overall mortality. CMV reactivation and acute/chronic graft-versus-host disease (GVHD) were evaluated as time-dependent covariates. CMV reactivation was associated with a decreased incidence of relapse in patients with AML (20.3% versus 26.4%, P = .027), but not in patients with ALL, CML, or MDS. Among 1836 patients with AML, CMV reactivation occurred in 795 patients (43.3%) at a median of 42 days, and 436 patients (23.7%) relapsed at a median of 221 days after allo-HSCT. Acute GVHD grades II to IV developed in 630 patients (34.3%). By multivariate analysis considering competing risk factors, 3

  4. Mast cells are an essential hematopoietic component for polyp development

    PubMed Central

    Gounaris, Elias; Erdman, Susan E.; Restaino, Clifford; Gurish, Michael F.; Friend, Daniel S.; Gounari, Fotini; Lee, David M.; Zhang, Guoying; Glickman, Jonathan N.; Shin, Kichul; Rao, Varada P.; Poutahidis, Theofilos; Weissleder, Ralph; McNagny, Kelly M.; Khazaie, Khashayarsha

    2007-01-01

    It is generally agreed that most colon cancers develop from adenomatous polyps, and it is this fact on which screening strategies are based. Although there is overwhelming evidence to link intrinsic genetic lesions with the formation of these preneoplastic lesions, recent data suggest that the tumor stromal environment also plays an essential role in this disease. In particular, it has been suggested that CD34+ immature myeloid precursor cells are required for tumor development and invasion. Here we have used mice conditional for the stabilization of β-catenin or defective for the adenomatous polyposis coli (APC) gene to reinvestigated the identity and importance of tumor-infiltrating hematopoietic cells in polyposis. We show that, from the onset, polyps are infiltrated with proinflammatory mast cells (MC) and their precursors. Depletion of MC either pharmacologically or through the generation of chimeric mice with genetic lesions in MC development leads to a profound remission of existing polyps. Our data suggest that MC are an essential hematopoietic component for preneoplastic polyp development and are a novel target for therapeutic intervention. PMID:18077429

  5. Hematopoietic cell transplantation for chronic myeloid leukemia in developing countries: perspectives from Latin America in the post-tyrosine kinase inhibitor era.

    PubMed

    Pasquini, Marcelo C

    2012-04-01

    Tyrosine kinase inhibitors (TKIs) are currently the first line treatment for chronic myelogenous leukemia (CML) in countries with high and intermediate-high gross national income. Hematopoietic cell transplantation (HCT) in these countries is considered salvage therapy for eligible patients who failed TKI or progress to advanced disease stages. In Latin America, treatment for CML also changed with availability of TKI in the region. However, many challenges remain, as the cost of this class of medication and recommended monitoring is high. CML treatment practices in Latin America demonstrate that the majority of patients are treated with TKI at some point after diagnosis, most commonly imatinib mesylate, but still TKI can only be used after interferon failure in some countries. Other treatment practices are different from established international guidelines, outlying the importance of continuing medical education. Allogeneic HCT is a treatment option for CML in this region and could be considered a cost-effective approach in a small subset of young patients with available donors, as the overall cost of long-term non-transplant treatment may surpass the cost of transplantation. However, there are many challenges with HCT in Latin America such as access to experienced transplant centers, donor availability, and cost of essential drugs used after transplant, which further impacts expansion of this treatment approach in patients in need. In conclusion, Latin American patients with CML have access to state of the art CML treatment. Yet, drug costs have a tremendous impact on developing health systems. Optimization of CML treatment in the region with appropriate monitoring, recognizing patients who would be transplant candidates, and expanding access to transplantation for eligible patients may curtail these costs and further improve patient care.

  6. Myeloid sarcoma causing airway obstruction

    PubMed Central

    Krause, John R.

    2017-01-01

    Myeloid sarcoma is an extramedullary collection of blasts of the myeloid series that partially or totally effaces the architecture of the tissue in which it is found. These tumors have been described in many sites of the body, but the skin, lymph nodes, gastrointestinal tract, bone, soft tissue, and testes are most common. They can arise in a patient following the diagnosis of acute myeloid leukemia, but they may also be precursors of leukemia and should be considered diagnostic for acute myeloid leukemia. The differential diagnosis of this neoplasm includes malignant lymphoma, with which it is often mistaken, leading to diagnostic and therapeutic delays. We present the case of an 84-year-old African American man with a history of renal disease secondary to hypertension and coronary artery disease without any prior history of malignancies who presented with airway obstruction. He was diagnosed with a myeloid sarcoma of the mediastinum compressing his trachea.

  7. Defining incidence, risk factors, and impact on survival of central line-associated blood stream infections following hematopoietic cell transplantation in acute myeloid leukemia and myelodysplastic syndrome.

    PubMed

    Lukenbill, Joshua; Rybicki, Lisa; Sekeres, Mikkael A; Zaman, Muhammad Omer; Copelan, Alexander; Haddad, Housam; Fraser, Thomas; DiGiorgio, Megan J; Hanna, Rabi; Duong, Hien; Hill, Brian; Kalaycio, Matt; Sobecks, Ronald; Bolwell, Brian; Copelan, Edward

    2013-05-01

    Central line-associated blood stream infections (CLABSI) commonly complicate the care of patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) after allogeneic stem cell transplantation (HCT). We developed a modified CLABSI (MCLABSI) definition that attempts to exclude pathogens usually acquired because of disruption of mucosal barriers during the vulnerable neutropenic period following HCT that are generally included under the original definition (OCLABSI). We conducted a retrospective study of all AML and MDS patients undergoing HCT between August 2009 and December 2011 at the Cleveland Clinic (N = 73), identifying both OCLABSI and MCLABSI incidence. The median age at transplantation was 52 years (range, 16 to 70); 34 had a high (≥3) HCT comorbidity index (HCT-CI); 34 received bone marrow (BM), 24 received peripheral stem cells (PSC), and 15 received umbilical cord blood cells (UCB). Among these 73 patients, 23 (31.5%) developed OCLABSI, of whom 16 (69.6%) died, and 8 (11%) developed MCLABSI, of whom 7 (87.5%) died. OCLABSI was diagnosed a median of 9 days from HCT: 5 days (range, 2 to 12) for UCB and 78 days (range, 7 to 211) for BM/PSC (P < .001). MCLABSI occurred a median of 12 days from HCT, with similar earlier UCB and later BM/PSC diagnosis (P = .030). Risk factors for OCLABSI in univariate analysis included CBC (P < .001), human leukocyte antigen (HLA)-mismatch (P = .005), low CD34(+) count (P = .007), low total nucleated cell dose (P = .016), and non-Caucasian race (P = .017). Risk factors for OCLABSI in multivariable analysis were UCB (P < .001) and high HCT-CI (P = .002). There was a significant increase in mortality for both OCLABSI (hazard ratio, 7.14; CI, 3.31 to 15.37; P < .001) and MCLABSI (hazard ratio, 6.44; CI, 2.28 to 18.18; P < .001). CLABSI is common and associated with high mortality in AML and MDS patients undergoing HCT, especially in UCB recipients and those with high HCT-CI. We propose

  8. Angiogenin Defines Heterogeneity at the Core of the Hematopoietic Niche.

    PubMed

    Di Scala, Marianna; Hidalgo, Andrés

    2016-09-01

    Successful hematopoietic regeneration demands preservation of stemness while enabling expansion and differentiation into blood lineages. Now, Silberstein et al. (2016) and Goncalves et al. (2016) identify a ribonuclease secreted by proximal niche cells that simultaneously drives quiescence of HSCs and proliferation of myeloid progenitors and dramatically enhances hematopoietic recovery after HSC transplantation.

  9. Phase II Study of Haploidentical Natural Killer Cell Infusion for Treatment of Relapsed or Persistent Myeloid Malignancies Following Allogeneic Hematopoietic Cell Transplantation.

    PubMed

    Shaffer, Brian C; Le Luduec, Jean-Benoit; Forlenza, Christopher; Jakubowski, Ann A; Perales, Miguel-Angel; Young, James W; Hsu, Katharine C

    2016-04-01

    We conducted a phase 2 study to determine the efficacy of HLA-haploidentical related donor natural killer (NK) cells after cyclophosphamide-based lymphodepletion in patients with relapsed or progressive acute myelogenous leukemia (AML) or myelodysplastic syndrome (MDS) following allogeneic hematopoietic cell transplantation (HCT). Eight patients (2 with MDS and 6 with AML) were treated with cyclophosphamide 50 mg/kg on day -3 and day -2 before infusion of NK cells isolated from a haploidentical related donor. One patient also received fludarabine 25 mg/m2/day for 4 days. Six doses of 1 million units of interleukin-2 (IL-2) were administered on alternating days beginning on day -1. The median number of NK cells infused was 10.6 × 10(6)/kg (range, 4.3 to 22.4 × 10(6)/kg), and the median number of CD3 cells infused was 2.1 × 10(3)/kg (range, 1.9 to 40 × 10(3)/kg). NK infusions were well tolerated, with a median time to neutrophil recovery of 19 days (range, 7 days to not achieved) and no incidence of graft-versus-host disease after NK infusion. One patient with AML and 1 patient with MDS achieved a complete response, but relapsed at 1.7 and 1.8 months, respectively. One patient with MDS experienced resolution of dysplastic features but persistence of clonal karyotype abnormalities; this patient was stable at 65 months after NK cell therapy. The median duration of survival was 12.9 months (range, 0.8 to 65.3 months). Chimerism analysis of CD3(-)/CD56(+) peripheral blood cells did not detect any circulating haploidentical NK cells after infusion. NK phenotyping was performed in 7 patients during and after IL-2 infusion. We found a slight trend toward greater expression of KIR2DL2/2DL3/2DS2 (5% versus 28%; P = .03) at 14 days in patients who survived longer than 6 months from NK cell infusion (n = 4) compared with those who died within 6 months of NK cell therapy (n = 3). In summary, our data support the safety of haploidentical NK cell infusion after allogeneic HCT.

  10. JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNα.

    PubMed

    Hasan, Salma; Lacout, Catherine; Marty, Caroline; Cuingnet, Marie; Solary, Eric; Vainchenker, William; Villeval, Jean-Luc

    2013-08-22

    The acquired gain-of-function V617F mutation in the Janus Kinase 2 (JAK2(V617F)) is the main mutation involved in BCR/ABL-negative myeloproliferative neoplasms (MPNs), but its effect on hematopoietic stem cells as a driver of disease emergence has been questioned. Therefore, we reinvestigated the role of endogenous expression of JAK2(V617F) on early steps of hematopoiesis as well as the effect of interferon-α (IFNα), which may target the JAK2(V617F) clone in humans by using knock-in mice with conditional expression of JAK2(V617F) in hematopoietic cells. These mice develop a MPN mimicking polycythemia vera with large amplification of myeloid mature and precursor cells, displaying erythroid endogenous growth and progressing to myelofibrosis. Interestingly, early hematopoietic compartments [Lin-, LSK, and SLAM (LSK/CD48-/CD150+)] increased with the age. Competitive repopulation assays demonstrated disease appearance and progressive overgrowth of myeloid, Lin-, LSK, and SLAM cells, but not lymphocytes, from a low number of engrafted JAK2(V617F) SLAM cells. Finally, IFNα treatment prevented disease development by specifically inhibiting JAK2(V617F) cells at an early stage of differentiation and eradicating disease-initiating cells. This study shows that JAK2(V617F) in mice amplifies not only late but also early hematopoietic cells, giving them a proliferative advantage through high cell cycling and low apoptosis that may sustain MPN emergence but is lost upon IFNα treatment.

  11. Survival Advantage and Comparable Toxicity in Reduced-Toxicity Treosulfan-Based versus Reduced-Intensity Busulfan-Based Conditioning Regimen in Myelodysplastic Syndrome and Acute Myeloid Leukemia Patients after Allogeneic Hematopoietic Cell Transplantation.

    PubMed

    Sakellari, Ioanna; Mallouri, Despina; Gavriilaki, Eleni; Batsis, Ioannis; Kaliou, Maria; Constantinou, Varnavas; Papalexandri, Apostolia; Lalayanni, Chrysavgi; Vadikolia, Chrysanthi; Athanasiadou, Anastasia; Yannaki, Evangelia; Sotiropoulos, Damianos; Smias, Christos; Anagnostopoulos, Achilles

    2017-03-01

    Treosulfan has been incorporated in conditioning regimens for sustained remission without substantial toxicity and treatment-related mortality (TRM). We aimed to analyze the safety and efficacy of a fludarabine 150 mg/m(2) and treosulfan 42 g/m(2) (FluTreo) conditioning regimen in medically infirm patients. Outcomes were compared with those of a similar historical group treated with fludarabine 150 mg/m(2) to 180 mg/m(2), busulfan 6.4 mg/kg, and antithymocyte globulin (ATG) 5 mg/kg to 7.5 mg/kg (FluBuATG). Thirty-one consecutive patients with acute myeloid leukemia (AML; n = 21), myelodysplastic syndrome (MDS; n = 6), or treatment-related AML (n = 4) received FluTreo conditioning. The historical group consisted of 26 consecutive patients treated with FluBuATG. In the FluTreo group, engraftment was prompt in all patients and 74% achieved >99% donor chimerism by day +30. No grades III or IV organ toxicities were noted. One-year cumulative incidences (CI) of acute and chronic graft-versus-host disease (GVHD) were 19.4% and 58.4%. The groups were similar for age, disease risk, lines of treatment, hematopoietic cell transplantation-specific comorbidity index, and acute or chronic GVHD incidence, except that there were more matched unrelated donor recipients in the FluTreo group (P < .001). With 20 (range, 2 to 36) months follow-up for FluTreo and 14 (range, 2 to 136) for FluBuATG, the 1-year cumulative overall survival (OS) probability was 76% versus 57%, respectively (P = .026); 1-year disease-free survival (DFS) was 79% versus 38% (P < .001). In multivariate analysis, the only significantly favorable factor for OS and DFS was FluTreo (P = .010 and P = .012). The CI of relapse mortality was markedly decreased in FluTreo versus FluBuATG (7.4% versus 42.3%, P < .001). In conclusion, the treosulfan-based regimen resulted in favorable OS and DFS with acceptable toxicity and low relapse rates compared with busulfan-based conditioning.

  12. Diet-induced obesity promotes myelopoiesis in hematopoietic stem cells

    PubMed Central

    Singer, Kanakadurga; DelProposto, Jennifer; Lee Morris, David; Zamarron, Brian; Mergian, Taleen; Maley, Nidhi; Cho, Kae Won; Geletka, Lynn; Subbaiah, Perla; Muir, Lindsey; Martinez-Santibanez, Gabriel; Nien-Kai Lumeng, Carey

    2014-01-01

    Obesity is associated with an activated macrophage phenotype in multiple tissues that contributes to tissue inflammation and metabolic disease. To evaluate the mechanisms by which obesity potentiates myeloid activation, we evaluated the hypothesis that obesity activates myeloid cell production from bone marrow progenitors to potentiate inflammatory responses in metabolic tissues. High fat diet-induced obesity generated both quantitative increases in myeloid progenitors as well as a potentiation of inflammation in macrophages derived from these progenitors. In vivo, hematopoietic stem cells from obese mice demonstrated the sustained capacity to preferentially generate inflammatory CD11c+ adipose tissue macrophages after serial bone marrow transplantation. We identified that hematopoietic MyD88 was important for the accumulation of CD11c+ adipose tissue macrophage accumulation by regulating the generation of myeloid progenitors from HSCs. These findings demonstrate that obesity and metabolic signals potentiate leukocyte production and that dietary priming of hematopoietic progenitors contributes to adipose tissue inflammation. PMID:25161889

  13. Coordinate regulation of HOX genes in human hematopoietic cells

    SciTech Connect

    Magli, M.C.; Barba, P.; Celetti, A.; De Vita, G.; Cillo, C.; Boncinelli, E. )

    1991-07-15

    Hematopoiesis is a continuous process in which precursor cells proliferate and differentiate throughout life. However, the molecular mechanisms that govern this process are not clearly defined. Homeobox-containing genes, encoding DNA-binding homeodomains. are a network of genes highly conserved throughout evolution. They are organized in clusters expressed in the developing embryo with a positional hierarchy. The authors have analyzed expression of the four human HOX loci in erythroleukemic, promyelocytic, and monocytic cell lines to investigate whether the physical organization of human HOX genes reflects a regulatory hierarchy involved in the differentiation process of hematopoietic cells. The results demonstrate that cells representing various stages of hematopoietic differentiation display differential patterns of HOX gene expression and that HOX genes are coordinately switched on or off in blocks that may include entire loci. The entire HOX4 locus is silent in all lines analyzed and almost all the HOX2 genes are active in erythroleukemic cells and turned off in myeloid-restricted cells. The observations provide information about the regulation of HOX genes and suggest that the coordinate regulation of these genes may play an important role in lineage determination during early steps of hematopoiesis.

  14. Coordinated and unique functions of the E-selectin ligand ESL-1 during inflammatory and hematopoietic recruitment in mice.

    PubMed

    Sreeramkumar, Vinatha; Leiva, Magdalena; Stadtmann, Anika; Pitaval, Christophe; Ortega-Rodríguez, Inés; Wild, Martin K; Lee, Brendan; Zarbock, Alexander; Hidalgo, Andrés

    2013-12-05

    Beyond its well-established roles in mediating leukocyte rolling, E-selectin is emerging as a multifunctional receptor capable of inducing integrin activation in neutrophils, and of regulating various biological processes in hematopoietic precursors. Although these effects suggest important homeostatic contributions of this selectin in the immune and hematologic systems, the ligands responsible for transducing these effects in different leukocyte lineages are not well defined. We have characterized mice deficient in E-selectin ligand-1 (ESL-1), or in both P-selectin glycoprotein-1 (PSGL-1) and ESL-1, to explore and compare the contributions of these glycoproteins in immune and hematopoietic cell trafficking. In the steady state, ESL-1 deficiency resulted in a moderate myeloid expansion that became more prominent when both glycoproteins were eliminated. During inflammation, PSGL-1 dominated E-selectin binding, rolling, integrin activation, and extravasation of mature neutrophils, but only the combined deficiency in PSGL-1 and ESL-1 completely abrogated leukocyte recruitment. Surprisingly, we find that the levels of ESL-1 were strongly elevated in hematopoietic progenitor cells. These elevations correlated with a prominent function of ESL-1 for E-selectin binding and for migration of hematopoietic progenitor cells into the bone marrow. Our results uncover dominant roles for ESL-1 in the immature compartment, and a functional shift toward PSGL-1 dependence in mature neutrophils.

  15. Effects of priming with recombinant human granulocyte colony-stimulating factor on conditioning regimen for high-risk acute myeloid leukemia patients undergoing human leukocyte antigen-haploidentical hematopoietic stem cell transplantation: a multicenter randomized controlled study in southwest China.

    PubMed

    Gao, Lei; Wen, Qin; Chen, Xinghua; Liu, Yao; Zhang, Cheng; Gao, Li; Kong, Peiyan; Zhang, Yanqi; Li, Yunlong; Liu, Jia; Wang, Qingyu; Su, Yi; Wang, Chunsen; Wang, Sanbin; Zeng, Yun; Sun, Aihua; Du, Xin; Zeng, Dongfeng; Liu, Hong; Peng, Xiangui; Zhang, Xi

    2014-12-01

    HLA-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) is an effective and immediate treatment for high-risk acute myeloid leukemia (HR-AML) patients lacking matched donors. Relapse remains the leading cause of death for HR-AML patients after haplo-HSCT. Accordingly, the prevention of relapse remains a challenge in the treatment of HR-AML. In a multicenter randomized controlled trial in southwestern China, 178 HR-AML patients received haplo-HSCT with conditioning regimens involving recombinant human granulocyte colony-stimulating factor (rhG-CSF) or non-rhG-CSF. The cumulative incidences of relapse and graft-versus-host disease (GVHD), 2-year leukemia-free survival (LFS), and overall survival (OS) were evaluated. HR-AML patients who underwent the priming conditioning regimen with rhG-CSF had a lower relapse rate than those who were treated with non-rhG-CSF (38.2%; 95% confidence interval [CI], 28.1% to 48.3% versus 60.7%, 95% CI, 50.5% to 70.8%; P < .01). The cumulative incidences of acute GVHD, chronic GVHD, transplantation-related toxicity, and infectious complications appeared to be equivalent. In total, 53 patients in the rhG-CSF-priming group and 31 patients in the non-rhG-CSF-priming group were still alive at the median follow-up time of 42 months (range, 24 to 80 months). The 2-year probabilities of LFS and OS in the rhG-CSF-priming and non-rhG-CSF-priming groups were 55.1% (95% CI, 44.7% to 65.4%) versus 32.6% (95% CI, 22.8% to 42.3%) (P < .01) and 59.6% (95% CI, 49.4% to 69.7%) versus 34.8% (95% CI, 24.9% to 44.7%) (P < .01), respectively. Multivariate analyses indicated that the 2-year probability of LFS of patients who achieved complete remission (CR) before transplantation was better than that of patients who did not achieve CR. The 2-year probability of LFS of patients with no M4/M5/M6 subtype was better than that of patients with the M4/M5/M6 subtype in the G-CSF-priming group (67.4%; 95% CI, 53.8% to 80.9% versus 41.9%; 95% CI, 27

  16. Nf1 Haploinsufficiency Alters Myeloid Lineage Commitment and Function, Leading to Deranged Skeletal Homeostasis.

    PubMed

    Rhodes, Steven D; Yang, Hao; Dong, Ruizhi; Menon, Keshav; He, Yongzheng; Li, Zhaomin; Chen, Shi; Staser, Karl W; Jiang, Li; Wu, Xiaohua; Yang, Xianlin; Peng, Xianghong; Mohammad, Khalid S; Guise, Theresa A; Xu, Mingjiang; Yang, Feng-Chun

    2015-10-01

    Although nullizygous loss of NF1 leads to myeloid malignancies, haploinsufficient loss of NF1 (Nf1) has been shown to contribute to osteopenia and osteoporosis which occurs in approximately 50% of neurofibromatosis type 1 (NF1) patients. Bone marrow mononuclear cells of haploinsufficient NF1 patients and Nf1(+/-) mice exhibit increased osteoclastogenesis and accelerated bone turnover; however, the culprit hematopoietic lineages responsible for perpetuating these osteolytic manifestations have yet to be elucidated. Here we demonstrate that conditional inactivation of a single Nf1 allele within the myeloid progenitor cell population (Nf1-LysM) is necessary and sufficient to promote multiple osteoclast gains-in-function, resulting in enhanced osteoclastogenesis and accelerated osteoclast bone lytic activity in response to proresorptive challenge in vivo. Surprisingly, mice conditionally Nf1 heterozygous in mature, terminally differentiated osteoclasts (Nf1-Ctsk) do not exhibit any of these skeletal phenotypes, indicating a critical requirement for Nf1 haploinsufficiency at a more primitive/progenitor stage of myeloid development in perpetuating osteolytic activity. We further identified p21Ras-dependent hyperphosphorylation of Pu.1 within the nucleus of Nf1 haploinsufficient myelomonocytic osteoclast precursors, providing a novel therapeutic target for the potential treatment of NF1 associated osteolytic manifestations.

  17. Mesenchymal stromal cells in myeloid malignancies

    PubMed Central

    Geyh, Stefanie; Germing, Ulrich; Haas, Rainer

    2016-01-01

    Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are clonal myeloid disorders characterized by hematopoietic insufficiency. As MDS and AML are considered to originate from genetic and molecular defects of hematopoietic stem and progenitor cells (HSPC), the main focus of research in this field has focused on the characterization of these cells. Recently, the contribution of BM microenvironment to the pathogenesis of myeloid malignancies, in particular MDS and AML has gained more interest. This is based on a better understanding of its physiological role in the regulation of hematopoiesis. Additionally, it was demonstrated as a ‘proof of principle’ that genetic disruption of cells of the mesenchymal or osteoblastic lineage can induce MDS, MPS or AML in mice. In this review, we summarize the current knowledge about the contribution of the BM microenvironment, in particular mesenchymal stromal cells (MSC) to the pathogenesis of AML and MDS. Furthermore, potential models integrating the BM microenvironment into the pathophysiology of these myeloid disorders are discussed. Finally, strategies to therapeutically exploit this knowledge and to interfere with the crosstalk between clonal hematopoietic cells and altered stem cell niches are introduced. PMID:28090484

  18. Changes in the Updated 2016: WHO Classification of the Myelodysplastic Syndromes and Related Myeloid Neoplasms.

    PubMed

    Bennett, John M

    2016-11-01

    In comparison with the 2008 World Health Organization "Blue Book" on hematopoietic neoplasms, a small number of changes have been made in the classification. In the lower-risk patients, Refractory Cytopenias with Multilineage Dysplasia and Ring Sideroblasts (RCMD-RS) has been separated from RCMD to recognize the importance of the SF3B1 mutation. Often there has been confusion as to the degree of morphologic dysplasia and/or cytopenias to define some of the lower-risk subtypes. In addition, the type of dysplasia or cytopenias is not always concordant. Therefore, it seems prudent to apply the more general term "myelodysplastic syndrome (MDS)" with single- or multiple-lineage dysplasia. Refractory neutropenia or thrombocytopenia has been deemphasized because most patients have multilineage dysplasia. In the higher-risk patients, the terms Refractory Anemia with Excess Blasts (RAEB) 1 or 2 have been simplified to Myelodysplastic Syndrome-Excess Blasts (MDS-EB) 1 or 2 to emphasize the importance of the percentage of blasts that dictate therapy. Patients with Chronic Myelomonocytic Leukemia (CMML) can be classified into 3 groups: CMML 0, 1, or 2, based on the percentage of blasts (< 5%, 5%-9%, 10%-19%). Cases with 50% or more erythroid precursors will not have the percentage of blasts based on the nonerythroid precursors. Previous cases of acute erythroid leukemia (myeloid:erythroid type) can be included in the acute myeloid leukemia (AML) subtype: AML with MDS-related features.

  19. Hhex is Required at Multiple Stages of Adult Hematopoietic Stem and Progenitor Cell Differentiation

    PubMed Central

    Goodings, Charnise; Smith, Elizabeth; Mathias, Elizabeth; Elliott, Natalina; Cleveland, Susan M.; Tripathi, Rati M.; Layer, Justin H.; Chen, Xi; Guo, Yan; Shyr, Yu; Hamid, Rizwan; Du, Yang; Davé, Utpal P.

    2015-01-01

    Hhex encodes a homeodomain transcription factor that is widely expressed in hematopoietic stem and progenitor cell populations. Its enforced expression induces T-cell leukemia and we have implicated it as an important oncogene in early T-cell precursor leukemias where it is immediately downstream of an LMO2-associated protein complex. Conventional Hhex knockouts cause embryonic lethality precluding analysis of adult hematopoiesis. Thus, we induced highly efficient conditional knockout (cKO) using vav-Cre transgenic mice. Hhex cKO mice were viable and born at normal litter sizes. At steady state, we observed a defect in B-cell development that we localized to the earliest B-cell precursor, the pro-B-cell stage. Most remarkably, bone marrow transplantation using Hhex cKO donor cells revealed a more profound defect in all hematopoietic lineages. In contrast, sublethal irradiation resulted in normal myeloid cell repopulation of the bone marrow but markedly impaired repopulation of T- and B-cell compartments. We noted that Hhex cKO stem and progenitor cell populations were skewed in their distribution and showed enhanced proliferation compared to WT cells. Our results implicate Hhex in the maintenance of LT-HSCs and in lineage allocation from multipotent progenitors especially in stress hematopoiesis. PMID:25968920

  20. Variation of erythroid and myeloid precursors in the marrow and peripheral blood of volunteer subjects infected with human parvovirus (B19).

    PubMed Central

    Potter, C G; Potter, A C; Hatton, C S; Chapel, H M; Anderson, M J; Pattison, J R; Tyrrell, D A; Higgins, P G; Willman, J S; Parry, H F

    1987-01-01

    Infection of normal individuals with human parvovirus (B19) results in a mild disease (erythema infectiosum) but gives rise to aplastic crises in patients with chronic hemolytic anemias. The effects of this disease on hemopoiesis were investigated following intranasal inoculation of the virus into three volunteers. A typical disease ensued with a viremia peaking at 9 d. Marrow morphology 6 d after inoculation appeared normal but at 10 d there was a severe loss of erythroid precursors followed by a 1-2-g drop in hemoglobin, and an increase in serum immunoreactive erythropoietin. Erythroid burst-forming units (BFU-E) from the peripheral blood were considerably reduced, starting at the time of viremia and persisting for 4-8 d depending on the individual. Granulocyte-macrophage colony-forming units (CFU-GM) were also affected but the loss started 2 d later. Both CFU-GM and BFU-E showed a sharp overshoot at recovery. In the marrow, BFU-E and CFU-E were reduced at 6 and 10 d in the individual having the longest period of peripheral progenitor loss. In contrast, there was an increase in BFU-E and CFU-E in the subject with least change in peripheral progenitors. In the third subject, with an intermediate picture, there was a loss at 6 d but an increase at 10 d of erythroid progenitors. It is suggested that the architecture of the marrow might partially isolate progenitors from high titers of virus in the serum and individual variation in this respect might give the results observed. PMID:3033026

  1. Hematopoietic cytokines.

    PubMed

    Metcalf, Donald

    2008-01-15

    The production of hematopoietic cells is under the tight control of a group of hematopoietic cytokines. Each cytokine has multiple actions mediated by receptors whose cytoplasmic domains contain specialized regions initiating the various responses-survival, proliferation, differentiation commitment, maturation, and functional activation. Individual cytokines can be lineage specific or can regulate cells in multiple lineages, and for some cell types, such as stem cells or megakaryocyte progenitors, the simultaneous action of multiple cytokines is required for proliferative responses. The same cytokines control basal and emergency hematopoietic cell proliferation. Three cytokines, erythropoietin, granulocyte colony-stimulating factor, and granulocyte-macrophage colony-stimulating factor, have now been in routine clinical use to stimulate cell production and in total have been used in the management of many millions of patients. In this little review, discussion will be restricted to those cytokines well established as influencing the production of hematopoietic cells and will exclude newer candidate regulators and those active on lymphoid cells. As requested, this account will describe the cytokines in a historical manner, using a sequential format of discovery, understanding, validation, and puzzlement, a sequence that reflects the evolving views on these cytokines over the past 50 years.

  2. Addition of plerixafor to mobilization regimens in autologous peripheral blood stem cell transplants does not affect the correlation of preharvest hematopoietic precursor cell enumeration with first-harvest CD34+ stem cell yield.

    PubMed

    Villa, Carlos H; Shore, Tsiporah; Van Besien, Koen; Cushing, Melissa

    2012-12-01

    The CXCR4 antagonist plerixafor is increasingly used in the mobilization regimens for autologous peripheral blood stem cell (PBSC) transplantation. This agent may mobilize a different subset of the stem cell population than traditional regimens, such as growth factors (with and without chemotherapy). Thus, it is important to determine whether plerixafor has an effect on the utility of measurements used to predict the yield of CD34(+) cells, usually either preharvest peripheral blood CD34(+) enumeration by flow cytometry or hematopoietic precursor cell (HPC) enumeration by automated hematology analysis. Although HPC enumeration has a weaker correlation with first-harvest CD34(+) cell yield, this parameter still plays an important role in the timing of apheresis procedures for autologous PBSC transplantation because of its technical simplicity and low cost. In the present study, we retrospectively examined the correlation of HPC measurements with CD34(+) cell yields in patients with multiple myeloma and lymphoma undergoing autologous PBSC transplantation, and investigated how the mobilization regimen affected these results. We found that the correlation coefficients ranged from 0.5877 to 0.7668 and were not significantly impacted by differences in diagnosis or inclusion of plerixafor in the mobilization regimen. The predictive ability of HPC enumeration for various target yields was also examined, and receiver-operating characteristic curves were generated. An HPC cutoff of 20 should result in adequate initial CD34(+) cell yields (>2.5 × 10(6) cell/kg) in >80% of autologous donors with or without plerixafor. This study confirms the utility of HPC enumeration in prediction of adequate initial cell yields, and demonstrates that this utility is maintained regardless of whether or not plerixafor is included in the mobilization regimen.

  3. Hierarchal Autophagic Divergence of Hematopoietic System*

    PubMed Central

    Cao, Yan; Zhang, Suping; Yuan, Na; Wang, Jian; Li, Xin; Xu, Fei; Lin, Weiwei; Song, Lin; Fang, Yixuan; Wang, Zhijian; Wang, Zhen; Zhang, Han; Zhang, Yi; Zhao, Wenli; Hu, Shaoyan; Zhang, Xueguang; Wang, Jianrong

    2015-01-01

    Autophagy is integral to hematopoiesis and protects against leukemogenesis. However, the fundamentals of the required molecular machinery have yet to be fully explored. Using conditional mouse models to create strategic defects in the hematopoietic hierarchy, we have shown that recovery capacities in stem cells and somatic cells differ if autophagy is impaired or flawed. An in vivo Atg7 deletion in hematopoietic stem cells completely ablates the autophagic response, leading to irreversible and ultimately lethal hematopoiesis. However, while no adverse phenotype is manifested in vivo by Atg7-deficient myeloid cells, they maintain active autophagy that is sensitive to brefeldin A, an inhibitor targeting Golgi-derived membranes destined for autophagosome formation in alternative autophagy. Removing Rab9, a key regulatory protein, in alternative autophagy, disables autophagy altogether in Atg7-deficient macrophages. Functional analysis indicates that ATG7-dependent canonical autophagy is physiologically active in both hematopoietic stem cells and in terminally differentiated hematopoietic cells; however, only terminally differentiated cells such as macrophages are rescued by alternative autophagy if canonical autophagy is ineffective. Thus, it appears that hematopoietic stem cells rely solely on ATG7-dependent canonical autophagy, whereas terminally differentiated or somatic cells are capable of alternative autophagy in the event that ATG7-mediated autophagy is dysfunctional. These findings offer new insight into the transformational trajectory of hematopoietic stem cells, which in our view renders the autophagic machinery in stem cells more vulnerable to disruption. PMID:26245898

  4. Is there a "gold" standard treatment for patients with isolated myeloid sarcoma?

    PubMed

    Antic, Darko; Elezovic, Ivo; Milic, Natasa; Suvajdzic, Nada; Vidovic, Ana; Perunicic, Maja; Djunic, Irena; Mitrovic, Mirjana; Tomin, Dragica

    2013-02-01

    Isolated myeloid sarcoma is an extramedullary tumor of immature myeloid cells defined by the absence of leukemia history, myelodisplastic syndrome, or myeloproliferative neoplasma with a negative bone marrow biopsy. Myeloid sarcoma is a very rare condition, and few cases have been reported. We reviewed data of 12 patients with isolated myeloid sarcoma managed at a single center to determine the possible prognostic factors affecting patient survival, such as age, sex, type, localization, and treatment options. Patients were mostly men (n=8), with a median age of 39 years. Patients were initially treated with chemotherapy (n=7) or surgery (n=5). In three patients, hematopoietic stem cell transplantation was performed. During the follow-up period, nine patients died. The median overall survival was 13 months, while event-free survival was 8 months. Regarding initial treatment strategy, no significant difference in overall survival was observed. Both chemotherapy and hematopoietic stem cell transplantation independently improved event-free survival. In addition, patients who received chemotherapy combined with hematopoietic stem cell transplantation had significantly longer event-free survival than those treated with chemotherapy alone. Age<40 years together with chemotherapy/hematopoietic stem cell transplantation significant affected event-free survival. Based on our results, the treatment of myeloid sarcoma requires a systemic rather than a localized approach with surgery or radiotherapy. While prospective evaluations are needed, chemotherapy with allogenic hematopoietic stem cell transplantation should be considered as the optimal therapy for isolated myeloid sarcoma.

  5. Fludarabine Phosphate, Busulfan, and Anti-Thymocyte Globulin Followed By Donor Peripheral Blood Stem Cell Transplant, Tacrolimus, and Methotrexate in Treating Patients With Myeloid Malignancies

    ClinicalTrials.gov

    2016-05-04

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Hematopoietic/Lymphoid Cancer; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia

  6. Bone marrow mesenchymal stromal cells induce nitric oxide synthase-dependent differentiation of CD11b+ cells that expedite hematopoietic recovery.

    PubMed

    Trento, Cristina; Marigo, Ilaria; Pievani, Alice; Galleu, Antonio; Dolcetti, Luigi; Wang, Chun-Yin; Serafini, Marta; Bronte, Vincenzo; Dazzi, Francesco

    2017-02-09

    Bone marrow microenvironment is fundamental for hematopoietic homeostasis. Numerous efforts have been made to reproduce or manipulate its activity to facilitate engraftment after hematopoietic stem cell transplantation but clinical results remain unconvincing. This probably reflects the complexity of the hematopoietic niche. Recent data have demonstrated the fundamental role of stromal and myeloid cells in regulating hematopoietic stem cell self-renewal and mobilization in the bone marrow. In this study we unveil a novel interaction by which bone marrow mesenchymal stromal cells induce the rapid differentiation of CD11b+ myeloid cells from bone marrow progenitors. Such an activity requires the expression of nitric oxide synthase-2. Importantly, the administration of these mesenchymal stromal cells-educated CD11b+ cells accelerates hematopoietic reconstitution in bone marrow transplant recipients. We conclude that the liaison between mesenchymal stromal cells and myeloid cells is fundamental in hematopoietic homeostasis and suggests that it can be harnessed in clinical transplantation.

  7. MHC Class I Chain-Related Gene A (MICA) Donor-Recipient Mismatches and MICA-129 Polymorphism in Unrelated Donor Hematopoietic Cell Transplantations Has No Impact on Outcomes in Acute Lymphoblastic Leukemia, Acute Myeloid Leukemia, or Myelodysplastic Syndrome: A Center for International Blood and Marrow Transplant Research Study.

    PubMed

    Askar, Medhat; Sobecks, Ronald; Wang, Tao; Haagenson, Mike; Majhail, Navneet; Madbouly, Abeer; Thomas, Dawn; Zhang, Aiwen; Fleischhauer, Katharina; Hsu, Katharine; Verneris, Michael; Lee, Stephanie J; Spellman, Stephen R; Fernández-Viña, Marcelo

    2017-03-01

    Single-center studies have previously reported associations of MHC Class I Chain-Related Gene A (MICA) polymorphisms and donor-recipient MICA mismatching with graft-versus-host disease (GVHD) after unrelated donor hematopoietic cell transplantation (HCT). In this study, we investigated the association of MICA polymorphism (MICA-129, MM versus MV versus VV) and MICA mismatches after HCT with 10/10 HLA-matched (n = 552) or 9/10 (n = 161) unrelated donors. Included were adult patients with a first unrelated bone marrow or peripheral blood HCT for acute lymphoblastic leukemia, acute myeloid leukemia, or myelodysplastic syndrome that were reported to the Center for International Blood and Marrow Transplant Research between 1999 and 2011. Our results showed that neither MICA mismatch nor MICA-129 polymorphism were associated with any transplantation outcome (P < .01), with the exception of a higher relapse in recipients of MICA-mismatched HLA 10/10 donors (hazard ratio [HR], 1.7; P = .003). There was a suggestion of association between MICA mismatches and a higher risk of acute GVHD grades II to IV (HR, 1.4; P = .013) There were no significant interactions between MICA mismatches and HLA matching (9/10 versus 10/10). In conclusion, the findings in this cohort did not confirm prior studies reporting that MICA polymorphism and MICA mismatches were associated with HCT outcomes.

  8. Selective Inhibitors of Histone Deacetylases 1 and 2 Synergize with Azacitidine in Acute Myeloid Leukemia

    PubMed Central

    Shearstone, Jeffrey R.; Quayle, Steven N.; Huang, Pengyu; van Duzer, John H.; Jarpe, Matthew B.; Jones, Simon S.; Yang, Min

    2017-01-01

    Acute myeloid leukemia (AML) is a heterogeneous group of hematopoietic stem cell disorders characterized by defects in myeloid differentiation and increased proliferation of neoplastic hematopoietic precursor cells. Outcomes for patients with AML remain poor, highlighting the need for novel treatment options. Aberrant epigenetic regulation plays an important role in the pathogenesis of AML, and inhibitors of DNA methyltransferase or histone deacetylase (HDAC) enzymes have exhibited activity in preclinical AML models. Combination studies with HDAC inhibitors plus DNA methyltransferase inhibitors have potential beneficial clinical activity in AML, however the toxicity profiles of non-selective HDAC inhibitors in the combination setting limit their clinical utility. In this work, we describe the preclinical development of selective inhibitors of HDAC1 and HDAC2, which are hypothesized to have improved safety profiles, for combination therapy in AML. We demonstrate that selective inhibition of HDAC1 and HDAC2 is sufficient to achieve efficacy both as a single agent and in combination with azacitidine in preclinical models of AML, including established AML cell lines, primary leukemia cells from AML patient bone marrow samples and in vivo xenograft models of human AML. Gene expression profiling of AML cells treated with either an HDAC1/2 inhibitor, azacitidine, or the combination of both have identified a list of genes involved in transcription and cell cycle regulation as potential mediators of the combinatorial effects of HDAC1/2 inhibition with azacitidine. Together, these findings support the clinical evaluation of selective HDAC1/2 inhibitors in combination with azacitidine in AML patients. PMID:28060870

  9. Hematopoietic Processes in Eosinophilic Asthma.

    PubMed

    Salter, Brittany M; Sehmi, Roma

    2017-01-24

    Airway eosinophilia is a hallmark of allergic asthma and understanding mechanisms that promote increases in lung eosinophil numbers is important for effective pharmaco-therapeutic development. It has become evident that expansion of hemopoietic compartments in the bone marrow promotes differentiation and trafficking of mature eosinophils to the airways. Hematopoietic progenitor cells egress the bone marrow and home to the lungs, where in-situ differentiative processes within the tissue provide an ongoing source of pro-inflammatory cells. In addition, hematopoietic progenitor cells in the airways can respond to locally-derived alarmins, to produce a panoply of cytokines thereby themselves acting as effector pro-inflammatory cells that potentiate type 2 responses in eosinophilic asthma. In this review, we will provide evidence for these findings and discuss novel targets for modulating eosinophilopoietic processes, migration and effector function of precursor cells.

  10. Comparison of hematopoietic supportive capacity between human fetal and adult bone marrow mesenchymal stem cells in vitro.

    PubMed

    Liu, Meng; Yang, Shao-Guang; Xing, Wen; Lu, Shi-Hong; Zhao, Qin-Jun; Ren, Hong-Ying; Chi, Ying; Ma, Feng-Xia; Han, Zhong-Chao

    2011-08-01

    Hematopoietic stem cells (HSC) shift from fetal liver and spleen to bone marrow at neonatal stages and this movement may be due to inductive signals from different microenvironments. Mesenchymal stem cells (MSC) are the precursors of stromal cells in bone marrow microenvironments such as osteoblasts and endothelial cells. Some researchers speculated that fetal bone marrow before birth might be not perfectly suit HSC growth. However, it is still lack of direct evidence to prove this hypothesis. This study was aimed to compare the hematopoietic supportive capacity between human fetal and adult bone marrow MSC in vitro. Adult bone marrow MSC (ABM-MSC) were isolated from three healthy donors and fetal bone marrow MSC (FBM-MSC) were isolated from three fetuses between gestations of 19 to 20 weeks. After irradiation, MSC were co-cultured with CD34(+) cells isolated from umbilical cord blood in long-term culture-initiating cell (LTC-IC) assay. The colony number of colony forming cells (CFC) was counted and the phenotypic changes of co-cultured CD34(+) cells were analyzed by flow cytometry. Cytokine expressions in both kinds of MSC were detected by reverse transcription polymerase chain reaction (RT-PCR). The results showed that ABM-MSC had a stronger hematopoietic supportive capacity than FBM-MSC. Both of them enhanced the differentiation of CD34(+) cells into myeloid lineages. Cytokines were expressed differently in ABM-MSC and FBM-MSC. It is concluded that ABM-MSC possess more potential application in some treatments than FBM-MSC, especially in hematopoietic reconstitution.

  11. Zbtb1 prevents default myeloid differentiation of lymphoid-primed multipotent progenitors

    PubMed Central

    Zhang, Xianyu; Lu, Ying; Cao, Xin; Zhen, Tao; Kovalovsky, Damian

    2016-01-01

    Zbtb1 is a transcription factor that prevents DNA damage and p53-mediated apoptosis in replicating immune progenitors, affecting lymphoid as well as myeloid development when hematopoietic progenitors are in competition in mixed bone marrow chimeras. However, Zbtb1-deficient mice do not have an apparent myeloid deficiency. We report here that Zbtb1-deficient lymphoid-primed multipotent progenitors (LMPPs) are biased to develop towards the myeloid fate in detriment of lymphoid development, contributing to the apparent unaffected myeloid development. Zbtb1 expression was maintained during lymphoid development of LMPP cells but downregulated during myeloid development. Deficiency of Zbtb1 in LMPP cells was sufficient to direct a myeloid fate in lymphoid-inducing conditions and in the absence of myeloid cytokines as shown by upregulation of a myeloid gene signature and the generation of myeloid cells in vitro. Finally, biased myeloid differentiation of Zbtb1-deficient LMPP cells was not due to increased p53-dependent apoptosis as it was not reverted by transgenic Bcl2 expression or p53 deficiency. Altogether, our results show that Zbtb1 expression prevents activation of a default myeloid program in LMPP cells, ensuring the generation of lymphoid cells. PMID:27542215

  12. Reduced-Intensity Conditioning Combined with (188)Rhenium Radioimmunotherapy before Allogeneic Hematopoietic Stem Cell Transplantation in Elderly Patients with Acute Myeloid Leukemia: The Role of In Vivo T Cell Depletion.

    PubMed

    Schneider, Sebastian; Strumpf, Annette; Schetelig, Johannes; Wunderlich, Gerd; Ehninger, Gerhard; Kotzerke, Jörg; Bornhäuser, Martin

    2015-10-01

    The combination of reduced-intensity conditioning, (188)rhenium anti-CD66 radioimmunotherapy, and in vivo T cell depletion was successfully applied in elderly patients with acute myeloid leukemia or myelodysplastic syndrome. Within a prospective phase II protocol, we investigated whether a dose reduction of alemtuzumab (from 75 mg to 50 mg MabCampath) would improve leukemia-free survival by reducing the incidence of relapse. Fifty-eight patients (median age, 67 years; range, 54 to 76) received radioimmunotherapy followed by fludarabine 150 mg/m(2) and busulfan 8 mg/kg combined with either 75 mg (n = 26) or 50 mg (n = 32) alemtuzumab. Although we observed a trend towards a shorter duration of neutropenia in the 50 mg group (median, 19 versus 21 days; P = .07), the time from transplantation to neutrophil and platelet engraftment as well as the overall incidence of engraftment did not differ. The incidence of severe acute graft-versus-host disease tended to be higher after the lower alemtuzumab dose (17% versus 4%; P = .15). No significant differences in the cumulative incidences of relapse (38% versus 35%; P = .81) or nonrelapse mortality (46% versus 27%; P = .31) were observed. Accordingly, disease-free and overall survival were not significantly different between groups. Although the feasibility of radioimmunotherapy plus reduced-intensity conditioning could be demonstrated in elderly patients, the dose reduction of alemtuzumab had no positive impact on overall outcome.

  13. Donor Killer Immunoglobulin-Like Receptor Profile Bx1 Imparts a Negative Effect and Centromeric B-Specific Gene Motifs Render a Positive Effect on Standard-Risk Acute Myeloid Leukemia/Myelodysplastic Syndrome Patient Survival after Unrelated Donor Hematopoietic Stem Cell Transplantation.

    PubMed

    Bao, Xiaojing; Wang, Miao; Zhou, Huifen; Zhang, Huanhuan; Wu, Xiaojin; Yuan, Xiaoni; Li, Yang; Wu, Depei; He, Jun

    2016-02-01

    Donor killer immunoglobulin-like receptor (KIR) group B profiles (Bx) and homozygous of centromeric motif B (Cen-B/B) are the most preferable KIR gene content motifs for hematopoietic stem cell transplantation (HSCT). The risk of transplant from Bx1 donors and the benefit of the presence of Cen-B (regardless of number) were observed for standard-risk acute myeloid leukemia/myelodysplastic syndrome (AML/MDS) patients in this 4-year retrospective study. A total of 210 Chinese patients who underwent unrelated donor HSCT were investigated. Donor KIR profile Bx was associated with significantly improved overall survival (OS; P = .026) and relapse-free survival (RFS; P = .021) and reduced nonrelapse mortality (NRM; P = .017) in AML/MDS patients. A significantly lower survival rate was observed for transplants from Bx1 donors compared with Bx2, Bx3, and Bx4 donors for patients in first complete remission (n = 82; OS: P = .024; RFS: P = .021). Transplant from donors with Cen-B resulted in improved OS (HR = .256; 95% CI, .084 to .774; P = .016) and RFS (HR = .252; 95% CI, .084 to .758; P = .014) in AML/MDS patients at standard risk. However, this particular effect did not increase with a higher number of Cen-B motifs (cB/B versus cA/B; OS: P = .755; RFS: P = .768). No effect was observed on high-risk AML/MDS, acute lymphoblastic leukemia/non-Hodgkin lymphoma, and chronic myelogenous leukemia patients. Avoiding the selection of HSCT donors of KIR profile Bx1 is strongly advisable for standard-risk AML/MDS patients. The presence of the Cen-B motif rather than its number was more important in donor selection for the Chinese population.

  14. Myeloid malignancies: mutations, models and management

    PubMed Central

    2012-01-01

    Myeloid malignant diseases comprise chronic (including myelodysplastic syndromes, myeloproliferative neoplasms and chronic myelomonocytic leukemia) and acute (acute myeloid leukemia) stages. They are clonal diseases arising in hematopoietic stem or progenitor cells. Mutations responsible for these diseases occur in several genes whose encoded proteins belong principally to five classes: signaling pathways proteins (e.g. CBL, FLT3, JAK2, RAS), transcription factors (e.g. CEBPA, ETV6, RUNX1), epigenetic regulators (e.g. ASXL1, DNMT3A, EZH2, IDH1, IDH2, SUZ12, TET2, UTX), tumor suppressors (e.g. TP53), and components of the spliceosome (e.g. SF3B1, SRSF2). Large-scale sequencing efforts will soon lead to the establishment of a comprehensive repertoire of these mutations, allowing for a better definition and classification of myeloid malignancies, the identification of new prognostic markers and therapeutic targets, and the development of novel therapies. Given the importance of epigenetic deregulation in myeloid diseases, the use of drugs targeting epigenetic regulators appears as a most promising therapeutic approach. PMID:22823977

  15. Oncogenic pathways of AML1-ETO in acute myeloid leukemia: multifaceted manipulation of marrow maturation

    PubMed Central

    Elagib, Kamaleldin E.; Goldfarb, Adam N.

    2007-01-01

    The leukemic fusion protein AML1-ETO occurs frequently in human acute myeloid leukemia (AML) and has received much attention over the past decade. An initial model for its pathogenetic effects emphasized the conversion of a hematopoietic transcriptional activator, RUNX1 (or AML1), into a leukemogenic repressor which blocked myeloid differentiation at the level of target gene regulation. This view has been absorbed into a larger picture of AML1-ETO pathogenesis, encompassing dysregulation of hematopoietic stem cell homeostasis at several mechanistic levels. Recent reports have highlighted a multifaceted capacity of AML1-ETO directly to inhibit key hematopoietic transcription factors that function as tumor suppressors at several nodal points during hematopoietic differentiation. A new model is presented in which AML1-ETO coordinates expansion of the stem cell compartment with diminished lineage commitment and with genome instability. PMID:17125917

  16. MicroRNA-486-5p is an erythroid oncomiR of the myeloid leukemias of Down syndrome.

    PubMed

    Shaham, Lital; Vendramini, Elena; Ge, Yubin; Goren, Yaron; Birger, Yehudit; Tijssen, Marloes R; McNulty, Maureen; Geron, Ifat; Schwartzman, Omer; Goldberg, Liat; Chou, Stella T; Pitman, Holly; Weiss, Mitchell J; Michaeli, Shulamit; Sredni, Benjamin; Göttgens, Berthold; Crispino, John D; Taub, Jeffrey W; Izraeli, Shai

    2015-02-19

    Children with Down syndrome (DS) are at increased risk for acute myeloid leukemias (ML-DS) characterized by mixed megakaryocytic and erythroid phenotype and by acquired mutations in the GATA1 gene resulting in a short GATA1s isoform. The chromosome 21 microRNA (miR)-125b cluster has been previously shown to cooperate with GATA1s in transformation of fetal hematopoietic progenitors. In this study, we report that the expression of miR-486-5p is increased in ML-DS compared with non-DS acute megakaryocytic leukemias (AMKLs). miR-486-5p is regulated by GATA1 and GATA1s that bind to the promoter of its host gene ANK1. miR-486-5p is highly expressed in mouse erythroid precursors and knockdown (KD) in ML-DS cells reduced their erythroid phenotype. Ectopic expression and KD of miR-486-5p in primary fetal liver hematopoietic progenitors demonstrated that miR-486-5p cooperates with Gata1s to enhance their self renewal. Consistent with its activation of AKT, overexpression and KD experiments showed its importance for growth and survival of human leukemic cells. Thus, miR-486-5p cooperates with GATA1s in supporting the growth and survival, and the aberrant erythroid phenotype of the megakaryocytic leukemias of DS.

  17. [Peripheral blood hematopoietic stem cell collection].

    PubMed

    Bojanić, Ines; Mazić, Sanja; Cepulić, Branka Golubić

    2009-01-01

    Summary. Peripheral blood hematopoietic stem cells (PBSC) have numerous advatages in comparison with traditionally used bone marrow. PBSC collection by leukapheresis procedure is simpler and better tolerated than bone marrow harvest. PBCS are mobilized by myelosupressive chemotherapy or/and hematopoietic growth factors. Leukapheresis product contains PBSC along with lineage commited progenitors and precursors which contribute to faster hematopoietic recovery. In "poor mobilizers" options are large-volume leukapheresis (LVL) procedure or second generation of mobilising agents (pegfilgrastim, CXCR4 receptor antagonists). Total blood volume is processed 2-3 times in standard procedure compared to more than 3 times in LVL. LVL yields significantly higher numbers of CD34+ cells. Adverse effects of leukapheresis are electrolyte disbalance (hypocalcemia) caused by citrat administration and risk of bleeding due to trobocytopenia and heparin administration. PBSC collection and product quality control are regulated by national and international standards and recommendations.

  18. Hematopoietic tissue repair under chronic low daily dose irradiation

    NASA Astrophysics Data System (ADS)

    Seed, T. M.

    The capacity of the hematopoietic system to repair constantly accruing cellular damage under chronic, low daily dose gamma irradiation is essential for the maintenance of a functional hematopoietic system, and, in turn, long term survival. In certain individuals, however, such continuous cycles of damage and repair provide an essential inductive environment for selected types of hematopathologies, e.g., myeloid leukemia (ML). In our laboratory we have been studying temporal and causal relationships between hematopoietic capacity, associated repair functions, and propensities for hematologic disease in canines under variable levels of chronic radiation stress (0.3-26.3 cGy d^-1). Results indicate that the maximum exposure rate tolerated by the hematopoietic system is highly individual-specific (three major responding subgroups identified) and is based largely on the degree to which repair capacity, and, in turn, hematopoietic restoration, is augmented under chronic exposure. In low-tolerance individuals (prone to aplastic anemia, subgroup 1), the failure to augment basic repair functions seemingly results in a progressive accumulation of genetic and cellular damage within vital progenitorial marrow compartments (particularly marked within erythroid compartments) that results in loss of reproductive capacity and ultimately in collapse of the hematopoietic system. The high-tolerance individuals (radioaccommodated and either prone- or not prone to ML, subgroup 2 & 3) appear to minimize the accumulating damage effect of daily exposures by extending repair functions, which preserves reproductive integrity and fosters regenerative hematopoietic responses. As the strength of the regenerative response manifests the extent of repair augmentation, the relatively strong response of high-tolerance individuals progressing to patent ML suggests an insufficiency of repair quality rather than repair quantity. The kinetics of these repair-mediated, regenerative hematopoietic

  19. Treating Chronic Myeloid Leukemia by Phase

    MedlinePlus

    ... CML) Treating Chronic Myeloid Leukemia Treating Chronic Myeloid Leukemia by Phase Treatment options for people with chronic ... Myeloid Leukemia by Phase More In Chronic Myeloid Leukemia About Chronic Myeloid Leukemia Causes, Risk Factors, and ...

