[Role of hemoglobin affinity to oxygen in adaptation to hypoxemia].
Kwasiborski, Przemysław Jerzy; Kowalczyk, Paweł; Zieliński, Jakub; Przybylski, Jacek; Cwetsch, Andrzej
2010-04-01
One of the basic mechanisms of adapting to hypoxemia is a decrease in the affinity of hemoglobin for oxygen. This process occurs mainly due to the increased synthesis of 2,3-diphosphoglycerate (2,3-DPG) in the erythrocytes, as well as through the Bohr effect. Hemoglobin with decreased affinity for oxygen increases the oxygenation of tissues, because it gives up oxygen more easily during microcirculation. In foetal circulation, however, at a partial oxygen pressure (pO2) of 25 mmHg in the umbilical vein, the oxygen carrier is type F hemoglobin which has a high oxygen affinity. The commonly accepted role for hemoglobin F is limited to facilitating diffusion through the placenta. Is fetal life the only moment when haemoglobin F is useful? THE AIM OF STUDY was to create a mathematical model, which would answer the question at what conditions an increase, rather than a decrease, in haemoglobin oxygen affinity is of benefit to the body. Using the kinetics of dissociation of oxygen from hemoglobin described by the Hill equation as the basis for further discussion, we created a mathematical model describing the pO2 value in the microcirculatory system and its dependence on arterial blood pO2. The calculations were performed for hemoglobin with low oxygen affinity (adult type) and high-affinity hemoglobin (fetal type). The modelling took into account both physiological and pathological ranges of acid-base equilibrium and tissue oxygen extraction parameters. It was shown that for the physiological range of acid-base equilibrium and the resting level of tissue oxygen extraction parameters, with an arterial blood pO2 of 26.8 mmHg, the higher-affinity hemoglobin becomes the more effective oxygen carrier. It was also demonstrated that the arterial blood pO2, below which the high-affinity hemoglobin becomes the more effective carrier, is dependent on blood pH and the difference between the arterial and venous oxygen saturation levels. Simulations performed for the pathological
Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosis
Bellingham, A. J.; Detter, J. C.; Lenfant, C.
1971-01-01
The recent reports of the effect of 2,3-diphosphoglycerate (2,3-DPG) on hemoglobin affinity for oxygen suggested that this substance may play a role in man's adaptation to acidosis and alkalosis. A study of the effect of induced acidosis and alkalosis on the oxyhemoglobin dissociation curve of normal man was therefore carried out, and the mechanisms involved in the physiological regulation of hemoglobin oxygen affinity examined. In acute changes of plasma pH there was no alteration in red cell 2,3-DPG content. However, there were changes in hemoglobin oxygen affinity and these correlated with changes in mean corpuscular hemoglobin concentration (MCHC). With maintained acidosis and alkalosis, red cell 2,3-DPG content was altered and correlated with the changes in hemoglobin oxygen affinity. Both of these mechanisms shift the hemoglobin oxygen dissociation curve opposite to the direct pH (Bohr) effect, and providing the rate of pH change is neither too rapid nor too large, they counteract the direct pH effect and the in vivo hemoglobin oxygen affinity remains unchanged. It is also shown that approximately 35% of the change in hemoglobin oxygen affinity resulting from an alteration in red cell 2,3-DPG, is explained by effect of 2,3-DPG on the red cell pH. PMID:5545127
Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers
Koehler, Raymond C.; Fronticelli, Clara; Bucci, Enrico
2008-01-01
The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4–34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery. PMID:18230370
Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers.
Koehler, Raymond C; Fronticelli, Clara; Bucci, Enrico
2008-10-01
The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4-34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery.
High oxygen affinity hemoglobins.
Mangin, O
2017-02-01
High oxygen affinity hemoglobins are responsible for rare and heterogeneous autosomic dominant genetic diseases. They cause pure erythrocytosis, sometimes accountable for hyperviscosity and thrombosis, or hemolysis. Differential diagnoses must be first ruled out. The diagnosis is based on the identification of a decreased P50, and their possible characterization by cation exchange-high performance liquid chromatography and capillary electrophoresis. Finally, genetic studies of the responsible globin chain gene will confirm the mutation. The prognosis mainly relies on the P50 decrease rate and on the hemoglobin cooperativity impairment. Disease management should be personalized, and it should primarily depend on smoking cessation and physical activity. Phlebotomy and platelet aggregation inhibitors' prescriptions can be discussed. There is no contraindication to flights, high-altitude conditions, or pregnancy. Nevertheless, blood donation must be prohibited. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.
The role of hemoglobin oxygen affinity in oxygen transport at high altitude.
Winslow, Robert M
2007-09-30
Hemoglobin is involved in the regulation of O(2) transport in two ways: a long-term adjustment in red cell mass is mediated by erythropoietin (EPO), a response to renal oxgyenation. Short-term, rapid-response adjustments are mediated by ventilation, cardiac output, hemoglobin oxygen affinity (P50), barriers to O(2) diffusion, and the control of local microvascular tissue perfusion. The distribution of O(2) between dissolved (PO2) and hemoglobin-bound (saturation) is the familiar oxygen equilibrium curve, whose position is noted as P50. Human hemoglobin is not genetically adapted for function at high altitude. However, more specialized species native to high altitudes (guinea pig and bar-headed goose, for example) seem to have a lower P50 than their sea level counterparts, an adaptation that presumably promotes O(2) uptake from a hypoxic environment. Humans, native to very high altitude either in the Andes or Himalayan mountains, also can increase O(2) affinity, not because of a fundamental difference in hemoglobin structure or function, but because of extreme hyperventilation and alkalosis.
Human llamas: adaptation to altitude in subjects with high hemoglobin oxygen affinity.
Hebbel, R P; Eaton, J W; Kronenberg, R S; Zanjani, E D; Moore, L G; Berger, E M
1978-01-01
To assess the adaptive value of the right-shift of the oxyhemoglobin dissociation curve (decreased affinity for oxygen) observed in humans upon altitude exposure, the short-term physiologic responses to altitude-induced hypoxia were evaluated in two subjects with a high oxygen affinity hemoglobin (Hb Andrew-Minneapolis) and in two of their normal siblings. In striking contrast to normal subjects, at moderately high altitude (3,100 m) the high affinity subjects manifested: (a) lesser increments in resting heart rate; (b) minimal increases in plasma and urinary erythropoietin; (c) no decrement in maximal oxygen consumption; and (d) no thrombocytopenia. There was no difference between subject pairs in 2,3-diphosphoglycerate response to altitude exposure. These results tend to contradict the belief that a decrease in hemoglobin oxygen affinity is of adaptive value to humans at moderate altitudes. Rather, they support the hypothesis that, despite disadvantages at low altitude, a left-shifted oxyhemoglobin dissociation curve may confer a degree of preadaptation to altitude. PMID:29054
Structure of Greyhound hemoglobin: origin of high oxygen affinity.
Bhatt, Veer S; Zaldívar-López, Sara; Harris, David R; Couto, C Guillermo; Wang, Peng G; Palmer, Andre F
2011-05-01
This study presents the crystal structure of Greyhound hemoglobin (GrHb) determined to 1.9 Å resolution. GrHb was found to crystallize with an α₁β₁ dimer in the asymmetric unit and belongs to the R2 state. Oxygen-affinity measurements combined with the fact that GrHb crystallizes in the R2 state despite the high-salt conditions used for crystallization strongly indicate that GrHb can serve as a model high-oxygen-affinity hemoglobin (Hb) for higher mammals, especially humans. Structural analysis of GrHb and its comparison with the R2-state of human Hb revealed several regions that can potentially contribute to the high oxygen affinity of GrHb and serve to rationalize the additional stability of the R2-state of GrHb. A previously well studied hydrophobic cluster of bar-headed goose Hb near α119 was also incorporated in the comparison between GrHb and human Hb. Finally, a structural comparison with generic dog Hb and maned wolf Hb was conducted, revealing that in contrast to GrHb these structures belong to the R state of Hb and raising the intriguing possibility of an additional allosteric factor co-purifying with GrHb that can modulate its quaternary structure.
Gladwin, M T; Schechter, A N; Shelhamer, J H; Pannell, L K; Conway, D A; Hrinczenko, B W; Nichols, J S; Pease-Fye, M E; Noguchi, C T; Rodgers, G P; Ognibene, F P
1999-10-01
Nitric oxide (NO) inhalation has been reported to increase the oxygen affinity of sickle cell erythrocytes. Also, proposed allosteric mechanisms for hemoglobin, based on S-nitrosation of beta-chain cysteine 93, raise the possibility of altering the pathophysiology of sickle cell disease by inhibiting polymerization or by increasing NO delivery to the tissue. We studied the effects of a 2-hour treatment, using varying concentrations of inhaled NO. Oxygen affinity, as measured by P(50), did not respond to inhaled NO, either in controls or in individuals with sickle cell disease. At baseline, the arterial and venous levels of nitrosylated hemoglobin were not significantly different, but NO inhalation led to a dose-dependent increase in mean nitrosylated hemoglobin, and at the highest dosage, a significant arterial-venous difference emerged. The levels of nitrosylated hemoglobin are too low to affect overall hemoglobin oxygen affinity, but augmented NO transport to the microvasculature seems a promising strategy for improving microvascular perfusion.
Direct Measurement of Equilibrium Constants for High-Affinity Hemoglobins
Kundu, Suman; Premer, Scott A.; Hoy, Julie A.; Trent, James T.; Hargrove, Mark S.
2003-01-01
The biological functions of heme proteins are linked to their rate and affinity constants for ligand binding. Kinetic experiments are commonly used to measure equilibrium constants for traditional hemoglobins comprised of pentacoordinate ligand binding sites and simple bimolecular reaction schemes. However, kinetic methods do not always yield reliable equilibrium constants with more complex hemoglobins for which reaction mechanisms are not clearly understood. Furthermore, even where reaction mechanisms are clearly understood, it is very difficult to directly measure equilibrium constants for oxygen and carbon monoxide binding to high-affinity (KD ≪ 1 μM) hemoglobins. This work presents a method for direct measurement of equilibrium constants for high-affinity hemoglobins that utilizes a competition for ligands between the "target" protein and an array of "scavenger" hemoglobins with known affinities. This method is described for oxygen and carbon monoxide binding to two hexacoordinate hemoglobins: rice nonsymbiotic hemoglobin and Synechocystis hemoglobin. Our results demonstrate that although these proteins have different mechanisms for ligand binding, their affinities for oxygen and carbon monoxide are similar. Their large affinity constants for oxygen, 285 and ∼100 μM−1 respectively, indicate that they are not capable of facilitating oxygen transport. PMID:12770899
Balasubramanian, Moovarkumudalvan; Moorthy, Ponnuraj Sathya; Neelagandan, Kamariah; Ponnuswamy, Mondikalipudur Nanjappa Gounder
2009-01-01
Hemoglobin is a tetrameric, iron-containing metalloprotein, which plays a vital role in the transportation of oxygen from lungs to tissues and carbon dioxide back to lungs. Though good amount of work has already been done on hemoglobins, the scarcity of data on three dimensional structures pertaining to low oxygen affinity hemoglobins from mammalian species, motivated our group to work on this problem specifically. Herein, we report the preliminary crystallographic analysis of buffalo hemoglobin, which belongs to low oxygen affinity species. The buffalo blood was collected, purified by anion exchange chromatography and crystallized with PEG 3350 using 50mM phosphate buffer at pH 6.7 as a precipitant by hanging drop vapor diffusion method. Data collection was carried out using mar345dtb image plate detector system. Buffalo hemoglobin crystallizes in orthorhombic space group P2(1)2(1)2(1) with one whole biological molecule (alpha2beta2) in the asymmetric unit with cell dimensions a=63.064A, b=74.677A, c=110.224A.
2011-01-01
Background Conjugation of human and animal hemoglobins with polyethylene glycol has been widely explored as a means to develop blood substitutes, a novel pharmaceutical class to be used in surgery or emergency medicine. However, PEGylation of human hemoglobin led to products with significantly different oxygen binding properties with respect to the unmodified tetramer and high NO dioxygenase reactivity, known causes of toxicity. These recent findings call for the biotechnological development of stable, low-affinity PEGylated hemoglobins with low NO dioxygenase reactivity. Results To investigate the effects of PEGylation on protein structure and function, we compared the PEGylation products of human hemoglobin and Trematomus bernacchii hemoglobin, a natural variant endowed with a remarkably low oxygen affinity and high tetramer stability. We show that extension arm facilitated PEGylation chemistry based on the reaction of T. bernacchii hemoglobin with 2-iminothiolane and maleimido-functionalyzed polyethylene glycol (MW 5000 Da) leads to a tetraPEGylated product, more homogeneous than the corresponding derivative of human hemoglobin. PEGylated T. bernacchii hemoglobin largely retains the low affinity of the unmodified tetramer, with a p50 50 times higher than PEGylated human hemoglobin. Moreover, it is still sensitive to protons and the allosteric effector ATP, indicating the retention of allosteric regulation. It is also 10-fold less reactive towards nitrogen monoxide than PEGylated human hemoglobin. Conclusions These results indicate that PEGylated hemoglobins, provided that a suitable starting hemoglobin variant is chosen, can cover a wide range of oxygen-binding properties, potentially meeting the functional requirements of blood substitutes in terms of oxygen affinity, tetramer stability and NO dioxygenase reactivity. PMID:22185675
Charache, S; Jacobson, R; Brimhall, B; Murphy, E A; Hathaway, P; Winslow, R; Jones, R; Rath, C; Simkovich, J
1978-02-01
Blood from a woman with unexplained erythrocytosis had increased oxygen affinity, but no abnormality could be detected by electrophoresis or chromatography of her hemolysate. Separation of the tryptic peptides of her beta chains disclosed two half-sized peaks in the regions of beta T-11. The faster of these was abnormal, with the structure beta 101 Glu replaced by Asp. The new hemoglobin was called "Potomac." Three of the proband's four surviving siblings and both of her children were carriers. Differences in the ratio of carrier: normal children born to male of female carriers of 23 other high-affinity hemoglobins were not significant. The high proportion of carriers in this kindred was probably due to chance alone, and not because high maternal oxygen affinity interfered with oxygen transport to fetuses with normal hemoglobin.
Orvain, Corentin; Joly, Philippe; Pissard, Serge; Badiou, Stéphanie; Badens, Catherine; Bonello-Palot, Nathalie; Couque, Nathalie; Gulbis, Béatrice; Aguilar-Martinez, Patricia
2017-02-01
Congenital causes of erythrocytosis are now more easily identified due to the improvement of the molecular characterization of many of them. Among these causes, hemoglobins with high oxygen affinity take a large place. The aim of this work was to reevaluate the diagnostic approach of these disorders. To assess the current practices, we sent a questionnaire to the expert laboratories in the diagnosis of hemoglobinopathies in France and Belgium. In parallel, we gathered the methods used for the diagnosis of the hemoglobins with high oxygen affinity indexed in the international database HbVar. Even though they remain a rare cause of erythrocytosis (1 to 5 positive diagnosis every year in each of the questioned specialized laboratories), hemoglobins with high oxygen affinity are increasingly suspected by clinicians. Phenotypic assessment by laboratory techniques remains a main step in their diagnosis as it enables the finding of 93% of them in the questioned laboratories (28 of the 30 variants diagnosed during the last 5 years). Among the 96 hemoglobin variants with high oxygen affinity indexed in the international database, 87% could be diagnosed with phenotypic techniques. A direct measure of the p50 with the Hemox-Analyzer is included in the diagnostic approach of half of the laboratories only, because of the poor availability of this apparatus. Comparatively, the estimation of p50 by blood gas analyzers on venous blood is a much more convenient and attractive method but due to the lack of proof as to its effectiveness in the diagnosis of hemoglobins with high oxygen affinity, it requires further investigations. Beta- and alphaglobin genes analysis by molecular biology techniques is essential as it either allows a quick and definite identification of the variant or definitely excludes the diagnosis. It is thus systematically performed as a first or second step method, according to the laboratory practice.
Review: correlations between oxygen affinity and sequence classifications of plant hemoglobins.
Smagghe, Benoit J; Hoy, Julie A; Percifield, Ryan; Kundu, Suman; Hargrove, Mark S; Sarath, Gautam; Hilbert, Jean-Louis; Watts, Richard A; Dennis, Elizabeth S; Peacock, W James; Dewilde, Sylvia; Moens, Luc; Blouin, George C; Olson, John S; Appleby, Cyril A
2009-12-01
Plants express three phylogenetic classes of hemoglobins (Hb) based on sequence analyses. Class 1 and 2 Hbs are full-length globins with the classical eight helix Mb-like fold, whereas Class 3 plant Hbs resemble the truncated globins found in bacteria. With the exception of the specialized leghemoglobins, the physiological functions of these plant hemoglobins remain unknown. We have reviewed and, in some cases, measured new oxygen binding properties of a large number of Class 1 and 2 plant nonsymbiotic Hbs and leghemoglobins. We found that sequence classification correlates with distinct extents of hexacoordination with the distal histidine and markedly different overall oxygen affinities and association and dissociation rate constants. These results suggest strong selective pressure for the evolution of distinct physiological functions. The leghemoglobins evolved from the Class 2 globins and show no hexacoordination, very high rates of O(2) binding ( approximately 250 muM(-1) s(-1)), moderately high rates of O(2) dissociation ( approximately 5-15 s(-1)), and high oxygen affinity (K(d) or P(50) approximately 50 nM). These properties both facilitate O(2) diffusion to respiring N(2) fixing bacteria and reduce O(2) tension in the root nodules of legumes. The Class 1 plant Hbs show weak hexacoordination (K(HisE7) approximately 2), moderate rates of O(2) binding ( approximately 25 muM(-1) s(-1)), very small rates of O(2) dissociation ( approximately 0.16 s(-1)), and remarkably high O(2) affinities (P(50) approximately 2 nM), suggesting a function involving O(2) and nitric oxide (NO) scavenging. The Class 2 Hbs exhibit strong hexacoordination (K(HisE7) approximately 100), low rates of O(2) binding ( approximately 1 muM(-1) s(-1)), moderately low O(2) dissociation rate constants ( approximately 1 s(-1)), and moderate, Mb-like O(2) affinities (P(50) approximately 340 nM), perhaps suggesting a sensing role for sustained low, micromolar levels of oxygen.
[Hemoglobin oxygen transport capacity in surgical endotoxicosis ].
Poryadin, G V; Vlasov, A P; Trofimov, V A; Vlasova, T I; Kamkina, O V; Grigoryev, A G; Vlasov, P A
2016-01-01
In surgical endointoxication hemoglobin oxygen transport capacity of red blood cells (hemoglobin affinity ligands: the ability to bind and release ligands) is reduced and is associated with the severity of endogenous intoxication. Violation of oxygen transport function of hemoglobin at endogenous intoxication is associated with conformational changes of a biomolecule, and its possible influence on reactive oxygen species, which confirmed in experiments in vitro: under the influence of oxygen-iron ascorbate ability of hemoglobin deteriorates. Largely similar structural and functional changes in hemoglobin occur in patients with surgical endotoxicosis.
Bouwer, S T; Hoofd, L; Kreuzer, F
2001-02-16
The purpose of this study was to verify the concept of non-equilibrium facilitated oxygen diffusion. This work succeeds our previous study, where facilitated oxygen diffusion by hemoglobin was measured at conditions of chemical equilibrium, and which yielded diffusion coefficients of hemoglobin and of oxygen. In the present work chemical non-equilibrium was induced using very thin diffusion layers. As a result, facilitation was decreased as predicted by theory. Thus, this work presents the first experimental demonstration of non-equilibrium facilitated oxygen diffusion. In addition, association and dissociation rate parameters of the reaction between oxygen and bovine and human hemoglobin were calculated and the effect of the homotropic and heterotropic interactions on each rate parameter was demonstrated. The results indicate that the homotropic interaction--which leads to increasing oxygen affinity with increasing oxygenation--is predominantly due to an increase in the association rate. The heterotropic interaction--which leads to decreasing oxygen affinity by anionic ligands--appears to be effected in two ways. Cl- increases the dissociation rate. In contrast, 2,3-diphosphoglycerate decreases the association rate.
High affinity hemoglobin and Parkinson's disease.
Graham, Jeffrey; Hobson, Douglas; Ponnampalam, Arjuna
2014-12-01
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain. Oxidative damage in this region has been shown to play an important role in the pathogenesis of this disease. Human neurons have been discovered to contain hemoglobin, with an increased concentration seen in the neurons of the SN. High affinity hemoglobin is a clinical entity resulting from mutations that create a functional increase in the binding of hemoglobin to oxygen and an inability to efficiently unload it to tissues. This can result in a number of metabolic compensatory changes, including an elevation in circulating hemoglobin and an increase in the molecule 2,3-diphosphoglycerate (2,3-DPG). Population based studies have revealed that patients with PD have elevated hemoglobin as well as 2,3-DPG levels. Based on these observations, we hypothesize that the oxidative damage seen in PD is related to an underlying high affinity hemoglobin subtype. Copyright © 2014 Elsevier Ltd. All rights reserved.
Moorthy, Ponnuraj Sathya; Neelagandan, Kamariah; Balasubramanian, Moovarkumudalvan; Ponnuswamy, Mondikalipudur Nanjappa Gounder
2009-01-01
Hemoglobin is a vital protein present in almost all higher species. It is a transport protein involved in carrying oxygen from lungs to tissues and carbon dioxide back to lungs by an intrinsically coordinated manner. Even though a good amount of work has been carried out in this direction there exists scarcity of structural insight on low oxygen affinity species. Attempts are being made to unravel the structural insight of this low oxygen affinity species. Goat blood plasma was collected, treated with EDTA to avoid blood clotting and purification was accomplished using DEAE-anion chromatographic column. The goat hemoglobin was crystallized using 50mM of phosphate buffer at pH 6.7 with 1M NaCl and PEG 3350 as precipitant by hanging drop vapor diffusion method. Crystals obtained are screened and suitable crystals are taken for data collection using mar345dtb as image plate detector system. Goat hemoglobin crystal diffracted up to 2.61 A resolution. Goat hemoglobin crystallizes in orthorhombic space group P212(1)2(1) as a whole biological molecule in the asymmetric unit with cell dimensions a=53.568A, b=67.365A, c=154.183A.
Deer mouse hemoglobin exhibits a lowered oxygen affinity owing to mobility of the E helix.
Inoguchi, Noriko; Oshlo, Jake R; Natarajan, Chandrasekhar; Weber, Roy E; Fago, Angela; Storz, Jay F; Moriyama, Hideaki
2013-04-01
The deer mouse, Peromyscus maniculatus, exhibits altitude-associated variation in hemoglobin oxygen affinity. To examine the structural basis of this functional variation, the structure of the hemoglobin was solved. Recombinant hemoglobin was expressed in Escherichia coli and was purified by ion-exchange chromatography. Recombinant hemoglobin was crystallized by the hanging-drop vapor-diffusion method using polyethylene glycol as a precipitant. The obtained orthorhombic crystal contained two subunits in the asymmetric unit. The refined structure was interpreted as the aquo-met form. Structural comparisons were performed among hemoglobins from deer mouse, house mouse and human. In contrast to human hemoglobin, deer mouse hemoglobin lacks the hydrogen bond between α1Trp14 in the A helix and α1Thr67 in the E helix owing to the Thr67Ala substitution. In addition, deer mouse hemoglobin has a unique hydrogen bond at the α1β1 interface between residues α1Cys34 and β1Ser128.
Deer mouse hemoglobin exhibits a lowered oxygen affinity owing to mobility of the E helix
Inoguchi, Noriko; Oshlo, Jake R.; Natarajan, Chandrasekhar; Weber, Roy E.; Fago, Angela; Storz, Jay F.; Moriyama, Hideaki
2013-01-01
The deer mouse, Peromyscus maniculatus, exhibits altitude-associated variation in hemoglobin oxygen affinity. To examine the structural basis of this functional variation, the structure of the hemoglobin was solved. Recombinant hemoglobin was expressed in Escherichia coli and was purified by ion-exchange chromatography. Recombinant hemoglobin was crystallized by the hanging-drop vapor-diffusion method using polyethylene glycol as a precipitant. The obtained orthorhombic crystal contained two subunits in the asymmetric unit. The refined structure was interpreted as the aquo-met form. Structural comparisons were performed among hemoglobins from deer mouse, house mouse and human. In contrast to human hemoglobin, deer mouse hemoglobin lacks the hydrogen bond between α1Trp14 in the A helix and α1Thr67 in the E helix owing to the Thr67Ala substitution. In addition, deer mouse hemoglobin has a unique hydrogen bond at the α1β1 interface between residues α1Cys34 and β1Ser128. PMID:23545644
Patel, Mira P; Siu, Vincent; Silva-Garcia, Abel; Xu, Qing; Li, Zhe; Oksenberg, Donna
2018-01-01
Hemoglobin (Hb) is a critical molecule necessary for all vertebrates to maintain aerobic metabolism. Hb-oxygen (O 2 ) affinity modifiers have been studied to address various diseases including sickle cell disease, hypoxemia, tumor hypoxia, and wound healing. However, drug development of exogenous Hb modifiers has been hindered by the lack of a technique to rapidly screen compounds for their ability to alter Hb-O 2 affinity. We have developed a novel screening assay based upon the spectral changes observed during Hb deoxygenation and termed it the oxygen dissociation assay (ODA). ODA allows for the quantitation of oxygenated Hb at given time points during Hb deoxygenation on a 96-well plate. This assay was validated by comparing the ability of 500 Hb modifiers to alter the Hb-O 2 affinity in the ODA vs the oxygen equilibrium curves obtained using the industry standard Hemox Analyzer instrument. A correlation ( R 2 ) of 0.7 indicated that the ODA has the potential to screen and identify potent exogenous Hb modifiers. In addition, it allows for concurrent comparison of compounds, concentrations, buffers, or pHs on the level of Hb oxygenation. With a cost-effective, simple, rapid, and highly adaptable assay, the ODA will allow researchers to rapidly characterize Hb-O 2 affinity modifiers.
Changes in hemoglobin-oxygen affinity with shape variations of red blood cells
NASA Astrophysics Data System (ADS)
Chowdhury, Aniket; Dasgupta, Raktim; Majumder, Shovan K.
2017-10-01
Shape variations of red blood cells (RBCs) are known to occur upon exposure to various drugs or under diseased conditions. The commonly observed discocytic RBCs can be transformed to echinocytic or stomatocytic shape under such conditions. Raman spectra of the three major shape variations, namely discocyte, echinocyte, and stomatocyte, of RBCs were studied while subjecting the cells to oxygenated and deoxygenated conditions. Analysis of the recorded spectra suggests an increased level of hemoglobin (Hb)-oxygen affinity for the echinocytes. Also, some level of Hb degradation could be noticed for the deoxygenated echinocytes. The effects may arise from a reduced level of intracellular adenosine triphosphate in echinocytic cells and an increased fraction of submembrane Hb.
Belcher, Donald Andrew; Banerjee, Uddyalok; Baehr, Christopher Michael; Richardson, Kristopher Emil; Cabrales, Pedro; Berthiaume, François
2017-01-01
Pure tense (T) and relaxed (R) quaternary state polymerized human hemoglobins (PolyhHbs) were synthesized and their biophysical properties characterized, along with mixtures of T- and R-state PolyhHbs. It was observed that the oxygen affinity of PolyhHb mixtures varied linearly with T-state mole fraction. Computational analysis of PolyhHb facilitated oxygenation of a single fiber in a hepatic hollow fiber (HF) bioreactor was performed to evaluate the oxygenation potential of T- and R-state PolyhHb mixtures. PolyhHb mixtures with T-state mole fractions greater than 50% resulted in hypoxic and hyperoxic zones occupying less than 5% of the total extra capillary space (ECS). Under these conditions, the ratio of the pericentral volume to the perivenous volume in the ECS doubled as the T-state mole fraction increased from 50 to 100%. These results show the effect of varying the T/R-state PolyhHb mole fraction on oxygenation of tissue-engineered constructs and their potential to oxygenate tissues. PMID:29020036
Effect of 2,3-diphosphoglycerate on oxygen affinity of blood in sickle cell anemia
Charache, Samuel; Grisolia, Santiago; Fiedler, Adam J.; Hellegers, Andre E.
1970-01-01
Blood of patients with sickle cell anemia (SS) exhibits decreased affinity for oxygen, although the oxygen affinity of hemoglobin S is the same as that of hemoglobin A. SS red cells contain more 2,3-diphosphoglycerate (DPG) than normal erythrocytes. The oxygen affinity of hemolyzed red cells is decreased by added DPG, and hemolysates prepared from SS red cells do not differ from normal hemolysates in this regard. Reduction of oxygen affinity to the levels found in intact SS red cells required DPG concentrations in excess of those found in most SS patients. The same was true of oxygen affinity of patients with pyruvate kinase deficiency. Other organic phosphates, as well as inorganic ions, are known to alter the oxygen affinity of dilute solutions of hemoglobin. These substances, the state of aggregation of hemoglobin molecules, and cytoarchitectural factors probably play roles in determining oxygen affinity of both normal and SS red cells. PMID:5443181
Samaja, Michele; Crespi, Tiziano; Guazzi, Marco; Vandegriff, Kim D
2003-10-01
Altitude hypoxia is a major challenge to the blood O2 transport system, and adjustments of the blood-O2 affinity might contribute significantly to hypoxia adaptation. In principle, lowering the blood-O2 affinity is advantageous because it lowers the circulatory load required to assure adequate tissue oxygenation up to a threshold corresponding to about 5,000 m altitude, whereas at higher altitudes an increased blood-O2 affinity appears more advantageous. However, the rather contradictory experimental evidence raises the question whether other factors superimpose on the apparent changes of the blood-O2 affinity. The most important of these are as follows: (1) absolute temperature and temperature gradients within the body; (2) the intracapillary Bohr effect; (3) the red cell population heterogeneity in terms of O2 affinity; (4) control of altitude alkalosis; (5) the possible role of hemoglobin as a carrier of the vasodilator nitric oxide; (6) the effect of varied red cell transit times through the capillaries.
Inoguchi, Noriko; Mizuno, Nobuhiro; Baba, Seiki; Kumasaka, Takashi; Natarajan, Chandrasekhar; Storz, Jay F.
2017-01-01
Background Deer mice (Peromyscus maniculatus) that are native to high altitudes in the Rocky Mountains have evolved hemoglobins with an increased oxygen-binding affinity relative to those of lowland conspecifics. To elucidate the molecular mechanisms responsible for the evolved increase in hemoglobin-oxygen affinity, the crystal structure of the highland hemoglobin variant was solved and compared with the previously reported structure for the lowland variant. Results Highland hemoglobin yielded at least two crystal types, in which the longest axes were 507 and 230 Å. Using the smaller unit cell crystal, the structure was solved at 2.2 Å resolution. The asymmetric unit contained two tetrameric hemoglobin molecules. Conclusions The analyses revealed that αPro50 in the highland hemoglobin variant promoted a stable interaction between αHis45 and heme that was not seen in the αHis50 lowland variant. The αPro50 mutation also altered the nature of atomic contacts at the α1β2/α2β1 intersubunit interfaces. These results demonstrate how affinity-altering changes in intersubunit interactions can be produced by mutations at structurally remote sites. PMID:28362841
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoguchi, Noriko; Mizuno, Nobuhiro; Baba, Seiki
2017-03-31
Deer mice (Peromyscus maniculatus) that are native to high altitudes in the Rocky Mountains have evolved hemoglobins with an increased oxygen-binding affinity relative to those of lowland conspecifics. To elucidate the molecular mechanisms responsible for the evolved increase in hemoglobin-oxygen affinity, the crystal structure of the highland hemoglobin variant was solved and compared with the previously reported structure for the lowland variant. Highland hemoglobin yielded at least two crystal types, in which the longest axes were 507 and 230 Å. Using the smaller unit cell crystal, the structure was solved at 2.2 Å resolution. The asymmetric unit contained two tetramericmore » hemoglobin molecules. The analyses revealed that αPro50 in the highland hemoglobin variant promoted a stable interaction between αHis45 and heme that was not seen in the αHis50 lowland variant. The αPro50 mutation also altered the nature of atomic contacts at the α1β2/α2β1 intersubunit interfaces. These results demonstrate how affinity-altering changes in intersubunit interactions can be produced by mutations at structurally remote sites.« less
Tsoukias, Nikolaos M; Goldman, Daniel; Vadapalli, Arjun; Pittman, Roland N; Popel, Aleksander S
2007-10-21
A detailed computational model is developed to simulate oxygen transport from a three-dimensional (3D) microvascular network to the surrounding tissue in the presence of hemoglobin-based oxygen carriers. The model accounts for nonlinear O(2) consumption, myoglobin-facilitated diffusion and nonlinear oxyhemoglobin dissociation in the RBCs and plasma. It also includes a detailed description of intravascular resistance to O(2) transport and is capable of incorporating realistic 3D microvascular network geometries. Simulations in this study were performed using a computer-generated microvascular architecture that mimics morphometric parameters for the hamster cheek pouch retractor muscle. Theoretical results are presented next to corresponding experimental data. Phosphorescence quenching microscopy provided PO(2) measurements at the arteriolar and venular ends of capillaries in the hamster retractor muscle before and after isovolemic hemodilution with three different hemodilutents: a non-oxygen-carrying plasma expander and two hemoglobin solutions with different oxygen affinities. Sample results in a microvascular network show an enhancement of diffusive shunting between arterioles, venules and capillaries and a decrease in hemoglobin's effectiveness for tissue oxygenation when its affinity for O(2) is decreased. Model simulations suggest that microvascular network anatomy can affect the optimal hemoglobin affinity for reducing tissue hypoxia. O(2) transport simulations in realistic representations of microvascular networks should provide a theoretical framework for choosing optimal parameter values in the development of hemoglobin-based blood substitutes.
Oxygen transport by hemoglobin.
Mairbäurl, Heimo; Weber, Roy E
2012-04-01
Hemoglobin (Hb) constitutes a vital link between ambient O2 availability and aerobic metabolism by transporting oxygen (O2) from the respiratory surfaces of the lungs or gills to the O2-consuming tissues. The amount of O2 available to tissues depends on the blood-perfusion rate, as well as the arterio-venous difference in blood O2 contents, which is determined by the respective loading and unloading O2 tensions and Hb-O2-affinity. Short-term adjustments in tissue oxygen delivery in response to decreased O2 supply or increased O2 demand (under exercise, hypoxia at high altitude, cardiovascular disease, and ischemia) are mediated by metabolically induced changes in the red cell levels of allosteric effectors such as protons (H(+)), carbon dioxide (CO2), organic phosphates, and chloride (Cl(-)) that modulate Hb-O2 affinity. The long-term, genetically coded adaptations in oxygen transport encountered in animals that permanently are subjected to low environmental O2 tensions commonly result from changes in the molecular structure of Hb, notably amino acid exchanges that alter Hb's intrinsic O2 affinity or its sensitivity to allosteric effectors. Structure-function studies of animal Hbs and human Hb mutants illustrate the different strategies for adjusting Hb-O2 affinity and optimizing tissue oxygen supply. © 2012 American Physiological Society. Compr Physiol 2:1491-1539, 2012.
O'Brien, William G; Berka, Vladimir; Tsai, Ah-Lim; Zhao, Zhaoyang; Lee, Cheng Chi
2015-08-07
Erythrocytes are the key target in 5'-AMP induced hypometabolism. To understand how regulation of endogenous erythrocyte AMP levels modulates systemic metabolism, we generated mice deficient in both CD73 and AMPD3, the key catabolic enzymes for extracellular and intra-erythrocyte AMP, respectively. Under physiological conditions, these mice displayed enhanced capacity for physical activity accompanied by significantly higher food and oxygen consumption, compared to wild type mice. Erythrocytes from Ampd3(-/-) mice exhibited higher half-saturation pressure of oxygen (p50) and about 3-fold higher levels of ATP and ADP, while they maintained normal 2,3-bisphosphoglycerate (2,3-BPG), methemoglobin levels and intracellular pH. The affinity of mammalian hemoglobin for oxygen is thought to be regulated primarily by 2,3-BPG levels and pH (the Bohr effect). However, our results show that increased endogenous levels of ATP and ADP, but not AMP, directly increase the p50 value of hemoglobin. Additionally, the rise in erythrocyte p50 directly correlates with an enhanced capability of systemic metabolism.
Understanding the molecular basis of the high oxygen affinity variant human hemoglobin Coimbra.
Jorge, S E; Bringas, M; Petruk, A A; Arrar, M; Marti, M A; Skaf, M S; Costa, F F; Capece, L; Sonati, M F; Estrin, D
2018-01-01
Human hemoglobin (Hb) Coimbra (βAsp99Glu) is one of the seven βAsp99 Hb variants described to date. All βAsp99 substitutions result in increased affinity for O 2 and decreased heme-heme cooperativity and their carriers are clinically characterized by erythrocytocis, caused by tissue hypoxia. Since βAsp99 plays an important role in the allosteric α1β2 interface and the mutation in Hb Coimbra only represents the insertion of a CH 2 group in this interface, the present study of Hb Coimbra is important for a better understanding of the global impact of small modifications in this allosteric interface. We carried out functional, kinetic and dynamic characterization of this hemoglobin, focusing on the interpretation of these results in the context of a growth of the position 99 side chain length in the α1β2 interface. Oxygen affinity was evaluated by measuring p50 values in distinct pHs (Bohr effect), and the heme-heme cooperativity was analyzed by determining the Hill coefficient (n), in addition to the effect of the allosteric effectors inositol hexaphosphate (IHP) and 2,3-bisphosphoglyceric acid (2,3-BPG). Computer simulations revealed a stabilization of the R state in the Coimbra variant with respect to the wild type, and consistently, the T-to-R quaternary transition was observed on the nanosecond time scale of classical molecular dynamics simulations. Copyright © 2017 Elsevier Inc. All rights reserved.
Hamilton, Howard B.; Iuchi, Iwao; Miyaji, Takaoki; Shibata, Susumu
1969-01-01
During a survey for hemoglobinopathies in over 9000 residents of Hiroshima Prefecture, Japan, a fast moving hemoglobin was identified in eight members of three generations in a Japanese family. The abnormal hemoglobin, named Hb Hiroshima, constitutes about 50% of the total hemoglobin in hemolysates from the carriers who have a mild erythremia but are otherwise apparently clinically unaffected. All preparations of Hb Hiroshima have increased affinity for oxygen, by either tonometric or oxygen electrode determinations. At pH 7.0, the oxygen pressure, P50 required to half saturate an unfractionated hemolysate from a carrier was one-half that of Hb A, and the P50 of a purified sample containing no Hb A was one-fourth that of Hb A. The pH dependence of the oxygen equilibrium (Bohr effect) is below normal, as shown by the absolute value of the Bohr effect factor which is about half that of Hb A, in the pH range between 7.0 and 7.4. The Hill constant, n, for Hb Hiroshima between pH 7.0 and 7.4 is 2-2.4, compared to 2.8-3 for Hb A under the same conditions, indicating reduction of, but not complete abolition of heme-heme interaction. Urea dissociation and canine hybridization tests located the biochemical lesion in the beta chain. Fingerprints (Ingram), carboxypeptidase digestion, and amino acid analysis demonstrated that the substitution was at residue 143 in the beta chain, where histidine was replaced by aspartic acid. In contrast to other recently described high oxygen affinity mutants that show intact Bohr effects, all three of the major characteristics of the reversible combination of hemoglobin with oxygen (oxygen equilibrium, heme-heme interaction, and pH dependence) are affected in Hb Hiroshima. A tentative interpretation of these effects, relating structure to function, is offered in terms of recently developed models of normal hemoglobin. Images PMID:5773089
Oxygen binding properties of hemoglobin from the white rhinoceros (beta 2-GLU) and the tapir.
Baumann, R; Mazur, G; Braunitzer, G
1984-04-01
The beta-chain of rhinoceros hemoglobin contains glutamic acid at position beta 2, and important site for the binding of organic phosphates. We have investigated the oxygen binding properties of this hemoglobin and its interaction with ATP, 2,3-diphosphoglycerate, CO2 and chloride. The results show that the presence of GLU at position beta 2 nearly abolishes the effect of organic phosphates and CO2, whereas the oxygen-linked binding of chloride is not affected. Thus rhinoceros hemoglobin has only protons and chloride anions as major allosteric effectors for the control of its oxygen affinity. From the results obtained with hemoglobin solutions it can be calculated that the blood oxygen affinity of the rhinoceros must be rather high with a P50 of about 20 torr at pH 7.4 and 37 degrees C, which conforms with observations obtained for other large mammals.
Manning, Lois R.; Popowicz, Anthony M.; Padovan, Julio C.; Chait, Brian T.; Manning, James M.
2016-01-01
This report establishes a correlation between two known properties of the human embryonic hemoglobins-- their weak subunit assemblies as demonstrated here by gel filtration at very dilute protein concentrations and their high oxygen affinities and reduced cooperativities reported previously by others but without a mechanistic basis. We demonstrate here that their high oxygen affinities are a consequence of their weak assemblies. Weak vs strong hemoglobin tetramers represent a regulatory mechanism to modulate oxygen binding capacity by altering the equilibrium between the various steps in the assembly process that can be described as an inverse allosteric effect. PMID:27965062
Sugihara, J; Imamura, T; Nagafuchi, S; Bonaventura, J; Bonaventura, C; Cashon, R
1985-09-01
We encountered an abnormal hemoglobin (Rahere), with a threonine residue replacing the beta 82 (EF6) lysine residue at the binding site of 2,3-diphosphoglycerate, which was responsible for overt erythrocytosis in two individuals of a Japanese family. Hemoglobin Rahere shows a lower oxygen affinity on the binding of 2,3-diphosphoglycerate or chloride ions than hemoglobin A. Although a decrease in the positive charge density at the binding sites of 2,3-diphosphoglycerate in hemoglobin Rahere apparently shifts the allosteric equilibrium toward the low affinity state, it greatly diminishes the cofactor effects by anions. The oxygen affinity of the patient's erythrocytes is substantially lowered by the presence of bezafibrate, which combines with sites different from those of 2,3-diphosphoglycerate in either hemoglobin Rahere or hemoglobin A.
Sugihara, J; Imamura, T; Nagafuchi, S; Bonaventura, J; Bonaventura, C; Cashon, R
1985-01-01
We encountered an abnormal hemoglobin (Rahere), with a threonine residue replacing the beta 82 (EF6) lysine residue at the binding site of 2,3-diphosphoglycerate, which was responsible for overt erythrocytosis in two individuals of a Japanese family. Hemoglobin Rahere shows a lower oxygen affinity on the binding of 2,3-diphosphoglycerate or chloride ions than hemoglobin A. Although a decrease in the positive charge density at the binding sites of 2,3-diphosphoglycerate in hemoglobin Rahere apparently shifts the allosteric equilibrium toward the low affinity state, it greatly diminishes the cofactor effects by anions. The oxygen affinity of the patient's erythrocytes is substantially lowered by the presence of bezafibrate, which combines with sites different from those of 2,3-diphosphoglycerate in either hemoglobin Rahere or hemoglobin A. PMID:3930571
1993-03-08
affinity, which is less at low levels of hemoglobin saturation, increases markedly as fractional saturation increases. Thus, high affinity for 02 at... diphosphoglycerate (2,3-DPG), and carbon dioxide (Co 2). Since they are linked to 02 binding, they are called oxygen-linked effectors. The oxygen...hemoglobin molecule because of the negative charge of the ions. 2,3- Diphosphoglycerate is a molecule formed during the breakdown of sugar in normal human
Manning, Lois R; Popowicz, Anthony M; Padovan, Julio C; Chait, Brian T; Manning, James M
2017-02-15
This report establishes a correlation between two known properties of the human embryonic hemoglobins-- their weak subunit assemblies as demonstrated here by gel filtration at very dilute protein concentrations and their high oxygen affinities and reduced cooperativities reported previously by others but without a mechanistic basis. We demonstrate here that their high oxygen affinities are a consequence of their weak assemblies. Weak vs strong hemoglobin tetramers represent a regulatory mechanism to modulate oxygen binding capacity by altering the equilibrium between the various steps in the assembly process that can be described as an inverse allosteric effect. Copyright © 2016 Elsevier Inc. All rights reserved.
Oxygen binding by alpha(Fe2+)2beta(Ni2+)2 hemoglobin crystals.
Bruno, S.; Bettati, S.; Manfredini, M.; Mozzarelli, A.; Bolognesi, M.; Deriu, D.; Rosano, C.; Tsuneshige, A.; Yonetani, T.; Henry, E. R.
2000-01-01
Oxygen binding by hemoglobin fixed in the T state either by crystallization or by encapsulation in silica gels is apparently noncooperative. However, cooperativity might be masked by different oxygen affinities of alpha and beta subunits. Metal hybrid hemoglobins, where the noniron metal does not bind oxygen, provide the opportunity to determine the oxygen affinities of alpha and beta hemes separately. Previous studies have characterized the oxygen binding by alpha(Ni2+)2beta(Fe2+)2 crystals. Here, we have determined the three-dimensional (3D) structure and oxygen binding of alpha(Fe2+)2beta(Ni2+)2 crystals grown from polyethylene glycol solutions. Polarized absorption spectra were recorded at different oxygen pressures with light polarized parallel either to the b or c crystal axis by single crystal microspectrophotometry. The oxygen pressures at 50% saturation (p50s) are 95 +/- 3 and 87 +/- 4 Torr along the b and c crystal axes, respectively, and the corresponding Hill coefficients are 0.96 +/- 0.06 and 0.90 +/- 0.03. Analysis of the binding curves, taking into account the different projections of the alpha hemes along the optical directions, indicates that the oxygen affinity of alpha1 hemes is 1.3-fold lower than alpha2 hemes. Inspection of the 3D structure suggests that this inequivalence may arise from packing interactions of the Hb tetramer within the monoclinic crystal lattice. A similar inequivalence was found for the beta subunits of alpha(Ni2+)2beta(Fe2+)2 crystals. The average oxygen affinity of the alpha subunits (p50 = 91 Torr) is about 1.2-fold higher than the beta subunits (p50 = 110 Torr). In the absence of cooperativity, this heterogeneity yields an oxygen binding curve of Hb A with a Hill coefficient of 0.999. Since the binding curves of Hb A crystals exhibit a Hill coefficient very close to unity, these findings indicate that oxygen binding by T-state hemoglobin is noncooperative, in keeping with the Monod, Wyman, and Changeux model. PMID
Oxygen transport of hemoglobin in high-altitude animals (Camelidae).
Reynafarje, C; Faura, J; Villavicencio, D; Curaca, A; Reynafarje, B; Oyola, L; Contreras, L; Vallenas, E; Faura, A
1975-05-01
To clarify the mechanisms by which high-altitude Camelidae can adapt to hypoxia, the study of some blood characteristics were carried out in apacas and llamas. The results show that there is a peculiar dissociation curve of hemoglobin in alpacas which permits great affinity of hemoglobin for oxygen at lung level and the release of oxygen at the tissue level with a facility similar to that in man. Fetal hemoglobin was found high in adult alpacas (55 percent). Electrophoretic studies of hemoglobin showed that this pigment has two components, both of which have a very low mobility. Lactic dehydrogenase was found six times higher than in humans. RBC glucose-6-phosphate dehydrogenase was two times higher than in man living at the same altitude. Myoglobin was found to be higher than in man living at altitude. Alpacas have erythrocytes in which the amount of 2,3-DPG is approximately the same as in man. RBC are more resistent to hypotonic solutions than humans. The amount of lactic dehydrogenase, myoglobin, and glucose-6-phosphate dehydrogenase dimishes when alpacas are bought down to sea level.
Bouwer, S T; Hoofd, L; Kreuzer, F
1997-03-07
Diffusion coefficients of oxygen (DO2) and hemoglobin (DHb) were obtained from measuring the oxygen flux through thin layers of hemoglobin solutions at 20 degrees C. The liquid layers were supported by a membrane and not soaked in any filter material. Oxygen fluxes were measured from the changes in oxygen partial pressure in the gas phases at both sides of the layer. A mathematical treatment is presented for correct evaluation of the measurements. Measurements were done for bovine and for human hemoglobin. Hemoglobin concentrations (CHb) were between 11 and 42 g/dl, which covers the concentrations in the erythrocyte. Both DO2 and DHb could be fitted to the empirical equation D = D0(1-CHb/C1)10-CHb/C2. The following parameters were obtained: DO = 1.80 x 10(-9) m2/s, C1 = 100 g/dl, C2 = 119 g/dl, for oxygen and D0 = 7.00 x 10(-11) m2/s, C1 = 46 g/dl, C2 = 128 g/dl, for hemoglobin. No difference between the diffusion coefficients of bovine or human hemoglobin was found. The diffusion coefficients of hemoglobin were higher than most values reported in the literature, probably because in this study the mobility of hemoglobin was not hindered by surrounding filter material.
Hemoglobin Affinity for Oxygen in the Anginal Syndrome with Normal Coronary Arteriograms
Vokonas, Pantel S.; Cohn, Peter F.; Klein, Michael D.; Laver, Myron B.; Gorlin, Richard
1974-01-01
Oxyhemoglobin dissociation (OHD) curves were performed on whole blood (WB) from 20 patients with anginal pain, normal hemodynamics, and normal coronary arteries, as demonstrated by selective coronary cinearteriography. OHD curves in 19 of 20 patients, from zero to full saturation, were nearly identical to those in normal control subjects with values for P50 (Po2 at 50% saturation and pH 7.4) of 26.7±1.5 (mean±SD of the mean) torr (mm Hg) and red blood cell (RBC) levels of 2,3-diphosphoglyceric acid (2, 3-DPG) of 0.72±0.10 (mean±SD of the mean) M/M hemoglobin (Hb). Normal values for nonsmoking adults were: P50, 26.6±1.4 (mean±SD of the mean) torr: and RBC 2,3-DPG, 0.81±0.09 (mean±SD of the mean) M/M Hb. Mean levels of carbon monoxide were normal at 0.14±0.01 (mean±SEM) ml/100 ml WB in 10 patients who were nonsmokers and 0.45±0.15 (mean±SEM) ml/100 ml WB in 10 smokers. In one patient, a heavy smoker with markedly elevated blood carbon monoxide levels, an abnormal leftward shift of the OHD curve was observed. This was corrected after discontinuation of smoking. In utilizing these methods, we could not detect consistent abnormalities of Hb affinity for oxygen at rest in the patients studied, which suggests that a defect in oxygen transport at rest is an unlikely explanation for the symptoms of chest pain in patients with the anginal syndrome and normal coronary arteriograms. Images PMID:4847250
The high affinity of small-molecule antioxidants for hemoglobin.
Puscas, Cristina; Radu, Luana; Carrascoza, Francisco; Mot, Augustin C; Amariei, Diana; Lungu, Oana; Scurtu, Florina; Podea, Paula; Septelean, Raluca; Matei, Alina; Mic, Mihaela; Attia, Amr A; Silaghi-Dumitrescu, Radu
2018-06-18
Hemoglobin has previously been shown to display ascorbate peroxidase and urate peroxidase activity, with measurable Michaelis-Menten parameters that reveal a particularly low Km for ascorbate as well as for urate - lower than the respective in vivo concentrations of these antioxidants in blood. Also, direct detection of a hemoglobin-ascorbate interaction was possible by monitoring the 1H-NMR spectrum of ascorbate in the presence of hemoglobin. The relative difference in structures between ascorbate and urate may raise the question as to exactly what the defining structural features would be, for a substrate that binds to hemoglobin with high affinity. Reported here are Michaelis-Menten parameters for hemoglobin acting as peroxidase against a number of other substrates of varying structures - gallate, caffeate, rutin, 3-hydroxyflavone, 3,6-dihydroxyflavone, quercetin, epicatechin, luteolin - all with high affinities (some higher than those of physiologically-relevant redox partners of Hb - ascorbate and urate). Moreover, this high affinity appears general to animal hemoglobins. 1 H-NMR and 13 C-NMR spectra reveal a general pattern wherein small hydrophilic antioxidants appear to all have their signals affected, presumably due to binding to hemoglobin. Fluorescence and calorimetry measurements confirm these conclusions. Docking calculations confirm the existence of binding sites on hemoglobin and on myoglobin for ascorbate as well as for other antioxidants. Support is found for involvement of Tyr42 in binding of three out of the four substrates investigated in the case of hemoglobin (including ascorbate and urate, as blood-contained relevant substrates), but also for Tyr145 (with urate and caffeate) and Tyr35 (with gallate). Copyright © 2018 Elsevier Inc. All rights reserved.
Single-cell measurement of red blood cell oxygen affinity.
Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M; Schonbrun, Ethan
2015-08-11
Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen-Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2-3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability.
Single-cell measurement of red blood cell oxygen affinity
Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M.; Schonbrun, Ethan
2015-01-01
Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen–Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2–3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability. PMID:26216973
Cheng, Y; Lin, H; Xue, D; Li, R; Wang, K
2001-02-14
The changes in structure and function of 2,3-diphosphoglycerate-hemoglobin (2,3-DPG-Hb) induced by Ln(3+) binding were studied by spectroscopic methods. The binding of lanthanide cations to 2,3-DPG is prior to that to Hb. Ln(3+) binding causes the hydrolysis of either one from the two phosphomonoester bonds in 2,3-DPG non-specifically. The results using the ultrafiltration method indicate that Ln(3+) binding sites for Hb can be classified into three categories: i.e. positive cooperative sites (N(I)), non-cooperative strong sites (N(S)) and non-cooperative weak sites (N(W)) with binding constants in decreasing order: K(I)>K(S)>K(W). The total number of binding sites amounts to about 65 per Hb tetramer. Information on reaction kinetics was obtained from the change of intrinsic fluorescence in Hb monitored by stopped-flow fluorometry. Fluctuation of fluorescence dependent on Ln(3+) concentration and temperature was observed and can be attributed to the successive conformational changes induced by Ln(3+) binding. The results also reveal the bidirectional changes of the oxygen affinity of Hb in the dependence on Ln(3+) concentration. At the range of [Ln(3+)]/[Hb]<2, the marked increase of oxygen affinity (P(50) decrease) with the Ln(3+) concentration can be attributed to the hydrolysis of 2,3-DPG, while the slight rebound of oxygen affinity in higher Ln(3+) concentration can be interpreted by the transition to the T-state of the Hb tetramer induced by Ln(3+) binding. This was indicated by the changes in secondary structure characterized by the decrease of alpha-helix content.
Increased hemoglobin O2 affinity protects during acute hypoxia
Yalcin, Ozlem
2012-01-01
Acclimatization to hypoxia requires time to complete the adaptation mechanisms that influence oxygen (O2) transport and O2 utilization. Although decreasing hemoglobin (Hb) O2 affinity would favor the release of O2 to the tissues, increasing Hb O2 affinity would augment arterial O2 saturation during hypoxia. This study was designed to test the hypothesis that pharmacologically increasing the Hb O2 affinity will augment O2 transport during severe hypoxia (10 and 5% inspired O2) compared with normal Hb O2 affinity. RBC Hb O2 affinity was increased by infusion of 20 mg/kg of 5-hydroxymethyl-2-furfural (5HMF). Control animals received only the vehicle. The effects of increasing Hb O2 affinity were studied in the hamster window chamber model, in terms of systemic and microvascular hemodynamics and partial pressures of O2 (Po2). Pimonidazole binding to hypoxic areas of mice heart and brain was also studied. 5HMF decreased the Po2 at which the Hb is 50% saturated with O2 by 12.6 mmHg. During 10 and 5% O2 hypoxia, 5HMF increased arterial blood O2 saturation by 35 and 48% from the vehicle group, respectively. During 5% O2 hypoxia, blood pressure and heart rate were 58 and 30% higher for 5HMF compared with the vehicle. In addition, 5HMF preserved microvascular blood flow, whereas blood flow decreased to 40% of baseline in the vehicle group. Consequently, perivascular Po2 was three times higher in the 5HMF group compared with the control group at 5% O2 hypoxia. 5HMF also reduced heart and brain hypoxic areas in mice. Therefore, increased Hb O2 affinity resulted in hemodynamics and oxygenation benefits during severe hypoxia. This acute acclimatization process may have implications in survival during severe environmental hypoxia when logistic constraints prevent chronic acclimatization. PMID:22636677
High-affinity hemoglobin and blood oxygen saturation in diving emperor penguins.
Meir, Jessica U; Ponganis, Paul J
2009-10-01
The emperor penguin (Aptenodytes forsteri) thrives in the Antarctic underwater environment, diving to depths greater than 500 m and for durations longer than 23 min. To examine mechanisms underlying the exceptional diving ability of this species and further describe blood oxygen (O2) transport and depletion while diving, we characterized the O2-hemoglobin (Hb) dissociation curve of the emperor penguin in whole blood. This allowed us to (1) investigate the biochemical adaptation of Hb in this species, and (2) address blood O2 depletion during diving, by applying the dissociation curve to previously collected partial pressure of O2 (PO2) profiles to estimate in vivo Hb saturation (SO2) changes during dives. This investigation revealed enhanced Hb-O2 affinity (P50=28 mmHg, pH 7.5) in the emperor penguin, similar to high-altitude birds and other penguin species. This allows for increased O2 at low blood PO2 levels during diving and more complete depletion of the respiratory O2 store. SO2 profiles during diving demonstrated that arterial SO2 levels are maintained near 100% throughout much of the dive, not decreasing significantly until the final ascent phase. End-of-dive venous SO2 values were widely distributed and optimization of the venous blood O2 store resulted from arterialization and near complete depletion of venous blood O2 during longer dives. The estimated contribution of the blood O2 store to diving metabolic rate was low and highly variable. This pattern is due, in part, to the influx of O2 from the lungs into the blood during diving, and variable rates of tissue O2 uptake.
Hemoglobin Brigham (α2Aβ2100 Pro→Leu). HEMOGLOBIN VARIANT ASSOCIATED WITH FAMILIAL ERYTHROCYTOSIS
Lokich, Jacob J.; Moloney, William C.; Bunn, H. Franklin; Bruckheimer, Sally M.; Ranney, Helen M.
1973-01-01
Erythrocytosis associated with the presence of a hemoglobin with increased oxygen affinity has been reported for 10 hemoglobin variants, most of which demonstrate altered electrophoretic mobility. Several members of a family were found to have erythrocytosis, and both the whole blood and the hemoglobin exhibited increased oxygen affinity. Phosphate-free hemoglobin solutions had a normal Bohr effect and reactivity to 2,3-diphosphoglycerate. The electrophoretic properties of the hemoglobin were normal, but on peptide mapping of a tryptic digest of the isolated β-chains, a normal βT11 peptide and an abnormal βT11 with greater Rf were seen. Analysis of the abnormal peptide showed the substitution of leucine for the normal proline at β100 (helical residue G2). The hemoglobin variant, designated Hb Brigham, serves to emphasize the necessity for detailed evaluation of the structure and function of hemoglobin in familial erythrocytosis even with electrophoretically “normal” hemoglobin. PMID:4719677
Hemoglobin-oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend?
Storz, Jay F
2016-10-15
In air-breathing vertebrates at high altitude, fine-tuned adjustments in hemoglobin (Hb)-O 2 affinity provide an energetically efficient means of mitigating the effects of arterial hypoxemia. However, it is not always clear whether an increased or decreased Hb-O 2 affinity should be expected to improve tissue O 2 delivery under different degrees of hypoxia, due to the inherent trade-off between arterial O 2 loading and peripheral O 2 unloading. Theoretical results indicate that the optimal Hb-O 2 affinity varies as a non-linear function of environmental O 2 availability, and the threshold elevation at which an increased Hb-O 2 affinity becomes advantageous depends on the magnitude of diffusion limitation (the extent to which O 2 equilibration at the blood-gas interface is limited by the kinetics of O 2 exchange). This body of theory provides a framework for interpreting the possible adaptive significance of evolved changes in Hb-O 2 affinity in vertebrates that have colonized high-altitude environments. To evaluate the evidence for an empirical generalization and to test theoretical predictions, I synthesized comparative data in a phylogenetic framework to assess the strength of the relationship between Hb-O 2 affinity and native elevation in mammals and birds. Evidence for a general trend in mammals is equivocal, but there is a remarkably strong positive relationship between Hb-O 2 affinity and native elevation in birds. Evolved changes in Hb function in high-altitude birds provide one of the most compelling examples of convergent biochemical adaptation in vertebrates. © 2016. Published by The Company of Biologists Ltd.
Effect of hemoglobin polymerization on oxygen transport in hemoglobin solutions.
Budhiraja, Vikas; Hellums, J David
2002-09-01
The effect of hemoglobin (Hb) polymerization on facilitated transport of oxygen in a bovine hemoglobin-based oxygen carrier was studied using a diffusion cell. In high oxygen tension gradient experiments (HOTG) at 37 degrees C the diffusion of dissolved oxygen in polymerized Hb samples was similar to that in unpolymerized Hb solutions during oxygen uptake. However, in the oxygen release experiments, the transport by diffusion of dissolved oxygen was augmented by diffusion of oxyhemoglobin over a range of oxygen saturations. The augmentation was up to 30% in the case of polymerized Hb and up to 100% in the case of unpolymerized Hb solution. In experiments performed at constant, low oxygen tension gradients in the range of physiological significance, the augmentation effect was less than that in the HOTG experiments. Oxygen transport in polymerized Hb samples was approximately the same as that in unpolymerized samples over a wide range of oxygen tensions. However, at oxygen tensions lower than 30 mm Hg, there were more significant augmentation effects in unpolymerized bovine Hb samples than in polymerized Hb. The results presented here are the first accurate, quantitative measurements of effective diffusion coefficients for oxygen transport in hemoglobin-based oxygen carriers of the type being evaluated to replace red cells in transfusions. In all cases the oxygen carrier was found to have higher effective oxygen diffusion coefficients than blood.
The Oxygen Equilibrium of Mammalian Hemoglobin
Roughton, F. J. W.
1965-01-01
The three chief physicochemical theories of the oxygen-hemoglobin equilibrium in vogue 40 years ago still influence current thought on the problem. Although the Hill theory lost its fundamental basis some 40 years ago, the famous empiric equation to which it gave rise is still much used, as a useful phenomenological expression, only involving two disposable constants. The Haldane theory, of which a difference in aggregation of oxygenated and deoxygenated hemoglobin was a fundamental feature, lay for many years dormant but has recently had an astonishing reawakening through the work on lamprey hemoglobin, which clearly reveals such differences in aggregation. Lamprey hemoglobin might thus be called a "Haldane type" hemoglobin. Adair's four-stage intermediate compound theory still seems applicable in the case of hemoglobins such as those of sheep, whose tetramer molecules do not tend to dissociate into dimers, and which might therefore be called "Adair type" hemoglobins. Horse and human hemoglobins appear to reveal both "Haldane" and "Adair" behaviour. The effects of pH, temperature, and protein concentration on the oxygen-equilibrium of sheep hemoglobin are summarised, and it is shown that, although the equilibrium curves are often isomorphous over their middle range, intensive work at the top and bottom of the curves reveals considerable differences in the relative effects of these factors on the several equilibrium constants of Adair's four intermediate equations. In the last section an account is given of preliminary experimental attempts to interpret the oxygen- and carbon monoxide—equilibrium curves of whole human blood, under physiological conditions in terms of the Adair intermediate compound hypothesis. PMID:5859923
[Role of erythrocyte cytoplasmic structures in changes in the affinity of haemoglobin for oxygen].
Bryzgalova, N Iu; Brazhe, N A; Iusipovich, A U; Maksimov, G V; Rubin, A B
2009-01-01
Changes in the refractive index of the cytoplasm and the affinity of haemoporphyrin of erythrocyte haemoglobin to oxygen (pH, 2,3-diphosphoglycerate) have been investigated using laser interference microscopy and Raman spectroscopy. It has been established that a decrease in pH and an increase in the content of 2,3-diphosphoglycerate are accompanied by changes in both the form of the cell and the refractive index of the cytoplasm and the affinity of haemoporphyrin of hemoglobin to oxygen. It has been shown that as pH is reduced, the capacity of haemoporphyrin for binding oxygen decreases and as the concentration of 2,3-diphosphoglycerate is increased, the ability of haemoporphyrin for oxygen reabsorption increases.
Kalaeva, E A; Artyukhov, V G; Putintseva, O V; Polyubez'eva, A I
2016-01-01
The spectral and oxygen-binding characteristics of human intracellular hemoglobin in the presence of nitroglycerin at concentrations of 5 ng/mL and 5 μg/mL have been studied. Short incubation (20 min) of erythrocytes with the drug led increasing hemoglobin affinity to oxygen and weakening of cooperative interactions in hemoprotein molecules. As a result, the amount of O(2) supplied to tissues in the process of gas exchange decreased by 23.96% (5 ng/mL) and 26.68% (5 μg/ml), p < 0.05. Incubation of cells for 24 h resulted in oxidation of the heme iron atom, accumulation of methemoglobin, and partial hemolysis. Nitroglycerin reduces the intensity of oxidative processes. However, no dependence of the degree of changes in the physical and chemical properties of hemoglobin on the concentration of nitroglycerin was found.
Clerbaux, T; Frans, A
1985-02-01
Clinical and pharmacological studies have shown that almitrine increased arterial blood oxygen partial pressure (PaO2) and tissular oxygenation. We have verified whether this drug could also increase the 2,3 diphosphoglycerate (DPG) level and so modify the oxyhemoglobin dissociation curve (ODC). Determinations performed 3 hours and 5 days after daily oral administration (1,5 mg/kg) of the drug showed no alterations of DPG and ODC in normal subjects. The presence of almitrine does not explain the observed PaO2 increase by means of a direct effect on the hemoglobin oxygen affinity. However, one cannot exclude almitrine long term effect; indeed, after 15 days, DPG levels and Hill coefficient increased significantly (p less than 0.05) but no the P50 (respectively + 1,5 mumole/gHb; +0.1 and 26.0 vs 26.5 mmHg).
Castilho, E M; Glass, M L; Manço, J C
2003-06-01
The position of the oxygen dissociation curve (ODC) is modulated by 2,3-diphosphoglycerate (2,3-DPG). Decreases in 2,3-DPG concentration within the red cell shift the curve to the left, whereas increases in concentration cause a shift to the right of the ODC. Some earlier studies on diabetic patients have reported that insulin treatment may reduce the red cell concentrations of 2,3-DPG, causing a shift of the ODC to the left, but the reports are contradictory. Three groups were compared in the present study: 1) nondiabetic control individuals (N = 19); 2) insulin-dependent diabetes mellitus (IDDM) patients (on insulin treatment) (N = 19); 3) non-insulin-dependent diabetes mellitus (NIDDM) patients using oral hypoglycemic agents and no insulin treatment (N = 22). The overall position of the ODC was the same for the three groups despite an increase of the glycosylated hemoglobin fraction that was expected to shift the ODC to the left in both groups of diabetic patients (HbA1c: control, 4.6%; IDDM, 10.5%; NIDDM, 9.0%). In IDDM patients, the effect of the glycosylated hemoglobin fraction on the position of the ODC appeared to be counterbalanced by small though statistically significant increases in 2,3-DPG concentration from 2.05 (control) to 2.45 mol/ml blood (IDDM). Though not statistically significant, an increase of 2,3-DPG also occurred in NIDDM patients, while red cell ATP levels were the same for all groups. The positions of the ODC were the same for control subjects, IDDM and NIDDM patients. Thus, the PO2 at 50% hemoglobin-oxygen saturation was 26.8, 28.2 and 28.5 mmHg for control, IDDM and NIDDM, respectively. In conclusion, our data question the idea of adverse side effects of insulin treatment on oxygen transport. In other words, the shift to the left reported by others to be caused by insulin treatment was not detected.
Revsbech, Inge G; Malte, Hans; Fröbert, Ole; Evans, Alina; Blanc, Stéphane; Josefsson, Johan; Fago, Angela
2013-01-01
During winter hibernation, brown bears (Ursus arctos) reduce basal O(2) consumption rate to ∼25% compared with the active state, while body temperature decreases moderately (to ∼30°C), suggesting a temperature-independent component in their metabolic depression. To establish whether changes in O(2) consumption during hibernation correlate with changes in blood O(2) affinity, we took blood samples from the same six individuals of hibernating and nonhibernating free-ranging brown bears during winter and summer, respectively. A single hemoglobin (Hb) component was detected in all samples, indicating no switch in Hb synthesis. O(2) binding curves measured on red blood cell lysates at 30°C and 37°C showed a less temperature-sensitive O(2) affinity than in other vertebrates. Furthermore, hemolysates from hibernating bears consistently showed lower cooperativity and higher O(2) affinity than their summer counterparts, regardless of the temperature. We found that this increase in O(2) affinity was associated with a significant decrease in the red cell Hb-cofactor 2,3-diphosphoglycerate (DPG) during hibernation to approximately half of the summer value. Experiments performed on purified Hb, to which DPG had been added to match summer and winter levels, confirmed that the low DPG content was the cause of the left shift in the Hb-O(2) equilibrium curve during hibernation. Levels of plasma lactate indicated that glycolysis is not upregulated during hibernation and that metabolism is essentially aerobic. Calculations show that the increase in Hb-O(2) affinity and decrease in cooperativity resulting from decreased red cell DPG may be crucial in maintaining a fairly constant tissue oxygen tension during hibernation in vivo.
Agostoni, A; Lotto, A; Stabilini, R; Bernasconi, C; Gerli, G; Gattinoni, L; Lapichino, G; Sslvadé, P
1975-06-01
The aim of this study was to determine the oxigen affinity actually present in vivo in blood from patients with acute myocardial infarction. Patients with uncomplicated acute myocardial infarction had normal value of P50 in vivo (partial pressure of oxygen at which 50 percent of the hemoglobin is saturated with oxygen at fixed levels of pHand PC02 present in vivo). Also the values of P50 in vivo of blood from patients with low cardiac output with mild or severe heart failured did not differ from the normal mean. This was the consequence of an increase of 2, 3-diphosphoglycerate levels (which reduces the oxygen affinity of hemoglobin) and of the immediate effect of alkalosis (Bohr effect). By contrast, the values of P50 in vivo were significantly increased in patients with cardiogenic shock. This could be ascribed to the state of acute acidiosis present in these patients. In these conditions the changes in the values of P50 in vivo play an important role in the oxygen delivery to the tissues. However, high values of P50 do not enhance oxygen delivery when a severe arterial hypoxemia (P02 smaller than 40-45 mm Hg) is also present.
Patton, Jaqunda N; Palmer, Andre F
2006-01-01
This work represents a culmination of research on oxygen transport to muscle tissue, which takes into account oxygen transport due to convection, diffusion, and the kinetics of simultaneous reactions between oxygen and hemoglobin and myoglobin. The effect of adding hemoglobin-based oxygen carriers (HBOCs) to the plasma layer of blood in a single capillary surrounded by muscle tissue based on the geometry of the Krogh tissue cylinder is examined for a range of HBOC oxygen affinity, HBOC concentration, capillary inlet oxygen tension (pO(2)), and hematocrit. The full capillary length of the hamster retractor muscle was modeled under resting (V(max) = 1.57 x 10(-4) mLO(2) mL(-1) s(-1), cell velocity (v(c)) = 0.015 cm/s) and working (V(max) = 1.57 x 10(-3) mLO(2) mL(-1) s(-1), v(c) = 0.075 cm/s) conditions. Two spacings between the red blood cell (RBC) and the capillary wall were examined, corresponding to a capillary with and without an endothelial surface layer. Simulations led to the following conclusions, which lend physiological insight into oxygen transport to muscle tissue in the presence of HBOCs: (1) The reaction kinetics between oxygen and myoglobin in the tissue region, oxygen and HBOCs in the plasma, and oxygen and RBCs in the capillary lumen should not be neglected. (2) Simulation results yielded new insight into possible mechanisms of oxygen transport in the presence of HBOCs. (3) HBOCs may act as a source or sink for oxygen in the capillary and may compete with RBCs for oxygen. (4) HBOCs return oxygen delivery to muscle tissue to normal for varying degrees of hypoxia (inlet capillary pO(2) < 30 mmHg) and anemia (hematocrit < 46%) for the hamster model.
The interaction of 2,3-diphosphoglycerate with various human hemoglobins
Bunn, H. Franklin; Briehl, Robin W.
1970-01-01
Oxygen equilibria were measured on a number of human hemoglobins, which had been “stripped” of organic phosphates and isolated by column chromatography. In the presence of 2 × 10-4 M 2,3-diphosphoglycerate (2,3-DPG), the P50 of hemoglobins A, A2, S, and C increased about twofold, signifying a substantial and equal decrease in oxygen affinity. Furthermore, hemoglobins Chesapeake and MMilwaukee-1 which have intrinsically high and low oxygen affinities, respectively, also showed a twofold increase in P50 in the presence of 2 × 10-4 M 2,3-DPG. In comparison to these, hemoglobins AIC and F were less reactive with 2,3-DPG while hemoglobin FI showed virtually no reactivity. The N-terminal amino of each β-chain of hemoglobin AIC is linked to a hexose. In hemoglobin FI the N-terminal amino of each γ-chain is acetylated. These results suggest that the N-terminal amino groups of the non-α-chains are involved in the binding of 2,3-DPG to hemoglobin. PMID:5422014
Effect of altitude on oxygen binding by hemoglobin and on organic phosphate levels
Lenfant, Claude; Torrance, John; English, Eugenia; Finch, Clement A.; Reynafarje, Cesar; Ramos, Jose; Faura, Jose
1968-01-01
The relationship between oxygen dissociation and 2,3-diphosphoglycerate (2,3-DPG) in the red cell has been studied in subjects moving from low to high altitude and vice versa. Within 24 hr following the change in altitude there was a change in hemoglobin affinity for oxygen; this modification therefore represents an important rapid adaptive mechanism to anoxia. A parallel change occurred in the organic phosphate content of the red cell. While this study does not provide direct evidence of a cause-effect relationship, the data strongly suggest that with anoxia, the observed rise in organic phosphate content of the red cell is responsible for increased availability of oxygen to tissues. Images PMID:5725278
Oxygen Measurements in Liposome Encapsulated Hemoglobin
NASA Astrophysics Data System (ADS)
Phiri, Joshua Benjamin
Liposome encapsulated hemoglobins (LEH's) are of current interest as blood substitutes. An analytical methodology for rapid non-invasive measurements of oxygen in artificial oxygen carriers is examined. High resolution optical absorption spectra are calculated by means of a one dimensional diffusion approximation. The encapsulated hemoglobin is prepared from fresh defibrinated bovine blood. Liposomes are prepared from hydrogenated soy phosphatidylcholine (HSPC), cholesterol and dicetylphosphate using a bath sonication method. An integrating sphere spectrophotometer is employed for diffuse optics measurements. Data is collected using an automated data acquisition system employing lock-in -amplifiers. The concentrations of hemoglobin derivatives are evaluated from the corresponding extinction coefficients using a numerical technique of singular value decomposition, and verification of the results is done using Monte Carlo simulations. In situ measurements are required for the determination of hemoglobin derivatives because most encapsulation methods invariably lead to the formation of methemoglobin, a nonfunctional form of hemoglobin. The methods employed in this work lead to high resolution absorption spectra of oxyhemoglobin and other derivatives in red blood cells and liposome encapsulated hemoglobin (LEH). The analysis using singular value decomposition method offers a quantitative means of calculating the fractions of oxyhemoglobin and other hemoglobin derivatives in LEH samples. The analytical methods developed in this work will become even more useful when production of LEH as a blood substitute is scaled up to large volumes.
