Science.gov

Sample records for hemolysin proteins

  1. Fungal hemolysins

    PubMed Central

    Nayak, Ajay P.; Green, Brett J.; Beezhold, Donald H.

    2015-01-01

    Hemolysins are a class of proteins defined by their ability to lyse red cells but have been described to exhibit pleiotropic functions. These proteins have been extensively studied in bacteria and more recently in fungi. Within the last decade, a number of studies have characterized fungal hemolysins and revealed a fascinating yet diverse group of proteins. The purpose of this review is to provide a synopsis of the known fungal hemolysins with an emphasis on those belonging to the aegerolysin protein family. New insight and perspective into fungal hemolysins in biotechnology and health are additionally presented. PMID:22769586

  2. Inhibitory effect of totarol on exotoxin proteins hemolysin and enterotoxins secreted by Staphylococcus aureus.

    PubMed

    Shi, Ce; Zhao, Xingchen; Li, Wenli; Meng, Rizeng; Liu, Zonghui; Liu, Mingyuan; Guo, Na; Yu, Lu

    2015-10-01

    Staphylococcus aureus (S. aureus) causes a wide variety of infections, which are of major concern worldwide. S. aureus produces multiple virulence factors, resulting in food infection and poisoning. These virulence factors include hyaluronidases, proteases, coagulases, lipases, deoxyribonucleases and enterotoxins. Among the extracellular proteins produced by S. aureus that contribute to pathogenicity, the exotoxins α-hemolysin, staphylococcal enterotoxin A (SEA) and staphylococcal enterotoxin B (SEB) are thought to be of major significance. Totarol, a plant extract, has been revealed to inhibit the proliferation of several pathogens effectively. However, there are no reports on the effects of totarol on the production of α-hemolysin, SEA or SEB secreted by S. aureus. The aim of this study was to evaluate the effects of totarol on these three exotoxins. Hemolysis assay, western blotting and real-time reverse transcriptase-PCR assay were performed to identify the influence of graded subinhibitory concentrations of totarol on the production of α-hemolysin and the two major enterotoxins, SEA and SEB, by S. aureus in a dose-dependent manner. Moreover, an enzyme linked immunosorbent assay showed that the TNF-α production of RAW264.7 cells stimulated by S. aureus supernatants was inhibited by subinhibitory concentrations of totarol. Form the data, we propose that totarol could potentially be used as a promising natural compound in the food and pharmaceutical industries.

  3. Silkworm apolipophorin protein inhibits hemolysin gene expression of Staphylococcus aureus via binding to cell surface lipoteichoic acids.

    PubMed

    Omae, Yosuke; Hanada, Yuichi; Sekimizu, Kazuhisa; Kaito, Chikara

    2013-08-30

    We previously reported that a silkworm hemolymph protein, apolipophorin (ApoLp), binds to the cell surface of Staphylococcus aureus and inhibits expression of the saePQRS operon encoding a two-component system, SaeRS, and hemolysin genes. In this study, we investigated the inhibitory mechanism of ApoLp on S. aureus hemolysin gene expression. ApoLp bound to lipoteichoic acids (LTA), an S. aureus cell surface component. The addition of purified LTA to liquid medium abolished the inhibitory effect of ApoLp against S. aureus hemolysin production. In an S. aureus knockdown mutant of ltaS encoding LTA synthetase, the inhibitory effects of ApoLp on saeQ expression and hemolysin production were attenuated. Furthermore, the addition of anti-LTA monoclonal antibody to liquid medium decreased the expression of S. aureus saeQ and hemolysin genes. In S. aureus strains expressing SaeS mutant proteins with a shortened extracellular domain, ApoLp did not decrease saeQ expression. These findings suggest that ApoLp binds to LTA on the S. aureus cell surface and inhibits S. aureus hemolysin gene expression via a two-component regulatory system, SaeRS.

  4. Cytotoxic activities of Leptospira interrogans hemolysin SphH as a pore-forming protein on mammalian cells.

    PubMed

    Lee, Seoung Hoon; Kim, Sangduk; Park, Seung Chul; Kim, Min Ja

    2002-01-01

    Leptospirosis is a spirochetal zoonosis that causes an acute febrile systemic illness in humans. Leptospira sp. hemolysins have been shown to be virulence factors for the pathogenesis of leptospirosis. Previously, we cloned a hemolysin SphH of Leptospira interrogans serovar lai, a homologue of L. borgpetersenii sphingomyelinase (SphA), from a genomic library (S. H. Lee, K. A. Kim, Y. K. Kim, I. W. Seong, M. J. Kim, and Y. J. Lee, Gene 254:19-28, 2000). Escherichia coli lysate harboring the sphH showed high hemolytic activities on sheep erythrocytes. However, it neither showed sphingomyelinase nor phospholipase activities, in contrast to SphA which was known to have sphingomyelinase activity. Interestingly, the SphH-mediated hemolysis on erythrocytes was osmotically protected by PEG 5000, suggesting that the SphH might have caused pore formation on the erythrocyte membrane. In the present study, we have prepared the Leptospira hemolysin SphH and investigated its hemolytic and cytotoxic activities on mammalian cells. SphH was shown to be a pore-forming protein on several mammalian cells: When treated with the SphH, the sheep erythrocyte membranes formed pores, which were morphologically confirmed by transmission electron microscopy. Furthermore, the SphH-mediated cytotoxicities on mammalian cells were demonstrated by the release of LDH and by inverted microscopic examinations. Finally, the immune serum against the full-length hemolysin could effectively neutralize the SphH-mediated hemolytic and cytotoxic activities. In conclusion, these results suggest that the virulence of Leptospira SphH was due to the pore formation on mammalian cell membranes.

  5. Hemolysin coregulated protein 1 as a molecular gluing unit for the assembly of nanoparticle hybrid structures

    PubMed Central

    Pham, Tuan Anh; Schreiber, Andreas; Sturm (née Rosseeva), Elena V

    2016-01-01

    Summary Hybrid nanoparticle (NP) structures containing organic building units such as polymers, peptides, DNA and proteins have great potential in biosensor and electronic applications. The nearly free modification of the polymer chain, the variation of the protein and DNA sequence and the implementation of functional moieties provide a great platform to create inorganic structures of different morphology, resulting in different optical and magnetic properties. Nevertheless, the design and modification of a protein structure with functional groups or sequences for the assembly of biohybrid materials is not trivial. This is mainly due to the sensitivity of its secondary, tertiary and quaternary structure to the changes in the interaction (e.g., hydrophobic, hydrophilic, electrostatic, chemical groups) between the protein subunits and the inorganic material. Here, we use hemolysin coregulated protein 1 (Hcp1) from Pseudomonas aeruginosa as a building and gluing unit for the formation of biohybrid structures by implementing cysteine anchoring points at defined positions on the protein rim (Hcp1_cys3). We successfully apply the Hcp1_cys3 gluing unit for the assembly of often linear, hybrid structures of plasmonic gold (Au NP), magnetite (Fe3O4 NP), and cobalt ferrite nanoparticles (CoFe2O4 NP). Furthermore, the assembly of Au NPs into linear structures using Hcp1_cys3 is investigated by UV–vis spectroscopy, TEM and cryo-TEM. One key parameter for the formation of Au NP assembly is the specific ionic strength in the mixture. The resulting network-like structure of Au NPs is characterized by Raman spectroscopy, showing surface-enhanced Raman scattering (SERS) by a factor of 8·104 and a stable secondary structure of the Hcp1_cys3 unit. In order to prove the catalytic performance of the gold hybrid structures, they are used as a catalyst in the reduction reaction of 4-nitrophenol showing similar catalytic activity as the pure Au NPs. To further extend the functionality

  6. Translocation of single stranded DNA through the α-hemolysin protein nanopore in acidic solutions

    PubMed Central

    de Zoysa, Ranulu Samanthi S.; Krishantha, D.M. Milan; Zhao, Qitao; Gupta, Jyoti; Guan, Xiyun

    2012-01-01

    The effect of acidic pH on the translocation of single-stranded DNA through the α-hemolysin pore is investigated. Two significantly different types of events, i.e., deep blockades and shallow blockades, are observed at low pH. The residence times of the shallow blockades are not significantly different from those of the DNA translocation events obtained at or near physiological pH, while the deep blockades have much larger residence times and blockage amplitudes. With a decrease in the pH of the electrolyte solution, the percentage of the deep blockades in the total events increases. Furthermore, the mean residence time of these long-lived events is dependent on the length of DNA, and also varies with the nucleotide base, suggesting that they are appropriate for use in DNA analysis. In addition to be used as an effective approach to affect DNA translocation in the nanopore, manipulation of the pH of the electrolyte solution provides a potential means to greatly enhance the sensitivity of nanopore stochastic sensing. PMID:21997574

  7. Protective efficacy of recombinant hemolysin co-regulated protein (Hcp) of Aeromonas hydrophila in common carp (Cyprinus carpio).

    PubMed

    Wang, Nannan; Wu, Yafeng; Pang, Maoda; Liu, Jin; Lu, Chengping; Liu, Yongjie

    2015-10-01

    Motile aeromonad septicemia (MAS) caused by Aeromonas hydrophila is one of the common bacterial causes of fish mortalities. Prophylactic vaccination against this and other diseases is essential for continued growth of aquaculture. The type VI secretion system (T6SS) plays a crucial role in the virulence of A. hydrophila. The hemolysin co-regulated protein (Hcp) is an integral component of the T6SS apparatus and is considered a hallmark of T6SS function. Here, the T6SS effector Hcp was expressed and characterized, and its immunogenicity and protective efficacy were evaluated in common carp (Cyprinus carpio). Hcp secretion was found to be strongly induced by low temperature in A. hydrophila. Immunoblot analysis demonstrated that Hcp is conserved among A. hydrophila strains of different origins. The vaccination with recombinant Hcp resulted in an increased survival (46.67%) in common carp during a 10-day challenge time compared to non-vaccinated fish (7.14%). The vaccinated fish also showed the significantly increased levels of IgM antibody in serum and cytokines such as inerleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in kidney, spleen and gills. The recombinant Hcp shows promise as a vaccine candidate against A. hydrophila.

  8. Hemolysins of Edwardsiella tarda.

    PubMed Central

    Watson, J J; White, F H

    1979-01-01

    Isolates of Edwardsiella tarda from four sources produced nonfilterable hemolsin in trypticase soy broth. The cell-associated hemolysin was partially heat labile, destroyed by formalin and sensitive to treatment with trypsin. These characteristics, and the observation that Ca++ or Mg++ ions enhanced activity, suggest that a proteinaceous, enzymic component may be responsible for the hemolytic activity. PMID:34473

  9. Nucleotide sequence of the hemolysin I gene from Actinobacillus pleuropneumoniae.

    PubMed Central

    Frey, J; Meier, R; Gygi, D; Nicolet, J

    1991-01-01

    The DNA sequence of the gene encoding the structural protein of hemolysin I (HlyI) of Actinobacillus pleuropneumoniae serotype 1 strain 4074 was analyzed. The nucleotide sequence shows a 3,072-bp reading frame encoding a protein of 1,023 amino acids with a calculated molecular size of 110.1 kDa. This corresponds to the HlyI protein, which has an apparent molecular size on sodium dodecyl sulfate gels of 105 kDa. The structure of the protein derived from the DNA sequence shows three hydrophobic regions in the N-terminal part of the protein, 13 glycine-rich domains in the second half of the protein, and a hydrophilic C-terminal area, all of which are typical of the cytotoxins of the RTX (repeats in the structural toxin) toxin family. The derived amino acid sequence of HlyI shows 42% homology with the hemolysin of A. pleuropneumoniae serotype 5, 41% homology with the leukotoxin of Pasteurella haemolytica, and 56% homology with the Escherichia coli alpha-hemolysin. The 13 glycine-rich repeats and three hydrophobic areas of the HlyI sequence show more similarity to the E. coli alpha-hemolysin than to either the A. pleuropneumoniae serotype 5 hemolysin or the leukotoxin (while the last two are more similar to each other). Two types of RTX hemolysins therefore seem to be present in A. pleuropneumoniae, one (HlyI) resembling the alpha-hemolysin and a second more closely related to the leukotoxin. Ca(2+)-binding experiments using HlyI and recombinant A. pleuropneumoniae prohemolysin (HlyIA) that was produced in E. coli shows that HlyI binds 45Ca2+, probably because of the 13 glycine-rich repeated domains. Activation of the prohemolysin is not required for Ca2+ binding. Images PMID:1879928

  10. POSSIBLE ROLE OF FUNGAL HEMOLYSINS IN SICK BUILDING SYNDROME

    EPA Science Inventory

    Many fungi produce proteinaceous hemolytic agents. Like bacterial hemolysins, fungal hemolysins create pores or holes in membranes. Depending on which membranes are damaged, fungal hemolysins can produce a variety of effects. Fungal hemolysins can cause histamine release from ...

  11. Erythrocyte Lysis and Xenopus laevis Oocyte Rupture by Recombinant Plasmodium falciparum Hemolysin III

    PubMed Central

    Moonah, Shannon; Sanders, Natalie G.; Persichetti, Jason K.

    2014-01-01

    Malaria kills more than 1 million people per year worldwide, with severe malaria anemia accounting for the majority of the deaths. Malaria anemia is multifactorial in etiology, including infected erythrocyte destruction and decrease in erythrocyte production, as well as destruction or clearance of noninfected erythrocytes. We identified a panspecies Plasmodium hemolysin type III related to bacterial hemolysins. The identification of a hemolysin III homologue in Plasmodium suggests a potential role in host erythrocyte lysis. Here, we report the first characterization of Plasmodium falciparum hemolysin III, showing that the soluble recombinant P. falciparum hemolysin III is a pore-forming protein capable of lysing human erythrocytes in a dose-, time-, and temperature-dependent fashion. The recombinant P. falciparum hemolysin III-induced hemolysis was partially inhibited by glibenclamide, a known channel antagonist. Studies with polyethylene glycol molecules of different molecular weights indicated a pore size of approximately 3.2 nm. Heterologous expression of recombinant P. falciparum hemolysin III in Xenopus oocytes demonstrated early hypotonic lysis similar to that of the pore-forming aquaporin control. Live fluorescence microscopy localized transfected recombinant green fluorescent protein (GFP)-tagged P. falciparum hemolysin III to the essential digestive vacuole of the P. falciparum parasite. These transfected trophozoites also possessed a swollen digestive vacuole phenotype. Native Plasmodium hemolysin III in the digestive vacuole may contribute to lysis of the parasitophorous vacuole membrane derived from the host erythrocyte. After merozoite egress from infected erythrocytes, remnant P. falciparum hemolysin III released from digestive vacuoles could potentially contribute to lysis of uninfected erythrocytes to contribute to severe life-threatening anemia. PMID:25148832

  12. HEMOLYSIN, CHRYSOLYSIN FROM PENICILLIUM CHRYSOGENUM PROMOTES INFLAMMATORY RESPONSE

    EPA Science Inventory

    Some strains of Penicillium chrysogenum produce a proteinaceous hemolysin, chrysolysin, when incubated on sheep's blood agar at 37 �C but not at 23 �C. Chrysolysin is an aggregating protein composed of approximately 2 kDa monomers, contains one cysteine amino acid, and has an is...

  13. Synergistic hemolysins of coagulase-negative staphylococci (CoNS).

    PubMed

    Różalska, Małgorzata; Derczyńska, Anna; Maszewska, Agnieszka

    2015-01-01

    A total of 104 coagulase negative staphylococci, belonging to S. capitis, S. hominis, S. haemolyticus and S. warneri, originating from the collection of the Department of Pharmaceutical Microbiology (ZMF), Medical University of Lodz, Poland, were tested for their synergistic hemolytic activity. 83% of strains produced δ-hemolysin, however, the percentage of positive strains of S. haemolyticus, S. warneri, S. capitis and S. hominis was different - 98%, 78%, 75% and 68%, respectively. Highly pure hemolysins were obtained from culture supernatants by protein precipitation with ammonium sulphate (0-70% of saturation) and extraction by using a mixture of organic solvents. The purity and molecular mass of hemolysins was determined by TRIS/Tricine PAGE. All CoNS hemolysins were small peptides with a molar mass of about 3.5 kDa; they possessed cytotoxic activity against the line of human foreskin fibroblasts ATCC Hs27 and lysed red cells from different mammalian species, however, the highest activity was observed when guinea pig, dog and human red blood cells were used. The cytotoxic effect on fibroblasts occurred within 30 minutes. The S. cohnii ssp. urealyticus strain was used as a control. The antimicrobial activity was examined using hemolysins of S. capitis, S. hominis, S. cohnii ssp. cohnii and S. cohnii ssp. urealyticus. Hemolysins of the two S. cohnii subspecies did not demonstrate antimicrobial activity. Cytolysins of S. capitis and S. hominis had a very narrow spectrum of action; out of 37 examined strains, the growth of only Micrococcus luteus, Corynebacterium diphtheriae and Pasteurella multocida was inhibited.

  14. Cell Vacuolation Caused by Vibrio cholerae Hemolysin

    PubMed Central

    Figueroa-Arredondo, Paula; Heuser, John E.; Akopyants, Natalia S.; Morisaki, J. Hiroshi; Giono-Cerezo, Silvia; Enríquez-Rincón, Fernando; Berg, Douglas E.

    2001-01-01

    Non-O1 strains of Vibrio cholerae implicated in gastroenteritis and diarrhea generally lack virulence determinants such as cholera toxin that are characteristic of epidemic strains; the factors that contribute to their virulence are not understood. Here we report that at least one-third of diarrhea-associated nonepidemic V. cholerae strains from Mexico cause vacuolation of cultured Vero cells. Detailed analyses indicated that this vacuolation was related to that caused by aerolysin, a pore-forming toxin of Aeromonas; it involved primarily the endoplasmic reticulum at early times (∼1 to 4 h after exposure), and resulted in formation of large, acidic, endosome-like multivesicular vacuoles (probably autophagosomes) only at late times (∼16 h). In contrast to vacuolation caused by Helicobacter pylori VacA protein, that induced by V. cholerae was exacerbated by agents that block vacuolar proton pumping but not by endosome-targeted weak bases. It caused centripetal redistribution of endosomes, reflecting cytoplasmic alkalinization. The gene for V. cholerae vacuolating activity was cloned and was found to correspond to hlyA, the structural gene for hemolysin. HlyA protein is a pore-forming toxin that causes ion leakage and, ultimately, eukaryotic cell lysis. Thus, a distinct form of cell vacuolation precedes cytolysis at low doses of hemolysin. We propose that this vacuolation, in itself, contributes to the virulence of V. cholerae strains, perhaps by perturbing intracellular membrane trafficking or ion exchange in target cells and thereby affecting local intestinal inflammatory or other defense responses. PMID:11179335

  15. Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map.

    PubMed

    Aksimentiev, Aleksij; Schulten, Klaus

    2005-06-01

    alpha-Hemolysin of Staphylococcus aureus is a self-assembling toxin that forms a water-filled transmembrane channel upon oligomerization in a lipid membrane. Apart from being one of the best-studied toxins of bacterial origin, alpha-hemolysin is the principal component in several biotechnological applications, including systems for controlled delivery of small solutes across lipid membranes, stochastic sensors for small solutes, and an alternative to conventional technology for DNA sequencing. Through large-scale molecular dynamics simulations, we studied the permeability of the alpha-hemolysin/lipid bilayer complex for water and ions. The studied system, composed of approximately 300,000 atoms, included one copy of the protein, a patch of a DPPC lipid bilayer, and a 1 M water solution of KCl. Monitoring the fluctuations of the pore structure revealed an asymmetric, on average, cross section of the alpha-hemolysin stem. Applying external electrostatic fields produced a transmembrane ionic current; repeating simulations at several voltage biases yielded a current/voltage curve of alpha-hemolysin and a set of electrostatic potential maps. The selectivity of alpha-hemolysin to Cl(-) was found to depend on the direction and the magnitude of the applied voltage bias. The results of our simulations are in excellent quantitative agreement with available experimental data. Analyzing trajectories of all water molecule, we computed the alpha-hemolysin's osmotic permeability for water as well as its electroosmotic effect, and characterized the permeability of its seven side channels. The side channels were found to connect seven His-144 residues surrounding the stem of the protein to the bulk solution; the protonation of these residues was observed to affect the ion conductance, suggesting the seven His-144 to comprise the pH sensor that gates conductance of the alpha-hemolysin channel.

  16. Purification and sensitivity of Clostridium chauvoei hemolysin to various erythrocytes.

    PubMed

    Mudenda Hang'ombe, Bernard; Kohda, Tomoko; Mukamoto, Masafumi; Kozaki, Shunji

    2006-07-01

    Using ammonium sulphate fractionation, the Clostridium chauvoei hemolysin was purified by cation exchange chromatography and sephacryl S-100 gel filtration. The molecular mass of the hemolysin, determined by SDS-PAGE was found to be approximately 27kDa. The activity of the hemolysin was determined in erythrocytes of various animals, with sensitivities observed in the order of cow, sheep, chicken, rabbit, rat, mouse, dog and horse. Temperature affected the sensitivity of erythrocytes to C. chauvoei hemolysin. These results may reflect distinct characteristics of the hemolytic activity of C. chauvoei hemolysin and that the hemolysin may be pore-forming.

  17. Unzipping of Double-stranded DNA in Engineered α-Hemolysin Pores.

    PubMed

    Liu, Aihua; Zhao, Qitao; Krishantha, D M Milan; Guan, Xiyun

    2011-06-12

    Biological protein α-hemolysin nanopore is under intense investigation as a potential platform for rapid and low-cost DNA sequencing. However, due to its narrow constriction, analysis of DNA in the α-hemolysin pore has long time been restricted to single strands. In this paper, we report that by introducing new surface functional groups into the α-hemolysin pore, facilitated unzipping of double-stranded DNA through the channel could be achieved. Since the mean residence time of the DNA events is dependent on the length of the duplex, and also varies with the nucleotide base composition, the modified protein pore approach offers the potential for rapid double-stranded DNA analysis, including sequencing.

  18. Unzipping of Double-stranded DNA in Engineered α-Hemolysin Pores

    PubMed Central

    Liu, Aihua; Zhao, Qitao; Krishantha, D.M. Milan; Guan, Xiyun

    2011-01-01

    Biological protein α-hemolysin nanopore is under intense investigation as a potential platform for rapid and low-cost DNA sequencing. However, due to its narrow constriction, analysis of DNA in the α-hemolysin pore has long time been restricted to single strands. In this paper, we report that by introducing new surface functional groups into the α-hemolysin pore, facilitated unzipping of double-stranded DNA through the channel could be achieved. Since the mean residence time of the DNA events is dependent on the length of the duplex, and also varies with the nucleotide base composition, the modified protein pore approach offers the potential for rapid double-stranded DNA analysis, including sequencing. PMID:21709813

  19. X-ray Crystal Structure of the B Component of Hemolysin BL from Bacillus cereus

    SciTech Connect

    Madegowda,M.; Eswaramoorthy, S.; Burley, S.; Swaminathan, S.

    2008-01-01

    Bacillus cereus Hemolysin BL enterotoxin, a ternary complex of three proteins, is the causative agent of food poisoning and requires all three components for virulence. The X-ray structure of the binding domain of HBL suggests that it may form a pore similar to other soluble channel forming proteins. A putative pathway of pore formation is discussed.

  20. Properties of Bacillus cereus hemolysin II: a heptameric transmembrane pore.

    PubMed

    Miles, George; Bayley, Hagan; Cheley, Stephen

    2002-07-01

    The gene encoding hemolysin II (HlyII) was amplified from Bacillus cereus genomic DNA and a truncated mutant, HlyII(DeltaCT), was constructed lacking the 94 amino acid extension at the C terminus. The proteins were produced in an E. coli cell-free in vitro transcription and translation system, and were shown to assemble into SDS-stable oligomers on rabbit erythrocyte membranes and liposomes. The hemolytic activity of HlyII was measured with rabbit erythrocytes yielding an HC(50) value of 1.64 ng mL(-1), which is over 15 times more potent than staphylococcal alpha-hemolysin. HlyII(DeltaCT) was about eight times less potent than HlyII in this assay. Limited proteolysis of the oligomers formed by HlyII and HlyII(DeltaCT) on red cell membranes showed that the C-terminal extension is sensitive to digestion, while HlyII(DeltaCT) is protease resistant and migrates with an electrophoretic mobility similar to that of digested HlyII. HlyII forms moderately anion selective, rectifying pores (I(+80)/I(-80) = 0.57, 1 M KCl, pH 7.4) in planar lipid bilayers of diphytanoylphosphatidylcholine with a unitary conductance of 637 pS (1 M KCl, 5 mM HEPES, pH 7.4) and exhibits no gating over a wide range of applied potentials (-160 to +160 mV). In addition, it was demonstrated that HlyII forms a homoheptameric pore by using gel shift electrophoresis aided by a genetically encoded oligoaspartate tag. Although they share limited primary sequence identity (30%), these data confirm that HlyII is a structural and functional homolog of staphylococcal alpha-hemolysin.

  1. Extracellular hemolysins of aerobic sporogenic bacilli.

    PubMed

    Bernheimer, A W; Grushoff, P

    1967-05-01

    Forty-five strains, representing 18 species of the genus Bacillus, were surveyed for production of hemolysin against rabbit erythrocytes. Broth cultures of B. cereus, B. alvei, and B. laterosporus contained lysins that closely resembled streptolysin O. B. subtilis and a single strain of B. cereus may produce lysins having characteristics different from those of streptolysin O.

  2. CHARACTERIZATION OF THE HEMOLYSIN, FROM STACHYBOTRYS CHARTARUM

    EPA Science Inventory

    Stachybotrys chartarum is a toxigenic fungus that has been associated with human health concerns, including pulmonary hemorrhage and hemosiderosis. This fungus produces a hemolysin, stachylysin, which in its apparent monomeric form has a molecular mass of 11,920
    Da as determ...

  3. Cross-Neutralization of Leptospiral Hemolysins from Different Serotypes

    PubMed Central

    Alexander, A. D.; Wood, G.; Yancey, F.; Byrne, R. J.; Yager, R. H.

    1971-01-01

    Cross-neutralization studies on leptospiral hemolysins from strains of two antigenically different serotypes, pomona and canicola, were conducted in sheep. A third strain of serotype hardjo that does not produce hemolysin and is antigenically distinct was included for control purposes. Concentrated hemolysins, prepared from supernatant fluids of canicola or pomona cultures, produced hemolytic anemia in sheep after intravenous injection. Sheep previously infected with hemolysin-producing strains were refractory to effects of homologous or heterologous hemolysins. On the other hand, infection with hardjo did not confer immunity to the action of hemolysins. Hemolysin-neutralizing antibodies were demonstrable in sheep previously infected with pomona or canicola only after challenge with homologous or heterologous hemolysins. Cross-neutralization between two hemolysins were demonstrable in vitro. Hemolysin-neutralizing antibody titers did not correlate with agglutinin titers. Concentrated supernatant fluid of the hardjo culture provoked toxic reactions predominantly in sheep previously infected with pomona or canicola. The causes of these untoward reactions were not determined. PMID:5154879

  4. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore

    NASA Astrophysics Data System (ADS)

    Song, Langzhou; Hobaugh, Michael R.; Shustak, Christopher; Cheley, Stephen; Bayley, Hagan; Gouaux, J. Eric

    1996-12-01

    The structure of the Staphylococcus aureus α-hemolysin pore has been determined to 1.9 overset{circ}{mathrm A} resolution. Contained within the mushroom-shaped homo-oligomeric heptamer is a solvent-filled channel, 100 overset{circ}{mathrm A} in length, that runs along the sevenfold axis and ranges from 14 overset{circ}{mathrm A} to 46 overset{circ}{mathrm A} in diameter. The lytic, transmembrane domain comprises the lower half of a 14-strand antiparallel β barrel, to which each protomer contributes two β strands, each 65 overset{circ}{mathrm A} long. The interior of the β barrel is primarily hydrophilic, and the exterior has a hydrophobic belt 28 overset{circ}{mathrm A} wide. The structure proves the heptameric subunit stoichiometry of the α-hemolysin oligomer, shows that a glycine-rich and solvent-exposed region of a water-soluble protein can self-assemble to form a transmembrane pore of defined structure, and provides insight into the principles of membrane interaction and transport activity of β barrel pore-forming toxins.

  5. ADAM10 Cell Surface Expression but Not Activity Is Critical for Staphylococcus aureus α-Hemolysin-Mediated Activation of the NLRP3 Inflammasome in Human Monocytes.

    PubMed

    Ezekwe, Ejiofor A D; Weng, Chengyu; Duncan, Joseph A

    2016-03-30

    The Staphylococcus aureus toxin, α-hemolysin, is an important and well-studied virulence factor in staphylococcal infection. It is a soluble monomeric protein that, once secreted by the bacterium, forms a heptameric pore in the membrane of a broad range of host cell types. Hemolysin was recently discovered to bind and activate a disintegrin and metalloprotease 10 (ADAM10). In epithelial and endothelial cells, ADAM10 activation is required for the toxin's activity against these cells. In host monocytic cells, α-hemolysin activates the nucleotide-binding domain and leucine-rich repeat containing gene family, pyrin domain containing 3 (NLRP3) inflammasome leading to production of pro-inflammatory cytokines and cell death. We now show that ADAM10 is critical for α-hemolysin-mediated activation of the NLRP3 inflammasome in human monocytes as siRNA knockdown or chemical blockade of ADAM10-α-hemolysin interaction leads to diminished inflammasome activation and cell death by reducing the available ADAM10 on the cell surface. Unlike epithelial cell and endothelial cell damage, which requires α-hemolysin induced ADAM10 activation, ADAM10 protease activity was not required for NLRP3 inflammasome activation. This work confirms the importance of ADAM10 in immune activation by α-hemolysin, but indicates that host cell signal induction by the toxin is different between host cell types.

  6. ADAM10 Cell Surface Expression but Not Activity Is Critical for Staphylococcus aureus α-Hemolysin-Mediated Activation of the NLRP3 Inflammasome in Human Monocytes

    PubMed Central

    Ezekwe, Ejiofor A.D.; Weng, Chengyu; Duncan, Joseph A.

    2016-01-01

    The Staphylococcus aureus toxin, α-hemolysin, is an important and well-studied virulence factor in staphylococcal infection. It is a soluble monomeric protein that, once secreted by the bacterium, forms a heptameric pore in the membrane of a broad range of host cell types. Hemolysin was recently discovered to bind and activate a disintegrin and metalloprotease 10 (ADAM10). In epithelial and endothelial cells, ADAM10 activation is required for the toxin’s activity against these cells. In host monocytic cells, α-hemolysin activates the nucleotide-binding domain and leucine-rich repeat containing gene family, pyrin domain containing 3 (NLRP3) inflammasome leading to production of pro-inflammatory cytokines and cell death. We now show that ADAM10 is critical for α-hemolysin-mediated activation of the NLRP3 inflammasome in human monocytes as siRNA knockdown or chemical blockade of ADAM10-α-hemolysin interaction leads to diminished inflammasome activation and cell death by reducing the available ADAM10 on the cell surface. Unlike epithelial cell and endothelial cell damage, which requires α-hemolysin induced ADAM10 activation, ADAM10 protease activity was not required for NLRP3 inflammasome activation. This work confirms the importance of ADAM10 in immune activation by α-hemolysin, but indicates that host cell signal induction by the toxin is different between host cell types. PMID:27043625

  7. Roles of thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) in Vibrio parahaemolyticus.

    PubMed

    Raghunath, Pendru

    2014-01-01

    Vibrio parahaemolyticus is the leading cause of seafood borne bacterial gastroenteritis in the world, often associated with the consumption of raw or undercooked seafood. However, not all strains of V. parahaemolyticus are pathogenic. The thermostable direct hemolysin (TDH) or TDH-related hemolysin (TRH) encoded by tdh and trh genes, respectively, are considered major virulence factors in V. parahaemolyticus. However, about 10% of clinical strains do not contain tdh and/or trh. Environmental isolates of V. parahaemolyticus lacking tdh and/or trh are also highly cytotoxic to human gastrointestinal cells. Even in the absence of these hemolysins, V. parahaemolyticus remains pathogenic indicating other virulence factors exist. This mini review aims at discussing the possible roles of tdh and trh genes in clinical and environmental isolates of V. parahaemolyticus.

  8. Roles of thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) in Vibrio parahaemolyticus

    PubMed Central

    Raghunath, Pendru

    2015-01-01

    Vibrio parahaemolyticus is the leading cause of seafood borne bacterial gastroenteritis in the world, often associated with the consumption of raw or undercooked seafood. However, not all strains of V. parahaemolyticus are pathogenic. The thermostable direct hemolysin (TDH) or TDH-related hemolysin (TRH) encoded by tdh and trh genes, respectively, are considered major virulence factors in V. parahaemolyticus. However, about 10% of clinical strains do not contain tdh and/or trh. Environmental isolates of V. parahaemolyticus lacking tdh and/or trh are also highly cytotoxic to human gastrointestinal cells. Even in the absence of these hemolysins, V. parahaemolyticus remains pathogenic indicating other virulence factors exist. This mini review aims at discussing the possible roles of tdh and trh genes in clinical and environmental isolates of V. parahaemolyticus. PMID:25657643

  9. Nucleotide sequence of the leukotoxin gene from Actinobacillus actinomycetemcomitans: homology to the alpha-hemolysin/leukotoxin gene family.

    PubMed Central

    Kraig, E; Dailey, T; Kolodrubetz, D

    1990-01-01

    The leukotoxin produced by Actinobacillus actinomycetemcomitans has been implicated in the etiology of localized juvenile periodontitis. To initiate a genetic analysis into the role of this protein in disease, we have cloned its gene, lktA. We now present the complete nucleotide sequence of the lktA gene from A. actinomycetemcomitans. When the deduced amino acid sequence of the leukotoxin protein was compared with those of other proteins, it was found to be homologous to the leukotoxin from Pasteurella haemolytica and to the alpha-hemolysins from Escherichia coli and Actinobacillus pleuropneumoniae. Each alignment showed at least 42% identity. As in the other organisms, the lktA gene of A. actinomycetemcomitans was linked to another gene, lktC, which is thought to be involved in the activation of the leukotoxin. The predicted LktC protein was related to the leukotoxin/hemolysin C proteins from the other bacteria, since they shared a minimum of 49% amino acid identity. Surprisingly, although actinobacillus species are more closely related to pasteurellae than to members of the family Enterobacteriaciae, LktA and LktC from A. actinomycetemcomitans shared significantly greater sequence identity with the E. coli alpha-hemolysin proteins than with the P. haemolytica leukotoxin proteins. Despite the overall homology to the other leukotoxin/hemolysin proteins, the LktA protein from A. actinomycetemcomitans has several unique properties. Most strikingly, it is a very basic protein with a calculated pI of 9.7; the other toxins have estimated pIs around 6.2. The unusual features of the A. actinomycetemcomitans protein are discussed in light of the different species and target-cell specificities of the hemolysins and the leukotoxins. Images PMID:2318535

  10. Isolation of botulinolysin, a thiol-activated hemolysin, from serotype D Clostridium botulinum: A species-specific gene duplication in Clostridia.

    PubMed

    Suzuki, Tomonori; Nagano, Thomas; Niwa, Koichi; Mutoh, Shingo; Uchino, Masataka; Tomizawa, Motohiro; Sagane, Yoshimasa; Watanabe, Toshihiro

    2016-12-01

    Botulinolysin (BLY) is a toxin produced by Clostridium botulinum that belongs to a group of thiol-activated hemolysins. In this study, a protein exhibiting hemolytic activity was purified from the culture supernatant of C. botulinum serotype D strain 4947. The purified protein displayed a single band by sodium dodecyl sulfate polyacrylamide gel electrophoresis with a molecular mass of 55kDa, and its N-terminal and internal amino acid sequences exhibited high similarity to a group of thiol-activated hemolysins produced by gram-positive bacteria. Thus, the purified protein was identified as the BLY. Using the nucleotide sequences of previously cloned genes for hemolysins, two types of genes encoding BLY-like proteins were cloned unexpectedly. Molecular modeling analysis indicated that the products of both genes displayed very similar structures, despite the low sequence similarity. In silico screening revealed a specific duplication of the hemolysin gene restricted to serotypes C and D of C. botulinum and their related species among thiol-activated hemolysin-producing bacteria. Our findings provide important insights into the genetic characteristics of pathogenic bacteria.

  11. Cloning of a hemolysin gene from Leptospira interrogans serovar hardjo.

    PubMed Central

    del Real, G; Segers, R P; van der Zeijst, B A; Gaastra, W

    1989-01-01

    A DNA fragment encoding both hemolysin and sphingomyelinase C activity was cloned from the pathogenic bacterium Leptospira interrogans serovar hardjo. Initial clones were obtained by screening a genomic library in EMBL3 for hemolytic activity. Both hemolytic and sphingomyelinase C activities were coded for by a 3.9-kilobase BamHI fragment. The hemolysin was expressed from its own promoter in Escherichia coli K-12. Similar DNA sequences were also present in the serovars tarassovi and ballum. Images PMID:2744864

  12. Nucleotide sequence of an Escherichia coli chromosomal hemolysin.

    PubMed Central

    Felmlee, T; Pellett, S; Welch, R A

    1985-01-01

    We determined the DNA sequence of an 8,211-base-pair region encompassing the chromosomal hemolysin, molecularly cloned from an O4 serotype strain of Escherichia coli. All four hemolysin cistrons (transcriptional order, C, A, B, and D) were encoded on the same DNA strand, and their predicted molecular masses were, respectively, 19.7, 109.8, 79.9, and 54.6 kilodaltons. The identification of pSF4000-encoded polypeptides in E. coli minicells corroborated the assignment of the predicted polypeptides for hlyC, hlyA, and hlyD. However, based on the minicell results, two polypeptides appeared to be encoded on the hlyB region, one similar in size to the predicted molecular mass of 79.9 kilodaltons, and the other a smaller 46-kilodalton polypeptide. The four hemolysin gene displayed similar codon usage, which is atypical for E. coli. This reflects the low guanine-plus-cytosine content (40.2%) of the hemolysin DNA sequence and suggests the non-E. coli origin of the hemolysin determinant. In vitro-derived deletions of the hemolysin recombinant plasmid pSF4000 indicated that a region between 433 and 301 base pairs upstream of the putative start of hlyC is necessary for hemolysin synthesis. Based on the DNA sequence, a stem-loop transcription terminator-like structure (a 16-base-pair stem followed by seven uridylates) in the mRNA was predicted distal to the C-terminal end of hlyA. A model for the general transcriptional organization of the E. coli hemolysin determinant is presented. Images PMID:3891743

  13. Effects of Escherichia coli hemolysin on endothelial cell function.

    PubMed Central

    Suttorp, N; Flöer, B; Schnittler, H; Seeger, W; Bhakdi, S

    1990-01-01

    Escherichia coli hemolysin is considered an important virulence factor in extraintestinal E. coli infections. The present study demonstrates that cultured pulmonary artery endothelial cells are susceptible to attack by low concentrations of E. coli hemolysin (greater than or equal to 0.05 hemolytic units/ml; greater than or equal to 5 ng/ml). Sublytic amounts of hemolysin increased the permeability of endothelial cell monolayers in a time- and dose-dependent manner. The hydraulic conductivity increased approximately 30-fold and the reflection coefficient for large molecules dropped from 0.71 to less than 0.05, indicating a toxin-induced loss of endothelial barrier function. The alterations of endothelial monolayer permeability were accompanied by cell retraction and interendothelial gap formation. In addition, E. coli hemolysin stimulated prostacyclin synthesis in endothelial cells. This effect was strictly dependent on the presence of extracellular Ca2+ but not of Mg2+. An enhanced passive influx of 45Ca2+ and 3H-sucrose but not of tritiated inulin and dextran was noted in toxin-treated cells, indicating that small transmembrane pores comparable to those detected in rabbit erythrocytes had been generated in endothelial cell membranes. These pores may act as nonphysiologic Ca2+ gates, thereby initiating different Ca2+-dependent cellular processes. We conclude that endothelial cells are highly susceptible to E. coli hemolysin and that two major endothelial cell functions are altered by very low concentrations of hemolysin. Images PMID:2121650

  14. Detection of Clostridium septicum hemolysin gene by polymerase chain reaction.

    PubMed

    Takeuchi, S; Hashizume, N; Kinoshita, T; Kaidoh, T; Tamura, Y

    1997-09-01

    A polymerase chain reaction (PCR) was developed for the detection of the hemolysin (alpha toxin) gene of Clostridium septicum. The PCR primers were designed from the sequence of the hemolysin gene and synthesized. A DNA fragment of 270 bp was amplified from 10 strains of C. septicum, but was not from strains of C. chauvoei, C. perfringens, C. novyi, or C. haemolyticum. When the PCR product was digested with Sau3AI, two DNA fragments of the expected 148 bp and 122 bp were recognized. The lowest detectable threshold of PCR for the hemolysin gene was 3.8 x 10(3) cells/ml. The PCR technique may be useful for rapid detection or identification of C. septicum associated with malignant edema.

  15. Production and properties of heat-stable extracellular hemolysin from Pseudomonas aeruginosa.

    PubMed Central

    Johnson, M K; Boese-Marrazzo, D

    1980-01-01

    Of 12 strains of Pseudomonas aeruginosa, 10 were found to produce heat-stable extracellular hemolysin in highly aerated peptone broth supplemented with glycerol, fructose, or mannitol. Glucose supported good hemolysin production only in medium that was highly buffered. The yield of both cells and hemolysin was lower with organic acids as supplement. Growth-limiting phosphate concentrations produced maximum hemolysin levels. Purified hemolysin preparations contained two hemolytic glycolipids. The kinetics of hemolysis at various levels of purified lysin and the effects of variation in lysin and erythrocyte concentration are described. Images Fig. 3 PMID:6776058

  16. Regulation of Hemolysin Expression and Virulence of Staphylococcus aureus by a Serine/Threonine Kinase and Phosphatase

    PubMed Central

    Burnside, Kellie; Lembo, Annalisa; de los Reyes, Melissa; Iliuk, Anton; BinhTran, Nguyen-Thao; Connelly, James E.; Lin, Wan-Jung; Schmidt, Byron Z.; Richardson, Anthony R.; Fang, Ferric C.; Tao, Weiguo Andy; Rajagopal, Lakshmi

    2010-01-01

    Exotoxins, including the hemolysins known as the alpha (α) and beta (β) toxins, play an important role in the pathogenesis of Staphylococcus aureus infections. A random transposon library was screened for S. aureus mutants exhibiting altered hemolysin expression compared to wild type. Transposon insertions in 72 genes resulting in increased or decreased hemolysin expression were identified. Mutations inactivating a putative cyclic di-GMP synthetase and a serine/threonine phosphatase (Stp1) were found to reduce hemolysin expression, and mutations in genes encoding a two component regulator PhoR, LysR family transcriptional regulator, purine biosynthetic enzymes and a serine/threonine kinase (Stk1) increased expression. Transcription of the hla gene encoding α toxin was decreased in a Δstp1 mutant strain and increased in a Δstk1 strain. Microarray analysis of a Δstk1 mutant revealed increased transcription of additional exotoxins. A Δstp1 strain is severely attenuated for virulence in mice and elicits less inflammation and IL-6 production than the Δstk1 strain. In vivo phosphopeptide enrichment and mass spectrometric analysis revealed that threonine phosphorylated peptides corresponding to Stk1, DNA binding histone like protein (HU), serine-aspartate rich fibrinogen/bone sialoprotein binding protein (SdrE) and a hypothetical protein (NWMN_1123) were present in the wild type and not in the Δstk1 mutant. Collectively, these studies suggest that Stk1 mediated phosphorylation of HU, SrdE and NWMN_1123 affects S. aureus gene expression and virulence. PMID:20552019

  17. CHARACTERIZATION OF THE HEMOLYSIN, STACHYLYSIN, FROM STACHYBOTRYS CHARTARUM

    EPA Science Inventory

    Stachybotrys chartarum is a toxigenic fungus that has been associated with human health concerns, including pulmonary hemorrhage/hemosiderosis. This fungus produces a hemolysin, stachylysin, which in its monomeric form, has a molecular wieght of 11,920 daltons as determined by m...

  18. The alpha-hemolysin of Streptococcus gordonii is hydrogen peroxide.

    PubMed Central

    Barnard, J P; Stinson, M W

    1996-01-01

    The alpha-hemolysin of viridans group streptococci, which causes greening of intact erythrocytes, is a potential virulence factor as well as an important criterion for the laboratory identification of these bacteria; however, it has never been purified and characterized. The alpha-hemolysin of Streptococcus gordonii CH1 caused characteristic shifts in the A403, A430, A578, and A630 of sheep hemoglobin. A spectrophotometric assay was developed and used to monitor purification of alpha-hemolysin during extraction in organic solvents and separation by reverse-phase high-performance liquid chromatography (HPLC). The alpha-hemolysin was identical to hydrogen peroxide with respect to its effects on erythrocyte hemoglobin, oxygen-dependent synthesis by streptococci, insensitivity to proteases, inactivation by catalase, differential solubility, failure to adsorb to ion-exchange chromatography resins, and retention time on a reverse-phase HPLC column. The amount of hydrogen peroxide present in HPLC-fractionated spent culture medium was sufficient to account for all alpha-hemolytic activity observed. PMID:8751938

  19. Water transport by the bacterial channel alpha-hemolysin

    NASA Technical Reports Server (NTRS)

    Paula, S.; Akeson, M.; Deamer, D.

    1999-01-01

    This study is an investigation of the ability of the bacterial channel alpha-hemolysin to facilitate water permeation across biological membranes. alpha-Hemolysin channels were incorporated into rabbit erythrocyte ghosts at varying concentrations, and water permeation was induced by mixing the ghosts with hypertonic sucrose solutions. The resulting volume decrease of the ghosts was followed by time-resolved optical absorption at pH 5, 6, and 7. The average single-channel permeability coefficient of alpha-hemolysin for water ranged between 1.3x10-12 cm/s and 1.5x10-12 cm/s, depending on pH. The slightly increased single-channel permeability coefficient at lower pH-values was attributed to an increase in the effective pore size. The activation energy of water transport through the channel was low (Ea=5.4 kcal/mol), suggesting that the properties of water inside the alpha-hemolysin channel resemble those of bulk water. This conclusion was supported by calculations based on macroscopic hydrodynamic laws of laminar water flow. Using the known three-dimensional structure of the channel, the calculations accurately predicted the rate of water flow through the channel. The latter finding also indicated that water permeation data can provide a good estimate of the pore size for large channels.

  20. Virulence of Bordetella bronchiseptica: role of adenylate cyclase-hemolysin.

    PubMed Central

    Gueirard, P; Guiso, N

    1993-01-01

    Bordetella bronchiseptica is a pathogen of laboratory, domestic, and wild animals and sometimes of humans. In the present study some characteristics of the virulence of B. bronchiseptica isolates of different origin were studied. All isolates had similar phenotypes, similar bacteriological characters, and synthesized adenylate cyclase-hemolysin, filamentous hemagglutinin and pertactin but not pertussis toxin. These isolates, however, differed in their ability to express dermonecrotic toxin and to cause a lethal infection, but no correlation was found with the human or animal origin of the isolates. The fact that the most virulent isolate did not express dermonecrotic toxin suggests that this toxin does not play an important role in the virulence of the bacteria in the murine model. After infection with virulent B. bronchiseptica a very early synthesis and a persistence of anti-adenylate cyclase-hemolysin and anti-filamentous hemagglutinin antibodies were observed in the sera of infected mice, suggesting a persistence of the bacteria or of its antigens. B. bronchiseptica adenylate cyclase-hemolysin was purified and was shown to be a major protective antigen against B. bronchiseptica infection. Furthermore, we showed that its immunological and protective properties were different from that of B. pertussis adenylate cyclase-hemolysin, confirming that Bordetella species are immunologically different. Images PMID:8406794

  1. [Cloning and expression of a hemolysin gene of Aeromonas hydrophila and the immunogenicity of the toxoid].

    PubMed

    Zhang, Cuijuan; Yu, Zhouliang; Tian, Liying; Zhao, Baohua

    2009-02-01

    According to the GenBank sequences (GenBank Accession No. AF539467), one pair of primers was designed to amplify hly gene of Aeromonas hydrophila by PCR. After sequencing, homology analysis indicated that a DNA fragment of 1485 bp was amplified from isolated DNA from Aeromonas hydrophila, and it shared more than 99% homology in nucleotide sequence compared with other reference strains in GenBank. The gene was cloned in pET-28a vector to construct a recombinant plasmid pET-28a-hly, which was transformed into Escherichia coli BL21 (DE3), and the recombinant strain BL21(DE3)(pET-28a-hly) was obtained. The hemolysin was highly expressed when the recombinant strain BL21 (DE3) (pET-28a-hly) was induced by IPTG. The expressed protein was 56 kD as estimated by 15% SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The immunogenicity of the expressed Hly protein was confirmed by Western blotting. Mice were immunized with inactivated whole bacteria vaccine and the genetic engineering vaccines showing promise that all these vaccines have a high protective ability. The results showed that the recombinant strain BL21 (DE3)(pET-28a-hly) could be candidate of hemolysin toxoid vaccine to provide protective immunity against diseases caused by Aeromonas hydrophila.

  2. Single-molecule study of thymidine glycol and i-motif through the alpha-hemolysin ion channel

    NASA Astrophysics Data System (ADS)

    He, Lidong

    Nanopore-based devices have emerged as a single-molecule detection and analysis tool for a wide range of applications. Through electrophoretically driving DNA molecules across a nanosized pore, a lot of information can be received, including unfolding kinetics and DNA-protein interactions. This single-molecule method has the potential to sequence kilobase length DNA polymers without amplification or labeling, approaching "the third generation" genome sequencing for around $1000 within 24 hours. alpha-Hemolysin biological nanopores have the advantages of excellent stability, low-noise level, and precise site-directed mutagenesis for engineering this protein nanopore. The first work presented in this thesis established the current signal of the thymidine glycol lesion in DNA oligomers through an immobilization experiment. The thymidine glycol enantiomers were differentiated from each other by different current blockage levels. Also, the effect of bulky hydrophobic adducts to the current blockage was investigated. Secondly, the alpha-hemolysin nanopore was used to study the human telomere i-motif and RET oncogene i-motif at a single-molecule level. In Chapter 3, it was demonstrated that the alpha-hemolysin nanopore can differentiate an i-motif form and single-strand DNA form at different pH values based on the same sequence. In addition, it shows potential to differentiate the folding topologies generated from the same DNA sequence.

  3. Size-dependent forced PEG partitioning into channels: VDAC, OmpC, and α-hemolysin

    PubMed Central

    Aksoyoglu, M. Alphan; Podgornik, Rudolf; Bezrukov, Sergey M.; Gurnev, Philip A.; Muthukumar, Murugappan; Parsegian, V. Adrian

    2016-01-01

    Nonideal polymer mixtures of PEGs of different molecular weights partition differently into nanosize protein channels. Here, we assess the validity of the recently proposed theoretical approach of forced partitioning for three structurally different β-barrel channels: voltage-dependent anion channel from outer mitochondrial membrane VDAC, bacterial porin OmpC (outer membrane protein C), and bacterial channel-forming toxin α-hemolysin. Our interpretation is based on the idea that relatively less-penetrating polymers push the more easily penetrating ones into nanosize channels in excess of their bath concentration. Comparison of the theory with experiments is excellent for VDAC. Polymer partitioning data for the other two channels are consistent with theory if additional assumptions regarding the energy penalty of pore penetration are included. The obtained results demonstrate that the general concept of “polymers pushing polymers” is helpful in understanding and quantification of concrete examples of size-dependent forced partitioning of polymers into protein nanopores. PMID:27466408

  4. Size-dependent forced PEG partitioning into channels: VDAC, OmpC, and α-hemolysin.

    PubMed

    Aksoyoglu, M Alphan; Podgornik, Rudolf; Bezrukov, Sergey M; Gurnev, Philip A; Muthukumar, Murugappan; Parsegian, V Adrian

    2016-08-09

    Nonideal polymer mixtures of PEGs of different molecular weights partition differently into nanosize protein channels. Here, we assess the validity of the recently proposed theoretical approach of forced partitioning for three structurally different β-barrel channels: voltage-dependent anion channel from outer mitochondrial membrane VDAC, bacterial porin OmpC (outer membrane protein C), and bacterial channel-forming toxin α-hemolysin. Our interpretation is based on the idea that relatively less-penetrating polymers push the more easily penetrating ones into nanosize channels in excess of their bath concentration. Comparison of the theory with experiments is excellent for VDAC. Polymer partitioning data for the other two channels are consistent with theory if additional assumptions regarding the energy penalty of pore penetration are included. The obtained results demonstrate that the general concept of "polymers pushing polymers" is helpful in understanding and quantification of concrete examples of size-dependent forced partitioning of polymers into protein nanopores.

  5. Structure of Functional Staphylococcus aureus α-Hemolysin Channels in Tethered Bilayer Lipid Membranes.

    NASA Astrophysics Data System (ADS)

    Heinrich, Frank; Valincius, Gintaras; McGillivray, Duncan J.; Robertson, Joseph W. F.; Ignatjev, Ilja; Kasianowicz, John J.; Loesche, Mathias

    2008-03-01

    We demonstrate the functional reconstitution of the Staphylococcus aureus α-hemolysin channel in membranes tethered to gold. Electrical impedance spectroscopy measurements show that the pores have essentially the same properties as those formed in free-standing bilayer lipid membranes. Neutron reflectometry (NR) provides high-resolution structural information on the interaction between the channel and the disordered membrane, and validates predictions based on the channel x-ray crystal structure. NR also shows that the proximity of the solid interface does not affect the molecular architecture of the protein-membrane complex. The results suggest that this technique could be used to elucidate molecular details about the association of other proteins with membranes. It also may provide structural information on domain organization and stimuli-responsive reorganization for transmembrane proteins in membrane mimics.

  6. Ionic current blockades from DNA and RNA molecules in the alpha-hemolysin nanopore.

    PubMed

    Butler, Tom Z; Gundlach, Jens H; Troll, Mark

    2007-11-01

    We characterize the substate structure of current blockades produced when single-stranded polynucleotide molecules were electrophoretically driven into the alpha-hemolysin protein pore. We frequently observe substates where the ionic current is reduced by approximately 50%. Most of these substates can be associated with a molecular configuration where a polymer occupies only the vestibule region of the pore, though a few appear related to a polymer occupying only the transmembrane beta-barrel region of the pore. The duration of the vestibule configuration depends on polymer composition and on which end of the polymer, 3' or 5', subsequently threads into the narrowest constriction and initiates translocation. Below approximately 140 mV a polymer is more likely to escape from the vestibule against the applied voltage gradient, while at higher voltages a polymer is more likely to follow the voltage gradient by threading through the narrowest constriction and translocating through the pore. Increasing the applied voltage also increases the duration of the vestibule configuration. A semiquantitative model of these trends suggests that escape has stronger voltage dependence than threading, and that threading is sensitive to polymer orientation while escape is not. These results emphasize the utility of alpha-hemolysin as a model system to study biologically relevant physical and chemical processes at the single-molecule level.

  7. Cell-free synthesis of functional thermostable direct hemolysins of Vibrio parahaemolyticus.

    PubMed

    Bechlars, Silke; Wüstenhagen, Doreen A; Drägert, Katja; Dieckmann, Ralf; Strauch, Eckhard; Kubick, Stefan

    2013-12-15

    Vibrio parahaemolyticus is a recognized enteropathogen causing diarrhea in humans and is one of the major causes of seafoodborne gastroenteritis. An important virulence factor is thermostable direct hemolysin (TDH), a pore-forming toxin, which is able to lyse eukaryotic cells. The active toxin is a tetramer of four identical protein subunits, which is secreted by the pathogen after cleavage of a signal peptide. To establish diagnostic detection systems for TDH we expressed the hemolysin with and without the signal peptide in a prokaryotic cell-free system to obtain pure toxin. In order to purify and to facilitate the isolation from cell lysates we synthesized TDH variants with different tags. Important regulatory sequences for cell-free protein synthesis as well as sequences for N-terminal Strep-tag and C-terminal 6xHis-tag were added by a two-step PCR. For the expression in the cell-free system these linear tdh templates were subjected directly to prokaryotic cell extracts. Protein yields were in the range of 500-600 μg/ml for the preproteins and approx. 300-400 μg/ml for the mature proteins. The identities of expressed proteins were further confirmed by SDS-PAGE, immunological and MALDI-TOF mass spectrometric analyses. The functionality of newly synthesized toxin variants was tested by performing qualitative and semiquantitative hemolysis assays. Cell-free produced mature TDH and its variants were active while the preprotein and its derivatives lacked hemolytic activity. A C-terminal 6xHis-tag showed less influence on functionality compared to the N-terminal Strep-tag.

  8. Cloning of the cytotoxin-hemolysin gene of Vibrio vulnificus.

    PubMed Central

    Wright, A C; Morris, J G; Maneval, D R; Richardson, K; Kaper, J B

    1985-01-01

    Genes encoding the cytotoxin-hemolysin of Vibrio vulnificus were cloned in Escherichia coli by using the lytic cloning vector, lambda 1059. Subcloning in plasmid pBR325 resulted in the isolation of a 3.2-kilobase DNA fragment containing the cytotoxin gene. By using this fragment as a DNA probe, homologous gene sequences were detected in all 54 V. vulnificus strains studied; homologous sequences were present in none of 96 isolates from 29 other bacterial species. PMID:4066036

  9. Identification and partial characterization of a novel hemolysin from Leptospira interrogans serovar lai.

    PubMed

    Lee, S H; Kim, K A; Park, Y G; Seong, I W; Kim, M J; Lee, Y J

    2000-08-22

    It has been suggested that leptospiral hemolysins are important in the virulence and pathogenesis of leptospirosis. We have isolated an Escherichia coli clone carrying the 7.8kb DNA insert from a genomic library of Leptospira interrogans serovar lai by plaque hybridization using a sequence derived from the sphingomyelinase C gene (sphA) of L. borgpetersenii. The clone showed a clear beta-hemolytic zone on sheep blood agar and high hemolytic activities on both human and sheep erythrocytes in liquid assays. The clone carried at least two genes responsible for the hemolytic activities, encoded by two open reading frames of 1662 and 816 nucleotides, which are named sphH and hap-1 (hemolysis associated protein-1), respectively. The SphH showed 75% homology to the SphA at the amino acid level, and the Hap-1 showed no significant homology in major databases. Interestingly, however, E. coli cells harboring sphH did not show sphingomyelinase or phospholipase activities. Moreover, SphH-mediated hemolysis was osmotically protected by polyethylene glycol 5000, suggesting that the hemolysis is likely to be caused by pore formation on the membrane. The SphH was successfully expressed in E. coli as a histidine (His)-SphH fusion protein. Both sphH and hap-1 were highly conserved among the Leptospira species, except for the absence of sphH in non-pathogenic L. biflexa serovar patoc. We concluded that the SphH is a novel hemolysin of a pathogenic Leptospira species, which may be a putative pore-forming protein.

  10. The RTX pore-forming toxin α-hemolysin of uropathogenic Escherichia coli: progress and perspectives.

    PubMed

    Wiles, Travis J; Mulvey, Matthew A

    2013-01-01

    Members of the RTX family of protein toxins are functionally conserved among an assortment of bacterial pathogens. By disrupting host cell integrity through their pore-forming and cytolytic activities, this class of toxins allows pathogens to effectively tamper with normal host cell processes, promoting pathogenesis. Here, we focus on the biology of RTX toxins by describing salient properties of a prototype member, α-hemolysin, which is often encoded by strains of uropathogenic Escherichia coli. It has long been appreciated that RTX toxins can have distinct effects on host cells aside from outright lysis. Recently, advances in modeling and analysis of host-pathogen interactions have led to novel findings concerning the consequences of pore formation during host-pathogen interactions. We discuss current progress on longstanding questions concerning cell specificity and pore formation, new areas of investigation that involve toxin-mediated perturbations of host cell signaling cascades and perspectives on the future of RTX toxin investigation.