  20. FHL2 regulates hematopoietic stem cell functions under stress conditions

    PubMed Central

    Hou, Yu; Wang, Xiaoqin; Li, LiPing; Fan, Rong; Chen, Ju; Zhu, Tongyu; Li, Wen; Jiang, Yanwen; Mittal, Nupur; Wu, Wenshu; Peace, David; Qian, Zhijian

    2014-01-01

    FHL2, a member of the four and one half LIM domain protein family, is a critical transcriptional modulator. Here, we identify FHL2 as a critical regulator of hematopoietic stem cells (HSCs) that is essential for maintaining HSC self-renewal under regenerative stress. We find that Fhl2 loss has limited effects on hematopoiesis under homeostatic conditions. In contrast, Fhl2-null chimeric mice reconstituted with Fhl2-null bone marrow cells developed abnormal hematopoiesis with significantly reduced numbers of HSCs, hematopoietic progenitor cells (HPCs), red blood cells and platelets as well as hemoglobin levels. In addition, HSCs displayed a significantly reduced self-renewal capacity and were skewed toward myeloid lineage differentiation. We find that Fhl2 loss reduces both HSC quiescence and survival in response to regenerative stress, probably as a consequence of Fhl2-loss-mediated down-regulation of cyclin dependent kinase (CDK)-inhibitors, including p21(Cip) and p27(Kip1). Interestingly, FHL2 is regulated under control of a tissue specific promoter in hematopoietic cells and it is down-regulated by DNA hypermethylation in the leukemia cell line and primary leukemia cells. Furthermore, we find that down-regulation of FHL2 frequently occurs in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) patients, raising a possibility that FHL2 down-regulation plays a role in the pathogenesis of myeloid malignancies. PMID:25179730

  1. Epigenetic Regulation of Hematopoietic Stem Cells

    PubMed Central

    Sharma, Shilpa; Gurudutta, Gangenahalli

    2016-01-01

    Hematopoietic stem cells are endowed with a distinct potential to bolster self-renewal and to generate progeny that differentiate into mature cells of myeloid and lymphoid lineages. Both hematopoietic stem cells and mature cells have the same genome, but their gene expression is controlled by an additional layer of epigenetics such as DNA methylation and post-translational histone modifications, enabling each cell-type to acquire various forms and functions. Until recently, several studies have largely focussed on the transcription factors andniche factors for the understanding of the molecular mechanisms by which hematopoietic cells replicate and differentiate. Several lines of emerging evidence suggest that epigenetic modifications eventually result in a defined chromatin structure and an “individual” gene expression pattern, which play an essential role in the regulation of hematopoietic stem cell self-renewal and differentiation. Distinct epigenetic marks decide which sets of genes may be expressed and which genes are kept silent. Epigenetic mechanisms are interdependent and ensure lifelong production of blood and bone marrow, thereby contributing to stem cell homeostasis. The epigenetic analysis of hematopoiesis raises the exciting possibility that chromatin structure is dynamic enough for regulated expression of genes. Though controlled chromatin accessibility plays an essential role in maintaining blood homeostasis; mutations in chromatin impacts on the regulation of genes critical to the development of leukemia. In this review, we explored the contribution of epigenetic machinery which has implications for the ramification of molecular details of hematopoietic self-renewal for normal development and underlying events that potentially co-operate to induce leukemia. PMID:27426084

  2. Proinflammatory signaling regulates hematopoietic stem cell emergence

    PubMed Central

    Espín-Palazón, Raquel; Stachura, David L.; Campbell, Clyde A.; García-Moreno, Diana; Cid, Natasha Del; Kim, Albert D.; Candel, Sergio; Meseguer, José; Mulero, Victoriano; Traver, David

    2014-01-01

    Summary Hematopoietic stem cells (HSCs) underlie the production of blood and immune cells for the lifetime of an organism. In vertebrate embryos, HSCs arise from the unique transdifferentiation of hemogenic endothelium comprising the floor of the dorsal aorta during a brief developmental window. To date, this process has not been replicated in vitro from pluripotent precursors, partly because the full complement of required signaling inputs remains to be determined. Here, we show that TNFR2 via TNFα activates the Notch and NF-κB signaling pathways to establish HSC fate, indicating a requirement for inflammatory signaling in HSC generation. We determine that primitive neutrophils are the major source of TNFα, assigning a role for transient innate immune cells in establishing the HSC program. These results demonstrate that proinflammatory signaling, in the absence of infection, is utilized by the developing embryo to generate the lineal precursors of the adult hematopoietic system. PMID:25416946

  3. Reprogramming Human Endothelial to Hematopoietic Cells Requires Vascular Induction

    PubMed Central

    Sandler, Vladislav M.; Lis, Raphael; Liu, Ying; Kedem, Alon; James, Daylon; Elemento, Olivier; Butler, Jason M.; Scandura, Joseph M.; Rafii, Shahin

    2014-01-01

    Summary Generating engraftable human hematopoietic cells from autologous tissues promises new therapies for blood diseases. Directed differentiation of pluripotent stem cells yields hematopoietic cells that poorly engraft. Here, we devised a method to phenocopy the vascular-niche microenvironment of hemogenic cells, thereby enabling reprogramming of human endothelial cells (ECs) into engraftable hematopoietic cells without transition through a pluripotent intermediate. Highly purified non-hemogenic human umbilical vein-ECs (HUVECs) or adult dermal microvascular ECs (hDMECs) were transduced with transcription factors (TFs), FOSB, GFI1, RUNX1, and SPI1 (FGRS), and then propagated on serum-free instructive vascular niche monolayers to induce outgrowth of hematopoietic colonies containing cells with functional and immunophenotypic features of multipotent progenitor cells (MPP). These reprogrammed ECs- into human-MPPs (rEC-hMPPs) acquire colony-forming cell (CFC) potential and durably engraft in immune-deficient mice after primary and secondary transplantation, producing long-term rEC-hMPP-derived myeloid (granulocytic/monocytic, erythroid, megakaryocytic) and lymphoid (NK, B) progeny. Conditional expression of FGRS transgenes, combined with vascular-induction, activates endogenous FGRS genes endowing rEC-hMPPs with a transcriptional and functional profile similar to self-renewing MPPs. Our approach underscores the role of inductive cues from vascular-niche in orchestrating and sustaining hematopoietic specification and may prove useful for engineering autologous hematopoietic grafts to treat inherited and acquired blood disorders. PMID:25030167

  4. Lentiviral-mediated RNAi inhibition of Sbds in murine hematopoietic progenitors impairs their hematopoietic potential

    PubMed Central

    Rawls, Amy S.; Gregory, Alyssa D.; Woloszynek, Jill R.; Liu, Fulu

    2007-01-01

    Shwachman-Diamond syndrome (SDS) is a rare multisystem disorder characterized by exocrine pancreatic insufficiency, multilineage hematopoietic dysfunction, and metaphyseal chondrodysplasia. Bone marrow dysfunction is present in nearly all patients with SDS, with neutropenia being the most common abnormality. The majority of patients with SDS have mutations in the Shwachman Bodian Diamond syndrome (SBDS) gene. We have developed a strategy to examine the consequences of lentiviral-mediated RNA interference (RNAi) of Sbds on hematopoiesis. Here, we report that both Sbds RNA and protein expression can be efficiently inhibited in primary murine hematopoietic cells using lentiviral-mediated RNAi. Inhibition of Sbds results in a defect in granulocytic differentiation in vitro and impairs myeloid progenitor generation in vivo. In addition, short-term hematopoietic engraftment was impaired, which is due in part to reduced homing of hematopoietic progenitors to the bone marrow. Finally, we show that inhibition of Sbds is associated with a decrease in circulating B lymphocytes, despite evidence of normal B lymphopoiesis. These data provide the first evidence that loss of Sbds is sufficient to induce abnormalities in hematopoiesis. PMID:17638857

  5. Underground Adaptation to a Hostile Environment: Acute Myeloid Leukemia vs. Natural Killer Cells

    PubMed Central

    Dulphy, Nicolas; Chrétien, Anne-Sophie; Khaznadar, Zena; Fauriat, Cyril; Nanbakhsh, Arash; Caignard, Anne; Chouaib, Salem; Olive, Daniel; Toubert, Antoine

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous group of malignancies which incidence increases with age. The disease affects the differentiation of hematopoietic stem or precursor cells in the bone marrow and can be related to abnormal cytogenetic and/or specific mutational patterns. AML blasts can be sensitive to natural killer (NK) cell antitumor response. However, NK cells are frequently defective in AML patients leading to tumor escape. NK cell defects affect not only the expression of the activating NK receptors, including the natural cytotoxicity receptors, the NK group 2, member D, and the DNAX accessory molecule-1, but also cytotoxicity and IFN-γ release. Such perturbations in NK cell physiology could be related to the adaptation of the AML to the immune pressure and more generally to patient’s clinical features. Various mechanisms are potentially involved in the inhibition of NK-cell functions in AML, including defects in the normal lymphopoiesis, reduced expression of activating receptors through cell-to-cell contacts, and production of immunosuppressive soluble agents by leukemic blasts. Therefore, the continuous cross-talk between AML and NK cells participates to the leukemia immune escape and eventually to patient’s relapse. Methods to restore or stimulate NK cells seem to be attractive strategies to treat patients once the complete remission is achieved. Moreover, our capacity in stimulating the NK cell functions could lead to the development of preemptive strategies to eliminate leukemia-initiating cells before the emergence of the disease in elderly individuals presenting preleukemic mutations in hematopoietic stem cells. PMID:27014273

  6. Cartography of hematopoietic stem cell commitment dependent upon a reporter for transcription factor activation.

    PubMed

    Akashi, Koichi

    2007-06-01

    A hierarchical hematopoietic developmental tree has been proposed based on the result of prospective purification of lineage-restricted progenitors. For more detailed mapping for hematopoietic stem cell (HSC) commitment, we tracked the expression of PU.1, a major granulocyte/monocyte (GM)- and lymphoid-related transcription factor, from the HSC to the myelolymphoid progenitor stages by using a mouse line harboring a knockin reporter for PU.1. This approach enabled us to find a new progenitor population committed to GM and lymphoid lineages within the HSC fraction. This result suggests that there should be another developmental pathway independent of the conventional one with myeloid versus lymphoid bifurcation, represented by common myeloid progenitors and common lymphoid progenitors, respectively. The utilization of the transcription factor expression as a functional marker might be useful to obtain cartography of the hematopoietic development at a higher resolution.

  7. The chemokine receptor CXCR6 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis.

    PubMed

    Xia, Yunfeng; Yan, Jingyin; Jin, Xiaogao; Entman, Mark L; Wang, Yanlin

    2014-08-01

    Bone marrow-derived fibroblasts in circulation are of hematopoietic origin, and they proliferate, differentiate into myofibroblasts, and express the chemokine receptor CXCR6. As chemokines mediate the trafficking of circulating cells to sites of injury, we studied the role of CXCR6 in mouse models of renal injury. Significantly, the kidney of CXCR6 knockout mice accumulated fewer bone marrow-derived fibroblasts in response to injury, expressed less profibrotic chemokines and cytokines, displayed fewer myofibroblasts, and expressed less α-smooth muscle actin in the obstructed kidneys compared with wild-type (WT) mice. CXCR6 deficiency inhibited total collagen deposition and suppressed the expression of collagen I and fibronectin in the obstructed kidneys. Furthermore, WT mice engrafted with CXCR6(-/-) bone marrow cells displayed fewer bone marrow-derived fibroblasts in the kidneys with obstructive injury and showed less severe renal fibrosis compared with WT mice engrafted with CXCR6(+/+) bone marrow cells. Transplant of WT bone marrow into CXCR6(-/-) recipients restored recruitment of myeloid fibroblasts and susceptibility to fibrosis. Hematopoietic fibroblasts migrate into injured kidney and proliferate and differentiate into myofibroblasts. Thus, CXCR6, together with other chemokines and their receptors, may have important roles in the recruitment of bone marrow-derived fibroblast precursors into the kidney and contribute to the pathogenesis of renal fibrosis.

  8. BRAF-V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups

    PubMed Central

    Berres, Marie-Luise; Lim, Karen Phaik Har; Peters, Tricia; Price, Jeremy; Takizawa, Hitoshi; Salmon, Hélène; Idoyaga, Juliana; Ruzo, Albert; Lupo, Philip J.; Hicks, M. John; Shih, Albert; Simko, Stephen J.; Abhyankar, Harshal; Chakraborty, Rikhia; Leboeuf, Marylene; Beltrão, Monique; Lira, Sérgio A.; Heym, Kenneth M.; Clausen, Björn E.; Bigley, Venetia; Collin, Matthew; Manz, Markus G.; McClain, Kenneth

    2014-01-01

    Langerhans cell histiocytosis (LCH) is a clonal disorder with elusive etiology, characterized by the accumulation of CD207+ dendritic cells (DCs) in inflammatory lesions. Recurrent BRAF-V600E mutations have been reported in LCH. In this study, lesions from 100 patients were genotyped, and 64% carried the BRAF-V600E mutation within infiltrating CD207+ DCs. BRAF-V600E expression in tissue DCs did not define specific clinical risk groups but was associated with increased risk of recurrence. Strikingly, we found that patients with active, high-risk LCH also carried BRAF-V600E in circulating CD11c+ and CD14+ fractions and in bone marrow (BM) CD34+ hematopoietic cell progenitors, whereas the mutation was restricted to lesional CD207+ DC in low-risk LCH patients. Importantly, BRAF-V600E expression in DCs was sufficient to drive LCH-like disease in mice. Consistent with our findings in humans, expression of BRAF-V600E in BM DC progenitors recapitulated many features of the human high-risk LCH, whereas BRAF-V600E expression in differentiated DCs more closely resembled low-risk LCH. We therefore propose classification of LCH as a myeloid neoplasia and hypothesize that high-risk LCH arises from somatic mutation of a hematopoietic progenitor, whereas low-risk disease arises from somatic mutation of tissue-restricted precursor DCs. PMID:24638167

  9. Myeloid-derived suppressor cells in gliomas

    PubMed Central

    Kaminska, Bozena

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of early myeloid progenitors and precursors at different stages of differentiation into granulocytes, macrophages, and dendritic cells. Blockade of their differentiation into mature myeloid cells in cancer results in an expansion of this population. High-grade gliomas are the most common malignant tumours of the central nervous system (CNS), with a poor prognosis despite intensive radiation and chemotherapy. Histopathological and flow cytometry analyses of human and rodent experimental gliomas revealed the extensive heterogeneity of immune cells infiltrating gliomas and their microenvironment. Immune cell infiltrates consist of: resident (microglia) and peripheral macrophages, granulocytes, myeloid-derived suppressor cells, and T lymphocytes. Intratumoural density of glioma-associated MDSCs correlates positively with the histological grade of gliomas and patient’s survival. MDSCs have the ability to attract T regulatory lymphocytes to the tumour, but block the activation of tumour-reactive CD4+ T helper cells and cytotoxic CD8+ T cells. Immunomodulatory mechanisms employed by malignant gliomas pose an appalling challenge to brain tumour immunotherapy. In this mini-review we describe phenotypic and functional characteristics of MDSCs in humans and rodents, and their occurrence and potential roles in glioma progression. While understanding the complexity of immune cell interactions in the glioma microenvironment is far from being accomplished, there is significant progress that may lead to the development of immunotherapy for gliomas. PMID:28373814

  10. Myeloid heme oxygenase-1 promotes metastatic tumor colonization in mice.

    PubMed

    Lin, Heng-Huei; Chiang, Ming-Tsai; Chang, Po-Chiao; Chau, Lee-Young

    2015-03-01

    Heme oxygenase-1 (HO-1) is a heme degradation enzyme with antioxidant and immune-modulatory functions. HO-1 promotes tumorigenesis by enhancing tumor cell proliferation and invasion. Whether HO-1 has an effect on cancer progression through stromal compartments is less clear. Here we show that the growth of tumor engrafted subcutaneously in syngeneic mice was not affected by host HO-1 expression. However, lung metastasis arisen from subcutaneous tumor or circulating tumor cells was significantly reduced in HO-1(+/-) mice comparing to wild type (WT) mice. The reduced lung metastasis was also observed in B6 mice bearing HO-1(+/-) bone marrow as comparing to WT chimeras, indicating that HO-1 expression in hematopoietic cells impacts tumor colonization at the metastatic site. Further experiments demonstrated that the numbers of myeloid cells recruited to pulmonary premetastatic niches and metastatic loci were significantly lower in HO-1(+/-) mice than in WT mice. Likewise, the extents of tumor cell extravasation and colonization at the metastatic loci in the early phase of metastasis were significantly lower in HO-1(+/-) mice. Mechanistic studies revealed that HO-1 impacted chemoattractant-induced myeloid cell migration by modulating p38 kinase signaling. Moreover, myeloid HO-1-induced expressions of vascular endothelial growth factor and interleukin-10 promoted tumor cell transendothelial migration and STAT3 activation in vitro. These data support a pathological role of myeloid HO-1 in metastasis and suggest a possibility of targeting myeloid HO-1 for cancer treatment.

  11. Vitamin K2 modulates differentiation and apoptosis of both myeloid and erythroid lineages.

    PubMed

    Sada, Eriko; Abe, Yasunobu; Ohba, Rie; Tachikawa, Yoshimichi; Nagasawa, Eriko; Shiratsuchi, Motoaki; Takayanagi, Ryoichi

    2010-12-01

    Vitamin K2 (VK2) can improve cytopenia in some patients with myelodysplastic syndrome (MDS). Although it is well known that VK2 induces differentiation and apoptosis in acute myeloid leukemia (AML) cell lines, little is known about its effect on normal hematopoietic progenitors. The effects of VK2 on primary myeloid and erythroid progenitors were examined. Mobilized CD34-positive cells from peripheral blood were used for the examination of myeloid lineage cells, and erythroid progenitors purified from peripheral blood were used for erythroid lineage cells. VK2 upregulated the expressions of myeloid markers CD11b and CD14, and increased the mRNA expression levels of CCAAT/enhancer binding protein-α (C/EBPα) and PU.1 in myeloid progenitors. In erythroid progenitors, VK2 did not show a significant effect on differentiation. However, VK2 exhibited an anti-apoptotic effect on erythroid progenitors under erythropoietin depletion. This anti-apoptotic effect was restricted to normal erythroid progenitors and was not shown in erythroleukemic cell line AS-E2. Steroid and xenobiotic receptor (SXR), which was recently identified as a receptor of VK2, was expressed on myeloid progenitors, and the SXR agonist rifampicin (RIF) also upregulated CD11b and CD14 expressions on myeloid progenitors. These results indicate that SXR is involved in the effect of VK2 on myeloid progenitors. The major effect of VK2 on myeloid progenitors was promoting differentiation, whereas its anti-apoptotic effect seemed to be dominant in erythroid progenitors. Although the detailed mechanism of VK2's effect on differentiation or apoptosis of hematopoietic progenitors remains unknown, the effect of VK2 therapy in patients with MDS could be partly explained by these mechanisms.

  12. Concise review: hematopoietic stem cells and tissue stem cells: current concepts and unanswered questions.

    PubMed

    Metcalf, Donald

    2007-10-01

    The term hematopoietic stem cells has at times been used to include a miscellany of precursor cells ranging from multipotential self-generating cells to lineage-restricted progenitors with little capacity for self-generation. It is probable that the stem cells of other tissues also vary widely in their multipotentiality and proliferative capacity. This review questions several dogmas regarding the self-generative capacity of various hematopoietic cells, the single episodic origin of hematopoietic cells, and the irreversible nature of progressive mature cell formation in individual hematopoietic lineages. Disclosure of potential conflicts of interest is found at the end of this article.

  13. The Transcription Factor ARID3a is Important for In Vitro Differentiation of Human Hematopoietic Progenitors1

    PubMed Central

    Ratliff, Michelle L.; Mishra, Meenu; Frank, Mark Barton; Guthridge, Joel M.; Webb, Carol F.

    2015-01-01

    We recently reported that the transcription factor ARID3a is expressed in a subset of human hematopoietic progenitor stem cells in both healthy individuals and in patients with systemic lupus erythematosus. Numbers of ARID3a+ lupus hematopoietic stem progenitor cells were associated with increased production of autoreactive antibodies when those cells were introduced into humanized mouse models. Although ARID3a/Bright knockout mice died in utero, they exhibited decreased numbers of hematopoietic stem cells and erythrocytes, indicating ARID3a is functionally important for hematopoiesis in mice. To explore the requirement for ARID3a for normal human hematopoiesis, hematopoietic stem cell progenitors from human cord blood were subjected to both inhibition and over-expression of ARID3a in vitro. Inhibition of ARID3a resulted in decreased B lineage cell production accompanied by increases in cells with myeloid lineage markers. Over-expression of ARID3a inhibited both myeloid and erythroid differentiation. In addition, inhibition of ARID3a in hematopoietic stem cells resulted in altered expression of transcription factors associated with hematopoietic lineage decisions. These results suggest that appropriate regulation of ARID3a is critical for normal development of both myeloid and B lineage pathways. PMID:26685208

  14. Hematopoietic tissue repair under chronic low daily dose irradiation

    SciTech Connect

    Seed, T.M.

    1994-12-01

    The capacity of the hematopoietic system to repair constantly accruing cellular damage under chronic, low daily dose gamma irradiation is essential for the maintenance of a functional hematopoietic system, and, in turn, long term survival. In certain individuals, however, such continuous cycles of damage and repair provide an essential inductive environment for selected types of hematopathologies, e.g., myeloid leukemia (ML). We have been studying temporal and causal relationships between hematopoietic capacity, associated repair functions, and propensities for hematologic disease in canines under variable levels of chronic radiation stress (0.3{minus}26.3 cGy d{sup {minus}1}). Results indicate that the maximum exposure rate tolerated by the hematopoietic system is highly individual-specific and is based largely on the degree to which repair capacity, and, in turn, hematopoietic restoration, is augmented under chronic exposure. In low-tolerance individuals (prone to aplastic anemia, subgroup (1), the failure to augment basic m-pair functions seemingly results in a progressive accumulation of genetic and cellular damage within vital progenitorial marrow compartments particularly marked within erythroid compartments. that results in loss of reproductive capacity and ultimately in collapse of the hematopoietic system. The high-tolerance individuals (radioaccomodated and either prone- or not prone to ML, subgroup 2 & 3 appear to minimize the accumulating damage effect of daily exposures by extending repair functions, which preserves reproductive integrity and fosters regenerative hematopoietic responses. As the strength of the regenerative response manifests the extent of repair augmentation, the relatively strong response of high- tolerance individuals progressing to patent ML suggests an insufficiency of repair quality rather than repair quantity.

  15. How Is Chronic Myeloid Leukemia Diagnosed?

    MedlinePlus

    ... Detection, Diagnosis, and Staging How Is Chronic Myeloid Leukemia Diagnosed? Many people with CML do not have ... About Chronic Myeloid Leukemia? More In Chronic Myeloid Leukemia About Chronic Myeloid Leukemia Causes, Risk Factors, and ...

  16. Can Acute Myeloid Leukemia Be Prevented?

    MedlinePlus

    ... Causes, Risk Factors, and Prevention Can Acute Myeloid Leukemia Be Prevented? It’s not clear what causes most ... Myeloid Leukemia Be Prevented? More In Acute Myeloid Leukemia About Acute Myeloid Leukemia Causes, Risk Factors, and ...

  17. Hematopoietic cytokine-induced transcriptional regulation and Notch signaling as modulators of MDSC expansion.

    PubMed

    Saleem, Sheinei J; Conrad, Daniel H

    2011-07-01

    Hematopoietic stem cells (HSCs) differentiate into mature lineage restricted blood cells under the influence of a complex network of hematopoietic cytokines, cytokine-mediated transcriptional regulators, and manifold intercellular signaling pathways. The classical model of hematopoiesis proposes that progenitor cells undergo a dichotomous branching into myelo-erythroid and lymphoid lineages. Nonetheless, erythroid and lymphoid restricted progenitors retain their myeloid potential, supporting the existence of an alternative 'myeloid-based' mechanism of hematopoiesis. In this case, abnormal pathology is capable of dysregulating hematopoiesis in favor of myelopoiesis. The accumulation of immature CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs) has been shown to correlate with the presence of several hematopoietic cytokines, transcription factors and signaling pathways, lending support to this hypothesis. Although the negative role of MDSCs in cancer development is firmly established, it is now understood that MDSCs can exert a paradoxical, positive effect on transplantation, autoimmunity, and sepsis. Our conflicted understanding of MDSC function and the complexity of hematopoietic cytokine signaling underscores the need to elucidate molecular pathways of MDSC expansion for the development of novel MDSC-based therapeutics.

  18. What Is Acute Myeloid Leukemia?

    MedlinePlus

    ... Acute Myeloid Leukemia (AML) What Is Acute Myeloid Leukemia? Cancer starts when cells in a part of ... the body from doing their jobs. Types of leukemia Not all leukemias are the same. There are ...

  19. What Is Chronic Myeloid Leukemia?

    MedlinePlus

    ... About Chronic Myeloid Leukemia What Is Chronic Myeloid Leukemia? Cancer starts when cells in the body begin ... is the same as for adults. What is leukemia? Leukemia is a cancer that starts in the ...

  20. Isocitrate dehydrogenase mutations in myeloid malignancies

    PubMed Central

    Medeiros, B C; Fathi, A T; DiNardo, C D; Pollyea, D A; Chan, S M; Swords, R

    2017-01-01

    Alterations to genes involved in cellular metabolism and epigenetic regulation are implicated in the pathogenesis of myeloid malignancies. Recurring mutations in isocitrate dehydrogenase (IDH) genes are detected in approximately 20% of adult patients with acute myeloid leukemia (AML) and 5% of adults with myelodysplastic syndromes (MDS). IDH proteins are homodimeric enzymes involved in diverse cellular processes, including adaptation to hypoxia, histone demethylation and DNA modification. The IDH2 protein is localized in the mitochondria and is a critical component of the tricarboxylic acid (also called the ‘citric acid' or Krebs) cycle. Both IDH2 and IDH1 (localized in the cytoplasm) proteins catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG). Mutant IDH enzymes have neomorphic activity and catalyze reduction of α-KG to the (R) enantiomer of 2-hydroxyglutarate, which is associated with DNA and histone hypermethylation, altered gene expression and blocked differentiation of hematopoietic progenitor cells. The prognostic significance of mutant IDH (mIDH) is controversial but appears to be influenced by co-mutational status and the specific location of the mutation (IDH1-R132, IDH2-R140, IDH2-R172). Treatments specifically or indirectly targeted to mIDH are currently under clinical investigation; these therapies have been generally well tolerated and, when used as single agents, have shown promise for inducing responses in some mIDH patients when used as first-line treatment or in relapsed or refractory AML or MDS. Use of mIDH inhibitors in combination with drugs with non-overlapping mechanisms of action is especially promising, as such regimens may address the clonal heterogeneity and the multifactorial pathogenic processes involved in mIDH myeloid malignancies. Advances in mutational analysis have made testing more rapid and convenient, and less expensive; such testing should become part of routine diagnostic workup and repeated at

  1. Gene expression profiling to define the cell intrinsic role of the SKI proto-oncogene in hematopoiesis and myeloid neoplasms.

    PubMed

    Chalk, Alistair M; Liddicoat, Brian J J; Walkley, Carl R; Singbrant, Sofie

    2014-12-01

    The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced gene signatures associated with hematopoietic stem cells and myeloid differentiation. Here we provide detailed experimental methods and analysis for the gene expression profiling described in our recently published study of Singbrant et al. (2014) in Haematologica. Our data sets (available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39457) provide a resource for exploring the underlying molecular mechanisms of the involvement of the proto-oncogene SKI in hematopoietic stem cell function and development of myeloid neoplasms.

  2. The SKI proto-oncogene enhances the in vivo repopulation of hematopoietic stem cells and causes myeloproliferative disease.

    PubMed

    Singbrant, Sofie; Wall, Meaghan; Moody, Jennifer; Karlsson, Göran; Chalk, Alistair M; Liddicoat, Brian; Russell, Megan R; Walkley, Carl R; Karlsson, Stefan

    2014-04-01

    The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced a gene signature associated with hematopoietic stem cells and myeloid differentiation, as well as hepatocyte growth factor signaling. Here we demonstrate that, in contrast to what has generally been assumed, the significant impact of SKI on hematopoiesis is independent of its ability to inhibit TGF-beta signaling. Instead, myeloid progenitors expressing SKI are partially dependent on functional hepatocyte growth factor signaling. Collectively our results demonstrate that SKI is an important regulator of hematopoietic stem cell activity and its overexpression leads to myeloproliferative disease.

  3. Leukomogenic factors downregulate heparanase expression in acute myeloid leukemia cells

    SciTech Connect

    Eshel, Rinat; Ben-Zaken, Olga; Vainas, Oded; Nadir, Yona; Minucci, Saverio; Polliack, Aaron; Naparstek, Ella; Vlodavsky, Israel; Katz, Ben-Zion; E-mail: bkatz@tasmc.healt.gov.il

    2005-10-07

    Heparanase is a heparan sulfate-degrading endoglycosidase expressed by mature monocytes and myeloid cells, but not by immature hematopoietic progenitors. Heparanase gene expression is upregulated during differentiation of immature myeloid cells. PML-RAR{alpha} and PLZF-RAR{alpha} fusion gene products associated with acute promyelocytic leukemia abrogate myeloid differentiation and heparanase expression. AML-Eto, a translocation product associated with AML FAB M2, also downregulates heparanase gene expression. The common mechanism that underlines the activity of these three fusion gene products involves the recruitment of histone deacetylase complexes to specific locations within the DNA. We found that retinoic acid that dissociates PML-RAR{alpha} from the DNA, and which is used to treat acute promyelocytic leukemia patients, restores heparanase expression to normal levels in an acute promyelocytic leukemia cell line. The retinoic acid effects were also observed in primary acute promyelocytic leukemia cells and in a retinoic acid-treated acute promyelocytic leukemia patient. Histone deacetylase inhibitor reverses the downregulation of heparanase expression induced by the AML-Eto fusion gene product in M2 type AML. In summary, we have characterized a link between leukomogenic factors and the downregulation of heparanase in myeloid leukemic cells.

  4. Neutrophil biology and the next generation of myeloid growth factors.

    PubMed

    Dale, David C

    2009-01-01

    Neutrophils are the body's critical phagocytic cells for defense against bacterial and fungal infections; bone marrow must produce approximately 10 x 10(9) neutrophils/kg/d to maintain normal blood neutrophil counts. Production of neutrophils depends on myeloid growth factors, particularly granulocyte colony-stimulating factor (G-CSF). After the original phase of development, researchers modified these growth factors to increase their size and delay renal clearance, increase their biologic potency, and create unique molecules for business purposes. Pegylated G-CSF is a successful product of these efforts. Researchers have also tried to identify small molecules to serve as oral agents that mimic the parent molecules, but these programs have been less successful. In 2006, the European Medicines Agency established guidelines for the introduction of new biologic medicinal products claimed to be similar to reference products that had previously been granted marketing authorization in the European community, called bio-similars. Globally, new and copied versions of G-CSF and other myeloid growth factors are now appearing. Some properties of the myeloid growth factors are similar to other agents, offering opportunities for the development of alternative drugs and treatments. For example, recent research shows that hematopoietic progenitor cells can be mobilized with a chemokine receptor antagonist, chemotherapy, G-CSF, and granulocyte macrophage colony-stimulating factor. Advances in neutrophil biology coupled with better understanding and development of myeloid growth factors offer great promise for improving the care of patients with cancer and many other disorders.

  5. On hematopoietic stem cell fate.

    PubMed

    Metcalf, Donald

    2007-06-01

    Multipotential hematopoietic stem cells (HSCs) maintain blood-cell formation throughout life. Here, Metcalf considers the origin and heterogeneity of HSCs, their ability to self-generate, and their commitment to the various hematopoietic lineages.

  6. Immature hematopoietic stem cells undergo maturation in the fetal liver.

    PubMed

    Kieusseian, Aurelie; Brunet de la Grange, Philippe; Burlen-Defranoux, Odile; Godin, Isabelle; Cumano, Ana

    2012-10-01

    Hematopoietic stem cells (HSCs), which are defined by their capacity to reconstitute adult conventional mice, are first found in the dorsal aorta after 10.5 days post coitus (dpc) and in the fetal liver at 11 dpc. However, lympho-myeloid hematopoietic progenitors are detected in the dorsal aorta from 9 dpc, raising the issue of their role in establishing adult hematopoiesis. Here, we show that these progenitors are endowed with long-term reconstitution capacity, but only engraft natural killer (NK)-deficient Rag2γc(-/-) mice. This novel population, called here immature HSCs, evolves in culture with thrombopoietin and stromal cells, into HSCs, defined by acquisition of CD45 and MHC-1 expression and by the capacity to reconstitute NK-competent mice. This evolution occurs during ontogeny, as early colonization of fetal liver by immature HSCs precedes that of HSCs. Moreover, organ culture experiments show that immature HSCs acquire, in this environment, the features of HSCs.

  7. The risk of chronic myeloid leukemia: can the dose-response curve be U-shaped?

    PubMed

    Radivoyevitch, Tomas; Kozubek, Stanislav; Sachs, Rainer K

    2002-01-01

    Chronic myeloid leukemia (CML) is caused by a BCR-ABL chromosome translocation in a primitive hematopoietic stem cell. The number of hematopoietic stem cells in the body is thus a major factor in CML risk. Evidence suggests that the number of hematopoietic stem cells in the body is only loosely regulated, having a broad "dead-band" of physiologically acceptable values. The existence of a dead-band is important, because it would imply that low levels of hematopoietic stem cell killing can be permanent; i.e., it would imply that low doses of ionizing radiation can cause permanent reductions in the total number of CML target cells and thus permanent reductions in the subsequent risk of spontaneous CML. Such reductions in risk could be substantial if hematopoietic stem cells are also hypersensitive to radiation killing at low dose. Our calculations indicate that, due to dead-band hematopoietic stem cell control, if hematopoietic stem cells are as hypersensitive to killing at low doses as epithelial cells, reductions in the spontaneous CML risk could exceed the low-dose risks of induced CML; i.e., the net lifetime CML risk could have a U-shaped dose-response curve.

  8. Hematopoietic potential of the pre-fusion allantois.

    PubMed

    Corbel, Catherine; Salaün, Josselyne; Belo-Diabangouaya, Patricia; Dieterlen-Lièvre, Françoise

    2007-01-15

    We previously showed that the fetal component of the placenta has a vigorous hematopoietic activity. Whether this organ is an environmental niche where hematopoietic stem cells (HSC) proliferate and become committed to various lineages, or whether it is also a site for HSC emergence, was left open. This issue can be addressed only if the components that will give rise to the placenta are tested prior to vascularization. The fetal part of the placenta forms through the fusion of the allantois and the chorionic plate around the stage of 7 somite pairs. The allantois, a mesodermal rudiment that provides fetal blood vessels to the placenta, was retrieved before fusion. We found in this rudiment expression of CD41, a known marker of early embryonic hematopoietic progenitors. c-Kit encoding a progenitor specific receptor was also expressed. Significantly, as early as the 1-2 somite stage, the allantois yielded erythroid, myeloid and multipotent clonogenic progenitors, when pre-cultured in toto prior to seeding in a semisolid medium. These results provide evidence that the allantois has hematopoietic potential per se. Whether this potential also involves the ability to produce HSC is still to be determined.

  9. Ott1(Rbm15) has pleiotropic roles in hematopoietic development

    PubMed Central

    Raffel, Glen D.; Mercher, Thomas; Shigematsu, Hirokazu; Williams, Ifor R.; Cullen, Dana E.; Akashi, Koichi; Bernard, Olivier A.; Gilliland, D. Gary

    2007-01-01

    OTT1(RBM15) was originally described as a 5′ translocation partner of the MAL(MKL1) gene in t(1,22)(p13;q13) infant acute mega karyocytic leukemia. OTT1 has no established physiological function, but it shares homology with the spen/Mint/SHARP family of proteins defined by three amino-terminal RNA recognition motifs and a carboxyl-terminal SPOC (Spen paralog and ortholog carboxyl-terminal) domain believed to act as a transcriptional repressor. To define the role of OTT1 in hematopoiesis and help elucidate the mechanism of t(1,22) acute megakaryocytic leukemia pathogenesis, a conditional allele of Ott1 was generated in mice. Deletion of Ott1 in adult mice caused a loss of peripheral B cells due to a block in pro/pre-B differentiation. There is myeloid and megakaryocytic expansion in spleen and bone marrow, an increase in the Lin−Sca-1+c-Kit+ compartment that includes hematopoietic stem cells, and a shift in progenitor fate toward granulocyte differentiation. These data show a requirement for Ott1 in B lymphopoiesis, and inhibitory roles in the myeloid, megakaryocytic, and progenitor compartments. The ability of Ott1 to affect hematopoietic cell fate and expansion in multiple lineages is a novel attribute for a spen family member and delineates Ott1 from other known effectors of hematopoietic development. It is plausible that dysregulation of Ott1-dependent hematopoietic developmental pathways, in particular those affecting the megakaryocyte lineage, may contribute to OTT1-MAL-mediated leukemogenesis. PMID:17376872

  10. A Rare Complication Developing After Hematopoietic Stem Cell Transplantation: Wernicke’s Encephalopathy

    PubMed Central

    Solmaz, Soner; Gereklioğlu, Çiğdem; Tan, Meliha; Demir, Şenay; Yeral, Mahmut; Korur, Aslı; Boğa, Can; Özdoğu, Hakan

    2015-01-01

    Thiamine is a water-soluble vitamin. Thiamine deficiency can present as a central nervous system disorder known as Wernicke’s encephalopathy, which classically manifests as confusion, ataxia, and ophthalmoplegia. Wernicke’s encephalopathy has rarely been reported following hematopoietic stem cell transplantation. Herein, we report Wernicke’s encephalopathy in a patient with acute myeloid leukemia who had been receiving prolonged total parenteral nutrition after haploidentical allogeneic hematopoietic stem cell transplantation. To the best of our knowledge, this is the first case reported from Turkey in the literature. PMID:25912759

  11. Human herpesvirus 7 infection of lymphoid and myeloid cell lines transduced with an adenovirus vector containing the CD4 gene.

    PubMed Central

    Yasukawa, M; Inoue, Y; Ohminami, H; Sada, E; Miyake, K; Tohyama, T; Shimada, T; Fujita, S

    1997-01-01

    It has been reported recently that CD4 is a major component of the receptor for human herpesvirus 7 (HHV-7), which has been newly identified as a T-lymphotropic virus. To investigate further the role of CD4 in HHV-7 infection, we examined the susceptibility to HHV-7 infection of various CD4-negative or weakly positive cell lines into which the cDNA for CD4 was transferred using an adenovirus vector (Adex1CACD4). Of 13 cell lines transduced with Adex1CACD4, including T-lymphoid, B-lymphoid, monocytoid, and myeloid cell lines, one T-lymphoid cell line, one monocytoid cell line, and two cell lines established from the blast crisis of chronic myelogenous leukemia showed high susceptibility to HHV-7 infection. Taken together with the results of previous studies, these data suggest strongly that CD4 is a major component of the binding receptor for HHV-7. This study also shows that HHV-7 may be able to infect CD4-positive hematopoietic precursor cells as well as T lymphocytes. PMID:8995705

  12. A dominant-negative mutant of C/EBPalpha, associated with acute myeloid leukemias, inhibits differentiation of myeloid and erythroid progenitors of man but not mouse.

    PubMed

    Schwieger, Maike; Löhler, Jürgen; Fischer, Meike; Herwig, Uwe; Tenen, Daniel G; Stocking, Carol

    2004-04-01

    The CCAAT/enhancer binding protein alpha (C/EBPalpha) is an essential transcription factor for granulocytic differentiation. C/EBPalpha mutations are found in approximately 8% of acute myeloid leukemia (AML) patients. Most of these mutations occur in the N-terminal coding region, resulting in a frame shift and the enhanced translation of a dominant-negative 30-kDa protein, which may be responsible for the differentiation block observed in AML. To test this hypothesis, we introduced a cDNA encoding an N-terminal mutated C/EBPalpha (mut10) into primary hematopoietic progenitors using a retroviral vector. Expression of mut10 in human CD34+ cord blood cells dramatically inhibited differentiation of both myeloid and erythroid lineages. Immunohistochemical analysis demonstrated coexpression of both myeloid and erythroid markers in the immature transformed cells. Surprisingly, mut10 did not block myelocytic differentiation in murine progenitors but did alter their differentiation kinetics and clonogenicity. Experiments were performed to confirm that the differential effect of mut10 on murine and human progenitors was not due to species-specific differences in C/EBPalpha protein sequences, expression levels, or inefficient targeting of relevant cells. Taken together, our results underline the intrinsic differences between hematopoietic controls in mouse and human and support the hypothesis that mutations in CEBPA are critical events in the disruption of myeloid differentiation in AMLs.

  13. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors.

    PubMed

    Liu, Yong-Jun

    2005-01-01

    Type 1 interferon-(alpha, beta, omega)-producing cells (IPCs), also known as plasmacytoid dendritic cell precursors (pDCs), represent 0.2%-0.8% of peripheral blood mononuclear cells in both humans and mice. IPCs display plasma cell morphology, selectively express Toll-like receptor (TLR)-7 and TLR9, and are specialized in rapidly secreting massive amounts of type 1 interferon following viral stimulation. IPCs can promote the function of natural killer cells, B cells, T cells, and myeloid DCs through type 1 interferons during an antiviral immune response. At a later stage of viral infection, IPCs differentiate into a unique type of mature dendritic cell, which directly regulates the function of T cells and thus links innate and adaptive immune responses. After more than two decades of effort by researchers, IPCs finally claim their place in the hematopoietic chart as the most important cell type in antiviral innate immunity. Understanding IPC biology holds future promise for developing cures for infectious diseases, cancer, and autoimmune diseases.

  14. EVOLUTION OF MYELOID CELLS

    PubMed Central

    Barreda, Daniel R.; Neely, Harold R.; Flajnik, Martin F.

    2015-01-01

    In 1882, Elie Metchnikoff identified myeloid-like cells from starfish larvae responding to the invasion by a foreign body (rose thorn). This marked the origins of the study of innate immunity, and an appreciation that cellular immunity is already well established in these “primitive” organisms. This chapter focuses on these myeloid cells as well as the newest members of this family, the dendritic cells (DC), and explores their evolutionary origins. Our goal is to provide evolutionary context for the development of the multilayered immune system of mammals, where myeloid cells now serve as central effectors of innate immunity and regulators of adaptive immunity. Overall, we find that core contributions of myeloid cells to the regulation of inflammation are based on mechanisms that have been honed over hundreds of millions of years of evolution. Using phagocytosis as a platform, we show how fairly simple beginnings have offered a robust foundation onto which additional control features have been integrated, resulting in central regulatory nodes that now manage multi-factorial aspects of homeostasis and immunity. PMID:27337471

  15. Acute myeloid leukemia cells polarize macrophages towards a leukemia supporting state in a Growth factor independence 1 dependent manner

    PubMed Central

    Al-Matary, Yahya S.; Botezatu, Lacramioara; Opalka, Bertram; Hönes, Judith M.; Lams, Robert F.; Thivakaran, Aniththa; Schütte, Judith; Köster, Renata; Lennartz, Klaus; Schroeder, Thomas; Haas, Rainer; Dührsen, Ulrich; Khandanpour, Cyrus

    2016-01-01

    The growth of malignant cells is not only driven by cell-intrinsic factors, but also by the surrounding stroma. Monocytes/Macrophages play an important role in the onset and progression of solid cancers. However, little is known about their role in the development of acute myeloid leukemia, a malignant disease characterized by an aberrant development of the myeloid compartment of the hematopoietic system. It is also unclear which factors are responsible for changing the status of macrophage polarization, thus supporting the growth of malignant cells instead of inhibiting it. We report herein that acute myeloid leukemia leads to the invasion of acute myeloid leukemia-associated macrophages into the bone marrow and spleen of leukemic patients and mice. In different leukemic mouse models, these macrophages support the in vitro expansion of acute myeloid leukemia cell lines better than macrophages from non-leukemic mice. The grade of macrophage infiltration correlates in vivo with the survival of the mice. We found that the transcriptional repressor Growth factor independence 1 is crucial in the process of macrophage polarization, since its absence impedes macrophage polarization towards a leukemia supporting state and favors an anti-tumor state both in vitro and in vivo. These results not only suggest that acute myeloid leukemia-associated macrophages play an important role in the progression of acute myeloid leukemia, but also implicate Growth factor independence 1 as a pivotal factor in macrophage polarization. These data may provide new insights and opportunities for novel therapies for acute myeloid leukemia. PMID:27390361

  16. Cellular Reprogramming Allows Generation of Autologous Hematopoietic Progenitors From AML Patients That Are Devoid of Patient-Specific Genomic Aberrations.

    PubMed

    Salci, Kyle R; Lee, Jong-Hee; Laronde, Sarah; Dingwall, Steve; Kushwah, Rahul; Fiebig-Comyn, Aline; Leber, Brian; Foley, Ronan; Dal Cin, Arianna; Bhatia, Mickie

    2015-06-01

    Current treatments that use hematopoietic progenitor cell (HPC) transplantation in acute myeloid leukemia (AML) patients substantially reduce the risk of relapse, but are limited by the availability of immune compatible healthy HPCs. Although cellular reprogramming has the potential to provide a novel autologous source of HPCs for transplantation, the applicability of this technology toward the derivation of healthy autologous hematopoietic cells devoid of patient-specific leukemic aberrations from AML patients must first be evaluated. Here, we report the generation of human AML patient-specific hematopoietic progenitors that are capable of normal in vitro differentiation to myeloid lineages and are devoid of leukemia-associated aberration found in matched patient bone marrow. Skin fibroblasts were obtained from AML patients whose leukemic cells possessed a distinct, leukemia-associated aberration, and used to create AML patient-specific induced pluripotent stem cells (iPSCs). Through hematopoietic differentiation of AML patient iPSCs, coupled with cytogenetic interrogation, we reveal that AML patient-specific HPCs possess normal progenitor capacity and are devoid of leukemia-associated mutations. Importantly, in rare patient skin samples that give rise to mosaic fibroblast cultures that continue to carry leukemia-associated mutations; healthy hematopoietic progenitors can also be generated via reprogramming selection. Our findings provide the proof of principle that cellular reprogramming can be applied on a personalized basis to generate healthy HPCs from AML patients, and should further motivate advances toward creating transplantable hematopoietic stem cells for autologous AML therapy.

  17. Redefining Langerhans Cell Histiocytosis as a Myeloid Dysplasia and Identifying B | Division of Cancer Prevention

    Cancer.gov

    DESCRIPTION (provided by applicant): Redefining Langerhans Cell Histiocytosis as a Myeloid Dysplasia and Identifying Biomarkers for Early Detection and Risk Assessment. This application addresses Program Announcement PA-09-197: Biomarkers for Early Detection of Hematopoietic Malignancies (R01). The overall aim of this project is to identify novel biomarkers that may be used to diagnose and treat patients with Langerhans Cell Histiocytosis (LCH). LCH occurs with similar frequency as other rare malignancies including Hodgkin's lymphoma and AML. |

  18. Mitigation of radiation-induced hematopoietic injury by the polyphenolic acetate 7, 8-diacetoxy-4-methylthiocoumarin in mice

    PubMed Central

    Venkateswaran, Kavya; Shrivastava, Anju; Agrawala, Paban K.; Prasad, Ashok; Kalra, Namita; Pandey, Parvat R.; Manda, Kailash; Raj, Hanumantharao G.; Parmar, Virinder S.; Dwarakanath, Bilikere S.

    2016-01-01

    Protection of the hematopoietic system from radiation damage, and/or mitigation of hematopoietic injury are the two major strategies for developing medical countermeasure agents (MCM) to combat radiation-induced lethality. In the present study, we investigated the potential of 7, 8-diacetoxy-4-methylthiocoumarin (DAMTC) to ameliorate radiation-induced hematopoietic damage and the associated mortality following total body irradiation (TBI) in C57BL/6 mice. Administration of DAMTC 24 hours post TBI alleviated TBI-induced myelo-suppression and pancytopenia, by augmenting lymphocytes and WBCs in the peripheral blood of mice, while bone marrow (BM) cellularity was restored through enhanced proliferation of the stem cells. It stimulated multi-lineage expansion and differentiation of myeloid progenitors in the BM and induced proliferation of splenic progenitors thereby, facilitating hematopoietic re-population. DAMTC reduced the radiation-induced apoptotic and mitotic death in the hematopoietic compartment. Recruitment of pro-inflammatory M1 macrophages in spleen contributed to the immune-protection linked to the mitigation of hematopoietic injury. Recovery of the hematopoietic compartment correlated well with mitigation of mortality at a lethal dose of 9 Gy, leading to 80% animal survival. Present study establishes the potential of DAMTC to mitigate radiation-induced injury to the hematopoietic system by stimulating the re-population of stem cells from multiple lineages. PMID:27849061

  19. Mitigation of radiation-induced hematopoietic injury by the polyphenolic acetate 7, 8-diacetoxy-4-methylthiocoumarin in mice.

    PubMed

    Venkateswaran, Kavya; Shrivastava, Anju; Agrawala, Paban K; Prasad, Ashok; Kalra, Namita; Pandey, Parvat R; Manda, Kailash; Raj, Hanumantharao G; Parmar, Virinder S; Dwarakanath, Bilikere S

    2016-11-16

    Protection of the hematopoietic system from radiation damage, and/or mitigation of hematopoietic injury are the two major strategies for developing medical countermeasure agents (MCM) to combat radiation-induced lethality. In the present study, we investigated the potential of 7, 8-diacetoxy-4-methylthiocoumarin (DAMTC) to ameliorate radiation-induced hematopoietic damage and the associated mortality following total body irradiation (TBI) in C57BL/6 mice. Administration of DAMTC 24 hours post TBI alleviated TBI-induced myelo-suppression and pancytopenia, by augmenting lymphocytes and WBCs in the peripheral blood of mice, while bone marrow (BM) cellularity was restored through enhanced proliferation of the stem cells. It stimulated multi-lineage expansion and differentiation of myeloid progenitors in the BM and induced proliferation of splenic progenitors thereby, facilitating hematopoietic re-population. DAMTC reduced the radiation-induced apoptotic and mitotic death in the hematopoietic compartment. Recruitment of pro-inflammatory M1 macrophages in spleen contributed to the immune-protection linked to the mitigation of hematopoietic injury. Recovery of the hematopoietic compartment correlated well with mitigation of mortality at a lethal dose of 9 Gy, leading to 80% animal survival. Present study establishes the potential of DAMTC to mitigate radiation-induced injury to the hematopoietic system by stimulating the re-population of stem cells from multiple lineages.

  20. The normal flora may contribute to the quantitative preponderance of myeloid cells under physiological conditions.

    PubMed

    Liang, Shi; LiHua, Hu

    2011-01-01

    Under physiological conditions, the innate immune cells derived from myeloid lineage absolutely outnumber the lymphoid cells. At present, two theories are attributed to the maintenance of haemopoiesis: the asymmetric cell division and the bone marrow hematopoietic microenvironment or "niche". However, the former only explains the self-renewal of haemopoietic stem cell (HSC) and the start of haemopoietic differentiation but fails to address the inducers of cell fate decisions; the latter has to admit that the hematopoietic cytokines, despite their significance in the maintenance of haemopoiesis, have no specific effect on lineage commitment. Given these flaws, the advantageous mechanism of myeloid haemopoiesis has not yet been uncovered in the current theories. The discoveries that bacterial components (lipopolysaccharide, LPS) and intestinal decontamination affect the mobilization of HSC trigger the interest in normal flora, which together with their components may have an effect on haemopoiesis. In the experiments in dogs and mice, researchers documented that the generation of myeloid cells has undergone changes in the bone marrow and periphery when antibiotics are used to regulate the normal intestinal flora and the concentration of its components. However, the same changes are not involved in lymphoid cells. Therefore, we hypothesize that in human body normal flora and its components are a driving force to maintain myeloid haemopoiesis under physiological conditions. To account for the selectiveness in haemopoiesis, these facts should be taken into consideration, such as HSC and mesenchymal stem cells (MSC) functionally expressed pattern recognition receptors (PRR), and both of them can self-migrate or be recruited by normal flora or its components into periphery. Dynamically monitoring the myeloid haemopoiesis may provide an important complementary program that precludes the abuse of antibiotics, which prevents diseases triggered by the imbalance of normal

  1. Fetal and neonatal hematopoietic progenitors are functionally and transcriptionally resistant to Flt3-ITD mutations

    PubMed Central

    Porter, Shaina N; Cluster, Andrew S; Yang, Wei; Busken, Kelsey A; Patel, Riddhi M; Ryoo, Jiyeon; Magee, Jeffrey A

    2016-01-01

    The FLT3 Internal Tandem Duplication (FLT3ITD) mutation is common in adult acute myeloid leukemia (AML) but rare in early childhood AML. It is not clear why this difference occurs. Here we show that Flt3ITD and cooperating Flt3ITD/Runx1 mutations cause hematopoietic stem cell depletion and myeloid progenitor expansion during adult but not fetal stages of murine development. In adult progenitors, FLT3ITD simultaneously induces self-renewal and myeloid commitment programs via STAT5-dependent and STAT5-independent mechanisms, respectively. While FLT3ITD can activate STAT5 signal transduction prior to birth, this signaling does not alter gene expression until hematopoietic progenitors transition from fetal to adult transcriptional states. Cooperative interactions between Flt3ITD and Runx1 mutations are also blunted in fetal/neonatal progenitors. Fetal/neonatal progenitors may therefore be protected from leukemic transformation because they are not competent to express FLT3ITD target genes. Changes in the transcriptional states of developing hematopoietic progenitors may generally shape the mutation spectra of human leukemias. DOI: http://dx.doi.org/10.7554/eLife.18882.001 PMID:27879203

  2. T cell development requires constraint of the myeloid regulator C/EBPa by the Notch target and transcriptional repressor Hes1

    PubMed Central

    De Obaldia, Maria Elena; Bell, J Jeremiah; Wang, Xinxin; Harly, Christelle; Yashiro-Ohtani, Yumi; DeLong, Jonathan H; Zlotoff, Daniel A; Sultana, Dil Afroz; Pear, Warren S; Bhandoola, Avinash

    2014-01-01

    Notch signaling induces gene expression of the T cell lineage and discourages alternative fate outcomes. Hematopoietic deficiency in the Notch target Hes1 results in severe T cell lineage defects; however, the underlying mechanism is unknown. We found here that Hes1 constrained myeloid gene-expression programs in T cell progenitor cells, as deletion of the myeloid regulator C/EBPa restored the development of T cells from Hes1-deficient progenitor cells. Repression of Cebpa by Hes1 required its DNA-binding and Groucho-recruitment domains. Hes1-deficient multipotent progenitor cells showed a developmental bias toward myeloid and dendritic cells after Notch signaling, whereas Hes1-deficient lymphoid progenitor cells required additional cytokine signaling for diversion into the myeloid lineage. Our findings establish the importance of constraining developmental programs of the myeloid lineage early in T cell development. PMID:24185616

  3. Long-term hematopoietic stem cell damage in a murine model of the hematopoietic syndrome of the acute radiation syndrome.

    PubMed

    Chua, Hui Lin; Plett, P Artur; Sampson, Carol H; Joshi, Mandar; Tabbey, Rebeka; Katz, Barry P; MacVittie, Thomas J; Orschell, Christie M

    2012-10-01

    Residual bone marrow damage (RBMD) persists for years following exposure to radiation and is believed to be due to decreased self-renewal potential of radiation-damaged hematopoietic stem cells (HSC). Current literature has examined primarily sublethal doses of radiation and time points within a few months of exposure. In this study, the authors examined RBMD in mice surviving lethal doses of total body ionizing irradiation (TBI) in a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS). Survivors were analyzed at various time points up to 19 mo post-TBI for hematopoietic function. The competitive bone marrow (BM) repopulating potential of 150 purified c-Kit+ Sca-1+ lineage- CD150+ cells (KSLCD150+) remained severely deficient throughout the study compared to KSLCD150+ cells from non-TBI age-matched controls. The minimal engraftment from these TBI HSCs is predominantly myeloid, with minimal production of lymphocytes both in vitro and in vivo. All classes of blood cells as well as BM cellularity were significantly decreased in TBI mice, especially at later time points as mice aged. Primitive BM hematopoietic cells (KSLCD150+) displayed significantly increased cell cycling in TBI mice at all time points, which may be a physiological attempt to maintain HSC numbers in the post-irradiation state. Taken together, these data suggest that the increased cycling among primitive hematopoietic cells in survivors of lethal radiation may contribute to long-term HSC exhaustion and subsequent RBMD, exacerbated by the added insult of aging at later time points.

  4. IL12B expression is sustained by a heterogenous population of myeloid lineages during tuberculosis

    PubMed Central

    Reeme, Allison E.; Miller, Halli E.; Robinson, Richard T.

    2015-01-01

    Summary IL12B is required for resistance to Mycobacterium tuberculosis (Mtb) infection, promoting the initiation and maintenance of Mtb-specific effector responses. While this makes the IL12-pathway an attractive target for experimental tuberculosis (TB) therapies, data regarding what lineages express IL12B after infection is established are limited. This is not obvious in the lung, an organ in which both hematopoietic and non-hematopoietic lineages produce IL12p40 upon pathogen encounter. Here, we use radiation bone marrow chimeras and Yet40 reporter mice to determine what lineages produce IL12p40 during experimental TB. We observed that hematopoietic IL12p40-production was sufficient to control Mtb, with no contribution by non-hematopoietic lineages. Furthermore, rather than being produced by a single subset, IL12p40 was produced by cells that were heterogenous in their size, granularity, autofluorescence and expression of CD11c, CD11b and CD8α. While depending on the timepoint and tissue examined, the surface phenotype of IL12p40-producers most closely resembled macrophages based on previous surveys of lung myeloid lineages. Importantly, depletion of CDllchi cells during infection had no affect on lung IL12p40-concentrations. Collectively, our data demonstrate that IL12p40 production is sustained by a heterogenous population of myeloid lineages during experimental TB, and that redundant mechanisms of IL12p40-production exist when CD11chi lineages are absent. PMID:23491716

  5. IL12B expression is sustained by a heterogenous population of myeloid lineages during tuberculosis.

    PubMed

    Reeme, Allison E; Miller, Halli E; Robinson, Richard T

    2013-05-01

    IL12B is required for resistance to Mycobacterium tuberculosis (Mtb) infection, promoting the initiation and maintenance of Mtb-specific effector responses. While this makes the IL12-pathway an attractive target for experimental tuberculosis (TB) therapies, data regarding what lineages express IL12B after infection is established are limited. This is not obvious in the lung, an organ in which both hematopoietic and non-hematopoietic lineages produce IL12p40 upon pathogen encounter. Here, we use radiation bone marrow chimeras and Yet40 reporter mice to determine what lineages produce IL12p40 during experimental TB. We observed that hematopoietic IL12p40-production was sufficient to control Mtb, with no contribution by non-hematopoietic lineages. Furthermore, rather than being produced by a single subset, IL12p40 was produced by cells that were heterogenous in their size, granularity, autofluorescence and expression of CD11c, CD11b and CD8α. While depending on the timepoint and tissue examined, the surface phenotype of IL12p40-producers most closely resembled macrophages based on previous surveys of lung myeloid lineages. Importantly, depletion of CD11c(hi) cells during infection had no affect on lung IL12p40-concentrations. Collectively, our data demonstrate that IL12p40 production is sustained by a heterogenous population of myeloid lineages during experimental TB, and that redundant mechanisms of IL12p40-production exist when CD11c(hi) lineages are absent.

  6. Early postradition recovery of hematopoietic stromal precursor cells

    SciTech Connect

    Todriya, T.V.

    1985-04-01

    The aim of this investigation was an immunohistochemical study of alpha-endorphin-producing cells and also a study of rat mast cells (MC in the antral mucosa of the human stomach. Men aged 18 to 30 years undergoing in-patient treatment wre studied. According to the results of radioimmunoassay, antibodies against alpha-endorphin did not react with enkephalins, beta-endorphin, or the C-terminal fragment of beta-endorphin, but had cross reactivity of about 10% with gammaendorphin. Results were subjected to statistical analysis by Student's test at a 85% level of significance and they are shown. The facts presented here suggest that MC of human gastric mucosa include argyrophilic cells which contain alpha-endorphin.

  7. Hematopoietic Stem Cells Therapies.

    PubMed

    Chivu-Economescu, Mihaela; Rubach, Martin

    2017-01-01

    Stem cell-based therapies are recognized as a new way to treat various diseases and injuries, with a wide range of health benefits. The goal is to heal or replace diseased or destroyed organs or body parts with healthy new cells provided by stem cell transplantation. The current practical form of stem cell therapy is the hematopoietic stem cells transplant applied for the treatment of hematological disorders. There are over 2100 clinical studies in progress concerning hematopoietic stem cell therapies. All of them are using hematopoietic stem cells to treat various diseases like: cancers, leukemia, lymphoma, cardiac failure, neural disorders, auto-immune diseases, immunodeficiency, metabolic or genetic disorders. Several challenges are to be addressed prior to developing and applying large scale cell therapies: 1) to explain and control the mechanisms of differentiation and development toward a specific cell type needed to treat the disease, 2) to obtain a sufficient number of desired cell type for transplantation, 3) to overcome the immune rejection and 4) to show that transplanted cells fulfill their normal functions in vivo after transplants.