Wang, Yu; Hu, Song; Maslov, Konstantin; Zhang, Yu; Xia, Younan; Wang, Lihong V
2011-04-01
We developed dual-modality microscope integrating photoacoustic microscopy (PAM) and fluorescence confocal microscopy (FCM) to noninvasively image hemoglobin oxygen saturation (sO₂) and oxygen partial pressure (pO₂) in vivo in single blood vessels with high spatial resolution. While PAM measures sO₂ by imaging hemoglobin optical absorption at two wavelengths, FCM quantifies pO₂ using phosphorescence quenching. The variations of sO₂ and pO₂ values in multiple orders of vessel branches under hyperoxic (100% oxygen) and normoxic (21% oxygen) conditions correlate well with the oxygen-hemoglobin dissociation curve. In addition, the total concentration of hemoglobin is imaged by PAM at an isosbestic wavelength.
Crystal structure analysis of Great Cormorant (Phalacrocorax carbo) Hemoglobin.
Ganapathy, Jagadeesan; Palayam, Malathy; Pennathur, Gautam; Sanmargam, Aravindhan; Krishnasamy, Gunasekaran
2018-06-20
Hemoglobin (Hb) molecule consists of α2β2 dimers arranged in fashion having pseudo-222 symmetry. The subunits are composed of the specific functional prosthetic group "heme'' and a protein moiety "globin". Bird Hbs are functionally similar to mammalian Hbs and regulated by inositol pentaphosphate (IPP) but they are structurally dissimilar with mammalian Hbs in adaptation to vital environment such as high altitudes, high speed flights and oxygen affinity. The insufficient structural studies on avian Hbs limit us to understand their degree of adaptation to such critical environments. So far, detailed structural studies of bar-headed goose (BHG) and graylag goose (GLG) Hb structures were reported to expose their remarkable difference in molecular level adaptation. The striking contrasts to its close relative the bar headed goose, which lives at high altitude and capable of tolerating severe hypoxic environment is mainly due its structural features. The Great Cormorant (GCT) can fly and swim, the dual characteristic of GCT leads to study the details of adaptation of high oxygen affinity in avian species and to know about the role of amino acid substitutions at α1β1 interface, the crystal structure of Great cormorant is studied. The structure of GCT Hb has been solved at 3.5Å resolution and it is compared with the other high oxygen affinity Hb (graylag goose (GLG), bar headed goose (BHG) and human (HMN) hemoglobin) structures. To determine the crystal structure of Great Cormorant (GCT) Hemoglobin and to compare its three dimensional structure with other high and low oxygen affinity hemoglobin species to understand its characteristic features of high oxygen affinity. The GCT hemoglobin has been purified, crystallized and data sets were processed using iMosflm. The integrated data has been solved using Molecular replacement method using Graylag hemoglobin (1FAW) as the template. The structure refinement has been carried out using Refmac which reduced the Rwork and
Hemoglobin Function in Stored Blood.
1974-08-01
States during 1973. Several advantages over ACA) are important. Blood stored in CPD maintains higher ./ levels of 2,3-DPG (2,3- diphosphoglycerate ) and a...survival and ATP levels in stored blood is explained by the several functions of ATP which are necessary for cell viability. However, ATP levels do...not correlate with oxygen affinity during storage. Levels of 2,3-DPG determine oxygen affinity and thus hemoglobin function. (12,13) When normal levels
Manconi, Barbara; Pellegrini, Mariagiuseppina; Messana, Irene; Sanna, Maria Teresa; Castagnola, Massimo; Iavarone, Federica; Coluccia, Elisabetta; Giardina, Bruno; Olianas, Alessandra
2013-10-01
The hemoglobin system of the serpent eel Ophisurus serpens was structurally and functionally characterized with the aim of comparing it to the hemoglobin system of other fish species, as oxygen loading under the severe habitat conditions experienced by O. serpens could have necessitated specific adaptation mechanisms during evolution. The hemoglobin system of O. serpens includes one cathodic and four anodic components. The molecular mass of the α and β chains of the cathodic component as well as the 2 α and 4 β of the anodic components were determined. Analysis of the intact α and β chains from cathodic hemoglobin and their proteolytic digestion products by high-resolution MS and MS/MS experiments resulted in 92 and 95 % sequence coverage of the α and β globins, respectively. The oxygen binding properties of both hemoglobin components were analyzed with respect to their interactions with their physiological effectors. Stripped cathodic hemoglobin displayed the highest oxygen affinity among Anguilliformes with no significant effect of pH on O2-affinity. In the presence of both chloride and organic phosphates, O2-affinity was strongly reduced, and cooperativity was enhanced; moreover, cathodic hemoglobin contains two indistinguishable GTP-binding sites. Stripped anodic hemoglobins exhibited both low O2-affinity and low cooperativity and a larger Bohr effect than cathodic hemoglobin. The cathodic hemoglobin of O. serpens and the corresponding component of Conger conger share the greatest structural and functional similarity among hemoglobin systems of Anguilliformes studied to date, consistent with their phylogenetic relationship.
The Steady-State Transport of Oxygen through Hemoglobin Solutions
Keller, K. H.; Friedlander, S. K.
1966-01-01
The steady-state transport of oxygen through hemoglobin solutions was studied to identify the mechanism of the diffusion augmentation observed at low oxygen tensions. A novel technique employing a platinum-silver oxygen electrode was developed to measure the effective diffusion coefficient of oxygen in steady-state transport. The measurements were made over a wider range of hemoglobin and oxygen concentrations than previously reported. Values of the Brownian motion diffusion coefficient of oxygen in hemoglobin solution were obtained as well as measurements of facilitated transport at low oxygen tensions. Transport rates up to ten times greater than ordinary diffusion rates were found. Predictions of oxygen flux were made assuming that the oxyhemoglobin transport coefficient was equal to the Brownian motion diffusivity which was measured in a separate set of experiments. The close correlation between prediction and experiment indicates that the diffusion of oxyhemoglobin is the mechanism by which steady-state oxygen transport is facilitated. PMID:5943608
Oxygenation properties and isoform diversity of snake hemoglobins.
Storz, Jay F; Natarajan, Chandrasekhar; Moriyama, Hideaki; Hoffmann, Federico G; Wang, Tobias; Fago, Angela; Malte, Hans; Overgaard, Johannes; Weber, Roy E
2015-11-01
Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer-dimer dissociation. However, standardized comparative data are lacking for snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying α- and β-type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2) the oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from three families as subjects for experimental studies of Hb function: South American rattlesnake, Crotalus durissus (Viperidae); Indian python, Python molurus (Pythonidae); and yellow-bellied sea snake, Pelamis platura (Elapidae). We analyzed allosteric properties of snake Hbs in terms of the Monod-Wyman-Changeux model and Adair four-step thermodynamic model. Hbs from each of the three species exhibited high intrinsic O2 affinities, low cooperativities, small Bohr factors in the absence of phosphates, and high sensitivities to ATP. Oxygenation properties of the snake Hbs could be explained entirely by allosteric transitions in the quaternary structure of intact tetramers, suggesting that ligation-dependent dissociation of Hb tetramers into αβ-dimers is not a universal feature of snake Hbs. Surprisingly, the major Hb isoform of the South American rattlesnake is homologous to the minor HbD of other amniotes and, contrary to the pattern of Hb isoform differentiation in birds and turtles, exhibits a lower O2 affinity than the HbA isoform. Copyright © 2015 the American Physiological Society.
Oxygenation properties and isoform diversity of snake hemoglobins
Natarajan, Chandrasekhar; Moriyama, Hideaki; Hoffmann, Federico G.; Wang, Tobias; Fago, Angela; Malte, Hans; Overgaard, Johannes; Weber, Roy E.
2015-01-01
Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer-dimer dissociation. However, standardized comparative data are lacking for snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying α- and β-type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2) the oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from three families as subjects for experimental studies of Hb function: South American rattlesnake, Crotalus durissus (Viperidae); Indian python, Python molurus (Pythonidae); and yellow-bellied sea snake, Pelamis platura (Elapidae). We analyzed allosteric properties of snake Hbs in terms of the Monod-Wyman-Changeux model and Adair four-step thermodynamic model. Hbs from each of the three species exhibited high intrinsic O2 affinities, low cooperativities, small Bohr factors in the absence of phosphates, and high sensitivities to ATP. Oxygenation properties of the snake Hbs could be explained entirely by allosteric transitions in the quaternary structure of intact tetramers, suggesting that ligation-dependent dissociation of Hb tetramers into αβ-dimers is not a universal feature of snake Hbs. Surprisingly, the major Hb isoform of the South American rattlesnake is homologous to the minor HbD of other amniotes and, contrary to the pattern of Hb isoform differentiation in birds and turtles, exhibits a lower O2 affinity than the HbA isoform. PMID:26354849
Yuan, Yue; Byrd, Catherine; Shen, Tong-Jian; Simplaceanu, Virgil; Tam, Tsuey Chyi S.; Ho, Chien
2013-01-01
The oxygen affinity of woolly mammoth hemoglobin (rHb WM) is less affected by temperature change than that of Asian elephant hemoglobin (rHb AE) or human adult hemoglobin (Hb A). We report here a biochemical-biophysical study of Hb A, rHb AE, rHb WM and three rHb WM mutants with amino acid substitutions at β/δ101 (β/δ101Gln→Glu, Lys, or Asp) plus a double and a triple mutant, designed to clarify the role of the β/δ101 residue. The β/δ101Gln residue is important for responding to allosteric effectors, such as phosphate, inositol hexaphosphate (IHP), and chloride. The rHb WM mutants studied generally have higher affinity for oxygen under various conditions of pH, temperature, and salt concentration, and in the presence or absence of organic phosphate, than do rHb WM, rHb AE and Hb A. Titrations for the O2 affinity of these mutant rHbs as a function of chloride concentration indicate a lower heterotopic effect of this anion due to the replacement of β/δ101Gln in rHb WM. The alkaline Bohr effect of rHb WM and its mutants is reduced by 20–50% compared to that of Hb A and is independent of changes in temperature, in contrast to what has been observed in the hemoglobins of most mammalian species, including human. The results of our study on the temperature dependence of the O2 affinity of rHb WM and its mutant rHbs illustrate the important role of β/δ101Gln in regulating the functional properties of these hemoglobins. PMID:24228693
Hemoglobin crystals immersed in liquid oxygen reveal diffusion channels.
Terrell, James Ross; Gumpper, Ryan H; Luo, Ming
2018-01-08
Human hemoglobin (HbA) transports molecular oxygen (O 2 ) from the lung to tissues where the partial pressure of O 2 is lower. O 2 binds to HbA at the heme cofactor and is stabilized by a distal histidine (HisE7). HisE7 has been observed to occupy opened and closed conformations, and is postulated to act as a gate controlling the binding/release of O 2 . However, it has been suggested that HbA also contains intraprotein oxygen channels for entrances/exits far from the heme. In this study, we developed a novel method of crystal immersion in liquid oxygen prior to X-ray data collection. In the crystals immersed in liquid oxygen, the heme center was oxidized to generate aquomethemoglobin. Increases of structural flexibility were also observed in regions that are synonymous with previously postulated oxygen channels. These regions also correspond to medically relevant mutations which affect O 2 affinity. The way HbA utilizes these O 2 channels could have a profound impact on understanding the relationship of HbA O 2 transport within these disease conditions. Finally, the liquid oxygen immersion technique can be utilized as a new tool to crystallographically examine proteins and protein complexes which utilize O 2 for enzyme catalysis or transport. Copyright © 2017 Elsevier Inc. All rights reserved.
Copper and the oxidation of hemoglobin: a comparison of horse and human hemoglobins.
Rifkind, J M; Lauer, L D; Chiang, S C; Li, N C
1976-11-30
Oxidation studies of hemoglobin by Cu(II) indicate that for horse hemoglobin, up to a Cu(II)/heme molar ratio of 0.5, all of the Cu(II) added is used to rapidly oxidize the heme. On the other hand, most of the Cu(II) added to human hemoglobin at low Cu(II)/heme molar ratios is unable to oxidize the heme. Only at Cu(II)/heme molar ratios greater than 0.5 does the amount of oxidation per added Cu(II) approach that of horse hemoglobin. At the same time, binding studies indicate that human hemoglobin has an additional binding site involving one copper for every two hemes, which has a higher copper affinity than the single horse hemoglobin binding site. The Cu(II) oxidation of human hemoglobin is explained utilizing this additional binding site by a mechanism where a transfer of electrons cannot occur between the heme and the Cu(II) bound to the high affinity human binding site. The electron transfer must involve the Cu(II) bound to the lower affinity human hemoglobin binding site, which is similar to the only horse hemoglobin site. The involvement of beta-2 histidine in the binding of this additional copper is indicated by a comparison of the amino acid sequences of various hemoglobins which possess the additional site, with the amino acid sequences of hemoglobins which do not possess the additional site. Zn(II), Hg(II), and N-ethylmaleimide (NEM) are found to decrease the Cu(II) oxidation of hemoglobin. The sulfhydryl reagents, Hg(II) and NEM, produce a very dramatic decrease in the rate of oxidation, which can only be explained by an effect on the rate for the actual transfer of electrons between the Cu(II) and the Fe(II). The effect of Zn(II) is much smaller and can, for the most part, be explained by the increased oxygen affinity, which affects the ligand dissociation process that must precede the electron transfer process.
Vinciguerra, Margherita; Passarello, Cristina; Cassarà, Filippo; Leto, Filippo; Cannata, Monica; Crivello, Anna; Di Salvo, Veronica; Maggio, Aurelio; Giambona, Antonino
2016-08-01
A 59-year-old Italian woman came to our center for revaluation of a previous diagnosis of polycythemia vera. The patient presented with a lifelong history of polycythemia, no increase in white blood cells (WBCs) and platelets, and a negative bone marrow biopsy. Analysis of hemoglobin (Hb) fractions showed an abnormal fast moving Hb component. We aimed to determine if this variant was the cause of polycythemia in this patient. A complete blood count (CBC) was performed by an automated cell counter and Hb fractions were determined by high performance liquid chromatography (HPLC). Standard stability tests and oxygen affinity evaluation were also performed. Genomic DNA was extracted from peripheral blood leukocytes using the phenol chloroform method and the entire β-globin gene was analyzed by direct sequencing. At the hematological level, no anemia or hemolysis was observed but an abnormal Hb fraction was detected using cation exchange HPLC. Molecular analysis of the β-globin gene showed heterozygosity for an AAG > ACG substitution at codon 144, resulting in a Lys→Thr amino acid replacement. We demonstrated that this is a new Hb variant with increased oxygen affinity. Its altered physiology is caused by the reduction of 2,3-diphosphoglycerate (2,3-DPG) effects, due to an amino acid substitution in the central pocket near the C-terminal of the β chain. We called this new variant Hb San Cataldo for the native city of proband.
Oxygen binding to partially nitrosylated hemoglobin.
Fago, Angela; Crumbliss, Alvin L; Hendrich, Michael P; Pearce, Linda L; Peterson, Jim; Henkens, Robert; Bonaventura, Celia
2013-09-01
Reactions of nitric oxide (NO) with hemoglobin (Hb) are important elements in protection against nitrosative damage. NO in the vasculature is depleted by the oxidative reaction with oxy Hb or by binding to deoxy Hb to generate partially nitrosylated Hb (Hb-NO). Many aspects of the formation and persistence of Hb-NO are yet to be clarified. In this study, we used a combination of EPR and visible absorption spectroscopy to investigate the interactions of partially nitrosylated Hb with O2. Partially nitrosylated Hb samples had predominantly hexacoordinate NO-heme geometry and resisted oxidation when exposed to O2 in the absence of anionic allosteric effectors. Faster oxidation occurred in the presence of 2,3-diphosphoglycerate (DPG) or inositol hexaphosphate (IHP), where the NO-heme derivatives had higher levels of pentacoordinate heme geometry. The anion-dependence of the NO-heme geometry also affected O2 binding equilibria. O2-binding curves of partially nitrosylated Hb in the absence of anions were left-shifted at low saturations, indicating destabilization of the low O2 affinity T-state of the Hb by increasing percentages of NO-heme, much as occurs with increasing levels of CO-heme. Samples containing IHP showed small decreases in O2 affinity, indicating shifts toward the low-affinity T-state and formation of inert α-NO/β-met tetramers. Most remarkably, O2-equilibria in the presence of the physiological effector DPG were essentially unchanged by up to 30% NO-heme in the samples. As will be discussed, under physiological conditions the interactions of Hb with NO provide protection against nitrosative damage without impairing O2 transport by Hb's unoccupied heme sites. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins. Copyright © 2013 Elsevier B.V. All rights reserved.
McCarthy, M R; Vandegriff, K D; Winslow, R M
2001-08-30
We compared rates of oxygen transport in an in vitro capillary system using red blood cells (RBCs) and cell-free hemoglobins. The axial PO(2) drop down the capillary was calculated using finite-element analysis. RBCs, unmodified hemoglobin (HbA(0)), cross-linked hemoglobin (alpha alpha-Hb) and hemoglobin conjugated to polyethylene-glycol (PEG-Hb) were evaluated. According to their fractional saturation curves, PEG-Hb showed the least desaturation down the capillary, which most closely matched the RBCs; HbA(0) and alpha alpha-Hb showed much greater desaturation. A lumped diffusion parameter, K*, was calculated based on the Fick diffusion equation with a term for facilitated diffusion. The overall rates of oxygen transfer are consistent with hemoglobin diffusion rates according to the Stokes-Einstein Law and with previously measured blood pressure responses in rats. This study provides a conceptual framework for the design of a 'blood substitute' based on mimicking O(2) transport by RBCs to prevent autoregulatory changes in blood flow and pressure.
Introduction of a new regulatory mechanism into human hemoglobin.
Fronticelli, Clara; Bobofchak, Kevin M; Karavitis, Michael; Sanna, Maria Teresa; Brinigar, William S
2002-07-10
Previous studies on bovine hemoglobin (HbBv) have suggested amino acid substitutions, which might introduce into human hemoglobin (HbA) functional characteristics of HbBv, namely a low intrinsic oxygen affinity regulated by Cl(-). Accordingly, we have constructed and characterized a multiple mutant, PB5, [beta(V1M + H2 Delta + T4I + P5A + A76K)] replacing four amino acid residues of HbA with those present at structurally analogous positions in HbBv, plus an additional substitution, beta T4I, which does not occur in either HbBv or HbA. This 'pseudobovine' hemoglobin has oxygen binding properties very similar to those of HbBv: the P(50) of HbA, PB5 and HbBv in the absence of Cl(-) are 1.6, 4.6 and 4.8 torr, respectively, and in 100 mM Cl(-) are 3.7, 10.5 and 12 torr, respectively. Moreover, PB5 has 3-fold slower autoxidation rate compared to HbA and HbBv. These are desirable characteristics for a human hemoglobin to be considered for use as a clinical artificial oxygen carrier. Although the functional properties of PB5 and HbBv are similar, van't Hoff plots indicate that the two hemoglobins interact differently with water, suggesting that factors regulating the R to T equilibrium are not the same in the two proteins. A further indication that PB5 is not a functional mimic of HbBv derives from PB5(control), a human hemoglobin with the same substitutions as PB5, except the beta T4I replacement. PB5(control) has a high oxygen affinity (P(50)=2.3 torr) in the absence of Cl(-), but retains the Cl(-) effect of PB5. The Cl(-) regulation of oxygen affinity in PB5 involves lysine residues at beta 8 and beta 76. PB4, which has the same substitutions as PB5 except beta A76K, and PB6, which has all the substitutions of PB5 plus beta K8Q, both have a low intrinsic oxygen affinity, like HbBv and PB5, but exhibit a decreased sensitivity to Cl(-). Since HbBv has lysine residues at both beta 8 and beta 76, these results imply that Cl(-) regulation in HbBv likewise involves these two
Numerical investigation of oxygen transport by hemoglobin-based carriers through microvessels.
Hyakutake, Toru; Kishimoto, Takumi
2017-12-01
The small size of hemoglobin-based oxygen carriers (HBOCs) may expand the realm of new treatment possibilities for various circulatory diseases. The parametric evaluation of HBOC performance for oxygen transport within tissue is essential for effectively characterizing its performance for each circulatory disease assessed. Thus, the overarching objective of this present study was to numerically investigate the reaction-diffusion phenomenon of oxygenated HBOCs and oxygen on tissues through microvessels. We considered dissociation rate coefficients, oxygen affinity, and diffusion coefficients due to Brownian motion as the biophysical parameters for estimating HBOC performance for oxygen transport. A two-dimensional computational domain, including vessel and tissue regions, was, therefore, accordingly assumed. It was observed that HBOC flows in a microvessel with a diameter of 25 μm and a length of 1 mm, and that the dissociated oxygen diffuses to the tissue region. The results indicated that oxyhemoglobin saturation and partial oxygen tension in a downstream region changed according to each biophysical parameter of HBOC. Moreover, the change in oxygen consumption rate in the tissue region had considerable influence on the oxyhemoglobin saturation level within the vessel. Comparison between simulation results and existing in vitro experimental data of actual HBOCs and RBC showed qualitatively good agreement. These results provide important information for the effective design of robust HBOCs in future.
Aspects of Protein, Chemistry, Part II: Oxygen-Binding Proteins
ERIC Educational Resources Information Center
Nixon, J. E.
1977-01-01
Compares differences in function and behavior of two oxygen-binding proteins, myoglobin found in muscle and hemoglobin found in blood. Describes the mechanism of oxygen-binding and allosteric effect in hemoglobin; also describes the effect of pH on the affinity of hemoglobin for oxygen. (CS)
Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells.
Longeville, Stéphane; Stingaciu, Laura-Roxana
2017-09-05
Translational diffusion of macromolecules in cell is generally assumed to be anomalous due high macromolecular crowding of the milieu. Red blood cells are a special case of cells filled quasi exclusively (95% of the dry weight of the cell) with an almost spherical protein: hemoglobin. Hemoglobin diffusion has since a long time been recognized as facilitating the rate of oxygen diffusion through a solution. We address in this paper the question on how hemoglobin diffusion in the red blood cells can help the oxygen capture at the cell level and hence to improve oxygen transport. We report a measurement by neutron spin echo spectroscopy of the diffusion of hemoglobin in solutions with increasing protein concentration. We show that hemoglobin diffusion in solution can be described as Brownian motion up to physiological concentration and that hemoglobin diffusion in the red blood cells and in solutions at similar concentration are the same. Finally, using a simple model and the concentration dependence of the diffusion of the protein reported here, we show that hemoglobin concentration observed in human red blood cells ([Formula: see text]330 g.L -1 ) corresponds to an optimum for oxygen transport for individuals under strong activity.
Weber, R E; Sullivan, B; Bonaventura, J; Bonaventura, C
1976-05-20
Blood from the primitive holostean fish, the bowfin, Amia calva, contains 2 mo of ATP per mol of hemoglobin. The hemolysates contain at least five tetrameric hemoglobin components which differ in their oxygen affinities and their response to cofactors such as ATP. The binding of oxygen by each chromatographically isolated component, including a cathodal component, is influenced by pH and organic phosphates; there is no significant differentiation of function or structure as seen in trout and certain other fish hemolysates. Kinetic analyses of ligand binding indicate that the Bohr and Root effects of Amia calva hemoglobins are best explained by changes in both the "on" and "off" constants. At low pH, the increase in the "off" constant is smaller than for most other Root hemoglobins. The hemoglobin system of Amina calva is functionally undifferentiated and may be representative of the ancestral condition in teleosts.
Correlations between oxygen affinity and sequence classifications of plant hemoglobins
USDA-ARS?s Scientific Manuscript database
Plants express three phylogenetic classes of hemoglobins (Hb) based on sequence analyses. Class 1 and 2 Hbs are full length globins with the classical 8 helix Mb-like fold, whereas Class 3 plant Hbs resemble the truncated globins found in bacteria. With the exception of the specialized leghemoglobin...
Janecka, Jan E.; Nielsen, Simone S. E.; Andersen, Sidsel D.; Hoffmann, Federico G.; Weber, Roy E.; Anderson, Trevor; Storz, Jay F.; Fago, Angela
2015-01-01
ABSTRACT Genetically based modifications of hemoglobin (Hb) function that increase blood–O2 affinity are hallmarks of hypoxia adaptation in vertebrates. Among mammals, felid Hbs are unusual in that they have low intrinsic O2 affinities and reduced sensitivities to the allosteric cofactor 2,3-diphosphoglycerate (DPG). This combination of features compromises the acclimatization capacity of blood–O2 affinity and has led to the hypothesis that felids have a restricted physiological niche breadth relative to other mammals. In seeming defiance of this conjecture, the snow leopard (Panthera uncia) has an extraordinarily broad elevational distribution and occurs at elevations above 6000 m in the Himalayas. Here, we characterized structural and functional variation of big cat Hbs and investigated molecular mechanisms of Hb adaptation and allosteric regulation that may contribute to the extreme hypoxia tolerance of the snow leopard. Experiments revealed that purified Hbs from snow leopard and African lion exhibited equally low O2 affinities and DPG sensitivities. Both properties are primarily attributable to a single amino acid substitution, β2His→Phe, which occurred in the common ancestor of Felidae. Given the low O2 affinity and reduced regulatory capacity of feline Hbs, the extreme hypoxia tolerance of snow leopards must be attributable to compensatory modifications of other steps in the O2-transport pathway. PMID:26246610
Janecka, Jan E; Nielsen, Simone S E; Andersen, Sidsel D; Hoffmann, Federico G; Weber, Roy E; Anderson, Trevor; Storz, Jay F; Fago, Angela
2015-08-01
Genetically based modifications of hemoglobin (Hb) function that increase blood-O2 affinity are hallmarks of hypoxia adaptation in vertebrates. Among mammals, felid Hbs are unusual in that they have low intrinsic O2 affinities and reduced sensitivities to the allosteric cofactor 2,3-diphosphoglycerate (DPG). This combination of features compromises the acclimatization capacity of blood-O2 affinity and has led to the hypothesis that felids have a restricted physiological niche breadth relative to other mammals. In seeming defiance of this conjecture, the snow leopard (Panthera uncia) has an extraordinarily broad elevational distribution and occurs at elevations above 6000 m in the Himalayas. Here, we characterized structural and functional variation of big cat Hbs and investigated molecular mechanisms of Hb adaptation and allosteric regulation that may contribute to the extreme hypoxia tolerance of the snow leopard. Experiments revealed that purified Hbs from snow leopard and African lion exhibited equally low O2 affinities and DPG sensitivities. Both properties are primarily attributable to a single amino acid substitution, β2His→Phe, which occurred in the common ancestor of Felidae. Given the low O2 affinity and reduced regulatory capacity of feline Hbs, the extreme hypoxia tolerance of snow leopards must be attributable to compensatory modifications of other steps in the O2-transport pathway. © 2015. Published by The Company of Biologists Ltd.
Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells
Longeville, Stéphane; Stingaciu, Laura-Roxana
2017-09-05
Translational diffusion of macromolecules in cell is generally assumed to be anomalous due high macromolecular crowding of the milieu. Red blood cells are a special case of cells filled quasi exclusively (95% of the dry weight of the cell) with an almost spherical protein: hemoglobin. Hemoglobin diffusion has since a long time been recognized as facilitating the rate of oxygen diffusion through a solution. We address in this paper the question on how hemoglobin diffusion in the red blood cells can help the oxygen capture at the cell level and hence to improve oxygen transport. We report a measurement bymore » neutron spin echo spectroscopy of the diffusion of hemoglobin in solutions with increasing protein concentration. We show that hemoglobin diffusion in solution can be described as Brownian motion up to physiological concentration and that hemoglobin diffusion in the red blood cells and in solutions at similar concentration are the same. Finally, using a simple model and the concentration dependence of the diffusion of the protein reported here, we show that hemoglobin concentration observed in human red blood cells (≃330 g.L -1) corresponds to an optimum for oxygen transport for individuals under strong activity.« less
Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longeville, Stéphane; Stingaciu, Laura-Roxana
Translational diffusion of macromolecules in cell is generally assumed to be anomalous due high macromolecular crowding of the milieu. Red blood cells are a special case of cells filled quasi exclusively (95% of the dry weight of the cell) with an almost spherical protein: hemoglobin. Hemoglobin diffusion has since a long time been recognized as facilitating the rate of oxygen diffusion through a solution. We address in this paper the question on how hemoglobin diffusion in the red blood cells can help the oxygen capture at the cell level and hence to improve oxygen transport. We report a measurement bymore » neutron spin echo spectroscopy of the diffusion of hemoglobin in solutions with increasing protein concentration. We show that hemoglobin diffusion in solution can be described as Brownian motion up to physiological concentration and that hemoglobin diffusion in the red blood cells and in solutions at similar concentration are the same. Finally, using a simple model and the concentration dependence of the diffusion of the protein reported here, we show that hemoglobin concentration observed in human red blood cells (≃330 g.L -1) corresponds to an optimum for oxygen transport for individuals under strong activity.« less
Hemoglobin spectra affect measurement of tissue oxygen saturation
NASA Astrophysics Data System (ADS)
Ostojic, Daniel; Kleiser, Stefan; Nasseri, Nassim; Isler, Helene; Scholkmann, Felix; Karen, Tanja; Wolf, Martin
2018-02-01
Tissue oxygen saturation (StO2) is a valuable clinical parameter e.g. for intensive care applications or monitoring during surgery. Studies showed that near-infrared spectroscopy (NIRS) based tissue oximeters of different brands give systematically different readings of StO2. Usually these readings are linearly correlated and therefore StO2 readings from one instrument can easily be converted to those of another instrument. However, it is interesting to understand why there is this difference. One reason may be that different brands employ different spectra of hemoglobin. The aim here was to investigate how these different absorption spectra of hemoglobin affect the StO2 readings. Therefore, we performed changes in StO2 in a phantom experiment with real human hemoglobin at three different concentrations (26.5, 45 and 70 μM): desaturation by yeast consuming the oxygen and re-saturation by bubbling oxygen gas. The partial pressure of O2 in the liquid changed from at least 10 kPa to 0 kPa and ISS OxiplexTS, a frequency-domain NIRS instrument, was used to monitor changes of StO2. When we employed two different absorption spectra for hemoglobin, StO2 values were comparable in the normal physiological range. However, particularly at high and low StO2 values, a difference of >6% between these two spectra were noticed. Such a difference of >6% is substantial and relevant for medical applications. This may partly explain why different brands of NIRS instruments provide different StO2 readings. The hemoglobin spectra are therefore a factor to be considered for future developments and applications of NIRS oximeters.
Blood oxygen binding in hypoxaemic calves.
Cambier, Carole; Clerbaux, Thierry; Detry, Bruno; Marville, Vincent; Frans, Albert; Gustin, Pascal
2002-01-01
Blood oxygen transport and tissue oxygenation were studied in 28 calves from the Belgian White and Blue breed (20 healthy and 8 hypoxaemic ones). Hypoxaemic calves were selected according to their high respiratory frequency and to their low partial oxygen pressure (PaO2) in the arterial blood. Venous and arterial blood samples were collected, and 2,3-diphosphoglycerate, adenosine triphosphate, chloride, inorganic phosphate and hemoglobin concentrations, and pH, PCO, and PO2 were determined. An oxygen equilibrium curve (OEC) was measured in standard conditions, for each animal. The arterial and venous OEC were calculated, taking body temperature, pH and PCO2 values in arterial and venous blood into account. The oxygen exchange fraction (OEF%), corresponding to the degree of blood desaturation between the arterial and the venous compartments, and the amount of oxygen released at the tissue level by 100 mL of blood (OEF Vol%) were calculated from the arterial and venous OEC combined with the PO2 and hemoglobin concentration. In hypoxaemic calves investigated in this study, the hemoglobin oxygen affinity, measured under standard conditions, was not modified. On the contrary, in vivo acidosis and hypercapnia induced a decrease in the hemoglobin oxygen affinity in arterial blood, which combined to the decrease in PaO2 led to a reduced hemoglobin saturation degree in the arterial compartment. However, this did not impair the oxygen exchange fraction (OEF%), since the hemoglobin saturation degree in venous blood was also diminished.
Fais, Antonella; Sollaino, Maria Carla; Barella, Susanna; Perseu, Lucia; Era, Benedetta; Corda, Marcella
2012-01-01
During a screening program for the identification of β-thalassemia (β-thal) carriers in Sardinia, Italy, we identified two subjects with increased hemoglobin (Hb) levels and an abnormal Hb variant. The same variant was detected in a family member. DNA sequencing revealed a TGT > TGG mutation at codon 93 of the β-globin gene. Structural analysis demonstrated that the cystine residue at position 93 of the β chain was substituted by tryptophan. Since this amino acid substitution had not yet been reported, we designated this variant Hb Santa Giusta Sardegna for the place of birth of the subjects. This amino acid substitution occurs at the tyrosine pocket of the β chain as well as at the α1β2/α2β1 contact of the quaternary structure of the molecule. The presence of this Hb in the hemolysate causes an increased oxygen affinity, a slightly reduced Bohr effect and a reduced heme-heme interaction (n(50), Hill's constant) in comparison with those of Hb A.
Does photodissociation of molecular oxygen from myoglobin and hemoglobin yield singlet oxygen?
Lepeshkevich, Sergei V; Stasheuski, Alexander S; Parkhats, Marina V; Galievsky, Victor A; Dzhagarov, Boris M
2013-03-05
Time-resolved luminescence measurements in the near-infrared region indicate that photodissociation of molecular oxygen from myoglobin and hemoglobin does not produce detectable quantities of singlet oxygen. A simple and highly sensitive method of luminescence quantification is developed and used to determine the upper limit for the quantum yield of singlet oxygen production. The proposed method was preliminarily evaluated using model data sets and confirmed with experimental data for aqueous solutions of 5,10,15,20-tetrakis(4-N-methylpyridyl) porphyrin. A general procedure for error estimation is suggested. The method is shown to provide a determination of the integral luminescence intensity in a wide range of values even for kinetics with extremely low signal-to-noise ratio. The present experimental data do not deny the possibility of singlet oxygen generation during the photodissociation of molecular oxygen from myoglobin and hemoglobin. However, the photodissociation is not efficient to yield singlet oxygen escaped from the proteins into the surrounding medium. The upper limits for the quantum yields of singlet oxygen production in the surrounding medium after the photodissociation for oxyhemoglobin and oxymyoglobin do not exceed 3.4×10(-3) and 2.3×10(-3), respectively. On the average, no more than one molecule of singlet oxygen from every hundred photodissociated oxygen molecules can succeed in escaping from the protein matrix. Copyright © 2013 Elsevier B.V. All rights reserved.
Correlation of Oxygenated Hemoglobin Concentration and Psychophysical Amount on Speech Recognition
NASA Astrophysics Data System (ADS)
Nozawa, Akio; Ide, Hideto
The subjective understanding on oral language understanding task is quantitatively evaluated by the fluctuation of oxygenated hemoglobin concentration measured by the near-infrared spectroscopy. The English listening comprehension test wihch consists of two difficulty level was executed by 4 subjects during the measurement. A significant correlation was found between the subjective understanding and the fluctuation of oxygenated hemoglobin concentration.
Reverse engineering the cooperative machinery of human hemoglobin.
Ren, Zhong
2013-01-01
Hemoglobin transports molecular oxygen from the lungs to all human tissues for cellular respiration. Its α2β2 tetrameric assembly undergoes cooperative binding and releasing of oxygen for superior efficiency and responsiveness. Over past decades, hundreds of hemoglobin structures were determined under a wide range of conditions for investigation of molecular mechanism of cooperativity. Based on a joint analysis of hemoglobin structures in the Protein Data Bank (Ren, companion article), here I present a reverse engineering approach to elucidate how two subunits within each dimer reciprocate identical motions that achieves intradimer cooperativity, how ligand-induced structural signals from two subunits are integrated to drive quaternary rotation, and how the structural environment at the oxygen binding sites alter their binding affinity. This mechanical model reveals the intricate design that achieves the cooperative mechanism and has previously been masked by inconsistent structural fluctuations. A number of competing theories on hemoglobin cooperativity and broader protein allostery are reconciled and unified.
NASA Astrophysics Data System (ADS)
Douplik, Alexandre Y.; Kessler, Manfred D.; Kakihana, Yasuyuki; Krug, Alfons
1997-08-01
Functional evaluation of local hemoglobin concentration and hemoglobin oxygenation based on back scattering spectra from human skin in vivo have been obtained in visible range (502 - 628 nm) by a rapid microlightguide spectrometer (EMPHO II) with step 250 micrometer. Analysis of received results has shown that during local cooling there is two nearly simultaneous reactions: reduction of hemoglobin concentration and increase of hemoglobin oxygenation level. In a case when one has used previous heating of planning place for cooling, reduction of hemoglobin concentration is expressed higher by 22 - 33%.
The tyrosine B10 hydroxyl is crucial for oxygen avidity of Ascaris hemoglobin.
Kloek, A P; Yang, J; Mathews, F S; Frieden, C; Goldberg, D E
1994-01-28
The parasitic nematode Ascaris suum has a gene encoding a two-domain hemoglobin with remarkable oxygen avidity. The strong interaction with oxygen is a consequence of a particularly slow oxygen off-rate. The single polypeptide chain consists of two domains, each of which can be expressed separately in Escherichia coli as a globin-like protein exhibiting oxygen binding characteristics comparable with the native molecule. Site-directed mutagenesis was performed on the gene segment encoding domain one. The E7 position, involved in forming a hydrogen bond with the liganded oxygen in vertebrate globins, is a glutamine in both Ascaris domains. Conversion of this residue to leucine or alanine produced a hemoglobin variant with an oxygen off-rate 5- or 60-fold faster than that of unaltered domain one. Replacement of the tyrosine B10 with either phenylalanine or leucine (as found in vertebrate globins) yielded hemoglobin mutants with oxygen off-rates 280- or 570-fold faster, approaching rates found with vertebrate myoglobins. The data suggest that the distal glutamine hydrogen bonds with the liganded oxygen and that the tyrosine B10 hydroxyl contributes an additional hydrogen bond that appears substantially responsible for the extreme oxygen avidity of Ascaris hemoglobin.
Dimino, Michael L; Palmer, Andre F
2007-01-01
Hemopure (Biopure; Cambridge, MA) and PolyHeme (Northfield Laboratories; Evanston, IL) are two acellular hemoglobin-based O2 carriers (HBOCs) currently in phase III clinical trials for use as red blood cell substitutes. The most common adverse side effect that these HBOCs exhibit is increased vasoconstriction. Autoregulatory theory has been presented as a possible explanation for this physiological effect, where it is hypothesized that low-affinity HBOCs over-deliver O2 to tissues surrounding arterioles, thereby eliciting vasoconstriction. In this paper, we wanted to investigate HBOC oxygenation of tissue surrounding a capillary, which is the smallest element of the circulatory system. An a priori model has been developed in which the performance of mixtures of acellular HBOCs (synthesized by our group and others) and human red blood cells (hRBCs) has been simulated using a Krogh tissue cylinder model (KTCM) comprising a capillary surrounded by a capillary membrane and skeletal muscle tissue in cylindrical coordinates with specified tissue O2 consumption rates and Michaelis-Menten kinetics. In this study, the total hemoglobin (hRBCs and HBOCs) concentration was kept constant. The HBOCs studied possessed O2 affinities that were higher and lower compared to hRBCs (P50's spanned 5-55 mmHg), and the equilibrium binding/release of oxygen to/from the HBOCs was modeled using the Adair equation. At normoxic inlet pO2's, there was no correlation between O2 flux out of the capillary and the O2 affinity of the HBOC. However, a correlation was found between the average pO2 tension in the capillary and the O2 affinity of the HBOC. Additionally, we studied the change in the O2 equilibrium curve of HBOCs with different O2 affinities over a wide range of inlet pO2's and found that changing the inlet pO2 greatly affected which HBOC, having a unique O2 affinity, best delivered O2 to the surrounding tissue. The analysis of oxygen transport presented could lead to a better prediction
Red cell 2,3-diphosphoglycerate and oxygen affinity.
MacDonald, R
1977-06-01
The ease with which haemoglobin releases oxygen to the tissues is controlled by erythrocytic 2,3-diphosphoglycerate (2,3-DPG) such that an increase in the concentration of 2,3-DPG decreases oxygen affinity and vice versa. This review article describes the synthesis and breakdown of 2,3-DPG in the Embden-Meyerof pathway in red cells and briefly explains the molecular basis for its effect on oxygen affinity. Interaction of the effects of pH, Pco2, temperature and 2,3-DPG on the oxyhaemoglobin dissociation curve are discussed. The role of 2,3-DPG in the intraerythrocytic adaptation to various types of hypoxaemia is described. The increased oxygen affinity of blood stored in acid-citrate-dextrose (ACD) solution has been shown to be due to the decrease in the concentration of 2,3-DPG which occurs during storage. Methods of maintaining the concentration of 2,3-DPG in stored blood are described. The clinical implication of transfusion of elderly people, anaemic or pregnant patients with ACD stored blood to anaesthetically and surgically acceptable haemoglobin concentrations are discussed. Hypophosphataemia in association with parenteral feeding reduces 2,3-DPG concentration and so increases oxygen affinity. Since post-operative use of intravenous fluids such as dextrose or dextrose/saline also lead to hypophosphataemia, the addition of inorganic phosphorus to routine post-operative intravenous fluid may be advisable. Disorders of acid-base balance effect oxygen affinity not only by the direct effect of pH on the oxyhaemoglobin dissociation curve but by its control of 2,3-DPG metabolism. Management of acid-base disorders and pre-operative aklalinization of patients with sickle cell disease whould take account of this. It is known that anaesthesia alters the position of the oxyhaemoglobin dissociation curve, but it is thought that this is independent of any effects which anaesthetic agents may have on 2,3-DPG concentration. In vitro manipulation of 2,3-DPG concentration
Impact of acellular hemoglobin-based oxygen carriers on brain apoptosis in rats.
Vandegriff, Kim D; Malavalli, Ashok; Lohman, Jeff; Young, Mark A; Terraneo, Laura; Virgili, Eleonora; Bianciardi, Paola; Caretti, Anna; Samaja, Michele
2014-08-01
Extracellular hemoglobin (Hb)-based oxygen carriers (HBOCs) are under extensive consideration as oxygen therapeutics. Their effects on cellular mechanisms related to apoptosis are of particular interest, because the onset of proapoptotic pathways may give rise to tissue damage. The objective was to assess whether the properties of the Hb that replaces blood during an isovolemic hemodilution would modulate apoptotic-response mechanisms in rat brain and whether such signaling favors cytoprotection or damage. We exposed rats to exchange transfusion (ET; 50% blood volume and isovolemic replacement with Hextend [negative colloid control], MP4OX [PEGylated HBOC with high oxygen affinity], and ααHb [αα-cross-linked HBOC with low oxygen affinity; n=4-6/group]). Sham rats acted as control. Animals were euthanized at 2, 6, and 12 hours after ET; brain tissue was harvested and processed for analysis. In MP4OX animals, the number of neurons that overexpressed the hypoxia-inducible factor (HIF)-1α was higher than in ααHb, particularly at the early time points. In addition, MP4OX was associated with greater phosphorylation of protein kinase B (Akt), a well-known cytoprotective factor. Indeed, the degree of apoptosis, measured as terminal deoxynucleotidyl transferase-positive neurons and caspase-3 cleavage, ranked in order of MP4OX < Hextend < ααHb. Even though both HBOCs showed increased levels of HIF-1α compared to shams or Hextend-treated animals, differences in signaling events resulted in very different outcomes for the two HBOCs. ααHb-treated brain tissue showed significant neuronal damage, measured as apoptosis. This was in stark contrast to the protection seen with MP4OX, apparently due to recruitment of Akt and neuronal specific HIF-1α pathways. © 2014 Sangart, Inc. Transfusion © 2014 AABB.
Aryloxyalkanoic Acids as Non-Covalent Modifiers of the Allosteric Properties of Hemoglobin
Omar, Abdelsattar M.; Mahran, Mona A.; Ghatge, Mohini S.; Bamane, Faida H. A.; Ahmed, Mostafa H.; El-Araby, Moustafa E.; Abdulmalik, Osheiza; Safo, Martin K.
2017-01-01
Hemoglobin (Hb) modifiers that stereospecifically inhibit sickle hemoglobin polymer formation and/or allosterically increase Hb affinity for oxygen have been shown to prevent the primary pathophysiology of sickle cell disease (SCD), specifically, Hb polymerization and red blood cell sickling. Several such compounds are currently being clinically studied for the treatment of SCD. Based on the previously reported non-covalent Hb binding characteristics of substituted aryloxyalkanoic acids that exhibited antisickling properties, we designed, synthesized and evaluated 18 new compounds (KAUS II series) for enhanced antisickling activities. Surprisingly, select test compounds showed no antisickling effects or promoted erythrocyte sickling. Additionally, the compounds showed no significant effect on Hb oxygen affinity (or in some cases, even decreased the affinity for oxygen). The X-ray structure of deoxygenated Hb in complex with a prototype compound, KAUS-23, revealed that the effector bound in the central water cavity of the protein, providing atomic level explanations for the observed functional and biological activities. Although the structural modification did not lead to the anticipated biological effects, the findings provide important direction for designing candidate antisickling agents, as well as a framework for novel Hb allosteric effectors that conversely, decrease the protein affinity for oxygen for potential therapeutic use for hypoxic- and/or ischemic-related diseases. PMID:27529207
Grillitsch, Sandra; Medgyesy, Nikolaus; Schwerte, Thorsten; Pelster, Bernd
2005-01-01
Several studies suggest that during early larval development of lower vertebrates convective blood flow is not essential to supply oxygen to the tissues, but information about the oxygenation status of larvae during the time of cutaneous respiration is still missing. If convective oxygen transport contributes to the oxygen supply to tissues, venous blood in the central circulatory system should be partly deoxygenated, and hyperoxia should increase the oxygen saturation of the hemoglobin. To analyze the changes in hemoglobin oxygen saturation induced by hyperoxic incubation, zebrafish larvae were incubated in a tiny chamber between polytetrafluoroethylene membranes (Teflon), so that the oxygen supply could be rapidly modified. Hemoglobin oxygen saturation was measured in vivo by combining video imaging techniques with a spectrophotometrical analysis of hemoglobin light absorption at specific wavelengths for maximal absorption of oxygenated and deoxygenated blood (413 nm and 431 nm, respectively) under normoxic conditions and after a 10 min period of hyperoxia (P(O(2))=100 kPa), assuming that at a P(O(2)) of 100 kPa the hemoglobin is fully saturated. The results demonstrated that red blood cell oxygenation of zebrafish larvae at 4 days post fertilization (d.p.f.), 5 d.p.f. and 12 d.p.f. could be increased by hyperoxia. The data suggest that at the time of yolk sac degradation (i.e. 4 d.p.f. and 5 d.p.f.), when the total surface area of the animal is reduced, bulk diffusion of oxygen may not be sufficient to prevent a partial deoxygenation of the hemoglobin. The decrease in hemoglobin oxygenation observed at 12 d.p.f. confirms earlier studies indicating that at 12-14 d.p.f., convective oxygen transport becomes necessary to ensure oxygen supply to the growing tissues.
Nagatomo, Shigenori; Okumura, Miki; Saito, Kazuya; Ogura, Takashi; Kitagawa, Teizo; Nagai, Masako
2017-03-07
Regulation of the oxygen affinity of human adult hemoglobin (Hb A) at high pH, known as the alkaline Bohr effect, is essential for its physiological function. In this study, structural mechanisms of the alkaline Bohr effect and pH-dependent O 2 affinity changes were investigated via 1 H nuclear magnetic resonance and visible and UV resonance Raman spectra of mutant Hbs, Hb M Iwate (αH87Y) and Hb M Boston (αH58Y). It was found that even though the binding of O 2 to the α subunits is forbidden in the mutant Hbs, the O 2 affinity was higher at alkaline pH than at neutral pH, and concomitantly, the Fe-His stretching frequency of the β subunits was shifted to higher values. Thus, it was confirmed for the β subunits that the stronger the Fe-His bond, the higher the O 2 affinity. It was found in this study that the quaternary structure of α(Fe 3+ )β(Fe 2+ -CO) of the mutant Hb is closer to T than to the ordinary R at neutral pH. The retained Aspβ94-Hisβ146 hydrogen bond makes the extent of proton release smaller upon ligand binding from Hisβ146, known as one of residues contributing to the alkaline Bohr effect. For these T structures, the Aspα94-Trpβ37 hydrogen bond in the hinge region and the Tyrα42-Aspβ99 hydrogen bond in the switch region of the α 1 -β 2 interface are maintained but elongated at alkaline pH. Thus, a decrease in tension in the Fe-His bond of the β subunits at alkaline pH causes a substantial increase in the change in global structure upon binding of CO to the β subunit.
Ho, Chien; Baldassare, Joseph J.; Charache, Samuel
1970-01-01
The spin label technique has been used to study human hemoglobins A, F, Zürich, and Chesapeake as a function of carbon monoxide saturation. The experimental results suggest that the changes in the electron paramagnetic resonance spectra of hemoglobin labeled with N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl)iodoacetamide depend on the state of ligation of more than one heme group. For those hemoglobins with full or large cooperative ligand binding (such as A, F, and Zürich), there is a lack of isosbestic points in the spectra as a function of CO saturation. However, for those hemoglobins with little or no cooperative ligand binding (such as Chesapeake and methemoglobins), there is a sharp set of isosbestic points. These findings confirm and extend the early work of McConnell and co-workers. The absence of a set of isosbestic points in those hemoglobins with full cooperative ligand binding is consistent with the sequential model of Koshland, Némethy, and Filmer for cooperative oxygen binding to hemoglobin. The present results, with hemoglobin variants having known amino acid substitutions, also focus on the importance of the interactions among the amino acid residues located at α1-β2 or α2-β1 subunit contacts for the functioning of hemoglobin as an oxygen carrier. In addition, the resonance spectra of the spin label are very sensitive to small structural variations around the heme groups in the β- or γ-chains where the labels are attached. The results of the spin label experiment are discussed in relation to recent findings on the mechanism of oxygenation of hemoglobin from the nuclear magnetic resonance studies of this laboratory and the x-ray crystallographic analysis of Perutz and co-workers. PMID:4316679
Mollan, Todd L; Abraham, Bindu; Strader, Michael Brad; Jia, Yiping; Lozier, Jay N; Olson, John S; Alayash, Abdu I
2012-01-01
Hemoglobin Brigham (β Pro100 to Leu) was first reported in a patient with familial erythrocytosis. Erythrocytes of an affected individual from the same family contain both HbA and Hb Brigham and exhibit elevated O2 affinity compared with normal cells (P50 = 23 mm Hg vs. 31 mmHg at pH 7.4 at 37°C). O2 affinities measured for hemolysates were sensitive to changes in pH or chloride concentrations, indicating little change in the Bohr and Chloride effects. Hb Brigham was separated from normal HbA by nondenaturing cation exchange liquid chromatography, and the amino acid substitution was verified by mass spectrometry. The properties of Hb Brigham isolated from the patient's blood were then compared with those of recombinant Hb Brigham expressed in Escherichia coli. Kinetic experiments suggest that the rate constants for ligand binding and release in the high (R) and low (T) affinity quaternary states of Hb Brigham are similar to those of native hemoglobin. However, the Brigham mutation decreases the T to R equilibrium constant (L) which accelerates the switch to the R state during ligand binding to deoxy-Hb, increasing the rate of association by approximately twofold, and decelerates the switch during ligand dissociation from HbO2, decreasing the rate approximately twofold. These kinetic data help explain the high O2 affinity characteristics of Hb Brigham and provide further evidence for the importance of the contribution of Pro100 to intersubunit contacts and stabilization of the T quaternary structure. PMID:22821886
Augmentation of oxygen transport by various hemoglobins as determined by pulsed field gradient NMR.
Budhiraja, Vikas; Hellums, J David; Post, Jan F M
2002-11-01
Diffusion of oxyhemoglobin has been shown to augment the oxygen transport inside the red blood cells. Measurement of hemoglobin diffusion coefficients by pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) technique can be used for estimating this augmentation effect. Self-diffusion coefficients of polymerized and unpolymerized bovine hemoglobin (Hb) and several other proteins were measured using this technique. The Hb diffusion coefficient was used to determine the effective permeability of oxygen and augmentation of oxygen transport through samples of Hb solutions due to diffusion of oxyhemoglobin. The values compared well with our previous diffusion cell measurements of effective diffusivity and augmentation. Our NMR studies show that even at low concentrations the augmentation of oxygen transport due to diffusion can be significant. The PFG NMR technique can thus provide an accurate and easy method for measuring augmentation of oxygen transport, especially in dilute samples of Hb. The results on polyhemoglobin and high-molecular-weight hemoglobin are of both basic interest and practical value in assessing the promise and performance of hemoglobin-based blood substitutes.
Convergent evolution of hemoglobin switching in jawed and jawless vertebrates.
Rohlfing, Kim; Stuhlmann, Friederike; Docker, Margaret F; Burmester, Thorsten
2016-02-01
During development, humans and other jawed vertebrates (Gnathostomata) express distinct hemoglobin genes, resulting in different hemoglobin tetramers. Embryonic and fetal hemoglobin have higher oxygen affinities than the adult hemoglobin, sustaining the oxygen demand of the developing organism. Little is known about the expression of hemoglobins during development of jawless vertebrates (Agnatha). We identified three hemoglobin switches in the life cycle of the sea lamprey. Three hemoglobin genes are specifically expressed in the embryo, four genes in the filter feeding larva (ammocoete), and nine genes correspond to the adult hemoglobin chains. During the development from the parasitic to the reproductive adult, the composition of hemoglobin changes again, with a massive increase of chain aHb1. A single hemoglobin chain is expressed constitutively in all stages. We further showed the differential expression of other globin genes: Myoglobin 1 is most highly expressed in the reproductive adult, myoglobin 2 expression peaks in the larva. Globin X1 is restricted to the embryo; globin X2 was only found in the reproductive adult. Cytoglobin is expressed at low levels throughout the life cycle. Because the hemoglobins of jawed and jawless vertebrates evolved independently from a common globin ancestor, hemoglobin switching must also have evolved convergently in these taxa. Notably, the ontogeny of sea lamprey hemoglobins essentially recapitulates their phylogeny, with the embryonic hemoglobins emerging first, followed by the evolution of larval and adult hemoglobins.
Using the MWC model to describe heterotropic interactions in hemoglobin
Rapp, Olga
2017-01-01
Hemoglobin is a classical model allosteric protein. Research on hemoglobin parallels the development of key cooperativity and allostery concepts, such as the ‘all-or-none’ Hill formalism, the stepwise Adair binding formulation and the concerted Monod-Wymann-Changuex (MWC) allosteric model. While it is clear that the MWC model adequately describes the cooperative binding of oxygen to hemoglobin, rationalizing the effects of H+, CO2 or organophosphate ligands on hemoglobin-oxygen saturation using the same model remains controversial. According to the MWC model, allosteric ligands exert their effect on protein function by modulating the quaternary conformational transition of the protein. However, data fitting analysis of hemoglobin oxygen saturation curves in the presence or absence of inhibitory ligands persistently revealed effects on both relative oxygen affinity (c) and conformational changes (L), elementary MWC parameters. The recent realization that data fitting analysis using the traditional MWC model equation may not provide reliable estimates for L and c thus calls for a re-examination of previous data using alternative fitting strategies. In the current manuscript, we present two simple strategies for obtaining reliable estimates for MWC mechanistic parameters of hemoglobin steady-state saturation curves in cases of both evolutionary and physiological variations. Our results suggest that the simple MWC model provides a reasonable description that can also account for heterotropic interactions in hemoglobin. The results, moreover, offer a general roadmap for successful data fitting analysis using the MWC model. PMID:28793329
Zhang, Ning; Jia, Yiping; Chen, Guo; Cabrales, Pedro
2011-01-01
Recent clinical evaluation of commercial glutaraldehyde-polymerized hemoglobins (PolyHbs) as transfusion solutions has demonstrated several adverse side effects. Chief among these is the hypertensive effect. Fortunately, previous studies have shown that the hypertensive effect can be attenuated by removing free hemoglobin (Hb) and low-molecular-weight (low-MW) PolyHbs from the PolyHb mixture. In this work, polymerized human Hb (PolyhHb) solutions were synthesized in two distinct quaternary states with high MW and subjected to extensive diafiltration to remove free Hb and low-MW PolyhHb components (<500 kDa). The resultant PolyhHb solutions possessed high MW, distinct quaternary state, distinct reactivities with O2 and CO, similar NO deoxygenating rate constants, distinct autoxidation rate constants, high viscosity, and low colloid osmotic pressure. To preliminarily assess the ability of PolyhHb solutions to oxygenate surrounding tissues fed by a blood vessel, we evaluated the ability of PolyhHbs to transport O2 to cultured hepatocytes in a mathematical model of a hollow fiber bioreactor. The structure of individual hollow fibers in the bioreactor is similar to that of a blood vessel and provides an easy way to assess the oxygenation potential of PolyhHbs without the need for expensive and time-consuming animal studies. It was observed that PolyhHbs with low O2 affinities were more effective in oxygenating cultured hepatocytes inside the bioreactor than high O2 affinity PolyhHbs. Taken together, our results show that it is possible to synthesize high-MW PolyhHbs with no free Hb and low-MW PolyhHb components that are capable of transporting O2 to cultured cells/tissues. PMID:20979534
A Hemoglobin Variant Associated with Neonatal Cyanosis and Anemia
Crowley, Moira A.; Mollan, Todd L.; Abdulmalik, Osheisa Y.; Butler, Andrew D.; Goodwin, Emily F.; Sarkar, Arindam; Stolle, Catherine A.; Gow, Andrew J.; Olson, John S.; Weiss, Mitchell J.
2013-01-01
SUMMARY Globin-gene mutations are a rare but important cause of cyanosis. We identified a missense mutation in the fetal G γ-globin gene (HBG2) in a father and daughter with transient neonatal cyanosis and anemia. This new mutation modifies the ligand-binding pocket of fetal hemoglobin by means of two mechanisms. First, the relatively large side chain of methionine decreases both the affinity of oxygen for binding to the mutant hemoglobin subunit and the rate at which it does so. Second, the mutant methionine is converted to aspartic acid post-translationally, probably through oxidative mechanisms. The presence of this polar amino acid in the heme pocket is predicted to enhance hemoglobin denaturation, causing anemia. PMID:21561349
Myoglobin oxygen affinity in aquatic and terrestrial birds and mammals.
Wright, Traver J; Davis, Randall W
2015-07-01
Myoglobin (Mb) is an oxygen binding protein found in vertebrate skeletal muscle, where it facilitates intracellular transport and storage of oxygen. This protein has evolved to suit unique physiological needs in the muscle of diving vertebrates that express Mb at much greater concentrations than their terrestrial counterparts. In this study, we characterized Mb oxygen affinity (P50) from 25 species of aquatic and terrestrial birds and mammals. Among diving species, we tested for correlations between Mb P50 and routine dive duration. Across all species examined, Mb P50 ranged from 2.40 to 4.85 mmHg. The mean P50 of Mb from terrestrial ungulates was 3.72±0.15 mmHg (range 3.70-3.74 mmHg). The P50 of cetaceans was similar to terrestrial ungulates ranging from 3.54 to 3.82 mmHg, with the exception of the melon-headed whale, which had a significantly higher P50 of 4.85 mmHg. Among pinnipeds, the P50 ranged from 3.23 to 3.81 mmHg and showed a trend for higher oxygen affinity in species with longer dive durations. Among diving birds, the P50 ranged from 2.40 to 3.36 mmHg and also showed a trend of higher affinities in species with longer dive durations. In pinnipeds and birds, low Mb P50 was associated with species whose muscles are metabolically active under hypoxic conditions associated with aerobic dives. Given the broad range of potential globin oxygen affinities, Mb P50 from diverse vertebrate species appears constrained within a relatively narrow range. High Mb oxygen affinity within this range may be adaptive for some vertebrates that make prolonged dives. © 2015. Published by The Company of Biologists Ltd.
2004-10-01
A Hemoglobin Based Oxygen Carrier, Bovine Polymerized Hemoglobin (HBOC-201) versus Hetastarch (HEX) in an Uncontrolled Liver Injury Hemorrhagic Shock...Transcutaneous tis- sue oxygenation was restored more rap- idly in HBOC-201 pigs, there was a trend to lower lactic acid, and base deficit was less...lactic acidosis and base deficit (BD) abnormalities, indicating on-going hypoperfusion.2–4 As these abnormalities measured upon hospital arrival
NASA Astrophysics Data System (ADS)
Xu, Xiaorong; Zhu, Wen; Padival, Vikram; Xia, Mengna; Cheng, Xuefeng; Bush, Robin; Christenson, Linda; Chan, Tim; Doherty, Tim; Iatridis, Angelo
2003-07-01
Photonify"s tissue spectrometer uses Near-Infrared Spectroscopy for real-time, noninvasive measurement of hemoglobin concentration and oxygen saturation [SO2] of biological tissues. The technology was validated by a series of ex vivo and animal studies. In the ex vivo experiment, a close loop blood circulation system was built, precisely controlling the oxygen saturation and the hemoglobin concentration of a liquid phantom. Photonify"s tissue spectrometer was placed on the surface of the liquid phantom for real time measurement and compared with a gas analyzer, considered the gold standard to measure oxygen saturation and hemoglobin concentration. In the animal experiment, the right hind limb of each dog accepted onto the study was surgically removed. The limb was kept viable by connecting the femoral vein and artery to a blood-primed extracorporeal circuit. Different concentrations of hemoglobin were obtained by adding designated amount of saline solution into the perfusion circuit. Photonify"s tissue spectrometers measured oxygen saturation and hemoglobin concentration at various locations on the limb and compared with gas analyzer results. The test results demonstrated that Photonify"s tissue spectrometers were able to detect the relative changes in tissue oxygen saturation and hemoglobin concentration with a high linear correlation compared to the gas analyzer
Evolutionary and Functional Relationships in the Truncated Hemoglobin Family.
Bustamante, Juan P; Radusky, Leandro; Boechi, Leonardo; Estrin, Darío A; Ten Have, Arjen; Martí, Marcelo A
2016-01-01
Predicting function from sequence is an important goal in current biological research, and although, broad functional assignment is possible when a protein is assigned to a family, predicting functional specificity with accuracy is not straightforward. If function is provided by key structural properties and the relevant properties can be computed using the sequence as the starting point, it should in principle be possible to predict function in detail. The truncated hemoglobin family presents an interesting benchmark study due to their ubiquity, sequence diversity in the context of a conserved fold and the number of characterized members. Their functions are tightly related to O2 affinity and reactivity, as determined by the association and dissociation rate constants, both of which can be predicted and analyzed using in-silico based tools. In the present work we have applied a strategy, which combines homology modeling with molecular based energy calculations, to predict and analyze function of all known truncated hemoglobins in an evolutionary context. Our results show that truncated hemoglobins present conserved family features, but that its structure is flexible enough to allow the switch from high to low affinity in a few evolutionary steps. Most proteins display moderate to high oxygen affinities and multiple ligand migration paths, which, besides some minor trends, show heterogeneous distributions throughout the phylogenetic tree, again suggesting fast functional adaptation. Our data not only deepens our comprehension of the structural basis governing ligand affinity, but they also highlight some interesting functional evolutionary trends.
Evolutionary and Functional Relationships in the Truncated Hemoglobin Family
Bustamante, Juan P.; Radusky, Leandro; Boechi, Leonardo; Estrin, Darío A.; ten Have, Arjen; Martí, Marcelo A.
2016-01-01
Predicting function from sequence is an important goal in current biological research, and although, broad functional assignment is possible when a protein is assigned to a family, predicting functional specificity with accuracy is not straightforward. If function is provided by key structural properties and the relevant properties can be computed using the sequence as the starting point, it should in principle be possible to predict function in detail. The truncated hemoglobin family presents an interesting benchmark study due to their ubiquity, sequence diversity in the context of a conserved fold and the number of characterized members. Their functions are tightly related to O2 affinity and reactivity, as determined by the association and dissociation rate constants, both of which can be predicted and analyzed using in-silico based tools. In the present work we have applied a strategy, which combines homology modeling with molecular based energy calculations, to predict and analyze function of all known truncated hemoglobins in an evolutionary context. Our results show that truncated hemoglobins present conserved family features, but that its structure is flexible enough to allow the switch from high to low affinity in a few evolutionary steps. Most proteins display moderate to high oxygen affinities and multiple ligand migration paths, which, besides some minor trends, show heterogeneous distributions throughout the phylogenetic tree, again suggesting fast functional adaptation. Our data not only deepens our comprehension of the structural basis governing ligand affinity, but they also highlight some interesting functional evolutionary trends. PMID:26788940
Thermodynamic approach to oxygen delivery in vivo by natural and artificial oxygen carriers.
Bucci, Enrico
2009-06-01
Oxygen is a toxic gas, still indispensable to aerobic life. This paper explores how normal physiology uses the physico-chemical and thermodynamic characteristics of oxygen for transforming a toxic gas into a non toxic indispensable metabolite. Plasma oxygen concentration is in the range of 10(-5) M, insufficient to sustain metabolism. Oxygen carriers, present in blood, release oxygen into plasma, thereby replacing consumed oxygen and buffering PO(2) near their P(50). They are the natural cell-bound carriers, like hemoglobin inside red cells, myoglobin inside myocytes, and artificial cell-free hemoglobin-based oxygen carriers (HBOC) dissolved in plasma. Metabolic oxygen replacement can be defined as cell-bound and cell-free delivery. Cell-bound delivery is retarded by the slow diffusion of oxygen in plasma and interstitial fluids. The 40% hematocrit of normal blood compensates for the delay, coping with the fast oxygen consumption by mitochondria. Facilitated oxygen diffusion by HBOCs corrects for the slow diffusion, making cell-free delivery relatively independent from P(50). At all oxygen affinities, HBOCs produce hyperoxygenations that are compensated by vasoconstrictions. There is a strict direct correlation between the rate of oxygen replacement and hemoglobin content of blood. The free energy loss of the gradient adds a relevant regulation of tissues oxygenation. Oxygen is retained intravascularly by the limited permeability to gases of vessel walls.
Welter, Michael; Fredrich, Thierry; Rinneberg, Herbert; Rieger, Heiko
2016-01-01
We present a computational model for trans-vascular oxygen transport in synthetic tumor and host tissue blood vessel networks, aiming at qualitatively explaining published data of optical mammography, which were obtained from 87 breast cancer patients. The data generally show average hemoglobin concentration to be higher in tumors versus host tissue whereas average oxy-to total hemoglobin concentration (vascular segment RBC-volume-weighted blood oxygenation) can be above or below normal. Starting from a synthetic arterio-venous initial network the tumor vasculature was generated by processes involving cooption, angiogenesis, and vessel regression. Calculations of spatially resolved blood flow, hematocrit, oxy- and total hemoglobin concentrations, blood and tissue oxygenation were carried out for ninety tumor and associated normal vessel networks starting from various assumed geometries of feeding arteries and draining veins. Spatial heterogeneity in the extra-vascular partial oxygen pressure distribution can be related to various tumor compartments characterized by varying capillary densities and blood flow characteristics. The reported higher average hemoglobin concentration of tumors is explained by growth and dilatation of tumor blood vessels. Even assuming sixfold metabolic rate of oxygen consumption in tumorous versus host tissue, the predicted oxygen hemoglobin concentrations are above normal. Such tumors are likely associated with high tumor blood flow caused by high-caliber blood vessels crossing the tumor volume and hence oxygen supply exceeding oxygen demand. Tumor oxy- to total hemoglobin concentration below normal could only be achieved by reducing tumor vessel radii during growth by a randomly selected factor, simulating compression caused by intra-tumoral solid stress due to proliferation of cells and extracellular matrix. Since compression of blood vessels will impede chemotherapy we conclude that tumors with oxy- to total hemoglobin concentration
Welter, Michael; Fredrich, Thierry; Rinneberg, Herbert; Rieger, Heiko
2016-01-01
We present a computational model for trans-vascular oxygen transport in synthetic tumor and host tissue blood vessel networks, aiming at qualitatively explaining published data of optical mammography, which were obtained from 87 breast cancer patients. The data generally show average hemoglobin concentration to be higher in tumors versus host tissue whereas average oxy-to total hemoglobin concentration (vascular segment RBC-volume-weighted blood oxygenation) can be above or below normal. Starting from a synthetic arterio-venous initial network the tumor vasculature was generated by processes involving cooption, angiogenesis, and vessel regression. Calculations of spatially resolved blood flow, hematocrit, oxy- and total hemoglobin concentrations, blood and tissue oxygenation were carried out for ninety tumor and associated normal vessel networks starting from various assumed geometries of feeding arteries and draining veins. Spatial heterogeneity in the extra-vascular partial oxygen pressure distribution can be related to various tumor compartments characterized by varying capillary densities and blood flow characteristics. The reported higher average hemoglobin concentration of tumors is explained by growth and dilatation of tumor blood vessels. Even assuming sixfold metabolic rate of oxygen consumption in tumorous versus host tissue, the predicted oxygen hemoglobin concentrations are above normal. Such tumors are likely associated with high tumor blood flow caused by high-caliber blood vessels crossing the tumor volume and hence oxygen supply exceeding oxygen demand. Tumor oxy- to total hemoglobin concentration below normal could only be achieved by reducing tumor vessel radii during growth by a randomly selected factor, simulating compression caused by intra-tumoral solid stress due to proliferation of cells and extracellular matrix. Since compression of blood vessels will impede chemotherapy we conclude that tumors with oxy- to total hemoglobin concentration
Computation of the unsteady facilitated transport of oxygen in hemoglobin
NASA Technical Reports Server (NTRS)
Davis, Sanford
1990-01-01
The transport of a reacting permeant diffusing through a thin membrane is extended to more realistic dissociation models. A new nonlinear analysis of the reaction-diffusion equations, using implicit finite-difference methods and direct block solvers, is used to study the limits of linearized and equilibrium theories. Computed curves of molecular oxygen permeating through hemoglobin solution are used to illustrate higher-order reaction models, the effect of concentration boundary layers at the membrane interfaces, and the transient buildup of oxygen flux.
Modulation of hemoglobin dynamics by an allosteric effector
Lal, Jyotsana; Maccarini, Marco; Fouquet, Peter; ...
2016-12-15
Hemoglobin (Hb) is an extensively studied paradigm of proteins that alter their function in response to allosteric effectors. Models of its action have been used as prototypes for structure-function relationships in many proteins, and models for the molecular basis of its function have been deeply studied and extensively argued. Recent reports suggest that dynamics may play an important role in its function. Relatively little is known about the slow, correlated motions of hemoglobin subunits in various structural states because experimental and computational strategies for their characterization are challenging. Allosteric effectors such as inositol hexaphosphate (IHP) bind to both deoxy-Hb andmore » HbCO, albeit at different sites, leading to a lowered oxygen affinity. The manner in which these effectors impact oxygen binding is unclear and may involve changes in structure, dynamics or both. Here we use neutron spin echo (NSE) measurements accompanied by wideangle x-ray scattering (WAXS) to show that binding of IHP to HbCO results in an increase in the rate of coordinated motions of Hb subunits relative to one another with little if any change in large scale structure. This increase of large-scale dynamics seems to be coupled with a decrease in the average magnitude of higher frequency modes of individual residues. Furthermore, these observations indicate that enhanced dynamic motions contribute to the functional changes induced by IHP and suggest that they may be responsible for the lowered oxygen affinity triggered by these effectors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalevsky, Andrey, E-mail: ayk@lanl.gov; Chatake, Toshiyuki; Shibayama, Naoya
2010-11-01
Using neutron diffraction analysis, the protonation states of 35 of 38 histidine residues were determined for the deoxy form of normal human adult hemoglobin. Distal and buried histidines may contribute to the increased affinity of the deoxy state for hydrogen ions and its decreased affinity for oxygen compared with the oxygenated form. The protonation states of the histidine residues key to the function of deoxy (T-state) human hemoglobin have been investigated using neutron protein crystallography. These residues can reversibly bind protons, thereby regulating the oxygen affinity of hemoglobin. By examining the OMIT F{sub o} − F{sub c} and 2F{sub o}more » − F{sub c} neutron scattering maps, the protonation states of 35 of the 38 His residues were directly determined. The remaining three residues were found to be disordered. Surprisingly, seven pairs of His residues from equivalent α or β chains, αHis20, αHis50, αHis58, αHis89, βHis63, βHis143 and βHis146, have different protonation states. The protonation of distal His residues in the α{sub 1}β{sub 1} heterodimer and the protonation of αHis103 in both subunits demonstrates that these residues may participate in buffering hydrogen ions and may influence the oxygen binding. The observed protonation states of His residues are compared with their ΔpK{sub a} between the deoxy and oxy states. Examination of inter-subunit interfaces provided evidence for interactions that are essential for the stability of the deoxy tertiary structure.« less
Stabilization of the T-state of human hemoglobin by proflavine, an antiseptic drug.
Ascenzi, P; Colasanti, M; Fasano, M; Bertollini, A
1999-06-01
The effect of proflavine (3,6-diaminoacridine), an antiseptic drug, on the spectroscopic and oxygen binding properties of ferrous human adult hemoglobin (Hb) has been investigated. Upon binding of proflavine to the nitric oxide derivative of ferrous human adult hemoglobin (HbNO), the X-band EPR spectrum displays the characteristics which have been attributed to the T-state of the ligated tetramer. In parallel, oxygen affinity for the deoxygenated derivative of ferrous human adult Hb decreases in the presence of proflavine. The effect of proflavine on the spectroscopic and ligand binding properties of ferrous human adult Hb is reminiscent that of 2,3-D-glycerate bisphosphate, the physiological modulator of Hb action.
A Biochemical-Biophysical Study of Hemoglobins from Woolly Mammoth, Asian Elephant, and Humans†
Yuan, Yue; Shen, Tong-Jian; Gupta, Priyamvada; Ho, Nancy T.; Simplaceanu, Virgil; Tam, Tsuey Chyi S.; Hofreiter, Michael; Cooper, Alan; Campbell, Kevin L.; Ho, Chien
2011-01-01
This study is aimed at investigating the molecular basis of environmental adaptation of woolly mammoth hemoglobin (Hb) to the harsh thermal conditions of the Pleistocene Ice-ages. To this end, we have carried out a comparative biochemical-biophysical characterization of the structural and functional properties of recombinant hemoglobins (rHb) from woolly mammoth (rHb WM) and Asian elephant (rHb AE) in relation to human hemoglobins Hb A and Hb A2 (a minor component of human Hb). We have obtained oxygen equilibrium curves and calculated O2 affinities, Bohr effects, and the apparent heat of oxygenation (ΔH) in the presence and absence of allosteric effectors [inorganic phosphate and inositol hexaphosphate (IHP)]. Here, we show that the four Hbs exhibit distinct structural properties and respond differently to allosteric effectors. In addition, the apparent heat of oxygenation (ΔH) for rHb WM is less negative than that of rHb AE, especially in phosphate buffer and the presence of IHP, suggesting that the oxygen affinity of mammoth blood was also less sensitive to temperature change. Finally, 1H-NMR spectroscopy data indicates that both α1(β/δ)1 and α1(β/δ)2 interfaces in rHb WM and rHb AE are perturbed, whereas only the α1δ1 interface in Hb A2 is perturbed compared to that in Hb A. The distinct structural and functional features of rHb WM presumably facilitated woolly mammoth survival in the Arctic environment. PMID:21806075
NASA Astrophysics Data System (ADS)
Decker, C.; Zorn, N.; Le Bruchec, J.; Caprais, J. C.; Potier, N.; Leize-Wagner, E.; Lallier, F. H.; Olu, K.; Andersen, A. C.
