Science.gov

Sample records for hemispherical roughness element

  1. NO PLIF Study of Hypersonic Transition Over a Discrete Hemispherical Roughness Element

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett F.; Ivey, Christopher; Inman, Jennifer A.; Jones, Stephen B.

    2009-01-01

    Nitric oxide (NO) planar laser-induced fluorescence (PLIF) has been use to investigate the hypersonic flow over a flat plate with and without a 2-mm (0.08-in) radius hemispherical trip. In the absence of the trip, for all angles of attack and two different Reynolds numbers, the flow was observed to be laminar and mostly steady. Boundary layer thicknesses based on the observed PLIF intensity were measured and compared with a CFD computation, showing agreement. The PLIF boundary layer thickness remained constant while the NO flowrate was varied by a factor of 3, indicating non-perturbative seeding of NO. With the hemispherical trip in place, the flow was observed to be laminar but unsteady at the shallowest angle of attack and lowest Reynolds number and appeared vigorously turbulent at the steepest angle of attack and highest Reynolds number. Laminar corkscrew-shaped vortices oriented in the streamwise direction were frequently observed to transition the flow to more turbulent structures.

  2. Heat Transfer Variation on Protuberances and Surface Roughness Elements

    NASA Technical Reports Server (NTRS)

    Henry, Robert C.; Hansman, R. John, Jr.; Breuer, Kenneth S.

    1995-01-01

    In order to determine the effect of surface irregularities on local convective heat transfer, the variation in heat transfer coefficients on small (2-6 mm diam) hemispherical roughness elements on a flat plate has been studied in a wind funnel using IR techniques. Heat transfer enhancement was observed to vary over the roughness elements with the maximum heat transfer on the upstream face. This heat transfer enhancement increased strongly with roughness size and velocity when there was a laminar boundary layer on the plate. For a turbulent boundary layer, the heat transfer enhancement was relatively constant with velocity, but did increase with element size. When multiple roughness elements were studied, no influence of adjacent roughness elements on heat transfer was observed if the roughness separation was greater than approximately one roughness element radius. As roughness separation was reduced, less variation in heat transfer was observed on the downstream elements. Implications of the observed roughness enhanced heat transfer on ice accretion modeling are discussed.

  3. Hypersonic viscous flow over large roughness elements

    NASA Astrophysics Data System (ADS)

    Chang, Chau-Lyan; Choudhari, Meelan M.

    2011-06-01

    Viscous flow over discrete or distributed surface roughness has great implications for hypersonic flight due to aerothermodynamic considerations related to laminar-turbulent transition. Current prediction capability is greatly hampered by the limited knowledge base for such flows. To help fill that gap, numerical computations are used to investigate the intricate flow physics involved. An unstructured mesh, compressible Navier-Stokes code based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for two roughness shapes investigated in wind tunnel experiments at NASA Langley Research Center. It was found through 2D parametric study that at subcritical Reynolds numbers, spontaneous absolute instability accompanying by sustained vortex shedding downstream of the roughness is likely to take place at subsonic free-stream conditions. On the other hand, convective instability may be the dominant mechanism for supersonic boundary layers. Three-dimensional calculations for both a rectangular and a cylindrical roughness element at post-shock Mach numbers of 4.1 and 6.5 also confirm that no self-sustained vortex generation from the top face of the roughness is observed, despite the presence of flow unsteadiness for the smaller post-shock Mach number case.

  4. Hypersonic Viscous Flow Over Large Roughness Elements

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan M.

    2009-01-01

    Viscous flow over discrete or distributed surface roughness has great implications for hypersonic flight due to aerothermodynamic considerations related to laminar-turbulent transition. Current prediction capability is greatly hampered by the limited knowledge base for such flows. To help fill that gap, numerical computations are used to investigate the intricate flow physics involved. An unstructured mesh, compressible Navier-Stokes code based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for two roughness shapes investigated in wind tunnel experiments at NASA Langley Research Center. It was found through 2D parametric study that at subcritical Reynolds numbers, spontaneous absolute instability accompanying by sustained vortex shedding downstream of the roughness is likely to take place at subsonic free-stream conditions. On the other hand, convective instability may be the dominant mechanism for supersonic boundary layers. Three-dimensional calculations for both a rectangular and a cylindrical roughness element at post-shock Mach numbers of 4.1 and 6.5 also confirm that no self-sustained vortex generation from the top face of the roughness is observed, despite the presence of flow unsteadiness for the smaller post-shock Mach number case.

  5. Hypersonic Viscous Flow Over Large Roughness Elements

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan M.

    2009-01-01

    Viscous flow over discrete or distributed surface roughness has great implications for hypersonic flight due to aerothermodynamic considerations related to laminar-turbulent transition. Current prediction capability is greatly hampered by the limited knowledge base for such flows. To help fill that gap, numerical computations are used to investigate the intricate flow physics involved. An unstructured mesh, compressible Navier-Stokes code based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for two roughness shapes investigated in wind tunnel experiments at NASA Langley Research Center. It was found through 2D parametric study that at subcritical Reynolds numbers of the boundary layers, absolute instability resulting in vortex shedding downstream, is likely to weaken at supersonic free-stream conditions. On the other hand, convective instability may be the dominant mechanism for supersonic boundary layers. Three-dimensional calculations for a rectangular or cylindrical roughness element at post-shock Mach numbers of 4.1 and 6.5 also confirm that no self-sustained vortex generation is present.

  6. Elemental Water Impact Test: Phase 1 20-Inch Hemisphere

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.

    2015-01-01

    Spacecraft are being designed based on LS-DYNA simulations of water landing impacts. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. Phase 1 of the EWIT series featured water impact tests of a 20-inch hemisphere dropped from heights of 5 feet and 10 feet. The hemisphere was outfitted with an accelerometer and three pressure gages. The focus of this report is the correlation of analytical models against test data.

  7. Transition Experiments on Blunt Bodies with Isolated Roughness Elements in Hypersonic Free Flight

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.; Wilder, Michael C.; Prabhu, Dinesh K.

    2010-01-01

    Smooth titanium hemispheres with isolated three-dimensional (3D) surface roughness elements were flown in the NASA Ames hypersonic ballistic range through quiescent CO2 and air environments. Global surface intensity (temperature) distributions were optically measured and thermal wakes behind individual roughness elements were analyzed to define tripping effectiveness. Real-gas Navier-Stokes calculations of model flowfields, including laminar boundary layer development in these flowfields, were conducted predict key dimensionless parameters used to correlate transition on blunt bodies in hypersonic flow. For isolated roughness elements totally immersed within the laminar boundary layer, critical roughness Reynolds numbers for flights in air were found to be higher than those measured for flights in CO2, i.e., it was easier to trip the CO2 boundary layer to turbulence. Tripping effectiveness was found to be dependent on trip location within the subsonic region of the blunt body flowfield, with effective tripping being most difficult to achieve for elements positioned closest to the stagnation point. Direct comparisons of critical roughness Reynolds numbers for 3D isolated versus 3D distributed roughness elements for flights in air showed that distributed roughness patterns were significantly more effective at tripping the blunt body laminar boundary layer to turbulence.

  8. Convective Enhancement of Icing Roughness Elements in Stagnation Region Flows

    NASA Technical Reports Server (NTRS)

    Hughes, Michael T.; McClain, Stephen T.; Vargas, Mario; Broeren, Andy

    2015-01-01

    To improve existing ice accretion simulation codes, more data regarding ice roughness and its effects on convective heat transfer are required. To build on existing research on this topic, this study used the Vertical Icing Studies Tunnel (VIST) at NASA Glenn Research to model realistic ice roughness in the stagnation region of a NACA 0012 airfoil. Using the VIST, a test plate representing the leading 2% chord of the airfoil was subjected to flows of 7.62 m/s (25 ft/s), 12.19 m/s (40 ft/s), and 16.76 m/s (55 ft/s). The test plate was fitted with 3 surfaces, each with a different representation of ice roughness: 1) a control surface with no ice roughness, 2) a surface with ice roughness with element height scaled by 10x and streamwise rough zone width from the stagnation point scaled by 10x, and 3) a surface with ice roughness with element height scaled by 10x and streamwise rough zone width from the stagnation point scaled by 25x. Temperature data from the tests were recorded using an infrared camera and thermocouples imbedded in the test plate. From the temperature data, a convective heat transfer coefficient map was created for each case. Additional testing was also performed to validate the VIST's flow quality. These tests included five-hole probe and hot-wire probe velocity traces to provide flow visualization and to study boundary layer formation on the various test surfaces. The knowledge gained during the experiments will help improve ice accretion codes by providing heat transfer coefficient validation data and by providing flow visualization data helping understand current and future experiments performed in the VIST.

  9. Adjustment of roughness sublayer in turbulent flows over two-dimensional idealised roughness elements

    NASA Astrophysics Data System (ADS)

    HO, Yat-Kiu; LIU, Chun-Ho

    2015-04-01

    The atmospheric boundary layer (ABL) immediately above the urban canopy is the roughness sublayer (RSL). In this layer, flows and turbulence are strongly affected by the roughness elements beneath, e.g. building obstacles. The wind flows over urban areas could be represented by conventional logarithmic law of the wall (log-law) in the neutrally stratified ABL. However, in the RSL region, the vertical wind profile deviates from that predicted from log-law and the effect could be extended from ground level up to several canopy heights. As a result, the Monin-Obukhov similarity theory (MOST) fails and an additional length scale is required to describe the flows. The key aim of this study is to introduce a simple wind profile model which accounts for the effect of the RSL in neutral stratification using wind tunnel experiments. Profile measurements of wind speeds and turbulence quantities over various two-dimensional (2D) idealised roughness elements are carried out in an open-circuit wind tunnel with test section of size 560 mm (width) × 560 mm (height) × 6 m (length). The separation between the roughness elements is varied systematically so that ten different types of surface forms are adopted. The velocity measurements are obtained by hot-wire anemometry using X-probe design (for UW- measurements) with a constant temperature anemometer. For each configuration, eight vertical profiles are collected over the canopy, including solid boundaries and cavities of the roughness elements. Firstly, we compute the measurement results using conventional MOST to determine different roughness parameters. Afterwards, we derive the RSL height from the Reynolds stress profiles. Since the profiles taken from different locations of the canopy are eventually converged with increasing height, we use this 'congregated height' to define the RSL height. Next, we introduce an alternative function, i.e. power-law function, instead of MOST, to describe the velocity profile in attempt to

  10. Flow formed by spanwise gaps between roughness elements

    NASA Technical Reports Server (NTRS)

    Logan, E.; Lin, S. H.; Islam, O.

    1985-01-01

    Measurements of the three mean velocity components and the three Reynolds shear stresses were made in the region downstream of gaps between wall-mounted roughness elements of square cross section and high aspect ratio in a thick turbulent boundary layer. The effect of small and large gaps was studied in a wind tunnel at a Reynolds number of 3600, based on obstacle height and free-stream velocity. The small gap produces retardation of the gap flow as with a two-dimensional roughness element, but a definite interaction between gap and wake flows is observed. The interaction is more intense for the large gap than for the small. Both gaps generate a secondary crossflow which moves fluid away from the centerline in the wall region and toward the centerline in the outer (y greater than 1.5H) region.

  11. Connections Between the Spring Breakup of the Southern Hemisphere Polar Vortex, Stationary Waves, and Air-sea Roughness

    NASA Technical Reports Server (NTRS)

    Garfinkel, Chaim I.; Oman, Luke David; Barnes, Elizabeth A.; Waugh, Darryn W.; Hurwitz, Margaret H.; Molod, Andrea M.

    2013-01-01

    A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the air-sea interface, in which surface roughness is increased for moderate wind speeds (4ms to 20ms), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upwards wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in mid-winter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry climate models use a similar scheme for their surface layer momentum exchange and have similar biases in the stratosphere, we expect that results from GEOSCCM may be relevant for other climate models.

  12. The Effect of Volumetric Porosity on Roughness Element Drag

    NASA Astrophysics Data System (ADS)

    Gillies, John; Nickling, William; Nikolich, George; Etyemezian, Vicken

    2016-04-01

    Much attention has been given to understanding how the porosity of two dimensional structures affects the drag force exerted by boundary-layer flow on these flow obstructions. Porous structures such as wind breaks and fences are typically used to control the sedimentation of sand and snow particles or create micro-habitats in their lee. Vegetation in drylands also exerts control on sediment transport by wind due to aerodynamic effects and interaction with particles in transport. Recent research has also demonstrated that large spatial arrays of solid three dimensional roughness elements can be used to reduce sand transport to specified targets for control of wind erosion through the effect of drag partitioning and interaction of the moving sand with the large (>0.3 m high) roughness elements, but porous elements may improve the effectiveness of this approach. A thorough understanding of the role porosity plays in affecting the drag force on three-dimensional forms is lacking. To provide basic understanding of the relationship between the porosity of roughness elements and the force of drag exerted on them by fluid flow, we undertook a wind tunnel study that systematically altered the porosity of roughness elements of defined geometry (cubes, rectangular cylinders, and round cylinders) and measured the associated change in the drag force on the elements under similar Reynolds number conditions. The elements tested were of four basic forms: 1) same sized cubes with tubes of known diameter milled through them creating three volumetric porosity values and increasing connectivity between the tubes, 2) cubes and rectangular cylinders constructed of brass screen that nested within each other, and 3) round cylinders constructed of brass screen that nested within each other. The two-dimensional porosity, defined as the ratio of total surface area of the empty space to the solid surface area of the side of the element presented to the fluid flow was conserved at 0.519 for

  13. Observations on the Growth of Roughness Elements Into Icing Feathers

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Tsao, Jen, Ching

    2007-01-01

    This work presents the results of an experiment conducted in the Icing Research Tunnel at NASA Glenn Research Center to understand the process by which icing feathers are formed in the initial stages of ice accretion formation on swept wings. Close-up photographic data were taken on an aluminum NACA 0012 swept wing tip airfoil. Two types of photographic data were obtained: time sequence close-up photographic data during the run and close-up photographic data of the ice accretion at the end of each run. Icing runs were conducted for short ice accretion times from 10 to 180 sec. The time sequence close-up photographic data was used to study the process frame by frame and to create movies of how the process developed. The movies confirmed that at glaze icing conditions in the attachment line area icing feathers develop from roughness elements. The close-up photographic data at the end of each run showed that roughness elements change into a pointed shape with an upstream facet and join on the side with other elements having the same change to form ridges with pointed shape and upstream facet. The ridges develop into feathers when the upstream facet grows away to form the stem of the feather. The ridges and their growth into feathers were observed to form the initial scallop tips present in complete scallops.

  14. The effect of roughness elements on wind erosion: The importance of surface shear stress distribution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Representation of surface roughness effects on aeolian sediment transport is a key source of uncertainty in wind erosion models. Drag partitioning schemes are used to account for roughness by scaling the soil entrainment threshold by the ratio of shear stress on roughness elements to that on the veg...

  15. Laminar-Turbulent Transition Behind Discrete Roughness Elements in a High-Speed Boundary Layer

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Li, Fei; Wu, Minwei; Chang, Chau-Lyan; Edwards, Jack R., Jr.; Kegerise, Michael; King, Rudolph

    2010-01-01

    Computations are performed to study the flow past an isolated roughness element in a Mach 3.5, laminar, flat plate boundary layer. To determine the effects of the roughness element on the location of laminar-turbulent transition inside the boundary layer, the instability characteristics of the stationary wake behind the roughness element are investigated over a range of roughness heights. The wake flow adjacent to the spanwise plane of symmetry is characterized by a narrow region of increased boundary layer thickness. Beyond the near wake region, the centerline streak is surrounded by a pair of high-speed streaks with reduced boundary layer thickness and a secondary, outer pair of lower-speed streaks. Similar to the spanwise periodic pattern of streaks behind an array of regularly spaced roughness elements, the above wake structure persists over large distances and can sustain strong enough convective instabilities to cause an earlier onset of transition when the roughness height is sufficiently large. Time accurate computations are performed to clarify additional issues such as the role of the nearfield of the roughness element during the generation of streak instabilities, as well as to reveal selected details of their nonlinear evolution. Effects of roughness element shape on the streak amplitudes and the interactions between multiple roughness elements aligned along the flow direction are also investigated.

  16. Wake Instabilities Behind Discrete Roughness Elements in High Speed Boundary Layers

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan; Li, Fei; Chang, Chau-Lyan; Norris, Andrew; Edwards, Jack

    2013-01-01

    Computations are performed to study the flow past an isolated, spanwise symmetric roughness element in zero pressure gradient boundary layers at Mach 3.5 and 5.9, with an emphasis on roughness heights of less than 55 percent of the local boundary layer thickness. The Mach 5.9 cases include flow conditions that are relevant to both ground facility experiments and high altitude flight ("cold wall" case). Regardless of the Mach number, the mean flow distortion due to the roughness element is characterized by long-lived streamwise streaks in the roughness wake, which can support instability modes that did not exist in the absence of the roughness element. The higher Mach number cases reveal a variety of instability mode shapes with velocity fluctuations concentrated in different localized regions of high base flow shear. The high shear regions vary from the top of a mushroom shaped structure characterizing the centerline streak to regions that are concentrated on the sides of the mushroom. Unlike the Mach 3.5 case with nearly same values of scaled roughness height k/delta and roughness height Reynolds number Re(sub kk), the odd wake modes in both Mach 5.9 cases are significantly more unstable than the even modes of instability. Additional computations for a Mach 3.5 boundary layer indicate that the presence of a roughness element can also enhance the amplification of first mode instabilities incident from upstream. Interactions between multiple roughness elements aligned along the flow direction are also explored.

  17. The Long Range Persistence of Wakes Behind a Row of Roughness Elements

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Sescu, Adrian; Duck, Peter W.; Choudhari, Meelan

    2010-01-01

    We consider a periodic array of relatively small roughness elements whose spanwise separation is of the order of the local boundary-layer thickness and construct a local asymptotic high-Reynolds-number solution that is valid in the vicinity of the roughness. The resulting flow decays on the very short streamwise length scale of the roughness, but the solution eventually becomes invalid at large downstream distances and a new solution has to be constructed in the downstream region. This latter result shows that the roughness-generated wakes can persist over very long streamwise distances, which are much longer than the distance between the roughness elements and the leading edge. Detailed numerical results are given for the far wake structure.

  18. Computations of Disturbance Amplification Behind Isolated Roughness Elements and Comparison with Measurements

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan; Li, Fei; Bynum, Michael; Kegerise, Michael; King, Rudolph

    2015-01-01

    Computations are performed to study laminar-turbulent transition due to isolated roughness elements in boundary layers at Mach 3.5 and 5.95, with an emphasis on flow configurations for which experimental measurements from low disturbance wind tunnels are available. The Mach 3.5 case corresponds to a roughness element with right-triangle planform with hypotenuse that is inclined at 45 degrees with respect to the oncoming stream, presenting an obstacle with spanwise asymmetry. The Mach 5.95 case corresponds to a circular roughness element along the nozzle wall of the Purdue BAMQT wind tunnel facility. In both cases, the mean flow distortion due to the roughness element is characterized by long-lived streamwise streaks in the roughness wake, which can support instability modes that did not exist in the absence of the roughness element. The linear amplification characteristics of the wake flow are examined towards the eventual goal of developing linear growth correlations for the onset of transition.

  19. Direct numerical simulation of instabilities in parallel flow with spherical roughness elements

    NASA Technical Reports Server (NTRS)

    Deanna, R. G.

    1992-01-01

    Results from a direct numerical simulation of laminar flow over a flat surface with spherical roughness elements using a spectral-element method are given. The numerical simulation approximates roughness as a cellular pattern of identical spheres protruding from a smooth wall. Periodic boundary conditions on the domain's horizontal faces simulate an infinite array of roughness elements extending in the streamwise and spanwise directions, which implies the parallel-flow assumption, and results in a closed domain. A body force, designed to yield the horizontal Blasius velocity in the absence of roughness, sustains the flow. Instabilities above a critical Reynolds number reveal negligible oscillations in the recirculation regions behind each sphere and in the free stream, high-amplitude oscillations in the layer directly above the spheres, and a mean profile with an inflection point near the sphere's crest. The inflection point yields an unstable layer above the roughness (where U''(y) is less than 0) and a stable region within the roughness (where U''(y) is greater than 0). Evidently, the instability begins when the low-momentum or wake region behind an element, being the region most affected by disturbances (purely numerical in this case), goes unstable and moves. In compressible flow with periodic boundaries, this motion sends disturbances to all regions of the domain. In the unstable layer just above the inflection point, the disturbances grow while being carried downstream with a propagation speed equal to the local mean velocity; they do not grow amid the low energy region near the roughness patch. The most amplified disturbance eventually arrives at the next roughness element downstream, perturbing its wake and inducing a global response at a frequency governed by the streamwise spacing between spheres and the mean velocity of the most amplified layer.

  20. Application research of rough sets in the multi-elemental cooperative spatial analysis

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Wang, Qiao; Lin, Zhiyong

    2009-10-01

    Multi-elemental cooperative analysis can not only brings a large number of relevant information but fuzz up key elements, so valid data excavating tools are needed to find element information which influences entities the most. Based on the sample of bus site setting in a city, this paper employs Rough Sets method to analyze multi-elemental cooperation which influence bus site grade and calculate importance of each element. Thus, multi-elemental cooperative analysis can be realized. Compared with conventional multi-parameter analysis, this method based on data self-adapting is intelligent, high-efficiency and have no use for manual intervention.

  1. Vortex shedding and morphodynamic response of bed surfaces containing non-erodible roughness elements

    NASA Astrophysics Data System (ADS)

    McKenna Neuman, Cheryl; Sanderson, Robert Steven; Sutton, Stephen

    2013-09-01

    A series of wind tunnel experiments was carried out to investigate particle entrainment from surfaces in which one or more roughness elements were embedded. Thin sand strips were employed to eliminate impact and ejection, and thus isolate entrainment by fluid drag. The pattern of erosion is consistent with the presence of coherent vortices, inclusive of trailing vortices in the wake flow. The shape and orientation of the roughness element strongly influence this pattern. When an upwind supply of saltators is introduced, the majority of particles within the bed are entrained through impact, with the exception of a sand tail to the lee of the roughness element. That is, the effect of coherent structures within the airflow, as related to spatial variation in the fluid drag exerted on the bed surface, is completely overprinted by the saltation cloud and the blocking of particle trajectories by the upwind face of the roughness element. In a repeated set of experiments, the bed was allowed to fully adjust its morphology to the transport system. In this case, particle entrainment did not selectively occur within the zone of wake flow, and by inference the fluid stress across the test surface appeared to be uniform. These experiments support the hypothesis that vortex annihilation occurs on morphodynamically adjusted surfaces. In summary, the system response to the emergence of non-erodible roughness elements on surfaces affected by wind erosion involves a suite of geophysical processes, each of which attains varied levels of dominance within a given morphodynamic domain.

  2. Discrete-Roughness-Element-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Malik, Mujeeb; Liao, Wei; Li, Fei; Choudhari, Meelan

    2015-01-01

    Nonlinear parabolized stability equations and secondary-instability analyses are used to provide a computational assessment of the potential use of the discrete-roughness-element technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural-laminar-flow airfoil with a leading-edge sweep angle of 34.6 deg, freestream Mach number of 0.75, and chord Reynolds numbers of 17 × 10(exp 6), 24 × 10(exp 6), and 30 × 10(exp 6) suggest that discrete roughness elements could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small-wavelength stationary crossflow disturbances (i.e., discrete roughness element) also suppresses the growth of most amplified traveling crossflow disturbances.

  3. Natural convection in an enclosure with discrete roughness elements on a vertical heated wall

    SciTech Connect

    Shakerin, S; Bohn, M S; Loehrke, R I

    1986-02-01

    Natural convection flow next to a heated wall with single and repeated, two-dimensional, rectangular roughness elements is studied numerically and experimentally. The objective is to determine how these roughness elements influence heat transfer rates from the wall. Each roughness element consists of a thermally conducting, horizontal cylinder of rectangular cross section attached to the heated, isothermal wall of an enclosure. The height of roughness is on the order of the boundary layer thickness. Dye flow visualization in water confirms the numerical prediction that the steady flow over these elements does not separate. Only at high Rayleigh numbers, when the boundary layer below the roughness is unsteady, is local instantaneous flow reversal observed. Although steady flow reversals near the wall are not predicted or observed, nearly stagnant regions are formed, particularly between closely spaced cylinders. The surface heat flux in these stagnant regions is relatively low, so the total heat transfer rate may be nearly the same as for a smooth wall in spite of the increased surface area.

  4. Finite element modeling of reverberation and transmission loss in shallow water waveguides with rough boundaries.

    PubMed

    Isakson, Marcia J; Chotiros, Nicholas P

    2011-03-01

    A finite element model for the reverberation and propagation in a shallow water waveguide with a sandy bottom was calculated for five different environments at a center frequency of 250 Hz. The various environments included a rough water/sediment interface, a rough air/water interface, roughness at both interfaces and downward and upward refracting sound speed profiles with roughness at both interfaces. When compared to other models of reverberation such as ray theory, coupled modes, and parabolic equations, finite elements predicted higher levels of reverberation. At early times, this is due to the "fathometer" return, energy that is normally incident on the boundaries at zero range. At later times, the increased reverberation was due to high angle scattering paths between the two interfaces. Differences in reverberation levels among the environments indicated that scattered energy from the air/water interface is transmitted into the bottom at steep angles. This led to a large decrease in reverberation for a rough air/water interface relative to a rough water/sediment interface. Sound speed profile effects on reverberation were minimal at this frequency range. Calculations of the scintillation index of the different environments indicated that most of the reverberation was relatively Rayleigh-like with heavier tailed distributions at longer ranges.

  5. Transitional flow in the wake of a moderate to large height cylindrical roughness element

    NASA Astrophysics Data System (ADS)

    Plogmann, B.; Würz, W.; Krämer, E.

    2015-12-01

    The effect of an isolated, cylindrical roughness on the stability of an airfoil boundary layer has been studied based on particle image velocimetry and hot-wire anemometry. The investigated roughness elements range from a sub-critical to a super-critical behavior with regard to the critical roughness Reynolds number. For the sub-critical case, the nonlinear disturbance growth in the near wake is governed by oblique Tollmien-Schlichting (TS) type modes. Further downstream, these disturbance modes are, however, damped with the mean flow stabilization and no dominant modes persist in the far wake. By contrast, in the transitional configuration the disturbance growth is increased, but still associated with a TS-type instability in the near-wake centerline region of the low-aspect (height-to-diameter) ratio element. That is, the disturbances in the centerline region show a similar behavior as known for 2D elements, whereas in the outer spanwise domain a Kelvin-Helmholtz (KH) type, shear-layer instability is found, as previously reported for larger aspect ratio isolated elements. With increasing height and, thereby, aspect ratio of the roughness, the KH-type instability domain extends toward the centerline and, accordingly, the TS-type instability domain decreases. For high super-critical cases, transition is already triggered in the wall-normal and spanwise shear layers upstream and around the roughness. In the immediate wake, periodic shear-layer disturbances roll up into a—for isolated elements characteristic—shedding of vortices, which was not present at the lower roughness Reynolds number cases due to the decreased aspect ratio and, thereby, different instability mechanism.

  6. A 1372-element Large Scale Hemispherical Ultrasound Phased Array Transducer for Noninvasive Transcranial Therapy

    SciTech Connect

    Song, Junho; Hynynen, Kullervo

    2009-04-14

    Noninvasive transcranial therapy using high intensity focused ultrasound transducers has attracted high interest as a promising new modality for the treatments of brain related diseases. We describe the development of a 1372 element large scale hemispherical ultrasound phased array transducer operating at a resonant frequency of 306 kHz. The hemispherical array has a diameter of 31 cm and a 15.5 cm radius of curvature. It is constructed with piezoelectric (PZT-4) tube elements of a 10 mm in diameter, 6 mm in length and 1.4 mm wall thickness. Each element is quasi-air backed by attaching a cork-rubber membrane on the back of the element. The acoustic efficiency of the element is determined to be approximately 50%. The large number of the elements delivers high power ultrasound and offers better beam steering and focusing capability. Comparisons of sound pressure-squared field measurements with theoretical calculations in water show that the array provides good beam steering and tight focusing capability over an efficient volume of approximately 100x100x80 mm{sup 3} with nominal focal spot size of approximately 2.3 mm in diameter at -6 dB. We also present its beam steering and focusing capability through an ex vivo human skull by measuring pressure-squared amplitude after phase corrections. These measurements show the same efficient volume range and focal spot sizes at -6 dB as the ones in water without the skull present. These results indicate that the array is sufficient for use in noninvasive transcranial ultrasound therapy.

  7. High-Speed Boundary-Layer Transition Induced by an Isolated Roughness Element

    NASA Technical Reports Server (NTRS)

    Kegerise, Michael A.; Owens, Lewis R.; King, Rudolph A.

    2010-01-01

    Progress on an experimental effort to quantify the instability mechanisms associated with roughness-induced transition in a high-speed boundary layer is reported in this paper. To simulate the low-disturbance environment encountered during high-altitude flight, the experimental study was performed in the NASA-Langley Mach 3.5 Supersonic Low-Disturbance Tunnel. A flat plate trip sizing study was performed first to identify the roughness height required to force transition. That study, which included transition onset measurements under both quiet and noisy freestream conditions, confirmed the sensitivity of roughness-induced transition to freestream disturbance levels. Surveys of the laminar boundary layer on a 7deg half-angle sharp-tipped cone were performed via hot-wire anemometry and pitot-pressure measurements. The measured mean mass-flux and Mach-number profiles agreed very well with computed mean-flow profiles. Finally, surveys of the boundary layer developing downstream of an isolated roughness element on the cone were performed. The measurements revealed an instability in the far wake of the roughness element that grows exponentially and has peak frequencies in the 150 to 250 kHz range.

  8. An Investigation of the Effect of a Highly Favorable Pressure Gradient on Boundary-Layer Transition as Caused by Various Types of Roughnesses on a 10-foot-Diameter Hemisphere at Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Peterson, John B., Jr.; Horton, Elmer A.

    1959-01-01

    Tests were made on a 10-foot-diameter hemispherical nose at Reynolds numbers up to 10 x 10(exp 6) and at a maximum Mach number of about 0.1 to determine the effects of a highly favorable pressure gradient on boundary-layer transition caused by roughness. Both two-dimensional and three-dimensional roughness particles were used, and the transition of the boundary layer was determined by hot-wire anemometers. The roughness Reynolds number for transition R(sub k,t) caused by three-dimensional particles such as Carborundum grains, spherical particles, and rimmed craters was found. The results show that for particles immersed in the boundary layer, R(sub k,t) is independent of the particle size or position on the hemispherical nose and depends mainly on the height-to-width ratio of the particle. The values of R(sub k,t) found on the hemispherical nose compare closely with those previously found on a flat plate and on airfoils with roughness. For two-dimensional roughness, the ratio of roughness height to boundary-layer displacement thickness necessary to cause transition was found to increase appreciably as the roughness was moved forward on the nose. Also included in the investigation were studies of the spread of turbulence behind a single particle of roughness and the effect of holes such as pressure orifices.

  9. Electrochemical machining process for forming surface roughness elements on a gas turbine shroud

    DOEpatents

    Lee, Ching-Pang; Johnson, Robert Alan; Wei, Bin; Wang, Hsin-Pang

    2002-01-01

    The back side recessed cooling surface of a shroud defining in part the hot gas path of a turbine is electrochemically machined to provide surface roughness elements and spaces therebetween to increase the heat transfer coefficient. To accomplish this, an electrode with insulating dielectric portions and non-insulating portions is disposed in opposition to the cooling surface. By passing an electrolyte between the cooling surface and electrode and applying an electrical current between the electrode and a shroud, roughness elements and spaces therebetween are formed in the cooling surface in opposition to the insulating and non-insulating portions of the electrode, hence increasing the surface area and heat transfer coefficient of the shroud.

  10. Developing a Multi-Element Geospace Investigation to Understand the Impact of Hemispheric Assymetry

    NASA Astrophysics Data System (ADS)

    Paxton, L. J.; Newell, P. T.; Stromme, A.; Ridley, A. J.; Kozyra, J. U.; Mitchell, E. J.

    2014-12-01

    One of the fundamental questions in space science is: How is the Earth system, which is enclosed within a shielding magnetic field, influenced by the space environment? In a broader context: How important is an intrinsic magnetic field to the evolution of a planet's atmosphere (and the development of life or of a spacefaring society)? The space science community has addressed focused aspects of this question first and only recently has begun to take an integrated view of the problem by using models to "connect the dots" between the Sun and the Earth. We are also developing new capabilities to investigate the coupling from the lower atmosphere (troposphere and stratosphere). Despite these advances, we have yet to discover how big a difference the lower atmosphere makes in the response of the upper atmosphere to geomagnetic disturbances. Furthermore addressing the larger issues (i.e., how lack of symmetry between the hemispheres causes new features to emerge and drives changes in the global system dynamics) are beyond current capabilities. There are a number of fundamental issues that need to be resolved to make further progress but the primary challenge is to remove the spatial and temporal ambiguity of measurements and to do so in an affordable way. In this paper we review the questions and formulate an integrated, observation- and model-based approach. Our primary focus is on high latitudes and, in particular, on the difference between the Northern and Southern Hemispheres both in terms of drivers and response. To address that issue we are developing a Multi-Element Geospace Investigation (MEGI) consisting of ground-, air- and space-based instruments. International collaboration is a key element as is the ability to seamlessly connect scientists and information (data and model results as well as analysis products). Our posited architecture will be discussed as will our plans to submit this concept as an NSF MREFC proposal.

  11. Infrared thermography of transition due to isolated roughness elements in hypersonic flows

    NASA Astrophysics Data System (ADS)

    Avallone, F.; Schrijer, F. F. J.; Cardone, G.

    2016-02-01

    Boundary layer transition in high-speed flows is a phenomenon that despite extensive research over the years is still extremely hard to predict. The presence of protrusions or gaps can lead to an accelerated laminar-to-turbulent transition enhancing the thermal loads and the skin friction coefficient. In the current investigation, inverse heat transfer measurements using infrared thermography are performed on the flow past different roughness geometries in the form of cylinders and diamond at free stream Mach number equal to 7.5, h/δ ranging between 0.5 and 0.9 (where h is the roughness height and δ is the boundary layer thickness), and Reθ ranging between 1305 and 2450. The roughness elements are positioned on a 5° ramp placed at zero angle of attack. The measurements indicate that the roughness geometry influences the transitional pattern while the frontal area influences both the transition location and the maximum value of the Stanton number along the centreline. Moreover, there is a strong connection between the streamwise centreline Stanton number and the spreading of the wake width. In particular, the transition process is characterized by an approximately constant wake width. Differently, the wake width spreads at the location where the streamwise centreline Stanton number reaches the turbulent level. This point corresponds to a local maximum of the wake amplitude defined as one half of the maximum spanwise variation of the Stanton number.

  12. Bubble-induced sheet cavitation inception on an isolated roughness element

    NASA Astrophysics Data System (ADS)

    van Rijsbergen, Martijn; Slot, Jesse

    2015-12-01

    The nucleation process on an isolated roughness element, located at the point of minimum pressure of a NACA 0015 hydrofoil was studied experimentally and computationally. The objective of this study was to investigate the working mechanism of bubble-induced sheet cavitation inception. High-speed micro-scale observations show the generation of a streak of cavitation—attached to the roughness element—in the wake of the bubble. Below its critical diameter, the bubble can detach from the streak cavity and travel on while the streak cavity remains. The solutions of a Rayleigh-Plesset equation along a streamline extracted from a RANS calculation show strong similarities with the experimental observations, but a factor 5 to 10 higher frame rate is needed to validate the calculations.

  13. The effect of concrete floor roughness on bovine claws using finite element analysis.

    PubMed

    Franck, A; Verhegghe, B; De Belie, N

    2008-01-01

    The interaction between bovine claws and a concrete floor with defined roughness and friction coefficients is described using a finite element model. The model was built by using x-ray tomography scanner images of an unloaded fore and hind bovine claw. These images were used to reproduce the geometry of the claw horn capsule, which was used to create a finite element model. Young's moduli of 382, 261, and 13.6 MPa were attributed to the dorsal wall horn, abaxial and axial wall horn, and bulb horn, respectively. Poisson's ratio was set at 0.38. The horn was considered an isotropic elastic material. The model was completed by introducing a rigid support that simulated a concrete floor. The floor was moved to establish contact with the claw and was loaded with a force of 2 or 6 kN. The top border area of the horn capsule was fixed, but angular rotations were allowed. With this model, the effect of varying floor roughness and claw-floor friction on contact pressures and von Mises stresses in the claw horn could be evaluated. This was demonstrated by simulating the contact between the claw models and a smooth and rough floor with a center-line roughness value R(a) of 0 or 0.175 mm, respectively, either without friction or with a static coefficient of friction of 0.75 and a dynamic coefficient of friction of 0.65. Contact pressures ranged from 2.14 to 27.55 MPa. The roughness of the floor was the main determinant in subsequent contact pressures. Maximum von Mises stresses were registered in the claw sole and were mostly between 5.04 and 16.44 MPa, but could be higher in specific situations. The variables claw (fore or hind) and floor (smooth or rough) had significant effects on the contact pressures; in addition, the floor resulted in significantly different von Mises stresses in the claw horn. The variable friction (frictionless or with friction) had a significant effect on the von Mises stresses. The load did not result in significantly different contact pressures and

  14. The effect of a small isolated roughness element on the forces on a sphere in uniform flow

    NASA Astrophysics Data System (ADS)

    Norman, A. K.; McKeon, B. J.

    2011-10-01

    The effect of an isolated roughness element on the forces on a sphere was examined for a Reynolds number range of 5 × 104 < Re < 5 × 105 using a novel sting-mounted sphere apparatus. The roughness element was a circular cylinder, and its width and height was varied to be 1, 2, and 4% of the sphere diameter. At subcritical Re, a lateral force is produced in the direction of the roughness, while at supercritical Re, the force is in the opposite direction. This is caused by asymmetric boundary layer separation, as shown using particle image velocimetry. At supercritical Re, a roughness element that is only 1% the sphere diameter produces a lift to drag ratio of almost one. It was found that the isolated roughness element has the largest effect on the lateral forces when it is located between a streamwise angle of about 40° and 80°. In addition to the mean forces, the unsteady forces were also measured. It was found that at subcritical Re, vortex shedding is aligned to the plane of the roughness element. In addition, the probability distribution of the forces was nearly Gaussian for subcritical Re, but for supercritical Re, the skewness and kurtosis deviate from Gaussian, and the details are dependent on the roughness size. A simple model developed for the vortical structure formed behind the roughness element can be extended to explain aspects of nominally smooth sphere flow, in which external disturbances perturb the sphere boundary layer in an azimuthally local sense. These results also form the basis of comparison for an investigation into the effectiveness of a moving isolated roughness element for manipulating sphere flow.

  15. Computational Study of Laminar Flow Control on a Subsonic Swept Wing Using Discrete Roughness Elements

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; Streett, Craig L.; Carpenter, Mark H.

    2011-01-01

    A combination of parabolized stability equations and secondary instability theory has been applied to a low-speed swept airfoil model with a chord Reynolds number of 7.15 million, with the goals of (i) evaluating this methodology in the context of transition prediction for a known configuration for which roughness based crossflow transition control has been demonstrated under flight conditions and (ii) of analyzing the mechanism of transition delay via the introduction of discrete roughness elements (DRE). Roughness based transition control involves controlled seeding of suitable, subdominant crossflow modes, so as to weaken the growth of naturally occurring, linearly more unstable crossflow modes. Therefore, a synthesis of receptivity, linear and nonlinear growth of stationary crossflow disturbances, and the ensuing development of high frequency secondary instabilities is desirable to understand the experimentally observed transition behavior. With further validation, such higher fidelity prediction methodology could be utilized to assess the potential for crossflow transition control at even higher Reynolds numbers, where experimental data is currently unavailable.

  16. Using Large-Scale Roughness Elements to Control Sand and Dust Flux at the Keeler Dunes, Keeler, CA

    NASA Astrophysics Data System (ADS)

    Gillies, John; McCarley-Holder, Grace

    2014-05-01

    Controlling dust emission from areas that subsequently degrade air quality and threaten human and animal health and reduce the quality of life for people residing in proximity to such sources is necessary, but also challenging. Recent research has indicated that arrays of large roughness elements (height >0.3 m) can be used effectively to modulate sand transport and the associated dust emissions. Prediction of the rate of sand flux reduction as a function of downwind distance upon entering an array of roughness elements, and the equilibrium flux reduction in the interior of the array is possible using the known geometric properties of the roughness elements, their number, and published relationships. Air quality in the town of Keeler, CA (36 deg 29' 17.92" N, 117 deg 52' 24.62" W) is degraded by levels of particulate matter <10 µm aerodynamic diameter (PM10) during periods of elevated wind speeds due to sand transport and dust emissions in the nearby Keeler Dunes. A demonstration project was designed to evaluate the effectiveness of an array of roughness elements composed of solid elements and managed vegetation to meet sand and dust flux reduction criteria. This project has two major goals: 1) to demonstrate that solid roughness elements placed on areas of the Keeler Dunes immediately arrest sand movement to specified levels (target of 85% reduction), and 2) to assess whether native plant species, planted in the sheltered area of the solid roughness elements can effectively thrive and subsequently replace the solid roughness to achieve the desired sand flux reduction control efficiency. This poster describes the results related mostly to objective one, as considerable time has to pass before sufficient data will be obtained to evaluate the success of the planted and managed vegetation to achieve a control level provided by the solid element roughness array.

  17. Investigation of turbulent wedges generated by different single surface roughness elements

    NASA Astrophysics Data System (ADS)

    Traphan, Dominik; Meinlschmidt, Peter; Lutz, Otto; Peinke, Joachim; Gülker, Gerd

    2013-11-01

    It is known that small faults on rotor blades of wind turbines can cause significant power loss. In order to better understand the governing physical effects, in this experimental study, the formation of a turbulent wedge over a flat plate induced by single surface roughness elements is under investigation. The experiments are performed at different ambient pressure gradients, thus allowing conclusions about the formation of a turbulent wedge over an airfoil. With respect to typical initial faults on operating airfoils, the roughness elements are modified in both size and shape (raised or recessed). None intrusive experimental methods, such as stereoscopic PIV and LDA, enable investigations based on temporally and spatially highly resolved velocity measurements. In this way, a spectral analysis of the turbulent boundary layer is performed and differences in coherent structures within the wedge are identified. These findings are correlated with global measurements of the wedge carried out by infrared thermography. This correlation aims to enable distinguishing the cause and main properties of a turbulent wedge by the easy applicable method of infrared thermography, which is of practical relevance in the field of condition monitoring of wind turbines.

  18. Investigations of Effects of Surface Temperature and Single Roughness Elements on Boundary-Layer Transition

    NASA Technical Reports Server (NTRS)

    Liepmann, Hans W; Fila, Gertrude H

    1947-01-01

    The laminar boundary layer and the position of the transition point were investigated on a heated flat plate. It was found that the Reynolds number of transition decreased as the temperature of the plate is increased. It is shown from simple qualitative analytical considerations that the effect of variable viscosity in the boundary layer due to the temperature difference produces a velocity profile with an inflection point if the wall temperature is higher than the free-stream temperature. This profile is confirmed by measurements. The instability of inflection-point profiles is discussed. Studies of the flow in the wake of large, two-dimensional roughness elements are presented. It is shown that a boundary-layer can separate and reattach itself to the wall without having transition take place.

  19. The Effects of Surface Roughness on the NEAR XRS Elemental Results: Monte-Carlo Modeling

    NASA Technical Reports Server (NTRS)

    Lin, Lucy F.; Nittler, Larry R.

    2011-01-01

    The objective of the NEAR-Shoemaker X-ray Gamma-Ray Spec1roscopy ("XGRS") investigation was to determine the elemental composition of the near-Earth asteroid 433 Eros. The X-ray Spectrometer (XRS) system measured the characteristic fluorescence of six major elements (Mg, Al, Si, S, Ca, Fe) in the 1-10 keV energy range excited by the interaction of solar X-rays with the upper 100 microns of the surface of 433 Eros. Various investigators, using both laboratory experiments and computer simulations have established that X-ray fluorescent line ratios can be influenced by small-scale surface roughness at high incidence or emission angles. The effect on the line ratio is specific to the geometry, excitation spectrum, and composition involved, In general, however, the effect is only substantial for ratios of lines with a significant energy difference between them: Fe/Si and Ca/Si are much more likely to be affected than AI/Si or Mg/Si. We apply a Monte-Carlo code to the specific geometry and spectrum of a major NEAR XRS solar flare observation, using an H chondrite composition as the substrate. The seventeen most abundant elements were included in the composition model, from oxygen to titanium.

  20. Turbulence analysis of rough wall channel flows based on direct numerical simulation

    SciTech Connect

    Mishra, A. V.; Bolotnov, I. A.

    2012-07-01

    Direct numerical simulation (DNS) of rough wall channel flows was performed for various surface roughnesses. The goal of the presented research is to investigate the effect of nucleating bubbles in subcooled boiling conditions on the turbulence. The nucleating bubbles are represented by hemispherical roughness elements at the wall. The stabilized finite element based code, PHASTA, is used to perform the simulations. Validation against theoretical, experimental and numerical data is performed for smooth channel flow and rectangular rod type of roughness. The presence of roughness elements affects the flow structure within the roughness sublayer, which is estimated to be 5 times the height of roughness elements. DNS observations are consistent with this result and demonstrate the flow homogeneity above 50 viscous units. The influence of roughness elements layout and density on the turbulence parameters is also demonstrated and analyzed. (authors)

  1. Modelling NDE pulse-echo inspection of misorientated planar rough defects using an elastic finite element method

    SciTech Connect

    Pettit, J. R.; Lowe, M. J. S.; Walker, A. E.

    2015-03-31

    Pulse-echo ultrasonic NDE examination of large pressure vessel forgings is a design and construction code requirement in the power generation industry. Such inspections aim to size and characterise potential defects that may have formed during the forging process. Typically these defects have a range of orientations and surface roughnesses which can greatly affect ultrasonic wave scattering behaviour. Ultrasonic modelling techniques can provide insight into defect response and therefore aid in characterisation. However, analytical approaches to solving these scattering problems can become inaccurate, especially when applied to increasingly complex defect geometries. To overcome these limitations a elastic Finite Element (FE) method has been developed to simulate pulse-echo inspections of embedded planar defects. The FE model comprises a significantly reduced spatial domain allowing for a Monte-Carlo based approach to consider multiple realisations of defect orientation and surface roughness. The results confirm that defects aligned perpendicular to the path of beam propagation attenuate ultrasonic signals according to the level of surface roughness. However, for defects orientated away from this plane, surface roughness can increase the magnitude of the scattered component propagating back along the path of the incident beam. This study therefore highlights instances where defect roughness increases the magnitude of ultrasonic scattered signals, as opposed to attenuation which is more often assumed.

  2. Improved detection of rough defects for ultrasonic NDE inspections based on finite element modeling of elastic wave scattering

    SciTech Connect

    Pettit, J. R.; Walker, A.; Lowe, M. J. S.

    2014-02-18

    Defects which posses rough surfaces greatly affect ultrasonic wave scattering behaviour, often reducing the magnitude of reflected signals. Ultrasonic inspections rely upon this response for detecting and sizing flaws. For safety critical components reliable characterisation is crucial. Therefore, providing an accurate means to predict reductions in signal amplitude is essential. An extension of Kirchhoff theory has formed the basis for the UK power industry inspection justifications. However, it is widely recognised that these predictions are pessimistic owing to analytical approximations. A numerical full field modelling approach does not fall victim to such limitations. Here, a Finite Element model is used to aid in setting a non-conservative reporting threshold during the inspection of a large pressure vessel forging that might contain embedded rough defects. The ultrasonic response from multiple rough surfaces defined by the same statistical class is calculated for normal incident compression waves. The approach is validated by comparing coherent scattering with predictions made by Kirchhoff theory. At lower levels of roughness excellent agreement is observed, whilst higher values confirm the pessimism of Kirchhoff theory. Furthermore, the mean amplitude in the specular direction is calculated. This represents the information obtained during an inspection, indicating that reductions due to increasing roughness are significantly less than the coherent component currently being used.

  3. Application of Plenoptic PIV for 3D Velocity Measurements Over Roughness Elements in a Refractive Index Matched Facility

    NASA Astrophysics Data System (ADS)

    Thurow, Brian; Johnson, Kyle; Kim, Taehoon; Blois, Gianluca; Best, Jim; Christensen, Ken

    2014-11-01

    The application of Plenoptic PIV in a Refractive Index Matched (RIM) facility housed at Illinois is presented. Plenoptic PIV is an emerging 3D diagnostic that exploits the light-field imaging capabilities of a plenoptic camera. Plenoptic cameras utilize a microlens array to measure the position and angle of light rays captured by the camera. 3D/3C velocity fields are determined through application of the MART algorithm for volume reconstruction and a conventional 3D cross-correlation PIV algorithm. The RIM facility is a recirculating tunnel with a 62.5% aqueous solution of sodium iodide used as the working fluid. Its resulting index of 1.49 is equal to that of acrylic. Plenoptic PIV was used to measure the 3D velocity field of a turbulent boundary layer flow over a smooth wall, a single wall-mounted hemisphere and a full array of hemispheres (i.e. a rough wall) with a k/ δ ~ 4.6. Preliminary time averaged and instantaneous 3D velocity fields will be presented. This material is based upon work supported by the National Science Foundation under Grant No. 1235726.

  4. Analytical modeling and three-dimensional finite element simulation of line edge roughness in scatterometry.

    PubMed

    Kato, Akiko; Burger, Sven; Scholze, Frank

    2012-09-20

    The influence of edge roughness in angle-resolved scatterometry at periodically structured surfaces is investigated. A good description of the radiation interaction with structured surfaces is crucial for the understanding of optical imaging processes such as, e.g., in photolithography. We compared an analytical two-dimensional (2D) model and a numerical three-dimensional simulation with respect to the characterization of 2D diffraction of a line grating involving structure roughness. The results show a remarkably high agreement. The diffraction intensities of a rough structure can therefore be estimated using the numerical simulation result of an undisturbed structure and an analytically derived correction function. This work allows to improve scatterometric results for the case of practically relevant 2D structures. PMID:23033013

  5. Towards transition modelling for supersonic laminar flow control based on spanwise periodic roughness elements.

    PubMed

    Choudhari, Meelan; Chang, Chau-Lyan; Jiang, Li

    2005-05-15

    Laminar flow control (LFC) is one of the key enabling technologies for quiet and efficient supersonic aircraft. Recent work at Arizona State University (ASU) has led to a novel concept for passive LFC, which employs distributed leading edge roughness to limit the growth of naturally dominant crossflow instabilities in a swept-wing boundary layer. Predicated on nonlinear modification of the mean boundary-layer flow via controlled receptivity, the ASU concept requires a holistic prediction approach that accounts for all major stages within transition in an integrated manner. As a first step in developing an engineering methodology for the design and optimization of roughness-based supersonic LFC, this paper reports on canonical findings related to receptivity plus linear and nonlinear development of stationary crossflow instabilities on a Mach 2.4, 73 degrees swept airfoil with a chord Reynolds number of 16.3 million.

  6. In-flight receptivity experiments on a 30-degree swept-wing using micron-sized discrete roughness elements

    NASA Astrophysics Data System (ADS)

    Carpenter, Andrew Lee

    2009-12-01

    One of the last remaining challenges preventing the laminarization of swept-wings is the control of unstable crossflow vortices. In low-disturbance environments the transition from laminar to turbulent flow on the swept-wing initially takes the path of receptivity, where surface roughness or disturbances in the environment introduce short-wavelength disturbances into the boundary layer. This is followed by development and linear growth of stationary crossflow vortices that modify the mean flow, changing the stability characteristics of the boundary layer. Finally, breakdown to turbulence occurs over a short length scale due to the high-frequency secondary instability. The receptivity mechanism is the least understood, yet holds the most promise for providing a laminar flow control strategy. Results of a 3-year flight test program focused on receptivity measurements and laminar flow control on a 30-degree swept-wing are presented. A swept-wing test article was mounted on the port wing of a Cessna O-2A aircraft and operated at a chord Reynolds number of 6.5 to 7.5 million. Spanwise-periodic, micron-sized discrete roughness elements were applied at the leading edge of the swept-wing in order to excite the most unstable crossflow wavelength and promote early boundary-layer transition. An infrared camera was used to detect boundary-layer transition due to changes in leading-edge roughness. Combined with the IR camera, a new technique of calibrating surface-mounted hotfilms was developed for making disturbance-amplitude measurements downstream of modulated roughness heights. This technique proved to be effective at measuring disturbance amplitudes and can be applied in future tests where instrumentation is limited. Furthermore, laminar flow control was performed with subcritically-spaced roughness. A 100% increase in the region of laminar flow was achieved for some of the conditions tested here.

  7. Wall-drag measurements of smooth- and rough-wall turbulent boundary layers using a floating element

    NASA Astrophysics Data System (ADS)

    Baars, W. J.; Squire, D. T.; Talluru, K. M.; Abbassi, M. R.; Hutchins, N.; Marusic, I.

    2016-05-01

    The mean wall shear stress, overline{τ }_w, is a fundamental variable for characterizing turbulent boundary layers. Ideally, overline{τ }_w is measured by a direct means and the use of floating elements has long been proposed. However, previous such devices have proven to be problematic due to low signal-to-noise ratios. In this paper, we present new direct measurements of overline{τ }_w where high signal-to-noise ratios are achieved using a new design of a large-scale floating element with a surface area of 3 m (streamwise) × 1 m (spanwise). These dimensions ensure a strong measurement signal, while any error associated with an integral measurement of overline{τ }_w is negligible in Melbourne's large-scale turbulent boundary layer facility. Wall-drag induced by both smooth- and rough-wall zero-pressure-gradient flows are considered. Results for the smooth-wall friction coefficient, C_f ≡ overline{τ }_w/q_{∞}, follow a Coles-Fernholz relation C_f = [ 1/κ ln ( Re_{θ }) + C] ^{-2} to within 3 % (κ = 0.38 and C = 3.7) for a momentum thickness-based Reynolds number, Re_{θ } > 15{,}000. The agreement improves for higher Reynolds numbers to <1 % deviation for Re_{θ } > 38{,}000. This smooth-wall benchmark verification of the experimental apparatus is critical before attempting any rough-wall studies. For a rough-wall configuration with P36 grit sandpaper, measurements were performed for 10{,}500< Re_{θ } < 88{,}500, for which the wall-drag indicates the anticipated trend from the transitionally to the fully rough regime.

  8. Experimental investigation of the modification of the flow field, past instream vegetation elements, for distinct bedsurface roughness.

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Yagci, Oral; Kitsikoudis, Vasileios; Koursari, Eftychia

    2015-04-01

    The presence of vegetation in rivers and estuaries has important implications for the modification of the flow field and sediment transport. In-stream vegetation has the potential to regulate the morphology and ecological health of a surface water body, and as such it finds a wide range of applications. Even though a number of controls influencing the local flow field past aquatic vegetation elements or patches of instream vegetation have been identified (such as shape, areal density, size and flexibility), conclusive evidence is lacking, particularly on how sediment transport processes are affected. Here, an experimental study is designed to identify how the flow field past different types of elements simulating in-stream emergent vegetation is modified. Two sets of experiments are conducted, each with a distinct value of high and low hydraulic roughness for the bed surface. In both experiments a rigid cylindrical element, a patch of rigid tubes and a plant shaped element (Cupressus Macrocarpa), simulating instream emergent vegetation are utilized. The flow field is measured at various locations downstream the element and average and turbulent flow statistics are obtained at near bed, mid-flow depth and near the water surface regions. It is found that different structural aspects of the elements, particularly the geometry, can significantly affect the flow field downstream the elements. Specifically, the average flow profiles are practically restored to near ambient flow conditions at about 5 diameters downstream the rigid element, while this happens at longer distances for the other elements. The flow structures shed past the elements are also very distinct, as confirmed via appropriately designed fluorescent dye flow visualizations. Potential ecosystem feedbacks and implications for formation of geospatial patterns are also discussed.

  9. Validated heat-transfer and pressure-drop prediction methods based on the discrete element method: Phase 1, Three-dimensiional roughness

    SciTech Connect

    Taylor, R.P.; Hodge, B.K.

    1992-02-01

    A computer program based on the discrete element method has been developed and validated to compute friction factors and Nusselt numbers for fully developed turbulent flow and heat transfer in pipes with three-dimensional roughness elements. Computational results are compared with appropriate cases from heat transfer experiments in the literature. The predictions were in general in very good agreement with the experimental data.

  10. Receptivity of a laminar boundary layer to the interaction of a three-dimensional roughness element with time-harmonic free-stream disturbances

    NASA Technical Reports Server (NTRS)

    Tadjfar, M.; Bodonyi, R. J.

    1992-01-01

    Receptivity of a laminar boundary layer to the interaction of time-harmonic free-stream disturbances with a 3D roughness element is studied. The 3D nonlinear triple-deck equations are solved numerically to provide the basic steady-state motion. At high Reynolds numbers, the governing equations for the unsteady motion are the unsteady linearized 3D triple-deck equations. These equations can only be solved numerically. In the absence of any roughness element, the free-stream disturbances, to the first order, produce the classical Stokes flow, in the thin Stokes layer near the wall (on the order of our lower deck). However, with the introduction of a small 3D roughness element, the interaction between the hump and the Stokes flow introduces a spectrum of all spatial disturbances inside the boundary layer.

  11. Finite Element Method Simulations of the Near-Field Enhancement at the Vicinity of Fractal Rough Metallic Surfaces

    SciTech Connect

    Micic, Miodrag; Klymyshyn, Nicholas A.; Lu, H PETER.

    2004-03-04

    Near-field optical enhancement at metal surfaces and methods such as surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), fluorescent quenching and enhancement, and various near-field scanning microscopies (NSOM) all depend on a metals surface properties, mainly on its morphology and SPR resonant frequency. We report on simulations of the influence of different surface morphologies on electromagnetic field enhancements at the rough surfaces of noble metals and also evaluate the optimal conditions for the generation of a surface-enhanced Raman signal of absorbed species on a metallic substrate. All simulations were performed with a classical electrodynamics approach using the full set of Maxwells equations, which were solved with the three-dimensional finite element method (FEM). Two different classes of surfaces where modeled using fractals, representing diffusion limited aggregation growth dendritic structures, such as one on the surface of electrodes, and second one representing the sponge-like structure used to model surfaces of particles with high porosity, such as metal coated catalyst supports. The simulations depict the high inhomogeneity of an enhanced electromagnetic field as both a field enhancement and field attenuation near the surface. While the diffusion limited aggregation dendritical fractals enhanced the near-field electromagnetic field, the sponge fractals significantly reduced the local electromagnetic field intensity. Moreover, the fractal orders of the fractal objects did not significantly alter the total enhancement, and the distribution of a near-field enhancement was essentially invariant to the changes in the angle of an incoming laser beam.

  12. Numerical investigation of hypersonic flat-plate boundary layer transition mechanism induced by different roughness shapes

    NASA Astrophysics Data System (ADS)

    Zhou, Yunlong; Zhao, Yunfei; Xu, Dan; Chai, Zhenxia; Liu, Wei

    2016-10-01

    The roughness-induced laminar-turbulent boundary layer transition is significant for high-speed aerospace applications. The transition mechanism is closely related to the roughness shape. In this paper, high-order numerical method is used to investigate the effect of roughness shape on the flat-plate laminar-to-turbulent boundary layer transition. Computations are performed in both the supersonic and hypersonic regimes (free-stream Mach number from 3.37 up to 6.63) for the square, cylinder, diamond and hemisphere roughness elements. It is observed that the square and diamond roughness elements are more effective in inducing transition compared with the cylinder and hemisphere ones. The square roughness element has the longest separated region in which strong unsteadiness exists and the absolute instability is formed, thus resulting in the earliest transition. The diamond roughness element has a maximum width of the separated region leading to the widest turbulent wake region far downstream. Furthermore, transition location moves backward as the Mach number increases, which indicates that the compressibility significantly suppresses the roughness-induced boundary layer transition.

  13. Simulation of the enhancement factor from an individual 3D hemisphere-on-post field emitter by using finite elements method.

    PubMed

    Roveri, D S; Sant'Anna, G M; Bertan, H H; Mologni, J F; Alves, M A R; Braga, E S

    2016-01-01

    This paper presents a 3D computational framework for evaluating electrostatic properties of a single field emitter characterized by the hemisphere-on-post geometry. Numerical simulations employed the finite elements method by using Ansys-Maxwell software. Extensive parametric simulations were focused on the threshold distance from which the emitter field enhancement factor (γ) becomes independent from the anode-substrate gap (G). This investigation allowed demonstrating that the ratio between G and the emitter height (h) is a reliable reference for a broad range of emitter dimensions; furthermore, results permitted establishing G/h ≥ 2.2 as the threshold condition for setting the anode without affecting γ.

  14. Right Hemisphere and Left Hemisphere: Pedagogical Implications for CSL Reading.

    ERIC Educational Resources Information Center

    Mickel, Stanley L.

    Students can be taught to read Chinese more efficiently and accurately by using the specific capabilities of the right and left hemispheres of the brain. The right hemisphere is the site of image and pattern recognition, and students can be taught to use those capacities to process individual characters efficiently by watching for the element of…

  15. Right Hemisphere Brain Damage

    MedlinePlus

    ... Language and Swallowing / Disorders and Diseases Right Hemisphere Brain Damage [ en Español ] What is right hemisphere brain ... right hemisphere brain damage ? What is right hemisphere brain damage? Right hemisphere brain damage (RHD) is damage ...

  16. Experimental study of noise emitted by circular cylinders with large roughness

    NASA Astrophysics Data System (ADS)

    Alomar, Antoni; Angland, David; Zhang, Xin; Molin, Nicolas

    2014-12-01

    The aerodynamic noise generated by high Reynolds number flow around a bluff body with large surface roughness was investigated. This is a relevant problem in many applications, in particular aircraft landing gear noise. A circular cylinder in cross-flow and a zero-pressure-gradient turbulent boundary layer with various types of roughness was tested in a series of wind tunnel experiments. It has been shown that distributed roughness covering a circular cylinder affects the spectra over the entire frequency range. Roughness noise is dominant at high frequencies, and the peak frequency is well described by Howe's roughness noise model when scaled with the maximum outer velocity. There are differences between hemispherical and cylindrical roughness elements for both the circular cylinder and the zero-pressure-gradient turbulent boundary layer cases, indicating a dependence on roughness shape, not described by the considered roughness noise models. Cylindrical roughness generates higher noise levels at the highest frequencies, especially for the zero-pressure-gradient turbulent boundary layer case. Cable-type roughness aligned with the mean flow does not generate roughness noise, and its spectrum has been found to collapse with the smooth cylinder at medium and high frequencies. At low and medium frequencies the noise spectra have the same features as the smooth cylinder, but with higher shedding peak levels and fall-off levels, despite the decrease in spanwise correlation length. Roughness induces early separation, and thus a shift of the spectra to lower frequencies.

  17. Full Wave Analysis of RF Signal Attenuation in a Lossy Rough Surface Cave using a High Order Time Domain Vector Finite Element Method

    SciTech Connect

    Pingenot, J; Rieben, R; White, D; Dudley, D

    2005-10-31

    We present a computational study of signal propagation and attenuation of a 200 MHz planar loop antenna in a cave environment. The cave is modeled as a straight and lossy random rough wall. To simulate a broad frequency band, the full wave Maxwell equations are solved directly in the time domain via a high order vector finite element discretization using the massively parallel CEM code EMSolve. The numerical technique is first verified against theoretical results for a planar loop antenna in a smooth lossy cave. The simulation is then performed for a series of random rough surface meshes in order to generate statistical data for the propagation and attenuation properties of the antenna in a cave environment. Results for the mean and variance of the power spectral density of the electric field are presented and discussed.