  8. SCL/TAL1 Regulates Hematopoietic Specification From Human Embryonic Stem Cells

    PubMed Central

    Real, Pedro J; Ligero, Gertrudis; Ayllon, Veronica; Ramos-Mejia, Veronica; Bueno, Clara; Gutierrez-Aranda, Ivan; Navarro-Montero, Oscar; Lako, Majlinda; Menendez, Pablo

    2012-01-01

    Determining the molecular regulators/pathways responsible for the specification of human embryonic stem cells (hESCs) into hematopoietic precursors has far-reaching implications for potential cell therapies and disease modeling. Mouse models lacking SCL/TAL1 (stem cell leukemia/T-cell acute lymphocytic leukemia 1) do not survive beyond early embryogenesis because of complete absence of hematopoiesis, indicating that SCL is a master early hematopoietic regulator. SCL is commonly found rearranged in human leukemias. However, there is barely information on the role of SCL on human embryonic hematopoietic development. Differentiation and sorting assays show that endogenous SCL expression parallels hematopoietic specification of hESCs and that SCL is specifically expressed in hematoendothelial progenitors (CD45−CD31+CD34+) and, to a lesser extent, on CD45+ hematopoietic cells. Enforced expression of SCL in hESCs accelerates the emergence of hematoendothelial progenitors and robustly promotes subsequent differentiation into primitive (CD34+CD45+) and total (CD45+) blood cells with higher clonogenic potential. Short-hairpin RNA–based silencing of endogenous SCL abrogates hematopoietic specification of hESCs, confirming the early hematopoiesis-promoting effect of SCL. Unfortunately, SCL expression on its own is not sufficient to confer in vivo engraftment to hESC-derived hematopoietic cells, suggesting that additional yet undefined master regulators are required to orchestrate the stepwise hematopoietic developmental process leading to the generation of definitive in vivo functional hematopoiesis from hESCs. PMID:22491213

  9. Dendritic cell potentials of early lymphoid and myeloid progenitors.

    PubMed

    Manz, M G; Traver, D; Miyamoto, T; Weissman, I L; Akashi, K

    2001-06-01

    It has been proposed that there are at least 2 classes of dendritic cells (DCs), CD8alpha(+) DCs derived from the lymphoid lineage and CD8alpha(-) DCs derived from the myeloid lineage. Here, the abilities of lymphoid- and myeloid-restricted progenitors to generate DCs are compared, and their overall contributions to the DC compartment are evaluated. It has previously been shown that primitive myeloid-committed progenitors (common myeloid progenitors [CMPs]) are efficient precursors of both CD8alpha(+) and CD8alpha(-) DCs in vivo. Here it is shown that the earliest lymphoid-committed progenitors (common lymphoid progenitors [CLPs]) and CMPs and their progeny granulocyte-macrophage progenitors (GMPs) can give rise to functional DCs in vitro and in vivo. CLPs are more efficient in generating DCs than their T-lineage descendants, the early thymocyte progenitors and pro-T cells, and CMPs are more efficient DC precursors than the descendant GMPs, whereas pro-B cells and megakaryocyte-erythrocyte progenitors are incapable of generating DCs. Thus, DC developmental potential is preserved during T- but not B-lymphoid differentiation from CLP and during granulocyte-macrophage but not megakaryocyte-erythrocyte development from CMP. In vivo reconstitution experiments show that CLPs and CMPs can reconstitute CD8alpha(+) and CD8alpha(-) DCs with similar efficiency on a per cell basis. However, CMPs are 10-fold more numerous than CLPs, suggesting that at steady state, CLPs provide only a minority of splenic DCs and approximately half the DCs in thymus, whereas most DCs, including CD8alpha(+) and CD8alpha(-) subtypes, are of myeloid origin. (Blood. 2001;97:3333-3341)

  10. Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia

    PubMed Central

    Boutzen, Héléna; Saland, Estelle; Larrue, Clément; de Toni, Fabienne; Gales, Lara; Castelli, Florence A.; Cathebas, Mathilde; Zaghdoudi, Sonia; Stuani, Lucille; Kaoma, Tony; Riscal, Romain; Yang, Guangli; Hirsch, Pierre; David, Marion; De Mas-Mansat, Véronique; Delabesse, Eric; Vallar, Laurent; Delhommeau, François; Jouanin, Isabelle; Ouerfelli, Ouathek; Le Cam, Laurent; Linares, Laetitia K.; Junot, Christophe; Portais, Jean-Charles; Vergez, François; Récher, Christian

    2016-01-01

    Acute myeloid leukemia (AML) is characterized by the accumulation of malignant blasts with impaired differentiation programs caused by recurrent mutations, such as the isocitrate dehydrogenase (IDH) mutations found in 15% of AML patients. These mutations result in the production of the oncometabolite (R)-2-hydroxyglutarate (2-HG), leading to a hypermethylation phenotype that dysregulates hematopoietic differentiation. In this study, we identified mutant R132H IDH1-specific gene signatures regulated by key transcription factors, particularly CEBPα, involved in myeloid differentiation and retinoid responsiveness. We show that treatment with all-trans retinoic acid (ATRA) at clinically achievable doses markedly enhanced terminal granulocytic differentiation in AML cell lines, primary patient samples, and a xenograft mouse model carrying mutant IDH1. Moreover, treatment with a cell-permeable form of 2-HG sensitized wild-type IDH1 AML cells to ATRA-induced myeloid differentiation, whereas inhibition of 2-HG production significantly reduced ATRA effects in mutant IDH1 cells. ATRA treatment specifically decreased cell viability and induced apoptosis of mutant IDH1 blasts in vitro. ATRA also reduced tumor burden of mutant IDH1 AML cells xenografted in NOD–Scid–IL2rγnull mice and markedly increased overall survival, revealing a potent antileukemic effect of ATRA in the presence of IDH1 mutation. This therapeutic strategy holds promise for this AML patient subgroup in future clinical studies. PMID:26951332

  11. Tif1γ regulates the TGF-β1 receptor and promotes physiological aging of hematopoietic stem cells

    PubMed Central

    Quéré, Ronan; Saint-Paul, Laetitia; Carmignac, Virginie; Martin, Romain Z.; Chrétien, Marie-Lorraine; Largeot, Anne; Hammann, Arlette; Pais de Barros, Jean-Paul; Bastie, Jean-Noël; Delva, Laurent

    2014-01-01

    The hematopoietic system declines with age. Myeloid-biased differentiation and increased incidence of myeloid malignancies feature aging of hematopoietic stem cells (HSCs), but the mechanisms involved remain uncertain. Here, we report that 4-mo-old mice deleted for transcription intermediary factor 1γ (Tif1γ) in HSCs developed an accelerated aging phenotype. To reinforce this result, we also show that Tif1γ is down-regulated in HSCs during aging in 20-mo-old wild-type mice. We established that Tif1γ controls TGF-β1 receptor (Tgfbr1) turnover. Compared with young HSCs, Tif1γ−/− and old HSCs are more sensitive to TGF-β signaling. Importantly, we identified two populations of HSCs specifically discriminated by Tgfbr1 expression level and provided evidence of the capture of myeloid-biased (Tgfbr1hi) and myeloid-lymphoid-balanced (Tgfbr1lo) HSCs. In conclusion, our data provide a new paradigm for Tif1γ in regulating the balance between lymphoid- and myeloid-derived HSCs through TGF-β signaling, leading to HSC aging. PMID:25002492

  12. Tif1γ regulates the TGF-β1 receptor and promotes physiological aging of hematopoietic stem cells.

    PubMed

    Quéré, Ronan; Saint-Paul, Laetitia; Carmignac, Virginie; Martin, Romain Z; Chrétien, Marie-Lorraine; Largeot, Anne; Hammann, Arlette; Pais de Barros, Jean-Paul; Bastie, Jean-Noël; Delva, Laurent

    2014-07-22

    The hematopoietic system declines with age. Myeloid-biased differentiation and increased incidence of myeloid malignancies feature aging of hematopoietic stem cells (HSCs), but the mechanisms involved remain uncertain. Here, we report that 4-mo-old mice deleted for transcription intermediary factor 1γ (Tif1γ) in HSCs developed an accelerated aging phenotype. To reinforce this result, we also show that Tif1γ is down-regulated in HSCs during aging in 20-mo-old wild-type mice. We established that Tif1γ controls TGF-β1 receptor (Tgfbr1) turnover. Compared with young HSCs, Tif1γ(-/-) and old HSCs are more sensitive to TGF-β signaling. Importantly, we identified two populations of HSCs specifically discriminated by Tgfbr1 expression level and provided evidence of the capture of myeloid-biased (Tgfbr1(hi)) and myeloid-lymphoid-balanced (Tgfbr1(lo)) HSCs. In conclusion, our data provide a new paradigm for Tif1γ in regulating the balance between lymphoid- and myeloid-derived HSCs through TGF-β signaling, leading to HSC aging.

  13. Myeloid Sarcoma in the Orbit.

    PubMed

    Qian, Xiaoxiao; Gigantelli, James W; Abromowitch, Minnie; Morgan, Linda A; Suh, Donny W

    2016-12-08

    The authors describe a case of myeloid sarcoma of the orbit in a pediatric patient. An 8-month-old male infant presented to the ophthalmology clinic with a left orbital mass, which had been increasing in size over the previous 2 months. The mass was initially diagnosed at another clinic as an infantile hemangioma, and had been treated with a topical formulation of timolol. In the ophthalmology clinic, orbital magnetic resonance imaging showed a solid enhancing mass. A biopsy was performed, and histopathology revealed myeloid sarcoma. The disease responded well to a standard chemotherapy regimen. Myeloid sarcoma is a rare, extra-medullary presentation that can occur as an isolated tumor, concurrently with or at relapse of acute myeloid leukemia. Because few cases of myeloid sarcoma in the orbit have been reported, this case report aids in the management of myeloid sarcoma in pediatric patients. The report describes an 8-month-old male infant, the youngest patient to develop myeloid sarcoma without preexisting acute myeloid leukemia. [J Pediatr Ophthalmol Strabismus. 2016;53:e64-e68.].

  14. The allometry of chronic myeloid leukemia.

    PubMed

    Pacheco, Jorge M; Traulsen, Arne; Dingli, David

    2009-08-07

    Chronic myeloid leukemia (CML) is an acquired neoplastic hematopoietic stem cell (HSC) disorder characterized by the expression of the BCR-ABL oncoprotein. This gene product is necessary and sufficient to explain the chronic phase of CML. The only known cause of CML is radiation exposure leading to a mutation of at least one HSC, although the vast majority of patients with CML do not have a history of radiation exposure. Nonetheless, in humans, significant radiation exposure (after exposure to atomic bomb fallout) leads to disease diagnosis in 3-5 years. In murine models, disease dynamics are much faster and CML is fatal over the span of a few months. Our objective is to develop a model that accounts for CML across all mammals. In the following, we combine a model of CML dynamics in humans with allometric scaling of hematopoiesis across mammals to illustrate the natural history of chronic phase CML in various mammals. We show how a single cell can lead to a fatal illness in mice and humans but a higher burden of CML stem cells is necessary to induce disease in larger mammals such as elephants. The different dynamics of the disease is rationalized in terms of mammalian mass. Our work illustrates the relevance of animal models to understand human disease and highlights the importance of considering the re-scaling of the dynamics that accrues to the same biological process when planning experiments involving different species.

  15. The regulation of hematopoietic stem cell populations

    PubMed Central

    Mayani, Hector

    2016-01-01

    Evidence presented over the last few years indicates that the hematopoietic stem cell (HSC) compartment comprises not just one but a number of different cell populations. Based on HSCs’ proliferation and engraftment potential, it has been suggested that there are two classes of HSC, with long- and short-term engraftment potential. HSC heterogeneity seems to involve differentiation capacities as well, since it has been shown that some HSC clones are able to give rise to both myeloid and lymphoid progeny, whereas others are lymphoid deficient. It has been recognized that HSC function depends on intrinsic cell regulators, which are modulated by external signals. Among the former, we can include transcription factors and non-coding RNAs as well as epigenetic modifiers. Among the latter, cytokines and extracellular matrix molecules have been implicated. Understanding the elements and mechanisms that regulate HSC populations is of significant relevance both in biological and in clinical terms, and research in this area still has to face several complex and exciting challenges. PMID:27408695

  16. Hematopoietic stem cells for cancer immunotherapy.

    PubMed

    Gschweng, Eric; De Oliveira, Satiro; Kohn, Donald B

    2014-01-01

    Hematopoietic stem cells (HSCs) provide an attractive target for immunotherapy of cancer and leukemia by the introduction of genes encoding T-cell receptors (TCRs) or chimeric antigen receptors (CARs) directed against tumor-associated antigens. HSCs engraft for long-term blood cell production and could provide a continuous source of targeted anti-cancer effector cells to sustain remissions. T cells produced de novo from HSCs may continuously replenish anti-tumor T cells that have become anergic or exhausted from ex vivo expansion or exposure to the intratumoral microenvironment. In addition, transgenic T cells produced in vivo undergo allelic exclusion, preventing co-expression of an endogenous TCR that could mis-pair with the introduced TCR chains and blunt activity or even cause off-target reactivity. CAR-engineered HSCs may produce myeloid and natural killer cells in addition to T cells expressing the CAR, providing broader anti-tumor activity that arises quickly after transplant and does not solely require de novo thymopoiesis. Use of TCR- or CAR-engineered HSCs would likely require cytoreductive conditioning to achieve long-term engraftment, and this approach may be used in clinical settings where autologous HSC transplant is being performed to add a graft-versus-tumor effect. Results of experimental and preclinical studies performed to date are reviewed.

  17. Effects of notch signaling on regulation of myeloid cell differentiation in cancer.

    PubMed

    Cheng, Pingyan; Kumar, Vinit; Liu, Hao; Youn, Je-In; Fishman, Mayer; Sherman, Simon; Gabrilovich, Dmitry

    2014-01-01

    Functionally altered myeloid cells play an important role in immune suppression in cancer, in angiogenesis, and in tumor cells' invasion and metastases. Here, we report that inhibition of Notch signaling in hematopoietic progenitor cells (HPC), myeloid-derived suppressor cells (MDSC), and dendritic cells is directly involved in abnormal myeloid cell differentiation in cancer. Inhibition of Notch signaling was caused by the disruption of the interaction between Notch receptor and transcriptional repressor CSL, which is normally required for efficient transcription of target genes. This disruption was the result of serine phosphorylation of Notch. We demonstrated that increased activity of casein kinase 2 (CK2) observed in HPC and in MDSC could be responsible for the phosphorylation of Notch and downregulation of Notch signaling. Inhibition of CK2 by siRNA or by pharmacological inhibitor restored Notch signaling in myeloid cells and substantially improved their differentiation, both in vitro and in vivo. This study demonstrates a novel mechanism regulation of Notch signaling in cancer. This may suggest a new perspective for pharmacological regulation of differentiation of myeloid cells in cancer.

  18. Muscle-derived hematopoietic stem cells are hematopoietic in origin

    PubMed Central

    McKinney-Freeman, Shannon L.; Jackson, Kathyjo A.; Camargo, Fernando D.; Ferrari, Giuliana; Mavilio, Fulvio; Goodell, Margaret A.

    2002-01-01

    It has recently been shown that mononuclear cells from murine skeletal muscle contain the potential to repopulate all major peripheral blood lineages in lethally irradiated mice, but the origin of this activity is unknown. We have fractionated muscle cells on the basis of hematopoietic markers to show that the active population exclusively expresses the hematopoietic stem cell antigens Sca-1 and CD45. Muscle cells obtained from 6- to 8-week-old C57BL/6-CD45.1 mice and enriched for cells expressing Sca-1 and CD45 were able to generate hematopoietic but not myogenic colonies in vitro and repopulated multiple hematopoietic lineages of lethally irradiated C57BL/6-CD45.2 mice. These data show that muscle-derived hematopoietic stem cells are likely derived from the hematopoietic system and are a result not of transdifferentiation of myogenic stem cells but instead of the presence of substantial numbers of hematopoietic stem cells in the muscle. Although CD45-negative cells were highly myogenic in vitro and in vivo, CD45-positive muscle-derived cells displayed only very limited myogenic activity and only in vivo. PMID:11830662

  19. In utero depletion of fetal hematopoietic stem cells improves engraftment after neonatal transplantation in mice.

    PubMed

    Derderian, S Christopher; Togarrati, P Priya; King, Charmin; Moradi, Patriss W; Reynaud, Damien; Czechowicz, Agnieszka; Weissman, Irving L; MacKenzie, Tippi C

    2014-08-07

    Although in utero hematopoietic cell transplantation is a promising strategy to treat congenital hematopoietic disorders, levels of engraftment have not been therapeutic for diseases in which donor cells have no survival advantage. We used an antibody against the murine c-Kit receptor (ACK2) to deplete fetal host hematopoietic stem cells (HSCs) and increase space within the hematopoietic niche for donor cell engraftment. Fetal mice were injected with ACK2 on embryonic days 13.5 to 14.5 and surviving pups were transplanted with congenic hematopoietic cells on day of life 1. Low-dose ACK2 treatment effectively depleted HSCs within the bone marrow with minimal toxicity and the antibody was cleared from the serum before the neonatal transplantation. Chimerism levels were significantly higher in treated pups than in controls; both myeloid and lymphoid cell chimerism increased because of higher engraftment of HSCs in the bone marrow. To test the strategy of repeated HSC depletion and transplantation, some mice were treated with ACK2 postnatally, but the increase in engraftment was lower than that seen with prenatal treatment. We demonstrate a successful fetal conditioning strategy associated with minimal toxicity. Such strategies could be used to achieve clinically relevant levels of engraftment to treat congenital stem cell disorders.

  20. Combining Intravital Fluorescent Microscopy (IVFM) with Genetic Models to Study Engraftment Dynamics of Hematopoietic Cells to Bone Marrow Niches.

    PubMed

    Wang, Lin; Kamocka, Malgorzata M; Zollman, Amy; Carlesso, Nadia

    2017-03-21

    Increasing evidence indicates that normal hematopoiesis is regulated by distinct microenvironmental cues in the BM, which include specialized cellular niches modulating critical hematopoietic stem cell (HSC) functions(1)(,)(2). Indeed, a more detailed picture of the hematopoietic microenvironment is now emerging, in which the endosteal and the endothelial niches form functional units for the regulation of normal HSC and their progeny(3)(,)(4)(,)(5). New studies have revealed the importance of perivascular cells, adipocytes and neuronal cells in maintaining and regulating HSC function(6)(,)(7)(,)(8). Furthermore, there is evidence that cells from different lineages, i.e. myeloid and lymphoid cells, home and reside in specific niches within the BM microenvironment. However, a complete mapping of the BM microenvironment and its occupants is still in progress. Transgenic mouse strains expressing lineage specific fluorescent markers or mice genetically engineered to lack selected molecules in specific cells of the BM niche are now available. Knock-out and lineage tracking models, in combination with transplantation approaches, provide the opportunity to refine the knowledge on the role of specific "niche" cells for defined hematopoietic populations, such as HSC, B-cells, T-cells, myeloid cells and erythroid cells. This strategy can be further potentiated by merging the use of two-photon microscopy of the calvarium. By providing in vivo high resolution imaging and 3-D rendering of the BM calvarium, we can now determine precisely the location where specific hematopoietic subsets home in the BM and evaluate the kinetics of their expansion over time. Here, Lys-GFP transgenic mice (marking myeloid cells)(9) and RBPJ knock-out mice (lacking canonical Notch signaling)(10) are used in combination with IVFM to determine the engraftment of myeloid cells to a Notch defective BM microenvironment.

  1. What Are the Risk Factors for Chronic Myeloid Leukemia?

    MedlinePlus

    ... What Are the Risk Factors for Chronic Myeloid Leukemia? A risk factor is something that affects a ... Myeloid Leukemia Be Prevented? More In Chronic Myeloid Leukemia About Chronic Myeloid Leukemia Causes, Risk Factors, and ...

  2. What Should You Ask Your Doctor about Chronic Myeloid Leukemia?

    MedlinePlus

    ... Should You Ask Your Doctor About Chronic Myeloid Leukemia? As you cope with cancer and cancer treatment, ... About Chronic Myeloid Leukemia? More In Chronic Myeloid Leukemia About Chronic Myeloid Leukemia Causes, Risk Factors, and ...

  3. Epigenetic Regulation of Myeloid Cells

    PubMed Central

    IVASHKIV, LIONEL B.; PARK, SUNG HO

    2017-01-01

    Epigenetic regulation in myeloid cells is crucial for cell differentiation and activation in response to developmental and environmental cues. Epigenetic control involves posttranslational modification of DNA or chromatin, and is also coupled to upstream signaling pathways and transcription factors. In this review, we summarize key epigenetic events and how dynamics in the epigenetic landscape of myeloid cells shape the development, immune activation, and innate immune memory. PMID:27337441

  4. Decitabine in Treating Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-18

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  5. Occupational exposure to formaldehyde, hematotoxicity and leukemia-specific chromosome changes in cultured myeloid progenitor cells

    PubMed Central

    Zhang, Luoping; Tang, Xiaojiang; Rothman, Nathaniel; Vermeulen, Roel; Ji, Zhiying; Shen, Min; Qiu, Chuangyi; Guo, Weihong; Liu, Songwang; Reiss, Boris; Laura Beane, Freeman; Ge, Yichen; Hubbard, Alan E.; Hua, Ming; Blair, Aaron; Galvan, Noe; Ruan, Xiaolin; Alter, Blanche P.; Xin, Kerry X.; Li, Senhua; Moore, Lee E.; Kim, Sungkyoon; Xie, Yuxuan; Hayes, Richard B.; Azuma, Mariko; Hauptmann, Michael; Xiong, Jun; Stewart, Patricia; Li, Laiyu; Rappaport, Stephen M.; Huang, Hanlin; Fraumeni, Joseph F.; Smith, Martyn T.; Lan, Qing

    2010-01-01

    There are concerns about the health effects of formaldehyde exposure, including carcinogenicity, in light of elevated indoor air levels in new homes and occupational exposures experienced by workers in health care, embalming, manufacturing and other industries. Epidemiological studies suggest that formaldehyde exposure is associated with an increased risk of leukemia. However, the biological plausibility of these findings has been questioned because limited information is available on formaldehyde’s ability to disrupt hematopoietic function. Our objective was to determine if formaldehyde exposure disrupts hematopoietic function and produces leukemia-related chromosome changes in exposed humans. We examined the ability of formaldehyde to disrupt hematopoiesis in a study of 94 workers in China (43 exposed to formaldehyde and 51 frequency-matched controls) by measuring complete blood counts and peripheral stem/progenitor cell colony formation. Further, myeloid progenitor cells, the target for leukemogenesis, were cultured from the workers to quantify the level of leukemia-specific chromosome changes, including monosomy 7 and trisomy 8, in metaphase spreads of these cells. Among exposed workers, peripheral blood cell counts were significantly lowered in a manner consistent with toxic effects on the bone marrow and leukemia-specific chromosome changes were significantly elevated in myeloid blood progenitor cells. These findings suggest that formaldehyde exposure can have an adverse impact on the hematopoietic system and that leukemia induction by formaldehyde is biologically plausible, which heightens concerns about its leukemogenic potential from occupational and environmental exposures. PMID:20056626

  6. TC1(C8orf4) regulates hematopoietic stem/progenitor cells and hematopoiesis.

    PubMed

    Jung, Yusun; Kim, Minsung; Soh, Hyunsu; Lee, Soyoung; Kim, Jungtae; Park, Surim; Song, Kyuyoung; Lee, Inchul

    2014-01-01

    Hematopoiesis is a complex process requiring multiple regulators for hematopoietic stem/progenitor cells (HSPC) and differentiation to multi-lineage blood cells. TC1(C8orf4) is implicated in cancers, hematological malignancies and inflammatory activation. Here, we report that Tc1 regulates hematopoiesis in mice. Myeloid and lymphoid cells are increased markedly in peripheral blood of Tc1-deleted mice compared to wild type controls. Red blood cells are small-sized but increased in number. The bone marrow of Tc1-/- mice is normocellular histologically. However, Lin-Sca-1+c-Kit+ (LSK) cells are expanded in Tc1-/- mice compared to wild type controls. The expanded population mostly consists of CD150-CD48+ cells, suggesting the expansion of lineage-restricted hematopoietic progenitor cells. Colony forming units (CFU) are increased in Tc1-/- mice bone marrow cells compared to controls. In wild type mice bone marrow, Tc1 is expressed in a limited population of HSPC but not in differentiated cells. Major myeloid transcriptional regulators such as Pu.1 and Cebpα are not up-regulated in Tc1-/- mice bone marrow. Our findings indicate that TC1 is a novel hematopoietic regulator. The mechanisms of TC1-dependent HSPC regulation and lineage determination are unknown.

  7. Reticular dysgenesis–associated AK2 protects hematopoietic stem and progenitor cell development from oxidative stress

    PubMed Central

    Rissone, Alberto; Weinacht, Katja Gabriele; la Marca, Giancarlo; Bishop, Kevin; Giocaliere, Elisa; Jagadeesh, Jayashree; Felgentreff, Kerstin; Dobbs, Kerry; Al-Herz, Waleed; Jones, Marypat; Chandrasekharappa, Settara; Kirby, Martha; Wincovitch, Stephen; Simon, Karen Lyn; Itan, Yuval; DeVine, Alex; Schlaeger, Thorsten; Schambach, Axel; Sood, Raman

    2015-01-01

    Adenylate kinases (AKs) are phosphotransferases that regulate the cellular adenine nucleotide composition and play a critical role in the energy homeostasis of all tissues. The AK2 isoenzyme is expressed in the mitochondrial intermembrane space and is mutated in reticular dysgenesis (RD), a rare form of severe combined immunodeficiency (SCID) in humans. RD is characterized by a maturation arrest in the myeloid and lymphoid lineages, leading to early onset, recurrent, and overwhelming infections. To gain insight into the pathophysiology of RD, we studied the effects of AK2 deficiency using the zebrafish model and induced pluripotent stem cells (iPSCs) derived from fibroblasts of an RD patient. In zebrafish, Ak2 deficiency affected hematopoietic stem and progenitor cell (HSPC) development with increased oxidative stress and apoptosis. AK2-deficient iPSCs recapitulated the characteristic myeloid maturation arrest at the promyelocyte stage and demonstrated an increased AMP/ADP ratio, indicative of an energy-depleted adenine nucleotide profile. Antioxidant treatment rescued the hematopoietic phenotypes in vivo in ak2 mutant zebrafish and restored differentiation of AK2-deficient iPSCs into mature granulocytes. Our results link hematopoietic cell fate in AK2 deficiency to cellular energy depletion and increased oxidative stress. This points to the potential use of antioxidants as a supportive therapeutic modality for patients with RD. PMID:26150473

  8. Isolation and characterization of a novel human gene expressed specifically in the cells of hematopoietic lineage.

    PubMed Central

    Kitamura, D; Kaneko, H; Miyagoe, Y; Ariyasu, T; Watanabe, T

    1989-01-01

    A novel cDNA clone designated as HS1, which show an expression pattern limited to human hematopoietic cells, was isolated. About 2kb mRNA of the clone was accumulated in all the mature and immature lymphoid and myeloid cell lines tested, and two of three erythroblastoid cell lines, but not in any cell lines of non-hematopoietic tissues. The same mRNA was also detected in normal lymphoid and myeloid tissues and peripheral blood lymphocytes, granulocytes and macrophages, but again not in non-hematopoietic tissues. Nucleotide sequence of the HS1 predicts a protein of 486 amino acids (Mr 53,931). N-terminal half of the protein retains unique repeating motifs, each of which shows a significant homology with the helix-turn-helix DNA-binding motif of several proteins reported previously. C-terminal half of the protein retains a region conserved between non-receptor tyrosine kinases (src family), phospholipase C(PLC)-148 and the crk oncogene product. A unique feature of HS1 suggests that the protein may be involved in signal transduction and regulation of gene expression. Images PMID:2587259

  9. Comprehensive population-based genome sequencing provides insight into hematopoietic regulatory mechanisms

    PubMed Central

    Guo, Michael H.; Nandakumar, Satish K.; Ulirsch, Jacob C.; Zekavat, Seyedeh M.; Buenrostro, Jason D.; Natarajan, Pradeep; Salem, Rany M.; Chiarle, Roberto; Mitt, Mario; Kals, Mart; Pärn, Kalle; Fischer, Krista; Milani, Lili; Mägi, Reedik; Palta, Priit; Gabriel, Stacey B.; Metspalu, Andres; Lander, Eric S.; Kathiresan, Sekar; Hirschhorn, Joel N.; Esko, Tõnu; Sankaran, Vijay G.

    2017-01-01

    Genetic variants affecting hematopoiesis can influence commonly measured blood cell traits. To identify factors that affect hematopoiesis, we performed association studies for blood cell traits in the population-based Estonian Biobank using high-coverage whole-genome sequencing (WGS) in 2,284 samples and SNP genotyping in an additional 14,904 samples. Using up to 7,134 samples with available phenotype data, our analyses identified 17 associations across 14 blood cell traits. Integration of WGS-based fine-mapping and complementary epigenomic datasets provided evidence for causal mechanisms at several loci, including at a previously undiscovered basophil count-associated locus near the master hematopoietic transcription factor CEBPA. The fine-mapped variant at this basophil count association near CEBPA overlapped an enhancer active in common myeloid progenitors and influenced its activity. In situ perturbation of this enhancer by CRISPR/Cas9 mutagenesis in hematopoietic stem and progenitor cells demonstrated that it is necessary for and specifically regulates CEBPA expression during basophil differentiation. We additionally identified basophil count-associated variation at another more pleiotropic myeloid enhancer near GATA2, highlighting regulatory mechanisms for ordered expression of master hematopoietic regulators during lineage specification. Our study illustrates how population-based genetic studies can provide key insights into poorly understood cell differentiation processes of considerable physiologic relevance. PMID:28031487

  10. The origin and evolution of mutations in Acute Myeloid Leukemia

    PubMed Central

    Welch, John S.; Ley, Timothy J.; Link, Daniel C.; Miller, Christopher A.; Larson, David E.; Koboldt, Daniel C.; Wartman, Lukas D.; Lamprecht, Tamara L.; Liu, Fulu; Xia, Jun; Kandoth, Cyriac; Fulton, Robert S.; McLellan, Michael D.; Dooling, David J.; Wallis, John W.; Chen, Ken; Harris, Christopher C.; Schmidt, Heather K.; Kalicki-Veizer, Joelle M.; Lu, Charles; Zhang, Qunyuan; Lin, Ling; O’Laughlin, Michelle D.; McMichael, Joshua F.; Delehaunty, Kim D.; Fulton, Lucinda A.; Magrini, Vincent J.; McGrath, Sean D.; Demeter, Ryan T.; Vickery, Tammi L.; Hundal, Jasreet; Cook, Lisa L.; Swift, Gary W.; Reed, Jerry P.; Alldredge, Patricia A.; Wylie, Todd N.; Walker, Jason R.; Watson, Mark A.; Heath, Sharon E.; Shannon, William D.; Varghese, Nobish; Nagarajan, Rakesh; Payton, Jacqueline E.; Baty, Jack D.; Kulkarni, Shashikant; Klco, Jeffery M.; Tomasson, Michael H.; Westervelt, Peter; Walter, Matthew J.; Graubert, Timothy A.; DiPersio, John F.; Ding, Li; Mardis, Elaine R.; Wilson, Richard K.

    2012-01-01

    Summary Most mutations in cancer genomes are thought to be acquired after the initiating event, which may cause genomic instability, driving clonal evolution. However, for acute myeloid leukemia (AML), normal karyotypes are common, and genomic instability is unusual. To better understand clonal evolution in AML, we sequenced the genomes of AML samples with a known initiating event (PML-RARA) vs. normal karyotype AML samples, and the exomes of hematopoietic stem/progenitor cells (HSPCs) from healthy people. Collectively, the data suggest that most of the mutations found in AML genomes are actually random events that occurred in HSPCs before they acquired the initiating mutation; the mutational history of that cell is “captured” as the clone expands. In many cases, only one or two additional, cooperating mutations are needed to generate the malignant founding clone. Cells from the founding clone can acquire additional cooperating mutations, yielding subclones that can contribute to disease progression and/or relapse. PMID:22817890

  11. Novel Prognostic and Therapeutic Mutations in Acute Myeloid Leukemia

    PubMed Central

    MEDINGER, MICHAEL; LENGERKE, CLAUDIA; PASSWEG, JAKOB

    2016-01-01

    Acute myeloid leukemia (AML) is a biologically complex and molecularly and clinically heterogeneous disease, and its incidence increases with age. Cytogenetics and mutation testing remain important prognostic tools for treatment after induction therapy. The post-induction treatment is dependent on risk stratification. Despite rapid advances in determination of gene mutations involved in the pathophysiology and biology of AML, and the rapid development of new drugs, treatment improvements changed slowly over the past 30 years, with the majority of patients eventually experiencing relapse and dying of their disease. Allogenic hematopoietic stem cell transplantation remains the best chance of cure for patients with intermediate- or high-risk disease. This review gives an overview about advances in prognostic markers and novel treatment options for AML, focusing on new prognostic and probably therapeutic mutations, and novel drug therapies such as tyrosine kinase inhibitors. PMID:27566651

  12. [Molecular biology in myelodysplastic syndromes and acute myeloid leukemias "smoldering"].

    PubMed

    Martinelli, Giovanni; Sartor, Chiara; Papayannidis, Cristina; Iacobucci, Ilaria; Paolini, Stefania; Clissa, Cristina; Ottaviani, Emanuela; Finelli, Carlo

    2014-03-01

    Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic disorders of the myeloid lineage characterized by peripheral cytopenias and frequent leukemic evolution. MDS differ for clinical presentation, disease behavior and progression and this is the reflection of remarkable variability at molecular level. To this moment disease diagnosis is still dependent on bone marrow morphology that, although high concordance rates among experts are reported, remains subjective. Karyotype analysis is mandatory but diagnosis may be difficult in presence of normal karyotype or non-informative cytogenetics. Standardized molecular markers are needed to better define diagnosis, prediction of disease progression and prognosis. Furthermore, a molecular biology analysis could provide an important therapeutic tool towards tailored therapy and new insights in the disease's biology.

  13. Role Of Immature Myeloid Cells in Mechanisms of Immune Evasion In Cancer1

    PubMed Central

    Kusmartsev, Sergei; Gabrilovich, Dmitry I.

    2005-01-01

    Tumor affects myelopoiesis by inhibiting the process of differentiation/maturation of antigen-presenting cells from their myeloid precursors and by stimulating an accumulation of immature myeloid cells in cancer patients and tumor-bearing mice. These immature myeloid cells can contribute greatly to tumor progression and promote tumor evasion from immune attack: i) by inhibiting development of adaptive immune responses against tumor in lymphoid organs; ii) by migrating into tumor site and differentiating there into highly immune suppressive tumor-associated macrophages. Immature myeloid cells and tumor-associated macrophages utilize different JAK/STAT signaling pathways and different mechanisms to control T cell responses, which include increased production of TGF-beta, reactive oxygen species, peroxynitrites, as well as enhanced L-arginine metabolism. Understanding of precise mechanisms, which tumors use to affect differentiation of APC from myeloid cell precursors and inhibit T cell responses, could help to develop new approaches for cancer therapy and substantially improve efficiency of existing cancer vaccination strategies. PMID:16047143

  14. Role of immature myeloid cells in mechanisms of immune evasion in cancer.

    PubMed

    Kusmartsev, Sergei; Gabrilovich, Dmitry I

    2006-03-01

    Tumor affects myelopoiesis by inhibiting the process of differentiation/maturation of antigen-presenting cells from their myeloid precursors and by stimulating an accumulation of immature myeloid cells in cancer patients and tumor-bearing mice. These immature myeloid cells can contribute greatly to tumor progression and promote tumor evasion from immune attack: i) by inhibiting development of adaptive immune responses against tumor in lymphoid organs; ii) by migrating into tumor site and differentiating there into highly immune suppressive tumor-associated macrophages. Immature myeloid cells and tumor-associated macrophages utilize different JAK/STAT signaling pathways and different mechanisms to control T cell responses, which include increased production of TGF-beta, reactive oxygen species, peroxynitrites, as well as enhanced L-arginine metabolism. Understanding of precise mechanisms, which tumors use to affect differentiation of APC from myeloid cell precursors and inhibit T cell responses, could help to develop new approaches for cancer therapy and substantially improve efficiency of existing cancer vaccination strategies.

  15. Genome-wide lineage-specific transcriptional networks underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells.

    PubMed

    Ng, Samuel Yao-Ming; Yoshida, Toshimi; Zhang, Jiangwen; Georgopoulos, Katia

    2009-04-17

    The mechanisms regulating lineage potential during early hematopoiesis were investigated. First, a cascade of lineage-affiliated gene expression signatures, primed in hematopoietic stem cells (HSCs) and differentially propagated in lineage-restricted progenitors, was identified. Lymphoid transcripts were primed as early as the HSC, together with myeloid and erythroid transcripts. Although this multilineage priming was resolved upon subsequent lineage restrictions, an unexpected cosegregation of lymphoid and myeloid gene expression and potential past a nominal myeloid restriction point was identified. Finally, we demonstrated that whereas the zinc finger DNA-binding factor Ikaros was required for induction of lymphoid lineage priming in the HSC, it was also necessary for repression of genetic programs compatible with self-renewal and multipotency downstream of the HSC. Taken together, our studies provide new insight into the priming and restriction of lineage potentials during early hematopoiesis and identify Ikaros as a key bivalent regulator of this process.

  16. High-affinity FRβ-specific CAR T cells eradicate AML and normal myeloid lineage without HSC toxicity.

    PubMed

    Lynn, R C; Feng, Y; Schutsky, K; Poussin, M; Kalota, A; Dimitrov, D S; Powell, D J

    2016-06-01

    Acute myeloid leukemia (AML) is an aggressive malignancy, and development of new treatments to prolong remissions is warranted. Chimeric antigen receptor (CAR) T-cell therapies appear promising but on-target, off-tumor recognition of antigen in healthy tissues remains a concern. Here we isolated a high-affinity (HA) folate receptor beta (FRβ)-specific single-chain variable fragment (2.48 nm KD) for optimization of FRβ-redirected CAR T-cell therapy for AML. T cells stably expressing the HA-FRβ CAR exhibited greatly enhanced antitumor activity against FRβ(+) AML in vitro and in vivo compared with a low-affinity FRβ CAR (54.3 nm KD). Using the HA-FRβ immunoglobulin G, FRβ expression was detectable in myeloid-lineage hematopoietic cells; however, expression in CD34(+) hematopoietic stem cells (HSCs) was nearly undetectable. Accordingly, HA-FRβ CAR T cells lysed mature CD14(+) monocytes, while HSC colony formation was unaffected. Because of the potential for elimination of mature myeloid lineage, mRNA CAR electroporation for transient CAR expression was evaluated. mRNA-electroporated HA-FRβ CAR T cells retained effective antitumor activity in vitro and in vivo. Together, our results highlight the importance of antibody affinity in target protein detection and CAR development and suggest that transient delivery of potent HA-FRβ CAR T cells is highly effective against AML and reduces the risk for long-term myeloid toxicity.

  17. Assessment of Drug Sensitivity in Hematopoietic Stem and Progenitor Cells From Acute Myelogenous Leukemia and Myelodysplastic Syndrome Ex Vivo.

    PubMed

    Knorr, Katherine L B; Finn, Laura E; Smith, B Douglas; Hess, Allan D; Foran, James M; Karp, Judith E; Kaufmann, Scott H

    2016-11-07

    : Current understanding suggests that malignant stem and progenitor cells must be reduced or eliminated for prolonged remissions in myeloid neoplasms such as acute myelogenous leukemia (AML) or myelodysplastic syndrome (MDS). Multicolor flow cytometry has been widely used to distinguish stem and myeloid progenitor cells from other populations in normal and malignant bone marrow. In this study, we present a method for assessing drug sensitivity in MDS and AML patient hematopoietic stem and myeloid progenitor cell populations ex vivo using the investigational Nedd8-activating enzyme inhibitor MLN4924 and standard-of-care agent cytarabine as examples. Utilizing a multicolor flow cytometry antibody panel for identification of hematopoietic stem cells, multipotent progenitors, common myeloid progenitors, granulocyte-monocyte progenitors, and megakaryocyte-erythroid progenitors present in mononuclear cell fractions isolated from bone marrow aspirates, we compare stem and progenitor cell counts after treatment for 24 hours with drug versus diluent. We demonstrate that MLN4924 exerts a cytotoxic effect on MDS and AML stem and progenitor cell populations, whereas cytarabine has more limited effects. Further application of this method for evaluating drug effects on these populations ex vivo and in vivo may inform rational design and selection of therapies in the clinical setting.

  18. Assessment of Drug Sensitivity in Hematopoietic Stem and Progenitor Cells from Acute Myelogenous Leukemia and Myelodysplastic Syndrome Ex Vivo.

    PubMed

    Knorr, Katherine L B; Finn, Laura E; Smith, B Douglas; Hess, Allan D; Foran, James M; Karp, Judith E; Kaufmann, Scott H

    2017-03-01

    Current understanding suggests that malignant stem and progenitor cells must be reduced or eliminated for prolonged remissions in myeloid neoplasms such as acute myelogenous leukemia (AML) or myelodysplastic syndrome (MDS). Multicolor flow cytometry has been widely used to distinguish stem and myeloid progenitor cells from other populations in normal and malignant bone marrow. In this study, we present a method for assessing drug sensitivity in MDS and AML patient hematopoietic stem and myeloid progenitor cell populations ex vivo using the investigational Nedd8-activating enzyme inhibitor MLN4924 and standard-of-care agent cytarabine as examples. Utilizing a multicolor flow cytometry antibody panel for identification of hematopoietic stem cells, multipotent progenitors, common myeloid progenitors, granulocyte-monocyte progenitors, and megakaryocyte-erythroid progenitors present in mononuclear cell fractions isolated from bone marrow aspirates, we compare stem and progenitor cell counts after treatment for 24 hours with drug versus diluent. We demonstrate that MLN4924 exerts a cytotoxic effect on MDS and AML stem and progenitor cell populations, whereas cytarabine has more limited effects. Further application of this method for evaluating drug effects on these populations ex vivo and in vivo may inform rational design and selection of therapies in the clinical setting. Stem Cells Translational Medicine 2017;6:840-850.

  19. Vosaroxin and Infusional Cytarabine in Treating Patients With Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-04-05

    Acute Myeloid Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia With Multilineage Dysplasia; Myeloid Sarcoma; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia; Therapy-Related Myelodysplastic Syndrome

  20. Human peripheral blood granulocytes and myeloid leukemic cell lines express both transcripts encoding for stem cell factor.

    PubMed

    Ramenghi, U; Ruggieri, L; Dianzani, I; Rosso, C; Brizzi, M F; Camaschella, C; Pietsch, T; Saglio, G

    1994-09-01

    Stem cell factor (SCF), the ligand for the c-kit proto-oncogene, has been shown to play a critical role in the migration of melanocytes and germ cells during embryogenesis as well as in the proliferative control of the hematopoietic compartment. In this study we investigated the expression of both the soluble and transmembrane SCF forms in purified peripheral blood populations and in several hematopoietic cell lines. Expression of both transcripts, though in different ratios, was identified in whole bone marrow, in bone marrow stromal cells and in human peripheral blood. In peripheral blood, SCF expression could be ascribable to polymorphonuclear leukocytes (PMN), whereas no SCF expression was detected in isolated lymphocytes, monocytes and in some T lymphoid cell lines. Conversely, some hematopoietic myeloid cell lines, such as HL-60, KG1 and K562, express SCF with similar patterns.

  1. RHAMM/HMMR (CD168) is not an ideal target antigen for immunotherapy of acute myeloid leukemia

    PubMed Central

    Snauwaert, Sylvia; Vanhee, Stijn; Goetgeluk, Glenn; Verstichel, Greet; Van Caeneghem, Yasmine; Velghe, Imke; Philippé, Jan; Berneman, Zwi N.; Plum, Jean; Taghon, Tom; Leclercq, Georges; Thielemans, Kris; Kerre, Tessa; Vandekerckhove, Bart

    2012-01-01

    Background Criteria for good candidate antigens for immunotherapy of acute myeloid leukemia are high expression on leukemic stem cells in the majority of patients with acute myeloid leukemia and low or no expression in vital tissues. It was shown in vaccination trials that Receptor for Hyaluronic Acid Mediated Motility (RHAMM/HMMR) generates cellular immune responses in patients with acute myeloid leukemia and that these responses correlate with clinical benefit. It is not clear however whether this response actually targets the leukemic stem cell, especially since it was reported that RHAMM is expressed maximally during the G2/M phase of the cell cycle. In addition, tumor specificity of RHAMM expression remains relatively unexplored. Design and Methods Blood, leukapheresis and bone marrow samples were collected from both acute myeloid leukemia patients and healthy controls. RHAMM expression was assessed at protein and mRNA levels on various sorted populations, either fresh or after manipulation. Results High levels of RHAMM were expressed by CD34+CD38+ and CD34- acute myeloid leukemia blasts. However, only baseline expression of RHAMM was measured in CD34+CD38- leukemic stem cells, and was not different from that in CD34+CD38- hematopoietic stem cells from healthy controls. RHAMM was significantly up-regulated in CD34+ cells from healthy donors during in vitro expansion and during in vivo engraftment. Finally, we demonstrated an explicit increase in the expression level of RHAMM after in vitro activation of T cells. Conclusions RHAMM does not fulfill the criteria of an ideal target antigen for immunotherapy of acute myeloid leukemia. RHAMM expression in leukemic stem cells does not differ significantly from the expression in hematopoietic stem cells from healthy controls. RHAMM expression in proliferating CD34+ cells of healthy donors and activated T cells further compromises RHAMM-specific T-cell-mediated immunotherapy. PMID:22532518

  2. Activated myeloid dendritic cells accumulate and co-localize with CD3+ T cells in coronary artery lesions in patients with Kawasaki disease.

    PubMed

    Yilmaz, Atilla; Rowley, Anne; Schulte, Danica J; Doherty, Terence M; Schröder, Nicolas W J; Fishbein, Michael C; Kalelkar, Mitra; Cicha, Iwona; Schubert, Katja; Daniel, Werner G; Garlichs, Christoph D; Arditi, Moshe

    2007-08-01

    Emerging evidence implicating the participation of dendritic cells (DCs) and T cells in various vascular inflammatory diseases such as giant cell arteritis, Takayasu's arteritis, and atherosclerosis led us to hypothesize that they might also participate in the pathogenesis of coronary arteritis in Kawasaki disease (KD). Coronary artery specimens from 4 patients with KD and 6 control patients were obtained. Immunohistochemical and computer-assisted histomorphometric analyses were performed to detect all myeloid DCs (S-100(+), fascin(+)), all plasmacytoid DCs (CD123(+)) as well as specific DC subsets (mature myeloid DCs [CD83(+)], myeloid [BDCA-1(+)] and plasmacytoid DC precursors [BDCA-2(+)]), T cells (CD3(+)), and all antigen-presenting cells (HLA-DR(+)). Co-localization of DCs with T cells was assessed using double immunostaining. Significantly more myeloid DCs at a precursor, immature or mature stage were found in coronary lesions of KD patients than in controls. Myeloid DC precursors were distributed equally in the intima and adventitia. Mature myeloid DCs were particularly abundant in the adventitia. There was a significant correlation between mature DCs and HLA-DR expression. Double immunostaining demonstrated frequent contacts between myeloid DCs and T cells in the outer media and adventitia. Plasmacytoid DC precursors were rarely found in the adventitia. In conclusion, coronary artery lesions of KD patients contain increased numbers of mature myeloid DCs with high HLA-DR expression and frequent T cell contacts detected immunohistochemically. This suggests that mature arterial myeloid DCs might be activating T cells in situ and may be a significant factor in the pathogenesis of coronary arteritis in KD.

  3. Growth Factor-Activated Stem Cell Circuits and Stromal Signals Cooperatively Accelerate Non-Integrated iPSC Reprogramming of Human Myeloid Progenitors

    PubMed Central

    Park, Tea Soon; Huo, Jeffrey S.; Peters, Ann; Talbot, C. Conover; Verma, Karan; Zimmerlin, Ludovic; Kaplan, Ian M.; Zambidis, Elias T.

    2012-01-01

    Nonviral conversion of skin or blood cells into clinically useful human induced pluripotent stem cells (hiPSC) occurs in only rare fractions (∼0.001%–0.5%) of donor cells transfected with non-integrating reprogramming factors. Pluripotency induction of developmentally immature stem-progenitors is generally more efficient than differentiated somatic cell targets. However, the nature of augmented progenitor reprogramming remains obscure, and its potential has not been fully explored for improving the extremely slow pace of non-integrated reprogramming. Here, we report highly optimized four-factor reprogramming of lineage-committed cord blood (CB) myeloid progenitors with bulk efficiencies of ∼50% in purified episome-expressing cells. Lineage-committed CD33+CD45+CD34− myeloid cells and not primitive hematopoietic stem-progenitors were the main targets of a rapid and nearly complete non-integrated reprogramming. The efficient conversion of mature myeloid populations into NANOG+TRA-1-81+ hiPSC was mediated by synergies between hematopoietic growth factor (GF), stromal activation signals, and episomal Yamanaka factor expression. Using a modular bioinformatics approach, we demonstrated that efficient myeloid reprogramming correlated not to increased proliferation or endogenous Core factor expressions, but to poised expression of GF-activated transcriptional circuits that commonly regulate plasticity in both hematopoietic progenitors and embryonic stem cells (ESC). Factor-driven conversion of myeloid progenitors to a high-fidelity pluripotent state was further accelerated by soluble and contact-dependent stromal signals that included an implied and unexpected role for Toll receptor-NFκB signaling. These data provide a paradigm for understanding the augmented reprogramming capacity of somatic progenitors, and reveal that efficient induced pluripotency in other cell types may also require extrinsic activation of a molecular framework that commonly regulates self

  4. How Is Acute Myeloid Leukemia Diagnosed?

    MedlinePlus

    ... Detection, Diagnosis, and Types How Is Acute Myeloid Leukemia Diagnosed? Certain signs and symptoms might suggest that ... of samples used to test for acute myeloid leukemia If signs and symptoms and/or the results ...

  5. Acute Myeloid Leukemia (AML) (For Parents)

    MedlinePlus

    ... Your 1- to 2-Year-Old Acute Myeloid Leukemia (AML) KidsHealth > For Parents > Acute Myeloid Leukemia (AML) ... Treatment Coping en español Leucemia mieloide aguda About Leukemia Leukemia is a type of cancer that affects ...

  6. Complete response of myeloid sarcoma with cardiac involvement to radiotherapy

    PubMed Central

    Yang, Wen-Chi; Yao, Ming; Chen, Yu-Hsuan

    2016-01-01

    We present a rare case of intracardiac myeloid sarcoma (MS) of acute myeloid leukemia (AML) and who responds completely well to low-dose radiotherapy. This 19-year-old young man initially presented with AML and received standard chemotherapy followed by allogeneic hematopoietic stem cell transplantation (HSCT). However, he developed intracardiac isolated MS relapse with the presentation of exertional dyspnea and superior vena cava (SVC) syndrome 3 years later. He then received radiotherapy with 24 Gy at a 12 daily fractions using forward “field in field” intensity modulated radiotherapy technique. He dramatically had improved clinical symptoms, and complete remission was achieved one month after completing radiotherapy. Our result is in line with anecdotal case reports showed that radiotherapy with 15 Gy in 10 fractions or with 24 Gy in 12 fractions resulted in good response and less toxicity of 2 cases of MS with cardiac involvement. These results indicate that a modest radiotherapy dose, 24 Gy, achieves good local control of MS with cardiac involvement. PMID:27293853

  7. Acute Myeloid Leukaemia

    PubMed Central

    Villela, Luis; Bolaños-Meade, Javier

    2013-01-01

    The current treatment of patients with acute myeloid leukaemia yields poor results, with expected cure rates in the order of 30–40% depending on the biological characteristics of the leukaemic clone. Therefore, new agents and schemas are intensively studied in order to improve patients’ outcomes. This review summarizes some of these new paradigms, including new questions such as which anthracycline is most effective and at what dose. High doses of daunorubicin have shown better responses in young patients and are well tolerated in elderly patients. Monoclonal antibodies are promising agents in good risk patients. Drugs blocking signalling pathways could be used in combination with chemotherapy or in maintenance with promising results. Epigenetic therapies, particularly after stem cell transplantation, are also discussed. New drugs such as clofarabine and flavopiridol are reviewed and the results of their use discussed. It is clear that many new approaches are under study and hopefully will be able to improve on the outcomes of the commonly used ‘7+3’ regimen of an anthracycline plus cytarabine with daunorubicin, which is clearly an ineffective therapy in the majority of patients. PMID:21861539

  8. Myeloid leukemia after hematotoxins

    SciTech Connect

    Larson, R.A.; LeBeau, M.M.; Vardiman, J.W.; Rowley, J.D.

    1996-12-01

    One of the most serious consequences of cancer therapy is the development of a second cancer, especially leukemia. Several distinct subsets of therapy-related leukemia can now be distinguished. Classic therapy-related myeloid leukemia typically occurs 5 to 7 years after exposure to alkylating agents and/or irradiation, has a myelodysplastic phase with trilineage involvement, and is characterized by abnormalities of the long arms of chromosomes 5 and/or 7. Response to treatment is poor, and allogeneic bone marrow transplantation is recommended. Leukemia following treatment with agents that inhibit topoisomerase 11, however, has a shorter latency, no preleukemic phase, a monoblastic, myelomonocytic, or myeloblastic phenotype, and balanced translocations, most commonly involving chromosome bands 11 q23 or 21 q22. The MLL gene at 11 q23 or the AML1 gene at 21 q22 are almost uniformly rearranged. MLL is involved with many fusion gene partners. Therapy-related acute lymphoblastic leukemia also occurs with 1 1 q23 rearrangements. Therapy-related leukemias with 11 q23 or 21 q22 rearrangements, inv(16) or t(15;17), have a more favorable response to treatment and a clinical course similar to their de novo counterparts. 32 refs., 4 tabs.

  9. Umbilical cord blood transplantation in adult myeloid leukemia.

    PubMed

    Tse, W W; Zang, S L; Bunting, K D; Laughlin, M J

    2008-03-01

    Allogeneic hematopoietic stem cell (HSC) transplantation is a life-saving procedure for hematopoietic malignancies, marrow failure syndromes and hereditary immunodeficiency disorders. However, wide application of this procedure is limited by availability of suitable human leucocyte antigen (HLA)-matched adult donors. Umbilical cord blood (UCB) has been increasingly used as an alternative HSC source for patients lacking matched-HSC donors. The clinical experience of using UCB transplantation to treat pediatric acute leukemias has already shown that higher-level HLA-mismatched UCB can be equally as good as or even better than matched HSC. Recently, large registries and multiple single institutional studies conclusively demonstrated that UCB is an acceptable source of HSCs for adult acute leukemia patients who lack HLA-matched donors. These studies will impact the future clinical allogeneic stem cell transplantation for acute myeloid leukemia (AML), which is the most common acute leukemia in adults. UCB has unique advantages of easy procurement, absence of risk to donors, low risk of transmitting infections, immediate availability, greater tolerance of HLA disparity and lower-than-expected incidence of severe graft-versus-host disease. These features of UCB permit successful transplantation available to almost every patient who needs it. We anticipate that using UCB as a HSC source for allogeneic transplantation for adult AML will increase dramatically over the next 5 years, by expanding the available allogeneic donor pool. Clinical studies are needed with focus on disease-specific UCB transplantation outcomes, including AML, acute lymphoblastic leukemia, and lymphoma.

  10. Hematopoietic bone marrow recovery after radiation therapy: MRI evaluation

    SciTech Connect

    Casamassima, F.; Ruggiero, C.; Caramella, D.; Tinacci, E.; Villari, N.; Ruggiero, M. )

    1989-05-01

    Magnetic resonance imaging (MRI) is able to detect the increase of adipocytes in the hematopoietic bone marrow that occurs as a consequence of radiotherapy and is indicative of the loss of myeloid tissue. By monitoring this process, it is also possible to determine the recovery of the bone marrow. The amount of viable hematopoietic tissue plays a fundamental role in determining whether the patient is able to undergo further antineoplastic therapy, particularly chemotherapy. We examined 35 patients who had been treated with radiotherapy for Hodgkin's lymphoma (12), uterine cervix carcinoma (nine), ovarian dysgerminoma (six), testicular seminoma (four), and non-Hodgkin's lymphoma (four). We observed that radiation-induced modifications of the MRI pattern in the bone marrow are tightly linked to two parameters; the administered radiation dose and the length of time passed after the treatment. Bone marrow recovery was observed only when patients were treated with doses lower than 50 Gy. The earlier radiation-induced modifications of the bone marrow MRI pattern occurred 6 to 12 months after irradiation, and they were most evident 5 to 6 years after the treatment. From 2 to 9 years after radiotherapy, we observed partial recovery. Complete recovery, when it occurred, was observed only 10 to 23 years after the treatment. Our results indicate that MRI studies are likely to be useful in the assessment of radiation-induced injuries.

  11. Hematopoietic Neoplasias in Horses: Myeloproliferative and Lymphoproliferative Disorders

    PubMed Central

    MUÑOZ, Ana; RIBER, Cristina; TRIGO, Pablo; CASTEJÓN, Francisco

    2010-01-01

    Leukemia, i.e., the neoplasia of one or more cell lines of the bone marrow, although less common than in other species, it is also reported in horses. Leukemia can be classified according to the affected cells (myeloproliferative or lymphoproliferative disorders), evolution of clinical signs (acute or chronic) and the presence or lack of abnormal cells in peripheral blood (leukemic, subleukemic and aleukemic leukemia). The main myeloproliferative disorders in horses are malignant histiocytosis and myeloid leukemia, the latter being classified as monocytic and myelomonocytic, granulocytic, primary erythrocytosis or polycythemia vera and megakaryocytic leukemia. The most common lymphoproliferative disorders in horses are lymphoid leukemia, plasma cell or multiple myeloma and lymphoma. Lymphoma is the most common hematopoietic neoplasia in horses and usually involves lymphoid organs, without leukemia, although bone marrow may be affected after metastasis. Lymphoma could be classified according to the organs involved and four main clinical categories have been established: generalized-multicentric, alimentary-gastrointestinal, mediastinal-thymic-thoracic and cutaneous. The clinical signs, hematological and clinical pathological findings, results of bone marrow aspirates, involvement of other organs, prognosis and treatment, if applicable, are presented for each type of neoplasia. This paper aims to provide a guide for equine practitioners when approaching to clinical cases with suspicion of hematopoietic neoplasia. PMID:24833969

  12. Progress toward curing HIV infection with hematopoietic cell transplantation

    PubMed Central

    Petz, Lawrence D; Burnett, John C; Li, Haitang; Li, Shirley; Tonai, Richard; Bakalinskaya, Milena; Shpall, Elizabeth J; Armitage, Sue; Kurtzberg, Joanne; Regan, Donna M; Clark, Pamela; Querol, Sergio; Gutman, Jonathan A; Spellman, Stephen R; Gragert, Loren; Rossi, John J

    2015-01-01

    HIV-1 infection afflicts more than 35 million people worldwide, according to 2014 estimates from the World Health Organization. For those individuals who have access to antiretroviral therapy, these drugs can effectively suppress, but not cure, HIV-1 infection. Indeed, the only documented case for an HIV/AIDS cure was a patient with HIV-1 and acute myeloid leukemia who received allogeneic hematopoietic cell transplantation (HCT) from a graft that carried the HIV-resistant CCR5-∆32/∆32 mutation. Other attempts to establish a cure for HIV/AIDS using HCT in patients with HIV-1 and malignancy have yielded mixed results, as encouraging evidence for virus eradication in a few cases has been offset by poor clinical outcomes due to the underlying cancer or other complications. Such clinical strategies have relied on HIV-resistant hematopoietic stem and progenitor cells that harbor the natural CCR5-∆32/∆32 mutation or that have been genetically modified for HIV-resistance. Nevertheless, HCT with HIV-resistant cord blood remains a promising option, particularly with inventories of CCR5-∆32/∆32 units or with genetically modified, human leukocyte antigen-matched cord blood. PMID:26251620

  13. 8-Chloro-Adenosine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-11-08

    Recurrent Adult Acute Myeloid Leukemia; Relapsed Adult Acute Myeloid Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia Arising From Previous Myeloproliferative Disorder

  14. Myeloid cell turnover and clearance

    PubMed Central

    Janssen, William J.; Bratton, Donna L.; Jakubzick, Claudia V.; Henson, Peter M.