2017-08-01
Vesicomyids live in endosymbiosis with sulfur-oxidizing bacteria and therefore need hydrogen sulfide to survive. They can nevertheless live in a wide range of sulfide and oxygen levels and depths, which may explain the exceptional diversity of this clam family in deep-sea habitats. In the Gulf of Guinea, nine species of vesicomyid clams are known to live in cold-seep areas with pockmarks from 600 to 3200 m deep, as well as in the organic-rich sediments of the Congo deep-sea fan at 5000 m deep. Our previous study showed that two species living in a giant pockmark have different oxygen carriers, suggesting different adaptations to hypoxia. Here, we studied the hemoglobin structure and oxygen affinity in three other species, Calyptogena valdiviae, Elenaconcha guiness and Abyssogena southwardae to determine whether the characteristics of their oxygen carriers contribute to their distribution in sulfide-rich sediments at a regional scale. Documenting pairwise species associations in various proportions, we give a semi-quantitative account of their local distribution and oxygen and sulfide measurements at seven sites. Mass spectrometry showed that each vesicomyid species has four intracellular monomeric hemoglobin molecules of 15-16 kDa, all differing in their molecular mass. As expected, the monomers showed no cooperativity in oxygen binding. Their oxygen affinities were very high (below 1 Torr), but differed significantly. C. valdiviae had the highest affinity and was dominant in the Harp pockmark, the site with the lowest oxygen content (half the value of fully oxygenated water). A. southwardae dominated in the Congo Lobe area, the site with the deepest sulfides. We discuss how hemoglobin may favor an active, vertical distribution of vesicomyids in sulfide-rich sediments.
Development of Recombinant Hemoglobin-Based Oxygen Carriers
Varnado, Cornelius L.; Mollan, Todd L.; Birukou, Ivan; Smith, Bryan J.Z.; Henderson, Douglas P.
2013-01-01
Abstract Significance: The worldwide blood shortage has generated a significant demand for alternatives to whole blood and packed red blood cells for use in transfusion therapy. One such alternative involves the use of acellular recombinant hemoglobin (Hb) as an oxygen carrier. Recent Advances: Large amounts of recombinant human Hb can be expressed and purified from transgenic Escherichia coli. The physiological suitability of this material can be enhanced using protein-engineering strategies to address specific efficacy and toxicity issues. Mutagenesis of Hb can (i) adjust dioxygen affinity over a 100-fold range, (ii) reduce nitric oxide (NO) scavenging over 30-fold without compromising dioxygen binding, (iii) slow the rate of autooxidation, (iv) slow the rate of hemin loss, (v) impede subunit dissociation, and (vi) diminish irreversible subunit denaturation. Recombinant Hb production is potentially unlimited and readily subjected to current good manufacturing practices, but may be restricted by cost. Acellular Hb-based O2 carriers have superior shelf-life compared to red blood cells, are universally compatible, and provide an alternative for patients for whom no other alternative blood products are available or acceptable. Critical Issues: Remaining objectives include increasing Hb stability, mitigating iron-catalyzed and iron-centered oxidative reactivity, lowering the rate of hemin loss, and lowering the costs of expression and purification. Although many mutations and chemical modifications have been proposed to address these issues, the precise ensemble of mutations has not yet been identified. Future Directions: Future studies are aimed at selecting various combinations of mutations that can reduce NO scavenging, autooxidation, oxidative degradation, and denaturation without compromising O2 delivery, and then investigating their suitability and safety in vivo. Antioxid. Redox Signal. 18, 2314–2328. PMID:23025383
NASA Astrophysics Data System (ADS)
Orlova, A. G.; Kirillin, M. Yu.; Volovetsky, A. B.; Shilyagina, N. Yu.; Sergeeva, E. A.; Golubiatnikov, G. Yu.; Turchin, I. V.
2017-07-01
Using diffuse optical spectroscopy the level of oxygenation and hemoglobin concentration in experimental tumor in comparison with normal muscle tissue of mice have been studied. Subcutaneously growing SKBR-3 was used as a tumor model. Continuous wave fiber probe diffuse optical spectroscopy system was employed. Optical properties extraction approach was based on diffusion approximation. Decreased blood oxygen saturation level and increased total hemoglobin content were demonstrated in the neoplasm. The main reason of such differences between tumor and norm was significant elevation of deoxyhemoglobin concentration in SKBR-3. The method can be useful for diagnosis of tumors as well as for study of blood flow parameters of tumor models with different angiogenic properties.
... the red blood cells. Most of the hemoglobin is found inside the red blood cells, not in the serum. Hemoglobin carries oxygen ... Hemoglobin (Hb) is the main component of red blood cells. It is a ... oxygen. This test is done to diagnose or monitor how severe ...
Bonaventura, Celia; Godette, Gerald; Stevens, Robert; Brenowitz, Michael; Henkens, Robert
2005-12-09
Expression of alpha and beta chains and their post-translational assembly into alpha(2)beta(2) tetramers is fundamental to the formation and function of most vertebrate hemoglobins. There is a strong evolutionary bias that favors expression of equal amounts of the two types of chains, because cooperativity, pH sensitivity, and anionic control of function occurs only for the alpha(2)beta(2) tetramers. Remarkably, an over-production of alpha chains, as in the pathological condition known as beta thalassemia in humans, is adaptive rather than pathological in the bluefish hemoglobin system. The thalassemia of the bluefish is a novel means of providing for oxygen uptake and delivery when low pH conditions incapacitate the highly pH-sensitive Root effect hemoglobins of the fish. Although fish often have pH-insensitive along with highly pH-sensitive hemoglobins, having pH-insensitive alpha chain monomers in circulation is an unusual structural variation. The role of bluefish alpha chains in oxygen transport is enabled by their remarkably lower oxygen affinity relative to human alpha chains. This is the first reported case of a thalassemic condition that is maintained in a species as an adaptive advantage.
The Oxygen Dissociation Curve of Hemoglobin: Bridging the Gap between Biochemistry and Physiology
NASA Astrophysics Data System (ADS)
Gómez-Cambronero, Julian
2001-06-01
Cooperativity is a very difficult concept for biochemistry students in the health sciences. An analogy between breaking salt bonds and tearing apart a block of four stamps has been proposed for hemoglobin (Hb). However, since tearing is equated to binding of molecules, two intrinsically contradictory terms, students still have difficulty. I apply the pictorial analogy to the releasing of oxygen instead of the binding, thus bridging biochemistry (cooperativity) with physiology (oxygen dissociation). I embark on an imaginary journey from the lungs (saturation at 100 mmHg) to the oxygen-starved tissues. The stamps represent fully loaded Hb. By making two cuts the first "oxygen" is released. For the second, only one cut is needed. With one final cut, the last two stamps are separated. This means that less energy is needed to unload oxygen: just small drops in partial pressure do the trick in the right place (tissues) but not in the wrong one (lungs). In doing this, I use the three main models of learning: association, discovery and mentoring. Additionally, by guiding students to discover the truth by themselves, I can use hemoglobin as a wonderful excuse to apply the "Socratic method" in the classroom.
Fago, Angela; Malte, Hans; Storz, Jay F.; Gorr, Thomas A.
2013-01-01
In contrast to other vertebrate hemoglobins (Hbs) whose high intrinsic O2 affinities are reduced by red cell allosteric effectors (mainly protons, CO2, organic phosphates, and chloride ions), crocodilian Hbs exhibit low sensitivity to organic phosphates and high sensitivity to bicarbonate (HCO3−), which is believed to augment Hb-O2 unloading during diving and postprandial alkaline tides when blood HCO3− levels and metabolic rates increase. Examination of α- and β-globin amino acid sequences of dwarf caiman (Paleosuchus palpebrosus) revealed a unique combination of substitutions at key effector binding sites compared with other vertebrate and crocodilian Hbs: β82Lys→Gln, β143His→Val, and β146His→Tyr. These substitutions delete positive charges and, along with other distinctive changes in residue charge and polarity, may be expected to disrupt allosteric regulation of Hb-O2 affinity. Strikingly, however, P. palpebrosus Hb shows a strong Bohr effect, and marked deoxygenation-linked binding of organic phosphates (ATP and DPG) and CO2 as carbamate (contrasting with HCO3− binding in other crocodilians). Unlike other Hbs, it polymerizes to large complexes in the oxygenated state. The highly unusual properties of P. palpebrosus Hb align with a high content of His residues (potential sites for oxygenation-linked proton binding) and distinctive surface Cys residues that may form intermolecular disulfide bridges upon polymerization. On the basis of its singular properties, P. palpebrosus Hb provides a unique opportunity for studies on structure-function coupling and the evolution of compensatory mechanisms for maintaining tissue O2 delivery in Hbs that lack conventional effector-binding residues. PMID:23720132
Clinical hemoglobin C ... Hemoglobin C is an abnormal type of hemoglobin, the protein in red blood cells that carries oxygen. It is ... Americans. You are more likely to have hemoglobin C disease if someone in your family has had ...
Photoinduced oxygen dynamics in lyophilized hemoglobin
NASA Astrophysics Data System (ADS)
Nöllmann, M.; Etchegoin, P.
2000-12-01
Reversible laser induced deoxygenation in the lyophilized phase of hemoglobin is demonstrated by means of resonant Raman scattering, luminescence, and optical transmission. Specific Raman modes, which are both sensitive to the spin states of Fe(II) in the hemes and resonant in the visible, are monitored as a function of time to evaluate the effect of the illuminating laser. These modes act as in-situ markers of the oxygen content of the protein. The reversible photoinduced deoxygenation can be observed through both the Raman spin-markers and the optical transmission experiments. In the former, reversible changes in the intensities of specific Raman modes are observed, while in the latter, the oscillator strength of the two main absorptions of oxyhemoglobin in the visible are seen to vary accordingly. The luminescence in lyophilized hemoglobin is found to have at least two different contributions, (i) a resonant component with the Raman modes and; (ii) a nonresonant contribution, which increases at high input laser powers and eventually masks the Raman signals. The nonresonant contribution is the luminescence of the photoproduct achieved by thermal denaturation of the protein and remains standing as a permanent nonreversible damage in the illuminated spot. Semiempirical electronic calculations of the wavefunction and total energy of the iron porphyrin reveal the underlying physical origin of the laser induced deoxygenation process in the hemes and are also presented.
2010-11-10
1 A bovine hemoglobin-based oxygen carrier as pump prime for cardiopulmonary bypass: reduced systemic lactic acidosis and improved cerebral...2010 2. REPORT TYPE Final Report 3. DATES COVERED (From - To) June 2007 - November 2010 4. TITLE AND SUBTITLE A bovine hemoglobin-based oxygen...carrier as pump prime for cardiopulmonary bypass: reduced systemic lactic acidosis and improved cerebral oxygen metabolism during low-flow in a
Characterization and Expression of the Lucina pectinata Oxygen and Sulfide Binding Hemoglobin Genes
López-Garriga, Juan; Cadilla, Carmen L.
2016-01-01
The clam Lucina pectinata lives in sulfide-rich muds and houses intracellular symbiotic bacteria that need to be supplied with hydrogen sulfide and oxygen. This clam possesses three hemoglobins: hemoglobin I (HbI), a sulfide-reactive protein, and hemoglobin II (HbII) and III (HbIII), which are oxygen-reactive. We characterized the complete gene sequence and promoter regions for the oxygen reactive hemoglobins and the partial structure and promoters of the HbI gene from Lucina pectinata. We show that HbI has two mRNA variants, where the 5’end had either a sequence of 96 bp (long variant) or 37 bp (short variant). The gene structure of the oxygen reactive Hbs is defined by having 4-exons/3-introns with conservation of intron location at B12.2 and G7.0 and the presence of pre-coding introns, while the partial gene structure of HbI has the same intron conservation but appears to have a 5-exon/ 4-intron structure. A search for putative transcription factor binding sites (TFBSs) was done with the promoters for HbII, HbIII, HbI short and HbI long. The HbII, HbIII and HbI long promoters showed similar predicted TFBSs. We also characterized MITE-like elements in the HbI and HbII gene promoters and intronic regions that are similar to sequences found in other mollusk genomes. The gene expression levels of the clam Hbs, from sulfide-rich and sulfide-poor environments showed a significant decrease of expression in the symbiont-containing tissue for those clams in a sulfide-poor environment, suggesting that the sulfide concentration may be involved in the regulation of these proteins. Gene expression evaluation of the two HbI mRNA variants indicated that the longer variant is expressed at higher levels than the shorter variant in both environments. PMID:26824233
Hojas-Bernal, R; McNab-Martin, P; Fairbanks, V F; Holmes, M W; Hoyer, J D; McCormick, D J; Kubik, K S
1999-05-01
Among the causes of life-long cyanosis are congenital methemoglobinemia due to M hemoglobins, congenital methemoglobinemia due to methemoglobin reductase deficiency, a small number of low oxygen affinity hemoglobins, and a small number of unstable hemoglobins that spontaneously form methemoglobin in vivo at an accelerated rate. We report an unstable hemoglobin with these characteristics that was observed in a family of indigenous (native American) origin living near Santiago, Chile. This variant has the substitution beta28(B10)Leu-->Met, unambiguously corresponding to the DNA mutation of CTG-->ATG in beta-globin gene codon 28.
Three-state combinatorial switch models as applied to the binding of oxygen by human hemoglobin.
Straume, M; Johnson, M L
1988-02-23
We have generated a series of all 6561 unique, discrete three-state combinatorial switch models to describe the partitioning of the cooperative oxygen-binding free change among the 10 variously ligated forms of human hemoglobin tetramers. These models were inspired by the experimental observation of Smith and Ackers that the cooperative free energy of the intersubunit contact regions of the 10 possible ligated forms of human hemoglobin tetramers can be represented by a particular distribution of three distinct energy levels [Smith, F. R., & Ackers, G. K. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5347-5351]. A statistical thermodynamic formulation accounting for both dimer-tetramer equilibria and ligand binding properties of hemoglobin solutions as a function of oxygen and protein concentrations was utilized to exhaustively test these thermodynamic models. In this series of models each of the 10 ligated forms of the hemoglobin tetramer can exist in one, and only one, of three possible energy levels; i.e., each ligated form was assumed to be associated with a discrete energy state. This series of models includes all possible ways that the 10 ligation states of hemoglobin can be distributed into three distinct cooperative energy levels. The mathematical models, as presented here, do not permit equilibria between energy states to exist for any of the 10 unique ligated forms of hemoglobin tetramers. These models were analyzed by nonlinear least-squares estimation of the free energy parameters characteristic of this statistical thermodynamic development.(ABSTRACT TRUNCATED AT 250 WORDS)
The measurement of hemoglobin oxygen saturation using multiwavelength photoacoustic microscopy
NASA Astrophysics Data System (ADS)
Deng, Zilin; Yang, Xiaoquan; Yu, Lejun; Gong, Hui
2010-02-01
Hemoglobin oxygen saturation (SO2) is one of the most critical functional parameters to the metabolism. In this paper, we mainly introduced some initial results of measuring blood oxygen using multi-wavelength photoacoustic microscopy (PAM). In phantom study, we demonstrate the photoacoustic signal amplitude increases linearly with the concentration of red or blue ink. Then the calculated concentration of red ink in double-ink mixtures with PAM has a 5% difference with the result measured with spectrophotometric analysis. In ex vivo experiment, the measured result exhibt 15% difference between the PAM and spectrophotometric analysis. Experiment results suggest that PAM could be used to determine the SO2 quantitatively.
Purification, characterization, and crystallization of Crocodylus siamensis hemoglobin.
Jandaruang, Jinda; Siritapetawee, Jaruwan; Songsiriritthigul, Chomphunuch; Preecharram, Sutthidech; Azuma, Taoka; Dhiravisit, Apisak; Fukumori, Yoshihiro; Thammasirirak, Sompong
2014-08-01
Crocodylus siamensis hemoglobin was purified by a size exclusion chromatography, Sephacryl S-100 with buffer containing dithiothreitol. The purified Hb was dissociated to be two forms (α chain and β chain) which observed by SDS-PAGE, indicated that the C. siamensis Hb was an unpolymerized form. The unpolymerized Hb (composed of two α chains and two β chains) showed high oxygen affinity at 3.13 mmHg (P(50)) and 1.96 (n value), and a small Bohr effect (δH(+) = -0.29) at a pH of 6.9-8.4. Adenosine triphosphate did not affect the oxygenation properties, whereas bicarbonate ions strongly depressed oxygen affinity. Crude C. siamensis Hb solutions were showed high O(2) affinity at P(50) of 2.5 mmHg which may assure efficient utilization of the lung O(2) reserve during breath holding and diving. The purified Hbs were changed to cyanmethemoglobin forms prior crystallization. Rod- and plate-shaped crystals were obtained by the sitting-drop vapor-diffusion method at 5 °C using equal volumes of protein solution (37 mg/ml) and reservoir [10-13 % (w/v) PEG 4000, with 0.1 M Tris buffer in present of 0.2 M MgCl(2)·6H(2)O] solution at a pH of 7.0-8.5.
Johnson, M L; Halvorson, H R; Ackers, G K
1976-11-30
Resolution of the linkage functions between oxygenation and subunit association-dissociation equilibria in human hemoglobin into the constituent microscopic terms has been explored by numerical simulation and least-squares analysis. The correlation properties between parameters has been studied using several choices of parameter sets in order to optimize resolution. It is found that, with currently available levels of experimental precision and ranges of variables, neither linkage function can provide sufficient resolution of all the desired energy terms. The most difficult quantities to resolve always include the dimer-tetramer association constant for unliganded hemoglobin and the oxygen binding constants to alphabeta dimers. A feasible experimental strategy for overcoming these difficulties lies in independent determination of the dimer-tetramer association constants for unliganded and fully oxygenated hemoglobin. These constants, in combination with the median lignad concentration, provide an estimate of the energy for total oxygenation of tetramers which is essentially independent of the other constituent energies. It is shown that if these separately determinable parameters are fixed, the remaining terms may be estimated to good accuracy using data which represents either linkage function. In general it is desirable to combine information from both types of experimental quantities. A previous paper (Mills, F.C., Johnson, M.L., and Ackers, G.K. (1976), Biochemestry, 15, the preceding paper in this issue) describes the experimental implementation of this strategy.
Versmold, H T; Linderkamp, C; Döhlemann, C; Riegel, K P
1976-06-01
In 48 individuals (age 1 day to 13 years) with congenital heart disease, blood oxygen transport function was studied in order to evaluate adaptive changes in shunt hypoxemia and to investigate the in vivo regulation of erythrocyte 2, 3-diphosphoglycerate concentration (RBC 2, 3-DPG) in the presence of fetal hemoglobin (HbF). Arterial pO2 and oxygen content, oxygen capacity, acid base status, oxygen affinity, HbF fraction, plasma pH, red cell pH, and RBC 2, 3-DPG were determined. During the first 50 days of life values of standard P50 (stdP50) (37, pH 7.4), actual in vivo P50 (actP50), RBC 2, 3-DPG, O2 capacity, arterial plasma pH, and red cell pH were scattered around the normal range, although tending to low values for stdP50 and arterial plasma pH and to high values for O2 capacity. After the third month, stdP50 actP50, RBC 2, 3-DPG, O2 capacity, and red cell pH were found to be elevated. Plasma pH and actP50 were scattered around the normal range (Figs. 1 and 2). Intraerythrocytic pH in hypoxemic infants was increased compared with normal children when related to plasma pH (Fig. 3). A close to normal intraerythrocytic pH was therefore found in the hypoxemic infants with low plasma pH, and an increased intraerythrocytic pH in the hypoxemic children with normal plasma pH (Fig. 1). A significant negative correlation exists between erythrocyte H+ ion and 2, 3-DPG concentration (Fig. 5); regression constants derived from data at high (mean 47%) and low (mean 9%) fractions of HbF are not significantly different (Regression Equations 8 and 11 in Table 1). Thus, the known difference in 2, 3-DPG binding to fetal or adult deoxyhemoglobin does not measurably influence the erythrocyte 2, 3-DPG concentration, indicating that in vivo the 2, 3-DPG synthesis in hypoxia is virtually regulated by the erythrocyte pH, which in turn is determined by plasma pH and the oxygenation state of hemoglobin.
Cedrati, N; Bonneaux, F; Labrude, P; Maincent, P
1997-09-01
Hemoglobin solutions can be used as blood substitutes but they present some disadvantages often due to their rapid removal from the bloodstream after injection. A possible way of overcoming this problem is to trap hemoglobin inside particles. This study deals with the preparation, structure and stability of poly(lactic acid) and ethylcellulose microparticles containing human hemoglobin obtained with a double emulsion technique. We investigated the manufacturing process of these particles in order to increase the encapsulation ratio of hemoglobin. For this purpose, some parameters involved in the procedure were optimized, such as hemoglobin concentration and duration of stirring: hemoglobin loading increases with its concentration in the preparation and well-defined stirring time avoids a leakage of hemoglobin. Hemoglobin concentration, surfactant concentration i.e. poly(vinylic alcohol), amounts of polymer and solvent (methylene chloride), duration and speed of stirring. The microparticles were prepared with satisfactory yields (60 to 73%). They were spherical and their mean size was lower than 200 microns. The functional properties of entrapped hemoglobin were studied. The encapsulation did not alter hemoglobin and the oxygen affinity of the hemoglobin remained unmodified (P50 about 13.9 mm Hg in a Bis-Tris buffer pH 7.4 at 37 degrees C). Moreover, only low levels of methemoglobin could be detected (less than 3%). Besides, about 90% of encapsulated hemoglobin could be released from microparticles, with a speed related to the internal structure of the particles. The prepared microparticles were stored during one month at +4 degrees C. No degradation of the particle structure occurred and the functional properties of hemoglobin were preserved. These particles could provide a potential source of oxygen in the field of biotechnologies but any application for a transfusional purpose would first require a drastic reduction in particle size.
Discovery of GBT440, an Orally Bioavailable R-State Stabilizer of Sickle Cell Hemoglobin.
Metcalf, Brian; Chuang, Chihyuan; Dufu, Kobina; Patel, Mira P; Silva-Garcia, Abel; Johnson, Carl; Lu, Qing; Partridge, James R; Patskovska, Larysa; Patskovsky, Yury; Almo, Steven C; Jacobson, Matthew P; Hua, Lan; Xu, Qing; Gwaltney, Stephen L; Yee, Calvin; Harris, Jason; Morgan, Bradley P; James, Joyce; Xu, Donghong; Hutchaleelaha, Athiwat; Paulvannan, Kumar; Oksenberg, Donna; Li, Zhe
2017-03-09
We report the discovery of a new potent allosteric effector of sickle cell hemoglobin, GBT440 ( 36 ), that increases the affinity of hemoglobin for oxygen and consequently inhibits its polymerization when subjected to hypoxic conditions. Unlike earlier allosteric activators that bind covalently to hemoglobin in a 2:1 stoichiometry, 36 binds with a 1:1 stoichiometry. Compound 36 is orally bioavailable and partitions highly and favorably into the red blood cell with a RBC/plasma ratio of ∼150. This partitioning onto the target protein is anticipated to allow therapeutic concentrations to be achieved in the red blood cell at low plasma concentrations. GBT440 ( 36 ) is in Phase 3 clinical trials for the treatment of sickle cell disease (NCT03036813).
Plotnikova, T M; Plotnikov, M B; Bazhenova, T G
1991-02-01
Influence of natrii hydroxybutyrate (100 mg/kg), ascorbate (100 mg/kg), cavinton (5 mg/kg), bemitil (50 mg/kg), ethomersol (50 mg/kg) on Hb-O2 affinity and cortex PO2 after both carotid artery occlusion in rats was investigated. Correlation (r-0.87; P less than 0.05) between lowering of Hb-O2 affinity and antihypoxic effect was demonstrated in the line of these drugs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagao, Satoshi; Hirai, Yueki; Kawano, Shin
2007-03-16
A ring fluorinated heme, 13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2-fluoro-7,12, 18-trimethyl-porphyrin-atoiron(III), has been incorporated into human adult hemoglobin (Hb A). The heme orientational disorder in the individual subunits of the protein has been readily characterized using {sup 19}F NMR and the O{sub 2} binding properties of the protein have been evaluated through the oxygen equilibrium analysis. The equilibrated orientations of hemes in {alpha}- and {beta}- subunits of the reconstituted protein were found to be almost completely opposite to each other, and hence were largely different from those of the native and the previously reported reconstituted proteins [T. Jue, G.N. La Mar, Heme orientational heterogeneity inmore » deuterohemin-reconstituted horse and human hemoglobin characterized by proton nuclear magnetic resonance spectroscopy, Biochem. Biophys. Res. Commun. 119 (1984) 640-645]. Despite the large difference in the degree of the heme orientational disorder in the subunits of the proteins, the O{sub 2} affinity and the cooperativity of the protein reconstituted with 2-MF were similar to those of the proteins reconstituted with a series of hemes chemically modified at the heme 3- and 8-positions [K. Kawabe, K. Imaizumi, Z. Yoshida, K. Imai, I. Tyuma, Studies on reconstituted myoglobins and hemoglobins II. Role of the heme side chains in the oxygenation of hemoglobin, J. Biochem. 92 (1982) 1713-1722], whose O{sub 2} affinity and cooperativity were higher and lower, respectively, relative to those of native protein. These results indicated that the heme orientational disorder could exert little effect, if any, on the O{sub 2} affinity properties of Hb A. This finding provides new insights into structure-function relationship of Hb A.« less
... oxygen. In the lungs, oxygen is exchanged for carbon dioxide. Abnormalities of an individual's hemoglobin value can indicate defects in the normal balance between red blood cell production and destruction. Both ...
Effects of acute hypoxic exposure on oxygen affinity of human red blood cells.
Chowdhury, Aniket; Dasgupta, Raktim
2017-01-20
Adaptation of red blood cells subjected to acute hypoxia, crucial for managing high altitude syndrome and pulmonary diseases, has been investigated. For this, red blood cells were exposed to the acute hypoxic condition by purging nitrogen over increasing time periods from 15 to 60 min and thereafter equilibrated with atmospheric oxygen for 10 min. Raman spectra of these red blood cells were then recorded and analyzed to look for changes in the level of oxygenation compared to unexposed cells. A decreasing oxygen affinity for the cells was observed with increasing time of exposure to the hypoxic condition. This change in oxygen affinity for the red blood cells may result from metabolic adjustment of the cells under the hypoxic condition to promote increased concentration of intracellular 2, 3-diphosphoglycerate.
Naruto, Hirosuke; Huang, Hongyun; Nishikawa, Masaki; Kojima, Nobuhiko; Mizuno, Atsushi; Ohta, Katsuji; Sakai, Yasuyuki
2007-10-01
We tested the short-term efficacy of liposome-encapsulated hemoglobin (LEH) in cultured rat hepatocytes. Supplementation with LEH (20% of the hemoglobin concentration of blood) did not lower albumin production in static culture, and completely reversed the cell death and deterioration in albumin production caused by an oxygen shortage in 2D flat-plate perfusion bioreactors.
Effects of Cyanate and 2,3-Diphosphoglycerate on Sickling RELATIONSHIP TO OXYGENATION
Jensen, Michael; Bunn, H. Franklin; Halikas, George; Kan, Yuet Wai; Nathan, David G.
1973-01-01
Cyanate and 2,3-diphosphoglycerate (2,3-DPG) both influence the oxygen affinity of hemoglobin. The studies presented here concern the effects of these compounds on the sickling phenomenon. The inhibitory effect of cyanate on sickling is largely due to the fact that it increases the percentage of oxyhemoglobin S at a given oxygen tension. In addition, cyanate inhibits sickling by a mechanism that is independent of oxygenation. In this paper, we have demonstrated that the viscosity of carbamylated sickle blood was lower than that of non-carbamylated controls at the same oxygen saturation. Furthermore, carbamylation resulted in an increase in the minimum concentration of deoxy-sickle hemoglobin required for gelation. Like cyanate, 2,3-DPG affected sickling of intact erythrocytes by two mechanisms. Since 2,3-DPG decreases the percentage of oxyhemoglobin S at a given oxygen tension, sickling is enhanced. In addition, 2,3-DPG had a direct effect. When the intracellular 2,3-DPG concentration was increased in vitro, a greater percentage of cells were sickled at a given oxygen saturation. Conversely, sickling was inhibited in cells in which 2,3-DPG was artificially lowered. These data indicate that the enhancement of sickling by 2,3-DPG is in part independent of its influence on oxygen affinity. PMID:4729047
WAXS studies of the structural diversity of hemoglobin in solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makowski, L.; Bardhan, J.; Gore, D.
2011-01-01
Specific ligation states of hemoglobin are, when crystallized, capable of taking on multiple quaternary structures. The relationship between these structures, captured in crystal lattices, and hemoglobin structure in solution remains uncertain. Wide-angle X-ray solution scattering (WAXS) is a sensitive probe of protein structure in solution that can distinguish among similar structures and has the potential to contribute to these issues. We used WAXS to assess the relationships among the structures of human and bovine hemoglobins in different liganded forms in solution. WAXS data readily distinguished among the various forms of hemoglobins. WAXS patterns confirm some of the relationships among hemoglobinmore » structures that have been defined through crystallography and NMR and extend others. For instance, methemoglobin A in solution is, as expected, nearly indistinguishable from HbCO A. Interestingly, for bovine hemoglobin, the differences between deoxy-Hb, methemoglobin and HbCO are smaller than the corresponding differences in human hemoglobin. WAXS data were also used to assess the spatial extent of structural fluctuations of various hemoglobins in solution. Dynamics has been implicated in allosteric control of hemoglobin, and increased dynamics has been associated with lowered oxygen affinity. Consistent with that notion, WAXS patterns indicate that deoxy-Hb A exhibits substantially larger structural fluctuations than HbCO A. Comparisons between the observed WAXS patterns and those predicted on the basis of atomic coordinate sets suggest that the structures of Hb in different liganded forms exhibit clear differences from known crystal structure.« less
Vitreoscilla hemoglobin. Intracellular localization and binding to membranes.
Ramandeep; Hwang, K W; Raje, M; Kim, K J; Stark, B C; Dikshit, K L; Webster, D A
2001-07-06
The obligate aerobic bacterium, Vitreoscilla, synthesizes elevated quantities of a homodimeric hemoglobin (VHb) under hypoxic growth conditions. Expression of VHb in heterologous hosts often enhances growth and product formation. A role in facilitating oxygen transfer to the respiratory membranes is one explanation of its cellular function. Immunogold labeling of VHb in both Vitreoscilla and recombinant Escherichia coli bearing the VHb gene clearly indicated that VHb has a cytoplasmic (not periplasmic) localization and is concentrated near the periphery of the cytosolic face of the cell membrane. OmpA signal-peptide VHb fusions were transported into the periplasm in E. coli, but this did not confer any additional growth advantage. The interaction of VHb with respiratory membranes was also studied. The K(d) values for the binding of VHb to Vitreoscilla and E. coli cell membranes were approximately 5-6 microm, a 4-8-fold higher affinity than those of horse myoglobin and hemoglobin for these same membranes. VHb stimulated the ubiquinol-1 oxidase activity of inverted Vitreoscilla membranes by 68%. The inclusion of Vitreoscilla cytochrome bo in proteoliposomes led to 2.4- and 6-fold increases in VHb binding affinity and binding site number, respectively, relative to control liposomes, suggesting a direct interaction between VHb and cytochrome bo.
Measuring hemoglobin amount and oxygen saturation of skin with advancing age
NASA Astrophysics Data System (ADS)
Watanabe, Shumpei; Yamamoto, Satoshi; Yamauchi, Midori; Tsumura, Norimichi; Ogawa-Ochiai, Keiko; Akiba, Tetsuo
2012-03-01
We measured the oxygen saturation of skin at various ages using our previously proposed method that can rapidly simulate skin spectral reflectance with high accuracy. Oxygen saturation is commonly measured by a pulse oximeter to evaluate oxygen delivery for monitoring the functions of heart and lungs at a specific time. On the other hand, oxygen saturation of skin is expected to assess peripheral conditions. Our previously proposed method, the optical path-length matrix method (OPLM), is based on a Monte Carlo for multi-layered media (MCML), but can simulate skin spectral reflectance 27,000 times faster than MCML. In this study, we implemented an iterative simulation of OPLM with a nonlinear optimization technique such that this method can also be used for estimating hemoglobin concentration and oxygen saturation from the measured skin spectral reflectance. In the experiments, the skin reflectance spectra of 72 outpatients aged between 20 and 86 years were measured by a spectrophotometer. Three points were measured for each subject: the forearm, the thenar eminence, and the intermediate phalanx. The result showed that the oxygen saturation of skin remained constant at each point as the age varied.
NASA Astrophysics Data System (ADS)
Orlova, A. G.; Kirillin, M. Yu; Volovetsky, A. B.; Shilyagina, N. Yu; Sergeeva, E. A.; Golubiatnikov, G. Yu; Turchin, I. V.
2017-01-01
Tumor oxygenation and hemoglobin content are the key indicators of the tumor status which can be efficiently employed for prognosis of tumor development and choice of treatment strategy. We report on monitoring of these parameters in SKBR-3 (human breast adenocarcinoma) tumors established as subcutaneous tumor xenografts in athymic nude mice by diffuse optical spectroscopy (DOS). A simple continuous wave fiber probe DOS system is employed. Optical properties extraction approach is based on diffusion approximation. Statistically significant difference between measured values of normal tissue and tumor are demonstrated. Hemoglobin content in tumor increases from 7.0 ± 4.2 μM to 30.1 ± 16.1 μM with tumor growth from 150 ± 80 mm3 to 1300 ± 650 mm3 which is determined by gradual increase of deoxyhemoglobin content while measured oxyhemoglobin content does not demonstrate any statistically significant variations. Oxygenation in tumor falls quickly from 52.8 ± 24.7% to 20.2 ± 4.8% preceding acceleration of tumor growth. Statistical analysis indicated dependence of oxy-, deoxy- and total hemoglobin on tumor volume (p < 0.01). DOS measurements of oxygen saturation are in agreement with independent measurements of oxygen partial pressure by polarography (Pearson’s correlation coefficient equals 0.8).
Hemoglobin-derived porphyrins preserved in a Middle Eocene blood-engorged mosquito
Greenwalt, Dale E.; Goreva, Yulia S.; Siljeström, Sandra M.; Rose, Tim; Harbach, Ralph E.
2013-01-01
Although hematophagy is found in ∼14,000 species of extant insects, the fossil record of blood-feeding insects is extremely poor and largely confined to specimens identified as hematophagic based on their taxonomic affinities with extant hematophagic insects; direct evidence of hematophagy is limited to four insect fossils in which trypanosomes and the malarial protozoan Plasmodium have been found. Here, we describe a blood-engorged mosquito from the Middle Eocene Kishenehn Formation in Montana. This unique specimen provided the opportunity to ask whether or not hemoglobin, or biomolecules derived from hemoglobin, were preserved in the fossilized blood meal. The abdomen of the fossil mosquito was shown to contain very high levels of iron, and mass spectrometry data provided a convincing identification of porphyrin molecules derived from the oxygen-carrying heme moiety of hemoglobin. These data confirm the existence of taphonomic conditions conducive to the preservation of biomolecules through deep time and support previous reports of the existence of heme-derived porphyrins in terrestrial fossils. PMID:24127577
Kassa, Tigist W; Zhang, Ning; Palmer, Andre F; Matthews, Jason Shastri
2013-04-01
Four phosphonate derivates of 2,3-diphosphoglycerate (2,3-DPG), in which the phosphate group is replaced by a methylene or difluoromethylene, were successfully synthesized for use as allosteric modulators of hemoglobin (Hb) O2 affinity. The syntheses were accomplished in four steps and the reagents were converted to their potassium salts to allow for effective binding with Hb in aqueous media. O2 equilibrium measurements of the chemically modified Hbs exhibited P50 values in the range 8.9-12.8 with Hill coefficients in the range of 1.5-2.4.
The Greenland shark Somniosus microcephalus-Hemoglobins and ligand-binding properties.
Russo, Roberta; Giordano, Daniela; Paredi, Gianluca; Marchesani, Francesco; Milazzo, Lisa; Altomonte, Giovanna; Del Canale, Pietro; Abbruzzetti, Stefania; Ascenzi, Paolo; di Prisco, Guido; Viappiani, Cristiano; Fago, Angela; Bruno, Stefano; Smulevich, Giulietta; Verde, Cinzia
2017-01-01
A large amount of data is currently available on the adaptive mechanisms of polar bony fish hemoglobins, but structural information on those of cartilaginous species is scarce. This study presents the first characterisation of the hemoglobin system of one of the longest-living vertebrate species (392 ± 120 years), the Arctic shark Somniosus microcephalus. Three major hemoglobins are found in its red blood cells and are made of two copies of the same α globin combined with two copies of three very similar β subunits. The three hemoglobins show very similar oxygenation and carbonylation properties, which are unaffected by urea, a very important compound in marine elasmobranch physiology. They display identical electronic absorption and resonance Raman spectra, indicating that their heme-pocket structures are identical or highly similar. The quaternary transition equilibrium between the relaxed (R) and the tense (T) states is more dependent on physiological allosteric effectors than in human hemoglobin, as also demonstrated in polar teleost hemoglobins. Similar to other cartilaginous fishes, we found no evidence for functional differentiation among the three isoforms. The very similar ligand-binding properties suggest that regulatory control of O2 transport may be at the cellular level and that it may involve changes in the cellular concentrations of allosteric effectors and/or variations of other systemic factors. The hemoglobins of this polar shark have evolved adaptive decreases in O2 affinity in comparison to temperate sharks.
The Greenland shark Somniosus microcephalus—Hemoglobins and ligand-binding properties
Paredi, Gianluca; Marchesani, Francesco; Milazzo, Lisa; Altomonte, Giovanna; Del Canale, Pietro; Abbruzzetti, Stefania; Ascenzi, Paolo; di Prisco, Guido; Viappiani, Cristiano; Fago, Angela; Bruno, Stefano; Smulevich, Giulietta
2017-01-01
A large amount of data is currently available on the adaptive mechanisms of polar bony fish hemoglobins, but structural information on those of cartilaginous species is scarce. This study presents the first characterisation of the hemoglobin system of one of the longest-living vertebrate species (392 ± 120 years), the Arctic shark Somniosus microcephalus. Three major hemoglobins are found in its red blood cells and are made of two copies of the same α globin combined with two copies of three very similar β subunits. The three hemoglobins show very similar oxygenation and carbonylation properties, which are unaffected by urea, a very important compound in marine elasmobranch physiology. They display identical electronic absorption and resonance Raman spectra, indicating that their heme-pocket structures are identical or highly similar. The quaternary transition equilibrium between the relaxed (R) and the tense (T) states is more dependent on physiological allosteric effectors than in human hemoglobin, as also demonstrated in polar teleost hemoglobins. Similar to other cartilaginous fishes, we found no evidence for functional differentiation among the three isoforms. The very similar ligand-binding properties suggest that regulatory control of O2 transport may be at the cellular level and that it may involve changes in the cellular concentrations of allosteric effectors and/or variations of other systemic factors. The hemoglobins of this polar shark have evolved adaptive decreases in O2 affinity in comparison to temperate sharks. PMID:29023598
Artyukhov, V G; Kalaeva, E A; Putintseva, O V; Polyubez'eva, A I
2016-03-01
Human oxyhemoglobin exhibits high resistance to nitroglycerin during incubation of the protein with this compound for 0.3-3 h. Prolonged exposure (24 h) leads to activation of methemoglobin production. In the presence of nitroglycerin hemoglobin molecules undergo rapid oxidation during deoxygenation with formation of methemoglobin as the terminal product of human oxyhemoglobin interaction with nitroglycerin. The scheme of interaction processes of oxyhemoglobin with nitroglycerin in different conditions of oxygen regime is proposed. Partially deliganded hemoglobin plays the leading role in the initiation of hemoglobin oxidation processes.
Tangential Flow Filtration of Hemoglobin
Sun, Guoyong; Harris, David R.
2009-01-01
Bovine and human hemoglobin (bHb and hHb, respectively) was purified from bovine and human red blood cells (bRBCs and hRBCs, respectively) via tangential flow filtration (TFF) in four successive stages. TFF is a fast and simple method to purify Hb from RBCs using filtration through hollow fiber (HF) membranes. Most of the Hb was retained in stage III (100 kDa HF membrane) and displayed methemoglobin levels less than 1%, yielding final concentrations of 318 and 300 mg/mL for bHb and hHb, respectively. Purified Hb exhibited much lower endotoxin levels than their respective RBCs. The purity of Hb was initially assessed via SDS-PAGE, and showed tiny impurity bands for the stage III retentate. The oxygen affinity (P50), and cooperativity coefficient (n) were regressed from the measured oxygen-RBC/Hb equilibrium curves of RBCs and purified Hb. These results suggest that TFF yielded oxygen affinities of bHb and hHb that are comparable to values in the literature. LC-MS was used to measure the molecular weight of the alpha (α) and beta (β) globin chains of purified Hb. No impurity peaks were present in the HPLC chromatograms of purified Hb. The mass of the molecular ions corresponding to the α and β globin chains agreed well with the calculated theoretical mass of the α-and β-globin chains. Taken together, our results demonstrate that HPLC grade Hb can be generated via TFF. In general, this method can be more broadly applied to purify Hb from any source of RBCs. This work is significant, since it outlines a simple method for generating Hb for synthesis and/or formulation of Hb-based oxygen carriers (HBOCs). PMID:19224583
Hemoglobin phase of oxygenation and deoxygenation in early brain development measured using fNIRS
Watanabe, Hama; Shitara, Yoshihiko; Aoki, Yoshinori; Inoue, Takanobu; Tsuchida, Shinya; Takahashi, Naoto; Taga, Gentaro
2017-01-01
A crucial issue in neonatal medicine is the impact of preterm birth on the developmental trajectory of the brain. Although a growing number of studies have shown alterations in the structure and function of the brain in preterm-born infants, we propose a method to detect subtle differences in neurovascular and metabolic functions in neonates and infants. Functional near-infrared spectroscopy (fNIRS) was used to obtain time-averaged phase differences between spontaneous low-frequency (less than 0.1 Hz) oscillatory changes in oxygenated hemoglobin (oxy-Hb) and those in deoxygenated hemoglobin (deoxy-Hb). This phase difference was referred to as hemoglobin phase of oxygenation and deoxygenation (hPod) in the cerebral tissue of sleeping neonates and infants. We examined hPod in term, late preterm, and early preterm infants with no evidence of clinical issues and found that all groups of infants showed developmental changes in the values of hPod from an in-phase to an antiphase pattern. Comparison of hPod among the groups revealed that developmental changes in hPod in early preterm infants precede those in late preterm and term infants at term equivalent age but then, progress at a slower pace. This study suggests that hPod measured using fNIRS is sensitive to the developmental stage of the integration of circular, neurovascular, and metabolic functions in the brains of neonates and infants. PMID:28196885
Damsgaard, Christian; Storz, Jay F.; Hoffmann, Federico G.
2013-01-01
When freshwater turtles acclimatize to winter hibernation, there is a gradual transition from aerobic to anaerobic metabolism, which may require adjustments of blood O2 transport before turtles become anoxic. Here, we report the effects of protons, anionic cofactors, and temperature on the O2-binding properties of isolated hemoglobin (Hb) isoforms, HbA and HbD, in the turtle Trachemys scripta. We determined the primary structures of the constituent subunits of the two Hb isoforms, and we related the measured functional properties to differences in O2 affinity between untreated hemolysates from turtles that were acclimated to normoxia and anoxia. Our data show that HbD has a consistently higher O2 affinity compared with HbA, whereas Bohr and temperature effects, as well as thiol reactivity, are similar. Although sequence data show amino acid substitutions at two known β-chain ATP-binding site positions, we find high ATP affinities for both Hb isoforms, suggesting an alternative and stronger binding site for ATP. The high ATP affinities indicate that, although ATP levels decrease in red blood cells of turtles acclimating to anoxia, the O2 affinity would remain largely unchanged, as confirmed by O2-binding measurements of untreated hemolysates from normoxic and anoxic turtles. Thus, the increase in blood-O2 affinity that accompanies winter acclimation is mainly attributable to a decrease in temperature rather than in concentrations of organic phosphates. This is the first extensive study on freshwater turtle Hb isoforms, providing molecular evidence for adaptive changes in O2 transport associated with acclimation to severe hypoxia. PMID:23986362
Bucci, Enrico
2013-01-01
Hill’s plots of oxygen binding isotherms reveal the presence of a transition between two different oxygen affinities at the beginning and end of the isotherm. They correspond to the two conformations anticipated by the MWC model, namely the T and R conformations at the beginning and end of oxygen binding, when the lower affinity of the T form develops into the higher affinity of the R form. The difference between the binding Gibbs free energies changes of the two affinities (ΔGL) is the free energy of binding cooperativity. Notably ΔGL is positive in favor of the T form, that moves to a higher energy level upon oxygen release. Osmotic stress reveals a higher volume/surface ratio of deoxyHb, with a positive ΔGW also in favor of the T form . Increasing protein concentration shifts the isotherms to the right indicating the formation of intermediate polymeric forms. Enthalpy of the intermediates show a strong absorption of heat at the third oxygenation step due to polymers formation with quinary, and above, structures. The disassembly of intermediate polymers releases energy with a negative ΔG that compensates and allow the positivity of ΔGL. High energy polymers are the barrier preventing the relaxation of the T and R conformations into one another. The MWC allosteric model is the best justification of oxygen binding cooperativity . PMID:23710673
Shonat, R D; Wachman, E S; Niu, W; Koretsky, A P; Farkas, D L
1997-09-01
A newly developed microscope using acousto-optic tunable filters (AOTFs) was used to generate in vivo hemoglobin saturation (SO2) and oxygen tension (PO2) maps in the cerebral cortex of mice. SO2 maps were generated from the spectral analysis of reflected absorbance images collected at different wavelengths, and PO2 maps were generated from the phosphorescence lifetimes of an injected palladium-porphyrin compound using a frequency-domain measurement. As the inspiratory O2 was stepped from hypoxia (10% O2), through normoxia (21% O2), to hyperoxia (60% O2), measured SO2 and PO2 levels rose accordingly and predictably throughout. A plot of SO2 versus PO2 in different arterial and venous regions of the pial vessels conformed to the sigmoidal shape of the oxygen-hemoglobin dissociation curve, providing further validation of the two mapping procedures. The study demonstrates the versatility of the AOTF microscope for in vivo physiologic investigation, allowing for the generation of nearly simultaneous SO2 and PO2 maps in the cerebral cortex, and the frequency-domain detection of phosphorescence lifetimes. This class of study opens up exciting new possibilities for investigating the dynamics of hemoglobin and O2 binding during functional activation of neuronal tissues.
Remington, Nicole; Stevens, Robert D.; Wells, Randall S.; Hohn, Aleta; Dhungana, Suraj; Taboy, Celine H.; Crumbliss, Alvin L.; Henkens, Robert; Bonaventura, Celia
2007-01-01
Studies of structure-function relationships in the respiratory proteins of marine mammals revealed unexpected variations in the number and types of hemoglobins (Hbs) present in coastal bottlenose dolphins, Tursiops truncatus. We obtained blood samples from free-ranging coastal bottlenose dolphins as a component of capture-release studies. We found that the oxygen-binding functions of bottlenose dolphin blood are poised between effector-saturated and unsaturated levels, enabling exercise-dependent shifts in oxygen transfer functions. Isolated bottlenose dolphin Hbs showed elevated pH sensitivities (Bohr effects) and appreciably lower oxygen affinities than adult human Hb in the absence of allosteric effectors. These properties may be an adaptive modification that enhance oxygen delivery during diving episodes when oxygen tensions and effector levels are low. The Hbs of individual dolphins showed similar oxygen affinities, responses to effectors, and expression of heme-heme interaction in oxygen binding, but differed in their redox potentials and rates of autoxidation. The heterogeneity suggested by these functional variations in Hbs of individual dolphins was born out by variations in the molecular weights and numbers of their α and β globin chains. Although coastal bottlenose dolphins were expected to have a single type of Hb, the mass differences observed revealed considerable genetic diversity. There were multiple Hb forms in some individuals and differences in Hb patterns among individuals within the same community. PMID:17604574
Remington, Nicole; Stevens, Robert D; Wells, Randall S; Holn, Aleta; Dhungana, Suraj; Taboy, Celine H; Crumbliss, Alvin L; Henkens, Robert; Bonaventura, Celia
2007-08-15
Studies of structure-function relationships in the respiratory proteins of marine mammals revealed unexpected variations in the number and types of hemoglobins (Hbs) present in coastal bottlenose dolphins, Tursiops truncatus. We obtained blood samples from free-ranging coastal bottlenose dolphins as a component of capture-release studies. We found that the oxygen-binding functions of bottlenose dolphin blood are poised between effector-saturated and unsaturated levels, enabling exercise-dependent shifts in oxygen transfer functions. Isolated bottlenose dolphin Hbs showed elevated pH sensitivities (Bohr effects) and appreciably lower oxygen affinities than adult human Hb in the absence of allosteric effectors. These properties may be an adaptive modification that enhances oxygen delivery during diving episodes when oxygen tensions and effector levels are low. The Hbs of individual dolphins showed similar oxygen affinities, responses to effectors, and expression of heme-heme interaction in oxygen binding, but differed in their redox potentials and rates of autoxidation. The heterogeneity suggested by these functional variations in Hbs of individual dolphins was born out by variations in the molecular weights and numbers of their alpha and beta globin chains. Although coastal bottlenose dolphins were expected to have a single type of Hb, the mass differences observed revealed considerable genetic diversity. There were multiple Hb forms in some individuals and differences in Hb patterns among individuals within the same community.
NASA Astrophysics Data System (ADS)
Liu, Guangli; Wu, Qiang; Shen, Shuwei; Zhao, Gang; Dong, Erbao; Xu, Ronald X.
2017-03-01
We describe a combination of liquid-jet microencapsulation and molding techniques to fabricate tissue-simulating phantoms that mimick functional characteristics of tissue oxygen saturation (StO2). Chicken hemoglobin (Hb) was encapsulated inside a photocurable resin by a coaxial flow focusing process. The microdroplets were cured by ultraviolet (UV) illumination to form Hb loaded polymersome microdroplets. The microdroplets were further freeze-dried to form semipermeable solid microcapules with an outer transparent polymeric shell and an inner core of Hb. The diameter of the microcapsules ranged from 50 to100 μm. The absorption spectrum of the microcapsules was measured by a UV/VIS spectrophotometer over a wavelength range from 400 nm to 1100 nm. To fabricate the tissue-simulating phantom, the Hb loaded microcapsules were dispersed in transparent polydimethylsiloxane (PDMS). The optical properties of the phantom were determined by an vertical double integrating sphere with a reconstruction algorithm. The experimental results showed that the tissue-simulating phantom exhibited the spectral characteristics closely resembling that of oxy-hemoglobin. The phantom had a long-term optical stability when stored in 4 ℃, indicating that microencapsulation effectively protected Hb and improved its shelf time. With the Hb loaded microcapsules, we will produce skin-simulating phantoms for quantitative validation of multispectral imaging techniques. To the best of the authors' knowledge, no solid phantom is able to mimick living tissue oxygenation with good agreement. Therefore, our work provided an engineering platform for validating and calibrating spectral optical devices in biomedical applications.
ERIC Educational Resources Information Center
Leow, Melvin Khee-Shing
2007-01-01
The oxygen dissociation curve (ODC) of hemoglobin (Hb) has been widely studied and mathematically described for nearly a century. Numerous mathematical models have been designed to predict with ever-increasing accuracy the behavior of oxygen transport by Hb in differing conditions of pH, carbon dioxide, temperature, Hb levels, and…
Molecular controls of the oxygenation and redox reactions of hemoglobin.
Bonaventura, Celia; Henkens, Robert; Alayash, Abdu I; Banerjee, Sambuddha; Crumbliss, Alvin L
2013-06-10
The broad classes of O(2)-binding proteins known as hemoglobins (Hbs) carry out oxygenation and redox functions that allow organisms with significantly different physiological demands to exist in a wide range of environments. This is aided by allosteric controls that modulate the protein's redox reactions as well as its O(2)-binding functions. The controls of Hb's redox reactions can differ appreciably from the molecular controls for Hb oxygenation and come into play in elegant mechanisms for dealing with nitrosative stress, in the malarial resistance conferred by sickle cell Hb, and in the as-yet unsuccessful designs for safe and effective blood substitutes. An important basic principle in consideration of Hb's redox reactions is the distinction between kinetic and thermodynamic reaction control. Clarification of these modes of control is critical to gaining an increased understanding of Hb-mediated oxidative processes and oxidative toxicity in vivo. This review addresses emerging concepts and some unresolved questions regarding the interplay between the oxygenation and oxidation reactions of structurally diverse Hbs, both within red blood cells and under acellular conditions. Developing methods that control Hb-mediated oxidative toxicity will be critical to the future development of Hb-based blood substitutes.
Bianchini, Kristin; Wright, Patricia A
2013-12-01
In rainbow trout development, a switch occurs from high-affinity embryonic hemoglobin (Hb) and round, embryonic erythrocytes to lower-affinity adult Hb and oval, adult erythrocytes. Our study investigated the early ontogeny of rainbow trout blood properties and the hypoxia response. We hypothesized that hypoxia exposure would delay the ontogenetic turnover of Hb and erythrocytes because retention of high-affinity embryonic Hb would facilitate oxygen loading. To test this hypothesis we developed a method of efficiently extracting blood from individual embryos and larvae and optimized several techniques for measuring hematological parameters on microliter (0.5-2.0 μl) blood samples. In chronic hypoxia (30% of oxygen saturation), stage-matched embryos and larvae possessed half the Hb concentration, erythrocyte counts and hematocrit observed in normoxia. Hypoxia-reared larvae also had threefold to sixfold higher mRNA expression of the embryonic Hb α-1, β-1 and β-2 subunits relative to stage-matched normoxia-reared larvae. Furthermore, in hypoxia, the round embryonic erythrocytic shape persisted into later developmental stages. Despite these differences, Hb-oxygen affinity (P50), cooperativity and the Root effect were unaltered in hypoxia-reared O. mykiss. The data support our hypothesis that chronic hypoxia delays the ontogenetic turnover of Hb and erythrocytes, but without the predicted functional consequences (i.e. higher than expected P50). These results also suggest that the Hb-oxygen affinity is protected during development in chronic hypoxia to favor oxygen unloading at the tissues. We conclude that in early trout development, the blood-oxygen transport system responds very differently to chronic hypoxia relative to adults, possibly because respiration depends relatively more on oxygen diffusion than convection.
Matiushichev, V B; Shamratova, V G; Krapivko, Iu K
2009-12-01
Factor analysis was used to study the pattern of relationships of a number of hematological parameters in clinically healthy young subjects and in patients with moderate anemia. The level of total hemoglobin and the concentration of red blood cells were ascertained to control blood oxygen-transporting function in not full measure and these might be referred to as basic characteristics only conventionally. To clarify the picture, these criteria should be supplemented by the information on other parameters. It is concluded that the introduction of the ratio of a number of hemoglobin derivatives, blood oxygen regimen and acid-base balance can substantially increase the validity of clinical opinions as to this blood function.
PARALLEL ASSAY OF OXYGEN EQUILIBRIA OF HEMOGLOBIN
Lilly, Laura E.; Blinebry, Sara K.; Viscardi, Chelsea M.; Perez, Luis; Bonaventura, Joe; McMahon, Tim J.
2013-01-01
Methods to systematically analyze in parallel the function of multiple protein or cell samples in vivo or ex vivo (i.e. functional proteomics) in a controlled gaseous environment have thus far been limited. Here we describe an apparatus and procedure that enables, for the first time, parallel assay of oxygen equilibria in multiple samples. Using this apparatus, numerous simultaneous oxygen equilibrium curves (OECs) can be obtained under truly identical conditions from blood cell samples or purified hemoglobins (Hbs). We suggest that the ability to obtain these parallel datasets under identical conditions can be of immense value, both to biomedical researchers and clinicians who wish to monitor blood health, and to physiologists studying non-human organisms and the effects of climate change on these organisms. Parallel monitoring techniques are essential in order to better understand the functions of critical cellular proteins. The procedure can be applied to human studies, wherein an OEC can be analyzed in light of an individual’s entire genome. Here, we analyzed intraerythrocytic Hb, a protein that operates at the organism’s environmental interface and then comes into close contact with virtually all of the organism’s cells. The apparatus is theoretically scalable, and establishes a functional proteomic screen that can be correlated with genomic information on the same individuals. This new method is expected to accelerate our general understanding of protein function, an increasingly challenging objective as advances in proteomic and genomic throughput outpace the ability to study proteins’ functional properties. PMID:23827235
Hemoglobin–oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend?
2016-01-01
ABSTRACT In air-breathing vertebrates at high altitude, fine-tuned adjustments in hemoglobin (Hb)–O2 affinity provide an energetically efficient means of mitigating the effects of arterial hypoxemia. However, it is not always clear whether an increased or decreased Hb–O2 affinity should be expected to improve tissue O2 delivery under different degrees of hypoxia, due to the inherent trade-off between arterial O2 loading and peripheral O2 unloading. Theoretical results indicate that the optimal Hb–O2 affinity varies as a non-linear function of environmental O2 availability, and the threshold elevation at which an increased Hb–O2 affinity becomes advantageous depends on the magnitude of diffusion limitation (the extent to which O2 equilibration at the blood–gas interface is limited by the kinetics of O2 exchange). This body of theory provides a framework for interpreting the possible adaptive significance of evolved changes in Hb–O2 affinity in vertebrates that have colonized high-altitude environments. To evaluate the evidence for an empirical generalization and to test theoretical predictions, I synthesized comparative data in a phylogenetic framework to assess the strength of the relationship between Hb–O2 affinity and native elevation in mammals and birds. Evidence for a general trend in mammals is equivocal, but there is a remarkably strong positive relationship between Hb–O2 affinity and native elevation in birds. Evolved changes in Hb function in high-altitude birds provide one of the most compelling examples of convergent biochemical adaptation in vertebrates. PMID:27802149
Nonlinear photoacoustic spectroscopy of hemoglobin.
Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P; Xia, Jun; Wang, Lihong V
2015-05-18
As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.
Fago, Angela; Parraga, Daniel Garcia; Petersen, Elin E; Kristensen, Niels; Giouri, Lea; Jensen, Frank B
2017-03-01
The ability of marine mammals to hunt prey at depth is known to rely on enhanced oxygen stores and on selective distribution of blood flow, but the molecular mechanisms regulating blood flow and oxygen transport remain unresolved. To investigate the molecular mechanisms that may be important in regulating blood flow, we measured concentration of nitrite and S-nitrosothiols (SNO), two metabolites of the vasodilator nitric oxide (NO), in the blood of 5 species of marine mammals differing in their dive duration: bottlenose dolphin, South American sea lion, harbor seal, walrus and beluga whale. We also examined oxygen affinity, sensitivity to 2,3-diphosphoglycerate (DPG) and nitrite reductase activity of the hemoglobin (Hb) to search for possible adaptive variations in these functional properties. We found levels of plasma and red blood cells nitrite similar to those reported for terrestrial mammals, but unusually high concentrations of red blood cell SNO in bottlenose dolphin, walrus and beluga whale, suggesting enhanced SNO-dependent signaling in these species. Purified Hbs showed similar functional properties in terms of oxygen affinity and sensitivity to DPG, indicating that reported large variations in blood oxygen affinity among diving mammals likely derive from phenotypic variations in red blood cell DPG levels. The nitrite reductase activities of the Hbs were overall slightly higher than that of human Hb, with the Hb of beluga whale, capable of longest dives, having the highest activity. Taken together, these results underscore adaptive variations in circulatory NO metabolism in diving mammals but not in the oxygenation properties of the Hb. Copyright © 2016 Elsevier Inc. All rights reserved.
Cloned Hemoglobin Genes Enhance Growth Of Cells
NASA Technical Reports Server (NTRS)
Khosla, Chaitan; Bailey, James E.
1991-01-01
Experiments show that portable deoxyribonucleic acid (DNA) sequences incorporated into host cells make them produce hemoglobins - oxygen-binding proteins essential to function of red blood cells. Method useful in several biotechnological applications. One, enhancement of growth of cells at higher densities. Another, production of hemoglobin to enhance supplies of oxygen in cells, for use in chemical reactions requiring oxygen, as additive to serum to increase transport of oxygen, and for binding and separating oxygen from mixtures of gases.
Shonat, R D; Wachman, E S; Niu, W; Koretsky, A P; Farkas, D L
1997-01-01
A newly developed microscope using acousto-optic tunable filters (AOTFs) was used to generate in vivo hemoglobin saturation (SO2) and oxygen tension (PO2) maps in the cerebral cortex of mice. SO2 maps were generated from the spectral analysis of reflected absorbance images collected at different wavelengths, and PO2 maps were generated from the phosphorescence lifetimes of an injected palladium-porphyrin compound using a frequency-domain measurement. As the inspiratory O2 was stepped from hypoxia (10% O2), through normoxia (21% O2), to hyperoxia (60% O2), measured SO2 and PO2 levels rose accordingly and predictably throughout. A plot of SO2 versus PO2 in different arterial and venous regions of the pial vessels conformed to the sigmoidal shape of the oxygen-hemoglobin dissociation curve, providing further validation of the two mapping procedures. The study demonstrates the versatility of the AOTF microscope for in vivo physiologic investigation, allowing for the generation of nearly simultaneous SO2 and PO2 maps in the cerebral cortex, and the frequency-domain detection of phosphorescence lifetimes. This class of study opens up exciting new possibilities for investigating the dynamics of hemoglobin and O2 binding during functional activation of neuronal tissues. Images FIGURE 1 FIGURE 3 FIGURE 4 FIGURE 6 PMID:9284290
Hadjistassou, Constantinos; Moyle, Keri; Ventikos, Yiannis
2016-01-01
The advent of functional MRI in the mid-1990s has catalyzed progress pertaining to scientific discoveries in neuroscience. With the prospect of elucidating the physiological aspect of the Blood Oxygenation Level Dependent (BOLD) effect we present a computational capillary-tissue system capable of mapping venous hemoglobin saturation- a marker of the BOLD hemodynamic response. Free and facilitated diffusion and convection for hemoglobin and oxygen are considered in the radial and axial directions. Hemoglobin reaction kinetics are governed by the oxyhemoglobin dissociation curve. Brain activation, mimicked by dynamic transitions in cerebral blood velocity (CBv) and oxidative metabolism (CMRO2), is simulated by normalized changes in m = (ΔCBv/CBv)/(ΔCMRO2/CMRO2) of values 2, 3 and 4. Venous hemoglobin saturation profiles and peak oxygenation results, for m = 2, based upon a 50% and a 25% increase in CBv and CMRO2, respectively, lie within physiological limits exhibiting excellent correlation with the BOLD signal, for short-duration stimuli. Our analysis suggests basal CBv and CMRO2 values of 0.6 mm/s and 200 μmol/100g/min. Coupled CBv and CMRO2 responses, for m = 3 and m = 4, overestimate peak hemoglobin saturation, confirming the system's responsiveness to changes in hematocrit, CBv and CMRO2. Finally, factoring in neurovascular effects, we show that no initial dip will be observed unless there is a time delay in the onset of increased CBv relative to CMRO2.
Hadjistassou, Constantinos; Moyle, Keri; Ventikos, Yiannis
2016-01-01
The advent of functional MRI in the mid-1990s has catalyzed progress pertaining to scientific discoveries in neuroscience. With the prospect of elucidating the physiological aspect of the Blood Oxygenation Level Dependent (BOLD) effect we present a computational capillary-tissue system capable of mapping venous hemoglobin saturation— a marker of the BOLD hemodynamic response. Free and facilitated diffusion and convection for hemoglobin and oxygen are considered in the radial and axial directions. Hemoglobin reaction kinetics are governed by the oxyhemoglobin dissociation curve. Brain activation, mimicked by dynamic transitions in cerebral blood velocity (CBv) and oxidative metabolism (CMRO2), is simulated by normalized changes in m = (ΔCBv/CBv)/(ΔCMRO2/CMRO2) of values 2, 3 and 4. Venous hemoglobin saturation profiles and peak oxygenation results, for m = 2, based upon a 50% and a 25% increase in CBv and CMRO2, respectively, lie within physiological limits exhibiting excellent correlation with the BOLD signal, for short-duration stimuli. Our analysis suggests basal CBv and CMRO2 values of 0.6 mm/s and 200 μmol/100g/min. Coupled CBv and CMRO2 responses, for m = 3 and m = 4, overestimate peak hemoglobin saturation, confirming the system’s responsiveness to changes in hematocrit, CBv and CMRO2. Finally, factoring in neurovascular effects, we show that no initial dip will be observed unless there is a time delay in the onset of increased CBv relative to CMRO2. PMID:26939128
Hemoglobin in Frankia, a Nitrogen-Fixing Actinomycete†
Tjepkema, John D.; Cashon, Robert E.; Beckwith, Jason; Schwintzer, Christa R.
2002-01-01
Frankia strain CcI3 grown in culture produced a hemoglobin which had optical absorption bands typical of a hemoglobin and a molecular mass of 14.1 kDa. Its equilibrium oxygen binding constant was 274 nM, the oxygen dissociation rate constant was 56 s−1, and the oxygen association rate constant was 206 μM−1 s−1. PMID:11976149
Nonlinear photoacoustic spectroscopy of hemoglobin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.
2015-05-18
As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics,more » such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.« less
Nonlinear photoacoustic spectroscopy of hemoglobin
Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V.
2015-01-01
As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography. PMID:26045627
Molecular Controls of the Oxygenation and Redox Reactions of Hemoglobin
Henkens, Robert; Alayash, Abdu I.; Banerjee, Sambuddha; Crumbliss, Alvin L.
2013-01-01
Abstract Significance: The broad classes of O2-binding proteins known as hemoglobins (Hbs) carry out oxygenation and redox functions that allow organisms with significantly different physiological demands to exist in a wide range of environments. This is aided by allosteric controls that modulate the protein's redox reactions as well as its O2-binding functions. Recent Advances: The controls of Hb's redox reactions can differ appreciably from the molecular controls for Hb oxygenation and come into play in elegant mechanisms for dealing with nitrosative stress, in the malarial resistance conferred by sickle cell Hb, and in the as-yet unsuccessful designs for safe and effective blood substitutes. Critical Issues: An important basic principle in consideration of Hb's redox reactions is the distinction between kinetic and thermodynamic reaction control. Clarification of these modes of control is critical to gaining an increased understanding of Hb-mediated oxidative processes and oxidative toxicity in vivo. Future Directions: This review addresses emerging concepts and some unresolved questions regarding the interplay between the oxygenation and oxidation reactions of structurally diverse Hbs, both within red blood cells and under acellular conditions. Developing methods that control Hb-mediated oxidative toxicity will be critical to the future development of Hb-based blood substitutes. Antioxid. Redox Signal. 18, 2298–2313. PMID:23198874
Structure and reactivity of hexacoordinate hemoglobins
Kakar, Smita; Hoffman, Federico G.; Storz, Jay F.; Fabian, Marian; Hargrove, Mark S.
2015-01-01
The heme prosthetic group in hemoglobins is most often attached to the globin through coordination of either one or two histidine side chains. Those proteins with one histidine coordinating the heme iron are called “pentacoordinate” hemoglobins, a group represented by red blood cell hemoglobin and most other oxygen transporters. Those with two histidines are called “hexacoordinate hemoglobins”, which have broad representation among eukaryotes. Coordination of the second histidine in hexacoordinate Hbs is reversible, allowing for binding of exogenous ligands like oxygen, carbon monoxide, and nitric oxide. Research over the past several years has produced a fairly detailed picture of the structure and biochemistry of hexacoordinate hemoglobins from several species including neuroglobin and cytoglobin in animals, and the nonsymbiotic hemoglobins in plants. However, a clear understanding of the physiological functions of these proteins remains an elusive goal. PMID:20933319
Practical considerations in the development of hemoglobin-based oxygen therapeutics.
Kim, Hae Won; Estep, Timothy N
2012-09-01
The development of hemoglobin based oxygen therapeutics (HBOCs) requires consideration of a number of factors. While the enabling technology derives from fundamental research on protein biochemistry and biological interactions, translation of these research insights into usable medical therapeutics demands the application of considerable technical expertise and consideration and reconciliation of a myriad of manufacturing, medical, and regulatory requirements. The HBOC development challenge is further exacerbated by the extremely high intravenous doses required for many of the indications contemplated for these products, which in turn implies an extremely high level of purity is required. This communication discusses several of the important product configuration and developmental considerations that impact the translation of fundamental research discoveries on HBOCs into usable medical therapeutics.
Hagerman, L; Vismann, B
2001-11-01
Dialysed haemocyanin from the isopod Saduria entomon had a considerably increased oxygen affinity (lower P50) and Bohr factor (-1.71) compared to native haemocyanin (Bohr factor -1.36) indicating that dialysis removes a small molecule size modulating factor decreasing the affinity of native haemolymph. Dialysed haemocyanin had a slightly lower co-operativity (2.42 +/- 0.3) than native haemocyanin (2.9 +/- 0.2). L-Lactate (10 mmol l(-1)) improved oxygen affinity by 1-1.5 torr while urate had no effect. Mg2+ affected affinity in a pH-dependent manner (Bohr-factor increased to -1.67) while Ca2+ had no effect on the Bohr factor but increased affinity with ca 1 torr. Thiosulphate changed the Bohr factor to -1.75 to -1.82, similar to dialysed blood. Co-operativity was in neither case affected. The haemocyanin characteristics of S. entomon are similar to those of crustaceans from hydrothermal vents. These characteristics are probably general for crustaceans that are more or less permanently exposed to sulphide.
Purification of diverse hemoglobins by metal salt precipitation.
Zimmerman, Devon; Dienes, Jack; Abdulmalik, Osheiza; Elmer, Jacob J
2016-09-01
Although donated blood is the preferred material for transfusion, its limited availability and stringent storage requirements have motivated the development of blood substitutes. The giant extracellular hemoglobin (aka erythrocruorin) of the earthworm Lumbricus terrestris (LtEc) has shown promise as a blood substitute, but an efficient purification method for LtEc must be developed to meet the potential large demand for blood substitutes. In this work, an optimized purification process that uses divalent and trivalent metal salts to selectively precipitate human, earthworm, and bloodworm hemoglobin (HbA, LtEc, and GdHb, respectively) from crude solutions was developed. Although several metal ions were able to selectively precipitate LtEc, Zn(2+) and Ni(2+) provided the lowest heme oxidation and highest overall yield of LtEc. In contrast, Zn(2+) was the only metal ion that completely precipitated HbA and GdHb. Polyacrylamide gel electrophoresis (PAGE) analysis shows that metal precipitation removes several impurities to provide highly pure hemoglobin samples. Heme oxidation levels were relatively low for Zn(2+)-purified HbA and LtEc (2.4±1.3% and 5.3±2.1%, respectively), but slightly higher for Ni(2+)-purified LtEc (8.4±1.2%). The oxygen affinity and cooperativity of the precipitated samples are also identical to samples purified with tangential flow filtration (TFF) alone, indicating the metal precipitation does not significantly affect the function of the hemoglobins. Overall, these results show that hemoglobins from several different species can be highly purified using a combination of metal (Zn(2+)) precipitation and tangential flow filtration. Copyright © 2015 Elsevier Inc. All rights reserved.
2004-09-01
hemoglobin in the oxy-hemoglobin state [Stratton 1988; Takeoka 1997]. 3) Decreased Vasoactivity. Because LEH has physical properties closer to red cells...in rabbit arterial segments. J Appl Physiol 82:1826-1835. [21] Sakai H, Horinouchi H, Masada Y, Takeoka S, Ikeda E, Takaori M, Kobayashi K and...4317-4325. [22] Sakai H, Horinouchi H, Tomiyama K, Ikeda E, Takeoka S, Kobayashi K and Tsuchida E (2001) Hemoglobin-vesicles as oxygen carriers
Athwal, Navjot Singh; Alagurajan, Jagannathan; Andreotti, Amy H; Hargrove, Mark S
2016-10-18
Reduction of hydroxylamine to ammonium by phytoglobin, a plant hexacoordinate hemoglobin, is much faster than that of other hexacoordinate hemoglobins or pentacoordinate hemoglobins such as myoglobin, leghemoglobin, and red blood cell hemoglobin. The reason for differences in reactivity is not known but could be intermolecular electron transfer between protein molecules in support of the required two-electron reduction, hydroxylamine binding, or active site architecture favoring the reaction. Experiments were conducted with phytoglobins from rice, tomato, and soybean along with human neuroglobin and soybean leghemoglobin that reveal hydroxylamine binding as the rate-limiting step. For hexacoordinate hemoglobins, binding is limited by the dissociation rate constant for the distal histidine, while leghemoglobin is limited by an intrinsically low affinity for hydroxylamine. When the distal histidine is removed from rice phytoglobin, a hydroxylamine-bound intermediate is formed and the reaction rate is diminished, indicating that the distal histidine imidazole side chain is critical for the reaction, albeit not for electron transfer but rather for direct interaction with the substrate. Together, these results demonstrate that phytoglobins are superior at hydroxylamine reduction because they have distal histidine coordination affinity constants near 1, and facile rate constants for binding and dissociation of the histidine side chain. Hexacoordinate hemoglobins such as neuroglobin are limited by tighter histidine coordination that blocks hydroxylamine binding, and pentacoordinate hemoglobins have intrinsically lower hydroxylamine affinities.
The conserved Phe GH5 of importance for hemoglobin intersubunit contact is mutated in gadoid fish
2014-01-01
Background Functionality of the tetrameric hemoglobin molecule seems to be determined by a few amino acids located in key positions. Oxygen binding encompasses structural changes at the interfaces between the α1β2 and α2β1 dimers, but also subunit interactions are important for the oxygen binding affinity and stability. The latter packing contacts include the conserved Arg B12 interacting with Phe GH5, which is replaced by Leu and Tyr in the αA and αD chains, respectively, of birds and reptiles. Results Searching all known hemoglobins from a variety of gnathostome species (jawed vertebrates) revealed the almost invariant Arg B12 coded by the AGG triplet positioned at an exon-intron boundary. Rare substitutions of Arg B12 in the gnathostome β globins were found in pig, tree shrew and scaled reptiles. Phe GH5 is also highly conserved in the β globins, except for the Leu replacement in the β1 globin of five marine gadoid species, gilthead seabream and the Comoran coelacanth, while Cys and Ile were found in burbot and yellow croaker, respectively. Atlantic cod β1 globin showed a Leu/Met polymorphism at position GH5 dominated by the Met variant in northwest-Atlantic populations that was rarely found in northeast-Atlantic cod. Site-specific analyses identified six consensus codons under positive selection, including 122β(GH5), indicating that the amino acid changes identified at this position may offer an adaptive advantage. In fact, computational mutation analysis showed that the replacement of Phe GH5 with Leu or Cys decreased the number of van der Waals contacts essentially in the deoxy form that probably causes a slight increase in the oxygen binding affinity. Conclusions The almost invariant Arg B12 and the AGG codon seem to be important for the packing contacts and pre-mRNA processing, respectively, but the rare mutations identified might be beneficial. The Leu122β1(GH5)Met and Met55β1(D6)Val polymorphisms in Atlantic cod hemoglobin modify the
Ling, Gilbert N.
1970-01-01
A theoretical equation is presented for the control of cooperative adsorption on proteins and other linear macromolecules by hormones, drugs, ATP, and other „cardinal adsorbents.” With reasonable accuracy, this equation describes quantitatively the control of oxygen binding to hemoglobin by 2,3-diphosphoglycerate and by inosine hexaphosphate. PMID:5272319
More Refined Experiments with Hemoglobin.
ERIC Educational Resources Information Center
Morin, Phillippe
1985-01-01
Discusses materials needed, procedures used, and typical results obtained for experiments designed to make a numerical stepwise study of the oxygenation of hemoglobin, myoglobin, and other oxygen carriers. (JN)
Molecular oxygen migration through the xenon docking sites of human hemoglobin in the R-state.