  18. Discrete Roughness Effects on High-Speed Boundary Layers

    NASA Astrophysics Data System (ADS)

    Iyer, Prahladh Satyanarayanan

    This dissertation studies the effects of a discrete roughness element on a high-speed boundary layer using Direct Numerical Simulations (DNS) on unstructured grids. Flow past a cylindrical roughness element placed perpendicular to the flow and a hemispherical bump is studied. A compressible linear stability theory (LST) solver for parallel flows is developed based on the algorithm by Malik and validated for a range of Mach numbers ranging from incompressible to Mach 10. The evolution of the perturbations from DNS is validated with the linear stability solver making the DNS algorithm suitable to study transition problems. Flow past a cylindrical roughness element at Mach 8.12 is simulated using DNS and the velocity profiles in the symmetry and wall---parallel planes are compared to the experiments of Bathel et al.. The flow remains steady and laminar, and does not transition. Overall, good agreement is observed between DNS and experiments, thus validating our algorithm to study effect of roughness on high-speed flows. However, differences are observed in the separation region upstream and recirculation region downstream of the roughness. The DNS results are used to quantify possible uncertainties in the measurement technique as suggested by Danehy [20]. The effect of upstream injection (5% of the free-stream velocity) is also simulated to quantify its effects on the velocity profiles to mimic the injection of NO into air in the experiment. While the boundary layer thickness of the flow increases downstream of the injection location, its effect on the velocity profiles is small when the profiles are scaled with the boundary layer thickness. Flow past a hemispherical bump at Mach 3.37, 5.26 and 8.23 are simulated using DNS with the flow conditions matching the experiments of Danehy et al. to understand the different flow features associated with the flow and the physical mechanism that causes the flow to transition to turbulence. It is observed that the Mach 3.37 and

  19. Critical assessment of finite element analysis applied to metal-oxide interface roughness in oxidising zirconium alloys

    NASA Astrophysics Data System (ADS)

    Platt, P.; Frankel, P.; Gass, M.; Preuss, M.

    2015-09-01

    As a nuclear fuel cladding material, zirconium alloys act as a barrier between the fuel and pressurised steam or lithiated water environment. Controlling degradation mechanisms such as oxidation is essential to extending the in-service lifetime of the fuel. At temperatures of ∼360 °C zirconium alloys are known to exhibit cyclical, approximately cubic corrosion kinetics. With acceleration in the oxidation kinetics occurring every ∼2 μm of oxide growth, and being associated with the formation of a network of lateral cracks. Finite element analysis has been used previously to explain the lateral crack formation by the development of localised out-of-plane tensile stresses at the metal-oxide interface. This work uses the Abaqus finite element code to assess critically current approaches to representing the oxidation of zirconium alloys, with relation to undulations at the metal-oxide interface and localised stress generation. This includes comparison of axisymmetric and 3D quartered modelling approaches, and investigates the effect of interface geometry and plasticity in the metal substrate. Particular focus is placed on the application of the anisotropic strain tensor used to represent the oxidation mechanism, which is typically applied with a fixed coordinate system. Assessment of the impact of the tensor showed that 99% of the localised tensile stresses originated from the out-of-plane component of the strain tensor, rather than the in-plane expansion as was previously thought. Discussion is given to the difficulties associated with this modelling approach and the requirements for future simulations of the oxidation of zirconium alloys.

  20. Outgoing Hemisphere

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This mosaic shows the planet Mercury as seen by Mariner 10 as it sped away from the planet on March 29, 1974. The mosaic was made from over 140 individual TV frames taken about two hours after encounter, at a range of 37,300 miles (60,000 kilometers). North is at top. The limb is at right, as is the illuminating sunlight. The equator crosses the planet about two-thirds of the way from the top of the disc. The terminator, line-separating day from night, is about 190 degrees west longitude. The planet shows a gibbous disc-more than half-illuminated. This hemisphere is dominated by smooth plains, rather than heavily cratered terrain, and resembles portions of the Moon's maria in general shape. Half of a very large, multi-ringed basin named Caloris Basin appears near the center of the disc near the terminator. Its surrounding mountain ring is 800 miles (1,300 kilometers) in diameter.

    The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    Image Credit: NASA/JPL/Northwestern University

  1. Measurement and prediction of the effects of nonuniform surface roughness on turbulent flow friction coefficients

    NASA Astrophysics Data System (ADS)

    Taylor, Robert P.; Scaggs, W. F.; Coleman, Hugh W.

    The status of prediction methods for friction coefficients in turbulent flows over nonuniform or random rough surfaces is reviewed. Experimental data for friction factors in fully developed pipe flows with Reynolds numbers between 10,000 and 600,000 are presented for two nonuniform rough surfaces. One surface was roughened with a mixture of cones and hemispheres which had the same height and base diameter and were arranged in a uniform array. The other surface was roughened with a mixture of two sizes of cones and two sizes of hemispheres. These data are compared with predictions made using the previously published discrete element prediction approach of Taylor, Coleman and Hodge. The agreement between the data and the predictions is excellent.

  2. Investigation of the influence of a step change in surface roughness on turbulent heat transfer

    NASA Technical Reports Server (NTRS)

    Taylor, Robert P.; Coleman, Hugh W.; Taylor, J. Keith; Hosni, M. H.

    1991-01-01

    The use is studied of smooth heat flux gages on the otherwise very rough SSME fuel pump turbine blades. To gain insights into behavior of such installations, fluid mechanics and heat transfer data were collected and are reported for a turbulent boundary layer over a surface with a step change from a rough surface to a smooth surface. The first 0.9 m length of the flat plate test surface was roughened with 1.27 mm hemispheres in a staggered, uniform array spaced 2 base diameters apart. The remaining 1.5 m length was smooth. The effect of the alignment of the smooth surface with respect to the rough surface was also studied by conducting experiments with the smooth surface aligned with the bases or alternatively with the crests of the roughness elements. Stanton number distributions, skin friction distributions, and boundary layer profiles of temperature and velocity are reported and are compared to previous data for both all rough and all smooth wall cases. The experiments show that the step change from rough to smooth has a dramatic effect on the convective heat transfer. It is concluded that use of smooth heat flux gages on otherwise rough surfaces could cause large errors.

  3. Hemispheric Asymmetries in Substorm Recovery Time Scales

    NASA Technical Reports Server (NTRS)

    Fillingim, M. O.; Chua, D H.; Germany, G. A.; Spann, James F.

    2009-01-01

    Previous statistical observations have shown that the recovery time scales of substorms occurring in the winter and near equinox (when the nighttime auroral zone was in darkness) are roughly twice as long as the recovery time scales for substorms occurring in the summer (when the nighttime auroral region was sunlit). This suggests that auroral substorms in the northern and southern hemispheres develop asymmetrically during solstice conditions with substorms lasting longer in the winter (dark) hemisphere than in the summer (sunlit) hemisphere. Additionally, this implies that more energy is deposited by electron precipitation in the winter hemisphere than in the summer one during substorms. This result, coupled with previous observations that have shown that auroral activity is more common when the ionosphere is in darkness and is suppressed when the ionosphere is in daylight, strongly suggests that the ionospheric conductivity plays an important role governing how magnetospheric energy is transferred to the ionosphere during substorms. Therefore, the ionosphere itself may dictate how much energy it will accept from the magnetosphere during substorms rather than this being an externally imposed quantity. Here, we extend our earlier work by statistically analyzing the recovery time scales for a large number of substorms observed in the conjugate hemispheres simultaneously by two orbiting global auroral imagers: Polar UVI and IMAGE FUV. Our current results are consistent with previous observations. The recovery time scales are observed to be longer in the winter (dark) hemisphere while the auroral activity has a shorter duration in the summer (sunlit) hemisphere. This leads to an asymmetric energy input from the magnetosphere to the ionosphere with more energy being deposited in the winter hemisphere than in the summer hemisphere.

  4. Radar-aeolian roughness project

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Dobrovolskis, A.; Gaddis, L.; Iversen, J. D.; Lancaster, N.; Leach, Rodman N.; Rasnussen, K.; Saunders, S.; Vanzyl, J.; Wall, S.

    1991-01-01

    The objective is to establish an empirical relationship between measurements of radar, aeolian, and surface roughness on a variety of natural surfaces and to understand the underlying physical causes. This relationship will form the basis for developing a predictive equation to derive aeolian roughness from radar backscatter. Results are given from investigations carried out in 1989 on the principal elements of the project, with separate sections on field studies, radar data analysis, laboratory simulations, and development of theory for planetary applications.

  5. Measurement and prediction of rough wall effects on friction factor - Uniform roughness results

    NASA Astrophysics Data System (ADS)

    Scaggs, W. F.; Taylor, Robert P.; Coleman, Hugh W.

    The results of an experimental investigation of the effects of surface roughness on turbulent pipe flow friction factors are presented and compared with predictions from a previously published discrete element roughness model. Friction factor data were acquired over a pipe Reynolds number range from 10,000 to 600,000 for nine different uniformly rough surfaces. These surfaces covered a range of roughness element sizes, spacings and shapes. Predictions from the discrete element roughness model were in very good agreement with the data.

  6. Dynamic contribution to hemispheric mean temperature trends

    SciTech Connect

    Wallace, J.M.; Zhang, Y.; Renwick, J.A.

    1995-11-03

    On the basis of land station data from the Northern Hemisphere, it was determined that roughly half of the temporal variance of monthly mean hemispheric mean anomalies in surface air temperature during the period from 1900 through 1990 were linearly related to the amplitude of a distinctive spatial pattern in which the oceans are anomalously cold and the continents are anomalously warm poleward of 40 degrees north when the hemisphere is warm. Apart from an upward trend since 1975, to which El Nino has contributed, the amplitude time series associated with this pattern resembles seasonally dependent white noise. it is argued that the variability associated with this pattern is dynamically induced and is not necessarily an integral part of the fingerprint of global warming. 12 refs., 5 figs., 1 tab.

  7. Io's Kanehekili Hemisphere

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This color composite of Io, acquired by Galileo during its ninth orbit (C9) of Jupiter, shows the hemisphere of Io which is centered at longitude 52 degrees. The dark feature just to the lower right of the center of the disk is called Kanehekili. Named after an Hawaiian thunder god, Kanehekili contains two persistent high temperature hot spots and a 'new' active volcanic plume. NASA's Voyager spacecraft returned images of nine active plumes during its 1979 flyby of this dynamic satellite. To date, Galileo's plume monitoring observations have shown continued activity at four of those nine plume locations as well as new activity at six other locations.

    North is to the top of the picture which combines images acquired using violet, green, and near-infrared (756 micrometers) filters. The resolution is 21 kilometers per picture element. The images were taken on June 27, 1997 at a range of 1,033,000 kilometers by the solid state imaging (CCD) system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  8. Hemispheric specialization for language.

    PubMed

    Josse, Goulven; Tzourio-Mazoyer, Nathalie

    2004-01-01

    Hemispheric specialization for language is one of the most robust findings of cognitive neuroscience. In this review, we first present the main hypotheses about the origins of this important aspect of brain organization. These theories are based in part on the main approaches to hemispheric specialization: studies of aphasia, anatomical asymmetries and, nowadays, neuroimaging. All these approaches uncovered a large inter-individual variability which became the bulk of research on hemispheric specialization. This is why, in a second part of the review, we present the main facts about inter-individual variability, trying to relate findings to the theories presented in the first part. This review focuses on neuroimaging as it has recently given important results, thanks to investigations of both anatomical and functional asymmetries in healthy subjects. Such investigations have confirmed that left-handers, especially "familial left-handers", are more likely to have an atypical pattern of hemispheric specialization for language. Differences between men and women seem less evident although a less marked hemispheric specialization for language was depicted in women. As for the supposed relationship between anatomical and functional asymmetries, it has been shown that the size of the left (not the right) planum temporale could explain part of the variability of left hemispheric specialization for language comprehension. Taken as a whole, findings seem to vary with language tasks and brain regions, therefore showing that hemispheric specialization for language is multi-dimensional. This is not accounted for in the existing models of hemispheric specialization. PMID:14739000

  9. Hemispherical micro-resonators from atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Gray, Jason M.; Houlton, John P.; Gertsch, Jonas C.; Brown, Joseph J.; Rogers, Charles T.; George, Steven M.; Bright, Victor M.

    2014-12-01

    Hemispherical shell micro-resonators may be used as gyroscopes to potentially enable precision inertial navigation and guidance at low cost and size. Such devices require a high degree of symmetry and large quality factors (Q). Fabricating the devices from atomic layer deposition (ALD) facilitates symmetry through ALD’s high conformality and low surface roughness. To maximize Q, the shells’ geometry is optimized using finite element method (FEM) studies to reduce thermoelastic dissipation and anchor loss. The shells are fabricated by etching hemispherical molds in Si (1 1 1) substrates with a 2:7:1 volumetric ratio of hydrofluoric:nitric:acetic acids, and conformally coating and patterning the molds with ALD Al2O3. The Al2O3 shells are then released from the surrounding Si substrate with an SF6 plasma. The resulting shells typically have radii around 50 µm and thicknesses close to 50 nm. The shells are highly symmetric, with radial deviations between 0.22 and 0.49%, and robust enough to be driven on resonance at amplitudes 10 × their thickness, sufficient to visualize the resonance mode shapes in an SEM. Resonance frequencies are around 60 kHz, with Q values between 1000 and 2000. This Q is lower than the 106 predicted by FEM, implying that Q is being limited by unmodeled sources of energy loss, most likely from surface effects or material defects.

  10. Use of a liquid-crystal, heater-element composite for quantitative, high-resolution heat transfer coefficients on a turbine airfoil, including turbulence and surface roughness effects

    NASA Astrophysics Data System (ADS)

    Hippensteele, Steven A.; Russell, Louis M.; Torres, Felix J.

    1987-05-01

    Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at roon temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.

  11. Use of a liquid-crystal, heater-element composite for quantitative, high-resolution heat transfer coefficients on a turbine airfoil, including turbulence and surface roughness effects

    NASA Technical Reports Server (NTRS)

    Hippensteele, Steven A.; Russell, Louis M.; Torres, Felix J.

    1987-01-01

    Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at roon temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.

  12. Electrokinetic transport in microchannels with random roughness

    SciTech Connect

    Wang, Moran; Kang, Qinjun

    2008-01-01

    We present a numerical framework to model the electrokinetic transport in microchannels with random roughness. The three-dimensional microstructure of the rough channel is generated by a random generation-growth method with three statistical parameters to control the number density, the total volume fraction, and the anisotropy characteristics of roughness elements. The governing equations for the electrokinetic transport are solved by a high-efficiency lattice Poisson?Boltzmann method in complex geometries. The effects from the geometric characteristics of roughness on the electrokinetic transport in microchannels are therefore modeled and analyzed. For a given total roughness volume fraction, a higher number density leads to a lower fluctuation because of the random factors. The electroosmotic flow rate increases with the roughness number density nearly logarithmically for a given volume fraction of roughness but decreases with the volume fraction for a given roughness number density. When both the volume fraction and the number density of roughness are given, the electroosmotic flow rate is enhanced by the increase of the characteristic length along the external electric field direction but is reduced by that in the direction across the channel. For a given microstructure of the rough microchannel, the electroosmotic flow rate decreases with the Debye length. It is found that the shape resistance of roughness is responsible for the flow rate reduction in the rough channel compared to the smooth channel even for very thin double layers, and hence plays an important role in microchannel electroosmotic flows.

  13. Southern hemisphere observations

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne

    Because of insurmountable problems associated with absolute dating, the non-literate cultures of the Southern Hemisphere can contribute little to Applied Historical Astronomy, although Maori traditions document a possible supernova dating to the period 1000-1770 AD. In contrast, the abundant nineteenth century solar, planetary, cometary and stellar observational data provided by Southern Hemisphere professional and amateur observatories can serve as an invaluable mine of information for present-day astronomers seeking to incorporate historical data in their investigations.

  14. Hemispherical Laue camera

    DOEpatents

    Li, James C. M.; Chu, Sungnee G.

    1980-01-01

    A hemispherical Laue camera comprises a crystal sample mount for positioning a sample to be analyzed at the center of sphere of a hemispherical, X-radiation sensitive film cassette, a collimator, a stationary or rotating sample mount and a set of standard spherical projection spheres. X-radiation generated from an external source is directed through the collimator to impinge onto the single crystal sample on the stationary mount. The diffracted beam is recorded on the hemispherical X-radiation sensitive film mounted inside the hemispherical film cassette in either transmission or back-reflection geometry. The distances travelled by X-radiation diffracted from the crystal to the hemispherical film are the same for all crystal planes which satisfy Bragg's Law. The recorded diffraction spots or Laue spots on the film thereby preserve both the symmetry information of the crystal structure and the relative intensities which are directly related to the relative structure factors of the crystal orientations. The diffraction pattern on the exposed film is compared with the known diffraction pattern on one of the standard spherical projection spheres for a specific crystal structure to determine the orientation of the crystal sample. By replacing the stationary sample support with a rotating sample mount, the hemispherical Laue camera can be used for crystal structure determination in a manner previously provided in conventional Debye-Scherrer cameras.

  15. Transition Experiments on Blunt Bodies with Distributed Roughness in Hypersonic Free Flight in Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Wilder, Michael C.; Reda, Daniel C.; Prabhu, Dinesh K.

    2015-01-01

    Blunt-body geometries were flown through carbon dioxide in the NASA Ames Hypervelocity Free Flight Aerodynamic Facility to investigate the influence of distributed surface roughness on transition to turbulence in CO2-dominated atmospheres, such as those of Mars and Venus. Tests were also performed in air for direct comparison with archival results. Models of hemispherical and spherically-blunted large-angle conical geometries were flown at speeds between 2.8 km/s and 5.1 km/s and freestream pressures between 50 Torr and 228 Torr. Transition fronts were determined from global surface heat flux distributions measured using thermal imaging techniques. Distributed surface roughness was produced by grit-blasting the model surfaces. Real-gas Navier-Stokes solutions were used to calculate non-dimensional correlating parameters at the measured transition onset locations. Transition-onset locations correlated well with a constant roughness Reynolds number based on the mean roughness element height. The critical roughness Reynolds number for transition onset determined for flight in CO2 was 223 +/- 25%. This mean value is lower than the critical value of 250 +/- 20% previously-established from tests conducted in air, but within the bounds of the expected measurement uncertainty.

  16. A model for rough wall turbulent heating and skin friction

    NASA Astrophysics Data System (ADS)

    Finson, M. L.

    1982-01-01

    A Reynolds stress model for turbulent boundary layers on rough walls is used to investigate the effects of roughness character and compressibility. The flow around roughness elements is treated as form drag. A method is presented for deriving the required roughness shape and spacing from profiometer surface measurements. Calculations based on the model compare satisfactorily with low speed data on roughness character and hypersonic measurements with grit roughness. The computer model is exercised systematically over a wide range of parameters to derive a practical scaling law for the equivalent roughness. In contrast to previous correlations, for most roughness element shapes the effective roughness does not show a pronounced maximum as the element spacing decreases. The effect of roughness tends to be reduced with increasing edge Mach number, primarily due to decreasing density in the vicinity of the roughness elements. It is further shown that the required roughness Reynolds number for fully rough behavior increases with increasing Mach number, explaining the small roughness effects observed in some hypersonic tests.

  17. Study of turbulent boundary layers over rough surfaces with emphasis n the effects of roughness character and Mach number

    NASA Astrophysics Data System (ADS)

    Finson, M. L.

    1982-02-01

    A Reynolds stress model for turbulent boundary layers on rough walls is used to investigate the effects of roughness character and compressibility. The flow around roughness elements is treated as form drag. A method is presented for deriving the required roughness shape and spacing from profilometer surface measurements. Calculations based on the model compare satisfactorily with low speed data on roughness character and hypersonic measurements with grit roughness. The computer model is exercised systematically over a wide range of parameters to derive a practical scaling law for the equivalent roughness. In contrast to previous correlations, for most roughness element shapes the effective roughness is not predicted to show a pronounced maximum as the element spacing decreases. The effect of roughness tends to be reduced with increasing edge Mach number, primarily due to decreasing density in the vicinity of the roughness elements. It is further shown that the required roughness Reynolds number for fully rough behavior increases with increasing Mach number, explaining the small roughness effects observed in some hypersonic tests.

  18. Hemispheric lateralization in reasoning.

    PubMed

    Turner, Benjamin O; Marinsek, Nicole; Ryhal, Emily; Miller, Michael B

    2015-11-01

    A growing body of evidence suggests that reasoning in humans relies on a number of related processes whose neural loci are largely lateralized to one hemisphere or the other. A recent review of this evidence concluded that the patterns of lateralization observed are organized according to two complementary tendencies. The left hemisphere attempts to reduce uncertainty by drawing inferences or creating explanations, even at the cost of ignoring conflicting evidence or generating implausible explanations. Conversely, the right hemisphere aims to reduce conflict by rejecting or refining explanations that are no longer tenable in the face of new evidence. In healthy adults, the hemispheres work together to achieve a balance between certainty and consistency, and a wealth of neuropsychological research supports the notion that upsetting this balance results in various failures in reasoning, including delusions. However, support for this model from the neuroimaging literature is mixed. Here, we examine the evidence for this framework from multiple research domains, including an activation likelihood estimation analysis of functional magnetic resonance imaging studies of reasoning. Our results suggest a need to either revise this model as it applies to healthy adults or to develop better tools for assessing lateralization in these individuals. PMID:26426534

  19. Hemispheric Asymmetries in Children.

    ERIC Educational Resources Information Center

    Lewandowski, Lawrence

    1982-01-01

    Hemispheric specialization tasks were given to different-aged boys. Asymmetries were demonstrated on manual, visual, and auditory tasks; however, the degree of asymmetries did not change across age groups. There appears to be a dissociation between visual and auditory perceptual asymmetries. (Author/RD)

  20. Effect of roughness on water flow through a single rough fracture

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Zhou, Z.; WANG, J.; Guo, Q.; Dou, Z.

    2015-12-01

    A single fracture (SF) usually has rough surfaces with points of contact. Though relative roughness was considered in quantifying flow through a single rough fracture (SRF) previously, additional factors such as the distribution of rough elements and bending degree of streamlines are rarely considered before. Semi-empirical friction factor (f) and discharge per unit width (q) equations are first deduced based on the consideration of relative roughness, roughness elements distribution and streamline reattachment length in this study. A horizontal SRF model is set up and a series of experiments and simulations are performed. Main conclusions are drawn: recirculation of streamlines occurred in the rough element and its intensity increases with the entering angle of the streamlines into the element and Reynolds number (Re); streamlines are discontinuously distributed when asperity height is large, leading to departure from Darcy's law (non-linear flow); the non-linearity of flow increases with the asperity height and Re; the relative roughness for not affecting water flow through a SRF should be much less than 0.033, a benchmark value commonly used previously for neglecting the roughness effect; the revised f and q equations under laminar flow through a SRF are shown to be better than previously proposed equations.

  1. Extensive wetting due to roughness

    SciTech Connect

    Yost, F.G.; Michael, J.R.; Eisenmann, E.T. . Center for Solder Science and Technology)

    1995-01-01

    Typically, a small mass of eutectic Sn-Pb solder wets a copper surface and flows radially outward to form a hemispherical shape with a contact angle of approx. 15--20 deg. When a similar mass of solder wets and thick electroless copper coated substrate, rapid radial flow commences and surprising new effects occur. Thick coats of electroless copper have a nodular surface structure and spreading on it does not subside until all solder is consumed. When the nodular structure is wetted by solder a coastline'' with many nearby islands'' are defined. Photos of regions at the wetting front were taken in the backscatter imaging mode of an SEM. These images show that solder wets the valleys between the surface nodules forming a delicate, lacy arrangement. The geometry of this coastal'' solder structure is described as fractal-like having a dimension D = 1.38 making it similar to drying fronts and cloud configurations. The importance of surface roughness in wetting phenomena is discussed in the light of an extensive history on the subject. It is shown that for spontaneous flow, assisted by roughness, the surface geometry must consist of local angles that are larger than the equilibrium contact angle. Kinetics of the wetting process are demonstrated by image analysis of wetted area taken from videotaped experiments. These experimental kinetics are shown to be similar in form to flow in open channel capillaries.

  2. Comparing Experiment and Computation of Hypersonic Laminar Boundary Layers with Isolated Roughness

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Iyer, Prahladh S.; Mahesh, Krishnan; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Johansen, Craig T.

    2014-01-01

    Streamwise velocity profile behavior in a hypersonic laminar boundary layer in the presence of an isolated roughness element is presented for an edge Mach number of 8.2. Two different roughness element types are considered: a 2-mm tall, 4-mm diameter cylinder, and a 2-mm radius hemisphere. Measurements of the streamwise velocity behavior using nitric oxide (NO) planar laser-induced fluorescence (PLIF) molecular tagging velocimetry (MTV) have been performed on a 20-degree wedge model. The top surface of this model acts as a flat-plate and is oriented at 5 degrees with respect to the freestream flow. Computations using direct numerical simulation (DNS) of these flows have been performed and are compared to the measured velocity profiles. Particular attention is given to the characteristics of velocity profiles immediately upstream and downstream of the roughness elements. In these regions, the streamwise flow can experience strong deceleration or acceleration. An analysis in which experimentally measured MTV profile displacements are compared with DNS particle displacements is performed to determine if the assumption of constant velocity over the duration of the MTV measurement is valid. This assumption is typically made when reporting MTV-measured velocity profiles, and may result in significant errors when comparing MTV measurements to computations in regions with strong deceleration or acceleration. The DNS computations with the cylindrical roughness element presented in this paper were performed with and without air injection from a rectangular slot upstream of the cylinder. This was done to determine the extent to which gas seeding in the MTV measurements perturbs the boundary layer flowfield.

  3. Right-hemisphere specialization for contour grouping.

    PubMed

    Volberg, Gregor

    2014-01-01

    Previous studies often revealed a right-hemisphere specialization for processing the global level of compound visual stimuli. Here we explore whether a similar specialization exists for the detection of intersected contours defined by a chain of local elements. Subjects were presented with arrays of randomly oriented Gabor patches that could contain a global path of collinearly arranged elements in the left or in the right visual hemifield. As expected, the detection accuracy was higher for contours presented to the left visual field/right hemisphere. This difference was absent in two control conditions where the smoothness of the contour was decreased. The results demonstrate that the contour detection, often considered to be driven by lateral coactivation in primary visual cortex, relies on higher-level visual representations that differ between the hemispheres. Furthermore, because contour and non-contour stimuli had the same spatial frequency spectra, the results challenge the view that the right-hemisphere advantage in global processing depends on a specialization for processing low spatial frequencies.

  4. Investigations of rough surface effects on friction factors in turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Taylor, Robert P.; Coleman, Hugh W.; Scaggs, W. F.

    1988-02-01

    The results of an experimental investigation of the effects of surface roughness on turbulent pipe flow friction factors are presented and compared with predictions from a discrete element roughness model which had been developed previously. Friction factor data were acquired over a pipe Reynolds number range from 10,000 to 600,000 for eleven different rough surfaces, nine of which had uniform roughness elements and two of which were roughened nonuniformly. These surfaces covered a range of roughness element sizes, spacings and shapes. Predictions from the discrete element roughness model were in very good agreement with the data for both the uniform and nonuniform roughness cases.

  5. Modeling surface roughness scattering in metallic nanowires

    SciTech Connect

    Moors, Kristof; Sorée, Bart; Magnus, Wim

    2015-09-28

    Ando's model provides a rigorous quantum-mechanical framework for electron-surface roughness scattering, based on the detailed roughness structure. We apply this method to metallic nanowires and improve the model introducing surface roughness distribution functions on a finite domain with analytical expressions for the average surface roughness matrix elements. This approach is valid for any roughness size and extends beyond the commonly used Prange-Nee approximation. The resistivity scaling is obtained from the self-consistent relaxation time solution of the Boltzmann transport equation and is compared to Prange-Nee's approach and other known methods. The results show that a substantial drop in resistivity can be obtained for certain diameters by achieving a large momentum gap between Fermi level states with positive and negative momentum in the transport direction.

  6. Triton's Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This polar projection of Triton's southern hemisphere provides a view of the southern polar cap and bright equatorial fringe. The margin of the cap is scalloped and ranges in latitude from +10 degrees to -30 degrees. The bright fringe is closely associated with the cap's margin; from it, diffuse bright rays extend north-northeast for hundreds of kilometers. The bright fringe probably consists of very fresh nitrogen frost or snow, and the rays consist of bright-fringe materials that were redistributed by north-moving Coriolis-deflected winds.

  7. Roughness and function

    NASA Astrophysics Data System (ADS)

    Thomas, T. R.

    2014-01-01

    A function map is used to locate applications of roughness in separation-velocity space. The importance of roughness in contact mechanics is demonstrated and versions of the plasticity index are introduced and compared. Case studies of roughness and function are presented from tribology and the life sciences. Tribological examples are taken from the automotive industry and include the manufacture of vehicle bodies, and drive train tribology, particularly cylinder liner, cam and gearbox friction and wear. From the life sciences, problems of prosthetic fixation and tribology are shown to depend on roughness. The interaction of haptics and surface finish is described and illustrated. A number of other areas of application are listed. Finally the likely future importance of structured surfaces is discussed.

  8. Neptune's Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This photograph of Neptune's southern hemisphere was taken by the narrow-angle camera on NASA's Voyager 2 when the spacecraft was 4.2 million km (2.6 million miles) from the planet. The smallest features that can be seen are 38 km (24 miles) across. The almond-shaped structure at the left is a large cloud system that has been seen for several weeks. Internal details in the feature have become increasingly apparent as Voyager 2 has approached. Systems with similar shapes in Jupiter's atmosphere rotate about their centers, rolling in the local winds that increase toward the south. However, the wispy nature of the white central clouds in this Neptunian feature make confirmation of the system's rotation difficult. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.

  9. Direct numerical simulation of turbulent flow in a channel with different types of surface roughness

    NASA Astrophysics Data System (ADS)

    Bolotnov, Igor A.

    2011-11-01

    Direct numerical simulation (DNS) was performed for turbulent channel flow (Reτ = 400) for two types of wall surface roughness and well as smooth walls. The roughness elements of first type were assumed to be two-dimensional, transverse square rods positioned on both walls in a non-staggered arrangement. The height of the rods corresponds to y+ = 13.6 and thus extends in the buffer layer. The second type of roughness was represented by a set of hemispherical obstacles (height of y+ = 10) located on both channel walls and arranged on a square lattice. The presented simulations are part of benchmark problems defined by thermal-hydraulics focus area of the Consortium for Advanced Simulations of Light Water Reactors (CASL). This problem simulates the effect of the presence of growing bubbles on the walls of nuclear reactor fuel rods and aimed on evaluating CFD capabilities of various codes before applying them to more advanced problems. Mean turbulent quantities were computed and compared with available analytical and experimental results. The results of this work will be used to evaluate the performance of other LES and RANS codes on this benchmark problem. Supported by Consortium for Advanced Simulation of Light Water Reactors (CASL).

  10. The Relative Surface Roughness of the two Sides of Iapetus

    NASA Astrophysics Data System (ADS)

    Lee, J.; Buratti, B.; Mosher, J.

    2007-12-01

    We apply Cassini ISS (Imaging Science Subsystem) data from the January 1st, 2005 flyby of Iapetus to a surface roughness model originally developed by Buratti and Veverka (1985). Since macroscopic features of topography alter the scattering properties of a planetary surface (Schoenberg, 1925; Hameen-Antilla et al., 1965; Hapke, 1966, 1984; Veverka and Wasserman, 1972; Lumme and Bowell, 1981; Buratti et al., 1985), this model uses the observed scattering behavior to provide a depth to radius factor q quantifying the size of craters on the surface. Relative surface roughness of the low albedo (leading) hemisphere and high albedo (trailing) hemisphere can then be determined by comparing the value for the two hemispheres, and any differences observed will provide an estimate of the depth of the dark material. Our preliminary findings show marked differences in macroscopic roughness between the high and low albedo hemispheres, indicating that the surface on the dark side is much smoother than the bright. Our results further suggest that the dark material is substantial enough to cause significant infilling of the craters on the dark side. Funded by the NASA Space Grant.

  11. Callisto Hemispherical Globes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The images used for the base of this globe were chosen from the best image quality and moderate resolution coverage supplied by Galileo SSI and Voyager 1 and 2 (Batson, 1987; Becker and others, 1998; Becker and others, 1999; Becker and others, 2001). The digital map was produced using Integrated Software for Imagers and Spectrometers (ISIS) (Eliason, 1997; Gaddis and others, 1997; Torson and Becker, 1997). The individual images were radiometrically calibrated and photometrically normalized using a Lunar-Lambert function with empirically derived values (McEwen, 1991; Kirk and others, 2000). A linear correction based on the statistics of all overlapping areas was then applied to minimize image brightness variations. The image data were selected on the basis of overall image quality, reasonable original input resolution (from 20 km/pixel for gap fill to as much as 150 m/pixel), and availability of moderate emission/incidence angles for topography. Although consistency was achieved where possible, different filters were included for global image coverage as necessary: clear for Voyager 1 and 2; clear and green (559 nm) for Galileo SSI. Individual images were projected to a Sinusoidal Equal-Area projection at an image resolution of 1.0 kilometer/pixel, and a final global mosaic was constructed in this same projection. The final mosaic was enhanced using commercial software. The global mosaic was then reprojected so that the entire surface of Callisto is portrayed in a manner suitable for the production of a globe. A specialized program was used to create the 'flower petal' appearance of the images; the area of each petal from 0 to 75 degrees latitude is in the Transverse Mercator projection, and the area from 75 to 90 degrees latitude is in the Lambert Azimuthal Equal-Area projection. The projections for adjacent petals overlap by 2 degrees of longitude, so that some features are shown twice. The northern hemisphere is shown on the left, and the southern hemisphere is

  12. Moon - Western Hemisphere

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This image of the western hemisphere of the Moon was taken through a green filter by the Galileo spacecraft at 9:35 a.m. PST Dec. 9 at a range of about 350,000 miles. In the center is the Orientale Basin, 600 miles in diameter, formed about 3.8 billion years ago by the impact of an asteroid-size body. Orientale's dark center is a small mare. To the right is the lunar nearside with the great, dark Oceanus Procellarum above and the small, circular, dark Mare Humorum below. Maria are broad plains formed mostly over 3 billion years ago as vast basaltic lava flows. To the left is the lunar far side with fewer maria but, at lower left, the South-Pole-Aitken basin, about 1200 miles in diameter, which resembles Orientale but is much older and more weathered and battered by cratering. The intervening cratered highlands of both sides, as well as the maria, are dotted with bright, young craters. This image was 'reprojected' so as to center the Orientale Basin, and was filtered to enhance the visibility of small features. The digital image processing was done by DLR, the German Aerospace Research Establishment near Munich, an international collaborator in the Galileo mission.

  13. Callisto's Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These views of Callisto's southern hemisphere were taken by the Near Infrared Mapping Spectrometer just after closest approach in orbit G8 on May 6, 1997. These false color images show surface compositional differences, red = more ice, blue = less ice.

    The upper left view contains Buri, a crater with a diameter of about 60 km. In the infrared spectrum, Buri and the rays that extend from the crater have high abundance of water ice compared to the surrounding region. The center view, a large (200 km or 120 mile diameter) unnamed impact crater with a distinct ring or circle around it reveals a complex mix of ice and non-ice materials. This is possibly due to impact excavation of the ice-rich subsurface which suggests that the darker material is just a thin surface covering caused by impact debris or a lag deposit from which the ice has evaporated away. The infrared data shows spectral signatures for both sulfur and carbon as two potential materials which could play a part in the complicated make-up of Callisto's surface.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  14. Detonation in TATB Hemispheres

    SciTech Connect

    Druce, B; Souers, P C; Chow, C; Roeske, F; Vitello, P; Hrousis, C

    2004-03-17

    Streak camera breakout and Fabry-Perot interferometer data have been taken on the outer surface of 1.80 g/cm{sup 3} TATB hemispherical boosters initiated by slapper detonators at three temperatures. The slapper causes breakout to occur at 54{sup o} at ambient temperatures and 42{sup o} at -54 C, where the axis of rotation is 0{sup o}. The Fabry velocities may be associated with pressures, and these decrease for large timing delays in breakout seen at the colder temperatures. At room temperature, the Fabry pressures appear constant at all angles. Both fresh and decade-old explosive are tested and no difference is seen. The problem has been modeled with reactive flow. Adjustment of the JWL for temperature makes little difference, but cooling to -54 C decreases the rate constant by 1/6th. The problem was run both at constant density and with density differences using two different codes. The ambient code results show that a density difference is probably there but it cannot be quantified.

  15. Inter-hemispheric asymmetry of Pedersen conductance

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Lu, Y.; Sheng, C.; Yue, X.

    2015-12-01

    Ionospheric conductance is very important to the magnetosphere-ionosphere coupling in the high latitude region, since it connects the polar cap potential with the currents. Meanwhile, the altitudinal distribution of Pederson conductance gives us a rough idea about the altitudinal distribution of Joule heating at high latitudes. Based on the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites observations of electron density profiles from 2009-2014, Pedersen conductivity has been calculated. A climatologic study of the height-integrated Pedersen conductivities in both E (100-150 km) and F (150-600 km) regions and their ratio in different seasons, solar and geomagnetic conditions have been conducted. A significant inter-hemispheric asymmetry is identified in the seasonal variation. Meanwhile, the conductance in both regions and the conductance ratio show a strong dependence on F10.7 and Ap indices. This result will strongly help our understanding of the inter-hemispheric difference in the high-latitude electrodynamics.

  16. The Southern Hemisphere VLBI experiment

    SciTech Connect

    Preston, R.A.; Meier, D.L.; Louie, A.P.; Morabito, D.D.; Skjerve, L.; Slade, M.A.; Niell, A.E.; Wehrle, A.E.; Jauncey, D.L.; Tzioumis, A.K.; Haystack Observatory, Westford, MA; California Univ., Los Angeles; CSIRO, Div. of Radiophysics, Epping; Sydney Univ.; Manchester Victoria Univ., Jodrell Bank )

    1989-07-01

    Six radio telescopes were operated as the first Southern Hemisphere VLBI array in April and May 1982. Observations were made at 2.3 and 8.4 GHz. This array provided VLBI modeling and hybrid imaging of celestial radio sources in the Southern Hemisphere, high-accuracy VLBI geodesy between Southern Hemisphere sites, and subarcsecond radio astrometry of celestial sources south of declination -45 deg. The goals and implementation of the array are discussed, the methods of modeling and hybrid image production are explained, and the VLBI structure of the sources that were observed is summarized. 36 refs.

  17. Bio-inspired hemispherical compound eye camera

    NASA Astrophysics Data System (ADS)

    Xiao, Jianliang; Song, Young Min; Xie, Yizhu; Malyarchuk, Viktor; Jung, Inhwa; Choi, Ki-Joong; Liu, Zhuangjian; Park, Hyunsung; Lu, Chaofeng; Kim, Rak-Hwan; Li, Rui; Crozier, Kenneth B.; Huang, Yonggang; Rogers, John A.

    2014-03-01

    Compound eyes in arthropods demonstrate distinct imaging characteristics from human eyes, with wide angle field of view, low aberrations, high acuity to motion and infinite depth of field. Artificial imaging systems with similar geometries and properties are of great interest for many applications. However, the challenges in building such systems with hemispherical, compound apposition layouts cannot be met through established planar sensor technologies and conventional optics. We present our recent progress in combining optics, materials, mechanics and integration schemes to build fully functional artificial compound eye cameras. Nearly full hemispherical shapes (about 160 degrees) with densely packed artificial ommatidia were realized. The number of ommatidia (180) is comparable to those of the eyes of fire ants and bark beetles. The devices combine elastomeric compound optical elements with deformable arrays of thin silicon photodetectors, which were fabricated in the planar geometries and then integrated and elastically transformed to hemispherical shapes. Imaging results and quantitative ray-tracing-based simulations illustrate key features of operation. These general strategies seem to be applicable to other compound eye devices, such as those inspired by moths and lacewings (refracting superposition eyes), lobster and shrimp (reflecting superposition eyes), and houseflies (neural superposition eyes).

  18. Rough surface reconstruction for ultrasonic NDE simulation

    SciTech Connect

    Choi, Wonjae; Shi, Fan; Lowe, Michael J. S.; Skelton, Elizabeth A.; Craster, Richard V.

    2014-02-18

    The reflection of ultrasound from rough surfaces is an important topic for the NDE of safety-critical components, such as pressure-containing components in power stations. The specular reflection from a rough surface of a defect is normally lower than it would be from a flat surface, so it is typical to apply a safety factor in order that justification cases for inspection planning are conservative. The study of the statistics of the rough surfaces that might be expected in candidate defects according to materials and loading, and the reflections from them, can be useful to develop arguments for realistic safety factors. This paper presents a study of real rough crack surfaces that are representative of the potential defects in pressure-containing power plant. Two-dimensional (area) values of the height of the roughness have been measured and their statistics analysed. Then a means to reconstruct model cases with similar statistics, so as to enable the creation of multiple realistic realizations of the surfaces, has been investigated, using random field theory. Rough surfaces are reconstructed, based on a real surface, and results for these two-dimensional descriptions of the original surface have been compared with those from the conventional model based on a one-dimensional correlation coefficient function. In addition, ultrasonic reflections from them are simulated using a finite element method.

  19. Heat Transfer and Friction-Factor Methods Turbulent Flow Inside Pipes 3d Rough

    1994-01-21

    Three-dimensional roughened internally enhanced tubes have been shown to be one of the most energy efficient for turbulent, forced convection applications. However, there is only one prediction method presented in the open literature and that is restricted to three-dimensional sand-grain roughness. Other roughness types are being proposed: hemispherical sectors, truncated cones, and full and truncated pyramids. There are no validated heat-transfer and friction-factor prediction methods for these different roughness shapes that can be used inmore » the transition and fully rough region. This program calculates the Nusselt number and friction factor values, for a broad range of three-dimensional roughness types such as hemispherical sectors, truncated cones, and full and truncated pyramids. Users of this program are heat-exchangers designers, enhanced tubing suppliers, and research organizations or academia who are developing or validating prediction methods.« less

  20. Roughness Induced Transition in a Supersonic Boundary Layer

    NASA Technical Reports Server (NTRS)

    Balakumar, Ponnampalam; Kergerise, Michael A.

    2013-01-01

    Direct numerical simulation is used to investigate the transition induced by threedimensional isolated roughness elements in a supersonic boundary layer at a free stream Mach number of 3.5. Simulations are performed for two different configurations: one is a square planform roughness and the other is a diamond planform roughness. The mean-flow calculations show that the roughness induces counter rotating streamwise vortices downstream of the roughness. These vortices persist for a long distance downstream and lift the low momentum fluid from the near wall region and place it near the outer part of the boundary layer. This forms highly inflectional boundary layer profiles. These observations agree with recent experimental observations. The receptivity calculations showed that the amplitudes of the mass-flux fluctuations near the neutral point for the diamond shape roughness are the same as the amplitude of the acoustic disturbances. They are three times smaller for the square shape roughness.

  1. Archimedes and the Magdeburg Hemispheres

    ERIC Educational Resources Information Center

    Hayn, Carl H.

    1975-01-01

    Weights suspended from a lever arm separate evacuated hemispheres allowing estimation of atmospheric pressure to within five percent of the barometric reading. An illustration and a reference to von Guericke's demonstration are provided. (GH)

  2. Free form hemispherical shaped charge

    DOEpatents

    Haselman, L.C. Jr.

    1996-06-04

    A hemispherical shaped charge has been modified such that one side of the hemisphere is spherical and the other is aspherical allowing a wall thickness variation in the liner. A further modification is to use an elongated hemispherical shape. The liner has a thick wall at its pole and a thin wall at the equator with a continually decreasing wall thickness from the pole to the equator. The ratio of the wall thickness from the pole to the equator varies depending on liner material and HE shape. Hemispherical shaped charges have previously been limited to spherical shapes with no variations in wall thicknesses. By redesign of the basic liner thicknesses, the jet properties of coherence, stability, and mass distribution have been significantly improved. 8 figs.

  3. Free form hemispherical shaped charge

    DOEpatents

    Haselman, Jr., Leonard C.

    1996-01-01

    A hemispherical shaped charge has been modified such that one side of the hemisphere is spherical and the other is aspherical allowing a wall thickness variation in the liner. A further modification is to use an elongated hemispherical shape. The liner has a thick wall at its pole and a thin wall at the equator with a continually decreasing wall thickness from the pole to the equator. The ratio of the wall thickness from the pole to the equator varies depending on liner material and HE shape. Hemispherical shaped charges have previously been limited to spherical shapes with no variations in wall thicknesses. By redesign of the basic liner thicknesses, the jet properties of coherence, stability, and mass distribution have been significantly improved.

  4. Brain Hemispheres and Thinking Styles.

    ERIC Educational Resources Information Center

    Gray, Esther Cappon

    1980-01-01

    The author reviews some research, particularly that of Roger Sperry, substantiating the existence of different thinking styles in the two brain hemispheres and the development of this differentiation in infancy and childhood. She draws some implications for elementary teaching. (SJL)

  5. Measurement and Correlation of Ice Accretion Roughness

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Hentschel, Daniel B.; Ruff, Gary A.

    2003-01-01

    Measurements were taken of the roughness characteristics of ice accreted on NACA 0012 airfoils in the NASA Glenn Icing Research Tunnel (IRT). Tests were conducted with size scaled, using models with chords of 26.7, 53.3, and 80.0 cm, and with liquid-water content scaled, both according to previously-tested scaling methods. The width of the smooth zone which forms on either side of the leading edge of the airfoil and the diameter of the roughness elements are presented in non-dimensional form as functions of the accumulation parameter. The smooth-zone width was found to decrease with increasing accumulation parameter. The roughness-element diameter increased with accumulation parameter until a plateau was reached. This maximum diameter was about 0.06 times twice the model leading-edge radius. Neither smooth-zone width nor element diameter were affected by a change in freezing fraction from 0.2 to 0.4. Both roughness characteristics appeared to scale with model size and with liquid-water content.

  6. Random rough surface photofabrication

    NASA Astrophysics Data System (ADS)

    Brissonneau, Vincent; Escoubas, Ludovic; Flory, François; Berginc, Gérard

    2011-10-01

    Random rough surfaces are of primary interest for their optical properties: reducing reflection at the interface or obtaining specific scattering diagram for example. Thus controlling surface statistics during the fabrication process paves the way to original and specific behaviors of reflected optical waves. We detail an experimental method allowing the fabrication of random rough surfaces showing tuned statistical properties. A two-step photoresist exposure process was developed. In order to initiate photoresist polymerization, an energy threshold needs to be reached by light exposure. This energy is brought by a uniform exposure equipment comprising UV-LEDs. This pre-exposure is studied by varying parameters such as optical power and exposure time. The second step consists in an exposure based on the Gray method.1 The speckle pattern of an enlarged scattered laser beam is used to insolate the photoresist. A specific photofabrication bench using an argon ion laser was implemented. Parameters such as exposure time and distances between optical components are discussed. Then, we describe how we modify the speckle-based exposure bench to include a spatial light modulator (SLM). The SLM used is a micromirror matrix known as Digital Micromirror Device (DMD) which allows spatial modulation by displaying binary images. Thus, the spatial beam shape can be tuned and so the speckle pattern on the photoresist is modified. As the photoresist photofabricated surface is correlated to the speckle pattern used to insolate, the roughness parameters can be adjusted.

  7. Western Hemisphere Knowledge Partnerships

    NASA Astrophysics Data System (ADS)

    Malone, T. F.

    2001-05-01

    , and application of knowledge concerning the nature of -- and interaction among -- matter, living organisms, energy, information, and human behavior. This strategy calls for innovative partnerships among the physical, biological, health, and social sciences, engineering, and the humanities. New kinds of partnership must also be forged among academia, business and industry, governments, and nongovernmental organizations. Geophysicists can play an important role in these partnerships. A focus for these partnerships is to manage the individual economic productivity that drives both human development and global change. As world population approaches stability during the twenty-first century, individual economic productivity will be the critical link between the human and the natural systems on planet Earth. AGU is among a core group of individuals and institutions proposing Western Hemisphere Knowledge Partnerships (WHKP) to test the hypothesis that knowledge, broadly construed, is an important organizing principle in choosing a path into the future. The WHKP agenda includes: (1) life-long learning, (2) the health and resilience of natural ecosystems, (3) eco-efficiency in economic production and consumption, (4) extension of national income accounts, (5) environmentally benign sources of energy, (6) delivery of health care, (7) intellectual property rights, and (8) networks for action by local communities.Collaboratories and distance education technologies will be major tools. A panel of experts will explore this proposal.

  8. Characteristics of surface roughness associated with leading edge ice accretion

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon

    1994-01-01

    Detailed size measurements of surface roughness associated with leading edge ice accretions are presented to provide information on characteristics of roughness and trends of roughness development with various icing parameters. Data was obtained from icing tests conducted in the Icing Research Tunnel (IRT) at NASA Lewis Research Center (LeRC) using a NACA 0012 airfoil. Measurements include diameters, heights, and spacing of roughness elements along with chordwise icing limits. Results confirm the existence of smooth and rough ice zones and that the boundary between the two zones (surface roughness transition region) moves upstream towards stagnation region with time. The height of roughness grows as the air temperature and the liquid water content increase, however, the airspeed has little effect on the roughness height. Results also show that the roughness in the surface roughness transition region grows during a very early stage of accretion but reaches a critical height and then remains fairly constant. Results also indicate that a uniformly distributed roughness model is only valid at a very initial stage of the ice accretion process.

  9. The work budget of rough faults

    NASA Astrophysics Data System (ADS)

    Newman, Patrick J.; Ashley Griffith, W.

    2014-12-01

    Faults in nature have measurable roughness at many scales and are not planar as generally idealized. We utilize the boundary element method to model the geomechanical response of synthetic rough faults in an isotropic, linear elastic continuum to external tectonic loading in terms of the work budget. Faults are generated with known fractal roughness parameters, including the root mean square slope (β), a measure of roughness amplitude, and the Hurst exponent (H), a measure of geometric self-similarity. Energy within the fault models is partitioned into external work (Wext), internal elastic strain energy (Wint), gravitational work (Wgrav), frictional work (Wfric), and seismic energy (Wseis). Results confirm that Wext, or work done on the external model boundaries, is smallest for a perfectly planar fault, and steadily increases with increasing β. This pattern is also observed in Wint, the energy expended in deforming the host rock. The opposite is true for gravitational work, or work done against gravity in uplifting host rock, as well as with frictional work, or energy dissipated with frictional slip on the fault, and Wseis, or seismic energy released during slip events. Effects of variation in H are not as large as for β, but Wgrav, Wfric, and Wseis increase with increasing H, with Wint and Wext decreasing across the same range. Remarkably, however, for a narrow range of roughness amplitudes which are commonly observed along natural faults, the total work of the system remains approximately constant, while slightly larger than the total work of a planar fault. Faults evolve toward the most mechanically efficient configuration; therefore we argue that this range of roughness amplitudes may represent an energy barrier, preventing faults from removing asperities and evolving to smooth, planar discontinuities. A similar conclusion is drawn from simulations at relatively shallow depths, with results showing that shallower faults have larger energy barriers, and can

  10. Rough and Tumble Play 101

    ERIC Educational Resources Information Center

    Carlson, Frances

    2009-01-01

    Many people fear that play-fighting or rough and tumble play is the same as real fighting. There is also a fear that this rough play will become real fighting if allowed to continue. Most of all, parents and teachers fear that during the course of rough and tumble play a child may be hurt. To provide for and allow children to play rough without…

  11. Pavement roughness and skid properties

    NASA Astrophysics Data System (ADS)

    Road roughness and roadway safety as it relates to both surface and air transportation are discussed. The role of road roughness in vehicle ride, the measurement of roughness, the evaluation of riding confort, and the effect of grooving pavements are discussed. The effects of differential pavement friction on the response of cars in skidding maneuvers is discussed.

  12. Determination of Joint Roughness Coefficients Using Roughness Parameters

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sic; Kang, Seong-Seung; Jang, Bo-An

    2014-11-01

    This study used precisely digitized standard roughness profiles to determine roughness parameters such as statistical and 2D discontinuity roughness, and fractal dimensions. Our methods were based on the relationship between the joint roughness coefficient (JRC) values and roughness parameters calculated using power law equations. Statistical and 2D roughness parameters, and fractal dimensions correlated well with JRC values, and had correlation coefficients of over 0.96. However, all of these relationships have a 4th profile (JRC 6-8) that deviates by more than ±5 % from the JRC values given in the standard roughness profiles. This indicates that this profile is statistically different than the others. We suggest that fractal dimensions should be measured within the entire range of the divider, instead of merely measuring values within a suitable range. Normalized intercept values also correlated with the JRC values, similarly to the fractal dimension values discussed above. The root mean square first derivative values, roughness profile indexes, 2D roughness parameter, and fractal dimension values decreased as the sampling interval increased. However, the structure function values increased very rapidly with increasing sampling intervals. This indicates that the roughness parameters are not independent of the sampling interval, and that the different relationships between the JRC values and these roughness parameters are dependent on the sampling interval.

  13. Hemispherical anomaly from asymmetric initial states

    NASA Astrophysics Data System (ADS)

    Ashoorioon, Amjad; Koivisto, Tomi

    2016-08-01

    We investigate if the hemispherical asymmetry in the CMB is produced from "asymmetric" excited initial conditions. We show that in the limit where the deviations from the Bunch-Davies vacuum are large and the scale of new physics is maximally separated from the inflationary Hubble parameter, the primordial power spectrum is modulated only by position-dependent dipole and quadrupole terms. Requiring the dipole contribution in the power spectrum to account for the observed power asymmetry, A =0.07 ±0.022 , we show that the amount of quadrupole terms is roughly equal to A2. The mean local bispectrum, which gets enhanced for the excited initial state, is within the 1 σ bound of Planck 2015 results for a large field model, fNL≃4.17 , but is reachable by future CMB experiments. The amplitude of the local non-Gaussianity modulates around this mean value, depending on the angle that the correlated patches on the 2d CMB surface make with the preferred direction. The amount of variation is minimized for the configuration in which the short and long wavelength modes are around the preferred pole and |k→3|≈|k→l ≈10|≪|k→1|≈|k→2|≈|k→l ≈2500| with fNLmin≈3.64 . The maximum occurs when these modes are at the antipode of the preferred pole, fNLmax≈4.81 . The difference of non-Gaussianity between these two configurations is as large as ≃1.17 , which can be used to distinguish this scenario from other scenarios that try to explain the observed hemispherical asymmetry.

  14. RELATIONSHIP BETWEEN THE AERODYNAMIC ROUGHNESS LENGTH AND THE ROUGHNESS DENSITY IN CASES OF LOW ROUGHNESS DENSITY

    EPA Science Inventory

    This paper presents measurements of roughness length performed in a wind tunnel for low roughness density. The experiments were performed with both compact and porous obstacles (clusters), in order to simulate the behavior of sparsely vegetated surfaces.

  15. Characteristics of density currents over regular and irregular rough surfaces

    NASA Astrophysics Data System (ADS)

    Bhaganagar, K.

    2013-12-01

    Direct numerical simulation is used as a tool to understand the effect of surface roughness on the propagation of density currents. Simulations have been performed for lock-exchange flow with gate separating the dense and the lighter fluid. As the lock is released the dense fluid collapses with the lighter fluid on the top, resulting in formation of horizontally evolving density current. The talk will focus on the fundamental differences between the propagation of the density current over regular and irregular rough surfaces. The flow statistics and the flow structures are discussed. The results have revealed the spacing between the roughness elements is an important factor in classifying the density currents. The empirical relations of the front velocity and location for the dense and sparse roughness have been evaluated in terms of the roughness height, spacing between the elements and the initial amount of lock fluid. DNS results for a dense current flowing over a (a) smooth and (b) rough bottom with egg-carton roughness elements in a regular configuration. In these simulations the lock-exchange box is located in the middle of the channel and has two gates which allow two dense currents to be generated, one moving to the right and one to the left side of the channel. Note how the dense current interface presents smaller structures when over a rough bottom (right).

  16. One-way implodable tag capsule with hemispherical beaded end cap for LWR fuel manufacturing

    DOEpatents

    Gross, K.; Lambert, J.

    1999-04-06

    A capsule is disclosed containing a tag gas in a zircaloy body portion having a hemispherical top curved toward the bottom of the body portion. The hemispherical top has a rupturable portion upon exposure to elevated gas pressure and the capsule is positioned within a fuel element in a nuclear reactor. 3 figs.

  17. Thermal Stability of Ice on Ceres with Rough Topography

    NASA Astrophysics Data System (ADS)

    Hayne, Paul O.; Aharonson, Oded

    2015-11-01

    The dwarf planet Ceres may have an ice-rich crust, and subsurface ice exposed by impacts or endogenic activity would be subject to sublimation. The “bright spots” recently discovered by the Dawn mission on the illuminated surface of Ceres have prompted speculation regarding their possible icy composition and the youthful age this might imply. Furthermore, sublimation of ice at the surface or in the interior of Ceres could explain water vapor observed on more than one occasion in the exosphere. We investigated the possible distribution and lifetimes of water ice and other volatiles on Ceres using detailed thermal models, including realistic thermophysical properties and surface roughness.Topographic shadowing creates polar cold traps where a small, but non-negligible fraction (~0.4%) of Ceres' surface is perennially below the ~110 K criterion for 1 Gyr of H2O ice stability. These areas are found above 60° latitude. Other molecules (CH3OH, NH3, SO2, CO2) may be cold-trapped in smaller abundances. A model for the transport, gravitational escape and photoionization of H2O molecules suggests net accumulation in the cold traps. At latitudes 0° - 30°, ice is stable under solar illumination only briefly (~10-100 yr), unless it has high albedo and thermal inertia, in which case lifetimes of > 104 yr are possible.Buried ice is stable within a meter for > 1 Gyr at latitudes higher than ~50°. An illuminated polar cap of water ice would be stable within a few degrees of the poles only if it maintained a high albedo (> 0.5) at present obliquity. If the obliquity exceeded 5° in the geologically recent past, then a putative polar cap would have been erased. Finally, a small hemispheric asymmetry exists due to the timing of Ceres' perihelion passage, which would lead to a detectable enhancement of ice in the northern hemisphere if the orbital elements vary slowly relative to the ice accumulation rate. Our model results are potentially testable during the Dawn science

  18. On the Mean Flow Behaviour in the Presence of Regional-Scale Surface Roughness Heterogeneity

    NASA Astrophysics Data System (ADS)

    Yang, Xiang I. A.

    2016-10-01

    A suite of large-eddy simulations of the neutral atmospheric boundary layer is conducted to study the mean flow response to the presence of surface roughness heterogeneity at regional scales (surface roughness heterogeneity on the scale of several boundary-layer heights). The roughness heterogeneity is imposed using alternating rough wall patches with numerically resolved rectangular roughness elements of different packing densities. The flow near the surface is found to adjust rapidly, reaching equilibrium conditions at distances on the order of a single inter-roughness element spacing. Despite the regional heterogeneity in surface roughness, it is often desirable to parametrize the entire rough wall using one single effective roughness height. To develop such a parametrization the model of Bou-Zeid et al. [Water Resources Research 40(2):1, 2004] is extended to incorporate the displacement height, d. Predictions from this parametrization are compared with the simulations, with reasonably good agreement.

  19. On the Mean Flow Behaviour in the Presence of Regional-Scale Surface Roughness Heterogeneity

    NASA Astrophysics Data System (ADS)

    Yang, Xiang I. A.

    2016-05-01

    A suite of large-eddy simulations of the neutral atmospheric boundary layer is conducted to study the mean flow response to the presence of surface roughness heterogeneity at regional scales (surface roughness heterogeneity on the scale of several boundary-layer heights). The roughness heterogeneity is imposed using alternating rough wall patches with numerically resolved rectangular roughness elements of different packing densities. The flow near the surface is found to adjust rapidly, reaching equilibrium conditions at distances on the order of a single inter-roughness element spacing. Despite the regional heterogeneity in surface roughness, it is often desirable to parametrize the entire rough wall using one single effective roughness height. To develop such a parametrization the model of Bou-Zeid et al. [Water Resources Research 40(2):1, 2004] is extended to incorporate the displacement height, d. Predictions from this parametrization are compared with the simulations, with reasonably good agreement.

  20. Optical roughness measurements on specially designed roughness standards

    NASA Astrophysics Data System (ADS)

    Danzl, R.; Helmli, F.; Rubert, P.; Prantl, M.

    2008-09-01

    The measurement of surface texture is one of the most common and important ways to judge the quality of a technical surface. In order to verify whether a metrology device is able to measure certain types of roughness accurately, various roughness standards with calibrated roughness values are available. While almost all roughness standards produced so far have been designed for tactile systems we demonstrate how the optical metrology device InfiniteFocus can be applied to special roughness standards that have been artificially roughened. Experiments are performed on standards with periodic structure and the results of the optical system are compared to the calibrated values obtained by tactile systems with different tip radius. Additionally the profile-based measurements are compared to area-based measurements conform to a recently developed ISO standard draft. Finally roughness measurements on real surfaces are presented.

  1. Roughness characteristics of natural channels

    USGS Publications Warehouse

    Barnes, Harry Hawthorne

    1967-01-01

    Color photographs and descriptive data are presented for 50 stream channels for which roughness coefficients have been determined. All hydraulic computations involving flow in open channels require an evaluation of the roughness characteristics of the channel. In the absence of a satisfactory quantitative procedure this evaluation remains chiefly an art. The ability to evaluate roughness coefficients must be developed through experience. One means of gaining this experience is by examining and becoming acquainted with the appearance of some typical channels whose roughness coefficients are known. The photographs and data contained in this report represent a wide range of channel conditions. Familiarity with the appearance, geometry, and roughness characteristics of these channels will improve the engineer's ability to select roughness coefficients for other channels .

  2. Surface roughness measurements

    NASA Technical Reports Server (NTRS)

    Howard, Thomas G.

    1994-01-01

    The Optics Division is currently in the research phase of producing grazing-incidence mirrors to be used in x-ray detector applications. The traditional method of construction involves labor-intensive glass grinding. This also culminates in a relatively heavy mirror. For lower resolution applications, the mirrors may be of a replicated design which involves milling a mandrel as a negative of the final shape and electroplating the cylindrical mirror onto it. The mirror is then separated from the mandrel by cooling. The mandrel will shrink more than the 'shell' (mirror) allowing it to be pulled from the mandrel. Ulmer (2) describes this technique and its variations in more detail. To date, several mirrors have been tested at MSFC by the Optical Fabrication Branch by focusing x-ray energy onto a detector with limited success. Little is known about the surface roughness of the actual mirror. Hence, the attempt to gather data on these surfaces. The test involves profiling the surface of a sample, replicating the surface as described above, and then profiling the replicated surface.

  3. Roughness Measurement of Dental Materials

    NASA Astrophysics Data System (ADS)

    Shulev, Assen; Roussev, Ilia; Karpuzov, Simeon; Stoilov, Georgi; Ignatova, Detelina; See, Constantin von; Mitov, Gergo

    2016-06-01

    This paper presents a roughness measurement of zirconia ceramics, widely used for dental applications. Surface roughness variations caused by the most commonly used dental instruments for intraoral grinding and polishing are estimated. The applied technique is simple and utilizes the speckle properties of the scattered laser light. It could be easily implemented even in dental clinic environment. The main criteria for roughness estimation is the average speckle size, which varies with the roughness of zirconia. The algorithm used for the speckle size estimation is based on the normalized autocorrelation approach.

  4. Hypnosis in the right hemisphere.

    PubMed

    Kihlstrom, John F; Glisky, Martha L; McGovern, Susan; Rapcsak, Steven Z; Mennemeier, Mark S

    2013-02-01

    Speculations about the neural substrates of hypnosis have often focused on the right hemisphere (RH), implying that RH damage should impair hypnotic responsiveness more than left-hemisphere (LH) damage. The present study examined the performance of a patient who suffered a stroke destroying most of his LH, on slightly modified versions of two hypnotizability scales. This patient was at least modestly hypnotizable, as indicated in particular by the arm rigidity and age regression items, suggesting that hypnosis can be mediated by the RH alone - provided that the language capacities normally found in the LH remain available. A further study of 16 patients with unilateral strokes of the LH or RH found no substantial differences in hypnotizability between the two groups. Future neuropsychological studies of hypnosis might explore the dorsal/ventral or anterior/posterior dichotomies, with special emphasis on the role of prefrontal cortex.

  5. Hemispheric ultra-wideband antenna.

    SciTech Connect

    Brocato, Robert Wesley

    2006-04-01

    This report begins with a review of reduced size ultra-wideband (UWB) antennas and the peculiar problems that arise when building a UWB antenna. It then gives a description of a new type of UWB antenna that resolves these problems. This antenna, dubbed the hemispheric conical antenna, is similar to a conventional conical antenna in that it uses the same inverted conical conductor over a ground plane, but it also uses a hemispheric dielectric fill in between the conductive cone and the ground plane. The dielectric material creates a fundamentally new antenna which is reduced in size and much more rugged than a standard UWB conical antenna. The creation of finite-difference time domain (FDTD) software tools in spherical coordinates, as described in SAND2004-6577, enabled this technological advance.

  6. Use of a liquid-crystal and heater-element composite for quantitative, high-resolution heat-transfer coefficients on a turbine airfoil including turbulence and surface-roughness effects

    NASA Astrophysics Data System (ADS)

    Hippensteele, S. A.; Russell, L. M.; Torres, F. J.

    Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.