  11. Controlling the translocation of single-stranded DNA through alpha-hemolysin ion channels using viscosity.

    PubMed

    Kawano, Ryuji; Schibel, Anna E P; Cauley, Christopher; White, Henry S

    2009-01-20

    Translocation of single-stranded DNA through alpha-hemolysin (alpha-HL) channels is investigated in glycerol/water mixtures containing 1 M KCl. Experiments using glass nanopore membranes as the lipid bilayer support demonstrate that the translocation velocities of poly(deoxyadenylic acid), poly(deoxycytidylic acid), and poly(deoxythymidylic acid) 50-mers are decreased by a factor of approximately 20 in a 63/37 (vol %) glycerol/water mixture, relative to aqueous solutions. The ion conductance of alpha-HL and the entry rate of the polynucleotides into the protein channel also decrease with increasing viscosity. Precise control of translocation parameters by adjusting viscosity provides a potential means to improve sequencing methods based on ion channel recordings.

  12. The Nucleotide Capture Region of Alpha Hemolysin: Insights into Nanopore Design for DNA Sequencing from Molecular Dynamics Simulations.

    PubMed

    Manara, Richard M A; Tomasio, Susana; Khalid, Syma

    2015-01-27

    Nanopore technology for DNA sequencing is constantly being refined and improved. In strand sequencing a single strand of DNA is fed through a nanopore and subsequent fluctuations in the current are measured. A major hurdle is that the DNA is translocated through the pore at a rate that is too fast for the current measurement systems. An alternative approach is "exonuclease sequencing", in which an exonuclease is attached to the nanopore that is able to process the strand, cleaving off one base at a time. The bases then flow through the nanopore and the current is measured. This method has the advantage of potentially solving the translocation rate problem, as the speed is controlled by the exonuclease. Here we consider the practical details of exonuclease attachment to the protein alpha hemolysin. We employ molecular dynamics simulations to determine the ideal (a) distance from alpha-hemolysin, and (b) the orientation of the monophosphate nucleotides upon release from the exonuclease such that they will enter the protein. Our results indicate an almost linear decrease in the probability of entry into the protein with increasing distance of nucleotide release. The nucleotide orientation is less significant for entry into the protein.

  13. The Nucleotide Capture Region of Alpha Hemolysin: Insights into Nanopore Design for DNA Sequencing from Molecular Dynamics Simulations

    PubMed Central

    Manara, Richard M. A.; Tomasio, Susana; Khalid, Syma

    2015-01-01

    Nanopore technology for DNA sequencing is constantly being refined and improved. In strand sequencing a single strand of DNA is fed through a nanopore and subsequent fluctuations in the current are measured. A major hurdle is that the DNA is translocated through the pore at a rate that is too fast for the current measurement systems. An alternative approach is “exonuclease sequencing”, in which an exonuclease is attached to the nanopore that is able to process the strand, cleaving off one base at a time. The bases then flow through the nanopore and the current is measured. This method has the advantage of potentially solving the translocation rate problem, as the speed is controlled by the exonuclease. Here we consider the practical details of exonuclease attachment to the protein alpha hemolysin. We employ molecular dynamics simulations to determine the ideal (a) distance from alpha-hemolysin, and (b) the orientation of the monophosphate nucleotides upon release from the exonuclease such that they will enter the protein. Our results indicate an almost linear decrease in the probability of entry into the protein with increasing distance of nucleotide release. The nucleotide orientation is less significant for entry into the protein.

  14. Hybrid MD-Nernst Planck Model of Alpha-hemolysin Conductance Properties

    NASA Technical Reports Server (NTRS)

    Cozmuta, Ioana; O'Keefer, James T.; Bose, Deepak; Stolc, Viktor

    2006-01-01

    Motivated by experiments in which an applied electric field translocates polynucleotides through an alpha-hemolysin protein channel causing ionic current transient blockade, a hybrid simulation model is proposed to predict the conductance properties of the open channel. Time scales corresponding to ion permeation processes are reached using the Poisson-Nemst-Planck (PNP) electro-diffusion model in which both solvent and local ion concentrations are represented as a continuum. The diffusion coefficients of the ions (K(+) and Cl(-)) input in the PNP model are, however, calculated from all-atom molecular dynamics (MD). In the MD simulations, a reduced representation of the channel is used. The channel is solvated in a 1 M KCI solution, and an external electric field is applied. The pore specific diffusion coefficients for both ionic species are reduced 5-7 times in comparison to bulk values. Significant statistical variations (17-45%) of the pore-ions diffusivities are observed. Within the statistics, the ionic diffusivities remain invariable for a range of external applied voltages between 30 and 240mV. In the 2D-PNP calculations, the pore stem is approximated by a smooth cylinder of radius approx. 9A with two constriction blocks where the radius is reduced to approx. 6A. The electrostatic potential includes the contribution from the atomistic charges. The MD-PNP model shows that the atomic charges are responsible for the rectifying behaviour and for the slight anion selectivity of the a-hemolysin pore. Independent of the hierarchy between the anion and cation diffusivities, the anionic contribution to the total ionic current will dominate. The predictions of the MD-PNP model are in good agreement with experimental data and give confidence in the present approach of bridging time scales by combining a microscopic and macroscopic model.

  15. Grafting synthetic transmembrane units to the engineered low-toxicity α-hemolysin to restore its hemolytic activity.

    PubMed

    Ui, Mihoko; Harima, Kousuke; Takei, Toshiaki; Tsumoto, Kouhei; Tabata, Kazuhito V; Noji, Hiroyuki; Endo, Sumire; Akiyama, Kimio; Muraoka, Takahiro; Kinbara, Kazushi

    2014-12-01

    The chemical modification of proteins to provide desirable functions and/or structures broadens their possibilities for use in various applications. Usually, proteins can acquire new functions and characteristics, in addition to their original ones, via the introduction of synthetic functional moieties. Here, we adopted a more radical approach to protein modification, i.e., the replacement of a functional domain of proteins with alternative chemical compounds to build "cyborg proteins." As a proof of concept model, we chose staphylococcal α-hemolysin (Hla), which is a well-studied, pore-forming toxin. The hemolytic activity of Hla mutants was dramatically decreased by truncation of the stem domain, which forms a β-barrel pore in the membrane. However, the impaired hemolytic activity was significantly restored by attaching a pyrenyl-maleimide unit to the cysteine residue that was introduced in the remaining stem domain. In contrast, negatively charged fluorescein-maleimide completely abolished the remaining activity of the mutants.

  16. Proteolysis of truncated hemolysin A yields a stable dimerization interface.

    PubMed

    Novak, Walter R P; Bhattacharyya, Basudeb; Grilley, Daniel P; Weaver, Todd M

    2017-03-01

    Wild-type and variant forms of HpmA265 (truncated hemolysin A) from Proteus mirabilis reveal a right-handed, parallel β-helix capped and flanked by segments of antiparallel β-strands. The low-salt crystal structures form a dimeric structure via the implementation of on-edge main-chain hydrogen bonds donated by residues 243-263 of adjacent monomers. Surprisingly, in the high-salt structures of two variants, Y134A and Q125A-Y134A, a new dimeric interface is formed via main-chain hydrogen bonds donated by residues 203-215 of adjacent monomers, and a previously unobserved tetramer is formed. In addition, an eight-stranded antiparallel β-sheet is formed from the flap regions of crystallographically related monomers in the high-salt structures. This new interface is possible owing to additional proteolysis of these variants after Tyr240. The interface formed in the high-salt crystal forms of hemolysin A variants may mimic the on-edge β-strand positioning used in template-assisted hemolytic activity.

  17. Purification of Staphylococcal β-Hemolysin and Its Action on Staphylococcal and Streptococcal Cell Walls

    PubMed Central

    Chesbro, William R.; Heydrick, Fred P.; Martineau, Roland; Perkins, Gail N.

    1965-01-01

    Chesbro, William R. (University of New Hampshire, Durham), Fred P. Heydrick, Roland Martineau, and Gail N. Perkins. Purification of staphylococcal β-hemolysin and its action on staphylococcal and streptococcal cell walls. J. Bacteriol. 89:378–389. 1965.—After growth of bovine-derived strains of Staphylococcus aureus in a completely dialyzable medium, the β-hemolysin in the culture supernatant fluids was purified by gradient-elution chromatography on cellulose phosphate. The purified hemolysin contained two components, demonstrable by immunodiffusion or electrophoresis, but was free from α-hemolysin, coagulase, Δ-hemolysin, enterotoxins A and B, glucuronidase, hyaluronidase, lipase, muramidase, Panton-Valentine leukocidin, phosphatase, and protease. The hemolysin was heat-labile and sulfhydryl-dependent, and the preparation was leukocidal for guinea pig macrophages. When rabbit red blood cell (RBC) stroma and staphylococcal or enterococcal cell walls were treated with the purified hemolysin, it liberated mucopolysaccharides from the rabbit RBC stroma, polysaccharides and mucopolysaccharides (or mucopeptides) from the staphyloccoal cell walls, and rhamnose, glucose, an unidentified monosaccharide, N-acetylglucosamine, and at least two polysaccharides from the enterococcal cell walls. The hemolytic and cell-wall degradative activities had similar thermal inactivation kinetics, pH optima, sedimentation coefficients, and chromatographic and electrophoretic mobilities; both required Mg and were inhibited by thiol-inactivating agents. Consequently, it seems likely that both activities are expressions of the same enzyme. PMID:14255704

  18. Relationship between heat-induced fibrillogenicity and hemolytic activity of thermostable direct hemolysin and a related hemolysin of Vibrio parahaemolyticus.

    PubMed

    Ohnishi, Kiyouhisa; Nakahira, Kumiko; Unzai, Satoru; Mayanagi, Kouta; Hashimoto, Hiroshi; Shiraki, Kentaro; Honda, Takeshi; Yanagihara, Itaru

    2011-05-01

    The formation of nonspecific ion channels by small oligomeric amyloid intermediates is toxic to the host's cellular membranes. Thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) are major virulence factors of Vibrio parahaemolyticus. We have previously reported the crystal structure of TDH tetramer with the central channel. We have also identified the molecular mechanism underlying the paradoxical responses to heat treatment of TDH, known as the Arrhenius effect, which is the reversible amyloidogenic property. In the present report, we describe the biophysical properties of TRH, which displays 67% amino acid similarity with TDH. Molecular modeling provided a good fit of the overall structure of TDH and TRH. Size-exclusion chromatography, ultracentrifugation, and transmission electron microscopy revealed that TRH formed tetramer in solution. These toxins showed similar hemolytic activity on red blood cells. However, TRH had less amyloid-like structure than TDH analyzed by thioflavin T-binding assay and far-UV circular dichroism spectra. These data indicated that amyloidogenicity upon heating is not essential for the membrane disruption of erythrocytes, but the maintenance of tetrameric structure is indispensable for the hemolytic activity of the TDH and TRH.

  19. Delta Hemolysin and Phenol-Soluble Modulins, but Not Alpha Hemolysin or Panton-Valentine Leukocidin, Induce Mast Cell Activation

    PubMed Central

    Hodille, Elisabeth; Cuerq, Charlotte; Badiou, Cédric; Bienvenu, Françoise; Steghens, Jean-Paul; Cartier, Régine; Bes, Michèle; Tristan, Anne; Plesa, Adriana; Le, Vien T. M.; Diep, Binh A.; Lina, Gérard; Dumitrescu, Oana

    2016-01-01

    Mast cells are located at host interfaces, such as the skin, and contribute to the first-line defense against pathogens by releasing soluble mediators, including those that induce itching and scratching behavior. Here, we show that delta-hemolysin (Hld) and phenol soluble modulins (PSMs) PSMα1 and PSMα3, but not alpha-hemolysin (Hla) or Panton-Valentine leukocidin (PVL), induce dose-dependent tryptase, and lactate dehydrogenase (LDH) release by the HMC-1 human mast cell line. Using supernatants from isogenic strains, we verified that tryptase and LDH release was Hld- and PSMα-dependent. PSMα1 and Hld production was detected in 65 and 17% of human Staphylococcus aureus-infected skin abscess specimens, respectively, but they were produced in vitro by all clinical isolates. The results suggest that Hld and PSM-α1 produced in vivo during S. aureus skin infections induce the release of mast cell mediators responsible for itching and scratching behavior, which may enhance skin to skin transmission of S. aureus via the hands. As Hld and PSMs are upregulated by accessory gene regulator (agr), their association may contribute to the elective transmission of S. aureus strains with a functional agr system. PMID:28018862

  20. Lectin, hemolysin and protease inhibitors in seed fractions with ovicidal activity against Haemonchus contortus.

    PubMed

    Salles, Hévila Oliveira; Braga, Ana Carolina Linhares; Nascimento, Maria Thayana dos Santos Canuto do; Sousa, Ana Márjory Paiva; Lima, Adriano Rodrigues; Vieira, Luiz da Silva; Cavalcante, Antônio Cézar Rocha; Egito, Antonio Silvio do; Andrade, Lúcia Betânia da Silva

    2014-01-01

    Bioactive molecules of plant species are promising alternatives for the chemical control of gastrointestinal nematodes in ruminants. Extracts of native and exotic seed species from Brazil's semi-arid region were tested in vitro in an egg hatch assay and the bioactivity of their proteins was investigated. Each seed species was subjected to three extractions with three types of solvents. All the seeds showed ovicidal activity, which varied according to the solvents. Higher ovicidal activity was found in the molecule fractions of low molecular weight (<12 kDa) for Albizia lebbeck, Ipomoea asarifolia, Jatropha curcas, Libidibia ferrea, Moringa oleifera and Ricinus communis (P<0.05, Bonferroni test). The two fractions of Crotalaria spectabilis showed the same ovicidal activity (P>0.05, Bonferroni test). Hemagglutinating activity was detected in the fractions of C. spectabilis and M. oleifera fractions, hemolysin activity in the A. lebbeck and M. oleifera fractions, serine protease inhibitory activity in the A. lebbeck, I. asarifolia, J. curcas, M. oleifera and R. communis fractions, cysteine protease inhibitor activity in the M. oleifera fraction, and no protein activity in the L. ferrea fraction. The results of this work reveal new plant species with a potential for use in controlling nematode parasites in goats, thus opening a new field of research involving plant protein molecules with ovicidal properties.

  1. In vivo quantification of the secretion rates of the hemolysin A Type I secretion system

    PubMed Central

    Lenders, Michael H. H.; Beer, Tobias; Smits, Sander H. J.; Schmitt, Lutz

    2016-01-01

    Type 1 secretion systems (T1SS) of Gram-negative bacteria secrete a broad range of substrates into the extracellular space. Common to all substrates is a C-terminal secretion sequence and nonapeptide repeats in the C-terminal part that bind Ca2+ in the extracellular space, to trigger protein folding. Like all T1SS, the hemolysin A (HlyA) T1SS of Escherichia coli consists of an ABC transporter, a membrane fusion protein and an outer membrane protein allowing the one step translocation of the substrate across both membranes. Here, we analyzed the secretion rate of the HlyA T1SS. Our results demonstrate that the rate is independent of substrate-size and operates at a speed of approximately 16 amino acids per transporter per second. We also demonstrate that the rate is independent of the extracellular Ca2+ concentration raising the question of the driving force of substrate secretion by T1SS in general. PMID:27616645

  2. Structure and Functional Characterization of Vibrio parahaemolyticus Thermostable Direct Hemolysin*

    PubMed Central

    Yanagihara, Itaru; Nakahira, Kumiko; Yamane, Tsutomu; Kaieda, Shuji; Mayanagi, Kouta; Hamada, Daizo; Fukui, Takashi; Ohnishi, Kiyouhisa; Kajiyama, Shin'ichiro; Shimizu, Toshiyuki; Sato, Mamoru; Ikegami, Takahisa; Ikeguchi, Mitsunori; Honda, Takeshi; Hashimoto, Hiroshi

    2010-01-01

    Thermostable direct hemolysin (TDH) is a major virulence factor of Vibrio parahaemolyticus that causes pandemic foodborne enterocolitis mediated by seafood. TDH exists as a tetramer in solution, and it possesses extreme hemolytic activity. Here, we present the crystal structure of the TDH tetramer at 1.5 Å resolution. The TDH tetramer forms a central pore with dimensions of 23 Å in diameter and ∼50 Å in depth. π-Cation interactions between protomers comprising the tetramer were indispensable for hemolytic activity of TDH. The N-terminal region was intrinsically disordered outside of the pore. Molecular dynamic simulations suggested that water molecules permeate freely through the central and side channel pores. Electron micrographs showed that tetrameric TDH attached to liposomes, and some of the tetramer associated with liposome via one protomer. These findings imply a novel membrane attachment mechanism by a soluble tetrameric pore-forming toxin. PMID:20335168

  3. Structure and functional characterization of Vibrio parahaemolyticus thermostable direct hemolysin.

    PubMed

    Yanagihara, Itaru; Nakahira, Kumiko; Yamane, Tsutomu; Kaieda, Shuji; Mayanagi, Kouta; Hamada, Daizo; Fukui, Takashi; Ohnishi, Kiyouhisa; Kajiyama, Shin'ichiro; Shimizu, Toshiyuki; Sato, Mamoru; Ikegami, Takahisa; Ikeguchi, Mitsunori; Honda, Takeshi; Hashimoto, Hiroshi

    2010-05-21

    Thermostable direct hemolysin (TDH) is a major virulence factor of Vibrio parahaemolyticus that causes pandemic foodborne enterocolitis mediated by seafood. TDH exists as a tetramer in solution, and it possesses extreme hemolytic activity. Here, we present the crystal structure of the TDH tetramer at 1.5 A resolution. The TDH tetramer forms a central pore with dimensions of 23 A in diameter and approximately 50 A in depth. Pi-cation interactions between protomers comprising the tetramer were indispensable for hemolytic activity of TDH. The N-terminal region was intrinsically disordered outside of the pore. Molecular dynamic simulations suggested that water molecules permeate freely through the central and side channel pores. Electron micrographs showed that tetrameric TDH attached to liposomes, and some of the tetramer associated with liposome via one protomer. These findings imply a novel membrane attachment mechanism by a soluble tetrameric pore-forming toxin.

  4. Expression of gamma-hemolysin regulated by sae in Staphylococcus aureus strain Smith 5R.

    PubMed

    Yamazaki, Kazuko; Kato, Fuminori; Kamio, Yoshiyuki; Kaneko, Jun

    2006-06-01

    Staphylococcus aureus strain Smith 5R produces a two-component pore-forming toxin and forms a rough-surfaced colony with hemolytic haloes on human red blood cell plates (R[+]). Serial subcultures of the strain in broth caused the appearance of gamma-hemolysin negative variants with a smooth colony shape (S[-]), and the S[-] valiant became predominant in culture. The R[+] strain, in which agrA is naturally disrupted by an insertion of IS1181, produced high levels of gamma-hemolysin. In the S[-] variant, expression of both hlg and lukS-F mRNAs was strongly reduced. Nucleotide sequencing of the sae locus revealed that all isolated S[-] variants had spontaneous mutations in the sae locus. Recovery of gamma-hemolysin productivity in S[-] by transformation of the wild-type sae allele strongly suggested that the expression of gamma-hemolysin is positively regulated by sae in an agr-independent manner.

  5. Occurrence of urease-positive Vibrio parahaemolyticus in Kanagawa, Japan, with specific reference to presence of thermostable direct hemolysin (TDH) and the TDH-related-hemolysin genes.

    PubMed

    Osawa, R; Okitsu, T; Morozumi, H; Yamai, S

    1996-02-01

    A total of 132 strains of V. parahaemolyticus isolated from patients and from the suspected causal food items of past food poisoning cases occurring in Kanagawa Prefecture, Japan, were examined for the ability to hydrolyze urea, with specific reference to the presence of the thermostable direct hemolysin gene (tdh) and the gene for thermostable direct hemolysin-related hemolysin (trh). Ten strains belonging to five different O-antigen serotypes were positive for urea hydrolysis (UH+), and four of these strains did not carry tdh. A total of 106 strains carried tdh, but less than 6% of them were UH+, whereas all trh-carrying strains were UH+. The evidence suggests that urea hydrolysis is not a reliable marker for identifying tdh-carrying V. parahaemolyticus strains in Japan (the Pacific Northeast) but may be a marker for trh-carrying strains.

  6. Directionality of substrate translocation of the hemolysin A Type I secretion system

    PubMed Central

    Lenders, Michael H. H.; Weidtkamp-Peters, Stefanie; Kleinschrodt, Diana; Jaeger, Karl-Erich; Smits, Sander H. J.; Schmitt, Lutz

    2015-01-01

    Type 1 secretion systems (T1SS) of Gram-negative bacteria are responsible for the secretion of various proteases, lipases, S-layer proteins or toxins into the extracellular space. The paradigm of these systems is the hemolysin A (HlyA) T1SS of Escherichia coli. This multiple membrane protein complex is able to secrete the toxin HlyA in one step across both E. coli membranes. Common to all secreted T1SS substrates is a C-terminal secretion sequence being necessary as well as sufficient for secretion. However, it is not known whether transport occurs directionally, i.e. the N- or the C-terminus of T1SS substrates is secreted first. We have addressed this question by constructing HlyA fusions with the rapidly folding eGFP resulting in a stalled T1SS. Differential labeling and subsequent fluorescence microscopic detection of C- and N-terminal parts of the fusions allowed us to demonstrate vectorial transport of HlyA through the T1SS with the C-terminus appearing first outside the bacterial cells. PMID:26212107

  7. Auto-Assembling Detoxified Staphylococcus aureus Alpha-Hemolysin Mimicking the Wild-Type Cytolytic Toxin

    PubMed Central

    Fiaschi, Luigi; Di Palo, Benedetta; Scarselli, Maria; Pozzi, Clarissa; Tomaszewski, Kelly; Galletti, Bruno; Nardi-Dei, Vincenzo; Arcidiacono, Letizia; Mishra, Ravi P. N.; Mori, Elena; Pallaoro, Michele; Falugi, Fabiana; Torre, Antonina; Fontana, Maria Rita; Soriani, Marco; Bubeck Wardenburg, Juliane; Grandi, Guido; Rappuoli, Rino

    2016-01-01

    Staphylococcus aureus alpha-hemolysin (Hla) assembles into heptameric pores on the host cell membrane, causing lysis, apoptosis, and junction disruption. Herein, we present the design of a newly engineered S. aureus alpha-toxin, HlaPSGS, which lacks the predicted membrane-spanning stem domain. This protein is able to form heptamers in aqueous solution in the absence of lipophilic substrata, and its structure, obtained by transmission electron microscopy and single-particle reconstruction analysis, resembles the cap of the wild-type cytolytic Hla pore. HlaPSGS was found to be impaired in binding to host cells and to its receptor ADAM10 and to lack hemolytic and cytotoxic activity. Immunological studies using human sera as well as sera from mice convalescent from S. aureus infection suggested that the heptameric conformation of HlaPSGS mimics epitopes exposed by the cytolytic Hla pore during infection. Finally, immunization with this newly engineered Hla generated high protective immunity against staphylococcal infection in mice. Overall, this study provides unprecedented data on the natural immune response against Hla and suggests that the heptameric HlaPSGS is a highly valuable vaccine candidate against S. aureus. PMID:27030589

  8. Beta-hemolysin promotes skin colonization by Staphylococcus aureus.

    PubMed

    Katayama, Yuki; Baba, Tadashi; Sekine, Miwa; Fukuda, Minoru; Hiramatsu, Keiichi

    2013-03-01

    Colonization by Staphylococcus aureus is a characteristic feature of several inflammatory skin diseases and is often followed by epidermal damage and invasive infection. In this study, we investigated the mechanism of skin colonization by a virulent community-acquired methicillin-resistant S. aureus (CA-MRSA) strain, MW2, using a murine ear colonization model. MW2 does not produce a hemolytic toxin, beta-hemolysin (Hlb), due to integration of a prophage, Sa3mw, inside the toxin gene (hlb). However, we found that strain MW2 bacteria that had successfully colonized murine ears included derivatives that produced Hlb. Genome sequencing of the Hlb-producing colonies revealed that precise excision of prophage Sa3mw occurred, leading to reconstruction of the intact hlb gene in their chromosomes. To address the question of whether Hlb is involved in skin colonization, we constructed MW2-derivative strains with and without the Hlb gene and then subjected them to colonization tests. The colonization efficiency of the Hlb-producing mutant on murine ears was more than 50-fold greater than that of the mutant without hlb. Furthermore, we also showed that Hlb toxin had elevated cytotoxicity for human primary keratinocytes. Our results indicate that S. aureus Hlb plays an important role in skin colonization by damaging keratinocytes, in addition to its well-known hemolytic activity for erythrocytes.

  9. Beta-Hemolysin Promotes Skin Colonization by Staphylococcus aureus

    PubMed Central

    Katayama, Yuki; Sekine, Miwa; Fukuda, Minoru; Hiramatsu, Keiichi

    2013-01-01

    Colonization by Staphylococcus aureus is a characteristic feature of several inflammatory skin diseases and is often followed by epidermal damage and invasive infection. In this study, we investigated the mechanism of skin colonization by a virulent community-acquired methicillin-resistant S. aureus (CA-MRSA) strain, MW2, using a murine ear colonization model. MW2 does not produce a hemolytic toxin, beta-hemolysin (Hlb), due to integration of a prophage, ϕSa3mw, inside the toxin gene (hlb). However, we found that strain MW2 bacteria that had successfully colonized murine ears included derivatives that produced Hlb. Genome sequencing of the Hlb-producing colonies revealed that precise excision of prophage ϕSa3mw occurred, leading to reconstruction of the intact hlb gene in their chromosomes. To address the question of whether Hlb is involved in skin colonization, we constructed MW2-derivative strains with and without the Hlb gene and then subjected them to colonization tests. The colonization efficiency of the Hlb-producing mutant on murine ears was more than 50-fold greater than that of the mutant without hlb. Furthermore, we also showed that Hlb toxin had elevated cytotoxicity for human primary keratinocytes. Our results indicate that S. aureus Hlb plays an important role in skin colonization by damaging keratinocytes, in addition to its well-known hemolytic activity for erythrocytes. PMID:23292775

  10. Epidemiological evidence of lesser role of thermostable direct hemolysin (TDH)-related hemolysin (TRH) than TDH on Vibrio parahaemolyticus pathogenicity.

    PubMed

    Saito, Shioko; Iwade, Yoshito; Tokuoka, Eisuke; Nishio, Tomohiro; Otomo, Yoshimitsu; Araki, Emiko; Konuma, Hirotaka; Nakagawa, Hiroshi; Tanaka, Hiroyuki; Sugiyama, Kanji; Hasegawa, Akio; Sugita-Konishi, Yoshiko; Hara-Kudo, Yukiko

    2015-02-01

    Vibrio parahaemolyticus carrying the tdh gene, encoding the thermostable direct hemolysin (TDH), or the trh gene, encoding the TDH-related hemolysin (TRH), are both considered virulent strains. There are, however, disproportionally fewer reports of infections caused by seafood contaminated with trh-positive strains than by seafood contaminated with tdh-positive strains. Bivalves such as clams and oysters are the major seafood varieties associated with the infections. In this study, the prevalence of strains possessing the tdh and trh genes was investigated in Japan in 74 samples collected in 2007-2008 and in 177 samples collected in 2010 of domestic bivalves, bloody clams, hen clams, short-neck clams, and rock oysters. The tdh-positive and trh-negative, tdh-negative and trh-positive, and tdh-positive and trh-positive samples represented 5.4%, 12.2%, and 4.1% of all samples collected in 2007-2008, and 5.1%, 18.6%, and 5.6% of all samples collected in 2010, respectively. As determined by polymerase chain reaction, the prevalence of tdh negative and trh positive in all samples was two to four times higher than that of tdh positive and trh negative. In the samples collected in 2010, the tdh-negative and trh-positive V. parahaemolyticus (20 samples) was more often isolated than tdh-positive and trh-negative V. parahaemolyticus (7 samples). The most common serotype of tdh-positive isolates (22 of 24 strains) was pandemic O3:K6. The trh-positive isolates (61 strains) were various serotypes including OUT:KUT. In 330 V. parahaemolyticus outbreaks and sporadic infections in Japan, most outbreaks and sporadic infections were caused by tdh-positive and trh-negative strains (89.4%). The frequencies of infections caused by tdh-negative and trh-positive, and both tdh- and trh-positive strains were 1.2% and 3.0%, respectively. This finding suggests that the virulence of trh might be less than that of tdh, although trh-positive V. parahaemolyticus frequently contaminated bivalves.

  11. Cloning of a Phosphate-Regulated Hemolysin Gene (Phospholipase C) from Pseudomonas aeruginosa

    PubMed Central

    Vasil, Michael L.; Berka, Randy M.; Gray, Gregory L.; Nakai, Hiroshi

    1982-01-01

    Phospholipase C (heat-labile hemolysin) of Pseudomonas aeruginosa is a phosphate (Pi)-regulated extracellular protein which may be a significant virulence factor of this organism. The gene for this hemolytic enzyme was cloned on a 4.1-megadalton (Mdal) fragment from a BamHI digest of P. aeruginosa PAO1 genomic DNA and was inserted into the BamHI sites of the multicopy Escherichia coli(pBR322) and P. aeruginosa(pMW79) vectors. The E. coli and P. aeruginosa recombinant plasmids were designated pGV26 and pVB81, respectively. A restriction map of the 4.1-Mdal fragment from pGV26 was constructed, using double and single digestions with BamHI and EcoRI and several different restriction enzymes. Based on information from this map, a 2.4-Mdal BamHI/BglII fragment containing the gene for phospholipase C was subcloned to pBR322. The hybrid plasmids pGV26 and pVB81 direct the synthesis of enzymatically active phospholipase C, which is also hemolytic. The plasmid-directed synthesis of phospholipase C in E. coli or P. aeruginosa is not repressible by Pi as is the chromosomally directed synthesis in P. aeruginosa. Data are presented which suggest that the synthesis of phospholipase C from pGV26 and pVB81 is directed from the tetracycline resistance gene promoter. The level of enzyme activity produced by E. coli(pGV26) is slightly higher than the levels produced by P. aeruginosa(pMW79) under repressed conditions. In contrast, the levels produced by P. aeruginosa(pVB81) are at least 600-fold higher than the levels produced by P. aeruginosa(pMW79) under repressed conditions and approximately 20-fold higher than those produced by P. aeruginosa(pMW79) under derepressed conditions. The majority (85%) of the enzyme produced by E. coli(pGV26) remained cell associated, whereas >95% of the enzyme produced by P. aeruginosa(pVB81) was extracellular. Analysis of extracellular proteins from cultures of P. aeruginosa(pMW79) and P. aeruginosa(pVB81) by high-performance liquid chromotography and

  12. Phylogenetic and in silico functional analyses of thermostable-direct hemolysin and tdh-related encoding genes in Vibrio parahaemolyticus and other Gram-negative bacteria.

    PubMed

    Bhowmik, Sushanta K; Pazhani, Gururaja P; Ramamurthy, Thandavarayan

    2014-01-01

    Emergence and spread of pandemic strains of Vibrio parahaemolyticus have drawn attention to make detailed study on their genomes. The pathogenicity of V. parahaemolyticus has been associated with thermostable-direct hemolysin (TDH) and/or TDH-related hemolysin (TRH). The present study evaluated characteristics of tdh and trh genes, considering the phylogenetic and in silico functional features of V. parahaemolyticus and other bacteria. Fifty-two tdh and trh genes submitted to the GenBank were analyzed for sequence similarity. The promoter sequences of these genes were also analyzed from transcription start point to -35 regions and correlated with amino acid substitution within the coding regions. The phylogenetic analysis revealed that tdh and trh are highly distinct and also differ within the V. parahaemolyticus strains that were isolated from different geographical regions. Promoter sequence analysis revealed nucleotide substitutions and deletions at -18 and -19 positions among the pandemic, prepandemic, and nonpandemic tdh sequences. Many amino acid substitutions were also found within the signal peptide and also in the matured protein region of several TDH proteins as compared to TDH-S protein of pandemic V. parahaemolyticus. Experimental evidences are needed to recognize the importance of substitutions and deletions in the tdh and trh genes.

  13. Urea hydrolysis and suppressed production of thermostable direct hemolysin (TDH) by Vibrio parahaemolyticus associated with presence of TDH-related hemolysin genes.

    PubMed

    Okitsu, T; Osawa, R; Pornruangwong, S; Yamai, S

    1997-05-01

    A total of 18 strains of V. parahaemolyticus isolated from patients of past food poisoning cases occurring in Kanagawa Prefecture, Japan, were assayed for presence of the thermostable direct hemolysin (TDH) gene and the TDH-related hemolysin (TRH) genes (trh 1 and trh 2) with specific reference to their ability to hydrolyze urea and TDH production. A polymerase chain reaction assay revealed that all urea-hydrolyzing strains (9 strains) carried either trh 1 gene or trh 2 gene. The strains carrying the trh genes as well as the tdh gene produced TDH less by a factor of 4 to 16 than those carrying only the tdh gene, suggesting the expression of the tdh gene was suppressed by the presence of trh gene through a mechanism yet to be defined.

  14. The urease gene cluster of Vibrio parahaemolyticus does not influence the expression of the thermostable direct hemolysin (TDH) gene or the TDH-related hemolysin gene.

    PubMed

    Nakaguchi, Yoshitsugu; Okuda, Jun; Iida, Tetsuya; Nishibuchi, Mitsuaki

    2003-01-01

    In order to investigate why the thermostable direct hemolysin (TDH) and the TDH-related hemolysin (TRH) of Vibrio parahaemolyticus are produced at low levels from urease-positive strains, the effect of the functional urease gene cluster of V. parahaemolyticus on the expression of the tdh and trh genes was examined. Transcriptional lacZ fusions with the tdh1, tdh2, trh1 and trh2 genes representing variants of the tdh and trh genes were integrated into the chromosome of an Escherichia coli strain and a urease-negative V. parahaemolyticus strain. The plasmid-borne urease gene cluster introduced and expressed in these constructs did not affect expression of any of the fusion genes. The amount of TDH produced from a Kanagawa phenomenon-positive V. parahaemolyticus did not change by introduction of the urease gene cluster either. It was concluded therefore that the urease gene cluster is not involved in the regulation of tdh and trh expression.

  15. Evaluation of two assay kits for thermostable direct hemolysin (TDH) as an indicator of TDH-related hemolysin (TRH) produced by Vibrio parahaemolyticus.

    PubMed

    Yoh, M; Kawakami, N; Funakoshi, Y; Okada, K; Honda, T

    1995-01-01

    Reversed passive latex agglutination (RPLA) or enzyme-linked immunosorbent assay kits with beads (Bead-ELISA) are commercially available in Japan to detect the thermostable direct hemolysin (TDH) produced by Vibrio parahaemolyticus isolates. We evaluated whether these kits can be used to assay the pathogenic toxin, TDH-related hemolysin (TRH), produced by some so-called Kanagawa phenomenon-negative V. parahaemolyticus strains isolated from patients with diarrhea. Our results showed that the two kits, RPLA and Bead-ELISA, can detect TRH, although they were originally developed for detection of TDH. This may be due to the use of polyclonal anti-TDH antisera that cross react with TRH. Although the sensitivity for TDH detection by RPLA and Bead-ELISA differed tenfold, that for TRH detection was essentially equal. The minimum concentration of TRH required for detection by the two assay kits was about 10 ng/ml.

  16. Occurrence of chromosome- or plasmid-mediated aerobactin iron transport systems and hemolysin production among clonal groups of human invasive strains of Escherichia coli K1.

    PubMed

    Valvano, M A; Silver, R P; Crosa, J H

    1986-04-01

    The incidence of the aerobactin system and the genetic location of aerobactin genes were investigated in Escherichia coli K1 neonatal isolates belonging to different clonal groups. A functional aerobactin system was found in all members of the O7 MP3, O1 MP5, O1 MP9, and O18 MP9 clonal groups examined and also in K1 strains having O6, O16, and O75 lipopolysaccharide types, which are less frequently associated with neonatal infections. In contrast, the aerobactin system was not detected in strains from the O18 MP6 clone. The combined results of plasmid and colony hybridization experiments showed that the aerobactin genes were located on the chromosome in the majority (75%) of the aerobactin-producing K1 isolates, the genetic location of the aerobactin genes was closely correlated with the outer membrane protein profile rather than the O lipopolysaccharide type, the K1 strains harboring a chromosome-mediated aerobactin system did not possess colicin V genes, and five of six K1 isolates possessing a plasmid-borne aerobactin system contained colicin V genes which were located on the same plasmids carrying the aerobactin genes. The comparison of hemolysin production with possession of the aerobactin system in virulent clones of E. coli K1 strains showed that all of the aerobactin-producing strains from the O18 MP9 and O7 MP3 clonal groups did not synthesize hemolysin, whereas 11 of 12 aerobactin-nonproducing O18 MP6 isolates were hemolytic. Of the K1 strains examined, 92.5% possessed either the aerobactin system or the ability to produce hemolysin or both.

  17. Structural basis for pore-forming mechanism of staphylococcal α-hemolysin.

    PubMed

    Sugawara, Takaki; Yamashita, Daichi; Kato, Koji; Peng, Zhao; Ueda, Junki; Kaneko, Jun; Kamio, Yoshiyuki; Tanaka, Yoshikazu; Yao, Min

    2015-12-15

    Staphylococcal α-hemolysin (α-HL) is a β-barrel pore-forming toxin (PFT) expressed by Staphylococcus aureus. α-HL is secreted as a water-soluble monomeric protein, which binds to target membranes and forms membrane-inserted heptameric pores. To explore the pore-forming mechanism of α-HL in detail, we determined the crystal structure of the α-HL monomer and prepore using H35A mutant and W179A/R200A mutant, respectively. Although the overall structure of the monomer was similar to that of other staphylococcal PFTs, a marked difference was observed in the N-terminal amino latch, which bent toward the prestem. Moreover, the prestem was fastened by the cap domain with a key hydrogen bond between Asp45 and Tyr118. Prepore structure showed that the transmembrane region is roughly formed with flexibility, although the upper half of the β-barrel is formed appropriately. Structure comparison among monomer, prepore and pore revealed a series of motions, in which the N-terminal amino latch released upon oligomerization destroys its own key hydrogen bond between Asp45-Tyr118. This action initiated the protrusion of the prestem. Y118F mutant and the N-terminal truncated mutant markedly decreased in the hemolytic activity, indicating the importance of the key hydrogen bond and the N-terminal amino latch on the pore formation. Based on these observations, we proposed a dynamic molecular mechanism of pore formation for α-HL.

  18. INITIAL CHARACTERIZATION OF MONOCLONAL ANTIBODIES AGAINST THE FUNGAL HEMOLYSIN STACHYLYSIN FROM STACHYBOTRYS CHARTARUM

    EPA Science Inventory

    Stachybotrys chartarum is known to produce the hemolysin stachylysin and its detection in human serum has been proposed as a biomarker for exposure to the fungus. In this study we report the initial characterization of monoclonal antibodies (mAbs) against stachylysin and the dev...

  19. The amino acid sequences and activities of synergistic hemolysins from Staphylococcus cohnii.

    PubMed

    Mak, Pawel; Maszewska, Agnieszka; Rozalska, Malgorzata

    2008-10-01

    Staphylococcus cohnii ssp. cohnii and S. cohnii ssp. urealyticus are a coagulase-negative staphylococci considered for a long time as unable to cause infections. This situation changed recently and pathogenic strains of these bacteria were isolated from hospital environments, patients and medical staff. Most of the isolated strains were resistant to many antibiotics. The present work describes isolation and characterization of several synergistic peptide hemolysins produced by these bacteria and acting as virulence factors responsible for hemolytic and cytotoxic activities. Amino acid sequences of respective hemolysins from S. cohnii ssp. cohnii (named as H1C, H2C and H3C) and S. cohnii ssp. urealyticus (H1U, H2U and H3U) were identical. Peptides H1 and H3 possessed significant amino acid homology to three synergistic hemolysins secreted by Staphylococcus lugdunensis and to putative antibacterial peptide produced by Staphylococcus saprophyticus ssp. saprophyticus. On the other hand, hemolysin H2 had a unique sequence. All isolated peptides lysed red cells from different mammalian species and exerted a cytotoxic effect on human fibroblasts.

  20. In vitro activation of the hemolysin in Prevotella nigrescens ATCC 33563 and Prevotella intermedia ATCC 25611.

    PubMed

    Silva, Tarcília Aparecida; Noronha, Fátima Soares M; de Macêdo Farias, Luiz; Carvalho, Maria Auxiliadora R

    2004-01-01

    Hemolytic activity was evaluated in the putative periodontopathogens Prevotella intermedia and Prevotella nigrescens. Whole cells of both species present weak hemolytic activity evidenced only by solid media assays after 48 h of bacterial growth or after 5 h of interaction with erythrocytes at 37 degrees C in liquid assays. In this work we show that the use of crude extract allowed the detection of a higher hemolytic activity for P. intermedia, but surprisingly not for P. nigrescens. Incubation at 37 degrees C for 9 h, or treatment with trypsin or proteinase K, increased or exposed the hemolytic activity of P. intermedia and P. nigrescens crude extract, respectively. The activation process was inhibited by TLCK and PMSF but not by EDTA, E-64 or pepstatin A, indicating the serino-protease nature of the factor involved in activation of P. intermedia and P. nigrescens hemolysins. Both the buffer and the pH employed for cell fractionation influenced the activation of hemolysin, and the best results were obtained with Universal buffer at pH 8.0. The activated hemolysins acted optimally at pH 6.5 at 37 degrees C and the maximum hemolytic activity was detected at the early log phase of growth. The results of this study show for the first time a strong hemolytic activity for P. nigrescens and evidence of proteolytic activation of hemolysins produced by periodontopathogens.

  1. NIGERLYSINTM, HEMOLYSIN PRODUCED BY ASPERGILLUS NIGER, CAUSES LETHALITY OF PRIMARY RAT CORTICAL NEURONAL CELLS IN VITRO

    EPA Science Inventory

    Aspergillus niger produced a proteinaceous hemolysin, nigerlysinTM when incubated on sheep's blood agar at both 23° C and 37°C. Nigerlysin was purified from tryptic soy broth culture filtrate. Purified nigerlysin has a molecular weight of approximately 72 kDa, with an...

  2. Inflammatory lipid mediator generation elicited by viable hemolysin- forming Escherichia coli in lung vasculature

    PubMed Central

    1990-01-01

    Escherichia coli hemolysin, a transmembrane pore-forming exotoxin, is considered an important virulence factor for E. coli-related extraintestinal infections and sepsis. The possible significance of hemolysin liberation for induction of inflammatory lipid mediators was investigated in isolated rabbit lungs infused with viable bacteria (concentration range, 10(4)-10(7)/ml). Hemolysin-secreting E. coli (E. coli-Hly+), but not an E. coli strain that releases an inactive form of the exotoxin, induced marked lung leukotriene (LT) generation with predominance of cysteinyl LTs. Eicosanoid synthesis was not inhibited in the presence of plasma with toxin-neutralizing capacity. Pre- application of 2 x 10(8) human granulocytes, which sequestered in the lung microvasculature, caused a severalfold increase in leukotriene generation in response to E. coli-Hly+ challenge both in the absence and presence of plasma. Data are presented indicating neutrophil- endothelial cell cooperation in arachidonic acid lipoxygenase metabolism as an underlying mechanism. We conclude that liberation of hemolysin from viable E. coli induces marked lipid mediator generation in lung vasculature, which is potentiated in the presence of neutrophil sequestration and may contribute to microcirculatory disturbances during the course of severe infections. PMID:2120384

  3. Leukotriene and hydroxyeicosatetraenoic acid generation elicited by low doses of Escherichia coli hemolysin in rabbit lungs.

    PubMed Central

    Grimminger, F; Walmrath, D; Birkemeyer, R G; Bhakdi, S; Seeger, W

    1990-01-01

    Low doses of Escherichia coli hemolysin cause thromboxane-mediated hypertension and vascular leakage in blood-free perfused rabbit lungs (W. Seeger, H. Walter, N. Suttorp, M. Muhly, and S. Bhakdi, J. Clin. Invest. 84:220-227, 1989). The recirculating buffer medium and bronchoalveolar lavage fluid from lungs exposed to hemolysin (2.5 hemolytic units per ml) in the presence of cyclooxygenase inhibitor were analyzed for leukotrienes (LTs) and hydroxyeicosatetraenoic acids (HETEs) by reverse-phase and straight-phase high-pressure liquid chromatographic techniques combined with UV spectrum analysis and post-high-pressure liquid chromatography radioimmunoassay. A rapid release of large amounts of cysteinyl-LTs and leukotriene B4 (LTB4) into the intravascular space was noted (total sum, approximately 4 to 5 micrograms). Similar quantities have hitherto been elicited only by high concentrations of the artificial calcium ionophore A 23187. Moreover, a marked liberation of 5-HETE and 12-hydroxyheptadecatrienoic acid into the buffer medium occurred, whereas LTB4 represented the predominant compound in the lavage fluid. The hemolysin-induced burst of LT and HETE generation preceded the onset of vascular leakage. The outstanding capacity of E. coli hemolysin to produce the liberation of potent lipid mediators is probably relevant to the pathways of vascular injury and amplification of inflammatory events during severe infection with hemolytic E. coli strains. PMID:2115026

  4. Sclareol protects Staphylococcus aureus-induced lung cell injury via inhibiting alpha-hemolysin expression.

    PubMed

    Ouyang, Ping; Sun, Mao; He, Xuewen; Wang, Kaiyu; Yin, Zhongqiong; Fu, Hualin; Li, Yinglun; Geng, Yi; Shu, Gang; He, Changliang; Liang, Xiaoxia; Lai, Weiming; Li, Lixia; Zou, Yuanfeng; Song, Xu; Yin, Lizi

    2016-09-23

    Staphylococcus aureus (S. aureus) is a common Gram-positive bacterium that causes serious infections in human and animals. With the continuous emergence of the methicillin-resistant S. aureus (MRSA) strains, antibiotics have limited efficacy in treating MRSA infections. Accordingly, novel agents that act on new targets are desperately needed to combat these infections. S. aureus alpha-hemolysin plays an indispensable role in its pathogenicity. In this study, we demonstrate that sclareol, a fragrant chemical compound found in clary sage, can prominently decrease alpha-hemolysin secretion in S. aureus strain USA300 at sub-inhibitory concentrations. Hemolysis assays, western-blotting and RT-PCR were used to detect the production of alpha-hemolysin in the culture supernatant. When USA300 was co-cultured with and A549 epithelial cells, sclareol could protect A549 cells at a final concentration of 8 µg/ml. The protective capability of sclareol against the USA300-mediated injury of A549 cells was further shown by cytotoxicity assays and live/dead analysis. In conclusion, sclareol was shown to inhibit the production of S. aureus alpha-hemolysin. Sclareol has potential for development as a new agent to treat S. aureus infections.

  5. Prophylactic strategies for acute hemolysis secondary to plasma-incompatible platelet transfusions: correlation between qualitative hemolysin test and isohemagglutinin titration

    PubMed Central

    Landim, Cinthia Silvestre; Gomes, Francisco Carlos Almeida; Zeza, Bernardete Martin; Mendrone-Júnior, Alfredo; Dinardo, Carla Luana

    2015-01-01

    Objective Brazilian legislation has recently suggested the use of the qualitative hemolysin test instead of isohemagglutinin titers as prophylaxis for acute hemolysis related to plasma-incompatible platelet transfusions. The efficacy of this test in preventing hemolytic reactions has never been evaluated while isohemagglutinin titers have been extensively studied. The main objective of this study was to evaluate the correlation between the results of these two tests. The impact of each type of prophylaxis on the platelet inventory management and the ability of the qualitative hemolysin test to prevent red cell sensitization after the transfusion of incompatible units were also studied. Methods A total of 246 donor blood samples were evaluated using both isohemagglutinin titers and the qualitative hemolysin test, and the results were statistically compared. Subsequently, 600 platelet units were tested using the hemolysin assay and the percentage of units unsuitable for transfusion was compared to historical data using isohemagglutinin titers (cut-off: 100). Moreover, ten patients who received units with minor ABO incompatibilities that were negative for hemolysis according to the qualitative hemolysin test were evaluated regarding the development of hemolysis and red cell sensitization (anti-A or anti-B). Results Isohemagglutinin titration and the results of qualitative hemolysin test did not correlate. The routine implementation of the qualitative hemolysin test significantly increased the percentage of platelet units found unsuitable for transfusions (15–65%; p-value <0.001). Furthermore the qualitative hemolysin test did not prevent red blood cell sensitization in a small exploratory analysis. Conclusion Qualitative hemolysin test results do not correlate to those of isohemagglutinin titers and its implementation as the prophylaxis of choice for hemolysis associated with plasma-incompatible platelet transfusions lacks clinical support of safety and

  6. Secretion of Alpha-Hemolysin by Escherichia coli Disrupts Tight Junctions in Ulcerative Colitis Patients

    PubMed Central

    Mirsepasi-Lauridsen, Hengameh Chloé; Du, Zhengyu; Struve, Carsten; Charbon, Godefroid; Karczewski, Jurgen; Krogfelt, Karen Angeliki; Petersen, Andreas Munk; Wells, Jerry M

    2016-01-01

    Objectives: The potential of Escherichia coli (E. coli) isolated from inflammatory bowel disease (IBD) patients to damage the integrity of the intestinal epithelium was investigated. Methods: E. coli strains isolated from patients with ulcerative colitis (UC) and healthy controls were tested for virulence capacity by molecular techniques and cytotoxic assays and transepithelial electric resistance (TER). E. coli isolate p19A was selected, and deletion mutants were created for alpha-hemolysin (α-hemolysin) (hly) clusters and cytotoxic necrotizing factor type 1 (cnf1). Probiotic E. coli Nissle and pathogenic E. coli LF82 were used as controls. Results: E. coli strains from patients with active UC completely disrupted epithelial cell tight junctions shortly after inoculation. These strains belong to phylogenetic group B2 and are all α-hemolysin positive. In contrast, probiotic E. coli Nissle, pathogenic E. coli LF82, four E. coli from patients with inactive UC and three E. coli strains from healthy controls did not disrupt tight junctions. E. coli p19A WT as well as cnf1, and single loci of hly mutants from cluster I and II were all able to damage Caco-2 (Heterogeneous human epithelial colorectal adenocarcinoma) cell tight junctions. However, this phenotype was lost in a mutant with knockout (Δ) of both hly loci (P<0.001). Conclusions: UC-associated E. coli producing α-hemolysin can cause rapid loss of tight junction integrity in differentiated Caco-2 cell monolayers. This effect was abolished in a mutant unable to express α-hemolysin. These results suggest that high Hly expression may be a mechanism by which specific strains of E. coli pathobionts can contribute to epithelial barrier dysfunction and pathophysiology of disease in IBD. PMID:26938480

  7. Loss of hemolysin expression in Staphylococcus aureus agr mutants correlates with selective survival during mixed infections in murine abscesses and wounds.

    PubMed

    Schwan, William R; Langhorne, Michael H; Ritchie, Heather D; Stover, C Kendall

    2003-08-18

    During the screening of a Staphylococcus aureus signature-tagged mutagenesis library, it was noted that nonhemolytic bacteria became more abundant as time passed in murine abscess and wound models, but not within organ tissues associated with systemic infections. To examine this further, a mixed population of hyperhemolytic, hemolytic, and nonhemolytic S. aureus strain RN6390 cells were inoculated into mice using abscess, wound, and systemic models of infection. After 7 days in the abscess, the hyperhemolytic group markedly declined, whereas the nonhemolytic population increased significantly. A similar phenomenon occurred in murine wounds, but not during the systemic infection. Sequencing of several of the signature-tagged mutants indicated mutations in the agrC gene or within the agrA-agrC intergenic region. Both alpha-hemolysin and delta-hemolysin activity was curtailed in these mutants, but beta-hemolysin activity was unaffected. Single strain comparisons between wild-type strain 8325-4 and strain DU1090 (hla-) as well as between strain RN6911 (agr) and wild-type strain RN6390 were performed using the same three animal models of infection. The agr mutant strain and the hla mutant strain showed no difference in bacterial counts in murine wounds compared to their respective parent strains. The same held true in murine abscesses at day 4, but strain RN6911 counts then declined at day 7. Considerable clearing of the hla mutant strain and the agr mutant strain occurred in the systemic model of infection. Mixed infections with the DU1090 and 8325-4 strains in the abscess model showed a slight advantage given to the DU1090 population, but a distinct selection for the parental 8325-4 strain in the liver. These results suggest that agr mutations cause reductions in the expression of several secreted proteins, including alpha- and delta-hemolysin, which in turn contribute to a growth advantage of this agr mutant group within a mixed population of S. aureus cells residing

  8. Soft Wall Ion Channel in Continuum Representation with Application to Modeling Ion Currents in α-Hemolysin

    PubMed Central

    Simakov, Nikolay A.

    2010-01-01

    A soft repulsion (SR) model of short range interactions between mobile ions and protein atoms is introduced in the framework of continuum representation of the protein and solvent. The Poisson-Nernst-Plank (PNP) theory of ion transport through biological channels is modified to incorporate this soft wall protein model. Two sets of SR parameters are introduced: the first is parameterized for all essential amino acid residues using all atom molecular dynamic simulations; the second is a truncated Lennard – Jones potential. We have further designed an energy based algorithm for the determination of the ion accessible volume, which is appropriate for a particular system discretization. The effects of these models of short-range interaction were tested by computing current-voltage characteristics of the α-hemolysin channel. The introduced SR potentials significantly improve prediction of channel selectivity. In addition, we studied the effect of choice of some space-dependent diffusion coefficient distributions on the predicted current-voltage properties. We conclude that the diffusion coefficient distributions largely affect total currents and have little effect on rectifications, selectivity or reversal potential. The PNP-SR algorithm is implemented in a new efficient parallel Poisson, Poisson-Boltzman and PNP equation solver, also incorporated in a graphical molecular modeling package HARLEM. PMID:21028776

  9. Subinhibitory Concentrations of Thymol Reduce Enterotoxins A and B and α-Hemolysin Production in Staphylococcus aureus Isolates

    PubMed Central

    Xiang, Hua; Feng, Haihua; Jiang, Youshuai; Xia, Lijie; Dong, Jing; Lu, Jing; Yu, Lu; Deng, Xuming

    2010-01-01

    Background Targeting bacterial virulence factors is now gaining interest as an alternative strategy to develop new types of anti-infective agents. It has been shown that thymol, when used at low concentrations, can inhibit the TSST-1 secretion in Staphylococcus aureus. However, there are no data on the effect of thymol on the production of other exotoxins (e.g., α-hemolysin and enterotoxins) by S. aureus. Methodology/Principal Findings Secretion of α-hemolysin, SEA and SEB in both methicillin-sensitive and methicillin-resistant S. aureus isolates cultured with graded subinhibitory concentrations of thymol was detected by immunoblot analysis. Hemolysin and tumor necrosis factor (TNF) release assays were performed to elucidate the biological relevance of changes in α-hemolysin, SEA and SEB secretion induced by thymol. In addition, the influence of thymol on the transcription of hla, sea, and seb (the genes encoding α-hemolysin, SEA and SEB, respectively) was analyzed by quantitative RT-PCR. Thymol inhibited transcription of hla, sea and seb in S. aureus, resulting in a reduction of α-hemolysin, SEA and SEB secretion and, thus, a reduction in hemolytic and TNF-inducing activities. Conclusions/Significance Subinhibitory concentrations of thymol decreased the production of α-hemolysin, SEA and SEB in both MSSA and MRSA in a dose-dependent manner. These data suggest that thymol may be useful for the treatment of S. aureus infections when used in combination with β-lactams and glycopeptide antibiotics, which induce expression of α-hemolysin and enterotoxins at subinhibitory concentrations. Furthermore, the structure of thymol may potentially be used as a basic structure for development of drugs aimed against these bacterial virulence factors. PMID:20305813

  10. Cloning, expression, and mapping of the Staphylococcus aureus alpha-hemolysin determinant in Escherichia coli K-12.

    PubMed Central

    Kehoe, M; Duncan, J; Foster, T; Fairweather, N; Dougan, G

    1983-01-01

    A fragment of Staphylococcus aureus DNA encoding the alpha-hemolysin determinant was cloned from strain Wood 46 by inserting Sau3A-generated genomic DNA fragments between the BamHI sites of the lambda replacement vector L47.1. Phages expressing alpha-hemolysin were detected by overlaying plaques formed from several thousand independent recombinant phage with erythrocytes and looking for zones of hemolysis. One phage expressing alpha-hemolysin was purified and named lambda w alpha 3. This was subsequently shown to contain a 10.2-kilobase pair insert of S. aureus DNA. A 7.6-kilobase pair HindIII fragment encoding the alpha-hemolysin was subcloned from lambda w alpha 3 into the plasmid vector pACYC184 to form the hybrid plasmid pDU1148. Escherichia coli K-12 cells harboring pDU1148 synthesized a low level of alpha-hemolysin which remained associated with the cells and was not secreted into culture supernatants. When the same strain was stabbed onto blood agar plates, no zones of hemolysis were detected after overnight growth at 37 degrees C but hemolysis developed if the plates were left at room temperature for 48 h. By introducing specific deletions or Tn5 insertions into plasmid pDU1148, the alpha-hemolysin gene was mapped to a region within a 3.3-kilobase pair EcoRI-HindIII fragment which was subcloned onto the vector plasmid pBR322. A specific enzyme-linked immunosorbent assay with peroxidase-labeled rabbit anti-alpha-hemolysin antibodies was used to measure the levels of alpha-hemolysin antigen expressed in E. coli K-12 cells harboring pDU1148 or a variety of pDU1148::Tn5 and pDU1148 deletion mutants. PMID:6350179

  11. Soft-agar-coated filter method for early detection of viable and thermostable direct hemolysin (TDH)- or TDH-related hemolysin-producing Vibrio parahaemolyticus in seafood.

    PubMed

    Hayashi, Sachiko; Okura, Masatoshi; Osawa, Ro

    2006-07-01

    A novel method for detecting viable and thermostable direct hemolysin (TDH)-producing or TDH-related hemolysin (TRH)-producing Vibrio parahaemolyticus in seafood was developed. The method involved (i) enrichment culture, selective for viable, motile cells penetrating a soft-agar-coated filter paper, and (ii) a multiplex PCR assay targeting both the TDH gene (tdh) and TRH gene (trh) following DNase pretreatment on the test culture to eradicate any incidental DNAs that might have been released from dead cells of tdh- or trh-positive (tdh+ trh+) strains and penetrated the agar-coated filter. A set of preliminary laboratory tests performed on 190 ml of enrichment culture that had been inoculated simultaneously with ca. 100 viable cells of a strain of tdh+ trh+ V. parahaemolyticus and dense populations of a viable strain of tdh- and trh-negative V. parahaemolyticus or Vibrio alginolyticus indicated that the method detected the presence of viable tdh+ trh+ strains. Another set of preliminary tests on 190 ml of enrichment culture that had been initially inoculated with a large number of dead cells of the tdh+ trh+ strain together with dense populations of the tdh- and trh-negative strains confirmed that the method did not yield any false-positive results. Subsequent quasi-field tests using various seafood samples (ca. 20 g), each of which was experimentally contaminated with either or both hemolysin-producing strains at an initial density of ca. 5 to 10 viable cells per gram, demonstrated that contamination could be detected within 2 working days.