Lepeshkevich, Sergei V; Gilevich, Syargey N; Parkhats, Marina V; Dzhagarov, Boris M
2016-09-01
A nanosecond laser flash-photolysis technique was used to study bimolecular and geminate molecular oxygen (O2) rebinding to tetrameric human hemoglobin and its isolated α and β chains in buffer solutions equilibrated with 1atm of air and up to 25atm of xenon. Xenon binding to the isolated α chains and to the α subunits within tetrameric hemoglobin was found to cause a decrease in the efficiency of O2 escape by a factor of ~1.30 and 3.3, respectively. A kinetic model for O2 dissociation, rebinding, and migration through two alternative pathways in the hemoglobin subunits was introduced and discussed. It was shown that, in the isolated α chains and α subunits within tetrameric hemoglobin, nearly one- and two-third escaping molecules of O2 leave the protein via xenon docking sites, respectively. The present experimental data support the idea that O2 molecule escapes from the β subunits mainly through the His(E7) gate, and show unambiguously that, in the α subunits, in addition to the direct E7 channel, there is at least one alternative escape route leading to the exterior via the xenon docking sites. Copyright © 2016 Elsevier B.V. All rights reserved.
A Mouse β-Globin Mutant That Is an Exact Model of Hemoglobin Rainier in Man
Peters, J.; Andrews, S. J.; Loutit, J. F.; Clegg, J. B.
1985-01-01
A mutation induced by ethylnitrosourea in a spermatogonial stem cell of a 101/H mouse has resulted in a structurally altered β-diffuse major globin in one of his offspring. The mutant hemoglobin is associated with polycythemia, rubor, increased oxygen affinity and decreased hem-hem interaction. The mutant haplotype has been designated Hbb d4, polycythemia. Amino acid analysis of the mutant globin has shown that a single substitution β145 Tyr → Cys has occurred, and it is proposed that ethylnitrosourea induced an A → G transition in the tyrosine codon (TAC → TGC). This murine polycythemia is homologous with hemoglobin Rainier in man, in which the amino acid substitution is also β145 Tyr → Cys and which is associated with similar physiological consequences. PMID:3839762
NASA Astrophysics Data System (ADS)
Liu, Rongrong; Spicer, Graham; Chen, Siyu; Zhang, Hao F.; Yi, Ji; Backman, Vadim
2017-02-01
Oxygen saturation (sO2) of red blood cells (RBCs) in capillaries can indirectly assess local tissue oxygenation and metabolic function. For example, the altered retinal oxygenation in diabetic retinopathy and local hypoxia during tumor development in cancer are reflected by abnormal sO2 of local capillary networks. However, it is far from clear whether accurate label-free optical oximetry (i.e., measuring hemoglobin sO2) is feasible from dispersed RBCs at the single capillary level. The sO2-dependent hemoglobin absorption contrast present in optical scattering signal is complicated by geometry-dependent scattering from RBCs. We present a numerical study of backscattering spectra from single RBCs based on the first-order Born approximation, considering practical factors: RBC orientations, size variation, and deformations. We show that the oscillatory spectral behavior of RBC geometries is smoothed by variations in cell size and orientation, resulting in clear sO2-dependent spectral contrast. In addition, this spectral contrast persists with different mean cellular hemoglobin content and different deformations of RBCs. This study shows for the first time the feasibility of, and provides a theoretical model for, label-free optical oximetry at the single capillary level using backscattering-based imaging modalities, challenging the popular view that such measurements are impossible at the single capillary level.
NASA Astrophysics Data System (ADS)
Goodarzi, M.; Moosavi-Movahedi, A. A.; Habibi-Rezaei, M.; Shourian, M.; Ghourchian, H.; Ahmad, F.; Farhadi, M.; Saboury, A. A.; Sheibani, N.
2014-09-01
Protein glycation is a cascade of nonenzymatic reactions between reducing sugars and amino groups of proteins. It is referred to as fructation when the reducing monosaccharide is fructose. Some potential mechanisms have been suggested for the generation of reactive oxygen species (ROS) by protein glycation reactions in the presence of glucose. In this state, glucose autoxidation, ketoamine, and oxidative advance glycation end products (AGEs) formation are considered as major sources of ROS and perhaps heme degradation during hemoglobin glycation. However, whether fructose mediated glycation produces ROS and heme degradation is unknown. Here we report that ROS (H2O2) production occurred during hemoglobin fructation in vitro using chemiluminescence methods. The enhanced heme exposure and degradation were determined using UV-Vis and fluorescence spectrophotometry. Following accumulation of ROS, heme degradation products were accumulated reaching a plateau along with the detected ROS. Thus, fructose may make a significant contribution to the production of ROS, glycation of proteins, and heme degradation during diabetes.
Toma, Vlad Al; Farcaș, Anca D; Roman, Ioana; Sevastre, Bogdan; Hathazi, Denisa; Scurtu, Florina; Damian, Grigore; Silaghi-Dumitrescu, Radu
2016-01-01
A series of hemoglobin-based oxygen carrier candidates (HBOC), previously noted for their differences in prooxidative and physiological reactivity, were compared in terms of the negative effects displayed upon injection in Wistar rats. At the concentrations tested, antioxidant strategies based on albumin as well as based on rubrerythrin appear to offer observable physiological advantages.
Bohr effect and temperature sensitivity of hemoglobins from highland and lowland deer mice.
Jensen, Birgitte; Storz, Jay F; Fago, Angela
2016-05-01
An important means of physiological adaptation to environmental hypoxia is an increased oxygen (O2) affinity of the hemoglobin (Hb) that can help secure high O2 saturation of arterial blood. However, the trade-off associated with a high Hb-O2 affinity is that it can compromise O2 unloading in the systemic capillaries. High-altitude deer mice (Peromyscus maniculatus) have evolved an increased Hb-O2 affinity relative to lowland conspecifics, but it is not known whether they have also evolved compensatory mechanisms to facilitate O2 unloading to respiring tissues. Here we investigate the effects of pH (Bohr effect) and temperature on the O2-affinity of high- and low-altitude deer mouse Hb variants, as these properties can potentially facilitate O2 unloading to metabolizing tissues. Our experiments revealed that Bohr factors for the high- and low-altitude Hb variants are very similar in spite of the differences in O2-affinity. The Bohr factors of deer mouse Hbs are also comparable to those of other mammalian Hbs. In contrast, the high- and low-altitude variants of deer mouse Hb exhibited similarly low temperature sensitivities that were independent of red blood cell anionic cofactors, suggesting an appreciable endothermic allosteric transition upon oxygenation. In conclusion, high-altitude deer mice have evolved an adaptive increase in Hb-O2 affinity, but this is not associated with compensatory changes in sensitivity to changes in pH or temperature. Instead, it appears that the elevated Hb-O2 affinity in high-altitude deer mice is compensated by an associated increase in the tissue diffusion capacity of O2 (via increased muscle capillarization), which promotes O2 unloading. Copyright © 2016 Elsevier Inc. All rights reserved.
Tam, Ming F.; Rice, Natalie W.; Maillett, David H.; Simplaceanu, Virgil; Ho, Nancy T.; Tam, Tsuey Chyi S.; Shen, Tong-Jian; Ho, Chien
2013-01-01
The E11 valine in the distal heme pocket of either the α- or β-subunit of human adult hemoglobin (Hb A) was replaced by leucine, isoleucine, or phenylalanine. Recombinant proteins were expressed in Escherichia coli and purified for structural and functional studies. 1H NMR spectra were obtained for the CO and deoxy forms of Hb A and the mutants. The mutations did not disturb the α1β2 interface in either form, whereas the H-bond between αHis-103 and βGln-131 in the α1β1 interfaces of the deoxy α-subunit mutants was weakened. Localized structural changes in the mutated heme pocket were detected for the CO form of recombinant Hb (rHb) (αV62F), rHb (βV67I), and rHb (βV67F) compared with Hb A. In the deoxy form the proximal histidyl residue in the β-subunit of rHb (βV67F) has been altered. Furthermore, the interactions between the porphyrin ring and heme pocket residues have been perturbed in rHb (αV62I), rHb (αV62F), and rHb (βV67F). Functionally, the oxygen binding affinity (P50), cooperativity (n50), and the alkaline Bohr Effect of the three α-subunit mutants and rHb (βV67L) are similar to those of Hb A. rHb (βV67I) and rHb (βV67F) exhibit low and high oxygen affinity, respectively. rHb (βV67F) has P50 values lower that those reported for rHb (αL29F), a B10 mutant studied previously in our laboratory (Wiltrout, M. E., Giovannelli, J. L., Simplaceanu, V., Lukin, J. A., Ho, N. T., and Ho, C. (2005) Biochemistry 44, 7207–7217). These E11 mutations do not slow down the autoxidation and azide-induced oxidation rates of the recombinant proteins. Results from this study provide new insights into the roles of E11 mutants in the structure-function relationship in hemoglobin. PMID:23867463
Truncated hemoglobins in actinorhizal nodules of Datisca glomerata.
Pawlowski, K; Jacobsen, K R; Alloisio, N; Ford Denison, R; Klein, M; Tjepkema, J D; Winzer, T; Sirrenberg, A; Guan, C; Berry, A M
2007-11-01
Three types of hemoglobins exist in higher plants, symbiotic, non-symbiotic, and truncated hemoglobins. Symbiotic (class II) hemoglobins play a role in oxygen supply to intracellular nitrogen-fixing symbionts in legume root nodules, and in one case ( Parasponia Sp.), a non-symbiotic (class I) hemoglobin has been recruited for this function. Here we report the induction of a host gene, dgtrHB1, encoding a truncated hemoglobin in Frankia-induced nodules of the actinorhizal plant Datisca glomerata. Induction takes place specifically in cells infected by the microsymbiont, prior to the onset of bacterial nitrogen fixation. A bacterial gene (Frankia trHBO) encoding a truncated hemoglobin with O (2)-binding kinetics suitable for the facilitation of O (2) diffusion ( ) is also expressed in symbiosis. Nodule oximetry confirms the presence of a molecule that binds oxygen reversibly in D. glomerata nodules, but indicates a low overall hemoglobin concentration suggesting a local function. Frankia trHbO is likely to be responsible for this activity. The function of the D. glomerata truncated hemoglobin is unknown; a possible role in nitric oxide detoxification is suggested.
Role of hemoglobin and capillarization for oxygen delivery and extraction in muscular exercise.
Saltin, B; Kiens, B; Savard, G; Pedersen, P K
1986-01-01
Through the years the role of the various links in the transport of oxygen in the human body has been discussed extensively, and especially whether one of these links could be singled out as limiting oxygen uptake during exercise. In his thesis work Lars Hermansen dealt with several of these variables related to oxygen transport and uptake. Two of these were the hemoglobin concentration of the blood (Hb) and skeletal muscle capillarization. These are the focus of this article. It can be demonstrated that variation in arterial oxygen content due to different Hb concentrations is fully compensated for at the level of the muscle, i.e. the amount of oxygen delivered to contracting muscles is adjusted by a variation in the blood flow so that it is the same regardless of Hb concentration in the range of 118-172 g X l-1. At the systemic level, with a large fraction of the muscle exercising, this causes an increase in submaximal heart rate and a lowering in maximal oxygen uptake in people with low as compared to normal or high Hb concentration. The primary significance of an enlarged capillary network in the muscle does not appear to be for accommodating a larger flow, but rather to allow for a long enough mean transit time and large enough surface area for optimal exchange of gases, substrates and metabolites.
Cambier, Carole; Clerbaux, Thierry; Amory, Hélène; Detry, Bruno; Florquin, Sandra; Marville, Vincent; Frans, Albert; Gustin, Pascal
2002-01-01
The study was carried out on healthy Friesian calves (n = 10) aged between 10 and 30 days. Hypochloremia and alkalosis were induced by intravenous administration of furosemide and isotonic sodium bicarbonate. The venous and arterial blood samples were collected repeatedly. 2,3-diphosphoglycerate (2,3-DPG), hemoglobin and plasmatic chloride concentrations were determined. The red blood cell chloride concentration was also calculated. pH, PCO2 and PO2 were measured in arterial and mixed venous blood. The oxygen equilibrium curve (OEC) was measured in standard conditions. The correspondence of the OEC to the arterial and mixed venous compartments was calculated, taking blood temperature, pH and PCO2 values into account. The oxygen exchange fraction (OEF%), corresponding to the degree of blood desaturation between the arterial and mixed venous compartments and the amount of oxygen released at the tissue level by 100 mL of blood (OEF Vol%) were calculated from the arterial and mixed venous OEC, combined with PO2 and hemoglobin concentration. Oxygen delivery (DO2) was calculated using the arterial oxygen content, the cardiac output measured by thermodilution, and the body weight of the animal. The oxygen consumption (VO2) was derived from the cardiac output, OEF Vol% and body weight values. Despite the plasma hypochloremia, the erythrocyte chloride concentration was not influenced by furosemide and sodium bicarbonate infusion. Due to the alkalosis-induced increase in the 2,3-DPG, the standard OEC was shifted to the right, allowing oxygen to dissociate from hemoglobin more rapidly. These changes opposed the increased affinity of hemoglobin for oxygen induced by alkalosis. Moreover, respiratory acidosis, hemoconcentration, and the slight decrease in the partial oxygen pressure in mixed venous blood (Pvo2) tended to improve the OEF Vol% and maintain the oxygen consumption in a physiological range while the cardiac output, and the oxygen delivery were significantly decreased
Wang, Xinlong; Tian, Fenghua; Soni, Sagar S.; Gonzalez-Lima, F.; Liu, Hanli
2016-01-01
Photobiomodulation, also known as low-level laser/light therapy (LLLT), refers to the use of red-to-near-infrared light to stimulate cellular functions for physiological or clinical benefits. The mechanism of LLLT is assumed to rely on photon absorption by cytochrome c oxidase (CCO), the terminal enzyme in the mitochondrial respiratory chain that catalyzes the reduction of oxygen for energy metabolism. In this study, we used broadband near-infrared spectroscopy (NIRS) to measure the LLLT-induced changes in CCO and hemoglobin concentrations in human forearms in vivo. Eleven healthy participants were administered with 1064-nm laser and placebo treatments on their right forearms. The spectroscopic data were analyzed and fitted with wavelength-dependent, modified Beer-Lambert Law. We found that LLLT induced significant increases of CCO concentration (Δ[CCO]) and oxygenated hemoglobin concentration (Δ[HbO]) on the treated site as the laser energy dose accumulated over time. A strong linear interplay between Δ[CCO] and Δ[HbO] was observed for the first time during LLLT, indicating a hemodynamic response of oxygen supply and blood volume closely coupled to the up-regulation of CCO induced by photobiomodulation. These results demonstrate the tremendous potential of broadband NIRS as a non-invasive, in vivo means to study mechanisms of photobiomodulation and perform treatment evaluations of LLLT. PMID:27484673
NASA Astrophysics Data System (ADS)
Wang, Xinlong; Tian, Fenghua; Soni, Sagar S.; Gonzalez-Lima, F.; Liu, Hanli
2016-08-01
Photobiomodulation, also known as low-level laser/light therapy (LLLT), refers to the use of red-to-near-infrared light to stimulate cellular functions for physiological or clinical benefits. The mechanism of LLLT is assumed to rely on photon absorption by cytochrome c oxidase (CCO), the terminal enzyme in the mitochondrial respiratory chain that catalyzes the reduction of oxygen for energy metabolism. In this study, we used broadband near-infrared spectroscopy (NIRS) to measure the LLLT-induced changes in CCO and hemoglobin concentrations in human forearms in vivo. Eleven healthy participants were administered with 1064-nm laser and placebo treatments on their right forearms. The spectroscopic data were analyzed and fitted with wavelength-dependent, modified Beer-Lambert Law. We found that LLLT induced significant increases of CCO concentration (Δ[CCO]) and oxygenated hemoglobin concentration (Δ[HbO]) on the treated site as the laser energy dose accumulated over time. A strong linear interplay between Δ[CCO] and Δ[HbO] was observed for the first time during LLLT, indicating a hemodynamic response of oxygen supply and blood volume closely coupled to the up-regulation of CCO induced by photobiomodulation. These results demonstrate the tremendous potential of broadband NIRS as a non-invasive, in vivo means to study mechanisms of photobiomodulation and perform treatment evaluations of LLLT.
Wang, Xinlong; Tian, Fenghua; Soni, Sagar S; Gonzalez-Lima, F; Liu, Hanli
2016-08-03
Photobiomodulation, also known as low-level laser/light therapy (LLLT), refers to the use of red-to-near-infrared light to stimulate cellular functions for physiological or clinical benefits. The mechanism of LLLT is assumed to rely on photon absorption by cytochrome c oxidase (CCO), the terminal enzyme in the mitochondrial respiratory chain that catalyzes the reduction of oxygen for energy metabolism. In this study, we used broadband near-infrared spectroscopy (NIRS) to measure the LLLT-induced changes in CCO and hemoglobin concentrations in human forearms in vivo. Eleven healthy participants were administered with 1064-nm laser and placebo treatments on their right forearms. The spectroscopic data were analyzed and fitted with wavelength-dependent, modified Beer-Lambert Law. We found that LLLT induced significant increases of CCO concentration (Δ[CCO]) and oxygenated hemoglobin concentration (Δ[HbO]) on the treated site as the laser energy dose accumulated over time. A strong linear interplay between Δ[CCO] and Δ[HbO] was observed for the first time during LLLT, indicating a hemodynamic response of oxygen supply and blood volume closely coupled to the up-regulation of CCO induced by photobiomodulation. These results demonstrate the tremendous potential of broadband NIRS as a non-invasive, in vivo means to study mechanisms of photobiomodulation and perform treatment evaluations of LLLT.
Computation Of Facilitated Transport of O2 In Hemoglobin
NASA Technical Reports Server (NTRS)
Davis, Sanford
1991-01-01
Report describes computations of unsteady facilitated transport of oxygen through liquid membrane of hemoglobin. Used here, "facilitated transport" means diffusion of permeant through membrane in which that diffusion enhanced by reversible chemical reaction between permeant and membrane. In this case, reversible reactions between hemoglobin and oxygen.
Nanobiotechnology for hemoglobin-based blood substitutes.
Chang, T M S
2009-04-01
Nanobiotechnology is the assembling of biological molecules into nanodimension complexes. This has been used for the preparation of polyhemoglobin formed by the assembling of hemoglobin molecules into a soluble nanodimension complex. New generations of this approach include the nanobiotechnological assembly of hemoglobin, catalase, and superoxide dismutase into a soluble nanodimension complex. This acts as an oxygen carrier and an antioxidant for those conditions with potential for ischemiareperfusion injuries. Another recent novel approach is the assembling of hemoglobin and fibrinogen into a soluble nanodimension polyhemoglobin-fibrinogen complex that acts as an oxygen carrier with platelet-like activity. This is potentially useful in cases of extensive blood loss requiring massive replacement using blood substitutes, resulting in the need for the replacement of platelets and clotting factors. A further step is the preparation of nanodimension artificial red blood cells that contain hemoglobin and all the enzymes present in red blood cells.
NASA Astrophysics Data System (ADS)
Hallacoglu, Bertan; Sassaroli, Angelo; Wysocki, Michael; Guerrero-Berroa, Elizabeth; Schnaider Beeri, Michal; Haroutunian, Vahram; Shaul, Merav; Rosenberg, Irwin H.; Troen, Aron M.; Fantini, Sergio
2012-08-01
We present near-infrared spectroscopy measurement of absolute cerebral hemoglobin concentration and saturation in a large sample of 36 healthy elderly (mean age, 85±6 years) and 19 young adults (mean age, 28±4 years). Non-invasive measurements were obtained on the forehead using a commercially available multi-distance frequency-domain system and analyzed using a diffusion theory model for a semi-infinite, homogeneous medium with semi-infinite boundary conditions. Our study included repeat measurements, taken five months apart, on 16 elderly volunteers that demonstrate intra-subject reproducibility of the absolute measurements with cross-correlation coefficients of 0.9 for absorption coefficient (μa), oxy-hemoglobin concentration ([HbO2]), and total hemoglobin concentration ([HbT]), 0.7 for deoxy-hemoglobin concentration ([Hb]), 0.8 for hemoglobin oxygen saturation (StO2), and 0.7 for reduced scattering coefficient (). We found significant differences between the two age groups. Compared to young subjects, elderly subjects had lower cerebral [HbO2], [Hb], [HbT], and StO2 by 10±4 μM, 4±3 μM, 14±5 μM, and 6%±5%, respectively. Our results demonstrate the reliability and robustness of multi-distance near-infrared spectroscopy measurements based on a homogeneous model in the human forehead on a large sample of human subjects. Absolute, non-invasive optical measurements on the brain, such as those presented here, can significantly advance the development of NIRS technology as a tool for monitoring resting/basal cerebral perfusion, hemodynamics, oxygenation, and metabolism.
Hallacoglu, Bertan; Sassaroli, Angelo; Wysocki, Michael; Guerrero-Berroa, Elizabeth; Schnaider Beeri, Michal; Haroutunian, Vahram; Shaul, Merav; Rosenberg, Irwin H; Troen, Aron M; Fantini, Sergio
2012-08-01
We present near-infrared spectroscopy measurement of absolute cerebral hemoglobin concentration and saturation in a large sample of 36 healthy elderly (mean age, 85 ± 6 years) and 19 young adults (mean age, 28 ± 4 years). Non-invasive measurements were obtained on the forehead using a commercially available multi-distance frequency-domain system and analyzed using a diffusion theory model for a semi-infinite, homogeneous medium with semi-infinite boundary conditions. Our study included repeat measurements, taken five months apart, on 16 elderly volunteers that demonstrate intra-subject reproducibility of the absolute measurements with cross-correlation coefficients of 0.9 for absorption coefficient (μa), oxy-hemoglobin concentration ([HbO2]), and total hemoglobin concentration ([HbT]), 0.7 for deoxy-hemoglobin concentration ([Hb]), 0.8 for hemoglobin oxygen saturation (StO2), and 0.7 for reduced scattering coefficient (μ's). We found significant differences between the two age groups. Compared to young subjects, elderly subjects had lower cerebral [HbO2], [Hb], [HbT], and StO2 by 10 ± 4 μM, 4 ± 3 μM, 14 ± 5 μM, and 6%±5%, respectively. Our results demonstrate the reliability and robustness of multi-distance near-infrared spectroscopy measurements based on a homogeneous model in the human forehead on a large sample of human subjects. Absolute, non-invasive optical measurements on the brain, such as those presented here, can significantly advance the development of NIRS technology as a tool for monitoring resting/basal cerebral perfusion, hemodynamics, oxygenation, and metabolism.
Nanobiotechnological modification of hemoglobin and enzymes from this laboratory
Chang, Thomas Ming Swi
2012-01-01
Polyhemoglobin is formed by the nanobiotechnological assembling of hemoglobin molecules into soluble nanodimension complex. A further step involves the nanobiotechnological assembly of hemoglobin, catalase and superoxide dismutase into a soluble nanodimension complex. This acts both as oxygen carrier and antioxidant to prevent the oxidative effects of hemoglobin. A further step is the preparation of nanodimension artificial red blood cells that contain hemoglobin and all the enzymes present in red blood cells. Other approaches include a polyhemoglobin–fibrinogen that acts as an oxygen carrier with platelet-like activity, and a polyhemoglobin–tyrosinase to retard the growth of a fatal skin cancer, melanoma. PMID:18565337
21 CFR 866.5470 - Hemoglobin immunological test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... hemoglobin (the oxygen-carrying pigment in red blood cells) in blood, urine, plasma, or other body fluids... Hemoglobin immunological test system. (a) Indentification. A hemoglobin immunological test system is a device... blood cells), and leukemia (cancer of the blood-forming organs). (b) Classification. Class II...
21 CFR 866.5470 - Hemoglobin immunological test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... hemoglobin (the oxygen-carrying pigment in red blood cells) in blood, urine, plasma, or other body fluids... Hemoglobin immunological test system. (a) Indentification. A hemoglobin immunological test system is a device... blood cells), and leukemia (cancer of the blood-forming organs). (b) Classification. Class II...
21 CFR 866.5470 - Hemoglobin immunological test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... hemoglobin (the oxygen-carrying pigment in red blood cells) in blood, urine, plasma, or other body fluids... Hemoglobin immunological test system. (a) Indentification. A hemoglobin immunological test system is a device... blood cells), and leukemia (cancer of the blood-forming organs). (b) Classification. Class II...
21 CFR 866.5470 - Hemoglobin immunological test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... hemoglobin (the oxygen-carrying pigment in red blood cells) in blood, urine, plasma, or other body fluids... Hemoglobin immunological test system. (a) Indentification. A hemoglobin immunological test system is a device... blood cells), and leukemia (cancer of the blood-forming organs). (b) Classification. Class II...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdulmalik, Osheiza; Ghatge, Mohini S.; Musayev, Faik N.
2011-11-01
Pyridyl derivatives of vanillin increase the fraction of the more soluble oxygenated sickle hemoglobin and/or directly increase the solubility of deoxygenated sickle hemoglobin. Crystallographic analysis reveals the structural basis of the potent and dual antisickling activity of these derivatives. Vanillin has previously been studied clinically as an antisickling agent to treat sickle-cell disease. In vitro investigations with pyridyl derivatives of vanillin, including INN-312 and INN-298, showed as much as a 90-fold increase in antisickling activity compared with vanillin. The compounds preferentially bind to and modify sickle hemoglobin (Hb S) to increase the affinity of Hb for oxygen. INN-312 also ledmore » to a considerable increase in the solubility of deoxygenated Hb S under completely deoxygenated conditions. Crystallographic studies of normal human Hb with INN-312 and INN-298 showed that the compounds form Schiff-base adducts with the N-terminus of the α-subunits to constrain the liganded (or relaxed-state) Hb conformation relative to the unliganded (or tense-state) Hb conformation. Interestingly, while INN-298 binds and directs its meta-positioned pyridine-methoxy moiety (relative to the aldehyde moiety) further down the central water cavity of the protein, that of INN-312, which is ortho to the aldehyde, extends towards the surface of the protein. These studies suggest that these compounds may act to prevent sickling of SS cells by increasing the fraction of the soluble high-affinity Hb S and/or by stereospecific inhibition of deoxygenated Hb S polymerization.« less
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Abdul, Wares MD.; Ohtsu, Mizuki; Nakano, Kazuya; Haneishi, Hideaki
2018-02-01
We propose a method to estimate transcutaneous bilirubin, hemoglobin, and melanin based on the diffuse reflectance spectroscopy. In the proposed method, the Monte Carlo simulation-based multiple regression analysis for an absorbance spectrum in the visible wavelength region (460-590 nm) is used to specify the concentrations of bilirubin (Cbil), oxygenated hemoglobin (Coh), deoxygenated hemoglobin (Cdh), and melanin (Cm). Using the absorbance spectrum calculated from the measured diffuse reflectance spectrum as a response variable and the extinction coefficients of bilirubin, oxygenated hemoglobin, deoxygenated hemoglobin, and melanin, as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of bilirubin, oxygenated hemoglobin, deoxygenated hemoglobin, and melanin, are then determined from the regression coefficients using conversion vectors that are numerically deduced in advance by the Monte Carlo simulations for light transport in skin. Total hemoglobin concentration (Cth) and tissue oxygen saturation (StO2) are simply calculated from the oxygenated hemoglobin and deoxygenated hemoglobin. In vivo animal experiments with bile duct ligation in rats demonstrated that the estimated Cbil is increased after ligation of bile duct and reaches to around 20 mg/dl at 72 h after the onset of the ligation, which corresponds to the reference value of Cbil measured by a commercially available transcutaneous bilirubin meter. We also performed in vivo experiments with rats while varying the fraction of inspired oxygen (FiO2). Coh and Cdh decreased and increased, respectively, as FiO2 decreased. Consequently, StO2 was dramatically decreased. The results in this study indicate potential of the method for simultaneous evaluation of multiple chromophores in skin tissue.
Phenotypic plasticity in blood–oxygen transport in highland and lowland deer mice
Tufts, Danielle M.; Revsbech, Inge G.; Cheviron, Zachary A.; Weber, Roy E.; Fago, Angela; Storz, Jay F.
2013-01-01
SUMMARY In vertebrates living at high altitude, arterial hypoxemia may be ameliorated by reversible changes in the oxygen-carrying capacity of the blood (regulated by erythropoiesis) and/or changes in blood–oxygen affinity (regulated by allosteric effectors of hemoglobin function). These hematological traits often differ between taxa that are native to different elevational zones, but it is often unknown whether the observed physiological differences reflect fixed, genetically based differences or environmentally induced acclimatization responses (phenotypic plasticity). Here, we report measurements of hematological traits related to blood–O2 transport in populations of deer mice (Peromyscus maniculatus) that are native to high- and low-altitude environments. We conducted a common-garden breeding experiment to assess whether altitude-related physiological differences were attributable to developmental plasticity and/or physiological plasticity during adulthood. Under conditions prevailing in their native habitats, high-altitude deer mice from the Rocky Mountains exhibited a number of pronounced hematological differences relative to low-altitude conspecifics from the Great Plains: higher hemoglobin concentrations, higher hematocrits, higher erythrocytic concentrations of 2,3-diphosphoglycerate (an allosteric regulator of hemoglobin–oxygen affinity), lower mean corpuscular hemoglobin concentrations and smaller red blood cells. However, these differences disappeared after 6 weeks of acclimation to normoxia at low altitude. The measured traits were also indistinguishable between the F1 progeny of highland and lowland mice, indicating that there were no persistent differences in phenotype that could be attributed to developmental plasticity. These results indicate that the naturally occurring hematological differences between highland and lowland mice are environmentally induced and are largely attributable to physiological plasticity during adulthood. PMID
A Simple Question to Think about When Considering the Hemoglobin Function
ERIC Educational Resources Information Center
Ruiz-Larrea, M. Begona
2002-01-01
Hemoglobin is a complex protein formed by various subunits interacting with each other. These noncovalent interactions, quaternary structure, are responsible for hemoglobin functioning as an excellent oxygen transporter, loading up with oxygen in the lungs and delivering it to tissues, where the oxygen pressure is lower. The communications between…
Should modulation of p50 be a therapeutic target in the critically ill?
Srinivasan, Amudan J; Morkane, Clare; Martin, Daniel S; Welsby, Ian J
2017-05-01
A defining feature of human hemoglobin is its oxygen binding affinity, quantified by the partial pressure of oxygen at which hemoglobin is 50% saturated (p50), and the variability of this parameter over a range of physiological and environmental states. Modulation of this property of hemoglobin can directly affect the degree of peripheral oxygen offloading and tissue oxygenation. Areas covered: This review summarizes the role of hemoglobin oxygen affinity in normal and abnormal physiology and discusses the current state of the literature regarding artificial modulation of p50. Hypoxic tumors, sickle cell disease, heart failure, and transfusion medicine are discussed in the context of recent advances in hemoglobin oxygen affinity manipulation. Expert commentary: Of particular clinical interest is the possibility of maintaining adequate end-organ oxygen availability in patients with anemia or compromised cardiac function via an increase in systemic p50. This increase in systemic p50 can be achieved with small molecule drugs or a packed red blood cell unit processing variant called rejuvenation, and human trials are needed to better understand the potential clinical benefits to modulating p50.
Lee, Changho; Jeon, Mansik; Jeon, Min Yong; Kim, Jeehyun; Kim, Chulhong
2014-06-20
We have utilized a single pulsed broadband supercontinuum laser source to photoacoustically sense total hemoglobin concentration (HbT) and oxygen saturation of hemoglobin (SO2) in bloods in vitro. Unlike existing expensive and bulky laser systems typically used for functional photoacoustic imaging (PAI), our laser system is relatively cost-effective and compact. Instead of using two single wavelengths, two wavelength bands were applied to distinguish the concentrations of two different chromophores in the mixture. In addition, we have successfully extracted the total dye concentration and the ratio of the red dye concentration to the total dye concentration in mixed red and blue dye solutions in phantoms. The results indicate that PAI with a cheap and compact fiber based laser source can potentially provide HbT and SO2 in live animals in vivo.
Oxygenated hemoglobin diffuse reflectance ratio for in vitro detection of human gastric pre-cancer
NASA Astrophysics Data System (ADS)
Li, L. Q.; Wei, H. J.; Guo, Z. Y.; Yang, H. Q.; Wu, G. Y.; Xie, S. S.; Zhong, H. Q.; Li, X. Y.; Zhao, Q. L.; Guo, X.
2010-07-01
Oxygenated hemoglobin diffuse reflectance (DR) ratio (R540/R575) method based on DR spectral signatures is used for early diagnosis of malignant lesions of human gastric epithelial tissues in vitro. The DR spectra for four different kinds of gastric epithelial tissues were measured using a spectrometer with an integrating sphere detector in the spectral range from 400 to 650 nm. The results of measurement showed that the average DR spectral intensity for the epithelial tissues of normal stomach is higher than that for the epithelial tissues of chronic and malignant stomach and that for the epithelial tissues of chronic gastric ulcer is higher than that for the epithelial tissues of malignant stomach. The average DR spectra for four different kinds of gastric epithelial tissues show dips at 542 and 577 nm owing to absorption from oxygenated Hemoglobin (HbO2). The differences in the mean R540/R575 ratios of HbO2 bands are 6.84% between the epithelial tissues of normal stomach and chronic gastric ulcer, 14.7% between the epithelial tissues of normal stomach and poorly differentiated gastric adenocarcinoma and 22.6% between the epithelial tissues of normal stomach and undifferentiated gastric adenocarcinoma. It is evident from results that there were significant differences in the mean R540/R575 ratios of HbO2 bands for four different kinds of gastric epithelial tissues in vitro ( P < 0.01).
Anderson, Troy D; Jin-Clark, Ying; Begum, Khurshida; Starkey, Sharon R; Zhu, Kun Yan
2008-01-31
Atrazine is an extensively used triazine herbicide in agricultural and residential areas and has been routinely detected in many surface and ground waters. This study reveals various up- and down-regulated genes associated with hypoxic stress in atrazine-treated fourth-instar Chironomus tentans larvae (midges) by using restriction fragment differential display-PCR. Two down-regulated hemoglobin cDNAs were isolated from the midges. Northern blot analysis indicated CteHb-IIbeta and CteHb-III mRNA expressions decreased by 36 and 21%, respectively, in midges exposed to atrazine at 1 microg/L for 96h. Decreased hemoglobin gene expression was associated with elevated oxygen consumption in atrazine-treated midges. Midges exposed to atrazine at 1 microg/L increased their oxygen consumption by 47%, whereas midges exposed to atrazine at 1000 microg/L for 48h increased their oxygen consumption by 66%. Our study demonstrates for the first time that atrazine, at environmentally relevant concentrations, can elevate respiration, possibly eliciting counteractive measures at the transcriptional level to adapt to oxygen deficiency in an ecologically important aquatic insect. Our results further suggest that the ability to modulate both the quantity and quality of Hb serves as an adaptive response to counteract the initial onset of oxygen deficiency induced by atrazine in midges.
Zinchuk, V V; Glutkin, S V
2010-07-01
Effect of erythropoietin (EPO) preparation (epocrine) on the blood oxygen transport in rats exposed to cold (120 min in a water-cooled box at 19 degrees C) and then rewarmed (next 120 min at a mean heating rate of 0.06 degrees C/min) has been studied. The administration of EPO reduced the body temperature fall at the end of cold exposure and enhanced its rise during the rewarming stage. The effect of EPO in tested rats is associated with a decrease in the hemoglobin affinity to oxygen, which increases the oxygen supply of tissues and improves the organism adaptability to cold.
High blood oxygen affinity in the air-breathing swamp eel Monopterus albus.
Damsgaard, Christian; Findorf, Inge; Helbo, Signe; Kocagoz, Yigit; Buchanan, Rasmus; Huong, Do Thi Thanh; Weber, Roy E; Fago, Angela; Bayley, Mark; Wang, Tobias
2014-12-01
The Asian swamp eel (Monopterus albus, Zuiew 1793) is a facultative air-breathing fish with reduced gills. Previous studies have shown that gas exchange seems to occur across the epithelium of the buccopharyngeal cavity, the esophagus and the integument, resulting in substantial diffusion limitations that must be compensated by adaptations in others steps of the O₂ transport system to secure adequate O₂ delivery to the respiring tissues. We therefore investigated O₂ binding properties of whole blood, stripped hemoglobin (Hb), two major isoHb components and the myoglobin (Mb) from M. albus. Whole blood was sampled using indwelling catheters for blood gas analysis and determination of O₂ equilibrium curves. Hb was purified to assess the effects of endogenous allosteric effectors, and Mb was isolated from heart and skeletal muscle to determine its O₂ binding properties. The blood of M. albus has a high O₂ carrying capacity [hematocrit (Hct) of 42.4±4.5%] and binds O₂ with an unusually high affinity (P₅₀=2.8±0.4mmHg at 27°C and pH7.7), correlating with insensitivity of the Hb to the anionic allosteric effectors that normally decrease Hb-O₂ affinity. In addition, Mb is present at high concentrations in both heart and muscle (5.16±0.99 and 1.08±0.19mg ∙ g wet tissue⁻¹, respectively). We suggest that the high Hct and high blood O₂ affinity serve to overcome the low diffusion capacity in the relatively inefficient respiratory surfaces, while high Hct and Mb concentration aid in increasing the O₂ flux from the blood to the muscles. Copyright © 2014 Elsevier Inc. All rights reserved.
Chen, Zhongjiang; Yang, Sihua; Xing, Da
2012-08-15
A method for noninvasively detecting hemoglobin oxygen saturation (SO2) and carboxyhemoglobin saturation (SCO) in subcutaneous microvasculature with multiwavelength photoacoustic microscopy is presented. Blood samples mixed with different concentrations of carboxyhemoglobin were used to test the feasibility and accuracy of photoacoustic microscopy compared with the blood-gas analyzer. Moreover, fixed-point detection of SO2 and SCO in mouse ear was obtained, and the changes from normoxia to carbon monoxide hypoxia were dynamically monitored in vivo. Experimental results demonstrate that multiwavelength photoacoustic microscopy can detect SO2 and SCO, which has future potential clinical applications.
NO and CO binding profiles of hemoglobin vesicles as artificial oxygen carriers.
Sakai, Hiromi; Sato, Atsushi; Sobolewski, Peter; Takeoka, Shinji; Frangos, John A; Kobayashi, Koichi; Intaglietta, Marcos; Tsuchida, Eishun
2008-10-01
Hemoglobin vesicles (HbVs) are artificial oxygen carriers encapsulating purified and concentrated Hb solution in phospholipid vesicles (liposomes). We examined in-vitro reaction profiles of a formulation of HbV with NO and CO in anaerobic and aerobic conditions using stopped-flow spectrophotometry and a NO electrode. Reaction rate constants of NO to deoxygenated and oxygenated HbV were considerably smaller than those of cell-free Hb because of the intracellular NO-diffusion barrier. The reaction of CO with deoxygenated HbV was slightly slower than that of cell-free Hb solely because of the co-encapsulated allosteric effector, pyridoxal 5'-phosphate. The NO depletion in an aerobic condition in the presence of empty vesicles was monitored using a NO electrode, showing that the hydrophobic bilayer membrane of HbV, which might have higher gas solubility, does not markedly facilitate the O(2) and NO reaction, and that the intracellular Hb is the major component of NO depletion. In conclusion, HbV shows retarded gas reactions, providing some useful information to explain the absence of vasoconstriction and hypertension when they are intravenously injected.
Bonaventura, Celia; Godette, Gerald; Ferruzzi, Giulia; Tesh, Shirley; Stevens, Robert D; Henkens, Robert
2002-07-10
Factors which govern transnitrosation reactions between hemoglobin (Hb) and low molecular weight thiols may define the extent to which S-nitrosated Hb (SNO-Hb) plays a role in NO in the control of blood pressure and other NO-dependent reactions. We show that exposure to S-nitrosylated cysteine (CysNO) produces equivalent levels of SNO-Hb for Hb A(0) and sickle cell Hb (Hb S), although these proteins differ significantly in the electron affinity of their heme groups as measured by their anaerobic redox potentials. Dolphin Hb, a cooperative Hb with a redox potential like that of Hb S, produces less SNO-Hb, indicating that steric considerations outweigh effects of altered electron affinity at the active-site heme groups in control of SNO-Hb formation. Examination of oxygen binding at 5-20 mM heme concentrations revealed increases due to S-nitrosation in the apparent oxygen affinity of both Hb A(0) and Hb S, similar to increases seen at lower heme concentrations. As observed at lower heme levels, deoxygenation is not sufficient to trigger release of NO from SNO-Hb. A sharp increase in apparent oxygen affinity occurs for unmodified Hb S at concentrations above 12.5 mM, its minimum gelling concentration. This affinity increase still occurs in 30 and 60% S-nitrosated samples, but at higher heme concentration. This oxygen binding behavior is accompanied by decreased gel formation of the deoxygenated protein. S-nitrosation is thus shown to have an effect similar to that reported for other SH-group modifications of Hb S, in which R-state stabilization opposes Hb S aggregation.
The relationship between oxygen affinity and 2,3 diphosphoglycerate (2,3 DPG) in the red cell has been studied in chronic hypercapnia induced by...initial values after seven days of exposure. Both oxygen half-saturation pressure (P50) and the level of 2,3 DPG of the red cells followed the time
Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance.
Barvitenko, Nadezhda N; Adragna, Norma C; Weber, Roy E
2005-01-01
Erythrocytes play a key role in human and vertebrate metabolism. Tissue O2 supply is regulated by both hemoglobin (Hb)-O2 affinity and erythrocyte rheology, a key determinant of tissue perfusion. Oxygenation-deoxygenation transitions of Hb may lead to re-organization of the cytoskeleton and signalling pathways activation/deactivation in an O2-dependent manner. Deoxygenated Hb binds to the cytoplasmic domain of the anion exchanger band 3, which is anchored to the cytoskeleton, and is considered a major mechanism underlying the oxygenation-dependence of several erythrocyte functions. This work discusses the multiple modes of Hb-cytoskeleton interactions. In addition, it reviews the effects of Mg2+, 2,3-diphosphoglycerate, NO, shear stress and Ca2+, all factors accompanying the oxygenation-deoxygenation cycle in circulating red cells. Due to the extensive literature on the subject, the data discussed here, pertain mainly to human erythrocytes whose O2 affinity is modulated by 2,3-diphosphoglycerate, ectothermic vertebrate erythrocytes that use ATP, and to bird erythrocytes that use inositol pentaphosphate. Copyright 2005 S. Karger AG, Basel.
Chen, Shao-Peng; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan
2011-08-15
A novel microfluidic immunoassay system for specific detection of hemoglobin A1c (HbA1c) was developed based on a three-component shell/shell/core structured magnetic nanocomposite Au/chitosan/Fe(3)O(4), which was synthesized with easy handling feature of Fe(3)O(4) by magnet, high affinity for gold nanoparticles of chitosan and good immobilization ability for anti-human hemoglobin-A1c antibody (HbA1c mAb) of assembled colloidal gold nanoparticles. The resulting HbA1c mAb/Au/chitosan/Fe(3)O(4) magnetic nanoparticles were then introduced into microfluidic devices coupled with a gold nanoband microelectrode as electrochemical detector. After that, three-step rapid immunoreactions were carried out in the sequence of HbA1c, anti-human hemoglobin antibodies (Hb mAb) and the secondary alkaline phosphatase (AP)-conjugated antibody within 20 min. The current response of 1-naphtol obtained from the reaction between the secondary AP-conjugated antibody and 1-naphthyl phosphate (1-NP) increased proportionally to the HbA1c concentration. Under optimized electrophoresis and detection conditions, HbA1c responded linearly in the concentration of 0.05-1.5 μg mL(-1), with the detection limit of 0.025 μg mL(-1). This system was successfully employed for detection of HbA1c in blood with good accuracy and renewable ability. The proposed method proved its potential use in clinical immunoassay of HbA1c. Copyright © 2011 Elsevier B.V. All rights reserved.
Xie, Ping; Jia, Shengxian; Tye, Ross; Xu, Wei; Zhong, Aimei; Hong, Seok J; Galiano, Robert D; Mustoe, Thomas A
2016-02-01
Localized oxygen deficiency plays a central role in the pathogenesis of chronic wounds; thus, rectifying localized ischemia with oxygen therapy has been postulated to be an integral aspect of the management of chronic wounds. The efficacy of a novel approach for oxygen therapy on chronic wound healing was evaluated. Oxygen was delivered to ischemic wounds by means of the topical application of oxygenated, chemically modified bovine hemoglobin (IKOR 2084) in a validated rabbit ear ischemic wound model. The wound healing was evaluated histologically by measuring epithelial gap and neo-granulation tissue area. In situ expression of endothelial cells (CD31) and proliferative cells (Ki-67) was examined by immunohistochemistry analysis. The mRNA of vascular endothelial growth factor, endothelial nitric oxide synthase, and matrix metalloproteinase-9 was quantified by real-time reverse-transcriptase polymerase chain reaction. The collagen was detected by Sirius red staining. In comparison with topical application of saline, the administration of oxygenated IKOR 2084 increases wound reepithelialization and formation of neo-granulation tissue in a dose-dependent manner, and cellular proliferation (Ki-67). Conversely, the administration of deoxygenated IKOR 2084 aggravated the ischemic wound healing process. Moreover, the topical administration of oxygenated IKOR 2084 induces angiogenesis as evidenced by concomitant increases in CD31 protein and vascular endothelial growth factor and endothelial nitric oxide synthase mRNA expression in treated wounds. Oxygenated IKOR 2084 administration also increased collagen deposition in wounds, with decreases in the expression of matrix metalloproteinase-9 mRNA. This study suggests that the topical application of oxygenated IKOR 2084 ameliorates the reparative progress of ischemic wounds through enhanced angiogenesis, cellular proliferation, and collagen deposition.
ERIC Educational Resources Information Center
Arai, Heii; Takano, Maki; Miyakawa, Koichi; Ota, Tsuneyoshi; Takahashi, Tadashi; Asaka, Hirokazu; Kawaguchi, Tsuneaki
2006-01-01
A newly developed quantitative near-infrared spectroscopy (NIRS) system was used to measure changes in cortical hemoglobin oxygenation during the Verbal Fluency Task in 32 healthy controls, 15 subjects with mild cognitive impairment (MCI), and 15 patients with Alzheimer's disease (AD). The amplitude of changes in the waveform, which was…
Non-site-specific allosteric effect of oxygen on human hemoglobin under high oxygen partial pressure
Takayanagi, Masayoshi; Kurisaki, Ikuo; Nagaoka, Masataka
2014-01-01
Protein allostery is essential for vital activities. Allosteric regulation of human hemoglobin (HbA) with two quaternary states T and R has been a paradigm of allosteric structural regulation of proteins. It is widely accepted that oxygen molecules (O2) act as a “site-specific” homotropic effector, or the successive O2 binding to the heme brings about the quaternary regulation. However, here we show that the site-specific allosteric effect is not necessarily only a unique mechanism of O2 allostery. Our simulation results revealed that the solution environment of high O2 partial pressure enhances the quaternary change from T to R without binding to the heme, suggesting an additional “non-site-specific” allosteric effect of O2. The latter effect should play a complementary role in the quaternary change by affecting the intersubunit contacts. This analysis must become a milestone in comprehensive understanding of the allosteric regulation of HbA from the molecular point of view. PMID:24710521
Takayanagi, Masayoshi; Kurisaki, Ikuo; Nagaoka, Masataka
2014-04-08
Protein allostery is essential for vital activities. Allosteric regulation of human hemoglobin (HbA) with two quaternary states T and R has been a paradigm of allosteric structural regulation of proteins. It is widely accepted that oxygen molecules (O2) act as a "site-specific" homotropic effector, or the successive O2 binding to the heme brings about the quaternary regulation. However, here we show that the site-specific allosteric effect is not necessarily only a unique mechanism of O2 allostery. Our simulation results revealed that the solution environment of high O2 partial pressure enhances the quaternary change from T to R without binding to the heme, suggesting an additional "non-site-specific" allosteric effect of O2. The latter effect should play a complementary role in the quaternary change by affecting the intersubunit contacts. This analysis must become a milestone in comprehensive understanding of the allosteric regulation of HbA from the molecular point of view.
Abbasi, A; Wells, R M; Brittain, T; Braunitzer, G
1988-08-01
Sphenodon is the sole representative of the "beakhead" reptiles which were widely distributed during the Triassic period before the spectacular rise of dinosaurs. Sphenodon punctatus is the only survivor ("living fossil") of this period. The morphological features of Sphenodon are remarkably conservative and differ little from reptiles living 200 million years ago. In the present paper the determination of the primary structure of the tetrameric hemoglobins is described: three components are identified: hemoglobin A' (alpha A2 beta II2), hemoglobin A (alpha A2 beta I2) and hemoglobin D (alpha D2 beta II2). The components were characterized electrophoretically, the four different peptide chains were characterized by Triton electrophoresis as well as by high-performance liquid chromatography. The hemoglobins and--under dissociating conditions--also the chains, were isolated on columns of cellulose ion exchangers. Sequence determination was carried out after cleavage of the individual chains with trypsin and after a specific chemical cleavage of the Asp-Pro bond. For sequence determination the film technique and gas-phase method were employed. The data are compared with the sequence of the human hemoglobin, and interpretations of the amino-acid sequences are given. Particularly notable is the evidence of hemoglobin D: this hemoglobin (alpha D2 beta II2) is found only in birds, and in two cases in turtles. However, this component is not found in other reptiles. The results make possible an interpretation of the relatively high oxygen affinity and explain the lack of cooperativity (myoglobin properties) of these tetrameric hemoglobins.
NASA Astrophysics Data System (ADS)
Dent, Paul; Tun, Sai Han; Fillioe, Seth; Deng, Bin; Satalin, Josh; Nieman, Gary; Wilcox, Kailyn; Searles, Quinn; Narsipur, Sri; Peterson, Charles M.; Goodisman, Jerry; Mostrom, James; Steinmann, Richard; Chaiken, J.
2018-02-01
We previously reported a new algorithm "PV[O]H" for continuous, noninvasive, in vivo monitoring of hematocrit changes in blood and have since shown its utility for monitoring in humans during 1) hemodialysis, 2) orthostatic perturbations and 3) during blood loss and fluid replacement in a rat model. We now show that the algorithm is sensitive to changes in hemoglobin oxygen saturation. We document the phenomenology of the effect and explain the effect using new results obtained from humans and rat models. The oxygen sensitivity derives from the differential absorption of autofluorescence originating in the static tissues by oxy and deoxy hemoglobin. Using this approach we show how to perform simultaneous, noninvasive, in vivo, continuous monitoring of hematocrit, vascular volume, hemoglobin oxygen saturation, pulse rate and breathing rate in mammals using a single light source. We suspect that monitoring of changes in this suite of vital signs can be provided with improved time response, sensitivity and precision compared to existing methodologies. Initial results also offer a more detailed glimpse into the systemic oxygen transport in the circulatory system of humans.
INTRINSIC REGULATION OF HEMOGLOBIN EXPRESSION BY VARIABLE SUBUNIT INTERFACE STRENGTHS
Manning, James M.; Popowicz, Anthony M.; Padovan, Julio C.; Chait, Brian T.; Manning, Lois R.
2012-01-01
SUMMARY The expression of the six types of human hemoglobin subunits over time is currently considered to be regulated mainly by transcription factors that bind to upstream control regions of the gene (the “extrinsic” component of regulation). Here we describe how subunit pairing and further assembly to tetramers in the liganded state is influenced by the affinity of subunits for one another (the “intrinsic” component of regulation). The adult hemoglobin dimers have the strongest subunit interfaces and the embryonic hemoglobins are the weakest with fetal hemoglobins of intermediate strength, corresponding to the temporal order of their expression. These variable subunit binding strengths and the attenuating effects of acetylation contribute to the differences with which these hemoglobin types form functional O2-binding tetramers consistent with gene switching. PMID:22129306
The use of hemoglobin solutions in kidney perfusions.
Daniels, F H; McCabe, R E; Leonard, E F
1984-01-01
Solutions of hemoglobin have often been considered for both hypothermic and normothermic perfusion of isolated kidneys. This paper considers basic issues, preparative techniques, and the viscosity of hemoglobin solutions, as well as the demands made by the kidney on a perfusate. The natural system of oxygen transport in higher animals is complex, and its perturbation to produce convenient hemoglobin-based renal perfusates produces numerous problems. The desirable effect of 2,3-diphosphoglycerate is not easily maintained in a perfusate, but its inclusion can be avoided by appropriate choice of species donating hemoglobin. Hemoglobin tetramer in free solution may dissociate and be lost by glomerular filtration. Ferric hemoglobin, the dominant form at redox equilibrium, is useless for oxygen transport; the ferrous form is maintained in the erythrocyte by reducing metabolites and, under normothermic conditions, the ferrous to ferric conversion is slow but significant. Methods for lysis of erythrocytes and removal of their stroma are discussed; reduction of ferric hemoglobin by chemical agents and electrolysis are considered in detail; and means for adjusting concentration and solute background are presented. The need for carbonic anhydrase in hemoglobin solutions used as perfusates is shown and methods for its provision are discussed. A review of viscometric data for hemoglobin solutions is provided to which original data are added. Hemoglobin solutions show a temperature-independent intrinsic viscosity, according to Einstein's theory for a molecule of 23 A radius. The O2 and CO2 transport requirements of renal perfusates are analyzed comprehensively. The normothermic kidney has an unusual respiration pattern, requiring an amount of oxygen that is not fixed but, rather, proportional to the total blood flow rate. In canines the average arterio-venous O2 content difference found by many investigators is 2.14 vol%; the corresponding CO2 value is 2.47 vol%; and the
Bard, H; Fouron, J C; Grothe, A M; Soukini, M A; Cornet, A
1976-10-01
The purpose of this study was to determine the interrelationship of the rise and fall of 2,3-diphosphoglycerate (DPG) with the increase in adult hemoglobin and the decrease in red cell oxygen hemoglobin affinity after birth in normal lambs. It was found that the mean maximum DPG level was 26.71 +/- 4.98 mol/g Hb at 7.5 +/- 1.1 days. At the same time the mean P50 and adult hemoglobin level was 27.0 +/- 1.4 mm Hg and 31.1 +/- 11.i%, respectively. In the individual lambs, the level of their maximum DPG correlated inversely with the amount of adult hemoglobin (r-0.77, P less than 0.05). Once the DPG began to decrease, there was an inverse correlation between the DPG and the adult hemoglobin present in the red cell (r = 0.68, P less than 0.001). It appeared that the rise in DPG postanatally is only a compensatory mechanism until an adequate amount of adult hemoglobin is present. This fact was borne out by the second part of the study in which exchange transfusions with adult red cells were performed on five newborn lambs during the first 24 hr after birth and aborted the rise in DPG.
Fantini, Sergio
2014-01-15
This article presents a dynamic model that quantifies the temporal evolution of the concentration and oxygen saturation of hemoglobin in tissue, as determined by time-varying hemodynamic and metabolic parameters: blood volume, flow velocity, and oxygen consumption. This multi-compartment model determines separate contributions from arterioles, capillaries, and venules that comprise the tissue microvasculature, and treats them as a complete network, without making assumptions on the details of the architecture and morphology of the microvascular bed. A key parameter in the model is the effective blood transit time through the capillaries and its associated probability of oxygen release from hemoglobin to tissue, as described by a rate constant for oxygen diffusion. The solution of the model in the time domain predicts the signals measured by hemodynamic-based neuroimaging techniques such as functional near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) in response to brain activation. In the frequency domain, the model yields an analytical solution based on a phasor representation that provides a framework for quantitative spectroscopy of coherent hemodynamic oscillations. I term this novel technique coherent hemodynamics spectroscopy (CHS), and this article describes how it can be used for the assessment of cerebral autoregulation and the study of hemodynamic oscillations resulting from a variety of periodic physiological challenges, brain activation protocols, or physical maneuvers. Copyright © 2013 Elsevier Inc. All rights reserved.
Fantini, Sergio
2013-01-01
This article presents a dynamic model that quantifies the temporal evolution of the concentration and oxygen saturation of hemoglobin in tissue, as determined by time-varying hemodynamic and metabolic parameters: blood volume, flow velocity, and oxygen consumption. This multi-compartment model determines separate contributions from arterioles, capillaries, and venules that comprise the tissue microvasculature, and treats them as a complete network, without making assumptions on the details of the architecture and morphology of the microvascular bed. A key parameter in the model is the effective blood transit time through the capillaries and its associated probability of oxygen release from hemoglobin to tissue, as described by a rate constant for oxygen diffusion. The solution of the model in the time domain predicts the signals measured by hemodynamic-based neuroimaging techniques such as functional near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) in response to brain activation. In the frequency domain, the model yields an analytical solution based on a phasor representation that provides a framework for quantitative spectroscopy of coherent hemodynamic oscillations. I term this novel technique coherent hemodynamics spectroscopy (CHS), and this article describes how it can be used for the assessment of cerebral autoregulation and the study of hemodynamic oscillations resulting from a variety of periodic physiological challenges, brain activation protocols, or physical maneuvers. PMID:23583744
Zinchuk, V V; Shul'ga, E V; Guliaĭ, I E
2010-01-01
We aimed to study the erythropoietin influence on oxygen transport function of blood and prooxidant/antioxidant balance in rabbits under lipopolysaccharide injection. Recombinant human erythropoietin-alpha was administered intraperitoneally in the dose 1000 U/kg 30 minutes before intravenous injection of 500 mkg/kg lipopolysaccharide from E. coli. After 12 hours, blood samples were collected for the assessment of oxygen transport function of blood; nitrate/nitrite levels and tissue samples were collected for measurement of conjugated dienes, malondialdehyde, alpha-tocopherol and catalase. Erythropoietin improves parameters of oxygen transport function of blood, increases hemoglobin-oxygen affinity through the NO-dependent mechanism, reduces activity of free radical processes, and increases antioxidant protection under lipopolysaccharide injection.
The influence of reducing fever on blood oxygen saturation in children.
Goldberg, Shmuel; Heitner, Shmuel; Mimouni, Francis; Joseph, Leon; Bromiker, Reuben; Picard, Elie
2018-01-01
Laboratory-based studies on the oxyhemoglobin dissociation curve (ODC) suggest that high blood temperature decreases the affinity of hemoglobin for oxygen. The aim of the study was to evaluate the influence of pyrexia on oxygen saturation (SpO 2 ) in children presenting to the emergency department. Normoxemic children with body temperature at or above 38.5 °C were included. Patients with a dynamic respiratory disease were excluded. SpO 2 was measured before and after antipyretic treatment. The changes in body temperature and SpO 2 were assessed and compared to the changes predicted from the ODC. Thirty-four children completed the study. Mean temperature at presentation was 39.17 ± 0.549 °C and mean SpO 2 was 96.15 ± 2.21%. The mean decrease in temperature after antipyretic treatment was 1.71 ± 0.67 °C and mean increase in SpO 2 was 0.95 ± 1.76%. Among children in whom pyrexia decreased by 1.5 °C or more, the mean increase in SpO 2 was 1.45 ± 1.57%. The measured increase in SpO 2 was close to the increase anticipated from the ODC. Pyrexia was associated with decreased SpO 2 in normoxemic children. The influence of pyrexia in children with low-normal oxygen saturation is expected to be much higher because of the non-linear shape of the ODC. Physicians treating patients with fever should be aware of this effect, especially in patients with borderline hypoxia. What is Known: • High blood temperature decreases the affinity of oxygen to hemoglobin. • It is not known whether fever would decrease SpO 2 . What is New: • Fever is associated with decreased SpO 2 .
Saroff, Harry A
Analyses of the binding of oxygen to monomers such as myoglobin employ the Mass Action equation. The Mass Action equation, as such, is not directly applicable for the analysis of the binding of oxygen to oligomers such as hemoglobin. When the binding of oxygen to hemoglobin is analyzed, models incorporating extensions of mass action are employed. Oxidation-reduction reactions of the heme group in myoglobin and hemoglobin involve the binding and dissociation of electrons. This reaction is described with the Nernst equation. The Nernst equation is applicable only to a monomeric species even if the number of electrons involved is greater than unity. To analyze the oxidation-reduction reaction in a molecule such as hemoglobin a model is required which incorporates extensions of the Nernst equation. This communication develops models employing the Nernst equation for oxidation-reduction reactions analogous to those employed for hemoglobin in the analysis of the oxygenation (binding of oxygen) reaction.
A review of variant hemoglobins interfering with hemoglobin A1c measurement.
Little, Randie R; Roberts, William L
2009-05-01
Hemoglobin A1c (HbA1c) is used routinely to monitor long-term glycemic control in people with diabetes mellitus, as HbA1c is related directly to risks for diabetic complications. The accuracy of HbA1c methods can be affected adversely by the presence of hemoglobin (Hb) variants or elevated levels of fetal hemoglobin (HbF). The effect of each variant or elevated HbF must be examined with each specific method. The most common Hb variants worldwide are HbS, HbE, HbC, and HbD. All of these Hb variants have single amino acid substitutions in the Hb beta chain. HbF is the major hemoglobin during intrauterine life; by the end of the first year, HbF falls to values close to adult levels of approximately 1%. However, elevated HbF levels can occur in certain pathologic conditions or with hereditary persistence of fetal hemoglobin. In a series of publications over the past several years, the effects of these four most common Hb variants and elevated HbF have been described. There are clinically significant interferences with some methods for each of these variants. A summary is given showing which methods are affected by the presence of the heterozygous variants S, E, C, and D and elevated HbF. Methods are divided by type (immunoassay, ion-exchange high-performance liquid chromatography, boronate affinity, other) with an indication of whether the result is artificially increased or decreased by the presence of a Hb variant. Laboratorians should be aware of the limitations of their method with respect to these interferences. 2009 Diabetes Technology Society.
Lilly, Laura E; Bonaventura, Joseph; Lipnick, Michael S; Block, Barbara A
2015-03-01
Hemoglobin-oxygen (Hb-O2) binding properties are central to aerobic physiology, and must be optimized for an animal's aerobic requirements and environmental conditions, both of which can vary widely with seasonal changes or acutely with diving. In the case of tunas, the matter is further complicated by large regional temperature differences between tissues within the same animal. This study investigates the effects of thermal acclimation on red blood cell Hb-O2 binding in Pacific bluefin tuna (T. orientalis) and yellowfin tuna (T. albacares) maintained in captive tanks at acclimation temperatures of 17°, 20° and 24 °C. Oxygen binding properties of acclimated tuna isolated red blood cells were examined under varying experimental temperatures (15°-35 °C) and CO2 levels (0%, 0.5% and 1.5%). Results for Pacific bluefin tuna produced temperature-independence at 17 °C- and 20 °C-acclimation temperatures and significant reverse temperature-dependence at 24 °C-acclimation in the absence of CO2, with instances of reverse temperature-dependence in 17 °C- and 24 °C-acclimations at 0.5% and 1.5% CO2. In contrast, yellowfin tuna produced normal temperature-dependence at each acclimation temperature at 0% CO2, temperature-independence at 0.5% and 1.5% CO2, and significant reverse temperature-dependence at 17 °C-acclimation and 0.5% CO2. Thermal acclimation of Pacific bluefin tuna increased O2 binding affinity of the 17 °C-acclimation group, and produced a significantly steeper oxygen equilibrium curve slope (nH) at 24 °C-acclimation compared to the other acclimation temperatures. We discuss the potential implications of these findings below. Copyright © 2014 Elsevier Inc. All rights reserved.
Turko, Andy J; Robertson, Cayleih E; Bianchini, Kristin; Freeman, Megan; Wright, Patricia A
2014-11-15
Despite the abundance of oxygen in atmospheric air relative to water, the initial loss of respiratory surface area and accumulation of carbon dioxide in the blood of amphibious fishes during emersion may result in hypoxemia. Given that the ability to respond to low oxygen conditions predates the vertebrate invasion of land, we hypothesized that amphibious fishes maintain O2 uptake and transport while emersed by mounting a co-opted hypoxia response. We acclimated the amphibious fish Kryptolebias marmoratus, which are able to remain active for weeks in both air and water, for 7 days to normoxic brackish water (15‰, ~21kPa O2; control), aquatic hypoxia (~3.6kPa), normoxic air (~21 kPa) or aerial hypoxia (~13.6kPa). Angiogenesis in the skin and bucco-opercular chamber was pronounced in air- versus water-acclimated fish, but not in response to hypoxia. Aquatic hypoxia increased the O2-carrying capacity of blood via a large (40%) increase in red blood cell density and a small increase in the affinity of hemoglobin for O2 (P50 decreased 11%). In contrast, air exposure increased the hemoglobin O2 affinity (decreased P50) by 25% without affecting the number of red blood cells. Acclimation to aerial hypoxia both increased the O2-carrying capacity and decreased the hemoglobin O2 affinity. These results suggest that O2 transport is regulated both by O2 availability and also, independently, by air exposure. The ability of the hematological system to respond to air exposure independent of O2 availability may allow extant amphibious fishes, and may also have allowed primitive tetrapods to cope with the complex challenges of aerial respiration during the invasion of land. © 2014. Published by The Company of Biologists Ltd.
Wainwright, Laura M.; Wang, Yinghua; Park, Simon F.; Yeh, Syun-Ru; Poole, Robert K.
2008-01-01
Campylobacter jejuni is a foodborne bacterial pathogen that possesses two distinct hemoglobins, encoded by the ctb and cgb genes. The former codes for a truncated hemoglobin (Ctb) in group III, an assemblage of uncharacterized globins in diverse clinically- and technologically-significant bacteria. Here, we show that Ctb purifies as a monomeric, predominantly oxygenated species. Optical spectra of ferric, ferrous, O2- and CO-bound forms resemble those of other hemoglobins. However, resonance Raman analysis shows Ctb to have an atypical νFe-CO stretching mode at 514 cm-1, compared to the other truncated hemoglobins that have been characterized so far. This implies unique roles in ligand stabilisation for TyrB10, HisE7 and TrpG8, residues highly conserved within group III truncated hemoglobins. Since C. jejuni is a microaerophile, and a ctb mutant exhibits O2-dependent growth defects, one of the hypothesised roles of Ctb is in the detoxification, sequestration or transfer of O2 The midpoint potential (Eh) of Ctb was found to be −33 mV, but no evidence was obtained in vitro to support the hypothesis that Ctb is reducible by NADH or NADPH. This truncated hemoglobin may function in the facilitation of O2 transfer to one of the terminal oxidases of C. jejuni or instead facilitate O2 transfer to Cgb for NO detoxification. PMID:16681372
Study on the Mechanism of Interaction between Phthalate Acid Esters and Bovine Hemoglobin.
Chi, Zhenxing; Zhao, Jing; You, Hong; Wang, Mingjing
2016-08-03
Phthalate acid esters (PAEs) are widely used in plastic products as a series of chemical softeners. However, PAEs, which now exist in many environmental media such as the atmosphere, water, and soil, have been shown to be environmental endocrine disruptors. Hemoglobin is a functional protein that carries oxygen in the red blood cells of animals. This study aims at revealing the interactions between bovine hemoglobin (BHb) and PAEs using spectroscopic and molecular modeling methods. The results indicate that the selected representative PAEs-dimethyl phthalate (DMP), diethyl phthalate (DEP), and dibutyl phthalate (DBP)-can interact with BHb to form BHb-PAE complexes with one binding site, mainly relying on hydrophobic forces, with the affinity order DMP > DEP > DBP, opposite to the order of side-chain length. The binding of PAEs can cause conformational and micro-environmental changes in BHb, which may affect the physiological functions of Hb. Furthermore, molecular docking was applied to define the specific binding sites, the results of which show that all the three PAEs can bind into the central cavity of BHb. The study contributes to expound the toxic mechanism of PAEs in vivo from the point of hematological toxicology.
Petri, Maximilian; Stoffels, Ingo; Griewank, Klaus; Jose, Jithin; Engels, Peter; Schulz, Andrea; Pötzschke, Harald; Jansen, Philipp; Schadendorf, Dirk; Dissemond, Joachim; Klode, Joachim
2018-02-01
Chronic leg ulcers can be a challenge to treat and long-term therapy a significant cost factor in western public health budgets. Objective wound assessment assays enabling selection of appropriate wound therapy regimes would be desirable. Oxygenation status in ulcer tissue has obtained increased attention as a relevant factor in wound healing. To increase oxygenation in wounds, a topical hemoglobin spray was developed. Although favorable results have been noted, the link between clinical efficacy and the mode of action has not been demonstrated. The aims were to determine if changes in tissue oxygenation can be measured after topical application of hemoglobin on chronic wounds and to evaluate the findings in terms of therapy strategies. Photoacoustic imaging was used to measure the local oxygen saturation (StO 2 ) in leg ulcers before and after hemoglobin spray treatment. Sclerosis of the leg ulcers was histopathologically graded and the change in wound size was documented in a follow-up examination. Measuring 49 patients, an increase in StO 2 after topical hemoglobin application from on average 66.1 to 71 % (p = 0.017) after 20 min was observed. Depending on the increase in StO 2 (>10 % or <10 %) patients were stratified into a Responder and a Non-Responder group. Wound size significantly decreased in the Responder Group (p = 0.001), while no significant difference in the Non-Responder group (p = 0.950) was noted. Our findings suggest that the likelihood of wound healing under conservative therapy can be predicted by measuring changes in StO 2 after topical hemoglobin application. This assay may reduce treatment time and costs by avoiding ineffective conservative long-term therapy. German Clinical Trials Register: DRKS00005993.
NASA Astrophysics Data System (ADS)
Abdallah, Omar; Stork, Wilhelm; Muller-Glaser, Klaus
2004-06-01
The deficiencies of the currently used pulse oximeter are discussed in diverse literature. A hazardous pitfalls of this method is that the pulse oximeter will not detect carboxyhemoglobin (COHb) and methemoglobin (metHb) concentrations. This leads to incorrect measurement of oxygen saturation by carbon monoxide poisoning and methemoglobinemia. Also the total hemoglobin concentration will not be considered and can only be measured in-vitro up to now. A second pitfall of the standard pulse oximetry is that it will not be able to show a result by low perfusion of tissues. This case is available inter alia when the patient is under shock or has a low blood pressure. The new non-invasive system we designed measures the actual (fractional) oxygen saturation and hemoglobin concentration. It will enable us also to measure COHb and metHb. The measurement can be applied at better perfused body central parts. Four or more light emitting diodes (LEDs) or laser diodes (LDs) and five photodiodes (PDs) are used. The reflected light signal detected by photodiodes is processed using a modified Lambert-Beer law (I=I0×e-α.d ). According to this law, when a non scattering probe is irradiated with light having the incident intensity I0, the intensity of transmitted light I decays exponentially with the absorption coefficient a of that probe and its thickness d. Modifications of this law have been performed following the theoretical developed models in literature, Monte Carlo simulation and experimental measurement.
Monoclonal antibodies to human hemoglobin S and cell lines for the production thereof
Jensen, R.H.; Vanderlaan, M.; Bigbee, W.L.; Stanker, L.H.; Branscomb, E.W.; Grabske, R.J.
1984-11-29
The present invention provides monoclonal antibodies specific to and distinguishing between hemoglobin S and hemoglobin A and methods for their production and use. These antibodies are capable of distinguishing between two hemoglobin types which differ from each other by only a single amino acid residue. The antibodies produced according to the present method are useful as immunofluorescent markers to enumerate circulating red blood cells which have the property of altered expression of the hemoglobin gene due to somatic mutation in stem cells. Such a measurement is contemplated as an assay for in vivo cellular somatic mutations in humans. Since the monoclonal antibodies produced in accordance with the instant invention exhibit a high degree of specificity to and greater affinity for hemoglobin S, they are suitable for labeling human red blood cells for flow cytometric detection of hemoglobin genotype. 4 figs.
Monoclonal antibodies to human hemoglobin S and cell lines for the production thereof
Jensen, Ronald H.; Vanderlaan, Martin; Bigbee, William L.; Stanker, Larry H.; Branscomb, Elbert W.; Grabske, Robert J.
1988-01-01
The present invention provides monoclonal antibodies specific to and distinguish between hemoglobin S and hemoglobin A and methods for their production and use. These antibodies are capable of distinguishing between two hemoglobin types which differ from each other by only a single amino acid residue. The antibodies produced according to the present method are useful as immunofluorescent markers to enumerate circulating red blood cells which have the property of altered expression of the hemoglobin gene due to somatic mutation in stem cells. Such a measurement is contemplated as an assay for in vivo cellular somatic mutations in humans. Since the monoclonal antibodies produced in accordance with the instant invention exhibit a high degree of specificity to and greater affinity for hemoglobin S, they are suitable for labeling human red blood cells for flow cytometric detection of hemoglobin genotype.
Li, Dongxia; Hu, Tao; Manjula, Belur N; Acharya, Seetharama A
2009-11-01
Cys-93(beta) of hemoglobin (Hb) was reversibly protected as a mixed disulfide with thiopyridine during extension arm facilitated (EAF) PEGylation and its influence on the structural and functional properties of the EAF-PEG-Hb has been investigated. Avoiding PEGylation of Cys-93(beta) in the EAF-PEG-Hb lowers the level of perturbation of heme pocket, alpha1beta2 interface, autoxidation, heme loss, and the O(2) affinity, as compared to the EAF-PEG-Hb with PEGylation of Cys-93(beta).The structural and functional advantages of reversible protection of Cys-93(beta) during EAF PEGylation of oxy-Hb has been compared with Euro PEG-Hb generated by EAF PEGylation of deoxy Hb where Cys-93(beta) is free in the final product. The alphaalpha-fumaryl cross-linking and EAF PEGylation targeted exclusively to Lys residues has been combined together for generation of second-generation EAF-PEG-Hb with lower oxygen affinity. The PEG chains engineered on Lys as well as PEGylation of Cys-93(beta) independently contribute to the stabilization of oxy conformation of Hb and hence increase the oxygen affinity of Hb. However, oxygen affinity of the EAF-PEG-alphaalpha-Hb is more sensitive to the presence of PEGylation on Cys-93(beta) than that of the EAF-PEG-Hb. The present modified EAF PEGylation platform is expected to facilitate the design of novel versions of the EAF-PEG-Hbs that can now integrate the advantages of avoiding PEGylation of Cys-93(beta).
Barts, Nicholas; Greenway, Ryan; Passow, Courtney N; Arias-Rodriguez, Lenin; Kelley, Joanna L; Tobler, Michael
2018-04-01
Hydrogen sulfide (H 2 S) is a natural toxicant in some aquatic environments that has diverse molecular targets. It binds to oxygen transport proteins, rendering them non-functional by reducing oxygen-binding affinity. Hence, organisms permanently inhabiting H 2 S-rich environments are predicted to exhibit adaptive modifications to compensate for the reduced capacity to transport oxygen. We investigated 10 lineages of fish of the family Poeciliidae that have colonized freshwater springs rich in H 2 S-along with related lineages from non-sulfidic environments-to test hypotheses about the expression and evolution of oxygen transport genes in a phylogenetic context. We predicted shifts in the expression of and signatures of positive selection on oxygen transport genes upon colonization of H 2 S-rich habitats. Our analyses indicated significant shifts in gene expression for multiple hemoglobin genes in lineages that have colonized H 2 S-rich environments, and three hemoglobin genes exhibited relaxed selection in sulfidic compared to non-sulfidic lineages. However, neither changes in gene expression nor signatures of selection were consistent among all lineages in H 2 S-rich environments. Oxygen transport genes may consequently be predictable targets of selection during adaptation to sulfidic environments, but changes in gene expression and molecular evolution of oxygen transport genes in H 2 S-rich environments are not necessarily repeatable across replicated lineages.