  7. Use of a liquid-crystal and heater-element composite for quantitative, high-resolution heat-transfer coefficients on a turbine airfoil including turbulence and surface-roughness effects

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.; Russell, L. M.; Torres, F. J.

    1987-01-01

    Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.

  8. How surface roughness affects chemical transfer from soil to surface runoff?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil surface roughness affects transport processes, e.g., runoff generation, infiltration, sediment detachment, etc., occurring on the surface. Nevertheless, how soil roughness affects chemical transport is less known. In this study, we partitioned roughness elements into mounds which diverge water ...

  9. Focal hemisphere and visuoperceptual categorization.

    PubMed Central

    Bisiach, E; Capitani, E; Spinnler, H

    1975-01-01

    Visuoperceptual categorization was investigated in patients with unilateral brain damage by a task in which meaningless shapes had to be classified with reference to a number of prototype patterns. Right brain-damaged subjects with visual field defect turned out to have a narrower categorization span. As this outcome seems to be scarcely consonant with a lower level disorder of visual processing, a major competence of the right hemisphere is suggested for visuoperceptual categorization. PMID:1206421

  10. Awake right hemisphere brain surgery.

    PubMed

    Hulou, M Maher; Cote, David J; Olubiyi, Olutayo I; Smith, Timothy R; Chiocca, E Antonio; Johnson, Mark D

    2015-12-01

    We report the indications and outcomes of awake right hemispheric brain surgery, as well as a rare patient with crossed aphasia. Awake craniotomies are often performed to protect eloquent cortex. We reviewed the medical records for 35 of 96 patients, in detail, who had awake right hemisphere brain operations. Intraoperative cortical mapping of motor and/or language function was performed in 29 of the 35 patients. A preoperative speech impairment and left hand dominance were the main indicators for awake right-sided craniotomies in patients with right hemisphere lesions. Four patients with lesion proximity to eloquent areas underwent awake craniotomies without cortical mapping. In addition, one patient had a broncho-pulmonary fistula, and another had a recent major cardiac procedure that precluded awake surgery. An eloquent cortex representation was identified in 14 patients (48.3%). Postoperatively, seven of 17 patients (41.1%) who presented with weakness, experienced improvements in their motor functions, 11 of 16 (68.7%) with seizures became seizure-free, and seven of nine (77.7%) with moderate to severe headaches and one of two with a visual field deficit improved significantly. There were also improvements in speech and language functions in all patients who presented with speech difficulties. A right sided awake craniotomy is an excellent option for left handed patients, or those with right sided cortical lesions that result in preoperative speech impairments. When combined with intraoperative cortical mapping, both speech and motor function can be well preserved.

  11. Hemispheric Assymeries in Auroral Precipitation

    NASA Astrophysics Data System (ADS)

    Mende, S. B.

    2014-12-01

    It is widely accepted that the space weather related electrodynamic forcing of the geospace environment acts through the high geomagnetic latitude regions. At high latitudes inter-hemispheric asymmetries are largely due to the differences in solar illumination, the direction of the solar wind and interplanetary magnetic field components and to a lesser extent, due to differences between the two hemispheric internal fields. So far most research regarding interhemispheric differences concentrated on learning about the basic magnetosphere-ionosphere coupling mechanisms. It has been well established that sunlit conditions affect the energy flux of auroral precipitation resulting from the reduction in the mean energy of the auroral electrons in the sunlit summer hemisphere. This can be explained by the partial shorting out of the particle accelerating fields by the sunlight induced conductivity. It has also been found that sunlit conditions reduce the particle fluxes and therefore the associated field aligned currents. Unless the precipitation-induced conductivities overwhelm the sunlit component of conductivity, this would imply that the magnetospheric current generator responds to the ionospheric load in a highly non-linear manner. Interhemispheric currents may also play an important role that has not been fully explored. Interhemispheric asymmetries in substorm morphology have been explored critically because conjugacy implies that substorms have a common source at equatorial latitudes. In some cases the lack of conjugacy of substorms could be explained by considering the magnitude and direction of the IMF.

  12. Hemispheric Laterality in Music and Math

    ERIC Educational Resources Information Center

    Szirony, Gary Michael; Burgin, John S.; Pearson, L. Carolyn

    2008-01-01

    Hemispheric laterality may be a useful concept in teaching, learning, training, and in understanding more about human development. To address this issue, a measure of hemispheric laterality was compared to musical and mathematical ability. The Human Information Processing Survey (HIPS) instrument, designed to measure hemispheric laterality, was…

  13. Right Hemisphere Dominance in Visual Statistical Learning

    ERIC Educational Resources Information Center

    Roser, Matthew E.; Fiser, Jozsef; Aslin, Richard N.; Gazzaniga, Michael S.

    2011-01-01

    Several studies report a right hemisphere advantage for visuospatial integration and a left hemisphere advantage for inferring conceptual knowledge from patterns of covariation. The present study examined hemispheric asymmetry in the implicit learning of new visual feature combinations. A split-brain patient and normal control participants viewed…

  14. Brain Hemispheric Functions and the Native American.

    ERIC Educational Resources Information Center

    Ross, Allen Chuck

    1982-01-01

    Uses brain research conducted by Dr. Roger Sperry to show that traditional Native Americans are more dominant in right hemisphere thinking, setting them apart from a modern left hemisphere-oriented society (especially emphasized in schools). Describes some characteristics of Native American thinking that illustrate a right hemisphere orientation…

  15. Instability of a Supersonic Boundary-Layer with Localized Roughness

    NASA Technical Reports Server (NTRS)

    Marxen, Olaf; Iaccarino, Gianluca; Shaqfeh, Eric S. G.

    2010-01-01

    A localized 3-D roughness causes boundary-layer separation and (weak) shocks. Most importantly, streamwise vortices occur which induce streamwise (low U, high T) streaks. Immersed boundary method (volume force) suitable to represent roughness element in DNS. Favorable comparison between bi-global stability theory and DNS for a "y-mode" Outlook: Understand the flow physics (investigate "z-modes" in DNS through sinuous spanwise forcing, study origin of the beat in DNS).

  16. Ice Roughness in Short Duration SLD Icing Events

    NASA Technical Reports Server (NTRS)

    McClain, Stephen T.; Reed, Dana; Vargas, Mario; Kreeger, Richard E.; Tsao, Jen-Ching

    2014-01-01

    Ice accretion codes depend on models of roughness parameters to account for the enhanced heat transfer during the ice accretion process. While mitigating supercooled large droplet (SLD or Appendix O) icing is a significant concern for manufacturers seeking future vehicle certification due to the pending regulation, historical ice roughness studies have been performed using Appendix C icing clouds which exhibit mean volumetric diameters (MVD) much smaller than SLD clouds. Further, the historical studies of roughness focused on extracting parametric representations of ice roughness using multiple images of roughness elements. In this study, the ice roughness developed on a 21-in. NACA 0012 at 0deg angle of attack exposed to short duration SLD icing events was measured in the Icing Research Tunnel at the NASA Glenn Research Center. The MVD's used in the study ranged from 100 micrometer to 200 micrometers, in a 67 m/s flow, with liquid water contents of either 0.6 gm/cubic meters or 0.75 gm/cubic meters. The ice surfaces were measured using a Romer Absolute Arm laser scanning system. The roughness associated with each surface point cloud was measured using the two-dimensional self-organizing map approach developed by McClain and Kreeger (2013) resulting in statistical descriptions of the ice roughness.

  17. The psychophysics of roughness applied to dysphonic voice.

    PubMed

    Eddins, David A; Kopf, Lisa M; Shrivastav, Rahul

    2015-12-01

    Roughness is a sound quality that has been related to the amplitude modulation characteristics of the acoustic stimulus. Roughness also is considered one of the primary elements of voice quality associated with natural variations across normal voices and is a salient feature of many dysphonic voices. It is known that the roughness of tonal stimuli is dependent on the frequency and depth of amplitude modulation and on the carrier frequency. Here, it is determined if similar dependencies exist for voiced speech stimuli. Knowledge of such dependencies can lead to a better understanding of the acoustic characteristics of vocal roughness along the continuum of normal to dysphonic and may facilitate computational estimates of vocal roughness. Synthetic vowel stimuli were modeled after talkers selected from the Satloff/Heman-Ackah disordered voice database. To parametrically control amplitude modulation frequency and depth, synthesized stimuli had minimal amplitude fluctuations, and amplitude modulation was superimposed with the desired frequency and depth. Perceptual roughness judgments depended on amplitude modulation frequency and depth in a manner that closely matched data from tonal carriers. The dependence of perceived roughness on amplitude modulation frequency and depth closely matched the roughness of sinusoidal carriers as reported by Fastl and Zwicker [(2007) Psychoacoustics: Facts and Models, 3rd ed. (Springer, New York)].

  18. Remote Control Southern Hemisphere SSA Observatory

    NASA Astrophysics Data System (ADS)

    Ritchie, I.; Pearson, M.; Sang, J.

    2013-09-01

    EOS Space Systems (EOSSS) is a research and development company which has developed custom observatories, camera and telescope systems for space surveillance since 1996, as well as creating several evolutions of systems control software for control of observatories and laser tracking systems. Our primary reserach observatory is the Space Reserach Centre (SRC) at Mount Stromlo Asutralia. The current SRC control systems are designed such that remote control can be offered for real time data collection, noise filtering and flexible session management. Several imaging fields of view are available simultaneously for tracking orbiting objects, with real time imaging to Mag 18. Orbiting objects can have the centroids post processed into orbital determination/ orbital projection (OD/OP) elements. With or without laser tracking of orbiting objects, they can be tracked in terminator conditions and their OD/OP data created, then enhanced by proprietary methods involving ballistic coefficient estimation and OD convergence pinning, using a priori radar elements. Sensors in development include a thermal imager for satellite thermal signature detection. Extending laser tracking range by use of adaptive optics beam control is also in development now. This Southern Hemisphere observatory is in a unique position to facilitate the study of space debris, either stand-alone or as part of a network such as Falcon. Current national and international contracts will enhance the remote control capabilities further, creating a resource ready to go for a wide variety of SSA missions.

  19. Does surface roughness amplify wetting?

    SciTech Connect

    Malijevský, Alexandr

    2014-11-14

    Any solid surface is intrinsically rough on the microscopic scale. In this paper, we study the effect of this roughness on the wetting properties of hydrophilic substrates. Macroscopic arguments, such as those leading to the well-known Wenzel's law, predict that surface roughness should amplify the wetting properties of such adsorbents. We use a fundamental measure density functional theory to demonstrate the opposite effect from roughness for microscopically corrugated surfaces, i.e., wetting is hindered. Based on three independent analyses we show that microscopic surface corrugation increases the wetting temperature or even makes the surface hydrophobic. Since for macroscopically corrugated surfaces the solid texture does indeed amplify wetting there must exist a crossover between two length-scale regimes that are distinguished by opposite response on surface roughening. This demonstrates how deceptive can be efforts to extend the thermodynamical laws beyond their macroscopic territory.

  20. Climate modelling: Northern Hemisphere circulation.

    PubMed

    Gillett, Nathan P

    2005-09-22

    Air pressure at sea level during winter has decreased over the Arctic and increased in the Northern Hemisphere subtropics in recent decades, a change that has been associated with 50% of the Eurasian winter warming observed over the past 30 years, with 60% of the rainfall increase in Scotland and with 60% of the rainfall decrease in Spain. This trend is inconsistent with the simulated response to greenhouse-gas and sulphate-aerosol changes, but it has been proposed that other climate influences--such as ozone depletion--could account for the discrepancy. Here I compare observed Northern Hemisphere sea-level pressure trends with those simulated in response to all the major human and natural climate influences in nine state-of-the-art coupled climate models over the past 50 years. I find that these models all underestimate the circulation trend. This inconsistency suggests that we cannot yet simulate changes in this important property of the climate system or accurately predict regional climate changes.

  1. Hemispherical spondylosclerosis - a polyetiologic syndrome

    SciTech Connect

    Dihlmann, W.

    1981-11-01

    Radiologic examination of 43 patients revealed 47 lesions of a type which we have termed hemispherical spondylosclerosis (HSS). This term describes and includes the following essential and possible radiologic findings of the disease: 1) Hemispherical (or dome - or helmet-shaped ) sclerosis of the vertebra above the intervertebral disk. Thus it is a supradiscal HSS. 2) One or more small erosions of the inferior end plate of the vertebra involved. 3) Periosteal apposition on the anterior border of the vertebra along the length of the sclerosis. 4) New bone formation on the inferior end plate. 5) Anterior vertebral osteophytes. 6) Narrowing of the disk space below the affected vertebra. HSS occurs not only as a sequel of degenerative disk disease, but also in bacterial (tuberculous and non-tuberculous) spondylitis, ankylosing spondylitis, osteoid osteoma, and metastases of neoplasms. The differential diagnosis between inflammatory and non-inflammatory pathogenesis and etiology of HSS is described. The characteristic shape of HSS, its sites of predilection (L4 >> L5 > L3), and the preponderance of female sufferers from this painful condition are due to factors which, as yet, remain unknown.

  2. Roughness of Hawaiian volcanic terrains

    NASA Astrophysics Data System (ADS)

    Morris, Aisha R.; Anderson, F. Scott; Mouginis-Mark, Peter J.; Haldemann, Albert F. C.; Brooks, Benjamin A.; Foster, James

    2008-12-01

    We performed analyses of topographic variation (surface roughness) using a new 2-D mapping method which shows that understanding the relationship between data resolution, Hurst exponent, y intercept, RMS deviation, and cell size is important for assessing surface processes. We use this new method to assess flows at six field sites in Kilauea caldera, Hawaii, using three data sets at different resolutions, TOPSAR (10 m/pixel), airborne lidar (1 m/pixel), and tripod-mounted lidar (0.02-0.03 m/pixel). The flows studied include ponded pahoehoe flows, compound pahoehoe flows, and jumbled, slabby pahoehoe. The 2-D quantification of surface roughness for the Kilauea lava flows indicates that features formed during emplacement and modification of the flows exhibit statistically distinct roughness signatures. The 2-D method provides a tool for unit mapping based on surface roughness. Key findings indicate that the new 2-D method provides more robust results than 1-D methods for surface roughness because of larger 2-D sample sizes and the removal of 1-D directional bias leading to a reduction in error. Furthermore, data set resolution relative to the scale of the features under study is important to consider when designing a 2-D surface roughness study. Future applications to topographic data sets from Mars will provide information on flow emplacement conditions and spatial and temporal evolution of volcanic provinces on Mars.

  3. Determining Surface Roughness in Urban Areas Using Lidar Data

    NASA Technical Reports Server (NTRS)

    Holland, Donald

    2009-01-01

    An automated procedure has been developed to derive relevant factors, which can increase the ability to produce objective, repeatable methods for determining aerodynamic surface roughness. Aerodynamic surface roughness is used for many applications, like atmospheric dispersive models and wind-damage models. For this technique, existing lidar data was used that was originally collected for terrain analysis, and demonstrated that surface roughness values can be automatically derived, and then subsequently utilized in disaster-management and homeland security models. The developed lidar-processing algorithm effectively distinguishes buildings from trees and characterizes their size, density, orientation, and spacing (see figure); all of these variables are parameters that are required to calculate the estimated surface roughness for a specified area. By using this algorithm, aerodynamic surface roughness values in urban areas can then be extracted automatically. The user can also adjust the algorithm for local conditions and lidar characteristics, like summer/winter vegetation and dense/sparse lidar point spacing. Additionally, the user can also survey variations in surface roughness that occurs due to wind direction; for example, during a hurricane, when wind direction can change dramatically, this variable can be extremely significant. In its current state, the algorithm calculates an estimated surface roughness for a square kilometer area; techniques using the lidar data to calculate the surface roughness for a point, whereby only roughness elements that are upstream from the point of interest are used and the wind direction is a vital concern, are being investigated. This technological advancement will improve the reliability and accuracy of models that use and incorporate surface roughness.

  4. Wetting and Roughness: Pattern Formation in a Rough Fracture

    NASA Astrophysics Data System (ADS)

    Pahlavan, A. A.; Cueto-Felgueroso, L.; McKinley, G. H.; Juanes, R.

    2015-12-01

    Wetting phenomena are inherently multiscale; owing to the complex nature of porous and fractured media, immiscible flows in this setting continue to challenge our microscopic and macroscopic descriptions. To gain some insight into the interplay between wettability and roughness of the medium, here we study experimentally the immiscible displacement of one fluid by another in a Hele-Shaw cell (two glass plates separated by a thin gap) with rough surfaces. We use a radial Hele-Shaw cell and saturate it with highly viscous silicone oil; we then inject a less viscous liquid at the center of the cell. Displacement of a more viscous liquid by a less viscous one leads to a hydrodynamic instability, known as viscous fingering. Wettability of the medium, however, has a profound influence on the displacement patterns and can lead to a complete suppression of the viscous fingering instability. Roughness, on the other hand, amplifies the wettability of the medium, making a wetting surface even more wetting and a non-wetting surface even more non-wetting. Roughness can also lead to contact-line pinning and intermittent avalanche-like behavior in the flow. We study the interplay between roughness and wettability of the medium by isolating each effect. We then propose a phase diagram that classifies the different displacement patterns, elucidating the underlying physics at play across scales.

  5. Hemispheric Asymmetries: The Comparative View

    PubMed Central

    Ocklenburg, Sebastian; Güntürkün, Onur

    2012-01-01

    Hemispheric asymmetries play an important role in almost all cognitive functions. For more than a century, they were considered to be uniquely human but now an increasing number of findings in all vertebrate classes make it likely that we inherited our asymmetries from common ancestors. Thus, studying animal models could provide unique insights into the mechanisms of lateralization. We outline three such avenues of research by providing an overview of experiments on left–right differences in the connectivity of sensory systems, the embryonic determinants of brain asymmetries, and the genetics of lateralization. All these lines of studies could provide a wealth of insights into our own asymmetries that should and will be exploited by future analyses. PMID:22303295

  6. Electroformation of uranium hemispherical shells

    SciTech Connect

    Marshall, S.L.; Redey, L.; Vandegrift, G.F.; Vissers, D.R.

    1989-11-01

    This effort was directed at developing an electrochemical process for forming uniform and dendrite-free deposits of uranium from molten salts. This process is to be used for the electroformation of free-standing hemispherical shells of uranium for nuclear applications. Electrodeposition of uranium onto a substrate was accomplished with a fused chloride mixture containing 42 wt% UCl{sub 3} and a fused chloride-fluoride mixture containing 4 wt % UF{sub 4}. Under pulsed potential control at 504{degree}C, the chloride-fluoride mixture yielded the widest range of plating conditions for which dendrites could be avoided. Bipolar current pulse plating with both electrolytes gave good results, and successful application of this technique to a large tubular cathode has been demonstrated. 24 refs., 10 figs.

  7. A combined experimental and numerical investigation of roughness induced supersonic boundary layer transition

    NASA Astrophysics Data System (ADS)

    Zhao, Yunfei; Liu, Wei; Xu, Dan; Gang, Dundian; Yi, Shihe

    2016-01-01

    The effect of surface roughness on boundary layer transition is of great importance to hypersonic vehicles. In this paper, both experimental and numerical methods are used to investigate the laminar-turbulent transition of a Mach 3 flat-plate boundary layer induced by isolated roughness element. Good agreements are achieved between experimental data and high-order numerical simulations. It is observed that, with increasing height of roughness, the transition tends to move forward. Two different types of transition mechanisms are found according to the height of the roughness elements. For the smallest roughness height of h=1 mm, the shear layer instability in the wake region appears to be the leading mechanism for transition to turbulence. For two larger roughness elements of h=2 mm and h=4 mm, strong unsteadiness is developed from the upstream separation zone and transition is immediately accomplished, which indicates that the absolute instability in upstream separation zone dominates the transition.

  8. Surface forces: Surface roughness in theory and experiment

    SciTech Connect

    Parsons, Drew F. Walsh, Rick B.; Craig, Vincent S. J.

    2014-04-28

    A method of incorporating surface roughness into theoretical calculations of surface forces is presented. The model contains two chief elements. First, surface roughness is represented as a probability distribution of surface heights around an average surface height. A roughness-averaged force is determined by taking an average of the classic flat-surface force, weighing all possible separation distances against the probability distributions of surface heights. Second the model adds a repulsive contact force due to the elastic contact of asperities. We derive a simple analytic expression for the contact force. The general impact of roughness is to amplify the long range behaviour of noncontact (DLVO) forces. The impact of the elastic contact force is to provide a repulsive wall which is felt at a separation between surfaces that scales with the root-mean-square (RMS) roughness of the surfaces. The model therefore provides a means of distinguishing between “true zero,” where the separation between the average centres of each surface is zero, and “apparent zero,” defined by the onset of the repulsive contact wall. A normal distribution may be assumed for the surface probability distribution, characterised by the RMS roughness measured by atomic force microscopy (AFM). Alternatively the probability distribution may be defined by the histogram of heights measured by AFM. Both methods of treating surface roughness are compared against the classic smooth surface calculation and experimental AFM measurement.

  9. Roughness effects in uncompensated antiferromagnets

    SciTech Connect

    Charilaou, M.; Hellman, F.

    2015-02-28

    Monte Carlo simulations show that roughness in uncompensated antiferromagnets decreases not just the surface magnetization but also the net magnetization and particularly strongly affects the temperature dependence. In films with step-type roughness, each step creates a new compensation front that decreases the global net magnetization. The saturation magnetization decreases non-monotonically with increasing roughness and does not scale with the surface area. Roughness in the form of surface vacancies changes the temperature-dependence of the magnetization; when only one surface has vacancies, the saturation magnetization will decrease linearly with surface occupancy, whereas when both surfaces have vacancies, the magnetization is negative and exhibits a compensation point at finite temperature, which can be tuned by controlling the occupancy. Roughness also affects the spin-texture of the surfaces due to long-range dipolar interactions and generates non-collinear spin configurations that could be used in devices to produce locally modified exchange bias. These results explain the strongly reduced magnetization found in magnetometry experiments and furthers our understanding of the temperature-dependence of exchange bias.

  10. The left hemisphere and the selection of learned actions.

    PubMed

    Rushworth, M F; Nixon, P D; Wade, D T; Renowden, S; Passingham, R E

    1998-01-01

    The left hemisphere's dominance for movement is well known. The basis of its dominance is less clear. We have tested 16 left hemisphere (LH) patients, 17 right hemisphere (RH) patients and 12 neurologically normal controls on a battery of five tasks. The tasks were based on animal lesion and recording studies, and human imaging and magnetic stimulation studies that identified two distributed systems that are important for the selection of motor responses and object-oriented responses. The LH patients were impaired on three response selection tasks: learning to select between joystick movement responses instructed by visual cues; learning to select between analogous object-oriented responses instructed by visual cues; learning to select movements in a sequence. Although we replicated the finding that LH damage impairs sequencing, some of the impaired tasks had no sequencing element. We therefore argue that the LH deficits are best explained as an impairment of response selection. This was confirmed by showing that LH subjects were unimpaired on a more demanding task-object discrimination learning-which imposed a greater memory load but had no response selection element. Moreover, the LH deficits could not be attributed to disorganization of movement kinematics. The lesions of the impaired LH group were widespread but always included the distributed systems known to be important for response selection-the dorsolateral frontal and parietal cortices, striatum, thalamus and white matter fascicles. PMID:9533383

  11. Climate and marine carbon cycle response to changes in the strength of the Southern Hemispheric westerlies

    NASA Astrophysics Data System (ADS)

    Menviel, L.; Timmermann, A.; Mouchet, A.; Timm, O.

    2008-12-01

    It has been previously suggested that changes in the strength and position of the Southern Hemisphere westerlies could be a key contributor to glacial-interglacial atmospheric CO2 variations. To test this hypothesis, we perform a series of sensitivity experiments using an Earth system model of intermediate complexity. A strengthening of the climatological mean surface winds over the Southern Ocean induces stronger upwelling and increases the formation of Antarctic Bottom Water. Enhanced Ekman pumping brings more dissolved inorganic carbon (DIC)-rich waters to the surface. However, the stronger upwelling also supplies more nutrients to the surface, thereby enhancing marine export production in the Southern Hemisphere and decreasing the DIC content in the euphotic zone. The net response is a small atmospheric CO2 increase (˜5 ppmv) compared to the full glacial-interglacial CO2 amplitude of ˜90 ppmv. Roughly the opposite results are obtained for a weakening of the Southern Hemisphere westerly winds.

  12. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: A Model for Fractal Dimension of Rough Surfaces

    NASA Astrophysics Data System (ADS)

    Li, Jian-Hua; Yu, Bo-Ming; Zou, Ming-Qing

    2009-11-01

    We report a model for the fractal dimension Ds of rough surfaces based on the fractal distribution of roughness elements on surfaces and the fractal character of surface profiles. The proposed model for the fractal dimension Ds is expressed as a function of the fractal dimensions D for conic roughness diameter/height and Dp for surface profile, maximum roughness base diameter λmax, the ratio β of conic roughness height to its base radius as well as the ratio λminλmax of the minimum to the maximal base diameter.

  13. On the effect of surface roughness on the vapor flow under Leidenfrost-levitated droplets

    SciTech Connect

    Prat, M.; Schmitz, P.; Poulikakos, D.

    1995-09-01

    In this paper a theoretical investigation is reported on the effect of surface roughness on the phenomenon of Leidenfrost-levitation of droplets above a hot surface. The problem is solved first approximately using a macroscopic approach in which the roughness is replaced by a semi-empirical slip conditions of the Beavers-Joseph type. Next, a microscopic model which determines the vapor flow in the close vicinity of the rough surface is solved numerically. Three basic periodic roughnesses are examined: triangular, rectangular, and semi-cylindrical. The effect of the relative size of the droplet and the roughness elements on the vapor flow is investigated in the course of the study.

  14. Roughness Perception in Virtual Textures.

    PubMed

    Unger, B; Hollis, R; Klatzky, R

    2011-01-01

    Haptic devices allow the production of virtual textured surfaces for psychophysical experiments. Some studies have shown inconsistencies between virtual and real textures with respect to their psychophysical functions for roughness, leading to speculation that virtual textures differ in some way from real ones. We have determined the psychophysical function for roughness using textures rendered with a high-fidelity magnetic levitation haptic device. A constraint surface algorithm was used to simulate the motion of a spherical probe over trapezoidal gratings and randomly dithered cones. The shape of the psychophysical functions for roughness is consistent between subjects but varies with changes in texture and probe geometry. For dithered cones, inverted "U"-shaped functions were found nearly identical, in maxima and curvature, to those in the literature for real textures with similar geometry. PMID:26963163

  15. Recent Studies of Runway Roughness

    NASA Technical Reports Server (NTRS)

    Morris, Garland; Hall, Albert W.

    1965-01-01

    Recent studies of NASA research related to aircraft operating problems on rough runways are presented. Some of these investigations were conducted cooperatively with the airport operators, with the Federal Aviation Agency, and with the U.S. Air Force. The studies show that criteria based on power spectral levels of runway-profile data are not sufficient to define acceptable levels of runway roughness from the piloting viewpoint. Because of the large variation in response characteristics between various types of aircraft, a runway may be acceptable for some aircraft and unacceptable for others. A criterion for roughness, therefore, should be expressed in terms of aircraft response - preferably, cockpit acceleration. A criterion suggested is that the maximum vertical acceleration in the cockpit should not exceed +/- 0.4 g for sections of the runway where precise aircraft control is required.

  16. Homotopic Language Reorganization in the Right Hemisphere after Early Left Hemisphere Injury

    ERIC Educational Resources Information Center

    Tivarus, Madalina E.; Starling, Sarah J.; Newport, Elissa L.; Langfitt, John T.

    2012-01-01

    To determine the areas involved in reorganization of language to the right hemisphere after early left hemisphere injury, we compared fMRI activation patterns during four production and comprehension tasks in post-surgical epilepsy patients with either left (LH) or right hemisphere (RH) speech dominance (determined by Wada testing) and healthy…

  17. Mola's First Observations of the Southern Hemisphere Topography of Mars

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, M. T.

    1999-01-01

    Towards the end of February 1999, the Mars Global Surveyor (MGS) spacecraft is expected to enter a near-circular polar orbit around Mars at an altitude of about 400 km. At this time the Mars Orbiter Laser Altimeter (MOLA) will begin near-continuous operation and acquire topography of the full planet. The initial areas of study will be concentrated in the southern hemisphere with particular interest in the polar region near the targeted landing site of the Mars Polar Lander. In addition to topography, MOLA matched filter pulse width data will be used to assess foot-print-scale surface roughness in the region. Such observations will also be applied in future studies for assessment of the Mars '01 landing site in the latitude range 15 degrees south to 5 degrees north.

  18. UV Observations of Hemispheric Asymmetry

    NASA Astrophysics Data System (ADS)

    Schaefer, R. K.; Paxton, L. J.; Wolven, B. C.; Zhang, Y.; Romeo, G.

    2015-12-01

    Asymmetry in the auroral patterns can be an important diagnostic for understanding the dynamics of solar wind interaction with the magnetosphere-ionosphere-thermosphere system (e.g., Newel and Meng, 1998; Fillingrim et al., 2005). Molecular nitrogen emission in the UV Lyman-Birge-Hopfield bands can be used to determine energy flux and electron mean energy (Sotirelis, et al, 2013) and thereby Hall and Pederson integrated conductances (Gjerloev, et al., 2014). UV imagery provided by the 4 SSUSI instruments on the Defense Meteorological Satellite Program (DMSP) F16-F19 spacecraft provide two dimensional maps of this emission at different local times. Often there are near simultaneous observations of both poles by some combination of the satellites. (see figure 1) The SSUSI auroral data products are well suited to this study, as they have the following features.: - dayglow has been subtracted on dayside aurora - electron energy flux and mean energy are pre-calculated - individual arcs have been identified through image processing. In order to intercompare data from multiple satellites, we must first ensure that the instrument calibrations are consistent. In this work we show that the instruments are consistently calibrated, and that results generated from the SSUSI data products can be trusted. Several examples of storm time asymmetries captured by the SSUSI instruments will be discussed. Fillingim, M. O., G. K. Parks, H. U. Frey, T. J. Immel, and S. B. Mende (2005), Hemispheric asymmetry of the afternoon electron aurora, Geophys. Res. Lett., 32, L03113, doi:10.1029/2004GL021635. Gjerloev, J., Schaefer, R., Paxton, L, and Zhang, Y. (2014), A comprehensive empirical model of the ionospheric conductivity derived from SSUSI/GUVI, SuperMAG and SuperDARN data, SM51G-4339, Fall 2014 AGU meeting, San Francisco. Newell, P. T., and C.-I. Meng (1988), Hemispherical asymmetry in cusp precipitation near solstices, J. Geophys. Res., 93(A4), 2643-2648, doi:10.1029/JA093iA04p02643

  19. Reciprocal organization of the cerebral hemispheres

    PubMed Central

    McGilchrist, Iain

    2010-01-01

    The cerebral hemispheres are anatomically and neurophysiologically asymmetrical. The evolutionary basis for these differences remains uncertain. There are, however, highly consistent differences between the hemispheres, evident in reptiles, birds, and mammals, as well as in humans, in the nature of the attention each applies to the environment. This permits the simultaneous application of precisely focused, but narrow, attention, needed for grasping food or prey, with broad, open, and uncommitted attention, needed to watch out for predators and to interpret the intentions of conspecifics. These different modes of attention can account for a very wide range of repeated observations relating to hemisphere specialization, and suggest that hemisphere differences lie not in discrete functional domains as such, but distinct modes of functioning within any one domain. These modes of attention are mutually incompatible, and their application depends on inhibitory transmission in the corpus callosum. There is also an asymmetry of interaction between the hemispheres at the phenomenological level. PMID:21319495

  20. The cerebral hemispheres and bilateral neural nets.

    PubMed

    Cook, N D; Beech, A R

    1990-06-01

    A high-level cognitive dichotomy ("language and context") is reviewed in relation to empirical findings concerning the functions of the human cerebral hemispheres. We argue that the right hemisphere's involvement in the generation of connotative and contextual information in parallel with the denotative and literal language functions of the left hemisphere provides an important insight into the organization of viable cognitive systems. The role of the corpus callosum in producing the dichotomy is discussed. Finally, the generation of asymmetrical activity in structurally symmetrical, bilateral neural nets is described. The model demonstrates how complementary memory states can be generated in bilateral nets without assuming different modes of information processing, provided that the nets have inhibitory, homotopic connections. Unlike excitatory connections, inhibitory connections are sufficient to generate asymmetric hemispheric activity without postulating intrinsic differences between the cerebral hemispheres.

  1. Hemispheric competence for auditory spatial representation.

    PubMed

    Spierer, Lucas; Bellmann-Thiran, Anne; Maeder, Philippe; Murray, Micah M; Clarke, Stephanie

    2009-07-01

    Sound localization relies on the analysis of interaural time and intensity differences, as well as attenuation patterns by the outer ear. We investigated the relative contributions of interaural time and intensity difference cues to sound localization by testing 60 healthy subjects: 25 with focal left and 25 with focal right hemispheric brain damage. Group and single-case behavioural analyses, as well as anatomo-clinical correlations, confirmed that deficits were more frequent and much more severe after right than left hemispheric lesions and for the processing of interaural time than intensity difference cues. For spatial processing based on interaural time difference cues, different error types were evident in the individual data. Deficits in discriminating between neighbouring positions occurred in both hemispaces after focal right hemispheric brain damage, but were restricted to the contralesional hemispace after focal left hemispheric brain damage. Alloacusis (perceptual shifts across the midline) occurred only after focal right hemispheric brain damage and was associated with minor or severe deficits in position discrimination. During spatial processing based on interaural intensity cues, deficits were less severe in the right hemispheric brain damage than left hemispheric brain damage group and no alloacusis occurred. These results, matched to anatomical data, suggest the existence of a binaural sound localization system predominantly based on interaural time difference cues and primarily supported by the right hemisphere. More generally, our data suggest that two distinct mechanisms contribute to: (i) the precise computation of spatial coordinates allowing spatial comparison within the contralateral hemispace for the left hemisphere and the whole space for the right hemisphere; and (ii) the building up of global auditory spatial representations in right temporo-parietal cortices.

  2. Ontogenesis of hemispheric specialization: apraxia associated with congenital left hemisphere lesions.

    PubMed

    Nass, R

    1983-12-01

    In adults apraxia is more common after left-hemisphere damage. The engram for control of skilled motor movements has therefore been considered a specialized function of the left hemisphere. The ontogenesis of motor control was studied in a group of prepubertal children with congenital unilateral hemispheric lesions. Left-hemisphere lesions caused greater impairment of rapid independent finger movements, suggesting that specialization for motor control is innately programmed in the left hemisphere. No subject evidenced apraxia to verbal command, but adult-like performance is not yet expected at the age the group was tested, and effects of side of lesion could appear later. PMID:6664762

  3. Plant Communities of Rough Rock.

    ERIC Educational Resources Information Center

    Jacobs, Linda

    A unit of study on plants grown in the Navajo community of Rough Rock, Arizona, is presented in sketches providing the common Navajo name for the plant, a literal English translation, the English name of the plant, and the Latin name. A brief description of each plant includes where the plant grows, how the Navajos use the plant, and the color and…

  4. Community School at Rough Rock.

    ERIC Educational Resources Information Center

    Erickson, Donald A.; Schwartz, Henrietta

    The objective of the evaluation of Rough Rock Demonstration School (RRDS) on the Navajo Reservation was to examine, in terms of its own stated objectives, the school's organizational and social system as a whole. Chapters in the 1969 evaluation report are "What We Did and Why,""The Schools That Were Compared,""Community Relationships,""The…

  5. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A. Ebadian

    1999-10-31

    The Deactivation and Decommissioning (D&D) Technology Assessment Program (TAP) was developed to provide detailed, comparable data for environmental technologies and to disseminate this data to D&D professionals in a manner that will facilitate the review and selection of technologies to perform decontamination and decommissioning. The objectives for this project include the following: Determine technology needs through review of the Site Technology Coordination Group (STCG) information and other applicable websites and needs databases; Perform a detailed review of industries that perform similar activities as those required in D&D operations to identify additional technologies; Define the technology assessment program for characterization and waste management problem sets; Define the data management program for characterization, dismantlement, and waste management problem sets; Evaluate baseline and innovative technologies under standard test conditions at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) and other locations and collect data in the areas of performance, cost, health and safety, operations and maintenance, and primary and secondary waste generation; Continue to locate, verify, and incorporate technology performance data from other sources into the multimedia information system; and Develop the conceptual design for a dismantlement technology decision analysis tool for dismantlement technologies.

  6. The Asgard Hemisphere of Callisto

    NASA Technical Reports Server (NTRS)

    1997-01-01

    False color view of a portion of the leading hemisphere of Jupiter's moon Callisto as seen through the infrared filters of the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. North is to the top of the picture and the sun illuminates the surface from the east. More recent impacts have excavated bright, relatively clean ice from beneath Callisto's battered surface. Callisto's dark mottled appearance may be due to contamination by non-ice components contributed by impactors or concentrated in a residue as ice is removed. This color composite image is centered on longitude 139 West and encompasses an area about 1000 miles (1600 kilometers) by 2470 miles (4000 kilometers). The images were obtained on November 3rd, 1996.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  7. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Rough diamond. 592.310 Section 592.310... ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply sawn,...

  8. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Rough diamond. 592.310 Section 592.310... ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply sawn,...

  9. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Rough diamond. 592.310 Section 592... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply...

  10. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Rough diamond. 592.310 Section 592.310... ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply sawn,...

  11. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Rough diamond. 592.310 Section 592.310... ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply sawn,...

  12. Application of Rough Sets to Information Retrieval.

    ERIC Educational Resources Information Center

    Miyamoto, Sadaaki

    1998-01-01

    Develops a method of rough retrieval, an application of the rough set theory to information retrieval. The aim is to: (1) show that rough sets are naturally applied to information retrieval in which categorized information structure is used; and (2) show that a fuzzy retrieval scheme is induced from the rough retrieval. (AEF)

  13. Shock/shock interference on a transpiration cooled hemispherical model

    NASA Technical Reports Server (NTRS)

    Nowak, Robert J.; Wieting, Allan R.; Holden, Michael S.

    1990-01-01

    Experimental results are presented which show the effectiveness of transpiration cooling in reducing the peak heat flux caused by an impinging shock on a bow shock of a hemispherical model. The 12-inch diameter hemispherical transpiration model with helium coolant was tested in the Calspan 48-inch Hypersonic Shock Tunnel at nominal Mach 12.1 and freestream unit Reynolds number of 0.33 x 10 to the 6th/ft. An incident shock wave, generated by a blunt flat-plate shock generator inclined at 10 deg to the freestream, intersected the bow shock of the model to produce shock/shock interference. The stagnation heat flux without coolant or shock/shock interference was about 1.6 times a smooth surface laminar prediction due to effective roughness of the coolant ejection slots. A coolant mass flux 31 percent of the freestream mass flux reduced the stagnation heat flux to zero without shock/shock interference. However, for the same coolant mass flux and with shock/shock interference the peak heat flux was only reduced 8.3 percent, even though the total integrated heat load was reduced.

  14. Hemispheric View of Venus Centered at 270 Degrees East Longitude

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The hemispheric view of Venus, as revealed by more than a decade of radar investigations culminating in the 1990-1994 Magellan mission, is centered at 270 degrees east longitude. The Magellan spacecraft imaged more than 98% of Venus at a resolution of about 100 meters; the effective resolution of this image is about 3 km. A mosaic of the Magellan images (most with illumination from the west) forms the image base. Gaps in the Magellan coverage were filled with images from the Earth-based Arecibo radar in a region centered roughly on 0 degree latitude and longitude, and with a neutral tone elsewhere (primarily near the south pole). The composite image was processed to improve contrast and to emphasize small features, and was color-coded to represent elevation. Gaps in the elevation data from the Magellan radar altimeter were filled with altimetry from the Venera spacecraft and the U.S. Pioneer Venus missions. An orthographic projection was used, simulating a distant view of one hemisphere of the planet. The Magellan mission was managed for NASA by Jet Propulsion Laboratory (JPL), Pasadena, CA. Data processed by JPL, the Massachusetts Institute of Technology, Cambridge, MA, and the U.S. Geological Survey, Flagstaff, AZ.

  15. Hemispheric View of Venus Centered at 180 Degrees East Longitude

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The hemispheric view of Venus, as revealed by more than a decade of radar investigations culminating in the 1990-1994 Magellan mission, is centered at 180 degrees east longitude. The Magellan spacecraft imaged more than 98% of Venus at a resolution of about 100 meters; the effective resolution of this image is about 3 km. A mosaic of the Magellan images (most with illumination from the west) forms the image base. Gaps in the Magellan coverage were filled with images from the Earth-based Arecibo radar in a region centered roughly on 0 degree latitude and longitude, and with a neutral tone elsewhere (primarily near the south pole). The composite image was processed to improve contrast and to emphasize small features, and was color-coded to represent elevation. Gaps in the elevation data from the Magellan radar altimeter were filled with altimetry from the Venera spacecraft and the U.S. Pioneer Venus missions. An orthographic projection was used, simulating a distant view of one hemisphere of the planet. The Magellan mission was managed for NASA by Jet Propulsion Laboratory (JPL), Pasadena, CA. Data processed by JPL, the Massachusetts Institute of Technology, Cambridge, MA, and the U.S. Geological Survey, Flagstaff, AZ.

  16. Hemispheric View of Venus Centered at 0 Degrees East Longitude

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The hemispheric view of Venus, as revealed by more than a decade of radar investigations culminating in the 1990-1994 Magellan mission, is centered at 0 degrees east longitude. The Magellan spacecraft imaged more than 98% of Venus at a resolution of about 100 meters; the effective resolution of this image is about 3 km. A mosaic of the Magellan images (most with illumination from the west) forms the image base. Gaps in the Magellan coverage were filled with images from the Earth-based Arecibo radar in a region centered roughly on 0 degree latitude and longitude, and with a neutral tone elsewhere (primarily near the south pole). The composite image was processed to improve contrast and to emphasize small features, and was color-coded to represent elevation. Gaps in the elevation data from the Magellan radar altimeter were filled with altimetry from the Venera spacecraft and the U.S. Pioneer Venus missions. An orthographic projection was used, simulating a distant view of one hemisphere of the planet. The Magellan mission was managed for NASA by Jet Propulsion Laboratory (JPL), Pasadena, CA. Data processed by JPL, the Massachusetts Institute of Technology, Cambridge, MA, and the U.S. Geological Survey, Flagstaff, AZ.

  17. Hemispheric View of Venus Centered at 90 Degrees East Longitude

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The hemispheric view of Venus, as revealed by more than a decade of radar investigations culminating in the 1990-1994 Magellan mission, is centered at 90 degrees east longitude. The Magellan spacecraft imaged more than 98% of Venus at a resolution of about 100 meters; the effective resolution of this image is about 3 km. A mosaic of the Magellan images (most with illumination from the west) forms the image base. Gaps in the Magellan coverage were filled with images from the Earth-based Arecibo radar in a region centered roughly on 0 degree latitude and longitude, and with a neutral tone elsewhere (primarily near the south pole). The composite image was processed to improve contrast and to emphasize small features, and was color-coded to represent elevation. Gaps in the elevation data from the Magellan radar altimeter were filled with altimetry from the Venera spacecraft and the U.S. Pioneer Venus missions. An orthographic projection was used, simulating a distant view of one hemisphere of the planet. The Magellan mission was managed for NASA by Jet Propulsion Laboratory (JPL), Pasadena, CA. Data processed by JPL, the Massachusetts Institute of Technology, Cambridge, MA, and the U.S. Geological Survey, Flagstaff, AZ.

  18. Hemispheric sunspot unit area: comparison with hemispheric sunspot number and sunspot area

    SciTech Connect

    Li, K. J.; Xiang, N. B.; Qu, Z. N.; Xie, J. L.

    2014-03-01

    The monthly mean northern and southern hemispheric sunspot numbers (SNs) and sunspot areas (SAs) in the time interval of 1945 January to 2012 December are utilized to construct the monthly northern and southern hemispheric sunspot unit areas (SUAs), which are defined as the ratio of hemispheric SA to SN. Hemispheric SUAs are usually found to rise at the beginning and to fall at the ending time of a solar cycle more rapidly, forming a more irregular cycle profile than hemispheric SNs and SAs, although it also presents Schwabe-cycle-like hemispheric SNs and SAs. Sunspot activity (SN, SA, and SUA) is found asynchronously and is asymmetrically distributed in the northern and southern hemispheres, and hemispheric SNs, SAs, and SUAs are not in phase in the two hemispheres. The similarity of hemispheric SNs and SAs is found to be much more obvious than that of hemispheric SUAs and SNs (or SAs), and also for their north-south asymmetry. A notable feature is found for the behavior of the SUA around the minimum time of cycle 24: the SUA rapidly decreases from the cycle maximum value to the cycle minimum value of sunspot cycles 19-24 within just 22 months.

  19. Large Craters in Callisto's Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA's Galileo spacecraft provides a new view of this heavily cratered region in the southern hemisphere of the icy Jovian satellite Callisto. The region was not observed by NASA's Voyager spacecraft. Craters ranging in diameter from the 1.85 kilometer (1.13 mile) limit of resolution up to more than 70 kilometers (43 miles) can be observed in this image. Although all craters are generally round in outline, details in their structures vary with both size and relative age. Bright spots in the center of smaller craters (up to approximately 20 kilometers (12 miles)) are central peaks. Larger craters (up to the 51 kilometer (31 mile) wide crater in the east central part of the image) exhibit central pits or depressions. The largest crater, called Thrainn, has a diameter of 74 kilometers (45 miles) and is located in the southernmost corner of the image. This crater contains a broad central uplift, or dome, and has a highly eroded rim. In contrast, the 70 kilometer (43 mile) crater Audr, located along the northern margin of the image, is flat-bottomed, and has a less degraded and generally rounder rim. If erosional or degradational forces have been roughly constant with time on Callisto, scientists viewing this image can assume that Audr is relatively younger than Thrainn by noting the less degraded or fresher appearance of its rim. The differences in crater floor features between these two similarly sized craters could have been produced by differences in the impacting bodies that produced them, differences in the crustal materials in which the craters formed, or simply by a gradual evolution of crater floor shape with time.

    North is to the top of the image which was taken by the Galileo spacecraft's solid state imaging (CCD) system during its eighth orbit around Jupiter on May 6th, 1997. The center of the image is located at 34 degrees south latitude, 84 degrees west longitude, and was taken when the spacecraft was approximately 48,430 kilometers (29,542 miles) from

  20. Parametric Flow Visualization of Dynamic Roughness Effects

    NASA Astrophysics Data System (ADS)

    Jakkali, Vinay

    The ever growing need in the aircraft industry to enhance the performance of a flight vehicle has led to active areas of research which focus on the control of the local boundary layer by both passive and active methods. An effective flow control mechanism can improve the performance of a flight vehicle in various ways, one of which is eliminating boundary layer separation. To be effective the mechanism not only needs to control the boundary layer as desired, but also use less energy than the resulting energy savings. In this study, the effectiveness of an active flow control technique known as dynamic roughness (DR) has been explored to eliminate the laminar separation bubble near the leading edge and also to eliminate the stall on a NACA 0012 airfoil wing. As opposed to static roughness, dynamic roughness utilizes small time-dependent deforming elements or humps with displacement amplitudes that are on the order of the local boundary layer height to energize the local boundary layer. DR is primarily characterized by the maximum amplitude and operating frequency. A flow visualization study was conducted on a 2D NACA 0012 airfoil model at different angles of attack, and also varying the Reynolds number and DR actuation frequency with fixed maximum DR amplitude. The experimental results from this study suggests that DR is an effective method of reattaching a totally separated boundary layer. In addition, this study discusses some of the fundamental physics behind the working of DR and proposes some non-dimensional terms that may help to explain the driving force behind the mechanism.

  1. Modeling of surface roughness effects on glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Yamaguchi, Keiko; Berkowitz, Brian M.; Potapczuk, Mark

    1990-01-01

    A series of experimental investigations focused on studying the cause and effect of roughness on accreting glaze ice surfaces were conducted. Detailed microvideo observations were made of glaze ice accretions on 1 to 4 inch diameter cylinders in three icing wind tunnels (the Data Products of New England six inch test facility, the NASA Lewis Icing Research Tunnel, and the B. F. Goodrich Ice Protection Research Facility). Infrared thermal video recordings were made of accreting ice surfaces in the Goodrich facility. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film; a rough zone where surface tension effects caused coalescence of surface water into stationary beads; a horn zone where roughness elements grow into horn shapes; a runback zone where surface water ran back as rivulets; and a dry zone where rime feathers formed. The location of the transition from the smooth to the rough zone was found to migrate with time towards the stagnation point. The behavior of the transition appeared to be controlled by boundary layer transition and bead formation mechanisms at the interface between the smooth and rough zones. Regions of wet ice growth and enhanced heat transfer were clearly visible in the infrared video recordings of glaze ice surfaces. A simple multi-zone modification to the current glaze ice accretion model was proposed to include spatial variability in surface roughness.

  2. Avalanche dynamics on a rough inclined plane.

    PubMed

    Börzsönyi, Tamás; Halsey, Thomas C; Ecke, Robert E

    2008-07-01

    The avalanche behavior of gravitationally forced granular layers on a rough inclined plane is investigated experimentally for different materials and for a variety of grain shapes ranging from spherical beads to highly anisotropic particles with dendritic shape. We measure the front velocity, area, and height of many avalanches and correlate the motion with the area and height. We also measure the avalanche profiles for several example cases. As the shape irregularity of the grains is increased, there is a dramatic qualitative change in avalanche properties. For rough nonspherical grains, avalanches are faster, bigger, and overturning in the sense that individual particles have down-slope speeds u p that exceed the front speed uf as compared with avalanches of spherical glass beads that are quantitatively slower and smaller and where particles always travel slower than the front speed. There is a linear increase of three quantities: (i) dimensionless avalanche height, (ii) ratio of particle to front speed, and (iii) the growth rate of avalanche speed with increasing avalanche size with increasing tan theta r where theta r is the bulk angle of repose, or with increasing beta P, the slope of the depth averaged flow rule, where both theta r and beta P reflect the grain shape irregularity. These relations provide a tool for predicting important dynamical properties of avalanches as a function of grain shape irregularity. A relatively simple depth-averaged theoretical description captures some important elements of the avalanche motion, notably the existence of two regimes of this motion.

  3. Compact Autonomous Hemispheric Vision System

    NASA Technical Reports Server (NTRS)

    Pingree, Paula J.; Cunningham, Thomas J.; Werne, Thomas A.; Eastwood, Michael L.; Walch, Marc J.; Staehle, Robert L.

    2012-01-01

    Solar System Exploration camera implementations to date have involved either single cameras with wide field-of-view (FOV) and consequently coarser spatial resolution, cameras on a movable mast, or single cameras necessitating rotation of the host vehicle to afford visibility outside a relatively narrow FOV. These cameras require detailed commanding from the ground or separate onboard computers to operate properly, and are incapable of making decisions based on image content that control pointing and downlink strategy. For color, a filter wheel having selectable positions was often added, which added moving parts, size, mass, power, and reduced reliability. A system was developed based on a general-purpose miniature visible-light camera using advanced CMOS (complementary metal oxide semiconductor) imager technology. The baseline camera has a 92 FOV and six cameras are arranged in an angled-up carousel fashion, with FOV overlaps such that the system has a 360 FOV (azimuth). A seventh camera, also with a FOV of 92 , is installed normal to the plane of the other 6 cameras giving the system a > 90 FOV in elevation and completing the hemispheric vision system. A central unit houses the common electronics box (CEB) controlling the system (power conversion, data processing, memory, and control software). Stereo is achieved by adding a second system on a baseline, and color is achieved by stacking two more systems (for a total of three, each system equipped with its own filter.) Two connectors on the bottom of the CEB provide a connection to a carrier (rover, spacecraft, balloon, etc.) for telemetry, commands, and power. This system has no moving parts. The system's onboard software (SW) supports autonomous operations such as pattern recognition and tracking.

  4. Hemispherical total emissivity of Hastelloy N with different surface conditions

    NASA Astrophysics Data System (ADS)

    Gordon, Andrew J.; Walton, Kyle L.; Ghosh, Tushar K.; Loyalka, Sudarshan K.; Viswanath, Dabir S.; Tompson, Robert V.

    2012-07-01

    The hemispherical total emissivity of Hastelloy N (a candidate structural material for Next Generation Nuclear Plants (NGNPs), particularly for the molten fluoride cooled reactors) was measured using an experimental set-up that was constructed in accordance with the standard ASTM C835-06. The material surface conditions included: (i) 'as received' (original) sample from the supplier; (ii) samples with increased surface roughness through sand blasting; (iii) oxidized surface, and (iv) samples coated with graphite powder. The emissivity of the as received samples varied from around 0.22 to 0.28 in the temperature range of 473 K to 1498 K. The emissivity increased when the roughness of the surface increased compared to an as received sample. When Hastelloy N was oxidized in air at 1153 K or coated with graphite powder, its emissivity increased substantially. The sample sand blasted with 60 grit beads and sprinkled with graphite powder showed an increase of emissivity from 0.2 to 0.60 at 473 K and from 0.25 to 0.67 at 1473 K. The oxidized surface showed a similar behavior: an increase in emissivity compared to an unoxidized sample. This increase in emissivity has strong favorable safety implications in terms of decay heat removal in post-accident environments. The data were compared with another Hastelloy family member, Hastelloy X.

  5. Rough Clustering for Cancer Datasets

    NASA Astrophysics Data System (ADS)

    Herawan, Tutut

    Cancer is becoming a leading cause of death among people in the whole world. It is confirmed that the early detection and accurate diagnosis of this disease can ensure a long survival of the patients. Expert systems and machine learning techniques are gaining popularity in this field because of the effective classification and high diagnostic capability. This paper presents the application of rough set theory for clustering two cancer datasets. These datasets are taken from UCI ML repository. The method is based on MDA technique proposed by [11]. To select a clustering attribute, the maximal degree of the rough attributes dependencies in categorical-valued information systems is used. Further, we use a divide-and-conquer method to partition/cluster the objects. The results show that MDA technique can be used to cluster to the data. Further, we present clusters visualization using two dimensional plot. The plot results provide user friendly navigation to understand the cluster obtained.

  6. Surface roughness of anodized titanium coatings.

    SciTech Connect

    Dugger, Michael Thomas; Chinn, Douglas Alan

    2010-10-01

    Samples of grade five 6Al4V titanium alloy were coated with two commercial fluoropolymer anodizations (Tiodize and Canadize) and compared. Neither coating demonstrates significant outgassing. The coatings show very similar elemental analysis, except for the presence of lead in the Canadize coating, which may account for its lower surface friction in humid environments. Surface roughness has been compared by SEM, contact profilometry, optical profilometry, power spectral density and bidirectional scattering distribution function (BSDF). The Tiodize film is slightly smoother by all measurement methods, but the Canadize film shows slightly less scatter at all angles of incidence. Both films exhibited initial friction coefficients of 0.2 to 0.4, increasing to 0.4 to 0.8 after 1000 cycles of sliding due to wear of the coating and ball. The coatings are very similar and should behave identically in most applications.

  7. A technique for measuring convective heat transfer at rough surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Zuolan; Ireland, P. T.; Jones, T. V.

    1990-06-01

    A new method has been developed for measuring local heat transfer coefficients at rough surfaces. The technique was applied to an idealized section of a large scaled model of a turbine blade cooling passage to assess the effect of surface irregularities which result from the blade manufacturing process. The experimental method is described in full and the results are presented for tests on an isolated pin-fin situated in fully developed channel flow. The effect of the thermal conductivity of the roughness elements is discussed.

  8. Sensing roughness and polish direction

    NASA Astrophysics Data System (ADS)

    Jakobsen, M. L.; Olesen, A. S.; Larsen, H. E.; Stubager, J.; Hanson, S. G.; Pedersen, T. F.; Pedersen, H. C.

    2016-04-01

    As a part of the work carried out on a project supported by the Danish council for technology and innovation, we have investigated the option of smoothing standard CNC machined surfaces. In the process of constructing optical prototypes, involving custom-designed optics, the development cost and time consumption can become relatively large numbers in a research budget. Machining the optical surfaces directly is expensive and time consuming. Alternatively, a more standardized and cheaper machining method can be used, but then the object needs to be manually polished. During the polishing process the operator needs information about the RMS-value of the surface roughness and the current direction of the scratches introduces by the polishing process. The RMS-value indicates to the operator how far he is from the final finish, and the scratch orientation is often specified by the customer in order to avoid complications during the casting process. In this work we present a method for measuring the RMS-values of the surface roughness while simultaneously determining the polishing direction. We are mainly interested in the RMS-values in the range from 0 - 100 nm, which corresponds to the finish categories of A1, A2 and A3. Based on simple intensity measurements we estimates the RMS-value of the surface roughness, and by using a sectioned annual photo-detector to collect the scattered light we can determine the direction of polishing and distinguish light scattered from random structures and light scattered from scratches.

  9. Hemispherical color differences on Pluto and Charon

    NASA Technical Reports Server (NTRS)

    Binzel, Richard P.

    1988-01-01

    Time-resolved multicolor photometric observations of Pluto-Charon mutual events have been used to derive individual colors for these two bodies and to investigate the degree of color differences between their synchronous facing and opposite hemispheres. Pluto is significantly redder than Charon, where direct measurements of the anti-Charon hemisphere of Pluto and the Pluto-facing hemisphere of Charon yield B-V magnitudes of 0.867 + or - 0.008 and 0.700 + or - 0.010, respectively. Both Pluto and Charon are found to have relatively uniform longitudinal color distributions with 1-sigma upper limits of 2 percent and 5 percent, respectively, for any large-scale hemispherical color asymmetries. Thus, a previous suspicion of a significant color asymmetry on Charon is not confirmed. Instead the data may be attributed to a direct detection of polar caps on Pluto.

  10. Hemispherical color differences on pluto and charon.

    PubMed

    Binzel, R P

    1988-08-26

    Time-resolved multicolor photometric observations of Pluto-Charon mutual events have been used to derive individual colors for these two bodies and to investigate the degree of color differences between their synchronous facing and opposite hemispheres. Pluto is significantly redder than Charon, where direct measurements of the anti-Charon hemisphere of Pluto and the Pluto-facing hemisphere of Charon yield B-V magnitudes of 0.867 +/- 0.008 and 0.700 +/- 0.010, respectively. Both Pluto and Charon are found to have relatively uniform longitudinal color distributions with lsigma upper limits of 2% and 5%, respectively, for any large-scale hemispherical color asymmetries. Thus, a previous suspicion of a significant color asymmetry on Charon is not confirmed. Instead the data may be attributed to a direct detection of polar caps on Pluto.

  11. Huge Filament Rises From Sun's Northern Hemisphere

    NASA Video Gallery

    On August 1, 2010 following a C3-class solar flare from sunspot 1092, an enormous magnetic filament stretching across the sun's northern hemisphere erupted. This 304 angstrom video shows that filam...

  12. Recovering two languages with the right hemisphere.

    PubMed

    Marini, Andrea; Galetto, Valentina; Tatu, Karina; Duca, Sergio; Geminiani, Giuliano; Sacco, Katiuscia; Zettin, Marina

    2016-08-01

    Converging evidence suggests that the right hemisphere (RH) plays an important role in language recovery from aphasia after a left hemisphere (LH) lesion. In this longitudinal study we describe the neurological, cognitive, and linguistic profile of A.C., a bilingual who, after a severe traumatic brain injury, developed a form of fluent aphasia that affected his two languages (i.e., Romanian and Italian). The trauma-induced parenchymal atrophy led to an exceptional ventricular dilation that, gradually, affected the whole left hemisphere. A.C. is now recovering both languages relying only on his right hemisphere. An fMRI experiment employing a bilingual covert verb generation task documented the involvement of the right middle temporal gyrus in processes of lexical selection and access. This case supports the hypothesis that the RH plays a role in language recovery from aphasia when the LH has suffered massive lesions. PMID:27289209

  13. Hemispheric Asymmetries of the Subauroral Ion Drifts

    NASA Astrophysics Data System (ADS)

    He, F.; Zhang, X.; Wang, W.; Chen, B.

    2015-12-01

    A large database of subauroral ion drifts (SAID) events from DMSP observations from 1987 to 2012 is used to systematically investigate the features of SAID. SAID occurs mostly at ~ 62° / -60° magnetic latitude (MLAT) and ~ 2215 / 2245 magnetic local time (MLT) for geomagnetically quiet conditions and at ~ 58°/ -56° MLAT and ~ 2215 / 2245 MLT for geomagnetically disturbed conditions in the North Hemisphere (NH) / South Hemisphere (SH), respectively. Significant north-south asymmetries in SAID occurrence, shape, and geomagnetic activity variations are found in this statistical study. The latitudinal width of a SAID is larger in the NH than in the SH. An interesting finding of this work is that the SAID occurrence probability peaks have a ~ 180° difference in longitude between the two hemispheres in the geographic coordinates for both geomagnetically quiet and disturbed conditions. The SAID width peaks in almost the same geomagnetic meridian zone with a geomagnetic longitude of ~ 80°-120° in both hemispheres. Significant hemispheric asymmetries and spike signatures with sharpe dips are found in all the latitudinal profiles of the horizontal velocities of SAIDs.The SAID is highly correlated to geomagnetic activity, indicating that the location and evolution of the SAID might be influenced by global geomagnetic activity, auroral dynamics, and the dynamics of ring currents. The hemispheric asymmetries of SAID may possibly be related with the differences of the hemispheric power, the cross-polar cap potential, and the density of region-2 field-aligned currents in the two hemispheres. Detailed investigations will be presented in future.

  14. Homotopic language reorganization in the right hemisphere after early left hemisphere injury.

    PubMed

    Tivarus, Madalina E; Starling, Sarah J; Newport, Elissa L; Langfitt, John T

    2012-10-01

    To determine the areas involved in reorganization of language to the right hemisphere after early left hemisphere injury, we compared fMRI activation patterns during four production and comprehension tasks in post-surgical epilepsy patients with either left (LH) or right hemisphere (RH) speech dominance (determined by Wada testing) and healthy controls. Patient groups were carefully matched for IQ, lesion location and size. RH patients' activation across all tasks was greatest in right hemisphere areas homotopic to areas activated by LH and control participants. Differences in right vs. left dominant hemisphere activation were limited to homologous areas typically activated by language tasks, supporting the hypothesis that language localization following transfer to the RH is the mirror-image of localization in the absence of transfer. The similarity of these findings to those in patients with larger, peri-sylvian lesions suggests that these areas in both hemispheres may be uniquely predisposed to subserve various language functions.

  15. Mechanisms resulting in accreted ice roughness

    NASA Technical Reports Server (NTRS)

    Bilanin, Alan J.; Chua, Kiat

    1992-01-01

    Icing tests conducted on rotating cylinders in the BF Goodrich's Icing Research Facility indicate that a regular, deterministic, icing roughness pattern is typical. The roughness pattern is similar to kernels of corn on a cob for cylinders of diameter typical of a cob. An analysis is undertaken to determine the mechanisms which result in this roughness to ascertain surface scale and amplitude of roughness. Since roughness and the resulting augmentation of the convected heat transfer coefficient has been determined to most strongly control the accreted ice in ice prediction codes, the ability to predict a priori, location, amplitude and surface scale of roughness would greatly augment the capabilities of current ice accretion models.

  16. Hemisphere-specific processes in letter matching.

    PubMed

    Kirsner, K

    1980-02-01

    Three experiments were designed to investigate outstanding questions concerning the effect of memory load variations on efficiency and coding processes in the left and right cerebral hemispheres. In Experiment 1 subjects were presented with one, two, or three target letters in uppercase or lowercase in central vision, followed by simultaneous bilateral probes requiring a name match response. Twenty young right-handed adults, 10 males and 10 females, acted as subjects. Two main features of the results were as follows: (a) The slope of the linear function relating mean reaction time (RT) and set size was 30% greater for right visual field (RVF)-left-hemisphere probe stimuli under both physical and name identity conditions, and (b) RT for RVF-left-hemisphere probes was greater when the probe was drawn from preterminal serial position in the target list. Experiments 2 and 3 examined the proposition that the results of Experiment 1 reflected asymmetric interference during list acquisition. The results showed that, first, the LVF-right-hemisphere advantage was eliminated or reversed under unilateral probe presentation conditions, and second, the LVF-right-hemisphere advantage for a single, preterminal serial position was insensitive to variations in the interitem interval. The results are thought to be inconsistent with the interference hypothesis. The general implications of the results for existing theories of hemisphere function are discussed.