  12. Kinetics of T3-DNA Ligase-Catalyzed Phosphodiester Bond Formation Measured Using the α-Hemolysin Nanopore.

    PubMed

    Tan, Cherie S; Riedl, Jan; Fleming, Aaron M; Burrows, Cynthia J; White, Henry S

    2016-12-27

    The latch region of the wild-type α-hemolysin (α-HL) protein channel can be used to distinguish single base modifications in double-stranded DNA (dsDNA) via ion channel measurements upon electrophoretic capture of dsDNA in the vestibule of α-HL. Herein, we investigated the use of the latch region to detect a nick in the phosphodiester DNA backbone. The presence of a nick in the phosphodiester backbone of one strand of the duplex results in a significant increase in both the blockade current and noise level relative to the intact duplex. Differentiation between the nicked and intact duplexes based on blockade current or noise, with near baseline resolution, allows real-time monitoring of the rate of T3-DNA ligase-catalyzed phosphodiester bond formation. Under low ionic strength conditions containing divalent cations and a molecular crowding agent (75 mg mL(-1) PEG), the rate of enzyme-catalyzed reaction in the bulk solution was continuously monitored by electrophoretically capturing reaction substrate or product dsDNA in the α-HL protein channel vestibule. Enzyme kinetic results obtained from the nanopore experiments match those from gel electrophoresis under the same reaction conditions, indicating the α-HL nanopore measurement provides a viable approach for monitoring enzymatic DNA repair activity.

  13. ADAM10 Mediates Vascular Injury Induced by Staphylococcus aureus α-Hemolysin

    PubMed Central

    Powers, Michael E.; Kim, Hwan Keun; Wang, Yang

    2012-01-01

    Staphylococcus aureus is a leading cause of bacteremia and sepsis. The interaction of S. aureus with the endothelium is central to bloodstream infection pathophysiology yet remains ill-understood. We show herein that staphylococcal α-hemolysin, a pore-forming cytotoxin, is required for full virulence in a murine sepsis model. The α-hemolysin binding to its receptor A-disintegrin and metalloprotease 10 (ADAM10) upregulates the receptor’s metalloprotease activity on endothelial cells, causing vascular endothelial–cadherin cleavage and concomitant loss of endothelial barrier function. These cellular injuries and sepsis severity can be mitigated by ADAM10 inhibition. This study therefore provides mechanistic insight into toxin-mediated endothelial injury and suggests new therapeutic approaches for staphylococcal sepsis. PMID:22474035

  14. The Forgotten Virulence Factor: The 'non-conventional' Hemolysin TlyA And Its Role in Helicobacter pylori Infection.

    PubMed

    Javadi, Mohammad Bagher; Katzenmeier, Gerd

    2016-12-01

    Helicobacter pylori is a human-specific Gram-negative pathogenic bacterium which colonizes the gastric mucosal layer in the stomach causing diseases such as peptic ulcer, adenocarcinoma, and gastric lymphoma. It is estimated that approximately half of the world's population is infected with H. pylori making it the most intensively characterized microbial pathogen up to now. Hemolysis has been suggested to significantly contribute to colonization of the stomach and disease progression by H. pylori. In a number of earlier studies, TlyA was characterized as a putative pore-forming cytolysin. Although a few observations in the literature suggest a role for TlyA as significant virulence factor of H. pylori, the molecular and structural characterization of this protein is much curtailed at present. Given the intensive characterization of numerous H. pylori virulence factors over the past decade, surprisingly little information exists for the TlyA toxin and its significance for pathogenesis. This review provides a brief overview on microbial hemolysis and its role for pathogenesis and discusses recent research efforts aimed at an improved understanding of the role of the 'non-conventional' hemolysin and its associated RNA methyltransferase TlyA from H. pylori.

  15. Curcumin protects mice from Staphylococcus aureus pneumonia by interfering with the self-assembly process of α-hemolysin

    PubMed Central

    Wang, Jianfeng; Zhou, Xuan; Li, Wenhua; Deng, Xuming; Deng, Yanhong; Niu, Xiaodi

    2016-01-01

    α-hemolysin (Hla) is a self-assembling extracellular protein secreted as a soluble monomer by most Staphylococcus aureus strains and is an essential virulence factor for the pathogenesis of various S. aureus infections. Here, we show that curcumin (CUR), a natural compound with weak anti-S. aureus activity, can inhibit the hemolysis induced by Hla. Molecular dynamics simulations, free energy calculations, and mutagenesis assays were further employed for the Hla-CUR complex to determine the mechanism of such inhibition. The analysis of this combined approach indicated that the direct binding CUR to Hla blocks the conformational transition of Hla from the monomer to the oligomer, leading to an inhibition of Hla hemolytic activity. We also found that the addition of CUR significantly attenuated Hla-mediated injury of human alveolar cell (A549) co-cultured with S. aureus. The in vivo data further demonstrated that treatment with CUR protects mice from pneumonia caused by S. aureus, including methicillin-resistant strains (MRSA). These findings suggest that CUR inhibits the pore-forming activity of Hla through a novel mechanism, which would pave the way for the development of new and more effective antibacterial agents to combat S. aureus pneumonia. PMID:27345357

  16. Association of Vibrio parahaemolyticus thermostable direct hemolysin with lipid rafts is essential for cytotoxicity but not hemolytic activity.

    PubMed

    Matsuda, Shigeaki; Kodama, Toshio; Okada, Natsumi; Okayama, Kanna; Honda, Takeshi; Iida, Tetsuya

    2010-02-01

    Thermostable direct hemolysin (TDH), a major virulence factor of Vibrio parahaemolyticus, induces cytotoxicity in cultured cells. However, the mechanism of TDH's cytotoxic effect including its target molecules on the plasma membrane of eukaryotic cells remains unclear. In this study, we identified the role of lipid rafts, cholesterol- and sphingolipid-enriched microdomains, in TDH cytotoxicity. Treatment of cells with methyl-beta-cyclodextrin (MbetaCD), a raft-disrupting agent, inhibited TDH cytotoxicity. TDH was associated with detergent-resistant membranes (DRMs), and MbetaCD eliminated this association. In contrast, there was no such association between a nontoxic TDH mutant and DRMs. The disruption of lipid rafts neither affected hemolysis nor inhibited Ca(2+) influx into HeLa cells induced by TDH. These findings indicate that the cytotoxicity but not the hemolytic activity of TDH is dependent on lipid rafts. The exogenous and endogenous depletion of cellular sphingomyelin also prevented TDH cytotoxicity, but a direct interaction between TDH and sphingomyelin was not detected with either a lipid overlay assay or a liposome absorption test. Treatment with sphingomyelinase (SMase) at 100 mU/ml disrupted the association of TDH with DRMs but did not affect the localization of lipid raft marker proteins (caveolin-1 and flotillin-1) with DRMs. These results suggest that sphingomyelin is important for the association of TDH with lipid rafts but is not a molecular target of TDH. We hypothesize that TDH may target a certain group of rafts that are sensitive to SMase at a certain concentration, which does not affect other types of rafts.

  17. Importance of the carboxyl terminus in the folding and function of alpha-hemolysin of Staphylococcus aureus.

    PubMed

    Sangha, N; Kaur, S; Sharma, V; Krishnasastry, M V

    1999-04-02

    The physical state of two model mutants of alpha-hemolysin (alphaHL), alphaHL(1-289), a carboxyl-terminal deletion mutant (CDM), and alphaHL(1-331), a carboxyl-terminal extension mutant (CEM), were examined in detail to identify the role of the carboxyl terminus in the folding and function of native alphaHL. Denatured alphaHL can be refolded efficiently with nearly total recovery of its activity upon restoration of nondenaturing conditions. Various biophysical and biochemical studies on the three proteins have revealed the importance of an intact carboxyl terminus in the folding of alphaHL. The CDM exhibits a marked increase in susceptibility to proteases as compared with alphaHL. alphaHL and CEM exhibit similar fluorescence emission maxima, and that of the CDM is red-shifted by 9 nm, which indicates a greater solvent exposure of the tryptophan residues of the CDM. In addition, the CDM binds 8-anilino-1-naphthalene sulfonic acid (ANS) and increases its fluorescence intensity significantly unlike alphaHL and CEM, which show marginal binding. The circular dichroism studies point that the CDM possesses significant secondary structure, but its tertiary structure is greatly diminished as compared with alphaHL. These data show that the CDM has several of the features that characterize a molten globule state. Experiments with freshly translated mutants, using coupled in vitro transcription and translation, have further supported our observations that deletion at the carboxyl terminus leads to major structural perturbations in the water-soluble form of alphaHL. The studies demonstrate a critical role of the carboxyl terminus of alphaHL in attaining the native folded state.

  18. Demonstration and characterization of simultaneous production of a thermostable direct hemolysin (TDH/I) and a TDH-related hemolysin (TRHx) by a clinically isolated Vibrio parahaemolyticus strain, TH3766.

    PubMed

    Xu, M; Iida, T; Yamamoto, K; Takarada, Y; Miwatani, T; Honda, T

    1994-01-01

    Simultaneous production of a thermostable direct hemolysin (TDH)-like toxin (TDHx) and a TDH-related hemolysin (TRH)-like toxin (TRHx) by a clinical isolate (strain TH3766) of Kanagawa phenomenon-positive Vibrio parahaemolyticus was demonstrated and characterized. The two hemolysins were differentially purified by column chromatography on hydroxyapatite and immunoaffinity columns. The molecular weight of the two hemolysins were estimated to be 23,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE). The purified TDHx was indistinguishable from the previously reported TDH/I (from strain TH012) but was different from the authentic TDH of a Kanagawa phenomenon-positive strain (T4750) physicochemically. The mobility of TRHx in nondenaturing PAGE differed from all the known TDHs and TRHs. The genes (tdhX and trhX) coding for TDHx and TRHx were cloned and sequenced. Homologies of nucleotide sequences of the coding regions between tdhX and tdhA (a gene for the authentic TDH) and between trhX and trh (a gene for the authentic TRH) were 98.1 and 99.1%, respectively, and homology between tdhX and trhX was 68.1%. At the amino acid level, TdhX was completely identical to TDH/I, although two base differences were found in the nucleotide sequences between tdhX and tdh/I. Two amino acid differences were observed between TrhX and Trh. Thus, these findings suggest that the TH3766 strain produces two types of hemolysins simultaneously. This is the first evidence that a strain of V. parahaemolyticus produces two types of toxins of the TDH-TRH family at the same time.

  19. Staphylococcus aureus hijacks a skin commensal to intensify its virulence: immunization targeting β-hemolysin and CAMP factor.

    PubMed

    Lo, Chih-Wei; Lai, Yiu-Kay; Liu, Yu-Tsueng; Gallo, Richard L; Huang, Chun-Ming

    2011-02-01

    The need for a new anti-Staphylococcus aureus therapy that can effectively cripple bacterial infection, neutralize secretory virulence factors, and lower the risk of creating bacterial resistance is undisputed. Here, we propose what is, to our knowledge, a previously unreported infectious mechanism by which S. aureus may commandeer Propionibacterium acnes, a key member of the human skin microbiome, to spread its invasion and highlight two secretory virulence factors (S. aureus β-hemolysin and P. acnes CAMP (Christie, Atkins, Munch-Peterson) factor) as potential molecular targets for immunotherapy against S. aureus infection. Our data demonstrate that the hemolysis and cytolysis by S. aureus were noticeably augmented when S. aureus was grown with P. acnes. The augmentation was significantly abrogated when the P. acnes CAMP factor was neutralized or β-hemolysin of S. aureus was mutated. In addition, the hemolysis and cytolysis of recombinant β-hemolysin were markedly enhanced by recombinant CAMP factor. Furthermore, P. acnes exacerbated S. aureus-induced skin lesions in vivo. The combination of CAMP factor neutralization and β-hemolysin immunization cooperatively suppressed the skin lesions caused by coinfection of P. acnes and S. aureus. These observations suggest a previously unreported immunotherapy targeting the interaction of S. aureus with a skin commensal.

  20. Hemolysin-producing Listeria monocytogenes affects the immune response to T-cell-dependent and T-cell-independent antigens.

    PubMed Central

    Hage-Chahine, C M; Del Giudice, G; Lambert, P H; Pechere, J C

    1992-01-01

    A murine experimental infection with a hemolysin-producing (Hly+) strain of Listeria monocytogenes and a non-hemolysin-producing (Hly-) mutant was used as an in vivo model to evaluate the role of hemolysin production in the immune response. No antilisterial antibodies were detectable following sublethal infection with Hly+ bacteria, but consistent antilisterial immunoglobulin G (IgG) and IgM antibody production was observed following sublethal infection with the Hly- mutant. Hly+ but not Hly- L. monocytogenes induced transient inhibition of antibody response to Hly- bacteria and to unrelated T-cell-dependent (tetanus toxoid) and T-cell-independent (pneumococcal polysaccharide 3) antigens. Transient inhibition of the activation of an antigen-specific T-cell clone was also observed following Hly+ infection of antigen-presenting cells but not following Hly- infection. These results suggest that hemolysin production by L. monocytogenes is an important factor in modulating the immune response to T-cell-dependent and T-cell-independent antigens in infected individuals. Images PMID:1548067

  1. Impact of brief exposure to antifungal agents on the post-antifungal effect and hemolysin activity of oral Candida albicans

    PubMed Central

    ELLEPOLA, Arjuna Nishantha; KHAJAH, Rana; JAYATILAKE, Sumedha; SAMARANAYAKE, Lakshman; SHARMA, Prem; KHAN, Zia

    2015-01-01

    Post-antifungal effect (PAFE) of Candida and its production of hemolysin are determinants of candidal pathogenicity. Candida albicans is the foremost aetiological agent of oral candidosis, which can be treated with polyene, azole, and echinocandin antifungals. However, once administered, the intraoral concentrations of these drugs tend to be subtherapeutic and transient due to the diluent effect of saliva and cleansing effect of the oral musculature. Hence, intra-orally, Candida may undergo a brief exposure to antifungal drugs. Objective Therefore, the PAFE and hemolysin production of oral C. albicans isolates following brief exposure to sublethal concentrations of the foregoing antifungals were evaluated. Material and Methods A total of 50 C. albicans oral isolates obtained from smokers, diabetics, asthmatics using steroid inhalers, partial denture wearers and healthy individuals were exposed to sublethal concentrations of nystatin, amphotericin B, caspofungin, ketoconazole and fluconazole for 60 min. Thereafter, the drugs were removed and the PAFE and hemolysin production were determined by previously described turbidometric and plate assays, respectively. Results Nystatin, amphotericin B, caspofungin and ketoconazole induced mean PAFE (hours) of 2.2, 2.18, 2.2 and 0.62, respectively. Fluconazole failed to produce a PAFE. Hemolysin production of these isolates was suppressed with a percentage reduction of 12.27, 13.47, 13.33, 8.53 and 4.93 following exposure to nystatin, amphotericin B, caspofungin, ketoconazole and fluconazole, respectively. Conclusions Brief exposure to sublethal concentrations of antifungal drugs appears to exert an antifungal effect by interfering with the growth as well as hemolysin production of C. albicans. PMID:26398514

  2. Itraconazole-resistant Candida auris with phospholipase, proteinase and hemolysin activity from a case of vulvovaginitis.

    PubMed

    Kumar, Dharmendra; Banerjee, Tuhina; Pratap, Chandra Bhan; Tilak, Ragini

    2015-04-15

    Since the emergence of pathogenic non-albicans Candida species, a number of new isolates have been added to the list. One such unusual species is Candida auris (C. auris), recently isolated and studied in few reports. In this study, a case of vulvovaginitis caused by Candida auris incidentally identified by molecular methods using internal transcribed spacer polymerase chain reaction (ITS PCR) is described. Antifungal susceptibility testing revealed the isolate to be resistant to itraconazole (MIC ≥ 2 µg/ml) and expressed important virulence factors including phospholipase, proteinase and hemolysin activity. The patient was successfully treated with oral fluconazole and did not have any invasive fungemia. Very few cases of this emerging pathogen have been reported. However, its isolation from clinical specimens reveals the significance of non-albicans candida species over C. albicans and the diversity of Candida spp causing infections.

  3. Colony immunoblot assay for the detection of hemolysin BL enterotoxin producing Bacillus cereus.

    PubMed

    Moravek, Maximilian; Wegscheider, Monika; Schulz, Anja; Dietrich, Richard; Bürk, Christine; Märtlbauer, Erwin

    2004-09-01

    Bacillus cereus strains involved in food poisoning cases of the diarrheal type may produce two different enterotoxin complexes. To facilitate the identification of hemolysin BL-enterotoxin complex (HBL) and/or the nonhemolytic enterotoxin (NHE) producing colonies a colony immunoblot procedure was developed, which allows a fast and easy identification of the respective colonies from blood agar plates. The enterotoxins were transferred from the blood agar medium to a nitrocellulose membrane and the immobilized toxins were probed with monoclonal antibodies. The antibodies 2A3 and 1A8 allowed the specific detection of the B component of HBL and the nheA component of NHE. The assay enabled the reliable identification of HBL expressing colonies and differentiation from NHE producing but HBL negative colonies.

  4. Multi-isotype antibody responses against the multimeric Salmonella Typhi recombinant hemolysin E antigen.

    PubMed

    Ong, Eugene Boon Beng; Ignatius, Joshua; Anthony, Amy Amilda; Aziah, Ismail; Ismail, Asma; Lim, Theam Soon

    2015-01-01

    The detection and measurement of different antibody isotypes in the serum provide valuable indicators of the different stages of typhoid infection. Here, the ability of S. Typhi recombinant hemolysin E (HlyE) to detect multi-isotype antibody responses in sera of patients with typhoid and paratyphoid A was investigated using an indirect antibody immunoassay. Nanogram amounts of HlyE were found to be sufficient for detection of IgG and IgA isotypes and, in a study of individuals' sera (n = 100), the immunoassay was able to distinguish between typhoid and non-typhoid sera. The overall sensitivity, specificity and efficiency of the ELISA were 70% (39/56), 100% (44/44) and 83% respectively.

  5. Isorhamnetin Attenuates Staphylococcus aureus-Induced Lung Cell Injury by Inhibiting Alpha-Hemolysin Expression.

    PubMed

    Jiang, Lanxiang; Li, Hongen; Wang, Laiying; Song, Zexin; Shi, Lei; Li, Wenhua; Deng, Xuming; Wang, Jianfeng

    2016-03-01

    Staphylococcus aureus, like other gram-positive pathogens, has evolved a large repertoire of virulence factors as a powerful weapon to subvert the host immune system, among which alpha-hemolysin (Hla), a secreted pore-forming cytotoxin, plays a preeminent role. We observed a concentration-dependent reduction in Hla production by S. aureus in the presence of sub-inhibitory concentrations of isorhamnetin, a flavonoid from the fruits of Hippophae rhamnoides L., which has little antibacterial activity. We further evaluate the effect of isorhamnetin on the transcription of the Hla-encoding gene hla and RNAIII, an effector molecule in the agr system. Isorhamnetin significantly down-regulated RNAIII expression and subsequently inhibited hla transcription. In a co-culture of S. aureus and lung cells, topical isorhamnetin treatment protected against S. aureus-induced cell injury. Isorhamnetin may represent a leading compound for the development of anti-virulence drugs against S. aureus infections.

  6. Structure and Function of Thermostable Direct Hemolysin (TDH) from Vibrio Parahaemolyticus

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hiroshi; Yamane, Tsutomu; Ikeguchi, Mitsunori; Nakahira, Kumiko; Yanagihara, Itaru

    Thermostable direct hemolysin (TDH) is a major virulence factor of Vibrio parahaemolyticus that causes pandemic food-borne enterocolitis mediated by seafood. TDH exists as a tetramer in solution, and it possesses extreme hemolytic activity. Here, we present the crystal structure of the TDH tetramer at 1.5 Å resolution. The TDH tetramer forms a central pore with dimensions of 23 Å in diameter and ∼50 Å in depth. π-cation interactions between protomers comprising the tetramer were indispensable for hemolytic activity of TDH. The N-terminal region was intrinsically disordered outside the pore. Molecular dynamics (MD) simulations suggested that water molecules permeate freely through the central and side channel pores. These findings imply a novel membrane attachment mechanism by a soluble tetrameric pore-forming toxin.

  7. Orientation discrimination of single-stranded DNA inside the α-hemolysin membrane channel

    NASA Astrophysics Data System (ADS)

    Mathé, Jérôme; Aksimentiev, Aleksei; Nelson, David R.; Schulten, Klaus; Meller, Amit

    2005-08-01

    We characterize the voltage-driven motion and the free motion of single-stranded DNA (ssDNA) molecules captured inside the ≈1.5-nm α-hemolysin pore, and show that the DNA-channel interactions depend strongly on the orientation of the ssDNA molecules with respect to the pore. Remarkably, the voltage-free diffusion of the 3‧-threaded DNA (in the trans to cis direction) is two times slower than the corresponding 5‧-threaded DNA having the same poly(dA) sequence. Moreover, the ion currents flowing through the blocked pore with either a 3‧-threaded DNA or 5‧ DNA differ by ≈30%. All-atom molecular dynamics simulations of our system reveal a microscopic mechanism for the asymmetric behavior. In a confining pore, the ssDNA straightens and its bases tilt toward the 5‧ end, assuming an asymmetric conformation. As a result, the bases of a 5‧-threaded DNA experience larger effective friction and forced reorientation that favors co-passing of ions. Our results imply that the translocation process through a narrow pore is more complicated than previously believed and involves base tilting and stretching of ssDNA molecules inside the confining pore. Author contributions: K.S. and A.M. designed research; J.M., A.A., D.R.N., K.S., and A.M. performed research; J.M., A.A., and A.M. analyzed data; J.M., A.A., D.R.N., K.S., and A.M. wrote the paper; A.A. and K.S. performed molecular dynamics simulations; and D.R.N. performed calculations.This paper was submitted directly (Track II) to the PNAS office.Abbreviations: α-HL, α-hemolysin MD, molecular dynamics; ssDNA, single-stranded DNA.

  8. Proteus virulence: involvement of the pore forming alpha-hemolysin (a short review).

    PubMed

    Tóth, V; Emódy, L

    2000-01-01

    The genus Proteus belongs to the tribe of Proteae in the family of Enterobacteriaceae, and consists of five species: P. mirabilis, P. vulgaris, P. morganii, P. penneri and P. myxofaciens. They are distinguished from the rest of Enterobacteriaceae by their ability to deaminate phenylalanine and tryptophane. They hydrolyze urea and gelatin and fail to ferment lactose, mannose, dulcitol and malonate; and do not form lysine and arginine decarboxylase or beta-galactosidase [1]. Colonies produce distinct "burned chocolate" odor and frequently show the characteristics of swarming motility on solid media. P. mirabilis, P. vulgaris and P. morganii are widely recognized human pathogens. They have been isolated from urinary tract infections, wounds, ear, and nosocomial bacteremic infections, often in immuncompromised patients [2-6]. P. myxofaciens has no clinical interest to this time. P. penneri as species nova was nominated by the recommendation of Hickman and co-workers [7]. Formerly it was recognized as P. vulgaris biogroup 1 or indole negative P. vulgaris [8, 9]. Although it has been less commonly isolated from clinical samples than the other three human pathogenic Proteus species, it has nevertheless been connected with infections of the urinary tract, wounds and has been isolated from the feces of both healthy and diarrheic individuals [10-12]. Potential virulence factors responsible for virulence of Proteae are: IgA protease, urease, type3 fimbriae associated with MR/K haemagglutinins of at least two antigenic types, endotoxin, swarming motility and HlyA and/or HpmA type hemolysins [for review see ref. 13]. In the followings we give a survey of accumulated concepts about the position and characteristics of HlyA type alpha-hemolysins both in general and with emphasis on virulence functions in the tribe of Proteae.

  9. Hemolysin and K antigens in relation to serotype and hemagglutination type of Escherichia coli isolated from extraintestinal infections.

    PubMed Central

    Evans, D J; Evans, D G; Höhne, C; Noble, M A; Haldane, E V; Lior, H; Young, L S

    1981-01-01

    Escherichia coli isolated from cases of bacteremia and from a variety of urinary tract infections were characterized according to serotype (O:H antigenicity), K type (possession of K1, K2, K3, K12, or K13), hemagglutination (HA) type, and production of beta-hemolysin. Results obtained with the bacteremia and urinary tract infection isolates were similar except for more hemolytic isolated from urine than from blood (42 versus 29%) and more K1+ isolates from blood than from urine (50 versus 29%). A close correlation was found between Ha type VI (production of fimbriae which mediate mannose-resistant HA of human and African green monkey erythrocytes) and the production of hemolysin or K1 capsular antigen or both. Most (95 of 98, or 95%) of the HA type VI+ blood isolates and most (146 of 164, or 89%) of the HA type VI+ urine isolates produced hemolysin or K1 or both, in contrast to 22 and 26%, respectively, of those belonging to HA types other than HA type VI. Also, 76% of all hemolytic and 70% of all K1+ isolates belonged to HA type VI. Remarkably few of the HA type VI+ isolates (13%) and even fewer of the HA type VI- isolates (3%) produced both K1 and hemolysin; these belonged mainly to serotypes O16:H6, O18:H7 and O2:H4. Other major serogroups were usually K1+/hemolysin- (O1, O7) or K1-/hemolysin+ (O2, O4, O6). At least 74% (262 of 351) and possibly as many as 83% (293 of 351) of those isolates which produced mannose-resistant HA of human erythrocytes were classified as HA type VI+; 31 isolates produced mannose-resistant HA with all erythrocytes tested. Taking serogroup and serotype into consideration, we conclude that the E. coli fimbrial hemagglutinin(s) responsible for the HA type VI phenotype will prove to be the same as the virulence-associated mannose-resistant adhesins of uropathogenic E. coli which other investigators have characterized as unique fimbrial antigens detectable by mannose-resistant HA of human erythrocytes. PMID:7007421

  10. Phenotypic and genotypic comparisons reveal a broad distribution and heterogeneity of hemolysin BL genes among Bacillus cereus isolates.

    PubMed

    Thaenthanee, Suwicha; Wong, Amy C Lee; Panbangred, Watanalai

    2005-11-25

    The presence of hemolysin BL (HBL; components L(2), L(1), and B)-encoding genes (hblC, hblD, and hblA) from 339 Bacillus cereus strains isolated in Thailand was determined. PCR analysis showed that all three hbl genes were detected in 222 strains (65.5%). Two, one or no hbl genes were detected in 3 (0.9%), 6 (1.8%), and 108 (31.8%) strains, respectively. Among the 222 strains in which all three hbl genes were detected, 210 (61.9%) displayed discontinuous hemolysis (DH) characteristic of HBL producers, while 12 (3.5%) showed continuous hemolysis (CH) on sheep blood agar. Among strains in which none of the hbl genes was detected, 97 (28.6%) displayed CH while 11 (3.2%) did not show hemolytic activity. Three strains in which two hbl genes were detected showed CH. hblC was present in five of six strains where only one hbl gene was detected, and all of them (designated SS-00-15, TG-00-06, TG-00-14, F-00-25, and NR-01-49) showed DH. The HpaII restriction profiles of PCR fragments amplified from the hblC-A region in these five strains using hblC forward (FHC) and hblA reverse (RHA(2)) primers displayed heterogeneous patterns, which indicated sequence variation. Western blot analysis using polyclonal antibodies (Pab) raised against HBL components purified from strain F837/76 showed that three of the five strains produced all three components, whereas strain TG-00-06 did not give a signal for any component, and strain TG-00-14 produced B and L(1) but not L(2). The production of L(2) by these five strains was further analyzed using the Oxoid RPLA test. Three strains gave high titers (>64) whereas strains TG-00-06 and TG-00-14 showed lower titers of 16 and 32, respectively. The data show that HBL-encoding genes are widely distributed among B. cereus isolated in Thailand and there is a high degree of heterogeneity in both the genes and proteins. This is the first report of a B. cereus strain showing DH in which all three hbl genes and their proteins were not detected by both

  11. Temperature and Electrolyte Optimization of the α-Hemolysin Latch Sensing Zone for Detection of Base Modification in Double-Stranded DNA

    PubMed Central

    Johnson, Robert P.; Fleming, Aaron M.; Jin, Qian; Burrows, Cynthia J.; White, Henry S.

    2014-01-01

    The latch region of the wild-type protein pore α-hemolysin (α-HL) constitutes a sensing zone for individual abasic sites (and furan analogs) in double-stranded DNA (dsDNA). The presence of an abasic site or furan within a DNA duplex, electrophoretically captured in the α-HL vestibule and positioned at the latch region, can be detected based on the current blockage prior to duplex unzipping. We investigated variations in blockage current as a function of temperature (12–35°C) and KCl concentration (0.15–1.0 M) to understand the origin of the current signature and to optimize conditions for identifying the base modification. In 1 M KCl solution, substitution of a furan for a cytosine base in the latch region results in an ∼8 kJ mol−1 decrease in the activation energy for ion transport through the protein pore. This corresponds to a readily measured ∼2 pA increase in current at room temperature. Optimal resolution for detecting the presence of a furan in the latch region is achieved at lower KCl concentrations, where the noise in the measured blockage current is significantly lower. The noise associated with the blockage current also depends on the stability of the duplex (as measured from the melting temperature), where a greater noise in the measured blockage current is observed for less stable duplexes. PMID:25140427

  12. Temperature and electrolyte optimization of the α-hemolysin latch sensing zone for detection of base modification in double-stranded DNA.

    PubMed

    Johnson, Robert P; Fleming, Aaron M; Jin, Qian; Burrows, Cynthia J; White, Henry S

    2014-08-19

    The latch region of the wild-type protein pore α-hemolysin (α-HL) constitutes a sensing zone for individual abasic sites (and furan analogs) in double-stranded DNA (dsDNA). The presence of an abasic site or furan within a DNA duplex, electrophoretically captured in the α-HL vestibule and positioned at the latch region, can be detected based on the current blockage prior to duplex unzipping. We investigated variations in blockage current as a function of temperature (12-35°C) and KCl concentration (0.15-1.0 M) to understand the origin of the current signature and to optimize conditions for identifying the base modification. In 1 M KCl solution, substitution of a furan for a cytosine base in the latch region results in an ∼ 8 kJ mol(-1) decrease in the activation energy for ion transport through the protein pore. This corresponds to a readily measured ∼ 2 pA increase in current at room temperature. Optimal resolution for detecting the presence of a furan in the latch region is achieved at lower KCl concentrations, where the noise in the measured blockage current is significantly lower. The noise associated with the blockage current also depends on the stability of the duplex (as measured from the melting temperature), where a greater noise in the measured blockage current is observed for less stable duplexes.

  13. Antibody-Forming Cells and Serum Hemolysin Responses of Pastel and Sapphire Mink Inoculated with Aleutian Disease Virus

    PubMed Central

    Lodmell, Donald L.; Bergman, R. Kaye; Hadlow, William J.

    1973-01-01

    The effect of Aleutian disease virus (ADV) on serum hemolysin titers and antibody-forming cells in lymph nodes and spleens of sapphire and pastel mink inoculated with goat erythrocytes (G-RBC) was investigated. ADV injected 1 day after primary antigenic stimulation with G-RBC did not depress the immune responses of either color phase for a period of 26 days. However, when G-RBC were injected 47 days after ADV, both the number of antibody-forming cells and hemolysin titers were more markedly depressed in sapphire than in pastel mink. The results are discussed in relation to the greater susceptibility of sapphire mink and the variable susceptibility of pastel mink to the Pullman isolate of ADV. PMID:4584051

  14. Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh.

    PubMed

    Bej, A K; Patterson, D P; Brasher, C W; Vickery, M C; Jones, D D; Kaysner, C A

    1999-06-01

    Vibrio parahaemolyticus is an important human pathogen which can cause gastroenteritis when consumed in raw or partially-cooked seafood. A multiplex PCR amplification-based detection of total and virulent strains of V. parahaemolyticus was developed by targeting thermolabile hemolysin encoded by tl, thermostable direct hemolysin encoded by tdh, and thermostable direct hemolysin-related trh genes. Following optimization using oligonucleotide primers targeting tl, tdh and trh genes, the multiplex PCR was applied to V. parahaemolyticus from 27 clinical, 43 seafood, 15 environmental, 7 strains obtained from various laboratories and 19 from oyster plants. All 111 V. parahaemolyticus isolates showed PCR amplification of the tl gene; however, only 60 isolates showed amplification of tdh, and 43 isolates showed amplification of the trh gene. Also, 18 strains showed amplification of the tdh gene, but these strains did not show amplification of the trh gene. However, one strain exhibited amplification for the trh but not the tdh gene, suggesting both genes need to be targeted in a PCR amplification reaction to detect all hemolysin-producing strains of this pathogen. The multiplex PCR approach was successfully used to detect various strains of V parahaemolyticus in seeded oyster tissue homogenate. Sensitivity of detection for all three target gene segments was at least between 10(1)-10(2) cfu per 10 g of alkaline peptone water enriched seeded oyster tissue homogenate. This high level of sensitivity of detection of this pathogen within 8 h of pre-enrichment is well within the action level (10(4) cfu per 1 g of shell stock) suggested by the National Seafood Sanitation Program guideline. Compared to conventional microbiological culture methods, this multiplex PCR approach is rapid and reliable for accomplishing a comprehensive detection of V. parahaemolyticus in shellfish.

  15. Hyperexpression of α-hemolysin explains enhanced virulence of sequence type 93 community-associated methicillin-resistant Staphylococcus aureus

    PubMed Central

    2014-01-01

    Background The community-associated methicillin-resistant S. aureus (CA-MRSA) ST93 clone is becoming dominant in Australia and is clinically highly virulent. In addition, sepsis and skin infection models demonstrate that ST93 CA-MRSA is the most virulent global clone of S. aureus tested to date. While the determinants of virulence have been studied in other clones of CA-MRSA, the basis for hypervirulence in ST93 CA-MRSA has not been defined. Results Here, using a geographically and temporally dispersed collection of ST93 isolates we demonstrate that the ST93 population hyperexpresses key CA-MRSA exotoxins, in particular α-hemolysin, in comparison to other global clones. Gene deletion and complementation studies, and virulence comparisons in a murine skin infection model, showed unequivocally that increased expression of α-hemolysin is the key staphylococcal virulence determinant for this clone. Genome sequencing and comparative genomics of strains with divergent exotoxin profiles demonstrated that, like other S. aureus clones, the quorum sensing agr system is the master regulator of toxin expression and virulence in ST93 CA-MRSA. However, we also identified a previously uncharacterized AraC/XylS family regulator (AryK) that potentiates toxin expression and virulence in S. aureus. Conclusions These data demonstrate that hyperexpression of α-hemolysin mediates enhanced virulence in ST93 CA-MRSA, and additional control of exotoxin production, in particular α-hemolysin, mediated by regulatory systems other than agr have the potential to fine-tune virulence in CA-MRSA. PMID:24512075

  16. Functional Contributions of Positive Charges in the Pore-Lining Helix 3 of the Bordetella pertussis CyaA-Hemolysin to Hemolytic Activity and Ion-Channel Opening

    PubMed Central

    Kurehong, Chattip; Kanchanawarin, Chalermpol; Powthongchin, Busaba; Prangkio, Panchika; Katzenmeier, Gerd; Angsuthanasombat, Chanan

    2017-01-01

    The Bordetella pertussis CyaA-hemolysin (CyaA-Hly) domain was previously demonstrated to be an important determinant for hemolysis against target erythrocytes and ion-channel formation in planar lipid bilayers (PLBs). Here, net-charge variations in the pore-lining helix of thirteen related RTX cytolysins including CyaA-Hly were revealed by amino acid sequence alignments, reflecting their different degrees of hemolytic activity. To analyze possible functional effects of net-charge alterations on hemolytic activity and channel formation of CyaA-Hly, specific mutations were made at Gln574 or Glu581 in its pore-lining α3 of which both residues are highly conserved Lys in the three highly active RTX cytolysins (i.e., Escherichia coli α-hemolysin, Actinobacillus pleuropneumoniae toxin, and Aggregatibacter actinomycetemcomitans leukotoxin). All six constructed CyaA-Hly mutants that were over-expressed in E. coli as 126 kDa His-tagged soluble proteins were successfully purified via immobilized Ni2+-affinity chromatography. Both positive-charge substitutions (Q574K, Q574R, E581K, E581R) and negative-charge elimination (E581Q) appeared to increase the kinetics of toxin-induced hemolysis while the substitution with a negatively-charged side-chain (Q574E) completely abolished its hemolytic activity. When incorporated into PLBs under symmetrical conditions (1.0 M KCl, pH 7.4), all five mutant toxins with the increased hemolytic activity produced clearly-resolved single channels with higher open probability and longer lifetime than the wild-type toxin, albeit with a half decrease in their maximum conductance. Molecular dynamics simulations for 50 ns of a trimeric CyaA-Hly pore model comprising three α2-loop-α3 transmembrane hairpins revealed a significant role of the positive charge at both target positions in the structural stability and enlarged diameter of the simulated pore. Altogether, our present data have disclosed functional contributions of positively-charged side

  17. Functional Contributions of Positive Charges in the Pore-Lining Helix 3 of the Bordetella pertussis CyaA-Hemolysin to Hemolytic Activity and Ion-Channel Opening.

    PubMed

    Kurehong, Chattip; Kanchanawarin, Chalermpol; Powthongchin, Busaba; Prangkio, Panchika; Katzenmeier, Gerd; Angsuthanasombat, Chanan

    2017-03-16

    The Bordetella pertussis CyaA-hemolysin (CyaA-Hly) domain was previously demonstrated to be an important determinant for hemolysis against target erythrocytes and ion-channel formation in planar lipid bilayers (PLBs). Here, net-charge variations in the pore-lining helix of thirteen related RTX cytolysins including CyaA-Hly were revealed by amino acid sequence alignments, reflecting their different degrees of hemolytic activity. To analyze possible functional effects of net-charge alterations on hemolytic activity and channel formation of CyaA-Hly, specific mutations were made at Gln(574) or Glu(581) in its pore-lining α3 of which both residues are highly conserved Lys in the three highly active RTX cytolysins (i.e., Escherichia coli α-hemolysin, Actinobacillus pleuropneumoniae toxin, and Aggregatibacter actinomycetemcomitans leukotoxin). All six constructed CyaA-Hly mutants that were over-expressed in E. coli as 126 kDa His-tagged soluble proteins were successfully purified via immobilized Ni(2+)-affinity chromatography. Both positive-charge substitutions (Q574K, Q574R, E581K, E581R) and negative-charge elimination (E581Q) appeared to increase the kinetics of toxin-induced hemolysis while the substitution with a negatively-charged side-chain (Q574E) completely abolished its hemolytic activity. When incorporated into PLBs under symmetrical conditions (1.0 M KCl, pH 7.4), all five mutant toxins with the increased hemolytic activity produced clearly-resolved single channels with higher open probability and longer lifetime than the wild-type toxin, albeit with a half decrease in their maximum conductance. Molecular dynamics simulations for 50 ns of a trimeric CyaA-Hly pore model comprising three α2-loop-α3 transmembrane hairpins revealed a significant role of the positive charge at both target positions in the structural stability and enlarged diameter of the simulated pore. Altogether, our present data have disclosed functional contributions of positively

  18. Substrate-triggered recruitment of the TolC channel-tunnel during type I export of hemolysin by Escherichia coli.

    PubMed

    Balakrishnan, L; Hughes, C; Koronakis, V

    2001-10-26

    A defining event in type I export of hemolysin by Escherichia coli is the substrate-triggered recruitment of the TolC channel-tunnel by an inner membrane complex. This complex comprises a traffic ATPase (HlyB) and the 478 residue adaptor protein (HlyD), which contacts TolC during recruitment. HlyD has a large periplasmic domain (amino acid residues 81-478) linked by a single transmembrane helix to a small N-terminal cytosolic domain (1-59). Export was disabled by deletion of the ca 60 amino acid residue cytosolic domain of HlyD, even though the truncated HlyD (HlyDDelta45) was, like the wild-type, able to trimerise in the cytosolic membrane, and interact with the traffic ATPase. The mutant HlyB/HlyDDelta45 inner membrane complex engaged the hemolysin substrate, but this substrate-engaged complex failed to trigger recruitment of TolC. Further analyses showed that HlyDDelta45 was specifically unable to bind the substrate. The result suggests that substrate engagement by the traffic ATPase alone is insufficient to trigger TolC recruitment, and that substrate binding to the HlyD cytosolic domain is essential. Analysis of three further N-terminal deletion variants, HlyDDelta26, HlyDDelta26-45 and HlyDDelta34-38, indicated that an extreme N-terminal amphipathic helix and a cytosolic cluster of charged residues are central to the cytosolic domain function. The cytosolic amphipathic helix was not essential for substrate engagement or TolC recruitment, but export was impaired without it. In contrast, when the charged amino acid residues were deleted, the substrate was still engaged by HlyD but engagement was unproductive, i.e. TolC recruitment was not triggered. Our results are compatible with the HlyD cytosolic domain mediating transduction of the substrate binding signal directly, presumably to the HlyD periplasmic domain, to trigger recruitment of TolC and assemble the type I export complex.

  19. Serodiagnosis of Acute Typhoid Fever in Nigerian Pediatric Cases by Detection of Serum IgA and IgG Against Hemolysin E and Lipopolysaccharide.

    PubMed

    Davies, D Huw; Jain, Aarti; Nakajima, Rie; Liang, Li; Jasinskis, Algis; Supnet, Medalyn; Felgner, Philip L; Teng, Andy; Pablo, Jozelyn; Molina, Douglas M; Obaro, Stephen K

    2016-08-03

    Inexpensive, easy-to-use, and highly sensitive diagnostic tests are currently unavailable for typhoid fever. To identify candidate serodiagnostic markers, we have probed microarrays displaying the full Salmonella enterica serovar Typhi (S. Typhi) proteome of 4,352 different proteins + lipopolysaccharides (LPSs), with sera from Nigerian pediatric typhoid and other febrile cases, Nigerian healthy controls, and healthy U.S. adults. Nigerian antibody profiles were broad (∼500 seropositive antigens) and mainly low level, with a small number of stronger "hits," whereas the profile in U.S. adults was < 1/5 as broad, consistent with endemic exposure in Nigeria. Nigerian profiles were largely unaffected by clinical diagnosis, although the response against t1477 (hemolysin E) consistently emerged as stronger in typhoid cases. The response to LPS was also a strong discriminator of healthy controls and typhoid, although LPS did not discriminate between typhoid and nontyphoidal Salmonella (NTS) disease. As a first step toward the development of a point-of-care diagnostic, t1477 and LPS were evaluated on immunostrips. Both provided good discrimination between healthy controls and typhoid/NTS disease. Such a test could provide a useful screen for salmonellosis (typhoid and NTS disease) in suspected pediatric cases that present with undefined febrile disease.

  20. Membrane-Pore Forming Characteristics of the Bordetella pertussis CyaA-Hemolysin Domain.

    PubMed

    Kurehong, Chattip; Kanchanawarin, Chalermpol; Powthongchin, Busaba; Katzenmeier, Gerd; Angsuthanasombat, Chanan

    2015-04-30

    Previously, the 126-kDa Bordetella pertussis CyaA pore-forming/hemolysin (CyaA-Hly) domain was shown to retain its hemolytic activity causing lysis of susceptible erythrocytes. Here, we have succeeded in producing, at large quantity and high purity, the His-tagged CyaA-Hly domain over-expressed in Escherichia coli as a soluble hemolytically-active form. Quantitative assays of hemolysis against sheep erythrocytes revealed that the purified CyaA-Hly domain could function cooperatively by forming an oligomeric pore in the target cell membrane with a Hill coefficient of ~3. When the CyaA-Hly toxin was incorporated into planar lipid bilayers (PLBs) under symmetrical conditions at 1.0 M KCl, 10 mM HEPES buffer (pH 7.4), it produced a clearly resolved single channel with a maximum conductance of ~35 pS. PLB results also revealed that the CyaA-Hly induced channel was unidirectional and opened more frequently at higher negative membrane potentials. Altogether, our results first provide more insights into pore-forming characteristics of the CyaA-Hly domain as being the major pore-forming determinant of which the ability to induce such ion channels in receptor-free membranes could account for its cooperative hemolytic action on the target erythrocytes.

  1. Pore formation of thermostable direct hemolysin secreted from Vibrio parahaemolyticus in lipid bilayers.

    PubMed

    Takahashi, Akira; Yamamoto, Chiyo; Kodama, Toshio; Yamashita, Kanami; Harada, Nagakatsu; Nakano, Masayuki; Honda, Takeshi; Nakaya, Yutaka

    2006-01-01

    Vibrio parahaemolyticus secretes thermostable direct hemolysin (TDH), a major virulence factor. Earlier studies report that TDH is a pore-forming toxin. However, the characteristics of pores formed by TDH in the lipid bilayer, which is permeable to small ions, remain to be elucidated. Ion channel-like activities were observed in lipid bilayers containing TDH. Three types of conductance were identified. All the channels displayed relatively low ion selectivity, and similar ion permeability. The Cl- channel inhibitors, DIDS, glybenclamide, and NPPB, did not affect the channel activity of pores formed by TDH. R7, a mutant toxin of TDH, also forms pores with channel-like activity in lipid bilayers. The ion permeability of these channels is similar to that of TDH. R7 binds cultured cells and liposomes to a lower extent, compared to TDH. R7 does not display significant hemolytic activity and cell cytotoxicity, possibly owing to the difficulty of insertion into lipid membranes. Once R7 is assembled within lipid membranes, it may assume the same structure as TDH. The authors propose that the single glycine at position 62, substituted with serine in the R7 mutant toxin, plays an important role in TDH insertion into the lipid bilayer.

  2. Potential antitumor therapeutic application of Grimontia hollisae thermostable direct hemolysin mutants.

    PubMed

    Huang, Sheng-Cih; Wang, Yu-Kuo; Huang, Wan-Ting; Kuo, Tsam-Ming; Yip, Bak-Sau; Li, Tien-Hsiung Thomas; Wu, Tung-Kung

    2015-04-01

    We report on the preparation of a new type of immunotoxin by conjugation of an epidermal growth factor receptor (EGFR)-binding peptide and an R46E mutation of thermostable direct hemolysin from Grimontia hollisae, (Gh-TDH(R) (46E) /EB). The hybrid immunotoxin was purified to homogeneity and showed a single band with slight slower mobility than that of Gh-TDH(R) (46E) . Cytotoxicity assay of Gh-TDH(R) (46E) /EB on EGFR highly, moderately, low, and non-expressed cells, A431, MDA-MB-231, HeLa, and HEK293 cells, respectively, showed apparent cytotoxicity on A431 and MDA-MB-231 cells but not on HeLa or HEK293 cells. In contrast, no cytotoxicity was observed for these cells treated with either Gh-TDH(R) (46E) or EB alone, indicating enhanced cytotoxic efficacy of Gh-TDH(R) (46E) by the EGFR binding moiety. Further antitumor activity assay of Gh-TDH(R) (46E) /EB in a xenograft model of athymic nude mice showed obvious shrinkage of tumor size and degeneration, necrosis, and lesions of tumor tissues compared to the normal tissues. Therefore, the combination of Gh-TDH(R) (46E) with target affinity agents opens new possibilities for pharmacological treatment of cancers and potentiates the anticancer drug's effect.

  3. Driven diffusion against electrostatic or effective energy barrier across α-hemolysin

    SciTech Connect

    Ansalone, Patrizio; Chinappi, Mauro; Rondoni, Lamberto; Cecconi, Fabio

    2015-10-21

    We analyze the translocation of a charged particle across an α-Hemolysin (αHL) pore in the framework of a driven diffusion over an extended energy barrier generated by the electrical charges of the αHL. A one-dimensional electrostatic potential is extracted from the full 3D solution of the Poisson’s equation. We characterize the particle transport under the action of a constant forcing by studying the statistics of the translocation time. We derive an analytical expression of translocation time average that compares well with the results from Brownian dynamic simulations of driven particles over the electrostatic potential. Moreover, we show that the translocation time distributions can be perfectly described by a simple theory which replaces the true barrier by an equivalent structureless square barrier. Remarkably, our approach maintains its accuracy also for low-applied voltage regimes where the usual inverse-Gaussian approximation fails. Finally, we discuss how the comparison between the simulated time distributions and their theoretical prediction results to be greatly simplified when using the notion of the empirical Laplace transform technique.

  4. Imperatorin inhibits the expression of alpha-hemolysin in Staphylococcus aureus strain BAA-1717 (USA300).

    PubMed

    Ouyang, Ping; Chen, Junjie; Sun, Mao; Yin, Zhongqiong; Lin, Juchun; Fu, Hualin; Shu, Gang; He, Changliang; Lv, Cheng; Deng, Xuming; Wang, Kaiyu; Geng, Yi; Yin, Lizi

    2016-07-01

    Both community-associated and hospital-acquired infections with methicillin-resistant Staphylococcus aureus (MRSA) have been increasingly reported around the world in the past 20 years. In 2006, the Centers for Disease Control and Prevention reported that 64 % of MRSA isolates were of the USA300 clonal type in infected patients in USA. The aim of our study was to estimate the in vitro effect of imperatorin on MRSA strain BAA-1717 (USA300). The effects of imperatorin on alpha-hemolysin (Hla) production, when strain BAA-1717 was co-cultured with sub-inhibitory concentrations of imperatorin, were analysed using susceptibility testing, hemolysis assays, western blotting and real-time PCR. Live/Dead analysis and cytotoxicity assays were employed to examine the protective effect of imperatorin against the strain BAA-1717-mediated injury of human alveolar epithelial cells (A549). The results showed that imperatorin has no anti-S. aureus activity at the tested concentrations in vitro. However, imperatorin can observably inhibit the production of Hla in culture supernatants and reduce the transcriptional levels of hla (the gene encoding Hla) and arg (the accessory gene regulator). Imperatorin prevented Hla-mediated A549 epithelial cell injury in a co-culture system. In conclusion, our results suggested that imperatorin has the potential to be developed as a new anti-virulence drug candidate for managing S. aureus infection.

  5. Interaction of the noncovalent molecular adapter, beta-cyclodextrin, with the staphylococcal alpha-hemolysin pore.

    PubMed Central

    Gu, L Q; Bayley, H

    2000-01-01

    Cyclodextrins act as noncovalent molecular adapters when lodged in the lumen of the alpha-hemolysin (alphaHL) pore. The adapters act as binding sites for channel blockers, thereby offering a basis for the detection of a variety of organic molecules with alphaHL as a biosensor element. To further such studies, it is important to find conditions under which the dwell time of cyclodextrins in the lumen of the pore is extended. Here, we use single-channel recording to explore the pH- and voltage-dependence of the interaction of beta-cyclodextrin (betaCD) with alphaHL. betaCD can access its binding site only from the trans entrance of pores inserted from the cis side of a bilayer. Analysis of the binding kinetics shows that there is a single binding site for betaCD, with an apparent equilibrium dissociation constant that varies by >100-fold under the conditions explored. The dissociation rate constant for the neutral betaCD molecule varies with pH and voltage, a result that is incompatible with two states of the alphaHL pore, one of high and the other of low affinity. Rather, the data suggest that the actual equilibrium dissociation constant for the alphaHL. betaCD complex varies continuously with the transmembrane potential. PMID:11023901

  6. Fluctuating bottleneck model studies on kinetics of DNA escape from α-hemolysin nanopores.

    PubMed

    Bian, Yukun; Wang, Zilin; Chen, Anpu; Zhao, Nanrong

    2015-11-14

    We have proposed a fluctuation bottleneck (FB) model to investigate the non-exponential kinetics of DNA escape from nanometer-scale pores. The basic idea is that the escape rate is proportional to the fluctuating cross-sectional area of DNA escape channel, the radius r of which undergoes a subdiffusion dynamics subjected to fractional Gaussian noise with power-law memory kernel. Such a FB model facilitates us to obtain the analytical result of the averaged survival probability as a function of time, which can be directly compared to experimental results. Particularly, we have applied our theory to address the escape kinetics of DNA through α-hemolysin nanopores. We find that our theoretical framework can reproduce the experimental results very well in the whole time range with quite reasonable estimation for the intrinsic parameters of the kinetics processes. We believe that FB model has caught some key features regarding the long time kinetics of DNA escape through a nanopore and it might provide a sound starting point to study much wider problems involving anomalous dynamics in confined fluctuating channels.

  7. Exploring transmembrane transport through alpha-hemolysin with grid-steered molecular dynamics.

    PubMed

    Wells, David B; Abramkina, Volha; Aksimentiev, Aleksei

    2007-09-28

    The transport of biomolecules across cell boundaries is central to cellular function. While structures of many membrane channels are known, the permeation mechanism is known only for a select few. Molecular dynamics (MD) is a computational method that can provide an accurate description of permeation events at the atomic level, which is required for understanding the transport mechanism. However, due to the relatively short time scales accessible to this method, it is of limited utility. Here, we present a method for all-atom simulation of electric field-driven transport of large solutes through membrane channels, which in tens of nanoseconds can provide a realistic account of a permeation event that would require a millisecond simulation using conventional MD. In this method, the average distribution of the electrostatic potential in a membrane channel under a transmembrane bias of interest is determined first from an all-atom MD simulation. This electrostatic potential, defined on a grid, is subsequently applied to a charged solute to steer its permeation through the membrane channel. We apply this method to investigate permeation of DNA strands, DNA hairpins, and alpha-helical peptides through alpha-hemolysin. To test the accuracy of the method, we computed the relative permeation rates of DNA strands having different sequences and global orientations. The results of the G-SMD simulations were found to be in good agreement in experiment.

  8. Driven diffusion against electrostatic or effective energy barrier across α-hemolysin

    NASA Astrophysics Data System (ADS)

    Ansalone, Patrizio; Chinappi, Mauro; Rondoni, Lamberto; Cecconi, Fabio

    2015-10-01

    We analyze the translocation of a charged particle across an α-Hemolysin (αHL) pore in the framework of a driven diffusion over an extended energy barrier generated by the electrical charges of the αHL. A one-dimensional electrostatic potential is extracted from the full 3D solution of the Poisson's equation. We characterize the particle transport under the action of a constant forcing by studying the statistics of the translocation time. We derive an analytical expression of translocation time average that compares well with the results from Brownian dynamic simulations of driven particles over the electrostatic potential. Moreover, we show that the translocation time distributions can be perfectly described by a simple theory which replaces the true barrier by an equivalent structureless square barrier. Remarkably, our approach maintains its accuracy also for low-applied voltage regimes where the usual inverse-Gaussian approximation fails. Finally, we discuss how the comparison between the simulated time distributions and their theoretical prediction results to be greatly simplified when using the notion of the empirical Laplace transform technique.

  9. Probing Peptide and Protein Insertion in a Biomimetic S-Layer Supported Lipid Membrane Platform

    PubMed Central

    Damiati, Samar; Schrems, Angelika; Sinner, Eva-Kathrin; Sleytr, Uwe B.; Schuster, Bernhard

    2015-01-01

    The most important aspect of synthetic lipid membrane architectures is their ability to study functional membrane-active peptides and membrane proteins in an environment close to nature. Here, we report on the generation and performance of a biomimetic platform, the S-layer supported lipid membrane (SsLM), to investigate the structural and electrical characteristics of the membrane-active peptide gramicidin and the transmembrane protein α-hemolysin in real-time using a quartz crystal microbalance with dissipation monitoring in combination with electrochemical impedance spectroscopy. A shift in membrane resistance is caused by the interaction of α-hemolysin and gramicidin with SsLMs, even if only an attachment onto, or functional channels through the lipid membrane, respectively, are formed. Moreover, the obtained results did not indicate the formation of functional α-hemolysin pores, but evidence for functional incorporation of gramicidin into this biomimetic architecture is provided. PMID:25633104

  10. Pleiotropic effects of a mutation in rfaC on Escherichia coli hemolysin.

    PubMed Central

    Bauer, M E; Welch, R A

    1997-01-01

    Several genes involved in the lipopolysaccharide (LPS) biosynthetic pathway have been shown to affect the expression or activity of Escherichia coli hemolysin (Hly), a secreted cytotoxin that is the prototype of the RTX family of toxins. To further study this relationship, E. coli K-12 strains harboring mutations in the LPS biosynthetic genes rfaS, rfaQ, rfaJ, rfaP, and rfaC were transformed with a recombinant plasmid harboring the hlyCABD operon and examined for their effects on extracellular expression and hemolytic activity. A mutation in rfaC that affected both extracellular expression and activity of Hly was studied in greater detail. This mutation led to a growth-phase-dependent decrease up to 16-fold in the steady-state level of extracellular HlyA, although transcription and secretion of HlyA were decreased no more than 2-fold. Specific hemolytic activity in toxin produced from the rfaC mutant strain was significantly reduced, in a growth-phase-dependent manner. With the rfaC gene supplied in trans, both the decreased expression and activity of Hly were restored to wild-type levels. Hly from the rfaC mutant strain exhibited much slower kinetics of hemolysis, a more rapid rate of decay of activity, and greater formation of apparently inactive HlyA-containing aggregates in culture supernatants than was exhibited in the wild-type strain. A model is proposed for a physical interaction between LPS and Hly in which LPS with intact inner core participates in forming or maintaining an active conformation of Hly and helps to protect it from aggregation or degradation. PMID:9169754

  11. Python erythrocytes are resistant to α-hemolysin from Escherichia coli.

    PubMed

    Larsen, Casper K; Skals, Marianne; Wang, Tobias; Cheema, Muhammad U; Leipziger, Jens; Praetorius, Helle A

    2011-12-01

    α-Hemolysin (HlyA) from Escherichia coli lyses mammalian erythrocytes by creating nonselective cation pores in the membrane. Pore insertion triggers ATP release and subsequent P2X receptor and pannexin channel activation. Blockage of either P2X receptors or pannexin channels reduces HlyA-induced hemolysis. We found that erythrocytes from Python regius and Python molurus are remarkably resistant to HlyA-induced hemolysis compared to human and Trachemys scripta erythrocytes. HlyA concentrations that induced maximal hemolysis of human erythrocytes did not affect python erythrocytes, but increasing the HlyA concentration 40-fold did induce hemolysis. Python erythrocytes were more resistant to osmotic stress than human erythrocytes, but osmotic stress tolerance per se did not confer HlyA resistance. Erythrocytes from T. scripta, which showed higher osmotic resistance than python erythrocytes, were as susceptible to HlyA as human erythrocytes. Therefore, we tested whether python erythrocytes lack the purinergic signalling known to amplify HlyA-induced hemolysis in human erythrocytes. P. regius erythrocytes increased intracellular Ca²⁺ concentration and reduced cell volume when exposed to 3 mM ATP, indicating the presence of a P2X₇-like receptor. In addition, scavenging extracellular ATP or blocking P2 receptors or pannexin channels reduced the HlyA-induced hemolysis. We tested whether the low HlyA sensitivity resulted from low affinity of HlyA to the python erythrocyte membrane. We found comparable incorporation of HlyA into human and python erythrocyte membranes. Taken together, the remarkable HlyA resistance of python erythrocytes was not explained by increased osmotic resistance, lack of purinergic hemolysis amplification, or differences in HlyA affinity.

  12. Rapid and specific detection of the thermostable direct hemolysin gene in Vibrio parahaemolyticus by loop-mediated isothermal amplification.

    PubMed

    Nemoto, Jiro; Sugawara, Chiyo; Akahane, Kenji; Hashimoto, Keiji; Kojima, Tadashi; Ikedo, Masanari; Konuma, Hirotaka; Hara-Kudo, Yukiko

    2009-04-01

    Several investigators have reported that thermostable direct hemolysin (TDH) and TDH-related hemolysin are important virulence factors of Vibrio parahaemolyticus, but it has been difficult to detect these factors rapidly in seafood and other environmental samples. A novel nucleic acid amplification method, termed the loop-mediated isothermal amplification (LAMP), which amplifies DNA with high specificity and rapidity under isothermal conditions, was applied. In this study, we designed tdh gene-specific LAMP primers for detection of TDH-producing V. parahaemolyticus. The specificity of this assay was evaluated with 32 strains of TDH-producing V. parahaemolyticus, one strain of TDH-producing Grimontia hollisae, 10 strains of TDH-nonproducing V. parahaemolyticus, and 94 strains of TDH-nonproducing bacteria, and the sensitivity was high enough to detect one cell per test. Moreover, to investigate the detection of TDH-producing V. parahaemolyticus in oysters, the LAMP assay was performed with enrichment culture in alkaline peptone water of oyster samples inoculated with TDH-producing V. parahaemolyticus and TDH-nonproducing V. parahaemolyticus and V. alginolyticus after enrichment in alkaline peptone water. These results suggest that the LAMP assay targeting tdh gene has high sensitivity and specificity and is useful to detect TDH-producing V. parahaemolyticus in oyster after enrichment.