    2016-01-01

    Given the dual and intrinsically contradictory roles for myeloid cells in both protective and yet also damaging effects of inflammatory and immunological processes we suggest that it is important to consider the mechanisms and circumstances by which these cells are removed, either in the normal unchallenged state or during inflammation or disease. In this essay we address these subjects from a conceptual perspective, focusing as examples on four main myeloid cell types (neutrophils, monocytes, macrophages and myeloid dendritic cells) and their clearance from the circulation or from naïve and inflamed tissues. While the primary clearance process appears to involve endocytic uptake into macrophages, various tissue cell types can also recognize and remove dying cells though their overall quantitative contribution is unclear. In fact, surprisingly, given the wealth of study in this area over the last 30 years, our conclusion is that we are still challenged with substantial lack of mechanistic and regulatory understanding of when, how and by what mechanisms migratory myeloid cells come to die, are recognized as needing to be removed and indeed the precise processes of uptake of either the intact or fragmented cells. This reflects the extreme complexity and inherent redundancy of the clearance processes and argues for substantial investigative effort in this arena. In addition, it leads us to a sense that approaches to significant therapeutic modulation of selective myeloid clearance is still a long way off. PMID:27837740

  15. ‘Acute myeloid leukemia: a comprehensive review and 2016 update'

    PubMed Central

    De Kouchkovsky, I; Abdul-Hay, M

    2016-01-01

    Acute myeloid leukemia (AML) is the most common acute leukemia in adults, with an incidence of over 20 000 cases per year in the United States alone. Large chromosomal translocations as well as mutations in the genes involved in hematopoietic proliferation and differentiation result in the accumulation of poorly differentiated myeloid cells. AML is a highly heterogeneous disease; although cases can be stratified into favorable, intermediate and adverse-risk groups based on their cytogenetic profile, prognosis within these categories varies widely. The identification of recurrent genetic mutations, such as FLT3-ITD, NMP1 and CEBPA, has helped refine individual prognosis and guide management. Despite advances in supportive care, the backbone of therapy remains a combination of cytarabine- and anthracycline-based regimens with allogeneic stem cell transplantation for eligible candidates. Elderly patients are often unable to tolerate such regimens, and carry a particularly poor prognosis. Here, we review the major recent advances in the treatment of AML. PMID:27367478

  16. [History, current status, and future prospects in clinical study of myeloid leukemia].

    PubMed

    Ozawa, Keiya

    2009-10-01

    The fundamental principle of the treatment of AML (acute myeloid leukemia) is "total cell kill. " For remission induction, "response-oriented individualized therapy" was developed in Japan. However, the similar response rate was obtained by "set therapy," which became the present standard regimen. Regarding the post-remission therapy, consolidation therapy is conducted without further long-term maintenance/intensification therapy. For poor-risk patients, hematopoietic stem cell transplantation should be considered. To improve the therapeutic efficacy, the development of molecular targeted therapy will be indispensable. As for CML (chronic myeloid leukemia), the development of imatinib has completely changed the treatment strategy. The eradication of CML stem cells is the next challenging issue.

  17. Molecular involvement and prognostic importance of fms-like tyrosine kinase 3 in acute myeloid leukemia.

    PubMed

    Shahab, Sadaf; Shamsi, Tahirs; Ahmed, Nuzhat

    2012-01-01

    AML (Acute myeloid leukemia) is a form of blood cancer where growth of myeloid cells occurs in the bone marrow. The prognosis is poor in general for many reasons. One is the presence of leukaemia-specific recognition markers such as FLT3 (fms-like tyrosine kinase 3). Another name of FLT3 is stem cell tyrosine kinase-1 (STK1), which is known to take part in proliferation, differentiation and apoptosis of hematopoietic cells, usually being present on haemopoietic progenitor cells in the bone marrow. FLT3 act as an independent prognostic factor for AML. Although a vast literature is available about the association of FLT3 with AML there still is a need of a brief up to date overview which draw a clear picture about this association and their effect on overall survival.

  18. Cancer-Associated Myeloid Regulatory Cells

    PubMed Central

    De Vlaeminck, Yannick; González-Rascón, Anna; Goyvaerts, Cleo; Breckpot, Karine

    2016-01-01

    Myeloid cells are critically involved in the pathophysiology of cancers. In the tumor microenvironment (TME), they comprise tumor-associated macrophages (TAMs), neutrophils (TANs), dendritic cells, and myeloid-derived suppressor cells, which are further subdivided into a monocytic subset and a granulocytic subset. Some of these myeloid cells, in particular TAMs and TANs, are divided into type 1 or type 2 cells, according to the paradigm of T helper type 1 or type 2 cells. Type 1-activated cells are generally characterized as cells that aid tumor rejection, while all other myeloid cells are shown to favor tumor progression. Moreover, these cells are often at the basis of resistance to various therapies. Much research has been devoted to study the biology of myeloid cells. This endeavor has proven to be challenging, as the markers used to categorize myeloid cells in the TME are not restricted to particular subsets. Also from a functional and metabolic point of view, myeloid cells share many features. Finally, myeloid cells are endowed with a certain level of plasticity, which further complicates studying them outside their environment. In this article, we challenge the exclusive use of cell markers to unambiguously identify myeloid cell subsets in the TME. We further propose to divide myeloid cells into myeloid regulatory or stimulatory cells according to their pro- or antitumor function, because we contend that for therapeutic purposes it is not targeting the cell subsets but rather targeting their protumor traits; hence, myeloid regulatory cells will push antitumor immunotherapy to the next level. PMID:27065074

  19. Targeted alpha particle immunotherapy for myeloid leukemia.

    PubMed

    Jurcic, Joseph G; Larson, Steven M; Sgouros, George; McDevitt, Michael R; Finn, Ronald D; Divgi, Chaitanya R; Ballangrud, Ase M; Hamacher, Klaus A; Ma, Dangshe; Humm, John L; Brechbiel, Martin W; Molinet, Roger; Scheinberg, David A

    2002-08-15

    Unlike beta particle-emitting isotopes, alpha emitters can selectively kill individual cancer cells with a single atomic decay. HuM195, a humanized anti-CD33 monoclonal antibody, specifically targets myeloid leukemia cells and has activity against minimal disease. When labeled with the beta-emitters (131)I and (90)Y, HuM195 can eliminate large leukemic burdens in patients, but it produces prolonged myelosuppression requiring hematopoietic stem cell transplantation at high doses. To enhance the potency of native HuM195 yet avoid the nonspecific cytotoxicity of beta-emitting constructs, the alpha-emitting isotope (213)Bi was conjugated to HuM195. Eighteen patients with relapsed and refractory acute myelogenous leukemia or chronic myelomonocytic leukemia were treated with 10.36 to 37.0 MBq/kg (213)Bi-HuM195. No significant extramedullary toxicity was seen. All 17 evaluable patients developed myelosuppression, with a median time to recovery of 22 days. Nearly all the (213)Bi-HuM195 rapidly localized to and was retained in areas of leukemic involvement, including the bone marrow, liver, and spleen. Absorbed dose ratios between these sites and the whole body were 1000-fold greater than those seen with beta-emitting constructs in this antigen system and patient population. Fourteen (93%) of 15 evaluable patients had reductions in circulating blasts, and 14 (78%) of 18 patients had reductions in the percentage of bone marrow blasts. This study demonstrates the safety, feasibility, and antileukemic effects of (213)Bi-HuM195, and it is the first proof-of-concept for systemic targeted alpha particle immunotherapy in humans.

  20. An autonomous CEBPA enhancer specific for myeloid-lineage priming and neutrophilic differentiation

    PubMed Central

    Avellino, Roberto; Havermans, Marije; Erpelinck, Claudia; Sanders, Mathijs A.; Hoogenboezem, Remco; van de Werken, Harmen J. G.; Rombouts, Elwin; van Lom, Kirsten; van Strien, Paulina M. H.; Gebhard, Claudia; Rehli, Michael; Pimanda, John; Beck, Dominik; Erkeland, Stefan; Kuiken, Thijs; de Looper, Hans; Gröschel, Stefan; Touw, Ivo; Bindels, Eric

    2016-01-01

    Neutrophilic differentiation is dependent on CCAAT enhancer-binding protein α (C/EBPα), a transcription factor expressed in multiple organs including the bone marrow. Using functional genomic technologies in combination with clustered regularly-interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 genome editing and in vivo mouse modeling, we show that CEBPA is located in a 170-kb topological-associated domain that contains 14 potential enhancers. Of these, 1 enhancer located +42 kb from CEBPA is active and engages with the CEBPA promoter in myeloid cells only. Germ line deletion of the homologous enhancer in mice in vivo reduces Cebpa levels exclusively in hematopoietic stem cells (HSCs) and myeloid-primed progenitor cells leading to severe defects in the granulocytic lineage, without affecting any other Cebpa-expressing organ studied. The enhancer-deleted progenitor cells lose their myeloid transcription program and are blocked in differentiation. Deletion of the enhancer also causes loss of HSC maintenance. We conclude that a single +42-kb enhancer is essential for CEBPA expression in myeloid cells only. PMID:26966090

  1. Genetic deletion of JAM-C reveals a role in myeloid progenitor generation.

    PubMed

    Praetor, Asja; McBride, Jacqueline M; Chiu, Henry; Rangell, Linda; Cabote, Lorena; Lee, Wyne P; Cupp, James; Danilenko, Dimitry M; Fong, Sherman

    2009-02-26

    Hematopoietic stem cells (HSCs) have the capacity to self-renew and continuously differentiate into all blood cell lineages throughout life. At each branching point during differentiation, interactions with the environment are key in the generation of daughter cells with distinct fates. Here, we examined the role of the cell adhesion molecule JAM-C, a protein known to mediate cellular polarity during spermatogenesis, in hematopoiesis. We show that murine JAM-C is highly expressed on HSCs in the bone marrow (BM). Expression correlates with self-renewal, the highest being on long-term repopulating HSCs, and decreases with differentiation, which is maintained longest among myeloid committed progenitors. Inclusion of JAM-C as a sole marker on lineage-negative BM cells yields HSC enrichments and long-term multilineage reconstitution when transferred to lethally irradiated mice. Analysis of Jam-C-deficient mice showed that two-thirds die within 48 hours after birth. In the surviving animals, loss of Jam-C leads to an increase in myeloid progenitors and granulocytes in the BM. Stem cells and myeloid cells from fetal liver are normal in number and homing to the BM. These results provide evidence that JAM-C defines HSCs in the BM and that JAM-C plays a role in controlling myeloid progenitor generation in the BM.

  2. BMP signaling balances murine myeloid potential through SMAD-independent p38MAPK and NOTCH pathways.

    PubMed

    Cook, Brandoch D; Evans, Todd

    2014-07-17

    Bone morphogenetic protein (BMP) signaling regulates early hematopoietic development, proceeding from mesoderm patterning through the progressive commitment and differentiation of progenitor cells. The BMP pathway signals largely through receptor-mediated activation of Mothers Against Decapentaplegic homolog (SMAD) proteins, although alternate pathways are modulated through various components of mitogen-activated protein kinase (MAPK) signaling. Using a conditional, short hairpin RNA (shRNA)-based knockdown system in the context of differentiating embryonic stem cells (ESCs), we demonstrated previously that Smad1 promotes hemangioblast specification, but then subsequently restricts primitive progenitor potential. Here we show that co-knockdown of Smad5 restores normal progenitor potential of Smad1-depleted cells, suggesting opposing functions for Smad1 and Smad5. This balance was confirmed by cotargeting Smad1/5 with a specific chemical antagonist, LDN193189 (LDN). However, we discovered that LDN treatment after hemangioblast commitment enhanced primitive myeloid potential. Moreover, inhibition with LDN (but not SMAD depletion) increased expression of Delta-like ligands Dll1 and Dll3 and NOTCH activity; abrogation of NOTCH activity restored LDN-enhanced myeloid potential back to normal, corresponding with expression levels of the myeloid master regulator, C/EBPα. LDN but not SMAD activity was also associated with activation of the p38MAPK pathway, and blocking this pathway was sufficient to enhance myelopoiesis. Therefore, NOTCH and p38MAPK pathways balance primitive myeloid progenitor output downstream of the BMP pathway.

  3. On the origin of hematopoietic stem cells: progress and controversy.

    PubMed

    Boisset, Jean-Charles; Robin, Catherine

    2012-01-01

    Hematopoietic Stem Cells (HSCs) are responsible for the production and replenishment of all blood cell types during the entire life of an organism. Generated during embryonic development, HSCs transit through different anatomical niches where they will expand before colonizing in the bone marrow, where they will reside during adult life. Although the existence of HSCs has been known for more than fifty years and despite extensive research performed in different animal models, there is still uncertainty with respect to the precise origins of HSCs. We review the current knowledge on embryonic hematopoiesis and highlight the remaining questions regarding the anatomical and cellular identities of HSC precursors.

  4. Therapeutic Resistance in Acute Myeloid Leukemia: The Role of Non-Coding RNAs

    PubMed Central

    Zebisch, Armin; Hatzl, Stefan; Pichler, Martin; Wölfler, Albert; Sill, Heinz

    2016-01-01

    Acute myeloid leukemia (AML) is caused by malignant transformation of hematopoietic stem or progenitor cells and displays the most frequent acute leukemia in adults. Although some patients can be cured with high dose chemotherapy and allogeneic hematopoietic stem cell transplantation, the majority still succumbs to chemoresistant disease. Micro-RNAs (miRNAs) and long non-coding RNAs (lncRNAs) are non-coding RNA fragments and act as key players in the regulation of both physiologic and pathologic gene expression profiles. Aberrant expression of various non-coding RNAs proved to be of seminal importance in the pathogenesis of AML, as well in the development of resistance to chemotherapy. In this review, we discuss the role of miRNAs and lncRNAs with respect to sensitivity and resistance to treatment regimens currently used in AML and provide an outlook on potential therapeutic targets emerging thereof. PMID:27973410

  5. Essential role for telomerase in chronic myeloid leukemia induced by BCR-ABL in mice

    PubMed Central

    Vicente-Dueñas, Carolina; Barajas-Diego, Marcos; Romero-Camarero, Isabel; González-Herrero, Inés; Flores, Teresa; Sánchez-García, Isidro

    2012-01-01

    The telomerase protein is constitutively activated in malignant cells from many patients with cancer, including the chronic myeloid leukemia (CML), but whether telomerase is essential for the pathogenesis of this disease is not known. Here, we used telomerase deficient mice to determine the requirement for telomerase in CML induced by BCR-ABL in mouse models of CML. Loss of one telomerase allele or complete deletion of telomerase prevented the development of leukemia induced by BCR-ABL. However, BCR-ABL was expressed and active in telomerase heterozygous and null leukemic hematopoietic stem cells. These results demonstrate that telomerase is essential for oncogene-induced reprogramming of hematopoietic stem cells in CML development and validate telomerase and the genes it regulates as targets for therapy in CML. PMID:22408137

  6. Donor-Derived Smoldering Multiple Myeloma following a Hematopoietic Cell Transplantation for AML

    PubMed Central

    Fiala, Mark; Slade, Michael; Westervelt, Peter

    2017-01-01

    Posttransplant Lymphoproliferative Disorder (PTLD) is one of the most common malignancies complicating solid organ transplantation. In contrast, PTLD accounts for a minority of secondary cancers following allogeneic hematopoietic cell transplantation (HCT). Here we report on a 61-year-old woman who received an ABO-mismatched, HLA-matched unrelated donor hematopoietic cell transplantation from a presumably healthy donor for a diagnosis of acute myeloid leukemia (AML). Eighteen months following her transplant, she developed a monoclonal gammopathy. Bone marrow studies revealed 10% plasma cells, but the patient lacked clinical defining features of multiple myeloma (MM); thus a diagnosis of smoldering multiple myeloma (SMM) was established. Cytogenetic and molecular studies of the bone marrow confirmed the plasma cells were donor-derived. The donor lacks a diagnosis of monoclonal gammopathy of undetermined significance, SMM, or MM. PMID:28316846

  7. BCL2 Inhibition by Venetoclax: Targeting the Achilles' Heel of the Acute Myeloid Leukemia Stem Cell?

    PubMed

    Pullarkat, Vinod A; Newman, Edward M

    2016-10-01

    Venetoclax is an oral drug with an excellent side-effect profile that has the potential to revolutionize acute myeloid leukemia (AML) therapy in two areas. Venetoclax-based combination therapies could be a bridge to hematopoietic cell transplant with curative intent for patients with refractory/relapsed AML, and venetoclax-based therapy could provide meaningful survival prolongation for older patients with AML who are not candidates for more aggressive therapies. Cancer Discov; 6(10); 1082-3. ©2016 AACR.See related article by Konopleva and colleagues, p. 1106.

  8. Identifying states along the hematopoietic stem cell differentiation hierarchy with single cell specificity via Raman spectroscopy

    PubMed Central

    Ilin, Yelena; Choi, Ji Sun; Harley, Brendan A. C.; Kraft, Mary L.

    2015-01-01

    A major challenge for expanding specific types of hematopoietic cells ex vivo for the treatment of blood cell pathologies is identifying the combinations of cellular and matrix cues that direct hematopoietic stem cells (HSC) to self-renew or differentiate into cell populations ex vivo. Microscale screening platforms enable minimizing the number of rare HSCs required to screen the effects of numerous cues on HSC fate decisions. These platforms create a strong demand for label-free methods that accurately identify the fate decisions of individual hematopoietic cells at specific locations on the platform. We demonstrate the capacity to identify discrete cells along the HSC differentiation hierarchy via multivariate analysis of Raman spectra. Notably, cell state identification is accurate for individual cells and independent of the biophysical properties of the functionalized polyacrylamide gels upon which these cells are cultured. We report partial least-squares discriminant analysis (PLS-DA) models of single cell Raman spectra enable identifying four dissimilar hematopoietic cell populations across the HSC lineage specification. Successful discrimination was obtained for a population enriched for long-term repopulating HSCs (LT-HSCs) versus their more differentiated progeny, including closely-related short-term repopulating HSCs (ST-HSCs), and fully differentiated lymphoid (B cells) and myeloid (granulocytes) cells. The lineage-specific differentiation states of cells from these four sub-populations were accurately identified independent of the stiffness of the underlying biomaterial substrate, indicating subtle spectral variations that discriminated these populations were not masked by features from the culture substrate. This approach enables identifying the lineage-specific differentiation stages of hematopoietic cells on biomaterial substrates of differing composition, and may facilitate correlating hematopoietic cell fate decisions with the extrinsic cues that

  9. Enhanced hematopoietic protection from radiation by the combination of genistein and captopril.

    PubMed

    Day, R M; Davis, T A; Barshishat-Kupper, M; McCart, E A; Tipton, A J; Landauer, M R

    2013-02-01

    The hematopoietic system is sensitive to radiation injury, and mortality can occur due to blood cell deficiency and stem cell loss. Genistein and the angiotensin converting enzyme (ACE) inhibitor captopril are two agents shown to protect the hematopoietic system from radiation injury. In this study we examined the combination of genistein with captopril for reduction of radiation-induced mortality from hematopoietic damage and the mechanisms of radiation protection. C57BL/6J mice were exposed to 8.25Gy (60)Co total body irradiation (TBI) to evaluate the effects of genistein and captopril alone and in combination on survival, blood cell recovery, hematopoietic progenitor cell recovery, DNA damage, and erythropoietin production. 8.25Gy TBI resulted in 0% survival after 30days in untreated mice. A single subcutaneous injection of genistein administered 24h before TBI resulted in 72% survival. Administration of captopril in the drinking water, from 1h through 30days postirradiation, increased survival to 55%. Genistein plus captopril increased survival to 95%. Enhanced survival was reflected in a reduction of radiation-induced anemia, improved recovery of nucleated bone marrow cells, splenocytes and circulating red blood cells. The drug combination enhanced early recovery of marrow progenitors: erythroid (CFU-E and BFU-E), and myeloid (CFU-GEMM, CFU-GM and CFU-M). Genistein alone and genistein plus captopril protected hematopoietic progenitor cells from radiation-induced micronuclei, while captopril had no effect. Captopril alone and genistein plus captopril, but not genistein alone, suppressed radiation-induced erythropoietin production. These data suggest that genistein and captopril protect the hematopoietic system from radiation injury via independent mechanisms.

  10. Gadd45 modulation of intrinsic and extrinsic stress responses in myeloid cells.

    PubMed

    Hoffman, Barbara; Liebermann, Dan A

    2009-01-01

    Gadd45 proteins modulate signaling in response to physiological and environmental stressors. Expression of gadd45 genes is rapidly induced by different stressors, including differentiation-inducing cytokines and genotoxic stress. Induction of gadd45 genes at the onset of myeloid differentiation suggested that Gadd45 protein(s) play a role in hematopoiesis, yet no apparent abnormalities were observed in either the bone marrow (BM) or peripheral blood compartments of mice deficient for either gadd45a or gadd45b. However, under conditions of hematological stress, including acute stimulation with cytokines, myelo-ablation and inflammation, both gadd45a-deficient and gadd45b-deficient mice exhibited deficiencies. This is discussed within the context of what is known about Gadd45 proteins in stress signaling, hematopoietic development and the innate immune response. Furthermore, myeloid enriched BM cells from gadd45a and gadd45b deficient mice were observed to be more sensitive to ultraviolet radiation (UVC), VP-16 and daunorubicin (DNR) induced apoptosis compared to wild-type (WT) cells, displaying defective G2/M arrest following exposure to UVC and VP-16, but not to DNR. Novel mechanisms that mediate the pro-survival functions of Gadd45 in hematopoietic cells following UV irradiation were demonstrated, involving activation of the Gadd45a-p38-NF-kappaB survival pathway and Gadd45b mediated inhibition of the stress response MKK4-JNK apoptotic pathway. The ramifications regarding the pathogenesis of different leukemias and the response of normal and malignant hematopoietic cells to chemo- and radiation-therapy, as well as other challenges to the hematopoietic compartment, are discussed.

  11. Coordinated regulation of myeloid cells by tumours.

    PubMed

    Gabrilovich, Dmitry I; Ostrand-Rosenberg, Suzanne; Bronte, Vincenzo

    2012-03-22

    Myeloid cells are the most abundant nucleated haematopoietic cells in the human body and are a collection of distinct cell populations with many diverse functions. The three groups of terminally differentiated myeloid cells - macrophages, dendritic cells and granulocytes - are essential for the normal function of both the innate and adaptive immune systems. Mounting evidence indicates that the tumour microenvironment alters myeloid cells and can convert them into potent immunosuppressive cells. Here, we consider myeloid cells as an intricately connected, complex, single system and we focus on how tumours manipulate the myeloid system to evade the host immune response.

  12. Genistein exerts anti-leukemic effects on genetically different acute myeloid leukemia cell lines by inhibiting protein synthesis and cell proliferation while inducing apoptosis – molecular insights from an iTRAQ™ quantitative proteomics study

    PubMed Central

    Lim, Teck Kwang; Port, Sarah Alexandra; Han, Jin-Hua; Chen, Chien-Shing; Lin, Qingsong

    2015-01-01

    Acute myeloid leukemia (AML) is a form of cancer that affects the hematopoietic precursor cells with lethal effects. We investigated the prospect of using genistein as an effective alternate therapy for AML. A two-cell line model, one possessing the FLT3 gene with the ITD mutation (MV4−11) and the other with the wildtype FLT3 gene (HL−60) has been employed. Our 8−plexed iTRAQ™−based quantitative proteomics analysis together with various functional studies demonstrated that genistein exerts anti-leukemic effects on both the AML cell lines. Genistein treatment on the AML cells showed that the drug arrested the mTOR pathway leading to down−regulation of protein synthesis. Additionally, genistein treatment is found to induce cell death via apoptosis. Contrasting regulatory effects of genistein on the cell cycle of the two cell lines were also identified, with the induction of G2/M phase arrest in HL-60 cells but not in MV4−11 cells. Hence, our study highlights the potent anti-leukemic effect of genistein on AML cells irrespective of their genetic status. This suggests the potential use of genistein as an effective general drug therapy for AML patients. PMID:25859554

  13. Molecular Pathways: Myeloid Complicity in Cancer

    PubMed Central

    Stromnes, Ingunn M.; Greenberg, Philip D.; Hingorani, Sunil R.

    2014-01-01

    Cancer-induced inflammation results in accumulation of myeloid cells. It has become increasingly evident that tumor-dependent factors condition myeloid cells toward an immunosuppressive and pro-tumorigenic phenotype. These myeloid cells include progenitors and progeny of monocytes, granulocytes, macrophages, and dendritic cells. Myeloid cells are not simply bystanders in malignancy or barometers of disease burden. Reflecting their dynamic and plastic nature, myeloid cells manifesta continuum of cellular differentiation and are intimately involved at all stages of neoplastic progression. They can promote tumorigenesis through both immune-dependent and independent mechanisms and can dictate response to therapies. A greater understanding of the inherent plasticity and relationships among myeloid subsets is needed to inform therapeutic targeting. New clinical trials are being designed to modulate the activities of myeloid cells in cancer, which may be essential to maximize the efficacy of both conventional cytotoxic and immune-based therapies for solid tumors. PMID:25047706

  14. Localization of hematopoietic cells in the bullfrog (Lithobates catesbeianus).

    PubMed

    de Abreu Manso, Pedro Paulo; de Brito-Gitirana, Lycia; Pelajo-Machado, Marcelo

    2009-08-01

    Amphibians represent the first phylogenetic group to possess hematopoietic bone marrow. However, adult amphibian hematopoiesis has only been described in a few species and with conflicting data. Bone marrow, kidney, spleen, liver, gut, stomach, lung, tegument, and heart were therefore collected from adult Lithobates catesbeianus and investigated by light microscopy and immunohistochemical methods under confocal laser microscopy. Our study demonstrated active hematopoiesis in the bone marrow of vertebrae, femur, and fingers and in the kidney, but no hematopoietic activity inside other organs including the spleen and liver. Blood cells were identified as a heterogeneous cell population constituted by heterophils, basophils, eosinophils, monocytes, erythrocytic cells, lymphocytes, and their precursors. Cellular islets of the thrombocytic lineage occurred near sinusoids of the bone marrow. Antibodies against CD34, CD117, stem cell antigen, erythropoietin receptor, and the receptor for granulocyte colony-stimulating factor identified some cell populations, and some circulating immature cells were seen in the bloodstream. Thus, on the basis of these phylogenetic features, we propose that L. catesbeianus can be used as an important model for hematopoietic studies, since this anuran exhibits hematopoiesis characteristics both of lower vertebrates (renal hematopoiesis) and of higher vertebrates (bone marrow hematopoiesis).

  15. Pericytes, integral components of adult hematopoietic stem cell niches.

    PubMed

    Sá da Bandeira, D; Casamitjana, J; Crisan, M

    2017-03-01

    The interest in perivascular cells as a niche for adult hematopoietic stem cells (HSCs) is significantly growing. In the adult bone marrow (BM), perivascular cells and HSCs cohabit. Among perivascular cells, pericytes are precursors of mesenchymal stem/stromal cells (MSCs) that are capable of differentiating into osteoblasts, adipocytes and chondrocytes. In situ, pericytes are recognised by their localisation to the abluminal side of the blood vessel wall and closely associated with endothelial cells, in combination with the expression of markers such as CD146, neural glial 2 (NG2), platelet derived growth factor receptor β (PDGFRβ), α-smooth muscle actin (α-SMA), nestin (Nes) and/or leptin receptor (LepR). However, not all pericytes share a common phenotype: different immunophenotypes can be associated with distinct mesenchymal features, including hematopoietic support. In adult BM, arteriolar and sinusoidal pericytes control HSC behaviour, maintenance, quiescence and trafficking through paracrine effects. Different groups identified and characterized hematopoietic supportive pericyte subpopulations using various markers and mouse models. In this review, we summarize recent work performed by others to understand the role of the perivascular niche in the biology of HSCs in adults, as well as their importance in the development of therapies.

  16. Regulatory myeloid cells in transplantation.

    PubMed

    Rosborough, Brian R; Raïch-Regué, Dàlia; Turnquist, Heth R; Thomson, Angus W

    2014-02-27

    Regulatory myeloid cells (RMC) are emerging as novel targets for immunosuppressive (IS) agents and hold considerable promise as cellular therapeutic agents. Herein, we discuss the ability of regulatory macrophages, regulatory dendritic cells, and myeloid-derived suppressor cells to regulate alloimmunity, their potential as cellular therapeutic agents, and the IS agents that target their function. We consider protocols for the generation of RMC and the selection of donor- or recipient-derived cells for adoptive cell therapy. Additionally, the issues of cell trafficking and antigen (Ag) specificity after RMC transfer are discussed. Improved understanding of the immunobiology of these cells has increased the possibility of moving RMC into the clinic to reduce the burden of current IS agents and to promote Ag-specific tolerance. In the second half of this review, we discuss the influence of established and experimental IS agents on myeloid cell populations. IS agents believed historically to act primarily on T cell activation and proliferation are emerging as important regulators of RMC function. Better insights into the influence of IS agents on RMC will enhance our ability to develop cell therapy protocols to promote the function of these cells. Moreover, novel IS agents may be designed to target RMC in situ to promote Ag-specific immune regulation in transplantation and to usher in a new era of immune modulation exploiting cells of myeloid origin.

  17. Expression of Thy-1 on human hematopoietic progenitor cells

    PubMed Central

    1993-01-01

    Expression of Thy-1 on hematopoietic cells from human fetal liver (FL), cord blood (CB), and bone marrow (BM) was studied with a novel anti-Thy- 1 antibody, 5E10. Specificity of 5E10 for human Thy-1 was demonstrated by immunoprecipitation of a 25-35-kD molecule, and the sequence of a cDNA that was cloned by immunoselection of COS cells transfected with a cDNA library derived from a 5E10+ cell line. Two- and three-color immunofluorescence staining experiments revealed that the Thy-1 expression is restricted to, an average, 1-4% of FL, CB, and BM cells, and binding to these cell types is essentially restricted to a very small subset of lymphoid cells and approximately 25% of CD34+ cells. Thy-1+ CD34+ cells were further characterized as CD38lo/CD45RO+/CD45RA- /CD71lo/c-kit(lo) and rhodamine 123dull. When CD34+ cells were sorted on the basis of Thy-1 expression, the majority of clonogenic cells were recovered in the CD34+Thy-1- fraction, whereas the majority of cells capable of producing myeloid colonies after 5-8 wk of long-term culture (long-term culture initiating cells) were recovered in the Thy-1+CD34+ fraction. In addition to CD34+ cells, Thy-1 was found to be expressed on a variable, very small number (< 1%) of CD34- mononuclear cells in BM, CB, and peripheral blood that were further characterized as CD3+ CD4+ lymphocytes. The restricted expression of Thy-1 on primitive hematopoietic cells is in agreement with a previous report (Baum et al., 1992. Proc. Natl. Acad. Sci. USA. 89:2804) in which Thy-1 expression was used to enrich for primitive hematopoietic cells from fetal tissue. Compared with those previous studies, we found Thy-1 expression on a larger proportion of CD34+ cells (25% in our study vs. 5% in Baum et al.) and furthermore performed studies on Thy-1 expression on CD34+ cells from CB, FL, and BM in relation to markers that are known to be differentially expressed on hematopoietic cells. Taken together our results indicate that Thy-1-specific antibody

  18. Stage-Specific Human Induced Pluripotent Stem Cells Map the Progression of Myeloid Transformation to Transplantable Leukemia.

    PubMed

    Kotini, Andriana G; Chang, Chan-Jung; Chow, Arthur; Yuan, Han; Ho, Tzu-Chieh; Wang, Tiansu; Vora, Shailee; Solovyov, Alexander; Husser, Chrystel; Olszewska, Malgorzata; Teruya-Feldstein, Julie; Perumal, Deepak; Klimek, Virginia M; Spyridonidis, Alexandros; Rampal, Raajit K; Silverman, Lewis; Reddy, E Premkumar; Papaemmanuil, Elli; Parekh, Samir; Greenbaum, Benjamin D; Leslie, Christina S; Kharas, Michael G; Papapetrou, Eirini P

    2017-03-02

    Myeloid malignancy is increasingly viewed as a disease spectrum, comprising hematopoietic disorders that extend across a phenotypic continuum ranging from clonal hematopoiesis to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). In this study, we derived a collection of induced pluripotent stem cell (iPSC) lines capturing a range of disease stages encompassing preleukemia, low-risk MDS, high-risk MDS, and secondary AML. Upon their differentiation, we found hematopoietic phenotypes of graded severity and/or stage specificity that together delineate a phenotypic roadmap of disease progression culminating in serially transplantable leukemia. We also show that disease stage transitions, both reversal and progression, can be modeled in this system using genetic correction or introduction of mutations via CRISPR/Cas9 and that this iPSC-based approach can be used to uncover disease-stage-specific responses to drugs. Our study therefore provides insight into the cellular events demarcating the initiation and progression of myeloid transformation and a new platform for testing genetic and pharmacological interventions.

  19. Integrated genome-wide chromatin occupancy and expression analyses identify key myeloid pro-differentiation transcription factors repressed by Myb.

    PubMed

    Zhao, Liang; Glazov, Evgeny A; Pattabiraman, Diwakar R; Al-Owaidi, Faisal; Zhang, Ping; Brown, Matthew A; Leo, Paul J; Gonda, Thomas J

    2011-06-01

    To gain insight into the mechanisms by which the Myb transcription factor controls normal hematopoiesis and particularly, how it contributes to leukemogenesis, we mapped the genome-wide occupancy of Myb by chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq) in ERMYB myeloid progenitor cells. By integrating the genome occupancy data with whole genome expression profiling data, we identified a Myb-regulated transcriptional program. Gene signatures for leukemia stem cells, normal hematopoietic stem/progenitor cells and myeloid development were overrepresented in 2368 Myb regulated genes. Of these, Myb bound directly near or within 793 genes. Myb directly activates some genes known critical in maintaining hematopoietic stem cells, such as Gfi1 and Cited2. Importantly, we also show that, despite being usually considered as a transactivator, Myb also functions to repress approximately half of its direct targets, including several key regulators of myeloid differentiation, such as Sfpi1 (also known as Pu.1), Runx1, Junb and Cebpb. Furthermore, our results demonstrate that interaction with p300, an established coactivator for Myb, is unexpectedly required for Myb-mediated transcriptional repression. We propose that the repression of the above mentioned key pro-differentiation factors may contribute essentially to Myb's ability to suppress differentiation and promote self-renewal, thus maintaining progenitor cells in an undifferentiated state and promoting leukemic transformation.

  20. What's New in Chronic Myeloid Leukemia Research and Treatment?

    MedlinePlus

    ... Myeloid Leukemia (CML) About Chronic Myeloid Leukemia What's New in Chronic Myeloid Leukemia Research and Treatment? Studies ... such as cyclosporine or hydroxychloroquine, with a TKI. New drugs for CML Because researchers now know the ...

  1. What Are the Key Statistics about Acute Myeloid Leukemia?

    MedlinePlus

    ... What Are the Key Statistics About Acute Myeloid Leukemia? The American Cancer Society’s estimates for leukemia in ... Leukemia Research and Treatment? More In Acute Myeloid Leukemia About Acute Myeloid Leukemia Causes, Risk Factors, and ...

  2. FoxO1-dependent induction of acute myeloid leukemia by osteoblasts in mice.

    PubMed

    Kode, A; Mosialou, I; Manavalan, S J; Rathinam, C V; Friedman, R A; Teruya-Feldstein, J; Bhagat, G; Berman, E; Kousteni, S

    2016-01-01

    Osteoblasts, the bone forming cells, affect self-renewal and expansion of hematopoietic stem cells (HSCs), as well as homing of healthy hematopoietic cells and tumor cells into the bone marrow. Constitutive activation of β-catenin in osteoblasts is sufficient to alter the differentiation potential of myeloid and lymphoid progenitors and to initiate the development of acute myeloid leukemia (AML) in mice. We show here that Notch1 is the receptor mediating the leukemogenic properties of osteoblast-activated β-catenin in HSCs. Moreover, using cell-specific gene inactivation mouse models, we show that FoxO1 expression in osteoblasts is required for and mediates the leukemogenic properties of β-catenin. At the molecular level, FoxO1 interacts with β-catenin in osteoblasts to induce expression of the Notch ligand, Jagged-1. Subsequent activation of Notch signaling in long-term repopulating HSC progenitors induces the leukemogenic transformation of HSCs and ultimately leads to the development of AML. These findings identify FoxO1 expressed in osteoblasts as a factor affecting hematopoiesis and provide a molecular mechanism whereby the FoxO1/activated β-catenin interaction results in AML. These observations support the notion that the bone marrow niche is an instigator of leukemia and raise the prospect that FoxO1 oncogenic properties may occur in other tissues.

  3. The role of Lin28b in myeloid and mast cell differentiation and mast cell malignancy

    PubMed Central

    Wang, Leo D.; Rao, Tata Nageswara; Rowe, R. Grant; Nguyen, Phi T.; Sullivan, Jessica L.; Pearson, Daniel S.; Doulatov, Sergei; Wu, Linwei; Lindsley, R. Coleman; Zhu, Hao; DeAngelo, Daniel J.; Daley, George Q.; Wagers, Amy J.

    2015-01-01

    Mast cells are critical components of the innate immune system and important for host defense, allergy, autoimmunity, tissue regeneration, and tumor progression. Dysregulated mast cell development leads to systemic mastocytosis, a clinically variable but often devastating family of hematologic disorders. Here we report that induced expression of Lin28, a heterochronic gene and pluripotency factor implicated in driving a fetal hematopoietic program, caused mast cell accumulation in adult mice in target organs such as the skin and peritoneal cavity. In vitro assays revealed a skewing of myeloid commitment in LIN28B-expressing hematopoietic progenitors, with increased levels of LIN28B in common myeloid and basophil-mast cell progenitors altering gene expression patterns to favor cell fate choices that enhanced mast cell specification. In addition, LIN28B-induced mast cells appeared phenotypically and functionally immature, and in vitro assays suggested a slowing of mast cell terminal differentiation in the context of LIN28B upregulation. Finally, interrogation of human mast cell leukemia samples revealed upregulation of LIN28B in abnormal mast cells from patients with systemic mastocytosis (SM). This work identifies Lin28 as a novel regulator of innate immune function and a new protein of interest in mast cell disease. PMID:25655194

  4. GATA-1 but not SCL induces megakaryocytic differentiation in an early myeloid line.

    PubMed Central

    Visvader, J E; Elefanty, A G; Strasser, A; Adams, J M

    1992-01-01

    GATA-1, a transcription factor of the 'zinc-finger' family, is required for the development of mature erythroid cells and is also highly expressed in the megakaryocytic and mast cell lineages. The helix-loop-helix gene SCL (or TAL) is expressed in the same three hematopoietic lineages as GATA-1. To explore the role of GATA-1 and SCL in hematopoietic differentiation, we introduced a new expression vector bearing each gene into the early myeloid cell line 416B, which could originally differentiate in vivo along the megakaryocytic and granulocytic lineages. Enforced expression of SCL at high levels did not provoke differentiation, but GATA-1 induced the appearance of megakaryocytes as assessed by morphology, the presence of acetylcholinesterase and a polyploid DNA content. Although GATA-1 is thought to stimulate its own transcription in erythrocytes, expression of the endogenous gene was not increased in the megakaryocytic lines; hence GATA-1 may not be autoregulatory in this lineage. Megakaryocytic differentiation was accompanied by a marked decrease in the myeloid surface marker Mac-1. The absence of mast cell or erythroid differentiation suggests that GATA-1 may not be sufficient to provoke maturation along these lineages or that these pathways are impeded in 416B cells. These results demonstrate that a member of the GATA gene family can act as an important regulator of megakaryocytic differentiation. Images PMID:1385117

  5. Drosophila as a model for the two myeloid blood cell systems in vertebrates

    PubMed Central

    Gold, Katrina S.; Brückner, Katja

    2016-01-01

    Fish, mice and men rely on two coexisting myeloid blood cell systems. One is sustained by hematopoietic progenitor cells, which reside in specialized microenvironments in hematopoietic organs and give rise to cells of the monocyte lineage. The other system corresponds to the independent lineage of self-renewing tissue macrophages, which colonize organs during embryonic development and are maintained during later life by proliferation in local tissue microenvironments. However, little is known about the nature of these microenvironments and their regulation. Moreover, many vertebrate tissues contain a mix of both tissue-resident and monocyte-derived macrophages, posing a challenge to the study of lineage-specific regulatory mechanisms and function. This review highlights how research in the simple model organism Drosophila melanogaster can address many of these outstanding questions in the field. Drawing parallels between hematopoiesis in Drosophila and vertebrates, we illustrate the evolutionary conservation of the two myeloid systems across animal phyla. Much like vertebrates, Drosophila possesses a lineage of self-renewing tissue-resident macrophages, as well as a ‘definitive’ lineage of macrophages that derive from hematopoiesis in the progenitor-based lymph gland. We summarize key findings from Drosophila hematopoiesis that illustrate how local microenvironments, systemic signals, immune challenges and nervous inputs regulate adaptive responses of tissue-resident macrophages and progenitor-based hematopoiesis to achieve optimal fitness of the animal. PMID:24946019

  6. Marrow-inspired matrix cues rapidly affect early fate decisions of hematopoietic stem and progenitor cells

    PubMed Central

    Choi, Ji Sun; Harley, Brendan A. C.

    2017-01-01

    Hematopoiesis is the physiological process where hematopoietic stem cells (HSCs) continuously generate the body’s complement of blood and immune cells within unique regions of the bone marrow termed niches. Although previous investigations have revealed gradients in cellular and extracellular matrix (ECM) content across the marrow, and matrix elasticity and ligand type are believed to be strong regulators of stem cell fate, the impact of biophysical signals on HSC response is poorly understood. Using marrow-inspired ECM ligand–coated polyacrylamide substrates that present defined stiffness and matrix ligand cues, we demonstrate that the interplay between integrin engagement and myosin II activation processes affects the morphology, proliferation, and myeloid lineage specification of primary murine HSCs within 24 hours ex vivo. Notably, the impact of discrete biophysical signals on HSC fate decisions appears to be correlated to known microenvironmental transitions across the marrow. The combination of fibronectin and marrow matrix-associated stiffness was sufficient to maintain hematopoietic progenitor populations, whereas collagen and laminin enhanced proliferation and myeloid differentiation, respectively. Inhibiting myosin II–mediated contraction or adhesion to fibronectin via specific integrins (α5β1 and ανβ3) selectively abrogated the impact of the matrix environment on HSC fate decisions. Together, these findings indicate that adhesive interactions and matrix biophysical properties are critical design considerations in the development of biomaterials to direct HSC behavior in vitro. PMID:28070554

  7. A reporter mouse reveals lineage-specific and heterogeneous expression of IRF8 during lymphoid and myeloid cell differentiation1

    PubMed Central

    Wang, Hongsheng; Yan, Ming; Sun, Jiafang; Jain, Shweta; Yoshimi, Ryusuke; Abolfath, Sanaz Momben; Ozato, Keiko; Coleman, William G.; Ng, Ashley P.; Metcalf, Donald; DiRago, Ladina; Nutt, Stephen L.; Morse, Herbert C.

    2014-01-01

    The interferon regulatory factor family member 8 (IRF8) regulates differentiation of lymphoid and myeloid lineage cells by promoting or suppressing lineage-specific genes. How IRF8 promotes hematopoietic progenitors to commit to one lineage while preventing the development of alternative lineages is not known. Here we report an IRF8-EGFP fusion protein reporter mouse that revealed previously unrecognized patterns of IRF8 expression. Differentiation of hematopoietic stem cells into oligopotent progenitors is associated with progressive increases in IRF8-EGFP expression. However, significant induction of IRF8-EGFP is found in granulocyte-myeloid progenitors (GMPs) and the common lymphoid progenitors (CLPs) but not the megakaryocytic-erythroid progenitors. Surprisingly, IRF8-EGFP identifies three subsets of the seemingly homogeneous GMPs with an intermediate level of expression of EGFP defining bipotent progenitors that differentiation into either EGFPhi monocytic progenitors or EGFPlo granulocytic progenitors. Also surprisingly, IRF8-EGFP revealed a highly heterogeneous pre-pro-B population with a fluorescence intensity ranging from background to 4 orders above background. Interestingly, IRF8-EGFP readily distinguishes true B cell-committed (EGFPint) from those that are non-committed. Moreover, dendritic cell progenitors expressed extremely high levels of IRF8-EGFP. Taken together, the IRF8-EGFP reporter revealed previously unrecognized subsets with distinct developmental potentials in phenotypically well-defined oligopotent progenitors, providing new insights into the dynamic heterogeneity of developing hematopoietic progenitors. PMID:25024380

  8. Synthetic carbon precursor materials

    SciTech Connect

    Frame, B.J.

    1986-03-01

    Synthetic carbon precursor systems offer advantages over natural petroleum and coal-tar pitch precursors in that they can reproducibly provide a material with a known and uniform composition. They also permit controlled modifications of the derived carbon's properties through variations in the precursor's properties and processing conditions. Extensive research efforts at Oak Ridge have been directed toward the production and characterization of synthetic carbon precursors and the correlations that exist between carbon precursor properties and the properties of the ultimate carbon. This report describes how synthetic carbon precursors can be used to tailor and develop reproducible carbon structures for advanced materials applications. The potential and capability for performing carbon material development at Oak Ridge is also described.

  9. PROGRESS IN ACUTE MYELOID LEUKEMIA

    PubMed Central

    Kadia, Tapan M.; Ravandi, Farhad; O’Brien, Susan; Cortes, Jorge; Kantarjian, Hagop M.

    2014-01-01

    Significant progress has been made in the treatment of acute myeloid leukemia (AML). Steady gains in clinical research and a renaissance of genomics in leukemia have led to improved outcomes. The recognition of tremendous heterogeneity in AML has allowed individualized treatments of specific disease entities within the context of patient age, cytogenetics, and mutational analysis. The following is a comprehensive review of the current state of AML therapy and a roadmap of our approach to these distinct disease entities. PMID:25441110

  10. Nonmyeloablative allogeneic hematopoietic cell transplantation

    PubMed Central

    Storb, Rainer; Sandmaier, Brenda M.

    2016-01-01

    Most hematological malignancies occur in older patients. Until recently these patients and those with comorbidities were not candidates for treatment with allogeneic hematopoietic transplantation because they were unable to tolerate the heretofore used high-dose conditioning regimens. The finding that many of the cures achieved with allogeneic hematopoietic transplantation were due to graft-versus-tumor effects led to the development of less toxic and well-tolerated reduced intensity and nonmyeloablative regimens. These regimens enabled allogeneic engraftment, thereby setting the stage for graft-versus-tumor effects. This review summarizes the encouraging early results seen with the new regimens and discusses the two hurdles that need to be overcome for achieving even greater success, disease relapse and graft-versus-host disease. PMID:27132278

  11. Association of acute myeloid leukemia’s most immature phenotype with risk groups and outcomes

    PubMed Central

    Gerber, Jonathan M.; Zeidner, Joshua F.; Morse, Sarah; Blackford, Amanda L.; Perkins, Brandy; Yanagisawa, Breann; Zhang, Hao; Morsberger, Laura; Karp, Judith; Ning, Yi; Gocke, Christopher D.; Rosner, Gary L.; Smith, B. Douglas; Jones, Richard J.

    2016-01-01

    The precise phenotype and biology of acute myeloid leukemia stem cells remain controversial, in part because the “gold standard” immunodeficient mouse engraftment assay fails in a significant fraction of patients and identifies multiple cell-types in others. We sought to analyze the clinical utility of a novel assay for putative leukemia stem cells in a large prospective cohort. The leukemic clone’s most primitive hematopoietic cellular phenotype was prospectively identified in 109 newly-diagnosed acute myeloid leukemia patients, and analyzed against clinical risk groups and outcomes. Most (80/109) patients harbored CD34+CD38− leukemia cells. The CD34+CD38− leukemia cells in 47 of the 80 patients displayed intermediate aldehyde dehydrogenase expression, while normal CD34+CD38− hematopoietic stem cells expressed high levels of aldehyde dehydrogenase. In the other 33/80 patients, the CD34+CD38− leukemia cells exhibited high aldehyde dehydrogenase activity, and most (28/33, 85%) harbored poor-risk cytogenetics or FMS-like tyrosine kinase 3 internal tandem translocations. No CD34+ leukemia cells could be detected in 28/109 patients, including 14/21 patients with nucleophosmin-1 mutations and 6/7 acute promyelocytic leukemia patients. The patients with CD34+CD38− leukemia cells with high aldehyde dehydrogenase activity manifested a significantly lower complete remission rate, as well as poorer event-free and overall survivals. The leukemic clone’s most immature phenotype was heterogeneous with respect to CD34, CD38, and ALDH expression, but correlated with acute myeloid leukemia risk groups and outcomes. The strong clinical correlations suggest that the most immature phenotype detectable in the leukemia might serve as a biomarker for “clinically-relevant” leukemia stem cells. ClinicalTrials.gov: NCT01349972. PMID:26819054

  12. Chemopreventive effects of dietary eicosapentaenoic acid supplementation in experimental myeloid leukemia

    PubMed Central

    Finch, Emily R.; Kudva, Avinash K.; Quickel, Michael D.; Goodfield, Laura L.; Kennett, Mary J.; Whelan, Jay; Paulson, Robert F.; Prabhu, K. Sandeep

    2015-01-01

    Current therapies for treatment of myeloid leukemia do not eliminate leukemia stem cells (LSC), leading to disease relapse. In this study, we supplemented mice with eicosapentaenoic acid (EPA, C20:5), a polyunsaturated omega-3 fatty acid, at pharmacological levels, to examine if the endogenous metabolite, cyclopentenone prostaglandin delta-12 PGJ3 (Δ12-PGJ3), was effective in targeting LSCs in experimental leukemia. EPA supplementation for eight weeks resulted in enhanced endogenous production of Δ12-PGJ3 that was blocked by indomethacin, a cyclooxygenase inhibitor. Using a murine model of chronic myelogenous leukemia (CML) induced by bone marrow transplantation of BCR-ABL-expressing hematopoietic stem cells, mice supplemented with EPA showed a decrease in the LSC population, reduced splenomegaly and leukocytosis, when compared to mice on an oleic acid diet. Supplementation of CML mice carrying the T315I mutation (in BCR-ABL) with EPA resulted in a similar effect. Indomethacin blocked the EPA effect and increased the severity of BCR-ABL-induced CML and decreased apoptosis. Δ12-PGJ3 rescued indomethacin-treated BCR-ABL mice and decreased LSCs. Inhibition of hematopoietic-prostaglandin D synthase (H-PGDS) by HQL-79 in EPA-supplemented CML mice also blocked the effect of EPA. In addition, EPA supplementation was effective in a murine model of acute myeloid leukemia. Supplemented mice exhibited a decrease in leukemia burden and a decrease in the LSC colony-forming unit (LSC-CFU). The decrease in LSCs was confirmed through serial transplantation assays in all disease models. The results support a chemopreventive role for EPA in myeloid leukemia, which is dependent on the ability to efficiently convert EPA to endogenous cyclooxygenase-derived prostanoids, including Δ12-PGJ3. PMID:26290393

  13. G-CSF induces stabilization of ETS protein Fli-1 during myeloid cell development.

    PubMed

    Mora-Garcia, Patricia; Wei, Jolyn; Sakamoto, Kathleen M

    2005-01-01

    Granulocyte colony-stimulating factor (G-CSF) is a growth factor that regulates the production and function of neutrophils. G-CSF has been used to treat neutropenia in neonates, pediatric cancer patients, and patients undergoing stem cell transplantation. The regulation of transcription factors mediating G-CSF activity has not been well characterized. The goal of this study was to examine the regulation of the ETS binding protein, Friend leukemia integration site 1 (Fli-1), in myeloid cells treated with G-CSF. Fli-1 has oncogenic properties in humans and mice, and plays a role in vascular and hematopoietic cell development. We previously reported that Fli-1 and the serum response factor bind at adjacent sites within the serum response element-1 of the early growth response gene-1 promoter in the murine myeloid leukemic cell line, NFS60. We also identified that Fli-1 DNA binding increased in G-CSF-treated cells compared with untreated cells. To determine whether the change in binding activity is due to increased Fli-1 transcription or protein stability, we examined endogenous Fli-1 expression in G-CSF-treated or -untreated NFS60 cells. Our results demonstrated that levels of Fli-1 protein, but not RNA, were higher in extracts from cells treated with G-CSF. The increase in Fli-1 protein was also dependent on protein synthesis. Finally, we showed that the half-life of Fli-1 is prolonged in G-CSF-treated cells compared with control-treated cells. These results suggest that G-CSF induces stabilization of Fli-1 protein in myeloid cells, thus proposing a novel mechanism by which hematopoietic growth factors regulate transcription factors.

  14. Targeted alpha-particle immunotherapy for acute myeloid leukemia.

    PubMed

    Jurcic, Joseph G; Rosenblat, Todd L

    2014-01-01

    Because alpha-particles have a shorter range and a higher linear energy transfer (LET) compared with beta-particles, targeted alpha-particle immunotherapy offers the potential for more efficient tumor cell killing while sparing surrounding normal cells. To date, clinical studies of alpha-particle immunotherapy for acute myeloid leukemia (AML) have focused on the myeloid cell surface antigen CD33 as a target using the humanized monoclonal antibody lintuzumab. An initial phase I study demonstrated the safety, feasibility, and antileukemic effects of bismuth-213 ((213)Bi)-labeled lintuzumab. In a subsequent study, (213)Bi-lintuzumab produced remissions in some patients with AML after partial cytoreduction with cytarabine, suggesting the utility of targeted alpha-particle therapy for small-volume disease. The widespread use of (213)Bi, however, is limited by its short half-life. Therefore, a second-generation construct containing actinium-225 ((225)Ac), a radiometal that generates four alpha-particle emissions, was developed. A phase I trial demonstrated that (225)Ac-lintuzumab is safe at doses of 3 μCi/kg or less and has antileukemic activity across all dose levels studied. Fractionated-dose (225)Ac-lintuzumab in combination with low-dose cytarabine (LDAC) is now under investigation for the management of older patients with untreated AML in a multicenter trial. Preclinical studies using (213)Bi- and astatine-211 ((211)At)-labeled anti-CD45 antibodies have shown that alpha-particle immunotherapy may be useful as part conditioning before hematopoietic cell transplantation. The use of novel pretargeting strategies may further improve target-to-normal organ dose ratios.

  15. Evidence for Increased Response to Induced Endoplasmic Reticulum Stress in Myeloid Cells in Acquired Aplastic Anemia.

    PubMed

    Sidhu, Alpa; Callaghan, Michael U; Gadgeel, Manisha S; Buck, Steven A; Fribley, Andrew M; Savaşan, Süreyya

    2017-04-01

    Autoimmune response targeting the hematopoietic stem cells highlights the current understanding of acquired aplastic anemia (AAA) pathogenesis. Upregulation of the unfolded protein response is the cell's rejoinder to a variety of stresses, which either result in restoring homeostasis or cell death by increased expression of the transcription factor C/EBP homologous protein. We hypothesized that there is an inherent increased sensitivity to various cellular stressors, including the ones that target endoplasmic reticulum (ER) in AAA leading to a decreased proliferation and potentially contributing to susceptibility to autologous cytotoxicity. Using archived bone marrow aspirate samples, we demonstrate that the culture-expanded AAA myeloid cells have an increased response to ER stress induced by tunicamycin leading to decreased cell proliferation. Within the AAA myeloid samples, we show that the disease status, active versus response to therapy at the time of sampling does not alter the ER stress response. This is the first report, which provides evidence for an inherent defective stress control in the myeloid cells as a possible mechanism of evolution of the disease process in AAA.

  16. XIAP inhibitors induce differentiation and impair clonogenic capacity of acute myeloid leukemia stem cells

    PubMed Central

    Moreno-Martínez, Daniel; Nomdedeu, Meritxell; Lara-Castillo, María Carmen; Etxabe, Amaia; Pratcorona, Marta; Tesi, Niccolò; Díaz-Beyá, Marina; Rozman, María; Montserrat, Emili; Urbano-Ispizua, Álvaro; Esteve, Jordi; Risueño, Ruth M.

    2014-01-01

    Acute myeloid leukemia (AML) is a neoplasia characterized by the rapid expansion of immature myeloid blasts in the bone marrow, and marked by poor prognosis and frequent relapse. As such, new therapeutic approaches are required for remission induction and prevention of relapse. Due to the higher chemotherapy sensitivity and limited life span of more differentiated AML blasts, differentiation-based therapies are a promising therapeutic approach. Based on public available gene expression profiles, a myeloid-specific differentiation-associated gene expression pattern was defined as the therapeutic target. A XIAP inhibitor (Dequalinium chloride, DQA) was identified in an in silico screening searching for small molecules that induce similar gene expression regulation. Treatment with DQA, similarly to Embelin (another XIAP inhibitor), induced cytotoxicity and differentiation in AML. XIAP inhibition differentially impaired cell viability of the most primitive AML blasts and reduced clonogenic capacity of AML cells, sparing healthy mature blood and hematopoietic stem cells. Taken together, these results suggest that XIAP constitutes a potential target for AML treatment and support the evaluation of XIAP inhibitors in clinical trials. PMID:24952669

  17. Cohesin loss alters adult hematopoietic stem cell homeostasis, leading to myeloproliferative neoplasms

    PubMed Central

    Mullenders, Jasper; Aranda-Orgilles, Beatriz; Lhoumaud, Priscillia; Keller, Matthew; Pae, Juhee; Wang, Kun; Kayembe, Clarisse; Rocha, Pedro P.; Raviram, Ramya; Gong, Yixiao; Premsrirut, Prem K.; Tsirigos, Aristotelis; Bonneau, Richard; Skok, Jane A.; Cimmino, Luisa; Hoehn, Daniela

    2015-01-01

    The cohesin complex (consisting of Rad21, Smc1a, Smc3, and Stag2 proteins) is critically important for proper sister chromatid separation during mitosis. Mutations in the cohesin complex were recently identified in a variety of human malignancies including acute myeloid leukemia (AML). To address the potential tumor-suppressive function of cohesin in vivo, we generated a series of shRNA mouse models in which endogenous cohesin can be silenced inducibly. Notably, silencing of cohesin complex members did not have a deleterious effect on cell viability. Furthermore, knockdown of cohesin led to gain of replating capacity of mouse hematopoietic progenitor cells. However, cohesin silencing in vivo rapidly altered stem cells homeostasis and myelopoiesis. Likewise, we found widespread changes in chromatin accessibility and expression of genes involved in myelomonocytic maturation and differentiation. Finally, aged cohesin knockdown mice developed a clinical picture closely resembling myeloproliferative disorders/neoplasms (MPNs), including varying degrees of extramedullary hematopoiesis (myeloid metaplasia) and splenomegaly. Our results represent the first successful demonstration of a tumor suppressor function for the cohesin complex, while also confirming that cohesin mutations occur as an early event in leukemogenesis, facilitating the potential development of a myeloid malignancy. PMID:26438359

  18. Hematopoietic Stem-Cell Transplantation in the Developing World: Experience from a Center in Western India

    PubMed Central

    Shah, Chirag A.; Karanwal, Arun; Desai, Maharshi; Pandya, Munjal; Shah, Ravish; Shah, Rutvij

    2015-01-01

    We describe our experience of first 50 consecutive hematopoietic stem-cell transplants (HSCT) done between 2007 and 2012 at the Apollo Hospital, Gandhinagar, 35 autologous HSCT and 15 allogeneic HSCT. Indications for autologous transplant were multiple myeloma, non-Hodgkin lymphoma, Hodgkin lymphoma, and acute myeloid leukemia, and indications for allogeneic transplants were thalassemia major, aplastic anaemia, chronic myeloid leukemia, and acute lymphoblastic and myeloid leukaemia. The median age of autologous and allogeneic patient's cohort was 50 years and 21 years, respectively. Median follow-up period for all patients was 39 months. Major early complications were infections, mucositis, acute graft versus host disease, and venoocclusive disease. All of our allogeneic and autologous transplant patients survived during the first month of transplant. Transplant related mortality (TRM) was 20% (N = 3) in our allogeneic and 3% (N = 1) in autologous patients. Causes of these deaths were disease relapse, sepsis, hemorrhagic complications, and GVHD. 46% of our autologous and 47% of our allogeneic patients are in complete remission phase after a median follow-up of 39 months. 34% of our autologous patients and 13% of our allogeneic patients had disease relapse. Overall survival rate in our autologous and allogeneic patients is 65.7% and 57.1%, respectively. Our results are comparable to many national and international published reports. PMID:25722722

  19. Hematopoietic lineage skewing and intestinal epithelia degeneration in aged mice with telomerase RNA component deletion

    PubMed Central

    Chen, Jichun; Bryant, Mark A.; Dent, James J.; Sun, Yu; Desierto, Marie J.; Young, Neal S.