  17. Hypothalamic digoxin, hemispheric chemical dominance, and spirituality.

    PubMed

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-03-01

    The isoprenoid pathway was assessed in atheistic and spiritually inclined individuals. The pathway was also assessed in individuals with differing hemispheric dominance to assess whether hemispheric dominance has a correlation with spiritual and atheistic tendency. HMG CoA reductase activity, serum digoxin, RBC membrane Na(+)-K+ ATPase activity, serum magnesium, and tyrosine/tryptophan catabolic patterns were assessed in spiritual/atheistic individuals and in those differing hemispheric dominance. In spiritually-inclined individuals, there was increased digoxin synthesis, decreased membrane Na(+)-K+ ATPase activity, increased tryptophan catabolites (serotonin, quinolinic acid, and nicotine), and decreased tyrosine catabolites (dopamine, noradrenaline, and morphine). The pattern in spiritually-inclined individuals correlated with right hemispheric chemical dominance. In atheistic individuals there was decreased digoxin synthesis, increased membrane Na(+)-K+ ATPase activity, decreased tryptophan catabolities (serotonin, quinolinic acid, and nicotine), and increased tyrosine catabolites (dopamine, noradrenaline, and morphine). This pattern in atheistic individuals correlated with that obtained in left hemispheric chemical dominance. Hemispheric chemical dominance and hypothalamic digoxin could regulate the predisposition to spirituality or atheism.

  18. Hemispherical map for the human brain cortex

    NASA Astrophysics Data System (ADS)

    Tosun, Duygu; Prince, Jerry L.

    2001-07-01

    Understanding the function of the human brain cortex is a primary goal in human brain mapping. Methods to unfold and flatten the cortical surface for visualization and measurement have been described in previous literature; but comparison across multiple subjects is still difficult because of the lack of a standard mapping technique. We describe a new approach that maps each hemisphere of the cortex to a portion of a sphere in a standard way, making comparison of anatomy and function across different subjects possible. Starting with a three-dimensional magnetic resonance image of the brain, the cortex is segmented and represented as a triangle mesh. Defining a cut around the corpus collosum identifies the left and right hemispheres. Together, the two hemispheres are mapped to the complex plane using a conformal mapping technique. A Mobius transformation, which is conformal, is used to transform the points on the complex plane so that a projective transformation maps each brain hemisphere onto a spherical segment comprising a sphere with a cap removed. We determined the best size of the spherical cap by minimizing the relative area distortion between hemispherical maps and original cortical surfaces. The relative area distortion between the hemispherical maps and the original cortical surfaces for fifteen human brains is analyzed.

  19. Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation.

    PubMed

    He, Feng; Shakun, Jeremy D; Clark, Peter U; Carlson, Anders E; Liu, Zhengyu; Otto-Bliesner, Bette L; Kutzbach, John E

    2013-02-01

    According to the Milankovitch theory, changes in summer insolation in the high-latitude Northern Hemisphere caused glacial cycles through their impact on ice-sheet mass balance. Statistical analyses of long climate records supported this theory, but they also posed a substantial challenge by showing that changes in Southern Hemisphere climate were in phase with or led those in the north. Although an orbitally forced Northern Hemisphere signal may have been transmitted to the Southern Hemisphere, insolation forcing can also directly influence local Southern Hemisphere climate, potentially intensified by sea-ice feedback, suggesting that the hemispheres may have responded independently to different aspects of orbital forcing. Signal processing of climate records cannot distinguish between these conditions, however, because the proposed insolation forcings share essentially identical variability. Here we use transient simulations with a coupled atmosphere-ocean general circulation model to identify the impacts of forcing from changes in orbits, atmospheric CO(2) concentration, ice sheets and the Atlantic meridional overturning circulation (AMOC) on hemispheric temperatures during the first half of the last deglaciation (22-14.3 kyr BP). Although based on a single model, our transient simulation with only orbital changes supports the Milankovitch theory in showing that the last deglaciation was initiated by rising insolation during spring and summer in the mid-latitude to high-latitude Northern Hemisphere and by terrestrial snow-albedo feedback. The simulation with all forcings best reproduces the timing and magnitude of surface temperature evolution in the Southern Hemisphere in deglacial proxy records. AMOC changes associated with an orbitally induced retreat of Northern Hemisphere ice sheets is the most plausible explanation for the early Southern Hemisphere deglacial warming and its lead over Northern Hemisphere temperature; the ensuing rise in atmospheric CO(2

  20. Asymmetrical hemisphere activation enhances global-local processing.

    PubMed

    Gable, Philip A; Poole, Bryan D; Cook, Mary S

    2013-12-01

    Decades of research focusing on the neurophysiological underpinnings related to global-local processing of hierarchical stimuli have associated global processing with the right hemisphere and local processing with the left hemisphere. The current experiment sought to expand this research by testing the causal contributions of hemisphere activation to global-local processing. To manipulate hemisphere activation, participants engaged in contralateral hand contractions. Then, EEG activity and attentional scope were measured. Right-hand contractions caused greater relative left-cortical activity than left-hand contractions. Participants were more narrowly focused after left-hemisphere activation than after right-hemisphere activation. Moreover, N1 amplitudes to local targets in the left hemisphere were larger after left-hemisphere activation than after right-hemisphere activation. Consistent with past research investigating hemispheric asymmetry and attentional scope, the current results suggest that manipulating left (right) hemisphere activity enhanced local (global) attentional processing.

  1. Interactions between surface roughness and airflow turbulence affecting drying dynamics of rough porous surfaces

    NASA Astrophysics Data System (ADS)

    Haghighi, Erfan; Kirchner, James; Or, Dani

    2016-04-01

    Evaporative drying of porous surfaces interacting with turbulent airflows is common in various industrial and natural applications. The intrinsic relief and roughness of natural porous surfaces are likely to influence the structure of interacting turbulent airflow boundary layers, and thus affect rates and patterns of heat and vapor fluxes from the surface. These links have been formalized in new mechanistic models that consider intermittent and localized turbulence-induced boundary layers, resulting in rich surface evaporation and energy exchange dynamics. The models were evaluated experimentally by systematically varying surface roughness elements in drying experiments of wavy and bluff-body covered sand surfaces in a wind tunnel. Thermal infrared signatures of localized evaporative fluxes as well as mean evaporative mass losses were recorded. The resulting patterns were in good agreement with model predictions for local and surface averaged turbulent exchange rates. Experimental and theoretical results suggest that evaporative water losses from wavy sand surfaces can be either enhanced or suppressed (relative to a flat surface), due to the complex interplay between the local boundary layer thickness and internal limitations on water flow to the evaporating surface. For sand surfaces covered by isolated cylindrical elements (bluff bodies), model predictions and measurements show persistent enhancement of evaporative fluxes from bluff-rough surfaces compared to a flat surface under similar conditions. This enhancement is attributed to the formation of vortices that thin the boundary layer over part of the interacting surface footprint. The implications of this study for interpreting and upscaling evapotranspiration rates from terrestrial surfaces will be discussed.

  2. Discrete Roughness Effects on Shuttle Orbiter at Mach 6

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Hamilton, H. Harris, II

    2002-01-01

    Discrete roughness boundary layer transition results on a Shuttle Orbiter model in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed with new boundary layer calculations to provide consistency for comparison to other published results. The experimental results were previously obtained utilizing the phosphor thermography system to monitor the status of the boundary layer via global heat transfer images of the Orbiter windward surface. The size and location of discrete roughness elements were systematically varied along the centerline of the 0.0075-scale model at an angle of attack of 40 deg and the boundary layer response recorded. Various correlative approaches were attempted, with the roughness transition correlations based on edge properties providing the most reliable results. When a consistent computational method is used to compute edge conditions, transition datasets for different configurations at several angles of attack have been shown to collapse to a well-behaved correlation.

  3. The effect of surface roughness on Triton's volatile distribution

    NASA Technical Reports Server (NTRS)

    Yelle, Roger V.

    1992-01-01

    Calculations of radiative equilibrium temperatures on Triton's rough surface suggest that significant condensation of N2 may be occurring in the northern equatorial regions, despite their relatively dark appearance. The bright frost is not apparent in the Voyager images because it tends to be concentrated in relatively unilluminated facets of the surface. This patchwork of bright frost-covered regions and darker bare ground may be distributed on scales smaller than that of the Voyager resolution; as a result the northern equatorial regions may appear relatively dark. This hypothesis also accounts for the observed wind direction in the Southern Hemisphere because it implies that the equatorial regions are warmer than the south polar regions.

  4. Crosshatch roughness distortions on a hypersonic turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Peltier, S. J.; Humble, R. A.; Bowersox, R. D. W.

    2016-04-01

    The effects of periodic crosshatch roughness (k+ = 160) on a Mach 4.9 turbulent boundary layer (Reθ = 63 000) are examined using particle image velocimetry. The roughness elements generate a series of alternating shock and expansion waves, which span the entire boundary layer, causing significant (up to +50% and -30%) variations in the Reynolds shear stress field. Evidence of the hairpin vortex organization of incompressible flows is found in the comparative smooth-wall boundary layer case (Reθ = 47 000), and can be used to explain several observations regarding the rough-wall vortex organization. In general, the rough-wall boundary layer near-wall vortices no longer appear to be well-organized into streamwise-aligned packets that straddle relatively low-speed regions like their smooth-wall counterpart; instead, they lean farther away from the wall, become more spatially compact, and their populations become altered. In the lower half of the boundary layer, the net vortex swirling strength and outer-scaled Reynolds stresses increase relative to the smooth-wall case, and actually decrease in the outer half of the boundary layer, as ejection and entrainment processes are strengthened and weakened in these two regions, respectively. A spectral analysis of the data suggests a relative homogenizing of the most energetic scales near Λ = ˜ 0.5δ across the rough-wall boundary layer.

  5. Intelligent Information Retrieval Using Rough Set Approximations.

    ERIC Educational Resources Information Center

    Srinivasan, Padmini

    1989-01-01

    Describes rough sets theory and discusses the advantages it offers for information retrieval, including the implicit inclusion of Boolean logic, term weighting, ranked retrieval output, and relevance feedback. Rough set formalism is compared to Boolean, vector, and fuzzy models of information retrieval and a small scale evaluation of rough sets is…

  6. Soil roughness, slope and surface storage relationship for impervious areas

    NASA Astrophysics Data System (ADS)

    Borselli, Lorenzo; Torri, Dino

    2010-11-01

    SummaryThe study of the relationships between surface roughness, local slope gradient and maximum volume of water storage in surface depressions is a fundamental element in the development of hydrological models to be used in soil and water conservation strategies. Good estimates of the maximum volume of water storage are important for runoff assessment during rainfall events. Some attempts to link surface storage to parameters such as indices of surface roughness and, more rarely, local gradient have been proposed by several authors with empirical equations often conflicting between them and usually based on a narrow range of slope gradients. This suggests care in selecting any of the proposed equations or models and invites one to verify the existence of more realistic experimental relationships, based on physical models of the surfaces and valid for a larger range of gradients. The aim of this study is to develop such a relation for predicting/estimating the maximum volume of water that a soil surface, with given roughness characteristics and local slope gradient, can store. Experimental work has been carried out in order to reproduce reliable rough surfaces able to maintain the following properties during the experimental activity: (a) impervious surface to avoid biased storage determination; (b) stable, un-erodible surfaces to avoid changes of retention volume during tests; (c) absence of hydrophobic behaviour. To meet the conditions a-c we generate physical surfaces with various roughness magnitude using plasticine (emulsion of non-expansible clay and oil). The plasticine surface, reproducing surfaces of arable soils, was then wetted and dirtied with a very fine timber sawdust. This reduced the natural hydrophobic behaviour of the plasticine to an undetectable value. Storage experiments were conducted with plasticine rough surfaces on top of large rigid polystyrene plates inclined at different slope gradient: 2%, 5%, 10%, 20%, 30%. Roughness data collected on

  7. Approximating the detection limit of an infrared spectroscopic imaging microscope operating in an attenuated total reflection (ATR) modality: theoretical and empirical results for an instrument using a linear array detector and a 1.5 millimeter germanium hemisphere internal reflection element.

    PubMed

    Lanzarotta, Adam

    2015-01-01

    Theoretical and empirical detection limits have been estimated for aripiprazole (analyte) in alpha lactose monohydrate (matrix model pharmaceutical formulation) using a micro-attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopic imaging instrument equipped with a linear array detector and a 1.5 mm germanium hemisphere internal reflection element (IRE). The instrument yielded a theoretical detection limit of 0.0035% (35 parts per million (ppm)) when operating under diffraction-limited conditions, which was 49 times lower than what was achieved with a traditional macro-ATR instrument operating under practical conditions (0.17%, 1700 ppm). However, these results may not be achievable for most analyses because the detection limits will be particle size limited, rather than diffraction limited, for mixtures with average particle diameters greater than 8.3 μm (most pharmaceutical samples). For example, a theoretical detection limit of 0.028% (280 ppm) was calculated for an experiment operating under particle size-limited conditions where the average particle size was 23.4 μm. These conditions yielded a detection limit of 0.022% (220 ppm) when measured empirically, which was close to the theoretical value and only eight times lower than that of a faster, more simplistic macro-ATR instrument. Considering the longer data acquisition and processing times characteristic of the micro-ATR imaging approach (minutes or even hours versus seconds), the cost-benefit ratio may not often be favorable for the analysis of analytes in matrices that exhibit only a few overlapping absorptions (low-interfering matrices such as alpha lactose monohydrate) using this technique compared to what can be achieved using macro-ATR. However, the advantage was significant for detecting analytes in more complex matrices (those that exhibited several overlapping absorptions with the analyte) because the detection limit of the macro-ATR approach was highly formulation

  8. Approximating the detection limit of an infrared spectroscopic imaging microscope operating in an attenuated total reflection (ATR) modality: theoretical and empirical results for an instrument using a linear array detector and a 1.5 millimeter germanium hemisphere internal reflection element.

    PubMed

    Lanzarotta, Adam

    2015-01-01

    Theoretical and empirical detection limits have been estimated for aripiprazole (analyte) in alpha lactose monohydrate (matrix model pharmaceutical formulation) using a micro-attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopic imaging instrument equipped with a linear array detector and a 1.5 mm germanium hemisphere internal reflection element (IRE). The instrument yielded a theoretical detection limit of 0.0035% (35 parts per million (ppm)) when operating under diffraction-limited conditions, which was 49 times lower than what was achieved with a traditional macro-ATR instrument operating under practical conditions (0.17%, 1700 ppm). However, these results may not be achievable for most analyses because the detection limits will be particle size limited, rather than diffraction limited, for mixtures with average particle diameters greater than 8.3 μm (most pharmaceutical samples). For example, a theoretical detection limit of 0.028% (280 ppm) was calculated for an experiment operating under particle size-limited conditions where the average particle size was 23.4 μm. These conditions yielded a detection limit of 0.022% (220 ppm) when measured empirically, which was close to the theoretical value and only eight times lower than that of a faster, more simplistic macro-ATR instrument. Considering the longer data acquisition and processing times characteristic of the micro-ATR imaging approach (minutes or even hours versus seconds), the cost-benefit ratio may not often be favorable for the analysis of analytes in matrices that exhibit only a few overlapping absorptions (low-interfering matrices such as alpha lactose monohydrate) using this technique compared to what can be achieved using macro-ATR. However, the advantage was significant for detecting analytes in more complex matrices (those that exhibited several overlapping absorptions with the analyte) because the detection limit of the macro-ATR approach was highly formulation

  9. Calibration of surface roughness standards

    NASA Astrophysics Data System (ADS)

    Thalmann, R.; Nicolet, A.; Meli, F.; Picotto, G. B.; Matus, M.; Carcedo, L.; Hemming, B.; Ganioglu, O.; De Chiffre, L.; Saraiva, F.; Bergstrand, S.; Zelenika, S.; Tonmueanwai, A.; Tsai, C.-L.; Shihua, W.; Kruger, O.; de Souza, M. M.; Salgado, J. A.; Ramotowski, Z.

    2016-01-01

    The key comparison EURAMET.L-K8.2013 on roughness was carried out in the framework of a EURAMET project starting in 2013 and ending in 2015. It involved the participation of 17 National Metrology Institutes from Europe, Asia, South America and Africa representing four regional metrology organisations. Five surface texture standards of different type were circulated and on each of the standards several roughness parameters according to the standard ISO 4287 had to be determined. 32 out of 395 individual results were not consistent with the reference value. After some corrective actions the number of inconsistent results could be reduced to 20, which correspond to about 5% of the total and can statistically be expected. In addition to the material standards, two softgauges were circulated, which allow to test the software of the instruments used in the comparison. The comparison results help to support the calibraton and measurement capabilities (CMCs) of the laboratories involved in the CIPM MRA. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCL, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  10. Music Appreciation and Hemisphere Orientation: Visual versus Verbal Involvement.

    ERIC Educational Resources Information Center

    Zalanowski, Annette H.

    1990-01-01

    Analyzes effect of brain hemisphere orientation on music appreciation. Reports results from 36 left-hemisphere and 36 right-hemisphere undergraduates who responded to a musical selection verbally or visually. Finds right-hemisphere students show greater appreciation, measured by attention, understanding, and enjoyment scores. Discusses…

  11. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A. Ebadian

    1999-04-30

    The final data package has been completed for the Mississippi State University, DIAL FTP Wall Depth Removal Characterization Technology. The package has been sent to DIAL for comments. Work is progressing on completing the transfer of glove boxes and tanks from Rocky Flats to FIU-HCET for the purpose of performing size reduction technology assessments. Vendors are being identified and security measures are being put in place to meet the High Risk Property criteria required by Rocky Flats. The FIU-HCET Technology Assessment Program has been included as one of 11 verification programs across the US and Canada described in the Interstate Technology Regulatory Cooperation (ITRC) document, ''Multi-state Evaluation of Elements Important to the Verification of Remediation Technologies'', dated January 1999. FIU-HCET will also participate in a panel discussion on technology verification programs at the International Environmental Technology Expo '99.

  12. Hemispheric lateralization of semantic feature distinctiveness

    PubMed Central

    Reilly, M.; Machado, N.; Blumstein, S. E.

    2015-01-01

    Recent models of semantic memory propose that the semantic representation of concepts is based, in part, on a network of features. In this view, a feature that is distinctive for an object (a zebra has stripes) is processed differently from a feature that is shared across many objects (a zebra has four legs). The goal of this paper is to determine whether there are hemispheric differences in such processing. In a feature verification task, participants responded ‘yes’ or ‘no’ following concepts which were presented to a single visual field (left or right) paired with a shared or distinctive feature. Both hemispheres showed faster reaction times to shared features than to distinctive features, although right hemisphere responses were significantly slower overall and particularly in the processing of distinctive features. These findings support models of semantic processing in which the dominant left hemisphere more efficiently performs highly discriminating ‘fine’ encoding, in contrast to the right hemisphere which performs less discriminating ‘coarse’ encoding. PMID:26022059

  13. Mapping number to space in the two hemispheres of the avian brain.

    PubMed

    Rugani, Rosa; Vallortigara, Giorgio; Regolin, Lucia

    2016-09-01

    Pre-verbal infants and non-human animals associate small numbers with the left space and large numbers with the right space. Birds and primates, trained to identify a given position in a sagittal series of identical positions, whenever required to respond on a left/right oriented series, referred the given position starting from the left end. Here, we extended this evidence by selectively investigating the role of either cerebral hemisphere, using the temporary monocular occlusion technique. In birds, lacking the corpus callosum, visual input is fed mainly to the contralateral hemisphere. We trained 4-day-old chicks to identify the 4th element in a sagittal series of 10 identical elements. At test, the series was identical but left/right oriented. Test was conducted in right monocular, left monocular or binocular condition of vision. Right monocular chicks pecked at the 4th right element; left monocular and binocular chicks pecked at the 4th left element. Data on monocular chicks demonstrate that both hemispheres deal with an ordinal (sequential) task. Data on binocular chicks indicate that the left bias is linked to a right hemisphere dominance, that allocates the attention toward the left hemispace. This constitutes a first step towards understanding the neural basis of number space mapping.

  14. Mapping number to space in the two hemispheres of the avian brain.

    PubMed

    Rugani, Rosa; Vallortigara, Giorgio; Regolin, Lucia

    2016-09-01

    Pre-verbal infants and non-human animals associate small numbers with the left space and large numbers with the right space. Birds and primates, trained to identify a given position in a sagittal series of identical positions, whenever required to respond on a left/right oriented series, referred the given position starting from the left end. Here, we extended this evidence by selectively investigating the role of either cerebral hemisphere, using the temporary monocular occlusion technique. In birds, lacking the corpus callosum, visual input is fed mainly to the contralateral hemisphere. We trained 4-day-old chicks to identify the 4th element in a sagittal series of 10 identical elements. At test, the series was identical but left/right oriented. Test was conducted in right monocular, left monocular or binocular condition of vision. Right monocular chicks pecked at the 4th right element; left monocular and binocular chicks pecked at the 4th left element. Data on monocular chicks demonstrate that both hemispheres deal with an ordinal (sequential) task. Data on binocular chicks indicate that the left bias is linked to a right hemisphere dominance, that allocates the attention toward the left hemispace. This constitutes a first step towards understanding the neural basis of number space mapping. PMID:27246250

  15. One-way implodable tag capsule with hemispherical beaded end cap for LWR fuel manufacturing

    DOEpatents

    Gross, Kenny; Lambert, John

    1999-01-01

    A capsule containing a tag gas in a zircaloy body portion having a hemispical top curved toward the bottom of the body portion. The hemispherical top has a rupturable portion upon exposure to elevated gas pressure and the capsule is positioned within a fuel element in a nuclear reactor.

  16. Effect of nanoscale patterned interfacial roughness on interfacial toughness.

    SciTech Connect

    Zimmerman, Jonathan A.; Moody, Neville Reid; Mook, William M.; Kennedy, Marian S.; Bahr, David F.; Zhou, Xiao Wang; Reedy, Earl David, Jr.

    2007-09-01

    The performance and the reliability of many devices are controlled by interfaces between thin films. In this study we investigated the use of patterned, nanoscale interfacial roughness as a way to increase the apparent interfacial toughness of brittle, thin-film material systems. The experimental portion of the study measured the interfacial toughness of a number of interfaces with nanoscale roughness. This included a silicon interface with a rectangular-toothed pattern of 60-nm wide by 90-nm deep channels fabricated using nanoimprint lithography techniques. Detailed finite element simulations were used to investigate the nature of interfacial crack growth when the interface is patterned. These simulations examined how geometric and material parameter choices affect the apparent toughness. Atomistic simulations were also performed with the aim of identifying possible modifications to the interfacial separation models currently used in nanoscale, finite element fracture analyses. The fundamental nature of atomistic traction separation for mixed mode loadings was investigated.

  17. Sex differences in right hemisphere tasks.

    PubMed

    Crucian, G P; Berenbaum, S A

    1998-04-01

    We tested the hypothesis that sex differences in spatial ability and emotional perception are due to sex differences in intrahemispheric organization of the right hemisphere. If the right hemisphere is differently organized by sex-primarily specialized for spatial ability in men, but primarily specialized for emotional perception in women-then there should be a negative correlation between spatial ability and emotional perception within sex, and the greatest disparity between abilities should be found in people with characteristic arousal of the right hemisphere. Undergraduate men (N = 86) and women (N = 132) completed tests of Mental Rotation, Surface Development, Profile of Nonverbal Sensitivity, Progressive Matrices, and Chimeric Faces. Although the expected pattern of sex differences was observed, there was no evidence for the hypothesized negative correlation between spatial ability and emotional perception, even after statistical control of general intelligence. PMID:9647685

  18. Heat transfer from internally heated hemispherical pools

    SciTech Connect

    Gabor, J.D.; Ellsion, P.G.; Cassulo, J.C.

    1980-01-01

    Experiments were conducted on heat transfer from internally heated ZnSO/sub 4/-H/sub 2/O pools to the walls of hemispherical containers. This experimental technique provides data for a heat transfer system that has to date been only theoretically treated. Three different sizes of copper hemispherical containers were used: 240, 280, 320 mm in diameter. The pool container served both as a heat transfer surface and as an electrode. The opposing electrode was a copper disk, 50 mm in diameter located at the top of the pool in the center. The top surface of the pool was open to the atmosphere.

  19. Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke.

    PubMed

    Xing, Shihui; Lacey, Elizabeth H; Skipper-Kallal, Laura M; Jiang, Xiong; Harris-Love, Michelle L; Zeng, Jinsheng; Turkeltaub, Peter E

    2016-01-01

    The neural mechanisms underlying recovery of language after left hemisphere stroke remain elusive. Although older evidence suggested that right hemisphere language homologues compensate for damage in left hemisphere language areas, the current prevailing theory suggests that right hemisphere engagement is ineffective or even maladaptive. Using a novel combination of support vector regression-based lesion-symptom mapping and voxel-based morphometry, we aimed to determine whether local grey matter volume in the right hemisphere independently contributes to aphasia outcomes after chronic left hemisphere stroke. Thirty-two left hemisphere stroke survivors with aphasia underwent language assessment with the Western Aphasia Battery-Revised and tests of other cognitive domains. High-resolution T1-weighted images were obtained in aphasia patients and 30 demographically matched healthy controls. Support vector regression-based multivariate lesion-symptom mapping was used to identify critical language areas in the left hemisphere and then to quantify each stroke survivor's lesion burden in these areas. After controlling for these direct effects of the stroke on language, voxel-based morphometry was then used to determine whether local grey matter volumes in the right hemisphere explained additional variance in language outcomes. In brain areas in which grey matter volumes related to language outcomes, we then compared grey matter volumes in patients and healthy controls to assess post-stroke plasticity. Lesion-symptom mapping showed that specific left hemisphere regions related to different language abilities. After controlling for lesion burden in these areas, lesion size, and demographic factors, grey matter volumes in parts of the right temporoparietal cortex positively related to spontaneous speech, naming, and repetition scores. Examining whether domain general cognitive functions might explain these relationships, partial correlations demonstrated that grey matter

  20. Addressing scale dependence in roughness and morphometric statistics derived from point cloud data.

    NASA Astrophysics Data System (ADS)

    Buscombe, D.; Wheaton, J. M.; Hensleigh, J.; Grams, P. E.; Welcker, C. W.; Anderson, K.; Kaplinski, M. A.

    2015-12-01

    The heights of natural surfaces can be measured with such spatial density that almost the entire spectrum of physical roughness scales can be characterized, down to the morphological form and grain scales. With an ability to measure 'microtopography' comes a demand for analytical/computational tools for spatially explicit statistical characterization of surface roughness. Detrended standard deviation of surface heights is a popular means to create continuous maps of roughness from point cloud data, using moving windows and reporting window-centered statistics of variations from a trend surface. If 'roughness' is the statistical variation in the distribution of relief of a surface, then 'texture' is the frequency of change and spatial arrangement of roughness. The variance in surface height as a function of frequency obeys a power law. In consequence, roughness is dependent on the window size through which it is examined, which has a number of potential disadvantages: 1) the choice of window size becomes crucial, and obstructs comparisons between data; 2) if windows are large relative to multiple roughness scales, it is harder to discriminate between those scales; 3) if roughness is not scaled by the texture length scale, information on the spacing and clustering of roughness `elements' can be lost; and 4) such practice is not amenable to models describing the scattering of light and sound from rough natural surfaces. We discuss the relationship between roughness and texture. Some useful parameters which scale vertical roughness to characteristic horizontal length scales are suggested, with examples of bathymetric point clouds obtained using multibeam from two contrasting riverbeds, namely those of the Colorado River in Grand Canyon, and the Snake River in Hells Canyon. Such work, aside from automated texture characterization and texture segmentation, roughness and grain size calculation, might also be useful for feature detection and classification from point

  1. Retraining in literal alexia: substitution of a right hemisphere perceptual strategy for impaired left hemispheric processing.

    PubMed

    Carmon, A; Gordon, H W; Bental, E; Harness, B Z

    1977-07-01

    An adult patient with literal alexia, agraphia, slight anomia, and dyscalculia due to a left hemisphere infarct showed lack of sequential skills while pattern recognition remained intact. Some words were recognized as patterns, but could not be read phonetically. Therapy concentrated on forming an association of the visual pattern of the complete word with the retained auditory pattern. In this way the patient learned to read several hundred words and short phrases, even as anomia worsened. The patterns learned could not be generalized to noun declension or verb conjugation, or broken into smaller words. This learning process is characteristic of right hemispheric skills which were utilized as left hemispheric functions deteriorated. PMID:617048

  2. Receptivity of Hypersonic Boundary Layers to Distributed Roughness and Acoustic Disturbances

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2013-01-01

    Boundary-layer receptivity and stability of Mach 6 flows over smooth and rough seven-degree half-angle sharp-tipped cones are numerically investigated. The receptivity of the boundary layer to slow acoustic disturbances, fast acoustic disturbances, and vortical disturbances is considered. The effects of three-dimensional isolated roughness on the receptivity and stability are also simulated. The results for the smooth cone show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves than to the fast acoustic waves. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that of the slow acoustic wave. Distributed roughness elements located near the nose region decreased the receptivity of the second mode generated by the slow acoustic wave by a small amount. Roughness elements distributed across the continuous spectrum increased the receptivity of the second mode generated by the slow and fast acoustic waves and the vorticity wave. The largest increase occurred for the vorticity wave. Roughness elements distributed across the synchronization point did not change the receptivity of the second modes generated by the acoustic waves. The receptivity of the second mode generated by the vorticity wave increased in this case, but the increase is lower than that occurred with the roughness elements located across the continuous spectrum. The simulations with an isolated roughness element showed that the second mode waves generated by the acoustic disturbances are not influenced by the small roughness element. Due to the interaction, a three-dimensional wave is generated. However, the amplitude is orders of magnitude smaller than the two-dimensional wave.

  3. Hemispheric Differences in Processing Handwritten Cursive

    ERIC Educational Resources Information Center

    Hellige, Joseph B.; Adamson, Maheen M.

    2007-01-01

    Hemispheric asymmetry was examined for native English speakers identifying consonant-vowel-consonant (CVC) non-words presented in standard printed form, in standard handwritten cursive form or in handwritten cursive with the letters separated by small gaps. For all three conditions, fewer errors occurred when stimuli were presented to the right…

  4. Rethinking a Right Hemisphere Deficit in ADHD

    ERIC Educational Resources Information Center

    Hale, T. Sigi; Loo, Sandra K.; Zaidel, Eran; Hanada, Grant; Macion, James; Smalley, Susan L.

    2009-01-01

    Introduction: Early observations from lesion studies suggested right hemisphere (RH) dysfunction in ADHD. However, a strictly right-lateralized deficit has not been well supported. An alternatively view suggests increased R greater than L asymmetry of brain function and abnormal interhemispheric interaction. If true, RH pathology in ADHD should…

  5. Practice makes two hemispheres almost perfect.

    PubMed

    Cherbuin, Nicolas; Brinkman, Cobie

    2005-08-01

    Some tasks produce a performance advantage for conditions that require the processing of stimuli in two visual fields compared to conditions where single hemifield processing is sufficient. This advantage, however, disappears with practice. Although no definitive evidence yet exists, there are several possible mechanisms that might lead to improved performance of within- compared to across-hemisphere processing with practice. These include a shift from a more demanding, algorithmic strategy to a less demanding memory-retrieval strategy (e.g., [G. Logan, Toward an instance theory of automatisation. Psych. Rev. 95 (1988) 492-527]), as discussed by Weissman and Compton [D.H. Weissman, R.J. Compton, Practice makes a hemisphere perfect: the advantage of interhemispheric recruitment is eliminated with practice. Laterality, 8 (4) (2003) 361-375], and/or a more generalised practice effect [K. Kirsner, C. Speelman, Skill acquisition and repetition priming: one principle, many processes? J. Exp. Psychol., Learn. Mem. Cogn., 22 (1996) 563-575]. Contrary to Weissman and Compton findings, our results suggest that although single-hemisphere performance improves with practice, bi-hemispheric performance also improves substantially. Furthermore, these effects do not appear to be due to a shift in strategy but rather due to a general practice effect.

  6. Meaning Apprehension in the Cerebral Hemispheres

    ERIC Educational Resources Information Center

    Kandhadai, Padmapriya A.

    2009-01-01

    When we hear a word, it is remarkable how we store, activate and rapidly retrieve a vast amount of relevant information within a few hundred milliseconds. This thesis examines how meaning is processed in parallel--but with critical differences--between the two hemispheres of the brain. Event-related brain potentials (ERP) were used to examine…

  7. Right Hemisphere Specialization for Color Detection

    ERIC Educational Resources Information Center

    Sasaki, Hitoshi; Morimoto, Akiko; Nishio, Akira; Matsuura, Sumie

    2007-01-01

    Three experiments were carried out to investigate hemispheric asymmetry in color processing among normal participants. In Experiment 1, it was shown that the reaction times (RTs) of the dominant and non-dominant hands assessed using a visual target presented at the central visual field, were not significantly different. In Experiment 2, RTs of…

  8. Hemispheric Coupling: Comparing Dynamo Simulations and Observations

    NASA Astrophysics Data System (ADS)

    Norton, A. A.; Charbonneau, P.; Passos, D.

    2014-12-01

    Numerical simulations that reproduce solar-like magnetic cycles can be used to generate long-term statistics. The variations in north-south hemispheric solar cycle synchronicity and amplitude produced in simulations has not been widely compared to observations. The observed limits on solar cycle amplitude and phase asymmetry show that hemispheric sunspot area production is no more than 20 % asymmetric for cycles 17-23 and that phase lags do not exceed 20 % (or two years) of the total cycle period, as determined from Royal Greenwich Observatory sunspot data. Several independent studies have found a long-term trend in phase values as one hemisphere leads the other for, on average, four cycles. Such persistence in phase is not indicative of a stochastic phenomenon. We compare these observational findings to the magnetic cycle found in a numerical simulation of solar convection recently produced with the EULAG-MHD model. This long "millennium simulation" spans more than 1600 years and generated 40 regular, sunspot-like cycles. While the simulated cycle length is too long (˜40 yrs) and the toroidal bands remain at too high of latitudes (>30°), some solar-like aspects of hemispheric asymmetry are reproduced. The model is successful at reproducing the synchrony of polarity inversions and onset of cycle as the simulated phase lags do not exceed 20 % of the cycle period. The simulated amplitude variations between the north and south hemispheres are larger than those observed in the Sun, some up to 40 %. An interesting note is that the simulations also show that one hemisphere can persistently lead the other for several successive cycles, placing an upper bound on the efficiency of transequatorial magnetic coupling mechanisms. These include magnetic diffusion, cross-equatorial mixing within latitudinally-elongated convective rolls (a.k.a. "banana cells") and transequatorial meridional flow cells. One or more of these processes may lead to magnetic flux cancellation whereby

  9. Influence of surface roughness on gecko adhesion.

    PubMed

    Huber, Gerrit; Gorb, Stanislav N; Hosoda, Naoe; Spolenak, Ralph; Arzt, Eduard

    2007-07-01

    In this study we show the influence of surface roughness on gecko adhesion on both the nano- and macroscales. We present experimental data for the force necessary to pull off single spatulae from hard rough substrates and also detail observations on living geckos clinging to various surfaces. Both experiments consistently show that the effective adhesion shows a minimum for a root mean square roughness ranging from 100 to 300nm.

  10. A Quantitative Investigation of Surface Roughness Effects on Airfoil Boundary Layer Transition Using Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Beeby, Todd Daniel

    An investigation of the impact of subcritical leading edge distributed roughness elements on airfoil boundary layer transition location has been undertaken using infrared thermography. In particular, a quantitative approach to boundary layer transition location detection using a differential energy balance method was implemented using a heating pad to produce constant heat flux. This was performed on a S809 airfoil model at Re c = 0.75 and 1.0 x 106, using roughness elements of height k/c = 3.75, 4.25 and 5.00 x 10 --4, pattern densities of 2 to 10 %, and roughness locations of 1 to 6 % chord. Turbulator tape of height k/c = 6.67 x 10--4 was also examined. Results indicate significant impact on transition for all roughness cases, and a more pronounced influence of roughness density as compared to roughness element height. The phenomenon of early laminar bubble collapse was also found to occur for some roughness configurations. The quantitative method used was found to be an effective means for automated transition location determination.

  11. Genetic biomarkers for brain hemisphere differentiation in Parkinson's Disease

    NASA Astrophysics Data System (ADS)

    Hourani, Mou'ath; Mendes, Alexandre; Berretta, Regina; Moscato, Pablo

    2007-11-01

    This work presents a study on the genetic profile of the left and right hemispheres of the brain of a mouse model of Parkinson's disease (PD). The goal is to characterize, in a genetic basis, PD as a disease that affects these two brain regions in different ways. Using the same whole-genome microarray expression data introduced by Brown et al. (2002) [1], we could find significant differences in the expression of some key genes, well-known to be involved in the mechanisms of dopamine production control and PD. The problem of selecting such genes was modeled as the MIN (α,β)—FEATURE SET problem [2]; a similar approach to that employed previously to find biomarkers for different types of cancer using gene expression microarray data [3]. The Feature Selection method produced a series of genetic signatures for PD, with distinct expression profiles in the Parkinson's model and control mice experiments. In addition, a close examination of the genes composing those signatures shows that many of them belong to genetic pathways or have ontology annotations considered to be involved in the onset and development of PD. Such elements could provide new clues on which mechanisms are implicated in hemisphere differentiation in PD.

  12. Partial-slip frictional response of rough surfaces

    PubMed Central

    Paggi, Marco; Pohrt, Roman; Popov, Valentin L.

    2014-01-01

    If two elastic bodies with rough surfaces are first pressed against each other and then loaded tangentially, sliding will occur at the boundary of the contact area while the inner parts may still stick. With increasing tangential force, the sliding parts will expand while the sticking parts shrink and finally vanish. In this paper, we study the fractions of the contact area, tangential force and tangential stiffness, associated with the sticking portion of the contact area, as a function of the total applied tangential force up to the onset of full sliding. For the numerical analysis randomly rough, fractal surfaces are used, with the Hurst exponent H ranging from 0.1 to 0.9. Numerical simulations by boundary element method are compared with an analytical analysis in the framework of the Greenwood and Williamson (GW) model. In both cases, a universal linear dependency between the real contact area fraction in stick condition and the applied tangential force is found, regardless of the Hurst exponent of the rough surfaces. Regarding the dependence of the differential tangential stiffness on the tangential force, a linear relation is found in the GW case. For randomly rough surfaces, a nonlinear relation depending on H is derived. PMID:24898988

  13. Rough set models of Physarum machines

    NASA Astrophysics Data System (ADS)

    Pancerz, Krzysztof; Schumann, Andrew

    2015-04-01

    In this paper, we consider transition system models of behaviour of Physarum machines in terms of rough set theory. A Physarum machine, a biological computing device implemented in the plasmodium of Physarum polycephalum (true slime mould), is a natural transition system. In the behaviour of Physarum machines, one can notice some ambiguity in Physarum motions that influences exact anticipation of states of machines in time. To model this ambiguity, we propose to use rough set models created over transition systems. Rough sets are an appropriate tool to deal with rough (ambiguous, imprecise) concepts in the universe of discourse.

  14. Simplified Approach to Predicting Rough Surface Transition

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Stripf, Matthias

    2009-01-01

    Turbine vane heat transfer predictions are given for smooth and rough vanes where the experimental data show transition moving forward on the vane as the surface roughness physical height increases. Consiste nt with smooth vane heat transfer, the transition moves forward for a fixed roughness height as the Reynolds number increases. Comparison s are presented with published experimental data. Some of the data ar e for a regular roughness geometry with a range of roughness heights, Reynolds numbers, and inlet turbulence intensities. The approach ta ken in this analysis is to treat the roughness in a statistical sense , consistent with what would be obtained from blades measured after e xposure to actual engine environments. An approach is given to determ ine the equivalent sand grain roughness from the statistics of the re gular geometry. This approach is guided by the experimental data. A roughness transition criterion is developed, and comparisons are made with experimental data over the entire range of experimental test co nditions. Additional comparisons are made with experimental heat tran sfer data, where the roughness geometries are both regular as well a s statistical. Using the developed analysis, heat transfer calculatio ns are presented for the second stage vane of a high pressure turbine at hypothetical engine conditions.

  15. Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature

    SciTech Connect

    Hurrell, J.W.

    1997-11-01

    The purpose of this paper to illustrate and quantify the relationship between the circulation changes and surface temperature anomalies in the northern hemisphere during winter. Multivariate linear regression was used to regress three indices on the northern hemisphere extratropical temperature anomolies for each winter since 1935. The indices regressed were the North Atlantic Oscillation, the North Pacific, and the Southern Oscillation; these were selected because they relate to well understood circulation anomolies that have persisted for much of the past two decades. Elements of the temperature anomaly pattern since the mid-1970s resemble the greenhouse warming fingerprint predicted by some general circulation models; however, it is difficult to assess the cause. The changes in circulation since the mid-1970s have resulted in a particular surface temperature anomaly pattern that has amplified the hemispheric-averaged warming because of the interaction with land and ocean. 7 refs., 3 figs.

  16. A tunable hemispherical platform for non-stretching curved flexible electronics and optoelectronics

    SciTech Connect

    Zhuang, Jinda; Ju, Y. Sungtaek

    2014-07-28

    One major challenge in incorporating flexible electronics or optoelectronics on curved surfaces is the requirement of significant stretchability. We report a tunable platform for incorporating flexible and yet non-stretching device layers on a hemisphere. In this configuration, an array of planar petals contractively maps onto the surface of an inflatable hemisphere through elastocapillary interactions mediated by an interface liquid. A mechanical model is developed to elucidate the dependence of the conformality of the petal structures on their elastic modulus and thickness and the liquid surface tension. The modeling results are validated against experimental results obtained using petal structures of different thicknesses, restoring elastic spring elements of different spring constants, and liquids with different surface tension coefficients. Our platform will enable facile integration of non-stretching electronic and optoelectronic components prepared using established planar fabrication techniques on tunable hemispherical surfaces.

  17. Monte Carlo simulation of the effects of anode surface roughness on x-ray spectra

    SciTech Connect

    Kakonyi, Robert; Erdelyi, Miklos; Szabo, Gabor

    2010-11-15

    Purpose: Spectral and angular distribution of the x-ray beam generated by medical x-ray tubes as a function of anode surface roughness was analyzed. Methods: Different sets of profiles such as ideal flat, regular profiles, and measured profiles adopted from the literature were analyzed by means of MCNPX Monte Carlo simulator. The geometry used was simplified to separate different physical effects. A sphere centered on the origin of the coordinate system was divided into two hemispheres filled with tungsten and a vacuum, respectively. The studied anode surfaces were placed at the center of the plane of the hemisphere. The profiles were realized by means of the general lattice structure of the MCNPX. The energy and angular distributions of the excited photons were recorded with energy and angular resolutions of 0.5 keV and 1 deg., respectively, by means of point detectors. The range of the studied anode surface roughness was 0-550 {mu}m R{sub a}. The emission angle dependencies of the following quantities were analyzed: Half value layer (HVL) value, intensity, and spectral photon flux. Results: The analysis of the HVL of the x-ray beam showed that around an emission angle of 5 deg., the hardness of the beam was practically independent of the surface roughness. The value of this emission angle depends on the filtration. Below this critical angle, the HVL value decreases, while at a higher emission angle, the beam becomes harder with increasing surface roughness. The intensity degradation saturates with increasing roughness. The position of the maximum spectral photon flux shifts to higher emission angles as the anode surface roughness increases. The surface roughness (R{sub a}) was found to be an inadequate quantity to describe the effect of anode surface roughness on x-ray spectra since no definite connection was found between the values of the intensity degradation and surface roughness. At 120 kVp tube voltage and at a 3.84 {mu}m R{sub a} roughness value, the

  18. Choosing words: left hemisphere, right hemisphere, or both? Perspective on the lateralization of word retrieval.

    PubMed

    Riès, Stéphanie K; Dronkers, Nina F; Knight, Robert T

    2016-04-01

    Language is considered to be one of the most lateralized human brain functions. Left hemisphere dominance for language has been consistently confirmed in clinical and experimental settings and constitutes one of the main axioms of neurology and neuroscience. However, functional neuroimaging studies are finding that the right hemisphere also plays a role in diverse language functions. Critically, the right hemisphere may also compensate for the loss or degradation of language functions following extensive stroke-induced damage to the left hemisphere. Here, we review studies that focus on our ability to choose words as we speak. Although fluidly performed in individuals with intact language, this process is routinely compromised in aphasic patients. We suggest that parceling word retrieval into its subprocesses-lexical activation and lexical selection-and examining which of these can be compensated for after left hemisphere stroke can advance the understanding of the lateralization of word retrieval in speech production. In particular, the domain-general nature of the brain regions associated with each process may be a helpful indicator of the right hemisphere's propensity for compensation. PMID:26766393

  19. Asymmetric auroral intensities in the Earth's Northern and Southern hemispheres

    NASA Astrophysics Data System (ADS)

    Laundal, K. M.; Østgaard, N.

    2009-07-01

    It is commonly assumed that the aurora borealis (Northern Hemisphere) and aurora australis (Southern Hemisphere) are mirror images of each other because the charged particles causing the aurora follow the magnetic field lines connecting the two hemispheres. The particles are believed to be evenly distributed between the two hemispheres, from the source region in the equatorial plane of the magnetosphere. Although it has been shown that similar auroral features in the opposite hemispheres can be displaced tens of degree in longitude and that seasonal effects can cause differences in global intensity, the overall auroral patterns were still similar. Here we report observations that clearly contradict the common assumption about symmetric aurora: intense spots are seen at dawn in the Northern summer Hemisphere, and at dusk in the Southern winter Hemisphere. The asymmetry is interpreted in terms of inter-hemispheric currents related to seasons, which have been predicted but hitherto had not been seen.

  20. Specular Reflection from Rough Surfaces Revisited

    ERIC Educational Resources Information Center

    Yasuda, Kensei; Kim, Alvin; Cho, Hayley; Timofejev, Timofej; Walecki, Wojciech J.; Klep, James; Edelson, Amy S.; Walecki, Abigail S.; Walecki, Eve S.; Walecki, Peter S.

    2016-01-01

    In his beautiful paper, Hasan Fakhruddin reported observations of mirror-like reflections in the rough surface of a ground glass plate. Similar effects have been recently employed for metrology of the roughness of optical diffusers used in modern light emitting device illumination systems. We report the observations of specular reflection in…

  1. Computational Methods for Rough Classification and Discovery.

    ERIC Educational Resources Information Center

    Bell, D. A.; Guan, J. W.

    1998-01-01

    Rough set theory is a new mathematical tool to deal with vagueness and uncertainty. Computational methods are presented for using rough sets to identify classes in datasets, finding dependencies in relations, and discovering rules which are hidden in databases. The methods are illustrated with a running example from a database of car test results.…

  2. Roughness configuration matters for aeolian sediment flux

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The parameterisation of surface roughness effects on aeolian sediment transport is a key source of uncertainty in wind erosion models. Roughness effects are typically represented by bulk drag-partitioning schemes that scale the threshold friction velocity (u*t) for soil entrainment by the ratio of s...

  3. Wetting properties of molecularly rough surfaces

    SciTech Connect

    Svoboda, Martin; Lísal, Martin; Malijevský, Alexandr

    2015-09-14

    We employ molecular dynamics simulations to study the wettability of nanoscale rough surfaces in systems governed by Lennard-Jones (LJ) interactions. We consider both smooth and molecularly rough planar surfaces. Solid substrates are modeled as a static collection of LJ particles arranged in a face-centered cubic lattice with the (100) surface exposed to the LJ fluid. Molecularly rough solid surfaces are prepared by removing several strips of LJ atoms from the external layers of the substrate, i.e., forming parallel nanogrooves on the surface. We vary the solid-fluid interactions to investigate strongly and weakly wettable surfaces. We determine the wetting properties by measuring the equilibrium droplet profiles that are in turn used to evaluate the contact angles. Macroscopic arguments, such as those leading to Wenzel’s law, suggest that surface roughness always amplifies the wetting properties of a lyophilic surface. However, our results indicate the opposite effect from roughness for microscopically corrugated surfaces, i.e., surface roughness deteriorates the substrate wettability. Adding the roughness to a strongly wettable surface shrinks the surface area wet with the liquid, and it either increases or only marginally affects the contact angle, depending on the degree of liquid adsorption into the nanogrooves. For a weakly wettable surface, the roughness changes the surface character from lyophilic to lyophobic due to a weakening of the solid-fluid interactions by the presence of the nanogrooves and the weaker adsorption of the liquid into the nanogrooves.

  4. Spherical wave reflection in layered media with rough interfaces: Three-dimensional modeling.

    PubMed

    Pinson, Samuel; Cordioli, Julio; Guillon, Laurent

    2016-08-01

    In the context of sediment characterization, layer interface roughnesses may be responsible for sound-speed profile measurement uncertainties. To study the roughness influence, a three-dimensional (3D) modeling of a layered seafloor with rough interfaces is necessary. Although roughness scattering has an abundant literature, 3D modeling of spherical wave reflection on rough interfaces is generally limited to a single interface (using Kirchhoff-Helmholtz integral) or computationally expensive techniques (finite difference or finite element method). In this work, it is demonstrated that the wave reflection over a layered medium with irregular interfaces can be modeled as a sum of integrals over each interface. The main approximations of the method are the tangent-plane approximation, the Born approximation (multiple reflection between interfaces are neglected) and flat-interface approximation for the transmitted waves into the sediment. The integration over layer interfaces results in a method with reasonable computation cost.

  5. Spherical wave reflection in layered media with rough interfaces: Three-dimensional modeling.

    PubMed

    Pinson, Samuel; Cordioli, Julio; Guillon, Laurent

    2016-08-01

    In the context of sediment characterization, layer interface roughnesses may be responsible for sound-speed profile measurement uncertainties. To study the roughness influence, a three-dimensional (3D) modeling of a layered seafloor with rough interfaces is necessary. Although roughness scattering has an abundant literature, 3D modeling of spherical wave reflection on rough interfaces is generally limited to a single interface (using Kirchhoff-Helmholtz integral) or computationally expensive techniques (finite difference or finite element method). In this work, it is demonstrated that the wave reflection over a layered medium with irregular interfaces can be modeled as a sum of integrals over each interface. The main approximations of the method are the tangent-plane approximation, the Born approximation (multiple reflection between interfaces are neglected) and flat-interface approximation for the transmitted waves into the sediment. The integration over layer interfaces results in a method with reasonable computation cost. PMID:27586741

  6. Critical instability and friction scaling of fluid flows through pipes with rough inner surfaces.

    PubMed

    Tao, Jianjun

    2009-12-31

    It has been shown experimentally over nearly 80 years that surface fine roughness of circular pipes has a crucial effect on the natural transition to turbulence. In this Letter, a theoretical explanation is suggested for the roughness-induced instability. Once the nonlinear effect of roughness is introduced (through a pipe with fine corrugation surface), the mean velocity profile becomes unstable to three-dimensional, asymmetric, and helical traveling waves at moderate Reynolds numbers. The threshold of the aspect ratio or shape factor of the roughness element required to cause instability scales as Re-2. Inspired by the current model, a scaling form is proposed and the scaled friction factor measurements in rough pipes collapse onto a universal curve.

  7. Mesoscale Temperature Fluctuations in the Southern Hemisphere Stratosphere

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L.

    2008-01-01

    Isentrope surfaces in the Southern Hemisphere stratosphere reveal that air parcels undergo mesoscale temperature fluctuations that depend on latitude and season. The largest temperature fluctuations occur at high latitude winter, whereas the smallest fluctuations occur at high latitude summer. This is the same pattern found for the Northern Hemisphere stratosphere. However, the amplitude of the seasonal dependence in the Southern Hemisphere is only 37% of the Northern Hemisphere's seasonal amplitude.

  8. Hemispherical sky simulator for daylighting model studies

    NASA Astrophysics Data System (ADS)

    Selkowitz, S.

    1981-07-01

    The design of a 24 foot diameter hemispherical sky simulator is described. A facility in which large models is tested, which is suitable for research, teaching, and design which could provide a uniform sky, an overcast sky, and several clear sky luminance distributions, as well as accommodating an artificial sun was produced. Initial operating experience with the facility is described, the sky simulator capabilities are reviewed, and its strengths and weaknesses relative to outdoor modelling tests are discussed.

  9. Specular Reflection from Rough Surfaces Revisited

    NASA Astrophysics Data System (ADS)

    Yasuda, Kensei; Kim, Alvin; Cho, Hayley; Timofejev, Timofej; Walecki, Wojciech J.; Klep, James; Edelson, Amy S.; Walecki, Abigail S.; Walecki, Eve S.; Walecki, Peter S.

    2016-10-01

    In his beautiful paper, Hasan Fakhruddin reported observations of mirror-like reflections in the rough surface of a ground glass plate. Similar effects have been recently employed for metrology of the roughness of optical diffusers used in modern light emitting device illumination systems. We report the observations of specular reflection in nontransparent rough surfaces at oblique angles, where roughness was treated as a variable. We present a simple trigonometry-based model explaining the observed phenomenon, which we experimentally validated using aluminum surfaces that have controlled roughness. The reported demonstration requires no special equipment, other than cellphone cameras, dielectric or metal plate, and sandpaper, and serves as an introduction to wave optics. This activity can be used to get further insight into everyday applications of wave optics for students already familiar with wave optics fundamentals.

  10. Hemispheric modulations of the attentional networks.

    PubMed

    Spagna, Alfredo; Martella, Diana; Fuentes, Luis J; Marotta, Andrea; Casagrande, Maria

    2016-10-01

    Although several recent studies investigated the hemispheric contributions to the attentional networks using the Attention Network Test (ANT), the role of the cerebral hemispheres in modulating the interaction among them remains unclear. In this study, two lateralized versions of this test (LANT) were used to investigate theal effects on the attentional networks under different conflict conditions. One version, the LANTI-A, presented arrows as target and flankers, while the other version, the LANTI-F, had fruits as target and flankers. Data collected from forty-seven participants confirmed well-known results on the efficiency and interactions among the attentional networks. Further, a left visual field advantage was found when a target occurred in an unattended location (e.g. invalid trials), only with the LANTI-F, but not with LANTI-A. The present study adds more evidence to the hemispheric asymmetry of the orienting of attention, and further reveals patterns of interactions between the attentional networks and the visual fields across different conflicting conditions, underlying the dynamic control of attention in complex environments.

  11. Hemispheric modulations of the attentional networks.

    PubMed

    Spagna, Alfredo; Martella, Diana; Fuentes, Luis J; Marotta, Andrea; Casagrande, Maria

    2016-10-01

    Although several recent studies investigated the hemispheric contributions to the attentional networks using the Attention Network Test (ANT), the role of the cerebral hemispheres in modulating the interaction among them remains unclear. In this study, two lateralized versions of this test (LANT) were used to investigate theal effects on the attentional networks under different conflict conditions. One version, the LANTI-A, presented arrows as target and flankers, while the other version, the LANTI-F, had fruits as target and flankers. Data collected from forty-seven participants confirmed well-known results on the efficiency and interactions among the attentional networks. Further, a left visual field advantage was found when a target occurred in an unattended location (e.g. invalid trials), only with the LANTI-F, but not with LANTI-A. The present study adds more evidence to the hemispheric asymmetry of the orienting of attention, and further reveals patterns of interactions between the attentional networks and the visual fields across different conflicting conditions, underlying the dynamic control of attention in complex environments. PMID:27566000

  12. Flexible Contrast Gain Control in the Right Hemisphere

    ERIC Educational Resources Information Center

    Okubo, Matia; Nicholls, Michael E. R.

    2005-01-01

    This study investigates whether the right hemisphere has more flexible contrast gain control settings for the identification of spatial frequency. Right-handed participants identified 1 and 9 cycles per degree sinusoidal gratings presented either to the left visual field-right hemisphere (LVF-RH) or the right visual field-left hemisphere (RVF-LH).…

  13. Hemisphericity Research: An Overview with Some Implications for Problem Solving.

    ERIC Educational Resources Information Center

    Myers, John T.

    1982-01-01

    Research on cerebral hemisphericity and lateral dominance is reviewed, and relationships between right and left hemispheric modes of information processing as well as problem solving techniques are discussed. Conclusions focus mainly on need for educators to know information processing differences of the two hemispheres to teach children problem…

  14. Teaching ESL from the Right Hemisphere of the Brain.

    ERIC Educational Resources Information Center

    Curt, Carmen Judith Nine

    Based on the idea that the brain consists of hemispheres which control different types of behavior, this paper argues that the Puerto Rican school system is deteriorating because its emphasis on left hemisphere (quantitative) activities does not synchronize with Puerto Rico's cultural orientation toward the right hemisphere (qualitative…

  15. Evidence for Right Hemisphere Phonology in a Backward Masking Task

    ERIC Educational Resources Information Center

    Halderman, Laura K.

    2011-01-01

    The extent to which orthographic and phonological processes are available during the initial moments of word recognition within each hemisphere is under specified, particularly for the right hemisphere. Few studies have investigated whether each hemisphere uses orthography and phonology under constraints that restrict the viewing time of words and…

  16. Hemispheric Asymmetries in the Activation and Monitoring of Memory Errors

    ERIC Educational Resources Information Center

    Giammattei, Jeannette; Arndt, Jason

    2012-01-01

    Previous research on the lateralization of memory errors suggests that the right hemisphere's tendency to produce more memory errors than the left hemisphere reflects hemispheric differences in semantic activation. However, all prior research that has examined the lateralization of memory errors has used self-paced recognition judgments. Because…

  17. Brain Hemisphere Dominance: Building the Whole-Brain Singer

    ERIC Educational Resources Information Center

    Boyd, Amanda R.

    2012-01-01

    The concept of brain hemisphere dominance serves as the basis for many educational learning theories. The dominant brain hemisphere guides the learning process, but both hemispheres are necessary for true learning to take place. This treatise outlines and analyzes the dominance factor, a learning theory developed by Dr. Carla Hannaford, which…

  18. The Influence of Context on Hemispheric Recruitment during Metaphor Processing

    ERIC Educational Resources Information Center

    Diaz, Michele T.; Hogstrom, Larson J.

    2011-01-01

    Although the left hemisphere's prominence in language is well established, less emphasis has been placed on possible roles for the right hemisphere. Behavioral, patient, and neuroimaging research suggests that the right hemisphere may be involved in processing figurative language. Additionally, research has demonstrated that context can modify…

  19. On the receptivity problem for Goertler vortices: Vortex motions induced by wall roughness

    NASA Technical Reports Server (NTRS)

    Denier, James P.; Hall, Philip; Seddougui, Sharon

    1990-01-01

    The receptivity problem for Goertler vortices induced by wall roughness is investigated. The roughness is modelled by small amplitude perturbations to the curved wall over which the flow takes place. The amplitude of these perturbations is taken to be sufficiently small for the induced Goertler vortices to be described by linear theory. The roughness is assumed to vary in the spanwise direction on the boundary layer lengthscale, while in the flow direction the corresponding variation is on the lengthscale over which the wall curvature varies. In fact the latter condition can be relaxed to allow for a faster streamwise roughness variation so long as the variation does not become as fast as that in the spanwise direction. The function which describes the roughness is assumed to be such that its spanwise and streamwise dependences can be separated; this enables progress by taking Fourier or Laplace transforms where appropriate. The cases of isolated and distributed roughness elements are investigated and the coupling coefficient which relates the amplitude of the forcing and the induced vortex amplitude is found asymptotically in the small wavelength limit. It is shown that this coefficient is exponentially small in the latter limit so that it is unlikely that this mode can be stimulated directly by wall roughness. The situation at 0(1) wavelengths is quite different and this is investigated numerically for different forcing functions. It is found that an isolated roughness element induces a vortex field which grows within a wedge at a finite distance downstream of the element. However, immediately downstream of the obstacle the disturbed flow produced by the element decays in amplitude. The receptivity problem at larger Goertler numbers appropriate to relatively large wall curvature is discussed in detail.

  20. Testing the Language of German Cerebral Palsy Patients with Right Hemispheric Language Organization after Early Left Hemispheric Damage

    ERIC Educational Resources Information Center

    Schwilling, Eleonore; Krageloh-Mann, Ingeborg; Konietzko, Andreas; Winkler, Susanne; Lidzba, Karen

    2012-01-01

    Language functions are generally represented in the left cerebral hemisphere. After early (prenatally acquired or perinatally acquired) left hemispheric brain damage language functions may be salvaged by reorganization into the right hemisphere. This is different from brain lesions acquired in adulthood which normally lead to aphasia. Right…

  1. Are reptile and amphibian species younger in the Northern Hemisphere than in the Southern Hemisphere?

    PubMed

    Dubey, Sylvain; Shine, R

    2012-01-01

    A previous analysis of molecular phylogenies suggested that intraspecific diversification had occurred more recently in temperate-zone Northern Hemisphere reptiles and amphibians than in Southern Hemisphere taxa. Here, we test potential explanations for this pattern. We examined published phylogenetic analyses, derived from genetic sequence data, to generate two estimates of the age of species: (i) the oldest intraspecific diversification event within each taxon and (ii) the inferred timing of the split between two sister species. The timing of splits between species shows the same pattern as splits within species, and thus may be due to climatically driven cladogenic and extinction events or may be an artefact of differing levels of taxonomic knowledge about the fauna. Current rates of species descriptions suggest that many more taxa remain to be described in the Southern Hemisphere than the Northern Hemisphere; for that bias to fully explain our results on species age differences, the proportion of undescribed Southern taxa would need to be ≥ 12% in reptiles and ≥ 51% in anurans. For reptiles, taxonomic ignorance plausibly explains the apparent difference in mean age of species between the Southern and Northern Hemispheres; but this explanation can apply to amphibians only if a vast number of Southern taxa remain to be described.

  2. Control method for steel strip roughness in Two-stand temper mill rolling

    NASA Astrophysics Data System (ADS)

    Li, Rui; Zhang, Qingdong; Zhang, Xiaofeng; Yu, Meng; Wang, Bo

    2015-05-01

    How to control surface roughness of steel strip in a narrow range for a long time has become an important question because surface roughness would significantly influence the appearance of the products. However, there are few effective solutions to solve the problem currently. In this paper, considering both asperities of work roll pressing in and squeezing the steel strip, two asperity contact models including squeezing model and pressing in model in a two-stand temper mill rolling are established by using finite element method (FEM). The simulation investigates the influences of multiple process parameters, such as work roll surface roughness, roll radius and roll force on the surface roughness of steel strip. The simulation results indicate that work rolls surface roughness and roll force play important roles in the products; furthermore, the effect of roll force in the first stand is opposite to the second. According to the analysis, a control method for steel strip surface roughness in a narrow range for a long time is proposed, which applies higher work roll roughness in the first stand and lower roll roughness in the second to make the steel strip roughness in a required narrow range. In the later stage of the production, decreasing the roll force in the first stand and increasing the roll force in the second stand guarantee the steel strip roughness relatively stable in a long time. The following experimental measurements on the surface topography and roughness of the steel strips during the whole process are also conducted. The results validate the simulation conclusions and prove the effect of the control method. The application of the proposed method in the steel strip production shows excellent performance including long service life of work roll and high finished product rate.

  3. Modelling Line Edge Roughness in Periodic Line-Space Structures by Fourier Optics to Improve Scatterometry

    NASA Astrophysics Data System (ADS)

    Gross, H.; Heidenreich, S.; Henn, M.-A.; Dai, G.; Scholze, F.; Bär, M.

    2014-01-01

    In the present paper, we propose a 2D-Fourier transform method as a simple and efficient algorithm for stochastical and numerical studies to investigate the systematic impacts of line edge roughness on light diffraction pattern of periodic line-space structures. The key concept is the generation of ensembles of rough apertures composed of many slits, to calculate the irradiance of the illuminated rough apertures far away from the aperture plane, and a comparison of their light intensities to those of the undisturbed, 'non-rough' aperture. We apply the Fraunhofer approximation and interpret the rough apertures as binary 2D-gratings to compute their diffraction patterns very efficiently as the 2D-Fourier transform of the light distribution of the source plane. The rough edges of the aperture slits are generated by means of power spectrum density (PSD) functions, which are often used in metrology of rough geometries. The mean efficiencies of the rough apertures reveal a systematic exponential decrease for higher diffraction orders if compared to the diffraction pattern of the unperturbed aperture. This confirms former results, obtained by rigorous calculations with computational expensive finite element methods (FEM) for a simplified roughness model. The implicated model extension for scatterometry by an exponential damping factor for the calculated efficiencies allows to determine the standard deviation σ_r of line edge roughness along with the critical dimensions (CDs), i.e., line widths, heights and other profile properties in the sub-micrometer range. First comparisons with the corresponding roughness value determined by 3D atomic force microscopy (3D AFM) reveal encouraging results.