Increased nitrite reductase activity of fetal versus adult ovine hemoglobin
Blood, Arlin B.; Tiso, Mauro; Verma, Shilpa T.; Lo, Jennifer; Joshi, Mahesh S.; Azarov, Ivan; Longo, Lawrence D.; Gladwin, Mark T.; Kim-Shapiro, Daniel B.; Power, Gordon G.
2009-01-01
Growing evidence indicates that nitrite, NO2−, serves as a circulating reservoir of nitric oxide (NO) bioactivity that is activated during physiological and pathological hypoxia. One of the intravascular mechanisms for nitrite conversion to NO is a chemical nitrite reductase activity of deoxyhemoglobin. The rate of NO production from this reaction is increased when hemoglobin is in the R conformation. Because the mammalian fetus exists in a low-oxygen environment compared with the adult and is exposed to episodes of severe ischemia during the normal birthing process, and because fetal hemoglobin assumes the R conformation more readily than adult hemoglobin, we hypothesized that nitrite reduction to NO may be enhanced in the fetal circulation. We found that the reaction was faster for fetal than maternal hemoglobin or blood and that the reactions were fastest at 50–80% oxygen saturation, consistent with an R-state catalysis that is predominant for fetal hemoglobin. Nitrite concentrations were similar in blood taken from chronically instrumented normoxic ewes and their fetuses but were elevated in response to chronic hypoxia. The findings suggest an augmented nitrite reductase activity of fetal hemoglobin and that the production of nitrite may participate in the regulation of vascular NO homeostasis in the fetus. PMID:19028797
Luo, Yushuang; Kou, Xiaoxiao; Ding, Xuezhi; Hu, Shengbiao; Tang, Ying; Li, Wenping; Huang, Fan; Yang, Qi; Chen, Hanna; Xia, Liqiu
2012-02-01
To promote spinosad biosynthesis by improving the limited oxygen supply during high-density fermentation of Saccharopolyspora spinosa, the open reading frame of the Vitreoscilla hemoglobin gene was placed under the control of the promoter for the erythromycin resistance gene by splicing using overlapping extension PCR. This was cloned into the integrating vector pSET152, yielding the Vitreoscilla hemoglobin gene expression plasmid pSET152EVHB. This was then introduced into S. spinosa SP06081 by conjugal transfer, and integrated into the chromosome by site-specific recombination at the integration site ΦC31 on pSET152EVHB. The resultant conjugant, S. spinosa S078-1101, was genetically stable. The integration was further confirmed by PCR and Southern blotting analysis. A carbon monoxide differential spectrum assay showed that active Vitreoscilla hemoglobin was successfully expressed in S. spinosa S078-1101. Fermentation results revealed that expression of the Vitreoscilla hemoglobin gene significantly promoted spinosad biosynthesis under normal oxygen and moderately oxygen-limiting conditions (P<0.01). These findings demonstrate that integrating expression of the Vitreoscilla hemoglobin gene improves oxygen uptake and is an effective means for the genetic improvement of S. spinosa fermentation.
NASA Astrophysics Data System (ADS)
Jiang, Shudong; Pogue, Brian W.; Srinivasan, Subhadra; Soho, Sandra; Poplack, Steven P.; Tosteson, Tor D.; Paulsen, Keith D.
2003-07-01
Near-infrared imaging can be used in humans to characterize changes in breast tumor tissue by imaging total hemoglobin and water concentrations as well as oxygen saturation. In order to improve our understanding of these changes, we need to carefully quantify the range of variation possible in normal tissues for these parameters. In this study, the effect of the subject"s menstrual cycle was examined by imaging their breast at the follicular (7-14 days of the cycle) and secretory phases (21-28 days of the cycle), using our NIR tomographic system. In this system, a three layer patient interface is used to measure 3 planes along the breast from chest wall towards the nipple at 1cm increments. Seven volunteers in their 40s were observed for 2 menstrual cycles and all of these volunteers recently had normal mammograms (ACR 1) with heterogeneously dense breast composition. The results show that average total hemoglobin in the breast increased in many subjects between 0 to 15% from the follicular phase to secretory phase. Oxygen saturation and water concentration changes between these 2 parts of the cycle were between -6.5% to 12% for saturation and between -33% to 28% for water concentration. While the data averaged between subjects showed no significant change existed between phases, it was clear that individual subjects did exhibit changes in composition which were consistent from cycle to cycle. Understanding what leads to this heterogeneity between subjects will be an important factor in utilizing these measurements in clinical practice.
Korte, Erik A; Pozzi, Nicole; Wardrip, Nina; Ayyoubi, M Tayyeb; Jortani, Saeed A
2018-07-01
There are 13 million blood transfusions each year in the US. Limitations in the donor pool, storage capabilities, mass casualties, access in remote locations and reactivity of donors all limit the availability of transfusable blood products to patients. HBOC-201 (Hemopure®) is a second-generation glutaraldehyde-polymer of bovine hemoglobin, which can serve as an "oxygen bridge" to maintain oxygen carrying capacity while transfusion products are unavailable. Hemopure presents the advantages of extended shelf life, ambient storage, and limited reactive potential, but its extracellular location can also cause significant interference in modern laboratory analyzers similar to severe hemolysis. Observed error in 26 commonly measured analytes was determined on 4 different analytical platforms in plasma from a patient therapeutically transfused Hemopure as well as donor blood spiked with Hemopure at a level equivalent to the therapeutic loading dose (10% v/v). Significant negative error ratios >50% of the total allowable error (>0.5tAE) were reported in 23/104 assays (22.1%), positive bias of >0.5tAE in 26/104 assays (25.0%), and acceptable bias between -0.5tAE and 0.5tAE error ratio was reported in 44/104 (42.3%). Analysis failed in the presence of Hemopure in 11/104 (10.6%). Observed error is further subdivided by platform, wavelength, dilution and reaction method. Administration of Hemopure (or other hemoglobin-based oxygen carriers) presents a challenge to laboratorians tasked with analyzing patient specimens. We provide laboratorians with a reference to evaluate patient samples, select optimal analytical platforms for specific analytes, and predict possible bias beyond the 4 analytical platforms included in this study. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sujatha, N.; Anand, B. S. Suresh; Nivetha, K. Bala; Narayanamurthy, V. B.; Seshadri, V.; Poddar, R.
2015-07-01
Light-based diagnostic techniques provide a minimally invasive way for selective biomarker estimation when tissues transform from a normal to a malignant state. Spectroscopic techniques based on diffuse reflectance characterize the changes in tissue hemoglobin/oxygenation levels during the tissue transformation process. Recent clinical investigations have shown that changes in tissue oxygenation and microcirculation are observed in diabetic subjects in the initial and progressive stages. In this pilot study, we discuss the potential of diffuse reflectance spectroscopy (DRS) in the visible (Vis) range to differentiate the skin microcirculatory hemoglobin levels between normal and advanced diabetic subjects with and without neuropathy. Average concentration of hemoglobin as well as hemoglobin oxygen saturation within the probed tissue volume is estimated for a total of four different sites in the foot sole. The results indicate a statistically significant decrease in average total hemoglobin and increase in hemoglobin oxygen saturation levels for diabetic foot compared with a normal foot. The present study demonstrates the ability of reflectance spectroscopy in the Vis range to determine and differentiate the changes in tissue hemoglobin and hemoglobin oxygen saturation levels in normal and diabetic subjects.
Stepuro, T L; Zinchuk, V V
2011-08-01
Peroxynitrite (ONOO-) besides its toxic possesses regulatory action that includes the modulation of oxygen binding properties of blood. The aim of this work was to estimate ONOO- effect on the haemoglobin oxygen affinity (HOA) in vitro in presence of different partial pressure of carbon dioxide (CO2). The ONOO- presence in venous blood in conditions of hypercapnia induced oxyhaemoglobin dissociation curve shift leftward while in hypocapnic conditions the result of a different character was obtained. The revealed effect of ONOO- is realized, possibly, through various modifications ofhaemoglobin whose formation is dependent on the CO2 pressure. The ONOO- influences the HOA in different manner that can be important in regulation of blood oxygenation in lungs and maintenance of oxygen consumption in tissues.
Two-photon excited fluorescence emission from hemoglobin
NASA Astrophysics Data System (ADS)
Sun, Qiqi; Zeng, Yan; Zhang, Wei; Zheng, Wei; Luo, Yi; Qu, Jianan Y.
2015-03-01
Hemoglobin, one of the most important proteins in blood, is responsible for oxygen transportation in almost all vertebrates. Recently, we discovered two-photon excited hemoglobin fluorescence and achieved label-free microvascular imaging based on the hemoglobin fluorescence. However, the mechanism of its fluorescence emission still remains unknown. In this work, we studied the two-photon excited fluorescence properties of the hemoglobin subunits, heme/hemin (iron (II)/(III) protoporphyrin IX) and globin. We first studied the properties of heme and the similar spectral and temporal characteristics of heme and hemoglobin fluorescence provide strong evidence that heme is the fluorophore in hemoglobin. Then we studied the fluorescence properties of hemin, globin and methemoglobin, and found that the hemin may have the main effect on the methemoglobin fluorescence and that globin has tryptophan fluorescence like other proteins. Finally, since heme is a centrosymmetric molecule, that the Soret band fluorescence of heme and hemoglobin was not observed in the single photon process in the previous study may be due to the parity selection rule. The discovery of heme two-photon excited fluorescence may open a new window for heme biology research, since heme as a cofactor of hemoprotein has many functions, including chemical catalysis, electron transfer and diatomic gases transportation.
Strader, Michael Brad
2017-01-01
Abstract Significance: Worldwide demand has driven the development of hemoglobin (Hb)-based oxygen carriers (HBOCs) as potential acellular oxygen therapeutics. HBOCs have the potential to provide an oxygen bridge to patients and minimize current problems associated with supply and storage of donated blood. However, to date, safety and efficacy issues have hampered the approval of viable HBOCs in the United States. These previous efforts have underscored the need for a better molecular understanding of toxicity to design safe and oxidatively stable HBOCs. Recent Advances: High-resolution accurate mass (HRAM) mass spectrometry (MS) has recently become a versatile tool in characterizing oxidative post-translational modifications that occur in Hb. When integrated with other analytical techniques, HRAM data have been invaluable in providing mechanistic insight into the extent of oxidative modification by quantifying oxidation in amino acids near the reactive heme or at specific “oxidative hotspots.” Critical Issues: In addition to providing a deeper understanding of Hb oxidative toxicity, HRAM MS studies are currently being used toward developing suitable HBOCs using a “two-prong” strategy that involves (i) understanding the mechanism of Hb toxicity by evaluating mutant Hbs identified in patients with hemoglobinopathies and (ii) utilizing this information toward designing against (or for) these reactions in acellular oxygen therapeutics that will result in oxidatively stable protein. Future Directions: Future HRAM studies are aimed at fully characterizing engineered candidate HBOCs to determine the most oxidatively stable protein while retaining oxygen carrying function in vivo. Antioxid. Redox Signal. 26, 777–793. PMID:27626360
Guerrini, G; Morabito, A; Samaja, M
2000-10-01
The aim is to determine if a single measurement of blood 2,3-diphosphoglycerate combined with gas analysis (pH, PCO2, PO2 and saturation) can identify the cause of an altered blood-oxygen affinity: the presence of an abnormal haemoglobin or a red cell disorder. The population (n=94) was divided into healthy controls (A, n=14), carriers of red cell disorders (B, n=72) and carriers of high oxygen affinity haemoglobins (C, n=8). Those variables were measured both in samples equilibrated at selected PCO2 and PO2 and in venous blood. In the univariable approach applied to equilibrated samples, we correctly identified C subjects in 93.6% or 96.8% of the cases depending on the selected variable, the standard P50 (PO2 at which 50% of haemoglobin is oxygenated) or a composite variable calculated from the above measurements. After introducing the haemoglobin concentration as a further discriminating variable, the A and B subjects were correctly identified in 91.9% or 94.2% of the cases, respectively. These figures become 93.0% or 86.1%, and 93.7% or 94.9% of the cases when using direct readings from venous blood, thereby avoiding the blood equilibration step. This test is feasible also in blood samples stored at 4 degrees C for 48 h, or at room temperature for 8 h.
Iankovskaia, A V; Zinchuk, M A
2007-01-01
Parameters of oxygen-transport function of the blood and function of the endothelium were studied in 49 patients with stable angina pectoris of I and II functional class with or without concomitant 2nd degree arterial hypertension. All patients received pathogenetic therapy. Signs of endothelial dysfunction were found in group III in which endothelium dependent vasodilation (8.22 +/- 1.71%) was 73.4% (p1 < 0.001) lower than in control group and 47.2% (p3 < 0.05) lower than in patients with class I angina. In all groups baseline content of nitrates/nitrites was lower. Main parameters of acid-base balance were lowered in patients of group III evidencing for emergence of signs of metabolic acidosis and hypoxia. Lowering of hemoglobin affinity to oxygen and its rise after therapy was also revealed. Maximal lowering of this parameter (-10.2%, p2 < 0.05) reflecting shift of oxyhemoglobin dissociation curve to the right was noted in group II. Endothelium can participate in formation of these disturbances because its dysfunction is associated with deranged release of NO in various parts of vascular tree. This affects formation of various NO-derivatives of hemoglobin and oxygen transport system of the blood.
Noninvasive monitoring of cerebral oxygenation in preterm infants: preliminary observations.
Brazy, J E; Lewis, D V; Mitnick, M H; Jöbsis vander Vliet, F F
1985-02-01
A noninvasive optical method for bedside monitoring of cerebral oxygenation in small preterm infants was evaluated. Through differential absorbance of near infrared light, changes in the oxidation-reduction level of cytochrome aa3, in the oxygenation state of hemoglobin and in tissue blood volume were assessed in the transilluminated anterior cerebral field. Overall, cerebral oxygenated hemoglobin correlated significantly with transcutaneous oxygen, r = .44 p less than .0001; however, correlation was best in the absence of cardiorespiratory disease. Hypoxia with or without bradycardia led to hemoglobin deoxygenation and a shift in cytochrome aa3 to a more reduced state. When hypoxic episodes came in series or were prolonged, aa3 reduction occurred simultaneous with hemoglobin deoxygenation but its recovery to base-line values sometimes lagged behind the return of hemoglobin oxygenation. In one infant with a large patent ductus arteriosus, even brief episodes of mild bradycardia caused precipitous reduction of cytochrome aa3 before any shift to greater hemoglobin deoxygenation. This response disappeared after ductal ligation. In general, the antecedent state of cerebral oxygenation, the severity and duration of deoxygenation, and the presence or absence of circulatory abnormalities all influenced the aa3 response to hypoxia. Continuous noninvasive near infrared monitoring of cerebral oxygenation can be performed on sick preterm infants at the bedside.
Wettstein, Reto; Tsai, Amy G; Harder, Yves; Erni, Dominique; Intaglietta, Marcos
2006-11-01
Awake hamsters equipped with the dorsal window chamber preparation were subjected to hemorrhage of 50% of the estimated blood volume. Initial resuscitation (25% of estimated blood volume) with polymerized bovine hemoglobin (PBH) or 10% hydroxyethyl starch (HES) occurred in concert with an equivolumetric bleeding to simulate the early, prehospital setting (exchange transfusion). Resuscitation (25% of estimated blood volume) without bleeding was performed with PBH, HES, or autologous red blood cells (HES-RBCs). Peripheral microcirculation, tissue oxygenation, and systemic hemodynamic and blood gas parameters were assessed. After exchange transfusion, base deficit was -8.6 +/- 3.7 mmol/L (PBH) and -5.1 +/- 5.3 mmol/L (HES) (not significant). Functional capillary density was 17% +/- 6% of baseline (PBH) and 31% +/- 11% (HES) (P < 0.05) and arteriolar diameter 73% +/- 3% of baseline (PBH) and 90% + 5% (HES) (P < 0.01). At the end, hemoglobin levels were 3.7 +/- 0.3 g/dL with HES, 8.2 +/- 0.6 g/dL with PBH, and 10.4 +/- 0.8 g/dL with HES-RBCs (P < 0.01 HES vs. PBH and HES-RBCs, P < 0.05 PBH vs. HES-RBCs). Base excess was restored to baseline with PBH and HES-RBCs, but not with HES (P < 0.05). Functional capillary density was 46% +/- 5% of baseline (PBH), 62% + 20% (HES-RBCs), and 36% +/- 19% (HES) (P < 0.01 HES-RBCs vs. HES). Peripheral oxygen delivery and consumption was highest with HES-RBCs, followed by PBH (P < 0.05 HES-RBCs vs. PBH, P < 0.01 HES-RBCs and PBH vs. HES). In conclusion, the PBH led to a correction of base deficit comparable to blood transfusion. However, oxygenation of the peripheral tissue was inferior with PBH. This was attributed to its negative impact on the peripheral microcirculation caused by arteriolar vasoconstriction.
Cho, Jang Ik; Basnyat, Buddha; Jeong, Choongwon; Di Rienzo, Anna; Childs, Geoff; Craig, Sienna R.; Sun, Jiayang
2017-01-01
Abstract Background and objectives: Tibetans have distinctively low hemoglobin concentrations at high altitudes compared with visitors and Andean highlanders. This study hypothesized that natural selection favors an unelevated hemoglobin concentration among Tibetans. It considered nonheritable sociocultural factors affecting reproductive success and tested the hypotheses that a higher percent of oxygen saturation of hemoglobin (indicating less stress) or lower hemoglobin concentration (indicating dampened response) associated with higher lifetime reproductive success. Methodology: We sampled 1006 post-reproductive ethnically Tibetan women residing at 3000–4100 m in Nepal. We collected reproductive histories by interviews in native dialects and noninvasive physiological measurements. Regression analyses selected influential covariates of measures of reproductive success: the numbers of pregnancies, live births and children surviving to age 15. Results: Taking factors such as marriage status, age of first birth and access to health care into account, we found a higher percent of oxygen saturation associated weakly and an unelevated hemoglobin concentration associated strongly with better reproductive success. Women who lost all their pregnancies or all their live births had hemoglobin concentrations significantly higher than the sample mean. Elevated hemoglobin concentration associated with a lower probability a pregnancy progressed to a live birth. Conclusions and implications: These findings are consistent with the hypothesis that unelevated hemoglobin concentration is an adaptation shaped by natural selection resulting in the relatively low hemoglobin concentration of Tibetans compared with visitors and Andean highlanders. PMID:28567284
Effect of hemoglobin- and Perflubron-based oxygen carriers on common clinical laboratory tests.
Ma, Z; Monk, T G; Goodnough, L T; McClellan, A; Gawryl, M; Clark, T; Moreira, P; Keipert, P E; Scott, M G
1997-09-01
Polymerized hemoglobin solutions (Hb-based oxygen carriers; HBOCs) and a second-generation perfluorocarbon (PFC) emulsion (Perflubron) are in clinical trials as temporary oxygen carriers ("blood substitutes"). Plasma and serum samples from patients receiving HBOCs look markedly red, whereas those from patients receiving PFC appear to be lipemic. Because hemolysis and lipemia are well-known interferents in many assays, we examined the effects of these substances on clinical chemistry, immunoassay, therapeutic drug, and coagulation tests. HBOC concentrations up to 50 g/L caused essentially no interference for Na, K, Cl, urea, total CO2, P, uric acid, Mg, creatinine, and glucose values determined by the Hitachi 747 or Vitros 750 analyzers (or both) or for immunoassays of lidocaine, N-acetylprocainamide, procainamide, digoxin, phenytoin, quinidine, or theophylline performed on the Abbott AxSym or TDx. Gentamycin and vancomycin assays on the AxSym exhibited a significant positive and negative interference, respectively. Immunoassays for TSH on the Abbott IMx and for troponin I on the Dade Stratus were unaffected by HBOC at this concentration. Tests for total protein, albumin, LDH, AST, ALT, GGT, amylase, lipase, and cholesterol were significantly affected to various extents at different HBOC concentrations on the Hitachi 747 and Vitros 750. The CK-MB assay on the Stratus exhibited a negative interference at 5 g/L HBOC. HBOC interference in coagulation tests was method-dependent-fibrometer-based methods on the BBL Fibro System were free from interference, but optical-based methods on the MLA 1000C exhibited interferences at 20 g/L HBOC. A 1:20 dilution of the PFC-based oxygen carrier (600 g/L) caused no interference on any of these chemistry or immunoassay tests except for amylase and ammonia on the Vitros 750 and plasma iron on the Hitachi 747.
Sulfide binding properties of truncated hemoglobins.
Nicoletti, Francesco P; Comandini, Alessandra; Bonamore, Alessandra; Boechi, Leonardo; Boubeta, Fernando Martin; Feis, Alessandro; Smulevich, Giulietta; Boffi, Alberto
2010-03-16
The truncated hemoglobins from Bacillus subtilis (Bs-trHb) and Thermobifida fusca (Tf-trHb) have been shown to form high-affinity complexes with hydrogen sulfide in their ferric state. The recombinant proteins, as extracted from Escherichia coli cells after overexpression, are indeed partially saturated with sulfide, and even highly purified samples still contain a small but significant amount of iron-bound sulfide. Thus, a complete thermodynamic and kinetic study has been undertaken by means of equilibrium and kinetic displacement experiments to assess the relevant sulfide binding parameters. The body of experimental data indicates that both proteins possess a high affinity for hydrogen sulfide (K = 5.0 x 10(6) and 2.8 x 10(6) M(-1) for Bs-trHb and Tf-trHb, respectively, at pH 7.0), though lower with respect to that reported previously for the sulfide avid Lucina pectinata I hemoglobins (2.9 x 10(8) M(-1)). From the kinetic point of view, the overall high affinity resides in the slow rate of sulfide release, attributed to hydrogen bonding stabilization of the bound ligand by distal residue WG8. A set of point mutants in which these residues have been replaced with Phe indicates that the WG8 residue represents the major kinetic barrier to the escape of the bound sulfide species. Accordingly, classical molecular dynamics simulations of SH(-)-bound ferric Tf-trHb show that WG8 plays a key role in the stabilization of coordinated SH(-) whereas the YCD1 and YB10 contributions are negligible. Interestingly, the triple Tf-trHb mutant bearing only Phe residues in the relevant B10, G8, and CD1 positions is endowed with a higher overall affinity for sulfide characterized by a very fast second-order rate constant and 2 order of magnitude faster kinetics of sulfide release with respect to the wild-type protein. Resonance Raman spectroscopy data indicate that the sulfide adducts are typical of a ferric iron low-spin derivative. In analogy with other low-spin ferric sulfide
Ibaraki, Masanobu; Shinohara, Yuki; Nakamura, Kazuhiro; Miura, Shuichi; Kinoshita, Fumiko; Kinoshita, Toshibumi
2010-07-01
Regional cerebral blood flow (CBF) and oxygen metabolism can be measured by positron emission tomography (PET) with (15)O-labeled compounds. Hemoglobin (Hb) concentration of blood, a primary determinant of arterial oxygen content (C(a)O(2)), influences cerebral circulation. We investigated interindividual variations of CBF, cerebral blood volume (CBV), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO(2)) in relation to Hb concentration in healthy human volunteers (n=17) and in patients with unilateral steno-occlusive disease (n=44). For the patients, data obtained only from the contralateral hemisphere (normal side) were analyzed. The CBF and OEF were inversely correlated with Hb concentration, but CMRO(2) was independent of Hb concentration. Oxygen delivery defined as a product of C(a)O(2) and CBF (C(a)O(2) CBF) increased with a rise of Hb concentration. The analysis with a simple oxygen model showed that oxygen diffusion parameter (L) was constant over the range of Hb concentration, indicating that a homeostatic mechanism controlling CBF is necessary to maintain CMRO(2). The current findings provide important knowledge to understand the control mechanism of cerebral circulation and to interpret the (15)O PET data in clinical practice.
Hardison, Ross C; Chui, David H K; Giardine, Belinda; Riemer, Cathy; Patrinos, George P; Anagnou, Nicholas; Miller, Webb; Wajcman, Henri
2002-03-01
We have constructed a relational database of hemoglobin variants and thalassemia mutations, called HbVar, which can be accessed on the web at http://globin.cse.psu.edu. Extensive information is recorded for each variant and mutation, including a description of the variant and associated pathology, hematology, electrophoretic mobility, methods of isolation, stability information, ethnic occurrence, structure studies, functional studies, and references. The initial information was derived from books by Dr. Titus Huisman and colleagues [Huisman et al., 1996, 1997, 1998]. The current database is updated regularly with the addition of new data and corrections to previous data. Queries can be formulated based on fields in the database. Tables of common categories of variants, such as all those involving the alpha1-globin gene (HBA1) or all those that result in high oxygen affinity, are maintained by automated queries on the database. Users can formulate more precise queries, such as identifying "all beta-globin variants associated with instability and found in Scottish populations." This new database should be useful for clinical diagnosis as well as in fundamental studies of hemoglobin biochemistry, globin gene regulation, and human sequence variation at these loci. Copyright 2002 Wiley-Liss, Inc.
Revsbech, Inge G; Tufts, Danielle M; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E; Storz, Jay F; Fago, Angela
2013-11-15
Semi-fossorial ground squirrels face challenges to respiratory gas transport associated with the chronic hypoxia and hypercapnia of underground burrows, and such challenges are compounded in species that are native to high altitude. During hibernation, such species must also contend with vicissitudes of blood gas concentrations and plasma pH caused by episodic breathing. Here, we report an analysis of hemoglobin (Hb) function in six species of marmotine ground squirrels with different altitudinal distributions. Regardless of their native altitude, all species have high Hb-O2 affinities, mainly due to suppressed sensitivities to allosteric effectors [2,3-diphosphoglycerate (DPG) and chloride ions]. This suppressed anion sensitivity is surprising given that all canonical anion-binding sites are conserved. Two sciurid species, the golden-mantled and thirteen-lined ground squirrel, have Hb-O2 affinities that are characterized by high pH sensitivity and low thermal sensitivity relative to the Hbs of humans and other mammals. The pronounced Bohr effect is surprising in light of highly unusual amino acid substitutions at the C-termini that are known to abolish the Bohr effect in human HbA. Taken together, the high O2 affinity of sciurid Hbs suggests an enhanced capacity for pulmonary O2 loading under hypoxic and hypercapnic conditions, while the large Bohr effect should help to ensure efficient O2 unloading in tissue capillaries. In spite of the relatively low thermal sensitivities of the sciurid Hbs, our results indicate that the effect of hypothermia on Hb oxygenation is the main factor contributing to the increased blood-O2 affinity in hibernating ground squirrels.
Multi-spectral imaging of oxygen saturation
NASA Astrophysics Data System (ADS)
Savelieva, Tatiana A.; Stratonnikov, Aleksander A.; Loschenov, Victor B.
2008-06-01
The system of multi-spectral imaging of oxygen saturation is an instrument that can record both spectral and spatial information about a sample. In this project, the spectral imaging technique is used for monitoring of oxygen saturation of hemoglobin in human tissues. This system can be used for monitoring spatial distribution of oxygen saturation in photodynamic therapy, surgery or sports medicine. Diffuse reflectance spectroscopy in the visible range is an effective and extensively used technique for the non-invasive study and characterization of various biological tissues. In this article, a short review of modeling techniques being currently in use for diffuse reflection from semi-infinite turbid media is presented. A simple and practical model for use with a real-time imaging system is proposed. This model is based on linear approximation of the dependence of the diffuse reflectance coefficient on relation between absorbance and reduced scattering coefficient. This dependence was obtained with the Monte Carlo simulation of photon propagation in turbid media. Spectra of the oxygenated and deoxygenated forms of hemoglobin differ mostly in the red area (520 - 600 nm) and have several characteristic points there. Thus four band-pass filters were used for multi-spectral imaging. After having measured the reflectance, the data obtained are used for fitting the concentration of oxygenated and free hemoglobin, and hemoglobin oxygen saturation.
Mislan, K A S; Deutsch, Curtis A; Brill, Richard W; Dunne, John P; Sarmiento, Jorge L
2017-10-01
Oxygen concentrations are hypothesized to decrease in many areas of the ocean as a result of anthropogenically driven climate change, resulting in habitat compression for pelagic animals. The oxygen partial pressure, pO 2 , at which blood is 50% saturated (P 50 ) is a measure of blood oxygen affinity and a gauge of the tolerance of animals for low ambient oxygen. Tuna species display a wide range of blood oxygen affinities (i.e., P 50 values) and therefore may be differentially impacted by habitat compression as they make extensive vertical movements to forage on subdaily time scales. To project the effects of end-of-the-century climate change on tuna habitat, we calculate tuna P 50 depths (i.e., the vertical position in the water column at which ambient pO 2 is equal to species-specific blood P 50 values) from 21st century Earth System Model (ESM) projections included in the fifth phase of the Climate Model Intercomparison Project (CMIP5). Overall, we project P 50 depths to shoal, indicating likely habitat compression for tuna species due to climate change. Tunas that will be most impacted by shoaling are Pacific and southern bluefin tunas-habitat compression is projected for the entire geographic range of Pacific bluefin tuna and for the spawning region of southern bluefin tuna. Vertical shifts in P 50 depths will potentially influence resource partitioning among Pacific bluefin, bigeye, yellowfin, and skipjack tunas in the northern subtropical and eastern tropical Pacific Ocean, the Arabian Sea, and the Bay of Bengal. By establishing linkages between tuna physiology and environmental conditions, we provide a mechanistic basis to project the effects of anthropogenic climate change on tuna habitats. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Gorczynski, R M; Alexander, C; Brandenburg, K; Chen, Z; Heini, A; Neumann, D; Mach, J P; Rietschel, E T; Tersikh, A; Ulmer, A J; Yu, Kai; Zahringer, U; Khatri, I
2017-09-01
C5BL/6 female mice receiving dextran sodium sulfate in their drinking water develop an acute inflammatory colitis within 7d, with weight loss, histopathologic signs of inflammation, and colonic expression of inflammatory cytokines. In previous studies we have reported that increased inflammatory cytokine expression in aged mice can be attenuated by oral gavage of a crude fetal extract containing glutathione (GSH), MPLA and fetal hemoglobin, or more specifically by injection of a combination of these purified reagents. We speculated that this combination led to an altered tissue redox environment in which the immune response developed, thus regulating inflammation. Accordingly, we used wild-type (WT) C57BL/6 mice, or mice lacking either murine beta Hemoglobin major (Hgbβ ma KO) or minor (Hgbβ mi KO) as recipients of DSS in their drinking water, and followed development of colitis both clinically and by inflammatory cytokine production, before/after oral treatment of mice with a crude fetal liver extract. Mice lacking an intact fetal hemoglobin chain (Hgbβ mi KO) developed severe colitis, with enhanced colonic expression of inflammatory cytokines, which could not be rescued by extract, unlike WT and Hgbβ ma KO animals. Moreover, disease in both WT and Hgbβ ma KO animals could also be attenuated by exposure to 5-hydroxymethyl furfural (5HMF), hydroxyurea or rapamycin. The former has been used as an alternative means of stabilizing the conformation of adult hemoglobin in a manner which mimicks the oxygen-affinity of fetal hemoglobin, while we show that both hydroxyurea and rapamycin augment expression of murine fetal hemoglobin chains. Our data suggests there may be a clinical value in exploring agents which alter local REDOX environments as an adjunctive treatment for colitis and attenuating inflammatory cytokine production. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhou, Su-Qin; Chen, Tu-Nan; Ji, Guang-Fu; Wang, En-Ren
2017-06-01
IR spectra of heme and different O 2 -content hemoglobin were studied by the quantum computation method at the molecule level. IR spectra of heme and different O 2 -content hemoglobin were quantificationally characterized from 0 to 100 THz. The IR spectra of oxy-heme and de-oxy-heme are obviously different at the frequency regions of 9.08-9.48, 38.38-39.78, 50.46-50.82, and 89.04-91.00 THz. At 24.72 THz, there exists the absorption peak for oxy-heme, whereas there is not the absorption peak for de-oxy-heme. Whether the heme contains Fe-O-O bond or not has the great influence on its IR spectra and vibration intensities of functional groups in the mid-infrared area. The IR adsorption peak shape changes hardly for different O 2 -content hemoglobin. However, there exist three frequency regions corresponding to the large change of IR adsorption intensities for containing-O 2 hemoglobin in comparison with de-oxy-hemoglobin, which are 11.08-15.93, 44.70-50.22, and 88.00-96.68 THz regions, respectively. The most differential values with IR intensity of different O 2 -content hemoglobin all exceed 1.0 × 10 4 L mol -1 cm -1 . With the increase of oxygen content, the absorption peak appears in the high-frequency region for the containing-O 2 hemoglobin in comparison with de-oxy-hemoglobin. The more the O 2 -content is, the greater the absorption peak is at the high-frequency region. The IR spectra of different O 2 -content hemoglobin are so obviously different in the mid-infrared region that it is very easy to distinguish the hemoglobin variant by means of IR spectra detector. IR spectra of hemoglobin from quantum computation can provide scientific basis and specific identification of hemoglobin variant resulting from different O 2 contents in medical diagnosis.
Unloading oxygen in a capillary vessel under a pathological condition.
Escobar, C; Méndez, F
2008-10-01
In this work, we study theoretically the unloading of oxygen from a hemoglobin molecule to the wall of a typical capillary vessel, considering that the hemoglobin under pathological conditions, obeys the rheological Maxwell model. Based on recent experimental evidences in hypertension, we consider that the red blood cells (RBCs) are composed by a single continuous medium in contrast with the classical particulate or discrete RBC models, which are only valid under normal physiological conditions. The analysis considers the hemodynamic interactions between the plasma and the hemoglobin, both circulating in a long horizontal capillary. We apply numerical and analytical methods to obtain the main fluid-dynamic characteristics for both fluids in the limit of low Reynolds and Womersley numbers. A diffusion boundary layer formulation for the oxygen transport in the combined plasma-hemoglobin core region is presented. The main aspects derived are the time and spatial evolution of the membrane. The hemoglobin and plasma velocities and the pressure distributions are shown. For the oxygen unloading the results are the oxy-hemoglobin saturation, the oxygen flux and the oxygen concentration in the cell-free plasma layer. The volume fraction of red blood cells and the Strouhal number have a great influence on the hemodynamic interactions.
Purification of Hemoglobin by Tangential Flow Filtration with Diafiltration
Elmer, Jacob; Harris, David R.; Sun, Guoyong; Palmer, Andre F.
2009-01-01
A recent study by Palmer et al. (2009) demonstrated that tangential flow filtration (TFF) can be used to produce HPLC-grade bovine and human hemoglobin (Hb). In this current study, we assessed the quality of bovine Hb (bHb) purified by introducing a 10 L batch-mode diafiltration step to the previously mentioned TFF Hb purification process. bHb was purified from bovine red blood cells (RBCs) by filtering clarified RBC lysate through 50 nm (stage I) & 500 kDa (stage II) hollow fiber (HF) membranes. The filtrate was then passed through a 100 kDa (stage III) HF membrane with or without an additional 10 L diafiltration step to potentially remove additional small molecular weight impurities. Protein assays, SDS-PAGE, and LC-MS of the purified bHb (stage III retentate) reveal that addition of a diafiltration step has no effect on bHb purity or yield; however, it does increase the methemoglobin level and oxygen affinity of purified bHb. Therefore, we conclude that no additional benefit is gained from diafiltration at stage III and a three-stage TFF process is sufficient to produce HPLC-grade bHb. PMID:19621471
Sousa, Eduardo H S; Tuckerman, Jason R; Gondim, Ana C S; Gonzalez, Gonzalo; Gilles-Gonzalez, Marie-Alda
2013-01-22
FixL is a prototype for heme-based sensors, multidomain proteins that typically couple a histidine protein kinase activity to a heme-binding domain for sensing of diatomic gases such as oxygen, carbon monoxide, and nitric oxide. Despite the relatively well-developed understanding of FixL, the importance of some of its domains has been unclear. To explore the impact of domain-domain interactions on oxygen sensing and signal transduction, we characterized and investigated Rhizobium etli hybrid sensor ReFixL. In ReFixL, the core heme-containing PAS domain and kinase region is preceded by an N-terminal PAS domain of unknown function and followed by a C-terminal receiver domain. The latter resembles a target substrate domain that usually occurs independently of the kinase and contains a phosphorylatable aspartate residue. We isolated the full-length ReFixL as a soluble holoprotein with a single heme b cofactor. Despite a low affinity for oxygen (K(d) for O₂ of 738 μM), the kinase activity was completely switched off by O₂ at concentrations well below the K(d). A deletion of the first PAS domain strongly increased the oxygen affinity but essentially prohibited autophosphorylation, although the truncated protein was competent to accept phosphoryl groups in trans. These studies provide new insights into histidyl-aspartyl phosphoryl transfers in two-component systems and suggest that the control of ligand affinity and signal transduction by PAS domains can be direct or indirect.
Plasma Free Hemoglobin Generation Using the EOS PMP™ Oxygenator and the CentriMag® Blood Pump.
Hodge, Ashley B; Deitemyer, Matthew A; Duffy, Victoria L; Tumin, Dmitry; Garbin, Dorothy A; Nicol, Kathleen K; Hayes, Don; Cismowski, Mary J; Yates, Andrew R
2018-06-01
Hemolysis is a known consequence of extracorporeal membrane oxygenation (ECMO) resulting from shear force within the different components of the extracorporeal circuit. The primary aim of this study was to evaluate the EOS PMP ™ oxygenator for generation of plasma free hemoglobin (PfHg) over 24 hours at nominal operating range flow rates. The EOS ECMO ™ (LivaNova, Inc.; formerly Sorin, Arvada, CO) is equipped with a plasma tight polymethylpentene (PMP) hollow fiber oxygenator. We hypothesized that PfHg generation would be elevated in circuits with higher flow rates, because of the significant pressure drop across the oxygenator according to manufacturer provided flow charts. Generated PfHg concentrations were compared with PfHg concentrations from blood not exposed to an ECMO circuit. The secondary aim was to evaluate circuit flow-rate-induced changes in platelet count and platelet function over 24 hours. Circuits contained a CentriMag ® (St. Jude Medical, St. Paul, MN) blood pump and an EOS ECMO PMP ™ oxygenator. Circuits in triplicate were run continuously for 24 hours at three flow rates [1, 3, and 5 liters per minute {LPM}]. PfHg was analyzed at baseline, 6, 12, 18, and 24 hours. Platelet count and function were measured at baseline and 24 hours. Concentrations of PfHg at baseline for circuits operating at 1, 3, and 5 LPM were 24.4 ± 4.0, 38.4 ± 28.6, and 26.7 ± 6.9 mg/dL, respectively. PfHg concentrations after 24 hours were statistically compared for the three flow rates using analysis of variance; PfHg concentrations at 1 LPM (181.4 ± 29.1 mg/dL), 3 LPM (145.9 ± 8.7 mg/dL), and 5 LPM (100.1 ± 111.3 mg/dL) circuits. The F -test was not statistically significant ( p = .632), indicating that PfHg generation at 24 hours was similar among the three flow rates. Excessive hemolysis using PfHg levels in the EOS PMP ™ membrane oxygenator was not observed.
Effect of hemodialysis on factors influencing oxygen transport.
Hirszel, P; Maher, J F; Tempel, G E; Mengel, C E
1975-06-01
Ten patients underwent 4 study hemodialyses, one with standard dialysis conditions, one with an isophosphate dialysate, one with simultaneous ammonium chloride loading, and other, after pretreatment, with sodium bicarbonate. Measurement of hemoglobin oxygen affinity (P-50), erythrocyte 2,3-DPG, blood-gasses, and serum chemistries revealed biochemically effective hemodialyses and slight changes in oxygen transport parameters. The P-50 (in vivo) values decreased slightly but significantly (p greater than 0.05) with dialysis. When corrected to pH 7.4, eliminating the Bohr effect, P-50 increased (p greater than 0.05). With unmodified dialysis elevated values of 2,3-DPG (in comparison to normal) decreased, a change that did not correlate with delta-p-50, delta-serum phosphate, or delta-serum creatinine. With standard and isophosphate dialyses Po-2 decreased significantly. The decrease correlated with delta-hydrogen ion concentration and did not occur with dialyses designed to maintain pH constant. Thus, hemodialysis influences many factors that affect oxygen transport in different and counterbalancing directions. These changes are not totally explained by alterations in 2,3-DPG, pH or serum phosphate. Maintenance of acidosis or hyperphosphatemia during dialysis is not recommended.
No impaired hemoglobin oxygenation in forearm muscles of patients with chronic CRPS-1.
Brunnekreef, Jaap J J; Oosterhof, Jan; Wolff, André P; Crul, Ben J P; Wilder-Smith, Oliver H G; Oostendorp, Rob A B
2009-01-01
Physiotherapy is considered an important treatment option in patients with upper limb complex regional pain syndrome type-1 (CRPS-1). In case of chronic CRPS-1, exercise therapy of the affected limb forms an important part of the physiotherapeutic program. We investigated whether muscle loading in chronic CRPS-1 patients is associated with impairments in muscle circulation of the forearm of the affected limb. Thirty patients with chronic CRPS-1 unilaterally affecting their upper limbs, and 30 age-matched and sex-matched control participants were included in this study. Local muscle blood flow and hemoglobin oxygenation were measured by near infrared spectroscopy within the muscles of the forearm at rest, after 1-minute isometric handgrip exercises, and after arterial occlusion. Main outcome parameters were: local muscle blood flow, O2 consumption (mVO2), and postischemic reoxygenation (ReOx). We found no differences in baseline muscle blood flow, mVO2, and ReOx between the affected CRPS-1, unaffected CRPS-1, and control arms. After exercise, mVO2 of the affected CRPS-1 arms was not different from the clinically unaffected CRPS-1 arms. Furthermore, in comparison with the control arms, unaffected CRPS-1 arms showed no difference in mVO2 or ReOx. Muscle loading does not seems to be related to impairments in muscle oxygen uptake in forearm muscles of upper limbs affected by chronic CRPS-1. Our results suggest that exercise therapy can be safely used in physiotherapeutic training programs for chronic CRPS-1 of the upper limb.
Analysis of alpha hemoglobin stabilizing protein overexpression in murine β-thalassemia
Nasimuzzaman, Md; Khandros, Eugene; Wang, Xiaomei; Kong, Yi; Zhao, Huifen; Weiss, David; Rivella, Stefano; Weiss, Mitchell J.; Persons, Derek A.
2013-01-01
Excess free α-globin is cytotoxic and contributes to the pathophysiology of β-thalassemia. Alpha hemoglobin stabilizing protein (AHSP) is a molecular chaperone that binds free α-globin to promote its folding and inhibit its ability to produce damaging reactive oxygen species. Reduced AHSP levels correlate with increased severity of β-thalassemia in some human cohorts, but causal mechanistic relationships are not established for these associations. We used transgenic and lentiviral gene transfer methods to investigate whether supraphysiologic AHSP levels could mitigate the severity of β-thalassemia intermedia by providing an increased sink for the excess pool of α-globin chains. We tested wild-type AHSP and two mutant versions with amino acid substitutions that confer 3- or 13-fold higher affinity for α-globin. Erythroid overexpression of these AHSP proteins up to 11-fold beyond endogenous levels had no major effects on hematologic parameters in β-thalassemic animals. Our results demonstrate that endogenous AHSP is not limiting for α-globin detoxification in a murine model of β-thalassemia. PMID:20815047
21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).
Code of Federal Regulations, 2010 CFR
2010-04-01
.... (2) Indications for use. For the treatment of anemia in dogs by increasing systemic oxygen content (plasma hemoglobin concentration) and improving the clinical signs associated with anemia, regardless of the cause of anemia (hemolysis, blood loss, or ineffective erythropoiesis). (3) Limitations. For...
21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).
Code of Federal Regulations, 2014 CFR
2014-04-01
.... (2) Indications for use. For the treatment of anemia in dogs by increasing systemic oxygen content (plasma hemoglobin concentration) and improving the clinical signs associated with anemia, regardless of the cause of anemia (hemolysis, blood loss, or ineffective erythropoiesis). (3) Limitations. Federal...
21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).
Code of Federal Regulations, 2012 CFR
2012-04-01
.... (2) Indications for use. For the treatment of anemia in dogs by increasing systemic oxygen content (plasma hemoglobin concentration) and improving the clinical signs associated with anemia, regardless of the cause of anemia (hemolysis, blood loss, or ineffective erythropoiesis). (3) Limitations. For...
21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).
Code of Federal Regulations, 2013 CFR
2013-04-01
.... (2) Indications for use. For the treatment of anemia in dogs by increasing systemic oxygen content (plasma hemoglobin concentration) and improving the clinical signs associated with anemia, regardless of the cause of anemia (hemolysis, blood loss, or ineffective erythropoiesis). (3) Limitations. For...
Böhmer, Anke; Pich, Andreas; Schmidt, Mario; Haghikia, Arash; Tsikas, Dimitrios
2016-04-15
Previously we found by HPLC with fluorescence detection that inorganic nitrite induces oxidation of glutathione (GSH) to its disulfide (GSSG) in intact and more abundantly in lyzed red blood cells (RBCs) from healthy humans. In the present work, we performed MS-based protein analysis and observed that nitrite (range, 0-20mM) induces formation of S-glutathionyl hemoglobin (HbSSG) at cysteine (Cys) β93 and β112 of oxyhemoglobin (HbO2) in lyzed human RBCs (range, 6-8mM HbO2). Hemoglobin species were isolated from incubation mixtures of nitrite in lyzed RBCs by ultrafiltration or affinity chromatography and analyzed by HPLC and LC-MS/MS. The mechanism likely involves inhibition of catalase activity by nitrite (IC50, 9 μM), which allows H2O2 to accumulate and oxidize Cys moieties of oxyhemoglobin and erythrocytic GSH to form HbSSG in addition to GSSG. In freshly prepared hemolysate samples, nitrite induced release of superoxide and molecular oxygen. In the presence of paracetamol and nitrite in hemolysate samples, 3-nitro-paracetamol was detected. Nitrite also induced S-nitroso hemoglobin (HbSNO) formation in low yield (i.e., 0.1%). Synthetic cysteine (Cys), glutathione (GSH), N-acetylcysteine (NAC) and N-acetylcysteine ethyl ester (NACET) inhibited nitrite-induced modifications of oxyhemoglobin including methemoglobin, HbSSG (CysSH > NACET > GSH ≈ NAC; thiol concentration, 50 μM) and HbSNO. Nitrite-induced oxidative modifications may alter physiological hemoglobin functions and may require alternative treatments for conditions associated with oxidized hemoglobin like in nitrite-induced methemoglobinemia. Accumulation of soluble Cys in RBCs via oral administration of NACET could be a new promising strategy to prevent nitrite-induced methemoglobinemia by nitrite and other oxidants. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Kramer, George C.; Wade, Charles E.; Dubick, Michael A.; Atkins, James L.
2004-01-01
Introduction: Logistic constraints on combat casualty care preclude traditional resuscitation strategies which can require volumes and weights 3 fold or greater than hemorrhaged volume. We present a review of quantitative analyses of clinical and animal data on small volume strategies using 1) hypertonic-hyperosmotic solutions (HHS); 2) hemoglobin based oxygen carriers (HBOCs) and 3) closed-loop infusion regimens.Methods and Results: Literature searches and recent queries to industry and academic researchers have allowed us to evaluate the record of 81 human HHS studies (12 trauma trials), 19 human HBOCs studies (3trauma trials) and two clinical studies of closed-loop resuscitation.There are several hundreds animal studies and at least 82 clinical trials and reports evaluating small volume7.2%-7.5% hypertonic saline (HS) most often combined with colloids, e.g., dextran (HSD) or hetastarch(HSS). HSD and HSS data has been published for 1,108 and 392 patients, respectively. Human studies have documented volume sparing and hemodynamic improvements. Meta-analyses suggest improved survival for hypotensive trauma patients treated with HSD with significant reductions in mortality found for patients with blood pressure < 70 mmHg, head trauma, and penetrating injury requiring surgery. HSD and HSS have received regulatory approval in 14 and 3 countries, respectively, with 81,000+ units sold. The primary reported use was head injury and trauma resuscitation. Complications and reported adverse events are surprisingly rare and not significantly different from other solutions.HBOCs are potent volume expanders in addition to oxygen carriers with volume expansion greater than standard colloids. Several investigators have evaluated small volume hyperoncotic HBOCs or HS-HBOC formulations for hypotensive and normotensive resuscitation in animals. A consistent finding in resuscitation with HBOCs is depressed cardiac output. There is some evidence that HBOCs more efficiently unload
Clause, Didier; Detry, Bruno; Rodenstein, Daniel; Liistro, Giuseppe
2008-12-01
A decrease in hemoglobin affinity for oxygen is considered an adaptive mechanism against tissue hypoxia. Obstructive sleep apnea-hypopnea syndrome (OSAHS) is characterized by recurrent episodes of apnea and hypopnea resulting in arterial oxygen desaturations during sleep. Maillard et al. (10) observed a right shift of the oxyhemoglobin dissociation curve (ODC) and an increase in 2,3-diphosphoglycerate (2,3-DPG) concentration ([2,3-DPG]) in 15 patients with severe OSAHS, but some had slight daytime arterial hypoxemia while breathing room air. The aim of our study was to measure the ODC and 2,3-DPG concentrations in a group of subjects normoxemic during daytime referred to our sleep laboratory for suspicion of snoring or OSAHS. The patients were recruited during a period of 6 mo. All arterial and venous blood samples were taken early in the morning within 1 h of awakening following a full-night polysomnography. ODC and 2,3-DPG were analyzed in 88 patients: 56 OSAHS (oxygen desaturation index: 27.5 +/- 24.5) and 32 non-OSAHS. We found a significant correlation between the P50 and 2,3-DPG levels in the 88 patients: r = 0.502, P < 0.001. We observed no difference between OSAHS and non-OSAHS for the P50 and for [2,3-DPG]. There was no correlation between the severity of OSAHS and either P50 or [2,3-DPG]. Finally, there was no change in these parameters measured at baseline, after 3 days and after 1 mo of treatment by nasal continuous positive airway pressure in 7 patients with OSAHS. We conclude that patients with OSAHS who are normoxemic during daytime have comparable oxyhemoglobin affinity than nonapneic subjects.
NASA Astrophysics Data System (ADS)
Wang, Pengbo; Sun, Jiajing; Meng, Lingkang; Li, Zebin; Li, Ting
2018-02-01
Low level light/laser therapy (LLLT) is considered as a novel, non-invasive, and potential therapy in a variety of psychological and physical conditions, due to its effective intricate photobiomodulation. The mechanism of LLLT is that when cells are stimulated by photons, mitochondria produce a large quantity of ATP, which accelerates biochemical responses in the cell. It is of great significance to gain a clear insight into the change or interplay of various physiological parameters. In this study, we used functional near-infrared spectroscopy (fNIRS) and venous-occlusion plethysmography to measure the LLLT-induced changes in blood flow, oxygenation, and oxygen consumption in human forearms in vivo. Six healthy human participants (4 males and 2 females) were administered with 810-nm light emitted by LED array in ten minutes and blood flow, oxygenation and oxygen consumption were detected in the entire experiment. We found that LLLT induced an increase of blood flow and oxygen consumption on the treated site. Meanwhile, LLLT took a good role in promoting oxygenation of regional tissue, which was indicated by a significant increase of oxygenated hemoglobin concentration (Δ[HbO2]), a nearly invariable deoxygenated hemoglobin concentration (Δ[Hb]) and a increase of differential hemoglobin concentration (Δ[HbD] = Δ[HbO2] - Δ[Hb]). These results not only demonstrate enormous potential of LLLT, but help to figure out mechanisms of photobiomodulation.
Revsbech, Inge G.; Tufts, Danielle M.; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E.; Storz, Jay F.; Fago, Angela
2013-01-01
SUMMARY Semi-fossorial ground squirrels face challenges to respiratory gas transport associated with the chronic hypoxia and hypercapnia of underground burrows, and such challenges are compounded in species that are native to high altitude. During hibernation, such species must also contend with vicissitudes of blood gas concentrations and plasma pH caused by episodic breathing. Here, we report an analysis of hemoglobin (Hb) function in six species of marmotine ground squirrels with different altitudinal distributions. Regardless of their native altitude, all species have high Hb–O2 affinities, mainly due to suppressed sensitivities to allosteric effectors [2,3-diphosphoglycerate (DPG) and chloride ions]. This suppressed anion sensitivity is surprising given that all canonical anion-binding sites are conserved. Two sciurid species, the golden-mantled and thirteen-lined ground squirrel, have Hb–O2 affinities that are characterized by high pH sensitivity and low thermal sensitivity relative to the Hbs of humans and other mammals. The pronounced Bohr effect is surprising in light of highly unusual amino acid substitutions at the C-termini that are known to abolish the Bohr effect in human HbA. Taken together, the high O2 affinity of sciurid Hbs suggests an enhanced capacity for pulmonary O2 loading under hypoxic and hypercapnic conditions, while the large Bohr effect should help to ensure efficient O2 unloading in tissue capillaries. In spite of the relatively low thermal sensitivities of the sciurid Hbs, our results indicate that the effect of hypothermia on Hb oxygenation is the main factor contributing to the increased blood–O2 affinity in hibernating ground squirrels. PMID:24172889
Hemoglobins, programmed cell death and somatic embryogenesis.
Hill, Robert D; Huang, Shuanglong; Stasolla, Claudio
2013-10-01
Programmed cell death (PCD) is a universal process in all multicellular organisms. It is a critical component in a diverse number of processes ranging from growth and differentiation to response to stress. Somatic embryogenesis is one such process where PCD is significantly involved. Nitric oxide is increasingly being recognized as playing a significant role in regulating PCD in both mammalian and plant systems. Plant hemoglobins scavenge NO, and evidence is accumulating that events that modify NO levels in plants also affect hemoglobin expression. Here, we review the process of PCD, describing the involvement of NO and plant hemoglobins in the process. NO is an effector of cell death in both plants and vertebrates, triggering the cascade of events leading to targeted cell death that is a part of an organism's response to stress or to tissue differentiation and development. Expression of specific hemoglobins can alter this response in plants by scavenging the NO, thus, interrupting the death process. Somatic embryogenesis is used as a model system to demonstrate how cell-specific expression of different classes of hemoglobins can alter the embryogenic process, affecting hormone synthesis, cell metabolite levels and genes associated with PCD and embryogenic competence. We propose that plant hemoglobins influence somatic embryogenesis and PCD through cell-specific expression of a distinct plant hemoglobin. It is based on the premise that both embryogenic competence and PCD are strongly influenced by cellular NO levels. Increases in cellular NO levels result in elevated Zn(2+) and reactive-oxygen species associated with PCD, but they also result in decreased expression of MYC2, a transcription factor that is a negative effector of indoleacetic acid synthesis, a hormone that positively influences embryogenic competence. Cell-specific hemoglobin expression reduces NO levels as a result of NO scavenging, resulting in cell survival. Copyright © 2013 Elsevier Ireland Ltd
Ingle, John; Adewoye, Adeboye; Dewan, Robert; Okoli, Michael; Rollins, Lamarr; Eung, Shawn H; Luo, Hong-Yuan; Chui, David H K; Steinberg, Martin H
2004-01-01
Hb Hope [beta136(H14)Gly-->Asp (GGT-->GAT)] was first described in an African-American family in 1965. Since then, it has been found in combination with several different globin gene mutations in many other families of divergent ethnic backgrounds. The basis for its relatively frequent occurrences remains unexplained. This variant hemoglobin (Hb) is mildly unstable and has reduced oxygen affinity, but is generally innocuous clinically. This variant Hb can present as a confounding factor in arriving at a correct diagnosis by either electrophoresis or high performance liquid chromatography (HPLC), particularly during the neonatal period. DNA-based diagnostics can help solve this potential problem.
Mapping Polymerization and Allostery of Hemoglobin S Using Point Mutations
Weinkam, Patrick; Sali, Andrej
2014-01-01
Hemoglobin is a complex system that undergoes conformational changes in response to oxygen, allosteric effectors, mutations, and environmental changes. Here, we study allostery and polymerization of hemoglobin and its variants by application of two previously described methods: (i) AllosMod for simulating allostery dynamics given two allosterically related input structures and (ii) a machine-learning method for dynamics- and structure-based prediction of the mutation impact on allostery (Weinkam et al. J. Mol. Biol. 2013), now applicable to systems with multiple coupled binding sites such as hemoglobin. First, we predict the relative stabilities of substates and microstates of hemoglobin, which are determined primarily by entropy within our model. Next, we predict the impact of 866 annotated mutations on hemoglobin’s oxygen binding equilibrium. We then discuss a subset of 30 mutations that occur in the presence of the sickle cell mutation and whose effects on polymerization have been measured. Seven of these HbS mutations occur in three predicted druggable binding pockets that might be exploited to directly inhibit polymerization; one of these binding pockets is not apparent in the crystal structure but only in structures generated by AllosMod. For the 30 mutations, we predict that mutation-induced conformational changes within a single tetramer tend not to significantly impact polymerization; instead, these mutations more likely impact polymerization by directly perturbing a polymerization interface. Finally, our analysis of allostery allows us to hypothesize why hemoglobin evolved to have multiple subunits and a persistent low frequency sickle cell mutation. PMID:23957820
Saito, Takaaki; Yamaguchi, Hiroshi
2015-01-01
Tissue hypoxia is associated with tumor and inflammatory diseases, and detection of hypoxia is potentially useful for their detailed diagnosis. An endoscope system that can optically observe hemoglobin oxygen saturation (StO2) would enable minimally invasive, real-time detection of lesion hypoxia in vivo. Currently, point measurement of tissue StO2 via endoscopy is possible using the commercial fiber-optic oximeter T-Stat, which is based on visible light spectroscopy at many wavelengths. For clinical use, however, imaging of StO2 is desirable to assess the distribution of tissue oxygenation around a lesion. Here, we describe our StO2 imaging technique based on a small number of wavelength ranges in the visible range. By assuming a homogeneous tissue, we demonstrated that tissue StO2 can be obtained independently from the scattering property and blood concentration of tissue using four spectral bands. We developed a prototype endoscope system and used it to observe tissue-simulating phantoms. The StO2 (%) values obtained using our technique agreed with those from the T-Stat within 10%. We also showed that tissue StO2 can be derived using three spectral band if the scattering property is fixed at preliminarily measured values.
Gene Duplication and Evolutionary Innovations in Hemoglobin-Oxygen Transport
2016-01-01
During vertebrate evolution, duplicated hemoglobin (Hb) genes diverged with respect to functional properties as well as the developmental timing of expression. For example, the subfamilies of genes that encode the different subunit chains of Hb are ontogenetically regulated such that functionally distinct Hb isoforms are expressed during different developmental stages. In some vertebrate taxa, functional differentiation between co-expressed Hb isoforms may also contribute to physiologically important divisions of labor. PMID:27053736
Localized increase of tissue oxygen tension by magnetic targeted drug delivery
NASA Astrophysics Data System (ADS)
Liong, Celine; Ortiz, Daniel; Ao-ieong, Eilleen; Navati, Mahantesh S.; Friedman, Joel M.; Cabrales, Pedro
2014-07-01
Hypoxia is the major hindrance to successful radiation therapy of tumors. Attempts to increase the oxygen (O2) tension (PO2) of tissue by delivering more O2 have been clinically disappointing, largely due to the way O2 is transported and released by the hemoglobin (Hb) within the red blood cells (RBCs). Systemic manipulation of O2 transport increases vascular resistance due to metabolic autoregulation of blood flow to prevent over oxygenation. This study investigates a new technology to increase O2 delivery to a target tissue by decreasing the Hb-O2 affinity of the blood circulating within the targeted tissue. As the Hb-O2 affinity decreases, the tissue PO2 to satisfy tissue O2 metabolic needs increases without increasing O2 delivery or extraction. Paramagnetic nanoparticles (PMNPs), synthetized using gadolinium oxide, were coated with the cell permeable Hb allosteric effector L35 (3,5-trichlorophenylureido-phenoxy-methylpropionic acid). L35 decreases Hb affinity for O2 and favors the release of O2. The L35-coated PMNPs (L35-PMNPs) were intravenously infused (10 mg kg-1) to hamsters instrumented with the dorsal window chamber model. A magnetic field of 3 mT was applied to localize the effects of the L35-PMNPs to the window chamber. Systemic O2 transport characteristics and microvascular tissue oxygenation were measured after administration of L35-PMNPs with and without magnetic field. The tissue PO2 in untreated control animals was 25.2 mmHg. L35-PMNPs without magnetic field decreased tissue PO2 to 23.4 mmHg, increased blood pressure, and reduced blood flow, largely due to systemic modification of Hb-O2 affinity. L35-PMNPs with magnetic field increased tissue PO2 to 27.9 mmHg, without systemic or microhemodynamic changes. These results indicate that localized modification of Hb-O2 affinity can increase PO2 of target tissue without affecting systemic O2 delivery or triggering O2 autoregulation mechanisms. This technology can be used to treat local hypoxia and to
Purification of swine haptoglobin by affinity chromatography.
Eurell, T E; Hall, W F; Bane, D P
1990-01-01
A globin-agarose affinity chromatography technique was used to purify swine haptoglobin. This technique provides a highly specific, single-step purification method without the contamination of extraneous serum proteins reported by previous studies. Complex formation between the haptoglobin isolate and swine hemoglobin confirmed that biological activity was maintained during the purification process. Immunoelectrophoretic and Ouchterlony immunodiffusion methods revealed that the swine haptoglobin isolate cross-reacted with polyvalent antisera against human haptoglobin. Images Fig. 2. Fig. 3. PMID:2123414
Asmundson, Anna L.; Taber, Alexandria M.; van der Walde, Adella; Lin, Danielle H.; Olson, John S.; Anthony-Cahill, Spencer J.
2009-01-01
For the first time, a circularly permuted human β-globin (cpβ) has been coexpressed with human α-globin in bacterial cells and shown to associate to form α-cpβ hemoglobin in solution. Flash photolysis studies of α-cpβ show markedly biphasic CO and O2 kinetics with the amplitudes for the fast association phases being dominant due the presence of large amounts of high-affinity liganded hemoglobin dimers. Extensive dimerization of liganded but not deoxygenated α-cpβ was observed by gel chromatography. The rate constants for O2 and CO binding to the R state forms of α-cpβ are almost identical to those of native HbA (k′R(CO) ≈ 5.0 μM−1 s−1; k′R(O2) ≈ 50 μM−1 s−1), and the rate of O2 dissociation from fully oxygenated α-cpβ is also very similar to that observed for HbA (kR(O2) ≈ 21–28 s−1). When the equilibrium deoxyHb form of α-cpβ is reacted with CO in rapid mixing experiments, the observed time courses are monophasic and the observed bimolecular association rate constant is ∼1.0 μM−1 s−1, which is intermediate between the R state rate measured in partial photolysis experiments (∼5 μM−1 s−1) and that observed for T state deoxyHbA (k′T(CO) ≈ 0.1 to 0.2 μM−1 s−1). Thus the deoxygenated permutated β subunits generate an intermediate, higher affinity, deoxyHb quaternary state. This conclusion is supported by equilibrium oxygen binding measurements in which α-cpβ exhibits a P50 of ∼1.5 mmHg and a low n-value (∼1.3) at pH 7, 20 °C, compared to 8.5 mmHg and n ≈ 2.8 for native HbA under identical, dilute conditions. PMID:19397368
NASA Astrophysics Data System (ADS)
Gu, Yueqing; Bourke, Vincent; Kim, Jae Gwan; Xia, Mengna; Constantinescu, Anca; Mason, Ralph P.; Liu, Hanli
2003-07-01
Three oxygen-sensitive parameters (arterial hemoglobin oxygen saturation SaO2, tumor vascular oxygenated hemoglobin concentration [HbO2], and tumor oxygen tension pO2) were measured simultaneously by three different optical techniques (pulse oximeter, near infrared spectroscopy, and FOXY) to evaluate dynamic responses of breast tumors to carbogen (5% CO2 and 95% O2) intervention. All three parameters displayed similar trends in dynamic response to carbogen challenge, but with different response times. These response times were quantified by the time constants of the exponential fitting curves, revealing the immediate and the fastest response from the arterial SaO2, followed by changes in global tumor vascular [HbO2], and delayed responses for pO2. The consistency of the three oxygen-sensitive parameters demonstrated the ability of NIRS to monitor therapeutic interventions for rat breast tumors in-vivo in real time.
Egawa, Tsuyoshi; Yeh, Syun-Ru
2005-01-01
Hemoglobins have been discovered in organisms from virtually all kingdoms. Their presence in unicellular organisms suggests that the gene for hemoglobin is very ancient and that the hemoglobins must have functions other than oxygen transport, in view of the fact that O2 delivery is a diffusion-controlled process in these organisms. Based on sequence alignment, three groups of hemoglobins have been characterized in unicellular organisms. The group-one hemoglobins, termed truncated hemoglobins, consist of proteins with 110-140 amino acid residues and a novel two-over-two alpha-helical sandwich motif. The group-two hemoglobins, termed flavohemoglobins, consist of a hemoglobin domain, with a classical three-over-three alpha-helical sandwich motif, and a flavin-containing reductase domain that is covalently attached to it. The group-three hemoglobins consist of myoglobin-like proteins that have high sequence homology and structural similarity to the hemoglobin domain of flavohemoglobins. In this review, recent resonance Raman studies of each group of these proteins are presented. Their implications are discussed in the context of the structural and functional properties of these novel hemoglobins.
The narrow therapeutic window of glycated hemoglobin and assay variability.
Hosseini, S S; Bibler, I; Charles, M A
1999-12-01
Glycated hemoglobin is measured by a variety of assays, each of which has a unique normal level. Our purpose is to show that among the different assays available in the United States, using the same patient's blood sample, assay results may vary widely and may more or less easily achieve a glycated hemoglobin value within the normal range. The following assays were compared using the same patient's blood sample for each pair of assays: glycohemoglobin affinity assay (GHB Reader; Isolab, Akron, OH) versus gel electrophoresis assay (n = 76); Isolab versus ion capture assay (IMX; Abbott Laboratories, Irving, TX) (n = 57); monoclonal antibody assay (DCA2000; Bayer Diagnostics, Pittsburgh, PA) versus IMX (n = 100); and high-performance liquid chromatography (HPLC) assay (Bio-Rad Variant A1c; Bio-Rad Laboratories, Richmond, CA) versus IMX assay (n = 55). Our analyses indicate that a relative ranking can be established for the ease of achieving a normal glycated hemoglobin level. The ranking indicates that the most stringent or difficult assays for achieving a normal level are the Isolab and DCA2000 assays. The intermediate assays are the IMX and Bio-Rad Variant, and the easiest method for achieving a normal value is the gel electrophoresis assay. Our results indicate that various glycated hemoglobin assays vary widely and are associated with more or less difficulty for an individual patient to achieve a glycated hemoglobin level within the normal range. These results are especially significant with respect to (1) the clinically narrow therapeutic window of glycated hemoglobin values in type 1 diabetes to avoid rapidly advancing severe hypoglycemia rates and chronic microvascular complication rates, and (2) the glycated hemoglobin threshold for rapidly advancing macrovascular disease in both type 1 and type 2 patients.
Hoffmann, Federico G.; Opazo, Juan C.; Storz, Jay F.
2010-01-01
Natural selection often promotes evolutionary innovation by coopting preexisting genes for new functions, and this process may be greatly facilitated by gene duplication. Here we report an example of cooptive convergence where paralogous members of the globin gene superfamily independently evolved a specialized O2 transport function in the two deepest branches of the vertebrate family tree. Specifically, phylogenetic evidence demonstrates that erythroid-specific O2 transport hemoglobins evolved independently from different ancestral precursor proteins in jawed vertebrates (gnathostomes) and jawless fish (cyclostomes, represented by lamprey and hagfish). A comprehensive phylogenetic analysis of the vertebrate globin gene superfamily revealed that the erythroid hemoglobins of cyclostomes are orthologous to the cytoglobin protein of gnathostome vertebrates, a hexacoordinate globin that has no O2 transport function and that is predominantly expressed in fibroblasts and related cell types. The phylogeny reconstruction also revealed that vertebrate-specific globins are grouped into four main clades: (i) cyclostome hemoglobin + cytoglobin, (ii) myoglobin + globin E, (iii) globin Y, and (iv) the α- and β-chain hemoglobins of gnathostomes. In the hemoglobins of gnathostomes and cyclostomes, multisubunit quaternary structures provide the basis for cooperative O2 binding and allosteric regulation by coupling the effects of ligand binding at individual subunits with interactions between subunits. However, differences in numerous structural details belie their independent origins. This example of convergent evolution of protein function provides an impressive demonstration of the ability of natural selection to cobble together complex design solutions by tinkering with different variations of the same basic protein scaffold. PMID:20660759
Bache, Matthias; Reddemann, Rolf; Said, Harun M; Holzhausen, Hans-Jürgen; Taubert, Helge; Becker, Axel; Kuhnt, Thomas; Hänsgen, Gabriele; Dunst, Jürgen; Vordermark, Dirk
2006-12-01
The tumor-associated glycoprotein osteopontin (OPN) is discussed as a plasma marker of tumor hypoxia. However, the association of immunohistochemical OPN expression in tumor sections with tumor oxygenation parameters (HF5, median pO(2)), the hypoxia-related markers hypoxia-inducible factor-1alpha (HIF-1alpha) and carbonic anhydrase IX (CAIX), or hemoglobin and systemic vascular endothelial growth factor (VEGF) levels has not been investigated. Tumor tissue sections of 34 patients with advanced head-and-neck cancer treated with radiotherapy were assessed by immunochemistry for the expression of OPN, HIF-1alpha, and CA IX. Relationship of OPN expression with tumor oxygenation parameters (HF5, median pO(2)), HIF-1alpha and CA IX expression, hemoglobin and serum VEGF level, and clinical parameters was studied. Bivariate analysis showed a significant correlation of positive OPN staining with low hemoglobin level (p = 0.02), high HIF-1alpha expression (p = 0.02), and high serum vascular endothelial growth factor level (p = 0.02) for advanced head-and-neck cancer. Furthermore, considering the 31 Stage IV patients, the median pO(2) correlated significantly with the OPN expression (p = 0.02). OPN expression alone had only a small impact on prognosis. However, in a univariate Cox proportional hazard regression model, the expression of either OPN or HIF-1alpha or CA IX was associated with a 4.1-fold increased risk of death (p = 0.02) compared with negativity of all three markers. Osteopontin expression detected immunohistochemically is associated with oxygenation parameters in advanced head-and-neck cancer. When the results of OPN, HIF-1alpha, and CA IX immunohistochemistry are combined into a hypoxic profile, a strong and statistically significant impact on overall survival is found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bache, Matthias; Reddemann, Rolf; Institute of Pathology, Martin-Luther-University Halle-Wittenberg, Halle
2006-12-01
Purpose: The tumor-associated glycoprotein osteopontin (OPN) is discussed as a plasma marker of tumor hypoxia. However, the association of immunohistochemical OPN expression in tumor sections with tumor oxygenation parameters (HF5, median pO{sub 2}), the hypoxia-related markers hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) and carbonic anhydrase IX (CAIX), or hemoglobin and systemic vascular endothelial growth factor (VEGF) levels has not been investigated. Methods and Materials: Tumor tissue sections of 34 patients with advanced head-and-neck cancer treated with radiotherapy were assessed by immunochemistry for the expression of OPN, HIF-1{alpha}, and CA IX. Relationship of OPN expression with tumor oxygenation parameters (HF5, median pO{sub 2}), HIF-1{alpha}more » and CA IX expression, hemoglobin and serum VEGF level, and clinical parameters was studied. Results: Bivariate analysis showed a significant correlation of positive OPN staining with low hemoglobin level (p = 0.02), high HIF-1{alpha} expression (p = 0.02), and high serum vascular endothelial growth factor level (p = 0.02) for advanced head-and-neck cancer. Furthermore, considering the 31 Stage IV patients, the median pO{sub 2} correlated significantly with the OPN expression (p = 0.02). OPN expression alone had only a small impact on prognosis. However, in a univariate Cox proportional hazard regression model, the expression of either OPN or HIF-1{alpha} or CA IX was associated with a 4.1-fold increased risk of death (p = 0.02) compared with negativity of all three markers. Conclusion: Osteopontin expression detected immunohistochemically is associated with oxygenation parameters in advanced head-and-neck cancer. When the results of OPN, HIF-1{alpha}, and CA IX immunohistochemistry are combined into a hypoxic profile, a strong and statistically significant impact on overall survival is found.« less
Chen, Hauh-Jyun Candy; Fan, Chih-Huang; Yang, Ya-Fen
2016-12-19
Dried blood spot (DBS) is an emerging microsampling technique for the bioanalysis of small molecules, including fatty acids, metabolites, drugs, and toxicants. DBS offers many advantages as a sample format including easy sample collection and cheap sample shipment. Hemoglobin adducts have been recognized as a suitable biomarker for monitoring chemical exposure. We previously reported that certain modified peptides in hemoglobin derived from reactive chlorine, nitrogen, and oxygen species are associated with factors including smoking, diabetes mellitus, and aging. However, the stability of these oxidation-induced modifications of hemoglobin remains unknown and whether they can be formed artifactually during storage of DBS. To answer these questions, globin extracted from the DBS cards was analyzed, and the stability of the modifications was evaluated. After storage of the DBS cards at 4 °C or room temperature up to 7 weeks, we isolated globin from a quarter of the spot every week. The extents of 11 sites and types of post-translational modifications (PTMs), including nitration and nitrosylation of tyrosine and oxidation of cysteine and methionine residues, in human hemoglobin were measured in the trypsin digest by nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS) using selected reaction monitoring. The extents of all these PTMs are stable within 14 days when stored on DBS at room temperature and at 4 °C, while those from direct extraction of fresh blood are stable for at least 8 weeks when stored as an aqueous solution at -20 °C. Extraction of globin from a DBS card is of particular importance for hemolytic blood samples. To our knowledge, this is the first report on the stability of oxidative modifications of hemoglobin on DBSs, which are stable for 14 days under ambient conditions (room temperature, in air). Therefore, it is feasible and convenient to analyze these hemoglobin modifications from DBSs in studies
Light Scattering and Absorption Studies of Sickle Cell Hemoglobin
NASA Astrophysics Data System (ADS)
Kim-Shapiro, Daniel
1997-11-01
The use of physical techniques has been very important in understanding the pathophysiology of sickle cell disease. In particular, light scattering and absorption studies have been used to measure the kinetics of sickle cell hemoglobin polymerization and depolymerization (melting). The theory of sickle cell polymerization that has been derived and tested by these methods has not only led to an increased understanding of the pathophysiology of the disease but has also led to improved treatment strategies. Sickle cell disease effects about 1 out of 600 people of African descent born in the United States. The disease is caused by a mutant form of hemoglobin (the oxygen transporting molecule in the blood), hemoglobin S (HbS), which differs from normal adult hemoglobin by the substitution of a single amino acid for another. The polymerization of HbS, which occurs under conditions of low oxygen pressure, causes distortion and increased rigidity of the sickle red blood cell that leads to blockage of the capillaries and a host of resulting complications. The disease is associated with tissue damage, severe painful crises and a high degree of mortality. Light scattering studies of purified HbS and whole cells (conducted by F.A. Ferrone, J. Hofrichter, W.A. Eaton, and their associates) have been used to determine the mechanism of HbS polymerization. Polymerization will generally not occur when the hemoglobin is in an oxygen-rich environment. The question is, when HbS is rapidly deoxygenated (as it is when going from the lungs to the tissues) what is the kinetics of polymerization? Photolysis methods were used to rapidly deoxygenate HbS and light scattering was used as a function of time to measure the kinetics of polymerization. Polarized light scattering may be a more effective way to measure polymer content than total intensity light scattering. It was found that no polymerization occurs during a period of time called the delay time and subsequent polymerization occurs
Microvascular oxygen consumption during sickle cell pain crisis.