  13. The Staphylococcal Toxins γ-Hemolysin AB and CB Differentially Target Phagocytes by Employing Specific Chemokine Receptors

    PubMed Central

    Spaan, András N.; Vrieling, Manouk; Wallet, Pierre; Badiou, Cédric; Reyes-Robles, Tamara; Ohneck, Elizabeth A.; Benito, Yvonne; de Haas, Carla J.C.; Day, Christopher J.; Jennings, Michael P.; Lina, Gérard; Vandenesch, François; van Kessel, Kok P.M.; Torres, Victor J.; van Strijp, Jos A.G.; Henry, Thomas

    2014-01-01

    Evasion of the host phagocyte response by Staphylococcus aureus is crucial to successful infection with the pathogen. γ-Hemolysin AB and CB (HlgAB, HlgCB) are bicomponent pore-forming toxins present in almost all human S. aureus isolates. Cellular tropism and contribution of the toxins to S. aureus pathophysiology are poorly understood. Here, we identify the chemokine receptors CXCR1, CXCR2 and CCR2 as targets for HlgAB, and the complement receptors C5aR and C5L2 as targets for HlgCB. The receptor expression patterns allow the toxins to efficiently and differentially target phagocytic cells. Murine neutrophils are resistant to HlgAB and HlgCB. CCR2 is the sole murine receptor orthologue compatible with γ-Hemolysin. In a murine peritonitis model, HlgAB contributes to S. aureus bacteremia in a CCR2-dependent manner. HlgAB-mediated targeting of CCR2+ cells highlights the involvement of inflammatory macrophages during S. aureus infection. Functional quantification identifies HlgAB and HlgCB as major secreted staphylococcal leukocidins. PMID:25384670

  14. Evaluation of an immunochromatographic assay for direct identification of thermostable direct hemolysin-producing Vibrio parahaemolyticus colonies on selective agar plates.

    PubMed

    Kawatsu, Kentaro; Sakata, Junko; Yonekita, Taro; Kumeda, Yuko

    2015-12-01

    We evaluated the utility of an immunochromatographic assay (NH IC TDH) in identifying thermostable direct hemolysin (TDH)-producing Vibrio parahaemolyticus colonies on selective agar plates. The sensitivity of the NH IC TDH assay was 100% (189 samples) and its specificity was 100% (41 samples) compared with the presence of tdh.

  15. Synergistic and Additive Effects of Chromosomal and Plasmid-Encoded Hemolysins Contribute to Hemolysis and Virulence in Photobacterium damselae subsp. damselae

    PubMed Central

    Rivas, Amable J.; Balado, Miguel; Lemos, Manuel L.

    2013-01-01

    Photobacterium damselae subsp. damselae causes infections and fatal disease in marine animals and in humans. Highly hemolytic strains produce damselysin (Dly) and plasmid-encoded HlyA (HlyApl). These hemolysins are encoded by plasmid pPHDD1 and contribute to hemolysis and virulence for fish and mice. In this study, we report that all the hemolytic strains produce a hitherto uncharacterized chromosome-encoded HlyA (HlyAch). Hemolysis was completely abolished in a single hlyAch mutant of a plasmidless strain and in a dly hlyApl hlyAch triple mutant. We found that Dly, HlyApl, and HlyAch are needed for full hemolytic values in strains harboring pPHDD1, and these values are the result of the additive effects between HlyApl and HlyAch, on the one hand, and of the synergistic effect of Dly with HlyApl and HlyAch, on the other hand. Interestingly, Dly-producing strains produced synergistic effects with strains lacking Dly production but secreting HlyA, constituting a case of the CAMP (Christie, Atkins, and Munch-Petersen) reaction. Environmental factors such as iron starvation and salt concentration were found to regulate the expression of the three hemolysins. We found that the contributions, in terms of the individual and combined effects, of the three hemolysins to hemolysis and virulence varied depending on the animal species tested. While Dly and HlyApl were found to be main contributors in the virulence for mice, we observed that the contribution of hemolysins to virulence for fish was mainly based on the synergistic effects between Dly and either of the two HlyA hemolysins rather than on their individual effects. PMID:23798530

  16. Bacteria differentially induce degradation of Bcl-xL, a survival protein, by human platelets

    PubMed Central

    Kraemer, Bjoern F.; Campbell, Robert A.; Schwertz, Hansjörg; Franks, Zechariah G.; Vieira de Abreu, Adriana; Grundler, Katharina; Kile, Benjamin T.; Dhakal, Bijaya K.; Rondina, Matthew T.; Kahr, Walter H. A.; Mulvey, Matthew A.; Blaylock, Robert C.; Zimmerman, Guy A.

    2012-01-01

    Bacteria can enter the bloodstream in response to infectious insults. Bacteremia elicits several immune and clinical complications, including thrombocytopenia. A primary cause of thrombocytopenia is shortened survival of platelets. We demonstrate that pathogenic bacteria induce apoptotic events in platelets that include calpain-mediated degradation of Bcl-xL, an essential regulator of platelet survival. Specifically, bloodstream bacterial isolates from patients with sepsis induce lateral condensation of actin, impair mitochondrial membrane potential, and degrade Bcl-xL protein in platelets. Bcl-xL protein degradation is enhanced when platelets are exposed to pathogenic Escherichia coli that produce the pore-forming toxin α-hemolysin, a response that is markedly attenuated when the gene is deleted from E coli. We also found that nonpathogenic E coli gain degrading activity when they are forced to express α-hemolysin. Like α-hemolysin, purified α-toxin readily degrades Bcl-xL protein in platelets, as do clinical Staphylococcus aureus isolates that produce α-toxin. Inhibition of calpain activity, but not the proteasome, rescues Bcl-xL protein degradation in platelets coincubated with pathogenic E coli including α-hemolysin producing strains. This is the first evidence that pathogenic bacteria can trigger activation of the platelet intrinsic apoptosis program and our results suggest a new mechanism by which bacterial pathogens might cause thrombocytopenia in patients with bloodstream infections. PMID:23086749

  17. Analysis of the thermostable direct hemolysin (tdh) gene and the tdh-related hemolysin (trh) genes in urease-positive strains of Vibrio parahaemolyticus isolated on the West Coast of the United States.

    PubMed

    Okuda, J; Ishibashi, M; Abbott, S L; Janda, J M; Nishibuchi, M

    1997-08-01

    Urease-positive (Ure+) and urease-negative (Ure-) strains of Vibrio parahaemolyticus isolated from patients on the West Coast of the United States between 1979 and 1995 were analyzed for the thermostable direct hemolysin (tdh) gene and the tdh-related hemolysin (trh) genes (trh1 and trh2). The DNA colony hybridization method with the polynucleotide probes was used to determine the distribution of the genes. Of 60 Ure+ strains, 59 strains (98%) had the trh (either trh1 or trh2) gene and 54 strains (90%) carried the tdh gene. The absence of the trh gene or a related sequence in an exceptional Ure+ strain was confirmed by Southern blot analyses. The stronger correlation with the trh gene than with the tdh gene was mostly attributable to strains possessing only the trh2 gene. Of 25 Ure- strains, 20 strains (80%) had the tdh gene but none had the trh gene. These results indicate a very strong correlation between the Ure+ phenotype and the trh gene and are consistent with those reported for strains isolated in Asia. The Ure+ strains carrying the trh genes were not restricted to a unique group of the strains. The O4:K12 strains carrying the trh1 gene have predominantly been isolated since 1979. However, strains of various non-O4:K12 serovars carrying either the trh1 or the trh2 gene became predominant after 1992. In addition, analysis by the arbitrarily primed PCR method revealed two subgroups within the selected Ure+ O4:K12 strains. Hybridization tests with oligonucleotide probes demonstrated that the trh1 sequences of the West Coast strains differ to some extent from those of Asian strains. Nevertheless, a PCR method previously established to detect both the trh1 and the trh2 genes in Asian strains could detect 98% of those genes in the West Coast strains.

  18. [Distribution of thermostable direct hemolysin (TDH)- and TDH-related hemolysin (TRH)-producing Vibrio parahaemolyticus in coastal Shimane Prefecture and TDH and TRH V parahaemolyticus contamination of retail shellfish].

    PubMed

    Fukushima, Hiroshi

    2007-03-01

    We studied distribution of thermostable direct hemolysin (TDH)- and TDH-related hemolysin (TRH)-producing Vibrio parahaemolyticus in coastal sea water, sediment, and shellfish and related retail shellfish contamination in Shimane Prefecture, Japan, between 2002 and 2004. V. parahaemolyticus was isolated from > 80% of sea water, sediment, and shellfish. The detection of TDH gene (tdh) and TRH gene (trh)-positive V parahaemolyticus in sea water was 11%, in sediment 16%, and in shellfish 26%. The number of genes and gene-related in seawater was 23 MPN/L, in sediment 29 MPN/100 g, and in shellfish 460 MPN/10 g. TDH- and TRH-producing V. parahaemolyticus detected in seawater was 5%, in sediment 11% and in shellfish 14%. The continuous distribution of TDH-producing O2:K28, O4:K88, O4:K37, and O4:KUT organisms on the western coast and TRH2-producing O5:k30, O5:K43, O10:K19, O10:KUT, O11:K40, O11:KUT, and OUT:KUT organisms on the Oki Island coast suggested the settlement of these organisms in these coastal environments. From 7 (12%) of 59 retail short-necked clam samples, we isolated TDH-producing O 1:KUT, O3:K6 (2 strains from 2 samples imported from Korea), O4:K12, OUT:K8, and TRH2-producing OUT:K40 and OUT:K51 organisms. These findings suggested that TDH- and TRH-producing V. parahaemolyticus are widely distributed along the coast of this prefecture and are transported by contaminated retail shellfish from other areas.

  19. The deletion of several amino acid stretches of Escherichia coli alpha-hemolysin (HlyA) suggests that the channel-forming domain contains beta-strands.

    PubMed

    Benz, Roland; Maier, Elke; Bauer, Susanne; Ludwig, Albrecht

    2014-01-01

    Escherichia coli α-hemolysin (HlyA) is a pore-forming protein of 110 kDa belonging to the family of RTX toxins. A hydrophobic region between the amino acid residues 238 and 410 in the N-terminal half of HlyA has previously been suggested to form hydrophobic and/or amphipathic α-helices and has been shown to be important for hemolytic activity and pore formation in biological and artificial membranes. The structure of the HlyA transmembrane channel is, however, largely unknown. For further investigation of the channel structure, we deleted in HlyA different stretches of amino acids that could form amphipathic β-strands according to secondary structure predictions (residues 71-110, 158-167, 180-203, and 264-286). These deletions resulted in HlyA mutants with strongly reduced hemolytic activity. Lipid bilayer measurements demonstrated that HlyAΔ71-110 and HlyAΔ264-286 formed channels with much smaller single-channel conductance than wildtype HlyA, whereas their channel-forming activity was virtually as high as that of the wildtype toxin. HlyAΔ158-167 and HlyAΔ180-203 were unable to form defined channels in lipid bilayers. Calculations based on the single-channel data indicated that the channels generated by HlyAΔ71-110 and HlyAΔ264-286 had a smaller size (diameter about 1.4 to 1.8 nm) than wildtype HlyA channels (diameter about 2.0 to 2.6 nm), suggesting that in these mutants part of the channel-forming domain was removed. Osmotic protection experiments with erythrocytes confirmed that HlyA, HlyAΔ71-110, and HlyAΔ264-286 form defined transmembrane pores and suggested channel diameters that largely agreed with those estimated from the single-channel data. Taken together, these results suggest that the channel-forming domain of HlyA might contain β-strands, possibly in addition to α-helical structures.

  20. The Deletion of Several Amino Acid Stretches of Escherichia coli Alpha-Hemolysin (HlyA) Suggests That the Channel-Forming Domain Contains Beta-Strands

    PubMed Central

    Benz, Roland; Maier, Elke; Bauer, Susanne; Ludwig, Albrecht

    2014-01-01

    Escherichia coli α-hemolysin (HlyA) is a pore-forming protein of 110 kDa belonging to the family of RTX toxins. A hydrophobic region between the amino acid residues 238 and 410 in the N-terminal half of HlyA has previously been suggested to form hydrophobic and/or amphipathic α-helices and has been shown to be important for hemolytic activity and pore formation in biological and artificial membranes. The structure of the HlyA transmembrane channel is, however, largely unknown. For further investigation of the channel structure, we deleted in HlyA different stretches of amino acids that could form amphipathic β-strands according to secondary structure predictions (residues 71–110, 158–167, 180–203, and 264–286). These deletions resulted in HlyA mutants with strongly reduced hemolytic activity. Lipid bilayer measurements demonstrated that HlyAΔ71–110 and HlyAΔ264–286 formed channels with much smaller single-channel conductance than wildtype HlyA, whereas their channel-forming activity was virtually as high as that of the wildtype toxin. HlyAΔ158–167 and HlyAΔ180–203 were unable to form defined channels in lipid bilayers. Calculations based on the single-channel data indicated that the channels generated by HlyAΔ71–110 and HlyAΔ264–286 had a smaller size (diameter about 1.4 to 1.8 nm) than wildtype HlyA channels (diameter about 2.0 to 2.6 nm), suggesting that in these mutants part of the channel-forming domain was removed. Osmotic protection experiments with erythrocytes confirmed that HlyA, HlyAΔ71–110, and HlyAΔ264–286 form defined transmembrane pores and suggested channel diameters that largely agreed with those estimated from the single-channel data. Taken together, these results suggest that the channel-forming domain of HlyA might contain β-strands, possibly in addition to α-helical structures. PMID:25463653

  1. Expression of Bacteroides fragilis hemolysins in vivo and role of HlyBA in an intra-abdominal infection model.

    PubMed

    Lobo, Leandro A; Jenkins, Audrey L; Jeffrey Smith, C; Rocha, Edson R

    2013-04-01

    Bacteroides fragilis is the most frequent opportunistic pathogen isolated from anaerobic infections. However, there is a paucity of information regarding the genetic and molecular aspects of gene expression of its virulence factors during extra-intestinal infections. A potential virulence factor that has received little attention is the ability of B. fragilis to produce hemolysins. In this study, an implanted perforated table tennis "ping-pong" ball was used as an intra-abdominal artificial abscess model in the rat. This procedure provided sufficient infected exudate for gene expression studies in vivo. Real-time reverse transcription polymerase chain reaction (RT-PCR) was used to quantify the relative expression of hlyA, hlyB, hlyC, hlyD, hlyE, hlyF, hlyG, and hlyIII mRNAs. The hlyA mRNA was induced approximately sixfold after 4 days postinfection compared with the mRNA levels in the inoculum culture prior to infection. The hlyB mRNA increased approximately sixfold after 4 days and 12-fold after 8 days postinfection. Expression of hlyC mRNA increased sixfold after 1 day, 45-fold after 4 days, and 16-fold after 8 days postinfection, respectively. The hlyD and hlyE mRNAs were induced approximately 40-fold and 30-fold, respectively, after 4-days postinfection. The hlyF expression increased approximately threefold after 4-days postinfection. hlyG was induced approximately fivefold after 4 and 8 days postinfection. The hlyIII mRNA levels had a steady increase of approximately four-, eight-, and 12-fold following 1, 4, and 8 days postinfection, respectively. These findings suggest that B. fragilis hemolysins are induced and differentially regulated in vivo. Both parent and hlyBA mutant strains reached levels of approximately 3-8 × 10(9) cfu/mL after 1 day postinfection. However, the hlyBA mutant strain lost 2 logs in viable cell counts compared with the parent strain after 8 days postinfection. This is the first study showing HlyBA is a virulence factor which plays a

  2. Adaptation of the Endogenous Salmonella enterica Serovar Typhi clyA-Encoded Hemolysin for Antigen Export Enhances the Immunogenicity of Anthrax Protective Antigen Domain 4 Expressed by the Attenuated Live-Vector Vaccine Strain CVD 908-htrA

    PubMed Central

    Galen, James E.; Zhao, Licheng; Chinchilla, Magaly; Wang, Jin Yuan; Pasetti, Marcela F.; Green, Jeffrey; Levine, Myron M.

    2004-01-01

    Bacterial live-vector vaccines aim to deliver foreign antigens to the immune system and induce protective immune responses, and surface-expressed or secreted antigens are generally more immunogenic than cytoplasmic constructs. We hypothesize that an optimum expression system will use an endogenous export system to avoid the need for large amounts of heterologous DNA encoding additional proteins. Here we describe the cryptic chromosomally encoded 34-kDa cytolysin A hemolysin of Salmonella enterica serovar Typhi (ClyA) as a novel export system for the expression of heterologous antigens in the supernatant of attenuated Salmonella serovar Typhi live-vector vaccine strains. We constructed a genetic fusion of ClyA to the reporter green fluorescent protein and showed that in Salmonella serovar Typhi CVD 908-htrA, the fusion protein retains biological activity in both domains and is exported into the supernatant of an exponentially growing live vector in the absence of detectable bacterial lysis. The utility of ClyA for enhancing the immunogenicity of an otherwise problematic antigen was demonstrated by engineering ClyA fused to the domain 4 (D4) moiety of Bacillus anthracis protective antigen (PA). A total of 11 of 15 mice immunized intranasally with Salmonella serovar Typhi exporting the protein fusion manifested fourfold or greater rises in serum anti-PA immunoglobulin G, compared with only 1 of 16 mice immunized with the live vector expressing cytoplasmic D4 (P = 0.0002). In addition, the induction of PA-specific gamma interferon and interleukin 5 responses was observed in splenocytes. This technology offers exceptional versatility for enhancing the immunogenicity of bacterial live-vector vaccines. PMID:15557633

  3. Disulphide bond restrains the C-terminal region of thermostable direct hemolysin during folding to promote oligomerization.

    PubMed

    Kundu, Nidhi; Tichkule, Swapnil; Pandit, Shashi Bhushan; Chattopadhyay, Kausik

    2017-01-15

    Pore-forming toxins (PFTs) are typically produced as water-soluble monomers, which upon interacting with target cells assemble into transmembrane oligomeric pores. Vibrio parahaemolyticus thermostable direct hemolysin (TDH) is an atypical PFT that exists as a tetramer in solution, prior to membrane binding. The TDH structure highlights a core β-sandwich domain similar to those found in the eukaryotic actinoporin family of PFTs. However, the TDH structure harbors an extended C-terminal region (CTR) that is not documented in the actinoporins. This CTR remains tethered to the β-sandwich domain through an intra-molecular disulphide bond. Part of the CTR is positioned at the inter-protomer interface in the TDH tetramer. Here we show that the truncation, as well as mutation, of the CTR compromise tetrameric assembly, and the membrane-damaging activity of TDH. Our study also reveals that intra-protomer disulphide bond formation during the folding/assembly process of TDH restrains the CTR to mediate its participation in the formation of inter-protomer contact, thus facilitating TDH oligomerization. However, once tetramerization is achieved, disruption of the disulphide bond does not affect oligomeric assembly. Our study provides critical insights regarding the regulation of the oligomerization mechanism of TDH, which has not been previously documented in the PFT family.

  4. Cytotoxic activity and probable apoptotic effect of Sph2, a sphigomyelinase hemolysin from Leptospira interrogans strain Lai.

    PubMed

    Zhang, Yi-Xuan; Geng, Yan; Yang, Jun-Wei; Guo, Xiao-Kui; Zhao, Guo-Ping

    2008-02-29

    Our previous work confirmed that Sph2/LA1029 was a sphigomyelinase-like hemolyisn of Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai. Characteristics of both hemolytic and cytotoxic activities of Sph2 were reported in this paper. Sph2 was a heat-labile neutral hemolysin and had similar hemolytic behavior as the typical sphingomyelinase C of Staphylococcus aureus upon sheep erythrocytes. The cytotoxic activity of Sph2 was shown in mammalian cells such as BALB/C mouse lymphocytes and macrophages, as well as human L-02 liver cells. Transmission electron microscopic observation showed that the Sph2 treated BALB/C mouse lymphocytes were swollen and ruptured with membrane breakage. They also demonstrated condensed chromatin as a high-density area. Cytoskeleton changes were observed via fluorescence confocal microscope in Sph2 treated BALB/C mouse lymphocytes and macrophages, where both cytokine IL-1beta and IL-6 were induced. In addition, typical apoptotic morphological features were observed in Sph2 treated L-02 cells via transmission electron microscope and the percentage of apoptotic cells did increase after the Sph2 treatment detected by flow cytometry. Therefore, Sph2 was likely an apoptosis-inducing factor of human L-02 liver cells.

  5. Detection of Benzo[a]pyrene-Guanine Adducts in Single-Stranded DNA using the α-Hemolysin Nanopore

    PubMed Central

    Perera, Rukshan T.; Fleming, Aaron M.; Johnson, Robert P.; Burrows, Cynthia J.; White, Henry S.

    2017-01-01

    The carcinogenic precursor benzo[a]pyrene (BP), a polycyclic aromatic hydrocarbon, is released into the environment through the incomplete combustion of hydrocarbons. Metabolism of BP in the human body yields a potent alkylating agent (benzo[a]pyrene diol epoxide, BPDE) that reacts with guanine (G) in DNA to form an adduct implicated in cancer initiation. We report that the α-hemolysin (αHL) nanopore platform can be used to detect a BPDE adduct to G in synthetic oligodeoxynucleotides. Translocation of a 41-mer poly-2′-deoxycytidine strand with a centrally located BPDE adduct to G through αHL in 1 M KCl produces a unique multi-level current signature allowing the adduct to be detected. This readily distinguishable current modulation was observed when the BPDE-adducted DNA strand translocated from either the 5′ or 3′ directions. This study suggests that BPDE adducts and other large aromatic biomarkers can be detected with αHL, presenting opportunities for the monitoring, quantification, and sequencing of mutagenic compounds from cellular DNA samples. PMID:25629967

  6. Detection of benzo[a]pyrene-guanine adducts in single-stranded DNA using the α-hemolysin nanopore.

    PubMed

    Perera, Rukshan T; Fleming, Aaron M; Johnson, Robert P; Burrows, Cynthia J; White, Henry S

    2015-02-20

    The carcinogenic precursor benzo[a]pyrene (BP), a polycyclic aromatic hydrocarbon, is released into the environment through the incomplete combustion of hydrocarbons. Metabolism of BP in the human body yields a potent alkylating agent (benzo[a]pyrene diol epoxide, BPDE) that reacts with guanine (G) in DNA to form an adduct implicated in cancer initiation. We report that the α-hemolysin (αHL) nanopore platform can be used to detect a BPDE adduct to G in synthetic oligodeoxynucleotides. Translocation of a 41-mer poly-2'-deoxycytidine strand with a centrally located BPDE adduct to G through αHL in 1 M KCl produces a unique multi-level current signature allowing the adduct to be detected. This readily distinguishable current modulation was observed when the BPDE-adducted DNA strand translocated from either the 5' or 3' directions. This study suggests that BPDE adducts and other large aromatic biomarkers can be detected with αHL, presenting opportunities for the monitoring, quantification, and sequencing of mutagenic compounds from cellular DNA samples.

  7. Detection of benzo[a]pyrene-guanine adducts in single-stranded DNA using the α-hemolysin nanopore

    NASA Astrophysics Data System (ADS)

    Perera, Rukshan T.; Fleming, Aaron M.; Johnson, Robert P.; Burrows, Cynthia J.; White, Henry S.

    2015-02-01

    The carcinogenic precursor benzo[a]pyrene (BP), a polycyclic aromatic hydrocarbon, is released into the environment through the incomplete combustion of hydrocarbons. Metabolism of BP in the human body yields a potent alkylating agent (benzo[a]pyrene diol epoxide, BPDE) that reacts with guanine (G) in DNA to form an adduct implicated in cancer initiation. We report that the α-hemolysin (αHL) nanopore platform can be used to detect a BPDE adduct to G in synthetic oligodeoxynucleotides. Translocation of a 41-mer poly-2‧-deoxycytidine strand with a centrally located BPDE adduct to G through αHL in 1 M KCl produces a unique multi-level current signature allowing the adduct to be detected. This readily distinguishable current modulation was observed when the BPDE-adducted DNA strand translocated from either the 5‧ or 3‧ directions. This study suggests that BPDE adducts and other large aromatic biomarkers can be detected with αHL, presenting opportunities for the monitoring, quantification, and sequencing of mutagenic compounds from cellular DNA samples.

  8. Vaccination with proteus toxic agglutinin, a hemolysin-independent cytotoxin in vivo, protects against Proteus mirabilis urinary tract infection.

    PubMed

    Alamuri, Praveen; Eaton, Kathryn A; Himpsl, Stephanie D; Smith, Sara N; Mobley, Harry L T

    2009-02-01

    Complicated urinary tract infections (UTI) caused by Proteus mirabilis are associated with severe pathology in the bladder and kidney. To investigate the roles of two established cytotoxins, the HpmA hemolysin, a secreted cytotoxin, and proteus toxic agglutinin (Pta), a surface-associated cytotoxin, mutant analysis was used in conjunction with a mouse model of ascending UTI. Inactivation of pta, but not inactivation of hpmA, resulted in significant decreases in the bacterial loads of the mutant in kidneys (P < 0.01) and spleens (P < 0.05) compared to the bacterial loads of the wild type; the 50% infective dose (ID(50)) of an isogenic pta mutant or hpmA pta double mutant was 100-fold higher (5 x 10(8) CFU) than the ID(50) of parent strain HI4320 (5 x 10(6) CFU). Colonization by the parent strain caused severe cystitis and interstitial nephritis as determined by histopathological examination. Mice infected with the same bacterial load of the hpmA pta double mutant showed significantly reduced pathology (P < 0.01), suggesting that the additive effect of these two cytotoxins is critical during Proteus infection. Since Pta is surface associated and important for the persistence of P. mirabilis in the host, it was selected as a vaccine candidate. Mice intranasally vaccinated with a site-directed (indicated by an asterisk) (S366A) mutant purified intact toxin (Pta*) or the passenger domain Pta-alpha*, each independently conjugated with cholera toxin (CT), had significantly lower bacterial counts in their kidneys ( P = 0.001) and spleens (P = 0.002) than mice that received CT alone. The serum immunoglobulin G levels correlated with protection (P = 0.03). This is the first report describing the in vivo cytotoxicity and antigenicity of an autotransporter in P. mirabilis and its use in vaccine development.

  9. [Isolation of thermostable direct hemolysin producing Vibrio parahaemolyticus from food using screening by PCR in food-borne outbreaks].

    PubMed

    Obata, Hiromi; Shimojima, Yukako; Konishi, Noriko; Monma, Chie; Yano, Kazuyoshi; Kai, Akemi; Morozumi, Satoshi; Fukuyama, Masafumi

    2006-07-01

    The producibility of thermostable direct hemolysin (TDH) is the most important pathogenic factor in Vibrio parahaemolyticus. TDH (+) V. parahaemolyticus is usually isolated from patients having V. parahaemolyticus food-borne disease. TDH (+) V. parahaemolyticus is, however, very difficult to isolate from food and environmental samples. In the 5 years from 2000 to 2004 in Tokyo, V. parahaemolyticus was isolated from food samples related to 67 of 227 V parahaemolyticus food-borne outbreaks. In these outbreaks, TDH (+) strains were also tried to isolate using PCR as the screening methods. TDH (+) V. parahaemolyticus strains were able to isolate from enrichment broth in which toxR and tdh genes become positive in PCR. TDH (+) strains of the same serotype with patients were able to be isolated from 23 food samples related to 11 outbreaks (16.4%); 3 outbreaks in 2000, 2 in 2001, 2 in 2002, 1 in 2003, and 3 in 2004. The serotypes of V. parahaemolyticus isolated from food were O3 : K6 (10 samples), O3 : K5 (6 samples), O1 : K25 (4 samples), O3 : K29 (2 samples), O4 : K 8 (1 sample), and O4 : K11 (1 sample). The isolation rate of the TDH (+) strain from enrichment broth differed with samples. In several samples TDH (+) strains were isolated easily only by examining 3 colonies, hence no TDH (+) strains were isolated in spite of the examination of 250 colonies. No correlation was seen between the number of V. parahaemolyticus and the isolation rate of TDH (+) strains in food samples. Screening using PCR is very effective method for isolating TDH (+) V. parahaemolyticus from food samples.

  10. Detection of a functional insertion sequence responsible for deletion of the thermostable direct hemolysin gene (tdh) in Vibrio parahaemolyticus.

    PubMed

    Kamruzzaman, Muhammad; Bhoopong, Phuangthip; Vuddhakul, Varaporn; Nishibuchi, Mitsuaki

    2008-09-15

    The thermostable direct hemolysin coded by the tdh gene is a marker of virulent strains of Vibrio parahaemolyticus. The tdh genes are flanked by insertion sequences collectively named as ISVs or their remnants; but the ISVs so far examined have accumulated mutations in the transposase genes and underwent structural arrangements and their transposition activity could not be expected; the tdh gene was thus considered to have been acquired by V. parahaemolyticus through horizontal transfer in the past during evolution. We recently isolated from the same patient tdh+ strains and a tdh(-) strain (PCR examination) that were otherwise indistinguishable. The purpose of this study was to examine the hypothesis that the tdh(-) strain was derived from the tdh+ strain by a deletion of the tdh gene mediated by a functional ISV. Southern blot hybridization showed tdh+ sequences in the tdh(-) strain (PSU-1466). Nucleotide sequence analysis of the tdh and its flanking sequences revealed the tdh gene was split into two parts and they were located 3182-bp apart in PSU-1466. The two tdh sequences were flanked by one of the ISVs, named as ISVpa3, in PSU-1466. This genetic structure could be explained by an ISVpa3-mediated partial tdh deletion from a tdh+ strain followed by transposition of the duplicated ISVpa3 and the deleted tdh sequence into a neighboring location. The ISVpa3 of PSU-1466 coded for a full-length transposase and a DDE motif. We were able to demonstrate transposition activity of the ISVpa3 cloned from PSU-1466 using the replicon fusion assay with the conjugal transfer of a cointegrate from Escherichia coli to V. parahaemolyticus. Our data support ISVpa3-mediated partial tdh deletion resulted in the emergence of the tdh(-) strain.

  11. Endotoxin "priming" potentiates lung vascular abnormalities in response to Escherichia coli hemolysin: an example of synergism between endo- and exotoxin

    PubMed Central

    1994-01-01

    The pore-forming hemolysin of Escherichia coli (HlyA), an important virulence factor in extraintestinal E. coli infections, causes thromboxane generation and related vasoconstriction in perfused rabbit lungs (Seeger, W., H. Walter, N. Suttorp, M. Muhly, and S. Bhakdi. 1989. J. Clin. Invest. 84:220). We investigated the influence of pulmonary vascular "priming" with endotoxin on the responsiveness of the lung to a low-dose HlyA challenge. Rabbit lungs were perfused with Krebs Henseleit buffer containing 0.1-100 ng/ml Salmonella abortus equii lipopolysaccharide (LPS) for 60-180 min. This treatment caused protracted release of tumor necrosis factor into the recirculating medium, but did not induce significant alterations of pulmonary hemodynamics and fluid balance. At a dose of 1 ng/ml, HlyA elicited only moderate thromboxane release (< 200 pg/ml) and pulmonary artery pressure increase (< or = 6 mmHg) in control lungs. Acceleration and potentiation of both the metabolic and vasoconstrictor response occurred in lungs primed with LPS. This priming effect displayed dose (threshold integral of 0.1-1 ng/ml LPS) and time dependencies (threshold integral of 60-90 min LPS incubation). Maximum thromboxane release and pulmonary artery pressure increase surpassed the responses to HlyA in nonprimed lungs by more than 15-fold. Cyclooxygenase inhibition and thromboxane-receptor antagonism blocked these effects. These data demonstrate that LPS priming synergizes with HlyA challenge to provoke vascular abnormalities that are possibly relevant to the pathogenesis of organ failure in severe local and systemic infections. PMID:7931076

  12. Single pyrimidine discrimination during voltage-driven translocation of osmylated oligodeoxynucleotides via the α-hemolysin nanopore

    PubMed Central

    Ding, Yun

    2016-01-01

    Summary The influence of an electric field on an isolated channel or nanopore separating two compartments filled with electrolytes produces a constant ion flux through the pore. Nucleic acids added to one compartment traverse the pore, and modulate the current in a sequence-dependent manner. While translocation is faster than detection, the α-hemolysin nanopore (α-HL) successfully senses base modifications in ssDNA immobilized within the pore. With the assistance of a processing enzyme to slow down translocation, nanopore-based DNA sequencing is now a commercially available platform. However, accurate base calling is challenging because α-HL senses a sequence, and not a single nucleotide. Osmylated DNA was recently proposed as a surrogate for nanopore-based sequencing. Osmylation is the addition of osmium tetroxide 2,2’-bipyridine (OsBp) to the C5–C6 pyrimidine double bond. The process is simple, selective for deoxythymidine (dT) over deoxycytidine (dC), unreactive towards the purines, practically 100% effective, and strikingly independent of length, sequence, and composition. Translocation of an oligodeoxynucleotide (oligo) dA10XdA9 via α-HL is relatively slow, and exhibits distinct duration as well as distinct residual current when X = dA, dT(OsBp), or dC(OsBp). The data indicate that the α-HL constriction zone/β-barrel interacts strongly with both OsBp and the base. A 23 nucleotide long oligo with four dT(OsBp) traverses 18-times slower, and the same oligo with nine (dT+dC)(OsBp) moieties traverses 84-times slower compared to dA20, suggesting an average rate of 40 or 180 μs/base, respectively. These translocation speeds are well above detection limits, may be further optimized, and clear the way for nanopore-based sequencing using osmylated DNA. PMID:26925357

  13. Enterohemorrhagic Escherichia coli Hemolysin Employs Outer Membrane Vesicles to Target Mitochondria and Cause Endothelial and Epithelial Apoptosis

    PubMed Central

    Kunsmann, Lisa; Greune, Lilo; Bauwens, Andreas; Zhang, Wenlan; Kuczius, Thorsten; Kim, Kwang Sik; Mellmann, Alexander; Schmidt, M. Alexander; Karch, Helge

    2013-01-01

    Enterohemorrhagic Escherichia coli (EHEC) strains cause diarrhea and hemolytic uremic syndrome resulting from toxin-mediated microvascular endothelial injury. EHEC hemolysin (EHEC-Hly), a member of the RTX (repeats-in-toxin) family, is an EHEC virulence factor of increasingly recognized importance. The toxin exists as free EHEC-Hly and as EHEC-Hly associated with outer membrane vesicles (OMVs) released by EHEC during growth. Whereas the free toxin is lytic towards human endothelium, the biological effects of the OMV-associated EHEC-Hly on microvascular endothelial and intestinal epithelial cells, which are the major targets during EHEC infection, are unknown. Using microscopic, biochemical, flow cytometry and functional analyses of human brain microvascular endothelial cells (HBMEC) and Caco-2 cells we demonstrate that OMV-associated EHEC-Hly does not lyse the target cells but triggers their apoptosis. The OMV-associated toxin is internalized by HBMEC and Caco-2 cells via dynamin-dependent endocytosis of OMVs and trafficked with OMVs into endo-lysosomal compartments. Upon endosome acidification and subsequent pH drop, EHEC-Hly is separated from OMVs, escapes from the lysosomes, most probably via its pore-forming activity, and targets mitochondria. This results in decrease of the mitochondrial transmembrane potential and translocation of cytochrome c to the cytosol, indicating EHEC-Hly-mediated permeabilization of the mitochondrial membranes. Subsequent activation of caspase-9 and caspase-3 leads to apoptotic cell death as evidenced by DNA fragmentation and chromatin condensation in the intoxicated cells. The ability of OMV-associated EHEC-Hly to trigger the mitochondrial apoptotic pathway in human microvascular endothelial and intestinal epithelial cells indicates a novel mechanism of EHEC-Hly involvement in the pathogenesis of EHEC diseases. The OMV-mediated intracellular delivery represents a newly recognized mechanism for a bacterial toxin to enter host cells in

  14. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  15. Protein

    MedlinePlus

    ... Search for: Harvard T.H. Chan School of Public Health Email People Departments Calendar Careers Give my.harvard ... Nutrition Source Harvard T.H. Chan School of Public Health > The Nutrition Source > What Should I Eat? > Protein ...

  16. Protein

    MedlinePlus

    ... Go lean with protein. • Choose lean meats and poultry. Lean beef cuts include round steaks (top loin, ... main dishes. • Use nuts to replace meat or poultry, not in addition to meat or poultry (i. ...

  17. Computational analysis of maltose binding protein translocation

    NASA Astrophysics Data System (ADS)

    Chinappi, Mauro; Cecconi, Fabio; Massimo Casciola, Carlo

    2011-05-01

    We propose a computational model for the study of maltose binding protein translocation across α-hemolysin nanopores. The phenomenological approach simplifies both the pore and the polypeptide chain; however it retains the basic structural protein-like properties of the maltose binding protein by promoting the correct formation of its native key interactions. By considering different observables characterising the channel blockade and molecule transport, we verified that MD simulations reproduce qualitatively the behaviour observed in a recent experiment. Simulations reveal that blockade events consist of a capture stage, to some extent related to the unfolding kinetics, and a single file translocation process in the channel. A threshold mechanics underlies the process activation with a critical force depending on the protein denaturation state. Finally, our results support the simple interpretation of translocation via first-passage statistics of a driven diffusion process of a single reaction coordinate.

  18. Vibrio parahaemolyticus has a homolog of the Vibrio cholerae toxRS operon that mediates environmentally induced regulation of the thermostable direct hemolysin gene.

    PubMed Central

    Lin, Z; Kumagai, K; Baba, K; Mekalanos, J J; Nishibuchi, M

    1993-01-01

    In an effort to identify the regulatory gene controlling the expression of the tdh gene, encoding the thermostable direct hemolysin of Vibrio parahaemolyticus, we examined total DNA of AQ3815 (a Kanagawa phenomenon-positive strain) for sequences homologous to that of the toxR gene of Vibrio cholerae. The extracted DNA gave a weak hybridization signal under reduced-stringency conditions with a toxR-specific DNA probe. Cloning and sequence analysis of the probe-positive sequence revealed an operon (Vp-toxRS) which was highly similar to the toxRS operon of V. cholerae (Vc-toxRS) (52 and 62% similarities in the two genes, respectively). The deduced amino acid sequences of the Vp-toxRS gene products (Vp-ToxRS) contained regions similar to the proposed transmembrane and activity domains of the Vc-toxRS gene products (Vc-ToxRS). All clinical and environmental strains of V. parahaemolyticus examined possessed the Vp-toxRS genes. In the presence of Vp-ToxS, Vp-ToxR promoted expression of the tdh2 gene, one of two tdh genes (tdh1 and tdh2) carried by Kanagawa phenomenon-positive strains. The DNA sequence located 144 bp upstream of the tdh2 coding region was shown to be important for the Vp-ToxR-stimulated expression of the tdh2 gene in an Escherichia coli background. Comparative analysis of AQ3815 and its isogenic Vp-toxR null mutant gave the following results: (i) Vp-ToxR promoted, in an AQ3815 background, expression of the tdh gene to different degrees in various culture media, with KP broth (2% peptone, 0.5% NaCl, 0.03 M KH2PO4, pH 6.2) being most effective (12-fold); (ii) the promotion of tdh gene expression in KP broth was at the level of transcription; and (iii) Vp-ToxR was essential for demonstration of enterotoxic activity of AQ3815 in the rabbit ileal loop, a model previously used to demonstrate thermostable direct hemolysin-mediated enterotoxic activity of AQ3815. These results demonstrate that Vp-ToxR and Vc-ToxR share a strikingly similar function, i.e., direct

  19. Comparative Prevalence of Immune Evasion Complex Genes Associated with β-Hemolysin Converting Bacteriophages in MRSA ST5 Isolates from Swine, Swine Facilities, Humans with Swine Contact, and Humans with No Swine Contact.

    PubMed

    Hau, Samantha J; Sun, Jisun; Davies, Peter R; Frana, Timothy S; Nicholson, Tracy L

    2015-01-01

    Livestock associated methicillin-resistant Staphylococcus aureus (LA-MRSA) draws concern from the public health community because in some countries these organisms may represent the largest reservoir of MRSA outside hospital settings. Recent studies indicate LA-MRSA strains from swine are more genetically diverse than the first reported sequence type ST398. In the US, a diverse population of LA-MRSA is found including organisms of the ST398, ST9, and ST5 lineages. Occurrence of ST5 MRSA in swine is of particular concern since ST5 is among the most prevalent lineages causing clinical infections in humans. The prominence of ST5 in clinical disease is believed to result from acquisition of bacteriophages containing virulence or host-adapted genes including the immune-evasion cluster (IEC) genes carried by β-hemolysin converting bacteriophages, whose absence in LA-MRSA ST398 is thought to contribute to reduced rates of human infection and transmission associated with this lineage. The goal of this study was to investigate the prevalence of IEC genes associated with β-hemolysin converting bacteriophages in MRSA ST5 isolates obtained from agricultural sources, including swine, swine facilities, and humans with short- or long-term swine exposure. To gain a broader perspective, the prevalence of these genes in LA-MRSA ST5 strains was compared to the prevalence in clinical MRSA ST5 strains from humans with no known exposure to swine. IEC genes were not present in any of the tested MRSA ST5 strains from agricultural sources and the β-hemolysin gene was intact in these strains, indicating the bacteriophage's absence. In contrast, the prevalence of the β-hemolysin converting bacteriophage in MRSA ST5 strains from humans with no exposure to swine was 90.4%. The absence of β-hemolysin converting bacteriophage in LA-MRSA ST5 isolates is consistent with previous reports evaluating ST398 strains and provides genetic evidence indicating LA-MRSA ST5 isolates may harbor a reduced

  20. The Pore-Forming Toxin β hemolysin/cytolysin Triggers p38 MAPK-Dependent IL-10 Production in Macrophages and Inhibits Innate Immunity

    PubMed Central

    Bebien, Magali; Hensler, Mary E.; Davanture, Suzel; Hsu, Li-Chung; Karin, Michael; Park, Jin Mo; Alexopoulou, Lena; Liu, George Y.; Nizet, Victor; Lawrence, Toby

    2012-01-01

    Group B Streptococcus (GBS) is a leading cause of invasive bacterial infections in human newborns and immune-compromised adults. The pore-forming toxin (PFT) β hemolysin/cytolysin (βh/c) is a major virulence factor for GBS, which is generally attributed to its cytolytic functions. Here we show βh/c has immunomodulatory properties on macrophages at sub-lytic concentrations. βh/c-mediated activation of p38 MAPK drives expression of the anti-inflammatory and immunosuppressive cytokine IL-10, and inhibits both IL-12 and NOS2 expression in GBS-infected macrophages, which are critical factors in host defense. Isogenic mutant bacteria lacking βh/c fail to activate p38-mediated IL-10 production in macrophages and promote increased IL-12 and NOS2 expression. Furthermore, targeted deletion of p38 in macrophages increases resistance to invasive GBS infection in mice, associated with impaired IL-10 induction and increased IL-12 production in vivo. These data suggest p38 MAPK activation by βh/c contributes to evasion of host defense through induction of IL-10 expression and inhibition of macrophage activation, a new mechanism of action for a PFT and a novel anti-inflammatory role for p38 in the pathogenesis of invasive bacterial infection. Our studies suggest p38 MAPK may represent a new therapeutic target to blunt virulence and improve clinical outcome of invasive GBS infection. PMID:22829768

  1. A mutant cell line resistant to Vibrio parahaemolyticus thermostable direct hemolysin (TDH): its potential in identification of putative receptor for TDH.

    PubMed

    Tang, G; Iida, T; Inoue, H; Yutsudo, M; Yamamoto, K; Honda, T

    1997-05-24

    Thermostable direct hemolysin (TDH), a pore-forming toxin produced by Vibrio parahaemolyticus, is cytotoxic to Rat-1, a fibroblast cell line derived from rat embryo. Through mutagenesis of Rat-1 with nitrosoguanidine, we established a mutant cell line, MR-T1. MR-T1 was over 200 times more resistant to the cytotoxic activity of TDH than Rat-1. TDH increased membrane permeability of Rat-1 but not of MR-T1. Binding analysis showed that, while being able to bind to Rat-1. TDH failed to bind to MR-T1, indicating that MR-T1 is deficient in the putative receptor for TDH. Somatic hybrid cells between Rat-1 and MR-T1 were similarly sensitive to TDH as Rat-1. Moreover, TDH could bind to the hybrid cells as well as to Rat-1 cells. These results indicate that MR-T1 is promising for complementation cloning of a gene related to the putative receptor for TDH.

  2. Escherichia coli α-Hemolysin Triggers Shrinkage of Erythrocytes via KCa3.1 and TMEM16A Channels with Subsequent Phosphatidylserine Exposure*

    PubMed Central

    Skals, Marianne; Jensen, Uffe B.; Ousingsawat, Jiraporn; Kunzelmann, Karl; Leipziger, Jens; Praetorius, Helle A.

    2010-01-01

    α-Hemolysin from Escherichia coli (HlyA) readily lyse erythrocytes from various species. We have recently demonstrated that this pore-forming toxin provokes distinct shrinkage and crenation before it finally leads to swelling and lysis of erythrocytes. The present study documents the underlying mechanism for this severe volume reduction. We show that HlyA-induced shrinkage and crenation of human erythrocytes occur subsequent to a significant rise in [Ca2+]i. The Ca2+-activated K+ channel KCa3.1 (or Gardos channel) is essential for the initial shrinkage, because both clotrimazole and TRAM-34 prevent the shrinkage and potentiate hemolysis produced by HlyA. Notably, the recently described Ca2+-activated Cl− channel TMEM16A contributes substantially to HlyA-induced cell volume reduction. Erythrocytes isolated from TMEM16A−/− mice showed significantly attenuated crenation and increased lysis compared with controls. Additionally, we found that HlyA leads to acute exposure of phosphatidylserine in the outer leaflet of the plasma membrane. This exposure was considerably reduced by KCa3.1 antagonists. In conclusion, this study shows that HlyA triggers acute erythrocyte shrinkage, which depends on Ca2+-activated efflux of K+ via KCa3.1 and Cl− via TMEM16A, with subsequent phosphatidylserine exposure. This mechanism might potentially allow HlyA-damaged erythrocytes to be removed from the bloodstream by macrophages and thereby reduce the risk of intravascular hemolysis. PMID:20231275

  3. Pathogenesis of Streptococcus urinary tract infection depends on bacterial strain and β-hemolysin/cytolysin that mediates cytotoxicity, cytokine synthesis, inflammation and virulence

    PubMed Central

    Leclercq, Sophie Y.; Sullivan, Matthew J.; Ipe, Deepak S.; Smith, Joshua P.; Cripps, Allan W.; Ulett, Glen C.

    2016-01-01

    Streptococcus agalactiae can cause urinary tract infection (UTI) including cystitis and asymptomatic bacteriuria (ABU). The early host-pathogen interactions that occur during S. agalactiae UTI and subsequent mechanisms of disease pathogenesis are poorly defined. Here, we define the early interactions between human bladder urothelial cells, monocyte-derived macrophages, and mouse bladder using uropathogenic S. agalactiae (UPSA) 807 and ABU-causing S. agalactiae (ABSA) 834 strains. UPSA 807 adhered, invaded and killed bladder urothelial cells more efficiently compared to ABSA 834 via mechanisms including low-level caspase-3 activation, and cytolysis, according to lactate dehydrogenase release measures and cell viability. Severe UPSA 807-induced cytotoxicity was mediated entirely by the bacterial β-hemolysin/cytolysin (β-H/C) because an β-H/C-deficient UPSA 807 isogenic mutant, UPSA 807ΔcylE, was not cytotoxic in vitro; the mutant was also significantly attenuated for colonization in the bladder in vivo. Analysis of infection-induced cytokines, including IL-8, IL-1β, IL-6 and TNF-α in vitro and in vivo revealed that cytokine and chemokine responses were dependent on expression of β-H/C that also elicited severe bladder neutrophilia. Thus, virulence of UPSA 807 encompasses adhesion to, invasion of and killing of bladder cells, pro-inflammatory cytokine/chemokine responses that elicit neutrophil infiltration, and β-H/C-mediated subversion of innate immune-mediated bacterial clearance from the bladder. PMID:27383371

  4. Above and beyond C5a Receptor Targeting by Staphylococcal Leucotoxins: Retrograde Transport of Panton–Valentine Leucocidin and γ-Hemolysin

    PubMed Central

    Zimmermann-Meisse, Gaëlle; Prévost, Gilles; Jover, Emmanuel

    2017-01-01

    Various membrane receptors associated with the innate immune response have recently been identified as mediators of the cellular action of Staphylococcus aureus leucotoxins. Two of these, the Panton–Valentine leucotoxin LukS-PV/LukF-PV and the γ-hemolysin HlgC/HlgB, bind the C5a complement-derived peptide receptor. These leucotoxins utilize the receptor to induce intracellular Ca2+ release from internal stores, other than those activated by C5a. The two leucotoxins are internalized with the phosphorylated receptor, but it is unknown whether they divert retrograde transport of the receptor or follow another pathway. Immunolabeling and confocal microscopic techniques were used to analyze the presence of leucotoxins in endosomes, lysosomes, endoplasmic reticulum, and Golgi. The two leucotoxins apparently followed retrograde transport similar to that of the C5a peptide-activated receptor. However, HlgC/HlgB reached the Golgi network very early, whereas LukS-PV/LukF-PV followed slower kinetics. The HlgC/HlgB leucotoxin remained in neutrophils 6 h after a 10-min incubation of the cells in the presence of the toxin with no signs of apoptosis, whereas apoptosis was observed 3 h after neutrophils were incubated with LukS-PV/LukF-PV. Such retrograde transport of leucotoxins provides a novel understanding of the cellular effects initiated by sublytic concentrations of these toxins. PMID:28117704

  5. Simulation of polymer translocation through protein channels

    NASA Astrophysics Data System (ADS)

    Muthukumar, M.; Kong, C. Y.

    2006-04-01

    A modeling algorithm is presented to compute simultaneously polymer conformations and ionic current, as single polymer molecules undergo translocation through protein channels. The method is based on a combination of Langevin dynamics for coarse-grained models of polymers and the Poisson-Nernst-Planck formalism for ionic current. For the illustrative example of ssDNA passing through the -hemolysin pore, vivid details of conformational fluctuations of the polymer inside the vestibule and -barrel compartments of the protein pore, and their consequent effects on the translocation time and extent of blocked ionic current are presented. In addition to yielding insights into several experimentally reported puzzles, our simulations offer experimental strategies to sequence polymers more efficiently.

  6. Structural Characterization of Humanized Nanobodies with Neutralizing Activity against the Bordetella pertussis CyaA-Hemolysin: Implications for a Potential Epitope of Toxin-Protective Antigen

    PubMed Central

    Malik, Aijaz Ahmad; Imtong, Chompounoot; Sookrung, Nitat; Katzenmeier, Gerd; Chaicumpa, Wanpen; Angsuthanasombat, Chanan

    2016-01-01

    Previously, the 126-kDa CyaA-hemolysin (CyaA-Hly) fragment cloned from Bordetella pertussis—the causative agent of whooping cough—and functionally expressed in Escherichia coli was revealed as a key determinant for CyaA-mediated hemolysis against target erythrocytes. Here, phagemid-transfected E. coli clones producing nanobodies capable of binding to CyaA-Hly were selected from a humanized-camel VH/VHH phage-display library. Subsequently verified for binding activities by indirect ELISA and Western blotting, four CyaA-Hly-specific nanobodies were obtained and designated according to the presence/absence of VHH-hallmark amino acids as VHH2, VH5, VH18 and VHH37. In vitro neutralization assay revealed that all four ~17-kDa His-tagged VH/VHH nanobodies, in particular VHH37, which were over-expressed as inclusions and successfully unfolded-refolded, were able to effectively inhibit CyaA-Hly-mediated hemolysis. Phage-mimotope searching revealed that only peptides with sequence homologous to Linker 1 connecting Blocks I and II within the CyaA-RTX subdomain were able to bind to these four CyaA-Hly-specific nanobodies. Structural analysis of VHH37 via homology modeling and intermolecular docking confirmed that this humanized nanobody directly interacts with CyaA-RTX/Linker 1 through multiple hydrogen and ionic bonds. Altogether, our present data demonstrate that CyaA-RTX/Linker 1 could serve as a potential epitope of CyaA-protective antigen that may be useful for development of peptide-based pertussis vaccines. Additionally, such toxin-specific nanobodies have a potential for test-driven development of a ready-to-use therapeutic in passive immunization for mitigation of disease severity. PMID:27043627

  7. The β-prism lectin domain of Vibrio cholerae hemolysin promotes self-assembly of the β-pore-forming toxin by a carbohydrate-independent mechanism.

    PubMed

    Ganguly, Sreerupa; Mukherjee, Amarshi; Mazumdar, Budhaditya; Ghosh, Amar N; Banerjee, Kalyan K

    2014-02-14

    Vibrio cholerae cytolysin/hemolysin (VCC) is an amphipathic 65-kDa β-pore-forming toxin with a C-terminal β-prism lectin domain. Because deletion or point mutation of the lectin domain seriously compromises hemolytic activity, it is thought that carbohydrate-dependent interactions play a critical role in membrane targeting of VCC. To delineate the contributions of the cytolysin and lectin domains in pore formation, we used wild-type VCC, 50-kDa VCC (VCC(50)) without the lectin domain, and mutant VCC(D617A) with no carbohydrate-binding activity. VCC and its two variants with no carbohydrate-binding activity moved to the erythrocyte stroma with apparent association constants on the order of 10(7) M(-1). However, loss of the lectin domain severely reduced the efficiency of self-association of the VCC monomer with the β-barrel heptamer in the synthetic lipid bilayer from ∼83 to 27%. Notably, inactivation of the carbohydrate-binding activity by the D617A mutation marginally reduced oligomerization to ∼77%. Oligomerization of VCC(50) was temperature-insensitive; by contrast, VCC self-assembly increased with increasing temperature, suggesting that the process is driven by entropy and opposed by enthalpy. Asialofetuin, the β1-galactosyl-terminated glycoprotein inhibitor of VCC-induced hemolysis, promoted oligomerization of 65-kDa VCC to a species that resembled the membrane-inserted heptamer in stoichiometry and morphology but had reduced global amphipathicity. In conclusion, we propose (i) that the β-prism lectin domain facilitated toxin assembly by producing entropy during relocation in the heptamer and (ii) that glycoconjugates inhibited VCC by promoting its assembly to a water-soluble, less amphipathic oligomer variant with reduced ability to penetrate the bilayer.

  8. Molecular characterization of enterohemorrhagic Escherichia coli hemolysin gene (EHEC-hlyA)-harboring isolates from cattle reveals a diverse origin and hybrid diarrheagenic strains.

    PubMed

    Askari Badouei, Mahdi; Morabito, Stefano; Najafifar, Arash; Mazandarani, Emad

    2016-04-01

    In the present study we investigated the occurrence of Escherichia coli strains harboring the gene encoding enterohemorrhagic E. coli hemolysin (EHEC-HlyA) in cattle and the association of this gene with various diarrheagenic E. coli (DEC) pathotypes. First, the bovine E. coli isolates were screened for EHEC-hlyA gene by PCR, and then they were characterized for the phylogenetic groups and the presence of the major virulence genes of different DEC pathotypes. In total, 25 virulence gene profiles were observed in 54 EHEC-hlyA+ isolates that reflect a considerable heterogeneity. The EHEC-hlyA+ strains were mostly associated with EHEC (72%), while only 7.4% were enteropathogenic E. coli (EPEC). We also showed the presence of estA gene of enterotoxigenic E. coli (ETEC) in 6 isolates (11.1%). Interestingly, two of the estA+ strains showed hybrid pathotypes with one carrying eae/estA (EPEC/ETEC), and the other one stx2/astA/estA (EHEC/ETEC). None of the isolates were related to enteroaggregative E. coli (EAggEC), enteroinvasive E. coli (EIEC), and necrotoxigenic E. coli (NTEC). The EHEC-plasmid encoded genes occurred in seven different combinations with EHEC-hlyA/saa/subA/espP being the most prevalent (46.3%). All stx-/eae+ strains carried O island 57 (OI-57) molecular marker(s) that may indicate these to be the progenitors of EHEC or strains losing stx. The most prevalent phylogroup was B1 (61.1%), but the most heterogeneous strains including the hybrid strains belonged to A phylogroup. Overall, our results indicate that cattle EHEC-hlyA encoding E. coli isolates consist of diverse diarrheagenic strains with the possible existence of hybrid pathotypes. Future studies are required to clarify the evolutionary aspects and clinical significance of these strains in humans and domestic animals.

  9. Development and evaluation of a rapid, simple, and sensitive immunochromatographic assay to detect thermostable direct hemolysin produced by Vibrio parahaemolyticus in enrichment cultures of stool specimens.

    PubMed

    Kawatsu, Kentaro; Ishibashi, Masanori; Tsukamoto, Teizo

    2006-05-01

    Thermostable direct hemolysin (TDH) is considered to be a major virulence factor in Vibrio parahaemolyticus, and most cases of V. parahaemolyticus diarrhea in humans are caused by tdh gene-positive strains. In the present study, we developed an immunochromatographic assay to detect TDH (TDH-ICA) and evaluated the utility of TDH-ICA for the diagnosis of V. parahaemolyticus diarrhea. TDH-ICA allowed the detection of 0.2 ng/ml of TDH within 10 min. Fecal homogenates were spiked with various numbers of tdh-positive V. parahaemolyticus organisms, and their enrichment cultures were tested with TDH-ICA. The results of detection of TDH in the enrichment cultures by TDH-ICA were in accord with the results of recovery of the spiked V. parahaemolyticus organisms from the enrichment cultures by plating onto thiosulfate-citrate-bile salts-sucrose agar. When enrichment cultures of 217 stool specimens from patients with diarrhea were tested with TDH-ICA, the TDH-ICA results showed 100% sensitivity and specificity compared to the results of isolation of V. parahaemolyticus from the stool specimens by a conventional bacterial culture test. Since TDH-ICA was able to detect TDH in a fecal enrichment culture within 10 min, TDH-ICA testing of a fecal enrichment culture could be completed rapidly and easily within approximately 16 h, including incubation time for the fecal enrichment culture. These results indicate that TDH-ICA is a rapid, simple, and sensitive TDH detection method and that TDH-ICA testing of a fecal enrichment culture is useful as an adjunct to facilitate the early diagnosis of V. parahaemolyticus diarrhea.

  10. Vibrio parahaemolyticus CalR down regulates the thermostable direct hemolysin (TDH) gene transcription and thereby inhibits hemolytic activity.

    PubMed

    Zhang, Yiquan; Zhang, Ying; Gao, He; Zhang, Lingyu; Yin, Zhe; Huang, Xinxiang; Zhou, Dongsheng; Yang, Huiying; Yang, Wenhui; Wang, Li

    2017-03-04

    TDH, encoded by tdh gene, is a major virulent determinant of V. parahaemolyticus that controls various biological activities, such as hemolytic activity, cytotoxicity, and enterotoxicity. The hemolytic activity on Wagatsuma agar ascribed to TDH is called Kanagawa phenomenon (KP). All KP positive strains contain tdh1 and tdh2 genes, but tdh2 is predominantly responsible for KP. CalR is a regulatory protein that was originally identified as a repressor of swarming motility and T3SS1 gene expression in V. parahaemolyticus. In the present study, the regulation of tdh2 by CalR was investigated using a set of experiments including qRT-PCR, primer extension, LacZ fusion, hemolytic phenotype, EMSA, and DNase I footprinting assays. The results showed that His-CalR protected a single region from 224bp to 318bp upstream of tdh2 against DNase I digestion, and a transcriptional start site located at 42bp upstream of tdh2 was detected and its transcribed activity was inhibited by CalR. Moreover, the KP test results showed that the hemolytic activity of V. parahaemolyticus is also under negative control of CalR. The data demonstrated that CalR is a repressor of the tdh2 transcription and thereby inhibits the hemolytic activity of V. parahaemolyticus.