  4. On the roughness measurement on knee prostheses.

    PubMed

    Jaber, Sami Abdel; Ruggiero, Alessandro; Battaglia, Santina; Affatato, Saverio

    2015-01-01

    The majority of total knee replacements currently implanted present an articulation composed of two metal parts, femoral and tibial components, between which there is a polyethylene insert serving as a bearing surface. The finishing surface of the metal components is a very important factor in minimizing the polyethylene wear rate and, later, the gradual production of metal and plastic debris. Considering the role of surface roughness on volumetric wear rates, the purpose of this study is to develop a protocol for the roughness characterization of total knee prosthesis (TKP) metal components, taking into consideration a limited number of points on each surface. Six mobile TKP of different sizes (three size 2 and three size 6) were tested on a knee joint simulator to compare the wear behavior of each group. After 2 million cycles the weight loss by the polyethylene inserts was measured with gravimetric method and the surface roughness of the metallic components was assessed in terms of average surface roughness, Ra, skewness, Rsk, and total roughness, Rt. Roughness measurement involved 29 points on each femoral condyle and 26 points on each metal tibial plate. The data collected has shown an increased roughness upon wear testing for both the investigated TKP sizes. No statistical differences were observed between the two groups for both the parameters Ra, Rsk, and Rt. The surface of all metallic components became more negatively skewed, indicating diminishing peaks. The various parameters were correlated to the volumetric loss using a linear regression analysis. PMID:25588764

  5. Heat transfer to rough turbine blading

    NASA Astrophysics Data System (ADS)

    Tarada, Fathi Hasan Ali

    1987-12-01

    The project arose from an industrial interest in the quantification of the effects of external surface roughness on the temperatures, both local and means, of internally cooled gas turbine blades, with a view to estimating the possible changes in operating life. Such roughness may occur due to the process involved in the production of the blades or during operation in hostile environments. A dual theoretical and experimental approach was employed to better understand and predict the complex mechanisms influencing the boundary-layer heat transfer on turbine blade surfaces. In order to quantify typical blade roughness levels, a blade roughness survey was undertaken as a pre-cursor to the experimental investigations. The experimental component consisted of heat transfer measurements to one rotor blade and two nozzle guide vanes, with different levels and types of external surface roughness, and with and without significant free-stream turbulence intensity, using two heat transfer measurement techniques. The (dominant) theoretical component comprised the derivation of a low Reynolds number k-epsilon turbulence model, supplemented by an algebraic stress model, for rough curved boundary layer flow, and the development of topographical models of stochastic surface roughness. Computer programs were written to implement the theoretical models developed, and extensive validation tests were conducted with reference to published data sets.

  6. Non-linear boundary-layer receptivity due to distributed surface roughness

    NASA Technical Reports Server (NTRS)

    Amer, Tahani Reffet

    1995-01-01

    The process by which a laminar boundary layer internalizes the external disturbances in the form of instability waves is known as boundary-layer receptivity. The objective of the present research was to determine the effect of acoustic excitation on boundary-layer receptivity for a flat plate with distributed variable-amplitude surface roughness through measurements with a hot-wire probe. Tollmien-Schlichting mode shapes due to surface roughness receptivity have also been determined, analyzed, and shown to be in agreement with theory and other experimental work. It has been shown that there is a linear relationship between the surface roughness and receptivity for certain roughness configurations with constant roughness wavelength. In addition, strong non-linear receptivity effects exist for certain surface roughness configurations over a band where the surface roughness and T-S wavelength are matched. The results from the present experiment follow the trends predicted by theory and other experimental work for linear receptivity. In addition, the results show the existence of non-linear receptivity effects for certain combinations of surface roughness elements.

  7. Non-linear boundary-layer receptivity due to distributed surface roughness

    NASA Technical Reports Server (NTRS)

    Amer, Tahani Reffet; Selby, Gregory V.

    1995-01-01

    The process by which a laminar boundary layer internalizes the external disturbances in the form of instability waves is known as boundary-layer receptivity. The objective of the present research was to determine the effect of acoustic excitation on boundary-layer receptivity for a flat plate with distributed variable-amplitude surface roughness through measurements with a hot-wire probe. Tollmien-Schlichting (T-S) mode shapes due to surface-roughness receptivity have also been determined, analyzed, and shown to be in agreement with theory and other experimental work. It has been shown that there is a linear relationship between the surface roughness and receptivity for certain roughness configurations with constant roughness wavelength. In addition, strong nonlinear receptivity effects exist for certain surface roughness configurations over a band where the surface roughness and T-S wavelength are matched. The results from the present experiment follow the trends predicted by theory and other experimental work for linear receptivity. In addition, the results show the existence of nonlinear receptivity effects for certain combinations of surface roughness elements.

  8. Numerical simulations of sink-flow boundary layers over rough surfaces

    NASA Astrophysics Data System (ADS)

    Yuan, J.; Piomelli, U.

    2014-01-01

    Turbulent sink flows over smooth or rough walls with sand-grain roughness are studied using large-eddy and direct numerical simulations. Mild and strong levels of acceleration are applied, yielding a wide range of Reynolds number (Reθ = 372 - 2748) and cases close to the reverse-transitional state. Flow acceleration and roughness are shown to exert opposite effects on boundary-layer integral parameters, on the Reynolds stresses, budgets of turbulent kinetic energy, and properties of turbulent structures in the vicinity of the rough surface; statistics exhibit similarity when plotted using inner scaling for cases with the same roughness Reynolds number, k+. Acceleration leads to a decrease of k+, while roughness increases it. For cases with higher k+, the low-speed streaks become destabilized, and turbulent structures near the wall are distributed more uniformly in the wall-parallel plane; they are less extended in the streamwise direction, but more densely packed. Higher k+ also causes decorrelation of the outer-layer hairpin packets with the near-wall structures, probably due to the direct impact of random roughness elements on the hairpin legs. Wall-similarity applies for the fully turbulent cases, in which the outer-layer turbulent statistics are affected by acceleration only. It is shown that being in the hydraulically smooth regime is a necessary condition for reverse-transition, supporting the idea that relaminarization starts from the inner region, where roughness effects dominate.

  9. Hemispheric specialization for linguistic processing of sung speech.

    PubMed

    Yelle, Serena K; Grimshaw, Gina M

    2009-02-01

    The two hemispheres of the brain play complementary roles in song perception, with the left hemisphere specialized for processing the linguistic aspects of song and the right hemisphere specialized for the processing of melody. However, very little is known about how language and melody interact. The present study tested the hypothesis that right hemisphere linguistic processing would be facilitated by the presence of melody. In a dichotic listening paradigm, participants (8 men, 43 women) performed a linguistic task while listening to spoken or sung speech. Contrary to the hypothesis, left hemisphere specialization for linguistic processing was identical whether the sentences were spoken or sung.

  10. Turbulent flow in smooth and rough pipes.

    PubMed

    Allen, J J; Shockling, M A; Kunkel, G J; Smits, A J

    2007-03-15

    Recent experiments at Princeton University have revealed aspects of smooth pipe flow behaviour that suggest a more complex scaling than previously noted. In particular, the pressure gradient results yield a new friction factor relationship for smooth pipes, and the velocity profiles indicate the presence of a power-law region near the wall and, for Reynolds numbers greater than about 400x103 (R+>9x103), a logarithmic region further out. New experiments on a rough pipe with a honed surface finish with krms/D=19.4x10-6, over a Reynolds number range of 57x103-21x106, show that in the transitionally rough regime this surface follows an inflectional friction factor relationship rather than the monotonic relationship given in the Moody diagram. Outer-layer scaling of the mean velocity data and streamwise turbulence intensities for the rough pipe show excellent collapse and provide strong support for Townsend's outer-layer similarity hypothesis for rough-walled flows. The streamwise rough-wall spectra also agree well with the corresponding smooth-wall data. The pipe exhibited smooth behaviour for ks+ < or =3.5, which supports the suggestion that the original smooth pipe was indeed hydraulically smooth for ReD< or =24x106. The relationship between the velocity shift, DeltaU/utau, and the roughness Reynolds number, ks+, has been used to generalize the form of the transition from smooth to fully rough flow for an arbitrary relative roughness krms/D. These predictions apply for honed pipes when the separation of pipe diameter to roughness height is large, and they differ significantly from the traditional Moody curves.

  11. Understanding EUV mask blank surface roughness induced LWR and associated roughness requirement

    SciTech Connect

    Yan, Pei-Yang; Zhang, Guojing; Gullickson, Eric M.; Goldberg, Kenneth A.; Benk, Markus P.

    2015-03-01

    Extreme ultraviolet lithography (EUVL) mask multi-layer (ML) blank surface roughness specification historically comes from blank defect inspection tool requirement. Later, new concerns on ML surface roughness induced wafer pattern line width roughness (LWR) arise. In this paper, we have studied wafer level pattern LWR as a function of EUVL mask surface roughness via High-NA Actinic Reticle Review Tool. We found that the blank surface roughness induced LWR at current blank roughness level is in the order of 0.5nm 3σ for NA=0.42 at the best focus. At defocus of ±40nm, the corresponding LWR will be 0.2nm higher. Further reducing EUVL mask blank surface roughness will increase the blank cost with limited benefit in improving the pattern LWR, provided that the intrinsic resist LWR is in the order of 1nm and above.

  12. Numerical Schemes for Rough Parabolic Equations

    SciTech Connect

    Deya, Aurelien

    2012-04-15

    This paper is devoted to the study of numerical approximation schemes for a class of parabolic equations on (0,1) perturbed by a non-linear rough signal. It is the continuation of Deya (Electron. J. Probab. 16:1489-1518, 2011) and Deya et al. (Probab. Theory Relat. Fields, to appear), where the existence and uniqueness of a solution has been established. The approach combines rough paths methods with standard considerations on discretizing stochastic PDEs. The results apply to a geometric 2-rough path, which covers the case of the multidimensional fractional Brownian motion with Hurst index H>1/3.

  13. Relationships between topographic roughness and aeolian processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Lancaster, N.; Gaddis, L.; Rasmussen, K. R.; White, B. R.; Saunders, R. S.; Wall, S.; Dobrovolskis, Anthony R.; Iversen, J. D.

    1991-01-01

    The interaction between winds and desert surfaces has important implications for sediment transport on Earth, Mars, and Venus, and for understanding the relationships between radar backscatter and aerodynamic roughness as part of the NASA Shuttle Imaging radar (SIR-C) Mission. Here, researchers report results from measurements of boundary layer wind profiles and surface roughness at sites in Death Valley and discuss their implications. The sites included a flat to undulating gravel and sand reg, alluvial fans, and a playa. Estimates of average particle size composition of Death Valley sites and arithmetic mean values of aerodynamic roughness are given in tabular form.

  14. Inter-Hemispherical Currents for Realistic Model of Ionospheric Conductivity

    NASA Astrophysics Data System (ADS)

    Lyatsky, S.; Khazanov, G. V.

    2013-12-01

    We present results of modeling of the global 3-D ionosphere-magnetosphere current system including in addition to the R1 and R2 field-aligned currents also inter-hemispherical currents. The inter-hemispherical currents flow between Northern and Southern conjugate ionospheres in case of a North-South asymmetry in ionospheric conductivity in two hemispheres. These currents link together the ionospheric currents in two hemispheres, so the currents observed in one hemisphere can provide us with information about currents in the opposite hemisphere, which is especially important when their magnitude can not be obtained from direct observation (e.g., in Antarctica). In this study, we investigate the generation of the inter-hemispherical currents for several distributions of ionospheric conductivity in two hemispheres including a simplified model of ionospheric conductivity, which is important for better understanding of the expected distribution and magnitude of these currents, and a more realistic model of ionospheric conductivity, which is observed during magnetospheric substorms, when the geometry of the inter-hemispherical currents is more complicated. Simulation results show that the inter-hemispherical currents during substorms could play a very significant role, and neglecting these currents does not allow obtaining the correct picture of 3-D magnetosphere-ionosphere current system. These currents are an important part of 3-D field-aligned current system, and they are especially strong during summer-winter months, when they are comparable in magnitude with the R2 currents (about ~0.5 MA). Inter-hemispherical currents map. Left panel is related to Northern hemisphere, right panel to Southern. R1 and R2 currents are not shown; their locations are indicated by the red and blue dashed circles, respectively. The inter-hemispherical currents appear inside the auroral zone in the region of conductivity gradient. The currents in both hemispheres are equal in magnitude and

  15. Hubble Spots Northern Hemispheric Clouds on Uranus

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Using visible light, astronomers for the first time this century have detected clouds in the northern hemisphere of Uranus. The newest images, taken July 31 and Aug. 1, 1997 with NASA Hubble Space Telescope's Wide Field and Planetary Camera 2, show banded structure and multiple clouds. Using these images, Dr. Heidi Hammel (Massachusetts Institute of Technology) and colleagues Wes Lockwood (Lowell Observatory) and Kathy Rages (NASA Ames Research Center) plan to measure the wind speeds in the northern hemisphere for the first time.

    Uranus is sometimes called the 'sideways' planet, because its rotation axis tipped more than 90 degrees from the planet's orbit around the Sun. The 'year' on Uranus lasts 84 Earth years, which creates extremely long seasons - winter in the northern hemisphere has lasted for nearly 20 years. Uranus has also been called bland and boring, because no clouds have been detectable in ground-based images of the planet. Even to the cameras of the Voyager spacecraft in 1986, Uranus presented a nearly uniform blank disk, and discrete clouds were detectable only in the southern hemisphere. Voyager flew over the planet's cloud tops near the dead of northern winter (when the northern hemisphere was completely shrouded in darkness).

    Spring has finally come to the northern hemisphere of Uranus. The newest images, both the visible-wavelength ones described here and those taken a few days earlier with the Near Infrared and Multi-Object Spectrometer (NICMOS) by Erich Karkoschka (University of Arizona), show a planet with banded structure and detectable clouds.

    Two images are shown here. The 'aqua' image (on the left) is taken at 5,470 Angstroms, which is near the human eye's peak response to wavelength. Color has been added to the image to show what a person on a spacecraft near Uranus might see. Little structure is evident at this wavelength, though with image-processing techniques, a small cloud can be seen near the planet's northern limb

  16. HUBBLE SPOTS NORTHERN HEMISPHERIC CLOUDS ON URANUS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Using visible light, astronomers for the first time this century have detected clouds in the northern hemisphere of Uranus. The newest images, taken July 31 and Aug. 1, 1997 with NASA Hubble Space Telescope's Wide Field and Planetary Camera 2, show banded structure and multiple clouds. Using these images, Dr. Heidi Hammel (Massachusetts Institute of Technology) and colleagues Wes Lockwood (Lowell Observatory) and Kathy Rages (NASA Ames Research Center) plan to measure the wind speeds in the northern hemisphere for the first time. Uranus is sometimes called the 'sideways' planet, because its rotation axis is tipped more than 90 degrees from the planet's orbit around the Sun. The 'year' on Uranus lasts 84 Earth years, which creates extremely long seasons - winter in the northern hemisphere has lasted for nearly 20 years. Uranus has also been called bland and boring, because no clouds have been detectable in ground-based images of the planet. Even to the cameras of the Voyager spacecraft in 1986, Uranus presented a nearly uniform blank disk, and discrete clouds were detectable only in the southern hemisphere. Voyager flew over the planet's cloud tops near the dead of northern winter (when the northern hemisphere was completely shrouded in darkness). Spring has finally come to the northern hemisphere of Uranus. The newest images, both the visible-wavelength ones described here and those taken a few days earlier with the Near Infrared and Multi-Object Spectrometer (NICMOS) by Erich Karkoschka (University of Arizona), show a planet with banded structure and detectable clouds. Two images are shown here. The 'aqua' image (on the left) is taken at 5,470 Angstroms, which is near the human eye's peak response to wavelength. Color has been added to the image to show what a person on a spacecraft near Uranus might see. Little structure is evident at this wavelength, though with image-processing techniques, a small cloud can be seen near the planet's northern limb (rightmost

  17. Cross Flow Effects on Glaze Ice Roughness Formation

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching

    2004-01-01

    The present study examines the impact of large-scale cross flow on the creation of ice roughness elements on the leading edge of a swept wing under glaze icing conditions. A three-dimensional triple-deck structure is developed to describe the local interaction of a 3 D air boundary layer with ice sheets and liquid films. A linear stability analysis is presented here. It is found that, as the sweep angle increases, the local icing instabilities enhance and the most linearly unstable modes are strictly three dimensional.

  18. Phenological Changes in the Southern Hemisphere

    PubMed Central

    Chambers, Lynda E.; Altwegg, Res; Barbraud, Christophe; Barnard, Phoebe; Beaumont, Linda J.; Crawford, Robert J. M.; Durant, Joel M.; Hughes, Lesley; Keatley, Marie R.; Low, Matt; Morellato, Patricia C.; Poloczanska, Elvira S.; Ruoppolo, Valeria; Vanstreels, Ralph E. T.; Woehler, Eric J.; Wolfaardt, Anton C.

    2013-01-01

    Current evidence of phenological responses to recent climate change is substantially biased towards northern hemisphere temperate regions. Given regional differences in climate change, shifts in phenology will not be uniform across the globe, and conclusions drawn from temperate systems in the northern hemisphere might not be applicable to other regions on the planet. We conduct the largest meta-analysis to date of phenological drivers and trends among southern hemisphere species, assessing 1208 long-term datasets from 89 studies on 347 species. Data were mostly from Australasia (Australia and New Zealand), South America and the Antarctic/subantarctic, and focused primarily on plants and birds. This meta-analysis shows an advance in the timing of spring events (with a strong Australian data bias), although substantial differences in trends were apparent among taxonomic groups and regions. When only statistically significant trends were considered, 82% of terrestrial datasets and 42% of marine datasets demonstrated an advance in phenology. Temperature was most frequently identified as the primary driver of phenological changes; however, in many studies it was the only climate variable considered. When precipitation was examined, it often played a key role but, in contrast with temperature, the direction of phenological shifts in response to precipitation variation was difficult to predict a priori. We discuss how phenological information can inform the adaptive capacity of species, their resilience, and constraints on autonomous adaptation. We also highlight serious weaknesses in past and current data collection and analyses at large regional scales (with very few studies in the tropics or from Africa) and dramatic taxonomic biases. If accurate predictions regarding the general effects of climate change on the biology of organisms are to be made, data collection policies focussing on targeting data-deficient regions and taxa need to be financially and logistically

  19. Walter Baade and the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Osterbrock, D. E.

    1993-12-01

    The inception of the European Southern Observatory is generally traced to Walter Baade's discussions with Jan Oort during his visit to Leiden in the spring of 1953. However, these discussions had certainly been underway between them previously, during Oort's visit to Pasadena in early 1952. Furthermore, Baade's great interest in southern-hemisphere astronomy and his strong desire to observe there can be traced far back in his career. In 1927, after his return to Germany from a year in the U.S. under a Rockefeller fellowship, Baade reported that his country had no chance to catch up with American astronomy in the northern hemisphere. He advocated moving the Hamburg 1-meter reflector to the southern hemisphere to get in ahead of the U.S. with an effective telescope there. Baade emphasized the research that could be done on high-luminosity and variable stars in the Magellanic Clouds. Later, after he had joined the Mount Wilson staff, his early attempts to locate the center of our Galaxy and globular clusters near it (in 1937) and his observational study (with Edwin Hubble) of the Sculptor and Fornax dwarf galaxies (in 1939) re-emphasized to him the need for a southern observatory. During and soon after World War II he made many suggestions on a search for ``cluster-type variables'' in the Magellanic Clouds to Enrique Gaviola, director of the new 1.5-meter Bosque Alegre reflector in Argentina. Baade wanted to go there to observe with it himself, but his German citizenship prevented him from leaving the U.S.. Finally, in the last year of his life, he was able to observe NGC 6522 (the globular cluster in ``his'' window), with the Mount Stromlo 1.9-meter reflector.

  20. Surface roughness effects on bidirectional reflectance

    NASA Technical Reports Server (NTRS)

    Smith, T. F.; Hering, R. G.

    1972-01-01

    An experimental study of surface roughness effects on bidirectional reflectance of metallic surfaces is presented. A facility capable of irradiating a sample from normal to grazing incidence and recording plane of incidence bidirectional reflectance measurements was developed. Samples consisting of glass, aluminum alloy, and stainless steel materials were selected for examination. Samples were roughened using standard grinding techniques and coated with a radiatively opaque layer of pure aluminum. Mechanical surface roughness parameters, rms heights and rms slopes, evaluated from digitized surface profile measurements are less than 1.0 micrometers and 0.28, respectively. Rough surface specular, bidirectional, and directional reflectance measurements for selected values of polar angle of incidence and wavelength of incident energy within the spectral range of 1 to 14 micrometers are reported. The Beckmann bidirectional reflectance model is compared with reflectance measurements to establish its usefulness in describing the magnitude and spatial distribution of energy reflected from rough surfaces.

  1. Surface roughness effects on bidirectional reflectance.

    NASA Technical Reports Server (NTRS)

    Smith, T. F.; Hering, R. G.

    1973-01-01

    An experimental study of surface roughness effects on bidirectional reflectance of metallic surfaces is presented. Samples consisting of glass, aluminum alloy, and stainless steel materials were roughened using standard grinding techniques and coated with a radiatively opaque layer of pure aluminum. Surface roughness parameters, rms height and rms slope, were evaluated from digitized surface profile measurements and are less than 1.0 micron, and 0.28, respectively. Rough-surface specular, bidirectional, and directional reflectance measurements for selected values of polar angle and wavelength of incident energy within the range from 10 to 80 deg and from 1 to 14 microns, respectively, are reported. The influence of surface roughness is discussed in terms of rms height and rms slope.

  2. Effect of Surface Roughness on Hydrodynamic Bearings

    NASA Technical Reports Server (NTRS)

    Majumdar, B. C.; Hamrock, B. J.

    1981-01-01

    A theoretical analysis on the performance of hydrodynamic oil bearings is made considering surface roughness effect. The hydrodynamic as well as asperity contact load is found. The contact pressure was calculated with the assumption that the surface height distribution was Gaussian. The average Reynolds equation of partially lubricated surface was used to calculate hydrodynamic load. An analytical expression for average gap was found and was introduced to modify the average Reynolds equation. The resulting boundary value problem was then solved numerically by finite difference methods using the method of successive over relaxation. The pressure distribution and hydrodynamic load capacity of plane slider and journal bearings were calculated for various design data. The effects of attitude and roughness of surface on the bearing performance were shown. The results are compared with similar available solution of rough surface bearings. It is shown that: (1) the contribution of contact load is not significant; and (2) the hydrodynamic and contact load increase with surface roughness.

  3. Surface Roughness, Optical Shadowing, and Radar Backscatter

    NASA Astrophysics Data System (ADS)

    Shepard, M. K.; Campbell, B. A.

    1996-03-01

    The topography of natural surfaces at scales of a few meters or less is commonly referred to as roughness. These variations in height and slope, their magnitude, and the changes in structure as a function of scale length are of fundamental importance to interpretation of geologic emplacement regimes and subsequent modification. For most planetary studies and many terrestrial situations, no in situ observations of the ground are available, and remote sensing data are used to infer the nature of the terrain. For optical, infrared, and microwave measurements, surface roughness and its scale-dependence have a large impact on the brightness, polarization, angular scattering properties, and wavelength-dependence of reflected energy. The link between surface roughness and specific remote sensing properties for many types of observations, however, remains elusive. We focus here on the nature of roughness and its scale-dependence for terrestrial rocky surfaces, and the effect of such changes on optical shadowing and radar backscatter.

  4. Simplified models for mask roughness induced LER

    SciTech Connect

    McClinton, Brittany; Naulleau, Patrick

    2011-02-21

    The ITRS requires < 1.2nm line-edge roughness (LER) for the 22nm half-pitch node. Currently, we can consistently achieve only about 3nm LER. Further progress requires understanding the principle causes of LER. Much work has already been done on how both the resist and LER on the mask effect the final printed LER. What is poorly understood, however, is the extent to which system-level effects such as mask surface roughness, illumination conditions, and defocus couple to speckle at the image plane, and factor into LER limits. Presently, mask-roughness induced LER is studied via full 2D aerial image modeling and subsequent analysis of the resulting image. This method is time consuming and cumbersome. It is, therefore, the goal of this research to develop a useful 'rule-of-thumb' analytic model for mask roughness induced LER to expedite learning and understanding.

  5. Circular single domains in hemispherical Permalloy nanoclusters

    SciTech Connect

    Araujo, Clodoaldo I. L de Fonseca, Jakson M.; Sinnecker, João P.; Delatorre, Rafael G.; Garcia, Nicolas; Pasa, André A.

    2014-11-14

    We have studied ferromagnetic Permalloy clusters obtained by electrodeposition on n-type silicon. Magnetization measurements reveal hysteresis loops almost independent on temperature and very similar in shape to those obtained in nanodisks with diameter bigger than 150 nm. The spin configuration for the ground state, obtained by micromagnetic simulation, shows topological vortices with random chirality and polarization. This behavior in the small diameter clusters (∼80 nm) is attributed to the Dzyaloshinskii-Moriya interaction that arises in its hemispherical geometries. This magnetization behavior can be utilized to explain the magnetoresistance measured with magnetic field in plane and out of sample plane.

  6. Spatial disorientation in right-hemisphere infarction.

    PubMed Central

    Meerwaldt, J D; van Harskamp, F

    1982-01-01

    Spatial orientation was tested with the rod orientation test. The subjects were 40 normal controls and 68 brain-damaged patients with cerebral infarcts. Patients in whom the lesion included the post-rolandic region of the right hemisphere performed worse than controls or patients with lesions at other sites. Patients with an exclusively postrolandic (usually occipital) lesion showed higher error rates than patients with a combined prerolandic and postrolandic lesion, but only for the visual part of the test. These patients were re-examined one year after the stroke. Most of them showed an incomplete recovery of spatial function. PMID:7119828

  7. The genus Platychara from the Western Hemisphere

    USGS Publications Warehouse

    Peck, R.E.; Forester, R.M.

    1979-01-01

    The systematics of four species belonging to the genus Platychara (Charophyta) from the Western Hemisphere is discussed. Three of the species, as defined herein, occur in Cretaceous and Paleocene rocks from Mexico through South America. The type species, P. compressa (Peck and Reker) Grambast, also of Cretaceous and Paleocene age, is herein restricted to deposits north of Mexico. These latter restrictions geographically separate P. compressa and P. perlata as presently defined but the relationship between these two species is still uncertain. A new species, P. grambastii, is proposed for specimens from Maestrichtian sediments in Jamaica. ?? 1979.

  8. Comparison of aerodynamically and model-derived roughness lengths (zo) over diverse surfaces, central Mojave Desert, California, USA

    USGS Publications Warehouse

    MacKinnon, D.J.; Clow, G.D.; Tigges, R.K.; Reynolds, R.L.; Chavez, P.S.

    2004-01-01

    The vulnerability of dryland surfaces to wind erosion depends importantly on the absence or the presence and character of surface roughness elements, such as plants, clasts, and topographic irregularities that diminish wind speed near the surface. A model for the friction velocity ratio has been developed to account for wind sheltering by many different types of co-existing roughness elements. Such conditions typify a monitored area in the central Mojave Desert, California, that experiences frequent sand movement and dust emission. Two additional models are used to convert the friction velocity ratio to the surface roughness length (zo) for momentum. To calculate roughness lengths from these models, measurements were made at 11 sites within the monitored area to characterize the surface roughness element. Measurements included (1) the number of roughness species (e.g., plants, small-scale topography, clasts), and their associated heights and widths, (2) spacing among species, and (3) vegetation porosity (a measurement of the spatial distribution of woody elements of a plant). Documented or estimated values of drag coefficients for different species were included in the modeling. At these sites, wind-speed profiles were measured during periods of neutral atmospheric stability using three 9-m towers with three or four calibrated anemometers on each. Modeled roughness lengths show a close correspondence (correlation coefficient, 0.84-0.86) to the aerodynamically determined values at the field sites. The geometric properties of the roughness elements in the model are amenable to measurement at much higher temporal and spatial resolutions using remote-sensing techniques than can be accomplished through laborious ground-based methods. A remote-sensing approach to acquire values of the modeled roughness length is particularly important for the development of linked surface/atmosphere wind-erosion models sensitive to climate variability and land-use changes in areas such

  9. Permeability of self-affine rough fractures

    PubMed

    Drazer; Koplik

    2000-12-01

    The permeability of two-dimensional fractures with self-affine fractal roughness is studied via analytic arguments and numerical simulations. The limit where the roughness amplitude is small compared with average fracture aperture is analyzed by a perturbation method, while in the opposite case of narrow aperture, we use heuristic arguments based on lubrication theory. Numerical simulations, using the lattice Boltzmann method, are used to examine the complete range of aperture sizes, and confirm the analytic arguments. PMID:11138092

  10. How supercontinents and superoceans affect seafloor roughness.

    PubMed

    Whittaker, Joanne M; Müller, R Dietmar; Roest, Walter R; Wessel, Paul; Smith, Walter H F

    2008-12-18

    Seafloor roughness varies considerably across the world's ocean basins and is fundamental to controlling the circulation and mixing of heat in the ocean and dissipating eddy kinetic energy. Models derived from analyses of active mid-ocean ridges suggest that ocean floor roughness depends on seafloor spreading rates, with rougher basement forming below a half-spreading rate threshold of 30-35 mm yr(-1) (refs 4, 5), as well as on the local interaction of mid-ocean ridges with mantle plumes or cold-spots. Here we present a global analysis of marine gravity-derived roughness, sediment thickness, seafloor isochrons and palaeo-spreading rates of Cretaceous to Cenozoic ridge flanks. Our analysis reveals that, after eliminating effects related to spreading rate and sediment thickness, residual roughness anomalies of 5-20 mGal remain over large swaths of ocean floor. We found that the roughness as a function of palaeo-spreading directions and isochron orientations indicates that most of the observed excess roughness is not related to spreading obliquity, as this effect is restricted to relatively rare occurrences of very high obliquity angles (>45 degrees ). Cretaceous Atlantic ocean floor, formed over mantle previously overlain by the Pangaea supercontinent, displays anomalously low roughness away from mantle plumes and is independent of spreading rates. We attribute this observation to a sub-Pangaean supercontinental mantle temperature anomaly leading to slightly thicker than normal Late Jurassic and Cretaceous Atlantic crust, reduced brittle fracturing and smoother basement relief. In contrast, ocean crust formed above Pacific superswells, probably reflecting metasomatized lithosphere underlain by mantle at only slightly elevated temperatures, is not associated with basement roughness anomalies. These results highlight a fundamental difference in the nature of large-scale mantle upwellings below supercontinents and superoceans, and their impact on oceanic crustal

  11. Effective roughness in meso-scale modeling.

    NASA Astrophysics Data System (ADS)

    Nielsen, Joakim R.

    2010-05-01

    Effective roughness in meso-scale modeling. J.R. Nielsen, E. Dellwik, A. Hahmann, A. Sogachev, C.B. Hasager, Wind Energy Division, Risø DTU National Laboratory, Denmark Accurate estimation of effective roughness lengths for use in meso-scale models in heterogeneous terrain requires assessment of highly non-linear processes. These non-linear effects are often neglected in meso-scale modeling where, typically, a simple logarithmic average or a dominant vegetation type provide crude estimates of the aggregated aerodynamical roughness length in each grid cell. Although the parameterizations are computationally efficient, improvements are needed since some regional-scale sensitivity studies indicate that grid cell roughnesses strongly influence model predictions (i.e. Hasager and Jensen, 1999). Effective roughness parameterizations can be provided through the use of microscale flow models, which simulate the he local scale effect of orography and roughness changes. Results from two linearized micro-scale models and a k-ω model (Sogachev and Panferov, 2006) are presented for an idealized terrain with roughness changes. Furthermore, sensitivity experiments are performed within the meso-scale model WRF (Weather Research and Forecasting) using the standard Community Noah Land Surface model. The same experiment will be performed with a new modified version with multi-physics options (Niu et al.,submitted 2009). The analysis is carried out using different roughness aggregation techniques in WRF and the influence on scalar fluxes such as temperature, humidity and CO2 is investigated. Based on the WRF sensitivity analysis and the results of micro-scale modeling, the potential improvement of using micro-scale models for parameterization of sub-grid scale variability is evaluated.

  12. How supercontinents and superoceans affect seafloor roughness.

    PubMed

    Whittaker, Joanne M; Müller, R Dietmar; Roest, Walter R; Wessel, Paul; Smith, Walter H F

    2008-12-18

    Seafloor roughness varies considerably across the world's ocean basins and is fundamental to controlling the circulation and mixing of heat in the ocean and dissipating eddy kinetic energy. Models derived from analyses of active mid-ocean ridges suggest that ocean floor roughness depends on seafloor spreading rates, with rougher basement forming below a half-spreading rate threshold of 30-35 mm yr(-1) (refs 4, 5), as well as on the local interaction of mid-ocean ridges with mantle plumes or cold-spots. Here we present a global analysis of marine gravity-derived roughness, sediment thickness, seafloor isochrons and palaeo-spreading rates of Cretaceous to Cenozoic ridge flanks. Our analysis reveals that, after eliminating effects related to spreading rate and sediment thickness, residual roughness anomalies of 5-20 mGal remain over large swaths of ocean floor. We found that the roughness as a function of palaeo-spreading directions and isochron orientations indicates that most of the observed excess roughness is not related to spreading obliquity, as this effect is restricted to relatively rare occurrences of very high obliquity angles (>45 degrees ). Cretaceous Atlantic ocean floor, formed over mantle previously overlain by the Pangaea supercontinent, displays anomalously low roughness away from mantle plumes and is independent of spreading rates. We attribute this observation to a sub-Pangaean supercontinental mantle temperature anomaly leading to slightly thicker than normal Late Jurassic and Cretaceous Atlantic crust, reduced brittle fracturing and smoother basement relief. In contrast, ocean crust formed above Pacific superswells, probably reflecting metasomatized lithosphere underlain by mantle at only slightly elevated temperatures, is not associated with basement roughness anomalies. These results highlight a fundamental difference in the nature of large-scale mantle upwellings below supercontinents and superoceans, and their impact on oceanic crustal

  13. Slip and accommodation coefficients from rarefaction and roughness in rotating microscale disk flows

    NASA Astrophysics Data System (ADS)

    Blanchard, Danny; Ligrani, Phil

    2007-06-01

    Accommodation coefficients are determined from experimental results and analysis based on the Navier-Stokes equations for rotation-induced flows in C-shaped fluid chamber passages formed between a rotating disk and a stationary surface. A first-order boundary condition is used to model the slip flow. The fluid chamber passage height ranges from 6.85to29.2μm to give Knudsen numbers from 0.0025 to 0.031 for air and helium. In all cases, roughness size is large compared to molecular mean free path. The unique method presented for deducing tangential momentum accommodation coefficients gives values with less uncertainty compared to procedures that rely on flows in stationary tubes and channels. When channel height is defined at the tops of the roughness elements, slip velocity magnitudes and associated accommodation coefficients are a result of rarefaction at solid-gas interfaces and shear at the gas-gas interfaces. With this arrangement, tangential accommodation coefficients obtained with this approach decrease, and slip velocity magnitudes increase, at a particular value of Knudsen number, as the level of surface roughness increases. At values of the mean roughness height greater than 500nm, accommodation coefficients then appear to be lower in air flows than in helium flows, when compared for a particular roughness configuration. When channel height is defined midway between the crests and troughs of the roughness elements, nondimensional pressure rise data show little or no dependence on the level of disk surface roughness and working fluid. With this arrangement, slip is largely independent of surface roughness magnitude and mostly due to rarefaction, provided the appropriate channel height is chosen to define the roughness height.

  14. Predicting bed form roughness: the influence of lee side angle

    NASA Astrophysics Data System (ADS)

    Lefebvre, Alice; Winter, Christian

    2016-04-01

    Flow transverse bedforms (ripples and dunes) are ubiquitous in rivers and coastal seas. Local hydrodynamics and transport conditions depend on the size and geometry of these bedforms, as they constitute roughness elements at the bed. Bedform influence on flow energy must be considered for the understanding of flow dynamics, and in the development and application of numerical models. Common estimations or predictors of form roughness (friction factors) are based mostly on data of steep bedforms (with angle-of-repose lee slopes), and described by highly simplified bedform dimensions (heights and lengths). However, natural bedforms often are not steep, and differ in form and hydraulic effect relative to idealised bedforms. Based on systematic numerical model experiments, this study shows how the hydraulic effect of bedforms depends on the flow structure behind bedforms, which is determined by the bedform lee side angle, aspect ratio and relative height. Simulations reveal that flow separation behind bedform crests and, thus, a hydraulic effect is induced at lee side angles steeper than 11 to 18° depending on relative height, and that a fully developed flow separation zone exists only over bedforms with a lee side angle steeper than 24°. Furthermore, the hydraulic effect of bedforms with varying lee side angle is evaluated and a reduction function to common friction factors is proposed. A function is also developed for the Nikuradse roughness (k s), and a new equation is proposed which directly relates k s to bedform relative height, aspect ratio and lee side angle.

  15. Roughness Based Crossflow Transition Control: A Computational Assessment

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; Streett, Craig L.; Carpenter, Mark H.

    2009-01-01

    A combination of parabolized stability equations and secondary instability theory has been applied to a low-speed swept airfoil model with a chord Reynolds number of 7.15 million, with the goals of (i) evaluating this methodology in the context of transition prediction for a known configuration for which roughness based crossflow transition control has been demonstrated under flight conditions and (ii) of analyzing the mechanism of transition delay via the introduction of discrete roughness elements (DRE). Roughness based transition control involves controlled seeding of suitable, subdominant crossflow modes, so as to weaken the growth of naturally occurring, linearly more unstable crossflow modes. Therefore, a synthesis of receptivity, linear and nonlinear growth of stationary crossflow disturbances, and the ensuing development of high frequency secondary instabilities is desirable to understand the experimentally observed transition behavior. With further validation, such higher fidelity prediction methodology could be utilized to assess the potential for crossflow transition control at even higher Reynolds numbers, where experimental data is currently unavailable.

  16. Cells preferentially grow on rough substrates.

    PubMed

    Gentile, Francesco; Tirinato, Luca; Battista, Edmondo; Causa, Filippo; Liberale, Carlo; di Fabrizio, Enzo M; Decuzzi, Paolo

    2010-10-01

    Substrate nanotopography affects cell adhesion and proliferation and is fundamental to the rational design of bio-adhesives, to tissue engineering and to the development of assays for in-vitro screening. Cell behavior on rough substrates is still elusive, and the results presented in the open literature remain controversial. Here, the proliferation of cells on electrochemically etched silicon substrates with different roughness and nearly similar surface energy was studied over three days with confocal and atomic force microscopy. The surface profile of the substrates is a self-affine fractal with a roughness R(a) growing with the etching time from approximately 2 to 100 nm and a fractal dimension D ranging between about 2 (nominally flat surface) and 2.6. For four cell types, the number of adhering cells and their proliferation rates exhibited a maximum on moderately rough (R(a) approximately 10-45 nm) nearly Brownian (D approximately 2.5) substrates. The observed cell behavior was satisfactorily interpreted within the theory of adhesion to randomly rough solids. These findings demonstrated the importance of nanogeometry in cell stable adhesion and growth, suggesting that moderately rough substrates with large fractal dimension could selectively boost cell proliferation. PMID:20637503

  17. A hemisphere array for non-invasive ultrasound brain therapy and surgery

    NASA Astrophysics Data System (ADS)

    Clement, G. T.; Sun, Jie; Giesecke, Tonia; Hynynen, Kullervo

    2000-12-01

    Ultrasound phased arrays may offer a method for non-invasive deep brain surgery through the skull. In this study a hemispherical phased array system is developed to test the feasibility of trans-skull surgery. The hemispherical shape is incorporated to maximize the penetration area on the skull surface, thus minimizing unwanted heating. Simulations of a 15 cm radius hemisphere divided into 11, 64, 228 and 512 elements are presented. It is determined that 64 elements are sufficient for correcting scattering and reflection caused by trans-skull propagation. An optimal operating frequency near 0.7 MHz is chosen for the array from numerical and experimental thermal gain measurements comparing the power between the transducer focus and the skull surface. A 0.665 MHz air-backed PZT array is constructed and evaluated. The array is used to focus ultrasound through an ex vivo human skull and the resulting fields are measured before and after phase correction of the transducer elements. Finally, to demonstrate the feasibility of trans-skull therapy, thermally induced lesions are produced through a human skull in fresh tissue placed at the ultrasound focus inside the skull.

  18. Topographic roughness of the northern high latitudes of Mercury from MESSENGER Laser Altimeter data

    NASA Astrophysics Data System (ADS)

    Fa, Wenzhe; Cai, Yuzhen; Xiao, Zhiyong; Tian, Wei

    2016-04-01

    We investigated topographic roughness for the northern hemisphere (>45°N) of Mercury using high-resolution topography data acquired by the Mercury Laser Altimeter (MLA) on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Our results show that there are distinct differences in the bidirectional slope and root-mean-square (RMS) height among smooth plains (SP), intercrater plains (ICP), and heavily cratered terrain (HCT), and that the ratios of the bidirectional slope and RMS height among the three geologic units are both about 1:2:2.4. Most of Mercury's surface exhibits fractal-like behavior on the basis of the linearity in the deviograms, with median Hurst exponents of 0.66, 0.80, and 0.81 for SP, ICP, and HCT, respectively. The median differential slope map shows that smooth plains are smooth at kilometer scale and become rough at hectometer scale, but they are always rougher than lunar maria at the scales studied. In contrast, intercrater plains and heavily cratered terrain are rough at kilometer scale and smooth at hectometer scale, and they are rougher than lunar highlands at scale <˜2 km but smoother at >˜2 km. We suggest that these scale-dependent roughness characteristics are mainly caused by the difference in density and shape of impact craters between Mercury and the Moon.

  19. Application of DLVO energy map to evaluate interactions between spherical colloids and rough surfaces.

    PubMed

    Shen, Chongyang; Wang, Feng; Li, Baoguo; Jin, Yan; Wang, Lian-Ping; Huang, Yuanfang

    2012-10-16

    This study theoretically evaluated interactions between spherical colloids and rough surfaces in three-dimensional space using Derjaguin-Landau-Verwey- Overbeek (DLVO) energy/force map and curve. The rough surfaces were modeled as a flat surface covered by hemispherical protrusions. A modified Derjaguin approach was employed to calculate the interaction energies and forces. Results show that more irreversible attachments in primary minima occur at higher ionic strengths, which theoretically explains the observed hysteresis of colloid attachment and detachment during transients in solution chemistry. Secondary minimum depths can be increased significantly in concave regions (e.g., areas aside of asperities or between asperities) due to sidewall interactions. Through comparing the tangential attractive forces from asperities and the hydrodynamic drag forces in three-dimensional space, we showed that attachment in secondary minima can be located on open collector surfaces of a porous medium. This result challenges the usual belief that the attachment in secondary minima only occurs in stagnation point regions of the porous medium and is absent in shear flow systems such as parallel plate flow chamber and impinging jet apparatus. Despite the argument about the role of secondary minima in colloid attachment remained, our study theoretically justified the existence of attachment in secondary minima in the presence of surface roughness. Further, our study implied that the presence of surface roughness is more favorable for attachment in secondary minima than in primary minima under unfavorable chemical conditions.

  20. Hemispheric specialization in dogs for processing different acoustic stimuli.

    PubMed

    Siniscalchi, Marcello; Quaranta, Angelo; Rogers, Lesley J

    2008-01-01

    Considerable experimental evidence shows that functional cerebral asymmetries are widespread in animals. Activity of the right cerebral hemisphere has been associated with responses to novel stimuli and the expression of intense emotions, such as aggression, escape behaviour and fear. The left hemisphere uses learned patterns and responds to familiar stimuli. Although such lateralization has been studied mainly for visual responses, there is evidence in primates that auditory perception is lateralized and that vocal communication depends on differential processing by the hemispheres. The aim of the present work was to investigate whether dogs use different hemispheres to process different acoustic stimuli by presenting them with playbacks of a thunderstorm and their species-typical vocalizations. The results revealed that dogs usually process their species-typical vocalizations using the left hemisphere and the thunderstorm sounds using the right hemisphere. Nevertheless, conspecific vocalizations are not always processed by the left hemisphere, since the right hemisphere is used for processing vocalizations when they elicit intense emotion, including fear. These findings suggest that the specialisation of the left hemisphere for intraspecific communication is more ancient that previously thought, and so is specialisation of the right hemisphere for intense emotions. PMID:18843371

  1. Cognitive correlates of hemispheric performance on dichotic tasks.

    PubMed

    Johnson, R C; Green, P; Ahern, F M; Cole, R E

    Older (age 50+) adults were tested twice on three measures of dichotic memory and once on three measures of cognition. Internal consistencies of all three measures generally were adequate. However, test-retest reliabilities, by ear of presentation, were comparatively low for the three dichotic measures. A measure of vocabulary (a left hemisphere dominant cognitive ability) was related to performance on most dichotic tasks. Years of education (an index of left hemisphere mediated crystallized intelligence) was related to performance on left but not right hemisphere function on two of three dichotic tasks. Performance on tests of spatial ability was related to performance on left ear/right hemisphere but not right ear/left hemisphere function on two of three dichotic memory tasks. Individual differences in accuracy of recall and recognition of stimuli presented via dichotic tasks to the right ear/left hemisphere and the left ear/right hemisphere appear to have different cognitive correlates. Right hemisphere performance on dichotic tasks generally shows a significant negative association with age, as did performance on right hemisphere dominant cognitive tasks. On the other hand, most measures of left hemisphere performance showed no decline associated with age.

  2. Hemispheric specialization in dogs for processing different acoustic stimuli.

    PubMed

    Siniscalchi, Marcello; Quaranta, Angelo; Rogers, Lesley J

    2008-01-01

    Considerable experimental evidence shows that functional cerebral asymmetries are widespread in animals. Activity of the right cerebral hemisphere has been associated with responses to novel stimuli and the expression of intense emotions, such as aggression, escape behaviour and fear. The left hemisphere uses learned patterns and responds to familiar stimuli. Although such lateralization has been studied mainly for visual responses, there is evidence in primates that auditory perception is lateralized and that vocal communication depends on differential processing by the hemispheres. The aim of the present work was to investigate whether dogs use different hemispheres to process different acoustic stimuli by presenting them with playbacks of a thunderstorm and their species-typical vocalizations. The results revealed that dogs usually process their species-typical vocalizations using the left hemisphere and the thunderstorm sounds using the right hemisphere. Nevertheless, conspecific vocalizations are not always processed by the left hemisphere, since the right hemisphere is used for processing vocalizations when they elicit intense emotion, including fear. These findings suggest that the specialisation of the left hemisphere for intraspecific communication is more ancient that previously thought, and so is specialisation of the right hemisphere for intense emotions.

  3. Inter-hemispheric temperature variability over the past millennium

    NASA Astrophysics Data System (ADS)

    Neukom, Raphael; Gergis, Joëlle; Karoly, David J.; Wanner, Heinz; Curran, Mark; Elbert, Julie; González-Rouco, Fidel; Linsley, Braddock K.; Moy, Andrew D.; Mundo, Ignacio; Raible, Christoph C.; Steig, Eric J.; van Ommen, Tas; Vance, Tessa; Villalba, Ricardo; Zinke, Jens; Frank, David

    2014-05-01

    The Earth's climate system is driven by a complex interplay of internal chaotic dynamics and natural and anthropogenic external forcing. Recent instrumental data have shown a remarkable degree of asynchronicity between Northern Hemisphere and Southern Hemisphere temperature fluctuations, thereby questioning the relative importance of internal versus external drivers of past as well as future climate variability. However, large-scale temperature reconstructions for the past millennium have focused on the Northern Hemisphere, limiting empirical assessments of inter-hemispheric variability on multi-decadal to centennial timescales. Here, we introduce a new millennial ensemble reconstruction of annually resolved temperature variations for the Southern Hemisphere based on an unprecedented network of terrestrial and oceanic palaeoclimate proxy records. In conjunction with an independent Northern Hemisphere temperature reconstruction ensemble, this record reveals an extended cold period (1594-1677) in both hemispheres but no globally coherent warm phase during the pre-industrial (1000-1850) era. The current (post-1974) warm phase is the only period of the past millennium where both hemispheres are likely to have experienced contemporaneous warm extremes. Our analysis of inter-hemispheric temperature variability in an ensemble of climate model simulations for the past millennium suggests that models tend to overemphasize Northern Hemisphere-Southern Hemisphere synchronicity by underestimating the role of internal ocean-atmosphere dynamics, particularly in the ocean-dominated Southern Hemisphere. Our results imply that climate system predictability on decadal to century timescales may be lower than expected based on assessments of external climate forcing and Northern Hemisphere temperature variations alone.

  4. Flow past 2-D Hemispherical Rigid Canopies

    NASA Astrophysics Data System (ADS)

    Carnasciali, Maria-Isabel

    2013-11-01

    The flow past a 2-dimensional rigid hemispherical shape is investigated using PIV. Flow field measurements and images were generated with the use of a Thermoflow® apparatus. Results of this study are compared to prior work (APS DFD 2012 Session E9.00003) which employed CFD to investigate the flow in the near wake of hemispherical parachutes. The various sized gaps/open areas were positioned at distinct locations. The work presented here is part of a larger research project to investigate flow fields in deceleration devices and parachutes. Understanding the pitch-stability of parachutes is essential for accurate design and implementation of these deceleration devices but they present a difficult system to analyze. The flexibility of the parachute fabric results in large variations in the parachute geometry leading to complex fluid-structure interactions. Such flow, combined with flow through gaps and open areas, has been postulated to shed alternating vortices causing pitching/oscillations of the canopy. The results presented provide some insight into which geometric features affect vortex shedding and may enable the redesign of the baseline parachute to minimize instabilities.

  5. Novel hemispheric image formation: concepts and applications

    NASA Astrophysics Data System (ADS)

    Thibault, Simon; Konen, Pierre; Roulet, Patrice; Villegas, Mathieu

    2008-04-01

    Panoramic and hemispheric lens technologies represent new and exciting opportunities in both imaging and projection systems. Such lenses offer intriguing applications for the transportation/automotive industry, in the protection of civilian and military areas, business. In this paper we describe a new optical design technique that provides a greater degree of freedom in producing a variety of hemispheric spatial light distribution areas. This innovative optical design strategy, of generating and controlling image mapping, has been successful in producing high-resolution imaging and projection systems. This success has subsequently generated increased interest in the high-resolution camera/projector and the concept of absolute measurement with high-resolution wide-angle lenses. The new technique described in this paper uses optimization techniques to improve the performance of a customized wide-angle lens optical system for a specific application. By adding a custom angle-to-pixel ratio at the optical design stage, this customized optical system provides ideal image coverage while reducing and optimizing signal processing. This novel image formation technique requires the development of new algorithms in order to view the panoramic image on a display without any residual distortion.

  6. A Search for Hemispheric Asymmetry on Triton

    NASA Astrophysics Data System (ADS)

    McIntosh, C. M.; Storrs, A. D.

    2004-12-01

    We will present reconstructed images of Neptune's largest satellite Triton as part of an investigation of hemispheric asymmetry. The images we observed from the Hubble Space Telescope in July of 1997, using the Wide Field/Planetary Camera. The images were taken in several filters: F439W, F555W, and F791W. Image restoration was performed using the MISTRAL program (Mugnier, Fusco, and Conan 2003). We present the ratio between the filters to determine if there is any hemispheric color asymmetry at this time. The photometry of Triton appears normal in this data although Hicks and Buratti (2004) observe Triton to be anomalously red in August of 1997. References: Hicks, M.D., and Buratti, B.J. (2004): "The Spectral Variability of Triton from 1997-2000", Icarus 171 pp. 210-218 Mugnier, L.M., T. Fusco, and J.-M. Conan, 2003. "MISTRAL: a Myopic Edge-Preserving Image Restoration Method. Applicaton to Astronomical Adaptive Optics Corrected Long-Exposure Images." JOSA A (submitted)

  7. Interannual Variability and Trends of Extratropical Ozone, Part II: Southern Hemisphere. Part 2; Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.

    2008-01-01

    A principal component analysis (PCA) is applied to the Southern Hemisphere (SH) total column ozone following the method established for analyzing the data in the Northern Hemisphere (NH) in a companion paper. The interannual variability (IAV) of extratropical O-3 in the SH is characterized by four main modes, which account for 75% of the total variance. The first two leading modes are approximately zonally symmetric and relate to the Southern Hemisphere annular mode and the quasi-biennial oscillation. The third and fourth modes exhibit wavenumber-1 structures. Contrary to the Northern Hemisphere, the third and fourth are nor related to stationary waves. Similar results obtained for the 30 100-hPa geopotential thickness.The decreasing O3 trend in the SH is captured in the first mode. The largest trend is at the South Pole, with value similar to-2 Dobson Units (DU)/yr. Both the spatial pattern and trends in the column ozone are captured by the Goddard Earth Observation System chemistry-climate model (GEOS-CCM) in the SH.

  8. Variable left-hemisphere language and orthographic lateralization reduces right-hemisphere face lateralization.

    PubMed

    Dundas, Eva M; Plaut, David C; Behrmann, Marlene

    2015-05-01

    It is commonly believed that, in right-handed individuals, words and faces are processed by distinct neural systems: one in the left hemisphere (LH) for words and the other in the right hemisphere (RH) for faces. Emerging evidence suggests, however, that hemispheric selectivity for words and for faces may not be independent of each other. One recent account suggests that words become lateralized to the LH to interact more effectively with language regions, and subsequently, as a result of competition with words for representational space, faces become lateralized to the RH. On this interactive account, left-handed individuals, who as a group show greater variability with respect to hemispheric language dominance, might be expected to show greater variability in their degree of RH lateralization of faces as well. The current study uses behavioral measures and ERPs to compare the hemispheric specialization for both words and faces in right- and left-handed adult individuals. Although both right- and left-handed groups demonstrated LH over RH superiority in discrimination accuracy for words, only the right-handed group demonstrated RH over LH advantage in discrimination accuracy for faces. Consistent with this, increased right-handedness was related to an increase in RH superiority for face processing, as measured by the strength of the N170 ERP component. Interestingly, the degree of RH behavioral superiority for face processing and the amplitude of the RH N170 for faces could be predicted by the magnitude of the N170 ERP response to words in the LH. These results are discussed in terms of a theoretical account in which the typical RH face lateralization fails to emerge in individuals with atypical language lateralization because of weakened competition from the LH representation of words.

  9. Particle transport and adjustments of the boundary layer over rough surfaces with an unrestricted, upwind supply of sediment

    NASA Astrophysics Data System (ADS)

    McKenna Neuman, Cheryl

    1998-10-01

    Most natural surfaces containing non-erodible roughness elements are considerably more complex than those studied in modelling exercises and wind tunnel simulations. Unlike idealized roughness elements, which are uniform in size, shape (i.e., spheres or cylinders) and spacing, natural elements are challenging to measure in 3-dimensional space. Similarly, most deflation lag surfaces, such those as found on sandar and beaches, are spatially heterogeneous open systems in which sediment transport from an external supply is very likely. The development of irregular deflation lag surfaces, and the transport of sediment over these surfaces from an upwind source of sediment, was studied in a series of wind tunnel simulations. Surfaces prepared with crushed gravel and natural beach shingle respond conservatively in terms of the adjustment to the deflation and deposition of sediment. Deflation lag surfaces, prepared with no spacing between the roughness elements (i.e., close packed), demonstrate little to no change in coverage with the introduction of particles from an upwind source. Neither the element type nor the friction velocity affect this outcome. As the center-to-center element spacing increases to 60 mm, infilling of the lag surface eventually is observed, with the element coverage reduced by a factor between 2 and 4. For a given threshold ratio ( Rt), the roughness density ( λ) is smaller than observed in previous simulation studies based on idealized roughness elements.

  10. Effect of plate roughness on the field near RPC plates

    NASA Astrophysics Data System (ADS)

    Jash, A.; Majumdar, N.; Mukhopadhyay, S.; Chattopadhyay, S.

    2016-06-01

    The inner surfaces of the electrodes encompassing the gas volume of a Resistive Plate Chamber (RPC) have been found to exhibit asperities with, grossly, three kind of features. The desired uniform electric field within the gas volume of RPC is expected to be affected due to the presence of these asperities, which will eventually affect the final response from the detector. In this work, an attempt has been made to model the highly complex roughness of the electrode surfaces and compute its effect on the electrostatic field within RPC gas chamber. The calculations have been performed numerically using Finite Element Method (FEM) and Boundary Element Method (BEM) and the two methods have been compared in this context.

  11. Roughness-induced generation of crossflow vortices in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan

    1993-01-01

    The receptivity theory of Goldstein and Ruban is extended within the nonasymptotic (quasi-parallel) framework of Zavol'skii et al to predict the roughness-induced generation of stationary and nonstationary instability waves in three-dimensional, incompressible boundary layers. The influence of acoustic-wave orientation, as well as that of different types of roughness geometries, including isolated roughness elements, periodic arrays, and two-dimensional lattices of compact roughness shapes, as well as random, but spatially homogeneous roughness distributions, is examined. The parametric study for the Falkner-Skan-Cooke family of boundary layers supports our earlier conjecture that the initial amplitudes of roughness-induced stationary vortices are likely to be significantly larger than the amplitudes of similarly induced nonstationary vortices in the presence of acoustic disturbances in the free stream. Maximum unsteady receptivity occurs when the acoustic velocity fluctuation is aligned with the wavenumber vector of the unsteady vortex mode. On the other hand, roughness arrays that are oriented somewhere close to the group velocity direction are likely to produce higher instability amplitudes. Limitations of the nonasymptotic theory are discussed, and future work is suggested.

  12. An Experimental Study of Roughness-Induced Instabilities in a Supersonic Boundary Layer

    NASA Technical Reports Server (NTRS)

    Kegerise, Michael A.; King, Rudolph A.; Choudhari, Meelan; Li, Fei; Norris, Andrew

    2014-01-01

    Progress on an experimental study of laminar-to-turbulent transition induced by an isolated roughness element in a supersonic laminar boundary layer is reported in this paper. Here, the primary focus is on the effects of roughness planform shape on the instability and transition characteristics. Four different roughness planform shapes were considered (a diamond, a circle, a right triangle, and a 45 degree fence) and the height and width of each one was held fixed so that a consistent frontal area was presented to the oncoming boundary layer. The nominal roughness Reynolds number was 462 and the ratio of the roughness height to the boundary layer thickness was 0.48. Detailed flow- field surveys in the wake of each geometry were performed via hot-wire anemometry. High- and low-speed streaks were observed in the wake of each roughness geometry, and the modified mean flow associated with these streak structures was found to support a single dominant convective instability mode. For the symmetric planform shapes - the diamond and circular planforms - the instability characteristics (mode shapes, growth rates, and frequencies) were found to be similar. For the asymmetric planform shapes - the right-triangle and 45 degree fence planforms - the mode shapes were asymmetrically distributed about the roughness-wake centerline. The instability growth rates for the asymmetric planforms were lower than those for the symmetric planforms and therefore, transition onset was delayed relative to the symmetric planforms.

  13. Transient aphasias after left hemisphere resective surgery

    PubMed Central

    Wilson, Stephen M.; Lam, Daniel; Babiak, Miranda; Perry, David; Shih, Tina; Hess, Christopher P.; Berger, Mitchel S.; Chang, Edward F.

    2015-01-01

    Object Transient aphasias are often observed in the first few days in patients who undergo surgical resection in the language-dominant hemisphere. The aims of this prospective study were to characterize the incidence and nature of these aphasias, and to determine whether there are relationships between location of the surgical site and deficits in specific language domains. Methods 110 patients undergoing resection to the language-dominant hemisphere participated in the study. Patients’ language was evaluated prior to surgery, 2-3 days post-surgery, and 1 month post-surgery using the Western Aphasia Battery and the Boston Naming Test. Voxel-based lesion-symptom mapping was used to identify relationships between the location of the surgical site assessed by MRI, and deficits in fluency, information content, comprehension, repetition, and naming. Results 71% of patients were classified as aphasic based on the Western Aphasia Battery 2-3 days post-surgery, with deficits observed in each of the language domains examined. Fluency deficits were associated with resection of the precentral gyrus and adjacent inferior frontal cortex. Reduced information content of spoken output was associated with resection of the ventral precentral gyrus and posterior inferior frontal gyrus (pars opercularis). Repetition deficits were associated with resection of the posterior superior temporal gyrus. Naming deficits were associated with resection of ventral temporal cortex, with mid temporal and posterior temporal damage more predictive of naming deficits than anterior temporal damage. By 1 month post-surgery, nearly all language deficits were resolved, and no language measure except for naming differed significantly from pre-surgical levels. Conclusions These findings show that transient aphasias are very common after left hemisphere resective surgery, and that the precise nature of the aphasia depends on the specific location of the surgical site. This patient cohort provides a unique

  14. Mathematical modeling of surface roughness in magnetic abrasive finishing of BK7 optical glass.

    PubMed

    Pashmforoush, Farzad; Rahimi, Abdolreza; Kazemi, Mehdi

    2015-10-01

    Magnetic abrasive finishing (MAF) is one of the advanced machining processes efficiently used to finish hard-to-machine materials. Simulation and modeling of the process is of particular importance to understand the mechanics of material removal and consequently achieve a high-quality surface with a minimum of surface defects. Hence, in this paper, we performed a numerical-experimental study to mathematically model the surface roughness during the MAF of BK7 optical glass. For this purpose, the initial roughness profile was estimated using fast Fourier transform (FFT) and a Gaussian filter. We obtained the final surface profile based on the material removal mechanisms and the corresponding chipping depth values evaluated by finite element analysis. We then validated experimentally the simulation results in terms of the arithmetic average surface roughness (R(a ). The comparison between the obtained results demonstrates that the theoretical and experimental findings are in good agreement when predicting the parameters' effect on surface roughness behavior. PMID:26479596

  15. Identifying Changes in Snowpack Surface Roughness Characteristics

    NASA Astrophysics Data System (ADS)

    Fassnacht, S. R.; Corrao, M. V.; Deems, J. S.; Stednick, J. D.

    2006-12-01

    The flow of air over a surface is influenced by its roughness. The surface of a snowpack is smooth relative to the underlying ground surface. The relative roughness of the snowpack surface changes directionally, spatially, and temporally, due to deposition, erosion, and melt. To examine these changes in snowpack surface roughness at the microtopographic scale for a Northern Colorado site, the surface was photographed using a darker-coloured roughness board that was inserted into the snowpack so that a black (board) versus white (snow) contrast existed along the entire length of the board. The board was 1-m long and was inserted 11 times at 10-cm intervals to create a 1-m by 1-m mesh. The orientation of the boards was rotated 90 degrees to provide finer resolution data in perpendicular directions. For the 1-m boards, the pixel resolution was approximately 0.4 mm. To measure the snow grain scale, a crystal card was photographed and yielded a pixel resolution of approximately 0.1 mm. Incorporating image processing issues such as image contrast and brightness, the digital images were translated into individual lines. These lines were used to compute semi- variograms in log-log space, from which the magnitude of semi-variance, the fractal dimensions, and the scale break were computed. The semi-variogram characteristics were used to illustrate directional, spatial, and temporal changes in snowpack surface roughness.

  16. Numerical Simulation of Roughness-Induced Transient Growth in a Laminar Boundary Layer

    NASA Technical Reports Server (NTRS)

    Fischer, Paul; Choudhari, Meelan

    2004-01-01

    Numerical simulations are used to examine the roughness-induced transient growth in a laminar boundary-layer flow. Based on the spectral element method, these simulations model the stationary disturbance field associated with a nonsmooth roughness geometry, such as the spanwise periodic array of circular disks used by White and co-workers during a series of wind tunnel experiments at Case Western Reserve University. Besides capturing the major trends from the recent measurements by White and Ergin, the simulations provide additional information concerning the relative accuracy of the experimental findings derived from two separate wall-finding procedures. The paper also explores the dependence of transient growth on geometric characteristics of the roughness distribution, including the height and planform shape of the roughness element and the ratio of roughness due to spacing between an adjacent pair of elements. Results are used for a preliminary assessment of the differences between recently reported theoretical results of Tumin and Reshotko and the measurements by White and Ergin.

  17. The influence of context on hemispheric recruitment during metaphor processing.

    PubMed

    Diaz, Michele T; Hogstrom, Larson J

    2011-11-01

    Although the left hemisphere's prominence in language is well established, less emphasis has been placed on possible roles for the right hemisphere. Behavioral, patient, and neuroimaging research suggests that the right hemisphere may be involved in processing figurative language. Additionally, research has demonstrated that context can modify language processes and facilitate comprehension. Here we investigated how figurativeness and context influenced brain activation, with a specific interest in right hemisphere function. Previous work in our laboratory indicated that novel stimuli engaged right inferior frontal gyrus (IFG) and that both novel and familiar metaphors engaged right IFG and right temporal pole. The graded salience hypothesis proposes that context may lessen integration demands, increase the salience of metaphors, and thereby reduce right hemisphere recruitment for metaphors. In the present study, fMRI was used to investigate brain function, whereas participants read literal and metaphoric sentences that were preceded by either a congruent or an incongruent literal sentence. Consistent with prior research, all sentences engaged traditional left hemisphere regions. Differences between metaphors and literal sentences were observed, but only in the left hemisphere. In contrast, a main effect of congruence was found in the right IFG, the right temporal pole, and the dorsal medial pFC. Partially consistent with the graded salience hypothesis, our results highlight the strong influence of context on language, demonstrate the importance of the right hemisphere in discourse, and suggest that, in a wider discourse context, congruence has a greater influence on right hemisphere recruitment than figurativeness.