Rowley, Carol A; Ikeda, Allison K; Seidel, Miles; Anaebere, Tiffany C; Antalek, Matthew D; Seamon, Catherine; Conrey, Anna K; Mendelsohn, Laurel; Nichols, James; Gorbach, Alexander M; Kato, Gregory J; Ackerman, Hans
2014-05-15
Sickle cell disease is an inherited blood disorder characterized by chronic hemolytic anemia and episodic vaso-occlusive pain crises. Vaso-occlusion occurs when deoxygenated hemoglobin S polymerizes and erythrocytes sickle and adhere in the microvasculature, a process dependent on the concentration of hemoglobin S and the rate of deoxygenation, among other factors. We measured oxygen consumption in the thenar eminence during brachial artery occlusion in sickle cell patients and healthy individuals. Microvascular oxygen consumption was greater in sickle cell patients than in healthy individuals (median [interquartile range]; sickle cell: 0.91 [0.75-1.07] vs healthy: 0.75 [0.62-0.94] -ΔHbO2/min, P < .05) and was elevated further during acute pain crisis (crisis: 1.10 [0.78-1.30] vs recovered: 0.88 [0.76-1.03] -ΔHbO2/min, P < .05). Increased microvascular oxygen consumption during pain crisis could affect the local oxygen saturation of hemoglobin when oxygen delivery is limiting. Identifying the mechanisms of elevated oxygen consumption during pain crisis might lead to the development of new therapeutic interventions. This trial was registered at www.clinicaltrials.gov as #NCT01568710.
Manning, Lois R.; Russell, J. Eric; Popowicz, Anthony M.; Manning, Robert S.; Padovan, Julio C.; Manning, James M.
2013-01-01
A previously unrecognized function of normal human hemoglobins occurring during protein assembly is described - - self-regulation of subunit pairings and their durations arising from the variable strengths of their subunit interactions. Although it is known that many mutant human hemoglobins have altered subunit interface strengths, those of the normal embryonic, fetal, and adult human hemoglobins have not been considered to differ significantly. However, in a comprehensive study of both types of subunit interfaces of seven of the eight normal oxy human hemoglobins, we found that the strength, i.e. the free energies of the tetramer-dimer interfaces, contrary to previous reports, differ by 3-orders of magnitude and display an undulating profile similar to the transitions (“switches”) of various globin subunit types over time. The dimer interface strengths are also variable and correlate linearly with their developmental profile; embryonic hemoglobins are the weakest, fetal hemoglobin is of intermediate strength, and adult hemoglobins are the strongest. The pattern also correlates generally with their different O2 affinities and responses to allosteric regulatory molecules. Acetylation of fetal hemoglobin weakens its unusually strong subunit interactions and occurs progressively as its expression diminishes and adult hemoglobin A formations begins; a causal relationship is suggested. The relative contributions of globin gene order and competition among subunits due to differences in their interface strengths were found to be complementary and establish a connection between genetics, thermodynamics, and development. PMID:19583196
Self-Monitoring Artificial Red Cells with Sufficient Oxygen Supply for Enhanced Photodynamic Therapy
NASA Astrophysics Data System (ADS)
Luo, Zhenyu; Zheng, Mingbin; Zhao, Pengfei; Chen, Ze; Siu, Fungming; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Ma, Yifan; Cai, Lintao
2016-03-01
Photodynamic therapy has been increasingly applied in clinical cancer treatments. However, native hypoxic tumoural microenvironment and lacking oxygen supply are the major barriers hindering photodynamic reactions. To solve this problem, we have developed biomimetic artificial red cells by loading complexes of oxygen-carrier (hemoglobin) and photosensitizer (indocyanine green) for boosted photodynamic strategy. Such nanosystem provides a coupling structure with stable self-oxygen supply and acting as an ideal fluorescent/photoacoustic imaging probe, dynamically monitoring the nanoparticle biodistribution and the treatment of PDT. Upon exposure to near-infrared laser, the remote-triggered photosensitizer generates massive cytotoxic reactive oxygen species (ROS) with sufficient oxygen supply. Importantly, hemoglobin is simultaneously oxidized into the more active and resident ferryl-hemoglobin leading to persistent cytotoxicity. ROS and ferryl-hemoglobin synergistically trigger the oxidative damage of xenograft tumour resulting in complete suppression. The artificial red cells with self-monitoring and boosted photodynamic efficacy could serve as a versatile theranostic platform.
Keipert, Peter E
2017-01-01
Historically, hemoglobin-based oxygen carriers (HBOCs) were being developed as "blood substitutes," despite their transient circulatory half-life (~ 24 h) vs. transfused red blood cells (RBCs). More recently, HBOC commercial development focused on "oxygen therapeutic" indications to provide a temporary oxygenation bridge until medical or surgical interventions (including RBC transfusion, if required) can be initiated. This included the early trauma trials with HemAssist ® (BAXTER), Hemopure ® (BIOPURE) and PolyHeme ® (NORTHFIELD) for resuscitating hypotensive shock. These trials all failed due to safety concerns (e.g., cardiac events, mortality) and certain protocol design limitations. In 2008 the Food and Drug Administration (FDA) put all HBOC trials in the US on clinical hold due to the unfavorable benefit:risk profile demonstrated by various HBOCs in different clinical studies in a meta-analysis published by Natanson et al. (2008). During standard resuscitation in trauma, organ dysfunction and failure can occur due to ischemia in critical tissues, which can be detected by the degree of lactic acidosis. SANGART'S Phase 2 trauma program with MP4OX therefore added lactate >5 mmol/L as an inclusion criterion to enroll patients who had lost sufficient blood to cause a tissue oxygen debt. This was key to the successful conduct of their Phase 2 program (ex-US, from 2009 to 2012) to evaluate MP4OX as an adjunct to standard fluid resuscitation and transfusion of RBCs. In 2013, SANGART shared their Phase 2b results with the FDA, and succeeded in getting the FDA to agree that a planned Phase 2c higher dose comparison study of MP4OX in trauma could include clinical sites in the US. Unfortunately, SANGART failed to secure new funding and was forced to terminate development and operations in Dec 2013, even though a regulatory path forward with FDA approval to proceed in trauma had been achieved.
2012-01-01
Background Non-enzymatic glycation increases hemoglobin-oxygen affinity and reduces oxygen delivery to tissues by altering the structure and function of hemoglobin. Objectives We investigated whether an elevated blood concentration of glycosylated hemoglobin (HbA1c) could induce falsely high pulse oximeter oxygen saturation (SpO2) in type 2 diabetic patients during mechanical ventilation or oxygen therapy. Methods Arterial oxygen saturation (SaO2) and partial pressure of oxygen (PO2) were determined with simultaneous monitoring of SpO2 in 261 type 2 diabetic patients during ventilation or oxygen inhalation. Results Blood concentration of HbA1c was >7% in 114 patients and ≤ 7% in 147 patients. Both SaO2 (96.2 ± 2.9%, 95% confidence interval [CI] 95.7-96.7% vs. 95.1 ± 2.8%, 95% CI 94.7-95.6%) and SpO2 (98.0 ± 2.6%, 95% CI 97.6-98.5% vs. 95.3 ± 2.8%, 95% CI 94.9-95.8%) were significantly higher in patients with HbA1c >7% than in those with HbA1c ≤ 7% (Data are mean ± SD, all p < 0.01), but PO2 did not significantly differ between the two groups. Bland-Altman analysis demonstrated a significant bias between SpO2 and SaO2 (1.83 ±0.55%, 95% CI 1.73% -1.94%) and limits of agreement (0.76% and 2.92%) in patients with HbA1c >7%. The differences between SpO2 and SaO2 correlated closely with blood HbA1c levels (Pearson’s r = 0.307, p < 0.01). Conclusions Elevated blood HbA1c levels lead to an overestimation of SaO2 by SpO2, suggesting that arterial blood gas analysis may be needed for type 2 diabetic patients with poor glycemic control during the treatment of hypoxemia. PMID:22985301
Pu, Li Jin; Shen, Ying; Lu, Lin; Zhang, Rui Yan; Zhang, Qi; Shen, Wei Feng
2012-09-17
Non-enzymatic glycation increases hemoglobin-oxygen affinity and reduces oxygen delivery to tissues by altering the structure and function of hemoglobin. We investigated whether an elevated blood concentration of glycosylated hemoglobin (HbA1c) could induce falsely high pulse oximeter oxygen saturation (SpO2) in type 2 diabetic patients during mechanical ventilation or oxygen therapy. Arterial oxygen saturation (SaO2) and partial pressure of oxygen (PO2) were determined with simultaneous monitoring of SpO2 in 261 type 2 diabetic patients during ventilation or oxygen inhalation. Blood concentration of HbA1c was >7% in 114 patients and ≤ 7% in 147 patients. Both SaO2 (96.2 ± 2.9%, 95% confidence interval [CI] 95.7-96.7% vs. 95.1 ± 2.8%, 95% CI 94.7-95.6%) and SpO2 (98.0 ± 2.6%, 95% CI 97.6-98.5% vs. 95.3 ± 2.8%, 95% CI 94.9-95.8%) were significantly higher in patients with HbA1c >7% than in those with HbA1c ≤ 7% (Data are mean ± SD, all p < 0.01), but PO2 did not significantly differ between the two groups. Bland-Altman analysis demonstrated a significant bias between SpO2 and SaO2 (1.83 ±0.55%, 95% CI 1.73% -1.94%) and limits of agreement (0.76% and 2.92%) in patients with HbA1c >7%. The differences between SpO2 and SaO2 correlated closely with blood HbA1c levels (Pearson's r = 0.307, p < 0.01). Elevated blood HbA1c levels lead to an overestimation of SaO2 by SpO2, suggesting that arterial blood gas analysis may be needed for type 2 diabetic patients with poor glycemic control during the treatment of hypoxemia.
Glutkina, N V
2013-01-01
The effects of simvastatin on the blood oxygen transport function and indices of prooxidant - antioxidant balance at incubation have been studied. Simvastatin at a concentration of 100 ng/ml increases p50 (the blood pO2 corresponding to its 50% oxygen saturation) at real values of pH and pCO2 from 39.53 + 2.41 (p <0.05) to 36.60 (36, 40, 37, 60) (p <0.05) mm Hg. An increase in the drug concentration led to a decrease in the level of this parameter, but in a dose-independent manner. In addition, the level of nitrates/nitrites in the blood plasma was also increased, which was evidence of increasing activity of the L-arginine-NO system. The indices of prooxidant - antioxidant balance exhibited no significant changes. The results demonstrate a new pleiotropic effect of simvastatin, which is realized via a change in the hemoglobin - oxygen affinity through modification of NO production. This effect must be taken into account in the treatment of pathology in the blood circulation.
Hemoglobin promotes somatic embryogenesis in peanut cultures.
Jayabalan, N; Anthony, P; Davey, M R; Power, J B; Lowe, K C
2004-02-01
Critical parameters influencing somatic embryogenesis include growth regulators and oxygen supply. Consequently, the present investigation has focused on optimization of a somatic embryogenic system for peanut (Arachis hypogaea L.) through media supplementation with the auxin, picloram. The latter at 30 mg L(-1) was optimal for inducing regeneration of somatic embryos from cultured explants of zygotic embryos. In contrast, somatic embryogenesis did not occur in the absence of this growth regulator. An assessment has also been made of the beneficial effect on somatic embryogenesis and plant regeneration of the commercial hemoglobin (Hb) solution, Erythrogen. Hemoglobin at 1:50 and 1:100 (v:v) stimulated increases in mean fresh weight (up to a maximum of 57% over control), mean number of explants producing somatic embryos (15%) and mean number of somatic embryos per explant (29%).
NASA Astrophysics Data System (ADS)
Salehi, Hassan S.; Li, Hai; Kumavor, Patrick D.; Merkulov, Aleksey; Sanders, Melinda; Brewer, Molly; Zhu, Quing
2015-03-01
In this paper, wavelength selection for multispectral photoacoustic/ultrasound tomography was optimized to obtain accurate images of hemoglobin oxygen saturation (sO2) in vivo. Although wavelengths can be selected by theoretical methods, in practice the accuracy of reconstructed images will be affected by wavelength-specific and system-specific factors such as laser source power and ultrasound transducer sensitivity. By performing photoacoustic spectroscopy of mouse tumor models using 14 different wavelengths between 710 and 840 nm, we were able to identify a wavelength set which most accurately reproduced the results obtained using all 14 wavelengths via selection criteria. In clinical studies, the optimal wavelength set was successfully used to image human ovaries in vivo and noninvasively. Although these results are specific to our co-registered photoacoustic/ultrasound imaging system, the approach we developed can be applied to other functional photoacoustic and optical imaging systems.
Barbour, Randall L.; Barbour, San-Lian S.
2018-01-01
Summary In this report we introduce a weak-model approach for examination of the intrinsic time-varying properties of the hemoglobin signal, with the aim of advancing the application of functional near infrared spectroscopy (fNIRS) for the detection of breast cancer, among other potential uses. The developed methodology integrates concepts from stochastic network theory with known modulatory features of the vascular bed, and in doing so provides access to a previously unrecognized dense feature space that is shown to have promising diagnostic potential. Notable features of the methodology include access to this information solely from measures acquired in the resting state, and analysis of these by treating the various components of the hemoglobin (Hb) signal as a co-varying interacting system. Approach The principal data-transform kernel projects Hb state-space trajectories onto a coordinate system that constitutes a finite-state representation of covariations among the principal elements of the Hb signal (i.e., its oxygenated (ΔoxyHb) and deoxygenated (ΔdeoxyHb) forms and the associated dependent quantities: total hemoglobin (ΔtotalHb = ΔoxyHb + ΔdeoxyHb), hemoglobin oxygen saturation (ΔHbO2Sat = 100Δ(oxyHb/totalHb)), and tissue-hemoglobin oxygen exchange (ΔHbO2Exc = ΔdeoxyHb—ΔoxyHb)). The resulting ten-state representation treats the evolution of this signal as a one-space, spatiotemporal network that undergoes transitions from one state to another. States of the network are defined by the algebraic signs of the amplitudes of the time-varying components of the Hb signal relative to their temporal mean values. This assignment produces several classes of coefficient arrays, most with a dimension of 10×10. Biological motivation Motivating our approach is the understanding that effector mechanisms that modulate blood delivery to tissue operate on macroscopic scales, in a spatially and temporally varying manner. Also recognized is that this behavior is
2012-02-01
a slight increase in oxygen consumption during exercise, without a decrement in capillary hemoglobin oxygen saturation compared to exercise on 85...must be provided. HSI education and training for program managers and acquisition professionals are required. Meaningful, quantifiable...positions were transferred to the 711th HPW at WPAFB. Only two of the analysts moved to WPAFB, creating a major shortfall in HSI education , training, and
Wang, Yaokun; Yan, Mingyang
2017-01-01
Hierarchical copper shells anchored on magnetic nanoparticles were designed and fabricated to selectively deplete hemoglobin from human blood by immobilized metal affinity chromatography. Briefly, CoFe2O4 nanoparticles coated with polyacrylic acid were first synthesized by a one-pot solvothermal method. Hierarchical copper shells were then deposited by immobilizing Cu2+ on nanoparticles and subsequently by reducing between the solid CoFe2O4@COOH and copper solution with NaBH4. The resulting nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. The particles were also tested against purified bovine hemoglobin over a range of pH, contact time, and initial protein concentration. Hemoglobin adsorption followed pseudo-second-order kinetics and reached equilibrium in 90 min. Isothermal data also fit the Langmuir model well, with calculated maximum adsorption capacity 666 mg g−1. Due to the high density of Cu2+ on the shell, the nanoparticles efficiently and selectively deplete hemoglobin from human blood. Taken together, the results demonstrate that the particles with hierarchical copper shells effectively remove abundant, histidine-rich proteins, such as hemoglobin from human blood, and thereby minimize interference in diagnostic and other assays. PMID:28316987
Gene Duplication and the Evolution of Hemoglobin Isoform Differentiation in Birds*
Grispo, Michael T.; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E.; Storz, Jay F.
2012-01-01
The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the αA-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the αD-globin gene). The αD-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O2 affinity in the presence of allosteric effectors such as organic phosphates and Cl− ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O2 affinity stems primarily from changes in the O2 association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the αD-globin gene that is shared with the embryonic α-like globin gene. PMID:22962007
Gene duplication and the evolution of hemoglobin isoform differentiation in birds.
Grispo, Michael T; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E; Storz, Jay F
2012-11-02
The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the α(A)-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the α(D)-globin gene). The α(D)-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O(2) affinity in the presence of allosteric effectors such as organic phosphates and Cl(-) ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O(2) affinity stems primarily from changes in the O(2) association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the α(D)-globin gene that is shared with the embryonic α-like globin gene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richards, Mark P.; Aranda, IV, Roman; He, Cai
2010-01-07
pH can be manipulated to alter the oxidative stability of fish-based foods during storage. X-ray diffraction was used to investigate the ability of reduced pH to cause structural changes in fish hemoglobins that lead to enhanced oxidative degradation. Decreasing pH from 8.0 to 6.3 and 5.7 created a large channel for solvent entry into the heme crevice of perch hemoglobin beta chains. The proton-induced opening of this channel occurred between site CD3 and the heme-6-propionate. Solvent entry into the heme crevice can enhance metHb formation and hemin loss, processes that accelerate lipid oxidation. Reduced pH also decreased the distance betweenmore » Ile at E11 in one of the alpha chains and the ligand above the heme iron atom. This sterically displaces O{sub 2} and protonated O{sub 2} which increases metHb formation. These studies demonstrate that pH reduction causes structural changes in perch hemoglobin which increase oxidative degradation of the heme pigment.« less
A Molecular Dynamic Modeling of Hemoglobin-Hemoglobin Interactions
NASA Astrophysics Data System (ADS)
Wu, Tao; Yang, Ye; Sheldon Wang, X.; Cohen, Barry; Ge, Hongya
2010-05-01
In this paper, we present a study of hemoglobin-hemoglobin interaction with model reduction methods. We begin with a simple spring-mass system with given parameters (mass and stiffness). With this known system, we compare the mode superposition method with Singular Value Decomposition (SVD) based Principal Component Analysis (PCA). Through PCA we are able to recover the principal direction of this system, namely the model direction. This model direction will be matched with the eigenvector derived from mode superposition analysis. The same technique will be implemented in a much more complicated hemoglobin-hemoglobin molecule interaction model, in which thousands of atoms in hemoglobin molecules are coupled with tens of thousands of T3 water molecule models. In this model, complex inter-atomic and inter-molecular potentials are replaced by nonlinear springs. We employ the same method to get the most significant modes and their frequencies of this complex dynamical system. More complex physical phenomena can then be further studied by these coarse grained models.
Reaction of oxygen with the respiratory chain in cells and tissues.
Chance, B
1965-09-01
This paper considers the way in which the oxygen reaction described by Dr. Nicholls and the ADP control reactions described by Dr. Racker could cooperate to establish a purposeful metabolic control phenomenon in vivo. This has required an examination of the kinetic properties of the respiratory chain with particular reference to methods for determinations of oxygen affinity (K(m)). The constant parameter for tissue respiration is k(1), the velocity constant for the reaction of oxygen with cytochrome oxidase. Not only is this quantity a constant for a particular tissue or mitochondria; it appears to vary little over a wide range of biological material, and for practical purposes a value of 5 x 10(7) at 25 degrees close to our original value (20) is found to apply with adequate accuracy for calculation of K(m) for mammalia. The quantity which will depend upon the tissue and its metabolic state is the value of K(m) itself, and K(m) may be as large as 0.5 microM and may fall to 0.05 microM or less in resting, controlled, or inhibited states. The control characteristic for ADP may depend upon the electron flux due to the cytochrome chain (40); less ADP is required to activate the slower electron transport at lower temperatures than at higher temperatures. The affinity constants for ADP control appear to be less dependent upon substrate supplied to the system. The balance of ADP and oxygen control in vivo is amply demonstrated experimentally and is dependent on the oxygen concentration as follows. In the presence of excess oxygen, control may be due to the ADP or phosphate (or substrate), and the kinetics of oxygen utilization will be independent of the oxygen concentration. As the oxygen concentration is diminished, hemoglobin becomes disoxygenated, deep gradients of oxygen concentration develop in the tissue, and eventually cytochrome oxidase becomes partially and then completely reduced. DPN at this point will become reduced and the electron flow diminished. The rate
The refractive index of human hemoglobin in the visible range.
Zhernovaya, O; Sydoruk, O; Tuchin, V; Douplik, A
2011-07-07
Because the refractive index of hemoglobin in the visible range is sensitive to the hemoglobin concentration, optical investigations of hemoglobin are important for medical diagnostics and treatment. Direct measurements of the refractive index are, however, challenging; few such measurements have previously been reported, especially in a wide wavelength range. We directly measured the refractive index of human deoxygenated and oxygenated hemoglobin for nine wavelengths between 400 and 700 nm for the hemoglobin concentrations up to 140 g l(-1). This paper analyzes the results and suggests a set of model functions to calculate the refractive index depending on the concentration. At all wavelengths, the measured values of the refractive index depended on the concentration linearly. Analyzing the slope of the lines, we determined the specific refraction increments, derived a set of model functions for the refractive index depending on the concentration, and compared our results with those available in the literature. Based on the model functions, we further calculated the refractive index at the physiological concentration within the erythrocytes of 320 g l(-1). The results can be used to calculate the refractive index in the visible range for arbitrary concentrations provided that the refractive indices depend on the concentration linearly.
Schobersberger, Wolfgang; Greie, Sven; Humpeler, Egon; Mittermayr, Markus; Fries, Dietmar; Schobersberger, Beatrix; Artner-Dworzak, Erika; Hasibeder, Walter; Klingler, Anton; Gunga, Hanns-Christian
2005-01-01
Moderate altitude hypoxia (1500 to 2500 m) is known to stimulate erythropoiesis and to improve oxygen transport to tissue by a reduction of Hb-O(2) affinity. Whether this adaptation also occurs in tourists with metabolic syndrome has not yet been investigated sufficiently. Thus, we performed a prospective field study to measure erythropoietic parameters and oxygen transport properties in 24 male volunteers with metabolic syndrome during a 3- week holiday program at 1700 m consisting of four guided, individually adapted hiking tours per week. The following examinations were performed: baseline investigations at 500 m (T1); examinations at moderate altitude on day 1 (T2), day 4 (T3), day 9 (T4), and day 19 (T5); and postaltitude tests (T6) 7 to 10 days after return. On day 1 and day 19, a walk on a standardized hiking test route with oxygen saturation (SpO(2)) measure points was performed. Hemoglobin, packed cell volume, and red cell count showed changes over time, with higher values at T5 as compared to baseline. Reticulocyte count and erythropoietin (EPO) were increased at T2 and increased further until T5. EPO declined toward prealtitude values. P50-value (blood PO(2) at 50% hemoglobin oxygen saturation at actual pH) increased during the altitude sojourn (maximum increase at T5 by +0.40 kPa). At T5 all volunteers had a higher SpO(2) before, during, and at the end of the test route compared to T1. During adaptation to moderate altitude, persons with metabolic syndrome exhibit an increase in EPO and a rightward shift of the oxygen dissociation curve that is similar to healthy subjects.
[Hemoglobin and testosterone: importance on high altitude acclimatization and adaptation].
Gonzales, Gustavo F
2011-03-01
The different types of response mechanisms that the organism uses when exposed to hypoxia include accommodation, acclimatization and adaptation. Accommodation is the initial response to acute exposure to high altitude hypoxia and is characterized by an increase in ventilation and heart rate. Acclimatization is observed in individuals temporarily exposed to high altitude, and to some extent, it enables them to tolerate the high altitudes. In this phase, erythropoiesis is increased, resulting in higher hemoglobin and hematocrit levels to improve oxygen delivery capacity. Adaptation is the process of natural acclimatization where genetical variations and acclimatization play a role in allowing subjects to live without any difficulties at high altitudes. Testosterone is a hormone that regulates erythropoiesis and ventilation and could be associated to the processes of acclimatization and adaptation to high altitude. Excessive erythrocytosis, which leads to chronic mountain sickness, is caused by low arterial oxygen saturation, ventilatory inefficiency and reduced ventilatory response to hypoxia. Testosterone increases during acute exposure to high altitude and also in natives at high altitude with excessive erythrocytosis. Results of current research allow us to conclude that increase in serum testosterone and hemoglobin is adequate for acclimatization, as they improve oxygen transport, but not for high altitude adaptation, since high serum testosterone levels are associated to excessive erythrocytosis.
Balodite, Elina; Strazdina, Inese; Galinina, Nina; McLean, Samantha; Rutkis, Reinis; Poole, Robert K; Kalnenieks, Uldis
2014-09-01
The genome of the ethanol-producing bacterium Zymomonas mobilis encodes a bd-type terminal oxidase, cytochrome bc1 complex and several c-type cytochromes, yet lacks sequences homologous to any of the known bacterial cytochrome c oxidase genes. Recently, it was suggested that a putative respiratory cytochrome c peroxidase, receiving electrons from the cytochrome bc1 complex via cytochrome c552, might function as a peroxidase and/or an alternative oxidase. The present study was designed to test this hypothesis, by construction of a cytochrome c peroxidase mutant (Zm6-perC), and comparison of its properties with those of a mutant defective in the cytochrome b subunit of the bc1 complex (Zm6-cytB). Disruption of the cytochrome c peroxidase gene (ZZ60192) caused a decrease of the membrane NADH peroxidase activity, impaired the resistance of growing culture to exogenous hydrogen peroxide and hampered aerobic growth. However, this mutation did not affect the activity or oxygen affinity of the respiratory chain, or the kinetics of cytochrome d reduction. Furthermore, the peroxide resistance and membrane NADH peroxidase activity of strain Zm6-cytB had not decreased, but both the oxygen affinity of electron transport and the kinetics of cytochrome d reduction were affected. It is therefore concluded that the cytochrome c peroxidase does not terminate the cytochrome bc1 branch of Z. mobilis, and that it is functioning as a quinol peroxidase. © 2014 The Authors.
Case-Based Learning of Blood Oxygen Transport
ERIC Educational Resources Information Center
Cliff, William H.
2006-01-01
A case study about carbon monoxide poisoning was used help students gain a greater understanding of the physiology of oxygen transport by the blood. A review of student answers to the case questions showed that students can use the oxygen-hemoglobin dissociation curve to make meaningful determinations of oxygen uptake and delivery. However, the…
Dynamic regulation of erythropoiesis: A computer model of general applicability
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1979-01-01
A mathematical model for the control of erythropoiesis was developed based on the balance between oxygen supply and demand at a renal oxygen detector which controls erythropoietin release and red cell production. Feedback regulation of tissue oxygen tension is accomplished by adjustments of hemoglobin levels resulting from the output of a renal-bone marrow controller. Special consideration was given to the determinants of tissue oxygenation including evaluation of the influence of blood flow, capillary diffusivity, oxygen uptake and oxygen-hemoglobin affinity. A theoretical analysis of the overall control system is presented. Computer simulations of altitude hypoxia, red cell infusion hyperoxia, and homolytic anemia demonstrate validity of the model for general human application in health and disease.
Blood replacement with nanobiotechnologically engineered hemoglobin and hemoglobin nanocapsules
Chang, Thomas Ming Swi
2012-01-01
Unlike donor red blood cells (RBCs), blood substitutes can be treated to remove infective agents and can be used on the spot or in the ambulance in emergency without the time-consuming typing and cross-matching. Donor RBC requires storage at 4° and is only good for 42 days, but blood substitutes can be stored for much longer time. For example, a bovine polyhemoglobin (PolyHb) can be stored at room temperature for more than 1 year. It has been shown as far back as 1957 that artificial RBC can be prepared with ultrathin polymer membranes of nanodimension thickness. To increase the circulation time, the first-generation engineered hemoglobin (Hb) is formed by using glutaraldehyde to crosslink Hb into soluble nanodimension PolyHb that has been tested clinically in patients. Further extension includes conjugated Hb, intramolecularly crosslinked Hb and recombinant Hb. For certain clinical uses, in addition to engineered Hb, we also need antioxidants to remove oxygen radicals to prevent injury from ischemia reperfusion. Thus, we use nanobiotechnology to prepare second-generation engineered Hb by assembling Hb together with superoxide dismutase (SOD) and catalase (CAT) to form a nanodimension soluble complex of polyhemoglobin (PolyHb)-CAT-SOD. A third generation system is to prepare nanodimension complete artificial RBCs that can circulate for sufficient length of time after infusion. One approach uses lipid vesicles to encapsulate hemoglobin (Hb). Another approach is to use biodegradable polymer-like polylactic acid or a copolymer of polyethylene glycol-polylactide (PEG-PLA) to form the membrane of nanodimension complete artificial RBC (www.artcell.mcgill.ca). PMID:20564467
NITRITE REDUCTASE ACTIVITY OF NON-SYMBIOTIC HEMOGLOBINS FROM ARABIDOPSIS THALIANA†
Tiso, Mauro; Tejero, Jesús; Kenney, Claire; Frizzell, Sheila; Gladwin, Mark T.
2013-01-01
Plant non-symbiotic hemoglobins possess hexa-coordinate heme geometry similar to the heme protein neuroglobin. We recently discovered that deoxygenated neuroglobin converts nitrite to nitric oxide (NO), an important signaling molecule involved in many processes in plants. We sought to determine whether Arabidopsis thaliana non-symbiotic hemoglobins class 1 and 2 (AHb1 and AHb2) might function as nitrite reductases. We found that the reaction of nitrite with deoxygenated AHb1 and AHb2 generates NO gas and iron-nitrosyl-hemoglobin species. The bimolecular rate constants for nitrite reduction to NO are 19.8 ± 3.2 and 4.9 ± 0.2 M−1s−1, at pH = 7.4 and 25°C, respectively. We determined the pH dependence of these bimolecular rate constants and found a linear correlation with the concentration of protons, indicating the requirement for one proton in the reaction. Release of free NO gas during reaction in anoxic and hypoxic (2% oxygen) conditions was confirmed by chemiluminescence detection. These results demonstrate that deoxygenated AHb1 and AHb2 reduce nitrite to form NO via a mechanism analogous to that observed for hemoglobin, myoglobin and neuroglobin. Our findings suggest that during severe hypoxia and in the anaerobic plant roots, especially in water submerged species, non-symbiotic hemoglobins provide a viable pathway for NO generation via nitrite reduction. PMID:22620259
Balasubramanian, M; Moorthy, Pon Sathya; Neelagandan, K; Ponnuswamy, M N
2009-03-01
Haemoglobin is a metalloprotein which plays a major role in the transportation of oxygen from the lungs to tissues and of carbon dioxide back to the lungs. The present work reports the preliminary crystallographic study of low oxygen-affinity haemoglobin from cat in different crystal forms. Cat blood was collected, purified by anion-exchange chromatography and crystallized in two different conditions by the hanging-drop vapour-diffusion method under unbuffered low-salt and buffered high-salt concentrations using PEG 3350 as a precipitant. Intensity data were collected using MAR345 and MAR345dtb image-plate detector systems. Cat haemoglobin crystallizes in monoclinic and orthorhombic crystal forms with one and two whole biological molecules (alpha(2)beta(2)), respectively, in the asymmetric unit.
Sakai, Hiromi; Okuda, Naoto; Takeoka, Shinji; Tsuchida, Eishun
2011-03-01
Increased fluid viscosity of a solution of hemoglobin-based oxygen carriers (HBOCs) reduces vasoconstrictive effects because increased shear stress on the vascular wall enhances the production of vasorelaxation factors such as NO. Nevertheless, on a microcirculatory level, it remains unclear how viscosity affects the reaction of HBOCs and NO. In this study, different HBOCs were perfused through narrow gas-permeable tubes (25 μm inner diameter at 1 mm/s centerline velocity; hemoglobin concentration [Hb]=5 g/dL). The reaction was examined microscopically based on the Hb visible-light absorption spectrum. When immersed in a NO atmosphere, the NO-binding of deoxygenated Hb solution (viscosity, 1.1 cP at 1000 s(-1)) in the tube occurred about twice as rapidly as that of red blood cells (RBCs): 1.6 cP. Binding was reduced by PEGylation (PEG-Hb, 7.7 cP), by addition of a high molecular weight hydroxyethyl starch (HES) (2.8 cP), and by encapsulation to form Hb-vesicles (HbVs, 1.5 cP; particle size 279 nm). However, the reduction was not as great as that shown for RBCs. A mixture of HbVs and HES (6.2 cP) showed almost identical NO-binding to that of RBCs. Higher viscosity and particle size might reduce lateral diffusion when particles are flowing. The HbVs with HES showed the slowest NO-binding. Furthermore, Hb encapsulation and PEGylation, but not HES-addition, tended to retard CO-binding. Increased viscosity reportedly enhances production of endothelium NO. In addition, our results show that the increased viscosity also inhibits the reaction with NO. Each effect might mitigate vasoconstriction. Copyright © 2010 Elsevier Inc. All rights reserved.
Haemoglobin Pierre-Benite--a high affinity variant associated with relative polycythaemia.
Beard, M E; Potter, H C; Spearing, R L; Brennan, S O
2001-12-01
This is the second reported example of Hb Pierre--Benite (beta90 Glu-->Asp). This mutation is associated with increased oxygen affinity and polycythaemia. No instability was found and there was no charge shift detected by cellulose acetate electrophoresis at pH 8.3. The mutation was however, clearly indicated by electrospray ionization mass spectrometry (ESI MS), which showed an abnormal beta chain with a 14 Da decrease in mass. Blood volume studies documented a relative rather than a true polycythaemia and this finding has been reported in at least two other high affinity haemoglobin variants--Hb Heathrow and Hb Rahere. This finding led to delay in diagnosis because high oxygen affinity variants are conventionally considered to cause a true polycythaemia.
Meunier, Cédric; Andersen, Ann C; Bruneaux, Matthieu; Le Guen, Dominique; Terrier, Peran; Leize-Wagner, Emmanuelle; Zal, Franck
2010-01-01
Siboglinids are symbiotic polychete annelids having hemoglobins as essential oxygen- and sulfide-carriers for their endosymbiotic bacteria. We analyzed the structure of the hemoglobins from two species of siboglinids: the monilifera Sclerolinum contortum and the frenulata Oligobrachia webbi (i.e. haakonmosbiensis) from Norwegian cold seeps. Measured by Multi-Angle Laser Light Scattering (MALLS), Sclerolinum shows a 3190+/-50 kDa hexagonal bilayer hemoglobin (HBL-Hb) and a 461+/-46 kDa ring-Hb, just as vestimentifera, whereas Oligobrachia has a 409+/-3.7 kDa ring-Hb only. Electrospray Ionization-Mass Spectrometry (ESI-MS) showed Sclerolinum HBL-Hb composed of seven monomeric globins (15-16 kDa), three disulfide-bonded globin heterodimers and three linkers. The heterodimers always contain globin-b (15814.4+/-1.5 Da). Sclerolinum ring-Hb is composed of globins and dimers with identical masses as its HBL-Hb, but lacks linkers. Oligobrachia ring-Hb has three globin monomers (14-15 kDa) only, with no disulfide-bonded dimers. Comparison of Sclerolinum hemoglobins between Storegga and Haakon Mosby Mud Volcano, using the normalized height of deconvoluted ESI-MS peaks, shows differences in globin monomers abundances that could reflect genetic differences or differential gene expression between distinct seep populations. The discovery of HBL-Hb in Sclerolinum is a new element supporting the hypothesis of monilifera being phylogenetically more closely related to vestimentifera, than to frenulata.
Friebel, Moritz; Meinke, Martina
2006-04-20
The real part of the complex refractive index of oxygenated native hemoglobin solutions dependent on concentration was determined in the wavelength range 250 to 1100 nm by Fresnel reflectance measurements. The hemoglobin solution was produced by physical hemolysis of human erythrocytes followed by ultracentrifugation and filtration. A model function is presented for calculating the refractive index of hemoglobin solutions depending on concentration in the wavelength range 250 to 1100 nm.
Boĭko, N V; Kolmakova, T S; Bykova, V V
2010-01-01
This work was designed to study the development of compensatory processes during posthemorrhagic anemia in 82 patients presenting with nasal bleeding (NB). The patients were allocated to three groups. Group 1 included patients with isolated episodes of NB, group 2 was comprised of patients in a moderately severe condition with recurring NB, group 3 was composed of patients in a severe condition with recurring NB. The general medical examination was supplemented by the evaluation of factors maintaining the oxygen-transporting function of the blood (hemoglobin affinity for oxygen, erythrocyte content of 2.3-diphosphoglyceric (2.3-DPG) acid as the principal modulator of hemoglobin affinity for oxygen) and indicators of energy (carbohydrate) metabolism in plasma and erythrocytes (glucose-6-phosphate dehydrogenase (G-6-PDH) activity, pyruvic acid (PA), lactate and lactate dehydrogenase (LDH) levels). Changes of biochemical parameters in patients presenting with incidental episodes of NB (group 1) suggested a compensatory increase in functional potential of the blood oxygen-transporting system. Patients of group 2 showed evidence of development of the modulation-type adaptive and compensatory mechanisms. Those of group 3 experienced a decrease of the 2.3-DPH level in erythrocytes and enhancement of hemoglobin affinity for oxygen which slowed down its uptake by the tissues. Tissue hypoxia and accompanying acidosis aggravated the impairment of gas-transporting function of the blood. In is concluded that patients of group 3 are at risk of uncompensated hypoxic hypoxia associated with the unfavourable changes in the oxygen-transporting function and the impairment of the functional potential of erythrocytes. Taken together, these untoward factors may be responsible for the severe clinical conditions of these patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoogsteen, Ilse J.; Pop, Lucas A.M.; Marres, Henri A.M.
2006-01-01
Purpose: To evaluate the prognostic significance of hemoglobin (Hb) levels measured before and during treatment with accelerated radiotherapy with carbogen and nicotinamide (ARCON). Methods and Materials: Two hundred fifteen patients with locally advanced tumors of the head and neck were included in a phase II trial of ARCON. This treatment regimen combines accelerated radiotherapy for reduction of repopulation with carbogen breathing and nicotinamide to reduce hypoxia. In these patients, Hb levels were measured before, during, and after radiotherapy. Results: Preirradiation and postirradiation Hb levels were available for 206 and 195 patients respectively. Hb levels below normal were most frequently seenmore » among patients with T4 (p < 0.001) and N2 (p < 0.01) disease. Patients with a larynx tumor had significantly higher Hb levels (p < 0.01) than other tumor sites. During radiotherapy, 69 patients experienced a decrease in Hb level. In a multivariate analysis there was no prognostic impact of Hb level on locoregional control, disease-free survival, and overall survival. Primary tumor site was independently prognostic for locoregional control (p = 0.018), and gender was the only prognostic factor for disease-free and overall survival (p < 0.05). High locoregional control rates were obtained for tumors of the larynx (77%) and oropharynx (72%). Conclusion: Hemoglobin level was not found to be of prognostic significance for outcome in patients with squamous cell carcinoma of the head and neck after oxygen-modifying treatment with ARCON.« less
The effect of abnormal hemoglobins on the membrane regulation of cell hydration.
Clark, M R; Shohet, S B
Several hemoglobinopathies are associated with abnormalities in the permeability of the red cell membrane, in some cases leading to permanent alterations of the intracellular milieu. Homozygous sickle cell disease is the most thoroughly studied example. Deoxygenation of sickle cells causes a transient increase in the permeability to monovalent cations and Ca; prolonged deoxygenation can lead to a permanent accumulation of Ca and loss of total cations and water. Although the mechanisms for the permeability changes are not yet defined, mechanical stress on the membrane, with subsequent damages by excess Ca or membrane-associated hemoglobin have been suggested to play a role. Loss of cell water and increase in mean cell hemoglobin concentration causes massive reduction of cell deformability in the oxygenated state and makes the hemoglobin more likely to undergo sickling because of the strong concentration dependence of the sickling process. Limited evidence suggests the occurrence of permeability defects in other hemoglobinopathies and the thalassemias. The suggested alterations range from a slight increase in K permeability of incubated thalassemia cells to substantial dehydration of cells from patients with homozygous hemoglobin C disease. Oxidative damage to the membrane, involving an abnormal hemoglobin-membrane association, may underly the permeability changes in these cells.
Gautam, N; Dubey, R K; Jayan, A; Nepaune, Y; Padmavathi, P; Chaudhary, S; Jha, S K; Sinha, A K
2014-12-01
The aim of this study was to compare the level of glycated hemoglobin (HbA1c) in type 2 Diabetes Mellitus (DM) patients by two different methods namely Ion Exchange Chromatography and Affinity Binding Nycocard Reader. This is a cross-sectional study conducted on confirmed type 2 diabetes mellitus patients (n = 100) who visited Out Patients Department of the Universal College of Medical Sciences Teaching hospital, Bhairahawa, Nepal from November 2012 to March 2013. The diagnosis of diabetes mellitus was done on the basis of their fasting (164.46 ± 45.33 mg/dl) and random (187.93 ± 78.02 mg/dl) serum glucose level along with clinical history highly suggestive of type 2 DM. The HbA1c values of (7.8 ± 1.9%) and (8.0 ± 2.2%) were found in DM patients as estimated by those two different methods respectively. The highest frequency was observed in HbA1c > 8.0% indicating maximum cases were under very poor glycemic control. However, there were no significant differences observed in HbA1c value showing both methods are comparable in nature and can be used in lab for ease of estimation. The significant raised in HbA1c indicates complications associated with DM and monitoring of therapy become hard for those patients. Despite having standard reference method for HbA1c determination, the availability of report at the time of the patient visit can be made easy by using Nycocard Reader and Ion Exchange Chromatography techniques without any delay in communicating glycemic control, clinical decision-making and changes in treatment regimen.
Andrade, Denis V; Brito, Simone P; Toledo, Luís Felipe; Abe, Augusto S
2004-05-20
Oxygen-binding properties, blood gases, and acid-base parameters were studied in tegu lizards, Tupinambis merianae, at different seasons and temperatures. Independent of temperature and pH, blood oxygen affinity was higher in dormant lizards than in those active during the summer. Haematocrit (Hct) and hemoglobin content ([Hb]) were greater in active lizards resulting in a higher oxygen-carrying capacity. Nucleoside triphosphate content ([NTP]) was reduced during dormancy, but the ratio between [NTP] and [Hb] remained unchanged. Dormancy was accompanied by an increase in plasma bicarbonate ([HCO-(3)]pl) and an elevation of arterial CO2 partial pressure (PaCO2) and CO2 content in the plasma (CplCO2). These changes in acid-base parameters persist over a broad range of body temperatures. In vivo, arterial O2 partial pressure (PaO2) and O2 content (CaO2) were not affected by season and tended to increase with temperature. Arterial pH (pHa) of dormant animals is reduced compared to active lizards at body temperatures below 15 degrees C, while no significant difference was noticed at higher temperatures. Copyright 2003 Elsevier B.V.
Carvajal, Ana Karina; Rustad, Turid; Mozuraityte, Revilija; Storrø, Ivar
2009-09-09
The effect of hemoglobin (Hb) and lipid concentration, pH, temperature, and different antioxidants on heme-mediated lipid oxidation of liposomes from marine phospholipids was studied. The rate of lipid oxidation was measured by consumption of dissolved oxygen. Heme-mediated lipid oxidation at different Hb and lipid concentrations was modeled by Michaelis-Menten kinetics. The maximum rate (V(max)) for the reaction with cod and bovine Hb as a pro-oxidant was 66.2 +/- 3.4 and 56.6 +/- 3.4 microM/min, respectively. The Michaelis-Menten constant (K(m)) for the reaction with cod and bovine Hb was 0.67 +/- 0.09 and 1.2 +/- 0.2 microM, respectively. V(max) for the relationship between the oxygen uptake rate and lipid concentration was 43.2 +/- 1.5 microM/min, while the K(m) was 0.93 +/- 0.14 mg/mL. The effect of the temperature followed Arrhenius kinetics, and there was no significant difference in activation energy between cod and bovine Hb. The rate of lipid oxidation induced by bovine Hb was highest around pH 6. Ethylenediaminetetraacetic acid (EDTA) had no significant effect on heme-mediated lipid oxidation, but alpha-tocopherol and astaxanthin worked well as antioxidants. Kinetic differences were found between iron and Hb as pro-oxidants, and the efficacy of the antioxidants depended upon the pro-oxidant in the system.
Jia, Yiping; Wood, Francine; Buehler, Paul W; Alayash, Abdu I
2013-01-01
Human hemoglobin (Hb) and haptoglobin (Hp) exhibit an extremely high affinity for each other, and the dissociation of Hb tetramers into dimers is generally believed to be a prerequisite for complex formation. We have investigated Hp interactions with native Hb, αα, and ββ cross-linked Hb (ααXLHb and ββXLHb, respectively), and rapid kinetics of Hb ligand binding as well as the redox reactivity in the presence of and absence of Hp. The quaternary conformation of ββ subunit cross-linking results in a higher binding affinity than that of αα subunit cross-linked Hb. However, ββ cross-linked Hb exhibits a four fold slower association rate constant than the reaction rate of unmodified Hb with Hp. The Hp contact regions in the Hb dimer interfaces appear to be more readily exposed in ββXLHb than ααXLHb. In addition, apart from the functional changes caused by chemical modifications, Hp binding does not induce appreciable effects on the ligand binding and redox reactions of ββXLHb. Our findings may therefore be relevant to the design of safer Hb-based oxygen therapeutics by utilizing this preferential binding of ββXLHb to Hp. This may ultimately provide a safe oxidative inactivation and clearance pathway for chemically modified Hbs in circulation.
Blackwell, R Q; Blackwell, B N; Huang, J T; Chien, L C; Samaharn, A; Thephusdin, C; Borvornsin, C
1965-12-17
Hemoglobin J(Korat), a "fast" hemoglobin with an anomaly in its beta chain different from the anomalies previously reported, was the major hemoglobin component in the blood of nine subjects among 1923 Thais from northeastern Thailand. After hemoglobin E, J(Korat) is the second most frequent of the anomalous hemoglobins among Thais.
Rameez, Shahid; Palmer, Andre F
2011-07-19
During the last few decades, liposome-encapsulated hemoglobin (LEH) dispersions have been investigated for use as red blood cell (RBC) substitutes. However, the process for formulating LEHs is cumbersome, and the composition of the lipid mixture is often complex. This work investigates a simple approach to formulating LEHs from a simple lipid mixture composed of high-phase-transition lipid distearoylphosphatidylcholine (DSPC) and cholesterol. To improve the circulation half-life and colloidal state of LEHs, the surfaces of unmodified LEHs were conjugated with poly(ethylene glycol) (PEG-LEHs). The results of this work show that PEG-LEH dispersions exhibited average diameters ranging from 166 to 195 nm that were colloidally stable for 4 to 5 months, hemoglobin (Hb) concentrations ranging from 9.6 to 14 g/dL, methemoglobin levels of less than 1%, oxygen affinities (i.e., P(50) values) ranging from 20 to 23 mm Hg, and cooperativity coefficients ranging from 1.4 to 2.2. The reactions of PEG-LEHs with physiologically important ligands, such as oxygen (O(2)), carbon monoxide (CO), and nitric oxide (NO), were also measured. It was observed that PEG-LEHs and RBCs exhibited retarded gaseous ligand binding/release kinetics compared to that of acellular Hb's. This result provides important insight into the pivotal role that the intracellular diffusion barrier plays in the transport of gases into and out of these structures. Collectively, our results demonstrate that the PEG-LEH dispersions prepared in this study show good potential as an RBC substitute.
Liu, Lifang; Martínez, José L; Liu, Zihe; Petranovic, Dina; Nielsen, Jens
2014-01-01
Due to limitations associated with whole blood for transfusions (antigen compatibility, transmission of infections, supply and storage), the use of cell-free hemoglobin as an oxygen carrier substitute has been in the center of research interest for decades. Human hemoglobin has previously been synthesized in yeast, however the challenge is to balance the expression of the two different globin subunits, as well as the supply of the prosthetic heme required for obtaining the active hemoglobin (α2β2). In this work we evaluated the expression of different combinations of α and β peptides and combined this with metabolic engineering of the heme biosynthetic pathway. Through evaluation of several different strategies we showed that engineering the biosynthesis pathway can substantially increase the heme level in yeast cells, and this resulted in a significant enhancement of human hemoglobin production. Besides demonstration of improved hemoglobin production our work demonstrates a novel strategy for improving the production of complex proteins, especially multimers with a prosthetic group. © 2013 Published by International Metabolic Engineering Society on behalf of International Metabolic Engineering Society.
Kei, Tiffanie; Mistry, Nikhil; Tsui, Albert K Y; Liu, Elaine; Rogers, Stephen; Doctor, Allan; Wilson, David F; Desjardins, Jean-Francois; Connelly, Kim; Mazer, C David; Hare, Gregory M T
2017-12-01
Low hemoglobin concentration (Hb) and low mean arterial blood pressure (MAP) impact outcomes in critically ill patients. We utilized an experimental model of "normotensive" vs. "hypotensive" acute hemodilutional anemia to test whether optimal tissue perfusion is dependent on both Hb and MAP during acute blood loss and fluid resuscitation, and to assess the value of direct measurements of the partial pressure of oxygen in tissue (P t O 2 ). Twenty-nine anesthetized rats underwent 40% isovolemic hemodilution (1:1) (or sham-hemodilution control, n = 4) with either hydroxyethyl starch (HES) (n = 14, normotensive anemia) or saline (n = 11, hypotensive anemia) to reach a target Hb value near 70 g/L. The partial pressure of oxygen in the brain and skeletal muscle tissue (P t O 2 ) were measured by phosphorescence quenching of oxygen using G4 Oxyphor. Mean arterial pressure (MAP), heart rate, temperature, arterial and venous co-oximetry, blood gases, and lactate were assessed at baseline and for 60 min after hemodilution. Cardiac output (CO) was measured at baseline and immediately after hemodilution. Data were analyzed by repeated measures two-way ANOVA. Following "normotensive" hemodilution with HES, Hb was reduced to 66 ± 6 g/L, CO increased (p < 0.05), and MAP was maintained. These conditions resulted in a reduction in brain P t O 2 (22.1 ± 5.6 mmHg to 17.5 ± 4.4 mmHg, p < 0.05), unchanged muscle PO 2 , and an increase in venous oxygen extraction. Following "hypotensive" hemodilution with saline, Hb was reduced to 79 ± 5 g/L and both CO and MAP were decreased (P < 0.05). These conditions resulted in a more severe reduction in brain P t O 2 (23.2 ± 8.2 to 10.7 ± 3.6 mmHg (p < 0.05), a reduction in muscle P t O 2 (44.5 ± 11.0 to 19.9 ± 12.4 mmHg, p < 0.05), a further increase in venous oxygen extraction, and a threefold increase in systemic lactate levels (p < 0.05). Acute normotensive
Ju, Julia A.; Baek, Jin Hyen; Yalamanoglu, Ayla; Buehler, Paul W.; Gilkes, Daniele M.; Palmer, Andre F.
2018-01-01
A major constraint in the treatment of cancer is inadequate oxygenation of the tumor mass, which can reduce chemotherapeutic efficacy. We hypothesize that polymerized human hemoglobin (PolyhHb) can be transfused into the systemic circulation to increase solid tumor oxygenation, and improve chemotherapeutic outcomes. By locking PolyhHb in the relaxed (R) quaternary state, oxygen (O2) offloading at low O2 tensions (<20 mm Hg) may be increased, while O2 offloading at high O2 tensions (>20 mm Hg) is facilitated with tense (T) state PolyhHb. Therefore, R-state PolyhHb may deliver significantly more O2 to hypoxic tissues. Biophysical parameters of T and R-state PolyhHb were used to populate a modified Krogh tissue cylinder model to assess O2 transport in a tumor. In general, we found that increasing the volume of transfused PolyhHb decreased the apparent viscosity of blood in the arteriole. In addition, we found that PolyhHb transfusion decreased the wall shear stress at large arteriole diameters (>20 μm), but increased wall shear stress for small arteriole diameters (<10 μm). Therefore, transfusion of PolyhHb may lead to elevated O2 delivery at low pO2. In addition, transfusion of R-state PolyhHb may be more effective than T-state PolyhHb for O2 delivery at similar transfusion volumes. Reduction in the apparent viscosity resulting from PolyhHb transfusion may result in significant changes in flow distributions throughout the tumor microcirculatory network. The difference in wall shear stress implies that PolyhHb may have a more significant effect in capillary beds through mechano-transduction. Periodic top-load transfusions of PolyhHb into mice bearing breast tumors confirmed the oxygenation potential of both PolyhHbs via reduced hypoxic volume, vascular density, tumor growth, and increased expression of hypoxia inducible genes. Tissue section analysis demonstrated primary PolyhHb clearance occurred in the liver and spleen indicating a minimal risk for renal damage
Larsen, V H; Waldau, T; Gravesen, H; Siggaard-Andersen, O
1996-01-01
To describe a clinical case where an extremely low erythrocyte 2,3-diphosphoglycerate concentration (2,3-DPG) was discovered by routine blood gas analysis supplemented by computer calculation of derived quantities. The finding of a low 2,3-DPG revealed a severe hypophosphatemia. Open uncontrolled study of a patient case. Intensive care observation during 41 days. A 44 year old woman with an abdominal abscess. Surgical drainage, antibiotics and parenteral nutrition. daily routine blood gas analyses with computer calculation of the hemoglobin oxygen affinity and estimation of the 2,3-DPG. An abrupt decline of 2,3-DPG was observed late in the course coincident with a pronounced hypophosphatemia. The fall in 2,3-DPG was verified by enzymatic analysis. 2,3-DPG may be estimated by computer calculation of routine blood gas data. A low 2,3-DPG which may be associated with hypophosphatemia causes an unfavorable increase in hemoglobin oxygen affinity which reduces the oxygen release to the tissues.
De Rosa, Maria Cristina; Carelli Alinovi, Cristiana; Galtieri, Antonio; Russo, Annamaria; Giardina, Bruno
2008-02-01
Within the red blood cell the hemoglobin molecule is subjected to modulation mechanisms, namely homo- and heterotropic interactions, which optimize its functional behavior to the specific physiological requirements. At the cellular level, these modulation mechanisms are utilized to perform a number of other functions that are not minor with respect to the basic function of oxygen transport. Here we report some key examples concerning: (i) the interaction of hemoglobin with band 3 and its influence on glucose metabolism; (ii) the role of the ligand-linked quaternary transition of hemoglobin in the control of "NO bioactivity" and of gas diffusion; (iii) the interaction of plasma membrane with the various oxidative derivatives of the hemoglobin molecule. (c) 2008 IUBMB.
Ligand migration in the truncated hemoglobin of Mycobacterium tuberculosis.
Heroux, Maxime S; Mohan, Anne D; Olsen, Kenneth W
2011-03-01
The truncated hemoglobin of Mycobacterium tuberculosis (Mt-trHbO) is a small heme protein belonging to the hemoglobin superfamily. Truncated hemoglobins (trHbs) are believed to have functional roles such as terminal oxidases and oxygen sensors involved in the response to oxidative and nitrosative stress, nitric oxide (NO) detoxification, O₂/NO chemistry, O₂ delivery under hypoxic conditions, and long-term ligand storage. Based on sequence similarities, they are classified into three groups. Experimental studies revealed that all trHbs display a 2-on-2 α-helical sandwich fold rather than the 3-on-3 α-helical sandwich fold of the classical hemoglobin fold. Using locally enhanced sampling (LESMD) molecular dynamics, the ligand-binding escape pathways from the distal heme binding cavity of Mt-trHbO were determined to better understand how this protein functions. The importance of specific residues, such as the group II and III invariant W(G8) residue, can be seen in terms of ligand diffusion pathways and ligand dynamics. LESMD simulations show that the wild-type Mt-trHbO has three diffusion pathways while the W(G8)F Mt-trHbO mutant has only two. The W(G8) residue plays a critical role in ligand binding and stabilization and helps regulate the rate of ligand escape from the distal heme pocket. Thus, this invariant residue is important in creating ligand diffusion pathways and possibly in the enzymatic functions of this protein. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhao, Q. L.; Guo, Z. Y.; Si, J. L.; Wei, H. J.; Yang, H. Q.; Wu, G. Y.; Xie, S. S.; Guo, X.; Zhong, H. Q.; Li, L. Q.; Li, X. Y.
2011-03-01
The main objective of the present work is to study the influence of heat treatment on the esophageal cancer detection using the diffuse reflectance (DR) spectral intensity ratio R540/R575 of oxygenated hemoglobin (HbO2) absorption bands to distinguish the epithelial tissues of normal human esophagus and moderately differentiated esophageal squamous cell carcinoma (ESCC) at different heat treatment temperature of 20, 37, 42, 50, and 60°C, respectively. The DR spectra for the epithelial tissues of the normal esophagus and ESCC in vitro at different heat-treatment temperature in the wavelength range 400-650 nm were measured with a commercial optical fiber spectrometer. The results indicate that the average DR spectral intensity overall enhancement with concomitant increase of heat-treatment temperature for the epithelial tissues of normal esophagus and ESCC, but the average DR spectral intensity for the normal esophageal epithelial tissues is relatively higher than that for ESCC epithelial tissues at the same heat-treatment temperature. The mean R540/R575 ratios of ESCC epithelial tissues were always lower than that of normal esophageal epithelial tissues at the same temperature, and the mean R540/R575 ratios of the epithelial tissues of the normal esophagus and ESCC were decreasing with the increase of different heat-treatment temperatures. The differences in the mean R540/R575 ratios between the epithelial tissues of normal esophagus and ESCC were 13.33, 13.59, 11.76, and 11.11% at different heat-treatment temperature of 20, 37, 42, and 50°C, respectively. These results also indicate that the DR intensity ratio R540/R575 of the hemoglobin bands is a useful tool for discrimination between the epithelial tissues of normal esophagus and ESCC in the temperature range from room temperature to 50°C, but it was non-effective at 60°C or over 60°C.
Preparation of hemoglobin-loaded nano-sized particles with porous structure as oxygen carriers.
Zhao, Jian; Liu, Chang-Sheng; Yuan, Yuan; Tao, Xin-Yi; Shan, Xiao-Qian; Sheng, Yan; Wu, Fan
2007-03-01
Hb (hemoglobin)-loaded particles (HbP) encapsulated by a biodegradable polymer used as oxygen carrier were prepared. A modified double emulsion and solvent diffusion/evaporation method was adopted. All experiments were performed based on two types of biodegradable polymers, poly(epsilon-caprolactone) (PCL) and poly(epsilon-caprolactone-ethylene glycol) (PCL-PEG). The biodistribution and the survival time in blood of the particles were investigated in a mouse model. Encapsulation efficiency and pore-connecting efficiency were evaluated by a novel sulfocyanate potassium method. The influence of process parameters on the particle size and pore-connecting efficiency (PCE%) of nanoparticles have been discussed. The prepared conditions: solvent, external aqueous phase, pressure were discussed. The system utilizing dichloromethane (DCM)/ethyl acetate (EA) as a solvent with an unsaturated external aqueous phase yielded the highest encapsulation efficiency (87.35%) with a small mean particle size (153 nm). The formation of porous channels was attributed to the diffusion of solvent. The PCE% was more sensitive to the rate of solvent diffusion that was obviously affected by the preparation temperature. The PCE% reached 87.47% when PCL-PEG was employed at 25 degrees C. P(50) of HbP was 27 mmHg, which does not seem to be greatly affected by the encapsulation procedure. In vivo, following intravenous injection of 6-coumarin labeled HbP, the major organ accumulating Hb-loaded particles was the liver. The half-life of nano-sized PCL HbP was 3.1 times as long as the micro-sized PCL HbP. Also, Nano-sized as well as a PEGylated surface on HbP is beneficial for prolonged blood residence (7.2 fold increase).
NO Dioxygenase Activity in Hemoglobins Is Ubiquitous In Vitro, but Limited by Reduction In Vivo
Smagghe, Benoit J.; Trent, James T.; Hargrove, Mark S.
2008-01-01
Genomics has produced hundreds of new hemoglobin sequences with examples in nearly every living organism. Structural and biochemical characterizations of many recombinant proteins reveal reactions, like oxygen binding and NO dioxygenation, that appear general to the hemoglobin superfamily regardless of whether they are related to physiological function. Despite considerable attention to “hexacoordinate” hemoglobins, which are found in nearly every plant and animal, no clear physiological role(s) has been assigned to them in any species. One popular and relevant hypothesis for their function is protection against NO. Here we have tested a comprehensive representation of hexacoordinate hemoglobins from plants (rice hemoglobin), animals (neuroglobin and cytoglobin), and bacteria (Synechocystis hemoglobin) for their abilities to scavenge NO compared to myoglobin. Our experiments include in vitro comparisons of NO dioxygenation, ferric NO binding, NO-induced reduction, NO scavenging with an artificial reduction system, and the ability to substitute for a known NO scavenger (flavohemoglobin) in E. coli. We conclude that none of these tests reveal any distinguishing predisposition toward a role in NO scavenging for the hxHbs, but that any hemoglobin could likely serve this role in the presence of a mechanism for heme iron re-reduction. Hence, future research to test the role of Hbs in NO scavenging would benefit more from the identification of cognate reductases than from in vitro analysis of NO and O2 binding. PMID:18446211
Fasting serum glucose and glycosylated hemoglobin level in obesity.
Das, R K; Nessa, A; Hossain, M A; Siddiqui, N I; Hussain, M A
2014-04-01
Obesity is a condition in which the body fat stores are increased to an extent which impairs health and leads to serious health consequences. The amount of body fat is difficult to measure directly, and is usually determined from an indirect measure - the body mass index (BMI). Increased BMI in obese persons is directly associated with an increase in metabolic disease, such as type 2 diabetes mellitus. This Analytical cross sectional study was undertaken to assess the relation between obesity and glycemic control of body by measuring fasting serum glucose and glycosylated hemoglobin. This study was carried out in the Department of Physiology, Mymensingh Medical College, Mymensingh from 1st July 2011 to 30th June 2012 on 120 equally divided male and female persons within the age range of 25 to 55 years. Age more than 55 years and less than 25 years and diagnosed case of Hypothyroidism, Cushing's syndrome, polycystic ovary, Antipsychotic drug user and regular steroid users were excluded. Non probability purposive type of sampling technique was used for selecting the study subjects. Measurement of body mass index was done as per procedure. Fasting serum glucose was estimated by glucose oxidase method and Glycosylated hemoglobin by Boronate Affinity method. Statistical analysis was done by SPSS (version 17.0). Data were expressed as Mean±SE and statistical significance of difference among the groups were calculated by unpaired student's 't' test and Pearson's correlation coefficient tests were done as applicable. The Mean±SE of fasting serum glucose was significant at 1% level (P value <0.001) for obese group of BMI. There was no significant difference of glycosylated hemoglobin level between control and study groups. But there was positive correlation within each group. Fasting serum glucose also showed a bit stronger positive correlation with BMI. Both obese male and female persons showed higher levels of fasting serum glucose and glycosylated hemoglobin. The
Mustari, Afrina; Nakamura, Naoki; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu; Nishidate, Izumi
2018-01-01
To evaluate cerebral hemodynamics and spontaneous low-frequency oscillations (SLFOs) of cerebral blood flow in rat brain, we investigated an imaging method using a digital RGB camera. In this method, the RGB values were converted into tristimulus values in the CIE (Commission Internationale de l’Eclairage) XYZ color space, which is compatible with the common RGB working spaces. Monte Carlo simulation for light transport in tissue was then used to specify the relationship among the tristimulus XYZ values and the concentrations of oxygenated hemoglobin (CHbO), deoxygenated hemoglobin (CHbR), and total hemoglobin (CHbT) and cerebral tissue oxygen saturation (StO2). Applying the fast Fourier transform to each pixel of the sequential images of CHbT along the timeline, SLFOs of cerebral blood volume were visualized as a spatial map of power spectral density (PSD) at specific frequencies related to vasomotion. To confirm the feasibility of this method, we performed in vivo experiments using exposed rat brain during a cortical spreading depression (CSD) evoked by topical application of KCl. Cerebral hemodynamic responses to CSD such as initial hypoperfusion, profound hyperemia, and post-CSD oligemia and hypoxemia were successfully visualized with this method. At the transition to the hyperemia phase from hypoperfusion, CHbO and StO2 were significantly increased, which implied vasodilatation in arterioles and increased cerebral blood volume in response to CSD. In the wake of the hyperemic phase, CHbO and CHbT were significantly reduced to 25 ± 12% and 3.5 ± 1% of baseline, respectively, suggesting long-lasting vasoconstriction after CSD. In this persistent oligemia, StO2 significantly dropped to at most 23 ± 12% of the level before CSD, indicating long-lasting hypoxemia. The PSD value of SLFOs in CHbT for arteriole regions during CSD was significantly reduced to 28 ± 20% of baseline with respect to the pre-CSD level, which was correlated with the reduction in StO2
Tertiary and quaternary effects in the allosteric regulation of animal hemoglobins.
Ronda, Luca; Bruno, Stefano; Bettati, Stefano
2013-09-01
In the last decade, protein allostery has experienced a major resurgence, boosted by the extension of the concept to systems of increasing complexity and by its exploitation for the development of drugs. Expansion of the field into new directions has not diminished the key role of hemoglobin as a test molecule for theory and experimental validation of allosteric models. Indeed, the diffusion of hemoglobins in all kingdoms of life and the variety of functions and of quaternary assemblies based on a common tertiary fold indicate that this superfamily of proteins is ideally suited for investigating the physical and molecular basis of allostery and firmly maintains its role as a main player in the field. This review is an attempt to briefly recollect common and different strategies adopted by metazoan hemoglobins, from monomeric molecules to giant complexes, exploiting homotropic and heterotropic allostery to increase their functional dynamic range. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins. Copyright © 2013 Elsevier B.V. All rights reserved.
Simanovskiĭ, L N
1976-01-01
It was shown that on the 30th-60th days of training rats to hypoxia under conditions of pressure chamber there was an increase in ATP and 2,3-diphosphoglycerate content in erythrocytes. By changing the affinity of hemoglobin to oxygen the mentioned shifts could play an important role in the improvement of oxygen supply to the tissues.
Detection of Sickle Cell Hemoglobin in Haiti by Genotyping and Hemoglobin Solubility Tests
Carter, Tamar E.; von Fricken, Michael; Romain, Jean R.; Memnon, Gladys; St. Victor, Yves; Schick, Laura; Okech, Bernard A.; Mulligan, Connie J.
2014-01-01
Sickle cell disease is a growing global health concern because infants born with the disorder in developing countries are now surviving longer with little access to diagnostic and management options. In Haiti, the current state of sickle cell disease/trait in the population is unclear. To inform future screening efforts in Haiti, we assayed sickle hemoglobin mutations using traditional hemoglobin solubility tests (HST) and add-on techniques, which incorporated spectrophotometry and insoluble hemoglobin separation. We also generated genotype data as a metric for HST performance. We found 19 of 202 individuals screened with HST were positive for sickle hemoglobin, five of whom did not carry the HbS allele. We show that spectrophotometry and insoluble hemoglobin separation add-on techniques could resolve false positives associated with the traditional HST approach, with some limitations. We also discuss the incorporation of insoluble hemoglobin separation observation with HST in suboptimal screening settings like Haiti. PMID:24957539
Silva, Marcilene Rezende; Sendin, Shimene Mascarenhas; Araujo, Isabela Couto de Oliveira; Pimentel, Fernanda Silva; Viana, Marcos Borato
2013-01-01
To characterize alpha-chain variant hemoglobins with electric mobility similar to that of hemoglobin S in a newborn screening program. β(S) allele and alpha-thalassemia deletions were investigated in 14 children who had undefined hemoglobin at birth and an electrophoretic profile similar to that of hemoglobin S when they were six months old. Gene sequencing and restriction enzymes (DdeI, BsaJI, NlaIV, Bsu36I and TaqI) were used to identify hemoglobins. Clinical and hematological data were obtained from children who attended scheduled medical visits. THE FOLLOWING ALPHA CHAIN VARIANTS WERE FOUND: seven children with hemoglobin Hasharon [alpha2 47(CE5) Asp>His, HbA2:c.142G>C], all associated with alpha-thalassemia, five with hemoglobin Ottawa [alpha1 15(A13) Gly>Arg, HBA1:c.46G>C], one with hemoglobin St Luke's [alpha1 95(G2) Pro>Arg, HBA1:c.287C>G] and another one with hemoglobin Etobicoke [alpha212 84(F5) Ser>Arg, HBA212:c.255C>G]. Two associations with hemoglobin S were found: one with hemoglobin Ottawa and one with hemoglobin St Luke's. The mutation underlying hemoglobin Etobicoke was located in a hybrid α212 allele in one child. There was no evidence of clinically relevant hemoglobins detected in this study. Apparently these are the first cases of hemoglobin Ottawa, St Luke's, Etobicoke and the α212 gene described in Brazil. The hemoglobins detected in this study may lead to false diagnosis of sickle cell trait or sickle cell disease when only isoelectric focusing is used in neonatal screening. Additional tests are necessary for the correct identification of hemoglobin variants.
A novel base change leading to Hb Vanderbilt [β89(F5)Ser→Arg, AGT>AGA].
Goodyer, Matthew J; Elhassadi, Ezzat I; Percy, Melanie J; McMullin, Mary F
2011-01-01
We describe a high oxygen affinity hemoglobin (Hb) variant (Hb Vanderbilt) as a result of a heterozygous novel base change from T to A at codon 89 (AGT>AGA) leading to an amino acid change from serine to arginine.
Hemoglobin Wayne Trait with Incidental Polycythemia.
Ambelil, Manju; Nguyen, Nghia; Dasgupta, Amitava; Risin, Semyon; Wahed, Amer
2017-01-01
Hemoglobinopathies, caused by mutations in the globin genes, are one of the most common inherited disorders. Many of the hemoglobin variants can be identified by hemoglobin analysis using conventional electrophoresis and high performance liquid chromatography; however hemoglobin DNA analysis may be necessary in other cases for confirmation. Here, we report a case of a rare alpha chain hemoglobin variant, hemoglobin Wayne, in a 47-year-old man who presented with secondary polycythemia. Capillary zone electrophoresis and high performance liquid chromatography revealed a significant amount of a hemoglobin variant, which was further confirmed by hemoglobin DNA sequencing as hemoglobin Wayne. Since the patient was not homozygous for hemoglobin Wayne, which is associated with secondary polycythemia, the laboratory diagnosis in this case was critical in ruling out hemoglobinopathy as the etiology of his polycythemia. © 2017 by the Association of Clinical Scientists, Inc.
Fucharoen, Suthat; Weatherall, David J.
2012-01-01
Hemoglobin E (HbE) is an extremely common structural hemoglobin variant that occurs at high frequencies throughout many Asian countries. It is a β-hemoglobin variant, which is produced at a slightly reduced rate and hence has the phenotype of a mild form of β thalassemia. Its interactions with different forms of α thalassemia result in a wide variety of clinical disorders, whereas its coinheritance with β thalassemia, a condition called hemoglobin E β thalassemia, is by far the most common severe form of β thalassemia in Asia and, globally, comprises approximately 50% of the clinically severe β-thalassemia disorders. PMID:22908199
Microscopic diffusion and hydrodynamic interactions of hemoglobin in red blood cells.
Doster, Wolfgang; Longeville, Stéphane
2007-08-15
The cytoplasm of red blood cells is congested with the oxygen storage protein hemoglobin occupying a quarter of the cell volume. The high protein concentration leads to a reduced mobility; the self-diffusion coefficient of hemoglobin in blood cells is six times lower than in dilute solution. This effect is generally assigned to excluded volume effects in crowded media. However, the collective or gradient diffusion coefficient of hemoglobin is only weakly dependent on concentration, suggesting the compensation of osmotic and friction forces. This would exclude hydrodynamic interactions, which are of dynamic origin and do not contribute to the osmotic pressure. Hydrodynamic coupling between protein molecules is dominant at short time- and length scales before direct interactions are fully established. Employing neutron spin-echo-spectroscopy, we study hemoglobin diffusion on a nanosecond timescale and protein displacements on the scale of a few nanometers. A time- and wave-vector dependent diffusion coefficient is found, suggesting the crossover of self- and collective diffusion. Moreover, a wave-vector dependent friction function is derived, which is a characteristic feature of hydrodynamic interactions. The wave-vector and concentration dependence of the long-time self-diffusion coefficient of hemoglobin agree qualitatively with theoretical results on hydrodynamics in hard spheres suspensions. Quantitative agreement requires us to adjust the volume fraction by including part of the hydration shell: Proteins exhibit a larger surface/volume ratio compared to standard colloids of much larger size. It is concluded that hydrodynamic and not direct interactions dominate long-range molecular transport at high concentration.
Sakurai, Hiroshi; Imai, Kiyohiro; Mizusawa, Naoki; Ogura, Takashi
2015-01-01
Human hemoglobin (Hb), which is an α2β2 tetramer and binds four O2 molecules, changes its O2-affinity from low to high as an increase of bound O2, that is characterized by ‘cooperativity’. This property is indispensable for its function of O2 transfer from a lung to tissues and is accounted for in terms of T/R quaternary structure change, assuming the presence of a strain on the Fe-histidine (His) bond in the T state caused by the formation of hydrogen bonds at the subunit interfaces. However, the difference between the α and β subunits has been neglected. To investigate the different roles of the Fe-His(F8) bonds in the α and β subunits, we investigated cavity mutant Hbs in which the Fe-His(F8) in either α or β subunits was replaced by Fe-imidazole and F8-glycine. Thus, in cavity mutant Hbs, the movement of Fe upon O2-binding is detached from the movement of the F-helix, which is supposed to play a role of communication. Recombinant Hb (rHb)(αH87G), in which only the Fe-His in the α subunits is replaced by Fe-imidazole, showed a biphasic O2-binding with no cooperativity, indicating the coexistence of two independent hemes with different O2-affinities. In contrast, rHb(βH92G), in which only the Fe-His in the β subunits is replaced by Fe-imidazole, gave a simple high-affinity O2-binding curve with no cooperativity. Resonance Raman, 1H NMR, and near-UV circular dichroism measurements revealed that the quaternary structure change did not occur upon O2-binding to rHb(αH87G), but it did partially occur with O2-binding to rHb(βH92G). The quaternary structure of rHb(αH87G) appears to be frozen in T while its tertiary structure is changeable. Thus, the absence of the Fe-His bond in the α subunit inhibits the T to R quaternary structure change upon O2-binding, but its absence in the β subunit simply enhances the O2-affinity of α subunit. PMID:26244770
Asymptomatic Child Heterozygous for Hemoglobin S and Hemoglobin Pôrto Alegre
Lojo, Liliana; Santiago-Borrero, Pedro; Rivera, Enid; Renta, Jessicca; Cadilla, Carmen L
2013-01-01
Hemoglobin Pôrto Alegre (PA) is a rare hemoglobin resulting from a mutation in β9(A6)Ser→Cys. We describe an asymptomatic Puerto Rican female with combined heterozygosity for Hb PA and Hb S. Since birth, she has maintained normal hemoglobin, bilirubin, LDH levels, and reticulocyte count. Peripheral smear evaluation has revealed normal erythrocyte morphology with no changes suggestive of hemolysis. We conclude that the presence of Hb PA does not increase the risk of red blood cell sickling in patients who carry the Hb S mutation. PMID:21225927
Nagamine, Kanetada; Shimomura, Koichiro; Miyadera, Haruo; Kim, Yong-Jae; Scheicher, Ralph Hendrik; Das, Tara Prasad; Schultz, Jerome Samson
2007-01-01
A marked difference in spin relaxation behavior due to hemoglobin magnetism was found for positive muons (μ+) in deoxyhemoglobin in comparison with that observed in oxyhemoglobin in aqueous solution at room temperature under zero and external longitudinal magnetic fields upto 0.4 Tesla. At the same time, small but significant unique relaxation pattern was observed in nonmagnetic oxyhemoglobin. Combined with our previous measurements on hemoglobin in human blood, application of this type of measurement to the studies of the level of oxygenation in various regions of the human brain is suggested. PMID:24019590
Novel noninvasive point-of-care device for real time hemoglobin monitoring
NASA Astrophysics Data System (ADS)
Timm, Ulrich; Gewiss, Helge; Kraitl, Jens; Stuepmann, Kirstin; Hinz, Michael; Koball, Sebastian; Ewald, Hartmut
2014-02-01
During the perioperative period, which includes the period before surgery and after surgery (postoperative), it is essential to measure diagnostic parameters such as: blood oxygen saturation; hemoglobin (Hb) concentration; and pulse rate. The Hb concentration in human blood is an important parameter to evaluate the physiological condition of an individual, as Hb is the oxygen carrying component of red blood cells. By determining the Hb concentration, it is possible, for example, to observe intraoperative or postoperative bleeding, and use this information as a trigger for autologous/ allogenic blood transfusions. In blood donation center it is also an essential parameter for the decision regarding the acceptance of the donor.