  11. What controls open-pore and residual currents in the first sensing zone of alpha-hemolysin nanopore? Combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    de Biase, Pablo M.; Ervin, Eric N.; Pal, Prithwish; Samoylova, Olga; Markosyan, Suren; Keehan, Michael G.; Barrall, Geoffrey A.; Noskov, Sergei Yu.

    2016-06-01

    The electrophoretic transport of single-stranded DNA through biological nanopores such as alpha-hemolysin (αHL) is a promising and cost-effective technology with the potential to revolutionize genomics. The rational design of pores with the controlled polymer translocation rates and high contrast between different nucleotides could improve significantly nanopore sequencing applications. Here, we apply a combination of theoretical and experimental methods in an attempt to elucidate several selective modifications in the pore which were proposed to be central for the effective discrimination between purines and pyrimidines. Our nanopore test set includes the wild type αHL and six mutants (E111N/M113X/K147N) in which the cross-section and chemical functionality of the first constriction zone of the pore are modified. Electrophysiological recordings were combined with all-atom Molecular Dynamics simulations (MD) and a recently developed Brownian Dynamics (BROMOC) protocol to investigate residual ion currents and pore-DNA interactions for two homo-polymers e.g. poly(dA)40 or poly(dC)40 blocking the pore. The calculated residual currents and contrast in the poly(dA)40/poly(dC)40 blocked pore are in qualitative agreement with the experimental recordings. We showed that a simple structural metric allows rationalization of key elements in the emergent contrast between purines and pyrimidines in the modified αHL mutants. The shape of the pore and its capacity for hydrogen bonding to a translocated polynucleotide are two essential parameters for contrast optimization. To further probe the impact of these two factors in the ssDNA sensing, we eliminated the effect of the primary constriction using serine substitutions (i.e. E111S/M113S/T145S/K147S) and increased the hydrophobic volume of the central residue in the secondary constriction (L135I). This pore modification sharply increased the contrast between Adenine (A) and Cytosine (C).The electrophoretic transport of single

  12. Interaction of DNA and Proteins with Single Nanopores

    NASA Astrophysics Data System (ADS)

    Kasianowicz, J. J.

    2006-03-01

    The bacterial toxins Staphylococcus aureus alpha-hemolysin and Bacillus anthracis protective antigen kill cells in part by forming ion channels in target membranes. We are using electrophysiology, molecular biology/protein biochemistry and computer modeling to study how biopolymers (e.g., single-stranded DNA and proteins) bind to and transport through these nanometer-scale pores. The results provide insight into the mechanism by which these toxins work and are the basis for several potential nanobiotechnology applications including ultra-rapid DNA sequencing, the sensitive and selective detection of a wide range of analytes and high throughput screening of therapeutic agents against several anthrax toxins. In collaboration with V.M. Stanford, M. Misakian, B. Nablo, S.E. Henrickson, NIST, EEEL, Gaithersburg, MD; T. Nguyen, R. Gussio, NCI, Ft. Detrick, MD; and K.M. Halverson, S. Bavari, R.G. Panchal, USAMRIID, Ft. Detrick, MD.

  13. A functional protein pore with a "retro" transmembrane domain.

    PubMed Central

    Cheley, S.; Braha, O.; Lu, X.; Conlan, S.; Bayley, H.

    1999-01-01

    Extended retro (reversed) peptide sequences have not previously been accommodated within functional proteins. Here, we show that the entire transmembrane portion of the beta-barrel of the pore-forming protein alpha-hemolysin can be formed by retrosequences comprising a total of 175 amino acid residues, 25 contributed by the central sequence of each subunit of the heptameric pore. The properties of wild-type and retro heptamers in planar bilayers are similar. The single-channel conductance of the retro pore is 15% less than that of the wild-type heptamer and its current-voltage relationship denotes close to ohmic behavior, while the wild-type pore is weakly rectifying. Both wild-type and retro pores are very weakly anion selective. These results and the examination of molecular models suggest that beta-barrels may be especially accepting of retro sequences compared to other protein folds. Indeed, the ability to form a retro domain could be diagnostic of a beta-barrel, explaining, for example, the activity of the retro forms of many membrane-permeabilizing peptides. By contrast with the wild-type subunits, monomeric retro subunits undergo premature assembly in the absence of membranes, most likely because the altered central sequence fails to interact with the remainder of the subunit, thereby initiating assembly. Despite this difficulty, a technique was devised for obtaining heteromeric pores containing both wild-type and retro subunits. Most probably as a consequence of unfavorable interstrand side-chain interactions, the heteromeric pores are less stable than either the wild-type or retro homoheptamers, as judged by the presence of subconductance states in single-channel recordings. Knowledge about the extraordinary plasticity of the transmembrane beta-barrel of alpha-hemolysin will be very useful in the de novo design of functional membrane proteins based on the beta-barrel motif. PMID:10386875

  14. A standard immunoglobulin preparation produced from bovine colostra shows antibody reactivity and neutralization activity against Shiga-like toxins and EHEC-hemolysin of Escherichia coli O157:H7.

    PubMed

    Lissner, R; Schmidit, H; Karch, H

    1996-01-01

    Enterohemorrhagic Escherichia coli (EHEC) causes a variety of clinical conditions, the most important being hemorrhagic colitis and hemolytic uremic syndrome. A curative therapy of EHEC diseases is not yet feasible. This study investigates the antibody reactivity of Lactobin, a standardized immunoglobulin (Ig) preparation, obtained from the colostra of non-immunized cows. Three different batches of Lactobin exhibited equally high titers of specific antibodies against Shiga-like toxins (SLTs, verocytotoxins) and EHEC hemolysin (EHEC-Hly) produced by E. coli O157. In addition, Lactobin blocked the cytotoxic effect of SLT-I and SLT-II on Vero cell monolayers and inhibited the cytolytic effects of EHEC-Hly on human erythrocytes. Since Lactobin contains high levels of antibodies and neutralizing activity against important virulence factors of EHEC O157, this drug has potential use in the treatment of diarrhea and the prevention of EHEC-associated hemolytic uremic syndrome.

  15. A Protein Nanopore-Based Approach for Bacteria Sensing

    NASA Astrophysics Data System (ADS)

    Apetrei, Aurelia; Ciuca, Andrei; Lee, Jong-kook; Seo, Chang Ho; Park, Yoonkyung; Luchian, Tudor

    2016-11-01

    We present herein a first proof of concept demonstrating the potential of a protein nanopore-based technique for real-time detection of selected Gram-negative bacteria ( Pseudomonas aeruginosa or Escherichia coli) at a concentration of 1.2 × 108 cfu/mL. The anionic charge on the bacterial outer membrane promotes the electrophoretically driven migration of bacteria towards a single α-hemolysin nanopore isolated in a lipid bilayer, clamped at a negative electric potential, and followed by capture at the nanopore's mouth, which we found to be described according to the classical Kramers' theory. By using a specific antimicrobial peptide as a putative molecular biorecognition element for the bacteria used herein, we suggest that the detection system can combine the natural sensitivity of the nanopore-based sensing techniques with selective biological recognition, in aqueous samples, and highlight the feasibility of the nanopore-based platform to provide portable, sensitive analysis and monitoring of bacterial pathogens.

  16. Secretory delivery of recombinant proteins in attenuated Salmonella strains: potential and limitations of Type I protein transporters.

    PubMed

    Hahn, Heinz P; von Specht, Bernd Ulrich

    2003-07-15

    Live attenuated Salmonella strains have been extensively explored as oral delivery systems for recombinant vaccine antigens and effector proteins with immunoadjuvant and immunomodulatory potential. The feasibility of this approach was demonstrated in human vaccination trials for various antigens. However, immunization efficiencies with live vaccines are generally significantly lower compared to those monitored in parenteral immunizations with the same vaccine antigen. This is, at least partly, due to the lack of secretory expression systems, enabling large-scale extracellular delivery of vaccine and effector proteins by these strains. Because of their low complexity and the terminal location of the secretion signal in the secreted protein, Type I (ATP-binding cassette) secretion systems appear to be particularly suited for development of such recombinant extracellular expression systems. So far, the Escherichia coli hemolysin system is the only Type I secretion system, which has been adapted to recombinant protein secretion in Salmonella. However, this system has a number of disadvantages, including low secretion capacity, complex genetic regulation, and structural restriction to the secreted protein, which eventually hinder high-level in vivo delivery of recombinant vaccines and effector proteins. Thus, the development of more efficient recombinant protein secretion systems, based on Type I exporters can help to improve efficacies of live recombinant Salmonella vaccines. Type I secretion systems, mediating secretion of bacterial surface layer proteins, such as RsaA in Caulobacter crescentus, are discussed as promising candidates for improved secretory delivery systems.

  17. The thermostable direct hemolysin gene (tdh) of Vibrio hollisae is dissimilar in prevalence to and phylogenetically distant from the tdh genes of other vibrios: implications in the horizontal transfer of the tdh gene.

    PubMed

    Nishibuchi, M; Janda, J M; Ezaki, T

    1996-01-01

    Vibrio hollisae strains isolated recently from patients in various locations were examined for the presence of the thermostable direct hemolysin gene (tdh) using nucleic acid hybridization and polymerase chain reaction assays. The results were consistent with the previous finding that all strains of V. hollisae carry the tdh gene. In contrast, the tdh gene has been detected in a minority of strains for other Vibrio species (V. parahaemolyticus, V. cholerae non-O1, and V. mimicus). Detailed phylogenetic analysis showed that the tdh genes of the non-V. hollisae species were very closely related to each other and that the tdh gene of V. hollisae was distantly related to the tdh genes of the non-V. hollisae species. These results and the proposed insertion sequence-mediated tdh transfer mechanism suggest that the tdh gene may have been maintained stably in V. hollisae and that the tdh genes of the non-V. hollisae species may have been involved in recent horizontal transfer.

  18. The outer membrane protein TolC from Sinorhizobium meliloti affects protein secretion, polysaccharide biosynthesis, antimicrobial resistance, and symbiosis.

    PubMed

    Cosme, Ana M; Becker, Anke; Santos, Mário R; Sharypova, Larissa A; Santos, Pedro M; Moreira, Leonilde M

    2008-07-01

    Sinorhizobium meliloti is capable of establishing a symbiotic nitrogen fixation relationship with Medicago sativa. During this process, it must cope with diverse environments and has evolved different types of transport systems that help its propagation in the plant roots. TolC protein family members are the outer-membrane components of several transport systems involved in the export of diverse molecules, playing an important role in bacterial survival. In this work, we have characterized the protein TolC from S. meliloti 2011. An insertional mutation in the tolC gene strongly affected the resistance phenotype to antimicrobial agents and induced higher susceptibility to osmotic and oxidative stresses. Immunodetection experiments and comparison of the extracellular proteins present in the supernatant of the wild-type versus tolC mutant strains showed that the calcium-binding protein ExpE1, the endoglycanase ExsH, and the product of open reading frame SMc04171, a putative hemolysin-type calcium-binding protein, are secreted by a TolC-dependent secretion system. In the absence of TolC, neither succinoglycan nor galactoglucan were detected in the culture supernatant. Moreover, S. meliloti tolC mutant induced a reduced number of nonfixing nitrogen nodules in M. sativa roots. Taken together, our results confirm the importance of TolC in protein secretion, exopolysaccharide biosynthesis, antimicrobials resistance, and symbiosis.

  19. The importance of adding EDTA for the nanopore analysis of proteins.

    PubMed

    Krasniqi, Besnik; Lee, Jeremy S

    2012-06-01

    Nanopore analysis is a promising technique for studying the conformation of proteins and protein/protein interactions. Two proteins (bacterial thioredoxin and maltose binding protein) were subjected to nanopore analysis with α-hemolysin. Two types of events were observed; bumping events with a blockade current less than -40 pA and intercalation events with blockade currents between -40 pA and -100 pA. In potassium phosphate buffer, pH 7.8, both proteins gave intercalation events but the frequency of these events was significantly reduced in TRIS or HEPES buffers especially in the presence of 0.01 mM divalent metal ions. The frequency of events was restored by the addition of EDTA. For maltose binding protein, the frequency of intercalation events was also decreased in the presence of maltose but not lactose to which it does not bind. It is proposed that the events with large blockade currents represent transient intercalation of a loop or end of the protein into the pore and that divalent metal ions inhibit this process. The results demonstrate that the choice of buffer and the effects of metal ion contamination are important considerations in nanopore analysis.

  20. Cell envelope of Bordetella pertussis: immunological and biochemical analyses and characterization of a major outer membrane porin protein

    SciTech Connect

    Armstrong, S.K.

    1986-01-01

    Surface molecules of Bordetella pertussis which may be important in metabolism, pathogenesis, and immunity to whooping cough were examined using cell fractionation and /sup 125/I cell surface labeling. Antigenic envelope proteins were examined by immunofluorescence microscopy and Western blotting procedures using monoclonal antibodies and convalescent sera. A surface protein with a high M/sub r/, missing in a mutant lacking the filamentous hemagglutinin, was identified in virulent Bordetella pertussis but was absent in virulent B. pertussis strains. At least three envelope proteins were found only in virulent B. pertussis strains and were absent or diminished in avirulent and most phenotypically modulated strains. Transposon-induced mutants unable to produce hemolysin, dermonecrotic toxin, pertussis toxin, and filamentous hemagglutinin also lacked these three envelope proteins, confirming that virulence-associated envelope proteins were genetically regulated with other virulence-associated traits. Two dimensional gel electrophoresis revealed at least five heat modifiable proteins which migrated as higher or lower M/sub r/ moieties if solubilized at 25/sup 0/C instead of 100/sup 0/C.

  1. Roles of Hcp family proteins in the pathogenesis of the porcine extraintestinal pathogenic Escherichia coli type VI secretion system.

    PubMed

    Peng, Ying; Wang, Xiangru; Shou, Jin; Zong, Bingbing; Zhang, Yanyan; Tan, Jia; Chen, Jing; Hu, Linlin; Zhu, Yongwei; Chen, Huanchun; Tan, Chen

    2016-05-27

    Hcp (hemolysin-coregulated protein) is considered a vital component of the functional T6SS (Type VI Secretion System), which is a newly discovered secretion system. Our laboratory has previously sequenced the whole genome of porcine extraintestinal pathogenic E. coli (ExPEC) strain PCN033, and identified an integrated T6SS encoding three different hcp family genes. In this study, we first identified a functional T6SS in porcine ExPEC strain PCN033, and demonstrated that the Hcp family proteins were involved in bacterial competition and the interactions with other cells. Interestingly, the three Hcp proteins had different functions. Hcp2 functioned predominantly in bacterial competition; all three proteins were involved in the colonization of mice; and Hcp1 and Hcp3 were predominantly contributed to bacterial-eukaryotic cell interactions. We showed an active T6SS in porcine ExPEC strain PCN033, and the Hcp family proteins had different functions in their interaction with other bacteria or host cells.

  2. Comparative proteomic analysis of Streptococcus suis biofilms and planktonic cells that identified biofilm infection-related immunogenic proteins.

    PubMed

    Wang, Yang; Yi, Li; Wu, Zongfu; Shao, Jing; Liu, Guangjin; Fan, Hongjie; Zhang, Wei; Lu, Chengping

    2012-01-01

    Streptococcus suis (SS) is a zoonotic pathogen that causes severe disease symptoms in pigs and humans. Biofilms of SS bind to extracellular matrix proteins in both endothelial and epithelial cells and cause persistent infections. In this study, the differences in the protein expression profiles of SS grown either as planktonic cells or biofilms were identified using comparative proteomic analysis. The results revealed the existence of 13 proteins of varying amounts, among which six were upregulated and seven were downregulated in the Streptococcus biofilm compared with the planktonic controls. The convalescent serum from mini-pig, challenged with SS, was applied in a Western blot assay to visualize all proteins from the biofilm that were grown in vitro and separated by two-dimensional gel electrophoresis. A total of 10 immunoreactive protein spots corresponding to nine unique proteins were identified by MALDI-TOF/TOF-MS. Of these nine proteins, five (Manganese-dependent superoxide dismutase, UDP-N-acetylglucosamine 1-carboxyvinyltransferase, ornithine carbamoyltransferase, phosphoglycerate kinase, Hypothetical protein SSU05_0403) had no previously reported immunogenic properties in SS to our knowledge. The remaining four immunogenic proteins (glyceraldehyde-3-phosphate dehydrogenase, hemolysin, pyruvate dehydrogenase and DnaK) were identified under both planktonic and biofilm growth conditions. In conclusion, the protein expression pattern of SS, grown as biofilm, was different from the SS grown as planktonic cells. These five immunogenic proteins that were specific to SS biofilm cells may potentially be targeted as vaccine candidates to protect against SS biofilm infections. The four proteins common to both biofilm and planktonic cells can be targeted as vaccine candidates to protect against both biofilm and acute infections.

  3. Crystal Structure and Self-Interaction of the Type VI Secretion Tail-Tube Protein from Enteroaggregative Escherichia coli

    PubMed Central

    Douzi, Badreddine; Spinelli, Silvia; Blangy, Stéphanie; Roussel, Alain; Durand, Eric; Brunet, Yannick R.; Cascales, Eric; Cambillau, Christian

    2014-01-01

    The type VI secretion system (T6SS) is a widespread machine used by bacteria to control their environment and kill or disable bacterial species or eukaryotes through toxin injection. The T6SS comprises a central tube formed of stacked hexamers of hemolysin co-regulated proteins (Hcp) and terminated by a trimeric valine-glycine repeat protein G (VgrG) component, the cell puncturing device. A contractile tail sheath, formed by the TssB and TssC proteins, surrounds this tube. This syringe-like machine has been compared to an inverted phage, as both Hcp and VgrG share structural homology with tail components of Caudovirales. Here we solved the crystal structure of a tryptophan-substituted double mutant of Hcp1 from enteroaggregative Escherichia coli and compared it to the structures of other Hcps. Interestingly, we observed that the purified Hcp native protein is unable to form tubes in vitro. To better understand the rationale for observation, we measured the affinity of Hcp1 hexamers with themselves by surface plasmon resonance. The intra-hexamer interaction is weak, with a KD value of 7.2 µM. However, by engineering double cysteine mutants at defined positions, tubes of Hcp1 gathering up to 15 stacked hexamers formed in oxidative conditions. These results, together with those available in the literature regarding TssB and TssC, suggest that assembly of the T6SS tube differs significantly from that of Sipho- or Myoviridae. PMID:24551044

  4. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2007-09-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  5. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2014-07-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  6. Protection of mice against Staphylococcus aureus infection by a recombinant protein ClfA-IsdB-Hlg as a vaccine candidate.

    PubMed

    Delfani, Somayeh; Mohabati Mobarez, Ashraf; Imani Fooladi, Abbas Ali; Amani, Jafar; Emaneini, Mohammad

    2016-02-01

    Staphylococcus aureus is one of the most important causes of nosocomial infections. An effective vaccine to prevent S. aureus infections is urgently required due to the dramatic increase in the number of antibiotic-resistant strains. In this report, we evaluated a newly recombinant protein composed of selected antigenic regions of clumping factor A (ClfA), iron surface determinant B (IsdB) and gamma hemolysin B (HlgB) of S. aureus and sequence coding for hydrophobic linkers between three domains. The recombinant gene was constructed in pET-28a (+) and expressed in Escherichia coli BL21. In addition, sequence coding for a His(6)-tag was added followed by a hybrid procedure of nickel chelate protein purification. Immunization of BALB/c mice with the recombinant protein ClfA-IsdB-Hlg evoked antigen-specific antibodies that could opsonize S. aureus cells, enhancing in vitro phagocytosis by macrophages. Vaccination with the recombinant protein also reduced the bacterial load recovered from mice spleen samples and increased survival following the intraperitoneal challenge with pathogenic S. aureus compared to the control mice. Our results showed that the recombinant protein ClfA-IsdB-Hlg is a promising vaccine candidate for the prevention of S. aureus bacteremia infections.

  7. Metal-organic complex-functionalized protein nanopore sensor for aromatic amino acids chiral recognition.

    PubMed

    Guo, Yanli; Niu, Aihua; Jian, Feifei; Wang, Ying; Yao, Fujun; Wei, Yongfeng; Tian, Lei; Kang, Xiaofeng

    2017-03-27

    Chiral recognition at single-molecule level for small active molecules is important, as exhibited by many nanostructures and molecular assemblies in biological systems, but it presents a significant challenge. We report a simple and rapid sensing strategy to discriminate all enantiomers of natural aromatic amino acids (AAA) using a metal-organic complex-functionalized protein nanopore, in which a chiral recognition element and a chiral recognition valve were equipped. A trifunctional molecule, heptakis-(6-deoxy-6-amino)-β-cyclodextrin (am7βCD), was non-covalently lodged within the nanopore of an α-hemolysin (αHL) mutant, (M113R)7-αHL. Copper(ii) ion reversibly bonds to the amino group of am7βCD to form an am7βCD-Cu(II) complex, which allowed chiral recognition for each enantiomer in the mixture of AAA by distinct current signals. The Cu(II) plugging valve plays a crucial rule that holds chiral molecules in the nanocavity for a sufficient registering time. Importantly, six enantiomers of all nature AAA could be simultaneously recognized at one time. Enantiomeric excess (ee) could also be accurately detected by this approach. It should be possible to generalize this approach for sensing of other chiral molecules.

  8. NDR proteins

    PubMed Central

    Jones, Alan M

    2010-01-01

    N-myc downregulated (NDR) genes were discovered more than fifteen years ago. Indirect evidence support a role in tumor progression and cellular differentiation, but their biochemical function is still unknown. Our detailed analyses on Arabidopsis NDR proteins (deisgnated NDR-like, NDL) show their involvement in altering auxin transport, local auxin gradients and expression level of auxin transport proteins. Animal NDL proteins may be involved in membrane recycling of E-cadherin and effector for the small GTPase. In light of these findings, we hypothesize that NDL proteins regulate vesicular trafficking of auxin transport facilitator PIN proteins by biochemically alterating the local lipid environment of PIN proteins. PMID:20724844

  9. Direct, Specific and Rapid Detection of Staphylococcal Proteins and Exotoxins Using a Multiplex Antibody Microarray

    PubMed Central

    Stieber, Bettina; Monecke, Stefan; Müller, Elke; Büchler, Joseph; Ehricht, Ralf

    2015-01-01

    Background S. aureus is a pathogen in humans and animals that harbors a wide variety of virulence factors and resistance genes. This bacterium can cause a wide range of mild to life-threatening diseases. In the latter case, fast diagnostic procedures are important. In routine diagnostic laboratories, several genotypic and phenotypic methods are available to identify S. aureus strains and determine their resistances. However, there is a demand for multiplex routine diagnostic tests to directly detect staphylococcal toxins and proteins. Methods In this study, an antibody microarray based assay was established and validated for the rapid detection of staphylococcal markers and exotoxins. The following targets were included: staphylococcal protein A, penicillin binding protein 2a, alpha- and beta-hemolysins, Panton Valentine leukocidin, toxic shock syndrome toxin, enterotoxins A and B as well as staphylokinase. All were detected simultaneously within a single experiment, starting from a clonal culture on standard media. The detection of bound proteins was performed using a new fluorescence reading device for microarrays. Results 110 reference strains and clinical isolates were analyzed using this assay, with a DNA microarray for genotypic characterization performed in parallel. The results showed a general high concordance of genotypic and phenotypic data. However, genotypic analysis found the hla gene present in all S. aureus isolates but its expression under given conditions depended on the clonal complex affiliation of the actual isolate. Conclusions The multiplex antibody assay described herein allowed a rapid and reliable detection of clinically relevant staphylococcal toxins as well as resistance- and species-specific markers. PMID:26624622

  10. Proteins (image)

    MedlinePlus

    ... is an important nutrient that builds muscles and bones and provides energy. Protein can help with weight control because it helps you feel full and satisfied from your meals. The healthiest proteins are the leanest. This means ...

  11. Protein Structure

    ERIC Educational Resources Information Center

    Asmus, Elaine Garbarino

    2007-01-01

    Individual students model specific amino acids and then, through dehydration synthesis, a class of students models a protein. The students clearly learn amino acid structure, primary, secondary, tertiary, and quaternary structure in proteins and the nature of the bonds maintaining a protein's shape. This activity is fun, concrete, inexpensive and…

  12. Mutations in the Histone-like Nucleoid Structuring Regulatory Gene (hns) Decrease the Adherence of Shiga Toxin-producing Escherichia coli 091:H21 Strain B2F1 to Human Colonic Epithelial Cells and Increase the Production of Hemolysin

    DTIC Science & Technology

    1999-10-19

    rabbits (Cantey and Blake. 1977). calves ( Fischer et aI.., 1994), pigs (Zhu et al~ 1994) and dogs (Drolet et al~ 1994). F. Enterohemorrhaaie E. col; (EHEC...syndrome: a family outbreak. Pediatr. Infect. Dis. J. IS: 1008-1011. Barth, M., C. Marschall, A. Mumer, D. Fischer , and :R. Henggearonis. 1995. Role for the...osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J. Bacteriol. 170:2575-2583. Mobley, H. L., D. M. Green

  13. Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens.

    PubMed

    Wu, Hung-Yi; Chung, Pei-Che; Shih, Hsiao-Wei; Wen, Sy-Ray; Lai, Erh-Min

    2008-04-01

    Agrobacterium tumefaciens is a plant-pathogenic bacterium capable of secreting several virulence factors into extracellular space or the host cell. In this study, we used shotgun proteomics analysis to investigate the secretome of A. tumefaciens, which resulted in identification of 12 proteins, including 1 known secretory protein (VirB1*) and 11 potential secretory proteins. Interestingly, one unknown protein, which we designated hemolysin-coregulated protein (Hcp), is a predicted soluble protein without a recognizable N-terminal signal peptide. Western blot analysis revealed that A. tumefaciens Hcp is expressed and secreted when cells are grown in both minimal and rich media. Further biochemical and immunoelectron microscopy analysis demonstrated that intracellular Hcp is localized mainly in the cytosol, with a small portion in the membrane system. To investigate the mechanism of secretion of Hcp in A. tumefaciens, we generated mutants with deletions of a conserved gene, icmF, or the entire putative operon encoding a recently identified type VI secretion system (T6SS). Western blot analysis indicated that Hcp was expressed but not secreted into the culture medium in mutants with deletions of icmF or the t6ss operon. The secretion deficiency of Hcp in the icmF mutant was complemented by heterologous trans expression of icmF, suggesting that icmF is required for Hcp secretion. In tumor assays with potato tuber disks, deletion of hcp resulted in approximately 20 to 30% reductions in tumorigenesis efficiency, while no consistent difference was observed when icmF or the t6ss operon was deleted. These results increase our understanding of the conserved T6SS used by both plant- and animal-pathogenic bacteria.

  14. Insertion and self-diffusion of a monotopic protein, the Aquifex aeolicus sulfide quinone reductase, in supported lipid bilayers.

    PubMed

    Harb, Frédéric; Prunetti, Laurence; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne; Tinland, Bernard

    2015-10-01

    Monotopic proteins constitute a class of membrane proteins that bind tightly to cell membranes, but do not span them. We present a FRAPP (Fluorescence Recovery After Patterned Photobleaching) study of the dynamics of a bacterial monotopic protein, SQR (sulfide quinone oxidoreductase) from the thermophilic bacteria Aquifex aeolicus, inserted into two different types of lipid bilayers (EggPC: L-α-phosphatidylcholine (Egg, Chicken) and DMPC: 1,2-dimyristoyl-sn-glycero-3-phosphocholine) supported on two different types of support (mica or glass). It sheds light on the behavior of a monotopic protein inside the bilayer. The insertion of SQR is more efficient when the bilayer is in the fluid phase than in the gel phase. We observed diffusion of the protein, with no immobile fraction, and deduced from the diffusion coefficient measurements that the resulting inserted object is the same whatever the incubation conditions, i.e. homogeneous in terms of oligomerization state. As expected, the diffusion coefficient of the SQR is smaller in the gel phase than in the fluid phase. In the supported lipid bilayer, the diffusion coefficient of the SQR is smaller than the diffusion coefficient of phospholipids in both gel and fluid phase. SQR shows a diffusion behavior different from the transmembrane protein α-hemolysin, and consistent with its monotopic character. Preliminary experiments in the presence of the substrate of SQR, DecylUbiquinone, an analogue of quinone, component of transmembrane electrons transport systems of eukaryotic and prokaryotic organisms, have been carried out. Finally, we studied the behavior of SQR, in terms of insertion and diffusion, in bilayers formed with lipids from Aquifex aeolicus. All the conclusions that we have found in the biomimetic systems applied to the biological system.

  15. Therapeutic proteins.

    PubMed

    Dimitrov, Dimiter S

    2012-01-01

    Protein-based therapeutics are highly successful in clinic and currently enjoy unprecedented recognition of their potential. More than 100 genuine and similar number of modified therapeutic proteins are approved for clinical use in the European Union and the USA with 2010 sales of US$108 bln; monoclonal antibodies (mAbs) accounted for almost half (48%) of the sales. Based on their pharmacological activity, they can be divided into five groups: (a) replacing a protein that is deficient or abnormal; (b) augmenting an existing pathway; (c) providing a novel function or activity; (d) interfering with a molecule or organism; and (e) delivering other compounds or proteins, such as a radionuclide, cytotoxic drug, or effector proteins. Therapeutic proteins can also be grouped based on their molecular types that include antibody-based drugs, Fc fusion proteins, anticoagulants, blood factors, bone morphogenetic proteins, engineered protein scaffolds, enzymes, growth factors, hormones, interferons, interleukins, and thrombolytics. They can also be classified based on their molecular mechanism of activity as (a) binding non-covalently to target, e.g., mAbs; (b) affecting covalent bonds, e.g., enzymes; and (c) exerting activity without specific interactions, e.g., serum albumin. Most protein therapeutics currently on the market are recombinant and hundreds of them are in clinical trials for therapy of cancers, immune disorders, infections, and other diseases. New engineered proteins, including bispecific mAbs and multispecific fusion proteins, mAbs conjugated with small molecule drugs, and proteins with optimized pharmacokinetics, are currently under development. However, in the last several decades, there are no conceptually new methodological developments comparable, e.g., to genetic engineering leading to the development of recombinant therapeutic proteins. It appears that a paradigm change in methodologies and understanding of mechanisms is needed to overcome major

  16. Secretion of Anti-Plasmodium Effector Proteins from a Natural Pantoea agglomerans Isolate by Using PelB and HlyA Secretion Signals▿

    PubMed Central

    Bisi, Dawn C.; Lampe, David J.

    2011-01-01

    The insect-vectored disease malaria is a major world health problem. New control strategies are needed to supplement the current use of insecticides and medications. A genetic approach can be used to inhibit development of malaria parasites (Plasmodium spp.) in the mosquito host. We hypothesized that Pantoea agglomerans, a bacterial symbiont of Anopheles mosquitoes, could be engineered to express and secrete anti-Plasmodium effector proteins, a strategy termed paratransgenesis. To this end, plasmids that include the pelB or hlyA secretion signals from the genes of related species (pectate lyase from Erwinia carotovora and hemolysin A from Escherichia coli, respectively) were created and tested for their efficacy in secreting known anti-Plasmodium effector proteins (SM1, anti-Pbs21, and PLA2) in P. agglomerans and E. coli. P. agglomerans successfully secreted HlyA fusions of anti-Pbs21 and PLA2, and these strains are under evaluation for anti-Plasmodium activity in infected mosquitoes. Varied expression and/or secretion of the effector proteins was observed, suggesting that the individual characteristics of a particular effector may require empirical testing of several secretion signals. Importantly, those strains that secreted efficiently grew as well as wild-type strains under laboratory conditions and, thus, may be expected to be competitive with the native microbiota in the environment of the mosquito midgut. PMID:21602368

  17. Secretion of anti-Plasmodium effector proteins from a natural Pantoea agglomerans isolate by using PelB and HlyA secretion signals.

    PubMed

    Bisi, Dawn C; Lampe, David J

    2011-07-01

    The insect-vectored disease malaria is a major world health problem. New control strategies are needed to supplement the current use of insecticides and medications. A genetic approach can be used to inhibit development of malaria parasites (Plasmodium spp.) in the mosquito host. We hypothesized that Pantoea agglomerans, a bacterial symbiont of Anopheles mosquitoes, could be engineered to express and secrete anti-Plasmodium effector proteins, a strategy termed paratransgenesis. To this end, plasmids that include the pelB or hlyA secretion signals from the genes of related species (pectate lyase from Erwinia carotovora and hemolysin A from Escherichia coli, respectively) were created and tested for their efficacy in secreting known anti-Plasmodium effector proteins (SM1, anti-Pbs21, and PLA2) in P. agglomerans and E. coli. P. agglomerans successfully secreted HlyA fusions of anti-Pbs21 and PLA2, and these strains are under evaluation for anti-Plasmodium activity in infected mosquitoes. Varied expression and/or secretion of the effector proteins was observed, suggesting that the individual characteristics of a particular effector may require empirical testing of several secretion signals. Importantly, those strains that secreted efficiently grew as well as wild-type strains under laboratory conditions and, thus, may be expected to be competitive with the native microbiota in the environment of the mosquito midgut.

  18. Whey Protein

    MedlinePlus

    ... inflammation (polymyalgia rheumatica). Taking whey protein in a dairy product twice daily for 8 weeks does not improve muscle function, walking speed, or other movement tests in people with polymyalgia rheumatica. Other conditions. More evidence is needed to rate whey protein for these uses.

  19. Computational discovery of putative quorum sensing inhibitors against LasR and RhlR receptor proteins of Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Annapoorani, Angusamy; Umamageswaran, Venugopal; Parameswari, Radhakrishnan; Pandian, Shunmugiah Karutha; Ravi, Arumugam Veera

    2012-09-01

    Drugs have been discovered in the past mainly either by identification of active components from traditional remedies or by unpredicted discovery. A key motivation for the study of structure based virtual screening is the exploitation of such information to design targeted drugs. In this study, structure based virtual screening was used in search for putative quorum sensing inhibitors (QSI) of Pseudomonas aeruginosa. The virtual screening programme Glide version 5.5 was applied to screen 1,920 natural compounds/drugs against LasR and RhlR receptor proteins of P. aeruginosa. Based on the results of in silico docking analysis, five top ranking compounds namely rosmarinic acid, naringin, chlorogenic acid, morin and mangiferin were subjected to in vitro bioassays against laboratory strain PAO1 and two more antibiotic resistant clinical isolates, P. aeruginosa AS1 (GU447237) and P. aeruginosa AS2 (GU447238). Among the five compounds studied, except mangiferin other four compounds showed significant inhibition in the production of protease, elastase and hemolysin. Further, all the five compounds potentially inhibited the biofilm related behaviours. This interaction study provided promising ligands to inhibit the quorum sensing (QS) mediated virulence factors production in P. aeruginosa.

  20. FlhA influences Bacillus thuringiensis PlcR-regulated gene transcription, protein production, and virulence.

    PubMed

    Bouillaut, Laurent; Ramarao, Nalini; Buisson, Christophe; Gilois, Nathalie; Gohar, Michel; Lereclus, Didier; Nielsen-Leroux, Christina

    2005-12-01

    Bacillus thuringiensis and Bacillus cereus are closely related. B. thuringiensis is well known for its entomopathogenic properties, principally due to the synthesis of plasmid-encoded crystal toxins. B. cereus appears to be an emerging opportunistic human pathogen. B. thuringiensis and B. cereus produce many putative virulence factors which are positively controlled by the pleiotropic transcriptional regulator PlcR. The inactivation of plcR decreases but does not abolish virulence, indicating that additional factors like flagella may contribute to pathogenicity. Therefore, we further analyzed a mutant (B. thuringiensis 407 Cry(-) DeltaflhA) previously described as being defective in flagellar apparatus assembly and in motility as well as in the production of hemolysin BL and phospholipases. A large picture of secreted proteins was obtained by two-dimensional electrophoresis analysis, which revealed that flagellar proteins are not secreted and that production of several virulence-associated factors is reduced in the flhA mutant. Moreover, we quantified the effect of FlhA on plcA and hblC gene transcription. The results show that the flhA mutation results in a significant reduction of plcA and hblC transcription. These results indicate that the transcription of several PlcR-regulated virulence factors is coordinated with the flagellar apparatus. Consistently, the flhA mutant also shows a strong decrease in cytotoxicity towards HeLa cells and in virulence against Galleria mellonella larvae following oral and intrahemocoelic inoculation. The decrease in virulence may be due to both a lack of flagella and a lower production of secreted factors. Hence, FlhA appears to be an essential virulence factor with a pleiotropic role.

  1. Improved Experimental Techniques for Analyzing Nucleic Acid Transport Through Protein Nanopores in Planar Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Costa, Justin A.

    The translocation of nucleic acid polymers across cell membranes is a fundamental requirement for complex life and has greatly contributed to genomic molecular evolution. The diversity of pathways that have evolved to transport DNA and RNA across membranes include protein receptors, active and passive transporters, endocytic and pinocytic processes, and various types of nucleic acid conducting channels known as nanopores. We have developed a series of experimental techniques, collectively known as "Wicking", that greatly improves the biophysical analysis of nucleic acid transport through protein nanopores in planar lipid bilayers. We have verified the Wicking method using numerous types of classical ion channels including the well-studied chloride selective channel, CLIC1. We used the Wicking technique to reconstitute α-hemolysin and found that DNA translocation events of types A and B could be routinely observed using this method. Furthermore, measurable differences were observed in the duration of blockade events as DNA length and composition was varied, consistent with previous reports. Finally, we tested the ability of the Wicking technology to reconstitute the dsRNA transporter Sid-1. Exposure to dsRNAs of increasing length and complexity showed measurable differences in the current transitions suggesting that the charge carrier was dsRNA. However, the translocation events occurred so infrequently that a meaningful electrophysiological analysis was not possible. Alterations in the lipid composition of the bilayer had a minor effect on the frequency of translocation events but not to such a degree as to permit rigorous statistical analysis. We conclude that in many instances the Wicking method is a significant improvement to the lipid bilayer technique, but is not an optimal method for analyzing transport through Sid-1. Further refinements to the Wicking method might have future applications in high throughput DNA sequencing, DNA computation, and

  2. Campylobacter fetus Surface Layer Proteins Are Transported by a Type I Secretion System

    PubMed Central

    Thompson, Stuart A.; Shedd, Omer L.; Ray, Kevin C.; Beins, Michael H.; Jorgensen, Jesse P.; Blaser, Martin J.

    1998-01-01

    The virulence of Campylobacter fetus, a bacterial pathogen of ungulates and humans, is mediated in part by the presence of a paracrystalline surface layer (S-layer) that confers serum resistance. The subunits of the S-layer are S-layer proteins (SLPs) that are secreted in the absence of an N-terminal signal sequence and attach to either type A or B C. fetus lipopolysaccharide in a serospecific manner. Antigenic variation of multiple SLPs (encoded by sapA homologs) of type A strain 23D occurs by inversion of a promoter-containing DNA element flanked by two sapA homologs. Cloning and sequencing of the entire 6.2-kb invertible region from C. fetus 23D revealed a probable 5.6-kb operon of four overlapping genes (sapCDEF, with sizes of 1,035, 1,752, 1,284, and 1,302 bp, respectively) transcribed in the opposite direction from sapA. The four genes also were present in the invertible region of type B strain 84-107 and were virtually identical to their counterparts in the type A strain. Although SapC had no database homologies, SapD, SapE, and SapF had predicted amino acid homologies with type I protein secretion systems (typified by Escherichia coli HlyBD/TolC or Erwinia chrysanthemi PrtDEF) that utilize C-terminal secretion signals to mediate the secretion of hemolysins, leukotoxins, or proteases from other bacterial species. Analysis of the C termini of four C. fetus SLPs revealed conserved structures that are potential secretion signals. A C. fetus sapD mutant neither produced nor secreted SLPs. E. coli expressing C. fetus sapA and sapCDEF secreted SapA, indicating that the sapCDEF genes are sufficient for SLP secretion. C. fetus SLPs therefore are transported to the cell surface by a type I secretion system. PMID:9851986

  3. Loss of Regulatory Protein RfaH Attenuates Virulence of Uropathogenic Escherichia coli

    PubMed Central

    Nagy, Gábor; Dobrindt, Ulrich; Schneider, György; Khan, A. Salam; Hacker, Jörg; Emödy, Levente

    2002-01-01

    RfaH is a regulatory protein in Escherichia coli and Salmonella enterica serovar Typhimurium. Although it enhances expression of different factors that are proposed to play a role in bacterial virulence, a direct effect of RfaH on virulence has not been investigated so far. We report that inactivation of rfaH dramatically decreases the virulence of uropathogenic E. coli strain 536 in an ascending mouse model of urinary tract infection. The mortality rate caused by the wild-type strain in this assay is 100%, whereas that of its isogenic rfaH mutant does not exceed 18%. In the case of coinfection, the wild-type strain 536 shows higher potential to colonize the urinary tract even when it is outnumbered 100-fold by its rfaH mutant in the inoculum. In contrast to the wild-type strain, serum resistance of strain 536rfaH::cat is fully abolished. Furthermore, we give evidence that, besides a major decrease in the amount of hemin receptor ChuA (G. Nagy, U. Dobrindt, M. Kupfer, L. Emody, H. Karch, and J. Hacker, Infect. Immun. 69:1924-1928, 2001), loss of the RfaH protein results in an altered lipopolysaccharide phenotype as well as decreased expression of K15 capsule and alpha-hemolysin, whereas levels of other pathogenicity factors such as siderophores, flagella, Prf, and S fimbriae appear to be unaltered in strain 536rfaH::cat in comparison to the wild-type strain. trans complementation of the mutant strain with the rfaH gene restores wild-type levels of the affected virulence factors and consequently restitutes virulence in the mouse model of ascending urinary tract infection. PMID:12117951

  4. Total protein

    MedlinePlus

    ... 2016:chap 215. Read More Agammaglobulinemia Albumin - blood (serum) test Amino acids Antibody Burns Chronic Congenital nephrotic syndrome Fibrinogen blood test Glomerulonephritis Hemoglobin Liver disease Malabsorption Multiple myeloma Polycythemia vera Protein in diet ...

  5. Pore-forming proteins with built-in triggers and switches

    NASA Astrophysics Data System (ADS)

    Bayley, Hagan

    1996-02-01

    Genetic engineering and targeted chemical modification are being used to produce polypeptides with pore-forming activity that can be triggered or switched on-and-off by biochemical, chemical or physical stimuli. The principal target of our studies has been the (alpha) -hemolysin ((alpha) HL) from the bacterium Staphylococcus aureus. The remodeled hemolysins include protease-activated pores, metal-regulated pores, pores that are activated by chemical alkylation and pores that are turned on with light. These polypeptides have several potential applications. For example, they might serve as components of sensors or they might be useful for mediating the controlled release of encapsulated drugs.

  6. An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens.

    PubMed

    Ma, Lay-Sun; Lin, Jer-Sheng; Lai, Erh-Min

    2009-07-01

    An intracellular multiplication F (IcmF) family protein is a conserved component of a newly identified type VI secretion system (T6SS) encoded in many animal and plant-associated Proteobacteria. We have previously identified ImpL(M), an IcmF family protein that is required for the secretion of the T6SS substrate hemolysin-coregulated protein (Hcp) from the plant-pathogenic bacterium Agrobacterium tumefaciens. In this study, we characterized the topology of ImpL(M) and the importance of its nucleotide-binding Walker A motif involved in Hcp secretion from A. tumefaciens. A combination of beta-lactamase-green fluorescent protein fusion and biochemical fractionation analyses revealed that ImpL(M) is an integral polytopic inner membrane protein comprising three transmembrane domains bordered by an N-terminal domain facing the cytoplasm and a C-terminal domain exposed to the periplasm. impL(M) mutants with substitutions or deletions in the Walker A motif failed to complement the impL(M) deletion mutant for Hcp secretion, which provided evidence that ImpL(M) may bind and/or hydrolyze nucleoside triphosphates to mediate T6SS machine assembly and/or substrate secretion. Protein-protein interaction and protein stability analyses indicated that there is a physical interaction between ImpL(M) and another essential T6SS component, ImpK(L). Topology and biochemical fractionation analyses suggested that ImpK(L) is an integral bitopic inner membrane protein with an N-terminal domain facing the cytoplasm and a C-terminal OmpA-like domain exposed to the periplasm. Further comprehensive yeast two-hybrid assays dissecting ImpL(M)-ImpK(L) interaction domains suggested that ImpL(M) interacts with ImpK(L) via the N-terminal cytoplasmic domains of the proteins. In conclusion, ImpL(M) interacts with ImpK(L), and its Walker A motif is required for its function in mediation of Hcp secretion from A. tumefaciens.

  7. Protein Crystallizability.

    PubMed

    Smialowski, Pawel; Wong, Philip

    2016-01-01

    Obtaining diffracting quality crystals remains a major challenge in protein structure research. We summarize and compare methods for selecting the best protein targets for crystallization, construct optimization and crystallization condition design. Target selection methods are divided into algorithms predicting the chance of successful progression through all stages of structural determination (from cloning to solving the structure) and those focusing only on the crystallization step. We tried to highlight pros and cons of different approaches examining the following aspects: data size, redundancy and representativeness, overfitting during model construction, and results evaluation. In summary, although in recent years progress was made and several sequence properties were reported to be relevant for crystallization, the successful prediction of protein crystallization behavior and selection of corresponding crystallization conditions continue to challenge structural researchers.

  8. Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  9. Copurification of Leptospira interrogans serovar pomona hemolysin and sphingomyelinase C.

    PubMed Central

    Bernheimer, A W; Bey, R F

    1986-01-01

    The hemolytic and sphingomyelinase C activities of supernatants of cultures of Leptospira interrogans serovar pomona tended to copurify when isoelectric fractionation was carried out. Both activities focused primarily at pH 8.1. Considered in conjunction with other circumstantial evidence, the results led to the conclusion that sphingomyelinase C is responsible for hemolysis. PMID:3019890

  10. POSSIBLE ROLES OF FUNGAL HEMOLYSINS IN SICK BUILDING SYNDROME

    EPA Science Inventory

    The World Health Organization (WHO) definition of SBS includes such symptoms in the occupants as headache, distraction, dizziness, fatigue, watery eyes, runny or blocked or bleeding nose, dry or sore throat and skin irritation. The WHO has set a criterion for a healthy building ...

  11. Recombinant protein production technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  12. Protein inference: A protein quantification perspective.

    PubMed

    He, Zengyou; Huang, Ting; Liu, Xiaoqing; Zhu, Peijun; Teng, Ben; Deng, Shengchun

    2016-08-01

    In mass spectrometry-based shotgun proteomics, protein quantification and protein identification are two major computational problems. To quantify the protein abundance, a list of proteins must be firstly inferred from the raw data. Then the relative or absolute protein abundance is estimated with quantification methods, such as spectral counting. Until now, most researchers have been dealing with these two processes separately. In fact, the protein inference problem can be regarded as a special protein quantification problem in the sense that truly present proteins are those proteins whose abundance values are not zero. Some recent published papers have conceptually discussed this possibility. However, there is still a lack of rigorous experimental studies to test this hypothesis. In this paper, we investigate the feasibility of using protein quantification methods to solve the protein inference problem. Protein inference methods aim to determine whether each candidate protein is present in the sample or not. Protein quantification methods estimate the abundance value of each inferred protein. Naturally, the abundance value of an absent protein should be zero. Thus, we argue that the protein inference problem can be viewed as a special protein quantification problem in which one protein is considered to be present if its abundance is not zero. Based on this idea, our paper tries to use three simple protein quantification methods to solve the protein inference problem effectively. The experimental results on six data sets show that these three methods are competitive with previous protein inference algorithms. This demonstrates that it is plausible to model the protein inference problem as a special protein quantification task, which opens the door of devising more effective protein inference algorithms from a quantification perspective. The source codes of our methods are available at: http://code.google.com/p/protein-inference/.

  13. Learning about Proteins

    MedlinePlus

    ... What Happens in the Operating Room? Learning About Proteins KidsHealth > For Kids > Learning About Proteins A A ... the foods you eat. continue Different Kinds of Protein Protein from animal sources, such as meat and ...

  14. Protein Microarray Technology

    PubMed Central

    Hall, David A.; Ptacek, Jason

    2007-01-01

    Protein chips have emerged as a promising approach for a wide variety of applications including the identification of protein-protein interactions, protein-phospholipid interactions, small molecule targets, and substrates of proteins kinases. They can also be used for clinical diagnostics and monitoring disease states. This article reviews current methods in the generation and applications of protein microarrays. PMID:17126887

  15. Length, protein protein interactions, and complexity

    NASA Astrophysics Data System (ADS)

    Tan, Taison; Frenkel, Daan; Gupta, Vishal; Deem, Michael W.

    2005-05-01

    The evolutionary reason for the increase in gene length from archaea to prokaryotes to eukaryotes observed in large-scale genome sequencing efforts has been unclear. We propose here that the increasing complexity of protein-protein interactions has driven the selection of longer proteins, as they are more able to distinguish among a larger number of distinct interactions due to their greater average surface area. Annotated protein sequences available from the SWISS-PROT database were analyzed for 13 eukaryotes, eight bacteria, and two archaea species. The number of subcellular locations to which each protein is associated is used as a measure of the number of interactions to which a protein participates. Two databases of yeast protein-protein interactions were used as another measure of the number of interactions to which each S. cerevisiae protein participates. Protein length is shown to correlate with both number of subcellular locations to which a protein is associated and number of interactions as measured by yeast two-hybrid experiments. Protein length is also shown to correlate with the probability that the protein is encoded by an essential gene. Interestingly, average protein length and number of subcellular locations are not significantly different between all human proteins and protein targets of known, marketed drugs. Increased protein length appears to be a significant mechanism by which the increasing complexity of protein-protein interaction networks is accommodated within the natural evolution of species. Consideration of protein length may be a valuable tool in drug design, one that predicts different strategies for inhibiting interactions in aberrant and normal pathways.

  16. EDITORIAL: Precision proteins Precision proteins

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-06-01

    Since the birth of modern day medicine, during the times of Hippocrates in ancient Greece, the profession has developed from the rudimentary classification of disease into a rigorous science with an inspiring capability to treat and cure. Scientific methodology has distilled clinical diagnostic tools from the early arts of prognosis, which used to rely as much on revelation and prophecy, as intuition and judgement [1]. Over the past decade, research into the interactions between proteins and nanosystems has provided some ingenious and apt techniques for delving into the intricacies of anatomical systems. In vivo biosensing has emerged as a vibrant field of research, as much of medical diagnosis relies on the detection of substances or an imbalance in the chemicals in the body. The inherent properties of nanoscale structures, such as cantilevers, make them well suited to biosensing applications that demand the detection of molecules at very low concentrations. Measurable deflections in cantilevers functionalised with antibodies provide quantitative indicators of the presence of specific antigens when the two react. Such developments have roused mounting interest in the interactions of proteins with nanostructures, such as carbon nanotubes [3], which have demonstrated great potential as generic biomarkers. Plasmonic properties are also being exploited in sensing applications, such as the molecular sentinel recently devised by researchers in the US. The device uses the plasmonic properties of a silver nanoparticle linked to a Raman labelled hairpin DNA probe to signal changes in the probe geometry resulting from interactions with substances in the environment. Success stories so far include the detection of two specific genes associated with breast cancer [4]. A greater understanding of how RNA interference regulates gene expression has highlighted the potential of using this natural process as another agent for combating disease in personalized medicine. However, the

  17. Shotgun protein sequencing.

    SciTech Connect

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  18. Protein Crystal Based Nanomaterials

    NASA Technical Reports Server (NTRS)

    Bell, Jeffrey A.; VanRoey, Patrick

    2001-01-01

    This is the final report on a NASA Grant. It concerns a description of work done, which includes: (1) Protein crystals cross-linked to form fibers; (2) Engineering of protein to favor crystallization; (3) Better knowledge-based potentials for protein-protein contacts; (4) Simulation of protein crystallization.

  19. Orientia tsutsugamushi ankyrin repeat-containing protein family members are Type 1 secretion system substrates that traffic to the host cell endoplasmic reticulum

    PubMed Central

    VieBrock, Lauren; Evans, Sean M.; Beyer, Andrea R.; Larson, Charles L.; Beare, Paul A.; Ge, Hong; Singh, Smita; Rodino, Kyle G.; Heinzen, Robert A.; Richards, Allen L.; Carlyon, Jason A.

    2015-01-01

    Scrub typhus is an understudied, potentially fatal infection that threatens one billion persons in the Asia-Pacific region. How the causative obligate intracellular bacterium, Orientia tsutsugamushi, facilitates its intracellular survival and pathogenesis is poorly understood. Many intracellular bacterial pathogens utilize the Type 1 (T1SS) or Type 4 secretion system (T4SS) to translocate ankyrin repeat-containing proteins (Anks) that traffic to distinct subcellular locations and modulate host cell processes. The O. tsutsugamushi genome encodes one of the largest known bacterial Ank repertoires plus T1SS and T4SS components. Whether these potential virulence factors are expressed during infection, how the Anks are potentially secreted, and to where they localize in the host cell are not known. We determined that O. tsutsugamushi transcriptionally expresses 20 unique ank genes as well as genes for both T1SS and T4SS during infection of mammalian host cells. Examination of the Anks' C-termini revealed that the majority of them resemble T1SS substrates. Escherichia coli expressing a functional T1SS was able to secrete chimeric hemolysin proteins bearing the C-termini of 19 of 20 O. tsutsugamushi Anks in an HlyBD-dependent manner. Thus, O. tsutsugamushi Anks C-termini are T1SS-compatible. Conversely, Coxiella burnetii could not secrete heterologously expressed Anks in a T4SS-dependent manner. Analysis of the subcellular distribution patterns of 20 ectopically expressed Anks revealed that, while 6 remained cytosolic or trafficked to the nucleus, 14 localized to, and in some cases, altered the morphology of the endoplasmic reticulum. This study identifies O. tsutsugamushi Anks as T1SS substrates and indicates that many display a tropism for the host cell secretory pathway. PMID:25692099

  20. Protein-losing enteropathy

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007338.htm Protein-losing enteropathy To use the sharing features on this page, please enable JavaScript. Protein-losing enteropathy is an abnormal loss of protein ...

  1. Protein in diet

    MedlinePlus

    ... basic structure of protein is a chain of amino acids. You need protein in your diet to help ... Protein foods are broken down into parts called amino acids during digestion. The human body needs a number ...

  2. Protein splicing: selfish genes invade cellular proteins.

    PubMed

    Neff, N F

    1993-12-01

    Protein splicing is a series of enzymatic events involving intramolecular protein breakage, rejoining and intron homing, in which introns are able to promote the recombinative transposition of their own coding sequences. Eukaryotic and prokaryotic spliced proteins have conserved similar gene structure, but little amino acid identity. The genes coding for these spliced proteins contain internal in-frame introns that encode polypeptides that apparently self-excise from the resulting host protein sequences. Excision of the 'protein intron' is coupled with joining of the two flanking protein regions encoded by exons of the host gene. Some introns of this type encode DNA endonucleases, related to Group I RNA intron gene products, that stimulate gene conversion and self-transmission.

  3. PREFACE: Protein protein interactions: principles and predictions

    NASA Astrophysics Data System (ADS)

    Nussinov, Ruth; Tsai, Chung-Jung

    2005-06-01

    Proteins are the `workhorses' of the cell. Their roles span functions as diverse as being molecular machines and signalling. They carry out catalytic reactions, transport, form viral capsids, traverse membranes and form regulated channels, transmit information from DNA to RNA, making possible the synthesis of new proteins, and they are responsible for the degradation of unnecessary proteins and nucleic acids. They are the vehicles of the immune response and are responsible for viral entry into the cell. Given their importance, considerable effort has been centered on the prediction of protein function. A prime way to do this is through identification of binding partners. If the function of at least one of the components with which the protein interacts is known, that should let us assign its function(s) and the pathway(s) in which it plays a role. This holds since the vast majority of their chores in the living cell involve protein-protein interactions. Hence, through the intricate network of these interactions we can map cellular pathways, their interconnectivities and their dynamic regulation. Their identification is at the heart of functional genomics; their prediction is crucial for drug discovery. Knowledge of the pathway, its topology, length, and dynamics may provide useful information for forecasting side effects. The goal of predicting protein-protein interactions is daunting. Some associations are obligatory, others are continuously forming and dissociating. In principle, from the physical standpoint, any two proteins can interact, but under what conditions and at which strength? The principles of protein-protein interactions are general: the non-covalent interactions of two proteins are largely the outcome of the hydrophobic effect, which drives the interactions. In addition, hydrogen bonds and electrostatic interactions play important roles. Thus, many of the interactions observed in vitro are the outcome of experimental overexpression. Protein disorder

  4. Protein sequence comparison and protein evolution

    SciTech Connect

    Pearson, W.R.

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. This tutorial examines how the information conserved during the evolution of a protein molecule can be used to infer reliably homology, and thus a shared proteinfold and possibly a shared active site or function. The authors start by reviewing a geological/evolutionary time scale. Next they look at the evolution of several protein families. During the tutorial, these families will be used to demonstrate that homologous protein ancestry can be inferred with confidence. They also examine different modes of protein evolution and consider some hypotheses that have been presented to explain the very earliest events in protein evolution. The next part of the tutorial will examine the technical aspects of protein sequence comparison. Both optimal and heuristic algorithms and their associated parameters that are used to characterize protein sequence similarities are discussed. Perhaps more importantly, they survey the statistics of local similarity scores, and how these statistics can both be used to improve the selectivity of a search and to evaluate the significance of a match. They them examine distantly related members of three protein families, the serine proteases, the glutathione transferases, and the G-protein-coupled receptors (GCRs). Finally, the discuss how sequence similarity can be used to examine internal repeated or mosaic structures in proteins.

  5. Whey protein fractionation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concentrated whey protein products from cheese whey, such as whey protein concentrate (WPC) and whey protein isolate (WPI), contain more than seven different types of proteins: alpha-lactalbumin (alpha-LA), beta-lactoglobulin (beta-LG), bovine serum albumin (BSA), immunoglobulins (Igs), lactoferrin ...

  6. Protein- protein interaction detection system using fluorescent protein microdomains

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  7. Molecular modelling of protein-protein/protein-solvent interactions

    NASA Astrophysics Data System (ADS)

    Luchko, Tyler

    The inner workings of individual cells are based on intricate networks of protein-protein interactions. However, each of these individual protein interactions requires a complex physical interaction between proteins and their aqueous environment at the atomic scale. In this thesis, molecular dynamics simulations are used in three theoretical studies to gain insight at the atomic scale about protein hydration, protein structure and tubulin-tubulin (protein-protein) interactions, as found in microtubules. Also presented, in a fourth project, is a molecular model of solvation coupled with the Amber molecular modelling package, to facilitate further studies without the need of explicitly modelled water. Basic properties of a minimally solvated protein were calculated through an extended study of myoglobin hydration with explicit solvent, directly investigating water and protein polarization. Results indicate a close correlation between polarization of both water and protein and the onset of protein function. The methodology of explicit solvent molecular dynamics was further used to study tubulin and microtubules. Extensive conformational sampling of the carboxy-terminal tails of 8-tubulin was performed via replica exchange molecular dynamics, allowing the characterisation of the flexibility, secondary structure and binding domains of the C-terminal tails through statistical analysis methods. Mechanical properties of tubulin and microtubules were calculated with adaptive biasing force molecular dynamics. The function of the M-loop in microtubule stability was demonstrated in these simulations. The flexibility of this loop allowed constant contacts between the protofilaments to be maintained during simulations while the smooth deformation provided a spring-like restoring force. Additionally, calculating the free energy profile between the straight and bent tubulin configurations was used to test the proposed conformational change in tubulin, thought to cause microtubule

  8. Surface Mediated Protein Disaggregation

    NASA Astrophysics Data System (ADS)

    Radhakrishna, Mithun; Kumar, Sanat K.