  18. Enhanced activation of the left hemisphere promotes normative decision making.

    PubMed

    Corser, Ryan; Jasper, John D

    2014-01-01

    Previous studies have reported that enhanced activation of the left cerebral hemisphere reduces risky-choice, attribute, and goal-framing effects relative to enhanced activation of the right cerebral hemisphere. The present study sought to extend these findings and show that enhanced activation of the left hemisphere also reduces violations of other normative principles, besides the invariance principle. Participants completed ratio bias (Experiment 1, N = 296) and base rate neglect problems (Experiment 2, N = 145) under normal (control) viewing or with the right or left hemisphere primarily activated by imposing a unidirectional gaze. In Experiment 1 we found that enhanced left hemispheric activation reduced the ratio bias relative to normal viewing and a group experiencing enhanced right hemispheric activation. In Experiment 2 enhanced left hemispheric activation resulted in using base rates more than normal viewing, but not significantly more than enhanced right hemispheric activation. Results suggest that hemispheric asymmetries can affect higher-order cognitive processes, such as decision-making biases. Possible theoretical accounts are discussed as well as implications for dual-process theories.

  19. Atmospheric Motion in Jupiter's Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    2000-01-01

    True-color (left) and false-color (right) mosaics of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric motions are controlled by alternating eastward and westward bands of air between Jupiter's equator and polar regions. The direction and speed of these bands influences the color and texture of the clouds seen in this mosaic. The high and thin clouds are represented by light blue, deep clouds are reddish, and high and thick clouds are white. A high haze overlying a clear, deep atmosphere is represented by dark purple. This image was taken by NASA's Galileo spacecraft on April 3, 1997 at a distance of 1.4 million kilometers (.86 million miles).

  20. Dynamics of charged hemispherical soap bubbles

    NASA Astrophysics Data System (ADS)

    Hilton, J. E.; van der Net, A.

    2009-04-01

    Raising the potential of a charged hemispherical soap bubble over a critical limit causes deformation of the bubble into a cone and ejection of a charged liquid jet. This is followed by a mode which has not previously been observed in bubbles, in which a long cylindrical liquid film column is created and collapses due to a Rayleigh-Plateau instability creating child bubbles. We show that the formation of the column and subsequent creation of child bubbles is due to a drop in potential caused by the ejection of charge from the system via the jet. Similar dynamics may occur in microscopic charged liquid droplets (electrospray processes), causing the creation of daughter droplets and long liquid spindles.

  1. Cerebral hemispheric asymmetries in processing lexical metaphors.

    PubMed

    Anaki, D; Faust, M; Kravetz, S

    1998-04-01

    This study investigated semantic priming for literal (stinging-mosquito) and metaphoric (stinging-insult) associates presented to either the left or right visual fields (RVF/LVF) across stimulus-onset-asynchronies (SOA) of 200 and 800 ms. For the short SOA condition, facilitation was found for metaphorically related targets in both visual fields (VFs) while literally related targets were facilitated only in the RVF. For the long SOA condition, metaphorically related targets were facilitated in the LVF whereas literally related targets were facilitated in the RVF. These results support previous findings indicating an enhanced role of the RH in metaphoric comprehension. In addition, the present results are in accordance with current models of hemispheric semantic processing.

  2. Voyager 1 Jupiter Southern Hemisphere Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This movie shows a portion of Jupiter in the southern hemisphere over 17Jupiter days. Above the white belt, notice the series of atmospheric vortices headed west. Even these early approach frames show wild dynamics in the roiling environment south of the white belt. Notice the small tumbling white cloud near the center.

    As Voyager 1 approached Jupiter in 1979, it took images of the planet at regular intervals. This sequence is made from 17 images taken once every Jupiter rotation period (about 10 hours). These images were acquired in the Blue filter around Feb. 1, 1979. The spacecraft was about 37 million kilometers from Jupiter at that time.

    This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1979.

  3. Antarctic role in Northern Hemisphere glaciation

    NASA Astrophysics Data System (ADS)

    Woodard, Stella C.; Rosenthal, Yair; Miller, Kenneth G.; Wright, James D.; Chiu, Beverly K.; Lawrence, Kira T.

    2014-11-01

    Earth’s climate underwent a major transition from the warmth of the late Pliocene, when global surface temperatures were ~2° to 3°C higher than today, to extensive Northern Hemisphere glaciation (NHG) ~2.73 million years ago (Ma). We show that North Pacific deep waters were substantially colder (4°C) and probably fresher than the North Atlantic Deep Water before the intensification of NHG. At ~2.73 Ma, the Atlantic-Pacific temperature gradient was reduced to <1°C, suggesting the initiation of stronger heat transfer from the North Atlantic to the deep Pacific. We posit that increased glaciation of Antarctica, deduced from the 21 ± 10-meter sea-level fall from 3.15 to 2.75 Ma, and the development of a strong polar halocline fundamentally altered deep ocean circulation, which enhanced interhemispheric heat and salt transport, thereby contributing to NHG.

  4. Paleoceanography. Antarctic role in Northern Hemisphere glaciation.

    PubMed

    Woodard, Stella C; Rosenthal, Yair; Miller, Kenneth G; Wright, James D; Chiu, Beverly K; Lawrence, Kira T

    2014-11-14

    Earth's climate underwent a major transition from the warmth of the late Pliocene, when global surface temperatures were ~2° to 3°C higher than today, to extensive Northern Hemisphere glaciation (NHG) ~2.73 million years ago (Ma). We show that North Pacific deep waters were substantially colder (4°C) and probably fresher than the North Atlantic Deep Water before the intensification of NHG. At ~2.73 Ma, the Atlantic-Pacific temperature gradient was reduced to <1°C, suggesting the initiation of stronger heat transfer from the North Atlantic to the deep Pacific. We posit that increased glaciation of Antarctica, deduced from the 21 ± 10-meter sea-level fall from 3.15 to 2.75 Ma, and the development of a strong polar halocline fundamentally altered deep ocean circulation, which enhanced interhemispheric heat and salt transport, thereby contributing to NHG. PMID:25342658

  5. The Right Hemisphere in Esthetic Perception

    PubMed Central

    Bromberger, Bianca; Sternschein, Rebecca; Widick, Page; Smith, William; Chatterjee, Anjan

    2011-01-01

    Little about the neuropsychology of art perception and evaluation is known. Most neuropsychological approaches to art have focused on art production and have been anecdotal and qualitative. The field is in desperate need of quantitative methods if it is to advance. Here, we combine a quantitative approach to the assessment of art with modern voxel-lesion-symptom-mapping methods to determine brain–behavior relationships in art perception. We hypothesized that perception of different attributes of art are likely to be disrupted by damage to different regions of the brain. Twenty participants with right hemisphere damage were given the Assessment of Art Attributes, which is designed to quantify judgments of descriptive attributes of visual art. Each participant rated 24 paintings on 6 conceptual attributes (depictive accuracy, abstractness, emotion, symbolism, realism, and animacy) and 6 perceptual attributes (depth, color temperature, color saturation, balance, stroke, and simplicity) and their interest in and preference for these paintings. Deviation scores were obtained for each brain-damaged participant for each attribute based on correlations with group average ratings from 30 age-matched healthy participants. Right hemisphere damage affected participants’ judgments of abstractness, accuracy, and stroke quality. Damage to areas within different parts of the frontal parietal and lateral temporal cortices produced deviation in judgments in four of six conceptual attributes (abstractness, symbolism, realism, and animacy). Of the formal attributes, only depth was affected by inferior prefrontal damage. No areas of brain damage were associated with deviations in interestingness or preference judgments. The perception of conceptual and formal attributes in artwork may in part dissociate from each other and from evaluative judgments. More generally, this approach demonstrates the feasibility of quantitative approaches to the neuropsychology of art. PMID:22016728

  6. Discrete Roughness Transition for Hypersonic Flight Vehicles

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J.

    2007-01-01

    The importance of discrete roughness and the correlations developed to predict the onset of boundary layer transition on hypersonic flight vehicles are discussed. The paper is organized by hypersonic vehicle applications characterized in a general sense by the boundary layer: slender with hypersonic conditions at the edge of the boundary layer, moderately blunt with supersonic, and blunt with subsonic. This paper is intended to be a review of recent discrete roughness transition work completed at NASA Langley Research Center in support of agency flight test programs. First, a review is provided of discrete roughness wind tunnel data and the resulting correlations that were developed. Then, results obtained from flight vehicles, in particular the recently flown Hyper-X and Shuttle missions, are discussed and compared to the ground-based correlations.

  7. Wetting on rough self-affine surfaces

    NASA Astrophysics Data System (ADS)

    Palasantzas, George

    1995-05-01

    In this paper, we present a general investigation of the effective potential for complete wetting on self-affine rough surfaces. The roughness effect is investigated by means of the height-height correlation model in Fourier space ~(1+aξ2q2)-1-H. The parameters H and ξ are, respectively, the roughness exponent and the substrate in-plane correlation length. It is observed that the effect of H on the free interface profile is significant for ξ>ξ) regime is characterized by a power-law scaling ~Y-2.

  8. Evaluation of Dry, Rough Vacuum Pumps

    NASA Technical Reports Server (NTRS)

    Hunter, Brian

    2006-01-01

    This document provides information on the testing and evaluation of thirteen dry rough vacuum pumps of various designs and from various manufacturers. Several types of rough vacuum pumps were evaluated, including scroll, roots, and diaphragm pumps. Tests included long term testing, speed curve generation, voltage variance, vibrations emissions and susceptibility, electromagnetic interference emissions and susceptibility, static leak rate, exhaust restriction, response/recovery time tests, and a contamination analysis for scroll pumps. Parameters were found for operation with helium, which often is not provided from the manufacturer

  9. Surface roughness evolution of nanocomposite thin films

    SciTech Connect

    Turkin, A. A.; Pei, Y. T.; Shaha, K. P.; Chen, C. Q.; Vainshtein, D. I.; Hosson, J. Th. M. de

    2009-01-01

    An analysis of dynamic roughening and smoothening mechanisms of thin films grown with pulsed-dc magnetron sputtering is presented. The roughness evolution has been described by a linear stochastic equation, which contains the second- and fourth-order gradient terms. Dynamic smoothening of the growing interface is explained by ballistic effects resulting from impingements of ions to the growing thin film. These ballistic effects are sensitive to the flux and energy of impinging ions. The predictions of the model are compared with experimental data, and it is concluded that the thin film roughness can be further controlled by adjusting waveform, frequency, and width of dc pulses.

  10. ROUGHNESS LENGTHS FOR THE SAVANNAH RIVER SITE

    SciTech Connect

    Hunter, C.

    2012-03-28

    Surface roughness values for the areas surrounding the H, D and N-Area meteorological towers were computed from archived 2010 meteorological data. These 15-minute-averaged data were measured with cup anemometers and bidirectional wind vanes (bivanes) 61 m above the surface. The results of the roughness calculation using the standard deviation of elevation angle {sigma}{sub E}, and applying the simple formula based on tree canopy height, gave consistent estimates for roughness around the H-Area tower in the range of 1.76 to 1.86 m (95% confidence interval) with a mean value of 1.81 m. Application of the {sigma}{sub E} method for the 61-m level at D and N-Areas gave mean values of 1.71 and 1.81 with confidence ranges of 1.62-1.81 and 1.73-1.88 meters, respectively. Roughness results are azimuth dependent, and thus are presented as averages over compass sectors spanning 22.5 degrees. Calculated values were compared to other methods of determining roughness, including the standard deviation of the azimuth direction, {sigma}{sub A}, and standard deviation of the wind speed, {sigma}{sub U}. Additional data was obtained from a sonic anemometer at 61-m on the H-Area tower during a period of a few weeks in 2010. Results from the sonic anemometer support our use of {sigma}{sub E} to calculate roughness. Based on the H-Area tower results, a surface roughness of 1.8 m using is recommended for use in dispersion modeling applications that consider the impacts of a contaminant release to individuals along the Site boundary. The canopy surrounding the H-Area tower is relatively uniform (i.e., little variance in roughness by upwind direction), and data supplied by the U.S. Forest Service at Savannah River show that the canopy height and composition surrounding the H-Area tower is reasonably representative of forested areas throughout the SRS reservation. For dispersion modeling analyses requiring assessments of a co-located worker within the respective operations area, recommended

  11. Surface roughness effects in elastohydrodynamic contacts

    NASA Technical Reports Server (NTRS)

    Tripp, J. H.; Hamrock, B. J.

    1985-01-01

    Surface roughness effects in full-film EHL contacts were studied. A flow factor modification to the Reynolds equation was applied to piezoviscous-elastic line contacts. Results for ensemble-averaged film shape, pressure distribution, and other mechanical quantities were obtained. Asperities elongated in the flow direction by a factor exceeding two decreased both film shape and pressure extrema at constant load; isotropic or transverse asperities increased these extrema. The largest effects are displayed by traction, which increased by over 5% for isotropic or transverse asperities and by slightly less for longitudinal roughness.

  12. Laws of Flow in Rough Pipes

    NASA Technical Reports Server (NTRS)

    Nikuradse, J

    1950-01-01

    An experimental investigation is made of the turbulent flow of water in pipes with various degrees of relative roughness. The pipes range in size from 25 to 100 millimeters in diameter and from 1800 to 7050 millimeters in length. Flow velocities permitted Reynolds numbers from about 10 (sup. 4) to 10 (sup. 6). The laws of resistance and velocity distributions were obtained as a function of relative roughness and Reynolds number. Mixing length, as described by Prandtl's mixing-length formula, is discussed in relation to the experimental results.

  13. Venus surface roughness and Magellan stereo data

    NASA Technical Reports Server (NTRS)

    Maurice, Kelly E.; Leberl, Franz W.; Norikane, L.; Hensley, Scott

    1994-01-01

    Presented are results of some studies to develop tools useful for the analysis of Venus surface shape and its roughness. Actual work was focused on Maxwell Montes. The analyses employ data acquired by means of NASA's Magellan satellite. The work is primarily concerned with deriving measurements of the Venusian surface using Magellan stereo SAR. Roughness was considered by means of a theoretical analyses based on digital elevation models (DEM's), on single Magellan radar images combined with radiometer data, and on the use of multiple overlapping Magellan radar images from cycles 1, 2, and 3, again combined with collateral radiometer data.

  14. Fused silica fine grinding with low roughness

    NASA Astrophysics Data System (ADS)

    Dai, Lei; Gu, Yongqiang; Wu, Di

    2014-08-01

    Lithography-optics is one of the most complex optical systems. The fine grinding process is the most important step before polishing. Roughness and sub-surface damage (SSD) are essential outputs of fine grinding. We demonstrate the method that use fix abrasive cup tool with CNC grinding machine to complete the fine grinding process, even instead of lapping process. And experiment sample roughness can reach 23.40nm rms and Ra 18.554nm. The SSD estimate is about 2 μm which is also smaller than commercial lapping process. The fine grinding output can satisfy the lithography optic fabrication demands and efficiently reduce the polishing time.

  15. Roughness Perception of Haptically Displayed Fractal Surfaces

    NASA Technical Reports Server (NTRS)

    Costa, Michael A.; Cutkosky, Mark R.; Lau, Sonie (Technical Monitor)

    2000-01-01

    Surface profiles were generated by a fractal algorithm and haptically rendered on a force feedback joystick, Subjects were asked to use the joystick to explore pairs of surfaces and report to the experimenter which of the surfaces they felt was rougher. Surfaces were characterized by their root mean square (RMS) amplitude and their fractal dimension. The most important factor affecting the perceived roughness of the fractal surfaces was the RMS amplitude of the surface. When comparing surfaces of fractal dimension 1.2-1.35 it was found that the fractal dimension was negatively correlated with perceived roughness.

  16. Tritium Pumps for ITER Roughing System

    SciTech Connect

    Antipenkov, Alexander; Day, Christian; Mack, August; Wagner, Robert; Laesser, Rainer

    2005-07-15

    The ITER roughing system provides for both the initial pump-down of the vessel itself and the regular pump-out of the batch-regenerating cryopumps. This system must have a large pumping speed and cope with the radioactive gas tritium at the same time. The present paper shall highlight the results of the ITER roughing train optimization, discuss the modification of a Roots pump for tritium, and present the results of a ferrofluidic seal test and the first tests of a tailor-made tritium-proof Roots pump with inactive gases.

  17. Reconstructed and simulated temperature asymmetry between continents in both hemispheres over the last centuries

    NASA Astrophysics Data System (ADS)

    Goosse, Hugues

    2016-05-01

    Available proxy-based temperature reconstructions covering the past millennium display contrasted evolutions between the continents. The difference is particularly large between the two hemispheres. When driven by realistic natural and anthropogenic forcings, climate models tend to simulate a more spatially homogenous temperature response. This is associated with a relatively good agreement between model results and reconstructions in the Northern Hemisphere but a low consistency in the Southern Hemisphere. Here, simulations with data assimilations are performed to analyse the causes of this apparent disagreement. It shows that, when the uncertainties are taken into account, states of the climate system compatible with the forcing estimates, the reconstructions and the model physics can be obtained over the past millennium, except for the twentieth century in Antarctica where the simulated warming is always much larger than in the reconstructions. Such states consistent with all sources of information can be achieved even if the uncertainties of the reconstructions are underestimated. Although, well within the range of the proxy-based reconstructions, the temperatures obtained after data assimilation display more similar developments between the hemispheres than in those reconstructions. Ensuring the compatibility does not require to systematically reduce the model response to the forcing or to strongly enhance the model internal variability. From those results, there is thus no reason to suspect that the model is strongly biased in one aspect or another. The constraint imposed by the data assimilation is too low to unambiguously identify the origin of each feature displayed in the reconstructions but, as expected, changes in atmospheric circulation likely played a role in many of them. Furthermore, ocean heat uptake and release as well as oceanic heat transport are key elements to understand the delayed response of the Southern Hemisphere compared to the northern

  18. Effect of roughness of the blunted cone nose-tip on laminar-turbulent transition

    NASA Astrophysics Data System (ADS)

    Bountin, D. A.; Gromyko, Yu. V.; Polivanov, P. A.; Sidorenko, A. A.; Maslov, A. A.

    2016-10-01

    Hypersonic boundary layer stability and transition were studied experimentally and numerically for the test case of 7° cone model with blunt nose-tip. The experiments were performed for M=6, heat flux distributions and wall pressure pulsations were measured. It was obtained that the angle of cover and size of bluntness significantly affects on the transition location. Real hypersonic vehicle is equipped by thermal protection systems (TPS) which have a surface roughness (joints and connecting elements). Furthermore the surface of the elements of TPS is not smooth and has some relatively uniform roughness, which can vary during flight. Roughness size can change during thermal ablation or destruction, in addition elements of isolated roughness comparable with a thickness of the boundary layer may appear on surface (caverns, ledges, etc.,). These elements are additional receptivity areas where the additional perturbations are generated and developing in boundary layer that may cause premature laminar-turbulent transition. This effect has been studied for more than 50 years [17-3], but almost all the work devoted to the search of engineering correlations, but not to receptivity or stability problems. This effect needs to be studied more precisely.

  19. Thermal smoothing of rough surfaces in vacuo

    NASA Technical Reports Server (NTRS)

    Wahl, G.

    1986-01-01

    The derivation of equations governing the smoothing of rough surfaces, based on Mullins' (1957, 1960, and 1963) theories of thermal grooving and of capillarity-governed solid surface morphology is presented. As an example, the smoothing of a one-dimensional sine-shaped surface is discussed.

  20. Surface roughness scattering in multisubband accumulation layers

    NASA Astrophysics Data System (ADS)

    Fu, Han; Reich, K. V.; Shklovskii, B. I.

    2016-06-01

    Accumulation layers with very large concentrations of electrons where many subbands are filled became recently available due to ionic liquid and other new methods of gating. The low-temperature mobility in such layers is limited by the surface roughness scattering. However, theories of roughness scattering so far dealt only with the small-density single subband two-dimensional electron gas (2DEG). Here we develop a theory of roughness-scattering limited mobility for the multisubband large concentration case. We show that with growing 2D electron concentration n the surface dimensionless conductivity σ /(2 e2/h ) first decreases as ∝n-6 /5 and then saturates as ˜(d aB/Δ2)≫1 , where d and Δ are the characteristic length and height of the surface roughness and aB is the effective Bohr radius. This means that in spite of the shrinkage of the 2DEG thickness and the related increase of the scattering rate the 2DEG remains a good metal.

  1. Surface roughness modulations by submesoscale currents

    NASA Astrophysics Data System (ADS)

    Rascle, Nicolas; Chapron, Bertrand; Nouguier, Frederic; Ponte, Aurelien; Mouche, Alexis; Molemaker, Jeroen

    2016-04-01

    At times, high resolution images of sea surface roughness can provide stunning details of submesoscale upper ocean dynamics. As interpreted, transformations of short scale wind waves by horizontal current gradients are responsible for those spectacular observations. Here we present two major advances towards the quantitative interpretation of those observations. First, we show that surface roughness variations mainly trace two particular characteristics of the current gradient tensor, the divergence and the strain in the wind direction. Local vorticity and shear in the wind direction should not affect short scale roughness distribution and would not be detectable. Second, we discuss the effect of the viewing direction using sets of quasi-simultaneous sun glitter images, taken from different satellites to provide different viewing configurations. We show that upwind and crosswind viewing observations can be markedly different. As further confirmed with idealized numerical simulations, this anisotropy well traces surface current strain area, while more isotropic contrasts likely trace areas dominated by surface divergence conditions. These findings suggest the potential to directly observe surface currents at submesoscale by using surface roughness observations at multiple azimuth viewing angles. They also pave the way towards a better understanding of the coupling between ocean, waves and atmosphere at high resolution.

  2. Particle Sliding on a Rough Incline

    ERIC Educational Resources Information Center

    Zurcher, Ulrich

    2007-01-01

    We study a particle sliding on a rough inclined plane as an example of a mechanical problem with nonholonomic constraint. The particle is launched in an arbitrary direction so that its motion has both a horizontal and a "vertical" (i.e., up- and downhill) direction. The friction force acts along the instantaneous velocity, so that the horizontal…

  3. Hemispheric Differences in the Organization of Memory for Text Ideas

    ERIC Educational Resources Information Center

    Long, Debra L.; Johns, Clinton L.; Jonathan, Eunike

    2012-01-01

    The goal of this study was to examine hemispheric asymmetries in episodic memory for discourse. Access to previously comprehended information is essential for mapping incoming information to representations of "who did what to whom" in memory. An item-priming-in-recognition paradigm was used to examine differences in how the hemispheres represent…

  4. ERP Evidence of Hemispheric Independence in Visual Word Recognition

    ERIC Educational Resources Information Center

    Nemrodov, Dan; Harpaz, Yuval; Javitt, Daniel C.; Lavidor, Michal

    2011-01-01

    This study examined the capability of the left hemisphere (LH) and the right hemisphere (RH) to perform a visual recognition task independently as formulated by the Direct Access Model (Fernandino, Iacoboni, & Zaidel, 2007). Healthy native Hebrew speakers were asked to categorize nouns and non-words (created from nouns by transposing two middle…

  5. Assessment of Hemispheric Dominance for Language at Three Ages.

    ERIC Educational Resources Information Center

    Tegano, Deborah Walker

    The purposes of this study were to assess the development of hemispheric dominance for language function among children of 4, 7, and 10 years of age and to determine whether age predicts hemispheric dominance. Within 2 weeks of the beginning of data collection, middle-class subjects selected from private nursery schools and elementary schools…

  6. Hemispheric Asymmetry in a Face Discrimination Task in Infants.

    ERIC Educational Resources Information Center

    de Schonen, Scania; Mathivet, Eric

    1990-01-01

    Confirms the existence of a right-hemisphere advantage in the process of discriminating between face stimuli. The advantage was weaker in females than in males. No hemispheric transfer of learning was observed. Subjects were 18 infants of 42 weeks who were presented with an operant conditioning situation in which they discriminated between their…

  7. Hemispheric Differences in the Effects of Context on Vowel Perception

    ERIC Educational Resources Information Center

    Sjerps, Matthias J.; Mitterer, Holger; McQueen, James M.

    2012-01-01

    Listeners perceive speech sounds relative to context. Contextual influences might differ over hemispheres if different types of auditory processing are lateralized. Hemispheric differences in contextual influences on vowel perception were investigated by presenting speech targets and both speech and non-speech contexts to listeners' right or left…

  8. Disentangling the Relationship between Hemispheric Asymmetry and Cognitive Performance

    ERIC Educational Resources Information Center

    Hirnstein, Marco; Leask, Stuart; Rose, Jonas; Hausmann, Markus

    2010-01-01

    It is widely believed that advantages of hemispheric asymmetries originated in better cognitive processing, hence it is often implied that the relationship between hemispheric asymmetry and cognitive performance is linearly positive: the higher the degree of lateralization in a specific cognitive domain, the better the performance in a…

  9. The Joint Development of Hemispheric Lateralization for Words and Faces

    ERIC Educational Resources Information Center

    Dundas, Eva M.; Plaut, David C.; Behrmann, Marlene

    2013-01-01

    Consistent with long-standing findings from behavioral studies, neuroimaging investigations have identified a region of the inferior temporal cortex that, in adults, shows greater face selectivity in the right than left hemisphere and, conversely, a region that shows greater word selectivity in the left than right hemisphere. What has not been…

  10. A Hemispheric Asymmetry for the Unconscious Perception of Emotion

    ERIC Educational Resources Information Center

    Smith, Stephen D.; Bulman-Fleming, M. Barbara

    2004-01-01

    Previous research has demonstrated that hemispheric asymmetries for conscious visual perception do not lead to asymmetries for unconscious visual perception. These studies utilized emotionally neutral items as stimuli. The current research utilized both emotionally negative and neutral stimuli to assess hemispheric differences for conscious and…

  11. Topography of the northern hemisphere of Mars from the Mars Orbiter Laser Altimeter.

    PubMed

    Smith, D E; Zuber, M T; Frey, H V; Garvin, J B; Head, J W; Muhleman, D O; Pettengill, G H; Phillips, R J; Solomon, S C; Zwally, H J; Banerdt, W B; Duxbury, T C

    1998-03-13

    The first 18 tracks of laser altimeter data across the northern hemisphere of Mars from the Mars Global Surveyor spacecraft show that the planet at latitudes north of 50 degrees is exceptionally flat; slopes and surface roughness increase toward the equator. The polar layered terrain appears to be a thick ice-rich formation with a non-equilibrium planform indicative of ablation near the periphery. Slope relations suggest that the northern Tharsis province was uplifted in the past. A profile across Ares Vallis channel suggests that the discharge through the channel was much greater than previously estimated. The martian atmosphere shows significant 1-micrometer atmospheric opacities, particularly in low-lying areas such as Valles Marineris.

  12. Topography of the northern hemisphere of Mars from the Mars Orbiter Laser Altimeter.

    PubMed

    Smith, D E; Zuber, M T; Frey, H V; Garvin, J B; Head, J W; Muhleman, D O; Pettengill, G H; Phillips, R J; Solomon, S C; Zwally, H J; Banerdt, W B; Duxbury, T C

    1998-03-13

    The first 18 tracks of laser altimeter data across the northern hemisphere of Mars from the Mars Global Surveyor spacecraft show that the planet at latitudes north of 50 degrees is exceptionally flat; slopes and surface roughness increase toward the equator. The polar layered terrain appears to be a thick ice-rich formation with a non-equilibrium planform indicative of ablation near the periphery. Slope relations suggest that the northern Tharsis province was uplifted in the past. A profile across Ares Vallis channel suggests that the discharge through the channel was much greater than previously estimated. The martian atmosphere shows significant 1-micrometer atmospheric opacities, particularly in low-lying areas such as Valles Marineris. PMID:9497281

  13. Tear Film Interferometry and Corneal Surface Roughness

    PubMed Central

    King-Smith, P. Ewen; Kimball, Samuel H.; Nichols, Jason J.

    2014-01-01

    Purpose. Previous studies of optical interference from the whole thickness of the precorneal tear film showed much lower contrast than from the pre–contact lens tear film. It is hypothesized that the recorded low contrast is related to roughness of the corneal surface compared with the smooth contact lens surface. This hypothesis is tested, and characteristics of this roughness are studied. Methods. Reflectance spectra were recorded from 20 healthy individuals using a silicon-based sensor used in previous studies (wavelength range, 562–1030 nm) and an indium-gallium-arsenide (InGaAs) sensor responding at longer wavelengths (912–1712 nm). Interference from the whole thickness of the precorneal tear film caused oscillations in the reflectance spectra. Results. Spectral oscillations recorded with the InGaAs sensor were found to decay as a Gaussian function of wave number (1/wavelength). This is consistent with a rough corneal surface, whose distribution of surface height is also a Gaussian function. Contrast of spectral oscillations for the InGaAs sensor was, on average, approximately four times greater than that for the silicon sensor. Conclusions. For the Gaussian roughness model based on InGaAs spectra, the corneal surface was characterized by a surface height SD of 0.129 μm. Spectral oscillations recorded with a silicon-based camera can have higher contrast than expected from this Gaussian roughness model, indicating some reflectance from a smoother or more compact surface. The results also indicate that InGaAs cameras could provide whole-thickness interference images of higher contrast than silicon-based cameras. PMID:24692127

  14. The neutral surface layer above rough surfaces

    NASA Astrophysics Data System (ADS)

    Smedman, Ann-Sofi; Sahlee, Erik

    2014-05-01

    It is generally accepted that turbulent fluxes (momentum and scalar fluxes) are approx. constant with height above horizontal surfaces with low roughness. But what will happen when the roughness sub-layer is large as found over cities, forests and rough seas? In a study of the kinematic structure of the near neutral atmospheric surface layer, Högström, Hunt and Smedman, 2002, it was demonstrated that a model with detached eddies from above the surface layer impinging on to the surface (Hunt and Morison, 2000) could explain some of the observed features in the neutral atmospheric boundary layer. Thus the detached eddy model proved successful in explaining the dynamic structure of the near neutral atmospheric surface layer, especially the shape of the spectra of the wind components and scalars and corresponding fluxes. Here we make the hypothesis that the detached-eddy model can also be used to explain the experimental results related to the 3-dimensional turbulence structure above rough surfaces. Measurements are taken both over land (grass and forest) and over sea (Baltic Sea and hurricane Fabian in the Atlantic) above the roughness sub-layer. Analysis of the turbulence structure shows a striking similarity between the different sites. Hunt, J.C.R and Morrison, J.F., 2000: Eddy structure in turbulent boundary layers, Euro. J. Mech. B-Fluids, 19, 673-694. Högström, U., Hunt, J.C.R., and Smedman, A., 2002: Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer, Bound.-Layer Meteorol., 103,101-124.

  15. Atmospheric Blocking in the Northern Hemisphere.

    NASA Astrophysics Data System (ADS)

    Knox, John Lewis

    Blocking is generally understood as the obstruction on a large scale of the normal west - to - east motion of mid-latitude pressure systems. It is a persistent phenomenon lasting from one to several weeks and the resulting prolonged weather regimes may have serious economic and social consequences. The recent Northern Hemisphere winters, starting with 1976 -77, featured unusually large circulation anomalies, many of which can be directly related to prolonged episodes of large scale blocking. The intent of this study is to investigate the statistics and certain diagnostics of blocking in the Northern Hemisphere. The first of the three primary objectives is to present and interpret the spatial and temporal distribution of blocking during the past 33 years. We develop objective identification criteria, adaptable to machine processing methods, by relating the blocking anticyclone to its associated positive anomaly of 5-day mean 500MB height. Anomalies meeting the criteria are called 'blocking signatures.' We present the seasonal frequency of occurrence of these signatures by longitude and by area. The results are in good agreement with published studies for the oceans, but they also reveal a high frequency of blocking signatures over the Northeastern Canadian Archipelago. This result, dubbed the 'Baffin Island Paradox' is further investigated and rationalized. A catalogue has been prepared which identifies the date, centre location and magnitude of every blocking signature which occurred from January 1, 1946 to December 31, 1978. A supplementary Catalogue identifies sequences of these signatures corresponding to actual blocking episodes. The second objective is to investigate whether regions with high incidence of blocking, in either the developing or the mature stage, features non-Gaussian distributions of 5-day mean geopotential. During winter, fields of significantly low kurtosis are found in certain mid-latitude regions where the genesis and amplification of

  16. Seismic hazard map of the western hemisphere

    USGS Publications Warehouse

    Shedlock, K.M.; Tanner, J.G.

    1999-01-01

    Vulnerability to natural disasters increases with urbanization and development of associated support systems (reservoirs, power plants, etc.). Catastrophic earthquakes account for 60% of worldwide casualties associated with natural disasters. Economic damage from earthquakes is increasing, even in technologically advanced countries with some level of seismic zonation, as shown by the 1989 Loma Prieta, CA ($6 billion), 1994 Northridge, CA ($ 25 billion), and 1995 Kobe, Japan (> $ 100 billion) earthquakes. The growth of megacities in seismically active regions around the world often includes the construction of seismically unsafe buildings and infrastructures, due to an insufficient knowledge of existing seismic hazard. Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. National, state, and local governments, decision makers, engineers, planners, emergency response organizations, builders, universities, and the general public require seismic hazard estimates for land use planning, improved building design and construction (including adoption of building construction codes), emergency response preparedness plans, economic forecasts, housing and employment decisions, and many more types of risk mitigation. The seismic hazard map of the Americas is the concatenation of various national and regional maps, involving a suite of approaches. The combined maps and documentation provide a useful global seismic hazard framework and serve as a resource for any national or regional agency for further detailed studies applicable to their needs. This seismic hazard map depicts Peak Ground Acceleration (PGA) with a 10% chance of exceedance in 50 years for the western hemisphere. PGA, a short-period ground motion parameter that is proportional to force, is the most commonly mapped ground motion parameter because current building codes that include seismic provisions specify the

  17. Soil surface roughness decay in contrasting climates, tillage types and management systems

    NASA Astrophysics Data System (ADS)

    Vidal Vázquez, Eva; Bertol, Ildegardis; Tondello Barbosa, Fabricio; Paz-Ferreiro, Jorge

    2014-05-01

    Soil surface roughness describes the variations in the elevation of the soil surface. Such variations define the soil surface microrelief, which is characterized by a high spatial variability. Soil surface roughness is a property affecting many processes such as depression storage, infiltration, sediment generation, storage and transport and runoff routing. Therefore the soil surface microrelief is a key element in hydrology and soil erosion processes at different spatial scales as for example at the plot, field or catchment scale. In agricultural land soil surface roughness is mainly created by tillage operations, which promote to different extent the formation of microdepressions and microelevations and increase infiltration and temporal retention of water. The decay of soil surface roughness has been demonstrated to be mainly driven by rain height and rain intensity, and to depend also on runoff, aggregate stability, soil reface porosity and soil surface density. Soil roughness formation and decay may be also influenced by antecedent soil moisture (either before tillage or rain), quantity and type of plant residues over the soil surface and soil composition. Characterization of the rate and intensity of soil surface roughness decay provides valuable information about the degradation of the upper most soil surface layer before soil erosion has been initiated or at the very beginning of soil runoff and erosion processes. We analyzed the rate of decay of soil surface roughness from several experiments conducted in two regions under temperate and subtropical climate and with contrasting land use systems. The data sets studied were obtained both under natural and simulated rainfall for various soil tillage and management types. Soil surface roughness decay was characterized bay several parameters, including classic and single parameters such as the random roughness or the tortuosity and parameters based on advanced geostatistical methods or on the fractal theory. Our

  18. Comparative analysis of different measurement techniques for characterizing soil surface roughness in agricultural soils

    NASA Astrophysics Data System (ADS)

    Martinez-Agirre, Alex; Álvarez-Mozos, Jesús; Valle, José Manuel; Rodríguez, Álvaro; Giménez, Rafael

    2016-04-01

    Soil surface roughness can be defined as the variation in soil surface elevations, and as such, it is a key element in hydrology and soil erosion processes. In agricultural soils, roughness is mainly an anthropic factor determined by the type of tillage and management. Roughness is also a property with a high spatial variability, since the same type of tillage can result in surfaces with different roughness depending on the physical characteristics of the soil and atmospheric conditions. In order to quantify roughness and to parameterize its role in different processes, different measurement techniques have been used and several parameters have been proposed in the literature. The objective of this work is to evaluate different measurement techniques and assess their accuracy and suitability for quantifying surface roughness in agricultural soils. With this aim, a comparative analysis of three roughness measurement techniques has been carried out; (1) laser profilometer, (2) convergent photogrammetry and (3) terrestrial laser scanner. Roughness measurements were done in 3 experimental plots (5x5 meters) with different tillage treatments (representing different roughness conditions) obtained with typical agricultural tools. The laser profilometer registered vertically the distance from a reference bar down to the surface. It had a vertical accuracy of 1.25 mm, a sampling interval of 5 mm and a total length profile of 5 m. Eight profiles were taken per plot, four in parallel to tillage direction and four in perpendicular. Convergent photogrammetry consisted of 20-30 images taken per plot from a height of 5-10 m above ground (using an elevation platform), leading to point clouds of ~25 million points per plot. Terrestrial laser scanner measurements were taken from the four sides of each plot at a measurement height of ~1.75 m above ground. After orientating and corregistering the four scans, point clouds of ~60 million points were obtained per plot. The comparative

  19. North Atlantic Deep Water cools the southern hemisphere

    NASA Astrophysics Data System (ADS)

    Crowley, Thomas J.

    1992-08-01

    A standard explanation for coupling climate variations in the northern and southern hemispheres involves fluctuations in North Atlantic Deep Water (NADW) production. However, I suggest that the "NADW-Antarctic" connection may work opposite to that conjectured by many investigators; that is, when NADW production rates are high, southern hemisphere temperatures decrease rather than increase. The revised interpretation is consistent with observations and ocean modeling studies which demonstrate that, although upwelling of relatively warm NADW water around Antarctica promotes sea ice meltback, a second and more important negative feedback is also operating. In order to conserve volume, southward export of NADW across the equator is accompanied by import of an equivalent volume of considerably warmer water from shallower oceanic layers in the South Atlantic. The southern hemisphere loses heat as a result of this exchange. The hemispherically averaged net heat loss may be as high as 4 W/m², an amount comparable to a CO2 doubling. It is suggested that this more comprehensive view of the role of NADW may explain both decadal-scale variations in South Atlantic sea surface temperatures in this century and two significant problems in Pleistocene climatology: why southern hemisphere temperatures decreased before CO2 levels decreased at the end of the last interglacial and why southern hemisphere temperature changes precede changes in northern hemisphere ice volume. It is shown that when NADW production was reinitiated during the last interglacial (120,000 B.P.), high-latitude southern hemisphere temperatures decreased. The estimated magnitude of altered southern hemisphere heat export is comparable to the ice-age CO2 signal and may be able to account for the observed cooling even when CO2 levels were high. When cast into a frequency domain framework, this interpretation may also help explain why southern hemisphere temperatures lead global ice volume changes.

  20. Thermal stability of ice on Ceres with rough topography

    NASA Astrophysics Data System (ADS)

    Hayne, P. O.; Aharonson, O.

    2015-09-01

    The dwarf planet Ceres may have an ice-rich crust, and subsurface ice exposed by impacts or endogenic activity would be subject to sublimation. We model surface and subsurface temperatures on Ceres to assess lifetimes of water ice and other volatiles. Topographic shadowing allows a small but nonnegligible fraction (˜0.4%) of Ceres' surface to be perennially below the ˜110 K criterion for 1 Gyr of stability. These areas are found above 60° latitude. Other molecules (CH3OH, NH3, SO2, and CO2) may be cold trapped in smaller abundances. A model for the transport, gravitational escape, and photoionization of H2O molecules suggests net accumulation in the cold traps. Buried ice is stable within a meter for > 1 Gyr at latitudes higher than ˜50°. An illuminated polar cap of water ice would be stable within a few degrees of the poles only if it maintained a high albedo (>0.5) at present obliquity. If the obliquity exceeded 5° in the geologically recent past, then a putative polar cap would have been erased. At latitudes 0°-30°, ice is stable under solar illumination only briefly (˜10-100 years), unless it has high albedo and thermal inertia, in which case lifetimes of > 104 years are possible. Finally, a small hemispheric asymmetry exists due to the timing of Ceres' perihelion passage, which would lead to a detectable enhancement of ice in the northern hemisphere if the orbital elements vary slowly relative to the ice accumulation rate. Our model results are potentially testable during the Dawn science mission.

  1. Physically-based Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice

    NASA Astrophysics Data System (ADS)

    Li, Li; Gaiser, Peter; Allard, Richard; Posey, Pamela; Hebert, David; Richter-Menge, Jacqueline; Polashenski, Christopher; Claffey, Keran

    2016-04-01

    The observations of sea ice thickness and ice surface roughness are critical for our understanding of the state of the changing Arctic. Currently, the Radar and/or LiDAR data of sea ice freeboard are used to infer sea ice thickness via isostasy. The underlying assumption is that the LiDAR signal returns at the air/snow interface and radar signal at the snow/ice interface. The elevations of these interfaces are determined based on LiDAR/Radar return waveforms. However, the commonly used threshold-based surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice 'layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. Both the ice thickness and surface roughness retrievals are validated using in-situ data. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates

  2. Lateral erosion in an experimental bedrock channel: The influence of bed roughness on erosion by bed load impacts

    NASA Astrophysics Data System (ADS)

    Fuller, Theodore K.; Gran, Karen B.; Sklar, Leonard S.; Paola, Chris

    2016-05-01

    Physical experiments were conducted to evaluate the efficacy of bed load particle impacts as a mechanism of lateral bedrock erosion. In addition, we explored how changes in channel bed roughness, as would occur during development of an alluvial cover, influence rates of lateral erosion. Experimental channels were constructed to have erodible walls and a nonerodible bed using different mixtures of sand and cement. Bed roughness was varied along the length of the channel by embedding sediment particles of different size in the channel bed mixture. Lateral wall erosion from clear-water flow was negligible. Lateral erosion during periods in which bed load was supplied to the channel removed as much as 3% of the initial wetted cross-sectional area. The vertical distribution of erosion was limited to the base of the channel wall, producing channels with undercut banks. The addition of roughness elements to an otherwise smooth bed caused rates of lateral erosion to increase by as much as a factor of 7 during periods of bed load supply. However, a minimum roughness element diameter of approximately half the median bed load particle diameter was required before a substantial increase in erosion was observed. Beyond this minimum threshold size, further increases in the relative size of roughness elements did not substantially change the rate of wall erosion despite changes in total boundary shear stress. The deflection of saltating bed load particles into the channel wall by fixed roughness elements is hypothesized to be the driver of the observed increase in lateral erosion rates.

  3. Beyond Hemispheric Dominance: Brain Regions Underlying the Joint Lateralization of Language and Arithmetic to the Left Hemisphere

    ERIC Educational Resources Information Center

    Pinel, Philippe; Dehaene, Stanislas

    2010-01-01

    Language and arithmetic are both lateralized to the left hemisphere in the majority of right-handed adults. Yet, does this similar lateralization reflect a single overall constraint of brain organization, such an overall "dominance" of the left hemisphere for all linguistic and symbolic operations? Is it related to the lateralization of specific…

  4. Hemispheric Contributions to Lexical Ambiguity Resolution in a Discourse Context: Evidence from Individuals with Unilateral Left and Right Hemisphere Lesions

    ERIC Educational Resources Information Center

    Grindrod, C.M.; Baum, S.R.

    2005-01-01

    In the present study, a cross-modal semantic priming task was used to investigate the ability of left-hemisphere-damaged (LHD) nonfluent aphasic, right-hemisphere-damaged (RHD) and non-brain-damaged (NBD) control subjects to use a discourse context to resolve lexically ambiguous words. Subjects first heard four-sentence discourse passages ending…

  5. Effective impedance spectra for predicting rough sea effects on atmospheric impulsive sounds.

    PubMed

    Boulanger, Patrice; Attenborough, Keith

    2005-02-01

    Two methods of calculating the effective impedance spectra of acoustically hard, randomly rough, two-dimensional surfaces valid for acoustic wavelengths large compared with the roughness scales have been explored. The first method uses the complex excess attenuation spectrum due to a point source above a rough boundary predicted by a boundary element method (BEM) and solves for effective impedance roots identified by a winding number integral method. The second method is based on an analytical theory in which the contributions from random distributions of surface scatterers are summed to obtain the total scattered field. Effective impedance spectra deduced from measurements of the complex excess attenuation above 2D randomly rough surfaces formed by semicylinders and wedges have been compared to predictions from the two approaches. Although the analytical theory gives relatively poor predictions, BEM-deduced effective impedance spectra agree tolerably well with measured data. Simple polynomials have been found to fit BEM-deduced spectra for surfaces formed by intersecting parabolas corresponding to average roughness heights between 0.25 and 7.5 m and for five incidence angles for each average height. Predicted effects of sea-surface roughness on sonic boom profiles and rise time are comparable to those due to turbulence and molecular relaxation effects. PMID:15759695

  6. Micro PIV measurements of turbulent flow over 2D structured roughness

    NASA Astrophysics Data System (ADS)

    Hartenberger, Joel; Perlin, Marc

    2015-11-01

    We investigate the turbulent boundary layer over surfaces with 2D spanwise square and triangular protrusions having nominal heights of 100 - 300 microns for Reynolds numbers ranging from Reτ ~ 1500 through Reτ ~ 4500 using a high speed, high magnification imaging system. Micro PIV analysis gives finely resolved velocity fields of the flow (on the order of 10 microns between vectors) enabling a detailed look at the inner region as well as the flow in the immediate vicinity of the roughness elements. Additionally, planar PIV with lower resolution is performed to capture the remainder of the boundary layer to the freestream flow. Varying the streamwise distance between individual roughness elements from one to ten times the nominal heights allows investigation of k-type and d-type roughness in both the transitionally rough and fully rough regimes. Preliminary results show a shift in the mean velocity profile similar to the results of previous studies. Turbulent statistics will be presented also. The authors would like to acknowledge the support of NAVSEA which funded this project through the Naval Engineering Education Center (NEEC).

  7. Roughness Based Crossflow Transition Control for a Swept Airfoil Design Relevant to Subsonic Transports

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Carpenter, Mark H.; Malik, Mujeeb R.; Eppink, Jenna; Chang, Chau-Lyan; Streett, Craig L.

    2010-01-01

    A high fidelity transition prediction methodology has been applied to a swept airfoil design at a Mach number of 0.75 and chord Reynolds number of approximately 17 million, with the dual goal of an assessment of the design for the implementation and testing of roughness based crossflow transition control and continued maturation of such methodology in the context of realistic aerodynamic configurations. Roughness based transition control involves controlled seeding of suitable, subdominant crossflow modes in order to weaken the growth of naturally occurring, linearly more unstable instability modes via a nonlinear modification of the mean boundary layer profiles. Therefore, a synthesis of receptivity, linear and nonlinear growth of crossflow disturbances, and high-frequency secondary instabilities becomes desirable to model this form of control. Because experimental data is currently unavailable for passive crossflow transition control for such high Reynolds number configurations, a holistic computational approach is used to assess the feasibility of roughness based control methodology. Potential challenges inherent to this control application as well as associated difficulties in modeling this form of control in a computational setting are highlighted. At high Reynolds numbers, a broad spectrum of stationary crossflow disturbances amplify and, while it may be possible to control a specific target mode using Discrete Roughness Elements (DREs), nonlinear interaction between the control and target modes may yield strong amplification of the difference mode that could have an adverse impact on the transition delay using spanwise periodic roughness elements.

  8. Hemispheric processing of vocal emblem sounds.

    PubMed

    Neumann-Werth, Yael; Levy, Erika S; Obler, Loraine K

    2013-01-01

    Vocal emblems, such as shh and brr, are speech sounds that have linguistic and nonlinguistic features; thus, it is unclear how they are processed in the brain. Five adult dextral individuals with left-brain damage and moderate-severe Wernicke's aphasia, five adult dextral individuals with right-brain damage, and five Controls participated in two tasks: (1) matching vocal emblems to photographs ('picture task') and (2) matching vocal emblems to verbal translations ('phrase task'). Cross-group statistical analyses on items on which the Controls performed at ceiling revealed lower accuracy by the group with left-brain damage (than by Controls) on both tasks, and lower accuracy by the group with right-brain damage (than by Controls) on the picture task. Additionally, the group with left-brain damage performed significantly less accurately than the group with right-brain damage on the phrase task only. Findings suggest that comprehension of vocal emblems recruits more left- than right-hemisphere processing. PMID:22571290

  9. Volcanoes and volcanic provinces - Martian western hemisphere

    NASA Technical Reports Server (NTRS)

    Scott, D. H.

    1982-01-01

    The recognition of some Martian landforms as volcanoes is based on their morphology and geologic setting. Other structures, however, may exhibit classic identifying features to a varying or a less degree; these may be only considered provisionally as having a volcanic origin. Regional geologic mapping of the western hemisphere of Mars from Viking images has revealed many more probable volcanoes and volcanotectonic features than were recognized on Mariner 9 pictures. These abundant volcanoes have been assigned to several distinct provinces on the basis of their areal distribution. Although the Olympus-Tharsis region remains as the principle center of volcanism on Mars, four other important provinces are now also recognized: the lowland plains, Tempe Terra plateau, southern highlands (in the Phaethontis and Thaumasia quadrangles), and a probable ignimbrite province, situated along the highland-lowland boundary in Amazonis Planitia. Volcanoes in any one province vary in morphlogy, size, and age, but volcanoes in each province tend to have common characteristics that distinguish that particular group.

  10. Objectively classifying Southern Hemisphere extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Catto, Jennifer

    2016-04-01

    There has been a long tradition in attempting to separate extratropical cyclones into different classes depending on their cloud signatures, airflows, synoptic precursors, or upper-level flow features. Depending on these features, the cyclones may have different impacts, for example in their precipitation intensity. It is important, therefore, to understand how the distribution of different cyclone classes may change in the future. Many of the previous classifications have been performed manually. In order to be able to evaluate climate models and understand how extratropical cyclones might change in the future, we need to be able to use an automated method to classify cyclones. Extratropical cyclones have been identified in the Southern Hemisphere from the ERA-Interim reanalysis dataset with a commonly used identification and tracking algorithm that employs 850 hPa relative vorticity. A clustering method applied to large-scale fields from ERA-Interim at the time of cyclone genesis (when the cyclone is first detected), has been used to objectively classify identified cyclones. The results are compared to the manual classification of Sinclair and Revell (2000) and the four objectively identified classes shown in this presentation are found to match well. The relative importance of diabatic heating in the clusters is investigated, as well as the differing precipitation characteristics. The success of the objective classification shows its utility in climate model evaluation and climate change studies.

  11. Bright Ray Craters in Ganymede's Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    1979-01-01

    GANYMEDE COLOR PHOTOS: This color picture as acquired by Voyager 1 during its approach to Ganymede on Monday afternoon (the 5th of March). At ranges between about 230 to 250 thousand km. The images show detail on the surface with a resolution of four and a half km. This picture is of a region in the northern hemisphere near the terminator. It shows a variety of impact structures, including both razed and unrazed craters, and the odd, groove-like structures discovered by Voyager in the lighter regions. The most striking features are the bright ray craters which have a distinctly 'bluer' color appearing white against the redder background. Ganymede's surface is known to contain large amounts of surface ice and it appears that these relatively young craters have spread bright fresh ice materials over the surface. Likewise, the lighter color and reflectivity of the grooved areas suggests that here, too, there is cleaner ice. We see ray craters with all sizes of ray patterns, ranging from extensive systems of the crater in the southern part of this picture, which has rays at least 300-500 kilometers long, down to craters which have only faint remnants of bright ejects patterns (such as several of the craters in the southern half of PIA01516; P21262). This variation suggests that, as on the Moon, there are processes which act to darken ray material, probably 'gardening' by micrometeoroid impact. JPL manages and controls the Voyager project for NASA's Office of Space Science.

  12. Modeling Hemispheric Detonation Experiments in 2-Dimensions

    SciTech Connect

    Howard, W M; Fried, L E; Vitello, P A; Druce, R L; Phillips, D; Lee, R; Mudge, S; Roeske, F

    2006-06-22

    Experiments have been performed with LX-17 (92.5% TATB and 7.5% Kel-F 800 binder) to study scaling of detonation waves using a dimensional scaling in a hemispherical divergent geometry. We model these experiments using an arbitrary Lagrange-Eulerian (ALE3D) hydrodynamics code, with reactive flow models based on the thermo-chemical code, Cheetah. The thermo-chemical code Cheetah provides a pressure-dependent kinetic rate law, along with an equation of state based on exponential-6 fluid potentials for individual detonation product species, calibrated to high pressures ({approx} few Mbars) and high temperatures (20000K). The parameters for these potentials are fit to a wide variety of experimental data, including shock, compression and sound speed data. For the un-reacted high explosive equation of state we use a modified Murnaghan form. We model the detonator (including the flyer plate) and initiation system in detail. The detonator is composed of LX-16, for which we use a program burn model. Steinberg-Guinan models5 are used for the metal components of the detonator. The booster and high explosive are LX-10 and LX-17, respectively. For both the LX-10 and LX-17, we use a pressure dependent rate law, coupled with a chemical equilibrium equation of state based on Cheetah. For LX-17, the kinetic model includes carbon clustering on the nanometer size scale.

  13. Hemispheric Asymmetries in Mercury’s Exosphere

    NASA Astrophysics Data System (ADS)

    Schmidt, Carl; Baumgardner, J.; Mendillo, M.

    2012-10-01

    Observations of Mercury’s sodium tail by Potter and Killen (2008) frequently show enhanced emission in the northern lobe. Anderson et al. (2011) have established that Mercury’s magnetic dipole is offset from the planet’s center by .2 RM to the north, while approximately aligned with the spin axis. Such a configuration produces an asymmetry in the magnetosphere cusp whereby more plasma has direct access to the planet’s southern hemisphere than in the north (Winslow et al., 2012). Using time-dependent, 3-D simulations, we demonstrate that ion precipitation, enlarged in the south, can actually result in the observed profiles across the tail, which are typically brighter to the north. Additionally, sources located at high latitude cusp footprints at on the dayside were unable match the observed width of the asymmetric profiles across the tail. Instead, our simulations provide evidence for sources near the dawn terminator at lower latitudes, resulting from the accumulation of sodium during the night. Desorption, rather than ion sputtering, is determined to be the responsible mechanism for this sodium population’s release and escape from the planet surface.

  14. Europa's Northern Trailing Hemisphere: Lineament Stratigraphic Framework

    NASA Technical Reports Server (NTRS)

    Figueredo, P. H.; Hare, T.; Ricq, E.; Strom, K.; Greeley, R.; Tanaka, K.; Senske, D.

    2004-01-01

    Knowledge of the global distribution of Europan geologic units in time and space is a necessary step for the synthesis of the results of the Galileo mission and in preparation for future exploration (namely, by JIMO) of the satellite. We have initiated the production of the first Global Geological Map of Europa. As a base map, we use the recently published global photomosaic of Europa (U.S.G.S. Map I-2757) and additional Galileo SSI images at their original resolution. The map is being produced entirely on GIS format for analysis and combination with other datasets [1]. One of the main objectives of this project is to establish a global stratigraphic framework for Europa. In the absence of a well-developed cratering record, this goal will be achieved using the satellite s global network of lineaments (ridges, ridge complexes and bands; cf. [2]). Here we present the preliminary stratigraphic framework synthesized from the sequence of lineaments derived for the northern trailing hemisphere of Europa (Figure 1, below), and we discuss its significance and some emerging implications.

  15. Combination of Stokes polarized light imaging, roughness metrics and morphological features for the detection of melanoma

    NASA Astrophysics Data System (ADS)

    Ghassemi, P.; Shupp, J. W.; Venna, S.; Boisvert, M. E.; Flanagan, K. E.; Jordan, M. H.; Ramella-Roman, J. C.

    2012-02-01

    Skin cancer is the most common and most rapidly increasing form of cancer in the world. Optimal treatment of skin cancer before it reaches metastasis depends critically on early diagnosis. Usually physicians will measure some outward features to diagnose malignancy of pigmented skin lesion. These are mostly morphological features like border irregularity, size, shape, and color. Valuable information can be obtained from the analysis of skin roughness. Previously, we developed a hemispherical imaging Stokes polarimeter to monitor skin cancer based on a roughness assessment of the epidermis. In this study, Stokes images were analyzed to measure polarization properties of skin samples such as the principal angle of the polarization ellipse and the degree of polarization. A processing algorithm based on morphological operators was also developed and applied on Stokes images to extract shape information. Finally, an appropriate classifier was designed to determine the type of lesion based on morphological features as well as the roughness information. Clinical evaluation of the technique was performed on patients with benign nevi, melanocytic nevi, melanoma, and normal skin.

  16. A hemispheric hetero-core fiber optic tactile sensor for texture and hardness detection

    NASA Astrophysics Data System (ADS)

    Yamazaki, Hiroshi; Nishiyama, Michiko; Watanabe, Kazuhiro

    2016-03-01

    This paper describes a hemispheric tactile sensor based on a hetero-core optical fiber for texture and hardness detection in a small contact area. The hetero-core fiber optic sensors developed in our laboratory have been proved to have several attractive advantages such as high sensitivity to soft bending, immunity to temperature fluctuation and cost-effective scheme. The hemisphere-shaped hetero-core fiber optic tactile sensor converts the applied force into the bending curvature on a hetero-core optical fiber. To evaluate the detection performance of minute-structured rough surface, the proposed sensor was tested for scanning on a cloth with the periodic pattern of 0.74 mm. Additionally, it was confirmed that the sensor was able to detect local hardness distributions of hard plastic lumps which were embedded into silicone rubbers. It was furthermore discussed that the sensor can be applied for precise discrimination of such household objects as several kinds of papers with different texture and hardness.

  17. Uranus’ Hemispheric Asymmetries in Polar Cloud and Circulation Structures

    NASA Astrophysics Data System (ADS)

    Hammel, Heidi B.; Sromovsky, Lawrence; Fry, Pat; de Pater, Imke

    2015-11-01

    We report on the north polar region of Uranus in the post-equinoctial era. Near-IR imaging with Keck 2 using NIRC2 in 2012-2014 revealed numerous small bright features, as well as small dark features, between 50 degrees N and the north pole. Tracking of these features yielded circulation patterns, with the remarkable result that the region from 60 degrees to at least 83 degrees rotates about the northern pole as a solid body, with a drift rate of 4.1 degrees/hour westward relative to the interior (Sromovsky et al. 2015, Icarus 258, 192-223). For the south pole, the same latitude region had dramatically different characteristics, as judged by 1986 Voyager and 2003 Keck observations. The southern region showed no discrete near-IR features; detailed circulation measurements in that region were based solely on low-contrast features in re-analyzed Voyager images (Karkoschka, 2015, Icarus 250, 294-307). They revealed a large gradient in drift rates, with values reaching twice that seen in the corresponding northern region.The north-south asymmetry in circulation and cloud structure/morphology is surprising because the distribution of upper tropospheric methane is relatively symmetric: roughly constant over a region from 30 S to 30 N, and then declining at higher latitudes in both hemispheres. The methane distribution suggests symmetric down-welling motion in both polar regions, which would inhibit formation of condensation clouds there, in contrast to the observed dichotomy. Some asymmetry may be an effect of seasonal forcing, since the north versus south polar measurements were made during different seasons. If so, then major changes can be expected in the north polar region as Uranus proceeds toward its 2030 northern summer solstice. Hubble STIS observations expected in October of 2015 will further examine the vertical distribution and stability of the polar methane abundances. Future high-resolution imaging with Earth-based facilities will be able to track circulation

  18. Individual differences in hemispheric preference and emotion regulation difficulties

    PubMed Central

    Gupta, Garima; Dubey, Akanksha; Saxena, Prachi; Pandey, Rakesh

    2011-01-01

    Background: Hemisphericity or individual difference in the preference to use the left or the right hemispheric mode of information processing has been associated with various emotion-related differences. For example, the right hemisphericity has been linked with inhibition of emotional expression, feeling of tension, greater impulsivity etc. These observations suggest that right hemisphericity may be associated with greater difficulties in regulating emotions. However, direct empirical tests of such theoretical proposition are very thin. Aim: In view of this, the present study aims to investigate how and to what extent individual difference in hemispheric preference relate to emotion regulation. Materials and Methods: Thirty-two right-handed male subjects in the age range 18 to 20 years were assessed on self-report measures of hemispheric preference and emotion regulation difficulties. The correlation between dimensions of hemispheric preference and difficulties in regulating emotions was computed. A series of stepwise multiple regression analyses were also done to explore the relative significance of various dimensions of hemispheric preference in predicting emotion regulation difficulties. Results: The findings revealed that in general a preference for the right hemispheric mode of information processing was associated with greater emotion regulation difficulties. The correlation analysis indicated that while impulse control difficulties and difficulties in engaging goal directed behavior was associated with preference for almost all the right hemispheric mode of information processing, the nonacceptance of emotional responses and limited access to emotion regulation was related to preference for only global/synthetic (a right hemispheric) mode of information processing. Similarly, the lack of emotional clarity facet of emotion regulation difficulties correlated significantly with a preference for the emotional mode of information processing (again a right

  19. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    PubMed

    Tyler, Lorraine K; Wright, Paul; Randall, Billi; Marslen-Wilson, William D; Stamatakis, Emmanuel A

    2010-11-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to be strongly left-lateralized, combining measures of tissue integrity, neural activation and behavioural performance. In a functional neuroimaging study participants heard spoken sentences that differentially loaded on syntactic and semantic information. While healthy controls activated a left-hemisphere network of correlated activity including Brodmann areas 45/47 and posterior middle temporal gyrus during syntactic processing, patients activated Brodmann areas 45/47 bilaterally and right middle temporal gyrus. However, voxel-based morphometry analyses showed that only tissue integrity in left Brodmann areas 45/47 was correlated with activity and performance; poor tissue integrity in left Brodmann area 45 was associated with reduced functional activity and increased syntactic deficits. Activity in the right-hemisphere was not correlated with damage in the left-hemisphere or with performance. Reduced neural integrity in the left-hemisphere through brain damage or healthy ageing results in increased right-hemisphere activation in homologous regions to those left-hemisphere regions typically involved in the young. However, these regions do not support the same linguistic functions as those in the left-hemisphere and only indirectly contribute to preserved syntactic capacity. This establishes the unique role of the left hemisphere in syntax, a core component in human language.

  20. Hemispherical power asymmetry: parameter estimation from cosmic microwave background WMAP5 data

    SciTech Connect

    Lew, Bartosz

    2008-09-15

    We re-examine the evidence for hemispherical power asymmetry, detected in the cosmic microwave background (CMB) WMAP (Wilkinson Microwave Anisotropy Probe) data using a new method. We use a data filtering, preprocessing, and a statistical approach different from those used previously, and pursue an independent method of parameter estimation. First, we analyze the hemispherical variance ratios and compare these with simulated distributions. Secondly, working within a previously proposed CMB bipolar modulation model, we constrain model parameters: the amplitude and the orientation of the modulation field, as a function of various multipole bins. Finally, we select three ranges of multipoles leading to the most anomalous signals, and we process a hundred corresponding Gaussian random field (GRF) simulations, treated as observational data, to further test the statistical significance and robustness of the hemispherical power asymmetry. For our analysis we use the Internally Linearly Coadded (ILC) full sky map, and the KQ75 cut sky V channel foreground reduced map of the WMAP five-year data (V5). We constrain the modulation parameters using a generic maximum a posteriori method. In particular, we find differences in hemispherical power distribution, which when described in terms of a model with a bipolar modulation field, exclude the field amplitude value of the isotropic model, A = 0, at the confidence level of {approx}99.5% ({approx}99.4%) in the multipole range l element of [7,19] (l element of [7,79]) for the V5 data, and at the confidence level of {approx}99.9% in the multipole range l element of [7,39] for the ILC5 data, with best-fit (modal probability distribution function) values in these particular multipole ranges of A = 0.21 (A = 0.21) and A = 0.15 respectively. However, we also point out that similar or larger significances (in terms of rejecting the isotropic model) and large best-fit modulation amplitudes are obtained in GRF simulations as well, which

  1. Boltzmann active walkers and rough surfaces

    NASA Astrophysics Data System (ADS)

    Pochy, R. D.; Kayser, D. R.; Aberle, L. K.; Lam, L.