    2015-01-01

    A deletion of telomerase RNA component (Terc−/−) in C57BL/6 (B6) mice resulted in hematopoietic lineage skewing with increased neutrophils and CD11b+ myeloid cells and decreased red blood cells and CD45R+ B lymphocytes when animals reach ages older than 12 months. There was no decline in bone marrow (BM) c-Kit+Sca-1+Lin− (KSL) cells in old Terc−/− mice, and the lineage skewing phenomenon was not transferred when BM cells from old Terc−/− donors were transplanted into young B6 recipients. Necropsy and histological examinations found minimal to no change in the lung, spleen and liver but detected severe epithelia degeneration, ulceration and infection in small and large intestines, leading to enteritis, typhlitis and colitis in old Terc−/− mice. In a mouse model of dextran-sulfate-sodium-induced typhlitis and colitis, development of intestinal pathology was associated with increases in neutrophils and CD11b+ myeloid cells and a decrease in CD45R+ B cells, similar to those observed in old Terc−/− mice. Treatment of 11–13 month old Terc−/− mice with antibiotic trimethoprim-sulfa water reduced neutrophils and myeloid cells and increased B lymphocytes in the blood, indicating that mitigation of intestinal infection and inflammation could alleviate hematological abnormalities in old Terc−/− animals. PMID:26523501

  20. Hematopoietic lineage skewing and intestinal epithelia degeneration in aged mice with telomerase RNA component deletion.

    PubMed

    Chen, Jichun; Bryant, Mark A; Dent, James J; Sun, Yu; Desierto, Marie J; Young, Neal S

    2015-12-01

    A deletion of a telomerase RNA component (Terc(-/-)) in C57BL/6 (B6) mice resulted in hematopoietic lineage skewing with increased neutrophils and CD11b(+) myeloid cells and decreased red blood cells and CD45R(+) B lymphocytes when animals reach ages older than 12 months. There was no decline in bone marrow (BM) c-Kit(+)Sca-1(+)Lin(-) (KSL) cells in old Terc(-/-) mice, and the lineage skewing phenomenon was not transferred when BM cells from old Terc(-/-) donors were transplanted into young B6 recipients. Necropsy and histological examinations found minimal to no change in the lung, spleen and liver but detected severe epithelia degeneration, ulceration and infection in small and large intestines, leading to enteritis, typhlitis and colitis in old Terc(-/-) mice. In a mouse model of dextran-sulfate-sodium-induced typhlitis and colitis, development of intestinal pathology was associated with increases in neutrophils and CD11b(+) myeloid cells and a decrease in CD45R(+) B cells, similar to those observed in old Terc(-/-) mice. Treatment of 11-13 month old Terc(-/-) mice with antibiotic trimethoprim-sulfa water reduced neutrophils and myeloid cells and increased B lymphocytes in the blood, indicating that mitigation of intestinal infection and inflammation could alleviate hematological abnormalities in old Terc(-/-) animals.

  1. Characterization of hematopoietic progenitors from human yolk sacs and embryos.

    PubMed

    Huyhn, A; Dommergues, M; Izac, B; Croisille, L; Katz, A; Vainchenker, W; Coulombel, L

    1995-12-15

    Hematopoiesis first arises in the extraembryonic yolk sac, and it is generally believed that yolk sac-derived stem cells migrate and seed the fetal liver at approximately week 6 of development in humans. Recently, the identification at day 8.5 to 9 of multipotential stem cells in intraembryonic sites different from the liver suggests that the establishment of hematopoiesis might be more complex than initially believed. In an attempt to understand initial steps of hematopoiesis during human ontogeny, we characterized clonogenic myeloid progenitor cells in human yolk sacs and corresponding embryos at 25 to 50 days of development. Most erythroid colonies derived from the yolk sacs differed from adult marrow-derived progenitors in that they also contained cells of the granulomacrophagic lineage, suggesting that they were pluripotent and exhibited a different response to cytokines. Furthermore, a subclass of nonerythroid progenitors generated very large granulomacrophagic colonies, some of which generated secondary erythroid colonies on replating. Analysis of the distribution of progenitors revealed that in contrast to erythroid progenitors, whose numbers were equally distributed between the yolk sac and the embryo, 80% of the nonerythroid progenitors were found in the embryo at stages II and III. Interestingly, a high proportion of nonerythroid progenitors (including high proliferative potential cells) was present in colony assays initiated with cells remaining after the liver has been removed. These findings were validated in colony assays established with CD34+ cells purified from extraembryonic yolk sacs and intraembryonic tissues. Increased knowledge about the biology of hematopoietic stem cells early in life may help to further understanding of the mechanisms associated with the restriction in proliferative and differentiative potential observed in the adult hematopoietic stem cell compartment.

  2. Polyimide Precursor Solid Residuum

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2001-01-01

    A polyimide precursor solid residuum is an admixture of an aromatic dianhydride or derivative thereof and an aromatic diamine or derivative thereof plus a complexing agent, which is complexed with the admixture by hydrogen bonding. The polyimide precursor solid residuum is effectively employed in the preparation of polyimide foam and the fabrication of polyimide foam structures.

  3. Quiescent hematopoietic stem cells are activated by IFNγ in response to chronic infection

    PubMed Central

    Baldridge, Megan T.; King, Katherine Y.; Boles, Nathan C.; Weksberg, David C.; Goodell, Margaret A.

    2010-01-01

    Summary Lymphocytes and neutrophils are rapidly depleted by systemic infection1. Progenitor cells of the hematopoietic system, such as common myeloid progenitors (CMPs) and common lymphoid progenitors (CLPs), increase the production of immune cells to restore and maintain homeostasis during chronic infection, but the contribution of hematopoietic stem cells (HSCs) to this process is largely unknown2. Using an in vivo mouse model of Mycobacterium avium infection, we show that an increased proportion of long-term repopulating HSCs (LT-HSCs) proliferate during M. avium infection, and that this response requires interferon-gamma (IFNγ) but not interferon-alpha (IFNα) signaling. Thus, the hematopoietic response to chronic bacterial infection involves the activation not only of intermediate blood progenitors but of LT-HSCs as well. IFNγ is sufficient to promote LT-HSC proliferation in vivo; furthermore, HSCs from mice deficient in IFNγ have a lower proliferative rate, indicating that baseline IFNγ tone regulates HSC activity. These findings are the first to implicate IFNγ both as a regulator of HSCs during homeostasis and under conditions of infectious stress. Our studies contribute to a deeper understanding of hematologic responses in patients with chronic infections such as HIV/AIDS or tuberculosis3-5. PMID:20535209

  4. Effects of Mobilization Regimens in Donors on Outcomes of Hematopoietic Cell Transplantation in Miniature Swine

    PubMed Central

    Matar, Abraham J; Crepeau, Rebecca L; Pathiraja, Vimukthi; Robson, Simon; Fishman, Jay A; Spitzer, Thomas R; Sachs, David H; Huang, Christene A; Duran-Struuck, Raimon

    2012-01-01

    Toxicities and complications associated with hematopoietic cell transplantation currently limit this potentially curative therapy for malignant and nonmalignant blood disorders. Miniature swine provide a clinically relevant model for studies to improve posttransplantation outcomes. Miniature swine recipients of high-dose haploidentical hepatopoietic cell transplantation after reduced-intensity conditioning consisting of low-dose (100 cGy) total-body irradiation, partial T-cell depletion by using a CD3 immunotoxin, and a 45-d course of cyclosporine A typically successfully engraft without graft-versus-host disease. We recently observed broad variability in engraftment outcomes that correlates with the occurrence of adverse reactions in donors after cytokine treatment to mobilize hematopoietic progenitor cells from the bone marrow to the peripheral blood for collection. Haploidentical recipients (n = 16) of cells from donors remaining healthy during cytokine treatment engrafted with multilineage chimerism, did not develop graft-versus-host disease, and did not require any blood products. In comparison, identically conditioned recipients of cells from donors that had severe reactions during cytokine treatment had adverse outcomes, including the development of clinically significant thrombocytopenia requiring blood product support in 8 of 11 swine. Furthermore, all 11 recipients lost peripheral blood myeloid chimerism (indicating lack of engraftment of donor stem cells). These data suggest that posttransplantation complications in swine are influenced by the health status of the donor before and during the collection of hematopoietic cells by leukapheresis. PMID:23561882

  5. Jagged2 acts as a Delta-like Notch ligand during early hematopoietic cell fate decisions

    PubMed Central

    Van de Walle, Inge; De Smet, Greet; Gärtner, Martina; De Smedt, Magda; Waegemans, Els; Vandekerckhove, Bart; Leclercq, Georges; Plum, Jean; Aster, Jon C.; Bernstein, Irwin D.; Guidos, Cynthia J.; Kyewski, Bruno

    2011-01-01

    Notch signaling critically mediates various hematopoietic lineage decisions and is induced in mammals by Notch ligands that are classified into 2 families, Delta-like (Delta-like-1, -3 and -4) and Jagged (Jagged1 and Jagged2), based on structural homology with both Drosophila ligands Delta and Serrate, respectively. Because the functional differences between mammalian Notch ligands were still unclear, we have investigated their influence on early human hematopoiesis and show that Jagged2 affects hematopoietic lineage decisions very similarly as Delta-like-1 and -4, but very different from Jagged1. OP9 coculture experiments revealed that Jagged2, like Delta-like ligands, induces T-lineage differentiation and inhibits B-cell and myeloid development. However, dose-dependent Notch activation studies, gene expression analysis, and promoter activation assays indicated that Jagged2 is a weaker Notch1-activator compared with the Delta-like ligands, revealing a Notch1 specific signal strength hierarchy for mammalian Notch ligands. Strikingly, Lunatic-Fringe– mediated glycosylation of Notch1 potentiated Notch signaling through Delta-like ligands and also Jagged2, in contrast to Jagged1. Thus, our results reveal a unique role for Jagged1 in preventing the induction of T-lineage differentiation in hematopoietic stem cells and show an unexpected functional similarity between Jagged2 and the Delta-like ligands. PMID:21372153

  6. Distinct Hematopoietic Stem Cell Subtypes Are Differentially Regulated by TGFβ1

    PubMed Central

    Challen, Grant A.; Boles, Nathan C.; Chambers, Stuart M.; Goodell, Margaret A.

    2010-01-01

    Summary The traditional view of hematopoiesis has been that all the cells of the peripheral blood are the progeny of a unitary homogeneous pool of hematopoietic stem cells (HSCs). Recent evidence suggests that the hematopoietic system is actually maintained by a consortium of HSC subtypes with distinct functional characteristics. We show here that myeloid-biased HSCs (My-HSCs) and lymphoid-biased (Ly-HSCs) can be purified according to their capacity for Hoechst dye efflux in combination with canonical HSC markers. These phenotypes are stable under natural (aging) or artificial (serial transplantation) stress and are exacerbated in the presence of competing HSCs. My- and Ly-HSCs respond differently to TGFβ1, presenting a possible mechanism for differential regulation of HSC subtype activation. This study demonstrates definitive isolation of lineage-biased HSC subtypes and contributes to the fundamental change in view that the hematopoietic system is maintained by a continuum of HSC subtypes, rather than a functionally uniform pool. PMID:20207229

  7. Sulfatase modifying factor 1-mediated fibroblast growth factor signaling primes hematopoietic multilineage development.

    PubMed

    Buono, Mario; Visigalli, Ilaria; Bergamasco, Roberta; Biffi, Alessandra; Cosma, Maria Pia

    2010-08-02

    Self-renewal and differentiation of hematopoietic stem cells (HSCs) are balanced by the concerted activities of the fibroblast growth factor (FGF), Wnt, and Notch pathways, which are tuned by enzyme-mediated remodeling of heparan sulfate proteoglycans (HSPGs). Sulfatase modifying factor 1 (SUMF1) activates the Sulf1 and Sulf2 sulfatases that remodel the HSPGs, and is mutated in patients with multiple sulfatase deficiency. Here, we show that the FGF signaling pathway is constitutively activated in Sumf1(-/-) HSCs and hematopoietic stem progenitor cells (HSPCs). These cells show increased p-extracellular signal-regulated kinase levels, which in turn promote beta-catenin accumulation. Constitutive activation of FGF signaling results in a block in erythroid differentiation at the chromatophilic erythroblast stage, and of B lymphocyte differentiation at the pro-B cell stage. A reduction in mature myeloid cells and an aberrant development of T lymphocytes are also seen. These defects are rescued in vivo by blocking the FGF pathway in Sumf1(-/-) mice. Transplantation of Sumf1(-/-) HSPCs into wild-type mice reconstituted the phenotype of the donors, suggesting a cell autonomous defect. These data indicate that Sumf1 controls HSPC differentiation and hematopoietic lineage development through FGF and Wnt signaling.

  8. Molecular Changes During Acute Myeloid Leukemia (AML) Evolution and Identification of Novel Treatment Strategies Through Molecular Stratification.

    PubMed

    Karjalainen, E; Repasky, G A

    2016-01-01

    Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by impaired differentiation and uncontrollable proliferation of myeloid progenitor cells. Due to high relapse rates, overall survival for this rapidly progressing disease is poor. The significant challenge in AML treatment is disease heterogeneity stemming from variability in maturation state of leukemic cells of origin, genetic aberrations among patients, and existence of multiple disease clones within a single patient. Disease heterogeneity and the lack of biomarkers for drug sensitivity lie at the root of treatment failure as well as selective efficacy of AML chemotherapies and the emergence of drug resistance. Furthermore, standard-of-care treatment is aggressive, presenting significant tolerability concerns to the commonly advanced-age AML patient. In this review, we examine the concept and potential of molecular stratification, particularly with biologically relevant drug responses, in identifying low-toxicity precision therapeutic combinations and clinically relevant biomarkers for AML patient care as a way to overcome these challenges in AML treatment.

  9. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing.

    PubMed

    Heckl, Dirk; Kowalczyk, Monika S; Yudovich, David; Belizaire, Roger; Puram, Rishi V; McConkey, Marie E; Thielke, Anne; Aster, Jon C; Regev, Aviv; Ebert, Benjamin L

    2014-09-01

    Genome sequencing studies have shown that human malignancies often bear mutations in four or more driver genes, but it is difficult to recapitulate this degree of genetic complexity in mouse models using conventional breeding. Here we use the CRISPR-Cas9 system of genome editing to overcome this limitation. By delivering combinations of small guide RNAs (sgRNAs) and Cas9 with a lentiviral vector, we modified up to five genes in a single mouse hematopoietic stem cell (HSC), leading to clonal outgrowth and myeloid malignancy. We thereby generated models of acute myeloid leukemia (AML) with cooperating mutations in genes encoding epigenetic modifiers, transcription factors and mediators of cytokine signaling, recapitulating the combinations of mutations observed in patients. Our results suggest that lentivirus-delivered sgRNA:Cas9 genome editing should be useful to engineer a broad array of in vivo cancer models that better reflect the complexity of human disease.

  10. Myeloid Leukemias and Virally Induced Lymphomas in Miniature Inbred Swine: Development of a Large Animal Tumor Model.

    PubMed

    Duran-Struuck, Raimon; Matar, Abraham J; Huang, Christene A

    2015-01-01

    The lack of a large animal transplantable tumor model has limited the study of novel therapeutic strategies for the treatment of liquid cancers. Swine as a species provide a natural option based on their similarities with humans and their already extensive use in biomedical research. Specifically, the Massachusetts General Hospital miniature swine herd retains unique genetic characteristics that facilitate the study of hematopoietic cell and solid organ transplantation. Spontaneously arising liquid cancers in these swine, specifically myeloid leukemias and B cell lymphomas, closely resemble human malignancies. The ability to establish aggressive tumor cell lines in vitro from these naturally occurring malignancies makes a transplantable tumor model a close reality. Here, we discuss our experience with myeloid and lymphoid tumors in major histocompatibility characterized miniature swine and future approaches regarding the development of a large animal transplantable tumor model.

  11. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing

    PubMed Central

    Heckl, Dirk; Kowalczyk, Monika S.; Yudovich, David; Belizaire, Roger; Puram, Rishi V.; McConkey, Marie E.; Thielke, Anne; Aster, Jon C.; Regev, Aviv; Ebert, Benjamin L.

    2014-01-01

    Genome sequencing studies have shown that human malignancies often bear mutations in four or more driver genes1, but it is difficult to recapitulate this degree of genetic complexity in mouse models using conventional breeding. Here we use the CRISPR-Cas9 system of genome editing2–4 to overcome this limitation. By delivering combinations of small guide RNAs (sgRNAs) and Cas9 with a lentiviral vector, we modified up to five genes in a single mouse hematopoietic stem cell (HSC), leading to clonal outgrowth and myeloid malignancy. We thereby generated models of acute myeloid leukemia (AML) with cooperating mutations in genes encoding epigenetic modifiers, transcription factors, and mediators of cytokine signaling, recapitulating the combinations of mutations observed in the human disease. Our results suggest that lentivirus-delivered sgRNA:Cas9 genome editing should be useful to engineer a broad array of in vivo cancer models that better reflect the complexity of human disease. PMID:24952903

  12. Brief Report: Single-Cell Analysis Reveals Cell Division-Independent Emergence of Megakaryocytes From Phenotypic Hematopoietic Stem Cells.

    PubMed

    Roch, Aline; Trachsel, Vincent; Lutolf, Matthias P

    2015-10-01

    Despite increasingly stringent methods to isolate hematopoietic stem cells (HSCs), considerable heterogeneity remains in terms of their long-term self-renewal and differentiation potential. Recently, the existence of long-lived, self-renewing, myeloid-restricted progenitors in the phenotypically defined HSC compartment has been revealed, but these cells remain poorly characterized. Here, we used an in vitro single-cell analysis approach to track the fate of 330 long-term HSCs (LT-HSC; Lin- cKit+ Sca-1+ CD150+ CD48- CD34-) cultured for 5 days under serum-free basal conditions. Our analysis revealed a highly heterogeneous behavior with approximately 15% of all phenotypic LT-HSCs giving rise to megakaryocytes (Mk). Surprisingly, in 65% of these cases, Mk development occurred in the absence of cell division. This observation suggests that myeloid-restricted progenitors may not derive directly from LT-HSCs but instead could share an identical cell surface marker repertoire.

  13. Aging-like Phenotype and Defective Lineage Specification in SIRT1-Deleted Hematopoietic Stem and Progenitor Cells

    PubMed Central

    Rimmelé, Pauline; Bigarella, Carolina L.; Liang, Raymond; Izac, Brigitte; Dieguez-Gonzalez, Rebeca; Barbet, Gaetan; Donovan, Michael; Brugnara, Carlo; Blander, Julie M.; Sinclair, David A.; Ghaffari, Saghi

    2014-01-01

    Summary Aging hematopoietic stem cells (HSCs) exhibit defective lineage specification that is thought to be central to increased incidence of myeloid malignancies and compromised immune competence in the elderly. Mechanisms underlying these age-related defects remain largely unknown. We show that the deacetylase Sirtuin (SIRT)1 is required for homeostatic HSC maintenance. Differentiation of young SIRT1-deleted HSCs is skewed toward myeloid lineage associated with a significant decline in the lymphoid compartment, anemia, and altered expression of associated genes. Combined with HSC accumulation of damaged DNA and expression patterns of age-linked molecules, these have striking overlaps with aged HSCs. We further show that SIRT1 controls HSC homeostasis via the longevity transcription factor FOXO3. These findings suggest that SIRT1 is essential for HSC homeostasis and lineage specification. They also indicate that SIRT1 might contribute to delaying HSC aging. PMID:25068121

  14. Aging-like phenotype and defective lineage specification in SIRT1-deleted hematopoietic stem and progenitor cells.

    PubMed

    Rimmelé, Pauline; Bigarella, Carolina L; Liang, Raymond; Izac, Brigitte; Dieguez-Gonzalez, Rebeca; Barbet, Gaetan; Donovan, Michael; Brugnara, Carlo; Blander, Julie M; Sinclair, David A; Ghaffari, Saghi

    2014-07-08

    Aging hematopoietic stem cells (HSCs) exhibit defective lineage specification that is thought to be central to increased incidence of myeloid malignancies and compromised immune competence in the elderly. Mechanisms underlying these age-related defects remain largely unknown. We show that the deacetylase Sirtuin (SIRT)1 is required for homeostatic HSC maintenance. Differentiation of young SIRT1-deleted HSCs is skewed toward myeloid lineage associated with a significant decline in the lymphoid compartment, anemia, and altered expression of associated genes. Combined with HSC accumulation of damaged DNA and expression patterns of age-linked molecules, these have striking overlaps with aged HSCs. We further show that SIRT1 controls HSC homeostasis via the longevity transcription factor FOXO3. These findings suggest that SIRT1 is essential for HSC homeostasis and lineage specification. They also indicate that SIRT1 might contribute to delaying HSC aging.

  15. Myeloid Derived Suppressor Cells: Fuel the Fire.

    PubMed

    Achyut, B R; Arbab, Ali S

    2014-08-01

    Low oxygen tension, hypoxia, is a characteristic of many tumors and associated with the poor prognosis. Hypoxia invites bone marrow derived cells (BMDCs) from bone marrow to the site of tumor. These recruited CXCR4+ BMDCs provide favorable environment for the tumor growth by acquiring pro-angiogenic phenotype such as CD45+VEGFR2+ Endothelial Progenitor Cells (EPC), or CD45+Tie2+ myeloid cells. CD11b+CD13+ myeloid population of the BMDCs modulate tumor progression. These myeloid populations retain immunosuppressive characteristics, for example, myeloid derived suppressor cells (MDSCs), and regulates immune- suppression by inhibiting cytotoxic T cell function. In addition, MDSCs were observed at the premetastatic niche of the distant organs in other tumors. Protumorigenic and prometastatic role of the myeloid cells provides a basis for therapeutic targeting of immunosuppression and thus inhibiting tumor development and metastasis.

  16. Retrospective Study of Incidence and Prognostic Significance of Eosinophilia after Allogeneic Hematopoietic Stem Cell Transplantation: Influence of Corticosteroid Therapy

    PubMed Central

    Yamamoto, Wataru; Ogusa, Eriko; Matsumoto, Kenji; Maruta, Atsuo; Ishigatsubo, Yoshiaki; Kanamori, Heiwa

    2016-01-01

    Objective: The clinical significance of eosinophilia after allogeneic hematopoietic stem cell transplantation is controversial. This study aimed to retrospectively study the impact of eosinophilia on the outcome of allogeneic hematopoietic stem cell transplantation by taking into account the influence of corticosteroid therapy. Materials and Methods: We retrospectively studied 204 patients with acute myeloid leukemia, acute lymphoblastic leukemia, and myelodysplastic syndrome who underwent allogeneic hematopoietic stem cell transplantation from January 2001 to December 2010. Results: The median age was 43 years (minimum-maximum: 17-65 years). Myeloablative conditioning was used in 153 patients and reduced intensity conditioning was employed in 51 patients. Donor cells were from bone marrow in 132 patients, peripheral blood in 34, and cord blood in 38. Eosinophilia was detected in 71 patients and there was no significant predictor of eosinophilia by multivariate analysis. There was no relationship between occurrence of eosinophilia and the incidence or grade of acute graft-versus-host disease when the patients were stratified according to corticosteroid treatment. Although eosinophilia was a prognostic factor for 5-year overall survival by univariate analysis, it was not a significant indicator by multivariate analysis. Conclusion: These results suggest that the clinical significance of eosinophilia in patients receiving allogeneic hematopoietic stem cell transplantation should be assessed with consideration of systemic corticosteroid administration. PMID:27094383

  17. Tumor-induced immune dysfunctions caused by myeloid suppressor cells.

    PubMed

    Bronte, V; Serafini, P; Apolloni, E; Zanovello, P

    2001-01-01

    In the late 1970s, several findings suggested that accessory cells distinct from lymphocytes might suppress immune reactivity in tumor-bearing hosts. Studies in animal models and patients later confirmed that cells driven to act as dominant immune suppressors by growing cancers could subvert the immune system. These cells have also been termed natural suppressors, a functional definition connoting their ability to hamper various T- and B-lymphocyte responses without prior activation and independently from antigen and MHC restriction. These properties were attributed to distinct cell populations. The phenotypic discrepancies, together with the lack of antigen specificity, have generated serious restraints to research on tumor-induced suppression. Recent evidence indicates that suppressor cells are closely related to immature myeloid precursors and can be found in several situations that can exert adverse effects on the immunotherapy of cancer. The present review is an attempt to address the nature and properties of immature myeloid suppressors and their relationship to dendritic cells and macrophages, with the aim of clarifying the complex network of tumor-induced, negative regulators of the immune system.

  18. Myeloid-derived suppressor cells

    PubMed Central

    Chandra, Dinesh; Gravekamp, Claudia

    2013-01-01

    While conventional anticancer therapies, including surgical resection, radiotherapy, and/or chemotherapy, are relatively efficient at eliminating primary tumors, these treatment modalities are largely ineffective against metastases. At least in part, this reflects the rather inefficient delivery of conventional anticancer agents to metastatic lesions. We have recently demonstrated that myeloid-derived suppressor cells (MDSCs) can be used as cellular missiles to selectively deliver a radioisotope-coupled attenuated variant of Listeria monocytogenes to both primary and metastatic neoplastic lesions in mice with pancreatic cancer. This novel immunotherapeutic intervention robustly inhibited tumor growth while promoting a dramatic decrease in the number of metastases. PMID:24427545

  19. A monoclonal antibody that recognizes B cells and B cell precursors in mice

    PubMed Central

    1981-01-01

    The monoclonal antibody, RA3-2C2, appears to be specific for cells within the B cell lineage. This antibody does not recognize thymocytes, peripheral T cells, or nonlymphoid hematopoietic cells in the spleen or bone marrow. Nor does it recognize the pluripotent hematopoietic stem cells, the spleen colony-forming unit, All sIg+ B cells and most plasma cells are RA3-2C2+. In addition, approximately 20% of nucleated bone marrow cells are RA3-2C2+ but sIg-. This population contains B cell precursors that can give rise to sIg+ cells within 2 d in vitro. PMID:6787164

  20. Precursors to Lymphoproliferative Malignancies

    PubMed Central

    Goldin, Lynn R.; McMaster, Mary L.; Caporaso, Neil E.

    2013-01-01

    We review monoclonal B-cell lymphocytosis (MBL) as a precursor to chronic lymphocytic leukemia and monoclonal gammopathy of undetermined significance (MGUS) as a precursor to plasma cell disorders. These conditions are present in the general population and increase with age. These precursors aggregate with lymphoproliferative malignancies in families suggesting shared inheritance. MBL and MGUS may share some of the same risk factors as their related malignancies but data are limited. While these conditions are characterized by enhanced risk for the associated malignancy, the majority of individuals with these conditions do not progress to malignancy. A key focus for current work is to identify markers that predict progression to malignancy. PMID:23549397

  1. Alloantigen presenting function of normal human CD34+ hematopoietic cells.

    PubMed

    Rondelli, D; Andrews, R G; Hansen, J A; Ryncarz, R; Faerber, M A; Anasetti, C

    1996-10-01

    The identification of the CD34 molecule, expressed almost exclusively on human hematopoietic stem cells and committed progenitors, and the development of CD34-specific monoclonal antibodies have made procurement of relatively pure populations of CD34+ marrow cells for autologous transplantation feasible. Characterization of the immunogenicity of CD34+ marrow cells may facilitate the design of successful strategies to use these cells for allogeneic transplantation. CD34+ marrow cells from normal volunteers were enriched to greater than 98% purity by immunoaffinity chromatography on column followed by fluorescence-activated cell sorting. Purified CD34+ cells were tested for expression of HLA-DR and other accessory molecules, and function in hematopoietic colony growth and mixed leukocyte culture (MLC) assays. Greater than 95% CD34+ cells were positive for HLA-DR and 74% +/- 10% were highly positive for CD18, the common beta-chain of a leukointegrin family. CD34+/CD18- cells were small, agranular lymphocytes which contained the majority of precursors for colony-forming cells detected in long-term cultures. They produced almost no stimulation of purified T cells from HLA-DR-incompatible individuals in bulk MLC or in limiting dilution assay. In contrast, CD34+/CD18+ cells were large, were enriched for cells forming mixed colonies in short- but not long-term assays, and were capable of stimulating allogeneic T cells. CD86, a natural ligand for the T-cell activation molecule CD28, was coexpressed with CD18 in 6% +/- 3% of CD34+ cells. CD34+/CD86+ cells, but not CD34+/CD86- cells, exhibited strong alloantigen presenting function. Thus, pluripotent hematopoietic activity and alloantigen presenting function are attributes of distinct subsets of CD34+ marrow cells. CD34+/CD18- or CD34+/CD86- cells may be more effective than either the whole CD34+ population or unseparated marrow in engrafting allogeneic recipients and may also facilitate induction of tolerance.

  2. Plasticity of hematopoietic stem cells.

    PubMed

    Ogawa, Makio; LaRue, Amanda C; Mehrotra, Meenal

    2015-01-01

    Almost two decades ago, a number of cell culture and preclinical transplantation studies suggested the striking concept of the tissue-reconstituting ability of hematopoietic stem cells (HSCs). While this heralded an exciting time of radically new therapies for disorders of many organs and tissues, the concept was soon mired by controversy and remained dormant. This chapter provides a brief review of evidence for HSC plasticity including our findings based on single HSC transplantation in mouse. These studies strongly support the concept that HSCs are pluripotent and may be the source for the majority, if not all, of the cell types in our body.

  3. Tipifarnib in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-03-19

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  4. An update of current treatments for adult acute myeloid leukemia

    PubMed Central

    Gardin, Claude

    2016-01-01

    Recent advances in acute myeloid leukemia (AML) biology and its genetic landscape should ultimately lead to more subset-specific AML therapies, ideally tailored to each patient's disease. Although a growing number of distinct AML subsets have been increasingly characterized, patient management has remained disappointingly uniform. If one excludes acute promyelocytic leukemia, current AML management still relies largely on intensive chemotherapy and allogeneic hematopoietic stem cell transplantation (HSCT), at least in younger patients who can tolerate such intensive treatments. Nevertheless, progress has been made, notably in terms of standard drug dose intensification and safer allogeneic HSCT procedures, allowing a larger proportion of patients to achieve durable remission. In addition, improved identification of patients at relatively low risk of relapse should limit their undue exposure to the risks of HSCT in first remission. The role of new effective agents, such as purine analogs or gemtuzumab ozogamicin, is still under investigation, whereas promising new targeted agents are under clinical development. In contrast, minimal advances have been made for patients unable to tolerate intensive treatment, mostly representing older patients. The availability of hypomethylating agents likely represents an encouraging first step for this latter population, and it is hoped will allow for more efficient combinations with novel agents. PMID:26660429

  5. Acute myeloid leukemia and myelodysplastic syndromes in older adults.

    PubMed

    Klepin, Heidi D; Rao, Arati V; Pardee, Timothy S

    2014-08-20

    Treatment of older adults with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS) is challenging because of disease morbidity and associated treatments. Both diseases represent a genetically heterogeneous group of disorders primarily affecting older adults, with treatment strategies ranging from supportive care to hematopoietic stem-cell transplantation. Although selected older adults can benefit from intensive therapies, as a group they experience increased treatment-related morbidity, are more likely to relapse, and have decreased survival. Age-related outcome disparities are attributed to both tumor and patient characteristics, requiring an individualized approach to treatment decision making beyond consideration of chronologic age alone. Selection of therapy for any individual requires consideration of both disease-specific risk factors and estimates of treatment tolerance and life expectancy derived from evaluation of functional status and comorbidity. Although treatment options for older adults are expanding, clinical trials accounting for the heterogeneity of tumor biology and aging are needed to define standard-of-care treatments for both disease groups. In addition, trials should include outcomes addressing quality of life, maintenance of independence, and use of health care services to assist in patient-centered decision making. This review will highlight available evidence in treatment of older adults with AML or MDS and unanswered clinical questions for older adults with these diseases.

  6. Acute Myeloid Leukemia and Myelodysplastic Syndromes in Older Adults

    PubMed Central

    Klepin, Heidi D.; Rao, Arati V.; Pardee, Timothy S.

    2014-01-01

    Treatment of older adults with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS) is challenging because of disease morbidity and associated treatments. Both diseases represent a genetically heterogeneous group of disorders primarily affecting older adults, with treatment strategies ranging from supportive care to hematopoietic stem-cell transplantation. Although selected older adults can benefit from intensive therapies, as a group they experience increased treatment-related morbidity, are more likely to relapse, and have decreased survival. Age-related outcome disparities are attributed to both tumor and patient characteristics, requiring an individualized approach to treatment decision making beyond consideration of chronologic age alone. Selection of therapy for any individual requires consideration of both disease-specific risk factors and estimates of treatment tolerance and life expectancy derived from evaluation of functional status and comorbidity. Although treatment options for older adults are expanding, clinical trials accounting for the heterogeneity of tumor biology and aging are needed to define standard-of-care treatments for both disease groups. In addition, trials should include outcomes addressing quality of life, maintenance of independence, and use of health care services to assist in patient-centered decision making. This review will highlight available evidence in treatment of older adults with AML or MDS and unanswered clinical questions for older adults with these diseases. PMID:25071138

  7. FLT3 inhibitors: clinical potential in acute myeloid leukemia

    PubMed Central

    Hospital, Marie-Anne; Green, Alexa S; Maciel, Thiago T; Moura, Ivan C; Leung, Anskar Y; Bouscary, Didier; Tamburini, Jerome

    2017-01-01

    Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy that is cured in as few as 15%–40% of cases. Tremendous improvements in AML prognostication arose from a comprehensive analysis of leukemia cell genomes. Among normal karyotype AML cases, mutations in the FLT3 gene are the ones most commonly detected as having a deleterious prognostic impact. FLT3 is a transmembrane tyrosine kinase receptor, and alterations of the FLT3 gene such as internal tandem duplications (FLT3-ITD) deregulate FLT3 downstream signaling pathways in favor of increased cell proliferation and survival. FLT3 tyrosine kinase inhibitors (TKI) emerged as a new therapeutic option in FLT3-ITD AML, and clinical trials are ongoing with a variety of TKI either alone, combined with chemotherapy, or even as maintenance after allogenic stem cell transplantation. However, a wide range of molecular resistance mechanisms are activated upon TKI therapy, thus limiting their clinical impact. Massive research efforts are now ongoing to develop more efficient FLT3 TKI and/or new therapies targeting these resistance mechanisms to improve the prognosis of FLT3-ITD AML patients in the future. PMID:28223820

  8. Mobilization of hematopoietic progenitor cells in patients with liver cirrhosis

    PubMed Central

    Gehling, Ursula M; Willems, Marc; Schlagner, Kathleen; Benndorf, Ralf A; Dandri, Maura; Petersen, Jörg; Sterneck, Martina; Pollok, Joerg-Matthias; Hossfeld, Dieter K; Rogiers, Xavier

    2010-01-01

    AIM: To test the hypothesis that liver cirrhosis is associated with mobilization of hematopoietic progenitor cells. METHODS: Peripheral blood samples from 72 patients with liver cirrhosis of varying etiology were analyzed by flow cytometry. Identified progenitor cell subsets were immunoselected and used for functional assays in vitro. Plasma levels of stromal cell-derived factor-1 (SDF-1) were measured using an enzyme linked immunosorbent assay. RESULTS: Progenitor cells with a CD133+/CD45+/CD14+ phenotype were observed in 61% of the patients. Between 1% and 26% of the peripheral blood mononuclear cells (MNCs) displayed this phenotype. Furthermore, a distinct population of c-kit+ progenitor cells (between 1% and 38 % of the MNCs) could be detected in 91% of the patients. Additionally, 18% of the patients showed a population of progenitor cells (between 1% and 68% of the MNCs) that was characterized by expression of breast cancer resistance protein-1. Further phenotypic analysis disclosed that the circulating precursors expressed CXC chemokine receptor 4, the receptor for SDF-1. In line with this finding, elevated plasma levels of SDF-1 were present in all patients and were found to correlate with the number of mobilized CD133+ progenitor cells. CONCLUSION: These data indicate that in humans, liver cirrhosis leads to recruitment of various populations of hematopoietic progenitor cells that display markers of intrahepatic progenitor cells. PMID:20066741

  9. Technical Advance: Transcription factor, promoter, and enhancer utilization in human myeloid cells

    PubMed Central

    Joshi, Anagha; Pooley, Christopher; Freeman, Tom C.; Lennartsson, Andreas; Babina, Magda; Schmidl, Christian; Geijtenbeek, Teunis; Michoel, Tom; Severin, Jessica; Itoh, Masayoshi; Lassmann, Timo; Kawaji, Hideya; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R. R.; Rehli, Michael; Hume, David A.

    2015-01-01

    The generation of myeloid cells from their progenitors is regulated at the level of transcription by combinatorial control of key transcription factors influencing cell-fate choice. To unravel the global dynamics of this process at the transcript level, we generated transcription profiles for 91 human cell types of myeloid origin by use of CAGE profiling. The CAGE sequencing of these samples has allowed us to investigate diverse aspects of transcription control during myelopoiesis, such as identification of novel transcription factors, miRNAs, and noncoding RNAs specific to the myeloid lineage. We further reconstructed a transcription regulatory network by clustering coexpressed transcripts and associating them with enriched cis-regulatory motifs. With the use of the bidirectional expression as a proxy for enhancers, we predicted over 2000 novel enhancers, including an enhancer 38 kb downstream of IRF8 and an intronic enhancer in the KIT gene locus. Finally, we highlighted relevance of these data to dissect transcription dynamics during progressive maturation of granulocyte precursors. A multifaceted analysis of the myeloid transcriptome is made available (www.myeloidome.roslin.ed.ac.uk). This high-quality dataset provides a powerful resource to study transcriptional regulation during myelopoiesis and to infer the likely functions of unannotated genes in human innate immunity. PMID:25717144

  10. Technical Advance: Transcription factor, promoter, and enhancer utilization in human myeloid cells.

    PubMed

    Joshi, Anagha; Pooley, Christopher; Freeman, Tom C; Lennartsson, Andreas; Babina, Magda; Schmidl, Christian; Geijtenbeek, Teunis; Michoel, Tom; Severin, Jessica; Itoh, Masayoshi; Lassmann, Timo; Kawaji, Hideya; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Rehli, Michael; Hume, David A

    2015-05-01

    The generation of myeloid cells from their progenitors is regulated at the level of transcription by combinatorial control of key transcription factors influencing cell-fate choice. To unravel the global dynamics of this process at the transcript level, we generated transcription profiles for 91 human cell types of myeloid origin by use of CAGE profiling. The CAGE sequencing of these samples has allowed us to investigate diverse aspects of transcription control during myelopoiesis, such as identification of novel transcription factors, miRNAs, and noncoding RNAs specific to the myeloid lineage. We further reconstructed a transcription regulatory network by clustering coexpressed transcripts and associating them with enriched cis-regulatory motifs. With the use of the bidirectional expression as a proxy for enhancers, we predicted over 2000 novel enhancers, including an enhancer 38 kb downstream of IRF8 and an intronic enhancer in the KIT gene locus. Finally, we highlighted relevance of these data to dissect transcription dynamics during progressive maturation of granulocyte precursors. A multifaceted analysis of the myeloid transcriptome is made available (www.myeloidome.roslin.ed.ac.uk). This high-quality dataset provides a powerful resource to study transcriptional regulation during myelopoiesis and to infer the likely functions of unannotated genes in human innate immunity.

  11. Earthquakes: hydrogeochemical precursors

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  12. Bosutinib for Chronic Myeloid Leukemia.

    PubMed

    Breccia, Massimo; Binotto, Gianni

    In recent years the availability of several tyrosine kinase inhibitors (TKI) in the therapeutic armamentarium for chronic myeloid leukemia has dramatically changed the objectives and expectations of healthcare providers and patients. For many, but not all, patients the forerunner of TKI, imatinib, is still an excellent treatment option. Unfortunately, nearly 30-40% of imatinib-treated patients discontinue therapy in the long-term, because of failure and/or intolerance. Second-generation tyrosine kinase inhibitors are more potent drugs which are suitable for treatment of approximately 50% of patents for whom imatinib is unsuitable, and with high success and rapid responses. Bosutinib, an orally bioavailable Src/Abl tyrosine kinase inhibitor, has proved to be effective in vitro against resistant chronic myeloid leukemia cells that do not harbor the T315I or V299L ABL kinase domain mutations. During clinical development the manageable safety profile of bosutinib have become evident for both simple and more advanced treatment. In this review we summarize preclinical and clinical data for bosutinib and discuss its ideal field of action in comparison with other TKI.

  13. Serum concentrations of nitrite and malondialdehyde as markers of oxidative stress in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors

    PubMed Central

    Petrola, Maria Juracy; de Castro, Alana Joselina Montenegro; Pitombeira, Maria Helena da Silva; Barbosa, Maritza Cavalcante; Quixadá, Acy Telles de Souza; Duarte, Fernando Barroso; Gonçalves, Romelia Pinheiro

    2012-01-01

    Background: Chronic myeloid leukemia is a neoplasm characterized by clonal expansion of hematopoietic progenitor cells resulting from the (9:22)(q34,11) translocation. The tyrosine kinase abl fusion protein,the initial leukemogenic event in chronic myeloid leukemia, is constitutively activated thus inducing the production of reactive oxygen species. Of particular relevance is the fact that an increase in reactive oxygen species can facilitate genomic instability and may contribute to disease progression. Objetive: To evaluate oxidative stress by determining the levels of malondialdehyde and nitrite in chronic myeloid leukemia patients under treatment with 1st and 2nd generation tyrosine kinase inhibitors monitored at a referral hospital in Fortaleza, Ceará. Methods: A cross-sectional study was performed of 64 male and female adults. Patients were stratified according to treatment. The levels of malondialdehyde and nitrite were determined by spectrophotometry. Statistical differences between groups were observed using the Student t-test and Fisher's exact test. The results are expressed as mean ± standard error of mean. The significance level was set for a p-value < 0.05 in all analyses. Results: The results show significantly higher mean concentrations of nitrite and malondialdehyde in chronic myeloid leukemia patients using second-generation tyrosine kinase inhibitors compared to patients on imatinib. Conclusion: It follows that chronic myeloid leukemia patients present higher oxidative activity and that the increases in oxidative damage markers can indicate resistance to 1st generation tyrosine kinase inhibitors. PMID:23125543

  14. Case report of isochromosome 17q in acute myeloid leukemia with myelodysplasia-related changes after treatment with a hypomethylating agent.

    PubMed

    Sousa, J C; Germano, R T; Castro, C C M; Magalhaes, S M M; Pinheiro, R F

    2012-08-06

    Isochromosome 17q is a relatively common karyotypic abnormality in medulloblastoma, gastric, bladder, and breast cancers. In myeloid disorders, it is observed during disease progression and evolution to acute myeloid leukemia in Philadelphia-positive chronic myeloid leukemia. It has been reported in rare cases of myelodysplastic syndrome, with an incidence of 0.4-1.57%. Two new agents have been approved for treatment of myelodysplastic syndrome/chronic myelomonocytic leukemia. These are the hypomethylating agents, 5-azacytidine and decitabine, recommended by consensus guidelines for high-risk myelodysplastic syndrome patients not eligible for hematopoietic stem cell transplantation. We present a case of chronic myelomonocytic leukemia with normal cytogenetics at diagnosis treated with decitabine (with good response); however, the patient evolved to acute myeloid leukemia with i(17q) shortly after suspending treatment. To the best of our knowledge, this is the first report of acute myeloid leukemia with myelodysplasia-related changes with i(17q) after the use of a hypomethylating agent.

  15. Human Olfactory Mucosa Multipotent Mesenchymal Stromal Cells Promote Survival, Proliferation, and Differentiation of Human Hematopoietic Cells

    PubMed Central

    Diaz-Solano, Dylana; Wittig, Olga; Ayala-Grosso, Carlos; Pieruzzini, Rosalinda

    2012-01-01

    Multipotent mesenchymal stromal cells (MSCs) from the human olfactory mucosa (OM) are cells that have been proposed as a niche for neural progenitors. OM-MSCs share phenotypic and functional properties with bone marrow (BM) MSCs, which constitute fundamental components of the hematopoietic niche. In this work, we investigated whether human OM-MSCs may promote the survival, proliferation, and differentiation of human hematopoietic stem cells (HSCs). For this purpose, human bone marrow cells (BMCs) were co-cultured with OM-MSCs in the absence of exogenous cytokines. At different intervals, nonadherent cells (NACs) were harvested from BMC/OM-MSC co-cultures, and examined for the expression of blood cell markers by flow cytometry. OM-MSCs supported the survival (cell viability >90%) and proliferation of BMCs, after 54 days of co-culture. At 20 days of co-culture, flow cytometric and microscopic analyses showed a high percentage (73%) of cells expressing the pan-leukocyte marker CD45, and the presence of cells of myeloid origin, including polymorphonuclear leukocytes, monocytes, basophils, eosinophils, erythroid cells, and megakaryocytes. Likewise, T (CD3), B (CD19), and NK (CD56/CD16) cells were detected in the NAC fraction. Colony-forming unit–granulocyte/macrophage (CFU-GM) progenitors and CD34+ cells were found, at 43 days of co-culture. Reverse transcriptase–polymerase chain reaction (RT-PCR) studies showed that OM-MSCs constitutively express early and late-acting hematopoietic cytokines (i.e., stem cell factor [SCF] and granulocyte- macrophage colony-stimulating factor [GM-CSF]). These results constitute the first evidence that OM-MSCs may provide an in vitro microenvironment for HSCs. The capacity of OM-MSCs to support the survival and differentiation of HSCs may be related with the capacity of OM-MSCs to produce hematopoietic cytokines. PMID:22471939

  16. Hematopoietic Stem Cell Origin of BRAFV600E Mutations in Hairy Cell Leukemia

    PubMed Central

    Chung, Young Rock; Lito, Piro; Teruya-Feldstein, Julie; Hu, Wenhuo; Beguelin, Wendy; Monette, Sebastien; Duy, Cihangir; Rampal, Raajit; Telis, Leon; Patel, Minal; Kim, Min Kyung; Huberman, Kety; Bouvier, Nancy; Berger, Michael F.; Melnick, Ari M.; Rosen, Neal; Tallman, Martin S.

    2014-01-01

    Hairy cell leukemia (HCL) is a chronic lymphoproliferative disorder characterized by somatic BRAFV600E mutations. The malignant cell in HCL has immunophenotypic features of a mature B cell, but no normal counterpart along the continuum of developing B lymphocytes has been delineated as the cell of origin. We find that the BRAFV600E mutation is present in hematopoietic stem cells (HSCs) in HCL patients, and that these patients exhibit marked alterations in hematopoietic stem/progenitor cell (HSPC) frequencies. Quantitative sequencing analysis revealed a mean BRAFV600E-mutant allele frequency of 4.97% in HSCs from HCL patients. Moreover, transplantation of BRAFV600E-mutant HSCs from an HCL patient into immunodeficient mice resulted in stable engraftment of BRAFV600E-mutant human hematopoietic cells, revealing the functional self-renewal capacity of HCL HSCs. Consistent with the human genetic data, expression of BRafV600E in murine HSPCs resulted in a lethal hematopoietic disorder characterized by splenomegaly, anemia, thrombocytopenia, increased circulating soluble CD25, and increased clonogenic capacity of B lineage cells—all classic features of human HCL. In contrast, restricting expression of BRafV600E to the mature B cell compartment did not result in disease. Treatment of HCL patients with vemurafenib, an inhibitor of mutated BRAF, resulted in normalization of HSPC frequencies and increased myeloid and erythroid output from HSPCs. These findings link the pathogenesis of HCL to somatic mutations that arise in HSPCs and further suggest that chronic lymphoid malignancies may be initiated by aberrant HSCs. PMID:24871132

  17. The histone H2A deubiquitinase Usp16 regulates hematopoiesis and hematopoietic stem cell function

    PubMed Central

    Gu, Yue; Jones, Amanda E.; Yang, Wei; Liu, Shanrun; Dai, Qian; Liu, Yudong; Swindle, C. Scott; Zhou, Dewang; Zhang, Zhuo; Ryan, Thomas M.; Townes, Tim M.; Klug, Christopher A.; Chen, Dongquan; Wang, Hengbin

    2016-01-01

    Epigenetic mechanisms play important regulatory roles in hematopoiesis and hematopoietic stem cell (HSC) function. Subunits of polycomb repressive complex 1 (PRC1), the major histone H2A ubiquitin ligase, are critical for both normal and pathological hematopoiesis; however, it is unclear which of the several counteracting H2A deubiquitinases functions along with PRC1 to control H2A ubiquitination (ubH2A) level and regulates hematopoiesis in vivo. Here we investigated the function of Usp16 in mouse hematopoiesis. Conditional deletion of Usp16 in bone marrow resulted in a significant increase of global ubH2A level and lethality. Usp16 deletion did not change HSC number but was associated with a dramatic reduction of mature and progenitor cell populations, revealing a role in governing HSC lineage commitment. ChIP- and RNA-sequencing studies in HSC and progenitor cells revealed that Usp16 bound to many important hematopoietic regulators and that Usp16 deletion altered the expression of genes in transcription/chromosome organization, immune response, hematopoietic/lymphoid organ development, and myeloid/leukocyte differentiation. The altered gene expression was partly rescued by knockdown of PRC1 subunits, suggesting that Usp16 and PRC1 counterbalance each other to regulate cellular ubH2A level and gene expression in the hematopoietic system. We further discovered that knocking down Cdkn1a (p21cip1), a Usp16 target and regulated gene, rescued the altered cell cycle profile and differentiation defect of Usp16-deleted HSCs. Collectively, these studies identified Usp16 as one of the histone H2A deubiquitinases, which coordinates with the H2A ubiquitin ligase PRC1 to regulate hematopoiesis, and revealed cell cycle regulation by Usp16 as key for HSC differentiation. PMID:26699484

  18. Rifampin-sirolimus-voriconazole interaction in a hematopoietic cell transplant recipient.

    PubMed

    Wasko, Justin A; Westholder, James S; Jacobson, Pamala A

    2017-01-01

    Purpose Patients undergoing hematopoietic cell transplantation are treated with multiple medications, potentially complicated by drug-drug interactions. Drug interactions with sirolimus, voriconazole, and rifampin are particularly difficult because of the complex and simultaneous enzyme inhibition and induction mechanisms. We report a hematopoietic cell transplantation patient receiving sirolimus and voriconazole who was given rifampin while being treated for presumed methicillin-resistant Staphylococcus aureus meningitis. Summary A 31 year-old female received a nonmyeloablative allogeneic umbilical cord hematopoietic cell transplantation for myelodysplastic syndrome transformed to acute myeloid leukemia (AML). Her graft versus host disease and antifungal prophylaxis included sirolimus and voriconazole, respectively. Therapeutic drug monitoring prior to admission revealed a stable outpatient sirolimus regimen of 0.4 mg orally daily (trough goal 3-12 mcg/L). She was admitted to the inpatient hematopoietic cell transplantation service and diagnosed with methicillin-resistant Staphylococcus aureus bacteremia and presumed bacterial meningitis 217 days after transplant. Intravenous rifampin and vancomycin were initiated and voriconazole was changed to micafungin. Sirolimus trough concentrations were undetectable two days after starting rifampin. Therapeutic sirolimus concentrations were achieved four days later, at a sirolimus dose of 16-18 mg orally daily. Rifampin was discontinued after nine days and the sirolimus dose was adjusted accordingly, maintaining therapeutic levels throughout follow-up. The patient suffered a flare of chronic skin graft versus host disease requiring etanercept, high-dose systemic steroids, and topical steroids. Conclusion To the best of our knowledge, this is the first report describing the management of sirolimus during the transition from voriconazole inhibition to rifampin induction. Clinicians should be aware of potential drug

  19. Molecular pathways: myeloid complicity in cancer.

    PubMed

    Stromnes, Ingunn M; Greenberg, Philip D; Hingorani, Sunil R

    2014-10-15

    Cancer-induced inflammation results in accumulation of myeloid cells. These myeloid cells include progenitors and progeny of monocytes, granulocytes, macrophages, and dendritic cells. It has become increasingly evident that tumor-dependent factors can condition myeloid cells toward an immunosuppressive and protumorigenic phenotype. Thus, myeloid cells are not simply bystanders in malignancy or barometers of disease burden. Reflecting their dynamic and plastic nature, myeloid cells manifest a continuum of cellular differentiation and are intimately involved at all stages of neoplastic progression. They can promote tumorigenesis through both immune-dependent and -independent mechanisms and can dictate response to therapies. A greater understanding of the inherent plasticity and relationships among myeloid subsets is needed to inform therapeutic targeting. New clinical trials are being designed to modulate the activities of myeloid cells in cancer, which may be essential to maximize the efficacy of both conventional cytotoxic and immune-based therapies for solid tumors. Clin Cancer Res; 20(20); 5157-70. ©2014 AACR.

  20. mTOR masters monocytic myeloid-derived suppressor cells in mice with allografts or tumors.

    PubMed

    Wu, Tingting; Zhao, Yang; Wang, Hao; Li, Yang; Shao, Lijuan; Wang, Ruoyu; Lu, Jun; Yang, Zhongzhou; Wang, Junjie; Zhao, Yong

    2016-02-01

    CD11b(+) Gr1(+) myeloid-derived suppressor cells (MDSCs) play critical roles in controlling the processes of tumors, infections, autoimmunity and graft rejection. Immunosuppressive drug rapamycin (RPM), targeting on the key cellular metabolism molecule mTOR, is currently used in clinics to treat patients with allo-grafts, autoimmune diseases and tumors. However, the effect of RPM on MDSCs has not been studied. RPM significantly decreases the cell number and the immunosuppressive ability on T cells of CD11b(+) Ly6C(high) monocytic MDSCs (M-MDSCs) in both allo-grafts-transplanted and tumor-bearing mice respectively. Mice with a myeloid-specific deletion of mTOR have poor M-MDSCs after grafting with allo-skin tissue or a tumor. Grafting of allo-skin or tumors significantly activates glycolysis pathways in myeloid precursor cells in bone marrow, which is inhibited by RPM or mTOR deletion. 2-deoxyglucose (2-DG), an inhibitor of the glycolytic pathway, inhibits M-MDSC differentiation from precursors, while enhancing glycolysis by metformin significantly rescues the RPM-caused deficiency of M-MDSCs. Therefore, we offer evidence supporting that mTOR is an intrinsic factor essential for the differentiation and immunosuppressive function of M-MDSCs and that these metabolism-relevant medicines may impact MDSCs-mediated immunosuppression or immune tolerance induction, which is of considerable clinical importance in treating graft rejection, autoimmune diseases and cancers.

  1. Cytokine receptors and hematopoietic differentiation.

    PubMed

    Robb, L

    2007-10-15

    Colony-stimulating factors and other cytokines signal via their cognate receptors to regulate hematopoiesis. In many developmental systems, inductive signalling determines cell fate and, by analogy with this, it has been postulated that cytokines, signalling via their cognate receptors, may play an instructive role in lineage specification in hematopoiesis. An alternative to this instructive hypothesis is the stochastic or permissive hypothesis. The latter proposes that commitment to a particular hematopoietic lineage is an event that occurs independently of extrinsic signals. It predicts that the role of cytokines is to provide nonspecific survival and proliferation signals. In this review, we look at the role of cytokine receptor signalling in hematopoiesis and consider the evidence for both hypotheses. Data from experiments that genetically manipulate receptor gene expression in vitro or in vivo are reviewed. Experiments in which cytokine receptors were installed in multipotential cells showed that, in some cases, stimulation with the cognate ligand could lead to alterations in lineage output. The creation of genetically manipulated mouse strains demonstrated that cytokine receptors are required for expansion and survival of single lineages but did not reveal a role in lineage commitment. We conclude that hematopoietic differentiation involves mainly stochastic events, but that cytokine receptors also have some instructive role.

  2. Roles of p15Ink4b and p16Ink4a in myeloid differentiation and RUNX1-ETO-associated acute myeloid leukemia

    PubMed Central

    Ko, Rose M.; Kim, Hyung-Gyoon; Wolff, Linda; Klug, Christopher A.

    2008-01-01

    Inactivation of p15Ink4b expression by promoter hypermethylation occurs in up to 80% of acute myeloid leukemia (AML) cases and is particularly common in the FAB-M2 subtype of AML, which is characterized by the presence of the RUNX1-ETO translocation in 40% of cases. To establish whether the loss of p15Ink4b contributes to AML progression in association with RUNX1-ETO, we have expressed the RUNX1-ETO fusion protein from a retroviral vector in hematopoietic progenitor cells isolated from wild-type, p15Ink4b or p16Ink4a knockout bone marrow. Analysis of lethally irradiated recipient mice reconstituted with RUNX1-ETO-expressing cells showed that neither p15Ink4b or p16Ink4a loss significantly accelerated disease progression over the time period of one year post-transplantation. Loss of p15Ink4b alone resulted in increased myeloid progenitor cell frequencies in bone marrow by 10 months post-transplant and a 19-fold increase in the frequency of Lin-c-Kit+Sca-1+ (LKS) cells that was not associated with expansion of long-term reconstituting HSC. These results strongly suggest that p15Ink4b loss must be accompanied by additional oncogenic changes for RUNX1-ETO-associated AML to develop. PMID:18037485

  3. Self-renewal and differentiation of a novel bipotent myeloid progenitor clone in the stroma-dependent culture.

    PubMed

    Okubo, T; Yanai, N; Obinata, M

    2000-06-01

    To understand regulation of myeloid development, it is necessary to obtain the myeloid progenitor cell lines with self-renewal and differentiation capacities. Because prolonged hematopoiesis occurs with the production of myeloid cells at all stages of differentiation in the Dexter-type long-term bone marrow cultures, we tried to obtain stroma-dependent myeloid progenitor cells starting from the long-term bone marrow culture. Murine cobblestone areas generated in long-term bone marrow cultures were serially passaged every 10 days. After 4 months, the resultant hematopoietic cells, designated as DFC, were passaged on a monolayer of established spleen stromal cell line, MSS62. After 10-12 passages of DFC cells on MSS62, several clones were obtained by colony formation on MSS62 cell layer. Among these clones, DFC-a cells could be maintained for a long period by coculturing with the established stromal cell line, MSS62.DFC-a cells proliferated by forming cobblestones and contained blast cells, granulocytes, and macrophages. Cell sorting and coculture experiments indicated that the blast type cells exhibiting c-Kit(+) Gr-1(-) Mac-1(-), stroma-dependently self-renewed, and spontaneously differentiated toward granulocytes (c-Kit(+) Gr-1(+) Mac-1(+)) and macrophages (c-Kit(low/+) Gr-1(-) Mac-1(high)). Although most of DFC-a cells expressed c-Kit, SCF-c-Kit interaction was not always necessary for their growth. In the presence of stromal cells, growth and differentiation of DFC-a cells were stimulated by GM-CSF or IL-3. Without stromal cells, DFC-a was transiently expanded by GM-CSF or IL-3 but could not be maintained constantly by these cytokines. The present study demonstrated that DFC-a is a novel bipotent myeloid progenitor cell clone as a simple model system of stroma-dependent myeloid development. It may reflect distinct properties for the earliest myeloid progenitor cells in vivo. It is of interest to know what signals are provided by MSS62 stromal cells to maintain

  4. Hematopoietic toxicity of regional radiation therapy. Correlations for combined modality therapy with systemic chemotherapy

    SciTech Connect

    Abrams, R.A.; Lichter, A.S.; Bromer, R.H.; Minna, J.D.; Cohen, M.H.; Deisseroth, A.B.