    2014-03-01

    Preventing protein aggregation is of both biological and industrial importance. Biologically these aggregates are known to cause amyloid type diseases like Alzheimer's and Parkinson's disease. Protein aggregation leads to reduced activity of the enzymes in industrial applications. Inter-protein interactions between the hydrophobic residues of the protein are known to be the major driving force for protein aggregation. In the current paper we show how surface chemistry and curvature can be tuned to mitigate these inter-protein interactions. Our results calculated in the framework of the Hydrophobic-Polar (HP) lattice model show that, inter-protein interactions can be drastically reduced by increasing the surface hydrophobicity to a critical value corresponding to the adsorption transition of the protein. At this value of surface hydrophobicity, proteins lose inter-protein contacts to gain surface contacts and thus the surface helps in reducing the inter-protein interactions. Further, we show that the adsorption of the proteins inside hydrophobic pores of optimal sizes are most efficient both in reducing inter-protein contacts and simultaneously retaining most of the native-contacts due to strong protein-surface interactions coupled with stabilization due to the confinement. Department of Energy (Grant No DE-FG02-11ER46811).

  9. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    PubMed

    Santamaría-Hernando, Saray; Krell, Tino; Ramos-González, María-Isabel

    2012-01-01

    Proteins of the animal heme peroxidase (ANP) superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20), where it was found to be involved in Ca(2+) coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+) binding with a K(D) of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821) is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of life.

  10. Physics of protein motility and motor proteins

    NASA Astrophysics Data System (ADS)

    Kolomeisky, Anatoly B.

    2013-09-01

    Motor proteins are enzymatic molecules that transform chemical energy into mechanical motion and work. They are critically important for supporting various cellular activities and functions. In the last 15 years significant progress in understanding the functioning of motor proteins has been achieved due to revolutionary breakthroughs in single-molecule experimental techniques and strong advances in theoretical modelling. However, microscopic mechanisms of protein motility are still not well explained, and the collective efforts of many scientists are needed in order to solve these complex problems. In this special section the reader will find the latest advances on the difficult road to mapping motor proteins dynamics in various systems. Recent experimental developments have allowed researchers to monitor and to influence the activity of single motor proteins with a high spatial and temporal resolution. It has stimulated significant theoretical efforts to understand the non-equilibrium nature of protein motility phenomena. The latest results from all these advances are presented and discussed in this special section. We would like to thank the scientists from all over the world who have reported their latest research results for this special section. We are also grateful to the staff and editors of Journal of Physics: Condensed Matter for their invaluable help in handling all the administrative and refereeing activities. The field of motor proteins and protein motility is fast moving, and we hope that this collection of articles will be a useful source of information in this highly interdisciplinary area. Physics of protein motility and motor proteins contents Physics of protein motility and motor proteinsAnatoly B Kolomeisky Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116 Yuan Zhang, Mirkó Palla, Andrew Sun and Jung-Chi Liao The load dependence of the physical properties of a molecular motor

  11. Protein C blood test

    MedlinePlus

    ... a normal substance in the body that prevents blood clotting. A blood test can be done to see ... history of blood clots. Protein C helps control blood clotting. A lack of this protein or problem with ...

  12. Protein S blood test

    MedlinePlus

    ... a normal substance in your body that prevents blood clotting. A blood test can be done to see ... family history of blood clots. Protein S helps control blood clotting. A lack of this protein or problem with ...

  13. Learning about Proteins

    MedlinePlus

    ... body, and protecting you from disease. All About Amino Acids When you eat foods that contain protein, the ... called amino (say: uh-MEE-no) acids. The amino acids then can be reused to make the proteins ...

  14. Modeling Protein Self Assembly

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton Buck; Hull, Elizabeth

    2004-01-01

    Understanding the structure and function of proteins is an important part of the standards-based science curriculum. Proteins serve vital roles within the cell and malfunctions in protein self assembly are implicated in degenerative diseases. Experience indicates that this topic is a difficult one for many students. We have found that the concept…

  15. CSF total protein

    MedlinePlus

    CSF total protein is a test to determine the amount of protein in your spinal fluid, also called cerebrospinal fluid (CSF). ... The normal protein range varies from lab to lab, but is typically about 15 to 60 milligrams per deciliter (mg/dL) ...

  16. Modeling Protein Domain Function

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth

    2007-01-01

    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…

  17. Destabilized bioluminescent proteins

    DOEpatents

    Allen, Michael S.; Rakesh, Gupta; Gary, Sayler S.

    2007-07-31

    Purified nucleic acids, vectors and cells containing a gene cassette encoding at least one modified bioluminescent protein, wherein the modification includes the addition of a peptide sequence. The duration of bioluminescence emitted by the modified bioluminescent protein is shorter than the duration of bioluminescence emitted by an unmodified form of the bioluminescent protein.

  18. Texturized dairy proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy proteins are amenable to structural modifications induced by high temperature, shear and moisture; in particular, whey proteins can change conformation to new unfolded states. The change in protein state is a basis for creating new foods. The dairy products, nonfat dried milk (NDM), whey prote...

  19. Overview of Protein Microarrays

    PubMed Central

    Reymond Sutandy, FX; Qian, Jiang; Chen, Chien-Sheng; Zhu, Heng

    2013-01-01

    Protein microarray is an emerging technology that provides a versatile platform for characterization of hundreds of thousands of proteins in a highly parallel and high-throughput way. Two major classes of protein microarrays are defined to describe their applications: analytical and functional protein microarrays. In addition, tissue or cell lysates can also be fractionated and spotted on a slide to form a reverse-phase protein microarray. While the fabrication technology is maturing, applications of protein microarrays, especially functional protein microarrays, have flourished during the past decade. Here, we will first review recent advances in the protein microarray technologies, and then present a series of examples to illustrate the applications of analytical and functional protein microarrays in both basic and clinical research. The research areas will include detection of various binding properties of proteins, study of protein posttranslational modifications, analysis of host-microbe interactions, profiling antibody specificity, and identification of biomarkers in autoimmune diseases. As a powerful technology platform, it would not be surprising if protein microarrays will become one of the leading technologies in proteomic and diagnostic fields in the next decade. PMID:23546620

  20. The E5 Proteins

    PubMed Central

    DiMaio, Daniel; Petti, Lisa

    2013-01-01

    The E5 proteins are short transmembrane proteins encoded by many animal and human papillomaviruses. These proteins display transforming activity in cultured cells and animals, and they presumably also play a role in the productive virus life cycle. The E5 proteins are thought to act by modulating the activity of cellular proteins. Here, we describe the biological activities of the best-studied E5 proteins and discuss the evidence implicating specific protein targets and pathways in mediating these activities. The primary target of the 44-amino acid BPV1 E5 is the PDGF β receptor, whereas the EGF receptor appears to be an important target of the 83-amino acid HPV16 E5 protein. Both E5 proteins also bind to the vacuolar ATPase and affect MHC class I expression and cell-cell communication. Continued studies of the E5 proteins will elucidate important aspects of transmembrane protein-protein interactions, cellular signal transduction, cell biology, virus replication, and tumorigenesis. PMID:23731971

  1. Protopia: a protein-protein interaction tool

    PubMed Central

    Real-Chicharro, Alejandro; Ruiz-Mostazo, Iván; Navas-Delgado, Ismael; Kerzazi, Amine; Chniber, Othmane; Sánchez-Jiménez, Francisca; Medina, Miguel Ángel; Aldana-Montes, José F

    2009-01-01

    Background Protein-protein interactions can be considered the basic skeleton for living organism self-organization and homeostasis. Impressive quantities of experimental data are being obtained and computational tools are essential to integrate and to organize this information. This paper presents Protopia, a biological tool that offers a way of searching for proteins and their interactions in different Protein Interaction Web Databases, as a part of a multidisciplinary initiative of our institution for the integration of biological data . Results The tool accesses the different Databases (at present, the free version of Transfac, DIP, Hprd, Int-Act and iHop), and results are expressed with biological protein names or databases codes and can be depicted as a vector or a matrix. They can be represented and handled interactively as an organic graph. Comparison among databases is carried out using the Uniprot codes annotated for each protein. Conclusion The tool locates and integrates the current information stored in the aforementioned databases, and redundancies among them are detected. Results are compatible with the most important network analysers, so that they can be compared and analysed by other world-wide known tools and platforms. The visualization possibilities help to attain this goal and they are especially interesting for handling multiple-step or complex networks. PMID:19828077

  2. Protein-protein interactions in multienzyme megasynthetases.

    PubMed

    Weissman, Kira J; Müller, Rolf

    2008-04-14

    The multienzyme polyketide synthases (PKSs), nonribosomal polypeptide synthetases (NRPSs), and their hybrids are responsible for the construction in bacteria of numerous natural products of clinical value. These systems generate high structural complexity by using a simple biosynthetic logic--that of the assembly line. Each of the individual steps in building the metabolites is designated to an independently folded domain within gigantic polypeptides. The domains are clustered into functional modules, and the modules are strung out along the proteins in the order in which they act. Every metabolite results, therefore, from the successive action of up to 100 individual catalysts. Despite the conceptual simplicity of this division-of-labor organization, we are only beginning to decipher the molecular details of the numerous protein-protein interactions that support assembly-line biosynthesis, and which are critical to attempts to re-engineer these systems as a tool in drug discovery. This review aims to summarize the state of knowledge about several aspects of protein-protein interactions, including current architectural models for PKS and NRPS systems, the central role of carrier proteins, and the structural basis for intersubunit recognition.

  3. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2012-05-01

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  4. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  5. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2011-11-29

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  6. Protein crystallization with paper

    NASA Astrophysics Data System (ADS)

    Matsuoka, Miki; Kakinouchi, Keisuke; Adachi, Hiroaki; Maruyama, Mihoko; Sugiyama, Shigeru; Sano, Satoshi; Yoshikawa, Hiroshi Y.; Takahashi, Yoshinori; Yoshimura, Masashi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Takano, Kazufumi

    2016-05-01

    We developed a new protein crystallization method that incorporates paper. A small piece of paper, such as facial tissue or KimWipes, was added to a drop of protein solution in the traditional sitting drop vapor diffusion technique, and protein crystals grew by incorporating paper. By this method, we achieved the growth of protein crystals with reducing osmotic shock. Because the technique is very simple and the materials are easy to obtain, this method will come into wide use for protein crystallization. In the future, it could be applied to nanoliter-scale crystallization screening on a paper sheet such as in inkjet printing.

  7. [Atypical ubiquitination of proteins].

    PubMed

    Buneeva, O A; Medvedev, A E

    2016-07-01

    Ubiquitination is a type of posttranslational modification of intracellular proteins characterized by covalent attachment of one (monoubiquitination) or several (polyubiquitination) of ubiquitin molecules to target proteins. In the case of polyubiquitination, linear or branched polyubiquitin chains are formed. Their formation involves various lysine residues of monomeric ubiquitin. The best studied is Lys48-polyubiquitination, which targets proteins for proteasomal degradation. In this review we have considered examples of so-called atypical polyubiquitination, which mainly involves other lysine residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys63) and also N-terminal methionine. The considered examples convincingly demonstrate that polyubiquitination of proteins not necessarily targets proteins for their proteolytic degradation in proteasomes. Atypically polyubiquitinated proteins are involved in regulation of various processes and altered polyubiquitination of certain proteins is crucial for development of serious diseases.

  8. Protein and vegetarian diets.

    PubMed

    Marsh, Kate A; Munn, Elizabeth A; Baines, Surinder K

    2013-08-19

    A vegetarian diet can easily meet human dietary protein requirements as long as energy needs are met and a variety of foods are eaten. Vegetarians should obtain protein from a variety of plant sources, including legumes, soy products, grains, nuts and seeds. Eggs and dairy products also provide protein for those following a lacto-ovo-vegetarian diet. There is no need to consciously combine different plant proteins at each meal as long as a variety of foods are eaten from day to day, because the human body maintains a pool of amino acids which can be used to complement dietary protein. The consumption of plant proteins rather than animal proteins by vegetarians may contribute to their reduced risk of chronic diseases such as diabetes and heart disease.

  9. Protein solubility modeling

    NASA Technical Reports Server (NTRS)

    Agena, S. M.; Pusey, M. L.; Bogle, I. D.

    1999-01-01

    A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. Copyright 1999 John Wiley & Sons, Inc.

  10. A chemical-induced pH-mediated molecular switch

    PubMed Central

    Jayawardhana, Dilani A.; Sengupta, Mrinal K.; Krishantha, D.M. Milan; Gupta, Jyoti; Armstrong, Daniel W.; Guan, Xiyun

    2011-01-01

    The transmembrane protein α-hemolysin pore has been used to develop ultrasensitive biosensors, study biomolecular folding and unfolding, investigate covalent and non-covalent bonding interactions, and probe enzyme kinetics. Here, we report that by addition of ionic liquid tetrakis(hydroxymethyl)phosphonium chloride solution to the α-hemolysin pore, the α-hemolysin channel can be controlled open or closed by adjusting the pH of the solution. This approach can be employed to develop a novel molecular switch to regulate molecular transport, and should find potential applications as a ‘smart’ drug delivery method. PMID:21919492

  11. Chemical-induced pH-mediated molecular switch.

    PubMed

    Jayawardhana, Dilani A; Sengupta, Mrinal K; Krishantha, D M Milan; Gupta, Jyoti; Armstrong, Daniel W; Guan, Xiyun

    2011-10-15

    The transmembrane protein α-hemolysin pore has been used to develop ultrasensitive biosensors, study biomolecular folding and unfolding, investigate covalent and noncovalent bonding interactions, and probe enzyme kinetics. Here, we report that, by addition of ionic liquid tetrakis(hydroxymethyl)phosphonium chloride solution to the α-hemolysin pore, the α-hemolysin channel can be controlled open or closed by adjusting the pH of the solution. This approach can be employed to develop a novel molecular switch to regulate molecular transport and should find potential applications as a "smart" drug delivery method.

  12. Predictions of Protein-Protein Interfaces within Membrane Protein Complexes

    PubMed Central

    Asadabadi, Ebrahim Barzegari; Abdolmaleki, Parviz

    2013-01-01

    Background Prediction of interaction sites within the membrane protein complexes using the sequence data is of a great importance, because it would find applications in modification of molecules transport through membrane, signaling pathways and drug targets of many diseases. Nevertheless, it has gained little attention from the protein structural bioinformatics community. Methods In this study, a wide variety of prediction and classification tools were applied to distinguish the residues at the interfaces of membrane proteins from those not in the interfaces. Results The tuned SVM model achieved the high accuracy of 86.95% and the AUC of 0.812 which outperforms the results of the only previous similar study. Nevertheless, prediction performances obtained using most employed models cannot be used in applied fields and needs more effort to improve. Conclusion Considering the variety of the applied tools in this study, the present investigation could be a good starting point to develop more efficient tools to predict the membrane protein interaction site residues. PMID:23919118

  13. Modeling Protein Expression and Protein Signaling Pathways

    PubMed Central

    Telesca, Donatello; Müller, Peter; Kornblau, Steven M.; Suchard, Marc A.; Ji, Yuan

    2015-01-01

    High-throughput functional proteomic technologies provide a way to quantify the expression of proteins of interest. Statistical inference centers on identifying the activation state of proteins and their patterns of molecular interaction formalized as dependence structure. Inference on dependence structure is particularly important when proteins are selected because they are part of a common molecular pathway. In that case, inference on dependence structure reveals properties of the underlying pathway. We propose a probability model that represents molecular interactions at the level of hidden binary latent variables that can be interpreted as indicators for active versus inactive states of the proteins. The proposed approach exploits available expert knowledge about the target pathway to define an informative prior on the hidden conditional dependence structure. An important feature of this prior is that it provides an instrument to explicitly anchor the model space to a set of interactions of interest, favoring a local search approach to model determination. We apply our model to reverse-phase protein array data from a study on acute myeloid leukemia. Our inference identifies relevant subpathways in relation to the unfolding of the biological process under study. PMID:26246646

  14. Protein kinesis: The dynamics of protein trafficking and stability

    SciTech Connect

    1995-12-31

    The purpose of this conference is to provide a multidisciplinary forum for exchange of state-of-the-art information on protein kinesis. This volume contains abstracts of papers in the following areas: protein folding and modification in the endoplasmic reticulum; protein trafficking; protein translocation and folding; protein degradation; polarity; nuclear trafficking; membrane dynamics; and protein import into organelles.

  15. Protein flexibility as a biosignal.

    PubMed

    Zhao, Qinyi

    2010-01-01

    Dynamic properties of a protein are crucial for all protein functions, and those of signaling proteins are closely related to the biological function of living beings. The protein flexibility signal concept can be used to analyze this relationship. Protein flexibility controls the rate of protein conformational change and influences protein function. The modification of protein flexibility results in a change of protein activity. The logical nature of protein flexibility cannot be explained by applying the principles of protein three-dimensional structure theory or conformation concept. Signaling proteins show high protein flexibility. Many properties of signaling can be traced back to the dynamic natures of signaling protein. The action mechanism of volatile anesthetics and universal cellular reactions are related to flexibility in the change of signaling proteins. We conclude that protein dynamics is an enzyme-enhanced process, called dynamicase.

  16. Antimicrobial proteins: From old proteins, new tricks.

    PubMed

    Smith, Valerie J; Dyrynda, Elisabeth A

    2015-12-01

    This review describes the main types of antimicrobial peptides (AMPs) synthesised by crustaceans, primarily those identified in shrimp, crayfish, crab and lobster. It includes an overview of their range of microbicidal activities and the current landscape of our understanding of their gene expression patterns in different body tissues. It further summarises how their expression might change following various types of immune challenges. The review further considers proteins or protein fragments from crustaceans that have antimicrobial properties but are more usually associated with other biological functions, or are derived from such proteins. It discusses how these unconventional AMPs might be generated at, or delivered to, sites of infection and how they might contribute to crustacean host defence in vivo. It also highlights recent work that is starting to reveal the extent of multi-functionality displayed by some decapod AMPs, particularly their participation in other aspects of host protection. Examples of such activities include proteinase inhibition, phagocytosis, antiviral activity and haematopoiesis.

  17. Protein-protein Interactions using Radiolytic Footprinting

    SciTech Connect

    Takamoto,K.; Chance, M.

    2006-01-01

    Structural proteomics approaches using mass spectrometry are increasingly used in biology to examine the composition and structure of macromolecules. Hydroxyl radical-mediated protein footprinting using mass spectrometry has recently been developed to define structure, assembly, and conformational changes of macromolecules in solution based on measurements of reactivity of amino acid side chain groups with covalent modification reagents. Accurate measurements of side chain reactivity are achieved using quantitative liquid-chromatography-coupled mass spectrometry, whereas the side chain modification sites are identified using tandem mass spectrometry. In addition, the use of footprinting data in conjunction with computational modeling approaches is a powerful new method for testing and refining structural models of macromolecules and their complexes. In this review, we discuss the basic chemistry of hydroxyl radical reactions with peptides and proteins, highlight various approaches to map protein structure using radical oxidation methods, and describe state-of-the-art approaches to combine computational and footprinting data.

  18. Mechanisms Regulating Protein Localization.

    PubMed

    Bauer, Nicholas C; Doetsch, Paul W; Corbett, Anita H

    2015-10-01

    Cellular functions are dictated by protein content and activity. There are numerous strategies to regulate proteins varying from modulating gene expression to post-translational modifications. One commonly used mode of regulation in eukaryotes is targeted localization. By specifically redirecting the localization of a pool of existing protein, cells can achieve rapid changes in local protein function. Eukaryotic cells have evolved elegant targeting pathways to direct proteins to the appropriate cellular location or locations. Here, we provide a general overview of these localization pathways, with a focus on nuclear and mitochondrial transport, and present a survey of the evolutionarily conserved regulatory strategies identified thus far. We end with a description of several specific examples of proteins that exploit localization as an important mode of regulation.

  19. Mayaro virus proteins.

    PubMed

    Mezencio, J M; Rebello, M A

    1993-01-01

    Mayaro virus was grown in BHK-21 cells and purified by centrifugation in a potassium-tartrate gradient (5-50%). The electron microscopy analyses of the purified virus showed an homogeneous population of enveloped particles with 69 +/- 2.3 nm in diameter. Three structural virus proteins were identified and designated p1, p2 and p3. Their average molecular weight were p1, 54 KDa; p2, 50 KDa and p3, 34 KDa. In Mayaro virus infected Aedes albopictus cells and in BHK-21 infected cells we detected six viral proteins, in which three of them are the structural virus proteins and the other three were products from processing of precursors of viral proteins, whose molecular weights are 62 KDa, 64 KDa and 110 KDa. The 34 KDa protein was the first viral protein synthesized at 5 hours post-infection in both cell lines studied.

  20. TRIM proteins and diseases.

    PubMed

    Watanabe, Masashi; Hatakeyama, Shigetsugu

    2017-01-07

    Ubiquitination is one of the posttranslational modifications that regulates a number of intracellular events including signal transduction, protein quality control, transcription, cell cycle, apoptosis and development. The ubiquitin system functions as a garbage machine to degrade target proteins and as a regulator for several signalling pathways. Biochemical reaction of ubiquitination requires several enzymes including E1, E2 and E3, and E3 ubiquitin ligases play roles as receptors for recognizing target proteins. Most of the tripartite motif (TRIM) proteins are E3 ubiquitin ligases. Recent studies have shown that some TRIM proteins function as important regulators for a variety of diseases including cancer, inflammatory diseases, infectious diseases, neuropsychiatric disorders, chromosomal abnormalities and developmental diseases. In this review, we summarize the involvement of TRIM proteins in the aetiology of various diseases.

  1. Biofilm Matrix Proteins

    PubMed Central

    Fong, Jiunn N. C.; Yildiz, Fitnat H.

    2015-01-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this chapter, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation. PMID:26104709

  2. Protein oxidation and peroxidation

    PubMed Central

    Davies, Michael J.

    2016-01-01

    Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established. PMID:27026395

  3. Computer Models of Proteins

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Dr. Marc Pusey (seated) and Dr. Craig Kundrot use computers to analyze x-ray maps and generate three-dimensional models of protein structures. With this information, scientists at Marshall Space Flight Center can learn how proteins are made and how they work. The computer screen depicts a proten structure as a ball-and-stick model. Other models depict the actual volume occupied by the atoms, or the ribbon-like structures that are crucial to a protein's function.

  4. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell, Post-Doctoral Fellow the National Research Council (NRC) uses a reciprocal space mapping diffractometer for macromolecular crystal quality studies. The diffractometer is used in mapping the structure of macromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystallized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  5. Pressure cryocooling protein crystals

    DOEpatents

    Kim, Chae Un; Gruner, Sol M.

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  6. Chemical Synthesis of Proteins

    PubMed Central

    Nilsson, Bradley L.; Soellner, Matthew B.; Raines, Ronald T.

    2010-01-01

    Proteins have become accessible targets for chemical synthesis. The basic strategy is to use native chemical ligation, Staudinger ligation, or other orthogonal chemical reactions to couple synthetic peptides. The ligation reactions are compatible with a variety of solvents and proceed in solution or on a solid support. Chemical synthesis enables a level of control on protein composition that greatly exceeds that attainable with ribosome-mediated biosynthesis. Accordingly, the chemical synthesis of proteins is providing previously unattainable insight into the structure and function of proteins. PMID:15869385

  7. PIC: Protein Interactions Calculator

    PubMed Central

    Tina, K. G.; Bhadra, R.; Srinivasan, N.

    2007-01-01

    Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic–aromatic interactions, aromatic–sulphur interactions and cation–π interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar–apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside. PMID:17584791

  8. PIC: Protein Interactions Calculator.

    PubMed

    Tina, K G; Bhadra, R; Srinivasan, N

    2007-07-01

    Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic-aromatic interactions, aromatic-sulphur interactions and cation-pi interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar-apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside.

  9. Dietary proteins and angiogenesis.

    PubMed

    Medina, Miguel Ángel; Quesada, Ana R

    2014-01-17

    Both defective and persistent angiogenesis are linked to pathological situations in the adult. Compounds able to modulate angiogenesis have a potential value for the treatment of such pathologies. Several small molecules present in the diet have been shown to have modulatory effects on angiogenesis. This review presents the current state of knowledge on the potential modulatory roles of dietary proteins on angiogenesis. There is currently limited available information on the topic. Milk contains at least three proteins for which modulatory effects on angiogenesis have been previously demonstrated. On the other hand, there is some scarce information on the potential of dietary lectins, edible plant proteins and high protein diets to modulate angiogenesis.

  10. Consensus protein design

    PubMed Central

    Porebski, Benjamin T.; Buckle, Ashley M.

    2016-01-01

    A popular and successful strategy in semi-rational design of protein stability is the use of evolutionary information encapsulated in homologous protein sequences. Consensus design is based on the hypothesis that at a given position, the respective consensus amino acid contributes more than average to the stability of the protein than non-conserved amino acids. Here, we review the consensus design approach, its theoretical underpinnings, successes, limitations and challenges, as well as providing a detailed guide to its application in protein engineering. PMID:27274091

  11. Human Mitochondrial Protein Database

    National Institute of Standards and Technology Data Gateway

    SRD 131 Human Mitochondrial Protein Database (Web, free access)   The Human Mitochondrial Protein Database (HMPDb) provides comprehensive data on mitochondrial and human nuclear encoded proteins involved in mitochondrial biogenesis and function. This database consolidates information from SwissProt, LocusLink, Protein Data Bank (PDB), GenBank, Genome Database (GDB), Online Mendelian Inheritance in Man (OMIM), Human Mitochondrial Genome Database (mtDB), MITOMAP, Neuromuscular Disease Center and Human 2-D PAGE Databases. This database is intended as a tool not only to aid in studying the mitochondrion but in studying the associated diseases.

  12. TRIM proteins in development.

    PubMed

    Petrera, Francesca; Meroni, Germana

    2012-01-01

    TRIM proteins play important roles in several patho-physiological processes. Their common activity within the ubiquitylation pathway makes them amenable to a number of diverse biological roles. Many of the TRIM genes are highly and sometimes specifically expressed during embryogenesis, it is therefore not surprising that several of them might be involved in developmental processes. Here, we primarily discuss the developmental implications of two subgroups of TRIM proteins that conserved domain composition and functions from their invertebrate ancestors. The two groups are: the TRIM-NHL proteins implicated in miRNA processing regulation and the TRIM-FN3 proteins involved in ventral midline development.

  13. Engineering therapeutic protein disaggregases

    PubMed Central

    Shorter, James

    2016-01-01

    Therapeutic agents are urgently required to cure several common and fatal neurodegenerative disorders caused by protein misfolding and aggregation, including amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and Alzheimer’s disease (AD). Protein disaggregases that reverse protein misfolding and restore proteins to native structure, function, and localization could mitigate neurodegeneration by simultaneously reversing 1) any toxic gain of function of the misfolded form and 2) any loss of function due to misfolding. Potentiated variants of Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast, have been engineered to robustly disaggregate misfolded proteins connected with ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). However, Hsp104 has no metazoan homologue. Metazoa possess protein disaggregase systems distinct from Hsp104, including Hsp110, Hsp70, and Hsp40, as well as HtrA1, which might be harnessed to reverse deleterious protein misfolding. Nevertheless, vicissitudes of aging, environment, or genetics conspire to negate these disaggregase systems in neurodegenerative disease. Thus, engineering potentiated human protein disaggregases or isolating small-molecule enhancers of their activity could yield transformative therapeutics for ALS, PD, and AD. PMID:27255695

  14. Acanthamoeba castellanii STAT Protein

    PubMed Central

    Kicinska, Anna; Leluk, Jacek; Jarmuszkiewicz, Wieslawa

    2014-01-01

    STAT (signal transducers and activators of transcription) proteins are one of the important mediators of phosphotyrosine-regulated signaling in metazoan cells. We described the presence of STAT protein in a unicellular, free-living amoebae with a simple life cycle, Acanthamoeba castellanii. A. castellanii is the only, studied to date, Amoebozoan that does not belong to Mycetozoa but possesses STATs. A sequence of the A. castellanii STAT protein includes domains similar to those of the Dictyostelium STAT proteins: a coiled coil (characteristic for Dictyostelium STAT coiled coil), a STAT DNA-binding domain and a Src-homology domain. The search for protein sequences homologous to A. castellanii STAT revealed 17 additional sequences from lower eukaryotes. Interestingly, all of these sequences come from Amoebozoa organisms that belong to either Mycetozoa (slime molds) or Centramoebida. We showed that there are four separated clades within the slime mold STAT proteins. The A. castellanii STAT protein branches next to a group of STATc proteins from Mycetozoa. We also demonstrate that Amoebozoa form a distinct monophyletic lineage within the STAT protein world that is well separated from the other groups. PMID:25338074

  15. Protein intakes in India.

    PubMed

    Swaminathan, Sumathi; Vaz, Mario; Kurpad, Anura V

    2012-08-01

    Indian diets derive almost 60 % of their protein from cereals with relatively low digestibility and quality. There have been several surveys of diets and protein intakes in India by the National Nutrition Monitoring Board (NNMB) over the last 25 years, in urban and rural, as well as in slum dwellers and tribal populations. Data of disadvantaged populations from slums, tribals and sedentary rural Indian populations show that the protein intake (mainly from cereals) is about 1 gm/kg/day. However, the protein intake looks less promising in terms of the protein digestibility corrected amino acid score (PDCAAS), using lysine as the first limiting amino acid, where all populations, particularly rural and tribal, appear to have an inadequate quality to their protein intake. The protein: energy (PE) ratio is a measure of dietary quality, and has been used in the 2007 WHO/FAO/UNU report to define reference requirement values with which the adequacy of diets can be evaluated in terms of a protein quality corrected PE ratio. It is likely that about one third of this sedentary rural population is at risk of not meeting their requirements. These levels of risk of deficiency are in a population with relatively low BMI populations, whose diets are also inadequate in fruits and vegetables. Therefore, while the burden of enhancing the quality of protein intake in rural India exists, the quality of the diet, in general, represents a challenge that must be met.

  16. Self assembling proteins

    DOEpatents

    Yeates, Todd O.; Padilla, Jennifer; Colovos, Chris

    2004-06-29

    Novel fusion proteins capable of self-assembling into regular structures, as well as nucleic acids encoding the same, are provided. The subject fusion proteins comprise at least two oligomerization domains rigidly linked together, e.g. through an alpha helical linking group. Also provided are regular structures comprising a plurality of self-assembled fusion proteins of the subject invention, and methods for producing the same. The subject fusion proteins find use in the preparation of a variety of nanostructures, where such structures include: cages, shells, double-layer rings, two-dimensional layers, three-dimensional crystals, filaments, and tubes.

  17. Ultrafiltration of pegylated proteins

    NASA Astrophysics Data System (ADS)

    Molek, Jessica R.

    There is considerable clinical interest in the use of "second-generation" therapeutics produced by conjugation of a native protein with various polymers including polyethylene glycol (PEG). PEG--protein conjugates, so-called PEGylated proteins, can exhibit enhanced stability, half-life, and bioavailability. One of the challenges in the commercial production of PEGylated proteins is the purification required to remove unreacted polymer, native protein, and in many cases PEGylated proteins with nonoptimal degrees of conjugation. The overall objective of this thesis was to examine the use of ultrafiltration for the purification of PEGylated proteins. This included: (1) analysis of size-based separation of PEGylated proteins using conventional ultrafiltration membranes, (2) use of electrically-charged membranes to exploit differences in electrostatic interactions, and (3) examination of the effects of PEGylation on protein fouling. The experimental results were analyzed using appropriate theoretical models, with the underlying physical properties of the PEGylated proteins evaluated using size exclusion chromatography, capillary electrophoresis, dynamic light scattering, and reverse phase chromatography. PEGylated proteins were produced by covalent attachment of activated PEG to a protein via primary amines on the lysine residues. A simple model was developed for the reaction kinetics, which was used to explore the effect of reaction conditions and mode of operation on the distribution of PEGylated products. The effective size of the PEGylated proteins was evaluated using size exclusion chromatography, with appropriate correlations developed for the size in terms of the molecular weight of the native protein and attached PEG. The electrophoretic mobility of the PEGylated proteins were evaluated by capillary electrophoresis with the data in good agreement with a simple model accounting for the increase in protein size and the reduction in the number of protonated amine

  18. Regulation of protein secretion by ... protein secretion?

    PubMed

    Atmakuri, Krishnamohan; Fortune, Sarah M

    2008-09-11

    Mycobacterium tuberculosis (Mtb) requires an alternative protein secretion system, ESX1, for virulence. Recently, Raghavan et al. (2008) reported a new regulatory circuit that may explain how ESX1 activity is controlled during infection. Mtb appears to regulate ESX1 by modulating transcription of associated genes rather than structural components of the secretion system itself.

  19. RNA-Seq Analysis Identifies New Genes Regulated by the Histone-Like Nucleoid Structuring Protein (H-NS) Affecting Vibrio cholerae Virulence, Stress Response and Chemotaxis

    PubMed Central

    Wang, Hongxia; Ayala, Julio C.; Benitez, Jorge A.; Silva, Anisia J.

    2015-01-01

    The histone-like nucleoid structuring protein (H-NS) functions as a transcriptional silencer by binding to AT-rich sequences at bacterial promoters. However, H-NS repression can be counteracted by other transcription factors in response to environmental changes. The identification of potential toxic factors, the expression of which is prevented by H-NS could facilitate the discovery of new regulatory proteins that may contribute to the emergence of new pathogenic variants by anti-silencing. Vibrio cholerae hns mutants of the El Tor biotype exhibit altered virulence, motility and environmental stress response phenotypes compared to wild type. We used an RNA-seq analysis approach to determine the basis of the above hns phenotypes and identify new targets of H-NS transcriptional silencing. H-NS affected the expression of 18% of all predicted genes in a growth phase-dependent manner. Loss of H-NS resulted in diminished expression of numerous genes encoding methyl-accepting chemotaxis proteins as well as chemotaxis toward the attractants glycine and serine. Deletion of hns also induced an endogenous envelope stress response resulting in elevated expression of rpoE encoding the extracytoplamic sigma factor E (σE). The RNA-seq analysis identified new genes directly repressed by H-NS that can affect virulence and biofilm development in the El Tor biotype cholera bacterium. We show that H-NS and the quorum sensing regulator HapR silence the transcription of the vieSAB three-component regulatory system in El Tor biotype V. cholerae. We also demonstrate that H-NS directly represses the transcription of hlyA (hemolysin), rtxCA (the repeat in toxin or RTX), rtxBDE (RTX transport) and the biosynthesis of indole. Of these genes, H-NS occupancy at the hlyA promoter was diminished by overexpression of the transcription activator HlyU. We discuss the role of H-NS transcriptional silencing in phenotypic differences exhibited by V. cholerae biotypes. PMID:25679988

  20. Human Plasma Protein C

    PubMed Central

    Kisiel, Walter

    1979-01-01

    Protein C is a vitamin K-dependent protein, which exists in bovine plasma as a precursor of a serine protease. In this study, protein C was isolated to homogeneity from human plasma by barium citrate adsorption and elution, ammonium sulfate fractionation, DEAE-Sephadex chromatography, dextran sulfate agarose chromatography, and preparative polyacrylamide gel electrophoresis. Human protein C (Mr = 62,000) contains 23% carbohydrate and is composed of a light chain (Mr = 21,000) and a heavy chain (Mr = 41,000) held together by a disulfide bond(s). The light chain has an amino-terminal sequence of Ala-Asn-Ser-Phe-Leu- and the heavy chain has an aminoterminal sequence of Asp-Pro-Glu-Asp-Gln. The residues that are identical to bovine protein C are underlined. Incubation of human protein C with human α-thrombin at an enzyme to substrate weight ratio of 1:50 resulted in the formation of activated protein C, an enzyme with serine amidase activity. In the activation reaction, the apparent molecular weight of the heavy chain decreased from 41,000 to 40,000 as determined by gel electrophoresis in the presence of sodium dodecyl sulfate. No apparent change in the molecular weight of the light chain was observed in the activation process. The heavy chain of human activated protein C also contains the active-site serine residue as evidenced by its ability to react with radiolabeled diisopropyl fluorophosphate. Human activated protein C markedly prolongs the kaolin-cephalin clotting time of human plasma, but not that of bovine plasma. The amidolytic and anticoagulant activities of human activated protein C were completely obviated by prior incubation of the enzyme with diisopropyl fluorophosphate. These results indicate that human protein C, like its bovine counterpart, exists in plasma as a zymogen and is converted to a serine protease by limited proteolysis with attendant anticoagulant activity. Images PMID:468991

  1. Engineered Protein Polymers

    DTIC Science & Technology

    2010-05-31

    of each pure polymer, we plan to combine the various polymer solutions in different ratios to tune the composition and physico-chemical properties...protein materials as vehicles for storage and delivery of small molecules. Each protein polymer under concentrations for particle formation ( vida

  2. Multidomain proteins under force.

    PubMed

    Valle-Orero, Jessica; Rivas-Pardo, Jaime Andrés; Popa, Ionel

    2017-04-28

    Advancements in single-molecule force spectroscopy techniques such as atomic force microscopy and magnetic tweezers allow investigation of how domain folding under force can play a physiological role. Combining these techniques with protein engineering and HaloTag covalent attachment, we investigate similarities and differences between four model proteins: I10 and I91-two immunoglobulin-like domains from the muscle protein titin, and two α + β fold proteins-ubiquitin and protein L. These proteins show a different mechanical response and have unique extensions under force. Remarkably, when normalized to their contour length, the size of the unfolding and refolding steps as a function of force reduces to a single master curve. This curve can be described using standard models of polymer elasticity, explaining the entropic nature of the measured steps. We further validate our measurements with a simple energy landscape model, which combines protein folding with polymer physics and accounts for the complex nature of tandem domains under force. This model can become a useful tool to help in deciphering the complexity of multidomain proteins operating under force.

  3. Archaeal chromatin proteins.

    PubMed

    Zhang, ZhenFeng; Guo, Li; Huang, Li

    2012-05-01

    Archaea, along with Bacteria and Eukarya, are the three domains of life. In all living cells, chromatin proteins serve a crucial role in maintaining the integrity of the structure and function of the genome. An array of small, abundant and basic DNA-binding proteins, considered candidates for chromatin proteins, has been isolated from the Euryarchaeota and the Crenarchaeota, the two major phyla in Archaea. While most euryarchaea encode proteins resembling eukaryotic histones, crenarchaea appear to synthesize a number of unique DNA-binding proteins likely involved in chromosomal organization. Several of these proteins (e.g., archaeal histones, Sac10b homologs, Sul7d, Cren7, CC1, etc.) have been extensively studied. However, whether they are chromatin proteins and how they function in vivo remain to be fully understood. Future investigation of archaeal chromatin proteins will lead to a better understanding of chromosomal organization and gene expression in Archaea and provide valuable information on the evolution of DNA packaging in cellular life.

  4. Protein Attachment on Nanodiamonds.

    PubMed

    Lin, Chung-Lun; Lin, Cheng-Huang; Chang, Huan-Cheng; Su, Meng-Chih

    2015-07-16

    A recent advance in nanotechnology is the scale-up production of small and nonaggregated diamond nanoparticles suitable for biological applications. Using detonation nanodiamonds (NDs) with an average diameter of ∼4 nm as the adsorbents, we have studied the static attachment of three proteins (myoglobin, bovine serum albumin, and insulin) onto the nanoparticles by optical spectroscopy, mass spectrometry, and dynamic light scattering, and electrophoretic zeta potential measurements. Results show that the protein surface coverage is predominantly determined by the competition between protein-protein and protein-ND interactions, giving each protein a unique and characteristic structural configuration in its own complex. Specifically, both myoglobin and bovine serum albumin show a Langmuir-type adsorption behavior, forming 1:1 complexes at saturation, whereas insulin folds into a tightly bound multimer before adsorption. The markedly different adsorption patterns appear to be independent of the protein concentration and are closely related to the affinity of the individual proteins for the NDs. The present study provides a fundamental understanding for the use of NDs as a platform for nanomedical drug delivery.

  5. Poxviral Ankyrin Proteins

    PubMed Central

    Herbert, Michael H.; Squire, Christopher J.; Mercer, Andrew A

    2015-01-01

    Multiple repeats of the ankyrin motif (ANK) are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range. PMID:25690795

  6. Protein Kinases and Addiction

    PubMed Central

    Lee, Anna M.; Messing, Robert O.

    2011-01-01

    Although drugs of abuse have different chemical structures and interact with different protein targets, all appear to usurp common neuronal systems that regulate reward and motivation. Addiction is a complex disease that is thought to involve drug-induced changes in synaptic plasticity due to alterations in cell signaling, gene transcription, and protein synthesis. Recent evidence suggests that drugs of abuse interact with and change a common network of signaling pathways that include a subset of specific protein kinases. The best studied of these kinases are reviewed here and include extracellular signal-regulated kinase, cAMP-dependent protein kinase, cyclin-dependent protein kinase 5, protein kinase C, calcium/calmodulin-dependent protein kinase II, and Fyn tyrosine kinase. These kinases have been implicated in various aspects of drug addiction including acute drug effects, drug self-administration, withdrawal, reinforcement, sensitization, and tolerance. Identifying protein kinase substrates and signaling pathways that contribute to the addicted state may provide novel approaches for new pharma-cotherapies to treat drug addiction. PMID:18991950

  7. Sac phosphatase domain proteins.

    PubMed Central

    Hughes, W E; Cooke, F T; Parker, P J

    2000-01-01

    Advances in our understanding of the roles of phosphatidylinositol phosphates in controlling cellular functions such as endocytosis, exocytosis and the actin cytoskeleton have included new insights into the phosphatases that are responsible for the interconversion of these lipids. One of these is an entirely novel class of phosphatase domain found in a number of well characterized proteins. Proteins containing this Sac phosphatase domain include the yeast Saccharomyces cerevisiae proteins Sac1p and Fig4p. The Sac phosphatase domain is also found within the mammalian phosphoinositide 5-phosphatase synaptojanin and the yeast synaptojanin homologues Inp51p, Inp52p and Inp53p. These proteins therefore contain both Sac phosphatase and 5-phosphatase domains. This review describes the Sac phosphatase domain-containing proteins and their actions, with particular reference to the genetic and biochemical insights provided by study of the yeast Saccharomyces cerevisiae. PMID:10947947

  8. Proteins in unexpected locations.

    PubMed Central

    Smalheiser, N R

    1996-01-01

    Members of all classes of proteins--cytoskeletal components, secreted growth factors, glycolytic enzymes, kinases, transcription factors, chaperones, transmembrane proteins, and extracellular matrix proteins--have been identified in cellular compartments other than their conventional sites of action. Some of these proteins are expressed as distinct compartment-specific isoforms, have novel mechanisms for intercompartmental translocation, have distinct endogenous biological actions within each compartment, and are regulated in a compartment-specific manner as a function of physiologic state. The possibility that many, if not most, proteins have distinct roles in more than one cellular compartment has implications for the evolution of cell organization and may be important for understanding pathological conditions such as Alzheimer's disease and cancer. PMID:8862516

  9. Structures of membrane proteins

    PubMed Central

    Vinothkumar, Kutti R.; Henderson, Richard

    2010-01-01

    In reviewing the structures of membrane proteins determined up to the end of 2009, we present in words and pictures the most informative examples from each family. We group the structures together according to their function and architecture to provide an overview of the major principles and variations on the most common themes. The first structures, determined 20 years ago, were those of naturally abundant proteins with limited conformational variability, and each membrane protein structure determined was a major landmark. With the advent of complete genome sequences and efficient expression systems, there has been an explosion in the rate of membrane protein structure determination, with many classes represented. New structures are published every month and more than 150 unique membrane protein structures have been determined. This review analyses the reasons for this success, discusses the challenges that still lie ahead, and presents a concise summary of the key achievements with illustrated examples selected from each class. PMID:20667175

  10. Transdermal delivery of proteins.

    PubMed

    Kalluri, Haripriya; Banga, Ajay K

    2011-03-01

    Transdermal delivery of peptides and proteins avoids the disadvantages associated with the invasive parenteral route of administration and other alternative routes such as the pulmonary and nasal routes. Since proteins have a large size and are hydrophilic in nature, they cannot permeate passively across the skin due to the stratum corneum which allows the transport of only small lipophilic drug molecules. Enhancement techniques such as chemical enhancers, iontophoresis, microneedles, electroporation, sonophoresis, thermal ablation, laser ablation, radiofrequency ablation and noninvasive jet injectors aid in the delivery of proteins by overcoming the skin barrier in different ways. In this review, these enhancement techniques that can enable the transdermal delivery of proteins are discussed, including a discussion of mechanisms, sterility requirements, and commercial development of products. Combination of enhancement techniques may result in a synergistic effect allowing increased protein delivery and these are also discussed.

  11. Protein crystallization in microgravity.

    PubMed

    Aibara, S; Shibata, K; Morita, Y

    1997-12-01

    A space experiment involving protein crystallization was conducted in a microgravity environment using the space shuttle "Endeavour" of STS-47, on a 9-day mission from September 12th to 20th in 1992. The crystallization was carried out according to a batch method, and 5 proteins were selected as flight samples for crystallization. Two of these proteins: hen egg-white lysozyme and co-amino acid: pyruvate aminotransferase from Pseudomonas sp. F-126, were obtained as single crystals of good diffraction quality. Since 1992 we have carried out several space experiments for protein crystallization aboard space shuttles and the space station MIR. Our experimental results obtained mainly from hen egg-white lysozyme are described below, focusing on the effects of microgravity on protein crystal growth.

  12. Protein expression-yeast.

    PubMed

    Nielsen, Klaus H

    2014-01-01

    Yeast is an excellent system for the expression of recombinant eukaryotic proteins. Both endogenous and heterologous proteins can be overexpressed in yeast (Phan et al., 2001; Ton and Rao, 2004). Because yeast is easy to manipulate genetically, a strain can be optimized for the expression of a specific protein. Many eukaryotic proteins contain posttranslational modifications that can be performed in yeast but not in bacterial expression systems. In comparison with mammalian cell culture expression systems, growing yeast is both faster and less expensive, and large-scale cultures can be performed using fermentation. While several different yeast expression systems exist, this chapter focuses on the budding yeast Saccharomyces cerevisiae and will briefly describe some options to consider when selecting vectors and tags to be used for protein expression. Throughout this chapter, the expression and purification of yeast eIF3 is shown as an example alongside a general scheme outline.

  13. Protein Unfolding and Alzheimer's

    NASA Astrophysics Data System (ADS)

    Cheng, Kelvin

    2012-10-01

    Early interaction events of beta-amyloid (Aβ) proteins with neurons have been associated with the pathogenesis of Alzheimer's disease. Knowledge pertaining to the role of lipid molecules, particularly cholesterol, in modulating the single Aβ interactions with neurons at the atomic length and picosecond time resolutions, remains unclear. In our research, we have used atomistic molecular dynamics simulations to explore early molecular events including protein insertion kinetics, protein unfolding, and protein-induced membrane disruption of Aβ in lipid domains that mimic the nanoscopic raft and non-raft regions of the neural membrane. In this talk, I will summarize our current work on investigating the role of cholesterol in regulating the Aβ interaction events with membranes at the molecular level. I will also explain how our results will provide new insights into understanding the pathogenesis of Alzheimer's disease associated with the Aβ proteins.

  14. Junin virus structural proteins.

    PubMed Central

    De Martínez Segovia, Z M; De Mitri, M I

    1977-01-01

    Polyacrylamide gel electrophoresis of purified Junin virus revealed six distinct structural polypeptides, two major and four minor ones. Four of these polypeptides appeared to be covalently linked with carbohydrate. The molecular weights of the six proteins, estimated by coelectrophoresis with marker proteins, ranged from 25,000 to 91,000. One of the two major components (number 3) was identified as a nucleoprotein and had a molecular weight of 64,000. It was the most prominent protein and was nonglycosylated. The other major protein (number 5), with a molecular weight of 38,000, was a glucoprotein and a component of the viral envelope. The location on the virion of three additional glycopeptides with molecular weights of 91,000, 72,000, and 52,000, together with a protein with a molecular weight of 25,000, was not well defined. PMID:189088

  15. Manipulating and Visualizing Proteins

    SciTech Connect

    Simon, Horst D.

    2003-12-05

    ProteinShop Gives Researchers a Hands-On Tool for Manipulating, Visualizing Protein Structures. The Human Genome Project and other biological research efforts are creating an avalanche of new data about the chemical makeup and genetic codes of living organisms. But in order to make sense of this raw data, researchers need software tools which let them explore and model data in a more intuitive fashion. With this in mind, researchers at Lawrence Berkeley National Laboratory and the University of California, Davis, have developed ProteinShop, a visualization and modeling program which allows researchers to manipulate protein structures with pinpoint control, guided in large part by their own biological and experimental instincts. Biologists have spent the last half century trying to unravel the ''protein folding problem,'' which refers to the way chains of amino acids physically fold themselves into three-dimensional proteins. This final shape, which resembles a crumpled ribbon or piece of origami, is what determines how the protein functions and translates genetic information. Understanding and modeling this geometrically complex formation is no easy matter. ProteinShop takes a given sequence of amino acids and uses visualization guides to help generate predictions about the secondary structures, identifying alpha helices and flat beta strands, and the coil regions that bind them. Once secondary structures are in place, researchers can twist and turn these pre-configurations until they come up with a number of possible tertiary structure conformations. In turn, these are fed into a computationally intensive optimization procedure that tries to find the final, three-dimensional protein structure. Most importantly, ProteinShop allows users to add human knowledge and intuition to the protein structure prediction process, thus bypassing bad configurations that would otherwise be fruitless for optimization. This saves compute cycles and accelerates the entire process, so

  16. Protein disulfide engineering.

    PubMed

    Dombkowski, Alan A; Sultana, Kazi Zakia; Craig, Douglas B

    2014-01-21

    Improving the stability of proteins is an important goal in many biomedical and industrial applications. A logical approach is to emulate stabilizing molecular interactions found in nature. Disulfide bonds are covalent interactions that provide substantial stability to many proteins and conform to well-defined geometric conformations, thus making them appealing candidates in protein engineering efforts. Disulfide engineering is the directed design of novel disulfide bonds into target proteins. This important biotechnological tool has achieved considerable success in a wide range of applications, yet the rules that govern the stabilizing effects of disulfide bonds are not fully characterized. Contrary to expectations, many designed disulfide bonds have resulted in decreased stability of the modified protein. We review progress in disulfide engineering, with an emphasis on the issue of stability and computational methods that facilitate engineering efforts.

  17. Proteins, fluctuations and complexity

    SciTech Connect

    Frauenfelder, Hans; Chen, Guo; Fenimore, Paul W

    2008-01-01

    Glasses, supercooled liquids, and proteins share common properties, in particular the existence of two different types of fluctuations, {alpha} and {beta}. While the effect of the {alpha} fluctuations on proteins has been known for a few years, the effect of {beta} fluctuations has not been understood. By comparing neutron scattering data on the protein myoglobin with the {beta} fluctuations in the hydration shell measured by dielectric spectroscopy we show that the internal protein motions are slaved to these fluctuations. We also show that there is no 'dynamic transition' in proteins near 200 K. The rapid increase in the mean square displacement with temperature in many neutron scattering experiments is quantitatively predicted by the {beta} fluctuations in the hydration shell.

  18. [Controversies around diet proteins].

    PubMed

    Cichosz, Grazyna; Czeczot, Hanna

    2013-12-01

    Critical theories regarding proteins of anima origin are still and still popularized, though they are ungrounded from scientific point of view. Predominance of soya proteins over the animal ones in relation to their influence on calcium metabolism, bone break risk or risk of osteoporosis morbidity has not been confirmed in any honest, reliable research experiment. Statement, that sulphur amino acids influence disadvantageously on calcium metabolism of human organism and bone status, is completely groundless, the more so as presence of sulphur amino acids in diet (animal proteins are their best source) is the condition of endogenic synthesis of glutathione, the key antioxidant of the organism, and taurine stimulating brain functioning. Deficiency of proteins in the diet produce weakness of intellectual effectiveness and immune response. There is no doubt that limitation of consumption of animal proteins of standard value is not good for health.

  19. Drugging Membrane Protein Interactions

    PubMed Central

    Yin, Hang; Flynn, Aaron D.

    2016-01-01

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind the cell to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally “undruggable” regions of membrane proteins, enabling modulation of protein–protein, protein–lipid, and protein–nucleic acid interactions. In this review, we survey the state of the art in high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  20. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1993-01-01

    Proteins account for 50% or more of the dry weight of most living systems and play a crucial role in virtually all biological processes. Since the specific functions of essentially all biological molecules are determined by their three-dimensional structures, it is obvious that a detailed understanding of the structural makeup of a protein is essential to any systematic research pertaining to it. At the present time, protein crystallography has no substitute, it is the only technique available for elucidating the atomic arrangements within complicated biological molecules. Most macromolecules are extremely difficult to crystallize, and many otherwise exciting and promising projects have terminated at the crystal growth stage. There is a pressing need to better understand protein crystal growth, and to develop new techniques that can be used to enhance the size and quality of protein crystals. There are several aspects of microgravity that might be exploited to enhance protein crystal growth. The major factor that might be expected to alter crystal growth processes in space is the elimination of density-driven convective flow. Another factor that can be readily controlled in the absence of gravity is the sedimentation of growing crystal in a gravitational field. Another potential advantage of microgravity for protein crystal growth is the option of doing containerless crystal growth. One can readily understand why the microgravity environment established by Earth-orbiting vehicles is perceived to offer unique opportunities for the protein crystallographer. The near term objectives of the Protein Crystal Growth in a Microgravity Environment (PCG/ME) project is to continue to improve the techniques, procedures, and hardware systems used to grow protein crystals in Earth orbit.

  1. Regulation of protein turnover by heat shock proteins.

    PubMed

    Bozaykut, Perinur; Ozer, Nesrin Kartal; Karademir, Betul

    2014-12-01

    Protein turnover reflects the balance between synthesis and degradation of proteins, and it is a crucial process for the maintenance of the cellular protein pool. The folding of proteins, refolding of misfolded proteins, and also degradation of misfolded and damaged proteins are involved in the protein quality control (PQC) system. Correct protein folding and degradation are controlled by many different factors, one of the most important of which is the heat shock protein family. Heat shock proteins (HSPs) are in the class of molecular chaperones, which may prevent the inappropriate interaction of proteins and induce correct folding. On the other hand, these proteins play significant roles in the degradation pathways, including endoplasmic reticulum-associated degradation (ERAD), the ubiquitin-proteasome system, and autophagy. This review focuses on the emerging role of HSPs in the regulation of protein turnover; the effects of HSPs on the degradation machineries ERAD, autophagy, and proteasome; as well as the role of posttranslational modifications in the PQC system.

  2. Purifying protein complexes for mass spectrometry: applications to protein translation.

    PubMed

    Link, Andrew J; Fleischer, Tracey C; Weaver, Connie M; Gerbasi, Vincent R; Jennings, Jennifer L

    2005-03-01

    Proteins control and mediate most of the biological activities in the cell. In most cases, proteins either interact with regulatory proteins or function in large molecular assemblies to carryout biological processes. Understanding the functions of individual proteins requires the identification of these interacting proteins. With its speed and sensitivity, mass spectrometry has become the dominant method for identifying components of protein complexes. This article reviews and discusses various approaches to purify protein complexes and analyze the proteins using mass spectrometry. As examples, methods to isolate and analyze protein complexes responsible for the translation of messenger RNAs into polypeptides are described.

  3. Prediction of protein-protein interactions: unifying evolution and structure at protein interfaces.

    PubMed

    Tuncbag, Nurcan; Gursoy, Attila; Keskin, Ozlem

    2011-06-01

    The vast majority of the chores in the living cell involve protein-protein interactions. Providing details of protein interactions at the residue level and incorporating them into protein interaction networks are crucial toward the elucidation of a dynamic picture of cells. Despite the rapid increase in the number of structurally known protein complexes, we are still far away from a complete network. Given experimental limitations, computational modeling of protein interactions is a prerequisite to proceed on the way to complete structural networks. In this work, we focus on the question 'how do proteins interact?' rather than 'which proteins interact?' and we review structure-based protein-protein interaction prediction approaches. As a sample approach for modeling protein interactions, PRISM is detailed which combines structural similarity and evolutionary conservation in protein interfaces to infer structures of complexes in the protein interaction network. This will ultimately help us to understand the role of protein interfaces in predicting bound conformations.

  4. NMCP/LINC proteins

    PubMed Central

    Ciska, Malgorzata; Moreno Díaz de la Espina, Susana

    2013-01-01

    Lamins are the main components of the metazoan lamina, and while the organization of the nuclear lamina of metazoans and plants is similar, there are apparently no genes encoding lamins or most lamin-binding proteins in plants. Thus, the plant lamina is not lamin-based and the proteins that form this structure are still to be characterized. Members of the plant NMCP/LINC/CRWN protein family share the typical tripartite structure of lamins, although the 2 exhibit no sequence similarity. However, given the many similarities between NMCP/LINC/CRWN proteins and lamins (structural organization, position of conserved regions, sub-nuclear distribution, solubility, and pattern of expression), these proteins are good candidates to carry out the functions of lamins in plants. Moreover, functional analysis of NMCP/LINC mutants has revealed their involvement in maintaining nuclear size and shape, another activity fulfilled by lamins. This review summarizes the current understanding of NMCP/LINC proteins and discusses future studies that will be required to demonstrate definitively that these proteins are plant analogs of lamins. PMID:24128696

  5. TRIM proteins in cancer.

    PubMed

    Cambiaghi, Valeria; Giuliani, Virginia; Lombardi, Sara; Marinelli, Cristiano; Toffalorio, Francesca; Pelicci, Pier Giuseppe

    2012-01-01

    Some members of the tripartite motif (TRIM/RBCC) protein family are thought to be important regulators of carcinogenesis. This is not surprising as the TRIM proteins are involved in several biological processes, such as cell growth, development and cellular differentiation and alteration of these proteins can affect transcriptional regulation, cell proliferation and apoptosis. In particular, four TRIM family genes are frequently translocated to other genes, generating fusion proteins implicated in cancer initiation and progression. Among these the most famous is the promyelocytic leukaemia gene PML, which encodes the protein TRIM19. PML is involved in the t(15;17) translocation that specifically occurs in Acute Promyelocytic Leukaemia (APL), resulting in a PML-retinoic acid receptor-alpha (PML-RARalpha) fusion protein. Other members of the TRIM family are linked to cancer development without being involved in chromosomal re-arrangements, possibly through ubiquitination or loss of tumour suppression functions. This chapter discusses the biological functions of TRIM proteins in cancer.

  6. Bacterial ice crystal controlling proteins.

    PubMed

    Lorv, Janet S H; Rose, David R; Glick, Bernard R

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions.