Mechanism of the enhancement of the Bohr effect in mammalian hemoglobins by diphosphoglycerate.
Riggs, A
1971-09-01
The number of protons released from several mammalian hemoglobins as a consequence of oxygenation is greater in the presence of low concentrations of 2,3-diphosphoglycerate than in its absence. A mechanism for this enhancement of proton release is proposed. The basis of this mechanism is that 2,3-diphosphoglycerate binds primarily between the protonated alpha-NH(2) terminal groups of the two beta chains in deoxyhemoglobin. This binding will shift the ionization equilibria in favor of the protonation of the deoxyhemoglobin. Partial release of 2,3-diphosphoglycerate upon oxygenation of the hemoglobin is then accompanied by a release of protons. The apparent enthalpy of diphosphoglycerate binding appears to be close to zero. The previously reported temperature dependence appears to be due entirely to the associated protonation reaction. If only a single diphosphoglycerate binding site is assumed, the intrinsic association constant is estimated to be 3.9 x 10(5) M(-1) for deoxyhemoglobin and 1.05 x 10(4) M(-1) for oxyhemoglobin at 20 degrees C in 0.1 M NaCl.
Mechanism of the Enhancement of the Bohr Effect in Mammalian Hemoglobins by Diphosphoglycerate
Riggs, Austen
1971-01-01
The number of protons released from several mammalian hemoglobins as a consequence of oxygenation is greater in the presence of low concentrations of 2,3-diphosphoglycerate than in its absence. A mechanism for this enhancement of proton release is proposed. The basis of this mechanism is that 2,3-diphosphoglycerate binds primarily between the protonated α-NH2 terminal groups of the two β chains in deoxyhemoglobin. This binding will shift the ionization equilibria in favor of the protonation of the deoxyhemoglobin. Partial release of 2,3-diphosphoglycerate upon oxygenation of the hemoglobin is then accompanied by a release of protons. The apparent enthalpy of diphosphoglycerate binding appears to be close to zero. The previously reported temperature dependence appears to be due entirely to the associated protonation reaction. If only a single diphosphoglycerate binding site is assumed, the intrinsic association constant is estimated to be 3.9 × 105 M-1 for deoxyhemoglobin and 1.05 × 104 M-1 for oxyhemoglobin at 20°C in 0.1 M NaCl. PMID:5289365
Direct comparison of oligochaete erythrocruorins as potential blood substitutes
Zimmerman, Devon; DiIusto, Matthew; Dienes, Jack; Abdulmalik, Osheiza
2017-01-01
Abstract While many blood substitutes are based on mammalian hemoglobins (e.g., human hemoglobin, HbA), the naturally extracellular hemoglobins of invertebrates (a.k.a. erythrocruorins, Ecs) are intriguing alternative oxygen carriers. Specifically, the erythrocruorin of Lumbricus terrestris has been shown to effectively deliver oxygen in mice and rats without the negative side effects observed with HbA. In this study, the properties of six oligochaete Ecs (Lumbricus terrestris, Eisenia hortensis, Eisenia fetida, Eisenia veneta, Eudrilus eugeniae, and Amynthas gracilis) were compared in vitro to identify the most promising blood substitute candidate(s). Several metrics were used to compare the Ecs, including their oxidation rates, dissociation at physiological pH, thermal stability, and oxygen transport characteristics. Overall, the Ecs of Lumbricus terrestris (LtEc) and Eisenia fetida (EfEc) were identified as promising candidates, since they demonstrated high thermal and oligomeric stability, while also exhibiting relatively low oxidation rates. Interestingly, the O2 affinity of LtEc (P 50 = 26.25 mmHg at 37 °C) was also observed to be uniquely lower than EfEc and all of the other Ecs (P 50 = 9.29–13.62 mmHg). Subsequent alignment of the primary sequences of LtEc and EfEc revealed several significant amino acid substitutions within the D subunit interfaces that may be responsible for this significant change in O2 affinity. Nonetheless, these results show that LtEc and EfEc are promising potential blood substitutes that are resistant to oxidation and denaturation, but additional experiments will need to be conducted to determine their safety, efficacy, and the effects of their disparate oxygen affinities in vivo. PMID:29313031
Park, H-D; Noguera, D R
2007-05-01
To obtain ammonia-oxidizing bacterial (AOB) strains inhabiting low dissolved oxygen (DO) environments and to characterize them to better understand their function and ecology. Using a serial dilution method, two AOB strains (ML1 and NL7) were isolated from chemostat reactors operated with low DO concentrations (0.12-0.24 mg l(-1)). Phylogenetically, strains ML1 and NL7 are affiliated to AOB within the Nitrosomonas europaea and Nitrosomonas oligotropha lineages, respectively. Kinetically, strain ML1 had high affinity for oxygen (0.24 +/- 0.13 mg l(-1)) and low affinity for ammonia (1.62 +/- 0.97 mg N l(-1)), while strain NL7 had high affinity for ammonia (0.48 +/- 0.35 mg l(-1)), but a surprisingly low affinity for oxygen (1.22 +/- 0.43 mg l(-1)). A co-culture experiment was used to iteratively estimate decay constants for both strains. The results indicated that AOB without high affinity for oxygen may have other mechanisms to persist in low DO environments, with high affinity for ammonia being important. This study provides a method to determine AOB growth kinetic parameters without assuming or neglecting decay constant. And, this is the first report on oxygen affinity constant of a N. oligotropha strain.
Measurement of the refractive index of hemoglobin solutions for a continuous spectral region
Wang, Jin; Deng, Zhichao; Wang, Xiaowan; Ye, Qing; Zhou, Wenyuan; Mei, Jianchun; Zhang, Chunping; Tian, Jianguo
2015-01-01
Determination of the refractive index of hemoglobin solutions over a wide wavelength range remains challenging. A famous detour approach is the Kramers-Kronig (KK) analysis which can resolve the real part of complex refractive index from the imaginary part. However, KK analysis is limited by the contradiction between the requirement of semi-infinite frequency range and limited measured range. In this paper, based on the Multi-curve fitting method (MFM), continuous refractive index dispersion (CRID) of oxygenated and deoxygenated hemoglobin solutions are measured using a homemade symmetrical arm-linked apparatus in the continuous wavelength range with spectral resolution of about 0.259nm. A novel method to obtain the CRID is proposed. PMID:26203379
Jensen, Frank B; Rohde, Sabina
2010-04-01
Nitrite uptake into red blood cells (RBCs) precedes its intracellular reactions with hemoglobin (Hb) that forms nitric oxide (NO) during hypoxia. We investigated the uptake of nitrite and its reactions with Hb at different oxygen saturations (So(2)), using RBCs with (carp and rabbit) and without (hagfish and lamprey) anion exchanger-1 (AE1) in the membrane, with the aim to unravel the mechanisms and oxygenation dependencies of nitrite transport. Added nitrite rapidly diffused into the RBCs until equilibrium. The distribution ratio of nitrite across the membrane agreed with that expected from HNO(2) diffusion and AE1-mediated facilitated NO(2)(-) diffusion. Participation of HNO(2) diffusion was emphasized by rapid transmembrane nitrite equilibration also in the natural AE1 knockouts. Following the equilibration, nitrite was consumed by reacting with Hb, which created a continued inward diffusion controlled by intracellular reaction rates. Changes in nitrite uptake with So(2), pH, or species were accordingly explained by corresponding changes in reaction rates. In carp, nitrite uptake rates increased linearly with decreasing So(2) over the entire So(2) range. In rabbit, nitrite uptake rates were highest at intermediate So(2), producing a bell-shaped relationship with So(2). Nitrite consumption increased approximately 10-fold with a 1 unit decrease in pH, as expected from the involvement of protons in the reactions with Hb. The reaction of nitrite with deoxyhemoglobin was favored over that with oxyhemoglobin at intermediate So(2). We propose a model for RBC nitrite uptake that involves both HNO(2) diffusion and AE1-mediated transport and that explains both the present and previous (sometimes puzzling) results.
Muscle Oxygen Supply Impairment during Exercise in Poorly Controlled Type 1 Diabetes
TAGOUGUI, SEMAH; LECLAIR, ERWAN; FONTAINE, PIERRE; MATRAN, RÉGIS; MARAIS, GAELLE; AUCOUTURIER, JULIEN; DESCATOIRE, AURÉLIEN; VAMBERGUE, ANNE; OUSSAIDENE, KAHINA; BAQUET, GEORGES; HEYMAN, ELSA
2015-01-01
ABSTRACT Purpose Aerobic fitness, as reflected by maximal oxygen (O2) uptake (V˙O2max), is impaired in poorly controlled patients with type 1 diabetes. The mechanisms underlying this impairment remain to be explored. This study sought to investigate whether type 1 diabetes and high levels of glycated hemoglobin (HbA1c) influence O2 supply including O2 delivery and release to active muscles during maximal exercise. Methods Two groups of patients with uncomplicated type 1 diabetes (T1D-A, n = 11, with adequate glycemic control, HbA1c <7.0%; T1D-I, n = 12 with inadequate glycemic control, HbA1c >8%) were compared with healthy controls (CON-A, n = 11; CON-I, n = 12, respectively) matched for physical activity and body composition. Subjects performed exhaustive incremental exercise to determine V˙O2max. Throughout the exercise, near-infrared spectroscopy allowed investigation of changes in oxyhemoglobin, deoxyhemoglobin, and total hemoglobin in the vastus lateralis. Venous and arterialized capillary blood was sampled during exercise to assess arterial O2 transport and factors able to shift the oxyhemoglobin dissociation curve. Results Arterial O2 content was comparable between groups. However, changes in total hemoglobin (i.e., muscle blood volume) was significantly lower in T1D-I compared with that in CON-I. T1D-I also had impaired changes in deoxyhemoglobin levels and increase during high-intensity exercise despite normal erythrocyte 2,3-diphosphoglycerate levels. Finally, V˙O2max was lower in T1D-I compared with that in CON-I. No differences were observed between T1D-A and CON-A. Conclusions Poorly controlled patients displayed lower V˙O2max and blunted muscle deoxyhemoglobin increase. The latter supports the hypotheses of increase in O2 affinity induced by hemoglobin glycation and/or of a disturbed balance between nutritive and nonnutritive muscle blood flow. Furthermore, reduced exercise muscle blood volume in poorly controlled patients may warn clinicians of
Dong, C; Chadwick, R S; Schechter, A N
1992-01-01
The rheological properties of normal erythrocytes appear to be largely determined by those of the red cell membrane. In sickle cell disease, the intracellular polymerization of sickle hemoglobin upon deoxygenation leads to a marked increase in intracellular viscosity and elastic stiffness as well as having indirect effects on the cell membrane. To estimate the components of abnormal cell rheology due to the polymerization process and that due to the membrane abnormalities, we have developed a simple mathematical model of whole cell deformability in narrow vessels. This model uses hydrodynamic lubrication theory to describe the pulsatile flow in the gap between a cell and the vessel wall. The interior of the cell is modeled as a Voigt viscoelastic solid with parameters for the viscous and elastic moduli, while the membrane is assigned an elastic shear modulus. In response to an oscillatory fluid shear stress, the cell--modeled as a cylinder of constant volume and surface area--undergoes a conical deformation which may be calculated. We use published values of normal and sickle cell membrane elastic modulus and of sickle hemoglobin viscous and elastic moduli as a function of oxygen saturation, to estimate normalized tip displacement, d/ho, and relative hydrodynamic resistance, Rr, as a function of polymer fraction of hemoglobin for sickle erythrocytes. These results show the transition from membrane to internal polymer dominance of deformability as oxygen saturation is lowered. More detailed experimental data, including those at other oscillatory frequencies and for cells with higher concentrations of hemoglobin S, are needed to apply fully this approach to understanding the deformability of sickle erythrocytes in the microcirculation. The model should be useful for reconciling the vast and disparate sets of data available on the abnormal properties of sickle cell hemoglobin and sickle erythrocyte membranes, the two main factors that lead to pathology in patients
Asymptomatic child heterozygous for hemoglobin S and hemoglobin Pôrto Alegre.
Lojo, Liliana; Santiago-Borrero, Pedro; Rivera, Enid; Renta, Jessicca; Cadilla, Carmen L
2011-03-01
Hemoglobin Pôrto Alegre (PA) is a rare hemoglobin resulting from a mutation in β9(A6)Ser → Cys. We describe an asymptomatic Puerto Rican female with combined heterozygosity for Hb PA and Hb S. Since birth, she has maintained normal hemoglobin, bilirubin, LDH levels, and reticulocyte count. Peripheral smear evaluation has revealed normal erythrocyte morphology with no changes suggestive of hemolysis. We conclude that the presence of Hb PA does not increase the risk of red blood cell sickling in patients who carry the Hb S mutation. Copyright © 2010 Wiley-Liss, Inc.
Subunit dissociation in fish hemoglobins.
Edelstein, S J; McEwen, B; Gibson, Q H
1976-12-10
The tetramer-dimer dissociation equilibria (K 4,2) of several fish hemoglobins have been examined by sedimentation velocity measurements with a scanner-computer system for the ultracentrifuge and by flash photolysis measurements using rapid kinetic methods. Samples studied in detail included hemoglobins from a marine teleost, Brevoortia tyrannus (common name, menhaden); a fresh water teleost, Cyprinus carpio, (common name, carp); and an elasmobranch Prionace glauca (common name, blue shark). For all three species in the CO form at pH 7, in 0.1 M phosphate buffer, sedimentation coefficients of 4.3 S (typical of tetrameric hemoglobin) are observed in the micromolar concentration range. In contrast, mammalian hemoglobins dissociate appreciably to dimers under these conditions. The inability to detect dissociation in three fish hemoglobins at the lowest concentrations examined indicates that K 4,2 must have a value of 10(-8) M or less. In flash photolysis experiments on very dilute solutions in long path length cells, two kinetic components were detected with their proportions varying as expected for an equilibrium between tetramers (the slower component) and dimers (the faster component); values of K 4,2 for the three fish hemoglobins in the range 10(-9) to 10(-8) M were calculated from these data. Thus, the values of K 4,2 for liganded forms of the fish hemoglobins appear to be midway between the value for liganded human hemoglobin (K 4,2 approximately 10(-6) M) and unliganded human hemoglobin (K 4,2 approximately 10(-12) M). This conclusion is supported by measurements on solutions containing guanidine hydrochloride to enhance the degree of dissociation. All three fish hemoglobins are appreciably dissociated at guanidine concentrations of about 0.8 M, which is roughly midway between the guanidine concentrations needed to cause comparable dissociation of liganded human hemoglobin (about 0.4 M) and unliganded human hemoglobin (about 1.6 M). Kinetic measurements on
Fonseca, Vera; Avizinis, Jessica; Moon-Massat, Paula; Freilich, Daniel; Kim, Hae Won; Hai, Chi-Ming
2010-01-01
Vasoconstriction is a major adverse effect of first and second generation hemoglobin-based oxygen carriers (HBOCs) that hinders their development as blood substitute. However, intravenous infusion of HBOC-201 (second generation) to patients induces significant pulmonary hypertension without significant coronary vasoconstriction. We compared contractile responses of isolated bovine pulmonary and coronary arterial strips to HBOC-201 and HBOC-205LL.LT.MW600 (third generation), polymerized bovine hemoglobins of different molecular weight, and their attenuation by nitroglycerin, sodium nitroprusside (SNP), and sodium nitrite. Pulmonary arteries developed negligible basal tone, but exhibited HBOC-dependent amplification of phenylephrine-induced contractions. In contrast, coronary arteries developed significant basal tone, and exhibited HBOC-dependent constant force increment to serotonin-induced contractions. Therefore, relative to basal tone, HBOC-induced contractions were greater in pulmonary than coronary arteries. Furthermore, HBOC-205LL.LT.MW600 appeared to be less vasoactive than HBOC-201. Unexpectedly, pulmonary and coronary arteries exhibited differential sensitivities to nitrovasodilators in parallel with their differential sensitivities to HBOC. However, SNP and sodium nitrite induced significant methemoglobin formation from HBOC, whereas nitroglycerin did not. These results suggest that phenotypic differences between pulmonary and coronary vascular smooth muscle cells could explain the differential hypertensive effects of HBOC on pulmonary and coronary circulation in patients. Among the three nitrovasodilators investigated, nitroglycerin appears to be the most promising candidate for attenuating HBOC-induced pulmonary hypertension in older HBOCs.
Characterization of hemoglobin Hotel Dieu in a Puerto Rican adolescent.
Cadilla, C L; López, C R; García-Castiñeiras, S; Valencia, D; Renta, J Y; Rivera-Caragol, E; Barrios, N J; Santiago-Borrero, P J
1998-01-01
Hemoglobin Hotel Dieu (HbHD) is a high-oxygen affinity variant of HbA never before reported in a Hispanic patient. This Hb variant was first reported in 1981 by Blouquit et al. in a white person with erythrocytosis with a substitution in the beta 99 aspartic acid residue by glycine. A 13-year-old Puerto Rican boy had pain in his chest, headaches, easy fatigability, and high Hb (as high as 19.1 g/dl). Protein analysis was performed by cellulose acetate, citrate agar, and isoelectric focusing electrophoresis and high-pressure liquid chromatography (HPLC), polymerase chain reaction (PCR) amplification, and DNA sequencing of the second exon of the beta gene in samples obtained from the mother, father, and the patient, and DNA fingerprinting to determine paternity. The variant found in the patient migrated on cellulose acetate electrophoresis to a cathodic position relative to HbF, and a band cathodal to HbA and close to HbF on isoelectric focusing electrophoresis. The patient showed an abnormal well-resolved peak on HPLC with a retention time slightly shorter than that for HbS. DNA analysis by direct sequencing of the PCR product demonstrated heterozygosity for codon 99 (GAT-->GGT) in the patient but not in either parent. DNA fingerprinting by multiplex PCR amplification of three simple tandem repeat loci showed that the patient shared alleles in all three loci with both parents, ruling out nonpaternity. The protein and DNA analysis indicate that the erythrocytosis is caused by the presence of HbHD in this Hispanic adolescent.
Hemoglobin C, S-C, and E Diseases
... quickly than others, resulting in chronic anemia. Hemoglobin C disease Hemoglobin C disease occurs mostly in blacks. ... a common complication of hemoglobin C disease. Hemoglobin S-C disease Hemoglobin S-C disease occurs in people who ...
Welbourn, Elizabeth M; Wilson, Michael T; Yusof, Ashril; Metodiev, Metodi V; Cooper, Chris E
2017-02-01
Covalent hemoglobin binding to membranes leads to band 3 (AE1) clustering and the removal of erythrocytes from the circulation; it is also implicated in blood storage lesions. Damaged hemoglobin, with the heme being in a redox and oxygen-binding inactive hemichrome form, has been implicated as the binding species. However, previous studies used strong non-physiological oxidants. In vivo hemoglobin is constantly being oxidised to methemoglobin (ferric), with around 1% of hemoglobin being in this form at any one time. In this study we tested the ability of the natural oxidised form of hemoglobin (methemoglobin) in the presence or absence of the physiological oxidant hydrogen peroxide to initiate membrane binding. The higher the oxidation state of hemoglobin (from Fe(III) to Fe(V)) the more binding was observed, with approximately 50% of this binding requiring reactive sulphydryl groups. The hemoglobin bound was in a high molecular weight complex containing spectrin, ankyrin and band 4.2, which are common to one of the cytoskeletal nodes. Unusually, we showed that hemoglobin bound in this way was redox active and capable of ligand binding. It can initiate lipid peroxidation showing the potential to cause cell damage. In vivo oxidative stress studies using extreme endurance exercise challenges showed an increase in hemoglobin membrane binding, especially in older cells with lower levels of antioxidant enzymes. These are then targeted for destruction. We propose a model where mild oxidative stress initiates the binding of redox active hemoglobin to the membrane. The maximum lifetime of the erythrocyte is thus governed by the redox activity of the cell; from the moment of its release into the circulation the timer is set. Copyright © 2016. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Fetler, Bayard Keith
1993-01-01
Nuclear magnetic resonance (NMR) offers a potential method for making measurements of the percent oxygenation of hemoglobin (Hb) in living tissue non-invasively. As a demonstration of the feasibility of such measurements, we measured the percent oxygenation of Hb in red blood cells (erythrocytes) using resonances in the proton-NMR (^1H-NMR) spectrum which are characteristic of oxyhemoglobin (oxy-Hb) and deoxyhemoglobin (deoxy-Hb), and are due to the unique magnetic properties of these molecules. To perform these measurements, we developed a new NMR method of selectively exciting signals in a region of interest with uniform phase and amplitude, while suppressing the signal of the water resonance. With this method, we are able to make exact calculations distinguishing between uniform phase excitation produced at large flip-angles using the non-linear properties of the Bloch equations, and uniform phase excitation produced at small flip-angles using asymmetric pulse excitation functions. We measured the percent oxygenation of three characteristic ^1H-NMR resonances of Hb: two from deoxy-Hb, originating from the N_delta H protons of histidine residue F8, which occur at different frequencies for the alpha and beta chains of Hb; and one from oxy-Hb, originating from the gamma_2 -CH_3 protons of valine residue E11. We performed experiments both on fresh erythrocytes and on erythrocytes depleted of 2,3-diphosphoglycerate (2,3-DPG), and found that oxygen is more tightly bound to Hb in the former case. In both fresh and 2,3-DPG-depleted samples, we found that: (i) from the deoxy-Hb marker resonances, there is a small but significant difference in the oxygen saturation between the alpha and beta chains; (ii) the decrease in the areas of the deoxy-Hb marker resonances correlates well with the increase in the percent oxygenation of Hb as measured optically; (iii) the area of the oxy-Hb marker resonance may be up to ~15% less than the optically measured Hb saturation. We are
Lagerlöf, Jakob H; Kindblom, Jon; Cortez, Eliane; Pietras, Kristian; Bernhardt, Peter
2013-02-01
Hypoxia is one of the most important factors influencing clinical outcome after radiotherapy. Improved knowledge of factors affecting the levels and distribution of oxygen within a tumor is needed. The authors constructed a theoretical 3D model based on histological images to analyze the influence of vessel density and hemoglobin (Hb) concentration on the response to irradiation. The pancreases of a Rip-Tag2 mouse, a model of malignant insulinoma, were excised, cryosectioned, immunostained, and photographed. Vessels were identified by image thresholding and a 3D vessel matrix assembled. The matrix was reduced to functional vessel segments and enlarged by replication. The steady-state oxygen tension field of the tumor was calculated by iteratively employing Green's function method for diffusion and the Michaelis-Menten model for consumption. The impact of vessel density on the radiation response was studied by removing a number of randomly selected vessels. The impact of Hb concentration was studied by independently changing vessel oxygen partial pressure (pO(2)). For each oxygen distribution, the oxygen enhancement ratio (OER) was calculated and the mean absorbed dose at which the tumor control probability (TCP) was 0.99 (D(99)) was determined using the linear-quadratic cell survival model (LQ model). Decreased pO(2) shifted the oxygen distribution to lower values, whereas decreased vessel density caused the distribution to widen and shift to lower values. Combined scenarios caused lower-shifted distributions, emphasising log-normal characteristics. Vessel reduction combined with increased blood pO(2) caused the distribution to widen due to a lack of vessels. The most pronounced radiation effect of increased pO(2) occurred with tumor tissue with 50% of the maximum vessel density used in the simulations. A 51% decrease in D(99), from 123 to 60 Gy, was found between the lowest and highest pO(2) concentrations. Our results indicate that an intermediate vascular
Direct estimation of evoked hemoglobin changes by multimodality fusion imaging
Huppert, Theodore J.; Diamond, Solomon G.; Boas, David A.
2009-01-01
In the last two decades, both diffuse optical tomography (DOT) and blood oxygen level dependent (BOLD)-based functional magnetic resonance imaging (fMRI) methods have been developed as noninvasive tools for imaging evoked cerebral hemodynamic changes in studies of brain activity. Although these two technologies measure functional contrast from similar physiological sources, i.e., changes in hemoglobin levels, these two modalities are based on distinct physical and biophysical principles leading to both limitations and strengths to each method. In this work, we describe a unified linear model to combine the complimentary spatial, temporal, and spectroscopic resolutions of concurrently measured optical tomography and fMRI signals. Using numerical simulations, we demonstrate that concurrent optical and BOLD measurements can be used to create cross-calibrated estimates of absolute micromolar deoxyhemoglobin changes. We apply this new analysis tool to experimental data acquired simultaneously with both DOT and BOLD imaging during a motor task, demonstrate the ability to more robustly estimate hemoglobin changes in comparison to DOT alone, and show how this approach can provide cross-calibrated estimates of hemoglobin changes. Using this multimodal method, we estimate the calibration of the 3 tesla BOLD signal to be −0.55% ± 0.40% signal change per micromolar change of deoxyhemoglobin. PMID:19021411
Pseudosickling of hemoglobin Setif.
Charache, S; Raik, E; Holtzclaw, D; Hathaway, P J; Powell, E; Fleming, P
1987-07-01
Hemoglobin Setif produces pseudosickling of red cells in vitro; the nature of the process and the conditions that "trigger" it are unknown. Studies of red cells, hemolysates, purified hemoglobin solutions, and artificial mixtures of Hb A and Setif suggest that pseudosickling is produced by intracellular crystallization of insoluble hemoglobin. Increased tonicity of the suspending medium accentuates the process, probably by causing a rise in intracellular hemoglobin concentration. If precipitates from A/Setif mixtures are analyzed, they always contain Hb A, suggesting an unusual mechanism for the process. Despite the fact that osmolality in the renal medulla is similar to that which produces pseudosickling in vitro, carriers do not have renal dysfunction of the type found in patients with sickle cell disease.
Lorkin, P A; Stephens, A D; Beard, M E; Wrigley, P F; Adams, L; Lehmann, H
1975-01-01
A new haemoglobin with increased oxygen affinity, beta82 (EF6) lysine leads to threonine (Hb Rahere), was found during the investigation of a patient who was found to have a raised haemoglobin concentration after a routine blood count. The substitution affects one of the 2, 3-diphosphoglycerate binding sites, resulting in an increased affinity for oxygen, but both the haem-haem interaction and the alkaline Bohr effect are normal in the haemolysate. This variant had the same mobility as haemoglobin A on electrophoresis at alkaline pH but was detected by measuring the whole blood oxygen affinity; it could be separated from haemoglobin A, however, by electrophoresis in agar at acid pH. The raised haemoglobin concentration was mainly due to a reduction in plasma volume (a relative polycythaemia) and was associated with a persistently raised white blood count. This case emphasises the need to measure the oxygen affinity of haemoglobin in all patients with absolute or relative polycythaemia when some obvious cause is not evident. PMID:124
Contrast enhancement for in vivo visible reflectance imaging of tissue oxygenation.
Crane, Nicole J; Schultz, Zachary D; Levin, Ira W
2007-08-01
Results are presented illustrating a straightforward algorithm to be used for real-time monitoring of oxygenation levels in blood cells and tissue based on the visible spectrum of hemoglobin. Absorbance images obtained from the visible reflection of white light through separate red and blue bandpass filters recorded by monochrome charge-coupled devices (CCDs) are combined to create enhanced images that suggest a quantitative correlation between the degree of oxygenated and deoxygenated hemoglobin in red blood cells. The filter bandpass regions are chosen specifically to mimic the color response of commercial 3-CCD cameras, representative of detectors with which the operating room laparoscopic tower systems are equipped. Adaptation of this filter approach is demonstrated for laparoscopic donor nephrectomies in which images are analyzed in terms of real-time in vivo monitoring of tissue oxygenation.
BLOOD SUBSTITUTES: EVOLUTION FROM NON-CARRYING TO OXYGEN AND GAS CARRYING FLUIDS
Cabrales, Pedro; Intaglietta, Marcos
2013-01-01
The development of oxygen (O2) carrying blood substitutes has evolved from the goal of replicating blood O2 transports properties to that of preserving microvascular and organ function, reducing the inherent or potential toxicity of the material used to carry O2, and treating pathologies initiated by anemia and hypoxia. Furthermore, the emphasis has shifted from blood replacement fluid to “O2 therapeutics” that restore tissue oxygenation to specific tissues regions. This review covers the different alternatives, potential and limitations of hemoglobin based O2 carriers (HBOCs) and perfluorocarbon based O2 carriers (PFCOCs), with emphasis on the physiological conditions disturbed in the situation that they will be used. It describes how concepts learned from plasma expanders without O2 carrying capacity can be applied to maintain O2 delivery and summarizes the microvascular responses due to HBOCs and PFCOCs. This review also presents alternative applications of HBOCs and PFCOCs namely: 1) How HBOC O2 affinity can be engineered to target O2 delivery to hypoxic tissues; and 2) How the high gas solubility of PFCOCs provides new opportunities for carrying, dissolving and delivering gases with biological activity. It is concluded that current blood substitutes development has amplified their applications horizon by devising therapeutic functions for oxygen carriers requiring limited O2 delivery capacity restoration. Conversely, full, blood-like O2 carrying capacity re-establishment awaits control of O2 carrier toxicity. PMID:23820271
Agishi, T; Funakoshi, Y; Honda, H; Yamagata, K; Kobayashi, M; Takahashi, M
1988-01-01
In order to investigate a new possibility for artificial blood with oxygen-carrying capability to be applied to other than mere supplementation, normothermic whole body rinse-out in which artificial blood deriving from perfluorochemical emulsion, Fluosol-DA 20% (Green Cross Co., Ltd., Osaka, Japan) or stabilized hemoglobin solution, (pyridoxylated hemoglobin)-(polyoxyethylene) conjugate solution (Ajinomoto Co., Ltd., Tokyo, Japan) were used as rinsing fluid for a blood purification experiment. Replacement either with approximately 150 ml/kg of Fluosol-DA or stabilized hemoglobin solution showed effective removal of digoxin at a reduction rate of 96.3% or 92.2%, respectively. However, when Fluosol-DA was used, a certain amount of perfluorochemical should be retrieved by centrifugation to avoid a possible toxic effect on the reticulo-endothelial system. Even though 3 out of 6, and 3 out of 8 dogs, respectively, survived for a long period after the procedure, the experimental dogs were very susceptible to infection.
Quantification of tissue oxygenation levels using diffuse reflectance spectroscopy
NASA Astrophysics Data System (ADS)
B. S., Suresh Anand; N., Sujatha
2011-08-01
Tumor growth is characterized by increased metabolic activity. The light absorption profile of hemoglobin in dysplastic tissue is different from a normal tissue. Neovascularization is a hallmark of many diseases and can serve as a predictive biomarker for the detection of cancers. Spectroscopic techniques can provide information about the metabolic and morphological changes related to the progression of neoplasia. Diffuse reflectance spectroscopy (DRS) measures the absorption and scattering properties of a biological tissue and this method can provide clinically useful information for the early diagnosis of epithelial precancers. We used tissue simulating phantoms with absorbing and scattering molecules for the determination of total hemoglobin concentration, hemoglobin oxygen saturation and intensity difference between the deoxy and oxy hemoglobin bands. The results show promising approach for the differentiating normal and malignant states of a tissue.
NASA Astrophysics Data System (ADS)
Joglekar, M.; Shah, H.; Trivedi, V.; Mahajan, S.; Chhaniwal, V.; Leitgeb, R.; Javidi, B.; Anand, A.
2017-07-01
Adequate supply of oxygen to the body is the most essential requirement. In vertebrate species this function is performed by Hemoglobin contained in red blood cells. The mass concentration of the Hb determines the oxygen carrying capacity of the blood. Thus it becomes necessary to determine its concentration in the blood, which helps in monitoring the health of a person. If the amount of Hb crosses certain range, then it is considered critical. As the Hb constitutes upto 96% of red blood cells dry content, it would be interesting to examine various physical and mechanical parameters of RBCs which depends upon its concentration. Various diseases bring about significant variation in the amount of hemoglobin which may alter certain parameters of the RBC such as surface area, volume, membrane fluctuation etc. The study of the variations of these parameters may be helpful in determining Hb content which will reflect the state of health of a human body leading to disease diagnosis. Any increase or decrease in the amount of Hb will change the density and hence the optical thickness of the RBCs, which affects the cell membrane and thereby changing its mechanical and physical properties. Here we describe the use of lateral shearing digital holographic microscope for quantifying the cell parameters for studying the change in biophysical properties of cells due to variation in hemoglobin concentration.
Reactions of ferric hemoglobin and myoglobin with hydrogen sulfide under physiological conditions.
Jensen, Birgitte; Fago, Angela
2018-05-01
Ferric hemoglobin (metHb) and myoglobin (metMb), present at low levels in vivo, have been recently found to oxidize hydrogen sulfide (H 2 S) in excess, thus potentially contributing to removal of toxic H 2 S in blood and heart, respectively. Here, we present a kinetic and thermodynamic study of the reaction of metHb and metMb with H 2 S under physiological conditions, i.e. at low H 2 S concentrations and with protein in excess of H 2 S. We show here that both proteins react with sub-stoichiometric H 2 S:heme ratios following two processes: a fast reversible binding of H 2 S to ferric heme that prevails at high H 2 S and a slow heme reduction to the ferrous state that prevails at low H 2 S. While these two processes are fast for metMb, H 2 S-induced heme reduction is slow for metHb and the metHb-H 2 S complex once formed is therefore relatively stable. We find that metHb binds H 2 S reversibly and cooperatively with a pH-dependent ligand affinity that is within the physiological range of H 2 S concentrations found in blood. Stopped-flow kinetics show identical association rate constants for H 2 S at varying pH, demonstrating that H 2 S and not HS - enters the ferric heme pocket. Dissociation rates of the metHb-H 2 S complex increase when decreasing pH, consistent with the pH-dependent affinity. Taken together, these data are consistent with a novel biological role of metHb as a H 2 S carrier in the blood, in parallel with the oxygen carrier function of the much more abundant ferrous Hb. In contrast, metMb in the heart could participate to redox-signaling involving H 2 S. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1985-01-01
A mathematical model of the erythropoiesis on total red blood cell mass is presented. The loss of red cell mass has been a consistent finding during space flight. Computer simulation of this phenomenon required a model that could account for oxygen transport, red cell production, and red cell destruction. The elements incorporated into the feedback regulation loop of the model are based on the accepted concept that erythrocyte production is governed by the balance between oxygen supply and demand in the body. The mechanisms and pathways of the control circuit include oxygenation of hemoglobin and oxygenation of tissues by blood transport and diffusional processes. Other features of the model include a variable oxygen-hemoglobin affinity, and time delays which represent time for erythropoietin (erythrocyte-stimulating hormone) distribution in plasma, and time for maturation of the erythrocytes in bone marrow.
NASA Astrophysics Data System (ADS)
Timm, Ulrich; Gewiss, Helge; Kraitl, Jens; Stuepmann, Kirstin; Hinz, Michael; Koball, Sebastian; Ewald, Hartmut
2015-03-01
The paper will describe the novel multi-wavelength photometric device OxyTrue Hb® which is capable to measure the hemoglobin (Hb) and methemoglobin (MetHb) concentration non-invasively. Clinic trails in blood donation centers and during the dialysis are done to prove and demonstrate the performance of the system. The results are compared to the gold standard, the BGA measurement.
The Secretion of Oxygen into the Swim-bladder of Fish
Wittenberg, Jonathan B.; Wittenberg, Beatrice A.
1961-01-01
Toadfish, Opsanus tau, L., were maintained in sea water equilibrated with gas mixtures containing a fixed proportion of oxygen and varying proportions of carbon monoxide. The swim-bladder was emptied by puncture, and, after an interval of 24 or 48 hours, the newly secreted gases were withdrawn and analyzed. Both carbon monoxide and oxygen are accumulated in the swim-bladder at tensions greater than ambient. The ratio of concentrations, carbon monoxide (secreted): carbon monoxide (administered) bears a constant relation to the ratio, oxygen (secreted): oxygen (administered). The value of the partition coefficient describing this relation is (α = 5.44). The two gases are considered to compete for a common intracellular carrier mediating their active transport. The suggestion is advanced that the intracellular oxygen carrier is a hemoglobin. Comparison of the proportions of carboxy- and oxyhemoglobin in the blood with the composition of the secreted gas proves that the secreted gases are not evolved directly from combination with blood hemoglobin. The suggestion is advanced that cellular oxygen secretion occurs in the rete mirabile: the rete may build up large oxygen tensions in the gas gland capillaries. It is suggested that the gas gland acts as a valve impeding back diffusion of gases from the swim-bladder. PMID:13786093
Pirow, Ralph; Buchen, Ina; Richter, Marc; Allmer, Carsten; Nunes, Frank; Günsel, Andreas; Heikens, Wiebke; Lamkemeyer, Tobias; von Reumont, Björn M; Hetz, Stefan K
2009-04-01
Recent insights into the allosteric control of oxygen binding in the extracellular hemoglobin (Hb) of the tadpole shrimp Triops cancriformis raised the question about the physico-chemical properties of the protein's native environment. This study determined the cationic composition and acid-base state of the animal's extracellular fluid. The physiological concentrations of potential cationic effectors (calcium, magnesium) were more than one order of magnitude below the level effective to increase Hb oxygen affinity. The extracellular fluid in the pericardial space had a typical bicarbonate concentration of 7.6 mM but a remarkably high CO(2) partial pressure of 1.36 kPa at pH 7.52 and 20 degrees C. The discrepancy between this high CO(2) partial pressure and the comparably low values for water-breathing decapods could not solely be explained by the hemolymph-sampling procedure but may additionally arise from differences in cardiovascular complexity and efficiency. T. cancriformis hemolymph had a non-bicarbonate buffer value of 2.1 meq L(-1) pH(-1). Hb covered 40-60% of the non-bicarbonate buffering power. The specific buffer value of Hb of 1.1 meq (mmol heme)(-1) pH(-1) suggested a minimum requirement of two titratable histidines per heme-binding domain, which is supported by available information from N-terminal sequencing and expressed sequence tags.
Tested Demonstrations: A Simple Demonstration of Reversible Oxygenation.
ERIC Educational Resources Information Center
Kildahl, Nicholas K.
1983-01-01
Materials needed, reaction involved, and potential hazards are provided for a demonstration of reversible oxygenation. Also discusses the importance of the reaction in biological systems, focusing on hemoglobin/myoglobin and their function in mammals. (JM)
Pomponi, Massimo; Bertonati, Claudia; Patamia, Maria; Marta, Maurizio; Derocher, Andrew E; Lydersen, Christian; Kovacs, Kit M; Wiig, Oystein; Bårdgard, Astrid J
2002-11-01
Polar bear (Ursus maritimus) hemoglobin (Hb) shows a low response to 2,3-diphosphoglycerate (2,3-DPG), compared to human Hb A0, even though these proteins have the same 2,3-DPG-binding site. In addition, polar bear Hb shows a high response to chloride and an alkaline Bohr effect (deltalog P50/deltapH) that is significantly greater than that of human Hb A0. The difference in sequence Pro (Hb A0)-->Gly (polar bear Hb) at position A2 in the A helix seems to be critical for reduced binding of 2,3-DPG. Our results also show that the A2 position may influence not only the flexibility of the A helix, but that differences in flexibility of the first turn of the A helix may affect the unloading of oxygen for the intrinsic ligand affinities of the alpha and beta chains. However, preferential binding to either chain can only take place if there is appreciable asymmetric binding of the phosphoric effector. Regarding this point, 31P NMR data suggest a loss of symmetry of the 2,3-DPG-binding site in the deoxyHb-2,3-DPG complex.
I. RENAL THRESHOLDS FOR HEMOGLOBIN IN DOGS
Lichty, John A.; Havill, William H.; Whipple, George H.
1932-01-01
We use the term "renal threshold for hemoglobin" to indicate the smallest amount of hemoglobin which given intravenously will effect the appearance of recognizable hemoglobin in the urine. The initial renal threshold level for dog hemoglobin is established by the methods employed at an average value of 155 mg. hemoglobin per kilo body weight with maximal values of 210 and minimal of 124. Repeated daily injections of hemoglobin will depress this initial renal threshold level on the average 46 per cent with maximal values of 110 and minimal values of 60 mg. hemoglobin per kilo body weight. This minimal or depression threshold is relatively constant if the injections are continued. Rest periods without injections cause a return of the renal threshold for hemoglobin toward the initial threshold levels—recovery threshold level. Injections of hemoglobin below the initial threshold level but above the minimal or depression threshold will eventually reduce the renal threshold for hemoglobin to its depression threshold level. We believe the depression threshold or minimal renal threshold level due to repeated hemoglobin injections is a little above the glomerular threshold which we assume is the base line threshold for hemoglobin. Our reasons for this belief in the glomerular threshold are given above and in the other papers of this series. PMID:19870016
Hebelstrup, Kim H; Østergaard-Jensen, Erik; Hill, Robert D
2008-01-01
Plant hemoglobins are ubiquitous in all plant families. They are expressed at low levels in specific tissues. Several studies have established that plant hemoglobins are scavengers of nitric oxide (NO) and that varying the endogenous level of hemoglobin in plant cells negatively modulates bioactivity of NO generated under hypoxic conditions or during cellular signaling. Earlier methods for determination of hemoglobin-dependent scavenging in planta were based on measuring activity in whole plants or organs. Plant hemoglobins do not contain specific organelle localization signals; however, earlier reports on plant hemoglobin have demonstrated either cytosolic or nuclear localization, depending on the method or cell type investigated. We have developed two bioimaging techniques: one for visualization of hemoglobin-catalyzed scavenging of NO in specific cells and another for visualization of subcellular localization of green fluorescent protein-tagged plant hemoglobins in transformed Arabidopsis thaliana plants.
Terraneo, Laura; Bianciardi, Paola; Malavalli, Ashok; Mkrtchyan, Gnel; Spann, Stephanie N; Lohman, Jeff; Samaja, Michele; Vandegriff, Kim D
2017-06-01
Haemoglobin (Hb)-based oxygen carriers are under consideration as oxygen therapeutics. Their effect on apoptosis is critical, because the onset of pro-apoptotic pathways may lead to tissue damage. MP4OX, a polyethylene glycol-conjugated human Hb preserves the baseline level of neuron apoptosis with respect to sham. Here we develop a method for measuring Hb extravasation in brain. We exchange transfused rats by haemorrhaging 50% of their blood with simultaneous, isovolemic replacement with Hextend (negative control), MP4OX, or αα-cross-linked Hb. Animals were sacrificed 2 h after transfusion, brain tissue was harvested and processed for double-staining immunofluorescence, whereby Hb ? chain and NeuN (a neuron protein) were stained and quantitated. Whereas Hextend did not induce Hb extravasation, in both MP4OX and ??Hb brains Hb molecules were detected outside neurons. The level of extravasated Hb chains was > 3-fold higher in Hb compared to MP4OX. Western blot analysis revealed that the expression levels of protein related to redox imbalance (e.g., Nrf2, iNOS and ERK phosphorylation) were higher in ααHb than MP4OX. In conclusions, higher Hb extravasation in ααHb than MP4OX induces redox imbalance, which causes higher anti-oxidant response. Whereas Nrf2 response may be considered protective, iNOS response appears damaging.
Solid phase pegylation of hemoglobin.
Suo, Xiaoyan; Zheng, Chunyang; Yu, Pengzhan; Lu, Xiuling; Ma, Guanghui; Su, Zhiguo
2009-01-01
A solid phase conjugation process was developed for attachment of polyethylene glycol to hemoglobin molecule. Bovine hemoglobin was loaded onto an ion exchange chromatography column and adsorbed by the solid medium. Succinimidyl carbonate mPEG was introduced in the mobile phase after the adsorption. Pegylation took place between the hemoglobin on the solid phase, and the pegylation reagent in the liquid phase. A further elution was carried out to separate the pegylated and the unpegylated protein. Analysis by HPSEC, SDS-PAGE, and MALLS demonstrated that the fractions eluted from the solid phase contained well-defined components. Pegylated hemoglobin with one PEG chain was obtained with the yield of 75%, in comparison to the yield of 30% in the liquid phase pegylation. The P(50) values of the mono-pegylated hemoglobin, prepared with SC-mPEG 5 kDa, 10 kDa and 20 kDa, were 19.97, 20.23 and 20.54 mmHg, which were much closer to the value of red blood cells than that of pegylated hemoglobin prepared with the conventional method.
Tabima, D. Marcela; Specht, Patricia A.C.; Tejero, Jesús; Champion, Hunter C.; Kim-Shapiro, Daniel B.; Baust, Jeff; Mik, Egbert G.; Hildesheim, Mariana; Stasch, Johannes-Peter; Becker, Eva-Maria; Truebel, Hubert
2013-01-01
Abstract Aims: Hemoglobin-based oxygen carriers (HBOC) provide a potential alternative to red blood cell (RBC) transfusion. Their clinical application has been limited by adverse effects, in large part thought to be mediated by the intravascular scavenging of the vasodilator nitric oxide (NO) by cell-free plasma oxy-hemoglobin. Free hemoglobin may also cause endothelial dysfunction and platelet activation in hemolytic diseases and after transfusion of aged stored RBCs. The new soluble guanylate cyclase (sGC) stimulator Bay 41-8543 and sGC activator Bay 60-2770 directly modulate sGC, independent of NO bioavailability, providing a potential therapeutic mechanism to bypass hemoglobin-mediated NO inactivation. Results: Infusions of human hemoglobin solutions and the HBOC Oxyglobin into rats produced a severe hypertensive response, even at low plasma heme concentrations approaching 10 μM. These reactions were only observed for ferrous oxy-hemoglobin and not analogs that do not rapidly scavenge NO. Infusions of L-NG-Nitroarginine methyl ester (L-NAME), a competitive NO synthase inhibitor, after hemoglobin infusion did not produce additive vasoconstriction, suggesting that vasoconstriction is related to scavenging of vascular NO. Open-chest hemodynamic studies confirmed that hypertension occurred secondary to direct effects on increasing vascular resistance, with limited negative cardiac inotropic effects. Intravascular hemoglobin reduced the vasodilatory potency of sodium nitroprusside (SNP) and sildenafil, but had no effect on vasodilatation by direct NO-independent activation of sGC by BAY 41-8543 and BAY 60-2770. Innovation and Conclusion: These data suggest that both sGC stimulators and sGC activators could be used to restore cyclic guanosine monophosphate-dependent vasodilation in conditions where cell-free plasma hemoglobin is sufficient to inhibit endogenous NO signaling. Antioxid. Redox Signal. 19, 2232–2243. PMID:23697678
NASA Astrophysics Data System (ADS)
Davies-Shaw, Dana; Huser, Thomas R.
2008-02-01
We report on the successful development of a custom in vitro system that provides a physiologically relevant means of demonstrating optical methodologies for the calibration and validation of oxygen delivery and hemoglobin oxygen binding dynamics in the brain. While measured optical signals have generally been equated to heme absorbance values that are, in turn, presumed to correspond to oxygen delivery, there has been little specific study of the sigmoidal oxygen binding dynamics of hemoglobin, a tetrameric protein, within physiologically relevant parameters. Our development of this novel analytical device addresses this issue, and is a significant step towards the minimally invasive and real-time monitoring of spatially resolved cognitive processes. As such, it is of particular interest for the detection of autistic brain activity in infants and young children. Moreover, our device and approach bring with them the ability to quantify and spatially resolve oxygen delivery down to volumes relevant to individual cell oxygen uptake, without any oxygen consumption, and with a temporal resolution that is physically unachievable by any oxygen tracking modality such as fMRI etc. Such a capability opens up myriad possibilities for further investigation, such as real-time tumor biopsy and resection; the tracking and quantification of cellular proliferation, as well as metabolic measures of tissue viability, to name but a few. Our system has also been engineered to be synergistic with virtually all imaging techniques, optical and otherwise.
NASA Astrophysics Data System (ADS)
Vij, Varun; Tiwari, Jitendra N.; Lee, Wang-Geun; Yoon, Taeseung; Kim, Kwang S.
2016-02-01
High performance non-precious cathodic catalysts for oxygen reduction reaction (ORR) are vital for the development of energy materials and devices. Here, we report an noble metal free, Fe5C2 nanoparticles-studded sp2 carbon supported mesoporous material (CNTHb-700) as cathodic catalyst for ORR, which was prepared by pyrolizing the hybrid adduct of single walled carbon nanotubes (CNT) and lyophilized hemoglobin (Hb) at 700 °C. The catalyst shows onset potentials of 0.92 V in 0.1 M HClO4 and in 0.1 M KOH which are as good as commercial Pt/C catalyst, giving very high current density of 6.34 and 6.69 mA cm-2 at 0.55 V vs. reversible hydrogen electrode (RHE), respectively. This catalyst has been confirmed to follow 4-electron mechanism for ORR and shows high electrochemical stability in both acidic and basic media. Catalyst CNTHb-700 possesses much higher tolerance towards methanol than the commercial Pt/C catalyst. Highly efficient catalytic properties of CNTHb-700 could lead to fundamental understanding of utilization of biomolecules in ORR and materialization of proton exchange membrane fuel cells for clean energy production.
Mukaihara, Keika; Hasegawa-Moriyama, Maiko; Kanmura, Yuichi
2017-12-01
Perioperative analgesia during thoracotomy is often achieved by combining paravertebral block (PVB) with general anesthesia (GA). Functional near-infrared spectroscopy (NIRS) can detect changes in cerebral oxygenation resulting from nociceptive stimuli in the awake state or under sedation. We used NIRS to measure changes in cerebral blood flow provoked by thoracotomy incision made under GA and determine how these changes were influenced by supplementation of GA with PVB. Thirty-four patients undergoing elective thoracotomy were enrolled. Patients were randomly assigned to a group receiving only GA, or GA combined with PVB (GA + PVB). Changes in cerebral oxygenated hemoglobin (ΔO 2 Hb), deoxygenated-Hb (ΔHHb), and total-Hb (ΔtotalHb) were evaluated by NIRS as surgery began. In the GA group, ΔO 2 Hb was significantly higher in the hemisphere contralateral to the side of surgery when the incision was made and 2 min after incision compared with the ipsilateral side (start of surgery, P < 0.01; 2 min, P < 0.05). In contrast, there were no significant changes in the ΔO 2 Hb at any of the time points in the GA + PVB group. Comparable with ΔO 2 Hb, the concentration of ΔtotalHb was significantly higher in the contralateral hemisphere in the GA group at the start of surgery (P < 0.05). Changes in the cerebral O 2 Hb concentration were detected by NIRS immediately after surgical incision under GA, but not in the presence of a PNB. NIRS could be used to monitor surgical pain. PVB inhibited changes in oxygenation induced by incision-provoked pain.
Hemoglobin Test: MedlinePlus Lab Test Information
... page: https://medlineplus.gov/labtests/hemoglobintest.html Hemoglobin Test To use the sharing features on this page, please enable JavaScript. What is a Hemoglobin Test? A hemoglobin test measures the levels of hemoglobin ...
Changes of oxygen content in facial skin before and after cigarette smoking.
Fan, Guo-Biao; Wu, Pei-Lan; Wang, Xue-Min
2012-11-01
Cigarette smoking not only causes systemic health problems, but may also be an underlying cause of premature skin aging. Cigarette smokers frequently have morphological changes in facial skin that may be attributed to reduced oxygen in this region. The purpose of this study was to measure the oxygen content in facial skin before and after smoking. Twenty-five volunteers participated in this study. Changes in oxygen content of the facial skin were measured before and after 30 min of cigarette smoking. Skin temperature and oxygen content were evaluated in the periorbital and periolar regions. There was a significant increase in temperature after smoking. The oxy hemoglobin and partial pressure of oxygen decreased in both the periocular and perioral areas after smoking. There were no changes in deoxy hemoglobin and partial pressure of carbon dioxide at these areas. Significant changes were seen in temperature and oxygen content after only 30 min of smoking. The results from this study suggest that alterations in the skin temperature and oxygen content in facial skin after smoking may be an underlying cause of premature skin aging. © 2011 John Wiley & Sons A/S.
Blood oxygen saturation of frozen tissue determined by hyper spectral imaging
NASA Astrophysics Data System (ADS)
Braaf, Boy; Nadort, Annemarie; Faber, Dirk; ter Wee, Rene; van Leeuwen, Ton; Aalders, Maurice
2008-02-01
A method is proposed for determining blood oxygen saturation in frozen tissue. The method is based on a spectral camera system equipped with an Acoustic-Optical-Tuneable-Filter. The HSI-setup is validated by measuring series of unfrozen and frozen samples of a hemoglobin-solution, a hemoglobin-intralipid mixture and whole blood with varying oxygen saturation. The theoretically predicted linear relation between oxygen saturation and absorbance was observed in both the frozen sample series and the unfrozen series. In a final proof of principal, frozen myocardial tissue was measured. Higher saturation values were recorded for ventricle and atria tissue compared to the septum and connective tissue. These results are not validated by measurements with another method. The formation of methemoglobin during freezing and the presence of myoglobin in the tissue turned out to be possible sources of error.
Lücker, Adrien; Secomb, Timothy W; Weber, Bruno; Jenny, Patrick
2018-01-01
Capillary dysfunction impairs oxygen supply to parenchymal cells and often occurs in Alzheimer's disease, diabetes and aging. Disturbed capillary flow patterns have been shown to limit the efficacy of oxygen extraction and can be quantified using capillary transit time heterogeneity (CTH). However, the transit time of red blood cells (RBCs) through the microvasculature is not a direct measure of their capacity for oxygen delivery. Here we examine the relation between CTH and capillary outflow saturation heterogeneity (COSH), which is the heterogeneity of blood oxygen content at the venous end of capillaries. Models for the evolution of hemoglobin saturation heterogeneity (HSH) in capillary networks were developed and validated using a computational model with moving RBCs. Two representative situations were selected: a Krogh cylinder geometry with heterogeneous hemoglobin saturation (HS) at the inflow, and a parallel array of four capillaries. The heterogeneity of HS after converging capillary bifurcations was found to exponentially decrease with a time scale of 0.15-0.21 s due to diffusive interaction between RBCs. Similarly, the HS difference between parallel capillaries also drops exponentially with a time scale of 0.12-0.19 s. These decay times are substantially smaller than measured RBC transit times and only weakly depend on the distance between microvessels. This work shows that diffusive interaction strongly reduces COSH on a small spatial scale. Therefore, we conclude that CTH influences COSH yet does not determine it. The second part of this study will focus on simulations in microvascular networks from the rodent cerebral cortex. Actual estimates of COSH and CTH will then be given.
Rieder, Ronald F.
1970-01-01
Several unstable mutant hemoglobins have alterations which affect areas of the molecule involved in the attachment of heme to globin. Loss of heme from globin has been demonstrated during the denaturation of some of these unstable mutants. The importance of heme ligands for the stability of hemoglobin was illustrated in the present experiments on the denaturation of several hemoglobins and hemoglobin derivatives by heat, oxidative dyes, and alkali. Heating of normal hemolysates diluted to 4 g of hemoglobin per 100 ml at 50°C for 20 hr in 0.05 M sodium phosphate, pH 7.4, caused precipitation of 23-54% of the hemoglobin. Dialysis against water or dilution of the sample decreased denaturation to 12-20%. Precipitation was decreased to less than 3.5% by the presence of 0.015 M potassium cyanide. Increasing the ionic strength of the medium increased precipitation. Cyanide prevented the formation of inclusion bodies when red cells containing unstable hemoglobin Philly, β35 tyr → phe, were incubated with the redox dye new methylene blue. Conversion to methemoglobin increased the rate of alkali denaturation of hemoglobin but the presence of potassium cyanide returned the denaturation rate to that of ferrohemoglobin. The ability of cyanide to decrease heat precipitation of hemoglobin may depend on a dimeric or tetrameric state of the hemoglobin molecule. Purified β-chains, which exist as tetramers, were stabilized but purified monomeric α-chains were not rendered more heat resistant by the ligand. Stabilization of hemoglobin by cyanide required binding of the ligand to only one heme of an αβ-dimer. Hemoglobin Gun Hill, an unstable molecule with heme groups present only on the α-chains was quite heat stable in the presence of cyanide. The binding of cyanide to the iron atom in methemoglobin is thought to be associated with increased planarity of the heme group and increased stability of the heme-globin complex. The stabilizing effect of cyanide in the above
Oxygen affinity and Bohr effect responses to 2,3-diphosphoglycerate in equine and human blood.
diBella, G; Scandariato, G; Suriano, O; Rizzo, A
1996-05-01
The dependence of blood oxygen affinity and the Bohr effect on the concentration of 2,3-diphosphoglycerate (DPG) in erythrocytes was investigated in 24 trotter horses and 24 healthy men. The oxygen tension at half saturation and standard conditions (P50st at pH 7.4, PCO2(40) mmHg and 37 degrees C) and the carbon dioxide or fixed-acid-induced Bohr effect (dlogP50/dpH) were determined. Samples of fresh blood and blood depleted of or enriched with DPG were studied. In the absence of measurable DPG, the equine and human blood had similar mean (SD) values of P50st (16.6 [0.6] and 16.2 [0.7] mmHg, respectively). In both species these values increased with increasing DPG, but the response of equine blood was significantly lower, at least up to physiological values (P50st = 24.6 [0.6] and 26.2 [0.7]) mmHg; DPG = 14([1.8] and 12.8 [1.2] mumol gHb-1, respectively, in fresh blood). For concentrations above 20 to 25 mumol gHb-1 of DPG the difference between the values of P50st in the two species tended to decrease because the response in human blood reached a plateau. The interactions between the Bohr effect and the concentration of DPG showed that in the horses, as in the men, the level of DPG played an important role in governing the relative magnitude of carbon dioxide and fixed acid factors. The difference between them, which is associated with the oxylabile carbamino binding, was greatest in DPG-depleted blood, but whereas in the men the difference was suppressed by an above normal DPG concentration, in the horses it was still measurable.
Non-invasive hemoglobin monitoring.
Joseph, Bellal; Haider, Ansab; Rhee, Peter
2016-09-01
Technology has transformed the practice of medicine and surgery in particular over the last several decades. This change in practice has allowed diagnostic and therapeutic tests to be performed less invasively. Hemoglobin monitoring remains one of the most commonly performed diagnostic tests in the United States. Recently, non-invasive hemoglobin monitoring technology has gained popularity. The aim of this article is to review the principles of how this technology works, pros and cons, and the implications of non-invasive hemoglobin technology particularly in trauma surgery. Copyright © 2015 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
Park, Marcelo; Mendes, Pedro Vitale; Costa, Eduardo Leite Vieira; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Azevedo, Luciano Cesar Pontes
2016-01-01
The aim of this study was to explore the factors associated with blood oxygen partial pressure and carbon dioxide partial pressure. The factors associated with oxygen - and carbon dioxide regulation were investigated in an apneic pig model under veno-venous extracorporeal membrane oxygenation support. A predefined sequence of blood and sweep flows was tested. Oxygenation was mainly associated with extracorporeal membrane oxygenation blood flow (beta coefficient = 0.036mmHg/mL/min), cardiac output (beta coefficient = -11.970mmHg/L/min) and pulmonary shunting (beta coefficient = -0.232mmHg/%). Furthermore, the initial oxygen partial pressure and carbon dioxide partial pressure measurements were also associated with oxygenation, with beta coefficients of 0.160 and 0.442mmHg/mmHg, respectively. Carbon dioxide partial pressure was associated with cardiac output (beta coefficient = 3.578mmHg/L/min), sweep gas flow (beta coefficient = -2.635mmHg/L/min), temperature (beta coefficient = 4.514mmHg/ºC), initial pH (beta coefficient = -66.065mmHg/0.01 unit) and hemoglobin (beta coefficient = 6.635mmHg/g/dL). In conclusion, elevations in blood and sweep gas flows in an apneic veno-venous extracorporeal membrane oxygenation model resulted in an increase in oxygen partial pressure and a reduction in carbon dioxide partial pressure 2, respectively. Furthermore, without the possibility of causal inference, oxygen partial pressure was negatively associated with pulmonary shunting and cardiac output, and carbon dioxide partial pressure was positively associated with cardiac output, core temperature and initial hemoglobin.
Park, Marcelo; Mendes, Pedro Vitale; Costa, Eduardo Leite Vieira; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Azevedo, Luciano Cesar Pontes
2016-01-01
Objective The aim of this study was to explore the factors associated with blood oxygen partial pressure and carbon dioxide partial pressure. Methods The factors associated with oxygen - and carbon dioxide regulation were investigated in an apneic pig model under veno-venous extracorporeal membrane oxygenation support. A predefined sequence of blood and sweep flows was tested. Results Oxygenation was mainly associated with extracorporeal membrane oxygenation blood flow (beta coefficient = 0.036mmHg/mL/min), cardiac output (beta coefficient = -11.970mmHg/L/min) and pulmonary shunting (beta coefficient = -0.232mmHg/%). Furthermore, the initial oxygen partial pressure and carbon dioxide partial pressure measurements were also associated with oxygenation, with beta coefficients of 0.160 and 0.442mmHg/mmHg, respectively. Carbon dioxide partial pressure was associated with cardiac output (beta coefficient = 3.578mmHg/L/min), sweep gas flow (beta coefficient = -2.635mmHg/L/min), temperature (beta coefficient = 4.514mmHg/ºC), initial pH (beta coefficient = -66.065mmHg/0.01 unit) and hemoglobin (beta coefficient = 6.635mmHg/g/dL). Conclusion In conclusion, elevations in blood and sweep gas flows in an apneic veno-venous extracorporeal membrane oxygenation model resulted in an increase in oxygen partial pressure and a reduction in carbon dioxide partial pressure 2, respectively. Furthermore, without the possibility of causal inference, oxygen partial pressure was negatively associated with pulmonary shunting and cardiac output, and carbon dioxide partial pressure was positively associated with cardiac output, core temperature and initial hemoglobin. PMID:27096671
NASA Astrophysics Data System (ADS)
Ibey, Bennett; Subramanian, Hariharan; Ericson, Nance; Xu, Weijian; Wilson, Mark; Cote, Gerard L.
2005-03-01
A blood perfusion and oxygenation sensor has been developed for in situ monitoring of transplanted organs. In processing in situ data, motion artifacts due to increased perfusion can create invalid oxygenation saturation values. In order to remove the unwanted artifacts from the pulsatile signal, adaptive filtering was employed using a third wavelength source centered at 810nm as a reference signal. The 810 nm source resides approximately at the isosbestic point in the hemoglobin absorption curve where the absorbance of light is nearly equal for oxygenated and deoxygenated hemoglobin. Using an autocorrelation based algorithm oxygenation saturation values can be obtained without the need for large sampling data sets allowing for near real-time processing. This technique has been shown to be more reliable than traditional techniques and proven to adequately improve the measurement of oxygenation values in varying perfusion states.
21 CFR 864.5620 - Automated hemoglobin system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated hemoglobin system. 864.5620 Section 864....5620 Automated hemoglobin system. (a) Identification. An automated hemoglobin system is a fully... hemoglobin content of human blood. (b) Classification. Class II (performance standards). [45 FR 60601, Sept...
21 CFR 864.5620 - Automated hemoglobin system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Automated hemoglobin system. 864.5620 Section 864....5620 Automated hemoglobin system. (a) Identification. An automated hemoglobin system is a fully... hemoglobin content of human blood. (b) Classification. Class II (performance standards). [45 FR 60601, Sept...
High thermal sensitivity of blood enhances oxygen delivery in the high-flying bar-headed goose.
Meir, Jessica U; Milsom, William K
2013-06-15
The bar-headed goose (Anser indicus) crosses the Himalaya twice a year at altitudes where oxygen (O2) levels are less than half those at sea level and temperatures are below -20°C. Although it has been known for over three decades that the major hemoglobin (Hb) component of bar-headed geese has an increased affinity for O2, enhancing O2 uptake, the effects of temperature and interactions between temperature and pH on bar-headed goose Hb-O2 affinity have not previously been determined. An increase in breathing of the hypoxic and extremely cold air experienced by a bar-headed goose at altitude (due to the enhanced hypoxic ventilatory response in this species) could result in both reduced temperature and reduced levels of CO2 at the blood-gas interface in the lungs, enhancing O2 loading. In addition, given the strenuous nature of flapping flight, particularly in thin air, blood leaving the exercising muscle should be warm and acidotic, facilitating O2 unloading. To explore the possibility that features of blood biochemistry in this species could further enhance O2 delivery, we determined the P50 (the partial pressure of O2 at which Hb is 50% saturated) of whole blood from bar-headed geese under conditions of varying temperature and [CO2]. We found that blood-O2 affinity was highly temperature sensitive in bar-headed geese compared with other birds and mammals. Based on our analysis, temperature and pH effects acting on blood-O2 affinity (cold alkalotic lungs and warm acidotic muscle) could increase O2 delivery by twofold during sustained flapping flight at high altitudes compared with what would be delivered by blood at constant temperature and pH.
NASA Astrophysics Data System (ADS)
Kleshnin, Mikhail; Orlova, Anna; Kirillin, Mikhail; Golubiatnikov, German; Turchin, Ilya
2017-07-01
A new approach to optical measuring blood oxygen saturation was developed and implemented. This technique is based on an original three-stage algorithm for reconstructing the relative concentration of biological chromophores (hemoglobin, water, lipids) from the measured spectra of diffusely scattered light at different distances from the probing radiation source. The numerical experiments and approbation of the proposed technique on a biological phantom have shown the high reconstruction accuracy and the possibility of correct calculation of hemoglobin oxygenation in the presence of additive noise and calibration errors. The obtained results of animal studies have agreed with the previously published results of other research groups and demonstrated the possibility to apply the developed technique to monitor oxygen saturation in tumor tissue.
21 CFR 864.7415 - Abnormal hemoglobin assay.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Abnormal hemoglobin assay. 864.7415 Section 864... hemoglobin assay. (a) Identification. An abnormal hemoglobin assay is a device consisting of the reagents... hemoglobin types. (b) Classification. Class II (performance standards). [45 FR 60618, Sept. 12, 1980] ...
21 CFR 864.7415 - Abnormal hemoglobin assay.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Abnormal hemoglobin assay. 864.7415 Section 864... hemoglobin assay. (a) Identification. An abnormal hemoglobin assay is a device consisting of the reagents... hemoglobin types. (b) Classification. Class II (performance standards). [45 FR 60618, Sept. 12, 1980] ...
Determination Of Ph Including Hemoglobin Correction
Maynard, John D.; Hendee, Shonn P.; Rohrscheib, Mark R.; Nunez, David; Alam, M. Kathleen; Franke, James E.; Kemeny, Gabor J.
2005-09-13
Methods and apparatuses of determining the pH of a sample. A method can comprise determining an infrared spectrum of the sample, and determining the hemoglobin concentration of the sample. The hemoglobin concentration and the infrared spectrum can then be used to determine the pH of the sample. In some embodiments, the hemoglobin concentration can be used to select an model relating infrared spectra to pH that is applicable at the determined hemoglobin concentration. In other embodiments, a model relating hemoglobin concentration and infrared spectra to pH can be used. An apparatus according to the present invention can comprise an illumination system, adapted to supply radiation to a sample; a collection system, adapted to collect radiation expressed from the sample responsive to the incident radiation; and an analysis system, adapted to relate information about the incident radiation, the expressed radiation, and the hemoglobin concentration of the sample to pH.
[Hemoglobin, from microorganisms to man: a single structural motif, multiple functions].
Wajcman, Henri; Kiger, Laurent
2002-12-01
Haemoglobins from unicellular organisms, plants or animals, share a common structure, which results from the folding, around the heme group, of a polypeptide chain made from 6-8 helices. Nowadays, deciphering the genome of several species allows one to draw the evolutionary tree of this protein going back to 1800 millions of years, at a time when oxygen began to accumulate in the atmosphere. This permits to follow the evolution of the ancestral gene and of its product. It is likely that, only in complex multicellular species, transport and storage of oxygen became the main physiological function of this molecule. In addition, in unicellular organisms and small invertebrates, it is likely that the main function of this protein was to protect the organism from the toxic effect of O2, CO and NO*. The very high oxygen affinity of these molecules, leading them to act rather as a scavenger as an oxygen carrier, supports this hypothesis. Haemoglobins from microorganisms, which may probably be the closest vestiges to the ancestral molecules, are divided into three families. The first one is made from flavohaemoglobins, a group of chimerical proteins carrying a globin domain and an oxido-reduction FAD-dependant domain. The second corresponds to truncated haemoglobins, which are hexacoordinated with very high oxygen-affinity molecules, 20-40 residues shorter than classical haemoglobins. The third group is made from bacterial haemoglobins such as that of Vitreoscilla. Some specific structural arrangements in the region surrounding the heme are cause of their high oxygen affinity. In plants, two types of haemoglobins are present (non-symbiotic and symbiotic), that arose from duplication of an ancestral vegetal gene. Non-symbiotic haemoglobins, which are probably the oldest, are scarcely distributed within tissues having high energetic consumption. Conversely, symbiotic haemoglobins (also named leghaemoglobins) are present at a high concentration (mM) mostly in the rhizomes of
Does cerebral oxygen delivery limit incremental exercise performance?
Olin, J. Tod; Dimmen, Andrew C.; Polaner, David M.; Kayser, Bengt; Roach, Robert C.
2011-01-01
Previous studies have suggested that a reduction in cerebral oxygen delivery may limit motor drive, particularly in hypoxic conditions, where oxygen transport is impaired. We hypothesized that raising end-tidal Pco2 (PetCO2) during incremental exercise would increase cerebral blood flow (CBF) and oxygen delivery, thereby improving peak power output (Wpeak). Amateur cyclists performed two ramped exercise tests (25 W/min) in a counterbalanced order to compare the normal, poikilocapnic response against a clamped condition, in which PetCO2 was held at 50 Torr throughout exercise. Tests were performed in normoxia (barometric pressure = 630 mmHg, 1,650 m) and hypoxia (barometric pressure = 425 mmHg, 4,875 m) in a hypobaric chamber. An additional trial in hypoxia investigated effects of clamping at a lower PetCO2 (40 Torr) from ∼75 to 100% Wpeak to reduce potential influences of respiratory acidosis and muscle fatigue imposed by clamping PetCO2 at 50 Torr. Metabolic gases, ventilation, middle cerebral artery CBF velocity (transcranial Doppler), forehead pulse oximetry, and cerebral (prefrontal) and muscle (vastus lateralis) hemoglobin oxygenation (near infrared spectroscopy) were monitored across trials. Clamping PetCO2 at 50 Torr in both normoxia (n = 9) and hypoxia (n = 11) elevated CBF velocity (∼40%) and improved cerebral hemoglobin oxygenation (∼15%), but decreased Wpeak (6%) and peak oxygen consumption (11%). Clamping at 40 Torr near maximal effort in hypoxia (n = 6) also improved cerebral oxygenation (∼15%), but again limited Wpeak (5%). These findings demonstrate that increasing mass cerebral oxygen delivery via CO2-mediated vasodilation does not improve incremental exercise performance, at least when accompanied by respiratory acidosis. PMID:21921244
Vigeolas, Helene; Hühn, Daniela; Geigenberger, Peter
2011-01-01
Nonsymbiotic hemoglobins are ubiquitously expressed in plants and divided into two different classes based on gene expression pattern and oxygen-binding properties. Most of the published research has been on the function of class 1 hemoglobins. To investigate the role of class 2 hemoglobins, transgenic Arabidopsis (Arabidopsis thaliana) plants were generated overexpressing Arabidopsis hemoglobin-2 (AHb2) under the control of a seed-specific promoter. Overexpression of AHb2 led to a 40% increase in the total fatty acid content of developing and mature seeds in three subsequent generations. This was mainly due to an increase in the polyunsaturated C18:2 (ω-6) linoleic and C18:3 (ω-3) α-linolenic acids. Moreover, AHb2 overexpression led to an increase in the C18:2/C18:1 and C18:3/C18:2 ratios as well as in the C18:3 content in mol % of total fatty acids and in the unsaturation/saturation index of total seed lipids. The increase in fatty acid content was mainly due to a stimulation of the rate of triacylglycerol synthesis, which was attributable to a 3-fold higher energy state and a 2-fold higher sucrose content of the seeds. Under low external oxygen, AHb2 overexpression maintained an up to 5-fold higher energy state and prevented fermentation. This is consistent with AHb2 overexpression results in improved oxygen availability within developing seeds. In contrast to this, overexpression of class 1 hemoglobin did not lead to any significant increase in the metabolic performance of the seeds. These results provide evidence for a specific function of class 2 hemoglobin in seed oil production and in promoting the accumulation of polyunsaturated fatty acids by facilitating oxygen supply in developing seeds. PMID:21205621
OXYGEN DISSOCIATION OF WHOLE BLOOD STUDIED POLAROGRAPHICALLY
Markus, Gabor; Baumberger, J. Percy
1952-01-01
The polarographic current of whole blood is in excess of that given by plasma at the same oxygen tension. The magnitude of this difference depends on (a) the oxygen content of the sample and thus is determined by the red blood cell content and by the state of oxygen saturation of hemoglobin, and (b) on the rate of dissociation of oxyhemoglobin and therefore is influenced by changes in pH, pCO2, and temperature. The total current at 37°C. is proportional to the oxygen content of the sample and can be used to determine the latter. The theoretical basis of the studied phenomena is discussed in detail. PMID:13011281
Hemoglobin level and lipoprotein particle size.
Hämäläinen, Päivi; Saltevo, Juha; Kautiainen, Hannu; Mäntyselkä, Pekka; Vanhala, Mauno
2018-01-10
Alterations in lipoprotein size are associated with increased cardiovascular disease risk. Higher hemoglobin levels may indicate a higher risk of atherosclerosis and was previously associated with obesity, metabolic syndrome, and insulin resistance. No previous studies have investigated an association between hemoglobin concentration and lipoprotein particle size. We conducted a population-based, cross-sectional study of 766 Caucasian, middle-aged subjects (341 men and 425 women) born in Pieksämäki, Finland, who were categorized into five age groups. The concentrations and sizes of lipoprotein subclass particles were analyzed by high-throughput nuclear magnetic resonance (NMR) spectroscopy. Larger very low density lipoprotein (VLDL) particle diameter was associated with higher hemoglobin concentrations in men (p = 0.003). There was a strong relationship between smaller high density lipoprotein (HDL) particle size and higher hemoglobin concentration in both men and women as well as with smaller low density lipoprotein (LDL) particle size and higher hemoglobin concentration in men and women (p < 0.001; p = 0.009, p = 0.008). VLDL particle concentration had a moderate positive correlation with hemoglobin concentration (r = 0.15; p < 0.001). LDL particle concentration showed a statistical trend suggesting increasing particle concentration with increasing hemoglobin levels (r = 0.08; p = 0.05). Higher hemoglobin levels are associated with larger VLDL, smaller LDL, and smaller HDL particle sizes and increasing amounts of larger VLDL and smaller LDL particles. This suggests that a higher hemoglobin concentration is associated with an unfavorable lipoprotein particle profile that is part of states that increase cardiovascular disease risk like diabetes and metabolic syndrome.