    1993-06-01

    An active walker model (AWM) was recently proposed by Freimuth and Lam for the generation of various filamentary patterns. In an AWM, the walker changes the landscape as it walks, and its steps are in turn influenced by the changing landscape. The landscape so obtained is a rough surface. In this paper, the properties of such a rough surface (with average height conserved) generated by a Boltzmann active walker in 1 + 1 dimensions is investigated in detail. The scaling properties of the surface thickness σ T is found to belong to a new class quite different from other types of fractal surfaces. For example, σ T is independent of the system size L, but is a function of the “temperature” T. Soliton propagation is found when T = 0.

  2. Rough primes and rough conversations: evidence for a modality-specific basis to mental metaphors

    PubMed Central

    Denke, Claudia; Heinze, Hans-Jochen; Rotte, Michael

    2014-01-01

    How does our brain organize knowledge? Traditional theories assume that our knowledge is represented abstractly in an amodal conceptual network of formal logic symbols. The theory of embodied cognition challenges this view and argues that conceptual representations that constitute our knowledge are grounded in sensory and motor experiences. We tested this hypothesis by examining how the concept of social coordination is grounded metaphorically in the tactile sensation of roughness. Participants experienced rough or smooth touch before being asked to judge an ambiguous social interaction. Results revealed that rough touch made social interactions appear more difficult and adversarial, consistent with the rough metaphor. This impact of tactile cues on social impressions was accompanied by a network including primary and secondary somatosensory cortices, amygdala, hippocampus and inferior prefrontal cortex. Thus, the roughness of tactile stimulation affected metaphor-relevant (but not metaphor-irrelevant) behavioral and neural responses. Receiving touch from a rough object seems to trigger the application of associated ontological concepts (or scaffolds) even for unrelated people and situations (but not to unrelated or more general feelings). Since this priming was based on somatosensory brain areas, our results provide support for the theory that sensorimotor grounding is intrinsic to cognitive processes. PMID:24097375

  3. Replicated mask surface roughness effects on EUV lithographic pattering and line edge roughness

    SciTech Connect

    George, Simi A.; Naulleau, Patrick P.; Gullikson, Eric M.; Mochi, Iacopo; Salmassi, Farhad; Goldberg, Kenneth A.; Anderson, Erik H.

    2011-03-11

    To quantify the roughness contributions to speckle, a programmed roughness substrate was fabricated with a number of areas having different roughness magnitudes. The substrate was then multilayer coated. Atomic force microscopy (AFM) surface maps were collected before and after multilayer deposition. At-wavelength reflectance and total integrated scattering measurements were also completed. Angle resolved scattering based power spectral densities are directly compared to the AFM based power spectra. We show that AFM overpredicts the roughness in the picometer measurements range. The mask was then imaged at-wavelength for the direct characterization of the aerial image speckle using the SEMATECH Berkeley Actinic Inspection Tool (AIT). Modeling was used to test the effectiveness of the different metrologies in predicting the measured aerial-image speckle. AIT measured contrast values are 25% or more than the calculated image contrast values obtained using the measured rms roughness input. The extent to which the various metrologies can be utilized for specifying tolerable roughness limits on EUV masks is still to be determined. Further modeling and measurements are being planned.

  4. Rough primes and rough conversations: evidence for a modality-specific basis to mental metaphors.

    PubMed

    Schaefer, Michael; Denke, Claudia; Heinze, Hans-Jochen; Rotte, Michael

    2014-11-01

    How does our brain organize knowledge? Traditional theories assume that our knowledge is represented abstractly in an amodal conceptual network of formal logic symbols. The theory of embodied cognition challenges this view and argues that conceptual representations that constitute our knowledge are grounded in sensory and motor experiences. We tested this hypothesis by examining how the concept of social coordination is grounded metaphorically in the tactile sensation of roughness. Participants experienced rough or smooth touch before being asked to judge an ambiguous social interaction. Results revealed that rough touch made social interactions appear more difficult and adversarial, consistent with the rough metaphor. This impact of tactile cues on social impressions was accompanied by a network including primary and secondary somatosensory cortices, amygdala, hippocampus and inferior prefrontal cortex. Thus, the roughness of tactile stimulation affected metaphor-relevant (but not metaphor-irrelevant) behavioral and neural responses. Receiving touch from a rough object seems to trigger the application of associated ontological concepts (or scaffolds) even for unrelated people and situations (but not to unrelated or more general feelings). Since this priming was based on somatosensory brain areas, our results provide support for the theory that sensorimotor grounding is intrinsic to cognitive processes.

  5. ROUGHNESS ANALYSIS OF VARIOUSLY POLISHED NIOBIUM SURFACES

    SciTech Connect

    Ribeill, G.; Reece, C.

    2008-01-01

    Niobium superconducting radio frequency (SRF) cavities have gained widespread use in accelerator systems. It has been shown that surface roughness is a determining factor in the cavities’ effi ciency and maximum accelerating potential achievable through this technology. Irregularities in the surface can lead to spot heating, undesirable local electrical fi eld enhancement and electron multipacting. Surface quality is typically ensured through the use of acid etching in a Buffered Chemical Polish (BCP) bath and electropolishing (EP). In this study, the effects of these techniques on surface morphology have been investigated in depth. The surface of niobium samples polished using different combinations of these techniques has been characterized through atomic force microscopy (AFM) and stylus profi lometry across a range of length scales. The surface morphology was analyzed using spectral techniques to determine roughness and characteristic dimensions. Experimentation has shown that this method is a valuable tool that provides quantitative information about surface roughness at different length scales. It has demonstrated that light BCP pretreatment and lower electrolyte temperature favors a smoother electropolish. These results will allow for the design of a superior polishing process for niobium SRF cavities and therefore increased accelerator operating effi ciency and power.

  6. Radiative transfer model for contaminated rough slabs.

    PubMed

    Andrieu, François; Douté, Sylvain; Schmidt, Frédéric; Schmitt, Bernard

    2015-11-01

    We present a semi-analytical model to simulate the bidirectional reflectance distribution function (BRDF) of a rough slab layer containing impurities. This model has been optimized for fast computation in order to analyze massive hyperspectral data by a Bayesian approach. We designed it for planetary surface ice studies but it could be used for other purposes. It estimates the bidirectional reflectance of a rough slab of material containing inclusions, overlaying an optically thick media (semi-infinite media or stratified media, for instance granular material). The inclusions are assumed to be close to spherical and constituted of any type of material other than the ice matrix. It can be any other type of ice, mineral, or even bubbles defined by their optical constants. We assume a low roughness and we consider the geometrical optics conditions. This model is thus applicable for inclusions larger than the considered wavelength. The scattering on the inclusions is assumed to be isotropic. This model has a fast computation implementation and thus is suitable for high-resolution hyperspectral data analysis. PMID:26560577

  7. Flow over a Biomimetic Surface Roughness Microgeometry

    NASA Astrophysics Data System (ADS)

    Warncke Lang, Amy; Hidalgo, Pablo; Westcott, Matthew

    2006-11-01

    Certain species of sharks (e.g. shortfin mako and common hammerhead) have a skin structure that could result in a bristling of their denticles (scales) during increased swimming speeds (Bechert, D. W., Bruse, M., Hage, W. and Meyer, R. 2000, Fluid mechanics of biological surfaces and their technological application. Naturwissenschaften 80:157-171). This unique surface geometry results in a three-dimensional array of cavities* (d-type roughness geometry) forming within the surface and has been given the acronym MAKO (Micro-roughness Array for Kinematic Optimization). Possible mechanisms leading to drag reduction over the shark's body by this unique roughness geometry include separation control thereby reducing pressure drag, skin friction reduction (via the `micro-air bearing' effect first proposed by Bushnell (AIAA 83-0227)), as well as possible transition delay in the boundary layer. Initial work is confined to scaling up the geometry from 0.2 mm on the shark skin to 2 cm, with a scaling down in characteristic velocity from 10 - 20 m/s to 10 - 20 cm/s for laminar flow boundary layer water tunnel studies. Support for this research by NSF SGER grant CTS-0630489 and a University of Alabama RAC grant is gratefully acknowledged. * Patent pending.

  8. Roughness coefficients for stream channels in Arizona

    USGS Publications Warehouse

    Aldridge, B.N.; Garrett, J.M.

    1973-01-01

           n in which V = mean cross-sectional velocity of flow, in feet per second; R = hydraulic radius at a cross section, which is the cross-sectional area divided by the wetter perimeter, in feet; Se = energy slope; and n = coefficient of roughness. Many research studies have been made to determine "n" values for open-channel flow (Carter and others, 1963). Guidelines for selecting coefficient of roughness for stream channels are given in most of the literature of stream-channel hydraulics, but few of the data relate directly to streams of Arizona, The U.S> Geological Survey, at the request of the Arizona Highway Department, assembled the color photographs and tables of the Manning "n" values in this report to aid highway engineers in the selection of roughness coefficients for Arizona streams. Most of the photographs show channel reaches for which values of "n" have been assigned by experienced Survey personnel; a few photographs are included for reaches where "n" values have been verified. Verified "n" values are computed from a known discharge and measured channel geometry. Selected photographs of stream channels for which "n" values have been verified are included in U.S. Geological Survey Water-Supply Paper 1849 (Barnes, 1967); stereoscopic slides of Barnes' (1967) photographs and additional photographs can be inspected at U.S> Geological Survey offices in: 2555 E. First Street, Tucson; and 5017 Federal Building, 230 N. First Avenue, Phoenix.

  9. Soil Surface Roughness through Image Analysis

    NASA Astrophysics Data System (ADS)

    Tarquis, A. M.; Saa-Requejo, A.; Valencia, J. L.; Moratiel, R.; Paz-Gonzalez, A.; Agro-Environmental Modeling

    2011-12-01

    Soil erosion is a complex phenomenon involving the detachment and transport of soil particles, storage and runoff of rainwater, and infiltration. The relative magnitude and importance of these processes depends on several factors being one of them surface micro-topography, usually quantified trough soil surface roughness (SSR). SSR greatly affects surface sealing and runoff generation, yet little information is available about the effect of roughness on the spatial distribution of runoff and on flow concentration. The methods commonly used to measure SSR involve measuring point elevation using a pin roughness meter or laser, both of which are labor intensive and expensive. Lately a simple and inexpensive technique based on percentage of shadow in soil surface image has been developed to determine SSR in the field in order to obtain measurement for wide spread application. One of the first steps in this technique is image de-noising and thresholding to estimate the percentage of black pixels in the studied area. In this work, a series of soil surface images have been analyzed applying several de-noising wavelet analysis and thresholding algorithms to study the variation in percentage of shadows and the shadows size distribution. Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. AGL2010- 21501/AGR and by Xunta de Galicia through project no INCITE08PXIB1621 are greatly appreciated.

  10. Adsorption of Polymers on Rough Surfaces

    NASA Astrophysics Data System (ADS)

    Venkatakrishnan, Abishek; Kuppa, Vikram

    2014-03-01

    Most of the surfaces encountered in nature display irregularity and self-similarity at certain length scales. Such real surfaces can be mimicked via fractal surfaces using an algorithm that produces random surfaces. The problem of polymer chains adsorbed on smooth surfaces has been well understood whereas adsorption on rough surfaces still remains unclear due to the complexity involved in equilibration and sampling of molecules in such systems. The enthalpic interactions between the monomers and the entropic penalty arising due to adsorption on rough surfaces are significantly different from smooth surfaces. In this study, we investigate the adsorption of freely rotating polymer chains on fractal surfaces by Monte-Carlo molecular simulations. Random fractal surfaces are generated using the diamond-square algorithm for different values of the Hurst parameter. Properties like monomer-surface interaction, density profiles, chain orientation profiles and distribution of adsorbed chain fractions are investigated. We also demonstrate the significant effect of fractal dimension on adsorption of polymers on rough surfaces.

  11. Analysis of grounding systems in soils with hemispherical layering

    SciTech Connect

    Ma, J.; Dawalibi, F.P. ); Daily, W.K. )

    1993-10-01

    A theoretical model for the analysis of grounding systems located inside or near hemispherical soil heterogeneities is presented for the first time. Exact closed-form analytical expressions for the earth potential calculations due to current sources in different regions of this soil structure have been obtained. Numerical results are presented for different grounding systems and for different types of hemispherical soil volumes. The results clearly show that these finite hemispherical soil heterogeneities have a significant influence on the performance of grounding systems. The results obtained are in agreement with well known simple case results and converge asymptotically to the uniform soil case.

  12. On hemispheric differences in evoked potentials to speech stimuli

    NASA Technical Reports Server (NTRS)

    Galambos, R.; Benson, P.; Smith, T. S.; Schulman-Galambos, C.; Osier, H.

    1975-01-01

    Confirmation is provided for the belief that evoked potentials may reflect differences in hemispheric functioning that are marginal at best. Subjects were right-handed and audiologically normal men and women, and responses were recorded using standard EEG techniques. Subjects were instructed to listen for the targets while laying in a darkened sound booth. Different stimuli, speech and tone signals, were used. Speech sounds were shown to evoke a response pattern that resembles that to tone or clicks. Analysis of variances on peak amplitude and latency measures showed no significant differences between hemispheres, however, a Wilcoxon test showed significant differences in hemispheres for certain target tasks.

  13. Hemispherical emissivity of V, Nb, Ta, Mo, and W from 300 to 1000 K

    NASA Technical Reports Server (NTRS)

    Cheng, S. X.; Hanssen, L. M.; Riffe, D. M.; Sievers, A. J.; Cebe, P.

    1987-01-01

    The hemispherical emissivities of five transition elements, V, Nb, Ta, Mo, and W, have been measured from 300 to 1000 K, complementing earlier higher-temperature results. These low-temperature data, which are similar, are fitted to a Drude model in which the room-temperature parameters have been obtained from optical measurements and the temperature dependence of the dc resistivity is used as input to calculate the temperature dependence of the emissivity. A frequency-dependent free-carrier relaxation rate is found to have a similar magnitude for all these elements. For temperatures larger than 1200 K the calculated emissivity is always greater than the measured value, indicating that the high-temperature interband features of transition elements are much weaker than those determined from room-temperature measurements.

  14. Fault zone roughness controls slip stability

    NASA Astrophysics Data System (ADS)

    Harbord, Christopher; Nielsen, Stefan; De Paola, Nicola

    2016-04-01

    Fault roughness is an important control factor in the mechanical behaviour of fault zones, in particular the frictional slip stability and subsequent earthquake nucleation. Despite this, there is little experimental quantification as to the effects of varying roughness upon rate- and state-dependant friction (RSF). Utilising a triaxial deformation apparatus and a novel adaptation of the direct shear methodology to simulate initially bare faults in Westerly Granite, we performed a series of velocity step frictional sliding experiments. Initial root mean square roughnesses (Sq) was varied in the range 6x10-7 - 2.4x10-5 m. We also investigated the effects upon slip stability of normal stress variation in the range σn = 30 - 200 MPa, and slip velocity between 0.1 - 10 μm s-1. A transition from stable sliding to unstable slip (manifested by stick-slip and slow slip events) was observed, depending on the parameter combination, thus covering the full spectrum of fault slip behaviours. At low normal stress (σn = 30MPa) smooth faults (Sq< 1x10-6 m) are conditional unstable (stress drops on slow slip events upon velocity increase), with strongly velocity weakening friction. When normal stress is increased to intermediate values (σn = 100 - 150 MPa), smooth faults (Sq< 1x10-6 m) are fully unstable and generate seismic stick-slip behaviour. However at higher normal stress (σn = 200 MPa) a transition from unstable to stable sliding is observed for smooth faults, which is not expected using RSF stability criteria. At all conditions sliding is stable for rough faults (Sq> 1x10-6 m). We find that instability can develop when the ratio of fault to critical stiffness kf kc > 10, or, alternatively, even when a - b > 0 at σn = 150MPa, suggesting that bare surfaces may not strictly obey the R+S stability condition. Additionally we present white light interferometry and SEM analysis of experimentally deformed samples which provide information about the distribution and physical

  15. Phenomenological solar signature in 400 years of reconstructed Northern Hemisphere temperature record

    NASA Astrophysics Data System (ADS)

    Scafetta, N.; West, B. J.

    2006-09-01

    We study the solar impact on 400 years of a global surface temperature record since 1600. This period includes the pre-industrial era (roughly 1600-1800 or 1600-1900), when negligible amount of anthropogenic-added climate forcing was present and the sun realistically was the only climate force affecting climate on a secular scale, and the industrial era (roughly since 1800-1900), when anthropogenic-added climate forcing has been present in some degree. We use a recent secular Northern Hemisphere temperature reconstruction (Moberg et al., 2005), three alternative total solar irradiance (TSI) proxy reconstructions (Lean et al., 1995; Lean, 2000; Wang et al., 2005) and a scale-by-scale transfer climate sensitivity model to solar changes (Scafetta and West, 2005, 2006). The phenomenological approach we propose is an alternative to the more traditional computer-based climate model approach, and yields results proven to be almost independent on the secular TSI proxy reconstruction used. We find good correspondence between global temperature and solar induced temperature curves during the pre-industrial period such as the cooling periods occurring during the Maunder Minimum (1645-1715) and the Dalton Minimum (1795-1825). The sun might have contributed approximately 50% of the observed global warming since 1900 (Scafetta and West, 2006). We briefly discuss the global cooling that occurred from the medieval maximum (~1000-1100 AD) to the 17th century minimum.

  16. The effects of roughness and offset on fracture compliance ratio

    NASA Astrophysics Data System (ADS)

    Ahmadi, M.; Taleghani, A. Dahi; Sayers, C. M.

    2016-04-01

    Fractures are a source of extra compliance in the rock mass. The mechanical properties of the rock matrix as well as the propagation of seismic waves inside the rock medium are dependent on the magnitude of roughness and offset between the imperfect fracture interfaces. Fracture compliance can estimate the degree of contact between fracture faces, type of fluid filling the fracture and the fracture roughness. To characterize these fracture properties, compliance ratio, known by the ratio of normal-to-shear compliance, can be a potential tool in the subsurface studies to improve the well layout design. The focus of this study is to illustrate how the compliance ratio of a rough fracture, with or without the offset between the fracture faces, can diverge from the compliance ratio of a fracture with smooth interface. Quasi-static and dynamic methods are two common ways to calculate the compliance. The former calculates the compliance by measuring the change in the displacement with the applied stress, while the latter estimates the compliance through monitoring the changes in propagation of seismic waves. To compare the compliance ratios of fractures with imperfect and smooth interfaces in an infinite medium, a numerical finite-element model is built in commercial finite-element software. The imperfect interface of the fracture is modeled with saw-tooth-like structures where they can be partially or fully in contact. The defined saw-tooth-like structures of contact asperities impose an in-plane asymmetry in the shear direction. This asymmetry causes two different values for the compliance in shear direction, known as the soft and stiff shear compliance. Our numerical simulations suggest the increase in the degree of contact between the fracture faces increases the compliance ratio in the stiff direction more than the soft direction. The compliance ratio of the fracture with the imperfect interface is larger than the compliance ratio of the smooth fracture. We suggest

  17. Summer Temperature Anomalies for the Northern Hemisphere, 1955-2011

    NASA Video Gallery

    This visualization shows a flat map of the Earth with summertime temperature anomalies for the Northern Hemisphere. This analysis compares observed seasonal mean temperatures (June-July-August) to ...

  18. Geological Mapping of the Encounter Hemisphere on Pluto

    NASA Astrophysics Data System (ADS)

    White, O. L.; Moore, J. M.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Ennico, K.; Young, L. A.; Cheng, A. F.; New Horizons GGI Theme Team

    2016-06-01

    We present mapping of Pluto's encounter hemisphere performed to date (focusing on Sputnik Planum and the immediately surrounding area) and offer preliminary descriptions of terrains further afield that will be the subject of future mapping.

  19. Motivation, affect, and hemispheric asymmetry: power versus affiliation.

    PubMed

    Kuhl, Julius; Kazén, Miguel

    2008-08-01

    In 4 experiments, the authors examined to what extent information related to different social needs (i.e., power vs. affiliation) is associated with hemispheric laterality. Response latencies to a lateralized dot-probe task following lateralized pictures or verbal labels that were associated with positive or negative episodes related to power, affiliation, or achievement revealed clear-cut laterality effects. These effects were a function of need content rather than of valence: Power-related stimuli were associated with right visual field (left hemisphere) superiority, whereas affiliation-related stimuli were associated with left visual field (right hemisphere) superiority. Additional results demonstrated that in contrast to power, affiliation primes were associated with better discrimination between coherent word triads (e.g., goat, pass, and green, all related to mountain) and noncoherent triads, a remote associate task known to activate areas of the right hemisphere. PMID:18665713

  20. Motivation, affect, and hemispheric asymmetry: power versus affiliation.

    PubMed

    Kuhl, Julius; Kazén, Miguel

    2008-08-01

    In 4 experiments, the authors examined to what extent information related to different social needs (i.e., power vs. affiliation) is associated with hemispheric laterality. Response latencies to a lateralized dot-probe task following lateralized pictures or verbal labels that were associated with positive or negative episodes related to power, affiliation, or achievement revealed clear-cut laterality effects. These effects were a function of need content rather than of valence: Power-related stimuli were associated with right visual field (left hemisphere) superiority, whereas affiliation-related stimuli were associated with left visual field (right hemisphere) superiority. Additional results demonstrated that in contrast to power, affiliation primes were associated with better discrimination between coherent word triads (e.g., goat, pass, and green, all related to mountain) and noncoherent triads, a remote associate task known to activate areas of the right hemisphere.

  1. Variation of Space Radiation Exposure inside Spherical and Hemispherical Geometries

    NASA Astrophysics Data System (ADS)

    Lin, Zi-Wei; Baalla, Younes; Townsend, Lawrence

    2008-10-01

    We calculate the space radiation exposure to blood-forming organs everywhere inside a hemispherical dome that represents a lunar habitat. We derive the analytical path length distribution from any point inside a hemispherical or a spherical shell. Because the average path length increases with the distance from the center, the center of the hemispherical dome on the lunar surface has the largest radiation exposure while locations on the inner surface of the dome have the lowest exposure. This conclusion differs from an earlier study on a hemispherical dome but agrees with another earlier study on a spherical-shell shield. We also find that the reduction in the radiation exposure from the center to the inner edge of the dome can be as large as a factor of 3 or more for the radiation from solar particle events while being smaller for the radiation from galactic cosmic rays.

  2. Characteristics of verbal semantic impairment in left hemisphere epilepsy.

    PubMed

    Giovagnoli, Anna Rita

    2005-07-01

    Fifty-two patients with partial epilepsy of left (n=30) or right (n=22) hemisphere origin were compared with 23 healthy subjects to explore the characteristics and mechanisms of verbal semantic deficits. Picture Naming, Picture Pointing, and the Semantic Questionnaire assessed semantic retrieval, comprehension, and judgment, respectively. In comparison with the controls and right hemisphere patients, the left hemisphere patients showed impairments on Picture Naming and the Semantic Questionnaire. On Picture Naming, the left hemisphere patients made significant omissions and intracategorical errors; on the Semantic Questionnaire, they made errors at superordinate and subordinate levels of information, they made more errors in relation to living than nonliving things, and there were significant associations between their Picture Naming and Semantic Questionnaire scores. In this population, the mixed profiles of semantic deficits suggests the coexistence of altered retrieval and information loss. PMID:16060825

  3. Hypothalamic digoxin, hemispheric chemical dominance, and the tridosha theory.

    PubMed

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-05-01

    Ayurveda, the traditional Indian System of Medicine, deals with the theory of the three tridosha states (both physical and psychological): Vata, Pitta, and Kapha. They are the three major human constitutional types that both depend on psychological and physical characteristics. The Pitta state is described as a critical, discriminative, and rational psychological state of mind, while the Kapha state is described as being dominant for emotional stimuli. The Vata state is an intermediate unstable shifting state. The Pitta types are of average height and built with well developed musculature. The Vata types are thin individuals with low body mass index. The Kapha types are short stocky individuals that tend toward obesity, and who are sedentary. The study assessed the biochemical differences between right hemispheric dominant, bihemispheric dominant, and left hemispheric dominant individuals, and then compared this with the patterns obtained in the Vata, Pitta, and Kapha states. The isoprenoid metabolites (digoxin, dolichol, and ubiquinone), glycoconjugate metabolism, free radical metabolism, and the RBC membrane composition were studied. The hemispheric chemical dominance in various systemic diseases and psychological states was also investigated. The results showed that right hemispheric chemically dominant/Kapha state had elevated digoxin levels, increased free radical production and reduced scavenging, increased tryptophan catabolites and reduced tyrosine catabolites, increased glycoconjugate levels and increased cholesterol: phospholipid ratio of RBC membranes. Left hemispheric chemically dominant/Pitta states had the opposite biochemical patterns. The patterns were normal or intermediate in the bihemispheric chemically dominant/Vata state. This pattern could be correlated with various systemic and neuropsychiatric diseases and personality traits. Right hemispheric chemical dominance/Kapha state represents a hyperdigoxinemic state with membrane sodium

  4. Hypothalamic digoxin, hemispheric chemical dominance, and the tridosha theory.

    PubMed

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-05-01

    Ayurveda, the traditional Indian System of Medicine, deals with the theory of the three tridosha states (both physical and psychological): Vata, Pitta, and Kapha. They are the three major human constitutional types that both depend on psychological and physical characteristics. The Pitta state is described as a critical, discriminative, and rational psychological state of mind, while the Kapha state is described as being dominant for emotional stimuli. The Vata state is an intermediate unstable shifting state. The Pitta types are of average height and built with well developed musculature. The Vata types are thin individuals with low body mass index. The Kapha types are short stocky individuals that tend toward obesity, and who are sedentary. The study assessed the biochemical differences between right hemispheric dominant, bihemispheric dominant, and left hemispheric dominant individuals, and then compared this with the patterns obtained in the Vata, Pitta, and Kapha states. The isoprenoid metabolites (digoxin, dolichol, and ubiquinone), glycoconjugate metabolism, free radical metabolism, and the RBC membrane composition were studied. The hemispheric chemical dominance in various systemic diseases and psychological states was also investigated. The results showed that right hemispheric chemically dominant/Kapha state had elevated digoxin levels, increased free radical production and reduced scavenging, increased tryptophan catabolites and reduced tyrosine catabolites, increased glycoconjugate levels and increased cholesterol: phospholipid ratio of RBC membranes. Left hemispheric chemically dominant/Pitta states had the opposite biochemical patterns. The patterns were normal or intermediate in the bihemispheric chemically dominant/Vata state. This pattern could be correlated with various systemic and neuropsychiatric diseases and personality traits. Right hemispheric chemical dominance/Kapha state represents a hyperdigoxinemic state with membrane sodium

  5. A new method for modeling rough membrane surface and calculation of interfacial interactions.

    PubMed

    Zhao, Leihong; Zhang, Meijia; He, Yiming; Chen, Jianrong; Hong, Huachang; Liao, Bao-Qiang; Lin, Hongjun

    2016-01-01

    Membrane fouling control necessitates the establishment of an effective method to assess interfacial interactions between foulants and rough surface membrane. This study proposed a new method which includes a rigorous mathematical equation for modeling membrane surface morphology, and combination of surface element integration (SEI) method and the composite Simpson's approach for assessment of interfacial interactions. The new method provides a complete solution to quantitatively calculate interfacial interactions between foulants and rough surface membrane. Application of this method in a membrane bioreactor (MBR) showed that, high calculation accuracy could be achieved by setting high segment number, and moreover, the strength of three energy components and energy barrier was remarkably impaired by the existence of roughness on the membrane surface, indicating that membrane surface morphology exerted profound effects on membrane fouling in the MBR. Good agreement between calculation prediction and fouling phenomena was found, suggesting the feasibility of this method.

  6. Calibration of hemispherical-head flow angularity probes

    NASA Technical Reports Server (NTRS)

    Clark, Edward L.; Henfling, John F.; Aeschliman, Daniel P.

    1992-01-01

    The hemisphere-cylinder flow angularity probes were calibrated over a Mach number range of 0.5 to 2.0 at pitch and yaw angles of -5 to +5 deg. Each probe had five pressure orifices in the hemispherical head - one on the axis and four located 45 deg from the axis and equally spaced circumferentially. The probes were identical within fabrication tolerances. Details of probe design, test procedures and data analysis are described and selected test results are presented.

  7. Plume Dispersion over Idealized Urban-liked Roughness with Height Variation: an LES Approach

    NASA Astrophysics Data System (ADS)

    Wong, Colman Ching Chi; Liu, Chun-Ho

    2013-04-01

    Human activities (e.g. vehicular emission) are the primary pollutant sources affecting the health and living quality of stakeholders in modern compact cities. Gaussian plume dispersion model is commonly used for pollutant distribution estimate that works well over rural areas with flat terrain. However, its major parameters, dispersion coefficients, exclude the effect of surface roughness that unavoidably prone to error handling the pollutant transport in the urban boundary layer (UBL) over building roughness. Our recent large-eddy simulation (LES) has shown that urban surfaces affect significantly the pollutant dispersion over idealized, identical two-dimensional (2D) street canyons of uniform height. As an extension to our on-going effort, this study is conceived to investigate how rough urban surfaces, which are constructed by 2D street canyons of non-uniform height, modify the UBL pollutant dispersion . A series of LESs with idealized roughness elements of non-uniform heights were performed in neutral stratification. Building models with two different heights were placed alternatively in the computational domain to construct 2D street canyons in cross flows. The plume dispersion from a ground-level passive pollutant source over more realistic urban areas was then examined. Along with the existing building-height-to-street-width (aspect) ratio (AR), a new parameter, building-height variability (BHV), is used to measure the building height unevenness. Four ARs (1, 0.5, 0.25 and 0.125) and three BHVs (20%, 40% and 60%) were considered in this study. Preliminary results show that BHV greatly increases the aerodynamic roughness of the hypothetical urban surfaces for narrow street canyons. Analogous to our previous findings, the air exchange rate (ACH) of street canyons increases with increasing friction factor, implying that street-level ventilation could be improved by increasing building roughness via BHV. In addition, the parameters used in dispersion coefficient

  8. Rough Evaluation Structure: Application of Rough Set Theory to Generate Simple Rules for Inconsistent Preference Relation

    NASA Astrophysics Data System (ADS)

    Gehrmann, Andreas; Nagai, Yoshimitsu; Yoshida, Osamu; Ishizu, Syohei

    Since management decision-making becomes complex and preferences of the decision-maker frequently becomes inconsistent, multi-attribute decision-making problems were studied. To represent inconsistent preference relation, the concept of evaluation structure was introduced. We can generate simple rules to represent inconsistent preference relation by the evaluation structures. Further rough set theory for the preference relation was studied and the concept of approximation was introduced. One of our main aims of this paper is to introduce a concept of rough evaluation structure for representing inconsistent preference relation. We apply rough set theory to the evaluation structure, and develop a method for generating simple rules for inconsistent preference relations. In this paper, we introduce concepts of totally ordered information system, similarity class of preference relation, upper and lower approximation of preference relations. We also show the properties of rough evaluation structure and provide a simple example. As an application of rough evaluation structure, we analyze questionnaire survey of customer preferences about audio players.

  9. Disentangling the relationship between hemispheric asymmetry and cognitive performance.

    PubMed

    Hirnstein, Marco; Leask, Stuart; Rose, Jonas; Hausmann, Markus

    2010-07-01

    It is widely believed that advantages of hemispheric asymmetries originated in better cognitive processing, hence it is often implied that the relationship between hemispheric asymmetry and cognitive performance is linearly positive: the higher the degree of lateralization in a specific cognitive domain, the better the performance in a corresponding task. Yet, the empirical evidence for this notion is mixed and the statistical methods to analyze this relationship have been criticized. The present study therefore investigated the relationship between hemispheric asymmetries and cognitive performance in two behavioral tasks (a left-lateralized word-matching task and a right-lateralized face-decision task) in 230 participants (140 women, 90 men) by using two different approaches. Both methods correspondingly revealed that a relationship between hemispheric asymmetries and cognitive performance does exist. Contrary to a positive (linear) relationship however, the data could be best described by an inverted U-shaped curve. Although the optimal degree of lateralization seemed to be task-specific, a slight or moderate degree of hemispheric asymmetry achieved best cognitive performance in all tasks. Moreover, performances deteriorated towards extreme ends of lateralization (i.e., participants with either extreme left or right hemispheric biases). Taken together, the present study provides evidence against the notion that higher lateralization is related to enhanced cognitive performance.

  10. Metaphors and verbal creativity: the role of the right hemisphere.

    PubMed

    Gold, Rinat; Faust, Miriam; Ben-Artzi, Elisheva

    2012-01-01

    Ample research suggests that the right cerebral hemisphere plays a central role in verbal creativity as well as in novel metaphor comprehension. The aim of the present study was to directly examine the relation between verbal creativity and right hemisphere involvement during novel metaphor comprehension. Thus 30 healthy adults were asked to fill in the Hebrew version of the Remote Association Test to assess their level of creativity. In addition, reaction times and error rates were measured while these participants performed a semantic judgement task on two word expressions presented in a divided visual field paradigm. The word pairs comprised four types of semantic relations: novel metaphors, conventional metaphors, literal word pairs, and meaningless word pairs. Correlations were conducted to assess the relation between level of creativity and processing of the four pair types in the two cerebral hemispheres. The main finding was of a significant negative correlation between degree of creativity and reaction times to novel metaphor processing in the right hemisphere, thus supporting the involvement of this cerebral hemisphere in both tasks. Results are discussed in light of linguistic theories and recent neuroscientific evidence regarding relative hemispheric involvement during semantic processing.

  11. Discourse deficits following right hemisphere damage in deaf signers.

    PubMed

    Hickok, G; Wilson, M; Clark, K; Klima, E S; Kritchevsky, M; Bellugi, U

    1999-02-01

    Previous findings have demonstrated that hemispheric organization in deaf users of American Sign Language (ASL) parallels that of the hearing population, with the left hemisphere showing dominance for grammatical linguistic functions and the right hemisphere showing specialization for non-linguistic spatial functions. The present study addresses two further questions: first, do extra-grammatical discourse functions in deaf signers show the same right-hemisphere dominance observed for discourse functions in hearing subjects; and second, do discourse functions in ASL that employ spatial relations depend upon more general intact spatial cognitive abilities? We report findings from two right-hemisphere damaged deaf signers, both of whom show disruption of discourse functions in absence of any disruption of grammatical functions. The exact nature of the disruption differs for the two subjects, however. Subject AR shows difficulty in maintaining topical coherence, while SJ shows difficulty in employing spatial discourse devices. Further, the two subjects are equally impaired on non-linguistic spatial tasks, indicating that spared spatial discourse functions can occur even when more general spatial cognition is disrupted. We conclude that, as in the hearing population, discourse functions involve the right hemisphere; that distinct discourse functions can be dissociated from one another in ASL; and that brain organization for linguistic spatial devices is driven by its functional role in language processing, rather than by its surface, spatial characteristics.

  12. Hierarchical stimuli and hemispheric specialization: two case studies.

    PubMed

    Polster, M R; Rapcsak, S Z

    1994-09-01

    Local versus global visual processing was examined in two patients with massive unilateral left hemisphere lesions using a directed attention task involving hierarchical stimuli. Previous studies found an impressive global advantage in patients with posterior left hemisphere lesions on similar tasks. In addition, whereas patients with left inferior parietal lobule (IPL) lesions showed the global interference on local processing that is typically observed in normals, patients with lesions centered on the superior temporal gyrus (STG) demonstrated no interference. Paradoxically, our two patients who had complete destruction of both the left IPL and STG regions showed an overall local advantage due to local interference on global processing. We propose that following extensive left hemisphere damage, the isolated right hemisphere may be able to perform efficiently the type of processing usually ascribed to the left hemisphere (i.e., local). However, at least under certain conditions, this apparent functional plasticity seems to occur at the expense of the type of processing normally associated with the right hemisphere (i.e., global). PMID:7805389

  13. Category Membership and Semantic Coding in the Cerebral Hemispheres.

    PubMed

    Turner, Casey E; Kellogg, Ronald T

    2016-01-01

    Although a gradient of category membership seems to form the internal structure of semantic categories, it is unclear whether the 2 hemispheres of the brain differ in terms of this gradient. The 2 experiments reported here examined this empirical question and explored alternative theoretical interpretations. Participants viewed category names centrally and determined whether a closely related or distantly related word presented to either the left visual field/right hemisphere (LVF/RH) or the right visual field/left hemisphere (RVF/LH) was a member of the category. Distantly related words were categorized more slowly in the LVF/RH relative to the RVF/LH, with no difference for words close to the prototype. The finding resolved past mixed results showing an unambiguous typicality effect for both visual field presentations. Furthermore, we examined items near the fuzzy border that were sometimes rejected as nonmembers of the category and found both hemispheres use the same category boundary. In Experiment 2, we presented 2 target words to be categorized, with the expectation of augmenting the speed advantage for the RVF/LH if the 2 hemispheres differ structurally. Instead the results showed a weakening of the hemispheric difference, arguing against a structural in favor of a processing explanation. PMID:27424416

  14. The nature of hemispheric specialization for prosody perception.

    PubMed

    Witteman, Jurriaan; Goerlich-Dobre, Katharina S; Martens, Sander; Aleman, André; Van Heuven, Vincent J; Schiller, Niels O

    2014-09-01

    Recent evidence suggests a relative right-hemispheric specialization for emotional prosody perception, whereas linguistic prosody perception is under bilateral control. It is still unknown, however, how the hemispheric specialization for prosody perception might arise. Two main hypotheses have been put forward. Cue-dependent hypotheses, on the one hand, propose that hemispheric specialization is driven by specialization for the non-prosody-specific processing of acoustic cues. The functional lateralization hypothesis, on the other hand, proposes that hemispheric specialization is dependent on the communicative function of prosody, with emotional and linguistic prosody processing being lateralized to the right and left hemispheres, respectively. In the present study, the functional lateralization hypothesis of prosody perception was systematically tested by instructing one group of participants to evaluate the emotional prosody, and another group the linguistic prosody dimension of bidimensional prosodic stimuli in a dichotic-listening paradigm, while event-related potentials were recorded. The results showed that the right-ear advantage was associated with decreased latencies for an early negativity in the contralateral hemisphere. No evidence was found for functional lateralization. These findings suggest that functional lateralization effects for prosody perception are small and support the structural model of dichotic listening.

  15. Phase Relationships of Solar Hemispheric Toroidal and Poloidal Cycles

    NASA Astrophysics Data System (ADS)

    Muraközy, J.

    2016-08-01

    The solar northern and southern hemispheres exhibit differences in their intensities and time profiles of the activity cycles. The time variation of these properties was studied in a previous article covering the data from Cycles 12-23. The hemispheric phase lags exhibited a characteristic variation: the leading role was exchanged between hemispheres every four cycles. The present work extends the investigation of this variation using the data of Staudacher and Schwabe in Cycles 1-4 and 7-10 as well as Spörer’s data in Cycle 11. The previously observed variation cannot be clearly recognized using the data of Staudacher, Schwabe, and Spörer. However, it is more interesting that the phase lags of the reversals of the magnetic fields at the poles follow the same variations as those of the hemispheric cycles in Cycles 12-23, i.e., one of the hemispheres leads in four cyles and the leading role jumps to the opposite hemisphere in the next four cycles. This means that this variation is a long-term property of the entire solar dynamo mechanism, for both the toroidal and poloidal fields, which hints at an unidentified component of the process responsible for the long-term memory.

  16. Roughness characterization of the galling of metals

    NASA Astrophysics Data System (ADS)

    Hubert, C.; Marteau, J.; Deltombe, R.; Chen, Y. M.; Bigerelle, M.

    2014-09-01

    Several kinds of tests exist to characterize the galling of metals, such as that specified in ASTM Standard G98. While the testing procedure is accurate and robust, the analysis of the specimen's surfaces (area=1.2 cm) for the determination of the critical pressure of galling remains subject to operator judgment. Based on the surface's topography analyses, we propose a methodology to express the probability of galling according to the macroscopic pressure load. After performing galling tests on 304L stainless steel, a two-step segmentation of the S q parameter (root mean square of surface amplitude) computed from local roughness maps (100 μ m× 100 μ m) enables us to distinguish two tribological processes. The first step represents the abrasive wear (erosion) and the second one the adhesive wear (galling). The total areas of both regions are highly relevant to quantify galling and erosion processes. Then, a one-parameter phenomenological model is proposed to objectively determine the evolution of non-galled relative area A e versus the pressure load P, with high accuracy ({{A}e}=100/(1+a{{P}2}) with a={{0.54}+/- 0.07}× {{10}-3} M P{{a}-2} and with {{R}2}=0.98). From this model, the critical pressure of galling is found to be equal to 43MPa. The {{S}5 V} roughness parameter (the five deepest valleys in the galled region's surface) is the most relevant roughness parameter for the quantification of damages in the ‘galling region’. The significant valleys’ depths increase from 10 μm-250 μm when the pressure increases from 11-350 MPa, according to a power law ({{S}5 V}=4.2{{P}0.75}, with {{R}2}=0.93).

  17. 7 CFR 51.776 - Slightly rough texture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Definitions § 51.776 Slightly rough texture. Slightly rough texture means that the skin may be slightly thick but not excessively thick, materially ridged or grooved. “Slightly thick” means that the...

  18. The application of differential roughness to mitigate friction and wear

    NASA Technical Reports Server (NTRS)

    Lebeck, Alan O.

    1991-01-01

    By definition, differential roughness occurs where the surface roughness of one region is distinctly different from that of an adjacent region. Differential roughness may occur on a sliding surface when the structure of an area of the surface is modified relative to the original material. Differential roughness may be used to effect a film thickness change so as to cause hydrodynamic or hydrostatic lubrication effects just as if the surfaces were machined. The advantage of differential roughness is that the effective offset of film thickness continues to exist even if there is gross wear. One can effect film thickness changes which are smaller than can be made directly. Furthermore, asperity tip load support is the same over both the high roughness and small roughness regions. The potential uses for differential roughness are seals, bearings, and pumps. Some examples are presented.

  19. 7 CFR 51.776 - Slightly rough texture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Definitions § 51.776 Slightly rough texture. Slightly rough texture means that the skin may be slightly thick but not excessively thick, materially ridged or grooved. “Slightly thick” means that the...

  20. Effective field model of roughness in magnetic nano-structures

    SciTech Connect

    Lepadatu, Serban

    2015-12-28

    An effective field model is introduced here within the micromagnetics formulation, to study roughness in magnetic structures, by considering sub-exchange length roughness levels as a perturbation on a smooth structure. This allows the roughness contribution to be separated, which is found to give rise to an effective configurational anisotropy for both edge and surface roughness, and accurately model its effects with fine control over the roughness depth without the explicit need to refine the computational cell size to accommodate the roughness profile. The model is validated by comparisons with directly roughened structures for a series of magnetization switching and domain wall velocity simulations and found to be in excellent agreement for roughness levels up to the exchange length. The model is further applied to vortex domain wall velocity simulations with surface roughness, which is shown to significantly modify domain wall movement and result in dynamic pinning and stochastic creep effects.

  1. Total hemispherical emissivity of very high temperature reactor (VHTR) candidate materials: Hastelloy X, Haynes 230, and Alloy 617

    NASA Astrophysics Data System (ADS)

    Maynard, Raymond K.

    An experimental system was constructed in accordance with the standard ASTM C835-06 to measure the total hemispherical emissivity of structural materials of interest in Very High Temperature Reactor (VHTR) systems. The system was tested with304 stainless steel as well as for oxidized and un-oxidized nickel, and good reproducibility and agreement with the literature data was found. Emissivity of Hastelloy X was measured under different conditions that included: (i) "as received" (original sample) from the supplier; (ii) with increased surface roughness; (iii) oxidized, and; (iv) graphite coated. Measurements were made over a wide range of temperatures. Hastelloy X, as received from the supplier, was cleaned before additional roughening of the surface and coating with graphite. The emissivity of the original samples (cleaned after received) varied from around 0.18 to 0.28 in the temperature range of 473 K to 1498 K. The apparent emissivity increased only slightly as the roughness of the surface increased (without corrections for the increased surface area due to the increased surface roughness). When Hastelloy X was coated with graphite or oxidized however, its emissivity was observed to increase substantially. With a deposited graphite layer on the Hastelloy, emissivity increased from 0.2 to 0.53 at 473 K and from 0.25 to 0.6 at 1473 K; a finding that has strong favorable safety implications in terms of decay heat removal in post-accident VHTR environments. Although initial oxidation of Hastelloy X increased the emissivity prolonged oxidation did not significantly increase emissivity. However as there is some oxidation of Hastelloy X used in the construction of VHTRs, this represents an essentially neutral finding in terms of the safety implications in post-accident VHTR environments. The total hemispherical emissivity of Haynes 230 alloy, which is regarded as a leading candidate material for heat exchangers in VHTR systems, was measured under various surface

  2. Protein Translocation across the Rough Endoplasmic Reticulum

    PubMed Central

    Mandon, Elisabet C.; Trueman, Steven F.; Gilmore, Reid

    2013-01-01

    The rough endoplasmic reticulum is a major site of protein biosynthesis in all eukaryotic cells, serving as the entry point for the secretory pathway and as the initial integration site for the majority of cellular integral membrane proteins. The core components of the protein translocation machinery have been identified, and high-resolution structures of the targeting components and the transport channel have been obtained. Research in this area is now focused on obtaining a better understanding of the molecular mechanism of protein translocation and membrane protein integration. PMID:23251026

  3. Robust surface roughness indices and morphological interpretation

    NASA Astrophysics Data System (ADS)

    Trevisani, Sebastiano; Rocca, Michele

    2016-04-01

    Geostatistical-based image/surface texture indices based on variogram (Atkison and Lewis, 2000; Herzfeld and Higginson, 1996; Trevisani et al., 2012) and on its robust variant MAD (median absolute differences, Trevisani and Rocca, 2015) offer powerful tools for the analysis and interpretation of surface morphology (potentially not limited to solid earth). In particular, the proposed robust index (Trevisani and Rocca, 2015) with its implementation based on local kernels permits the derivation of a wide set of robust and customizable geomorphometric indices capable to outline specific aspects of surface texture. The stability of MAD in presence of signal noise and abrupt changes in spatial variability is well suited for the analysis of high-resolution digital terrain models. Moreover, the implementation of MAD by means of a pixel-centered perspective based on local kernels, with some analogies to the local binary pattern approach (Lucieer and Stein, 2005; Ojala et al., 2002), permits to create custom roughness indices capable to outline different aspects of surface roughness (Grohmann et al., 2011; Smith, 2015). In the proposed poster, some potentialities of the new indices in the context of geomorphometry and landscape analysis will be presented. At same time, challenges and future developments related to the proposed indices will be outlined. Atkinson, P.M., Lewis, P., 2000. Geostatistical classification for remote sensing: an introduction. Computers & Geosciences 26, 361-371. Grohmann, C.H., Smith, M.J., Riccomini, C., 2011. Multiscale Analysis of Topographic Surface Roughness in the Midland Valley, Scotland. IEEE Transactions on Geoscience and Remote Sensing 49, 1220-1213. Herzfeld, U.C., Higginson, C.A., 1996. Automated geostatistical seafloor classification - Principles, parameters, feature vectors, and discrimination criteria. Computers and Geosciences, 22 (1), pp. 35-52. Lucieer, A., Stein, A., 2005. Texture-based landform segmentation of LiDAR imagery

  4. Detection and modeling of rough component envelopes

    NASA Astrophysics Data System (ADS)

    Peacock, Matthew; Dluzniak, Richard; Thompson, William

    1995-08-01

    This paper describes an imaging technique for the determination of rough component envelopes of cast and forged components. The paper includes several image acquisition methods currently used in this area but concentrates in detail on the method known as the light stripe method. Results presented show the advantages of the light stripe method to obtain a fast and accurate 3D description of the cast and forged components. The research is part of a larger project on intelligent manufacturing systems and is being conducted at the CIM Centre, Swinburne University of Technology, Hawthorn, Victoria, Australia.

  5. Evidence of inter-hemispheric temperature contrasts over the last millennium from a new Southern Hemisphere multi-proxy reconstruction

    NASA Astrophysics Data System (ADS)

    Neukom, Raphael; Gergis, Joëlle; Karoly, David; Wanner, Heinz; Curran, Mark; Elbert, Julie; González-Rouco, Fidel; Linsley, Braddock; Moy, Andrew; Mundo, Ignacio; Raible, Christoph; Steig, Eric; van Ommen, Tas; Vance, Tessa; Villalba, Ricardo; Zinke, Jens; Frank, David

    2014-05-01

    The instrumental temperature record shows distinct inter-hemispheric temperature differences superimposed on the common warming trend over the last 150 years. Asynchronicity between the hemispheres is also suggested by millennial-scale analyses over the last deglaciation and the Holocene, indicating a significant modulation of the response to external forcing by internal climate system variability on multiple temporal scales. However, on multi-decadal to centennial times-scales, quantitative analyses on inter-hemispheric temperature variability are largely missing due to the lack of hemispheric-scale high-resolution reconstructions from the Southern Hemisphere. We introduce a new annually resolved multi-proxy ensemble reconstruction of Southern Hemisphere mean temperatures over the last 1000 years. The reconstruction is based on an unprecedented network of 325 proxy records yielding 111 temperature sensitive predictors. In 99.7% of the reconstruction ensemble members, the warmest decade of the last millennium occurs after 1970. Comparing our results with an ensemble of Northern Hemisphere mean reconstructions, we identify periods, where both hemispheres simultaneously exhibit extreme temperatures (defined as exceeding ±1 standard deviations of 1000-2000 temperatures). The only pre-industrial period where >33% of ensemble members indicate globally synchronous extremes is the cold phase between 1594 and 1677. Simultaneous warm temperatures are only identified in the years after 1974 (1979) where more than 66% (90%) of ensemble members indicate extreme warmth. This suggests existence of a globally coherent peak 'Little Ice Age', but no consistent 'Medieval Climate Anomaly' during last 1000 years. We then compare our ensemble of temperature reconstructions to an ensemble of 24 climate model simulations. While the simulated globally consistent cold periods coincide with major volcanic eruptions, the simulations do not account for key features of reconstructed

  6. Speckle pattern texture analysis method to measure surface roughness

    NASA Astrophysics Data System (ADS)

    Kuznetsov, I.; Sadovoy, A.; Doronin, A.; Meglinski, I.

    2013-02-01

    Speckle pattern texture analysis method is applied to measure surface roughness of human skin. The method is based on analyzing of a gray level co-occurrence matrix occurred from a speckle image of a rough surface. Paper with different surface roughness is used as a skin phantom. The roughness is controlled by profilometry measurements. The developed methodology could find wide application in dermatology and tissue diagnostics.

  7. Application of Terrestrial Laser Scanning for Measuring Soil Roughness at Meso-scale

    NASA Astrophysics Data System (ADS)

    Milenković, Milutin; Pfeifer, Norbert; Glira, Philipp; Ressl, Camillo

    2014-05-01

    Soil roughness is a dynamic property of bare-soil surfaces. It affects infiltration and runoff during a rain event, regulates wind erosion rates, and also influences the backscattered energy of radar signals. In geophysical modeling, this soil parameter is considered to be related to local surface features like tillage structure, soil aggregates and particles, and therefore, it is typically described trough its regional stochastic properties. Since soil roughness elements range from millimeter to several centimeters in size, high-resolution 3D measurements are required to determine these stochastic parameters accurately. Measurements by a terrestrial laser scanner (TLS) provide precise, high-density 3D information which can match these requirements. However, the resolution and precision of these TLS measurements decrease with range. Therefore, special TLS acquisition settings are required already for investigating soil roughness at meso-scale, i.e. from ca. 10m to 50m. Such information about soil roughness, for example, will soon be required for SAR products of the incoming Sentinel-1 mission, with pixel spacing expected to be 10m-25m in the high-resolution, multi-look mode. This work focuses on estimating an effective area that can be surveyed by a single TLS scan at the resolution of a few millimeters under different soil roughness conditions. To answer this, a field experiment was conducted where two soil roughness patterns were scanned: oriented- and isotropic-roughness. The roughness patterns were prepared on a 3m x 3m rectangular plot in the Botanical Garden of the University of Vienna. The measurements were performed from several scan positions using an amplitude-modulated continuous-wave TLS. The instrument has a specified precision bellow 1mm, a small beam divergence (0.22mrad), and a sampling interval of 1.6mm at 5m range. Additionally to these TLS measurements, a small sub-area (0.5m x 1m) was surveyed by a triangulating laser scanner. This instrument

  8. Effects of surface roughness on evaporation from porous surfaces into turbulent airflows

    NASA Astrophysics Data System (ADS)

    Haghighi, Erfan; Or, Dani

    2014-05-01

    The ubiquitous and energy intensive mass transfer between wet porous surfaces and turbulent airflows is of great importance for various natural and industrial applications. The roughness of natural surfaces is likely to influence the structure of adjacent boundary layer and thus affecting heat and mass fluxes from surfaces. These links were formalized in a new model that considers the intermittent turbulence-induced boundary layer with local mass and energy exchange rates. We conducted experiments with regular surface roughness patterns subjected to constant turbulent airflows and monitored mass loss and thermal signatures of localized evaporative fluxes using infrared thermography. The resulting patterns were in good agreement with model predictions for local and surface averaged turbulent exchange rates. Preliminary results obtained for evaporation from sinusoidal wavy soil surfaces reveal that evaporative fluxes can be either enhanced or suppressed (relative to a flat surface) owing to relative contribution of downstream (separation zone) and rising (reattachment zone) surfaces of the wave with thick and thin viscous sublayer thicknesses, respectively. For isolated roughness elements (bluff bodies) over a flat evaporating surface, the resulting fluxes are enhanced (relative to a smooth surface) due to formation of vortices that induce thinner boundary layer. Potential benefits of the study for interpretation and upscaling of evaporative and heat fluxes from natural (rough) terrestrial surfaces will be discussed. Keywords: Turbulent Evaporation, Porous Media, Surface Roughness, Infrared Thermography.

  9. Optical scattering simulation of ice particles with surface roughness modeled using the Edwards-Wilkinson equation

    NASA Astrophysics Data System (ADS)

    Zhang, Jianing; Bi, Lei; Liu, Jianping; Panetta, R. Lee; Yang, Ping; Kattawar, George W.

    2016-07-01

    Constructing an appropriate particle morphology model is essential for realistic simulation of optical properties of atmospheric particles. This paper presents a model for generating surface roughness based on a combination of methods from discrete differential geometry combined with a stochastic partial differential equation for surface evolution introduced by Edwards and Wilkinson. Scattering of light by roughened particles is simulated using the Invariant Imbedding T-Matrix (II-TM) method. The effects of surface roughness on the single-scattering properties, namely, the phase matrix, asymmetry factor, and extinction efficiency, are investigated for a single wavelength in the visible range and for a range of size parameters up to x=50. Three different smooth shapes are considered: spherical, spheroidal, and hexagonal, the latter two in just the "compact particle" case of unit aspect ratio. It is shown that roughness has negligible effects on the optical scattering properties for size parameters less than 20. For size parameters ranging from 20 to 50, the phase matrix elements are more sensitive to the surface roughness than are two important integral optical properties, the extinction efficiency and asymmetry factor. As has been seen in studies using other forms of roughening, the phase function is progressively smoothed as roughness increases. The effect on extinction efficiency is to increase it, and on asymmetry factor is to decrease it. Each of these effects is relatively modest in the size range considered, but the trend of results suggests that greater effects will be seen for size parameters larger than ones considered here.

  10. Transition Experiments on Large Bluntness Cones with Distributed Roughness in Hypersonic Flight

    NASA Technical Reports Server (NTRS)

    Reda, Daniel. C.; Wilder, Michael C.; Prabhu, Dinesh K.

    2012-01-01

    Large bluntness cones with smooth nosetips and roughened frusta were flown in the NASA Ames hypersonic ballistic range at a Mach number of 10 through quiescent air environments. Global surface intensity (temperature) distributions were optically measured and analyzed to determine transition onset and progression over the roughened surface. Real-gas Navier-Stokes calculations of model flowfields, including laminar boundary layer development in these flowfields, were conducted to predict values of key dimensionless parameters used to correlate transition on such configurations in hypersonic flow. For these large bluntness cases, predicted axial distributions of the roughness Reynolds number showed (for each specified freestream pressure) that this parameter was a maximum at the physical beginning of the roughened zone and decreased with increasing run length along the roughened surface. Roughness-induced transition occurred downstream of this maximum roughness Reynolds number location, and progressed upstream towards the beginning of the roughened zone as freestream pressure was systematically increased. Roughness elements encountered at the upstream edge of the roughened frusta thus acted like a finite-extent trip array, consistent with published results concerning the tripping effectiveness of roughness bands placed on otherwise smooth surfaces.

  11. Distributed-Roughness Effects on Stability and Transition In Swept-Wing Boundary Layers

    NASA Technical Reports Server (NTRS)

    Carrillo, Ruben B., Jr.; Reibert, Mark S.; Saric, William S.

    1997-01-01

    Boundary-layer stability experiments are conducted in the Arizona State University Unsteady Wind Tunnel on a 45 deg swept airfoil. The pressure distribution and test conditions are designed to suppress Tollmien-Schlichting disturbances and provide crossflow-dominated transition. The surface of the airfoil is finely polished to a near mirror finish. Under these conditions, submicron surface irregularities cause the naturally occurring stationary crossflow waves to grow to nonuniform amplitudes. Spanwise-uniform stationary crossflow disturbances are generated through careful control of the initial conditions with full-span arrays of micron-high roughness elements near the attachment line. Detailed hot-wire measurements are taken to document the stationary crossflow structure and determine growth rates for the total and individual-mode disturbances. Naphthalene flow visualization provides transition location information. Roughness spacing and roughness height are varied to examine the effects on transition location and all amplified wavelengths. The measurements show that roughness spacings that do not contain harmonics equal to the most unstable wavelength as computed by linear stability theory effectively suppress the most unstable mode. Under certain conditions, subcritical roughness spacing delays transition past that of the corresponding smooth surface.

  12. Development of sol-gel icephobic coatings: effect of surface roughness and surface energy.

    PubMed

    Fu, Qitao; Wu, Xinghua; Kumar, Divya; Ho, Jeffrey W C; Kanhere, Pushkar D; Srikanth, Narasimalu; Liu, Erjia; Wilson, Peter; Chen, Zhong

    2014-12-10

    Sol-gel coatings with different roughness and surface energy were prepared on glass substrates. Methyl triethoxysilane (MTEOS), 3-Glycidyloxypropyl trimethoxysilane (GLYMO) and fluoroalkylsilane (FAS) were used to obtain a mechanically robust icephobic coating. Different amount of hydrophobic silica nano particles was added as fillers to introduce different roughness and surface energy to the coatings. The microstructure, roughness, and surface energy, together with elemental information and surface chemical state, were investigated at room temperature. The contact angle and sliding angle were measured at different temperatures to correlate the wetting behavior at low temperature with the anti-icing performance. The ice adhesion shear strength was measured inside an ice chamber using a self-designed tester. The factors influencing the ice adhesion were discussed, and the optimum anti-icing performance found in the series of coatings. It was found that lower surface energy leads to lower ice adhesion regardless of the roughness, while the roughness plays a more complicated role. The wetting behavior of the droplet on surface changes as temperature decreases. The anti-icing performance is closely related to the antiwetting property of the surfaces at subzero temperatures.

  13. A robust roughness quantification technique using a standard imaging array transducer

    NASA Astrophysics Data System (ADS)

    Samuel, Stanley; Adler, Ronald; Meyer, Charles

    2002-05-01

    Our goal is to measure cartilage roughness using intra-articular ultrasound imaging, thus providing a useful diagnostic tool for the early detection of osteoarthritis. Measuring the effectiveness of possible chondroprotective pharmacological or mechanical interventions depends on the availability of such a device. We have developed an empirical model of roughness using sandpaper for angles ranging from 20 degrees to 60 degrees at distances ranging from 25 mm to 80 mm. Roughness quantification is achieved using a scattering replacement normalization technique. An ultrasound imaging system employing a broadband 7 MHz multi-element transducer was used for insonifying the flat sandpaper surface. Dynamic focusing was performed at all distances and angles. The broadband transducer facilitates the selection of select bandwidths during analysis, which is beneficial for studying surfaces of varying roughness scales. Sandpaper of 150-, 400-, and 600-grit were examined for this study. The normalized average backscattered power (normalized with 150-grit) for 7-8 MHz frequency band provides well-behaved roughness characteristics. The students t test showed that the backscattering results for the 150- and 400-grit are significantly different with 0.025

  14. Uncertainty in 2D hydrodynamic models from errors in roughness parameterization based on aerial images

    NASA Astrophysics Data System (ADS)

    Straatsma, Menno; Huthoff, Fredrik

    2011-01-01

    In The Netherlands, 2D-hydrodynamic simulations are used to evaluate the effect of potential safety measures against river floods. In the investigated scenarios, the floodplains are completely inundated, thus requiring realistic representations of hydraulic roughness of floodplain vegetation. The current study aims at providing better insight into the uncertainty of flood water levels due to uncertain floodplain roughness parameterization. The study focuses on three key elements in the uncertainty of floodplain roughness: (1) classification error of the landcover map, (2), within class variation of vegetation structural characteristics, and (3) mapping scale. To assess the effect of the first error source, new realizations of ecotope maps were made based on the current floodplain ecotope map and an error matrix of the classification. For the second error source, field measurements of vegetation structure were used to obtain uncertainty ranges for each vegetation structural type. The scale error was investigated by reassigning roughness codes on a smaller spatial scale. It is shown that classification accuracy of 69% leads to an uncertainty range of predicted water levels in the order of decimeters. The other error sources are less relevant. The quantification of the uncertainty in water levels can help to make better decisions on suitable flood protection measures. Moreover, the relation between uncertain floodplain roughness and the error bands in water levels may serve as a guideline for the desired accuracy of floodplain characteristics in hydrodynamic models.

  15. 7 CFR 868.201 - Definition of rough rice.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Definition of rough rice. 868.201 Section 868.201... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Rough Rice Terms Defined § 868.201 Definition of rough rice. Rice (Oryza sativa L.) which consists of 50 percent or more of paddy kernels...

  16. 7 CFR 868.201 - Definition of rough rice.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Definition of rough rice. 868.201 Section 868.201... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Rough Rice Terms Defined § 868.201 Definition of rough rice. Rice (Oryza sativa L.) which consists of 50 percent or more of paddy kernels...

  17. 7 CFR 868.201 - Definition of rough rice.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Definition of rough rice. 868.201 Section 868.201... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Rough Rice Terms Defined § 868.201 Definition of rough rice. Rice (Oryza sativa L.) which consists of 50 percent or more of paddy kernels...

  18. 7 CFR 868.201 - Definition of rough rice.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Definition of rough rice. 868.201 Section 868.201... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Rough Rice Terms Defined § 868.201 Definition of rough rice. Rice (Oryza sativa L.) which consists of 50 percent or more of paddy kernels...

  19. 7 CFR 868.201 - Definition of rough rice.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Definition of rough rice. 868.201 Section 868.201... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Rough Rice Terms Defined § 868.201 Definition of rough rice. Rice (Oryza sativa L.) which consists of 50 percent or more of paddy kernels...

  20. 14 CFR 25.1517 - Rough air speed, VRA.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rough air speed, VRA. 25.1517 Section 25... Limitations § 25.1517 Rough air speed, VRA. A rough air speed, VRA, for use as the recommended turbulence... specified in § 25.335(d); and (3) Is sufficiently less than VMO to ensure that likely speed variation...

  1. 14 CFR 25.1517 - Rough air speed, VRA.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rough air speed, VRA. 25.1517 Section 25... Limitations § 25.1517 Rough air speed, VRA. A rough air speed, VRA, for use as the recommended turbulence... specified in § 25.335(d); and (3) Is sufficiently less than VMO to ensure that likely speed variation...

  2. 14 CFR 25.1517 - Rough air speed, VRA.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rough air speed, VRA. 25.1517 Section 25... Limitations § 25.1517 Rough air speed, VRA. A rough air speed, VRA, for use as the recommended turbulence... specified in § 25.335(d); and (3) Is sufficiently less than VMO to ensure that likely speed variation...

  3. 14 CFR 25.1517 - Rough air speed, VRA.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rough air speed, VRA. 25.1517 Section 25... Limitations § 25.1517 Rough air speed, VRA. A rough air speed, VRA, for use as the recommended turbulence... specified in § 25.335(d); and (3) Is sufficiently less than VMO to ensure that likely speed variation...

  4. 14 CFR 25.1517 - Rough air speed, VRA.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rough air speed, VRA. 25.1517 Section 25... Limitations § 25.1517 Rough air speed, VRA. A rough air speed, VRA, for use as the recommended turbulence... specified in § 25.335(d); and (3) Is sufficiently less than VMO to ensure that likely speed variation...