  7. Bacterial Ice Crystal Controlling Proteins

    PubMed Central

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  8. Protein based Block Copolymers

    PubMed Central

    Rabotyagova, Olena S.; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    Advances in genetic engineering have led to the synthesis of protein-based block copolymers with control of chemistry and molecular weight, resulting in unique physical and biological properties. The benefits from incorporating peptide blocks into copolymer designs arise from the fundamental properties of proteins to adopt ordered conformations and to undergo self-assembly, providing control over structure formation at various length scales when compared to conventional block copolymers. This review covers the synthesis, structure, assembly, properties, and applications of protein-based block copolymers. PMID:21235251

  9. Piezoelectric allostery of protein

    NASA Astrophysics Data System (ADS)

    Ohnuki, Jun; Sato, Takato; Takano, Mitsunori

    2016-07-01

    Allostery is indispensable for a protein to work, where a locally applied stimulus is transmitted to a distant part of the molecule. While the allostery due to chemical stimuli such as ligand binding has long been studied, the growing interest in mechanobiology prompts the study of the mechanically stimulated allostery, the physical mechanism of which has not been established. By molecular dynamics simulation of a motor protein myosin, we found that a locally applied mechanical stimulus induces electrostatic potential change at distant regions, just like the piezoelectricity. This novel allosteric mechanism, "piezoelectric allostery", should be of particularly high value for mechanosensor/transducer proteins.

  10. Proteins : paradigms of complexity /

    SciTech Connect

    Frauenfelder, Hans,

    2001-01-01

    Proteins are the working machines of living systems. Directed by the DNA, of the order of a few hundred building blocks, selected from twenty different amino acids, are covalently linked into a linear polypeptide chain. In the proper environment, the chain folds into the working protein, often a globule of linear dimensions of a few nanometers. The biologist considers proteins units from which living systems are built. Many physical scientists look at them as systems in which the laws of complexity can be studied better than anywhere else. Some of the results of such studies will be sketched.

  11. Protein crystallography prescreen kit

    DOEpatents

    Segelke, Brent W.; Krupka, Heike I.; Rupp, Bernhard

    2005-07-12

    A kit for prescreening protein concentration for crystallization includes a multiplicity of vials, a multiplicity of pre-selected reagents, and a multiplicity of sample plates. The reagents and a corresponding multiplicity of samples of the protein in solutions of varying concentrations are placed on sample plates. The sample plates containing the reagents and samples are incubated. After incubation the sample plates are examined to determine which of the sample concentrations are too low and which the sample concentrations are too high. The sample concentrations that are optimal for protein crystallization are selected and used.

  12. Protein crystallography prescreen kit

    DOEpatents

    Segelke, Brent W.; Krupka, Heike I.; Rupp, Bernhard

    2007-10-02

    A kit for prescreening protein concentration for crystallization includes a multiplicity of vials, a multiplicity of pre-selected reagents, and a multiplicity of sample plates. The reagents and a corresponding multiplicity of samples of the protein in solutions of varying concentrations are placed on sample plates. The sample plates containing the reagents and samples are incubated. After incubation the sample plates are examined to determine which of the sample concentrations are too low and which the sample concentrations are too high. The sample concentrations that are optimal for protein crystallization are selected and used.

  13. Protein Crystal Malic Enzyme

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Malic Enzyme is a target protein for drug design because it is a key protein in the life cycle of intestinal parasites. After 2 years of effort on Earth, investigators were unable to produce any crystals that were of high enough quality and for this reason the structure of this important protein could not be determined. Crystals obtained from one STS-50 were of superior quality allowing the structure to be determined. This is just one example why access to space is so vital for these studies. Principal Investigator is Larry DeLucas.

  14. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell (standing), Post-Doctoral Fellow the National Research Council (NRC),and Marc Pusey of Marshall Space Flight Center (MSFC) use a reciprocal space mapping diffractometer for marcromolecular crystal quality studies. The diffractometer is used in mapping the structure of marcromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystalized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  15. Emerging fluorescent protein technologies.

    PubMed

    Enterina, Jhon Ralph; Wu, Lanshi; Campbell, Robert E

    2015-08-01

    Fluorescent proteins (FPs), such as the Aequorea jellyfish green FP (GFP), are firmly established as fundamental tools that enable a wide variety of biological studies. Specifically, FPs can serve as versatile genetically encoded markers for tracking proteins, organelles, or whole cells, and as the basis for construction of biosensors that can be used to visualize a growing array of biochemical events in cells and tissues. In this review we will focus on emerging applications of FPs that represent unprecedented new directions for the field. These emerging applications include new strategies for using FPs in biosensing applications, and innovative ways of using FPs to manipulate protein function or gene expression.

  16. Evolution of proteins.

    NASA Technical Reports Server (NTRS)

    Dayhoff, M. O.

    1971-01-01

    The amino acid sequences of proteins from living organisms are dealt with. The structure of proteins is first discussed; the variation in this structure from one biological group to another is illustrated by the first halves of the sequences of cytochrome c, and a phylogenetic tree is derived from the cytochrome c data. The relative geological times associated with the events of this tree are discussed. Errors which occur in the duplication of cells during the evolutionary process are examined. Particular attention is given to evolution of mutant proteins, globins, ferredoxin, and transfer ribonucleic acids (tRNA's). Finally, a general outline of biological evolution is presented.

  17. [Phosphorylation of tau protein].

    PubMed

    Uchida, T; Ishiguro, K

    1990-05-01

    In aged human brain and particularly in Alzheimer's disease brain, paired helical filaments (PHFs) accumulate in the neuronal cell. Recently, it has been found that the highly phosphorylated tau protein, one of the microtubule-associated proteins (MAPs), is a component of PHF. The authors attempted to clarify the mechanism underlying the accumulation of PHF from the following two aspects; 1) What is the mechanism of phosphorylation of tau protein? 2) Is the highly phosphorylated tau protein capable of forming PHFs? From rat or bovine microtubule proteins we partially purified and characterized a novel protein kinase that specifically phosphorylated tau and MAP2 among many proteins in the brain extract, and which formed a PHF epitope on the phosphorylated human tau. This enzyme was one of the protein serine/threonine kinases and was independent of known second messengers. The phosphorylation of tau by this enzyme was stimulated by tubulin under the condition of microtubule formation, suggesting that the phosphorylation of tau could occur concomitantly with microtubule formation in the brain. Since this kinase was usually bound to tau but not directly to tubulin, the enzyme was associated with microtubules through tau. From these properties related to tau, this kinase is designated as tau protein kinase. The tau that been phosphorylated with this kinase using [gamma-32P]ATP as a phosphate donor, was digested by endoprotinase Lys-C to produce three labeled fragments, K1, K2 and K3. These three fragments were sequenced and the phosphorylation sites on tau by this kinase were identified. The K2 fragment overlapped with the tau-1 site known to be one of the phosphorylation site in PHF. This result strengthens the possibility that tau protein phosphorylated by tau protein kinase is incorporated into PHF. Tubulin binding sites on tau were located between K1 and K3 fragments, while K2 fragment was located in the neighboring to N-terminus of K1. No phosphorylated sites were

  18. Teaching resources. Protein phosphatases.

    PubMed

    Salton, Stephen R

    2005-03-01

    This Teaching Resource provides lecture notes and slides for a class covering the structure and function of protein phosphatases and is part of the course "Cell Signaling Systems: A Course for Graduate Students." The lecture begins with a discussion of the importance of phosphatases in physiology, recognized by the award of a Nobel Prize in 1992, and then proceeds to describe the two types of protein phosphatases: serine/threonine and tyrosine phosphatases. The information covered includes the structure, regulation, and substrate specificity of protein phosphatases, with an emphasis on their importance in disease and clinical settings.

  19. Electrochromatographic separation of proteins

    NASA Technical Reports Server (NTRS)

    Basak, S. K.; Velayudhan, A.; Kohlmann, K.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1995-01-01

    We have developed a modified electrochromatography system which minimizes Joule heating at electric field strengths up to 125 V/cm. A non-linear equilibrium model is described which incorporates electrophoretic mobility, hydrodynamic flow velocity, and an electrically induced concentration polarization at the surface of the stationary phase. This model is able to provide useful estimates of protein retention time and velocity in a column packed with Sephadex gel and subjected to an electric field. A correlation of electrophoretic mobility of peptide and proteins with respect to their charge, molecular mass, and asymmetry enables the selection of solute target molecules for electrochromatographic separations. Good separation of protein mixtures have been obtained.

  20. (PCG) Protein Crystal Growth Canavalin

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Canavalin. The major storage protein of leguminous plants and a major source of dietary protein for humans and domestic animals. It is studied in efforts to enhance nutritional value of proteins through protein engineerings. It is isolated from Jack Bean because of it's potential as a nutritional substance. Principal Investigator on STS-26 was Alex McPherson.

  1. Plant protein glycosylation

    PubMed Central

    Strasser, Richard

    2016-01-01

    Protein glycosylation is an essential co- and post-translational modification of secretory and membrane proteins in all eukaryotes. The initial steps of N-glycosylation and N-glycan processing are highly conserved between plants, mammals and yeast. In contrast, late N-glycan maturation steps in the Golgi differ significantly in plants giving rise to complex N-glycans with β1,2-linked xylose, core α1,3-linked fucose and Lewis A-type structures. While the essential role of N-glycan modifications on distinct mammalian glycoproteins is already well documented, we have only begun to decipher the biological function of this ubiquitous protein modification in different plant species. In this review, I focus on the biosynthesis and function of different protein N-linked glycans in plants. Special emphasis is given on glycan-mediated quality control processes in the ER and on the biological role of characteristic complex N-glycan structures. PMID:26911286

  2. Protein Model Database

    SciTech Connect

    Fidelis, K; Adzhubej, A; Kryshtafovych, A; Daniluk, P

    2005-02-23

    The phenomenal success of the genome sequencing projects reveals the power of completeness in revolutionizing biological science. Currently it is possible to sequence entire organisms at a time, allowing for a systemic rather than fractional view of their organization and the various genome-encoded functions. There is an international plan to move towards a similar goal in the area of protein structure. This will not be achieved by experiment alone, but rather by a combination of efforts in crystallography, NMR spectroscopy, and computational modeling. Only a small fraction of structures are expected to be identified experimentally, the remainder to be modeled. Presently there is no organized infrastructure to critically evaluate and present these data to the biological community. The goal of the Protein Model Database project is to create such infrastructure, including (1) public database of theoretically derived protein structures; (2) reliable annotation of protein model quality, (3) novel structure analysis tools, and (4) access to the highest quality modeling techniques available.

  3. Protein Colloidal Aggregation Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.

  4. Fully automated protein purification

    PubMed Central

    Camper, DeMarco V.; Viola, Ronald E.

    2009-01-01

    Obtaining highly purified proteins is essential to begin investigating their functional and structural properties. The steps that are typically involved in purifying proteins can include an initial capture, intermediate purification, and a final polishing step. Completing these steps can take several days and require frequent attention to ensure success. Our goal was to design automated protocols that will allow the purification of proteins with minimal operator intervention. Separate methods have been produced and tested that automate the sample loading, column washing, sample elution and peak collection steps for ion-exchange, metal affinity, hydrophobic interaction and gel filtration chromatography. These individual methods are designed to be coupled and run sequentially in any order to achieve a flexible and fully automated protein purification protocol. PMID:19595984

  5. Protein fabrication automation

    PubMed Central

    Cox, J. Colin; Lape, Janel; Sayed, Mahmood A.; Hellinga, Homme W.

    2007-01-01

    Facile “writing” of DNA fragments that encode entire gene sequences potentially has widespread applications in biological analysis and engineering. Rapid writing of open reading frames (ORFs) for expressed proteins could transform protein engineering and production for protein design, synthetic biology, and structural analysis. Here we present a process, protein fabrication automation (PFA), which facilitates the rapid de novo construction of any desired ORF from oligonucleotides with low effort, high speed, and little human interaction. PFA comprises software for sequence design, data management, and the generation of instruction sets for liquid-handling robotics, a liquid-handling robot, a robust PCR scheme for gene assembly from synthetic oligonucleotides, and a genetic selection system to enrich correctly assembled full-length synthetic ORFs. The process is robust and scalable. PMID:17242375

  6. Interactive protein manipulation

    SciTech Connect

    SNCrivelli@lbl.gov

    2003-07-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  7. Recombinant Collagenlike Proteins

    NASA Technical Reports Server (NTRS)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  8. Occupational protein contact dermatitis.

    PubMed

    Barbaud, Annick; Poreaux, Claire; Penven, Emmanuelle; Waton, Julie

    2015-01-01

    Occupational contact dermatitis is generally caused by haptens but can also be induced by proteins causing mainly immunological contact urticaria (ICU); chronic hand eczema in the context of protein contact dermatitis (PCD). In a monocentric retrospective study, from our database, only 31 (0.41%) of patients with contact dermatitis had positive skin tests with proteins: 22 had occupational PCD, 3 had non-occupational PCD, 5 occupational ICU and 1 cook had a neutrophilic fixed food eruption (NFFE) due to fish. From these results and analysis of literature, the characteristics of PCD can be summarized as follows. It is a chronic eczematous dermatitis, possibly exacerbated by work, suggestive if associated with inflammatory perionyxix and immediate erythema with pruritis, to be investigated when the patient resumes work after a period of interruption. Prick tests with the suspected protein-containing material are essential, as patch tests have negative results. In case of multisensitisation revealed by prick tests, it is advisable to analyse IgE against recombinant allergens. A history of atopy, found in 56 to 68% of the patients, has to be checked for. Most of the cases are observed among food-handlers but PCD can also be due to non-edible plants, latex, hydrolysed proteins or animal proteins. Occupational exposure to proteins can thus lead to the development of ICU. Reflecting hypersensitivity to very low concentrations of allergens, investigating ICU therefore requires caution and prick tests should be performed with a diluted form of the causative protein-containing product. Causes are food, especially fruit peel, non-edible plants, cosmetic products, latex, animals.

  9. Chirality and protein biosynthesis.

    PubMed

    Banik, Sindrila Dutta; Nandi, Nilashis

    2013-01-01

    Chirality is present at all levels of structural hierarchy of protein and plays a significant role in protein biosynthesis. The macromolecules involved in protein biosynthesis such as aminoacyl tRNA synthetase and ribosome have chiral subunits. Despite the omnipresence of chirality in the biosynthetic pathway, its origin, role in current pathway, and importance is far from understood. In this review we first present an introduction to biochirality and its relevance to protein biosynthesis. Major propositions about the prebiotic origin of biomolecules are presented with particular reference to proteins and nucleic acids. The problem of the origin of homochirality is unresolved at present. The chiral discrimination by enzymes involved in protein synthesis is essential for keeping the life process going. However, questions remained pertaining to the mechanism of chiral discrimination and concomitant retention of biochirality. We discuss the experimental evidence which shows that it is virtually impossible to incorporate D-amino acids in protein structures in present biosynthetic pathways via any of the two major steps of protein synthesis, namely aminoacylation and peptide bond formation reactions. Molecular level explanations of the stringent chiral specificity in each step are extended based on computational analysis. A detailed account of the current state of understanding of the mechanism of chiral discrimination during aminoacylation in the active site of aminoacyl tRNA synthetase and peptide bond formation in ribosomal peptidyl transferase center is presented. Finally, it is pointed out that the understanding of the mechanism of retention of enantiopurity has implications in developing novel enzyme mimetic systems and biocatalysts and might be useful in chiral drug design.

  10. Protein Nitrogen Determination

    NASA Astrophysics Data System (ADS)

    Nielsen, S. Suzanne

    The protein content of foods can be determined by numerous methods. The Kjeldahl method and the nitrogen combustion (Dumas) method for protein analysis are based on nitrogen determination. Both methods are official for the purposes of nutrition labeling of foods. While the Kjeldahl method has been used widely for over a hundred years, the recent availability of automated instrumentation for the Dumas method in many cases is replacing use of the Kjeldahl method.

  11. Colorimetric protein assay techniques.

    PubMed

    Sapan, C V; Lundblad, R L; Price, N C

    1999-04-01

    There has been an increase in the number of colorimetric assay techniques for the determination of protein concentration over the past 20 years. This has resulted in a perceived increase in sensitivity and accuracy with the advent of new techniques. The present review considers these advances with emphasis on the potential use of such technologies in the assay of biopharmaceuticals. The techniques reviewed include Coomassie Blue G-250 dye binding (the Bradford assay), the Lowry assay, the bicinchoninic acid assay and the biuret assay. It is shown that each assay has advantages and disadvantages relative to sensitivity, ease of performance, acceptance in the literature, accuracy and reproducibility/coefficient of variation/laboratory-to-laboratory variation. A comparison of the use of several assays with the same sample population is presented. It is suggested that the most critical issue in the use of a chromogenic protein assay for the characterization of a biopharmaceutical is the selection of a standard for the calibration of the assay; it is crucial that the standard be representative of the sample. If it is not possible to match the standard with the sample from the perspective of protein composition, then it is preferable to use an assay that is not sensitive to the composition of the protein such as a micro-Kjeldahl technique, quantitative amino acid analysis or the biuret assay. In a complex mixture it might be inappropriate to focus on a general method of protein determination and much more informative to use specific methods relating to the protein(s) of particular interest, using either specific assays or antibody-based methods. The key point is that whatever method is adopted as the 'gold standard' for a given protein, this method needs to be used routinely for calibration.

  12. Protein conducting nanopores

    NASA Astrophysics Data System (ADS)

    Harsman, Anke; Krüger, Vivien; Bartsch, Philipp; Honigmann, Alf; Schmidt, Oliver; Rao, Sanjana; Meisinger, Christof; Wagner, Richard

    2010-11-01

    About 50% of the cellular proteins have to be transported into or across cellular membranes. This transport is an essential step in the protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane. Almost all proteins of the endosymbiotic organelles chloroplasts and mitochondria are synthesized on cytosolic ribosomes and posttranslationally imported. Genetic, biochemical and biophysical approaches led to rather detailed knowledge on the composition of the translocon-complexes which catalyze the membrane transport of the preproteins. Comprehensive concepts on the targeting and membrane transport of polypeptides emerged, however little detail on the molecular nature and mechanisms of the protein translocation channels comprising nanopores has been achieved. In this paper we will highlight recent developments of the diverse protein translocation systems and focus particularly on the common biophysical properties and functions of the protein conducting nanopores. We also provide a first analysis of the interaction between the genuine protein conducting nanopore Tom40SC as well as a mutant Tom40SC (\\mathrm {S}_{54} \\to E ) containing an additional negative charge at the channel vestibule and one of its native substrates, CoxIV, a mitochondrial targeting peptide. The polypeptide induced a voltage-dependent increase in the frequency of channel closure of Tom40SC corresponding to a voltage-dependent association rate, which was even more pronounced for the Tom40SC S54E mutant. The corresponding dwelltime reflecting association/transport of the peptide could be determined with \\bar {t}_{\\mathrm {off}} \\cong 1.1 ms for the wildtype, whereas the mutant Tom40SC S54E displayed a biphasic dwelltime distribution (\\bar {t}_{\\mathrm {off}}^1 \\cong 0.4 ms \\bar {t}_{\\mathrm {off}}^2 \\cong 4.6 ms).

  13. Fast protein folding kinetics

    PubMed Central

    Gelman, Hannah; Gruebele, Martin

    2014-01-01

    Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816

  14. Motor proteins 1: kinesins.

    PubMed

    Bloom, G S; Endow, S A

    1995-01-01

    Progress regarding the kinesins is now being made at a rapid and accelerating rate. The in vivo-functions, and biophysical and enzymatic properties of kinesin itself are being explored at ever increasing levels of detail. The kinesin-related proteins now number several dozen, and although more is known about primary structure than function for most of the proteins, this trend is already reversing. For example, knowledge about the kinesin-related protein, ncd, is expanding rapidly, and more is already known about its three-dimensional structure than is known for kinesin heavy chain. This volume presents a comprehensive review of the major published works on kinesin and kinesin-related proteins. Hopefully, this manuscript will complement other recent review articles [17, 20, 25, 37, 60-62, 67, 69, 75, 85-88, 231, 233, 238, 244, 269-271, 281, 282, 292] or books [49, 227, 293] that have focused on more selective aspects of the kinesin family, or have been aimed more generally at MT motor proteins. In line with the stated purpose of the Protein Profile series, annual updates of the review on the kinesins are planned for at least the next few years.

  15. Protein phosphorylation and photorespiration.

    PubMed

    Hodges, M; Jossier, M; Boex-Fontvieille, E; Tcherkez, G

    2013-07-01

    Photorespiration allows the recycling of carbon atoms of 2-phosphoglycolate produced by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) oxygenase activity, as well as the removal of potentially toxic metabolites. The photorespiratory pathway takes place in the light, encompasses four cellular compartments and interacts with several other metabolic pathways and functions. Therefore, the regulation of this cycle is probably of paramount importance to plant metabolism, however, our current knowledge is poor. To rapidly respond to changing conditions, proteins undergo a number of different post-translational modifications that include acetylation, methylation and ubiquitylation, but protein phosphorylation is probably the most common. The reversible covalent addition of a phosphate group to a specific amino acid residue allows the modulation of protein function, such as activity, subcellular localisation, capacity to interact with other proteins and stability. Recent data indicate that many photorespiratory enzymes can be phosphorylated, and thus it seems that the photorespiratory cycle is, in part, regulated by protein phosphorylation. In this review, the known phosphorylation sites of each Arabidopsis thaliana photorespiratory enzyme and several photorespiratory-associated proteins are described and discussed. A brief account of phosphoproteomic protocols is also given since the published data compiled in this review are the fruit of this approach.

  16. Disease specific protein corona

    NASA Astrophysics Data System (ADS)

    Rahman, M.; Mahmoudi, M.

    2015-03-01

    It is now well accepted that upon their entrance into the biological environments, the surface of nanomaterials would be covered by various biomacromolecules (e.g., proteins and lipids). The absorption of these biomolecules, so called `protein corona', onto the surface of (nano)biomaterials confers them a new `biological identity'. Although the formation of protein coronas on the surface of nanoparticles has been widely investigated, there are few reports on the effect of various diseases on the biological identity of nanoparticles. As the type of diseases may tremendously changes the composition of the protein source (e.g., human plasma/serum), one can expect that amount and composition of associated proteins in the corona composition may be varied, in disease type manner. Here, we show that corona coated silica and polystyrene nanoparticles (after interaction with in the plasma of the healthy individuals) could induce unfolding of fibrinogen, which promotes release of the inflammatory cytokines. However, no considerable releases of inflammatory cytokines were observed for corona coated graphene sheets. In contrast, the obtained corona coated silica and polystyrene nanoparticles from the hypofibrinogenemia patients could not induce inflammatory cytokine release where graphene sheets do. Therefore, one can expect that disease-specific protein coronas can provide a novel approach for applying nanomedicine to personalized medicine, improving diagnosis and treatment of different diseases tailored to the specific conditions and circumstances.

  17. Cotton and Protein Interactions

    SciTech Connect

    Goheen, Steven C.; Edwards, J. V.; Rayburn, Alfred R.; Gaither, Kari A.; Castro, Nathan J.

    2006-06-30

    The adsorbent properties of important wound fluid proteins and cotton cellulose are reviewed. This review focuses on the adsorption of albumin to cotton-based wound dressings and some chemically modified derivatives targeted for chronic wounds. Adsorption of elastase in the presence of albumin was examined as a model to understand the interactive properties of these wound fluid components with cotton fibers. In the chronic non-healing wound, elastase appears to be over-expressed, and it digests tissue and growth factors, interfering with the normal healing process. Albumin is the most prevalent protein in wound fluid, and in highly to moderately exudative wounds, it may bind significantly to the fibers of wound dressings. Thus, the relative binding properties of both elastase and albumin to wound dressing fibers are of interest in the design of more effective wound dressings. The present work examines the binding of albumin to two different derivatives of cotton, and quantifies the elastase binding to the same derivatives following exposure of albumin to the fiber surface. An HPLC adsorption technique was employed coupled with a colorimetric enzyme assay to quantify the relative binding properties of albumin and elastase to cotton. The results of wound protein binding are discussed in relation to the porosity and surface chemistry interactions of cotton and wound proteins. Studies are directed to understanding the implications of protein adsorption phenomena in terms of fiber-protein models that have implications for rationally designing dressings for chronic wounds.

  18. Food protein sources.

    PubMed

    Pirie, N W

    1976-07-01

    Work on food, planned by the U.M. (Use and Management) Section of the U.K. committe, was limited to sources of protein because we agreed that more problems calling for research were likely to arise in getting adequate supplies of protein than of other types of food. Deer meat can be produced on land too rough and exposed for sheep; parts of the work on their metabolism and food requirements necessitated building a mobile laboratory. The manner in which the nutritive value of maize is affected by changes in the ratios in which the component proteins are present, stimulated similar studies on barley and groundnut. There is good quality protein in coconuts and leaves but its use in human food is restricted by the presence of fibre. Methods for separating protein from fibre and other deleterious components were improved. In cooperation with scientists in India and Nigeria, the potential yield of protein-deficient foods. e.g. cassava, were 'ennobled' by growing micro-organisms on them with the addition of a cheap source of nitrogen.

  19. Protein-Protein Interfaces in Viral Capsids Are Structurally Unique.

    PubMed

    Cheng, Shanshan; Brooks, Charles L

    2015-11-06

    Viral capsids exhibit elaborate and symmetrical architectures of defined sizes and remarkable mechanical properties not seen with cellular macromolecular complexes. Given the uniqueness of the higher-order organization of viral capsid proteins in the virosphere, we explored the question of whether the patterns of protein-protein interactions within viral capsids are distinct from those in generic protein complexes. Our comparative analysis involving a non-redundant set of 551 inter-subunit interfaces in viral capsids from VIPERdb and 20,014 protein-protein interfaces in non-capsid protein complexes from the Protein Data Bank found 418 generic protein-protein interfaces that share similar physicochemical patterns with some protein-protein interfaces in the capsid set, using the program PCalign we developed for comparing protein-protein interfaces. This overlap in the structural space of protein-protein interfaces is significantly small, with a p-value <0.0001, based on a permutation test on the total set of protein-protein interfaces. Furthermore, the generic protein-protein interfaces that bear similarity in their spatial and chemical arrangement with capsid ones are mostly small in size with fewer than 20 interfacial residues, which results from the relatively limited choices of natural design for small interfaces rather than having significant biological implications in terms of functional relationships. We conclude based on this study that protein-protein interfaces in viral capsids are non-representative of patterns in the smaller, more compact cellular protein complexes. Our finding highlights the design principle of building large biological containers from repeated, self-assembling units and provides insights into specific targets for antiviral drug design for improved efficacy.

  20. Protein crystal growth in space

    NASA Technical Reports Server (NTRS)

    Bugg, C. E.; Clifford, D. W.

    1987-01-01

    The advantages of protein crystallization in space, and the applications of protein crystallography to drug design, protein engineering, and the design of synthetic vaccines are examined. The steps involved in using protein crystallography to determine the three-dimensional structure of a protein are discussed. The growth chamber design and the hand-held apparatus developed for protein crystal growth by vapor diffusion techniques (hanging-drop method) are described; the experimental data from the four Shuttle missions are utilized to develop hardware for protein crystal growth in space and to evaluate the effects of gravity on protein crystal growth.

  1. Parallel Computational Protein Design

    PubMed Central

    Zhou, Yichao; Donald, Bruce R.; Zeng, Jianyang

    2016-01-01

    Computational structure-based protein design (CSPD) is an important problem in computational biology, which aims to design or improve a prescribed protein function based on a protein structure template. It provides a practical tool for real-world protein engineering applications. A popular CSPD method that guarantees to find the global minimum energy solution (GMEC) is to combine both dead-end elimination (DEE) and A* tree search algorithms. However, in this framework, the A* search algorithm can run in exponential time in the worst case, which may become the computation bottleneck of large-scale computational protein design process. To address this issue, we extend and add a new module to the OSPREY program that was previously developed in the Donald lab [1] to implement a GPU-based massively parallel A* algorithm for improving protein design pipeline. By exploiting the modern GPU computational framework and optimizing the computation of the heuristic function for A* search, our new program, called gOSPREY, can provide up to four orders of magnitude speedups in large protein design cases with a small memory overhead comparing to the traditional A* search algorithm implementation, while still guaranteeing the optimality. In addition, gOSPREY can be configured to run in a bounded-memory mode to tackle the problems in which the conformation space is too large and the global optimal solution cannot be computed previously. Furthermore, the GPU-based A* algorithm implemented in the gOSPREY program can be combined with the state-of-the-art rotamer pruning algorithms such as iMinDEE [2] and DEEPer [3] to also consider continuous backbone and side-chain flexibility. PMID:27914056

  2. Modeling Mercury in Proteins

    SciTech Connect

    Smith, Jeremy C; Parks, Jerry M

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively non-toxic, other forms such as Hg2+ and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg2+ can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg2+ to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed picture and circumvent issues associated with toxicity. Here we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intra-protein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confers mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multi-scale model of environmental mercury cycling.

  3. Benchtop Detection of Proteins

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Varaljay, Vanessa

    2007-01-01

    A process, and a benchtop-scale apparatus for implementing the process, have been developed to detect proteins associated with specific microbes in water. The process and apparatus may also be useful for detection of proteins in other, more complex liquids. There may be numerous potential applications, including monitoring lakes and streams for contamination, testing of blood and other bodily fluids in medical laboratories, and testing for microbial contamination of liquids in restaurants and industrial food-processing facilities. A sample can be prepared and analyzed by use of this process and apparatus within minutes, whereas an equivalent analysis performed by use of other processes and equipment can often take hours to days. The process begins with the conjugation of near-infrared-fluorescent dyes to antibodies that are specific to a particular protein. Initially, the research has focused on using near-infrared dyes to detect antigens or associated proteins in solution, which has proven successful vs. microbial cells, and streamlining the technique in use for surface protein detection on microbes would theoretically render similar results. However, it is noted that additional work is needed to transition protein-based techniques to microbial cell detection. Consequently, multiple such dye/antibody pairs could be prepared to enable detection of multiple selected microbial species, using a different dye for each species. When excited by near-infrared light of a suitable wavelength, each dye fluoresces at a unique longer wavelength that differs from those of the other dyes, enabling discrimination among the various species. In initial tests, the dye/antibody pairs are mixed into a solution suspected of containing the selected proteins, causing the binding of the dye/antibody pairs to such suspect proteins that may be present. The solution is then run through a microcentrifuge that includes a membrane that acts as a filter in that it retains the dye/antibody/protein

  4. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2001-07-03

    The present invention relates to purine analogs that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such purine analogs to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  5. Heat Capacity in Proteins

    NASA Astrophysics Data System (ADS)

    Prabhu, Ninad V.; Sharp, Kim A.

    2005-05-01

    Heat capacity (Cp) is one of several major thermodynamic quantities commonly measured in proteins. With more than half a dozen definitions, it is the hardest of these quantities to understand in physical terms, but the richest in insight. There are many ramifications of observed Cp changes: The sign distinguishes apolar from polar solvation. It imparts a temperature (T) dependence to entropy and enthalpy that may change their signs and which of them dominate. Protein unfolding usually has a positive ΔCp, producing a maximum in stability and sometimes cold denaturation. There are two heat capacity contributions, from hydration and protein-protein interactions; which dominates in folding and binding is an open question. Theoretical work to date has dealt mostly with the hydration term and can account, at least semiquantitatively, for the major Cp-related features: the positive and negative Cp of hydration for apolar and polar groups, respectively; the convergence of apolar group hydration entropy at T ≈ 112°C; the decrease in apolar hydration Cp with increasing T; and the T-maximum in protein stability and cold denaturation.

  6. The ras superfamily proteins.

    PubMed

    Chardin, P

    1988-07-01

    Several recent discoveries indicate that the ras genes, frequently activated to a transforming potential in some human tumours, belong to a large family that can be divided into three main branches: the first branch represented by the ras, ral and rap genes; the second branch, by the rho genes; and the third branch, by the rab genes. The C-terminal end of the encoded proteins always includes a cystein, which may become fatty-acylated, suggesting a sub-membrane localization. The ras superfamily proteins share four regions of high homology corresponding to the GTP binding site; however, even in these regions, significant differences are found, suggesting that the various proteins may possess slightly different biochemical properties. Recent reports show that some of these proteins play an essential role in the control of physical processes such as cell motility, membrane ruffling, endocytosis and exocytosis. Nevertheless, the characterization of the proteins directly interacting with the ras or ras-related gene-products will be required to precisely understand their function.

  7. [Protein metabolism in vegans].

    PubMed

    Okuda, T; Miyoshi-Nishimura, H; Makita, T; Sugawa-Katayama, Y; Hazama, T; Simizu, T; Yamaguchi, Y

    1994-11-01

    To elucidate the mechanisms of adaptation to a low-energy and low-protein vegan diet, we carried out dietary surveys and nitrogen balance studies five times during one year on two women and a man who ate raw brown rice, raw green vegetables, three kinds of raw roots, fruit and salt daily. Individual subjects modified this vegan diet slightly. The mean daily energy intake of the subjects was 18, 14, and 32 kcal/kg, of body weight. The loss of body weight was about 10% of the initial level. The daily nitrogen balance was -32, -33, and -11 mg N/kg of body weight. In spite of the negative nitrogen balance, the results of routine clinical tests, initially normal, did not change with the vegan diet. Ten months after the start of the vegan diet, the subjects were given 15N urea orally. The incorporation of 15N into serum proteins suggested that these subjects could utilize urea nitrogen for body protein synthesis. The level of 15N in serum proteins was close to the level in other normal adult men on a low-protein diet with adequate energy for 2 weeks.

  8. Protein Dynamics in Enzymology

    NASA Astrophysics Data System (ADS)

    Brooks, , III

    2001-03-01

    Enzymes carry-out the chemical activity essential for living processes by providing particular structural arrangements of chemically functional moieties through the structure of their constituent proteins. They are suggested to be optimized through evolution to specifically bind the transition state for the chemical processes they participate in, thereby enhancing the rate of these chemical events by 6-12 orders of magnitude. However, proteins are malleable and fluctuating many-body systems and may also utilize coupling between motional processes with catalysis to regulate or promote these processes. Our studies are aimed at exploring the hypothesis that motions of the protein couple distant regions of the molecule to assist catalytic processes. We demonstrate, through the use of molecular simulations, that strongly coupled motions occur in regions of protein molecules distant in sequence and space from each other, and the enzyme’s active site, when the protein is in a reactant state. Further, we find that the presence of this coupling disappears in complexes no longer reactive-competent, i.e., for product configurations and mutant sequences. The implications of these findings and aspects of evolutionary relationships and mutational studies which support the coupling hypothesis will be discussed in the context of our work on dihydrofolate reductase.

  9. Protein folding and de novo protein design for biotechnological applications

    PubMed Central

    Khoury, George A.; Smadbeck, James; Kieslich, Chris A.; Floudas, Christodoulos A.

    2014-01-01

    In the post-genomic era, the medical/biological fields are advancing faster than ever. However, before the power of full-genome sequencing can be fully realized, the connection between amino acid sequence and protein structure, known as the protein folding problem, needs to be elucidated. The protein folding problem remains elusive, with significant difficulties still arising when modeling amino acid sequences lacking an identifiable template. Understanding protein folding will allow for unforeseen advances in protein design, often referred as the inverse protein folding problem. Despite challenges in protein folding, de novo protein design has recently demonstrated significant success via computational techniques. We review advances and challenges in protein structure prediction and de novo protein design, and highlight their interplay in successful biotechnological applications. PMID:24268901

  10. Matricellular proteins and biomaterials.

    PubMed

    Morris, Aaron H; Kyriakides, Themis R

    2014-07-01

    Biomaterials are essential to modern medicine as components of reconstructive implants, implantable sensors, and vehicles for localized drug delivery. Advances in biomaterials have led to progression from simply making implants that are nontoxic to making implants that are specifically designed to elicit particular functions within the host. The interaction of implants and the extracellular matrix during the foreign body response is a growing area of concern for the field of biomaterials, because it can lead to implant failure. Expression of matricellular proteins is modulated during the foreign body response and these proteins interact with biomaterials. The design of biomaterials to specifically alter the levels of matricellular proteins surrounding implants provides a new avenue for the design and fabrication of biomimetic biomaterials.

  11. Advanced protein formulations

    PubMed Central

    Wang, Wei

    2015-01-01

    It is well recognized that protein product development is far more challenging than that for small-molecule drugs. The major challenges include inherent sensitivity to different types of stresses during the drug product manufacturing process, high rate of physical and chemical degradation during long-term storage, and enhanced aggregation and/or viscosity at high protein concentrations. In the past decade, many novel formulation concepts and technologies have been or are being developed to address these product development challenges for proteins. These concepts and technologies include use of uncommon/combination of formulation stabilizers, conjugation or fusion with potential stabilizers, site-specific mutagenesis, and preparation of nontraditional types of dosage forms—semiaqueous solutions, nonfreeze-dried solid formulations, suspensions, and other emerging concepts. No one technology appears to be mature, ideal, and/or adequate to address all the challenges. These gaps will likely remain in the foreseeable future and need significant efforts for ultimate resolution. PMID:25858529

  12. Thermal hysteresis proteins.

    PubMed

    Barrett, J

    2001-02-01

    Extreme environments present a wealth of biochemical adaptations. Thermal hysteresis proteins (THPs) have been found in vertebrates, invertebrates, plants, bacteria and fungi and are able to depress the freezing point of water (in the presence of ice crystals) in a non-colligative manner by binding to the surface of nascent ice crystals. The THPs comprise a disparate group of proteins with a variety of tertiary structures and often no common sequence similarities or structural motifs. Different THPs bind to different faces of the ice crystal, and no single mechanism has been proposed to account for THP ice binding affinity and specificity. Experimentally THPs have been used in the cryopreservation of tissues and cells and to induce cold tolerance in freeze susceptible organisms. THPs represent a remarkable example of parallel and convergent evolution with different proteins being adapted for an anti-freeze role.

  13. Thermodynamics of Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Osborne, Kenneth L.; Barz, Bogdan; Bachmann, Michael; Strodel, Birgit

    Amyloid protein aggregation characterizes many neurodegenerative disorders, including Alzheimer's, Parkinson's, and Creutz- feldt-Jakob disease. Evidence suggests that amyloid aggregates may share similar aggregation pathways, implying simulation of full-length amyloid proteins is not necessary for understanding amyloid formation. In this study we simulate GNNQQNY, the N-terminal prion-determining domain of the yeast protein Sup35 to investigate the thermodynamics of structural transitions during aggregation. We use a coarse-grained model with replica-exchange molecular dynamics to investigate the association of 3-, 6-, and 12-chain GNNQQNY systems and we determine the aggregation pathway by studying aggregation states of GN- NQQNY. We find that the aggregation of the hydrophilic GNNQQNY sequence is mainly driven by H-bond formation, leading to the formation of /3-sheets from the very beginning of the assembly process. Condensation (aggregation) and ordering take place simultaneously, which is underpinned by the occurrence of a single heat capacity peak only.

  14. Protein crystallization studies

    NASA Technical Reports Server (NTRS)

    Lyne, James Evans

    1996-01-01

    The Structural Biology laboratory at NASA Marshall Spaceflight Center uses x-ray crystallographic techniques to conduct research into the three-dimensional structure of a wide variety of proteins. A major effort in the laboratory involves an ongoing study of human serum albumin (the principal protein in human plasma) and its interaction with various endogenous substances and pharmaceutical agents. Another focus is on antigenic and functional proteins from several pathogenic organisms including the human immunodeficiency virus (HIV) and the widespread parasitic genus, Schistosoma. My efforts this summer have been twofold: first, to identify clinically significant drug interactions involving albumin binding displacement and to initiate studies of the three-dimensional structure of albumin complexed with these agents, and secondly, to establish collaborative efforts to extend the lab's work on human pathogens.

  15. Protein Crystal Serum Albumin

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As the most abundant protein in the circulatory system albumin contributes 80% to colloid osmotic blood pressure. Albumin is also chiefly responsible for the maintenance of blood pH. It is located in every tissue and bodily secretion, with extracellular protein comprising 60% of total albumin. Perhaps the most outstanding property of albumin is its ability to bind reversibly to an incredible variety of ligands. It is widely accepted in the pharmaceutical industry that the overall distribution, metabolism, and efficiency of many drugs are rendered ineffective because of their unusually high affinity for this abundant protein. An understanding of the chemistry of the various classes of pharmaceutical interactions with albumin can suggest new approaches to drug therapy and design. Principal Investigator: Dan Carter/New Century Pharmaceuticals

  16. Tracking protein aggregate interactions

    PubMed Central

    Bartz, Jason C; Nilsson, K Peter R

    2011-01-01

    Amyloid fibrils share a structural motif consisting of highly ordered β-sheets aligned perpendicular to the fibril axis.1, 2 At each fibril end, β-sheets provide a template for recruiting and converting monomers.3 Different amyloid fibrils often co-occur in the same individual, yet whether a protein aggregate aids or inhibits the assembly of a heterologous protein is unclear. In prion disease, diverse prion aggregate structures, known as strains, are thought to be the basis of disparate disease phenotypes in the same species expressing identical prion protein sequences.4–7 Here we explore the interactions reported to occur when two distinct prion strains occur together in the central nervous system. PMID:21597336

  17. Bioinformatics and Moonlighting Proteins

    PubMed Central

    Hernández, Sergio; Franco, Luís; Calvo, Alejandra; Ferragut, Gabriela; Hermoso, Antoni; Amela, Isaac; Gómez, Antonio; Querol, Enrique; Cedano, Juan

    2015-01-01

    Multitasking or moonlighting is the capability of some proteins to execute two or more biochemical functions. Usually, moonlighting proteins are experimentally revealed by serendipity. For this reason, it would be helpful that Bioinformatics could predict this multifunctionality, especially because of the large amounts of sequences from genome projects. In the present work, we analyze and describe several approaches that use sequences, structures, interactomics, and current bioinformatics algorithms and programs to try to overcome this problem. Among these approaches are (a) remote homology searches using Psi-Blast, (b) detection of functional motifs and domains, (c) analysis of data from protein–protein interaction databases (PPIs), (d) match the query protein sequence to 3D databases (i.e., algorithms as PISITE), and (e) mutation correlation analysis between amino acids by algorithms as MISTIC. Programs designed to identify functional motif/domains detect mainly the canonical function but usually fail in the detection of the moonlighting one, Pfam and ProDom being the best methods. Remote homology search by Psi-Blast combined with data from interactomics databases (PPIs) has the best performance. Structural information and mutation correlation analysis can help us to map the functional sites. Mutation correlation analysis can only be used in very specific situations – it requires the existence of multialigned family protein sequences – but can suggest how the evolutionary process of second function acquisition took place. The multitasking protein database MultitaskProtDB (http://wallace.uab.es/multitask/), previously published by our group, has been used as a benchmark for the all of the analyses. PMID:26157797

  18. Antioxidants and protein oxidation.

    PubMed

    Griffiths, H R

    2000-11-01

    Proteins are susceptible to oxidation by reactive oxygen species, where the type of damage induced is characteristic of the denaturing species. The induction of protein carbonyls is a widely applied biomarker, arising from primary oxidative insult. However, when applied to complex biological and pathological conditions it can be subject to interference from lipid, carbohydrate and DNA oxidation products. More recently, interest has focused on the analysis of specific protein bound oxidised amino acids. Of the 22 amino acids, aromatic and sulphydryl containing residues have been regarded as being particularly susceptible to oxidative modification, with L-DOPA from tyrosine, ortho-tyrosine from phenylalanine; sulphoxides and disulphides from methionine and cysteine respectively; and kynurenines from tryptophan. Latterly, the identification of valine and leucine hydroxides, reduced from hydroperoxide intermediates, has been described and applied. In order to examine the nature of oxidative damage and protective efficacy of antioxidants the markers must be thoroughly evaluated for dosimetry in vitro following damage by specific radical species. Antioxidant protection against formation of the biomarker should be demonstrated in vitro. Quantification of biomarkers in proteins from normal subjects should be within the limits of detection of any analytical procedure. Further to this, the techniques for isolation and hydrolysis of specific proteins should demonstrate that in vitro oxidation is minimised. There is a need for the development of standards for quality assurance material to standardise procedures between laboratories. At present, antioxidant effects on protein oxidation in vivo are limited to animal studies, where dietary antioxidants have been reported to reduce dityrosine formation during rat exercise training. Two studies on humans have been reported last year. The further application of these methods to human studies is indicated, where the quality of the

  19. Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening.

    PubMed

    Zhang, Changsheng; Tang, Bo; Wang, Qian; Lai, Luhua

    2014-10-01

    Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely used in small-molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The three-dimensional rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets.

  20. SAP family proteins.

    PubMed

    Fujita, A; Kurachi, Y

    2000-03-05

    Thus far, five members including Dlg, SAP97/hDlg, SAP90/PSD-95, SAP102, and PSD-93/chapsyn110 which belong to SAP family have been identified. Recent studies have revealed that these proteins play important roles in the localization and function of glutamate receptors and K(+) channels. Although most of them have been reported to be localized to the synapse, only one member, SAP97, is expressed also in the epithelial cells. In this review, we have summarized structural characters of SAP family proteins and discuss their functions in neurons and epithelial cells.

  1. Protein Biosynthesis in Mitochondria

    PubMed Central

    Kuzmenko, A. V.; Levitskii, S. A.; Vinogradova, E. N.; Atkinson, G. C.; Hauryliuk, V.; Zenkin, N.; Kamenski, P. A.

    2013-01-01

    Translation, that is biosynthesis of polypeptides in accordance with information encoded in the genome, is one of the most important processes in the living cell, and it has been in the spotlight of international research for many years. The mechanisms of protein biosynthesis in bacteria and in the eukaryotic cytoplasm are now understood in great detail. However, significantly less is known about translation in eukaryotic mitochondria, which is characterized by a number of unusual features. In this review, we summarize current knowledge about mitochondrial translation in different organisms while paying special attention to the aspects of this process that differ from cytoplasmic protein biosynthesis. PMID:24228873

  2. Congenital protein hypoglycosylation diseases

    PubMed Central

    Sparks, Susan E

    2012-01-01

    Glycosylation is an essential process by which sugars are attached to proteins and lipids. Complete lack of glycosylation is not compatible with life. Because of the widespread function of glycosylation, inherited disorders of glycosylation are multisystemic. Since the identification of the first defect on N-linked glycosylation in the 1980s, there are over 40 different congenital protein hypoglycosylation diseases. This review will include defects of N-linked glycosylation, O-linked glycosylation and disorders of combined N- and O-linked glycosylation. PMID:23776380

  3. [Protein-losing enteropathy].

    PubMed

    Parfenov, A I; Krums, L M

    2017-01-01

    Protein-losing enteropathy (PLE) is a rare complication of intestinal diseases. Its main manifestation is hypoproteinemic edema. The diagnosis of PLE is based on the verification of protein loss into the intestinal lumen, by determining fecal α1-antitrypsin concentration and clearance. The localization of the affected colonic segment is clarified using radiologic and endoscopic techniques. The mainstay of treatment for PLE is a fat-free diet enriched with medium-chain triglycerides. Surgical resection of the affected segment of the colon may be the treatment of choice for severe hypoproteinemia resistant to drug therapy.

  4. DELIVERY OF THERAPEUTIC PROTEINS

    PubMed Central

    Pisal, Dipak S.; Kosloski, Matthew P.; Balu-Iyer, Sathy V.

    2009-01-01

    The safety and efficacy of protein therapeutics are limited by three interrelated pharmaceutical issues, in vitro and in vivo instability, immunogenicity and shorter half-lives. Novel drug modifications for overcoming these issues are under investigation and include covalent attachment of poly(ethylene glycol) (PEG), polysialic acid, or glycolic acid, as well as developing new formulations containing nanoparticulate or colloidal systems (e.g. liposomes, polymeric microspheres, polymeric nanoparticles). Such strategies have the potential to develop as next generation protein therapeutics. This review includes a general discussion on these delivery approaches. PMID:20049941

  5. Protein biosynthesis in mitochondria.

    PubMed

    Kuzmenko, A V; Levitskii, S A; Vinogradova, E N; Atkinson, G C; Hauryliuk, V; Zenkin, N; Kamenski, P A

    2013-08-01

    Translation, that is biosynthesis of polypeptides in accordance with information encoded in the genome, is one of the most important processes in the living cell, and it has been in the spotlight of international research for many years. The mechanisms of protein biosynthesis in bacteria and in the eukaryotic cytoplasm are now understood in great detail. However, significantly less is known about translation in eukaryotic mitochondria, which is characterized by a number of unusual features. In this review, we summarize current knowledge about mitochondrial translation in different organisms while paying special attention to the aspects of this process that differ from cytoplasmic protein biosynthesis.

  6. Protein energy malnutrition.

    PubMed

    Grover, Zubin; Ee, Looi C

    2009-10-01

    Protein energy malnutrition (PEM) is a common problem worldwide and occurs in both developing and industrialized nations. In the developing world, it is frequently a result of socioeconomic, political, or environmental factors. In contrast, protein energy malnutrition in the developed world usually occurs in the context of chronic disease. There remains much variation in the criteria used to define malnutrition, with each method having its own limitations. Early recognition, prompt management, and robust follow up are critical for best outcomes in preventing and treating PEM.

  7. An introduction to protein moonlighting.

    PubMed

    Jeffery, Constance J

    2014-12-01

    Moonlighting proteins comprise a class of multifunctional proteins in which a single polypeptide chain performs multiple physiologically relevant biochemical or biophysical functions. Almost 300 proteins have been found to moonlight. The known examples of moonlighting proteins include diverse types of proteins, including receptors, enzymes, transcription factors, adhesins and scaffolds, and different combinations of functions are observed. Moonlighting proteins are expressed throughout the evolutionary tree and function in many different biochemical pathways. Some moonlighting proteins can perform both functions simultaneously, but for others, the protein's function changes in response to changes in the environment. The diverse examples of moonlighting proteins already identified, and the potential benefits moonlighting proteins might provide to the organism, such as through coordinating cellular activities, suggest that many more moonlighting proteins are likely to be found. Continuing studies of the structures and functions of moonlighting proteins will aid in predicting the functions of proteins identified through genome sequencing projects, in interpreting results from proteomics experiments, in understanding how different biochemical pathways interact in systems biology, in annotating protein sequence and structure databases, in studies of protein evolution and in the design of proteins with novel functions.

  8. Protein domain connectivity and essentiality

    NASA Astrophysics Data System (ADS)

    da F. Costa, L.; Rodrigues, F. A.; Travieso, G.

    2006-10-01

    Protein-protein interactions can be properly modeled as scale-free complex networks, while the lethality of proteins has been correlated with the node degrees, therefore defining a lethality-centrality rule. In this work the authors revisit this relevant problem by focusing attention not on proteins as a whole, but on their functional domains, which are ultimately responsible for their binding potential. Four networks are considered: the original protein-protein interaction network, its randomized version, and two domain networks assuming different lethality hypotheses. By using formal statistical analysis, they show that the correlation between connectivity and essentiality is higher for domains than for proteins.

  9. Conformation Distributions in Adsorbed Proteins.

    NASA Astrophysics Data System (ADS)

    Meuse, Curtis W.; Hubbard, Joseph B.; Vrettos, John S.; Smith, Jackson R.; Cicerone, Marcus T.

    2007-03-01

    While the structural basis of protein function is well understood in the biopharmaceutical and biotechnology industries, few methods for the characterization and comparison of protein conformation distributions are available. New methods capable of measuring the stability of protein conformations and the integrity of protein-protein, protein-ligand and protein-surface interactions both in solution and on surfaces are needed to help the development of protein-based products. We are developing infrared spectroscopy methods for the characterization and comparison of molecular conformation distributions in monolayers and in solutions. We have extracted an order parameter describing the orientational and conformational variations of protein functional groups around the average molecular values from a single polarized spectrum. We will discuss the development of these methods and compare them to amide hydrogen/deuterium exchange methods for albumin in solution and on different polymer surfaces to show that our order parameter is related to protein stability.

  10. NextGen protein design

    PubMed Central

    Regan, Lynne

    2014-01-01

    Protein engineering is at an exciting stage because designed protein–protein interactions are being used in many applications. For instance, three designed proteins are now in clinical trials. Although there have been many successes over the last decade, protein engineering still faces numerous challenges. Often, designs do not work as anticipated and they still require substantial redesign. The present review focuses on the successes, the challenges and the limitations of rational protein design today. PMID:24059497

  11. Conserved herpesvirus protein kinases

    PubMed Central

    Gershburg, Edward; Pagano, Joseph S.

    2008-01-01

    Conserved herpesviral protein kinases (CHPKs) are a group of enzymes conserved throughout all subfamilies of Herpesviridae. Members of this group are serine/threonine protein kinases that are likely to play a conserved role in viral infection by interacting with common host cellular and viral factors; however along with a conserved role, individual kinases may have unique functions in the context of viral infection in such a way that they are only partially replaceable even by close homologues. Recent studies demonstrated that CHPKs are crucial for viral infection and suggested their involvement in regulation of numerous processes at various infection steps (primary infection, nuclear egress, tegumentation), although the mechanisms of this regulation remain unknown. Notwithstanding, recent advances in discovery of new CHPK targets, and studies of CHPK knockout phenotypes have raised their attractiveness as targets for antiviral therapy. A number of compounds have been shown to inhibit the activity of human cytomegalovirus (HCMV)-encoded UL97 protein kinase and exhibit a pronounced antiviral effect, although the same compounds are inactive against Epstein-Barr Virus (EBV)-encoded protein kinase BGLF4, illustrating the fact that low homology between the members of this group complicates development of compounds targeting the whole group, and suggesting that individualized, structure-based inhibitor design will be more effective. Determination of CHPK structures will greatly facilitate this task. PMID:17881303

  12. Protein states and proteinquakes.

    PubMed Central

    Ansari, A; Berendzen, J; Bowne, S F; Frauenfelder, H; Iben, I E; Sauke, T B; Shyamsunder, E; Young, R D

    1985-01-01

    After photodissociation of carbon monoxide bound to myoglobin, the protein relaxes to the deoxy equilibrium structure in a quake-like motion. Investigation of the proteinquake and of related intramolecular equilibrium motions shows that states and motions have a hierarchical glass-like structure. PMID:3860839

  13. Dynamics of protein conformations

    NASA Astrophysics Data System (ADS)

    Stepanova, Maria

    2010-10-01

    A novel theoretical methodology is introduced to identify dynamic structural domains and analyze local flexibility in proteins. The methodology employs a multiscale approach combining identification of essential collective coordinates based on the covariance analysis of molecular dynamics trajectories, construction of the Mori projection operator with these essential coordinates, and analysis of the corresponding generalized Langevin equations [M.Stepanova, Phys.Rev.E 76(2007)051918]. Because the approach employs a rigorous theory, the outcomes are physically transparent: the dynamic domains are associated with regions of relative rigidity in the protein, whereas off-domain regions are relatively soft. This also allows scoring the flexibility in the macromolecule with atomic-level resolution [N.Blinov, M.Berjanskii, D.S.Wishart, and M.Stepanova, Biochemistry, 48(2009)1488]. The applications include the domain coarse-graining and characterization of conformational stability in protein G and prion proteins. The results are compared with published NMR experiments. Potential applications for structural biology, bioinformatics, and drug design are discussed.

  14. Proteins of Excitable Membranes

    PubMed Central

    Nachmansohn, David

    1969-01-01

    Excitable membranes have the special ability of changing rapidly and reversibly their permeability to ions, thereby controlling the ion movements that carry the electric currents propagating nerve impulses. Acetylcholine (ACh) is the specific signal which is released by excitation and is recognized by a specific protein, the ACh-receptor; it induces a conformational change, triggering off a sequence of reactions resulting in increased permeability. The hydrolysis of ACh by ACh-esterase restores the barrier to ions. The enzymes hydrolyzing and forming ACh and the receptor protein are present in the various types of excitable membranes. Properties of the two proteins directly associated with electrical activity, receptor and esterase, will be described in this and subsequent lectures. ACh-esterase has been shown to be located within the excitable membranes. Potent enzyme inhibitors block electrical activity demonstrating the essential role in this function. The enzyme has been recently crystallized and some protein properties will be described. The monocellular electroplax preparation offers a uniquely favorable material for analyzing the properties of the ACh-receptor and its relation to function. The essential role of the receptor in electrical activity has been demonstrated with specific receptor inhibitors. Recent data show the basically similar role of ACh in the axonal and junctional membranes; the differences of electrical events and pharmacological actions are due to variations of shape, structural organization, and environment. PMID:19873642

  15. Cellulose binding domain proteins

    SciTech Connect

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  16. Chaos in protein dynamics.

    PubMed

    Braxenthaler, M; Unger, R; Auerbach, D; Given, J A; Moult, J

    1997-12-01

    MD simulations, currently the most detailed description of the dynamic evolution of proteins, are based on the repeated solution of a set of differential equations implementing Newton's second law. Many such systems are known to exhibit chaotic behavior, i.e., very small changes in initial conditions are amplified exponentially and lead to vastly different, inherently unpredictable behavior. We have investigated the response of a protein fragment in an explicit solvent environment to very small perturbations of the atomic positions (10(-3)-10(-9) A). Independent of the starting conformation (native-like, compact, extended), perturbed dynamics trajectories deviated rapidly, leading to conformations that differ by approximately 1 A RMSD within 1-2 ps. Furthermore, introducing the perturbation more than 1-2 ps before a significant conformational transition leads to a loss of the transition in the perturbed trajectories. We present evidence that the observed chaotic behavior reflects physical properties of the system rather than numerical instabilities of the calculation and discuss the implications for models of protein folding and the use of MD as a tool to analyze protein folding pathways.

  17. Tuber Storage Proteins

    PubMed Central

    SHEWRY, PETER R.

    2003-01-01

    A wide range of plants are grown for their edible tubers, but five species together account for almost 90 % of the total world production. These are potato (Solanum tuberosum), cassava (Manihot esculenta), sweet potato (Ipomoea batatus), yams (Dioscorea spp.) and taro (Colocasia, Cyrtosperma and Xanthosoma spp.). All of these, except cassava, contain groups of storage proteins, but these differ in the biological properties and evolutionary relationships. Thus, patatin from potato exhibits activity as an acylhydrolase and esterase, sporamin from sweet potato is an inhibitor of trypsin, and dioscorin from yam is a carbonic anhydrase. Both sporamin and dioscorin also exhibit antioxidant and radical scavenging activity. Taro differs from the other three crops in that it contains two major types of storage protein: a trypsin inhibitor related to sporamin and a mannose‐binding lectin. These characteristics indicate that tuber storage proteins have evolved independently in different species, which contrasts with the highly conserved families of storage proteins present in seeds. Furthermore, all exhibit biological activities which could contribute to resistance to pests, pathogens or abiotic stresses, indicating that they may have dual roles in the tubers. PMID:12730067

  18. Tuber storage proteins.

    PubMed

    Shewry, Peter R

    2003-06-01

    A wide range of plants are grown for their edible tubers, but five species together account for almost 90 % of the total world production. These are potato (Solanum tuberosum), cassava (Manihot esculenta), sweet potato (Ipomoea batatus), yams (Dioscorea spp.) and taro (Colocasia, Cyrtosperma and Xanthosoma spp.). All of these, except cassava, contain groups of storage proteins, but these differ in the biological properties and evolutionary relationships. Thus, patatin from potato exhibits activity as an acylhydrolase and esterase, sporamin from sweet potato is an inhibitor of trypsin, and dioscorin from yam is a carbonic anhydrase. Both sporamin and dioscorin also exhibit antioxidant and radical scavenging activity. Taro differs from the other three crops in that it contains two major types of storage protein: a trypsin inhibitor related to sporamin and a mannose-binding lectin. These characteristics indicate that tuber storage proteins have evolved independently in different species, which contrasts with the highly conserved families of storage proteins present in seeds. Furthermore, all exhibit biological activities which could contribute to resistance to pests, pathogens or abiotic stresses, indicating that they may have dual roles in the tubers.

  19. Protein thin film machines.

    PubMed

    Federici, Stefania; Oliviero, Giulio; Hamad-Schifferli, Kimberly; Bergese, Paolo

    2010-12-01

    We report the first example of microcantilever beams that are reversibly driven by protein thin film machines fueled by cycling the salt concentration of the surrounding solution. We also show that upon the same salinity stimulus the drive can be completely reversed in its direction by introducing a surface coating ligand. Experimental results are throughout discussed within a general yet simple thermodynamic model.