    1985-04-01

    Using circulating granulocyte-monocyte precursor colony-forming units in culture (CFUc) numbers as a probe along with standard blood count (CBC), the authors have quantitatively examined the hematopoietic toxicity of conventionally fractionated radiation therapy (RT) when combined with concurrent systemic chemotherapy or when used alone. Among 20 patients with limited stage small cell lung cancer receiving systemic chemotherapy with cyclophosphamide, CCNU, and methotrexate, the addition of involved field chest RT resulted in increased hematopoietic toxicity as judged by increased need for platelet transfusion (P less than 0.05) and decreased frequency of measurable CFUc (P less than 0.04). Among 22 patients receiving regional radiotherapy alone consistent hematopoietic toxicity was also observed. This toxicity, although generally of only mild to moderate clinical significance, was detected earlier and to a greater degree in patients who required radiation to larger treatment volumes, who had significant amounts of bone marrow in the port, and who had a high percentage of cardiac output flowing through the port. These data suggest that the hematopoietic toxicity of regional radiotherapy may be additive to that of concurrent systemic chemotherapy and may occur more promptly and to a greater degree when treatment volumes are larger or incorporate increased amounts of marrow volume or cardiac output.

  5. Characterization of an atypical γ-secretase complex from hematopoietic origin

    PubMed Central

    Placanica, Lisa; Chien, Jennifer W.; Li, Yue-Ming

    2010-01-01

    γ-Secretase is a widely expressed multi-subunit enzyme complex which is involved in the pathogenesis of Alzheimer disease and hematopoietic malignancies through its aberrant processing of the amyloid precursor protein (APP) and Notch1, respectively. While γ-secretase has been extensively studied, there is a dearth of information surrounding the activity, composition, and function of γ-secretase expressed in distinct cellular populations. Here we show that endogenous γ-secretase complexes of hematopoietic origin are distinct from epithelial derived γ-secretase complexes. Hematopoietic γ-secretase has reduced activity for APP and Notch1 processing compared to epithelial γ-secretase. Characterization of the active complexes with small molecule affinity probes reveals that hematopoietic γ-secretase has an atypical subunit composition with significantly altered subunit stoichiometry. Furthermore, we demonstrate that these discrete complexes exhibit cell-line specific substrate selectivity suggesting a possible mechanism of substrate regulation. These data underscore the need for studying endogenous γ-secretase to fully understand of the biology of γ-secretase and its complexity as a molecular target for the development of disease therapeutics. PMID:20178366

  6. Thrombomucin, a Novel Cell Surface Protein that Defines Thrombocytes and Multipotent Hematopoietic Progenitors

    PubMed Central

    McNagny, Kelly M.; Pettersson, Inger; Rossi, Fabio; Flamme, Ingo; Shevchenko, Andrej; Mann, Matthias; Graf, Thomas

    1997-01-01

    MEP21 is an avian antigen specifically expressed on the surface of Myb-Ets–transformed multipotent hematopoietic precursors (MEPs) and of normal thrombocytes. Using nanoelectrospray tandem mass spectrometry, we have sequenced and subsequently cloned the MEP21 cDNA and named the gene thrombomucin as it encodes a 571–amino acid protein with an extracellular domain typical of the mucin family of proteoglycans. Thrombomucin is distantly related to CD34, the best characterized and most used human hematopoietic stem cell marker. It is also highly homologous in its transmembrane/intracellular domain to podocalyxinlike protein–1, a rabbit cell surface glycoprotein of kidney podocytes. Single cell analysis of yolk sac cells from 3-d-old chick embryos revealed that thrombomucin is expressed on the surface of both lineage-restricted and multipotent progenitors. In the bone marrow, thrombomucin is also expressed on mono- and multipotent progenitors, showing an overlapping but distinct expression pattern from that of the receptor-type stem cell marker c-kit. These observations strengthen the notion that the Myb-Ets oncoprotein can induce the proliferation of thrombomucin-positive hematopoietic progenitors that have retained the capacity to differentiate along multiple lineages. They also suggest that thrombomucin and CD34 form a family of stem cell–specific proteins with possibly overlapping functions in early hematopoietic progenitors. PMID:9298993

  7. Hematopoietic stem cells are pluripotent and not just "hematopoietic".

    PubMed

    Ogawa, Makio; LaRue, Amanda C; Mehrotra, Meenal

    2013-06-01

    Over a decade ago, several preclinical transplantation studies suggested the striking concept of the tissue-reconstituting ability (often referred to as HSC plasticity) of hematopoietic stem cells (HSCs). While this heralded an exciting time of radically new therapies for disorders of many organs and tissues, the concept was soon mired in controversy and remained dormant for almost a decade. This commentary provides a concise review of evidence for HSC plasticity, including more recent findings based on single HSC transplantation in mouse and clinical transplantation studies. There is strong evidence for the concept that HSCs are pluripotent and are the source for the majority, if not all, of the cell types in our body. Also discussed are some biological and experimental issues that need to be considered in the future investigation of HSC plasticity.

  8. The role of osteoblasts in regulating hematopoietic stem cell activity and tumor metastasis.

    PubMed

    Neiva, K; Sun, Y-X; Taichman, R S

    2005-10-01

    Bone marrow stromal cells are critical regulators of hematopoiesis. Osteoblasts are part of the stromal cell support system in bone marrow and may be derived from a common precursor. Several studies suggested that osteoblasts regulate hematopoiesis, yet the entire mechanism is not understood. It is clear, however, that both hematopoietic precursors and osteoblasts interact for the production of osteoclasts and the activation of resorption. We observed that hematopoietic stem cells (HSCs) regulate osteoblastic secretion of various growth factors, and that osteoblasts express some soluble factors exclusively in the presence of HSCs. Osteoblasts and hematopoietic cells are closely associated with each other in the bone marrow, suggesting a reciprocal relationship between them to develop the HSC niche. One critical component regulating the niche is stromal-derived factor-1 (SDF-1) and its receptor CXCR4 which regulates stem cell homing and, as we have recently demonstrated, plays a crucial role in facilitating those tumors which metastasize to bone. Osteoblasts produce abundant amounts of SDF-1 and therefore osteoblasts play an important role in metastasis. These findings are discussed in the context of the role of osteoblasts in marrow function in health and disease.

  9. Overexpression of the zinc finger protein MZF1 inhibits hematopoietic development from embryonic stem cells: correlation with negative regulation of CD34 and c-myb promoter activity.

    PubMed Central

    Perrotti, D; Melotti, P; Skorski, T; Casella, I; Peschle, C; Calabretta, B

    1995-01-01

    Zinc finger genes encode proteins that act as transcription factors. The myeloid zinc finger 1 (MZF1) gene encodes a zinc finger protein with two DNA-binding domains that recognize two distinct consensus sequences, is preferentially expressed in hematopoietic cells, and may be involved in the transcriptional regulation of hematopoiesis-specific genes. Reverse transcription-PCR analysis of human peripheral blood CD34+ cells cultured under lineage-restricted conditions demonstrated MZF1 expression during both myeloid and erythroid differentiation. Sequence analysis of the 5'-flanking region of the CD34 and c-myb genes, which are a marker of and a transcriptional factor required for hematopoietic proliferation and differentiation, respectively, revealed closely spaced MZF1 consensus binding sites found by electrophoretic mobility shift assays to interact with recombinant MZF1 protein. Transient or constitutive MZF1 expression in different cell types resulted in specific inhibition of chloramphenicol acetyltransferase activity driven by the CD34 or c-myb 5'-flanking region. To determine whether transcriptional modulation by MZF1 activity plays a role in hematopoietic differentiation, constructs containing the MZF1 cDNA under the control of different promoters were transfected into murine embryonic stem cells which, under defined in vitro culture conditions, generate colonies of multiple hematopoietic lineages. Constitutive MZF1 expression interfered with the ability of embryonic stem cells to undergo hematopoietic commitment and erythromyeloid colony formation and prevented the induced expression of CD34 and c-myb mRNAs during differentiation of these cells. These data indicate that MZF1 plays a critical role in hematopoiesis by modulating the expression of genes involved in this process. PMID:7565760

  10. Parasitic Infections in Hematopoietic Stem Cell Transplantation

    PubMed Central

    Jarque, Isidro; Salavert, Miguel; Pemán, Javier

    2016-01-01

    Parasitic infections are rarely documented in hematopoietic stem cell transplant recipients. However they may be responsible for fatal complications that are only diagnosed at autopsy. Increased awareness of the possibility of parasitic diseases both in autologous and allogeneic stem cell transplant patients is relevant not only for implementing preventive measures but also for performing an early diagnosis and starting appropriate therapy for these unrecognized but fatal infectious complications in hematopoietic transplant recipients. In this review, we will focus on parasitic diseases occurring in this population especially those with major clinical relevance including toxoplasmosis, American trypanosomiasis, leishmaniasis, malaria, and strongyloidiasis, among others, highlighting the diagnosis and management in hematopoietic transplant recipients. PMID:27413527

  11. The Crosstalk between Myeloid Derived Suppressor Cells and Immune Cells: To Establish Immune Tolerance in Transplantation

    PubMed Central

    Wang, Shuo; Yang, Cheng

    2016-01-01

    Myeloid derived suppressor cells (MDSCs) are a heterogeneous population of myeloid precursor and progenitor cells and endowed with a robust immunosuppressive activity in multiple pathophysiological conditions. Recent studies have uncovered the crosstalk between MDSCs and immune cells (i.e., natural killer cells, dendritic cells, macrophages, natural killer T cells, and regulatory T cells) and its role in the establishment and maintenance of immune tolerant microenvironment in transplantation. Considering their strong immunosuppressive capability, MDSCs could become a prospective clinical regimen during transplantation tolerance induction, resulting in long-term graft survival with decreased or without immunosuppressive drugs. The review summarized recent research advances in this field and looked ahead at the research directions in the future. PMID:27868073

  12. Epigenetics in myeloid derived suppressor cells: a sheathed sword towards cancer

    PubMed Central

    Zhang, Chao; Wang, Shuo; Liu, Yufeng; Yang, Cheng

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs), a heterogeneous population of cells composed of progenitors and precursors to myeloid cells, are deemed to participate in the development of tumor-favoring immunosuppressive microenvironment. Thus, the regulatory strategies targeting MDSCs' expansion, differentiation, accumulation and function could possibly be effective “weapons” in anti-tumor immunotherapies. Epigenetic mechanisms, which involve DNA modification, covalent histone modification and RNA interference, result in the heritable down-regulation or silencing of gene expression without a change in DNA sequences. Epigenetic modification of MDSC's functional plasticity leads to the remodeling of its characteristics, therefore reframing the microenvironment towards countering tumor growth and metastasis. This review summarized the pertinent findings on the DNA methylation, covalent histone modification, microRNAs and small interfering RNAs targeting MDSC in cancer genesis, progression and metastasis. The potentials as well as possible obstacles in translating into anti-cancer therapeutics were also discussed. PMID:27458169

  13. [Molecular monitoring of myeloid leukemia].

    PubMed

    Kiss, Richárd; Király, Attila Péter; Gaál-Weisinger, Júlia; Marosvári, Dóra; Gángó, Péter Ambrus; Demeter, Judit; Bödör, Csaba

    2017-03-08

    The last fifteen years brought a revolution both in treatment and diagnostics of chronic myeloid leukemia. Nowadays, the main method for monitoring of the disease is molecular monitoring with real-time PCR technology which can indicate treatment modification. With the development of the international scale and inter-laboratory standardization the residual tumor mass can be measured accurately and the results are comparable between the different laboratories. By the growing experience in the field of molecular responses we can now accurately predict treatment outcome early on with the so called early molecular response and BCR-ABL1 kinetics, allowing the selection of the best TKI with the treatment-free remission representing real option of the near future. Nevertheless, further advancements can be expected, including the workflow automatization and detection of even deeper molecular responses.

  14. Acute myeloid leukemia presenting as galactorrhea

    PubMed Central

    Nambiar, K. Rakul; Devi, R. Nandini

    2016-01-01

    Acute myeloid leukemia (AML) presents with symptoms related to pancytopenia (weakness, infections, bleeding diathesis) and organ infiltration with leukemic cells. Galactorrhea is an uncommon manifestation of AML. We report a case of AML presenting with galactorrhea. PMID:27695173

  15. 5-Fluoro-2'-Deoxycytidine and Tetrahydrouridine in Treating Patients With Acute Myeloid Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2015-06-03

    Adult Acute Myeloid Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  16. A retrospective cohort study of cause-specific mortality and incidence of hematopoietic malignancies in Chinese benzene-exposed workers.

    PubMed

    Linet, Martha S; Yin, Song-Nian; Gilbert, Ethel S; Dores, Graça M; Hayes, Richard B; Vermeulen, Roel; Tian, Hao-Yuan; Lan, Qing; Portengen, Lutzen; Ji, Bu-Tian; Li, Gui-Lan; Rothman, Nathaniel

    2015-11-01

    Benzene exposure has been causally linked with acute myeloid leukemia (AML), but inconsistently associated with other hematopoietic, lymphoproliferative and related disorders (HLD) or solid tumors in humans. Many neoplasms have been described in experimental animals exposed to benzene. We used Poisson regression to estimate adjusted relative risks (RR) and the likelihood ratio statistic to derive confidence intervals for cause-specific mortality and HLD incidence in 73,789 benzene-exposed compared with 34,504 unexposed workers in a retrospective cohort study in 12 cities in China. Follow-up and outcome assessment was based on factory, medical and other records. Benzene-exposed workers experienced increased risks for all-cause mortality (RR = 1.1, 95% CI = 1.1, 1.2) due to excesses of all neoplasms (RR = 1.3, 95% CI = 1.2, 1.4), respiratory diseases (RR = 1.7, 95% CI = 1.2, 2.3) and diseases of blood forming organs (RR = ∞, 95% CI = 3.4, ∞). Lung cancer mortality was significantly elevated (RR = 1.5, 95% CI = 1.2, 1.9) with similar RRs for males and females, based on three-fold more cases than in our previous follow-up. Significantly elevated incidence of all myeloid disorders reflected excesses of myelodysplastic syndrome/acute myeloid leukemia (RR = 2.7, 95% CI = 1.2, 6.6) and chronic myeloid leukemia (RR = 2.5, 95% CI = 0.8, 11), and increases of all lymphoid disorders included excesses of non-Hodgkin lymphoma (RR = 3.9, 95%CI = 1.5, 13) and all lymphoid leukemia (RR = 5.4, 95%CI = 1.0, 99). The 28-year follow-up of Chinese benzene-exposed workers demonstrated increased risks of a broad range of myeloid and lymphoid neoplasms, lung cancer, and respiratory diseases and suggested possible associations with other malignant and non-malignant disorders.

  17. Measurement of myeloid cell immune suppressive activity.

    PubMed

    Dolcetti, Luigi; Peranzoni, Elisa; Bronte, Vincenzo

    2010-11-01

    This unit presents simple methods to assess the immunosuppressive properties of immunoregulatory cells of myeloid origin, such as myeloid-derived suppressor cells (MDSCs), both in vitro and in vivo. These methods are general and could be adapted to test the impact of different suppressive populations on T cell activation, proliferation, and cytotoxic activity; moreover they could be useful to assess the influence exerted on immune suppressive pathways by genetic modifications, chemical inhibitors, and drugs.

  18. Generation of axolotl hematopoietic chimeras

    PubMed Central

    Lopez, David; Scott, Edward W.

    2015-01-01

    Wound repair is an extremely complex process that requires precise coordination between various cell types including immune cells. Unfortunately, in mammals this usually results in scar formation instead of restoration of the original fully functional tissue, otherwise known as regeneration. Various animal models like frogs and salamanders are currently being studied to determine the intracellular and intercellular pathways, controlled by gene expression, that elicit cell proliferation, differentiation, and migration of cells during regenerative healing. Now, the necessary genetic tools to map regenerative pathways are becoming available for the axolotl salamander, thus allowing comparative studies between scarring and regeneration. Here, we describe in detail three methods to produce axolotl hematopoietic cell-tagged chimeras for the study of hematopoiesis and regeneration. PMID:26366424

  19. Targeted therapy for a subset of acute myeloid leukemias that lack expression of aldehyde dehydrogenase 1A1.

    PubMed

    Gasparetto, Maura; Pei, Shanshan; Minhajuddin, Mohammad; Khan, Nabilah; Pollyea, Daniel A; Myers, Jason R; Ashton, John M; Becker, Michael W; Vasiliou, Vasilis; Humphries, Keith R; Jordan, Craig T; Smith, Clayton A

    2017-03-09

    Aldehyde dehydrogenase 1A1 (ALDH1A1) activity is high in hematopoietic stem cells and functions in part to protect stem cells from reactive aldehydes and other toxic compounds. In contrast, we found that ~25% of all acute myeloid leukemias expressed low or undetectable levels of ALDH1A1 and that this ALDH1A1- subset of leukemias correlates with good prognosis cytogenetics. ALDH1A1- cell lines as well as primary leukemia cells were found to be sensitive to treatment with compounds that directly and indirectly generate toxic ALDH substrates including 4-hydroxynonenal and the clinically relevant compounds arsenic trioxide and 4-hydroperoxycyclophosphamide. In contrast, normal hematopoietic stem cells were relatively resistant to these compounds. Using a murine xenotransplant model to emulate a clinical treatment strategy, established ALDH1A1- leukemias were also sensitive to in vivo treatment with cyclophosphamide combined with arsenic trioxide. These results demonstrate that targeting ALDH1A1- leukemic cells with toxic ALDH1A1 substrates such as arsenic and cyclophosphamide may be a novel targeted therapeutic strategy for this subset of acute myeloid leukemias.

  20. Knockdown of SALL4 Protein Enhances All-trans Retinoic Acid-induced Cellular Differentiation in Acute Myeloid Leukemia Cells*

    PubMed Central

    Liu, Li; Liu, Liang; Leung, Lai-Han; Cooney, Austin J.; Chen, Changyi; Rosengart, Todd K.; Ma, Yupo; Yang, Jianchang

    2015-01-01

    All-trans retinoic acid (ATRA) is a differentiation agent that revolutionized the treatment of acute promyelocytic leukemia. However, it has not been useful for other types of acute myeloid leukemia (AML). Here we explored the effect of SALL4, a stem cell factor, on ATRA-induced AML differentiation in both ATRA-sensitive and ATRA-resistant AML cells. Aberrant SALL4 expression has been found in nearly all human AML cases, whereas, in normal bone marrow and peripheral blood cells, its expression is only restricted to hematopoietic stem/progenitor cells. We reason that, in AMLs, SALL4 activation may prevent cell differentiation and/or protect self-renewal that is seen in normal hematopoietic stem/progenitor cells. Indeed, our studies show that ATRA-mediated myeloid differentiation can be largely blocked by exogenous expression of SALL4, whereas ATRA plus SALL4 knockdown causes significantly increased AML differentiation and cell death. Mechanistic studies indicate that SALL4 directly associates with retinoic acid receptor α and modulates ATRA target gene expression. SALL4 is shown to recruit lysine-specific histone demethylase 1 (LSD1) to target genes and alter the histone methylation status. Furthermore, coinhibition of LSD1 and SALL4 plus ATRA treatment exhibited the strongest anti-AML effect. These findings suggest that SALL4 plays an unfavorable role in ATRA-based regimes, highlighting an important aspect of leukemia therapy. PMID:25737450

  1. Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis.

    PubMed

    Zhao, Jimmy L; Ma, Chao; O'Connell, Ryan M; Mehta, Arnav; DiLoreto, Race; Heath, James R; Baltimore, David

    2014-04-03

    During an infection, the body increases the output of mature immune cells in order to fight off the pathogen. Despite convincing evidence that hematopoietic stem and progenitor cells (HSPCs) can sense pathogens directly, how this contributes to hematopoietic cell output remains unknown. Here, we have combined mouse models with a single-cell proteomics platform to show that, in response to Toll-like receptor stimulation, short-term HSCs and multipotent progenitor cells produce copious amounts of diverse cytokines through nuclear factor κB (NF-κB) signaling. Interestingly, the cytokine production ability of HSPCs trumps mature immune cells in both magnitude and breadth. Among cytokines produced by HSPCs, IL-6 is a particularly important regulator of myeloid differentiation and HSPC proliferation in a paracrine manner and in mediating rapid myeloid cell recovery during neutropenia. This study has uncovered an important property of HSPCs that enables them to convert danger signals into versatile cytokine signals for the regulation of stress hematopoiesis.

  2. Cutaneous myeloid sarcoma of the penile foreskin.

    PubMed

    Afrose, Ruquiya; Nebhnani, Deepa; Wadhwa, Neelam

    2015-01-01

    Myeloid sarcoma, considered to herald the onset of a blast crisis in the setting of chronic myeloproliferative neoplasm/dysplasia, typically presents during the course of the disorder. Cutaneous involvement is uncommon and lesions on genital skin are seldom seen. We present a case of a well-differentiated myeloid sarcoma in the penile foreskin in an apparently healthy 29-year-old male presenting with phimosis. The unusual composition of the inflammatory cell infiltrate, and characteristic sparing of dermal blood vessels, nerves and smooth muscle fibres led to the correct diagnosis. Absence of commonly observed changes in the circumcision skin like those of balanitis xerotica was also helpful. Detailed hematological work up revealed a previously undiagnosed chronic myeloid leukemia in chronic phase. The patient also had simultaneous priapism, another rare presentation of chronic myeloid leukemia. One year hence, the patient is in hematological remission with no evidence of extramedullary disease. Although priapism has been described as a rare presenting symptom in chronic myeloid leukemia, the present case is unique as this is the first time a cutaneous myeloid sarcoma has been documented in the penile foreskin.

  3. Selinexor and Chemotherapy in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-03-09

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  4. Characterization of G-protein alpha subunits in the Gq class: expression in murine tissues and in stromal and hematopoietic cell lines.

    PubMed Central

    Wilkie, T M; Scherle, P A; Strathmann, M P; Slepak, V Z; Simon, M I

    1991-01-01

    Murine G alpha 14 and G alpha 15 cDNAs encode distinct alpha subunits of heterotrimeric guanine nucleotide-binding proteins (G proteins). These alpha subunits are related to members of the Gq class and share certain sequence characteristics with G alpha q, G alpha 11, and G alpha 16, such as the absence of a pertussis toxin ADP-ribosylation site. G alpha 11 and G alpha q are ubiquitously expressed among murine tissues but G alpha 14 is predominantly expressed in spleen, lung, kidney, and testis whereas G alpha 15 is primarily restricted to hematopoietic lineages. Among hematopoietic cell lines, G alpha 11 mRNA is found in all cell lines tested, G alpha q is expressed widely but is not found in most T-cell lines, G alpha 15 is predominantly expressed in myeloid and B-cell lineages, and G alpha 14 is expressed in bone marrow adherent (stromal) cells, certain early myeloid cells, and progenitor B cells. Polyclonal antisera produced from synthetic peptides that correspond to two regions of G alpha 15 react with a protein of 42 kDa expressed in B-cell membranes and in Escherichia coli transformed with G alpha 15 cDNA. The expression patterns that were observed in mouse tissues and cell lines indicate that each of the alpha subunits in the Gq class may be involved in pertussis toxin-insensitive signal-transduction pathways that are fundamental to hematopoietic cell differentiation and function. Images PMID:1946421

  5. A human ESC model for MLL-AF4 leukemic fusion gene reveals an impaired early hematopoietic-endothelial specification.

    PubMed

    Bueno, Clara; Montes, Rosa; Melen, Gustavo J; Ramos-Mejia, Verónica; Real, Pedro J; Ayllón, Verónica; Sanchez, Laura; Ligero, Gertrudis; Gutierrez-Aranda, Iván; Fernández, Agustín F; Fraga, Mario F; Moreno-Gimeno, Inmaculada; Burks, Deborah; Plaza-Calonge, María del Carmen; Rodríguez-Manzaneque, Juan C; Menendez, Pablo

    2012-06-01

    The MLL-AF4 fusion gene is a hallmark genomic aberration in high-risk acute lymphoblastic leukemia in infants. Although it is well established that MLL-AF4 arises prenatally during human development, its effects on hematopoietic development in utero remain unexplored. We have created a human-specific cellular system to study early hemato-endothelial development in MLL-AF4-expressing human embryonic stem cells (hESCs). Functional studies, clonal analysis and gene expression profiling reveal that expression of MLL-AF4 in hESCs has a phenotypic, functional and gene expression impact. MLL-AF4 acts as a global transcriptional activator and a positive regulator of homeobox gene expression in hESCs. Functionally, MLL-AF4 enhances the specification of hemogenic precursors from hESCs but strongly impairs further hematopoietic commitment in favor of an endothelial cell fate. MLL-AF4 hESCs are transcriptionally primed to differentiate towards hemogenic precursors prone to endothelial maturation, as reflected by the marked upregulation of master genes associated to vascular-endothelial functions and early hematopoiesis. Furthermore, we report that MLL-AF4 expression is not sufficient to transform hESC-derived hematopoietic cells. This work illustrates how hESCs may provide unique insights into human development and further our understanding of how leukemic fusion genes, known to arise prenatally, regulate human embryonic hematopoietic specification.

  6. A human ESC model for MLL-AF4 leukemic fusion gene reveals an impaired early hematopoietic-endothelial specification

    PubMed Central

    Bueno, Clara; Montes, Rosa; Melen, Gustavo J; Ramos-Mejia, Verónica; Real, Pedro J; Ayllón, Verónica; Sanchez, Laura; Ligero, Gertrudis; Gutierrez-Aranda, Iván; Fernández, Agustín F; Fraga, Mario F; Moreno-Gimeno, Inmaculada; Burks, Deborah; del Carmen Plaza-Calonge, María; Rodríguez-Manzaneque, Juan C; Menendez, Pablo

    2012-01-01

    The MLL-AF4 fusion gene is a hallmark genomic aberration in high-risk acute lymphoblastic leukemia in infants. Although it is well established that MLL-AF4 arises prenatally during human development, its effects on hematopoietic development in utero remain unexplored. We have created a human-specific cellular system to study early hemato-endothelial development in MLL-AF4-expressing human embryonic stem cells (hESCs). Functional studies, clonal analysis and gene expression profiling reveal that expression of MLL-AF4 in hESCs has a phenotypic, functional and gene expression impact. MLL-AF4 acts as a global transcriptional activator and a positive regulator of homeobox gene expression in hESCs. Functionally, MLL-AF4 enhances the specification of hemogenic precursors from hESCs but strongly impairs further hematopoietic commitment in favor of an endothelial cell fate. MLL-AF4 hESCs are transcriptionally primed to differentiate towards hemogenic precursors prone to endothelial maturation, as reflected by the marked upregulation of master genes associated to vascular-endothelial functions and early hematopoiesis. Furthermore, we report that MLL-AF4 expression is not sufficient to transform hESC-derived hematopoietic cells. This work illustrates how hESCs may provide unique insights into human development and further our understanding of how leukemic fusion genes, known to arise prenatally, regulate human embryonic hematopoietic specification. PMID:22212479

  7. The Interface between BCR-ABL-Dependent and -Independent Resistance Signaling Pathways in Chronic Myeloid Leukemia

    PubMed Central

    Nestal de Moraes, Gabriela; Souza, Paloma Silva; Costas, Fernanda Casal de Faria; Vasconcelos, Flavia Cunha; Reis, Flaviana Ruade Souza; Maia, Raquel Ciuvalschi

    2012-01-01

    Chronic myeloid leukemia (CML) is a clonal hematopoietic disorder characterized by the presence of the Philadelphia chromosome which resulted from the reciprocal translocation between chromosomes 9 and 22. The pathogenesis of CML involves the constitutive activation of the BCR-ABL tyrosine kinase, which governs malignant disease by activating multiple signal transduction pathways. The BCR-ABL kinase inhibitor, imatinib, is the front-line treatment for CML, but the emergence of imatinib resistance and other tyrosine kinase inhibitors (TKIs) has called attention for additional resistance mechanisms and has led to the search for alternative drug treatments. In this paper, we discuss our current understanding of mechanisms, related or unrelated to BCR-ABL, which have been shown to account for chemoresistance and treatment failure. We focus on the potential role of the influx and efflux transporters, the inhibitor of apoptosis proteins, and transcription factor-mediated signals as feasible molecular targets to overcome the development of TKIs resistance in CML. PMID:23259070

  8. Use of gemtuzumab ozogamicin in the treatment of pediatric relapsed/ refractory Acute Myeloid Leukemia.

    PubMed

    Ünal, Elif; Sahdev, Indira

    2008-03-05

    Gemtuzumab ozogamicin (GO, MylotargTM) is an antibody-targeted chemotherapy agent that has been studied in acute myeloid leukemia (AML) at first relapse in adults. There is limited experience in pediatric patients. We report six patients with refractory/relapsed CD33+AML who were treated with GO on compassionate-use basis. One patient attained remission. One patient is still alive following hematopoietic stem cell transplantation (HSCT), and one patient died in remission. Two patients were refractory and three patients had a response with <5% blasts in the bone marrow. Fever and chills, hypotension and hypoxia were observed as side effects. Three patients developed veno-occlusive disease (VOD) of the liver. Two of these three patients had persistence of VOD at the time of their deaths. One patient treated postSCT had bone marrow response without VOD. GO should be used cautiously in chemotherapy-refractory AML pediatric patients due to the high incidence of VOD.

  9. Wnt signaling induces transcription, spatial proximity, and translocation of fusion gene partners in human hematopoietic cells.

    PubMed

    Ugarte, Giorgia D; Vargas, Macarena F; Medina, Matías A; León, Pablo; Necuñir, David; Elorza, Alvaro A; Gutiérrez, Soraya E; Moon, Randall T; Loyola, Alejandra; De Ferrari, Giancarlo V

    2015-10-08

    Chromosomal translocations are frequently associated with a wide variety of cancers, particularly hematologic malignancies. A recurrent chromosomal abnormality in acute myeloid leukemia is the reciprocal translocation t(8;21) that fuses RUNX1 and ETO genes. We report here that Wnt/β-catenin signaling increases the expression of ETO and RUNX1 genes in human hematopoietic progenitors. We found that β-catenin is rapidly recruited into RNA polymerase II transcription factories (RNAPII-Ser5) and that ETO and RUNX1 genes are brought into close spatial proximity upon Wnt3a induction. Notably, long-term treatment of cells with Wnt3a induces the generation a frequent RUNX1-ETO translocation event. Thus, Wnt/β-catenin signaling induces transcription and translocation of RUNX1 and ETO fusion gene partners, opening a novel window to understand the onset/development of leukemia.

  10. Cytokines regulate postnatal hematopoietic stem cell expansion: opposing roles of thrombopoietin and LNK

    PubMed Central

    Buza-Vidas, Natalija; Antonchuk, Jennifer; Qian, Hong; Månsson, Robert; Luc, Sidinh; Zandi, Sasan; Anderson, Kristina; Takaki, Satoshi; Nygren, Jens M.; Jensen, Christina T.; Jacobsen, Sten Eirik W.

    2006-01-01

    The role of cytokines as regulators of hematopoietic stem cell (HSC) expansion remains elusive. Herein, we identify thrombopoietin (THPO) and the cytokine signaling inhibitor LNK, as opposing physiological regulators of HSC expansion. Lnk−/− HSCs continue to expand postnatally, up to 24-fold above normal by 6 mo of age. Within the stem cell compartment, this expansion is highly selective for self-renewing long-term HSCs (LT-HSCs), which show enhanced THPO responsiveness. Lnk−/− HSC expansion is dependent on THPO, and 12-wk-old Lnk−/−Thpo−/− mice have 65-fold fewer LT-HSCs than Lnk−/− mice. Expansions of multiple myeloid, but not lymphoid, progenitors in Lnk−/− mice also proved THPO-dependent. PMID:16882979

  11. Immunologic and hematopoietic alterations by 2,450-MHz electromagnetic radiation.

    PubMed

    Huang, A T; Mold, N G

    1980-01-01

    A biphasic modulation of responsiveness of spleen lymphocytes to mitogens was observed in mice exposed to 2,450-MHz radiation at power densities of 5-15 mW/cm2 over various periods ranging between one and 17 days. This modulated phenomenon may be explained on the basis of 1) suppression of lymphocyte response to microwave-activated macrophages which persists throughout the entire course of radiation, and 2) concurrent progressive direct stimulation of lymphocytes which culminates around day 9 of exposure. Tumor cytotoxicity of killer lymphocytes from mice exposed to five or nine days of radiation did not appear different from sham controls. The highly proliferative hematopoietic marrow cells were sensitive to microwave radiation. Nine days of exposure to radiation (15 mW/cm2) reduced the colony-forming units of myeloid and erythroid series by 50%. This observation may offer a new and more sensitive assay for studying biological effects of electromagnetic radiation.

  12. Directional DNA methylation changes and complex intermediate states accompany lineage specificity in the adult hematopoietic compartment.

    PubMed

    Hodges, Emily; Molaro, Antoine; Dos Santos, Camila O; Thekkat, Pramod; Song, Qiang; Uren, Philip J; Park, Jin; Butler, Jason; Rafii, Shahin; McCombie, W Richard; Smith, Andrew D; Hannon, Gregory J

    2011-10-07

    DNA methylation has been implicated as an epigenetic component of mechanisms that stabilize cell-fate decisions. Here, we have characterized the methylomes of human female hematopoietic stem/progenitor cells (HSPCs) and mature cells from the myeloid and lymphoid lineages. Hypomethylated regions (HMRs) associated with lineage-specific genes were often methylated in the opposing lineage. In HSPCs, these sites tended to show intermediate, complex patterns that resolve to uniformity upon differentiation, by increased or decreased methylation. Promoter HMRs shared across diverse cell types typically display a constitutive core that expands and contracts in a lineage-specific manner to fine-tune the expression of associated genes. Many newly identified intergenic HMRs, both constitutive and lineage specific, were enriched for factor binding sites with an implied role in genome organization and regulation of gene expression, respectively. Overall, our studies represent an important reference data set and provide insights into directional changes in DNA methylation as cells adopt terminal fates.

  13. Rapid Inflammation in Mice Lacking Both SOCS1 and SOCS3 in Hematopoietic Cells

    PubMed Central

    Ushiki, Takashi; Huntington, Nicholas D.; Glaser, Stefan P.; Kiu, Hiu; Georgiou, Angela; Zhang, Jian-Guo; Nicola, Nicos A.; Roberts, Andrew W.; Alexander, Warren S.

    2016-01-01

    The Suppressors of Cytokine Signalling (SOCS) proteins are negative regulators of cytokine signalling required to prevent excess cellular responses. SOCS1 and SOCS3 are essential to prevent inflammatory disease, SOCS1 by attenuating responses to IFNγ and gamma-common (γc) cytokines, and SOCS3 via regulation of G-CSF and IL-6 signalling. SOCS1 and SOCS3 show significant sequence homology and are the only SOCS proteins to possess a KIR domain. The possibility of overlapping or redundant functions was investigated in inflammatory disease via generation of mice lacking both SOCS1 and SOCS3 in hematopoietic cells. Loss of SOCS3 significantly accelerated the pathology and inflammatory disease characteristic of SOCS1 deficiency. We propose a model in which SOCS1 and SOCS3 operate independently to control specific cytokine responses and together modulate the proliferation and activation of lymphoid and myeloid cells to prevent rapid inflammatory disease. PMID:27583437

  14. Replication stress caused by low MCM expression limits fetal erythropoiesis and hematopoietic stem cell functionality

    PubMed Central

    Alvarez, Silvia; Díaz, Marcos; Flach, Johanna; Rodriguez-Acebes, Sara; López-Contreras, Andrés J.; Martínez, Dolores; Cañamero, Marta; Fernández-Capetillo, Oscar; Isern, Joan; Passegué, Emmanuelle; Méndez, Juan

    2015-01-01

    Replicative stress during embryonic development influences ageing and predisposition to disease in adults. A protective mechanism against replicative stress is provided by the licensing of thousands of origins in G1 that are not necessarily activated in the subsequent S-phase. These ‘dormant' origins provide a backup in the presence of stalled forks and may confer flexibility to the replication program in specific cell types during differentiation, a role that has remained unexplored. Here we show, using a mouse strain with hypomorphic expression of the origin licensing factor mini-chromosome maintenance (MCM)3 that limiting origin licensing in vivo affects the functionality of hematopoietic stem cells and the differentiation of rapidly-dividing erythrocyte precursors. Mcm3-deficient erythroblasts display aberrant DNA replication patterns and fail to complete maturation, causing lethal anemia. Our results indicate that hematopoietic progenitors are particularly sensitive to replication stress, and full origin licensing ensures their correct differentiation and functionality. PMID:26456157

  15. Leukemic marrow infiltration reveals a novel role for Egr3 as a potent inhibitor of normal hematopoietic stem cell proliferation.

    PubMed

    Cheng, Hui; Hao, Sha; Liu, Yanfeng; Pang, Yakun; Ma, Shihui; Dong, Fang; Xu, Jing; Zheng, Guoguang; Li, Shaoguang; Yuan, Weiping; Cheng, Tao

    2015-09-10

    Cytopenias resulting from the impaired generation of normal blood cells from hematopoietic precursors are important contributors to morbidity and mortality in patients with leukemia. However, the process by which normal hematopoietic cells are overtaken by emerging leukemia cells and how different subsets of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) are distinctly influenced during leukemic cell infiltration is poorly understood. To investigate these important questions, we used a robust nonirradiated mouse model of human MLL-AF9 leukemia to examine the suppression of HSCs and HPCs during leukemia cell expansion in vivo. Among all the hematopoietic subsets, long-term repopulating HSCs were the least reduced, whereas megakaryocytic-erythroid progenitors were the most significantly suppressed. Notably, nearly all of the HSCs were forced into a noncycling state in leukemic marrow at late stages, but their reconstitution potential appeared to be intact upon transplantation into nonleukemic hosts. Gene expression profiling and further functional validation revealed that Egr3 was a strong limiting factor for the proliferative potential of HSCs. Therefore, this study provides not only a molecular basis for the more tightened quiescence of HSCs in leukemia, but also a novel approach for defining functional regulators of HSCs in disease.

  16. Cutaneous myeloid sarcoma: natural history and biology of an uncommon manifestation of acute myeloid leukemia.

    PubMed

    Hurley, M Yadira; Ghahramani, Grant K; Frisch, Stephanie; Armbrecht, Eric S; Lind, Anne C; Nguyen, Tudung T; Hassan, Anjum; Kreisel, Friederike H; Frater, John L

    2013-05-01

    We conducted a retrospective study of patients with cutaneous myeloid sarcoma, from 2 tertiary care institutions. Eighty-three patients presented, with a mean age of 52 years. Diagnosis of myeloid sarcoma in the skin was difficult due to the low frequency of myeloperoxidase and/or CD34+ cases (56% and 19% of tested cases, respectively). Seventy-one of the 83 patients (86%) had ≥ 1 bone marrow biopsy. Twenty-eight (39%) had acute myeloid leukemia with monocytic differentiation. Twenty-three had other de novo acute myeloid leukemia subtypes. Thirteen patients had other myeloid neoplasms, of which 4 ultimately progressed to an acute myeloid leukemia. Seven had no bone marrow malignancy. Ninety-eight percent of the patients received chemotherapy, and approximately 89% died of causes related to their disease. Cutaneous myeloid sarcoma in most cases represents an aggressive manifestation of acute myeloid leukemia. Diagnosis can be challenging due to lack of myeloblast-associated antigen expression in many cases, and difficulty in distinguishing monocyte-lineage blasts from neoplastic and non-neoplastic mature monocytes.

  17. SNP Array in Hematopoietic Neoplasms: A Review

    PubMed Central

    Song, Jinming; Shao, Haipeng

    2015-01-01

    Cytogenetic analysis is essential for the diagnosis and prognosis of hematopoietic neoplasms in current clinical practice. Many hematopoietic malignancies are characterized by structural chromosomal abnormalities such as specific translocations, inversions, deletions and/or numerical abnormalities that can be identified by karyotype analysis or fluorescence in situ hybridization (FISH) studies. Single nucleotide polymorphism (SNP) arrays offer high-resolution identification of copy number variants (CNVs) and acquired copy-neutral loss of heterozygosity (LOH)/uniparental disomy (UPD) that are usually not identifiable by conventional cytogenetic analysis and FISH studies. As a result, SNP arrays have been increasingly applied to hematopoietic neoplasms to search for clinically-significant genetic abnormalities. A large numbers of CNVs and UPDs have been identified in a variety of hematopoietic neoplasms. CNVs detected by SNP array in some hematopoietic neoplasms are of prognostic significance. A few specific genes in the affected regions have been implicated in the pathogenesis and may be the targets for specific therapeutic agents in the future. In this review, we summarize the current findings of application of SNP arrays in a variety of hematopoietic malignancies with an emphasis on the clinically significant genetic variants. PMID:27600067

  18. Similarities and Differences Between Therapy-Related and Elderly Acute Myeloid Leukemia

    PubMed Central

    D’Alò, Francesco; Fianchi, Luana; Fabiani, Emiliano; Criscuolo, Marianna; Greco, Mariangela; Guidi, Francesco; Pagano, Livio; Leone, Giuseppe; Voso, Maria Teresa

    2011-01-01

    Acute myeloid leukemia (AML) is a clonal disorder of the hematopoietic stem cell, typical of the elderly, with a median age of over 60 years at diagnosis. In AML, older age is one of the strongest independent adverse prognostic factor, associated with decreased complete response rate, worse disease-free and overall survival, with highest rates of treatment related mortality, resistant disease and relapse, compared to younger patients. Outcomes are compromised in older patients not only by increased comorbidities and susceptibility to toxicity from therapy, but it is now recognized that elderly AML has peculiar biologic characteristics with a negative impact on treatment response. In older individuals prolonged exposure to environmental carcinogens may be the basis for similarities to therapy-related myeloid malignancies (t-MN), which result from toxic effects of previous cytotoxic treatments on hematopoietic stem cells. Age is itself a risk factor for t-MN, which are more frequent in elderly patients, where also a shorter latency between treatment of primary tumor and t-MN has been reported. t-MN following chemotherapy with alkylating agents and elderly AML frequently present MDS-related cytogenetic abnormalities, including complex or monosomal karyotype, and a myelodysplastic phase preceding the diagnosis of overt leukemia. Similarly, t-MN and elderly-AML share common molecular abnormalities, such as reduced frequency of NPM1, FLT3 and CEBPA mutations and increased MDR1 expression. Given the unfavorable prognosis of elderly and t-MN and the similar clinical and molecular aspects, this is a promising field for implementation of new treatment protocols including alternative biological drugs. PMID:22220249

  19. Generation of antigen-presenting cells from tumor-infiltrated CD11b myeloid cells with DNA demethylating agent 5-aza-2'-deoxycytidine.

    PubMed

    Daurkin, Irina; Eruslanov, Evgeniy; Vieweg, Johannes; Kusmartsev, Sergei

    2010-05-01

    Tumor-recruited CD11b myeloid cells, including myeloid-derived suppressor cells, play a significant role in tumor progression, as these cells are involved in tumor-induced immune suppression and tumor neovasculogenesis. On the other hand, the tumor-infiltrated CD11b myeloid cells could potentially be a source of immunostimulatory antigen-presenting cells (APCs), since most of these cells represent common precursors of both dendritic cells and macrophages. Here, we investigated the possibility of generating mature APCs from tumor-infiltrated CD11b myeloid cells. We demonstrate that in vitro exposure of freshly excised mouse tumors to DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (decitabine, AZA) results in selective elimination of tumor cells, but, surprisingly it also enriches CD45(+) tumor-infiltrated cells. The majority of "post-AZA" surviving CD45(+) tumor-infiltrated cells were represented by CD11b myeloid cells. A culture of isolated tumor-infiltrated CD11b cells in the presence of AZA and GM-CSF promoted their differentiation into mature F4/80/CD11c/MHC class II-positive APCs. These tumor-derived myeloid APCs produced substantially reduced amounts of immunosuppressive (IL-13, IL-10, PGE(2)), pro-angiogenic (VEGF, MMP-9) and pro-inflammatory (IL-1beta, IL-6, MIP-2) mediators than their precursors, freshly isolated tumor-infiltrated CD11b cells. Vaccinating naïve mice with ex vivo generated tumor-derived APCs resulted in the protection of 70% mice from tumor outgrowth. Importantly, no loading of tumor-derived APC with exogenous antigen was needed to stimulate T cell response and induce the anti-tumor effect. Collectively, our results for the first time demonstrate that tumor-infiltrated CD11b myeloid cells can be enriched and differentiated in the presence of DNA demethylating agent 5-aza-2'-deoxycytidine into mature tumor-derived APCs, which could be used for cancer immunotherapy.

  20. Pre-transplantation minimal residual disease with cytogenetic and molecular diagnostic features improves risk stratification in acute myeloid leukemia

    PubMed Central

    Oran, Betül; Jorgensen, Jeff L.; Marin, David; Wang, Sa; Ahmed, Sairah; Alousi, Amin M.; Andersson, Borje S.; Bashir, Qaiser; Bassett, Roland; Lyons, Genevieve; Chen, Julianne; Rezvani, Katy; Popat, Uday; Kebriaei, Partow; Patel, Keyur; Rondon, Gabriela; Shpall, Elizabeth J.; Champlin, Richard E.

    2017-01-01

    Our aim was to improve outcome prediction after allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia by combining cytogenetic and molecular data at diagnosis with minimal residual disease assessment by multicolor flow-cytometry at transplantation. Patients with acute myeloid leukemia in first complete remission in whom minimal residual disease was assessed at transplantation were included and categorized according to the European LeukemiaNet classification. The primary outcome was 1-year relapse incidence after transplantation. Of 152 patients eligible, 48 had minimal residual disease at the time of their transplant. Minimal residual disease-positive patients were older, required more therapy to achieve first remission, were more likely to have incomplete recovery of blood counts and had more adverse risk features by cytogenetics. Relapse incidence at 1 year was higher in patients with minimal residual disease (32.6% versus 14.4%, P=0.002). Leukemia-free survival (43.6% versus 64%, P=0.007) and overall survival (48.8% versus 66.9%, P=0.008) rates were also inferior in patients with minimal residual disease. In multivariable analysis, minimal residual disease status at transplantation independently predicted 1-year relapse incidence, identifying a subgroup of intermediate-risk patients, according to the European LeukemiaNet classification, with a particularly poor outcome. Assessment of minimal residual disease at transplantation in combination with cytogenetic and molecular findings provides powerful independent prognostic information in acute myeloid leukemia, lending support to the incorporation of minimal residual disease detection to refine risk stratification and develop a more individualized approach during hematopoietic stem cell transplantation. PMID:27540139

  1. Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases.

    PubMed Central

    Le Beau, M M; Espinosa, R; Neuman, W L; Stock, W; Roulston, D; Larson, R A; Keinanen, M; Westbrook, C A

    1993-01-01

    Loss of a whole chromosome 5 or a deletion of its long arm (5q) is a recurring abnormality in malignant myeloid neoplasms. To determine the location of genes on 5q that may be involved in leukemogenesis, we examined the deleted chromosome 5 homologs in a series of 135 patients with malignant myeloid diseases. By comparing the breakpoints, we identified a small segment of 5q, consisting of band 5q31, that was deleted in each patient. This segment has been termed the critical region. Distal 5q contains a number of genes encoding growth factors, hormone receptors, and proteins involved in signal transduction or transcriptional regulation. These include several genes that are good candidates for a tumor-suppressor gene, as well as the genes encoding five hematopoietic growth factors (CSF2, IL3, IL4, IL5, and IL9). By using fluorescence in situ hybridization, we have refined the localization of these genes to 5q31.1 and have determined the order of these genes and of other markers within 5q31. By hybridizing probes to metaphase cells with overlapping deletions involving 5q31, we have narrowed the critical region to a small segment of 5q31 containing the EGR1 gene. The five hematopoietic growth factor genes and seven other genes are excluded from this region. The EGR1 gene was not deleted in nine other patients with acute myeloid leukemia who did not have abnormalities of chromosome 5. By physical mapping, the minimum size of the critical region was estimated to be 2.8 megabases. This cytogenetic map of 5q31, together with the molecular characterization of the critical region, will facilitate the identification of a putative tumor-suppressor gene in this band. PMID:8516290

  2. Nitric oxide-induced murine hematopoietic stem cell fate involves multiple signaling proteins, gene expression, and redox modulation.

    PubMed

    Nogueira-Pedro, Amanda; Dias, Carolina C; Regina, Helena; Segreto, C; Addios, Priscilla C; Lungato, Lisandro; D'Almeida, Vania; Barros, Carlos C; Higa, Elisa M S; Buri, Marcus V; Ferreira, Alice T; Paredes-Gamero, Edgar Julian

    2014-11-01

    There are a growing number of reports showing the influence of redox modulation in cellular signaling. Although the regulation of hematopoiesis by reactive oxygen species (ROS) and reactive nitrogen species (RNS) has been described, their direct participation in the differentiation of hematopoietic stem cells (HSCs) remains unclear. In this work, the direct role of nitric oxide (NO(•)), a RNS, in the modulation of hematopoiesis was investigated using two sources of NO(•) , one produced by endothelial cells stimulated with carbachol in vitro and another using the NO(•)-donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) in vivo. Two main NO(•) effects were observed: proliferation of HSCs-especially of the short-term HSCs-and its commitment and terminal differentiation to the myeloid lineage. NO(•)-induced proliferation was characterized by the increase in the number of cycling HSCs and hematopoietic progenitor cells positive to BrdU and Ki-67, upregulation of Notch-1, Cx43, PECAM-1, CaR, ERK1/2, Akt, p38, PKC, and c-Myc. NO(•)-induced HSCs differentiation was characterized by the increase in granulocytic-macrophage progenitors, granulocyte-macrophage colony forming units, mature myeloid cells, upregulation of PU.1, and C/EBPα genes concomitantly to the downregulation of GATA-3 and Ikz-3 genes, activation of Stat5 and downregulation of the other analyzed proteins mentioned above. Also, redox status modulation differed between proliferation and differentiation responses, which is likely associated with the transition of the proliferative to differentiation status. Our findings provide evidence of the role of NO(•) in inducing HSCs proliferation and myeloid differentiation involving multiple signaling.

  3. Genetics Home Reference: cytogenetically normal acute myeloid leukemia

    MedlinePlus

    ... one form of a cancer of the blood-forming tissue (bone marrow) called acute myeloid leukemia. In ... 1 link) PubMed Sources for This Page Döhner H. Implication of the molecular characterization of acute myeloid ...

  4. What's New in Adult Acute Myeloid Leukemia Research and Treatment?

    MedlinePlus

    ... Leukemia (AML) About Acute Myeloid Leukemia (AML) What’s New in Acute Myeloid Leukemia Research and Treatment? Researchers ... benefit from current treatments. Researchers are studying many new chemo drugs for use in AML, including: Sapacitabine, ...

  5. Chemotherapy Plus Sargramostim in Treating Patients With Refractory Myeloid Cancer

    ClinicalTrials.gov

    2013-01-08

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Paroxysmal Nocturnal Hemoglobinuria; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia; Refractory Anemia With Ringed Sideroblasts; Relapsing Chronic Myelogenous Leukemia; Thrombocytopenia; Untreated Adult Acute Myeloid Leukemia

  6. Hmga2 is a direct target gene of RUNX1 and regulates expansion of myeloid progenitors in mice

    PubMed Central

    Lam, Kentson; Muselman, Alexander; Du, Randal; Harada, Yuka; Scholl, Amanda G.; Yan, Ming; Matsuura, Shinobu; Weng, Stephanie; Harada, Hironori

    2014-01-01

    RUNX1 is a master transcription factor in hematopoiesis and mediates the specification and homeostasis of hematopoietic stem and progenitor cells (HSPCs). Disruptions in RUNX1 are well known to lead to hematologic disease. In this study, we sought to identify and characterize RUNX1 target genes in HSPCs by performing RUNX1 chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) using a murine HSPC line and complementing this data with our previously described gene expression profiling of primary wild-type and RUNX1-deficient HSPCs (Lineage–/cKit+/Sca1+). From this analysis, we identified and confirmed that Hmga2, a known oncogene, as a direct target of RUNX1. Hmga2 was strongly upregulated in RUNX1-deficient HSPCs, and the promoter of Hmga2 was responsive in a cell-type dependent manner upon coexpression of RUNX1. Conditional Runx1 knockout mice exhibit expansion of their HSPCs and myeloid progenitors as hallmark phenotypes. To further validate and establish that Hmga2 plays a role in inducing HSPC expansion, we generated mouse models of HMGA2 and RUNX1 deficiency. Although mice lacking both factors continued to display higher frequencies of HSPCs, the expansion of myeloid progenitors was effectively rescued. The data presented here establish Hmga2 as a transcriptional target of RUNX1 and a critical regulator of myeloid progenitor expansion. PMID:25150295

  7. Acellular Bone Marrow Extracts Significantly Enhance Engraftment Levels of Human Hematopoietic Stem Cells in Mouse Xeno-Transplantation Models

    PubMed Central

    Zibara, Kazem; Hamdan, Rima; Dib, Leila; Sindet-Pedersen, Steen; Kharfan-Dabaja, Mohamed; Bazarbachi, Ali; El-Sabban, Marwan

    2012-01-01

    Hematopoietic stem cells (HSC) derived from cord blood (CB), bone marrow (BM), or mobilized peripheral blood (PBSC) can differentiate into multiple lineages such as lymphoid, myeloid, erythroid cells and platelets. The local microenvironment is critical to the differentiation of HSCs and to the preservation of their phenotype in vivo. This microenvironment comprises a physical support supplied by the organ matrix as well as tissue specific cytokines, chemokines and growth factors. We investigated the effects of acellular bovine bone marrow extracts (BME) on HSC in vitro and in vivo. We observed a significant increase in the number of myeloid and erythroid colonies in CB mononuclear cells (MNC) or CB CD34+ cells cultured in methylcellulose media supplemented with BME. Similarly, in xeno-transplantation experiments, pretreatment with BME during ex-vivo culture of HSCs induced a significant increase in HSC engraftment in vivo. Indeed, we observed both an increase in the number of differentiated myeloid, lymphoid and erythroid cells and an acceleration of engraftment. These results were obtained using CB MNCs, BM MNCs or CD34+ cells, transplanted in immuno-compromised mice (NOD/SCID or NSG). These findings establish the basis for exploring the use of BME in the expansion of CB HSC prior to HSC Transplantation. This study stresses the importance of the mechanical structure and soluble mediators present in the surrounding niche for the proper activity and differentiation of stem cells. PMID:22768336

  8. CD 33 as a target of therapy in acute myeloid leukemia: current status and future perspectives.

    PubMed

    Sperr, Wolfgang R; Florian, Stefan; Hauswirth, Alexander W; Valent, Peter

    2005-08-01

    CD 33 is a myeloid cell surface antigen that is expressed on blast cells in acute myeloid leukemia (AML) in a majority of all patients regardless of age or subtype of disease. The antigen is also expressed on leukemic stem cells in many cases, but is not expressed on normal hematopoietic stem cells. In an attempt to improve therapy in AML, a CD 33-targeted drug has been developed. The drug, gemtucumab ozogamicin (GO; Mylotarg), consists of a humanized CD 33 antibody (hP 67.6), a pH-dependent linker, and a highly potent chemotherapy agent, calicheamicin 1,2,-dimethyl hydrazine dichloride. Based on its clinical activity, GO has been approved for application in chemotherapy-refractory AML in various countries and is effective as a mono-substance as well as in combination with conventional chemotherapy. However, despite high efficacy and a certain specificity for leukemic (as opposed to normal) stem cells, the drug does not work in all patients, and can produce significant side-effects, including veno-occlusive disease (VOD), especially in patients who undergo stem cell transplantation. These side-effects have to be balanced against the benefit of GO therapy in patients with relapsed or refractory AML.

  9. Acute myeloid leukemia requires Hhex to enable PRC2-mediated epigenetic repression of Cdkn2a

    PubMed Central

    Shields, Benjamin J.; Jackson, Jacob T.; Metcalf, Donald; Shi, Wei; Huang, Qiutong; Garnham, Alexandra L.; Glaser, Stefan P.; Beck, Dominik; Pimanda, John E.; Bogue, Clifford W.; Smyth, Gordon K.; Alexander, Warren S.; McCormack, Matthew P.

    2016-01-01

    Unlike clustered HOX genes, the role of nonclustered homeobox gene family members in hematopoiesis and leukemogenesis has not been extensively studied. Here we found that the hematopoietically expressed homeobox gene Hhex is overexpressed in acute myeloid leukemia (AML) and is essential for the initiation and propagation of MLL-ENL-induced AML but dispensable for normal myelopoiesis, indicating a specific requirement for Hhex for leukemic growth. Loss of Hhex leads to expression of the Cdkn2a-encoded tumor suppressors p16INK4a and p19ARF, which are required for growth arrest and myeloid differentiation following Hhex deletion. Mechanistically, we show that Hhex binds to the Cdkn2a locus and directly interacts with the Polycomb-repressive complex 2 (PRC2) to enable H3K27me3-mediated epigenetic repression. Thus, Hhex is a potential therapeutic target that is specifically required for AML stem cells to repress tumor suppressor pathways and enable continued self-renewal. PMID:26728554

  10. MLL1 and DOT1L cooperate with meningioma-1 to induce acute myeloid leukemia

    PubMed Central

    Riedel, Simone S.; Haladyna, Jessica N.; Bezzant, Matthew; Stevens, Brett; Pollyea, Daniel A.; Sinha, Amit U.; Armstrong, Scott A.; Wei, Qi; Pollock, Roy M.; Daigle, Scott R.; Jordan, Craig T.; Ernst, Patricia; Bernt, Kathrin M.