21 CFR 864.7470 - Glycosylated hemoglobin assay.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Glycosylated hemoglobin assay. 864.7470 Section... Glycosylated hemoglobin assay. (a) Identification. A glycosylated hemoglobin assay is a device used to measure the glycosylated hemoglobins (A1a, A1b, and A1c) in a patient's blood by a column chromatographic...
Cell-free oxygen carriers: scientific foundations, clinical development, and new directions.
Winslow, Robert M
2008-10-01
The most significant hurdle to the development of a safe and effective hemoglobin-based oxygen carrier ("blood substitute") is generally thought to be its propensity to cause vasoconstriction in the microcirculation and hypertension. Two theories for this effect are currently being studied: in one, scavenging NO by hemoglobin reduces vasorelaxation; in the other, cell-free hemoglobin oversupplies O2 (a known vasoconstrictor) to vascular walls by facilitated diffusion. While both mechanisms might lead to reduction of local NO concentration, the important distinction between the two is that if the NO scavenging theory is correct, it greatly diminishes the prospects to develop any solution based on free hemoglobin. However, if the O2-oversupply theory is correct, modifications to the hemoglobin molecule can be envisioned that can prevent oversupply and reduce toxicity. This review summarizes the development of Hemospan, a novel modification of human hemoglobin whose design is based on the O2-oversupply theory. Because of its low P50 and increased molecular size, the release of O2 in resistance vessels (arterioles) by Hemospan is restricted, and vasoconstriction is greatly reduced.
Blood gas analysis and cooximetry in retired racing Greyhounds
Zaldivar-Lopez, Sara; Chisnell, Hope K.; Guillermo Couto, C.; Westendorf-Stingle, Nicole; Marin, Liliana M.; Iazbik, Maria C.; Cooper, Edward S.; Wellman, Maxey L.; Muir, William W.
2013-01-01
Objective The purposes of this study were to evaluate the oxygen affinity of hemoglobin (Hb) in healthy retired racing Greyhounds via cooximetry, and to establish reference intervals for blood gases and cooximetry in this breed. Design Prospective clinical study. Setting University Teaching Hospital. Animals Fifty-seven Greyhounds and 30 non-Greyhound dogs. Interventions Venous blood samples were collected from the jugular vein and placed into heparinized tubes. The samples were analyzed within 30 minutes of collection using a blood gas analyzer equipped with a cooximeter. Measurements and Main Results Greyhounds had significantly higher pH, PO2, oxygen saturation, oxyhemoglobin, total Hb, oxygen content, and oxygen capacity and significantly lower deoxyhemoglobin and P50 when compared with non-Greyhound dogs. Conclusion These findings support the fact that this breed is able to carry a higher concentration of total oxygen in the blood. As reported previously, this breed also has lower P50 and, therefore, high oxygen affinity. In light of recent findings suggesting that in certain tissues a high affinity for oxygen is beneficial, this adaptation may be of benefit during strenuous exercise. PMID:21288290
HEMOGLOBIN AND PLASMA PROTEIN PRODUCTION
Robscheit-Robbins, F. S.; Miller, L. L.; Whipple, G. H.
1946-01-01
Given healthy dogs, fed abundant iron and protein-free or low protein diets, with sustained anemia and hypoproteinemia due to bleeding, we can study the capacity of these animals to produce simultaneousiy new hemoglobin and plasma protein. The reserve stores of blood protein-producing materials in this way are largely depleted, and levels of 6 to 8 gm. per cent for hemoglobin and 4 to 5 gm. per cent for plasma protein can be maintained for considerable periods of time. These dogs are very susceptible to infection and to injury by many poisons. Dogs tire of these diets and loss of appetite terminates many experiments. These incomplete experiments are not recorded in the present paper but give supporting evidence in harmony with those tabulated. Under these conditions (double depletion) the dogs use effectively the proteins listed above—egg, lactalbumin, meat, beef plasma, and digests of various food proteins and hemoglobin. Egg protein at times seems to favor slightly the production of plasma protein when compared with the average response (Tables 1 and 2). Various digests and concentrates compare favorably with good food proteins in the production of new hemoglobin and plasma protein in these doubly depleted dogs. Whole beef plasma by mouth is well utilized and the production of new hemoglobin is, if anything, above the average—certainly plasma protein production is not especially favored. "Modified" beef plasma by vein causes fatal anaphylaxis (Table 4). Hemoglobin digests are well used by mouth to form both hemoglobin and plasma protein. Supplementation by amino acids is recorded. Methionine in one experiment may have been responsible for a better protein output and digest utilization (Table 7). PMID:19871543
Roche, Camille J; Talwar, Abhinav; Palmer, Andre F; Cabrales, Pedro; Gerfen, Gary; Friedman, Joel M
2015-01-02
The giant extracellular hemoglobin (erythrocruorin) from the earth worm (Lumbricus terrestris) has shown promise as a potential hemoglobin-based oxygen carrier (HBOC) in in vivo animal studies. An important beneficial characteristic of this hemoglobin (LtHb) is the large number of heme-based oxygen transport sites that helps overcome issues of osmotic stress when attempting to provide enough material for efficient oxygen delivery. A potentially important additional property is the capacity of the HBOC either to generate nitric oxide (NO) or to preserve NO bioactivity to compensate for decreased levels of NO in the circulation. The present study compares the NO-generating and NO bioactivity-preserving capability of LtHb with that of human adult hemoglobin (HbA) through several reactions including the nitrite reductase, reductive nitrosylation, and still controversial nitrite anhydrase reactions. An assignment of a heme-bound dinitrogen trioxide as the stable intermediate associated with the nitrite anhydrase reaction in both LtHb and HbA is supported based on functional and EPR spectroscopic studies. The role of the redox potential as a factor contributing to the NO-generating activity of these two proteins is evaluated. The results show that LtHb undergoes the same reactions as HbA and that the reduced efficacy for these reactions for LtHb relative to HbA is consistent with the much higher redox potential of LtHb. Evidence of functional heterogeneity in LtHb is explained in terms of the large difference in the redox potential of the isolated subunits. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Lücker, Adrien; Secomb, Timothy W.; Weber, Bruno; Jenny, Patrick
2018-01-01
Capillary dysfunction impairs oxygen supply to parenchymal cells and often occurs in Alzheimer's disease, diabetes and aging. Disturbed capillary flow patterns have been shown to limit the efficacy of oxygen extraction and can be quantified using capillary transit time heterogeneity (CTH). However, the transit time of red blood cells (RBCs) through the microvasculature is not a direct measure of their capacity for oxygen delivery. Here we examine the relation between CTH and capillary outflow saturation heterogeneity (COSH), which is the heterogeneity of blood oxygen content at the venous end of capillaries. Models for the evolution of hemoglobin saturation heterogeneity (HSH) in capillary networks were developed and validated using a computational model with moving RBCs. Two representative situations were selected: a Krogh cylinder geometry with heterogeneous hemoglobin saturation (HS) at the inflow, and a parallel array of four capillaries. The heterogeneity of HS after converging capillary bifurcations was found to exponentially decrease with a time scale of 0.15–0.21 s due to diffusive interaction between RBCs. Similarly, the HS difference between parallel capillaries also drops exponentially with a time scale of 0.12–0.19 s. These decay times are substantially smaller than measured RBC transit times and only weakly depend on the distance between microvessels. This work shows that diffusive interaction strongly reduces COSH on a small spatial scale. Therefore, we conclude that CTH influences COSH yet does not determine it. The second part of this study will focus on simulations in microvascular networks from the rodent cerebral cortex. Actual estimates of COSH and CTH will then be given. PMID:29755365
Hemoglobin Variants: Biochemical Properties and Clinical Correlates
Thom, Christopher S.; Dickson, Claire F.; Gell, David A.; Weiss, Mitchell J.
2013-01-01
Diseases affecting hemoglobin synthesis and function are extremely common worldwide. More than 1000 naturally occurring human hemoglobin variants with single amino acid substitutions throughout the molecule have been discovered, mainly through their clinical and/or laboratory manifestations. These variants alter hemoglobin structure and biochemical properties with physiological effects ranging from insignificant to severe. Studies of these mutations in patients and in the laboratory have produced a wealth of information on hemoglobin biochemistry and biology with significant implications for hematology practice. More generally, landmark studies of hemoglobin performed over the past 60 years have established important paradigms for the disciplines of structural biology, genetics, biochemistry, and medicine. Here we review the major classes of hemoglobin variants, emphasizing general concepts and illustrative examples. PMID:23388674
Meng, Fan-Tao; Zhang, Wan-Zhong; Ma, Guang-Hui; Su, Zhi-Guo
2003-08-01
Methoxypoly(ethylene glycol)-b-poly-DL-lactide (PELA) microcapsules containing bovine hemoglobin (bHb) were prepared by a W/O/W double emulsion-solvent diffusion process. bHb solution was used as the internal aqueous phase, PELA/organic solvent as the oil phase, and polyvinyl alcohol (PVA) solution as the external aqueous phase. This W/O/W double emulsion was added into a large volume of water (solidification solution) to allow organic solvent to diffuse into water. The optimum preparative condition for PELA microcapsules loaded with bovine hemoglobin was investigated. It was found that homogenization rate, type of organic solvent, and volume of the solidification solution influenced the activity of bovine hemoglobin encapsulated. When the homogenization rate was lower than 9000 rpm and ethyl acetate was used as the organic solvent, there was no significant influence on the activity of hemoglobin. High homogenization rate as 12 000 rpm decreased the P50 and Hill coefficient. Increasing the volume of solidification solution had an effect of improving the activity of microencapsulated hemoglobin. The composition of the PELA had the most important influence on the success of encapsulation. Microcapsules fabricated by PELA with MPEG2k block (molecular weight of MPEG block: 2000) achieved a high entrapment efficiency of 90%, better than PL A homopolymer and PELA with MPEG5k blocks. Hemoglobin microcapsules with native loading oxygen activity (P50 = 26.0 mmHg, Hill coefficient = 2.4), mean size of about 10 microm, and high entrapment efficiency (ca. 93%) were obtained at the optimum condition.
Wong, David M; Alcott, Cody J; Wang, Chong; Bornkamp, Jennifer L; Young, Jessica L; Sponseller, Brett A
2011-11-15
To determine agreement between indirect measurements of end-tidal partial pressure of carbon dioxide (PetCO(2)) and saturation of hemoglobin with oxygen as measured by pulse oximetry (SpO(2)) with direct measurements of PaCO(2) and calculated saturation of hemoglobin with oxygen in arterial blood (SaO(2)) in conscious healthy and ill foals. Validation study. 10 healthy and 21 ill neonatal foals. Arterial blood gas analysis was performed on healthy and ill foals examined at a veterinary teaching hospital to determine direct measurements of PaCO(2) and PaO(2) along with SaO(2). Concurrently, PetCO(2) was measured with a capnograph inserted into a naris, and SpO(2) was measured with a reflectance probe placed at the base of the tail. Paired values were compared by use of Pearson correlation coefficients, and level of agreement was assessed with the Bland-Altman method. Mean ± SD difference between PaCO(2) and PetCO(2) was 0.1 ± 5.0 mm Hg. There was significant strong correlation (r = 0.779) and good agreement between PaCO(2) and PetCO(2). Mean ± SD difference between SaO(2) and SpO(2) was 2.5 ± 3.5%. There was significant moderate correlation (r = 0.499) and acceptable agreement between SaO(2) and SpO(2). Both PetCO(2) obtained by use of nasal capnography and SpO(2) obtained with a reflectance probe are clinically applicable and accurate indirect methods of estimating and monitoring PaCO(2) and SaO(2) in neonatal foals. Indirect methods should not replace periodic direct measurement of corresponding parameters.
Blood oxygen saturation determined by transmission spectrophotometry of hemolyzed blood samples
NASA Technical Reports Server (NTRS)
Malik, W. M.
1967-01-01
Use of the Lambert-Beer Transmission Law determines blood oxygen saturation of hemolyzed blood samples. This simplified method is based on the difference in optical absorption properties of hemoglobin and oxyhemoglobin.
Hu, Meng-Xin; Li, Xiang; Li, Ji-Nian; Huang, Jing-Jing; Ren, Ge-Rui
2018-02-23
Polymer brushes modified surfaces have been widely used for protein immobilization and isolation. Modification of membranes with polymer brushes increases the surface concentration of affinity ligands used for protein binding. Albumin is one of the transporting proteins and shows a high affinity to bile acids. In this work, the modified membranes with cholic acid-containing polymer brushes can be facilely prepared by the immobilization of cholic acid on the poly(2-hydroxyethyl methacrylate) grafted microporous polypropylene membranes (MPPMs) for affinity adsorption of albumin. ATR/FT-IR and X-ray photoelectron spectroscopy were used to characterize the chemical composition of the modified membranes. Water contact angle measurements were used to analyze the hydrophilic/hydrophobic properties of the membrane surface. The modified MPPMs show a high affinity to albumin and have little non-specific adsorption of hemoglobin. The dynamic binding capacity of albumin in the continous-flow system increases with the cycle number and feed rate as the binding degree of cholic acid is moderate. The highest binding capacity of affinity membranes is about 52.49 g/m 2 membrane, which is about 24 times more than the monolayer binding capacity. These results reveal proteins could be captured in multilayers by the polymer brushes containing affinity ligands similar to the polymer brushes containing ion-exchange groups, which open up the potential of the polymer brushes containing affinity ligands in protein or another components separation. And the cholic acid containing polymer brushes modified membranes has the promising potential for albumin separation and purification rapidly from serum or fermented solution in medical diagnosis and bioseparation. Copyright © 2018 Elsevier B.V. All rights reserved.
Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis
Moore, Lee R.; Fujioka, Hisashi; Williams, P. Stephen; Chalmers, Jeffrey J.; Grimberg, Brian; Zimmerman, Peter; Zborowski, Maciej
2013-01-01
During intra-erythrocytic development, malaria trophozoites digest hemoglobin, which leads to parasite growth and asexual replication while accumulating toxic heme. To avoid death, the parasite synthesizes insoluble hemozoin crystals in the digestive vacuole through polymerization of β-hematin dimers. In the process, the heme is converted to a high-spin ferriheme whose magnetic properties were studied as early as 1936 by Pauling et al. Here, by magnetophoretic cell motion analysis, we provide evidence for a graduated increase of live cell magnetic susceptibility with developing blood-stage parasites, compatible with the increase in hemozoin content and the mechanism used by P. falciparum to avoid heme toxicity. The measured magnetophoretic mobility of the erythrocyte infected with a late-stage schizont form was m = 2.94 × 10−6 mm3 s/kg, corresponding to the net volume magnetic susceptibility (relative to water) of Δχ = 1.80 × 10−6, significantly higher than that of the oxygenated erythrocyte (−0.18×10−6) but lower than that of the fully deoxygenated erythrocyte (3.33×10−6). The corresponding fraction of hemoglobin converted to hemozoin, calculated based on the known magnetic susceptibilities of hemoglobin heme and hemozoin ferriheme, was 0.50, in agreement with the published biochemical and crystallography data. Magnetophoretic analysis of live erythrocytes could become significant for antimalarial drug susceptibility and resistance determination. PMID:16461330
Preparation of Hemoglobin-Containing Microcapsules.
1982-04-01
L -i2 801 PREPARRTION OF HEMOGLOBIN-CONTAINING MICROCAPSULES (U) i/i I SRI INTERNATIONAL MENLO PRK CA Z REYES APR 82 UNLSSFE SRI1-2254-2 DRMDi,7-8@-C...R oI• _ AD I PREPARATION OF HEMOGLOBIN- /2 o ) CONTAINING MICROCAPSULES . 00 ANNUAL AND FINAL REPORT ZOILA REYES, Ph.D. APRIL 1982 Supported by U.S...1/31/82) PREPARATION OF HEMOGLOBIN-CONTAINING MICROCAPSULES 6. PERFORMING ORG. REPOR’ NUMBER 2254-2 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s) Zoila
Carboxyalkylated Hemoglobin as a Potential Blood Substitute
1989-09-20
chromatography to remove minor and glycosylated hemoglobin components. Carbox) methylation Reaction - Many of the procedures have been described in our early...hemoglobin by peptide mapping after treatment with radiolabeled methyl acetyl phosphate. These binding sites are Met-l(3) and Lys-81(f) for liganded...ABSTRACT (Continue on reverse if necesary andia entify by block number) Carbox,, methylated hemoglobin is more stable than oxy hemoglobin during some
Powanda, D Douglas; Chang, Thomas M S
2002-01-01
In strokes, myocardial infarctions, severe sustained hemorrhagic shock, and donor organs, inadequate blood supply results in lack of oxygen to the tissue (ischemia). If ischemia is sustained, reperfusion with the needed oxygen can result in tissue injury (ischemia-reperfusion injury) due to formation of reactive oxygen species. We are studying an oxygen-carrying solution with anitoxidant activity formed by cross-linking hemoglobin, superoxide dismutase, and catalase to form PolyHb-SOD-CAT. The present report studies its effect on the blood-brain barrier and cerebral edema when used in a transient global brain ischemia-reperfusion rat model. We compare this solution to sham-control, oxygenated saline, stroma-free hemoglobin (SF-Hb), polymerized hemoglobin (PolyHb), and a mixture of SF-Hb, SOD, and CAT in free solution. The results show that the cross-linked PolyHb-SOD-CAT solution, unlike the other solutions, can supply oxygen to ischemic tissues without causing reperfusion injury in the transient global brain ischemia-reperfusion model.
Endeward, Volker
2012-05-01
A mathematical model describing facilitation of O(2) diffusion by the diffusion of myoglobin and hemoglobin is presented. The equations are solved numerically by a finite-difference method for the conditions as they prevail in cardiac and skeletal muscle and in red cells without major simplifications. It is demonstrated that, in the range of intracellular diffusion distances, the degree of facilitation is limited by the rate of the chemical reaction between myglobin or hemoglobin and O(2). The results are presented in the form of relationships between the degree of facilitation and the length of the diffusion path on the basis of the known kinetics of the oxygenation-deoxygenation reactions. It is concluded that the limitation by reaction kinetics reduces the maximally possible facilitated oxygen diffusion in cardiomyoctes by ∼50% and in skeletal muscle fibers by ∼ 20%. For human red blood cells, a reduction of facilitated O(2) diffusion by 36% is obtained in agreement with previous reports. This indicates that, especially in cardiomyocytes and red cells, chemical equilibrium between myoglobin or hemoglobin and O(2) is far from being established, an assumption that previously has often been made. Although the "O(2) transport function" of myoglobin in cardiac muscle cells thus is severely limited by the chemical reaction kinetics, and to a lesser extent also in skeletal muscle, it is noteworthy that the speed of release of O(2) from MbO(2), the "storage function," is not limited by the reaction kinetics under physiological conditions.
Qiu, Xuejun; Huang, Hanchuan; Huang, Zhitong; Zhuang, Zhengfei; Guo, Zhouyi; Liu, Songhao
2017-01-01
Red light-emitting diodes (LED) were used to irradiate the isolated hypertension hemoglobin (Hb) and Raman spectra difference was recorded using confocal micro-Raman spectroscopy. Differences were observed between the controlled and irradiated Hb by comparing the spectra records. The Raman spectrum at the 1399 cm -1 band decreased following prolonged LED irradiation. The intensity of the 1639 cm -1 band decreased dramatically in the first five minutes and then gradually increased in a time-dependent manner. This observation indicated that LED irradiation increased the ability of oxygen binding in Hb. The appearance of the heme aggregation band at 1399 cm -1 , in addition to the oxygen marker band at 1639 cm -1 , indicated that, in our study, 30 min of irradiation with 15.0 mW was suitable for inhibiting heme aggregation and enhancing the oxygen-carrying capacity of Hb. Principal component analysis showed a one-to-one relationship between irradiated Hb at different time points and the corresponding Raman spectra. Our approach could be used to analyze the hemoglobin from patients with confocal micro-Raman spectroscopy and is helpful for developing new nondrug hypertension therapy.
Mousavi, Seyed Ali; Mahmood, Faiza; Aandahl, Astrid; Knutsen, Teresa Risopatron; Llohn, Abid Hussain
2015-01-01
Objectives. We aimed to examine whether baseline hemoglobin levels in C282Y-homozygous patients are related to the degree of serum ferritin (SF) elevation and whether patients with different baseline hemoglobin have different phlebotomy requirements. Methods. A total of 196 patients (124 males and 72 females) who had undergone therapeutic phlebotomy and had SF and both pre- and posttreatment hemoglobin values were included in the study. Results. Bivariate correlation analysis suggested that baseline SF explains approximately 6 to 7% of the variation in baseline hemoglobin. The results also showed that males who had higher (≥150 g/L) baseline hemoglobin levels had a significantly greater reduction in their posttreatment hemoglobin despite requiring fewer phlebotomies to achieve iron depletion than those who had lower (<150 g/L) baseline hemoglobin, regardless of whether baseline SF was below or above 1000 µg/L. There were no significant differences between hemoglobin subgroups regarding baseline and treatment characteristics, except for transferrin saturation between male subgroups with SF above 1000 µg/L. Similar differences were observed when females with higher (≥138 g/L) baseline hemoglobin were compared with those with lower (<138 g/L) baseline hemoglobin. Conclusion. Dividing C282Y-homozygous patients into just two subgroups according to the degree of baseline SF elevation may obscure important subgroup variations. PMID:26380265
Traveset, Alicia; Rubinat, Esther; Ortega, Emilio; Alcubierre, Nuria; Vazquez, Beatriz; Hernández, Marta; Jurjo, Carmen; Espinet, Ramon; Ezpeleta, Juan Antonio; Mauricio, Didac
2016-01-01
Aims. To assess the association of blood oxygen-transport capacity variables with the prevalence of diabetic retinopathy (DR), retinal ischemia, and macular oedema in patients with type 2 diabetes mellitus (T2DM). Methods. Cross-sectional, case-control study (N = 312) with T2DM: 153 individuals with DR and 159 individuals with no DR. Participants were classified according to the severity of DR and the presence of retinal ischemia or macular oedema. Hematological variables were collected by standardized methods. Three logistic models were adjusted to ascertain the association between hematologic variables with the severity of DR and the presence of retinal ischemia or macular oedema. Results. Individuals with severe DR showed significantly lower hemoglobin, hematocrit, and erythrocyte levels compared with those with mild disease and in individuals with retinal ischemia and macular oedema compared with those without these disorders. Hemoglobin was the only factor that showed a significant inverse association with the severity of DR [beta-coefficient = -0.52, P value = 0.003] and retinal ischemia [beta-coefficient = -0.49, P value = 0.001]. Lower erythrocyte level showed a marginally significant association with macular oedema [beta-coefficient = -0.86, P value = 0.055]. Conclusions. In patients with DR, low blood oxygen-transport capacity was associated with more severe DR and the presence of retinal ischemia. Low hemoglobin levels may have a key role in the development and progression of DR.
Kawadler, Jamie M; Kirkham, Fenella J; Clayden, Jonathan D; Hollocks, Matthew J; Seymour, Emma L; Edey, Rosanna; Telfer, Paul; Robins, Andrew; Wilkey, Olu; Barker, Simon; Cox, Tim C S; Clark, Chris A
2015-07-01
Sickle cell anemia is associated with compromised oxygen-carrying capability of hemoglobin and a high incidence of overt and silent stroke. However, in children with no evidence of cerebral infarction, there are changes in brain morphometry relative to healthy controls, which may be related to chronic anemia and oxygen desaturation. A whole-brain tract-based spatial statistics analysis was carried out in 25 children with sickle cell anemia with no evidence of abnormality on T2-weighted magnetic resonance imaging (13 male, age range: 8-18 years) and 14 age- and race-matched controls (7 male, age range: 10-19 years) to determine the extent of white matter injury. The hypotheses that white matter damage is related to daytime peripheral oxygen saturation and steady-state hemoglobin were tested. Fractional anisotropy was found to be significantly lower in patients in the subcortical white matter (corticospinal tract and cerebellum), whereas mean diffusivity and radial diffusivity were higher in patients in widespread areas. There was a significant negative relationship between radial diffusivity and oxygen saturation (P<0.05) in the anterior corpus callosum and a trend-level negative relationship between radial diffusivity and hemoglobin (P<0.1) in the midbody of the corpus callosum. These data show widespread white matter abnormalities in a sample of asymptomatic children with sickle cell anemia, and provides for the first time direct evidence of a relationship between brain microstructure and markers of disease severity (eg, peripheral oxygen saturation and steady-state hemoglobin). This study suggests that diffusion tensor imaging metrics may serve as a biomarker for future trials of reducing hypoxic exposure. © 2015 American Heart Association, Inc.
Panjeta, Mirsad; Tahirovic, Ismet; Karamehic, Jasenko; Sofic, Emin; Ridic, Ognjen; Coric, Jozo
2015-06-01
Hypoxia is a basic stimulant in production of erythropoietin (EPO). The primary function of erythrocytes is the transport of oxygen to tissues. Erythropoietin stimulates erythropoiesis which leads to increased production of erythrocytes- their total mass. This increases the capacity of the blood to carry oxygen, reduces the hypoxic stimulus and provides a negative feedback of stopping EPO production. The aim of this study was to establish a quantitative relationship between the concentration of erythropoietin, hemoglobin and hematocrit in different values of renal insufficiency. The survey was conducted on 562 subjects divided into two groups: with and without renal insufficiency. EPO, hemoglobin, hematocrit, serum creatinine and additional parameters iron, vitamin B12, and folic acid were determined by using immunochemical and spectrophotometric methods and glomerular filtration rate (GFR) was calculated as well. EPO values (median) grow to the first degree of renal insufficiency, as compared to EPO values of healthy subjects, this increase is statistically significant, p=0.002. With further deterioration of renal function the values of EPO between all pathological groups are decreasing, and this decrease is statistically significant between first and second degree of renal insufficiency (RI) p<0.001. In the group of healthy subjects EPO is correlated rho = -0.532, p <0.0005 with hematocrit. The correlations are negative and strong and can be predicted by regression line (EP0 = 41.375- Hct * .649; EPO = 61.41-Hb * 0.355). In the group of subjects with the first degree of renal insufficiency EPO is in correlation with hematocrit rho=-0.574, p<0, 0005. It is also correlated with hemoglobin rho=-0.580, p< 0.0005. The correlation is negative (EP0= 42.168- Hct * 0.678). In the group of subjects with the third degree of renal insufficiency EPO is in correlation with hemoglobin rho=0.257, p=0.028. The correlation is medium strong and positive. In the group of subjects
Moenickes, S; Richter, O; Pirow, R
2010-02-01
The planktonic crustacean Daphnia magna synthesizes haemoglobin (Hb) macromolecules of variant subunit composition and oxygen affinity. This is one of the strategies by which the animals cope with variations in environmental conditions such as ambient oxygen tension. The enrichment of high-affinity Hb molecules in the haemolymph of hypoxia-exposed animals is thought to reduce Hb synthesis costs due to an enhanced transport efficiency of these molecules in comparison to the low-affinity Hb molecules. How great this economic advantage is, and under which conditions this benefit disappears, is still not fully understood. Here we implemented a rigorously simplified model of the daphnid body and described the transport of oxygen from the environment via the haemolymph to the tissues in terms of the convection-diffusion-reaction equation. The model was validated by comparing various model predictions with experimental data. A sensitivity analysis was used to evaluate the influence of parameter uncertainties on the model predictions. Cost-benefit analysis revealed in which way at the system's level the increase in Hb oxygen affinity improves the oxygen loading at the respiratory surfaces and impairs the release of oxygen to the tissues. The benefit arising from the improved oxygen loading exceeds the disadvantage of impaired unloading only under conditions where the ambient oxygen tension is critically low and the Hb concentration is high. The low-affinity Hb, on the other hand, provides an advantage given that the Hb concentration is low and the ambient oxygen tension is well above the critical level. Computer-aided modelling and simulation therefore provide valuable mechanistic insights into the driving forces that could have shaped the evolution of globin genes in daphnids.
[2,3 diphosphoglycerate in preterm newborns].
Scopesi, F; Canini, S; Mazzella, M; Arioni, C; Lantieri, P; Serra, G
2000-01-01
It has been largely shown that during the first month of life, in the preterm neonate Hb levels and Hct percentages rapidly decrease, high HbF concentration persists and a high oxygen affinity occurs. Data are needed to establish the level at which 2,3 dyphosphoglycerate (2,3 DPG) interacts with the regulation of oxygen affinity. 24 samples, from eight uncomplicated preterm newborns (34.1 +/- 1.83 GW, 1869 +/- +/- 291 BW) obtained at the same time as those required for the clinical management of the infants, were collected on the 2nd, 7th and 14th day of life. Blood gases, total hemoglobin and hematocrit were obtained from 0.3 ml arterialised capillary blood. Assays of 2,3 DPG were made separately on 0.4 ml venous blood. As expected tHb concentration and Hct percentages significantly decreased from day 2 to day 14 in all eight cases. On the contrary 2,3 DPG and p50 values remained stable. Subsequently throughout the study period all neonates had an increased 2,3 DPG/Hb ratio that was significantly related with p50 at standard conditions (p < 0.05). Stable 2,3 DPG concentrations during all study period have been detected. The subsequent significant increased 2.3 DPG/Hb, ratio related to increased p50 values, could have a key role in a physiological mechanism aimed to ensure adequate oxygen delivery to the tissues and to counteract the higher oxygen affinity of fetal hemoglobin. A wider sample is needed to validate this hypothesis.
21 CFR 864.7500 - Whole blood hemoglobin assays.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Whole blood hemoglobin assays. 864.7500 Section... blood hemoglobin assays. (a) Identification. A whole blood hemoglobin assay is a device consisting or... hemoglobin content of whole blood for the detection of anemia. This generic device category does not include...
21 CFR 864.7500 - Whole blood hemoglobin assays.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Whole blood hemoglobin assays. 864.7500 Section... blood hemoglobin assays. (a) Identification. A whole blood hemoglobin assay is a device consisting or... hemoglobin content of whole blood for the detection of anemia. This generic device category does not include...
21 CFR 864.7500 - Whole blood hemoglobin assays.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Whole blood hemoglobin assays. 864.7500 Section... blood hemoglobin assays. (a) Identification. A whole blood hemoglobin assay is a device consisting or... hemoglobin content of whole blood for the detection of anemia. This generic device category does not include...
21 CFR 864.7500 - Whole blood hemoglobin assays.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Whole blood hemoglobin assays. 864.7500 Section... blood hemoglobin assays. (a) Identification. A whole blood hemoglobin assay is a device consisting or... hemoglobin content of whole blood for the detection of anemia. This generic device category does not include...
21 CFR 864.7500 - Whole blood hemoglobin assays.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Whole blood hemoglobin assays. 864.7500 Section... blood hemoglobin assays. (a) Identification. A whole blood hemoglobin assay is a device consisting or... hemoglobin content of whole blood for the detection of anemia. This generic device category does not include...
Zhou, Yipin; Cabrales, Pedro; Palmer, Andre F
2012-03-01
A mathematical model was developed to study nitric oxide (NO) and oxygen (O(2)) transport in an arteriole and surrounding tissues exposed to a mixture of red blood cells (RBCs) and hemoglobin (Hb)-based O(2) carriers (HBOCs). A unique feature of this model is the inclusion of blood vessel wall shear stress-induced production of endothelial-derived NO, which is very sensitive to the viscosity of the RBC and HBOC mixture traversing the blood vessel lumen. Therefore in this study, a series of polymerized bovine Hb (PolyHb) solutions with high viscosity, varying O(2) affinities, NO dioxygenation rate constants and O(2) dissociation rate constants that were previously synthesized and characterized by our group was evaluated via mathematical modeling, in order to investigate the effect of these biophysical properties on the transport of NO and O(2) in an arteriole and its surrounding tissues subjected to anemia with the commercial HBOC Oxyglobin® and cell-free bovine Hb (bHb) serving as appropriate controls. The computer simulation results indicated that transfusion of high viscosity PolyHb solutions promoted blood vessel wall shear stress dependent generation of the vasodilator NO, especially in the blood vessel wall and should transport enough NO inside the smooth muscle layer to activate vasodilation compared to the commercial HBOC Oxyglobin® and cell-free bHb. However, NO scavenging in the arteriole lumen was unavoidable due to the intrinsic high NO dioxygenation rate constant of the HBOCs being studied. This study also observed that all PolyHbs could potentially improve tissue oxygenation under hypoxic conditions, while low O(2) affinity PolyHbs were more effective in oxygenating tissues under normoxic conditions compared with high O(2) affinity PolyHbs. In addition, all ultrahigh molecular weight PolyHbs displayed higher O(2) transfer rates than the commercial HBOC Oxyglobin® and cell-free bHb. Therefore, these results suggest that ultrahigh molecular weight
Dependence of nitrite oxidation on nitrite and oxygen in low-oxygen seawater
NASA Astrophysics Data System (ADS)
Sun, Xin; Ji, Qixing; Jayakumar, Amal; Ward, Bess B.
2017-08-01
Nitrite oxidation is an essential step in transformations of fixed nitrogen. The physiology of nitrite oxidizing bacteria (NOB) implies that the rates of nitrite oxidation should be controlled by concentration of their substrate, nitrite, and the terminal electron acceptor, oxygen. The sensitivities of nitrite oxidation to oxygen and nitrite concentrations were investigated using 15N tracer incubations in the Eastern Tropical North Pacific. Nitrite stimulated nitrite oxidation under low in situ nitrite conditions, following Michaelis-Menten kinetics, indicating that nitrite was the limiting substrate. The nitrite half-saturation constant (
Pape, Andreas; Kertscho, Harry; Meier, Jens; Horn, Oliver; Laout, Mohamed; Steche, Max; Lossen, Mischa; Theisen, Alf; Zwissler, Bernhard; Habler, Oliver
2008-08-01
To investigate the efficacy of a polyethylene glycol (PEG) modified formulation of liposome-encapsulated hemoglobin (LEH) as an oxygen-carrying blood substitute in the treatment of critical normovolemic anemia. Prospective, controlled, randomized experimental study in a university research facility. 14 anesthetized and mechanically ventilated beagle dogs. Animals were splenectomized and hemodiluted by exchange of whole blood for iso-oncotic hetastarch (HES). Target parameter of the hemodilution protocol was the individual critical hemoglobin concentration (Hb(crit)) corresponding with the onset of O(2) supply dependency of total body O(2) consumption. At Hb(crit) animals were randomized to receive a bolus infusion (20[Symbol: see text]ml/kg) of either LEH (n = 7) or normal saline (NS; n = 7). Subsequently animals were observed without further intervention. The primary endpoint was survival time after the completion of treatment; secondary endpoints were parameters of central hemodynamics, O(2) transport and tissue oxygenation. Animals in the LEH group survived significantly longer after completion of treatment (149 +/- 109 vs. 43+/- 56 min). Immediately after treatment LEH-treated animals presented with a more stable cardiovascular condition. After 30 min tissue O(2) tension on the surface of a skeletal muscle was significantly higher in the LEH group (23+/-8 vs. 9 +/- 2 mmHg). Nevertheless, treatment with LEH did not decrease mortality within the observation period. In this present experimental study the infusion of a PEG-modified LEH provided adequate tissue oxygenation, hemodynamic stability, and a prolongation of survival time after critical anemia. However, these effects were sustained for only a short period of time.
Neohemoglobins and Cross-Linked Hemoglobins as Blood Substitute.
1982-12-01
LRSSIFIEE F /G 6/1NL El." . 2 it-8 % 1.2 5. 1 1 Si. Hm MICROCOPY RESOLUTION TEST CHART NAIIONAL BUREAU Of SIANOAR DS 19 6 3 -A l...VDistribuxtion/. AvailabilltT C0409 ’Avall avd/Or Dist Spec al L 3 SUMMARY Starting from deuteroporphyrin we synthetized 2,4-dibromo, 2 (or 4)-monocyano and 2 ...were occupied by a proton. Figs. 2 and 3 show the oxygen affinity of the neohemoglobins as compared to that on normal human SFH either in 0.05 M
The Synthetic Analogs of Oxygen-Binding Heme Proteins.
ERIC Educational Resources Information Center
Suslick, Kenneth S.; Reinert, Thomas J.
1985-01-01
Discusses model studies aimed at elucidating various ways in which molecular oxygen interacts with metalloproteins. The focus is on the chemistry of iron(II) porphyrins and their adducts with nitrogenous bases, carbon monoxide, and dioxygen, which are most relevant to the functional proteries of the heme proteins, hemoglobin, and myoglobin. (JN)
Kuznets, Galit; Vigonsky, Elena; Weissman, Ziva; Lalli, Daniela; Gildor, Tsvia; Kauffman, Sarah J; Turano, Paola; Becker, Jeffrey; Lewinson, Oded; Kornitzer, Daniel
2014-10-01
Iron scavenging constitutes a crucial challenge for survival of pathogenic microorganisms in the iron-poor host environment. Candida albicans, like many microbial pathogens, is able to utilize iron from hemoglobin, the largest iron pool in the host's body. Rbt5 is an extracellular glycosylphosphatidylinositol (GPI)-anchored heme-binding protein of the CFEM family that facilitates heme-iron uptake by an unknown mechanism. Here, we characterize an additional C. albicans CFEM protein gene, PGA7, deletion of which elicits a more severe heme-iron utilization phenotype than deletion of RBT5. The virulence of the pga7-/- mutant is reduced in a mouse model of systemic infection, consistent with a requirement for heme-iron utilization for C. albicans pathogenicity. The Pga7 and Rbt5 proteins exhibit distinct cell wall attachment, and discrete localization within the cell envelope, with Rbt5 being more exposed than Pga7. Both proteins are shown here to efficiently extract heme from hemoglobin. Surprisingly, while Pga7 has a higher affinity for heme in vitro, we find that heme transfer can occur bi-directionally between Pga7 and Rbt5, supporting a model in which they cooperate in a heme-acquisition relay. Together, our data delineate the roles of Pga7 and Rbt5 in a cell surface protein network that transfers heme from extracellular hemoglobin to the endocytic pathway, and provide a paradigm for how receptors embedded in the cell wall matrix can mediate nutrient uptake across the fungal cell envelope.
21 CFR 864.7400 - Hemoglobin A2 assay.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hemoglobin A2 assay. 864.7400 Section 864.7400...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7400 Hemoglobin A2 assay. (a) Identification. A hemoglobin A2 assay is a device used to determine the hemoglobin A2 content...
21 CFR 864.7400 - Hemoglobin A2 assay.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hemoglobin A2 assay. 864.7400 Section 864.7400...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7400 Hemoglobin A2 assay. (a) Identification. A hemoglobin A2 assay is a device used to determine the hemoglobin A2 content...
Multimodal optical imaging of microvessel network convective oxygen transport dynamics.
Dedeugd, Casey; Wankhede, Mamta; Sorg, Brian S
2009-04-01
Convective oxygen transport by microvessels depends on several parameters, including red blood cell flux and oxygen saturation. We demonstrate the use of intravital microscopy techniques to measure hemoglobin saturations, red blood cell fluxes and velocities, and microvessel cross-sectional areas in regions of microvascular networks containing multiple vessels. With these methods, data can be obtained at high spatial and temporal resolution and correlations between oxygen transport and hemodynamic parameters can be assessed. In vivo data are presented for a mouse mammary adenocarcinoma grown in a dorsal skinfold window chamber model.
Delivering supplemental oxygen during sedation via a saliva ejector.
Milnes, Alan R
2002-01-01
Intraoperative oxygen supplementation to sedated children has been shown to prevent hemoglobin desaturations even in the presence of apnea during pediatric conscious sedation. Although many practitioners deliver supplemental oxygen via a nasal hood, this method is impractical and often unsuccessful if the child is a mouth breather, has moderate adenotonsillar hypertrophy or occasionally cries during treatment (at which time there will be mouth breathing). This paper describes a method in which the saliva ejector is used to deliver supplemental oxygen to sedated children while they are receiving dental treatment. The advantages of this method and suggestions for its successful application are also included.
21 CFR 864.7455 - Fetal hemoglobin assay.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fetal hemoglobin assay. 864.7455 Section 864.7455...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7455 Fetal hemoglobin assay. (a) Identification. A fetal hemoglobin assay is a device that is used to determine the presence...
21 CFR 864.7455 - Fetal hemoglobin assay.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fetal hemoglobin assay. 864.7455 Section 864.7455...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7455 Fetal hemoglobin assay. (a) Identification. A fetal hemoglobin assay is a device that is used to determine the presence...
... is an abnormal form of hemoglobin associated with sickle cell anemia . In people with this condition, the red blood ... symptoms are much milder than they are in sickle cell anemia. Other, less common, abnormal Hb molecules cause other ...
Traveset, Alicia; Rubinat, Esther; Ortega, Emilio; Alcubierre, Nuria; Vazquez, Beatriz; Hernández, Marta; Jurjo, Carmen; Espinet, Ramon; Ezpeleta, Juan Antonio; Mauricio, Didac
2016-01-01
Aims. To assess the association of blood oxygen-transport capacity variables with the prevalence of diabetic retinopathy (DR), retinal ischemia, and macular oedema in patients with type 2 diabetes mellitus (T2DM). Methods. Cross-sectional, case-control study (N = 312) with T2DM: 153 individuals with DR and 159 individuals with no DR. Participants were classified according to the severity of DR and the presence of retinal ischemia or macular oedema. Hematological variables were collected by standardized methods. Three logistic models were adjusted to ascertain the association between hematologic variables with the severity of DR and the presence of retinal ischemia or macular oedema. Results. Individuals with severe DR showed significantly lower hemoglobin, hematocrit, and erythrocyte levels compared with those with mild disease and in individuals with retinal ischemia and macular oedema compared with those without these disorders. Hemoglobin was the only factor that showed a significant inverse association with the severity of DR [beta-coefficient = −0.52, P value = 0.003] and retinal ischemia [beta-coefficient = −0.49, P value = 0.001]. Lower erythrocyte level showed a marginally significant association with macular oedema [beta-coefficient = −0.86, P value = 0.055]. Conclusions. In patients with DR, low blood oxygen-transport capacity was associated with more severe DR and the presence of retinal ischemia. Low hemoglobin levels may have a key role in the development and progression of DR. PMID:27200379
NASA Astrophysics Data System (ADS)
Seibel, Brad A.
2013-10-01
Dosidicus gigas is a large, metabolically active squid that migrates across a strong oxygen and temperature gradient in the Eastern Pacific. Here we analyze the oxygen-binding properties of the squid's respiratory protein (hemocyanin, Hc) that facilitate such activity. A high Hc-oxygen affinity, strong temperature dependence, and pronounced pH sensitivity (P50=0.009T2.03, pH 7.4; Bohr coefficient=ΔlogP50/ΔpH=-1.55+0.034T) of oxygen binding facilitate night-time foraging in the upper water column, and support suppressed oxygen demand in hypoxic waters at greater depths. Expanding hypoxia may act to alter the species habitable depth range. This analysis supports the contention that ocean acidification could limit oxygen carrying capacity in squids at warmer temperature leading to reduced activity levels or altered distribution.
Babadagi-Hardt, Zeynep; Engels, Peter; Kanya, Susanne
2014-03-31
Although the underlying primary cause of chronic wounds may vary, a common etiology of this is a hypoxic or ischemic status of the affected tissue of the lower extremities. In particular, for rare diseases associated with disturbed blood flow a correlation between cause and effect is often diagnosed inappropriately. As a consequence, chronic wounds may develop and persist for years. We present a case of a patient with chronic venous insufficiency due to an occlusion of the inferior caval vein. Initially, a Budd-Chiari syndrome was diagnosed which is a thrombotic obstruction of the hepatic venous outflow. In addition, the patient developed an obstruction of the inferior caval vein and subsequently a chronic venous insufficiency. As a consequence, chronic leg ulcers developed with a history of more than 7 years. Various wound care approaches were performed without success in wound closure. Finally, a combination of compression therapy and topical application of a hemoglobin solution successfully led to fast and persistent wound closure. Chronic ulcers of the lower limb such as venous leg ulcers, even for patients with rare disorders like Budd-Chiari syndrome, are associated with oxygen supply disturbances resulting in a hypoxic status of the affected tissue. Therefore, an adequate oxygen supply to chronic wounds plays a pivotal role in successful wound healing. Compression therapy in combination with enhancement of the local oxygen supply by topically applied hemoglobin showed marked improvement of wound healing in the presented patient.
High Oxygen Partial Pressure Decreases Anemia-Induced Heart Rate Increase Equivalent to Transfusion
Feiner, John R.; Finlay-Morreale, Heather E.; Toy, Pearl; Lieberman, Jeremy A.; Viele, Maurene K.; Hopf, Harriet W.; Weiskopf, Richard B.
2011-01-01
Background Anemia is associated with morbidity and mortality and frequently leads to transfusion of erythrocytes. We sought to compare directly the effect of high inspired oxygen fraction vs. transfusion of erythrocytes on the anemia-induced increased heart rate (HR) in humans undergoing experimental acute isovolemic anemia. Methods We combined HR data from healthy subjects undergoing experimental isovolemic anemia in seven studies performed by our group. We examined HR changes associated with breathing 100% oxygen by non-rebreathing face mask vs. transfusion of erythrocytes at their nadir hemoglobin (Hb) concentration of 5 g/dL. Data were analyzed using a mixed-effects model. Results HR had an inverse linear relationship to hemoglobin concentration with a mean increase of 3.9 beats per minute per gram of Hb (beats/min/g Hb) decrease (95% confidence interval [CI], 3.7 – 4.1 beats/min/g Hb), P < 0.0001. Return of autologous erythrocytes significantly decreased HR by 5.3 beats/min/g Hb (95% CI, 3.8 – 6.8 beats/min/g Hb) increase, P < 0.0001. HR at nadir Hb of 5.6 g/dL (95% CI, 5.5 – 5.7 g/dL) when breathing air (91.4 beats/min; 95% CI, 87.6 – 95.2 beats/min) was reduced by breathing 100% oxygen (83.0 beats/min; 95% CI, 79.0 -87.0 beats/min), P < 0.0001. The HR at hemoglobin 5.6 g/dL when breathing oxygen was equivalent to the HR at Hb 8.9 g/dL when breathing air. Conclusions High arterial oxygen partial pressure reverses the heart rate response to anemia, probably owing to its usability, rather than its effect on total oxygen content. The benefit of high arterial oxygen partial pressure has significant potential clinical implications for the acute treatment of anemia and results of transfusion trials. PMID:21768873
Computational and Experimental Study of Neuroglobin and Mutants
NASA Astrophysics Data System (ADS)
Nelson, Lauren; Cho, Samuel; Kim-Shaprio, Daniel
Neuroglobin (Ngb) is a hexacoordinated heme protein that is closely related to hemoglobin and myoglobin and normally found in the brain and nervous systems. It is involved in cellular oxygen homeostasis and reversibly binds to oxygen with a higher binding affinity than hemoglobin. To protect the brain tissue from hypoxic or ischemic conditions, Ngb increases oxygen availability. We have previously shown that a mutant form of Ngb reduces nitrite to nitric oxide 50x faster than myoglobin and 500x faster than hemoglobin. It also tightly binds to carbon monoxide (CO) with an association rate that is 500x faster than hemoglobin. To analyze the structure of neuroglobin and the characteristics causing these phenomena, we performed 3 sets of 1 microsecond molecular dynamic (MD) simulations of wild-type oxidized and reduced human Ngb and their C46A, C55A, H64L, and H64Q mutants. We also directly compare our MD simulations with time-resolved absorption spectroscopy. These studies will help identify treatments for diseases involving low nitric oxide availability and carbon monoxide poisoning. This research was supported by an NIH NSRA predoctoral fellowship in the Structural and Computational Biophysics Program training Grant (T32GM095440-05).
Metal-loaded SBA-16-like silica - Correlation between basicity and affinity towards hydrogen
NASA Astrophysics Data System (ADS)
Ouargli-Saker, R.; Bouazizi, N.; Boukoussa, B.; Barrimo, Diana; Paola-Nunes-Beltrao, Ana-.; Azzouz, A.
2017-07-01
Nanoparticles of Cuo (CuNPs) and Feo (FeNPs) were dispersed in SBA-16-like silica, resulting metal-loaded materials (Cu-SBA-16 and Fe-SBA-16) with improved affinity towards hydrogen. Electron microscopy and X-ray diffraction showed that MNP dispersion occurs mainly inside SBA-16 channels. MNP incorporation was found to confer affinity to the silica surface, since higher CO2 retention capacity (CRC) was registered Cu/SBA-16 and Fe/SBA-16. This was accompanied by a significant improvement of the affinity towards hydrogen, as supported by hydrogen adsorption tests. This was explained in terms of strong hydrogen interaction with MNP and lattice oxygen atoms. The results reported herein open new prospects for SBA-16 as potential adsorbents for hydrogen storage.
NASA Astrophysics Data System (ADS)
Zalesskaya, G. A.; Laskina, O. V.
2016-03-01
For three series of blood samples, we have studied the effect of therapeutic doses of low-intensity optical radiation (LOR) on oxygenation parameters of blood irradiated in vivo, and also on the levels of some metabolites: lactate, glucose, cholesterol. The quality of blood oxygenation was assessed using three parameters: the partial pressure of oxygen pVO2, the oxygen saturation of hemoglobin SVO2, and the oxygen level in arterial and venous blood, varying under the influence of low-intensity optical radiation due to photodissociation of hemoglobin/ligand complexes. We have established that during photohemotherapy (PHT), including extracorporeal, supravascular, and intravenous blood irradiation, positive changes occur in the oxygenation parameters and the metabolite levels, while after the courses of PHT have been completed, the individual changes in such parameters in individual patients were both positive and negative. The regulatory effect of PHT was apparent in the tendency toward a decrease in high initial values and an increase in low initial values both for the oxygenation parameters and for the metabolites; but at the doses recommended for use, PHT had a regulatory but still not a normalizing effect.
NASA Astrophysics Data System (ADS)
Pierro, Michele; Sassaroli, Angelo; Zheng, Feng; Fantini, Sergio
2011-02-01
We present a study of the relative phase of oscillations of cerebral oxy- and deoxy-hemoglobin concentrations in the low-frequency range, namely 0.04-0.12 Hz. We have characterized the potential contributions of noise to the measured phase distributions, and we have performed phase measurements on the brain of a human subject at rest, and on the brain of a human subject during stage I sleep. While phase distributions of pseudo hemodynamic oscillations generated from noise (obtained by applying to two independent sets of random numbers the same linear transformation that converts absorption coefficients at 690 and 830 nm into concentrations of oxy- and deoxy-hemoglobin) are peaked at 180º, those associated with real hemodynamic changes can be peaked around any value depending on the underlying physiology and hemodynamics. In particular, preliminary results reported here indicate a greater phase lead of deoxy-hemoglobin vs. oxy-hemoglobin low-frequency oscillations during stage I sleep (82º +/- 55º) than while the subject is awake (19º +/- 58º).
NASA Astrophysics Data System (ADS)
Grosenick, Dirk; Cantow, Kathleen; Arakelyan, Karen; Wabnitz, Heidrun; Flemming, Bert; Skalweit, Angela; Ladwig, Mechthild; Macdonald, Rainer; Niendorf, Thoralf; Seeliger, Erdmann
2015-07-01
We have developed a hybrid approach to investigate the dynamics of perfusion and oxygenation in the kidney of rats under pathophysiologically relevant conditions. Our approach combines near-infrared spectroscopy to quantify hemoglobin concentration and oxygen saturation in the renal cortex, and an invasive probe method for measuring total renal blood flow by an ultrasonic probe, perfusion by laser-Doppler fluxmetry, and tissue oxygen tension via fluorescence quenching. Hemoglobin concentration and oxygen saturation were determined from experimental data by a Monte Carlo model. The hybrid approach was applied to investigate and compare temporal changes during several types of interventions such as arterial and venous occlusions, as well as hyperoxia, hypoxia and hypercapnia induced by different mixtures of the inspired gas. The approach was also applied to study the effects of the x-ray contrast medium iodixanol on the kidney.
Interplay of tumor vascular oxygenation and pO2 in tumors using NIRS and needle electrode
NASA Astrophysics Data System (ADS)
Kim, Jae Gwan; Song, Yulin; Zhao, Dawen; Constantinescu, Anca; Mason, Ralph P.; Liu, Hanli
2001-06-01
The effective measurement of dynamic changes of blood and tissue oxygenation of tumors could be valuable for optimizing tumor treatment plans. For this study, a near- infrared spectroscopy system and pO2 needle electrode were used to measure simultaneously changes in total hemoglobin concentration ([Hb]total), oxygenated hemoglobin concentration ([HbO2[) and local oxygen tension (pO2) in the vascular bed of prostate tumors implanted in rats in response to respiratory challenge. The inhaled gas was alternated between air and carbogen (95% oxygen, 5% CO2). Significant changes in tumor vascular oxygenation were observed with an apparent threshold for variation in [HbO2]/[HbO2]max. For comparison, a phantom study was undertaken with 1% intralipid solution and blood. The slope of [HbO2]/[HbO2[max vs. pO2 in the phantom was ten times larger than in the tumor indicating that tumor cells are relatively resistant to oxygenation. This study demonstrates that the NIR technology can provide an efficient, real-time, non-invasive approach to monitoring tumor physiology and is compatible with additional techniques.
Inner retinal oxygen metabolism in the 50/10 oxygen-induced retinopathy model
Soetikno, Brian T.; Yi, Ji; Shah, Ronil; Liu, Wenzhong; Purta, Patryk; Zhang, Hao F.; Fawzi, Amani A.
2015-01-01
Retinopathy of prematurity (ROP) represents a major cause of childhood vision loss worldwide. The 50/10 oxygen-induced retinopathy (OIR) model mimics the findings of ROP, including peripheral vascular attenuation and neovascularization. The oxygen metabolism of the inner retina has not been previously explored in this model. Using visible-light optical coherence tomography (vis-OCT), we measured the oxygen saturation of hemoglobin and blood flow within inner retinal vessels, enabling us to compute the inner retinal oxygen delivery (irDO2) and metabolic rate of oxygen (irMRO2). We compared these measurements between age-matched room-air controls and rats with 50/10 OIR on postnatal day 18. To account for a 61% decrease in the irDO2 in the OIR group, we found an overall statistically significant decrease in retinal vascular density affecting the superficial and deep retinal vascular capillary networks in rats with OIR compared to controls. Furthermore, matching the reduced irDO2, we found a 59% decrease in irMRO2, which we correlated with a statistically significant reduction in retinal thickness in the OIR group, suggesting that the decreased irMRO2 was due to decreased neuronal oxygen utilization. By exploring these biological and metabolic changes in great detail, our study provides an improved understanding of the pathophysiology of OIR model. PMID:26576731
21 CFR 864.7440 - Electrophoretic hemoglobin analysis system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrophoretic hemoglobin analysis system. 864.7440 Section 864.7440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7440 Electrophoretic hemoglobin analysis system. (a) Identification. An electrophoretic hemoglobin...
21 CFR 864.7440 - Electrophoretic hemoglobin analysis system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrophoretic hemoglobin analysis system. 864.7440 Section 864.7440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7440 Electrophoretic hemoglobin analysis system. (a) Identification. An electrophoretic hemoglobin...
21 CFR 864.7440 - Electrophoretic hemoglobin analysis system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrophoretic hemoglobin analysis system. 864.7440 Section 864.7440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7440 Electrophoretic hemoglobin analysis system. (a) Identification. An electrophoretic hemoglobin...
21 CFR 864.7440 - Electrophoretic hemoglobin analysis system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrophoretic hemoglobin analysis system. 864.7440 Section 864.7440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7440 Electrophoretic hemoglobin analysis system. (a) Identification. An electrophoretic hemoglobin...
21 CFR 864.7440 - Electrophoretic hemoglobin analysis system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrophoretic hemoglobin analysis system. 864.7440 Section 864.7440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7440 Electrophoretic hemoglobin analysis system. (a) Identification. An electrophoretic hemoglobin...
NASA Astrophysics Data System (ADS)
Ding, Fei; Liu, Wei; Sun, Ye; Yang, Xin-Ling; Sun, Ying; Zhang, Li
2012-01-01
Chloramphenicol is a low cost, broad spectrum, highly active antibiotic, and widely used in the treatment of serious infections, including typhoid fever and other life-threatening infections of the central nervous system and respiratory tract. The purpose of the present study was to examine the conjugation of chloramphenicol with hemoglobin (Hb) and compared with albumin at molecular level, utilizing fluorescence, UV/vis absorption, circular dichroism (CD) as well as molecular modeling. Fluorescence data indicate that drug bind Hb generate quenching via static mechanism, this corroborates UV/vis absorption measurements that the ground state complex formation with an affinity of 10 4 M -1, and the driving forces in the Hb-drug complex are hydrophilic interactions and hydrogen bonds, as derived from computational model. The accurate binding site of drug has been identified from the analysis of fluorescence and molecular modeling, α1β2 interface of Hb was assigned to possess high-affinity for drug, which located at the β-37 Trp nearby. The structural investigation of the complexed Hb by synchronous fluorescence, UV/vis absorption, and CD observations revealed some degree of Hb structure unfolding upon complexation. Based on molecular modeling, we can draw the conclusion that the binding affinity of drug with albumin is superior, compared with Hb. These phenomena can provide salient information on the absorption, distribution, pharmacology, and toxicity of chloramphenicol and other drugs which have analogous configuration with chloramphenicol.
Nitric oxide is a versatile sensor of low oxygen stress in plants
Borisjuk, Ljudmilla
2008-01-01
The plant response to low levels of oxygen involves an interplay of transcriptional, translational and post-translational signaling. However, in plants, the sensing mechanism itself remains obscure. The role of nitric oxide (NO) in oxygen sensing and balancing has been extensively explored in our laboratory. We suggest that NO is generated within the mitochondria from nitrite in response to hypoxia, and that this small gaseous molecule can reversibly modify both the respiratory oxygen consumption and the oxygen availability within the seed. We further propose that hemoglobins play a central role in the detoxification of excess NO. PMID:19704575
21 CFR 866.5470 - Hemoglobin immunological test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5470 Hemoglobin immunological test system. (a) Indentification. A hemoglobin immunological test system is a device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hemoglobin immunological test system. 866.5470...
... levels can be high if diabetes is not well controlled. Why Are Hemoglobin A1c Tests Done? When a child has diabetes, hemoglobin A1c levels are followed to see how well medicines are working. If a child with diabetes ...
Nakano, Shinya; Shoji, Yoshihisa; Morita, Kiichiro; Igimi, Hiroyasu; Sato, Mamoru; Ishii, Youhei; Kondo, Akihiko; Uchimura, Naohisa
2018-01-01
Tree-drawing test is used as a projective psychological test that expresses the abnormal internal experience in patients with schizophrenia (SZ). Despite the widely accepted view that the cognitive function is involved in characteristic tree-drawing in patients with SZ, no study has psychophysiologically examined it. The present study aimed to investigate the involvement of cognitive function during tree-drawing in patients with SZ. For that purpose, we evaluated the brain function in patients with SZ during a tree-drawing task by using near-infrared spectroscopy (NIRS) and compared them with those in healthy controls. The subjects were 28 healthy controls and 28 patients with SZ. Changes in the oxygenated hemoglobin ([oxy-Hb]) concentration in both the groups during the task of drawing a tree imagined freely (free-drawing task) and the task of copying an illustration of a tree (copying task) were measured by using NIRS. Because of the difference between the task conditions, [oxy-Hb] levels in controls during the free-drawing task were higher than that during the copying task at the bilateral frontal pole regions and left inferior frontal region. Because of the difference between the groups, [oxy-Hb] levels at the left middle frontal region, bilateral inferior frontal regions, bilateral inferior parietal regions, and left superior temporal region during the free-drawing task in patients were lower than that in controls. [oxy-Hb] during the tree-drawing task in patients with SZ was lower than that in healthy controls. Our results suggest that brain dysfunction in patients with SZ might be associated with their tree-drawing.
Evaluation of affinity and pseudo-affinity adsorption processes for penicillin acylase purification.
Fonseca, L P; Cabral, J M
1996-01-01
Affinity ligand (6-Aminopenicillanic acid, Amoxycillin, Ampicillin, Benzylpenicillin and 4-Phenylbutylanzine) of penicillin acylase (EC 3.5.1.11) were attached to hydrophilic gels like Sepharose 4B-CNBr and Minileak 'medium'. Ampicillin and 4-Phenylbutylamine were the affinity ligands that presented the higher concentrations attached to both gels. Penicillin acylase adsorption on these affinity gels was mainly dependent on the activated group of the gel, the affinity ligand attached and the experimental conditions of enzyme adsorption. Under affinity conditions only the ligands Amoxycillin, Ampicillin and 4-Phenylbutylamine, immobilized on Minileak, adsorbed the enzyme from osmotic shock extracts at different pH values. These affinity ligand systems were characterized by low adsorption capacities of penicillin acylase activity (1.2-2.1 IU mL-1 gel) and specific activity (1.5-2.9 IU mg-1 prot). Under pseudo-affinity conditions all the ligands attached both activated to gels (Sepharose 4B-CNBr and Minileak) adsorbed the enzyme. The affinity gels were characterized by higher values of adsorption capacity (3.7 and 55.6 IU mL-1 gel) and adsorbed specific activity (2.0 and 6.1 IU mg-1 prot) than those observed under affinity conditions. The space arm of Minileak gel, shown to be fundamental to enzyme adsorption under affinity conditions, preferentially adsorbed proteins in relation to the enzyme under pseudo-affinity conditions. However, this effect was partially minimized when the gel was derivatized by the affinity ligands at concentrations higher than 6 mumol mL-1 gel. Ampicillin was the affinity ligand that presented the best results for specific adsorption of penicillin acylase under affinity and pseudo-affinity adsorption processes. The Sepharose 4B-CNBr derivatized gel also presented a good adsorption capacity of enzyme activity (26.8 IU mL-1 gel) under pseudo-affinity adsorption processes.
Kuznets, Galit; Vigonsky, Elena; Weissman, Ziva; Lalli, Daniela; Gildor, Tsvia; Kauffman, Sarah J.; Turano, Paola; Becker, Jeffrey; Lewinson, Oded; Kornitzer, Daniel
2014-01-01
Iron scavenging constitutes a crucial challenge for survival of pathogenic microorganisms in the iron-poor host environment. Candida albicans, like many microbial pathogens, is able to utilize iron from hemoglobin, the largest iron pool in the host's body. Rbt5 is an extracellular glycosylphosphatidylinositol (GPI)-anchored heme-binding protein of the CFEM family that facilitates heme-iron uptake by an unknown mechanism. Here, we characterize an additional C. albicans CFEM protein gene, PGA7, deletion of which elicits a more severe heme-iron utilization phenotype than deletion of RBT5. The virulence of the pga7−/− mutant is reduced in a mouse model of systemic infection, consistent with a requirement for heme-iron utilization for C. albicans pathogenicity. The Pga7 and Rbt5 proteins exhibit distinct cell wall attachment, and discrete localization within the cell envelope, with Rbt5 being more exposed than Pga7. Both proteins are shown here to efficiently extract heme from hemoglobin. Surprisingly, while Pga7 has a higher affinity for heme in vitro, we find that heme transfer can occur bi-directionally between Pga7 and Rbt5, supporting a model in which they cooperate in a heme-acquisition relay. Together, our data delineate the roles of Pga7 and Rbt5 in a cell surface protein network that transfers heme from extracellular hemoglobin to the endocytic pathway, and provide a paradigm for how receptors embedded in the cell wall matrix can mediate nutrient uptake across the fungal cell envelope. PMID:25275454
Hemoglobin level in older persons and incident Alzheimer disease
Buchman, A.S.; Wilson, R.S.; Leurgans, S.E.; Bennett, D.A.
2011-01-01
Objective: To test the hypothesis that level of hemoglobin is associated with incident Alzheimer disease (AD). Methods: A total of 881 community-dwelling older persons participating in the Rush Memory and Aging Project without dementia and a measure of hemoglobin level underwent annual cognitive assessments and clinical evaluations for AD. Results: During an average of 3.3 years of follow-up, 113 persons developed AD. In a Cox proportional hazards model adjusted for age, sex, and education, there was a nonlinear relationship between baseline level of hemoglobin such that higher and lower levels of hemoglobin were associated with AD risk (hazard ratio [HR] for the quadratic of hemoglobin 1.06, 95% confidence interval [CI] 1.01–1.11). Findings were unchanged after controlling for multiple covariates. When compared to participants with clinically normal hemoglobin (n = 717), participants with anemia (n = 154) had a 60% increased hazard for developing AD (95% CI 1.02–2.52), as did participants with clinically high hemoglobin (n = 10, HR 3.39, 95% CI 1.25–9.20). Linear mixed-effects models showed that lower and higher hemoglobin levels were associated with a greater rate of global cognitive decline (parameter estimate for quadratic of hemoglobin = −0.008, SE −0.002, p < 0.001). Compared to participants with clinically normal hemoglobin, participants with anemia had a −0.061 z score unit annual decline in global cognitive function (SE 0.012, p < 0.001), as did participants with clinically high hemoglobin (−0.090 unit/year, SE 0.038, p = 0.018). Conclusions: In older persons without dementia, both lower and higher hemoglobin levels are associated with an increased hazard for developing AD and more rapid cognitive decline. PMID:21753176
Rejmstad, Peter; Johansson, Johannes D; Haj-Hosseini, Neda; Wårdell, Karin
2017-03-01
Continuous measurement of local brain oxygen saturation (SO 2 ) can be used to monitor the status of brain trauma patients in the neurocritical care unit. Currently, micro-oxygen-electrodes are considered as the "gold standard" in measuring cerebral oxygen pressure (pO 2 ), which is closely related to SO 2 through the oxygen dissociation curve (ODC) of hemoglobin, but with the drawback of slow in response time. The present study suggests estimation of SO 2 in brain tissue using diffuse reflectance spectroscopy (DRS) for finding an analytical relation between measured spectra and the SO 2 for different blood concentrations. The P 3 diffusion approximation is used to generate a set of spectra simulating brain tissue for various levels of blood concentrations in order to estimate SO 2 . The algorithm is evaluated on optical phantoms mimicking white brain matter (blood volume of 0.5-2%) where pO 2 and temperature is controlled and on clinical data collected during brain surgery. The suggested method is capable of estimating the blood fraction and oxygen saturation changes from the spectroscopic signal and the hemoglobin absorption profile. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Low modulus biomimetic microgel particles with high loading of hemoglobin.
Chen, Kai; Merkel, Timothy J; Pandya, Ashish; Napier, Mary E; Luft, J Christopher; Daniel, Will; Sheiko, Sergei; DeSimone, Joseph M
2012-09-10
We synthesized extremely deformable red blood cell-like microgel particles and loaded them with bovine hemoglobin (Hb) to potentiate oxygen transport. With similar shape and size as red blood cells (RBCs), the particles were fabricated using the PRINT (particle replication in nonwetting templates) technique. Low cross-linking of the hydrogel resulted in very low mesh density for these particles, allowing passive diffusion of hemoglobin throughout the particles. Hb was secured in the particles through covalent conjugation of the lysine groups of Hb to carboxyl groups in the particles via EDC/NHS coupling. Confocal microscopy of particles bound to fluorescent dye-labeled Hb confirmed the uniform distribution of Hb throughout the particle interior, as opposed to the surface conjugation only. High loading ratios, up to 5 times the amount of Hb to polymer by weight, were obtained without a significant effect on particle stability and shape, though particle diameter decreased slightly with Hb conjugation. Analysis of the protein by circular dichroism (CD) spectroscopy showed that the secondary structure of Hb was unperturbed by conjugation to the particles. Methemoglobin in the particles could be maintained at a low level and the loaded Hb could still bind oxygen, as studied by UV-vis spectroscopy. Hb-loaded particles with moderate loading ratios demonstrated excellent deformability in microfluidic devices, easily deforming to pass through restricted pores half as wide as the diameter of the particles. The suspension of concentrated particles with a Hb concentration of 5.2 g/dL showed comparable viscosity to that of mouse blood, and the particles remained intact even after being sheared at a constant high rate (1000 1/s) for 10 min. Armed with the ability to control size, shape, deformability, and loading of Hb into RBC mimics, we will discuss the implications for artificial blood.
Low Modulus Biomimetic Microgel Particles with High Loading of Hemoglobin
Chen, Kai; Merkel, Timothy J.; Pandya, Ashish; Napier, Mary E.; Luft, J. Christopher; Daniel, Will; Sheiko, Sergei
2012-01-01
We synthesized extremely deformable red blood cell-like microgel particles and loaded them with bovine hemoglobin (Hb) to potentiate oxygen transport. With similar shape and size as red blood cells (RBCs), the particles were fabricated using the PRINT® (Particle Replication In Non-wetting Templates) technique. Low crosslinking of the hydrogel resulted in very low mesh density for these particles, allowing passive diffusion of hemoglobin throughout the particles. Hb was secured in the particles through covalent conjugation of the lysine groups of Hb to carboxyl groups in the particles via EDC/NHS coupling. Confocal microscopy of particles bound to fluorescent dye-labeled Hb confirmed the uniform distribution of Hb throughout the particle interior, as opposed to the surface conjugation only. High loading ratios, up to 5 times the amount of Hb to polymer by weight, were obtained, without a significant effect on particle stability, shape, though particle diameter decreased slightly with Hb conjugation. Analysis of the protein by circular dichroism (CD) spectroscopy showed that the secondary structure of Hb was unperturbed by conjugation to the particles. Methemoglobin in the particles could be maintained at a low level and the loaded Hb could still bind oxygen as studied by UV-vis spectroscopy. Hb-loaded particles with moderate loading ratios demonstrated excellent deformability in microfluidic devices, easily deforming to pass through restricted pores half as wide as the diameter of the particles. The suspension of concentrated particles with Hb concentration of 5.2 g/dL showed comparable viscosity to that of mouse blood, and the particles remained intact even after being sheared at a constant high rate (1,000 1/s) for 10 min. Armed with the ability to control size, shape, deformability, and loading of Hb into RBC mimics, we will discuss the implications for artificial blood. PMID:22852860
Spectrophotometric Properties of Hemoglobin: Classroom Applications.
ERIC Educational Resources Information Center
Frary, Roger
1997-01-01
Discusses simple and safe techniques that can be used in the educational laboratory to study hemoglobin. Discusses the spectral properties of hemoglobin, spectral-absorbence curves of oxyhemoglobin and carboxyhemoglobin, tracking the conversion of oxyhemoglobin to methemoglobin, and changing from the oxyhemoglobin to deoxyhemoglobin conformation.…
Interaction of Human Hemoglobin with Methotrexate
NASA Astrophysics Data System (ADS)
Zaharia, M.; Gradinaru, R.
2015-05-01
This study focuses on the interaction between methotrexate and human hemoglobin using steady-state ultraviolet-visible and fluorescence quenching methods. Fluorescence quenching was found to be valuable in assessing drug binding to hemoglobin. The quenching of methotrexate is slightly smaller than the quenching observed with related analogs (dihydrofolate and tetrahydrofolate). The quenching studies were performed at four different temperatures and various pH values. The number of binding sites for tryptophan is ~1. Parameter-dependent assays revealed that electrostatic forces play an essential role in the methotrexate-hemoglobin interaction. Furthermore, the complex was easily eluted using gel filtration chromatography.
21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hemoglobin glutamer-200 (bovine). 522.1125 Section... § 522.1125 Hemoglobin glutamer-200 (bovine). (a) Specifications. Each 125 milliliter bag contains 13 grams per deciliter of polymerized hemoglobin of bovine origin in modified Lactated Ringer's Solution...
van Zwieten, Rob; Veldthuis, Martijn; Delzenne, Barend; Berghuis, Jeffrey; Groen, Joke; Ait Ichou, Fatima; Clifford, Els; Harteveld, Cornelis L; Stroobants, An K
2014-01-01
More than 20,000 blood samples of individuals living in The Netherlands and suspected of hemolytic anemia or diabetes were analyzed by high resolution cation exchange high performance liquid chromatography (HPLC). Besides common disease-related hemoglobins (Hbs), rare variants were also detected. The variant Hbs were retrospectively analyzed by capillary zone electrophoresis (CZE) and by isoelectric focusing (IEF). For unambiguous identification, the globin genes were sequenced. Most of the 80 Hb variants detected by initial screening on HPLC were also separated by capillary electrophoresis (CE), but a few variants were only detectable with one of these methods. Some variants were unstable, had thalassemic properties or increased oxygen affinity, and some interfered with Hb A2 measurement, detection of sickle cell Hb or Hb A1c quantification. Two of the six novel variants, Hb Enschede (HBA2: c.308G > A, p.Ser103Asn) and Hb Weesp (HBA1: c.301C > T, p.Leu101Phe), had no clinical consequences. In contrast, two others appeared clinically significant: Hb Ede (HBB: c.53A > T, p.Lys18Met) caused thalassemia and Hb Waterland (HBB: c.428C > T, pAla143Val) was related to mild polycytemia. Hb A2-Venlo (HBD: c.193G > A, p.Gly65Ser) and Hb A2-Rotterdam (HBD: c.38A > C, p.Asn13Thr) interfered with Hb A2 quantification. This survey shows that HPLC analysis followed by globin gene sequencing of rare variants is an effective method to reveal Hb variants.
Giordano, Daniela; Boron, Ignacio; Abbruzzetti, Stefania; Van Leuven, Wendy; Nicoletti, Francesco P.; Forti, Flavio; Bruno, Stefano; Cheng, C-H. Christina; Moens, Luc; di Prisco, Guido; Nadra, Alejandro D.; Estrin, Darío; Smulevich, Giulietta; Dewilde, Sylvia; Viappiani, Cristiano; Verde, Cinzia
2012-01-01
The Antarctic icefish Chaenocephalus aceratus lacks the globins common to most vertebrates, hemoglobin and myoglobin, but has retained neuroglobin in the brain. This conserved globin has been cloned, over-expressed and purified. To highlight similarities and differences, the structural features of the neuroglobin of this colourless-blooded fish were compared with those of the well characterised human neuroglobin as well as with the neuroglobin from the retina of the red blooded, hemoglobin and myoglobin-containing, closely related Antarctic notothenioid Dissostichus mawsoni. A detailed structural and functional analysis of the two Antarctic fish neuroglobins was carried out by UV-visible and Resonance Raman spectroscopies, molecular dynamics simulations and laser-flash photolysis. Similar to the human protein, Antarctic fish neuroglobins can reversibly bind oxygen and CO in the Fe2+ form, and show six-coordination by distal His in the absence of exogenous ligands. A very large and structured internal cavity, with discrete docking sites, was identified in the modelled three-dimensional structures of the Antarctic neuroglobins. Estimate of the free-energy barriers from laser-flash photolysis and Implicit Ligand Sampling showed that the cavities are accessible from the solvent in both proteins. Comparison of structural and functional properties suggests that the two Antarctic fish neuroglobins most likely preserved and possibly improved the function recently proposed for human neuroglobin in ligand multichemistry. Despite subtle differences, the adaptation of Antarctic fish neuroglobins does not seem to parallel the dramatic adaptation of the oxygen carrying globins, hemoglobin and myoglobin, in the same organisms. PMID:23226490