  5. Non-conjugate aurora and inter hemispheric currents

    NASA Astrophysics Data System (ADS)

    Reistad, J. P.; Østgaard, N.; Laundal, K. M.; Oksavik, K.

    2012-04-01

    We look at large scale auroral features using global imagers to obtain simultaneous pictures of both the southern and northern auroral ovals in the ultra violet part of the spectra. During the years 2001 and 2002 the IMAGE satellite was in a favourable position for imaging the aurora borealis (Northern Hemisphere) and the POLAR satellite with its large field-of-view VIS Earth camera had a sporadic coverage of the aurora australis (Southern Hemisphere). In total 19 hours of simultaneous global imaging from different seasons are analysed searching for non-conjugacy in the night side sector. By non-conjugate aurora we mean auroral features appearing in one hemisphere only, or significant differences in intensity between the hemispheres for the same auroral feature. We suggest that our observed large scale asymmetries can be explained in terms of inter hemispheric currents (IHC). Coherent with our earlier findings, we list three possible candidates for producing such inter hemispheric currents based on observations. 1) Hemispherical differences in the solar wind dynamo due to IMF Bx and tilt angle producing different strength of region 1 currents in the conjugate he mispheres, 2) Hemispherical differences in conductivity controlled by the tilt angle only giving rise to IHC on closed field lines, and 3) Field-aligned current components induced by the penetration of the IMF By into the closed magnetosphere. Most of the observed non-conjugate aurora in our dataset can be explained by these candidates only. The IMF By penetration candidate is considered closer. We search for evidence in our data that IMF By < 0 (By > 0) can induce an IHC producing stronger aurora on the polar boundary in the Northern (Southern) Hemisphere. Also a second IHC component are predicted from the theory, mapping to the equatorward part of the oval and opposite directed along the magnetic field lines. Using a much larger dataset for one hemisphere only, we show whether these predicted currents can

  6. Rail roughness and rolling noise in tramways

    NASA Astrophysics Data System (ADS)

    Chiacchiari, L.; Thompson, DJ; Squicciarini, G.; Ntotsios, E.; Loprencipe, G.

    2016-09-01

    Companies which manage railway networks have to cope continually with the problem of operating safety and maintenance intervention issues related to rail surface irregularities. A lot of experience has been gained in recent years in railway applications but the case of tramways is quite different; in this field there are no specific criteria to define any intervention on rail surface restoration. This paper shows measurements carried out on some stretches of a tram network with the CAT equipment (Corrugation Analysis Trolley) for the principal purpose of detecting different states of degradation of the rails and identifying a level of deterioration to be associated with the need for maintenance through rail grinding. The measured roughness is used as an input parameter into prediction models for both rolling noise and ground vibration to show the potential effect that high levels of roughness can have in urban environment. Rolling noise predictions are also compared with noise measurements to illustrate the applicability of the modelling approach. Particular attention is given to the way the contact filter needs to be modelled in the specific case of trams that generally operate at low speed. Finally an empirical approach to assess vibration levels in buildings is presented.

  7. A rough set approach to speech recognition

    NASA Astrophysics Data System (ADS)

    Zhao, Zhigang

    1992-09-01

    Speech recognition is a very difficult classification problem due to the variations in loudness, speed, and tone of voice. In the last 40 years, many methodologies have been developed to solve this problem, but most lack learning ability and depend fully on the knowledge of human experts. Systems of this kind are hard to develop and difficult to maintain and upgrade. A study was conducted to investigate the feasibility of using a machine learning approach in solving speech recognition problems. The system is based on rough set theory. It first generates a set of decision rules using a set of reference words called training samples, and then uses the decision rules to recognize new words. The main feature of this system is that, under the supervision of human experts, the machine learns and applies knowledge on its own to the designated tasks. The main advantages of this system over a traditional system are its simplicity and adaptiveness, which suggest that it may have significant potential in practical applications of computer speech recognition. Furthermore, the studies presented demonstrate the potential application of rough-set based learning systems in solving other important pattern classification problems, such as character recognition, system fault detection, and trainable robotic control.

  8. Roughness tolerances for Cherenkov telescope mirrors

    NASA Astrophysics Data System (ADS)

    Tayabaly, K.; Spiga, D.; Canestrari, R.; Bonnoli, G.; Lavagna, M.; Pareschi, G.

    2015-09-01

    The Cherenkov Telescope Array (CTA) is a forthcoming international ground-based observatory for very high-energy gamma rays. Its goal is to reach sensitivity five to ten times better than existing Cherenkov telescopes such as VERITAS, H.E.S.S. or MAGIC and extend the range of observation to energies down to few tens of GeV and beyond 100 TeV. To achieve this goal, an array of about 100 telescopes is required, meaning a total reflective surface of several thousands of square meters. Thence, the optimal technology used for CTA mirrors' manufacture should be both low-cost (~1000 euros/m2) and allow high optical performances over the 300-550 nm wavelength range. More exactly, a reflectivity higher than 85% and a PSF (Point Spread Function) diameter smaller than 1 mrad. Surface roughness can significantly contribute to PSF broadening and limit telescope performances. Fortunately, manufacturing techniques for mirrors are now available to keep the optical scattering well below the geometrically-predictable effect of figure errors. This paper determines first order surface finish tolerances based on a surface microroughness characterization campaign, using Phase Shift Interferometry. That allows us to compute the roughness contribution to Cherenkov telescope PSF. This study is performed for diverse mirror candidates (MAGIC-I and II, ASTRI, MST) varying in manufacture technologies, selected coating materials and taking into account the degradation over time due to environmental hazards.

  9. Receptivity of Hypersonic Boundary Layers to Distributed Roughness and Acoustic Disturbances

    NASA Technical Reports Server (NTRS)

    Balakumar, Ponnampalam

    2012-01-01

    Boundary-layer receptivity and stability of Mach 6 flow over smooth and rough 7 half-angle sharp-tipped cones are numerically investigated. The receptivity of the boundary layer to slow acoustic disturbances, fast acoustic disturbances, and vortical disturbances are considered. The effects of two-dimensional isolated and distributed roughness on the receptivity and stability are also simulated. The results show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves than to the fast waves. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that of the slow acoustic wave. An isolated two-dimensional roughness element of height h/delta =1/4 did not produce any difference in the receptivity or in the stability of the boundary layer. Distributed roughness elements produced a small decrease in the receptivity coefficient and also stabilized the boundary layer by small amounts.

  10. An Examination of the Right-Hemisphere Hypothesis of the Lateralization of Emotion

    ERIC Educational Resources Information Center

    Smith, S.D.; Bulman-Fleming, M.B.

    2005-01-01

    The Right-Hemisphere Hypothesis posits that emotional stimuli are perceived more efficiently by the right hemisphere than by the left hemisphere. The current research examines this hypothesis by examining hemispheric asymmetries for the conscious and unconscious perception of emotional stimuli. Negative, positive, and neutral words were presented…

  11. Topography-based flow-directional roughness: potential and challenges

    NASA Astrophysics Data System (ADS)

    Trevisani, Sebastiano; Cavalli, Marco

    2016-04-01

    Surface texture analysis applied to high-resolution digital terrain models (HRDTMs) is a promising approach for extracting useful fine-scale morphological information. Surface roughness, considered here as a synonym of surface texture, can have a discriminant role in the detection of different geomorphic processes and factors. Very often, the local morphology presents, at different scales, anisotropic characteristics that could be taken into account when calculating or measuring surface roughness. The high morphological detail of HRDTMs permits the description of different aspects of surface roughness, beyond an evaluation limited to isotropic measures of surface roughness. The generalization of the concept of roughness implies the need to refer to a family of specific roughness indices capable of capturing specific multiscale and anisotropic aspects of surface morphology. An interesting set of roughness indices is represented by directional measures of roughness that can be meaningful in the context of analyzed and modeled flow processes. Accordingly, we test the application of a flow-oriented directional measure of roughness based on the geostatistical bivariate index MAD (median of absolute directional differences), which is computed considering surface gravity-driven flow direction. MAD is derived from a modification of a variogram and is specifically designed for the geomorphometric analysis of HRDTMs. The presented approach shows the potential impact of considering directionality in the calculation of roughness indices. The results demonstrate that the use of flow-directional roughness can improve geomorphometric modeling (e.g., sediment connectivity and surface texture modeling) and the interpretation of landscape morphology.

  12. Evaluation of a hemi-spherical wideband antenna array for breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Klemm, M.; Craddock, I. J.; Preece, A.; Leendertz, J.; Benjamin, R.

    2008-12-01

    Using similar techniques to ground penetrating radars, microwave detection of breast tumors is a potential nonionizing and noninvasive alternative to traditional body-imaging techniques. In order to develop an imaging system, the team at Bristol have been working on a number of antenna array prototypes, based around a stacked-patch element, starting with simple pairs of elements and progressing to fully populated planar arrays. As the system commences human subject trials, a curved breast phantom has been developed along with an approximately hemi-spherical conformal array. This contribution will present details of the conformal array design and initial results from this unique experimental imaging system as applied to an anatomically shaped breast phantom.

  13. Cavitation monitoring and passive beamforming using a hemispherical random sparse array

    NASA Astrophysics Data System (ADS)

    O'Reilly, Meaghan A.; Rahman, Sami; Hynynen, Kullervo

    2012-10-01

    A 32 receiver sparse random spherical array was integrated with an existing 1372 element hemispherical therapy array. Passive beamforming was used to generate intensity maps from the signals received by the array. Intensity maps of a 765 kHz narrowband source showed good correlation with simulation data. Additionally, intensity maps of microbubbles excited by the therapy array successfully located the microbubbles. These maps were also comparable to simulation results. Using hydrophone based phase correction, the array was able to passively image a 765 kHz narrowband source through a human skullcap. Simulations suggest that expansion of the receiver array to 265 elements will improve imaging quality by reducing sidelobes and increasing the field of view of the array.

  14. Influence of surface roughness on nonlinear flow behaviors in 3D self-affine rough fractures: Lattice Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Wang, Min; Chen, Yi-Feng; Ma, Guo-Wei; Zhou, Jia-Qing; Zhou, Chuang-Bing

    2016-10-01

    This study investigates the impacts of surface roughness on the nonlinear fluid flow through three-dimensional (3D) self-affine rock fractures, whose original surface roughness is decomposed into primary roughness (i.e. the large-scale waviness of the fracture morphology) and secondary roughness (i.e. the small-scale unevenness) with a wavelet analysis technique. A 3D Lattice Boltzmann method (LBM) is adopted to predict the flow physics in rock fractures numerically created with and without consideration of the secondary roughness, respectively. The simulation results show that the primary roughness mostly controls the pressure distribution and fracture flow paths at a large scale, whereas the secondary roughness determines the nonlinear properties of the fluid flow at a local scale. As the pressure gradient increases, the secondary roughness enhances the local complexity of velocity distribution by generating and expanding the eddy flow and back flow regions in the vicinity of asperities. It was found that the Forchheimer's law characterizes well the nonlinear flow behavior in fractures of varying roughness. The inertial effects induced by the primary roughness differ only marginally in fractures with the roughness exponent varying from 0.5 to 0.8, and it is the secondary roughness that significantly enhances the nonlinear flow and leads to earlier onset of nonlinearity. Further examined were the effects of surface roughness on the transmissivity, hydraulic aperture and the tortuosity of flow paths, demonstrating again the dominant role of the secondary roughness, especially for the apparent transmissivity and the equivalent hydraulic aperture at high pressure gradient or high Reynolds number. The results may enhance our understanding of the role of surface roughness in the nonlinear flow behaviors in natural rock fractures.

  15. High Q diamond hemispherical resonators: fabrication and energy loss mechanisms

    NASA Astrophysics Data System (ADS)

    Bernstein, Jonathan J.; Bancu, Mirela G.; Bauer, Joseph M.; Cook, Eugene H.; Kumar, Parshant; Newton, Eric; Nyinjee, Tenzin; Perlin, Gayatri E.; Ricker, Joseph A.; Teynor, William A.; Weinberg, Marc S.

    2015-08-01

    We have fabricated polycrystalline diamond hemispheres by hot-filament CVD (HFCVD) in spherical cavities wet-etched into a high temperature glass substrate CTE matched to silicon. Hemispherical resonators 1.4 mm in diameter have a Q of up to 143 000 in the fundamental wineglass mode, for a ringdown time of 2.4 s. Without trimming, resonators have the two degenerate wineglass modes frequency matched as close as 2 Hz, or 0.013% of the resonant frequency (~16 kHz). Laser trimming was used to match resonant modes on hemispheres to 0.3 Hz. Experimental and FEA energy loss studies on cantilevers and hemispheres examine various energy loss mechanisms, showing that surface related losses are dominant. Diamond cantilevers with a Q of 400 000 and a ringdown time of 15.4 s were measured, showing the potential of polycrystalline diamond films for high Q resonators. These resonators show great promise for use as hemispherical resonant gyroscopes (HRGs) on a chip.

  16. [Vaccines: producers in countries of the Southern hemisphere].

    PubMed

    Bertrand, J J

    2007-08-01

    Vaccine producers in southern hemisphere countries now contribute significantly to global output. In 2006 southern hemisphere countries accounted for more than 10% of the total worldwide production with a progression approximately 70% greater than all producers combined in the two-year period between 2004 and 2006. Though difficult to measure, production in volume is higher due to lower prices practiced in most of these countries. For many years before the 1980s, production was scattered among numerous limited-scale companies. Most were founded at the initiative of governments striving to cover the needs of the population for essential vaccines. A number of institutions and private structures such as Institut Pasteur Production, Connaught Laboratories, and Institut Merieux have also set up production facilities. Today's producers can be divided into two categories, i.e., local producers that produce mainly monovalent vaccines and worldwide producers with strong R&D investment programs. Local producers are located mainly in large southern hemisphere countries such as China, India, Brazil, and Indonesia as well as in eastern countries. For the most dynamic companies, international development is focused on southern hemisphere countries excluding North America and Europe. With the support international organization such as WHO, UNICEF and GAVI, alliances are now being formed and networks are being organized in an effort to ensure reliable supplies of high quality vaccines at affordable prices in developing countries. The contribution of these producers will increase for the greater benefit of the people living in the southern hemisphere. PMID:17926792

  17. Hemispheric asymmetries in the perceptual representations of words.

    PubMed

    Lincoln, Amy E; Long, Debra L; Swick, Diane; Larsen, Jary; Baynes, Kathleen

    2008-01-10

    The representation of words in sentences can involve the activation and integration of perceptual information. For example, readers who are asked to view pictures of objects relating to a word in a sentence are influenced by perceptual information in the sentence context-readers are faster to respond to a picture of a whole apple after reading, "There is an apple in the bag," than after reading, "There is an apple in the salad." The purpose of this study was to examine how the two cerebral hemispheres use perceptual information about words as a function of sentence context. Patients who had damage to the left or right hemisphere and age-matched control participants read sentences that described, but did not entail, the shape or state of an object. They then made recognition judgments to pictures that either matched or mismatched the perceptual form implied by the sentence. Responses and latencies were examined for a match effect -- faster and more accurate responses to pictures in the match than mismatch condition -- controlling for comprehension ability and lesion size. When comprehension ability and lesion size are properly controlled, left-hemisphere-damaged patients and control participants exhibited the expected match effect, whereas right-hemisphere-damaged participants showed no effect of match condition. These results are consistent with research implicating the right hemisphere in the representation of contextually relevant perceptual information.

  18. [Independent resource of each hemisphere modulates selective attention].

    PubMed

    Yoshizaki, Kazuhito; Nishimura, Ritsuko

    2008-06-01

    Based on the load theory and the assumption that each hemisphere has independent resources, we examined the effects of perceptual load in each hemisphere on the compatibility effect. In Experiments 1, and 2ab, two letter-strings were presented to the left and right visual-fields with a distracter, which was presented on the center of the screen. Two conditions were prepared by pairing a letter-string which contained a target with one which did not. Right-handed participants were asked to identify the target in the letter-strings while ignoring the distracter. The results showed that the compatibility effect was larger when the perceptual load of the letter-string which did not contain a target was low. This suggests that the residual resources of the hemisphere where the target was not projected facilitated the processing of the distracter. In Experiment 3, two letter-strings were presented to both hemispheres. The results showed that the compatibility effect was constant, irrespective of the perceptual load of the letter-string. Our findings suggested that selective attention is modulated by the resources of each hemisphere. PMID:18678063

  19. Apraxia and spatial inattention dissociate in left hemisphere stroke.

    PubMed

    Timpert, David C; Weiss, Peter H; Vossel, Simone; Dovern, Anna; Fink, Gereon R

    2015-10-01

    Theories of lateralized cognitive functions propose a dominance of the left hemisphere for motor control and of the right hemisphere for spatial attention. Accordingly, spatial attention deficits (e.g., neglect) are more frequently observed after right-hemispheric stroke, whereas apraxia is a common consequence of left-hemispheric stroke. Clinical reports of spatial attentional deficits after left hemisphere (LH) stroke also exist, but are often neglected. By applying parallel analysis (PA) and voxel-based lesion-symptom mapping (VLSM) to data from a comprehensive neuropsychological assessment of 74 LH stroke patients, we here systematically investigate the relationship between spatial inattention and apraxia and their neural bases. PA revealed that apraxic (and language comprehension) deficits loaded on one common component, while deficits in attention tests were explained by another independent component. Statistical lesion analyses with the individual component scores showed that apraxic (and language comprehension) deficits were significantly associated with lesions of the left superior longitudinal fascicle (SLF). Data suggest that in LH stroke spatial attention deficits dissociate from apraxic (and language comprehension) deficits. These findings contribute to models of lateralised cognitive functions in the human brain. Moreover, our findings strongly suggest that LH stroke patients should be assessed systematically for spatial attention deficits so that these can be included in their rehabilitation regime. PMID:26298504

  20. [The gaze and functional hemispheric activation in normal subjects].

    PubMed

    Gallois, P; Hautecoeur, P; Ovelacq, E; Gras, P; Dereux, J F

    1985-01-01

    The aim of this work was to determine whether the study of lateral and vertical conjugated eye movement could serve as an indicator of the functional hemispheric activation. Questions of vocabulary, calculation, logic (V.C.L.) and visuo-spatial instructions, as well as music-listening (V.S.M.), were proposed to 60 control subjects (21 men, 39 women). They were divided in 4 groups of 15 according to their laterality (complete right handed, incomplete right handed, ambidextrous, left handed). Eye movements were recorded using a video system. Deviations of the eyes towards the right and left, upwards and downwards, as well as episodes of staring were noted. Concerning V.C.L. questions, there was a significant correlation between conjugated lateral eye movements and the contralateral hemisphere activation. The study of vertical eye movements revealed a correlation only in complete right-handed and left-handed subjects: deviation upwards during the left hemisphere activation, and downwards during the right hemisphere activation. This pattern of response was no longer found during V.S.M. questions which, in the 4 groups, evoked staring episodes in 56 to 72 per cent of the cases. The negative emotional stimuli (emotional words, non verbal stimuli, stressful situations) evoked preferentially, but independently of laterality, deviations towards the left and downwards in favor of the right hemisphere activation. This method of observation of eye movements seems therefore of significant interest in Neuropsychology, provided that methodologic rules are rigorously respected.

  1. On inter-hemispheric coupling in the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Karlsson, Bodil; Bailey, S.; Benze, S.; Gumbel, J.; Harvey, V. L.; Kürnich, H.; Lossow, S.; McLandress, D. Marsh, C.; Merkel, A. W.; Mills, M.; Randall, C. E.; Russell, J.; Shepherd, T. G.

    On inter-hemispheric coupling in the middle atmosphere From recent studies it is evident that planetary wave activity in the winter hemisphere influences the high-latitude summer mesosphere on the opposite side of the globe. This is an extraordinary example of multi-scale wave-mean flow interaction. The first indication of this inter-hemispheric coupling came from a model study by Becker and Schmitz (2003). Since then, the results have been reproduced in several models, and observations have confirmed the existence of this link. We present current understanding of inter-hemispheric coupling and its consequences for the middle atmosphere, focusing on the summer mesosphere where polar mesospheric clouds (PMCs) form. The results shown are based on year-to-year and intra-seasonal variability in PMCs ob-served by the Odin satellite and the Aeronomy of Ice in the Mesosphere (AIM) satellite, as well as on model results from the extended Canadian Middle Atmosphere Model (CMAM), the Whole Atmosphere Community Climate Model (WACCM) and the Kühlungsborn Mechanis-u tic general Circulation Model (KMCM). The latter has been used to pinpoint the proposed mechanism behind the inter-hemispheric coupling.

  2. Light depolarization in off-specular reflection on submicro rough metal surfaces with imperfectly random roughness.

    PubMed

    Liu, Linsheng; Li, Xuefeng; Nonaka, Kazuhiro

    2015-02-01

    Depolarization at a rough surface relates to its roughness and irregularity (e.g., sags and crests) besides the material property. However, there is still lack of general theory to clearly describe the relationship between depolarization ratios and surface conditions, and one important reason is that the mechanism of depolarization relates to geometric parameters such as microcosmic height/particle distributions of sub-micro to nm levels. To study the mechanism in more detail, a compact laser instrument is developed, and depolarization information of a linearly polarized incident light is used for analyzing the roughness, during which a He-Ne laser source (λ = 632.8 nm) is used. Three nickel specimens with RMS roughness (Rq) less than λ/4 are fabricated and tested. Six different areas in each specimen are characterized in detail using an AFM. Rq are in the range of 34.1-155.0 nm, and the heights are non-Gaussian distribution in the first specimen and near-Gaussian distribution in the others. Off-specular inspection is carried out exactly on these 18 characterized areas, and results show that the cross-polarization ratios match quite well with Rq values of the first sample that has Rq ≤ λ/10 (or Rt ≤ λ), while they match well with maximum height, Rt, values of the other two that have Rt > λ (the maximum derivation is 11%). In addition, since this instrument is simple, portable, stable, and low-cost, it has great potential for practical online roughness testing after a linear calibration.

  3. Dust Devils on Mars: Effects of Surface Roughness on Particle Threshold

    NASA Technical Reports Server (NTRS)

    Neakrase, Lynn D.; Greeley, Ronald; Iversen, James D.; Balme, Matthew L.; Foley, Daniel J.; Eddlemon, Eric E.

    2005-01-01

    Dust devils have been proposed as effective mechanisms for lofting large quantities of dust into the martian atmosphere. Previous work showed that vortices lift dust more easily than simple boundary layer winds. The aim of this study is to determine experimentally the effects of non-erodable roughness elements on vortex particle threshold through laboratory simulations of natural surfaces. Additional information is included in the original extended abstract.

  4. Theory of adhesion: Role of surface roughness

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.; Scaraggi, M.

    2014-09-01

    We discuss how surface roughness influences the adhesion between elastic solids. We introduce a Tabor number which depends on the length scale or magnification, and which gives information about the nature of the adhesion at different length scales. We consider two limiting cases relevant for (a) elastically hard solids with weak (or long ranged) adhesive interaction (DMT-limit) and (b) elastically soft solids with strong (or short ranged) adhesive interaction (JKR-limit). For the former cases we study the nature of the adhesion using different adhesive force laws (F ˜ u-n, n = 1.5-4, where u is the wall-wall separation). In general, adhesion may switch from DMT-like at short length scales to JKR-like at large (macroscopic) length scale. We compare the theory predictions to results of exact numerical simulations and find good agreement between theory and simulation results.

  5. Enhanced Thermoelectric Performance in Rough Silicon Nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Renkun; Hochbaum, Allon I.; Diaz Delgado, Raul; Liang, Wenjie; Garnett, Erik C.; Najarian, Mark; Majumdar, Arun; Yang, Peidong

    2008-03-01

    Due to the disparity between electron (<10 nm) and phonon ( ˜100 nm) mean free paths in silicon, nanostructured Si could effectively block phonon transport by boundary scattering while maintaining electron transport, thereby enhancing thermoelectric figure of merit, ZT. Here we report the wafer-scale electrochemical synthesis and thermoelectric characterization of rough Si nanowires with enhanced ZT, relative to the bulk material. Single nanowire measurements show that their electrical resistivity and Seebeck coefficient are similar to those of bulk Si with similar dopant concentration. Thin nanowires, however, exhibit a 100-fold reduction in thermal conductivity (k), yielding a large ZT = 0.6 at room temperature. Although bulk Si is a poor thermoelectric material, Si nanowire arrays show promise as high-performance, scalable thermoelectric materials.

  6. Bounds for convection between rough boundaries

    NASA Astrophysics Data System (ADS)

    Goluskin, David; Doering, Charles R.

    2016-10-01

    We consider Rayleigh-B\\'enard convection in a layer of fluid between rough no-slip boundaries where the top and bottom boundary heights are functions of the horizontal coordinates with square-integrable gradients. We use the background method to derive an upper bound on mean heat flux across the layer for all admissible boundary geometries. This flux, normalized by the temperature difference between the boundaries, can grow with the Rayleigh number ($Ra$) no faster than ${\\cal O}(Ra^{1/2})$ as $Ra \\rightarrow \\infty$. Our analysis yields a family of similar bounds, depending on how various estimates are tuned, but every version depends explicitly on the boundary geometry. In one version the coefficient of the ${\\cal O}(Ra^{1/2})$ leading term is $0.242 + 2.925\\Vert\

  7. Manning's roughness coefficient for Illinois streams

    USGS Publications Warehouse

    Soong, David T.; Prater, Crystal D.; Halfar, Teresa M.; Wobig, Loren A.

    2012-01-01

    Manning's roughness coefficients for 43 natural and constructed streams in Illinois are reported and displayed on a U.S. Geological Survey Web site. At a majority of the sites, discharge and stage were measured, and corresponding Manning's coefficients—the n-values—were determined at more than one river discharge. The n-values discussed in this report are computed from data representing the stream reach studied and, therefore, are reachwise values. Presentation of the resulting n-values takes a visual-comparison approach similar to the previously published Barnes report (1967), in which photographs of channel conditions, description of the site, and the resulting n-values are organized for each site. The Web site where the data can be accessed and are displayed is at URL http://il.water.usgs.gov/proj/nvalues/.

  8. Intermittency and rough-pipe turbulence.

    PubMed

    Mehrafarin, Mohammad; Pourtolami, Nima

    2008-05-01

    Recently, by analyzing the measurement data of Nikuradze [NACA Tech. Memo No. 1292 (1950)], it has been proposed [N. Goldenfeld, Phys. Rev. Lett. 96, 044503 (2006)] that the friction factor, f , of rough-pipe flow obeys a scaling law in the turbulent regime. Here, we provide a phenomenological scaling argument to explain this law and demonstrate how intermittency modifies the scaling form, thereby relating f to the intermittency exponent, eta . By statistically analyzing the measurement data of f , we infer a satisfactory estimate for eta ( approximately 0.02) , the inclusion of which is shown to improve the data-collapse curve. This provides empirical evidence for intermittency other than the direct measurement of velocity fluctuations.

  9. Effects of Roughness on Scatterometry Signatures

    NASA Astrophysics Data System (ADS)

    Foldyna, M.; Germer, T. A.; Bergner, B. C.

    2011-11-01

    We used azimuthally-resolved spectroscopic Mueller matrix ellipsometry to study a periodic silicon line structure with and without artificially-generated line edge roughness (LER). Grating profiles were determined from multiple azimuthal configurations, focusing the incident beam into a 60 μm spot. We used rigorous numerical modeling, taking into account the finite numerical aperture and determining the profile shape using a four trapezoid model for the line profile. Data obtained from the perturbed and unperturbed gratings were fit using the same model, and the resulting root-mean-square error (RMSE) values were compared. The comparison shows an increase in RMSE values for the perturbed grating that can be attributed to the effects of LER.

  10. Enhanced thermoelectric performance of rough silicon nanowires.

    PubMed

    Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz; Liang, Wenjie; Garnett, Erik C; Najarian, Mark; Majumdar, Arun; Yang, Peidong

    2008-01-10

    Approximately 90 per cent of the world's power is generated by heat engines that use fossil fuel combustion as a heat source and typically operate at 30-40 per cent efficiency, such that roughly 15 terawatts of heat is lost to the environment. Thermoelectric modules could potentially convert part of this low-grade waste heat to electricity. Their efficiency depends on the thermoelectric figure of merit ZT of their material components, which is a function of the Seebeck coefficient, electrical resistivity, thermal conductivity and absolute temperature. Over the past five decades it has been challenging to increase ZT > 1, since the parameters of ZT are generally interdependent. While nanostructured thermoelectric materials can increase ZT > 1 (refs 2-4), the materials (Bi, Te, Pb, Sb, and Ag) and processes used are not often easy to scale to practically useful dimensions. Here we report the electrochemical synthesis of large-area, wafer-scale arrays of rough Si nanowires that are 20-300 nm in diameter. These nanowires have Seebeck coefficient and electrical resistivity values that are the same as doped bulk Si, but those with diameters of about 50 nm exhibit 100-fold reduction in thermal conductivity, yielding ZT = 0.6 at room temperature. For such nanowires, the lattice contribution to thermal conductivity approaches the amorphous limit for Si, which cannot be explained by current theories. Although bulk Si is a poor thermoelectric material, by greatly reducing thermal conductivity without much affecting the Seebeck coefficient and electrical resistivity, Si nanowire arrays show promise as high-performance, scalable thermoelectric materials.

  11. Improving the outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via rough internal interfaces.

    PubMed

    Riedel, Boris; Kaiser, Inga; Hauss, Julian; Lemmer, Uli; Gerken, Martina

    2010-11-01

    We present low-cost texturing methods to produce different surface roughnesses on glass substrates. Using sand blasting, abrasion and wet etching we achieve roughnesses of about 50 nm to 250 nm (root mean squared roughness Rq). These textured substrates are used as extraction elements for guided modes and substrate modes in organic light-emitting diodes (OLEDs). We evaporate 50 nm of the high index material Ta₂O₅ on the textured substrate, which acts as waveguide layer, and flatten it with the transparent photoresist SU-8. On top of that, we fabricate indium tin oxide (ITO)-free OLEDs, which are characterized by electroluminescence and photoluminescence measurements. The devices with rough interfaces obtain an up to 37.4% and 15.5% (at 20 mA/cm²) enhanced emission and it is shown that the enhancement is due to an increased outcoupling efficiency.

  12. Future lunar mission Active X-ray Spectrometer development: Surface roughness and geometry studies

    NASA Astrophysics Data System (ADS)

    Naito, M.; Hasebe, N.; Kusano, H.; Nagaoka, H.; Kuwako, M.; Oyama, Y.; Shibamura, E.; Amano, Y.; Ohta, T.; Kim, K. J.; Lopes, J. A. M.

    2015-07-01

    The Active X-ray Spectrometer (AXS) is considered as one of the scientific payload candidates for a future Japanese mission, SELENE-2. The AXS consists of pyroelectric X-ray generators and a Silicon Drift Detector to conduct X-Ray Fluorescence spectroscopy (XRF) on the Moon to measure major elements: Mg, Al, Si, Ca, Ti, and Fe; minor elements: Na, K, P, S, Cr and Mn; and the trace element Ni depending on their concentration. Some factors such as roughness, grain size and porosity of sample, and the geometry of X-ray incidence, emission and energy will affect the XRF measurements precision. Basic studies on the XRF are required to develop the AXS. In this study, fused samples were used to make homogeneous samples free from the effect of grain size and porosity. Experimental and numerical studies on the XRF were conducted to evaluate the effects from incidence and emission angles and surface roughness. Angle geometry and surface roughness will be optimized for the design of the AXS on future missions from the results of the experiment and the numerical simulation.

  13. Hemispheric lateralization of singing after intracarotid sodium amylobarbitone1

    PubMed Central

    Gordon, H. W.; Bogen, J. E.

    1974-01-01

    Hemispheric lateralization of singing was investigated in patients who had transient hemiplegia after intracarotid injection of sodium amylobarbitone. It was found that after right carotid injection singing was markedly deficient, whereas speech remained relatively intact. Songs were sung in a monotone, devoid of correct pitch rendering; rhythm was much less affected. By contrast, singing was less disturbed than speech after left carotid injection. The observations indicated a double dissociation; the right hemisphere contributed more for singing, whereas the left demonstrated its usual dominance for speech. A model is proposed that encompasses audible stimuli as well as tactual or visual into a scheme of functional lateralization wherein the right hemisphere specializes in processing a complete, time-independent stimulus configuration and the left in a series of successive, time-dependent units. PMID:4844140

  14. Brain hemisphere dominance and vocational preference: a preliminary analysis.

    PubMed

    Szirony, Gary Michael; Pearson, L Carolyn; Burgin, John S; Murray, Gerald C; Elrod, Lisa Marie

    2007-01-01

    Recent developments in split-brain theory add support to the concept of specialization within brain hemispheres. Holland's vocational personality theory may overlap with Human Information Processing (HIP) characteristics. Holland's six RIASEC codes were developed to identify vocational personality characteristics, and HIP scales were designed to measure hemispheric laterality. Relationships between the two scales were evaluated through canonical correlation with some significant results, however not all Holland scale scores correlated with left, right, or integrated hemispheric preference. Additional findings related to participants self-perception of music and math ability were also correlated. Findings on this added analysis revealed a high correlation between perception of musical ability and right brain function but not between mathematical concept and left brain alone. Implications regarding vocational choice and work are discussed.

  15. Hemispherical reflectance model for passive images in an outdoor environment.

    PubMed

    Kim, Charles C; Thai, Bea; Yamaoka, Neil; Aboutalib, Omar

    2015-05-01

    We present a hemispherical reflectance model for simulating passive images in an outdoor environment where illumination is provided by natural sources such as the sun and the clouds. While the bidirectional reflectance distribution function (BRDF) accurately produces radiance from any objects after the illumination, using the BRDF in calculating radiance requires double integration. Replacing the BRDF by hemispherical reflectance under the natural sources transforms the double integration into a multiplication. This reduces both storage space and computation time. We present the formalism for the radiance of the scene using hemispherical reflectance instead of BRDF. This enables us to generate passive images in an outdoor environment taking advantage of the computational and storage efficiencies. We show some examples for illustration.

  16. Trends in Northern Hemisphere surface cyclone frequency and intensity

    USGS Publications Warehouse

    McCabe, G.J.; Clark, M.P.; Serreze, M.C.

    2001-01-01

    One of the hypothesized effects of global warming from increasing concentrations of greenhouse gases is a change in the frequency and/or intensity of extratropical cyclones. In this study, winter frequencies and intensities of extratropical cyclones in the Northern Hemisphere for the period 1959-97 are examined to determine if identifiable trends are occurring. Results indicate a statistically significant decrease in midlatitude cyclone frequency and a significant increase in high-latitude cyclone frequency. In addition, storm intensity has increased in both the high and midlatitudes. The changes in storm frequency correlate with changes in winter Northern Hemisphere temperature and support hypotheses that global warming may result in a northward shift of storm tracks in the Northern Hemisphere.

  17. A Southern Hemisphere atmospheric history of carbon monoxide from South Pole firn air

    NASA Astrophysics Data System (ADS)

    Verhulst, K. R.; Aydin, M.; Novelli, P. C.; Holmes, C. D.; Prather, M. J.; Saltzman, E. S.

    2013-12-01

    Carbon monoxide (CO) is a reactive trace gas and is important to tropospheric photochemistry as a major sink of hydroxyl radicals (OH). Major sources of CO are fossil fuel combustion, linked mostly to automotive emissions, biomass burning, and oxidation of atmospheric methane. Understanding changes in carbon monoxide over the past century will improve our understanding of man's influence on the reactivity of the atmosphere. Little observational information is available about CO levels and emissions prior to the 1990s, particularly for the Southern Hemisphere. The NOAA global flask network provides the most complete instrumental record of CO, extending back to 1988. Annually averaged surface flask measurements suggest atmospheric CO levels at South Pole were relatively stable from 2004-2009 at about 51 nmol mol-1 [Novelli and Masarie, 2013]. In this study, a 20th century atmospheric history of CO is reconstructed from South Pole firn air measurements, using a 1-D firn air diffusion model. Firn air samples were collected in glass flasks from two adjacent holes drilled from the surface to 118 m at South Pole, Antarctica during the 2008/2009 field season and CO analysis was carried out by NOAA/CCG. Carbon monoxide levels increase from about 45 nmol mol-1 in the deepest firn sample at 116 m to 52 nmol mol-1 at 107 m, and remain constant at about 51-52 nmol mol-1 at shallower depths. Atmospheric histories based on the firn air reconstructions suggest that CO levels over Antarctica increased by roughly 40% (from about 36 to 50 nmol mol-1) between 1930-1990, at a rate of about 0.18 nmol mol-1 yr-1. Firn air and surface air results suggest the rate of CO increase at South Pole slowed considerably after 1990. The firn air-based atmospheric history is used to infer changes in Southern Hemisphere CO emissions over the 20th century.

  18. Time variability of hemispherical dynamos: An application to Mars

    NASA Astrophysics Data System (ADS)

    Dietrich, W. D.; Wicht, J. W.; Christensen, U. C.

    2012-04-01

    The hemispherical magnetization of the martian crust could be the product of large scale demagnetization processes in the northern hemisphere. Alternative, the ancient martian dynamo, that ceased more than four billion years ago, may have produced an already hemispherical magnetic field. Using numerical simulations we explore the second scenario imposing a sinusoidal core-mantle boundary (CMB) heat flux pattern, putting the minimum at the north pole and the maximum at the south pole. Since Mars likely has never developed an inner core our dynamo model is exclusively driven by secular cooling. The special combination of thermal boundary conditions and driving promotes a flow that is dominated by equatorially anti-symmetric strong thermal winds. These are the consequence of the large temperature differences developing between the norther hemisphere of the core, which remains hot, and the southern hemisphere, which is still cooled by plume like convection. The thermal winds result in a strongω-effect so that the dynamo is of the αω-type rather than of the α2-type more typical for our columnar convection cases. Already rather mild perturbations of the CMB heat flux pattern lead to strong magnetic oscillations that include fast field reversals. Up to moderate perturbation amplitudes the oscillations seems to be the expression of Parker waves. Larger amplitudes, however, lead to more complex behavior. One result of these oscillation is that the magnetic field averages out over relatively short periods in the order of tens of thousand years. We can therefore exclude magnetization scenarios assuming that the crustal magnetization was acquired in several overlying layers over a longer time frame. It seems more likely that the magnetization results from a patchwork of localized lava flows sampling typical magnetic field strengths. This scenario leads to magnetic field amplitudes similar to those deduced from martian meteorites and hemisphericity measures like those

  19. Asymmetric field-aligned currents in the conjugate hemispheres

    NASA Astrophysics Data System (ADS)

    Reistad, J. P.; Ostgaard, N.; Oksavik, K.; Laundal, K. M.

    2012-12-01

    Earlier studies using simultaneous imaging from space of the Aurora Borealis (Northern Hemisphere) and Aurora Australis (Southern Hemisphere) have revealed that the aurora can experience a high degree of asymmetry between the two hemispheres. Using 19 hours of simultaneous global imaging from both hemispheres (IMAGE satellite in north and Polar satellite in south) in conjunction with the entire IMAGE WIC database, we investigate the importance of various mechanisms thought to generate the asymmetries seen in global imaging. In terms of asymmetric or interhemispheric field-aligned currents, three candidate mechanisms have been suggested: 1) Hemispheric differences in solar wind dynamo efficiency mainly controlled by IMF Bx leading to asymmetric region 1 currents; 2) conductivity differences in conjugate areas; and 3) penetration of IMF By into the closed magnetosphere possibly generating a pair of oppositely directed interhemispheric currents. From the 19 hour conjugate dataset we find that the solar wind dynamo is likely to be the most important controlling mechanism for asymmetric bright aurora in the polar part of the nightside oval. Here we present statistical analyses of candidates 1) and 3). Using the entire IMAGE WIC database, a statistical analysis of the auroral brightness distribution along and across the Northern Hemisphere oval is carried out. For each candidate, two extreme cases (+/- IMF Bx for 1) and +/- IMF By for 3)) are compared during times non-favorable for the other two mechanisms. Our results indicate that solar wind dynamo induced currents play an important role for the nightside auroral brightness in an average sense. Also, signatures of interhemispheric currents due to IMF By penetration are seen in our statistics, although this effect is somehow weaker.

  20. Hemispheric lateralization of verbal and spatial working memory during adolescence.

    PubMed

    Nagel, Bonnie J; Herting, Megan M; Maxwell, Emily C; Bruno, Richard; Fair, Damien

    2013-06-01

    Adult functional magnetic resonance imaging (fMRI) literature suggests that a left-right hemispheric dissociation may exist between verbal and spatial working memory (WM), respectively. However, investigation of this type has been obscured by incomparable verbal and spatial WM tasks and/or visual inspection at arbitrary thresholds as means to assess lateralization. Furthermore, it is unclear whether this hemispheric lateralization is present during adolescence, a time in which WM skills are improving, and whether there is a developmental association with laterality of brain functioning. This study used comparable verbal and spatial WM n-back tasks during fMRI and a bootstrap analysis approach to calculate lateralization indices (LIs) across several thresholds to examine the potential of a left-right WM hemispheric dissociation in healthy adolescents. We found significant left hemispheric lateralization for verbal WM, most notably in the frontal and parietal lobes, as well as right hemisphere lateralization for spatial WM, seen in frontal and temporal cortices. Although no significant relationships were observed between LI and age or LI and performance, significant age-related patterns of brain activity were demonstrated during both verbal and spatial WM. Specifically, increased adolescent age was associated with less activity in the default mode brain network during verbal WM. In contrast, increased adolescent age was associated with greater activity in task-positive posterior parietal cortex during spatial working memory. Our findings highlight the importance of utilizing non-biased statistical methods and comparable tasks for determining patterns of functional lateralization. Our findings also suggest that, while a left-right hemispheric dissociation of verbal and spatial WM is apparent by early adolescence, age-related changes in functional activation during WM are also present.

  1. Hemispheric lateralization of verbal and spatial working memory during adolescence

    PubMed Central

    Nagel, Bonnie J.; Herting, Megan M.; Maxwell, Emily C.; Bruno, Richard; Fair, Damien

    2013-01-01

    Adult functional magnetic resonance imaging (fMRI) literature suggests that a left-right hemispheric dissociation may exist between verbal and spatial working memory (WM), respectively. However, investigation of this type has been obscured by incomparable verbal and spatial WM tasks and/or visual inspection at arbitrary thresholds as means to assess lateralization. Furthermore, it is unclear whether this hemispheric lateralization is present during adolescence, a time in which WM skills are improving, and whether there is a developmental association with laterality of brain functioning. This study used comparable verbal and spatial WM n-back tasks during fMRI and a bootstrap analysis approach to calculate lateralization indices (LI) across several thresholds to examine the potential of a left-right WM hemispheric dissociation in healthy adolescents. We found significant left hemispheric lateralization for verbal WM, most notably in the frontal and parietal lobes, as well as right hemisphere lateralization for spatial WM, seen in frontal and temporal cortices. Although no significant relationships were observed between LI and age or LI and performance, significant age-related patterns of brain activity were demonstrated during both verbal and spatial WM. Specifically, increased adolescent age was associated with less activity in the default mode brain network during verbal WM. In contrast, increased adolescent age was associated with greater activity in task-positive posterior parietal cortex during spatial working memory. Our findings highlight the importance of utilizing non-biased statistical methods and comparable tasks for determining patterns of functional lateralization. Our findings also suggest that, while a left-right hemispheric dissociation of verbal and spatial WM is apparent by early adolescence, age-related changes in functional activation during WM are also present. PMID:23511846

  2. Northern Hemisphere sea level pressure synchronization and its effect on Northern Hemisphere temperature variability

    NASA Astrophysics Data System (ADS)

    Verbeten, Joshua D.

    We consider monthly anomalies of zonally averaged sea level pressure (SLP) in the Northern Hemisphere (NH) from two reanalysis products. A measure of synchronization utilizing correlation coefficient in a five-year sliding window across all latitude pairs is computed over this data. It is found that there have been two NH SLP synchronization episodes since the 1890s, which are significant to approximately three standard deviations. Similar statistically significant synchronization events are seen in simulations of 42 global climate models (GCM) with the dominant synchronization pattern in GCMs proving dynamically consistent with observations. Furthermore, a GCM-based NH temperature anomaly composite shows a flattening of temperature time series in a decade prior to the synchronization episodes, a brief warming trend just after episodes, and a cooling trend thereafter, all of which agrees with the temperature structure around the observed synchronization episode seen in the 1890s. NH sea ice concentration anomalies are also composited from global climate models and show a decrease in ice concentration approximately one to two years after the maximum increase in temperature and an increase in ice concentration one to two years after the maximum decrease in temperature. These results have substantial implications for climate prediction up to a decade in advance.

  3. Mean flow scaling in transitionally-rough turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Schultz, Michael P.; Flack, Karen A.

    2008-11-01

    Results of an experimental investigation of the flow over several mildly-rough surfaces are presented. Three fine-grit sandpaper surfaces and two commercial ship bottom paints were tested over a large Reynolds number range (Reθ = 2,600 -- 30,000) in order to document the roughness function (δU^+) behavior in the transitionally-rough flow regime. In all cases the root-mean-square roughness height was a very small fraction of the boundary layer thickness (krms/δ<1/1,100). The results indicate that the mean velocity profiles for the rough surfaces agree with smooth-wall profiles using outer scaling. However, some significant differences in the behavior of δU^+ in the transitionally-rough flow regime are noted among the five rough surfaces. For example, the roughness functions for the sandpaper surfaces show reasonable agreement with the results of Nikuradse for uniform sand, while the paint surfaces do not. These results, along with others from the literature, will be used to illustrate how surface topography may give rise to the differences that are observed in roughness functions for the transitionally-rough regime.

  4. Influence of rough and smooth walls on macroscale granular segregation patterns.

    PubMed

    D'Ortona, Umberto; Thomas, Nathalie; Lueptow, Richard M

    2016-02-01

    Size bidisperse granular materials in a spherical tumbler segregate into two different patterns of three bands with either small particles at the equator and large particles at the poles or vice versa, depending upon the fill level in the tumbler. Here we use discrete element method simulations with supporting qualitative experiments to explore the effect of the tumbler wall roughness on the segregation pattern, modeling the tumbler walls as either a closely packed monolayer of fixed particles resulting in a rough wall or a frictional geometrically smooth wall. Even though the tumbler wall is in contact with the flowing layer only at its periphery, the impact of wall roughness is profound. Smooth walls tend toward a small-large-small (SLS) band pattern at the pole-equator-pole at all but the highest fill fractions; rough walls tend toward a large-small-large (LSL) band pattern at all but the lowest fill fractions. This comes about because smooth walls induce poleward axial drift of small particles and an equator-directed drift for large particles, resulting in an SLS band pattern. On the other hand, rough walls result in both sizes of particles moving poleward at the surface of the flow. Due to radial segregation, small particles percolate lower in the flowing layer and when arriving near the pole are caught in the return current drift that carries them back toward the equator incrementally with each passage through the flowing layer, while large particles remain at the surface near the pole, resulting in an LSL band pattern. The tendency toward either of the two segregation patterns depends on the fill level in the tumbler and the roughness of the tumbler's bounding wall.

  5. A wind tunnel study of flows over idealised urban surfaces with roughness sublayer corrections

    NASA Astrophysics Data System (ADS)

    Ho, Yat-Kiu; Liu, Chun-Ho

    2016-08-01

    Dynamics in the roughness (RSLs) and inertial (ISLs) sublayers in the turbulent boundary layers (TBLs) over idealised urban surfaces are investigated analytically and experimentally. In this paper, we derive an analytical solution to the mean velocity profile, which is a continuous function applicable to both RSL and ISL, over rough surfaces in isothermal conditions. Afterwards, a modified mixing-length model for RSL/ISL transport is developed that elucidates how surface roughness affects the turbulence motions. A series of wind tunnel experiments are conducted to measure the vertical profiles of mean and fluctuating velocities, together with momentum flux over various configurations of surface-mounted ribs in cross flows using hot-wire anemometry (HWA). The analytical solution agrees well with the wind tunnel result that improves the estimate to mean velocity profile over urban surfaces and TBL dynamics as well. The thicknesses of RSL and ISL are calculated by monitoring the convergence/divergence between the temporally averaged and spatio-temporally averaged profiles of momentum flux. It is found that the height of RSL/ISL interface is a function of surface roughness. Examining the direct, physical influence of roughness elements on near-surface RSL flows reveals that the TBL flows over rough surfaces exhibit turbulence motions of two different length scales which are functions of the RSL and ISL structure. Conclusively, given a TBL, the rougher the surface, the higher is the RSL intruding upward that would thinner the ISL up to 50 %. Therefore, the conventional ISL log-law approximation to TBL flows over urban surfaces should be applied with caution.

  6. Large impact on Callisto`s southern hemisphere

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This mosaic of images showing a large 200 kilometer (120 mile) diameter impact crater on Callisto's southern hemisphere was obtained by the solid state imaging (CCD) system on board NASA's Galileo spacecraft during its eighth orbit of Jupiter. This crater is characterized by a bright circular area surrounded by a darker material excavated and ejected by the impact. Beyond this is a zone of rays which are oriented radially outward and contain material also thrown from the crater. Fewer smaller impact craters are visible in the ejecta blanket surrounding the large crater than in the areas more distant from the crater. This lack of craters superposed on the ejecta blanket and on the crater itself, together with the brightness of the central zone, is evidence that the large crater is a relatively young feature on Callisto. Scientists use information such as the number of craters in a given area together with the principle of superposition (in which younger landforms are 'on top' of older features) to determine the relative ages of features and terrains.

    North is to the top of the mosaic with the sun illuminating the surface from the left. The mosaic, centered at 55 degrees south latitude and 30 degrees west longitude, covers an area approximately 1400 kilometers (850 miles) by 1235 kilometers (740 miles), at a resolution of 867 meters (945 yards) per picture element. The images which make up this mosaic were taken on May 6, 1997, from an altitude of approximately 43,000 kilometers (26,000 miles) above the surface of Callisto.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  7. Mixing with piecewise isometries on a hemispherical shell

    NASA Astrophysics Data System (ADS)

    Park, Paul P.; Umbanhowar, Paul B.; Ottino, Julio M.; Lueptow, Richard M.

    2016-07-01

    We introduce mixing with piecewise isometries (PWIs) on a hemispherical shell, which mimics features of mixing by cutting and shuffling in spherical shells half-filled with granular media. For each PWI, there is an inherent structure on the hemispherical shell known as the exceptional set E, and a particular subset of E, E+, provides insight into how the structure affects mixing. Computer simulations of PWIs are used to visualize mixing and approximations of E+ to demonstrate their connection. While initial conditions of unmixed materials add a layer of complexity, the inherent structure of E+ defines fundamental aspects of mixing by cutting and shuffling.

  8. Quasi-static axisymmetric eversion hemispherical domes made of elastomers

    NASA Astrophysics Data System (ADS)

    Kabrits, Sergey A.; Kolpak, Eugeny P.

    2016-06-01

    The paper considers numerical solution for the problem of quasi-static axisymmetric eversion of a spherical shell (hemisphere) under action of external pressure. Results based on the general nonlinear theory of shells made of elastomers, proposed by K. F. Chernykh. It is used two models of shells based on the hypotheses of the Kirchhoff and Timoshenko, modified K.F. Chernykh for the case of hyperelastic rubber-like material. The article presents diagrams of equilibrium states of eversion hemispheres for both models as well as the shape of the shell at different points in the diagram.

  9. Geology of the southern hemisphere of Triton: No polar cap

    NASA Technical Reports Server (NTRS)

    Schenk, P.; Moore, J. M.

    1993-01-01

    The bright southern hemisphere, comprising Uhlanga Regio, is perhaps the most poorly understood geologic province on Triton. The entire bright southern hemisphere has been described as a bright polar 'cap', implying a seasonal origin, or as a permanent geologic terrain distinct from the equatorial terrains. Also, thermal models have predicted seasonal migration of frosts and ices from the presently sun-lit south latitudes to the dark northern latitudes. The distribution of frosts and geologic history of this region must be determined observationally. We reexamine the geology of this terrain with the goal of answering these questions.

  10. [Hemispheric hydroxyapatite coated cups in total hip arthroplasty].

    PubMed

    Blacha, J; Bednarek, A; Gagała, J

    1998-01-01

    The paper presents principles of implantation as well as clinical and radiological results of hemispheric hydroxyapatite coated cups use in total hip replacement. Eighty-seven patients (60 females, 27 males) aged from 16 to 72 years (mean 49 years) underwent 96 total hip replacements with the use of 51 ABG and 45 OCTOFIT hemispheric cups. Clinical results were satisfactory with an average Harris Hip Score of 89 to 91 at final follow-up. We have found total ingrowth and osteointegration of nearly all cups. In one case of acetabular reconstruction with bone grafts cup migration has been observed and revision was necessary.

  11. Multiple planetary flow regimes in the Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    Yoden, Shigeo; Shiotani, Masato; Hirota, Isamu

    1987-01-01

    Low-frequency variations in the general circulation of the Southern Hemisphere during 1983 were studied using daily geopotential height and temperature analyses for 12 pressure levels from 1000 mb up to 50 mb, performed by the National Meteorological Center of Japan. Results disclosed the presence, in the Southern Hemisphere troposphere, of an irregular fluctuation of two zonal mean geostrophic wind patterns (named single-jet and double-jet regimes) during wintertime. The fluctuation is characterized by the persistence of one geostrophic wind regime, with characteristic duration of a month, followed by a rather rapid transition to another regime.

  12. Cerebral melioidosis for the first time in the western hemisphere

    PubMed Central

    Vestal, Matthew L.; Wong, Emily B.; Milner, Dan A.; Gormley, William B.; Dunn, Ian F.

    2015-01-01

    This report is the first published case of cerebral melioidosis in the western hemisphere. In this paper the authors review the literature on neurological melioidosis and its presentation and treatment in endemic areas, describe the clinical course of this unique case of a presentation of the disease with cranial abscess in the US, review the pathological and radiological findings associated with this seminal case, and put forth recommendations for recognizing and treating possible future instances of the disease within the western hemisphere. PMID:23767895

  13. Rough surface mitigates electron and gas emission

    SciTech Connect

    Molvik, A

    2004-09-03

    Heavy-ion beams impinging on surfaces near grazing incidence (to simulate the loss of halo ions) generate copious amounts of electrons and gas that can degrade the beam. We measured emission coefficients of {eta}{sub e} {le} 130 and {eta}{sub 0} {approx} 10{sup 4} respectively, with 1 MeV K{sup +} incident on stainless steel. Electron emission scales as {eta}{sub e} {proportional_to} 1/cos({theta}), where {theta} is the ion angle of incidence relative to normal. If we were to roughen a surface by blasting it with glass beads, then ions that were near grazing incidence (90{sup o}) on smooth surface would strike the rims of the micro-craters at angles closer to normal incidence. This should reduce the electron emission: the factor of 10 reduction, Fig. 1(a), implies an average angle of incidence of 62{sup o}. Gas desorption varies more slowly with {theta} (Fig. 1(b)) decreasing a factor of {approx}2, and along with the electron emission is independent of the angle of incidence on a rough surface. In a quadrupole magnet, electrons emitted by lost primary ions are trapped near the wall by the magnetic field, but grazing incidence ions can backscatter and strike the wall a second time at an azimuth where magnetic field lines intercept the beam. Then, electrons can exist throughout the beam (see the simulations of Cohen, HIF News 1-2/04). The SRIM (TRIM) Monte Carlo code predicts that 60-70% of 1 MeV K{sup +} ions backscatter when incident at 88-89{sup o} from normal on a smooth surface. The scattered ions are mostly within {approx}10{sup o} of the initial direction but a few scatter by up to 90{sup o}. Ion scattering decreases rapidly away from grazing incidence, Fig. 1(c ). At 62 deg. the predicted ion backscattering (from a rough surface) is 3%, down a factor of 20 from the peak, which should significantly reduce electrons in the beam from lost halo ions. These results are published in Phys. Rev. ST - Accelerators and Beams.

  14. Numerical Solution of Light Scattered from and Transmitted through a Rough Dielectric Surface with Applications to Periodic Roughness and Isolated Structures

    NASA Technical Reports Server (NTRS)

    Sun, Wenbo; Videnn, Gorden; Lin, Bing; Hu, Yongxiang

    2007-01-01

    Light scattering and transmission by rough surfaces are of considerable interest in a variety of applications including remote sensing and characterization of surfaces. In this work, the finite-difference time domain technique is applied to calculate the scattered and transmitted electromagnetic fields of an infinite periodic rough surface. The elements of Mueller matrix for scattered light are calculated by an integral of the near fields over a significant number of periods of the surface. The normalized Mueller matrix elements of the scattered light and the spatial distribution of the transmitted flux for a monolayer of micron-sized dielectric spheres on a silicon substrate are presented. The numerical results show that the nonzero Mueller matrix elements of the system of the monolayer of dielectric spheres on a silicon substrate have specific maxima at some scattering angles. These maxima may be used in characterization of the feature of the system. For light transmitted through the monolayer of spheres, our results show that the transmitted energy focuses around the ray passing through centers of the spheres. At other locations, the transmitted flux is very small. The technique also may be used to calculate the perturbance of the electromagnetic field due to the presence of an isolated structure on the substrate.

  15. Extreme ultraviolet mask substrate surface roughness effects on lithography patterning

    SciTech Connect

    George, Simi; Naulleau, Patrick; Salmassi, Farhad; Mochi, Iacopo; Gullikson, Eric; Goldberg, Kenneth; Anderson, Erik

    2010-06-21

    In extreme ultraviolet lithography exposure systems, mask substrate roughness induced scatter contributes to LER at the image plane. In this paper, the impact of mask substrate roughness on image plane speckle is explicitly evaluated. A programmed roughness mask was used to study the correlation between mask roughness metrics and wafer plane aerial image inspection. We find that the roughness measurements by top surface topography profile do not provide complete information on the scatter related speckle that leads to LER at the image plane. We suggest at wavelength characterization by imaging and/or scatter measurements into different frequencies as an alternative for a more comprehensive metrology of the mask substrate/multilayer roughness effects.

  16. Shape, Topography and Roughness of 433 Eros

    NASA Technical Reports Server (NTRS)

    Cheng, A. F.; Barnouin-Jha, O.; Smith, D. E.; Zuber, M. T.

    2002-01-01

    A global topographic map of Eros shows that Himeros and Shoemaker Region are giant craters. The slope distributions as inferred from tracks and as inferred from surface elements are distinct, and the former is Gaussian at small slopes. Additional information is contained in the original extended abstract.

  17. The Northern Extent of the Southern Hemisphere Westerly Wind Belt since the Last Glacial Maximum Tracked via Sediment Provenance

    NASA Astrophysics Data System (ADS)

    Franzese, A. M.; Goldstein, S. L.; Hemming, S. R.

    2015-12-01

    The Southern Hemisphere Westerlies are known to be important for climate due to their effects on the global carbon cycle and on the global thermohaline circulation. Many proxy records suggest that the strength and position of the Southern Hemisphere westerly winds have changed significantly since the Last Glacial Maximum (LGM) at ~21,000 years BP. However, a recent compilation of all available evidence for Southern Hemisphere westerly wind changes during the Last Glacial Maximum (LGM) led to the conclusion that "their strength and position in colder and warmer climates relative to today remain a wide open question" (Kohfeld et al. (2013) Quaternary Science Reviews, 68). This paper finds that an equatorward displacement of the glacial winds is consistent with observations, but cannot rule out other, competing hypotheses. Using the geochemical characteristics of deep-sea sediments deposited along the Mid-Atlantic Ridge, I test the hypothesis that the LGM Southern Hemisphere Westerlies were displaced northward. In the central South Atlantic, dust can be delivered from South America via the Westerlies, or from Africa via the Trade Winds. The continental sources of South America and Africa have very different geochemical signatures, making it possible to distinguish between eolian transport via the Westerlies vs. the Trade Winds. Any northward shift in the Southern Hemisphere Westerlies would increase the northward extent of a South American provenance in sediments dominated by eolian sources. I will present geochemical provenance data (radiogenic isotope ratios; major and trace element concentrations) in a latitudinal transect of cores along the Mid-Atlantic Ridge that document whether, in fact, such a shift occurred, and put an important constraint on how far north the wind belts shifted during the LGM.

  18. Incorporating Skew into RMS Surface Roughness Probability Distribution

    NASA Technical Reports Server (NTRS)

    Stahl, Mark T.; Stahl, H. Philip.

    2013-01-01

    The standard treatment of RMS surface roughness data is the application of a Gaussian probability distribution. This handling of surface roughness ignores the skew present in the surface and overestimates the most probable RMS of the surface, the mode. Using experimental data we confirm the Gaussian distribution overestimates the mode and application of an asymmetric distribution provides a better fit. Implementing the proposed asymmetric distribution into the optical manufacturing process would reduce the polishing time required to meet surface roughness specifications.

  19. Origin of a 'Southern Hemisphere' geochemical signature in the Arctic upper mantle.

    PubMed

    Goldstein, Steven L; Soffer, Gad; Langmuir, Charles H; Lehnert, Kerstin A; Graham, David W; Michael, Peter J

    2008-05-01

    The Gakkel ridge, which extends under the Arctic ice cap for approximately 1,800 km, is the slowest spreading ocean ridge on Earth. Its spreading created the Eurasian basin, which is isolated from the rest of the oceanic mantle by North America, Eurasia and the Lomonosov ridge. The Gakkel ridge thus provides unique opportunities to investigate the composition of the sub-Arctic mantle and mantle heterogeneity and melting at the lower limits of seafloor spreading. The first results of the 2001 Arctic Mid-Ocean Ridge Expedition (ref. 1) divided the Gakkel ridge into three tectonic segments, composed of robust western and eastern volcanic zones separated by a 'sparsely magmatic zone'. On the basis of Sr-Nd-Pb isotope ratios and trace elements in basalts from the spreading axis, we show that the sparsely magmatic zone contains an abrupt mantle compositional boundary. Basalts to the west of the boundary display affinities to the Southern Hemisphere 'Dupal' isotopic province, whereas those to the east-closest to the Eurasian continent and where the spreading rate is slowest-display affinities to 'Northern Hemisphere' ridges. The western zone is the only known spreading ridge outside the Southern Hemisphere that samples a significant upper-mantle region with Dupal-like characteristics. Although the cause of Dupal mantle has been long debated, we show that the source of this signature beneath the western Gakkel ridge was subcontinental lithospheric mantle that delaminated and became integrated into the convecting Arctic asthenosphere. This occurred as North Atlantic mantle propagated north into the Arctic during the separation of Svalbard and Greenland. PMID:18451860

  20. Did the Mid-Pliocene warmth bring the Northern Hemisphere Chill?

    NASA Astrophysics Data System (ADS)

    Rosenthal, Y.; Woodard, S. C.; Evans, D. A.; Haynes, L.; Sosdian, S. M.; Lear, C. H.; Hoenisch, B.; Erez, J.

    2015-12-01

    The relatively fast transition from the warm Pliocene to the Northern Hemisphere Glaciation (NHG) is puzzling. We have previously suggested that expansion of Antarctic glaciation following the mid-Pliocene warm period altered the oceanic circulation and inter-hemispheric transfer of heat and salt thereby providing a dynamic trigger for the intensification of the NHG at ~2.75 Ma and the ensuing glacial cycles (Woodard et al., 2014). Here we explore the hypothesis that enhanced chemical weathering under the warm Pliocene conditions contributed to the gradual cooling leading to the dynamic shift in ocean circulation. Using foraminiferal core-top and culture calibrations we have developed a new multi-elemental proxy approach for reconstructing changes in ocean calcium ([Ca]) and other major ion concentrations throughout the past ~3 Myr. Foraminiferal records from several drill sites in the Atlantic and Pacific Oceans suggest that seawater [Ca] was ~20±5% higher during the mid-Pliocene period (~2.7-3.2 Ma) than at present, and gradually reaching modern seawater concentration by the early Pleistocene. Other seawater ion concentrations (e.g., Sr, Li, B) were also significantly higher at that time than at present. Correction for the estimated change in seawater Mg/Ca yields mid-Pliocene sea surface temperatures in the western equatorial Pacific ~1-2° warmer than today. We suggest that the higher seawater major-ion concentrations, reconstructed here, reflect enhanced chemical weathering, likely due to more intense tropical hydrologic cycle at that time. The implied increase in seawater alkalinity under the mid-Pliocene warm conditions could have acted to sequester atmospheric CO2 thus providing a negative feedback that possibly contributed to global cooling. References: Woodard, S.C., Rosenthal, Y., Miller, K.G., Wright, J.V., Chiu, B.K. and K.T. Lawrence. (2014). Antarctic role in Northern Hemisphere Glaciation. Science, 346:847-850.