    2016-01-01

    Meningioma-1 (MN1) overexpression is frequently observed in patients with acute myeloid leukemia (AML) and is predictive of poor prognosis. In murine models, forced expression of MN1 in hematopoietic progenitors induces an aggressive myeloid leukemia that is strictly dependent on a defined gene expression program in the cell of origin, which includes the homeobox genes Hoxa9 and Meis1 as key components. Here, we have shown that this program is controlled by two histone methyltransferases, MLL1 and DOT1L, as deletion of either Mll1 or Dot1l in MN1-expressing cells abrogated the cell of origin–derived gene expression program, including the expression of Hoxa cluster genes. In murine models, genetic inactivation of either Mll1 or Dot1l impaired MN1-mediated leukemogenesis. We determined that HOXA9 and MEIS1 are coexpressed with MN1 in a subset of clinical MN1hi leukemia, and human MN1hi/HOXA9hi leukemias were sensitive to pharmacologic inhibition of DOT1L. Together, these data point to DOT1L as a potential therapeutic target in MN1hi AML. In addition, our findings suggest that epigenetic modulation of the interplay between an oncogenic lesion and its cooperating developmental program has therapeutic potential in AML. PMID:26927674

  11. CMV reactivation after allogeneic HCT and relapse risk: evidence for early protection in acute myeloid leukemia.

    PubMed

    Green, Margaret L; Leisenring, Wendy M; Xie, Hu; Walter, Roland B; Mielcarek, Marco; Sandmaier, Brenda M; Riddell, Stanley R; Boeckh, Michael

    2013-08-15

    The association between cytomegalovirus (CMV) reactivation and relapse was evaluated in a large cohort of patients with acute myeloid leukemia (AML) (n = 761), acute lymphoblastic leukemia (ALL) (n = 322), chronic myeloid leukemia (CML) (n = 646), lymphoma (n = 254), and myelodysplastic syndrome (MDS) (n = 371) who underwent allogeneic hematopoietic cell transplantation (HCT) between 1995 and 2005. In multivariable models, CMV pp65 antigenemia was associated with a decreased risk of relapse by day 100 among patients with AML (hazard ratio [HR] = 0.56; 95% confidence interval [CI], 0.3-0.9) but not in patients with ALL, lymphoma, CML, or MDS. The effect appeared to be independent of CMV viral load, acute graft-versus-host disease, or ganciclovir-associated neutropenia. At 1 year after HCT, early CMV reactivation was associated with reduced risk of relapse in all patients, but this did not reach significance for any disease subgroup. Furthermore, CMV reactivation was associated with increased nonrelapse mortality (HR = 1.31; 95% CI, 1.1-1.6) and no difference in overall mortality (HR = 1.05; 95% CI, 0.9-1.3). This report demonstrates a modest reduction in early relapse risk after HCT associated with CMV reactivation in a large cohort of patients without a benefit in overall survival.

  12. Runx1 repression by histone deacetylation is critical for Setbp1-induced mouse myeloid leukemia development

    PubMed Central

    Vishwakarma, Bandana A.; Nguyen, Nhu; Makishima, Hideki; Hosono, Naoko; Gudmundsson, Kristbjorn O.; Negi, Vijay; Oakley, Kevin; Han, Yufen; Przychodzen, Bartlomiej; Maciejewski, Jaroslaw P.; Du, Yang

    2015-01-01

    Abnormal activation of SETBP1 through overexpression or missense mutations is highly recurrent in various myeloid malignancies; however, it is unclear whether such activation alone is able to induce leukemia development. Here we show that Setbp1 overexpression in mouse bone marrow progenitors through retroviral transduction is capable of initiating leukemia development in irradiated recipient mice. Before leukemic transformation, Setbp1 overexpression significantly enhances the self-renewal of hematopoietic stem cells (HSCs) and expands granulocyte macrophage progenitors (GMPs). Interestingly, Setbp1 overexpression also causes transcriptional repression of critical hematopoiesis regulator gene Runx1 and this effect is crucial for Setbp1-induced transformation. Runx1 repression is induced by Setbp1-mediated recruitment of a nucleosome remodeling deacetylase (NuRD) complex to Runx1 promoters and can be reversed by treatment with histone deacetylase (HDAC) inhibitors Entinostat and Vorinostat. Moreover, treatment with these inhibitors caused efficient differentiation of Setbp1 activation-induced leukemia cells in vitro, and significantly extended the survival of mice transplanted with such leukemias, suggesting that HDAC inhibition could be an effective strategy for treating myeloid malignancies with SETBP1 activation. PMID:26205084

  13. Minimal PU.1 reduction induces a preleukemic state and promotes development of acute myeloid leukemia

    PubMed Central

    Will, Britta; Vogler, Thomas O.; Narayanagari, Swathi; Bartholdy, Boris; Todorova, Tihomira I.; da Silva Ferreira, Mariana; Chen, Jiahao; Yu, Yiting; Mayer, Jillian; Barreyro, Laura; Carvajal, Luis; Ben Neriah, Daniela; Roth, Michael; van Oers, Johanna; Schaetzlein, Sonja; McMahon, Christine; Edelmann, Winfried; Verma, Amit; Steidl, Ulrich

    2016-01-01

    Modest transcriptional changes caused by genetic or epigenetic mechanisms are frequent in human cancer. Although loss or near-complete loss of the hematopoietic transcription factor PU.1 induces acute myeloid leukemia (AML) in mice, a similar degree of PU.1 impairment is exceedingly rare in human AML; yet moderate PU.1 inhibition is common in AML patients. We assessed functional consequences of modest reduction of PU.1 expression on leukemia development in mice harboring DNA lesions resembling those acquired during human stem cell aging. Heterozygous deletion of an enhancer of PU.1, which resulted in 35% reduction of PU.1 expression, was sufficient to induce myeloid biased preleukemic stem cells and subsequent transformation to AML in a DNA mismatch repair-deficient background. AML progression was mediated by inhibition of expression of a PU.1 cooperating transcription factor, Irf8. Strikingly, we found significant molecular similarities with human myelodysplastic syndrome and AML. This study demonstrates that minimal reduction of a key lineage-specific transcription factor that commonly occurs in human disease is sufficient to initiate cancer development and provides mechanistic insight into the formation and progression of preleukemic stem cells in AML. PMID:26343801

  14. Leukemia-related chromosomal loss detected in hematopoietic progenitor cells of benzene-exposed workers

    PubMed Central

    Zhang, Luoping; Lan, Qing; Ji, Zhiying; Li, Guilan; Shen, Min; Vermeulen, Roel; Guo, Weihong; Hubbard, Alan E.; McHale, Cliona M.; Rappaport, Stephen M.; Hayes, Richard B.; Linet, Martha S.; Yin, Songnian; Smith, Martyn T.; Rothman, Nathaniel

    2012-01-01

    Benzene exposure causes acute myeloid leukemia, and hematotoxicity, shown as suppression of mature blood and myeloid progenitor cell numbers. As the leukemia-related aneuploidies monosomy 7 and trisomy 8 previously had been detected in the mature peripheral blood cells of exposed workers, we hypothesized that benzene could cause leukemia through the induction of these aneuploidies in hematopoietic stem and progenitor cells. We measured loss and gain of chromosomes 7 and 8 by fluorescence in situ hybridization in interphase colony-forming unit-granulocyte-macrophage (CFU-GM) cells cultured from otherwise healthy benzene-exposed (n=28) and unexposed (n=14) workers. CFU-GM monosomy 7 and 8 levels (but not trisomy) were significantly increased in subjects exposed to benzene overall, compared to levels in the control subjects (p=0.0055 and p=0.0034, respectively). Levels of monosomy 7 and 8 were significantly increased in subjects exposed to <10 ppm (20%, p=0.0419 and 28%, p=0.0056, respectively) and ≥10 ppm (48%, p=0.0045 and 32%, p=0.0354) benzene, compared with controls, and significant exposure-response trends were detected (ptrend=0.0033 and 0.0057). These data show that monosomies 7 and 8 are produced in a dose-dependent fashion in the blood progenitor cells of workers exposed to benzene and may be mechanistically relevant biomarkers of early effect for benzene and other leukemogens. PMID:22643707

  15. DNMT3A and TET2 in the Pre-Leukemic Phase of Hematopoietic Disorders

    PubMed Central

    Sato, Hanae; Wheat, Justin C.; Steidl, Ulrich; Ito, Keisuke

    2016-01-01

    In recent years, advances in next-generation sequencing (NGS) technology have provided the opportunity to detect putative genetic drivers of disease, particularly cancers, with very high sensitivity. This knowledge has substantially improved our understanding of tumor pathogenesis. In hematological malignancies such as acute myeloid leukemia and myelodysplastic syndromes, pioneering work combining multi-parameter flow cytometry and targeted resequencing in leukemia have clearly shown that different classes of mutations appear to be acquired in particular sequences along the hematopoietic differentiation hierarchy. Moreover, as these mutations can be found in “normal” cells recovered during remission and can be detected at relapse, there is strong evidence for the existence of “pre-leukemic” stem cells (pre-LSC). These cells, while phenotypically normal by flow cytometry, morphology, and functional studies, are speculated to be molecularly poised to transform owing to a limited number of predisposing mutations. Identifying these “pre-leukemic” mutations and how they propagate a pre-malignant state has important implications for understanding the etiology of these disorders and for the development of novel therapeutics. NGS studies have found a substantial enrichment for mutations in epigenetic/chromatin remodeling regulators in pre-LSC, and elegant genetic models have confirmed that these mutations can predispose to a variety of hematological malignancies. In this review, we will discuss the current understanding of pre-leukemic biology in myeloid malignancies, and how mutations in two key epigenetic regulators, DNMT3A and TET2, may contribute to disease pathogenesis. PMID:27597933

  16. SHIP1-expressing mesenchymal stem cells regulate hematopoietic stem cell homeostasis and lineage commitment during aging.

    PubMed

    Iyer, Sonia; Brooks, Robert; Gumbleton, Matthew; Kerr, William G

    2015-05-01

    Hematopoietic stem cell (HSC) self-renewal and lineage choice are subject to intrinsic control. However, this intrinsic regulation is also impacted by external cues provided by niche cells. There are multiple cellular components that participate in HSC support with the mesenchymal stem cell (MSC) playing a pivotal role. We had previously identified a role for SH2 domain-containing inositol 5'-phosphatase-1 (SHIP1) in HSC niche function through analysis of mice with germline or induced SHIP1 deficiency. In this study, we show that the HSC compartment expands significantly when aged in a niche that contains SHIP1-deficient MSC; however, this expanded HSC compartment exhibits a strong bias toward myeloid differentiation. In addition, we show that SHIP1 prevents chronic G-CSF production by the aging MSC compartment. These findings demonstrate that intracellular signaling by SHIP1 in MSC is critical for the control of HSC output and lineage commitment during aging. These studies increase our understanding of how myeloid bias occurs in aging and thus could have implications for the development of myeloproliferative disease in aging.

  17. Isolated trisomy 2 in bone marrows of patients with suspected hematopoietic malignancies.

    PubMed

    Aypar, Umut; Reichard, Kaaren K; Waltman, Lindsey A; Van Dyke, Daniel L

    2014-04-01

    Isolated trisomy 2 in hematopoietic malignancies is rare, having been reported in only eight cases. Of these cases, the majority are older males. The underlying hematologic malignancies range from myelodysplastic syndrome (MDS) to acute myeloid leukemia (AML). The molecular pathogenesis and prognostic significance of isolated trisomy 2 remains unknown. Herein, we report 11 cases of isolated trisomy 2 in hematologic disorders seen in the Mayo Clinic Cytogenetics laboratory from 1996-2012. The majority were older males between the ages of 63-93 years. The underlying bone marrow pathologic diagnoses ranged from no diagnostic features of malignancy to AML. Our data suggest that isolated trisomy 2 could represent an age-related phenomenon since all 11 cases were age 63 and over. It appears that isolated trisomy 2 harbors little prognostic significance and that, instead, the prognostic significance is driven by the underlying pathologic diagnosis. For example, whereas 3 of the cases with AML survived only 7-10 weeks post-bone marrow biopsy, 1 of the cases without diagnostic features of malignancy survived 10 additional years. Therefore, trisomy 2 as a sole abnormality should not be considered as definitive evidence for a myeloid neoplasm in the absence of diagnostic morphologic criteria.

  18. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities.

    PubMed Central

    McKercher, S R; Torbett, B E; Anderson, K L; Henkel, G W; Vestal, D J; Baribault, H; Klemsz, M; Feeney, A J; Wu, G E; Paige, C J; Maki, R A

    1996-01-01

    PU.1 is a member of the ets family of transcription factors and is expressed exclusively in cells of the hematopoietic lineage. Mice homozygous for a disruption in the PU.1 DNA binding domain are born alive but die of severe septicemia within 48 h. The analysis of these neonates revealed a lack of mature macrophages, neutrophils, B cells and T cells, although erythrocytes and megakaryocytes were present. The absence of lymphoid commitment and development in null mice was not absolute, since mice maintained on antibiotics began to develop normal appearing T cells 3-5 days after birth. In contrast, mature B cells remained undetectable in these older mice. Within the myeloid lineage, despite a lack of macrophages in the older antibiotic-treated animals, a few cells with the characteristics of neutrophils began to appear by day 3. While the PU.1 protein appears not to be essential for myeloid and lymphoid lineage commitment, it is absolutely required for the normal differentiation of B cells and macrophages. Images PMID:8896458

  19. A late-lineage murine neutrophil precursor population exhibits dynamic changes during demand-adapted granulopoiesis

    PubMed Central

    Kim, Min-Hyeok; Yang, Dongchan; Kim, Mirang; Kim, Seon-Young; Kim, Dongsup; Kang, Suk-Jo

    2017-01-01

    Homeostasis of neutrophils—the blood cells that respond first to infection and tissue injury—is critical for the regulation of immune responses and regulated through granulopoiesis, a multi-stage process by which neutrophils differentiate from hematopoietic stem cells. Granulopoiesis is a highly dynamic process and altered in certain clinical conditions, such as pathologic and iatrogenic neutropenia, described as demand-adapted granulopoiesis. The regulation of granulopoiesis under stress is not completely understood because studies of granulopoiesis dynamics have been hampered by technical limitations in defining neutrophil precursors. Here, we define a population of neutrophil precursor cells in the bone marrow with unprecedented purity, characterized by the lineage−CD11b+Ly6GloLy6BintCD115−, which we call NeuPs (Neutrophil Precursors). We demonstrated that NeuPs differentiate into mature and functional neutrophils both in vitro and in vivo. By analyzing the gene expression profiles of NeuPs, we also identified NeuP stage-specific genes and characterized patterns of gene regulation throughout granulopoiesis. Importantly, we found that NeuPs have the potential to proliferate, but the proliferation decreased in multiple different hematopoietic stress settings, indicating that proliferating NeuPs are poised at a critical step to regulate granulopoiesis. Our findings will facilitate understanding how the hematopoietic system maintains homeostasis and copes with the demands of granulopoiesis. PMID:28059162

  20. FAM20: an evolutionarily conserved family of secreted proteins expressed in hematopoietic cells

    PubMed Central

    Nalbant, Demet; Youn, Hyewon; Nalbant, S Isil; Sharma, Savitha; Cobos, Everardo; Beale, Elmus G; Du, Yang; Williams, Simon C

    2005-01-01

    Background Hematopoiesis is a complex developmental process controlled by a large number of factors that regulate stem cell renewal, lineage commitment and differentiation. Secreted proteins, including the hematopoietic growth factors, play critical roles in these processes and have important biological and clinical significance. We have employed representational difference analysis to identify genes that are differentially expressed during experimentally induced myeloid differentiation in the murine EML hematopoietic stem cell line. Results One identified clone encoded a previously unidentified protein of 541 amino acids that contains an amino terminal signal sequence but no other characterized domains. This protein is a member of family of related proteins that has been named family with sequence similarity 20 (FAM20) with three members (FAM20A, FAM20B and FAM20C) in mammals. Evolutionary comparisons revealed the existence of a single FAM20 gene in the simple vertebrate Ciona intestinalis and the invertebrate worm Caenorhabditis elegans and two genes in two insect species, Drosophila melanogaster and Anopheles gambiae. Six FAM20 family members were identified in the genome of the pufferfish, Fugu rubripes and five members in the zebrafish, Danio rerio. The mouse Fam20a protein was ectopically expressed in a mammalian cell line and found to be a bona fide secreted protein and efficient secretion was dependent on the integrity of the signal sequence. Expression analysis revealed that the Fam20a gene was indeed differentially expressed during hematopoietic differentiation and that the other two family members (Fam20b and Fam20c) were also expressed during hematcpoiesis but that their mRNA levels did not vary significantly. Likewise FAM20A was expressed in more limited set of human tissues than the other two family members. Conclusions The FAM20 family represents a new family of secreted proteins with potential functions in regulating differentiation and function of

  1. [Chronic myeloid leukemia. Karyotype changes].

    PubMed

    Rojas-Atencio, A; Pineda-Del Villar, L; Avila-León, E; González-Ferrer, S; Prieto-Carrasquero, M; Soto, M; González, R

    1996-09-01

    Chronic Myeloid Leukemia (CML) is a clonal disease of bone marrow, citogenetically characterized by the presence of the Philadelphia chromosome (Ph). Additional anomalies in the Ph cromosome have been found during the evolution of CML. This paper will show evidence of cytogenetic abnormalities during the evolution of CML in this region, and its correlation with clinical evolution. 55 samples of bone marrow, 81.3% (45/55) in chronic phase (CP), 12.7% (7/55) in an accelerated phase (AP), and 5.4% (3/55) in blastic phase (BP) were received. In 12/45 patients in CP the karyotype was repeated at least once a year during the evolution of their illness. 9/12 presented the Ph chromosome as a single anomaly at the moment of diagnosis; the other 3 presented a distinct anomaly. 4/9 presented additional abnormalities moving to the stages AP or BP between 4-8 months after initial discovery. 7/10 patients referred in AP or BP presented additional abnormalities in the Ph chromosome. It is evident that the chromosome study of each patient with CML must be carried out at least once a year in order to detect chromosomal abnormalities in addition to the Ph chromosome. Thus, a greater therapeutic control of the disease is possible.

  2. Loss of prolyl hydroxylase-2 in myeloid cells and T-lymphocytes impairs tumor development.

    PubMed

    Mamlouk, Soulafa; Kalucka, Joanna; Singh, Rashim Pal; Franke, Kristin; Muschter, Antje; Langer, Anika; Jakob, Christiane; Gassmann, Max; Baretton, Gustavo B; Wielockx, Ben

    2014-02-15

    The tumor microenvironment plays a pivotal role during cancer development and progression. The balance between suppressive and cytotoxic responses of the tumor immune microenvironment has been shown to have a direct effect on the final outcome in various human and experimental tumors. Recently, we demonstrated that the oxygen sensor HIF-prolyl hydroxylase-2 (PHD2) plays a detrimental role in tumor cells, stimulating systemic growth and metastasis in mice. In our current study, we show that the conditional ablation of PHD2 in the hematopoietic system also leads to reduced tumor volume, intriguingly generated by an imbalance between enhanced cell death and improved proliferation of tumor cells. This effect seems to rely on the overall downregulation of protumoral as well as antitumoral cytokines. Using different genetic approaches, we were able to confine this complex phenotype to the crosstalk of PHD2-deficient myeloid cells and T-lymphocytes. Taken together, our findings reveal a multifaceted role for PHD2 in several hematopoietic lineages during tumor development and might have important implications for the development of tumor therapies in the future.

  3. Targeting acute myeloid leukemia with a small molecule inhibitor of the Myb/p300 interaction.

    PubMed

    Uttarkar, Sagar; Dassé, Emilie; Coulibaly, Anna; Steinmann, Simone; Jakobs, Anke; Schomburg, Caroline; Trentmann, Amke; Jose, Joachim; Schlenke, Peter; Berdel, Wolfgang E; Schmidt, Thomas J; Müller-Tidow, Carsten; Frampton, Jon; Klempnauer, Karl-Heinz

    2016-03-03

    The transcription factor Myb plays a key role in the hematopoietic system and has been implicated in the development of leukemia and other human cancers. Inhibition of Myb is therefore emerging as a potential therapeutic strategy for these diseases. However, because of a lack of suitable inhibitors, the feasibility of therapeutic approaches based on Myb inhibition has not been explored. We have identified the triterpenoid Celastrol as a potent low-molecular-weight inhibitor of the interaction of Myb with its cooperation partner p300. We demonstrate that Celastrol suppresses the proliferative potential of acute myeloid leukemia (AML) cells while not affecting normal hematopoietic progenitor cells. Furthermore, Celastrol prolongs the survival of mice in a model of an aggressive AML. Overall, our work demonstrates the therapeutic potential of a small molecule inhibitor of the Myb/p300 interaction for the treatment of AML and provides a starting point for the further development of Myb-inhibitory compounds for the treatment of leukemia and, possibly, other tumors driven by deregulated Myb.

  4. MYBL2 is a sub-haploinsufficient tumor suppressor gene in myeloid malignancy

    PubMed Central

    Heinrichs, Stefan; Conover, Lillian F; Bueso-Ramos, Carlos E; Kilpivaara, Outi; Stevenson, Kristen; Neuberg, Donna; Loh, Mignon L; Wu, Wen-Shu; Rodig, Scott J; Garcia-Manero, Guillermo; Kantarjian, Hagop M; Look, A Thomas

    2013-01-01

    A common deleted region (CDR) in both myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPN) affects the long arm of chromosome 20 and has been predicted to harbor a tumor suppressor gene. Here we show that MYBL2, a gene within the 20q CDR, is expressed at sharply reduced levels in CD34+ cells from most MDS cases (65%; n = 26), whether or not they harbor 20q abnormalities. In a murine competitive reconstitution model, Mybl2 knockdown by RNAi to 20–30% of normal levels in multipotent hematopoietic progenitors resulted in clonal dominance of these ‘sub-haploinsufficient’ cells, which was reflected in all blood cell lineages. By 6 months post-transplantation, the reconstituted mice had developed a clonal myeloproliferative/myelodysplastic disorder originating from the cells with aberrantly reduced Mybl2 expression. We conclude that downregulation of MYBL2 activity below levels predicted by classical haploinsufficiency underlies the clonal expansion of hematopoietic progenitors in a large fraction of human myeloid malignancies. DOI: http://dx.doi.org/10.7554/eLife.00825.001 PMID:23878725

  5. Necroptosis in spontaneously-mutated hematopoietic cells induces autoimmune bone marrow failure in mice

    PubMed Central

    Xin, Junping; Breslin, Peter; Wei, Wei; Li, Jing; Gutierrez, Rafael; Cannova, Joseph; Ni, Allen; Ng, Grace; Schmidt, Rachel; Chen, Haiyan; Parini, Vamsi; Kuo, Paul C.; Kini, Ameet R.; Stiff, Patrick; Zhu, Jiang; Zhang, Jiwang

    2017-01-01

    Acquired aplastic anemia is an autoimmune-mediated bone marrow failure syndrome. The mechanism by which such an autoimmune reaction is initiated is unknown. Whether and how the genetic lesions detected in patients cause autoimmune bone marrow failure have not yet been determined. We found that mice with spontaneous deletion of the TGFβ-activated kinase-1 gene in a small subset of hematopoietic cells developed bone marrow failure which resembled the clinical manifestations of acquired aplastic anemia patients. Bone marrow failure in such mice could be reversed by depletion of CD4+ T lymphocytes or blocked by knockout of interferon-γ, suggesting a Th1-cell-mediated autoimmune mechanism. The onset and progression of bone marrow failure in such mice were significantly accelerated by the inactivation of tumor necrosis factor-α signaling. Tumor necrosis factor-α restricts autoimmune bone marrow failure by inhibiting type-1 T-cell responses and maintaining the function of myeloid-derived suppressor cells. Furthermore, we determined that necroptosis among a small subset of mutant hematopoietic cells is the cause of autoimmune bone marrow failure because such bone marrow failure can be prevented by deletion of receptor interacting protein kinase-3. Our study suggests a novel mechanism to explain the pathogenesis of autoimmune bone marrow failure. PMID:27634200

  6. Transcriptional, epigenetic and retroviral signatures identify regulatory regions involved in hematopoietic lineage commitment

    PubMed Central

    Romano, Oriana; Peano, Clelia; Tagliazucchi, Guidantonio Malagoli; Petiti, Luca; Poletti, Valentina; Cocchiarella, Fabienne; Rizzi, Ermanno; Severgnini, Marco; Cavazza, Alessia; Rossi, Claudia; Pagliaro, Pasqualepaolo; Ambrosi, Alessandro; Ferrari, Giuliana; Bicciato, Silvio; De Bellis, Gianluca; Mavilio, Fulvio; Miccio, Annarita

    2016-01-01

    Genome-wide approaches allow investigating the molecular circuitry wiring the genetic and epigenetic programs of human somatic stem cells. Hematopoietic stem/progenitor cells (HSPC) give rise to the different blood cell types; however, the molecular basis of human hematopoietic lineage commitment is poorly characterized. Here, we define the transcriptional and epigenetic profile of human HSPC and early myeloid and erythroid progenitors by a combination of Cap Analysis of Gene Expression (CAGE), ChIP-seq and Moloney leukemia virus (MLV) integration site mapping. Most promoters and transcripts were shared by HSPC and committed progenitors, while enhancers and super-enhancers consistently changed upon differentiation, indicating that lineage commitment is essentially regulated by enhancer elements. A significant fraction of CAGE promoters differentially expressed upon commitment were novel, harbored a chromatin enhancer signature, and may identify promoters and transcribed enhancers driving cell commitment. MLV-targeted genomic regions co-mapped with cell-specific active enhancers and super-enhancers. Expression analyses, together with an enhancer functional assay, indicate that MLV integration can be used to identify bona fide developmentally regulated enhancers. Overall, this study provides an overview of transcriptional and epigenetic changes associated to HSPC lineage commitment, and a novel signature for regulatory elements involved in cell identity. PMID:27095295

  7. Absence of WASp Enhances Hematopoietic and Megakaryocytic Differentiation in a Human Embryonic Stem Cell Model

    PubMed Central

    Toscano, Miguel G; Muñoz, Pilar; Sánchez-Gilabert, Almudena; Cobo, Marién; Benabdellah, Karim; Anderson, Per; Ramos-Mejía, Verónica; Real, Pedro J; Neth, Olaf; Molinos-Quintana, Agueda; Gregory, Philip D; Holmes, Michael C; Martin, Francisco

    2016-01-01

    The Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency caused by mutations in the WAS gene and characterized by severe thrombocytopenia. Although the role of WASp in terminally differentiated lymphocytes and myeloid cells is well characterized, its role in early hematopoietic differentiation and in platelets (Plts) biology is poorly understood. In the present manuscript, we have used zinc finger nucleases targeted to the WAS locus for the development of two isogenic WAS knockout (WASKO) human embryonic stem cell lines (hESCs). Upon hematopoietic differentiation, hESCs-WASKO generated increased ratios of CD34+CD45+ progenitors with altered responses to stem cell factor compared to hESCs-WT. When differentiated toward the megakaryocytic linage, hESCs-WASKO produced increased numbers of CD34+CD41+ progenitors, megakaryocytes (MKs), and Plts. hESCs-WASKO-derived MKs and Plts showed altered phenotype as well as defective responses to agonist, mimicking WAS patients MKs and Plts defects. Interestingly, the defects were more evident in WASp-deficient MKs than in WASp-deficient Plts. Importantly, ectopic WAS expression using lentiviral vectors restored normal Plts development and MKs responses. These data validate the AND-1_WASKO cell lines as a human cellular model for basic research and for preclinical studies for WAS. PMID:26502776

  8. Hematopoietic progenitor cell regulation by CD4+CD25+ T cells.

    PubMed

    Urbieta, Maite; Barao, Isabel; Jones, Monica; Jurecic, Roland; Panoskaltsis-Mortari, Angela; Blazar, Bruce R; Murphy, William J; Levy, Robert B

    2010-06-10

    CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) possess the capacity to modulate both adaptive and innate immune responses. We hypothesized that Tregs could regulate hematopoiesis based on cytokine effector molecules they can produce. The studies here demonstrate that Tregs can affect the differentiation of myeloid progenitor cells. In vitro findings demonstrated the ability of Tregs to inhibit the differentiation of interleukin-3 (IL-3)/stem cell factor (colony-forming unit [CFU]-IL3)-driven progenitor cells. Inhibitory effects were mediated by a pathway requiring cell-cell contact, major histocompatibility complex class II expression on marrow cells, and transforming growth factor-beta. Importantly, depletion of Tregs in situ resulted in enhanced CFU-IL3 levels after bone marrow transplantation. Cotransplantation of CD4(+)FoxP3(+)(gfp) Tregs together with bone marrow was found to diminish CFU-IL3 responses after transplantation. To address the consequence of transplanted Tregs on differentiated progeny from these CFU 2 weeks after hematopoietic stem cell transplantation, peripheral blood complete blood counts were performed and examined for polymorphonuclear leukocyte content. Recipients of cotransplanted Tregs exhibited diminished neutrophil counts. Together, these findings illustrate that both recipient and donor Tregs can influence hematopoietic progenitor cell activity after transplantation and that these cells can alter responses outside the adaptive and innate immune systems.

  9. Sinusoidal ephrin receptor EPHB4 controls hematopoietic progenitor cell mobilization from bone marrow

    PubMed Central

    Kwak, Hyeongil; Salvucci, Ombretta; Weigert, Roberto; Martinez-Torrecuadrada, Jorge L.; Henkemeyer, Mark; Poulos, Michael G.; Butler, Jason M.

    2016-01-01

    Hematopoietic stem and progenitor cells (HSPCs) reside in the bone marrow. Stress signals from cancer and other conditions promote HSPC mobilization into circulation and subsequent homing to tissue microenvironments. HSPC infiltration into tissue microenvironments can influence disease progression; notably, in cancer, HSPCs encourage tumor growth. Here we have uncovered a mutually exclusive distribution of EPHB4 receptors in bone marrow sinusoids and ephrin B2 ligands in hematopoietic cells. We determined that signaling interactions between EPHB4 and ephrin B2 control HSPC mobilization from the bone marrow. In mice, blockade of the EPHB4/ephrin B2 signaling pathway reduced mobilization of HSPCs and other myeloid cells to the circulation. EPHB4/ephrin B2 blockade also reduced HSPC infiltration into tumors as well as tumor progression in murine models of melanoma and mammary cancer. These results identify EPHB4/ephrin B2 signaling as critical to HSPC mobilization from bone marrow and provide a potential strategy for reducing cancer progression by targeting the bone marrow. PMID:27820703

  10. Mitochondria defects are involved in lead-acetate-induced adult hematopoietic stem cell decline.

    PubMed

    Liu, Jun; Jia, Dao-Yong; Cai, Shi-Zhong; Li, Cheng-Peng; Zhang, Meng-Si; Zhang, Yan-Yan; Yan, Chong-Huai; Wang, Ya-Ping

    2015-05-19

    Occupational high-grade lead exposure has been reduced in recent decades as a result of increased regulation. However, environmental lead exposure remains widespread, and is associated with severe toxicity implicated in human diseases. We performed oral intragastric administration of various dose lead acetate to adult Sprague Dawley rats to define the role of lead exposure in hematopoietic stem cells (HSCs) function, and to clarify its underlying mechanism. Lead acetate-exposed rats exhibited developmental abnormalities in myeloid and lymphoid lineages, and a significant decline in immune functions. It also showed HSCs functional decline associated with senescent phenotype with low grade lead acetate exposure or apoptotic phenotype with relative higher grade dose exposure. Mechanistic exploration showed a significant increase in reactive oxygen species (ROS) in the lead acetate-exposed CD90(+)CD45(-) compartment, which correlated with functional defects in cellular mitochondria. Furthermore, in vivo treatment with the antioxidant vitamin C led to reversion of the CD90(+)CD45(-) compartment functional decline. These results indicate that lead acetate perturbs the hematopoietic balance of adult HSCs, associated with cellular mitochondria defects, increased intracellular ROS generation.

  11. Incomplete Splicing, Cell Division Defects and Hematopoietic Blockage in dhx8 Mutant Zebrafish

    PubMed Central

    English, Milton A.; Lei, Lin; Blake, Trevor; Wincovitch, Stephen M.; Sood, Raman; Azuma, Mizuki; Hickstein, Dennis; Liu, P. Paul

    2012-01-01

    Vertebrate hematopoiesis is a complex developmental process that is controlled by genes in diverse pathways. To identify novel genes involved in early hematopoiesis, we conducted an ENU (N-ethyl-N-nitrosourea) mutagenesis screen in zebrafish. The mummy (mmy) line was investigated because of its multiple hematopoietic defects. Homozygous mmy embryos lacked circulating blood cells types and were dead by 30 hours post-fertilization (hpf). The mmy mutants did not express myeloid markers and had significantly decreased expression of progenitor and erythroid markers in primitive hematopoiesis. Through positional cloning, we identified a truncation mutation in dhx8 in the mmy fish. dhx8 is the zebrafish ortholog of the yeast splicing factor prp22, which is a DEAH-box RNA helicase. Mmy mutants had splicing defects in many genes, including several hematopoietic genes. Mmy embryos also showed cell division defects as characterized by disorganized mitotic spindles and formation of multiple spindle poles in mitotic cells. These cell division defects were confirmed by DHX8 knockdown in HeLa cells. Together, our results confirm that dhx8 is involved in mRNA splicing and suggest that it is also important for cell division during mitosis. This is the first vertebrate model for dhx8, whose function is essential for primitive hematopoiesis in developing embryos. PMID:22411201

  12. Pediatric donor cell leukemia after allogeneic hematopoietic stem cell transplantation in AML patient from related donor.

    PubMed

    Bobadilla-Morales, Lucina; Pimentel-Gutiérrez, Helia J; Gallegos-Castorena, Sergio; Paniagua-Padilla, Jenny A; Ortega-de-la-Torre, Citlalli; Sánchez-Zubieta, Fernando; Silva-Cruz, Rocio; Corona-Rivera, Jorge R; Zepeda-Moreno, Abraham; González-Ramella, Oscar; Corona-Rivera, Alfredo

    2015-01-01

    Here we present a male patient with acute myeloid leukemia (AML) initially diagnosed as M5 and with karyotype 46,XY. After induction therapy, he underwent a HLA-matched allogeneic hematopoietic stem cell transplantation, and six years later he relapsed as AML M1 with an abnormal karyotype //47,XX,+10[2]/47,XX,+11[3]/48,XX,+10,+11[2]/46,XX[13]. Based on this, we tested the possibility of donor cell origin by FISH and molecular STR analysis. We found no evidence of Y chromosome presence by FISH and STR analysis consistent with the success of the allogeneic hematopoietic stem cell transplantation from the female donor. FISH studies confirmed trisomies and no evidence of MLL translocation either p53 or ATM deletion. Additionally 28 fusion common leukemia transcripts were evaluated by multiplex reverse transcriptase-polymerase chain reaction assay and were not rearranged. STR analysis showed a complete donor chimerism. Thus, donor cell leukemia (DCL) was concluded, being essential the use of cytological and molecular approaches. Pediatric DCL is uncommon, our patient seems to be the sixth case and additionally it presented a late donor cell leukemia appearance. Different extrinsic and intrinsic mechanisms have been considered to explain this uncommon finding as well as the implications to the patient.

  13. Sensitivity of hematopoietic stem cells to mitochondrial dysfunction by SdhD gene deletion

    PubMed Central

    Bejarano-García, José Antonio; Millán-Uclés, África; Rosado, Iván V; Sánchez-Abarca, Luís Ignacio; Caballero-Velázquez, Teresa; Durán-Galván, María José; Pérez-Simón, José Antonio; Piruat, José I

    2016-01-01

    It is established that hematopoietic stem cells (HSC) in the hypoxic bone marrow have adapted their metabolism to oxygen-limiting conditions. This adaptation includes suppression of mitochondrial activity, induction of anerobic glycolysis, and activation of hypoxia-inducible transcription factor 1α (Hif1α)-dependent gene expression. During progression of hematopoiesis, a metabolic switch towards mitochondrial oxidative phosphorylation is observed, making this organelle essential for determining cell fate choice in bone marrow. However, given that HSC metabolism is essentially oxygen-independent, it is still unclear whether functional mitochondria are absolutely required for their survival. To assess the actual dependency of these undifferentiated cells on mitochondrial function, we have performed an analysis of the hematopoiesis in a mouse mutant, named SDHD-ESR, with inducible deletion of the mitochondrial protein-encoding SdhD gene. This gene encodes one of the subunits of the mitochondrial complex II (MCII). In this study, we demonstrate that, in contrast to what has been previously established, survival of HSC, and also myeloid and B-lymphoid progenitors, depends on proper mitochondrial activity. In addition, gene expression analysis of these hematopoietic lineages in SDHD-ESR mutants calls into question the proposed activation of Hif1α in response to MCII dysfunction. PMID:27929539

  14. Absence of WASp Enhances Hematopoietic and Megakaryocytic Differentiation in a Human Embryonic Stem Cell Model.

    PubMed

    Toscano, Miguel G; Muñoz, Pilar; Sánchez-Gilabert, Almudena; Cobo, Marién; Benabdellah, Karim; Anderson, Per; Ramos-Mejía, Verónica; Real, Pedro J; Neth, Olaf; Molinos-Quintana, Agueda; Gregory, Philip D; Holmes, Michael C; Martin, Francisco

    2016-02-01

    The Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency caused by mutations in the WAS gene and characterized by severe thrombocytopenia. Although the role of WASp in terminally differentiated lymphocytes and myeloid cells is well characterized, its role in early hematopoietic differentiation and in platelets (Plts) biology is poorly understood. In the present manuscript, we have used zinc finger nucleases targeted to the WAS locus for the development of two isogenic WAS knockout (WASKO) human embryonic stem cell lines (hESCs). Upon hematopoietic differentiation, hESCs-WASKO generated increased ratios of CD34(+)CD45(+) progenitors with altered responses to stem cell factor compared to hESCs-WT. When differentiated toward the megakaryocytic linage, hESCs-WASKO produced increased numbers of CD34(+)CD41(+) progenitors, megakaryocytes (MKs), and Plts. hESCs-WASKO-derived MKs and Plts showed altered phenotype as well as defective responses to agonist, mimicking WAS patients MKs and Plts defects. Interestingly, the defects were more evident in WASp-deficient MKs than in WASp-deficient Plts. Importantly, ectopic WAS expression using lentiviral vectors restored normal Plts development and MKs responses. These data validate the AND-1_WASKO cell lines as a human cellular model for basic research and for preclinical studies for WAS.

  15. Regulatory functions of TRAIL in hematopoietic progenitors: human umbilical cord blood and murine bone marrow transplantation.

    PubMed

    Mizrahi, K; Stein, J; Pearl-Yafe, M; Kaplan, O; Yaniv, I; Askenasy, N

    2010-07-01

    The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling pathway has selective toxicity to malignant cells. The TRAIL receptors DR4 and DR5 are expressed at low levels in human umbilical cord blood cells (3-15%) and are upregulated by incubation with the cognate ligand, triggering apoptosis in 70-80% of receptor-positive cells (P<0.001). Apoptosis is not induced in hematopoietic progenitors, as determined from sustained severe combined immunodeficiency reconstituting potential and clonogenic activity. Furthermore, elimination of dead cells after incubation with TRAIL for 72 h results in a threefold enrichment in myeloid progenitors. Exposure to TRAIL in semisolid cultures showed synergistic activity of DR4 and granulocyte/macrophage colony-stimulating factor in recruiting lineage-negative (lin(-)) and CD34(+) progenitors and in promoting the formation of large colonies. In murine bone marrow, approximately 30% of lin(-) cells express TRAIL-R2 (the only murine receptor), and the receptor is upregulated after transplantation in cycling and differentiating donor cells that home to the host marrow. However, this receptor is almost ubiquitously expressed in the most primitive (lin(-)SCA-1(+)c-kit(+)) progenitors, and stimulates the clonogenic activity of lin(-) cells (P<0.001), suggesting a tropic function after transplantation. It is concluded that TRAIL does not trigger apoptosis in hematopoietic progenitors, and upregulation of its cognate receptors under stress conditions mediates tropic signaling that supports recovery from hypoplasia.

  16. Selective Enhancement of Donor Hematopoietic Cell Engraftment by the CXCR4 Antagonist AMD3100 in a Mouse Transplantation Model

    PubMed Central

    Kang, Yubin; Chen, Benny J.; DeOliveira, Divino; Mito, Jeffrey; Chao, Nelson J.

    2010-01-01

    The interaction between stromal cell-derived factor-1 (SDF-1) with CXCR4 chemokine receptors plays an important role in hematopoiesis following hematopoietic stem cell transplantation. We examined the efficacy of post transplant administration of a specific CXCR4 antagonist (AMD3100) in improving animal survival and in enhancing donor hematopoietic cell engraftment using a congeneic mouse transplantation model. AMD3100 was administered subcutaneously at 5 mg/kg body weight 3 times a week beginning at day +2 post-transplant. Post-transplant administration of AMD3100 significantly improves animal survival. AMD3100 reduces pro-inflammatory cytokine/chemokine production. Furthermore, post transplant administration of AMD3100 selectively enhances donor cell engraftment and promotes recovery of all donor cell lineages (myeloid cells, T and B lymphocytes, erythrocytes and platelets). This enhancement results from a combined effect of increased marrow niche availability and greater cell division induced by AMD3100. Our studies shed new lights into the biological roles of SDF-1/CXCR4 interaction in hematopoietic stem cell engraftment following transplantation and in transplant-related mortality. Our results indicate that AMD3100 provides a novel approach for enhancing hematological recovery following transplantation, and will likely benefit patients undergoing transplantation. PMID:20596257

  17. Global gene expression analyses of hematopoietic stem cell-like cell lines with inducible Lhx2 expression

    PubMed Central

    Richter, Karin; Wirta, Valtteri; Dahl, Lina; Bruce, Sara; Lundeberg, Joakim; Carlsson, Leif; Williams, Cecilia

    2006-01-01

    Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC)-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox). These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin. PMID:16600034

  18. Zebrafish embryonic stromal trunk (ZEST) cells support hematopoietic stem and progenitor cell (HSPC) proliferation, survival, and differentiation.

    PubMed

    Campbell, Clyde; Su, Tammy; Lau, Ryan P; Shah, Arpit; Laurie, Payton C; Avalos, Brenda; Aggio, Julian; Harris, Elena; Traver, David; Stachura, David L

    2015-12-01

    Forward genetic screens in zebrafish have been used to identify genes essential for the generation of primitive blood and the emergence of hematopoietic stem cells (HSCs), but have not elucidated the genes essential for hematopoietic stem and progenitor cell (HSPC) proliferation and differentiation because of the lack of methodologies to functionally assess these processes. We previously described techniques used to test the developmental potential of HSPCs by culturing them on zebrafish kidney stromal (ZKS) cells, derived from the main site of hematopoiesis in the adult teleost. Here we describe an additional primary stromal cell line we refer to as zebrafish embryonic stromal trunk (ZEST) cells, derived from tissue surrounding the embryonic dorsal aorta, the site of HSC emergence in developing fish. ZEST cells encouraged HSPC differentiation toward the myeloid, lymphoid, and erythroid pathways when assessed by morphologic and quantitative reverse transcription polymerase chain reaction analyses. Additionally, ZEST cells significantly expanded the number of cultured HSPCs in vitro, indicating that these stromal cells are supportive of both HSPC proliferation and multilineage differentiation. Examination of ZEST cells indicates that they express numerous cytokines and Notch ligands and possess endothelial characteristics. Further characterization of ZEST cells should prove to be invaluable in understanding the complex signaling cascades instigated by the embryonic hematopoietic niche required to expand and differentiate HSPCs. Elucidating these processes and identifying possibilities for the modulation of these molecular pathways should allow the in vitro expansion of HSPCs for a multitude of therapeutic uses.

  19. Human and Murine Hematopoietic Stem Cell Aging Is Associated with Functional Impairments and Intrinsic Megakaryocytic/Erythroid Bias

    PubMed Central

    Rundberg Nilsson, Alexandra; Soneji, Shamit; Adolfsson, Sofia; Bryder, David; Pronk, Cornelis Jan

    2016-01-01

    Aging within the human hematopoietic system associates with various deficiencies and disease states, including anemia, myeloid neoplasms and reduced adaptive immune responses. Similar phenotypes are observed in mice and have been linked to alterations arising at the hematopoietic stem cell (HSC) level. Such an association is, however, less established in human hematopoiesis and prompted us here to detail characteristics of the most primitive human hematopoietic compartments throughout ontogeny. In addition, we also attempted to interrogate similarities between aging human and murine hematopoiesis. Coupled to the transition from human cord blood (CB) to young and aged bone marrow (BM), we observed a gradual increase in frequency of candidate HSCs. This was accompanied by functional impairments, including decreased lymphoid output and reduced proliferative potential. Downstream of human HSCs, we observed decreasing levels of common lymphoid progenitors (CLPs), and increasing frequencies of megakaryocyte/erythrocyte progenitors (MEPs) with age, which could be linked to changes in lineage-affiliated gene expression patterns in aged human HSCs. These findings were paralleled in mice. Therefore, our data support the notion that age-related changes also in human hematopoiesis involve the HSC pool, with a prominent skewing towards the megakaryocytic/erythroid lineages, and suggests conserved mechanisms underlying aging of the blood cell system. PMID:27368054

  20. Impaired hematopoietic differentiation of RUNX1-mutated induced pluripotent stem cells derived from FPD/AML patients.

    PubMed

    Sakurai, M; Kunimoto, H; Watanabe, N; Fukuchi, Y; Yuasa, S; Yamazaki, S; Nishimura, T; Sadahira, K; Fukuda, K; Okano, H; Nakauchi, H; Morita, Y; Matsumura, I; Kudo, K; Ito, E; Ebihara, Y; Tsuji, K; Harada, Y; Harada, H; Okamoto, S; Nakajima, H

    2014-12-01

    Somatic mutation of RUNX1 is implicated in various hematological malignancies, including myelodysplastic syndrome and acute myeloid leukemia (AML), and previous studies using mouse models disclosed its critical roles in hematopoiesis. However, the role of RUNX1 in human hematopoiesis has never been tested in experimental settings. Familial platelet disorder (FPD)/AML is an autosomal dominant disorder caused by germline mutation of RUNX1, marked by thrombocytopenia and propensity to acute leukemia. To investigate the physiological function of RUNX1 in human hematopoiesis and pathophysiology of FPD/AML, we derived induced pluripotent stem cells (iPSCs) from three distinct FPD/AML pedigrees (FPD-iPSCs) and examined their defects in hematopoietic differentiation. By in vitro differentiation assays, FPD-iPSCs were clearly defective in the emergence of hematopoietic progenitors and differentiation of megakaryocytes, and overexpression of wild-type (WT)-RUNX1 reversed most of these phenotypes. We further demonstrated that overexpression of mutant-RUNX1 in WT-iPSCs did not recapitulate the phenotype of FPD-iPSCs, showing that the mutations were of loss-of-function type. Taken together, this study demonstrated that haploinsufficient RUNX1 allele imposed cell-intrinsic defects on hematopoietic differentiation in human experimental settings and revealed differential impacts of RUNX1 dosage on human and murine megakaryopoiesis. FPD-iPSCs will be a useful tool to investigate mutant RUNX1-mediated molecular processes in hematopoiesis and leukemogenesis.

  1. AR-42 and Decitabine in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-01-19

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  2. Progenitor cell hyperplasia with rare development of myeloid leukemia in interleukin 11 bone marrow chimeras

    PubMed Central

    1993-01-01

    Post 5-fluorouracil-treated murine bone marrow cells infected with a recombinant retrovirus (murine stem cell virus-interleukin 11 [MSCV-IL- 11]) bearing a human IL-11 gene were transplanted into lethally irradiated syngeneic mice. Analysis of proviral integration sites in DNA prepared from hematopoietic tissues and purified cell populations of long-term reconstituted primary and secondary recipients demonstrated polyclonal engraftment by multipotential stem cells. High levels (100-1,500 U/ml) of IL-11 were detected in the plasma of the MSCV-IL-11 mice. Systemic effects of chronic IL-11 exposure included loss of body fat, thymus atrophy, some alterations in plasma protein levels, frequent inflammation of the eyelids, and often a hyperactive state. A sustained rise in peripheral platelet levels (approximately 1.5-fold) was seen throughout the observation period (4-17 wk). No changes were observed in the total number of circulating leukocytes in the majority of the transplanted animals (including 10 primary and 18 secondary recipients) despite a > 20-fold elevation in myeloid progenitor cell content in the spleen. The exceptions were members of one transplant pedigree which presented with myeloid leukemia during the secondary transplant phase. A clonal origin of the disease was determined, with significant expansion of the MSCV-IL-11-marked clone having occurred in the spleen of the primary host. Culturing of leukemic spleen cells from a quaternary recipient led to the establishment of a permanent cell line (denoted PGMD1). IL-11-producing PGMD1 myeloid leukemic cells are dependent on IL-3 for continuous growth in vitro and they differentiate into granulocytes and macrophages in response to granulocyte/macrophage colony-stimulating factor. The inability of autogenously produced IL-11 to support autonomous growth of PGMD1 cells argues against a mechanism of transformation involving a classical autocrine loop. PMID:8104229

  3. Loss of sex chromosomes in the hematopoietic disorders: Questions, concerns and data interpretation

    SciTech Connect

    Slovak, M.L.

    1994-09-01

    The significance of sex chromosome aberrations in the hematopoietic disorders has not yet been defined. Interpretive problems stem from (1) the loss of a sex chromosome associated with aging, (2) sex chromosome loss as the sole aberration in leukemia is rare, (3) random -(X or Y) is observed frequently in bone marrow samples, and (4) constitutional sex chromosome anomalies must be ruled out in cancer and follow-up may not be possible. The COH database identified 41 patients (pts) with sex chromosome loss. Loss of a sex chromosome was common in myeloid disorders (21/41). In t(8;21) leukemia (n=10), -(X or Y) was a common secondary karyotypic change. Additionally, -Y was associated with clonal evolution in 2 Ph + CML pts. In 2 elderly pts with myeloid disorders, -(X or Y) was observed in complex karyotypes with dmins; however, in the lymphoproliferative disorders -(X or Y) was noted in elderly pts without apparent pathogenetic significance. Three pts had constitutional sex chromosome aberrations: CML in 45,X; ALL in 47, XXY; and RAEB-IT in mos45,X/46,XX. In the mos45,X/46,XX pt, the leukemic clone was associated with the 45,X line without other karyotypic changes. Non-clonal aberrations were observed in 11 cases; in 3 cases these non-clonal losses were observed in serial samples. In a sex-mismatched BMT case, -(X or Y) in 4 cells was one of the first pathogenetic signs of leukemia relapse. These data suggest (1) interpretation of sex chromosome loss in leukemia must be made with caution and after a baseline sample, (2) non-clonal aberrations should be recorded, and (3) -(X or Y) appears to have pathogenetic significance in the myeloid disorders. Multi-institutional studies are needed to define (1) the incidence of leukemia in pts with constitutional sex chromosome anomalies and (2) the incidence and significance of sex chromosome aberrations as the primary (sole) cytogenetic aberration in leukemia.

  4. Ionizing radiation and hematopoietic malignancies

    PubMed Central

    Fleenor, Courtney J; Marusyk, Andriy

    2010-01-01

    Somatic evolution, which underlies tumor progression, is driven by two essential components: (1) diversification of phenotypes through heritable mutations and epigenetic changes and (2) selection for mutant clones which possess higher fitness. Exposure to ionizing radiation (IR) is highly associated with increased risk of carcinogenesis. This link is traditionally attributed to causation of oncogenic mutations through the mutagenic effects of irradiation. On the other hand, potential effects of irradiation on altering fitness and increasing selection for mutant clones are frequently ignored. Recent studies bring the effects of irradiation on fitness and selection into focus, demonstrating that IR exposure results in stable reductions in the fitness of hematopoietic stem and progenitor cell populations. These reductions of fitness are associated with alteration of the adaptive landscape, increasing the selective advantages conferred by certain oncogenic mutations. Therefore, the link between irradiation and carcinogenesis might be more complex than traditionally appreciated: while mutagenic effects of irradiation should increase the probability of occurrence of oncogenic mutations, IR can also work as a tumor promoter, increasing the selective expansion of clones bearing mutations which become advantageous in the irradiation-altered environment, such as activated mutations in Notch1 or disrupting mutations in p53. PMID:20676038

  5. Targeting mitochondrial RNA polymerase in acute myeloid leukemia

    PubMed Central

    Bralha, Fernando N.; Liyanage, Sanduni U.; Hurren, Rose; Wang, Xiaoming; Son, Meong Hi; Fung, Thomas A.; Chingcuanco, Francine B.; Tung, Aveline Y. W.; Andreazza, Ana C.; Psarianos, Pamela; Schimmer, Aaron D.; Salmena, Leonardo; Laposa, Rebecca R.

    2015-01-01

    Acute myeloid leukemia (AML) cells have high oxidative phosphorylation and mitochondrial mass and low respiratory chain spare reserve capacity. We reasoned that targeting the mitochondrial RNA polymerase (POLRMT), which indirectly controls oxidative phosphorylation, represents a therapeutic strategy for AML. POLRMT-knockdown OCI-AML2 cells exhibited decreased mitochondrial gene expression, decreased levels of assembled complex I, decreased levels of mitochondrially-encoded Cox-II and decreased oxidative phosphorylation. POLRMT-knockdown cells exhibited an increase in complex II of the electron transport chain, a complex comprised entirely of subunits encoded by nuclear genes, and POLRMT-knockdown cells were resistant to a complex II inhibitor theonyltrifluoroacetone. POLRMT-knockdown cells showed a prominent increase in cell death. Treatment of OCI-AML2 cells with 10-50 μM 2-C-methyladenosine (2-CM), a chain terminator of mitochondrial transcription, reduced mitochondrial gene expression and oxidative phosphorylation, and increased cell death in a concentration-dependent manner. Treatment of normal human hematopoietic cells with 2-CM at concentrations of up to 100 μMdid not alter clonogenic growth, suggesting a therapeutic window. In an OCI-AML2 xenograft model, treatment with 2-CM (70 mg/kg, i.p., daily) decreased the volume and mass of tumours to half that of vehicle controls. 2-CM did not cause toxicity to major organs. Overall, our results in a preclinical model contribute to the functional validation of the utility of targeting the mitochondrial RNA polymerase as a therapeutic strategy for AML. PMID:26484416

  6. Hypoxia and Metabolic Properties of Hematopoietic Stem Cells

    PubMed Central

    2014-01-01

    Abstract Significance: The effect of redox signaling on hematopoietic stem cell (HSC) function is not clearly understood. Recent Advances: A growing body of evidence suggests that adult HSCs reside in the hypoxic bone marrow microenvironment or niche during homeostasis. It was recently shown that primitive HSCs in the bone marrow prefer to utilize anaerobic glycolysis to meet their energy demands and have lower rates of oxygen consumption and lower ATP levels. Hypoxia-inducible factor-α (Hif-1α) is a master regulator of cellular metabolism. With hundreds of downstream target genes and crosstalk with other signaling pathways, it regulates various aspects of metabolism from the oxidative stress response to glycolysis and mitochondrial respiration. Hif-1α is highly expressed in HSCs, where it regulates their function and metabolic phenotype. However, the regulation of Hif-1α in HSCs is not entirely understood. The homeobox transcription factor myeloid ecotropic viral integration site 1 (Meis1) is expressed in the most primitive HSCs populations, and it is required for primitive hematopoiesis. Recent reports suggest that Meis1 is required for normal adult HSC function by regulating the metabolism and redox state of HSCs transcriptionally through Hif-1α and Hif-2α. Critical Issues: Given the profound effect of redox status on HSC function, it is critical to fully characterize the intrinsic, and microenvironment-related mechanisms of metabolic and redox regulation in HSCs. Future Directions: Future studies will be needed to elucidate the link between HSC metabolism and HSC fates, including quiescence, self-renewal, differentiation, apoptosis, and migration. Antioxid. Redox Signal. 20, 1891–1901. PMID:23621582

  7. Tet2 facilitates the de-repression of myeloid target genes during C/EBPa induced transdifferentiation of pre-B cells

    PubMed Central

    Kallin, Eric M.; Rodríguez-Ubreva, Javier; Christensen, J esper; Cimmino, Luisa; Aifantis, Iannis; Helin, Kristian; Ballestar, Esteban; Graf, Thomas

    2013-01-01

    SUMMARY The methylcytosine hydroxylase Tet2 has been implicated in hematopoietic differentiation and the formation of myeloid malignancies when mutated. An ideal system to study the role of Tet2 in myelopoeisis is C/EBPa induced transdifferentiation of pre-B cells into macrophages. Here we found that C/EBPa binds to upstream regions of Tet2 and that the gene becomes activated. Tet2 knockdowns impaired the upregulation of macrophage markers as well as phagocytic capacity, suggesting that the enzyme is required for both early and late stage myeloid differentiation. A slightly weaker effect was seen in primary cells with a Tet2 ablation. Expression arrays of transdifferentiating cells with Tet2 knockdowns permitted the identification of a small subset of myeloid genes whose upregulation was blunted. Activation of these target genes was accompanied by rapid increases of promoter hydroxy-methylation. Our observations indicate that Tet2 helps C/EBPa rapidly de-repress myeloid genes during the conversion of pre-B cells into macrophages. PMID:22981865

  8. The EM Earthquake Precursor

    NASA Astrophysics Data System (ADS)

    Jones, K. B., II; Saxton, P. T.

    2013-12-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After the 1989 Loma Prieta Earthquake, American earthquake investigators predetermined magnetometer use and a minimum earthquake magnitude necessary for EM detection. This action was set in motion, due to the extensive damage incurred and public outrage concerning earthquake forecasting; however, the magnetometers employed, grounded or buried, are completely subject to static and electric fields and have yet to correlate to an identifiable precursor. Secondly, there is neither a networked array for finding any epicentral locations, nor have there been any attempts to find even one. This methodology needs dismissal, because it is overly complicated, subject to continuous change, and provides no response time. As for the minimum magnitude threshold, which was set at M5, this is simply higher than what modern technological advances have gained. Detection can now be achieved at approximately M1, which greatly improves forecasting chances. A propagating precursor has now been detected in both the field and laboratory. Field antenna testing conducted outside the NE Texas town of Timpson in February, 2013, detected three strong EM sources along with numerous weaker signals. The antenna had mobility, and observations were noted for recurrence, duration, and frequency response. Next, two

  9. Deletion of Pten in CD45-expressing cells leads to development of T-cell lymphoblastic lymphoma but not myeloid malignancies

    PubMed Central

    Mirantes, Cristina; Dosil, Maria Alba; Hills, David; Yang, Jian; Eritja, Núria; Santacana, Maria; Gatius, Sònia; Vilardell, Felip; Medvinsky, Alexander; Matias-Guiu, Xavier

    2016-01-01

    Since its discovery in the late 1990s, Pten has turned out to be one of the most important tumor suppressor genes. Pten loss results in increased activation of the phosphatidylinositol 3-kinase/Akt signaling pathway, which is associated with increased proliferation, survival, and neoplastic growth. Here, we have addressed the effects of conditional deletion of Pten in hematopoietic cells by crossing Pten conditional knockout mice with a knock-in mouse expressing the Cre recombinase in the CD45 locus. CD45 is also known as leukocyte common antigen, and it is expressed in virtually all white cells and in hematopoietic stem cells. Using a reporter mouse, we demonstrate that CD45:Cre mouse displays recombinase activity in both myeloid and lymphoid cells. However, deletion of Pten in CD45-expressing cells induces development of T-cell acute lymphoblastic leukemia and lymphoma, but not other hematologic malignancies. PMID:26773036

  10. Myeloid Sarcoma in an Eyelid That Developed during Chemotherapy for Acute Myeloid Leukemia

    PubMed Central

    Kang, Hyera; Takahashi, Yasuhiro; Takahashi, Emiko; Kakizaki, Hirohiko

    2016-01-01

    An 80-year-old female presented with a mass in the left upper eyelid margin that had developed during chemotherapy for acute myeloid leukemia. The mass was elastic, hard, and pinkish, with a relatively smooth surface but without madarosis. The histopathological findings corresponded to a myeloid sarcoma. No blast cells were shown in the peripheral blood at the time of biopsy, and she subsequently underwent an azacitidine injection regimen. The size of the eyelid tumor decreased 3 months after the biopsy, when the course of azacitidine injections was completed. However, acute myeloid leukemia recurred, and the patient died PMID:26889156

  11. Oral squamous cell carcinoma arising in a patient after hematopoietic stem cell transplantation with bisphosphonate-related osteonecrosis of the jaws.

    PubMed

    Arduino, Paolo G; Scully, Crispian; Chiusa, Luigi; Broccoletti, Roberto

    2015-01-01

    A 55-year-old man with a history of acute myeloid leukaemia treated with hematopoietic stem cell transplantation and with a 5-year history of bisphosphonate-related osteonecrosis of the jaws, following 12 cycles of intravenous zoledronic acid therapy, presented in December 2009 with a history of increasingly severe unilateral lower jaw pain. Oral examination revealed, as previously, exposed bone in the left mandible, but also a new exophytic mass on the lower-left buccal mucosa. Biopsy confirmed a diagnosis of oral squamous cell carcinoma. To the best of our knowledge, this is the first report of an oral squamous cell carcinoma that appeared adjacent to an area of osteochemonecrosis.

  12. The analysis of novel distal Cebpa enhancers and silencers using a transcriptional model reveals the complex regulatory logic of hematopoietic lineage specification.

    PubMed

    Bertolino, Eric; Reinitz, John; Manu

    2016-05-01

    C/EBPα plays an instructive role in the macrophage-neutrophil cell-fate decision and its expression is necessary for neutrophil development. How Cebpa itself is regulated in the myeloid lineage is not known. We decoded the cis-regulatory logic of Cebpa, and two other myeloid transcription factors, Egr1 and Egr2, using a combined experimental-computational approach. With a reporter design capable of detecting both distal enhancers and silencers, we analyzed 46 putative cis-regulatory modules (CRMs) in cells representing myeloid progenitors, and derived early macrophages or neutrophils. In addition to novel enhancers, this analysis revealed a surprisingly large number of silencers. We determined the regulatory roles of 15 potential transcriptional regulators by testing 32,768 alternative sequence-based transcriptional models against CRM activity data. This comprehensive analysis allowed us to infer the cis-regulatory logic for most of the CRMs. Silencer-mediated repression of Cebpa was found to be effected mainly by TFs expressed in non-myeloid lineages, highlighting a previously unappreciated contribution of long-distance silencing to hematopoietic lineage resolution. The repression of Cebpa by multiple factors expressed in alternative lineages suggests that hematopoietic genes are organized into densely interconnected repressive networks instead of hierarchies of mutually repressive pairs of pivotal TFs. More generally, our results demonstrate that de novo cis-regulatory dissection is feasible on a large scale with the aid of transcriptional modeling. Current address: Department of Biology, University of North Dakota, 10 Cornell Street, Stop 9019, Grand Forks, ND 58202-9019, USA.

  13. Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer

    PubMed Central

    Sawant, Anandi; Deshane, Jessy; Jules, Joel; Lee, Carnella M.; Harris, Brittney A.; Feng, Xu; Ponnazhagan, Selvarangan

    2012-01-01

    Enhanced bone destruction is a hallmark of various carcinomas such as breast cancer, where osteolytic bone metastasis is associated with increased morbidity and mortality. Immune cells contribute to osteolysis in cancer growth but the factors contributing to aggressive bone destruction are not well understood. In this study, we demonstrate the importance of myeloid-derived suppressor cells (MDSC) in this process at bone metastatic sites. Since MDSC originate from the same myeloid lineage as macrophages, which are osteoclast precursors, we hypothesized that MDSC may undergo osteoclast differentiation and contribute to enhanced bone destruction and tumor growth. Using an immunocompetent mouse model of breast cancer bone metastasis, we confirmed that MDSC isolated from the tumor-bone microenvironment differentiated into functional osteoclasts both in vitro and in vivo. Mechanistic investigations revealed that nitric oxide signaling was critical for differentiation of MDSC into osteoclasts. Remarkably, osteoclast differentiation did not occur in MDSC isolated from control or tumor-bearing mice that lacked bone metastasis, signifying the essential cross-talk between tumor cells and myeloid progenitors in the bone microenvironment as a requirement for osteoclast differentiation of MDSC. Overall, our results identify a wholly new facet to the multifunctionality of MDSC in driving tumor progression, in this case as a novel osteoclast progenitor that specifically drives bone metastasis during cancer progression. PMID:23243021

  14. CTCF depletion alters chromatin structure and transcription of myeloid-specific factors.

    PubMed

    Ouboussad, Lylia; Kreuz, Sarah; Lefevre, Pascal F

    2013-10-01

    Differentiation is a multistep process tightly regulated and controlled by complex transcription factor networks. Here, we show that the rate of differentiation of common myeloid precursor cells increases after depletion of CTCF, a protein emerging as a potential key factor regulating higher-order chromatin structure. We identified CTCF binding in the vicinity of important transcription factors regulating myeloid differentiation and showed that CTCF depletion impacts on the expression of these genes in concordance with the observed acceleration of the myeloid commitment. Furthermore, we observed a loss of the histone variant H2A.Z within the selected promoter regions and an increase in non-coding RNA transcription upstream of these genes. Both abnormalities suggest a global chromatin structure destabilization and an associated increase of non-productive transcription in response to CTCF depletion but do not drive the CTCF-mediated transcription alterations of the neighbouring genes. Finally, we detected a transient eviction of CTCF at the Egr1 locus in correlation with Egr1 peak of expression in response to lipopolysaccharide (LPS) treatment in macrophages. This eviction is also correlated with the expression of an antisense non-coding RNA transcribing through the CTCF-binding region indicating that non-coding RNA transcription could be the cause and the consequence of CTCF eviction.

  15. Myeloid-derived suppressor cells in inflammation: uncovering cell subsets with enhanced immunosuppressive functions.

    PubMed

    Bronte, Vincenzo

    2009-10-01

    Although originally described in tumor-bearing hosts, myeloid-derived suppressor cells (MDSC) have been detected under numerous pathological situations that cause enhanced demand of myeloid cells. Thus, MDSC might be part of a conserved response to different endogenous and exogenous stress signals, including inflammation. Two processes are fundamental for MDSC biology: differentiation from myeloid progenitors and full activation of their immune regulatory program by factors released from activated T cells or present in the microenvironment conditioned by either tumor growth or inflammation. How these two processes are controlled and linked is still an open question. In this issue of the European Journal of Immunology, a paper demonstrates that a combination of the known inflammatory molecules, IFN-gamma and LPS, sustains MDSC expansion and activation while suppressing differentiation of DC from bone marrow precursors. Moreover, this paper contributes to defining the cell subsets that possess immunoregulatory properties within the broad population of CD11b(+)Gr-1(+) cells, often altogether referred to as MDSC.

  16. CPI-613, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-12-23

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia

  17. Decitabine With or Without Bortezomib in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-08-30

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  18. Lenalidomide and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-03-28

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia

  19. Clofarabine, Cytarabine, and G-CSF in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-05-05

    Acute Myeloid Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  20. Romidepsin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-12-03

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  1. Clofarabine and Cytarabine in Treating Patients With Acute Myeloid Leukemia With Minimal Residual Disease

    ClinicalTrials.gov

    2013-05-07

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia

  2. Vaccine Therapy and Basiliximab in Treating Patients With Acute Myeloid Leukemia in Complete Remission

    ClinicalTrials.gov

    2017-01-03

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)

  3. Acute Myeloid Leukemia: A Concise Review

    PubMed Central

    Saultz, Jennifer N.; Garzon, Ramiro

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous clonal disorder characterized by immature myeloid cell proliferation and bone marrow failure. Cytogenetics and mutation testing remain a critical prognostic tool for post induction treatment. Despite rapid advances in the field including new drug targets and increased understanding of the biology, AML treatment remains unchanged for the past three decades with the majority of patients eventually relapsing and dying of the disease. Allogenic transplant remains the best chance for cure for patients with intermediate or high risk disease. In this review, we discuss the landmark genetic studies that have improved outcome prediction and novel therapies. PMID:26959069

  4. Epigenetic control of myeloid cell differentiation, identity and function.

    PubMed

    Álvarez-Errico, Damiana; Vento-Tormo, Roser; Sieweke, Michael; Ballestar, Esteban

    2015-01-01

    Myeloid cells are crucial effectors of the innate immune response and important regulators of adaptive immunity. The differentiation and activation of myeloid cells requires the timely regulation of gene expression; this depends on the interplay of a variety of elements, including transcription factors and epigenetic mechanisms. Epigenetic control involves histone modifications and DNA methylation, and is coupled to lineage-specifying transcription factors, upstream signalling pathways and external factors released in the bone marrow, blood and tissue environments. In this Review, we highlight key epigenetic events controlling myeloid cell biology, focusing on those related to myeloid cell differentiation, the acquisition of myeloid identity and innate immune memory.

  5. A rare case of myeloid sarcoma presenting as anal fissure

    PubMed Central

    VECCHIO, R.; INTAGLIATA, E.; FIUMARA, P.F.; VILLARI, L.; MARCHESE, S.; CACCIOLA, E.

    2015-01-01

    Myeloid sarcoma is a tumor composed of myeloblasts occurring at an extramedullary site. It may develop in patients with acute myeloid leukemia, myeloproliferative or myelodysplastic syndrome, sometimes preceding onset of the systemic disease. Frequent sites of myeloid sarcoma are bones or various soft tissues. Gastrointestinal involvement is very rare. We report a unique case of myeloid sarcoma presenting as a painful anal fissure, in a patient with a history of acute myeloid leukemia. The diagnosis was achieved by a surgical excisional biopsy and immunoistochemical staining. PMID:26712260

  6. Frozen Cord Blood Hematopoietic Stem Cells Differentiate into Higher Numbers of Functional Natural Killer Cells In Vitro than Mobilized Hematopoietic Stem Cells or Freshly Isolated Cord Blood Hematopoietic Stem Cells

    PubMed Central

    Luevano, Martha; Domogala, Anna; Blundell, Michael; Jackson, Nicola; Pedroza-Pacheco, Isabela; Derniame, Sophie; Escobedo-Cousin, Michelle; Querol, Sergio; Thrasher, Adrian; Madrigal, Alejandro; Saudemont, Aurore

    2014-01-01

    Adoptive natural killer (NK) cell therapy relies on the acquisition of large numbers of NK cells that are cytotoxic but not exhausted. NK cell differentiation from hematopoietic stem cells (HSC) has become an alluring option for NK cell therapy, with umbilical cord blood (UCB) and mobilized peripheral blood (PBCD34+) being the most accessible HSC sources as collection procedures are less invasive. In this study we compared the capacity of frozen or freshly isolated UCB hematopoietic stem cells (CBCD34+) and frozen PBCD34+ to generate NK cells in vitro. By modifying a previously published protocol, we showed that frozen CBCD34+ cultures generated higher NK cell numbers without loss of function compared to fresh CBCD34+ cultures. NK cells generated from CBCD34+ and PBCD34+ expressed low levels of killer-cell immunoglobulin-like receptors but high levels of activating receptors and of the myeloid marker CD33. However, blocking studies showed that CD33 expression did not impact on the functions of the generated cells. CBCD34+-NK cells exhibited increased capacity to secrete IFN-γ and kill K562 in vitro and in vivo as compared to PBCD34+-NK cells. Moreover, K562 killing by the generated NK cells could be further enhanced by IL-12 stimulation. Our data indicate that the use of frozen CBCD34+ for the production of NK cells in vitro results in higher cell numbers than PBCD34+, without jeopardizing their functionality, rendering them suitable for NK cell immunotherapy. The results presented here provide an optimal strategy to generate NK cells in vitro for immunotherapy that exhibit enhanced effector function when compared to alternate sources of HSC. PMID:24489840

  7. [Hematopoietic stem cell transplantation in autoimmune diseases].

    PubMed

    Albarracín, Flavio; López Meiller, María José; Naswetter, Gustavo; Longoni, Héctor

    2008-01-01

    Transplantation of hematopoietic stem cells, which are capable of self renewal and reconstitution of all types of blood cells, can be a treatment for numerous potential lethal diseases, including leukemias and lymphomas. It may now be applicable for the treatment of severe autoimmune diseases, such as therapy-resistant multiple sclerosis, lupus and systemic sclerosis. Studies in animal models show that the transfer of hematopoietic stem cells can reverse autoimmunity. The outcome of ongoing clinical trials, as well as of studies in patients and animal models, will help to determine the role that stem-cell transplantation can play in the treatment of autoimmune diseases.

  8. Lenalidomide in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-07-25

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  9. Contrasting Roles for C/EBPα and Notch in Irradiation-Induced Multipotent Hematopoietic Progenitor Cell Defects

    PubMed Central

    Fleenor, Courtney Jo; Rozhok, Andrii Ivan; Zaberezhnyy, Vadym; Mathew, Divij; Kim, Jihye; Tan, Aik-Choon; Bernstein, Irwin David; DeGregori, James

    2014-01-01

    Ionizing radiation (IR) is associated with reduced hematopoietic function and increased risk of hematopoietic malignancies, although the mechanisms behind these relationships remain poorly understood. Both effects of IR have been commonly attributed to the direct induction of DNA mutations, but evidence supporting these hypotheses is largely lacking. Here we demonstrate that IR causes long-term, somatically heritable, cell-intrinsic reductions in hematopoietic stem cell (HSC) and multipotent hematopoietic progenitor cell (mHPC) self-renewal that are mediated by C/EBPα and reversed by Notch. mHPC from previously irradiated (>9 weeks prior), homeostatically restored mice exhibit gene expression profiles consistent with their precocious differentiation phenotype, including decreased expression of HSC-specific genes and increased expression of myeloid program genes (including C/EBPα). These gene expression changes are reversed by ligand-mediated activation of Notch. Loss of C/EBPα expression is selected for within previously irradiated HSC and mHPC pools, and is associated with reversal of IR-dependent precocious differentiation and restoration of self-renewal. Remarkably, restoration of mHPC self-renewal by ligand-mediated activation of Notch prevents selection for C/EBPα loss of function in previously irradiated mHPC pools. We propose that environmental insults prompt HSC to initiate a program limiting their self-renewal, leading to loss of the damaged HSC from the pool while allowing this HSC to temporarily contribute to differentiated cell pools. This “programmed mediocrity” is advantageous for the sporadic genotoxic insults animals have evolved to deal with, but becomes tumor promoting when the entire HSC compartment is damaged, such as during total body irradiation, by increasing selective pressure for adaptive oncogenic mutations. PMID:25546133

  10. Azacitidine, Mitoxantrone Hydrochloride, and Etoposide in Treating Older Patients With Poor-Prognosis Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-08-18

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  11. Calcineurin/NFAT signalling inhibits myeloid haematopoiesis

    PubMed Central

    Fric, Jan; Lim, Clarice X F; Koh, Esther G L; Hofmann, Benjamin; Chen, Jinmiao; Tay, Hock Soon; Isa, Siti Aminah Bte Mohammad; Mortellaro, Alessandra; Ruedl, Christiane; Ricciardi-Castagnoli, Paola

    2012-01-01

    Nuclear factor of activated T cells (NFAT) comprises a family of transcription factors that regulate T cell development, activation and differentiation. NFAT signalling can also mediate granulocyte and dendritic cell (DC) activation, but it is unknown whether NFAT influences their development from progenitors. Here, we report a novel role for calcineurin/NFAT signalling as a negative regulator of myeloid haematopoiesis. Reconstituting lethally irradiated mice with haematopoietic stem cells expressing an NFAT-inhibitory peptide resulted in enhanced development of the myeloid compartment. Culturing bone marrow cells in media supplemented with Flt3-L in the presence of the calcineurin/NFAT inhibitor Cyclosporin A increased numbers of differentiated DC. Global gene expression analysis of untreated DC and NFAT-inhibited DC revealed differential expression of transcripts that regulate cell cycle and apoptosis. In conclusion, these results provide evidence that calcineurin/NFAT signalling negatively regulates myeloid lineage development. The finding that inhibition of NFAT enhances myeloid development provides a novel insight into understanding how the treatment with drugs targeting calcineurin/NFAT signalling influence the homeostasis of the innate immune system. PMID:22311511

  12. Chronic myeloid leukemia: reminiscences and dreams

    PubMed Central

    Mughal, Tariq I.; Radich, Jerald P.; Deininger, Michael W.; Apperley, Jane F.; Hughes, Timothy P.; Harrison, Christine J.; Gambacorti-Passerini, Carlo; Saglio, Giuseppe; Cortes, Jorge; Daley, George Q.

    2016-01-01

    With the deaths of Janet Rowley and John Goldman in December 2013, the world lost two pioneers in the field of chronic myeloid leukemia. In 1973, Janet Rowley, unraveled the cytogenetic anatomy of the Philadelphia chromosome, which subsequently led to the identification of the BCR-ABL1 fusion gene and its principal pathogenetic role in the development of chronic myeloid leukemia. This work was also of major importance to support the idea that cytogenetic changes were drivers of leukemogenesis. John Goldman originally made seminal contributions to the use of autologous and allogeneic stem cell transplantation from the late 1970s onwards. Then, in collaboration with Brian Druker, he led efforts to develop ABL1 tyrosine kinase inhibitors for the treatment of patients with chronic myeloid leukemia in the late 1990s. He also led the global efforts to develop and harmonize methodology for molecular monitoring, and was an indefatigable organizer of international conferences. These conferences brought together clinicians and scientists, and accelerated the adoption of new therapies. The abundance of praise, tributes and testimonies expressed by many serve to illustrate the indelible impressions these two passionate and affable scholars made on so many people’s lives. This tribute provides an outline of the remarkable story of chronic myeloid leukemia, and in writing it, it is clear that the historical triumph of biomedical science over this leukemia cannot be considered without appreciating the work of both Janet Rowley and John Goldman. PMID:27132280

  13. Decitabine in Treating Patients With Myelodysplastic Syndromes or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-09-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; de Novo Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  14. Identified EM Earthquake Precursors

    NASA Astrophysics Data System (ADS)

    Jones, Kenneth, II; Saxton, Patrick

    2014-05-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After a number of custom rock experiments, two hypotheses were formed which could answer the EM wave model. The first hypothesis concerned a sufficient and continuous electron movement either by surface or penetrative flow, and the second regarded a novel approach to radio transmission. Electron flow along fracture surfaces was determined to be inadequate in creating strong EM fields, because rock has a very high electrical resistance making it a high quality insulator. Penetrative flow could not be corroborated as well, because it was discovered that rock was absorbing and confining electrons to a very thin skin depth. Radio wave transmission and detection worked with every single test administered. This hypothesis was reviewed for propagating, long-wave generation with sufficient amplitude, and the capability of penetrating solid rock. Additionally, fracture spaces, either air or ion-filled, can facilitate this concept from great depths and allow for surficial detection. A few propagating precursor signals have been detected in the field occurring with associated phases using custom-built loop antennae. Field testing was conducted in Southern California from 2006-2011, and outside the NE Texas town of Timpson in February, 2013. The antennae have mobility and observations were noted for

  15. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R. G.; Norton, H. N.; Stearns, J. W.; Stimpson, L.; Weissman, P.

    1977-01-01

    A mission out of the planetary system, with launch about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low energy cosmic rays, interplanetary gas distribution, and mass of the solar system. Secondary objectives include investigation of Pluto. Candidate science instruments are suggested. Individual spacecraft systems for the mission were considered, technology requirements and problem areas noted, and a number of recommendations made for technology study and advanced development. The most critical technology needs include attainment of 50-yr spacecraft lifetime and development of a long-life NEP system.

  16. MAVS Expressed by Hematopoietic Cells Is Critical for Control of West Nile Virus Infection and Pathogenesis

    PubMed Central

    Vijay, Rahul; Zhao, Jingxian; Gale, Michael; Diamond, Michael S.

    2016-01-01

    ABSTRACT West Nile virus (WNV) is the most important cause of epidemic encephalitis in North America. Innate immune responses, which are critical for control of WNV infection, are initiated by signaling through pathogen recognition receptors, RIG-I and MDA5, and their downstream adaptor molecule, MAVS. Here, we show that a deficiency of MAVS in hematopoietic cells resulted in increased mortality and delayed WNV clearance from the brain. In Mavs−/− mice, a dysregulated immune response was detected, characterized by a massive influx of macrophages and virus-specific T cells into the infected brain. These T cells were polyfunctional and lysed peptide-pulsed target cells in vitro. However, virus-specific T cells in the brains of infected Mavs−/− mice exhibited lower functional avidity than those in wild-type animals, and even virus-specific memory T cells generated by prior immunization could not protect Mavs−/− mice from WNV-induced lethal disease. Concomitant with ineffective virus clearance, macrophage numbers were increased in the Mavs−/− brain, and both macrophages and microglia exhibited an activated phenotype. Microarray analyses of leukocytes in the infected Mavs−/− brain showed a preferential expression of genes associated with activation and inflammation. Together, these results demonstrate a critical role for MAVS in hematopoietic cells in augmenting the kinetics of WNV clearance and thereby preventing a dysregulated and pathogenic immune response. IMPORTANCE West Nile virus (WNV) is the most important cause of mosquito-transmitted encephalitis in the United States. The innate immune response is known to be critical for protection in infected mice. Here, we show that expression of MAVS, a key adaptor molecule in the RIG-I-like receptor RNA-sensing pathway, in hematopoietic cells is critical for protection from lethal WNV infection. In the absence of MAVS, there is a massive infiltration of myeloid cells and virus-specific T cells into the

  17. Nutritional status of patients submitted to transplantation of allogeneic hematopoietic stem cells: a retrospective study

    PubMed Central

    Ferreira, Érika Elias; Guerra, Daiane Cristina; Baluz, Kátia; de Resende Furtado, Wander; da Silva Bouzas, Luis Fernando

    2014-01-01

    Objective This study aimed to describe and compare the nutritional status of adult patients submitted to allogeneic hematopoietic stem cell transplantation at two different time points (admission and discharge). Methods A retrospective, descriptive and quantitative study was performed based on clinical, laboratory and nutritional data obtained from medical records of adult patients of both genders submitted to allogeneic hematopoietic stem cell transplantation in a bone marrow transplantation reference center in Rio de Janeiro in the period from 2010 to 2013. Statistical analysis was performed using the SPSS software (version 22.0). Results Sixty-four patients were evaluated. The mean age was 42.1 ± 3.2 years and the most prevalent disease was acute myeloid leukemia (39%). There was a high prevalence of gastrointestinal symptoms including nausea (100%), vomiting (97%) and mucositis (93%). Between admission and discharge there was a significant decrease in the median weight (−2.5 kg; 71.5 vs. 68.75 kg; p-value < 0.001), body mass index (−0.9 kg/m2; 24.8 vs. 24.4 kg/m2; p-value < 0.001), and serum albumin levels (−0.2 g/dL; 3.7 vs. 3.6 g/dL; p-value = 0.024). The survival time after hematopoietic stem cell transplantation correlated negatively with C-reactive protein at discharge (CC = −0.72; p-value < 0.001) and positively with serum albumin levels (CC = 0.56; p-value = 0.004) and with high total protein level at discharge (CC = 0.53; p-value = 0.006). Conclusion Our results suggest that patients submitted to allogeneic hematopoietic stem cell transplantation have compromised nutritional status during the hospital stay for transplantation. PMID:25453651

  18. CD45 Phosphatase Inhibits STAT3 Transcription Factor Activity in Myeloid Cells and Promotes Tumor-Associated Macrophage Differentiation.

    PubMed

    Kumar, Vinit; Cheng, Pingyan; Condamine, Thomas; Mony, Sridevi; Languino, Lucia R; McCaffrey, Judith C; Hockstein, Neil; Guarino, Michael; Masters, Gregory; Penman, Emily; Denstman, Fred; Xu, Xiaowei; Altieri, Dario C; Du, Hong; Yan, Cong; Gabrilovich, Dmitry I

    2016-02-16

    Recruitment of monocytic myeloid-derived suppressor cells (MDSCs) and differentiation of tumor-associated macrophages (TAMs) are the major factors contributing to tumor progression and metastasis. We demonstrated that differentiation of TAMs in tumor site from monocytic precursors was controlled by downregulation of the activity of the transcription factor STAT3. Decreased STAT3 activity was caused by hypoxia and affected all myeloid cells but was not observed in tumor cells. Upregulation of CD45 tyrosine phosphatase activity in MDSCs exposed to hypoxia in tumor site was responsible for downregulation of STAT3. This effect was mediated by the disruption of CD45 protein dimerization regulated by sialic acid. Thus, STAT3 has a unique function in the tumor environment in controlling the differentiation of MDSC into TAM, and its regulatory pathway could be a potential target for therapy.

  19. Tumor Cell-Independent Estrogen Signaling Drives Disease Progression through Mobilization of Myeloid-Derived Suppressor Cells.

    PubMed

    Svoronos, Nikolaos; Perales-Puchalt, Alfredo; Allegrezza, Michael J; Rutkowski, Melanie R; Payne, Kyle K; Tesone, Amelia J; Nguyen, Jenny M; Curiel, Tyler J; Cadungog, Mark G; Singhal, Sunil; Eruslanov, Evgeniy B; Zhang, Paul; Tchou, Julia; Zhang, Rugang; Conejo-Garcia, Jose R

    2017-01-01

    The role of estrogens in antitumor immunity remains poorly understood. Here, we show that estrogen signaling accelerates the progression of different estrogen-insensitive tumor models by contributing to deregulated myelopoiesis by both driving the mobilization of myeloid-derived suppressor cells (MDSC) and enhancing their intrinsic immunosuppressive activity in vivo Differences in tumor growth are dependent on blunted antitumor immunity and, correspondingly, disappear in immunodeficient hosts and upon MDSC depletion. Mechanistically, estrogen receptor alpha activates the STAT3 pathway in human and mouse bone marrow myeloid precursors by enhancing JAK2 and SRC activity. Therefore, estrogen signaling is a crucial mechanism underlying pathologic myelopoiesis in cancer. Our work suggests that new antiestrogen drugs that have no agonistic effects may have benefits in a wide range of cancers, independently of the expression of estrogen receptors in tumor cells, and may synergize with immunotherapies to significantly extend survival.

  20. Generation of Nonlinear Vortex Precursors

    NASA Astrophysics Data System (ADS)

    Chen, Yue-Yue; Feng, Xun-Li; Liu, Chengpu

    2016-07-01

    We numerically study the propagation of a few-cycle pulse carrying orbital angular momentum (OAM) through a dense atomic system. Nonlinear precursors consisting of high-order vortex harmonics are generated in the transmitted field due to carrier effects associated with ultrafast Bloch oscillation. The nonlinear precursors survive to propagation effects and are well separated with the main pulse, which provides a straightforward way to measure precursors. By virtue of carrying high-order OAM, the obtained vortex precursors as information carriers have potential applications in optical information and communication fields where controllable loss, large information-carrying capacity, and high speed communication are required.

  1. Midostaurin and Decitabine in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia and FLT3 Mutation

    ClinicalTrials.gov

    2016-10-10

    Acute Myeloid Leukemia With FLT3/ITD Mutation; Acute Myeloid Leukemia With Gene Mutations; FLT3 Tyrosine Kinase Domain Point Mutation; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  2. Hematopoietic Acute Radiation Syndrome (Bone marrow syndrome, Aplastic Anemia): Molecular Mechanisms of Radiation Toxicity.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri

    Key Words: Aplastic Anemia (AA), Pluripotential Stem Cells (PSC) Introduction: Aplastic Anemia (AA) is a disorder of the pluripotential stem cells involve a decrease in the number of cells of myeloid, erythroid and megakaryotic lineage [Segel et al. 2000 ]. The etiology of AA include idiopathic cases and secondary aplastic anemia after exposure to drugs, toxins, chemicals, viral infections, lympho-proliferative diseases, radiation, genetic causes, myelodisplastic syndromes and hypoplastic anemias, thymomas, lymphomas. [Brodskyet al. 2005.,Modan et al. 1975., Szklo et al. 1975]. Hematopoietic Acute Radiation Syndrome (or Bone marrow syndrome, or Radiation-Acquired Aplastic Anemia) is the acute toxic syndrome which usually occurs with a dose of irradiation between 0.7 and 10 Gy (70- 1000 rads), depending on the species irradiated. [Waselenko et al., 2004]. The etiology of bone morrow damage from high-level radiation exposure results depends on the radiosensitivity of certain bone marrow cell lines. [Waselenko et al. 2004] Aplastic anemia after radiation exposure is a clinical syndrome that results from a marked disorder of bone marrow blood cell production. [Waselenko et al. 2004] Radiation hematotoxicity is mediated via genotoxic and other specific toxic mechanisms, leading to aplasia, cell apoptosis or necrosis, initiation via genetic mechanisms of clonal disorders, in cases such as the acute radiation-acquired form of AA. AA results from radiation injury to pluripotential and multipotential stem cells in the bone marrow. The clinical signs displayed in reticulocytopenia, anemia, granulocytopenia, monocytopenia, and thrombocytopenia. The number of marrow CD34+ cells (multipotential hematopoietic progenitors) and their derivative colony-forming unit{granulocyte-macrophage (CFU-GM) and burst forming unit {erythroid (BFU{E) are reduced markedly in patients with AA. [Guinan 2011, Brodski et al. 2005, Beutler et al.,2000] Cells expressing CD34 (CD34+ cell) are normally

  3. Differences in proportion and dynamics of recipient hematopoiesis following hematopoietic cell transplantation in CML and IMF.

    PubMed

    Siebolts, Udo; Thiele, Jürgen; Zander, Thomas; Ditschkowski, Markus; Beelen, Dietrich W; Kröger, Nicolaus; Fehse, Boris; Wickenhauser, Claudia

    2008-01-01

    Since decades myeloablation followed by allogeneic stem cell transplantation offered the only opportunity to cure leukemia patients and only recently the development of STI571 created a further alternative in chronic myeloid leukemia (CML). While among all leukemias this transplantation regimen had the best outcome in CML, trials with reduced intensity conditioning regimens (RIC) were rather humbling and recurrence of the neoplastic clone occurred frequently. However, the same therapy in patients with idiopathic myelofibrosis (IMF) resulted in a more favorable outcome. Therefore, long-term mixed chimerism (mCh) was determined on bone marrow (BM) biopsies derived from five IMF patients and from eight CML patients of the pre STI era following sex-mismatched transplantation. All patients presented lasting hematologic remission and were matched concerning age, sex and appearance of GvHD. Analysis of late transplant period (day +100) revealed a concentration of host cells within the CD34+ precursor cell compartment in both diseases. However, in IMF BM biopsies only up to 8% recipient CD34+ precursors but in CML biopsies up to 26% recipient CD34+ precursors were detected. Taken into account that in CML up to 10% of the host BM CD34+ precursors bear the BCR-ABL translocation our data suggest that the neoplastic CD34+ progenitor cell population might dispose of better strategies to escape immune surveillance in CML than in IMF.

  4. Effects of Hematopoietic Lineage and Precursor Age on CML Disease Progression

    DTIC Science & Technology

    2007-03-01

    the doctoral thesis work of Robert Signer, a graduate student enro in the Cellular and Molecular Pathology Graduate Program at UCLA. C T...old mice. R 8 1. Enright , H. and P. McGlave. Chronic myelogenous leukemia. In Hematology: Basic Principles and Practice, 3rd edition. R...Abstract: Keystone Symposium SUPPORTING DATA None FINAL REPORT LIST OF PERSONNEL RECEIVING PAY FROM RESEARCH EFFORT Robert A.J. Signer

  5. Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors

    PubMed Central

    Canli, Özge; Alankuş, Yasemin B.; Grootjans, Sasker; Vegi, Naidu; Hültner, Lothar; Hoppe, Philipp S.; Schroeder, Timm; Vandenabeele, Peter; Bornkamm, Georg W.

    2016-01-01

    Maintaining cellular redox balance is vital for cell survival and tissue homoeostasis because imbalanced production of reactive oxygen species (ROS) may lead to oxidative stress and cell death. The antioxidant enzyme glutathione peroxidase 4 (Gpx4) is a key regulator of oxidative stress–induced cell death. We show that mice with deletion of Gpx4 in hematopoietic cells develop anemia and that Gpx4 is essential for preventing receptor-interacting protein 3 (RIP3)-dependent necroptosis in erythroid precursor cells. Absence of Gpx4 leads to functional inactivation of caspase 8 by glutathionylation, resulting in necroptosis, which occurs independently of tumor necrosis factor α activation. Although genetic ablation of Rip3 normalizes reticulocyte maturation and prevents anemia, ROS accumulation and lipid peroxidation in Gpx4-deficient cells remain high. Our results demonstrate that ROS and lipid hydroperoxides function as not-yet-recognized unconventional upstream signaling activators of RIP3-dependent necroptosis. PMID:26463424

  6. p62 is required to retain short-term repopulating and myeloid progenitor cells through inhibition of IKK/NF-κB/Ccl4 signaling at the bone marrow macrophage-osteoblast niche

    PubMed Central

    Chang, Kyung Hee; Sengupta, Amitava; Nayak, Ramesh C.; Duran, Angeles; Lee, Sang Jun; Pratt, Ronald G.; Wellendorf, Ashley M.; Hill, Sarah E.; Watkins, Marcus; Gonzalez-Nieto, Daniel; Aronow, Bruce J.; Starczynowski, Daniel T.; Civitelli, Roberto; Diaz-Meco, Maria T.; Moscat, Jorge; Cancelas, Jose A.

    2014-01-01

    In the bone marrow (BM), hematopoietic progenitors (HP) reside in specific anatomical niches near osteoblasts (Ob), macrophages (MΦ) and other cells forming the BM microenvironment. A connection between immunosurveillance and traffic of HP has been demonstrated but the regulatory signals that instruct immune regulation on HP circulation are unknown. We discovered that the BM microenvironment deficiency of p62, an autophagy regulator and signal organizer, results in loss of autophagic repression of macrophage contact-dependent activation of Ob NF-κB signaling. Consequently, Ob p62-deficient mice lose bone, Ob Ccl4 expression and HP chemotaxis towards Cxcl12 resulting in egress of short-term hematopoietic stem cells and myeloid progenitors. Finally, Ccl4 expression and myeloid progenitor egress are reversed by the deficiency of the p62 PB1 binding partner Nbr1. A functional ‘MΦ-Ob niche’ is required for myeloid progenitor/short-term stem cell retention, in which Ob p62 is required to maintain NF-κB signaling repression, osteogenesis and BM progenitor retention. PMID:25533346

  7. Genetically Modified T-cell Immunotherapy in Treating Patients With Relapsed/Refractory Acute Myeloid Leukemia and Persistent/Recurrent Blastic Plasmacytoid Dendritic Cell Neoplasm

    ClinicalTrials.gov

    2017-03-13

    Adult Acute Myeloid Leukemia in Remission; Donor; Early Relapse of Acute Myeloid Leukemia; Late Relapse of Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Blastic Plasmacytoid Dendritic Cell Neoplasm

  8. Azacitidine and Sonidegib or Decitabine in Treating Patients With Myeloid Malignancies

    ClinicalTrials.gov

    2017-01-20

    Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndrome; Essential Thrombocythemia; Myelodysplastic Syndrome; Myelodysplastic/Myeloproliferative Neoplasm; Polycythemia Vera; Previously Treated Myelodysplastic Syndrome; Primary Myelofibrosis; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  9. Selumetinib in Treating Patients With Recurrent or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-07-06

    Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Promyelocytic Leukemia (M3); Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  10. Targeted gene correction of RUNX1 in induced pluripotent stem cells derived from familial platelet disorder with propensity to myeloid malignancy restores normal megakaryopoiesis.

    PubMed

    Iizuka, Hiromitsu; Kagoya, Yuki; Kataoka, Keisuke; Yoshimi, Akihide; Miyauchi, Masashi; Taoka, Kazuki; Kumano, Keiki; Yamamoto, Takashi; Hotta, Akitsu; Arai, Shunya; Kurokawa, Mineo

    2015-10-01

    Familial platelet disorder with propensity to acute myeloid leukemia (FPD/AML) is an autosomal dominant disease associated with a germline mutation in the RUNX1 gene and is characterized by thrombocytopenia and an increased risk of developing myeloid malignancies. We generated induced pluripotent stem cells (iPSCs) from dermal fibroblasts of a patient with FPD/AML possessing a nonsense mutation R174X in the RUNX1 gene. Consistent with the clinical characteristics of the disease, FPD iPSC-derived hematopoietic progenitor cells were significantly impaired in undergoing megakaryocytic differentiation and subsequent maturation, as determined by colony-forming cell assay and surface marker analysis. Notably, when we corrected the RUNX1 mutation using transcription activator-like effector nucleases in conjunction with a donor plasmid containing normal RUNX1 cDNA sequences, megakaryopoiesis and subsequent maturation were restored in FPD iPSC-derived hematopoietic cells. These findings clearly indicate that the RUNX1 mutation is robustly associated with thrombocytopenia in patients with FPD/AML, and transcription activator-like effector nuclease-mediated gene correction in iPSCs generated from patient-derived cells could provide a promising clinical application for treatment of the disease.

  11. Decitabine, Donor Natural Killer Cells, and Aldesleukin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-12-02

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  12. Myeloid-derived cells are key targets of tumor immunotherapy

    PubMed Central

    Medina-Echeverz, José; Aranda, Fernando; Berraondo, Pedro

    2014-01-01

    Tumors are composed of heterogeneous cell populations recruited by cancer cells to promote growth and metastasis. Among cells comprising the tumor stroma, myeloid-derived cells play pleiotropic roles in supporting tumorigenesis at distinct stages of tumor development. The tumor-infiltrating myeloid cell contingent is composed of mast cells, neutrophils, dendritic cells, macrophages, and myeloid-derived suppressor cells. Such cells are capable of evading the hostile tumor environment typically prone to immune cell destruction and can even promote angiogenesis, chronic inflammation, and invasion. This paper briefly summarizes the different myeloid-derived subsets that promote tumor development and the strategies that have been used to counteract the protumorigenic activity of these cells. These strategies include myeloid cell depletion, reduction of recruitment, and inactivation or remodeling of cell phenotype. Combining drugs designed to target tumor myeloid cells with immunotherapies that effectively trigger antitumor adaptive immune responses holds great promise in the development of novel cancer treatments. PMID:25050208

  13. Myeloid-derived suppressor cells and myeloid regulatory cells in cancer and autoimmune disorders

    PubMed Central

    Barnie, Prince Amoah; Zhang, Pan; Lv, Hongxiang; Wang, Dan; Su, Xiaolian; Su, Zhaoliang; Xu, Huaxi

    2017-01-01

    Myeloid-derived suppressor cells (MDSCs) were originally described as a heterogeneous population of immature cells derived from myeloid progenitors with immune-suppressive functions in tumor-bearing hosts. In recent years, increasing number of studies have described various populations of myeloid cells with MDSC-like properties in murine models of cancer and autoimmune diseases. These studies have observed that the populations of MDSCs are increased during inflammation and autoimmune conditions. In addition, MDSCs can effectively suppress T cell responses and modulate the activity of natural killer cells and other myeloid cells. MDSCs have also been implicated in the induction of regulatory T cell production. Furthermore, these cells have the potential to suppress the autoimmune response, thereby limiting tissue injury. Myeloid regulatory cells (Mregs) are recently attracting increasing attention, since they function in proinflammatory and immune suppression in autoimmune diseases, as well as in various types of cancer. Currently, research focus is directed from MDSCs to Mregs in cancer and autoimmune diseases. The present study reviewed the suppressive roles of MDSCs in various autoimmune murine models, the immune modulation of MDSCs to T helper 17 lymphocytes, as well as the proinflammatory and immunosuppressive roles of Mregs in various types of cancer and autoimmune diseases. PMID:28352304

  14. [Role of Bone Marrow Mesenchymal Stem Cells in Resistance of Chronic Myeloid Leukemia to Tyrosine Kinase Inhibitors -Review].

    PubMed

    Zhang, Xiao-Yan; Wan, Qian; Fang, Li-Jun; Li, Jian

    2016-12-01

    Chronic myeloid leukemia (CML) is a disease originated from malignant hematopoietic stem cell disorder. In CML, mesenchymal stem cells(MSC) have been changed in the bone marrow microenvironment, which can protect the leukemia cells from apoptosis induced by tyrosine kinase inhibitors (TKI) and lead to the resistance to TKI by the secretion of soluble factors, involvement in cell-cell adhesion, and so on. This review mainly focuses on the changes of the bone marrow mesenchymal stem cells in CML, as well as the role and mechanism of MSC in the CML resistance of TKI. The concrete probrems dicussing in this review are role of MSC in bone marrow microenviroment, characteristics of MSC in CML, the related mechanisms of MSC in drug resistance and so on.

  15. The overwhelmingly positive response to Dasatinib of a patient with multiple blast crisis of chronic myeloid leukemia

    PubMed Central

    Xu, Zhengli; Zheng, Miao; Wu, Chaonan; Ma, Yujia; Meng, Li; Zhou, Jianfeng; Wang, Ying

    2015-01-01

    Blastic phase (BP), the terminal phase of chronic myeloid leukemia (CML), can occur in any of the hematopoietic lineages. Extramedullary blastic crisis (EBC) is a rare form of blastic crisis, which has an extremely poor prognosis. As the tyrosine kinase inhibitor (TKI), Dasatinib is a more effective treatment drug than Imatinib and Nilotinib for this type of CML, because it has greater potency and penetrates through the blood-brain barrier to reach the cerebrospinal fluid (CSF). This report examines the case of a 22-year-old woman with CML, who successively suffered from monocytic blast crisis, lymphoid blast crisis, and central nervous system EBC. She had an overwhelmingly positive response to taking Dasatinib and eventually achieved lasting complete remission. PMID:25785155

  16. Immunotherapy with natural killer cells: a possible approach for the treatment of Acute Myeloid Leukemia also in Brazil.

    PubMed

    Silla, Lúcia

    2016-10-01

    The allogeneic hematopoietic stem cell transplantation (HSCT) can cure intermediate and high-risk acute myeloid leukemia. Even with the development of strategies to reduce HSCT toxicity, this is still a complex treatment with high morbidity and mortality. Knowledge of the graft versus leukemia effect of HSCT has prepared the way for the development of Adoptive Immunotherapy or in vitro expansion of activated lymphocytes without alloreactivity, with subsequent intravenous infusion. The infusion of genetically modified T lymphocytes and haploidentical natural killer cells has been tested as an alternative to HSCT with very interesting results worldwide and in Brazil, as we not only have the technology of in vitro expansion of clinical grade lymphocytes available, but also do it according to the Good Manufacturing Practices that have been determined internationally.

  17. A multi-functional role of interferon regulatory factor-8 in solid tumor and myeloid cell biology.

    PubMed

    Abrams, Scott I

    2010-03-01

    Understanding mechanisms of tumor escape are critically important not only to improving our knowledge of cancer biology, but also for the overall development of more effective anti-neoplastic therapies. Our laboratory focuses on mechanisms of apoptotic resistance, with emphasis on Fas loss of function as an important determinant of tumor progression. Our work in solid tumor systems has led to the identification of interferon regulatory factor-8 (IRF-8) as a differentially expressed gene important for tumor cell response to cytotoxicity, including Fas-mediated apoptosis and host-anti-tumor immunosurveillance mechanisms. Although IRF-8 was originally identified in the regulation of normal and neoplastic myeloid cell development, these findings revealed a new functional role for IRF-8 in non-hematopoietic malignancies and establish a molecular basis for its potential manipulation during cancer therapy.

  18. [Characteristics of "pre-ALIP" in bone marrow sections of patients with acute myeloid leukemia].

    PubMed

    Yu, Ye-Hua; Yuan, Ying-Hua; Li, Ling; Cao, Gui-Tao; Li, Jing; Tao, Ying; Jiang, Hua; Hou, Jian; Shi, Jun

    2011-10-01

    To detect the characteristics of "pre-ALIP" and to investigate their relevance with the development of acute myeloid leukemia (AML) by computer image procession technology, bone marrow (BM) was collected by aspiration/trephine biopsy from AML patients during the complete remission (CR). BM sections were stained by HGF (haematoxylin-Giemsa-acid fuchsin) and photographed by optical microscope imaging system. 4 kinds of computer image segmentation technologies were compared to select the best one for detecting the localization and quantitation of the precursor cells. Planimetry was combined with morphology to segment bone trabeculae. The number of single and double-cluster precursor cells and their distance from bone trabeculae was detected with Euclidean distance change method in BM images of AML patients, and compared with the normal controls. Moreover, the morphological characteristics of "pre-ALIP" were investigated, and the correlation with the development of AML was analyzed. The results showed that the computer image segmentation method based on morphology could identify the precursor cells and bone trabeculae more exactly in BM image, as compared with the methods of 8-Sobel operater. Canny operator and watershed algorithm. Bone trabeculae could be segmented with combinative methods of morphology and planimetry. The number of single precursor cells (19.27 ± 11.60)/mm(2) and double-cluster precursor cells (1.77 ± 1.76)/mm(2) in CR group were higher than that in normal controls (p < 0.05). The distance of single precursor cells from bone trabeculae in CR group were closer to bone trabeculae than that in controls [(230.12 ± 97.68) µm vs (260.92 ± 99.88 µm)] (p < 0.05), but the distance of double-cluster precursor cells from bone trabeculae in AML patients was (274.56 ± 139.48) µm, which showed no statistically significant different from controls (p > 0.05), while the double-cluster precursor cells showed the tendency of migrating to the intermediate zone

  19. miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells.

    PubMed

    Lechman, Eric R; Gentner, Bernhard; Ng, Stanley W K; Schoof, Erwin M; van Galen, Peter; Kennedy, James A; Nucera, Silvia; Ciceri, Fabio; Kaufmann, Kerstin B; Takayama, Naoya; Dobson, Stephanie M; Trotman-Grant, Aaron; Krivdova, Gabriela; Elzinga, Janneke; Mitchell, Amanda; Nilsson, Björn; Hermans, Karin G; Eppert, Kolja; Marke, Rene; Isserlin, Ruth; Voisin, Veronique; Bader, Gary D; Zandstra, Peter W; Golub, Todd R; Ebert, Benjamin L; Lu, Jun; Minden, Mark; Wang, Jean C Y; Naldini, Luigi; Dick, John E

    2016-02-08

    To investigate miRNA function in human acute myeloid leukemia (AML) stem cells (LSC), we generated a prognostic LSC-associated miRNA signature derived from functionally validated subpopulations of AML samples. For one signature miRNA, miR-126, high bioactivity aggregated all in vivo patient sample LSC activity into a single sorted population, tightly coupling miR-126 expression to LSC function. Through functional studies, miR-126 was found to restrain cell cycle progression, prevent differentiation, and increase self-renewal of primary LSC in vivo. Compared with prior results showing miR-126 regulation of normal hematopoietic stem cell (HSC) cycling, these functional stem effects are opposite between LSC and HSC. Combined transcriptome and proteome analysis demonstrates that miR-126 targets the PI3K/AKT/MTOR signaling pathway, preserving LSC quiescence and promoting chemotherapy resistance.

  20. miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells

    PubMed Central

    Lechman, Eric R.; Gentner, Bernhard; Ng, Stanley W.K.; Schoof, Erwin M.; van Galen, Peter; Kennedy, James A.; Nucera, Silvia; Ciceri, Fabio; Kaufmann, Kerstin B.; Takayama, Naoya; Dobson, Stephanie M.; Trotman-Grant, Aaron; Krivdova, Gabriela; Elzinga, Janneke; Mitchell, Amanda; Nilsson, Björn; Hermans, Karin G.; Eppert, Kolja; Marke, Rene; Isserlin, Ruth; Voisin, Veronique; Bader, Gary D.; Zandstra, Peter W.; Golub, Todd R.; Ebert, Benjamin L.; Lu, Jun; Minden, Mark; Wang, Jean C.Y.; Naldini, Luigi; Dick, John E.

    2016-01-01

    Summary To investigate miRNA function in human acute myeloid leukemia (AML) stem cells (LSC), we generated a prognostic LSC-associated miRNA signature derived from functionally validated subpopulations of AML samples. For one signature miRNA, miR-126, high bioactivity aggregated all in vivo patient sample LSC activity into a single sorted population, tightly coupling miR-126 expression to LSC function. Through functional studies, miR-126 was found to restrain cell cycle progression, prevent differentiation, and increase self-renewal of primary LSC in vivo. Compared with prior results showing miR-126 regulation of normal hematopoietic stem cell (HSC) cycling, these functional stem effects are opposite between LSC and HSC. Combined transcriptome and proteome analysis demonstrates that miR-126 targets the PI3K/AKT/MTOR signaling pathway, preserving LSC quiescence and promoting chemotherapy resistance. PMID:26832662

  1. Early mixed T-cell chimerism is predictive of pediatric AML or MDS relapse after hematopoietic stem cell transplant.

    PubMed

    Broglie, Larisa; Helenowski, Irene; Jennings, Lawrence J; Schafernak, Kristian; Duerst, Reggie; Schneiderman, Jennifer; Tse, William; Kletzel, Morris; Chaudhury, Sonali

    2017-03-07

    Patients with acute myeloid leukemia (AML) who relapse after hematopoietic stem cell transplantation (HCT) have dismal outcomes. Our ability to predict those at risk for relapse is limited. We examined chimerism trends post-HCT in 63 children who underwent HCT for AML or myelodysplastic syndrome (MDS). Mixed T-cell chimerism at engraftment and absence of chronic graft versus host disease (cGVHD) were associated with relapse (P = 0.04 and P = 0.02, respectively). Mixed T-cell chimerism at engraftment was predictive in patients without cGVHD (P = 0.03). Patients with engraftment mixed T-cell chimerism may warrant closer disease monitoring and consideration for early intervention.

  2. A remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3)(q21;q26) by activating EVI1 expression

    PubMed Central

    Yamazaki, Hiromi; Suzuki, Mikiko; Otsuki, Akihito; Shimizu, Ritsuko; Bresnick, Emery H.; Engel, James Douglas; Yamamoto, Masayuki

    2014-01-01

    SUMMARY Chromosomal inversion between 3q21 and 3q26 results in high-risk acute myeloid leukemia (AML). Here, we identified a mechanism whereby a GATA2 distal hematopoietic enhancer (G2DHE or −77-kb enhancer) is brought into close proximity to the EVI1 gene in inv(3)(q21;q26) inversions, leading to leukemogenesis. We examined the contribution of G2DHE to leukemogenesis by creating a bacterial artificial chromosome (BAC) transgenic model that recapitulates the inv(3)(q21;q26) allele. Transgenic mice harboring a linked BAC developed leukemia accompanied by EVI1 overexpression, neoplasia that was not detected in mice bearing the same transgene but missing the GATA2 enhancer. These results establish the mechanistic basis underlying the pathogenesis of a severe form of leukemia through aberrant expression of the EVI1 proto-oncogene. PMID:24703906

  3. Phase I Trial of AZD1775 and Belinostat in Treating Patients With Relapsed or Refractory Myeloid Malignancies or Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-02-03

    Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Refractory Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  4. Combination Chemotherapy and Dasatinib in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-04-04

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21); (q22; q22.1); RUNX1-RUNX1T1; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  5. Immature myeloid cells and cancer-associated immune suppression.

    PubMed

    Kusmartsev, Sergei; Gabrilovich, Dmitry I

    2002-08-01

    Impaired balance between mature and immature myeloid cells is one of the hallmarks of cancer. In cancer patients as well as in mouse models there is increasing evidence that progressive tumor growth is associated with an accumulation of immature myeloid cells, monocytes/macrophages, and with a decreased number and function of dendritic cells (DC). This review examines recent findings on the contribution of immature myeloid cells (ImC) to cancer-induced immune suppression.

  6. HIF prolyl hydroxylase 2 (PHD2) is a critical regulator of hematopoietic stem cell maintenance during steady-state and stress.

    PubMed

    Singh, Rashim Pal; Franke, Kristin; Kalucka, Joanna; Mamlouk, Soulafa; Muschter, Antje; Gembarska, Agnieszka; Grinenko, Tatyana; Willam, Carsten; Naumann, Ronald; Anastassiadis, Konstantinos; Stewart, A Francis; Bornstein, Stefan; Chavakis, Triantafyllos; Breier, Georg; Waskow, Claudia; Wielockx, Ben

    2013-06-27

    Hypoxia is a prominent feature in the maintenance of hematopoietic stem cell (HSC) quiescence and multipotency. Hypoxia-inducible factor (HIF) prolyl hydroxylase domain proteins (PHDs) serve as oxygen sensors and may therefore regulate this system. Here, we describe a mouse line with conditional loss of HIF prolyl hydroxylase 2 (PHD2) in very early hematopoietic precursors that results in self-renewal of multipotent progenitors under steady-state conditions in a HIF1α- and SMAD7-dependent manner. Competitive bone marrow (BM) transplantations show decreased peripheral and central chimerism of PHD2-deficient cells but not of the most primitive progenitors. Conversely, in whole BM transfer, PHD2-deficient HSCs replenish the entire hematopoietic system and display an enhanced self-renewal capacity reliant on HIF1α. Taken together, our results demonstrate that loss of PHD2 controls the maintenance of the HSC compartment under physiological conditions and causes the outcompetition of PHD2-deficient hematopoietic cells by their wild-type counterparts during stress while promoting the self-renewal of very early hematopoietic progenitors.

  7. Precision medicine for acute myeloid leukemia.

    PubMed

    Lai, Catherine; Karp, Judith E; Hourigan, Christopher S

    2016-01-01

    The goal of precision medicine is to personalize therapy based on individual patient variation, to correctly select the right treatment, for the right patient, at the right time. Acute myeloid leukemia (AML) is a heterogeneous collection of myeloid malignancies with diverse genetic etiology and the potential for intra-patient clonal evolution over time. We discuss here how the precision medicine paradigm might be applied to the care of AML patients by focusing on the potential roles of targeting therapy by patient-specific somatic mutations and aberrant pathways, ex-vivo drug sensitivity and resistance testing, high sensitivity measurements of residual disease burden and biology along with potential clinical trial and regulatory constraints.

  8. Precision Medicine for Acute Myeloid Leukemia

    PubMed Central

    Lai, Catherine; Karp, Judith E.; Hourigan, Christopher S.

    2016-01-01

    The goal of precision medicine is to personalize therapy based on individual patient variation, to correctly select the right treatment, for the right patient, at the right time. Acute myeloid leukemia (AML) is a heterogeneous collection of myeloid malignancies with diverse genetic etiology and the potential for intra-patient clonal evolution over time. We discuss here how the precision medicine paradigm might be applied to the care of AML patients by focusing on the potential roles of targeting therapy by patient-specific somatic mutations and aberrant pathways, ex-vivo drug sensitivity and resistance testing, high sensitivity measurements of residual disease burden and biology along with potential clinical trial and regulatory constraints. PMID:26514194

  9. Secretion from Myeloid Cells: Secretory Lysosomes.

    PubMed

    Griffiths, Gillian M

    2016-08-01

    Many cells of the myeloid lineage use an unusual secretory organelle to deliver their effector mechanisms. In these cells, the lysosomal compartment is often modified not only to fulfill the degradative functions of a lysosome but also as a mechanism for secreting additional proteins that are found in the lysosomes of each specialized cell type. These extra proteins vary from one cell type to another according to the specialized function of the cell. For example, mast cells package histamine; cytotoxic T cells express perforin; azurophilic granules in neutrophils express antimicrobial peptides, and platelets von Willebrand factor. Upon release, these very different proteins can trigger inflammation, cell lysis, microbial death, and clotting, respectively, and hence deliver the very different effector mechanisms of these different myeloid cells.

  10. Prolonged remission maintenance in acute myeloid leukaemia.

    PubMed

    Spiers, A S; Goldman, J M; Catovsky, D; Costello, C; Galton, D A; Pitcher, C S

    1977-08-27

    Twenty-five patients with acute myeloid leukaemia were treated with three quadruple drug combinations in predetermined rotation: TRAP (thioguanine, daunorubicin, cytarabine, prednisolone); COAP (cyclophosphamide, vincristine, cytarabine, prednisolone); and POMP (prednisolone, vincristine, methotrexate, mercaptopurine). Fifteen patients (60%) achieved complete remission and five (20%) partial remission. For maintenance, five-day courses of drugs were administered every 14 to 21 days and doses were increased to tolerance. The median length of complete remission was 66 weeks. In eight patients remission maintenance treatment was discontinued and some remained in complete remission for over two years. In this series the remission induction rate was comparable with that reported for other regimens and complete remission lasted longer with this intensive maintenance regimen than with others. Nevertheless, the TRAP programme must still be regarded as only palliative treatment for acute myeloid leukaemia.

  11. Prolonged remission maintenance in acute myeloid leukaemia.

    PubMed Central

    Spiers, A S; Goldman, J M; Catovsky, D; Costello, C; Galton, D A; Pitcher, C S

    1977-01-01

    Twenty-five patients with acute myeloid leukaemia were treated with three quadruple drug combinations in predetermined rotation: TRAP (thioguanine, daunorubicin, cytarabine, prednisolone); COAP (cyclophosphamide, vincristine, cytarabine, prednisolone); and POMP (prednisolone, vincristine, methotrexate, mercaptopurine). Fifteen patients (60%) achieved complete remission and five (20%) partial remission. For maintenance, five-day courses of drugs were administered every 14 to 21 days and doses were increased to tolerance. The median length of complete remission was 66 weeks. In eight patients remission maintenance treatment was discontinued and some remained in complete remission for over two years. In this series the remission induction rate was comparable with that reported for other regimens and complete remission lasted longer with this intensive maintenance regimen than with others. Nevertheless, the TRAP programme must still be regarded as only palliative treatment for acute myeloid leukaemia. PMID:268229

  12. Acute Myeloid Leukemia, Version 2.2013

    PubMed Central

    O'Donnell, Margaret R.; Tallman, Martin S.; Abboud, Camille N.; Altman, Jessica K.; Appelbaum, Frederick R.; Arber, Daniel A.; Attar, Eyal; Borate, Uma; Coutre, Steven E.; Damon, Lloyd E.; Lancet, Jeffrey; Maness, Lori J.; Marcucci, Guido; Martin, Michael G.; Millenson, Michael M.; Moore, Joseph O.; Ravandi, Farhad; Shami, Paul J.; Smith, B. Douglas; Stone, Richard M.; Strickland, Stephen A.; Wang, Eunice S.; Gregory, Kristina M.; Naganuma, Maoko

    2014-01-01

    These NCCN Guidelines Insights summarize several key updates to the NCCN Guidelines for Acute Myeloid Leukemia and discuss the clinical evidence that support the recommendations. The updates described in this article focus on the acute promyelocytic leukemia (APL) section, featuring recommendations for additional induction/consolidation regimens in patients with low- or intermediate-risk APL, and providing guidance on maintenance strategies for APL. PMID:24029121

  13. Human Tumor-Infiltrating Myeloid Cells: Phenotypic and Functional Diversity

    PubMed Central

    Elliott, Louise A.; Doherty, Glen A.; Sheahan, Kieran; Ryan, Elizabeth J.

    2017-01-01

    Our current understanding of human tumor-resident myeloid cells is, for the most part, based on a large body of work in murine models or studies enumerating myeloid cells in patient tumor samples using immunohistochemistry (IHC). This has led to the establishment of the theory that, by and large, tumor-resident myeloid cells are either “protumor” M2 macrophages or myeloid-derived suppressor cells (MDSC). This concept has accelerated our understanding of myeloid cells in tumor progression and enabled the elucidation of many key regulatory mechanisms involved in cell recru