  20. Protein Crystal Bovine Insulin

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The comparison of protein crystal, Bovine Insulin space-grown (left) and earth-grown (right). Facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  1. 24-hour urine protein

    MedlinePlus

    ... your doctor may be able to order a test that is done on just one urine sample (protein-to-creatinine ratio). Normal Results The normal value is less than 100 milligrams per day or less than 10 milligrams per deciliter ... of these tests. Normal value ranges may vary slightly among different ...

  2. Protein Requirements during Aging

    PubMed Central

    Courtney-Martin, Glenda; Ball, Ronald O.; Pencharz, Paul B.; Elango, Rajavel

    2016-01-01

    Protein recommendations for elderly, both men and women, are based on nitrogen balance studies. They are set at 0.66 and 0.8 g/kg/day as the estimated average requirement (EAR) and recommended dietary allowance (RDA), respectively, similar to young adults. This recommendation is based on single linear regression of available nitrogen balance data obtained at test protein intakes close to or below zero balance. Using the indicator amino acid oxidation (IAAO) method, we estimated the protein requirement in young adults and in both elderly men and women to be 0.9 and 1.2 g/kg/day as the EAR and RDA, respectively. This suggests that there is no difference in requirement on a gender basis or on a per kg body weight basis between younger and older adults. The requirement estimates however are ~40% higher than the current protein recommendations on a body weight basis. They are also 40% higher than our estimates in young men when calculated on the basis of fat free mass. Thus, current recommendations may need to be re-assessed. Potential rationale for this difference includes a decreased sensitivity to dietary amino acids and increased insulin resistance in the elderly compared with younger individuals. PMID:27529275

  3. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  4. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Atomic force microscopy uses laser technology to reveal a defect, a double-screw dislocation, on the surface of this crystal of canavalin, a major source of dietary protein for humans and domestic animals. When a crystal grows, attachment kinetics and transport kinetics are competing for control of the molecules. As a molecule gets close to the crystal surface, it has to attach properly for the crystal to be usable. NASA has funded investigators to look at those attachment kinetics from a theoretical standpoint and an experimental standpoint. Dr. Alex McPherson of the University of California, Irvine, is one of those investigators. He uses X-ray diffraction and atomic force microscopy in his laboratory to answer some of the many questions about how protein crystals grow. Atomic force microscopy provides a means of looking at how individual molecules are added to the surface of growing protein crystals. This helps McPherson understand the kinetics of protein crystal growth. McPherson asks, How fast do crystals grow? What are the forces involved? Investigators funded by NASA have clearly shown that such factors as the level of supersaturation and the rate of growth all affect the habit [characteristic arrangement of facets] of the crystal and the defects that occur in the crystal.

  5. Protein specific polymeric immunomicrospheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1980-01-01

    Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such as hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.

  6. Protein-protein interactions: methods for detection and analysis.

    PubMed Central

    Phizicky, E M; Fields, S

    1995-01-01

    The function and activity of a protein are often modulated by other proteins with which it interacts. This review is intended as a practical guide to the analysis of such protein-protein interactions. We discuss biochemical methods such as protein affinity chromatography, affinity blotting, coimmunoprecipitation, and cross-linking; molecular biological methods such as protein probing, the two-hybrid system, and phage display: and genetic methods such as the isolation of extragenic suppressors, synthetic mutants, and unlinked noncomplementing mutants. We next describe how binding affinities can be evaluated by techniques including protein affinity chromatography, sedimentation, gel filtration, fluorescence methods, solid-phase sampling of equilibrium solutions, and surface plasmon resonance. Finally, three examples of well-characterized domains involved in multiple protein-protein interactions are examined. The emphasis of the discussion is on variations in the approaches, concerns in evaluating the results, and advantages and disadvantages of the techniques. PMID:7708014

  7. Monobodies and other synthetic binding proteins for expanding protein science.

    PubMed

    Sha, Fern; Salzman, Gabriel; Gupta, Ankit; Koide, Shohei

    2017-03-01

    Synthetic binding proteins are constructed using nonantibody molecular scaffolds. Over the last two decades, in-depth structural and functional analyses of synthetic binding proteins have improved combinatorial library designs and selection strategies, which have resulted in potent platforms that consistently generate binding proteins to diverse targets with affinity and specificity that rival those of antibodies. Favorable attributes of synthetic binding proteins, such as small size, freedom from disulfide bond formation and ease of making fusion proteins, have enabled their unique applications in protein science, cell biology and beyond. Here, we review recent studies that illustrate how synthetic binding proteins are powerful probes that can directly link structure and function, often leading to new mechanistic insights. We propose that synthetic proteins will become powerful standard tools in diverse areas of protein science, biotechnology and medicine.

  8. Production of specific antibodies against protein A fusion proteins.

    PubMed Central

    Löwenadler, B; Nilsson, B; Abrahmsén, L; Moks, T; Ljungqvist, L; Holmgren, E; Paleus, S; Josephson, S; Philipson, L; Uhlén, M

    1986-01-01

    The gene for Staphylococcal protein A was fused to the coding sequence of bacterial beta-galactosidase, alkaline phosphatase and human insulin-like growth factor I (IGF-I). The fusion proteins, expressed in bacteria, were purified by affinity chromatography on IgG-Sepharose and antibodies were raised in rabbits. All three fusion proteins elicited specific antibodies against both the inserted protein sequences and the protein A moiety. In the case of IGF-I, the protein A moiety in the fusion protein may act as an adjuvant since native IGF-I alone is a poor immunogen. The results suggest that the protein A fusion system can be used for efficient antibody production against peptides or proteins expressed from cloned or synthetic genes. To facilitate such gene fusions a set of optimized vectors have been constructed. Images Fig. 2. Fig. 3. Fig. 4. Fig. 6. PMID:3096719

  9. Accessory proteins for heterotrimeric G-proteins in the kidney

    PubMed Central

    Park, Frank

    2015-01-01

    Heterotrimeric G-proteins play a fundamentally important role in regulating signal transduction pathways in the kidney. Accessory proteins are being identified as direct binding partners for heterotrimeric G-protein α or βγ subunits to promote more diverse mechanisms by which G-protein signaling is controlled. In some instances, accessory proteins can modulate the signaling magnitude, localization, and duration following the activation of cell membrane-associated receptors. Alternatively, accessory proteins complexed with their G-protein α or βγ subunits can promote non-canonical models of signaling activity within the cell. In this review, we will highlight the expression profile, localization and functional importance of these newly identified accessory proteins to control the function of select G-protein subunits under normal and various disease conditions observed in the kidney. PMID:26300785

  10. Exploring NMR ensembles of calcium binding proteins: Perspectives to design inhibitors of protein-protein interactions

    PubMed Central

    2011-01-01

    Background Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural changes occurring at the binding interfaces make difficult drug discovery processes using structure-based drug design/virtual screening approaches. Here we focused on two homologous calcium binding proteins, calmodulin and human centrin 2, involved in different cellular functions via protein-protein interactions, and known to undergo important conformational changes upon ligand binding. Results In order to find suitable protein conformations of calmodulin and centrin for further structure-based drug design/virtual screening, we performed in silico structural/energetic analysis and molecular docking of terphenyl (a mimicking alpha-helical molecule known to inhibit protein-protein interactions of calmodulin) into X-ray and NMR ensembles of calmodulin and centrin. We employed several scoring methods in order to find the best protein conformations. Our results show that docking on NMR structures of calmodulin and centrin can be very helpful to take into account conformational changes occurring at protein-protein interfaces. Conclusions NMR structures of protein-protein complexes nowadays available could efficiently be exploited for further structure-based drug design/virtual screening processes employed to design small molecule inhibitors of protein-protein interactions. PMID:21569443

  11. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    SciTech Connect

    Yu,P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behavior and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.

  12. An evaluation of in vitro protein-protein interaction techniques: assessing contaminating background proteins.

    PubMed

    Howell, Jenika M; Winstone, Tara L; Coorssen, Jens R; Turner, Raymond J

    2006-04-01

    Determination of protein-protein interactions is an important component in assigning function and discerning the biological relevance of proteins within a broader cellular context. In vitro protein-protein interaction methodologies, including affinity chromatography, coimmunoprecipitation, and newer approaches such as protein chip arrays, hold much promise in the detection of protein interactions, particularly in well-characterized organisms with sequenced genomes. However, each of these approaches attracts certain background proteins that can thwart detection and identification of true interactors. In addition, recombinant proteins expressed in Escherichia coli are also extensively used to assess protein-protein interactions, and background proteins in these isolates can thus contaminate interaction studies. Rigorous validation of a true interaction thus requires not only that an interaction be found by alternate techniques, but more importantly that researchers be aware of and control for matrix/support dependence. Here, we evaluate these methods for proteins interacting with DmsD (an E. coli redox enzyme maturation protein chaperone), in vitro, using E. coli subcellular fractions as prey sources. We compare and contrast the various in vitro interaction methods to identify some of the background proteins and protein profiles that are inherent to each of the methods in an E. coli system.

  13. Direct Probing of Protein-Protein Interactions

    SciTech Connect

    Noy, A; Sulchek, T A; Friddle, R W

    2005-03-10

    This project aimed to establish feasibility of using experimental techniques based on direct measurements of interaction forces on the single molecule scale to characterize equilibrium interaction potentials between individual biological molecules. Such capability will impact several research areas, ranging from rapid interaction screening capabilities to providing verifiable inputs for computational models. It should be one of the enabling technologies for modern proteomics research. This study used a combination of Monte-Carlo simulations, theoretical considerations, and direct experimental measurements to investigate two model systems that represented typical experimental situations: force-induced melting of DNA rigidly attached to the tip, and force-induced unbinding of a protein-antibody pair connected to flexible tethers. Our results establish that for both systems researchers can use force spectroscopy measurements to extract reliable information about equilibrium interaction potentials. However, the approaches necessary to extract these potentials in each case--Jarzynski reconstruction and Dynamic Force Spectroscopy--are very different. We also show how the thermodynamics and kinetics of unbinding process dictates the choice between in each case.

  14. Septins: Regulators of Protein Stability

    PubMed Central

    Vagin, Olga; Beenhouwer, David O.

    2016-01-01

    Septins are small GTPases that play a role in several important cellular processes. In this review, we focus on the roles of septins in protein stabilization. Septins may regulate protein stability by: (1) interacting with proteins involved in degradation pathways, (2) regulating the interaction between transmembrane proteins and cytoskeletal proteins, (3) affecting the mobility of transmembrane proteins in lipid bilayers, and (4) modulating the interaction of proteins with their adaptor or signaling proteins. In this context, we discuss the role of septins in protecting four different proteins from degradation. First we consider botulinum neurotoxin serotype A (BoNT/A) and the contribution of septins to its extraordinarily long intracellular persistence. Next, we discuss the role of septins in stabilizing the receptor tyrosine kinases EGFR and ErbB2. Finally, we consider the contribution of septins in protecting hypoxia-inducible factor 1α (HIF-1α) from degradation. PMID:28066764

  15. The quality of microparticulated protein.

    PubMed

    Erdman, J W

    1990-08-01

    The purpose of this paper is to describe the effects of microparticulation upon the quality of microparticulated protein products and to confirm that microparticulation does not result in changes in protein structure or quality different from those that occur with cooking. Two products were tested: microparticulated egg white and skim milk proteins and microparticulated whey protein concentrate. Three approaches were used to monitor for changes in amino acid and protein value: amino acid analysis, protein efficiency ratio (PER) bioassay, and both one- and two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. Evaluation of the results of these tests indicates that no significant differences were found when comparing the premix before and after microparticulation. Significant differences also did not occur when the premix was cooked using conventional methods. Collectively, the data provide strong evidence that the protein microparticulation process used to prepare microparticulated protein products (e.g., Simplesse) does not alter the quality or nutritional value of protein in the final products.

  16. Dissecting protein-protein interactions using directed evolution.

    PubMed

    Bonsor, Daniel A; Sundberg, Eric J

    2011-04-05

    Protein-protein interactions are essential for life. They are responsible for most cellular functions and when they go awry often lead to disease. Proteins are inherently complex. They are flexible macromolecules whose constituent amino acid components act in combinatorial and networked ways when they engage one another in binding interactions. It is just this complexity that allows them to conduct such a broad array of biological functions. Despite decades of intense study of the molecular basis of protein-protein interactions, key gaps in our understanding remain, hindering our ability to accurately predict the specificities and affinities of their interactions. Until recently, most protein-protein investigations have been probed experimentally at the single-amino acid level, making them, by definition, incapable of capturing the combinatorial nature of, and networked communications between, the numerous residues within and outside of the protein-protein interface. This aspect of protein-protein interactions, however, is emerging as a major driving force for protein affinity and specificity. Understanding a combinatorial process necessarily requires a combinatorial experimental tool. Much like the organisms in which they reside, proteins naturally evolve over time, through a combinatorial process of mutagenesis and selection, to functionally associate. Elucidating the process by which proteins have evolved may be one of the keys to deciphering the molecular rules that govern their interactions with one another. Directed evolution is a technique performed in the laboratory that mimics natural evolution on a tractable time scale that has been utilized widely to engineer proteins with novel capabilities, including altered binding properties. In this review, we discuss directed evolution as an emerging tool for dissecting protein-protein interactions.

  17. 14-3-3 proteins: regulators of numerous eukaryotic proteins.

    PubMed

    van Heusden, G Paul H

    2005-09-01

    14-3-3 proteins form a family of highly conserved proteins capable of binding to more than 200 different mostly phosphorylated proteins. They are present in all eukaryotic organisms investigated, often in multiple isoforms, up to 13 in some plants. 14-3-3 binding partners are involved in almost every cellular process and 14-3-3 proteins play a key role in these processes. 14-3-3 proteins interact with products encoded by oncogenes, with filament forming proteins involved in Alzheimer'ss disease and many other proteins related to human diseases. Disturbance of the interactions with 14-3-3 proteins may lead to diseases like cancer and the neurological Miller-Dieker disease. The molecular consequences of 14-3-3 binding are diverse and only partly understood. Binding of a protein to a 14-3-3 protein may result in stabilization of the active or inactive phosphorylated form of the protein, to a conformational alteration leading to activation or inhibition, to a different subcellular localization or to the interaction with other proteins. Currently genome- and proteome-wide studies are contributing to a wider knowledge of this important family of proteins.

  18. Quantification of the Influence of Protein-Protein Interactions on Adsorbed Protein Structure and Bioactivity

    PubMed Central

    Wei, Yang; Thyparambil, Aby A.; Latour, Robert A.

    2013-01-01

    While protein-surface interactions have been widely studied, relatively little is understood at this time regarding how protein-surface interaction effects are influenced by protein-protein interactions and how these effects combine with the internal stability of a protein to influence its adsorbed-state structure and bioactivity. The objectives of this study were to develop a method to study these combined effects under widely varying protein-protein interaction conditions using hen egg-white lysozyme (HEWL) adsorbed on silica glass, poly(methyl methacrylate), and polyethylene as our model systems. In order to vary protein-protein interaction effects over a wide range, HEWL was first adsorbed to each surface type under widely varying protein solution concentrations for 2 h to saturate the surface, followed by immersion in pure buffer solution for 15 h to equilibrate the adsorbed protein layers in the absence of additionally adsorbing protein. Periodic measurements were made at selected time points of the areal density of the adsorbed protein layer as an indicator of the level of protein-protein interaction effects within the layer, and these values were then correlated with measurements of the adsorbed protein’s secondary structure and bioactivity. The results from these studies indicate that protein-protein interaction effects help stabilize the structure of HEWL adsorbed on silica glass, have little influence on the structural behavior of HEWL on HDPE, and actually serve to destabilize HEWL’s structure on PMMA. The bioactivity of HEWL on silica glass and HDPE was found to decrease in direct proportion to the degree of adsorption-induce protein unfolding. A direct correlation between bioactivity and the conformational state of adsorbed HEWL was less apparent on PMMA, thus suggesting that other factors influenced HEWL’s bioactivity on this surface, such as the accessibility of HEWL’s bioactive site being blocked by neighboring proteins or the surface

  19. Hydrogels Constructed from Engineered Proteins.

    PubMed

    Li, Hongbin; Kong, Na; Laver, Bryce; Liu, Junqiu

    2016-02-24

    Due to their various potential biomedical applications, hydrogels based on engineered proteins have attracted considerable interest. Benefitting from significant progress in recombinant DNA technology and protein engineering/design techniques, the field of protein hydrogels has made amazing progress. The latest progress of hydrogels constructed from engineered recombinant proteins are presented, mainly focused on biorecognition-driven physical hydrogels as well as chemically crosslinked hydrogels. The various bio-recognition based physical crosslinking strategies are discussed, as well as chemical crosslinking chemistries used to engineer protein hydrogels, and protein hydrogels' various biomedical applications. The future perspectives of this fast evolving field of biomaterials are also discussed.

  20. Protein misfolding disorders and macroautophagy

    PubMed Central

    Menzies, Fiona M; Moreau, Kevin; Rubinsztein, David C

    2011-01-01

    A large group of diseases, termed protein misfolding disorders, share the common feature of the accumulation of misfolded proteins. The possibility of a common mechanism underlying either the pathogenesis or therapy for these diseases is appealing. Thus, there is great interest in the role of protein degradation via autophagy in such conditions where the protein is found in the cytoplasm. Here we review the growing evidence supporting a role for autophagic dysregulation as a contributing factor to protein accumulation and cellular toxicity in certain protein misfolding disorders and discuss the available evidence that upregulation of autophagy may be a valuable therapeutic strategy. PMID:21087849

  1. Redox control of protein degradation

    PubMed Central

    Pajares, Marta; Jiménez-Moreno, Natalia; Dias, Irundika H.K.; Debelec, Bilge; Vucetic, Milica; Fladmark, Kari E.; Basaga, Huveyda; Ribaric, Samo; Milisav, Irina; Cuadrado, Antonio

    2015-01-01

    Intracellular proteolysis is critical to maintain timely degradation of altered proteins including oxidized proteins. This review attempts to summarize the most relevant findings about oxidant protein modification, as well as the impact of reactive oxygen species on the proteolytic systems that regulate cell response to an oxidant environment: the ubiquitin-proteasome system (UPS), autophagy and the unfolded protein response (UPR). In the presence of an oxidant environment, these systems are critical to ensure proteostasis and cell survival. An example of altered degradation of oxidized proteins in pathology is provided for neurodegenerative diseases. Future work will determine if protein oxidation is a valid target to combat proteinopathies. PMID:26381917

  2. Biological Applications of Protein Splicing

    PubMed Central

    Vila-Perelló, Miquel; Muir, Tom W.

    2010-01-01

    Protein splicing is a naturally-occurring process in which a protein editor, called an intein, performs a molecular disappearing act by cutting itself out of a host protein in a traceless manner. In the two decades since its discovery, protein splicing has been harnessed for the development of several protein-engineering methods. Collectively, these technologies help bridge the fields of chemistry and biology, allowing hitherto impossible manipulations of protein covalent structure. These tools and their application are the subject of this Primer. PMID:20946979

  3. Misfolded Proteins and Retinal Dystrophies

    PubMed Central

    Lin, Jonathan H.; LaVail, Matthew M.

    2010-01-01

    Many mutations associated with retinal degeneration lead to the production of misfolded proteins by cells of the retina. Emerging evidence suggests that these abnormal proteins cause cell death by activating the Unfolded Protein Response, a set of conserved intracellular signaling pathways that detect protein misfolding within the endoplasmic reticulum and control protective and proapoptotic signal transduction pathways. Here, we review the misfolded proteins associated with select types of retinitis pigmentosa, Stargadt-like macular degeneration, and Doyne Honeycomb Retinal Dystrophy and discuss the role that endoplasmic reticulum stress and UPR signaling play in their pathogenesis. Last, we review new therapies for these diseases based on preventing protein misfolding in the retina. PMID:20238009

  4. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion.

    PubMed

    Dong, Jinlan; Bruening, Merlin L

    2015-01-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO₂ nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  5. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion

    NASA Astrophysics Data System (ADS)

    Dong, Jinlan; Bruening, Merlin L.

    2015-07-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO2 nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  6. Statistical analysis and prediction of protein-protein interfaces.

    PubMed

    Bordner, Andrew J; Abagyan, Ruben

    2005-08-15

    Predicting protein-protein interfaces from a three-dimensional structure is a key task of computational structural proteomics. In contrast to geometrically distinct small molecule binding sites, protein-protein interface are notoriously difficult to predict. We generated a large nonredundant data set of 1494 true protein-protein interfaces using biological symmetry annotation where necessary. The data set was carefully analyzed and a Support Vector Machine was trained on a combination of a new robust evolutionary conservation signal with the local surface properties to predict protein-protein interfaces. Fivefold cross validation verifies the high sensitivity and selectivity of the model. As much as 97% of the predicted patches had an overlap with the true interface patch while only 22% of the surface residues were included in an average predicted patch. The model allowed the identification of potential new interfaces and the correction of mislabeled oligomeric states.

  7. Mx proteins: antiviral proteins by chance or by necessity?

    PubMed

    Arnheiter, H; Meier, E

    1990-10-01

    The interferon-inducible Mx1 protein is responsible for inborn resistance of mice to influenza. It is now recognized that this protein is a member of a family of interferon-inducible, putative GTP-binding proteins found in many organisms. Thus, these proteins, called the Mx proteins, are found in species that are naturally infected with influenza virus, and also in species that are not. Some Mx proteins display a broader antiviral profile than the one observed for Mx1 in mice. Others, however, may not be antiviral. Two recently discovered GTP-binding proteins, Vps1p in yeast and dynamin in rat, are also related to Mx1. These proteins are synthesized constitutively and serve basic cellular functions.

  8. Collaborative protein filaments.

    PubMed

    Ghosal, Debnath; Löwe, Jan

    2015-09-14

    It is now well established that prokaryotic cells assemble diverse proteins into dynamic cytoskeletal filaments that perform essential cellular functions. Although most of the filaments assemble on their own to form higher order structures, growing evidence suggests that there are a number of prokaryotic proteins that polymerise only in the presence of a matrix such as DNA, lipid membrane or even another filament. Matrix-assisted filament systems are frequently nucleotide dependent and cytomotive but rarely considered as part of the bacterial cytoskeleton. Here, we categorise this family of filament-forming systems as collaborative filaments and introduce a simple nomenclature. Collaborative filaments are frequent in both eukaryotes and prokaryotes and are involved in vital cellular processes including chromosome segregation, DNA repair and maintenance, gene silencing and cytokinesis to mention a few. In this review, we highlight common principles underlying collaborative filaments and correlate these with known functions.

  9. Protein engineering of subtilisin.

    PubMed

    Bryan, P N

    2000-12-29

    The serine protease subtilisin is an important industrial enzyme as well as a model for understanding the enormous rate enhancements affected by enzymes. For these reasons along with the timely cloning of the gene, ease of expression and purification and availability of atomic resolution structures, subtilisin became a model system for protein engineering studies in the 1980s. Fifteen years later, mutations in well over 50% of the 275 amino acids of subtilisin have been reported in the scientific literature. Most subtilisin engineering has involved catalytic amino acids, substrate binding regions and stabilizing mutations. Stability has been the property of subtilisin which has been most amenable to enhancement, yet perhaps least understood. This review will give a brief overview of the subtilisin engineering field, critically review what has been learned about subtilisin stability from protein engineering experiments and conclude with some speculation about the prospects for future subtilisin engineering.

  10. A magnetic protein biocompass

    NASA Astrophysics Data System (ADS)

    Qin, Siying; Yin, Hang; Yang, Celi; Dou, Yunfeng; Liu, Zhongmin; Zhang, Peng; Yu, He; Huang, Yulong; Feng, Jing; Hao, Junfeng; Hao, Jia; Deng, Lizong; Yan, Xiyun; Dong, Xiaoli; Zhao, Zhongxian; Jiang, Taijiao; Wang, Hong-Wei; Luo, Shu-Jin; Xie, Can

    2016-02-01

    The notion that animals can detect the Earth’s magnetic field was once ridiculed, but is now well established. Yet the biological nature of such magnetosensing phenomenon remains unknown. Here, we report a putative magnetic receptor (Drosophila CG8198, here named MagR) and a multimeric magnetosensing rod-like protein complex, identified by theoretical postulation and genome-wide screening, and validated with cellular, biochemical, structural and biophysical methods. The magnetosensing complex consists of the identified putative magnetoreceptor and known magnetoreception-related photoreceptor cryptochromes (Cry), has the attributes of both Cry- and iron-based systems, and exhibits spontaneous alignment in magnetic fields, including that of the Earth. Such a protein complex may form the basis of magnetoreception in animals, and may lead to applications across multiple fields.

  11. A magnetic protein biocompass.

    PubMed

    Qin, Siying; Yin, Hang; Yang, Celi; Dou, Yunfeng; Liu, Zhongmin; Zhang, Peng; Yu, He; Huang, Yulong; Feng, Jing; Hao, Junfeng; Hao, Jia; Deng, Lizong; Yan, Xiyun; Dong, Xiaoli; Zhao, Zhongxian; Jiang, Taijiao; Wang, Hong-Wei; Luo, Shu-Jin; Xie, Can

    2016-02-01

    The notion that animals can detect the Earth's magnetic field was once ridiculed, but is now well established. Yet the biological nature of such magnetosensing phenomenon remains unknown. Here, we report a putative magnetic receptor (Drosophila CG8198, here named MagR) and a multimeric magnetosensing rod-like protein complex, identified by theoretical postulation and genome-wide screening, and validated with cellular, biochemical, structural and biophysical methods. The magnetosensing complex consists of the identified putative magnetoreceptor and known magnetoreception-related photoreceptor cryptochromes (Cry), has the attributes of both Cry- and iron-based systems, and exhibits spontaneous alignment in magnetic fields, including that of the Earth. Such a protein complex may form the basis of magnetoreception in animals, and may lead to applications across multiple fields.

  12. Microdosing of protein drugs.

    PubMed

    Rowland, M

    2016-02-01

    Poor pharmacokinetics (PK) can seriously limit clinical utility. Knowing early whether a new compound is likely to have the desired PK profile at therapeutic doses is therefore important. One approach, microdosing, has shown high success with small molecular weight compounds, despite early skepticism. Vlaming et al. report the first, and successful, clinical application of a microdose of a humanized recombinant protein. But what is the likely success for this class of drugs more generally?

  13. Prion protein and aging

    PubMed Central

    Gasperini, Lisa; Legname, Giuseppe

    2014-01-01

    The cellular prion protein (PrPC) has been widely investigated ever since its conformational isoform, the prion (or PrPSc), was identified as the etiological agent of prion disorders. The high homology shared by the PrPC-encoding gene among mammals, its high turnover rate and expression in every tissue strongly suggest that PrPC may possess key physiological functions. Therefore, defining PrPC roles, properties and fate in the physiology of mammalian cells would be fundamental to understand its pathological involvement in prion diseases. Since the incidence of these neurodegenerative disorders is enhanced in aging, understanding PrPC functions in this life phase may be of crucial importance. Indeed, a large body of evidence suggests that PrPC plays a neuroprotective and antioxidant role. Moreover, it has been suggested that PrPC is involved in Alzheimer disease, another neurodegenerative pathology that develops predominantly in the aging population. In prion diseases, PrPC function is likely lost upon protein aggregation occurring in the course of the disease. Additionally, the aging process may alter PrPC biochemical properties, thus influencing its propensity to convert into PrPSc. Both phenomena may contribute to the disease development and progression. In Alzheimer disease, PrPC has a controversial role because its presence seems to mediate β-amyloid toxicity, while its down-regulation correlates with neuronal death. The role of PrPC in aging has been investigated from different perspectives, often leading to contrasting results. The putative protein functions in aging have been studied in relation to memory, behavior and myelin maintenance. In aging mice, PrPC changes in subcellular localization and post-translational modifications have been explored in an attempt to relate them to different protein roles and propensity to convert into PrPSc. Here we provide an overview of the most relevant studies attempting to delineate PrPC functions and fate in aging

  14. Dissecting Amelogenin Protein Nanospheres

    PubMed Central

    Bromley, Keith M.; Kiss, Andrew S.; Lokappa, Sowmya Bekshe; Lakshminarayanan, Rajamani; Fan, Daming; Ndao, Moise; Evans, John Spencer; Moradian-Oldak, Janet

    2011-01-01

    Amelogenin self-assembles to form an extracellular protein matrix, which serves as a template for the continuously growing enamel apatite crystals. To gain further insight into the molecular mechanism of amelogenin nanosphere formation, we manipulated the interactions between amelogenin monomers by altering pH, temperature, and protein concentration to create isolated metastable amelogenin oligomers. Recombinant porcine amelogenins (rP172 and rP148) and three different mutants containing only a single tryptophan (Trp161, Trp45, and Trp25) were used. Dynamic light scattering and fluorescence studies demonstrated that oligomers were metastable and in constant equilibrium with monomers. Stable oligomers with an average hydrodynamic radius (RH) of 7.5 nm were observed at pH 5.5 between 4 and 10 mg·ml−1. We did not find any evidence of a significant increase in folding upon self-association of the monomers into oligomers, indicating that they are disordered. Fluorescence experiments with single tryptophan amelogenins revealed that upon oligomerization the C terminus of amelogenin (around residue Trp161) is exposed at the surface of the oligomers, whereas the N-terminal region around Trp25 and Trp45 is involved in protein-protein interaction. The truncated rP148 formed similar but smaller oligomers, suggesting that the C terminus is not critical for amelogenin oligomerization. We propose a model for nanosphere formation via oligomers, and we predict that nanospheres will break up to form oligomers in mildly acidic environments via histidine protonation. We further suggest that oligomeric structures might be functional components during maturation of enamel apatite. PMID:21840988

  15. Bone morphogenetic protein

    SciTech Connect

    Xiao Yongtao; Xiang Lixin; Shao Jianzhong

    2007-10-26

    Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the transforming growth factor-beta superfamily. It has been demonstrated that BMPs had been involved in the regulation of cell proliferation, survival, differentiation and apoptosis. However, their hallmark ability is that play a pivotal role in inducing bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites. In this review, we mainly concentrate on BMP structure, function, molecular signaling and potential medical application.

  16. Teaching resources. Protein kinases.

    PubMed

    Caplan, Avrom

    2005-02-22

    This Teaching Resource provides lecture notes and slides for a class covering the structure and function of protein kinases and is part of the course "Cell Signaling Systems: A Course for Graduate Students." The lecture begins with a discussion of the genomics and evolutionary relationships among kinases and then proceeds to describe the structure-function relationships of specific kinases, the molecular mechanisms underlying substrate specificity, and selected issues in regulation of kinase activity.

  17. Protein-Protein Fusion Catalyzed by Sortase A

    PubMed Central

    Levary, David A.; Parthasarathy, Ranganath; Boder, Eric T.; Ackerman, Margaret E.

    2011-01-01

    Chimeric proteins boast widespread use in areas ranging from cell biology to drug delivery. Post-translational protein fusion using the bacterial transpeptidase sortase A provides an attractive alternative when traditional gene fusion fails. We describe use of this enzyme for in vitro protein ligation and report the successful fusion of 10 pairs of protein domains with preserved functionality — demonstrating the robust and facile nature of this reaction. PMID:21494692

  18. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2004-10-12

    The present invention relates to 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  19. Process for protein PEGylation.

    PubMed

    Pfister, David; Morbidelli, Massimo

    2014-04-28

    PEGylation is a versatile drug delivery technique that presents a particularly wide range of conjugation chemistry and polymer structure. The conjugated protein can be tuned to specifically meet the needs of the desired application. In the area of drug delivery this typically means to increase the persistency in the human body without affecting the activity profile of the original protein. On the other hand, because of the high costs associated with the production of therapeutic proteins, subsequent operations imposed by PEGylation must be optimized to minimize the costs inherent to the additional steps. The closest attention has to be given to the PEGylation reaction engineering and to the subsequent purification processes. This review article focuses on these two aspects and critically reviews the current state of the art with a clear focus on the development of industrial scale processes which can meet the market requirements in terms of quality and costs. The possibility of using continuous processes, with integration between the reaction and the separation steps is also illustrated.

  20. Papillomavirus E6 proteins

    SciTech Connect

    Howie, Heather L.; Katzenellenbogen, Rachel A.; Galloway, Denise A.

    2009-02-20

    The papillomaviruses are small DNA viruses that encode approximately eight genes, and require the host cell DNA replication machinery for their viral DNA replication. Thus papillomaviruses have evolved strategies to induce host cell DNA synthesis balanced with strategies to protect the cell from unscheduled replication. While the papillomavirus E1 and E2 genes are directly involved in viral replication by binding to and unwinding the origin of replication, the E6 and E7 proteins have auxillary functions that promote proliferation. As a consequence of disrupting the normal checkpoints that regulate cell cycle entry and progression, the E6 and E7 proteins play a key role in the oncogenic properties of human papillomaviruses with a high risk of causing anogenital cancers (HR HPVs). As a consequence, E6 and E7 of HR HPVs are invariably expressed in cervical cancers. This article will focus on the E6 protein and its numerous activities including inactivating p53, blocking apoptosis, activating telomerase, disrupting cell adhesion, polarity and epithelial differentiation, altering transcription and reducing immune recognition.

  1. Papillomavirus E6 proteins

    PubMed Central

    Howie, Heather L; Katzenellenbogen, Rachel A; Galloway, Denise A

    2009-01-01

    The papillomaviruses are small DNA viruses that encode approximately eight genes, and require the host cell DNA replication machinery for their viral DNA replication. Thus papillomaviruses have evolved strategies to induce host cell DNA synthesis balanced with strategies to protect the cell from unscheduled replication. While the papillomavirus E1 and E2 genes are directly involved in viral replication by binding to and unwinding the origin of replication, the E6 and E7 proteins have auxillary functions that promote proliferation. As a consequence of disrupting the normal checkpoints that regulate cell cycle entry and progression, the E6 and E7 proteins play a key role in the oncogenic properties of human papillomaviruses with a high risk of causing anogenital cancers (HR HPVs). As a consequence, E6 and E7 of HR HPVs are invariably expressed in cervical cancers. This article will focus on the E6 protein and its numerous activities including inactivating p53, blocking apoptosis, activating telomerase, disrupting cell adhesion, polarity and epithelial differentiation, altering transcription and reducing immune recognition. PMID:19081593

  2. Analysis of secreted proteins.

    PubMed

    Severino, Valeria; Farina, Annarita; Chambery, Angela

    2013-01-01

    Most biological processes including growth, proliferation, differentiation, and apoptosis are coordinated by tightly regulated signaling pathways, which also involve secreted proteins acting in an autocrine and/or paracrine manner. In addition, extracellular signaling molecules affect local niche biology and influence the cross-talking with the surrounding tissues. The understanding of this molecular language may provide an integrated and broader view of cellular regulatory networks under physiological and pathological conditions. In this context, the profiling at a global level of cell secretomes (i.e., the subpopulations of a proteome secreted from the cell) has become an active area of research. The current interest in secretome research also deals with its high potential for the biomarker discovery and the identification of new targets for therapeutic strategies. Several proteomic and mass spectrometry platforms and methodologies have been applied to secretome profiling of conditioned media of cultured cell lines and primary cells. Nevertheless, the analysis of secreted proteins is still a very challenging task, because of the technical difficulties that may hamper the subsequent mass spectrometry analysis. This chapter describes a typical workflow for the analysis of proteins secreted by cultured cells. Crucial issues related to cell culture conditions for the collection of conditioned media, secretome preparation, and mass spectrometry analysis are discussed. Furthermore, an overview of quantitative LC-MS-based approaches, computational tools for data analysis, and strategies for validation of potential secretome biomarkers is also presented.

  3. Infrared Protein Crystallography

    SciTech Connect

    J Sage; Y Zhang; J McGeehan; R Ravelli; M Weik; J van Thor

    2011-12-31

    We consider the application of infrared spectroscopy to protein crystals, with particular emphasis on exploiting molecular orientation through polarization measurements on oriented single crystals. Infrared microscopes enable transmission measurements on individual crystals using either thermal or nonthermal sources, and can accommodate flow cells, used to measure spectral changes induced by exposure to soluble ligands, and cryostreams, used for measurements of flash-cooled crystals. Comparison of unpolarized infrared measurements on crystals and solutions probes the effects of crystallization and can enhance the value of the structural models refined from X-ray diffraction data by establishing solution conditions under which they are most relevant. Results on several proteins are consistent with similar equilibrium conformational distributions in crystal and solutions. However, the rates of conformational change are often perturbed. Infrared measurements also detect products generated by X-ray exposure, including CO{sub 2}. Crystals with favorable symmetry exhibit infrared dichroism that enhances the synergy with X-ray crystallography. Polarized infrared measurements on crystals can distinguish spectral contributions from chemically similar sites, identify hydrogen bonding partners, and, in opportune situations, determine three-dimensional orientations of molecular groups. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.

  4. A Bayesian Framework for Combining Protein and Network Topology Information for Predicting Protein-Protein Interactions.

    PubMed

    Birlutiu, Adriana; d'Alché-Buc, Florence; Heskes, Tom

    2015-01-01

    Computational methods for predicting protein-protein interactions are important tools that can complement high-throughput technologies and guide biologists in designing new laboratory experiments. The proteins and the interactions between them can be described by a network which is characterized by several topological properties. Information about proteins and interactions between them, in combination with knowledge about topological properties of the network, can be used for developing computational methods that can accurately predict unknown protein-protein interactions. This paper presents a supervised learning framework based on Bayesian inference for combining two types of information: i) network topology information, and ii) information related to proteins and the interactions between them. The motivation of our model is that by combining these two types of information one can achieve a better accuracy in predicting protein-protein interactions, than by using models constructed from these two types of information independently.

  5. Predicting disease-related proteins based on clique backbone in protein-protein interaction network.

    PubMed

    Yang, Lei; Zhao, Xudong; Tang, Xianglong

    2014-01-01

    Network biology integrates different kinds of data, including physical or functional networks and disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a protein-protein interaction network is a topological module and possesses inherently biological significance. A disease-related clique possibly associates with complex diseases. Fully identifying disease components in a clique is conductive to uncovering disease mechanisms. This paper proposes an approach of predicting disease proteins based on cliques in a protein-protein interaction network. To tolerate false positive and negative interactions in protein networks, extending cliques and scoring predicted disease proteins with gene ontology terms are introduced to the clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes and steadily keep to more than 95%. The predicted disease proteins associated with cliques can partly complement mapping between genotype and phenotype, and provide clues for understanding the pathogenesis of serious diseases.

  6. S-linked protein homocysteinylation: identifying targets based on structural, physicochemical and protein-protein interactions of homocysteinylated proteins.

    PubMed

    Silla, Yumnam; Sundaramoorthy, Elayanambi; Talwar, Puneet; Sengupta, Shantanu

    2013-05-01

    An elevated level of homocysteine, a thiol-containing amino acid is associated with a wide spectrum of disease conditions. A majority (>80 %) of the circulating homocysteine exist in protein-bound form. Homocysteine can bind to free cysteine residues in the protein or could cleave accessible cysteine disulfide bonds via thiol disulfide exchange reaction. Binding of homocysteine to proteins could potentially alter the structure and/or function of the protein. To date only 21 proteins have been experimentally shown to bind homocysteine. In this study we attempted to identify other proteins that could potentially bind to homocysteine based on the criteria that such proteins will have significant 3D structural homology with the proteins that have been experimentally validated and have solvent accessible cysteine residues either with high dihedral strain energy (for cysteine-cysteine disulfide bonds) or low pKa (for free cysteine residues). This analysis led us to the identification of 78 such proteins of which 68 proteins had 154 solvent accessible disulfide cysteine pairs with high dihedral strain energy and 10 proteins had free cysteine residues with low pKa that could potentially bind to homocysteine. Further, protein-protein interaction network was built to identify the interacting partners of these putative homocysteine binding proteins. We found that the 21 experimentally validated proteins had 174 interacting partners while the 78 proteins identified in our analysis had 445 first interacting partners. These proteins are mainly involved in biological activities such as complement and coagulation pathway, focal adhesion, ECM-receptor, ErbB signalling and cancer pathways, etc. paralleling the disease-specific attributes associated with hyperhomocysteinemia.

  7. [Methods for analysis of protein-protein and protein-ligand interactions].

    PubMed

    Durech, M; Trčka, F; Vojtěšek, B; Müller, P

    2014-01-01

    In order to maintain cellular homeostasis, cellular proteins coexist in complex and variable molecular assemblies. Therefore, understanding of major physiological processes at molecular level is based on analysis of protein-protein interaction networks. Firstly, composition of the molecular assembly has to be qualitatively analyzed. In the next step, quantitative bio-chemical properties of the identified protein-protein interactions are determined. Detailed information about the protein-protein interaction interface can be obtained by crystallographic methods. Accordingly, the insight into the molecular architecture of these protein-protein complexes allows us to rationally design new synthetic compounds that specifically influence various physiological or pathological processes by targeted modulation of protein interactions. This review is focused on description of the most used methods applied in both qualitative and quantitative analysis of protein-protein interactions. Co- immunoprecipitation and affinity co- precipitation are basic methods designed for qualitative analysis of protein binding partners. Further bio-chemical analysis of the interaction requires definition of kinetic and thermodynamic parameters. Surface plasmon resonance (SPR) is used for description of affinity and kinetic profile of the interaction, fluorescence polarization (FP) method for fast determination of inhibition potential of inhibitors and isothermal titration calorimetry (ITC) for definition of thermodynamic parameters of the interaction (G, H and S). Besides the importance of uncovering the molecular basis of protein interactions for basic research, the same methodological approaches open new possibilities in rational design of novel therapeutic agents.

  8. Understanding Protein Non-Folding

    PubMed Central

    Uversky, Vladimir N.; Dunker, A. Keith

    2010-01-01

    This review describes the family of intrinsically disordered proteins, members of which fail to form rigid 3-D structures under physiological conditions, either along their entire lengths or only in localized regions. Instead, these intriguing proteins/regions exist as dynamic ensembles within which atom positions and backbone Ramachandran angles exhibit extreme temporal fluctuations without specific equilibrium values. Many of these intrinsically disordered proteins are known to carry out important biological functions which, in fact, depend on the absence of specific 3-D structure. The existence of such proteins does not fit the prevailing structure-function paradigm, which states that unique 3-D structure is a prerequisite to function. Thus, the protein structure-function paradigm has to be expanded to include intrinsically disordered proteins and alternative relationships among protein sequence, structure, and function. This shift in the paradigm represents a major breakthrough for biochemistry, biophysics and molecular biology, as it opens new levels of understanding with regard to the complex life of proteins. This review will try to answer the following questions: How were intrinsically disordered proteins discovered? Why don't these proteins fold? What is so special about intrinsic disorder? What are the functional advantages of disordered proteins/regions? What is the functional repertoire of these proteins? What are the relationships between intrinsically disordered proteins and human diseases? PMID:20117254

  9. Why fibrous proteins are romantic.

    PubMed

    Cohen, C

    1998-01-01

    Here I give a personal account of the great history of fibrous protein structure. I describe how Astbury first recognized the essential simplicity of fibrous proteins and their paradigmatic role in protein structure. The poor diffraction patterns yielded by these proteins were then deciphered by Pauling, Crick, Ramachandran and others (in part by model building) to reveal alpha-helical coiled coils, beta-sheets, and the collagen triple helical coiled coil-all characterized by different local sequence periodicities. Longer-range sequence periodicities (or "magic numbers") present in diverse fibrous proteins, such as collagen, tropomyosin, paramyosin, myosin, and were then shown to account for the characteristic axial repeats observed in filaments of these proteins. More recently, analysis of fibrous protein structure has been extended in many cases to atomic resolution, and some systems, such as "leucine zippers," are providing a deeper understanding of protein design than similar studies of globular proteins. In the last sections, I provide some dramatic examples of fibrous protein dynamics. One example is the so-called "spring-loaded" mechanism for viral fusion by the hemagglutinin protein of influenza. Another is the possible conformational changes in prion proteins, implicated in "mad cow disease," which may be related to similar transitions in a variety of globular and fibrous proteins.

  10. Protein-protein interactions in the synaptonemal complex.

    PubMed Central

    Tarsounas, M; Pearlman, R E; Gasser, P J; Park, M S; Moens, P B

    1997-01-01

    In mammalian systems, an approximately M(r) 30,000 Cor1 protein has been identified as a major component of the meiotic prophase chromosome cores, and a M(r) 125,000 Syn1 protein is present between homologue cores where they are synapsed and form the synaptonemal complex (SC). Immunolocalization of these proteins during meiosis suggests possible homo- and heterotypic interactions between the two as well as possible interactions with yet unrecognized proteins. We used the two-hybrid system in the yeast Saccharomyces cerevisiae to detect possible protein-protein associations. Segments of hamsters Cor1 and Syn1 proteins were tested in various combinations for homo- and heterotypic interactions. In the cause of Cor1, homotypic interactions involve regions capable of coiled-coil formation, observation confirmed by in vitro affinity coprecipitation experiments. The two-hybrid assay detects no interaction of Cor1 protein with central and C-terminal fragments of Syn1 protein and no homotypic interactions involving these fragments of Syn1. Hamster Cor1 and Syn1 proteins both associate with the human ubiquitin-conjugation enzyme Hsubc9 as well as with the hamster Ubc9 homologue. The interactions between SC proteins and the Ubc9 protein may be significant for SC disassembly, which coincides with the repulsion of homologs by late prophase I, and also for the termination of sister centromere cohesiveness at anaphase II. Images PMID:9285814

  11. Evolutionary reprograming of protein-protein interaction specificity.

    PubMed

    Akiva, Eyal; Babbitt, Patricia C

    2015-10-22

    Using mutation libraries and deep sequencing, Aakre et al. study the evolution of protein-protein interactions using a toxin-antitoxin model. The results indicate probable trajectories via "intermediate" proteins that are promiscuous, thus avoiding transitions via non-interactions. These results extend observations about other biological interactions and enzyme evolution, suggesting broadly general principles.

  12. Multiscale modeling of proteins.

    PubMed

    Tozzini, Valentina

    2010-02-16

    The activity within a living cell is based on a complex network of interactions among biomolecules, exchanging information and energy through biochemical processes. These events occur on different scales, from the nano- to the macroscale, spanning about 10 orders of magnitude in the space domain and 15 orders of magnitude in the time domain. Consequently, many different modeling techniques, each proper for a particular time or space scale, are commonly used. In addition, a single process often spans more than a single time or space scale. Thus, the necessity arises for combining the modeling techniques in multiscale approaches. In this Account, I first review the different modeling methods for bio-systems, from quantum mechanics to the coarse-grained and continuum-like descriptions, passing through the atomistic force field simulations. Special attention is devoted to their combination in different possible multiscale approaches and to the questions and problems related to their coherent matching in the space and time domains. These aspects are often considered secondary, but in fact, they have primary relevance when the aim is the coherent and complete description of bioprocesses. Subsequently, applications are illustrated by means of two paradigmatic examples: (i) the green fluorescent protein (GFP) family and (ii) the proteins involved in the human immunodeficiency virus (HIV) replication cycle. The GFPs are currently one of the most frequently used markers for monitoring protein trafficking within living cells; nanobiotechnology and cell biology strongly rely on their use in fluorescence microscopy techniques. A detailed knowledge of the actions of the virus-specific enzymes of HIV (specifically HIV protease and integrase) is necessary to study novel therapeutic strategies against this disease. Thus, the insight accumulated over years of intense study is an excellent framework for this Account. The foremost relevance of these two biomolecular systems was

  13. Chemical Protein Modification through Cysteine.

    PubMed

    Gunnoo, Smita B; Madder, Annemieke

    2016-04-01

    The modification of proteins with non-protein entities is important for a wealth of applications, and methods for chemically modifying proteins attract considerable attention. Generally, modification is desired at a single site to maintain homogeneity and to minimise loss of function. Though protein modification can be achieved by targeting some natural amino acid side chains, this often leads to ill-defined and randomly modified proteins. Amongst the natural amino acids, cysteine combines advantageous properties contributing to its suitability for site-selective modification, including a unique nucleophilicity, and a low natural abundance--both allowing chemo- and regioselectivity. Native cysteine residues can be targeted, or Cys can be introduced at a desired site in a protein by means of reliable genetic engineering techniques. This review on chemical protein modification through cysteine should appeal to those interested in modifying proteins for a range of applications.

  14. How do chaperonins fold protein?

    PubMed Central

    Motojima, Fumihiro

    2015-01-01

    Protein folding is a biological process that is essential for the proper functioning of proteins in all living organisms. In cells, many proteins require the assistance of molecular chaperones for their folding. Chaperonins belong to a class of molecular chaperones that have been extensively studied. However, the mechanism by which a chaperonin mediates the folding of proteins is still controversial. Denatured proteins are folded in the closed chaperonin cage, leading to the assumption that denatured proteins are completely encapsulated inside the chaperonin cage. In contrast to the assumption, we recently found that denatured protein interacts with hydrophobic residues at the subunit interfaces of the chaperonin, and partially protrude out of the cage. In this review, we will explain our recent results and introduce our model for the mechanism by which chaperonins accelerate protein folding, in view of recent findings. PMID:27493521

  15. Stabilized polyacrylic saccharide protein conjugates

    DOEpatents

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1996-02-20

    This invention is directed to water soluble protein polymer conjugates which are stable in hostile environments. The conjugate comprises a protein which is linked to an acrylic polymer at multiple points through saccharide linker groups. 16 figs.

  16. Leptospira Protein Expression During Infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We are characterizing protein expression in vivo during experimental leptospirosis using immunofluorescence microscopy. Coding regions for several proteins were identified through analysis of Leptospira interrogans serovar Copenhageni and L. borgpetersenii serovar Hardjo genomes. In addition, codi...

  17. Microtubules, Tubulins and Associated Proteins.

    ERIC Educational Resources Information Center

    Raxworthy, Michael J.

    1988-01-01

    Reviews much of what is known about microtubules, which are biopolymers consisting predominantly of subunits of the globular protein, tubulin. Describes the functions of microtubules, their structure and assembly, microtube associated proteins, and microtubule-disrupting agents. (TW)

  18. Stabilized polyacrylic saccharide protein conjugates

    DOEpatents

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1996-01-01

    This invention is directed to water soluble protein polymer conjugates which are stabile in hostile environments. The conjugate comprises a protein which is linked to an acrylic polymer at multiple points through saccharide linker groups.

  19. Controlling allosteric networks in proteins

    NASA Astrophysics Data System (ADS)

    Dokholyan, Nikolay

    2013-03-01

    We present a novel methodology based on graph theory and discrete molecular dynamics simulations for delineating allosteric pathways in proteins. We use this methodology to uncover the structural mechanisms responsible for coupling of distal sites on proteins and utilize it for allosteric modulation of proteins. We will present examples where inference of allosteric networks and its rewiring allows us to ``rescue'' cystic fibrosis transmembrane conductance regulator (CFTR), a protein associated with fatal genetic disease cystic fibrosis. We also use our methodology to control protein function allosterically. We design a novel protein domain that can be inserted into identified allosteric site of target protein. Using a drug that binds to our domain, we alter the function of the target protein. We successfully tested this methodology in vitro, in living cells and in zebrafish. We further demonstrate transferability of our allosteric modulation methodology to other systems and extend it to become ligh-activatable.

  20. Protein secretion in Bacillus species.

    PubMed Central

    Simonen, M; Palva, I

    1993-01-01

    Bacilli secrete numerous proteins into the environment. Many of the secretory proteins, their export signals, and their processing steps during secretion have been characterized in detail. In contrast, the molecular mechanisms of protein secretion have been relatively poorly characterized. However, several components of the protein secretion machinery have been identified and cloned recently, which is likely to lead to rapid expansion of the knowledge of the protein secretion mechanism in Bacillus species. Comparison of the presently known export components of Bacillus species with those of Escherichia coli suggests that the mechanism of protein translocation across the cytoplasmic membrane is conserved among gram-negative and gram-positive bacteria differences are found in steps preceding and following the translocation process. Many of the secretory proteins of bacilli are produced industrially, but several problems have been encountered in the production of Bacillus heterologous secretory proteins. In the final section we discuss these problems and point out some possibilities to overcome them. PMID:8464403

  1. The Evolutionary Design of Proteins

    NASA Astrophysics Data System (ADS)

    Poelwijk, Frank J.; Raman, Arjun S.; Leibler, Stanislas; Ranganathan, Rama

    2011-03-01

    Proteins fold spontaneously into precise, well-packed 3D structures, and execute complex functions such as specificity in molecular recognition, and efficient catalysis. Despite this, many studies show that proteins are robust to random mutagenesis. Additionally, proteins are evolvable. What principles underlying the design of natural proteins explain these properties? Recent work examining correlated evolution of amino acid positions shows that many positions in proteins are nearly statistically independent while 10-20% are organized into groups of co-evolving positions - termed ``protein sectors'' - that underlie conserved, independently varying biological activities. These findings suggest that the basic design of natural proteins is fundamentally tied to the nature of fluctuations in the selection pressures during evolution. We propose to test this hypothesis using a system for high-speed laboratory evolution and determine how variation in selection pressures influences the architecture of amino acid interactions within a protein.

  2. Purification of Tetrahymena cytoskeletal proteins.

    PubMed

    Honts, Jerry E

    2012-01-01

    Like all eukaryotic cells, Tetrahymena thermophila contains a rich array of cytoskeletal proteins, some familiar and some novel. A detailed analysis of the structure, function, and interactions of these proteins requires procedures for purifying the individual protein components. Procedures for the purification of actin and tubulin from Tetrahymena are reviewed, followed by a description of a procedure that yields proteins from the epiplasmic layer and associated structures, including the tetrins. Finally, the challenges and opportunities for future advances are assessed.

  3. Tyrosine phosphorylation of WW proteins

    PubMed Central

    Reuven, Nina; Shanzer, Matan

    2015-01-01

    A number of key regulatory proteins contain one or two copies of the WW domain known to mediate protein–protein interaction via proline-rich motifs, such as PPxY. The Hippo pathway components take advantage of this module to transduce tumor suppressor signaling. It is becoming evident that tyrosine phosphorylation is a critical regulator of the WW proteins. Here, we review the current knowledge on the involved tyrosine kinases and their roles in regulating the WW proteins. PMID:25627656

  4. BALANCED PRODUCTION OF RIBOSOMAL PROTEINS

    PubMed Central

    Perry, Robert P.

    2017-01-01

    Eukaryotic ribosomes contain one molecule each of 79 different proteins. The genes encoding these proteins are usually at widely scattered loci and have distinctive promoters with certain common features. This minireview discusses the means by which cells manage to balance the production of ribosomal proteins so as to end up with equimolar quantities in the ribosome. Regulation at all levels of gene expression, from transcription to protein turnover, is considered. PMID:17689889

  5. Protein loss during nuclear isolation

    PubMed Central

    1983-01-01

    Cryomicrodissection makes possible the measurement of the entire in vivo protein content of the amphibian oocyte nucleus and provides a heretofore missing baseline for estimating protein loss during nuclear isolation by other methods. When oocyte nuclei are isolated into an aqueous medium, they lose 95% of their protein with a half-time of 250 s. This result implies an even more rapid loss of protein from aqueously isolated nuclei of ordinary-size cells. PMID:6619193

  6. Protein function annotation using protein domain family resources.

    PubMed

    Das, Sayoni; Orengo, Christine A

    2016-01-15

    As a result of the genome sequencing and structural genomics initiatives, we have a wealth of protein sequence and structural data. However, only about 1% of these proteins have experimental functional annotations. As a result, computational approaches that can predict protein functions are essential in bridging this widening annotation gap. This article reviews the current approaches of protein function prediction using structure and sequence based classification of protein domain family resources with a special focus on functional families in the CATH-Gene3D resource.

  7. Protein Adsorption in Three Dimensions

    PubMed Central

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  8. Implication of Terminal Residues at Protein-Protein and Protein-DNA Interfaces.

    PubMed

    Martin, Olivier M F; Etheve, Loïc; Launay, Guillaume; Martin, Juliette

    2016-01-01

    Terminal residues of protein chains are charged and more flexible than other residues since they are constrained only on one side. Do they play a particular role in protein-protein and protein-DNA interfaces? To answer this question, we considered large sets of non-redundant protein-protein and protein-DNA complexes and analyzed the status of terminal residues and their involvement in interfaces. In protein-protein complexes, we found that more than half of terminal residues (62%) are either modified by attachment of a tag peptide (10%) or have missing coordinates in the analyzed structures (52%). Terminal residues are almost exclusively located at the surface of proteins (94%). Contrary to charged residues, they are not over or under-represented in protein-protein interfaces, but strongly prefer the peripheral region of interfaces when present at the interface (83% of terminal residues). The almost exclusive location of terminal residues at the surface of the proteins or in the rim regions of interfaces explains that experimental methods relying on tail hybridization can be successfully applied without disrupting the complexes under study. Concerning conformational rearrangement in protein-protein complexes, despite their expected flexibility, terminal residues adopt similar locations between the free and bound forms of the docking benchmark. In protein-DNA complexes, N-terminal residues are twice more frequent than C-terminal residues at interfaces. Both N-terminal and C-terminal residues are under-represented in interfaces, in contrast to positively charged residues, which are strongly favored. When located in protein-DNA interfaces, terminal residues prefer the periphery. N-terminal and C-terminal residues thus have particular properties with regard to interfaces, which cannot be reduced to their charged nature.

  9. Identification of essential proteins based on ranking edge-weights in protein-protein interaction networks.

    PubMed

    Wang, Yan; Sun, Huiyan; Du, Wei; Blanzieri, Enrico; Viero, Gabriella; Xu, Ying; Liang, Yanchun

    2014-01-01

    Essential proteins are those that are indispensable to cellular survival and development. Existing methods for essential protein identification generally rely on knock-out experiments and/or the relative density of their interactions (edges) with other proteins in a Protein-Protein Interaction (PPI) network. Here, we present a computational method, called EW, to first rank protein-protein interactions in terms of their Edge Weights, and then identify sub-PPI-networks consisting of only the highly-ranked edges and predict their proteins as essential proteins. We have applied this method to publicly-available PPI data on Saccharomyces cerevisiae (Yeast) and Escherichia coli (E. coli) for essential protein identification, and demonstrated that EW achieves better performance than the state-of-the-art methods in terms of the precision-recall and Jackknife measures. The highly-ranked protein-protein interactions by our prediction tend to be biologically significant in both the Yeast and E. coli PPI networks. Further analyses on systematically perturbed Yeast and E. coli PPI networks through randomly deleting edges demonstrate that the proposed method is robust and the top-ranked edges tend to be more associated with known essential proteins than the lowly-ranked edges.

  10. Aeolotopic interactions of globular proteins

    PubMed Central

    Lomakin, Aleksey; Asherie, Neer; Benedek, George B.

    1999-01-01

    Protein crystallization, aggregation, liquid–liquid phase separation, and self-assembly are important in protein structure determination in the industrial processing of proteins and in the inhibition of protein condensation diseases. To fully describe such phase transformations in globular protein solutions, it is necessary to account for the strong spatial variation of the interactions on the protein surface. One difficulty is that each globular protein has its own unique surface, which is crucial for its biological function. However, the similarities amongst the macroscopic properties of different protein solutions suggest that there may exist a generic model that is capable of describing the nonuniform interactions between globular proteins. In this paper we present such a model, which includes the short-range interactions that vary from place to place on the surface of the protein. We show that this aeolotopic model [from the Greek aiolos (“variable”) and topos (“place”)] describes the phase diagram of globular proteins and provides insight into protein aggregation and crystallization. PMID:10449715

  11. Functional Foods Containing Whey Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whey proteins, modified whey proteins, and whey components are useful as nutrients or supplements for health maintenance. Extrusion modified whey proteins can easily fit into new products such as beverages, confectionery items (e.g., candies), convenience foods, desserts, baked goods, sauces, and in...

  12. Protein folding in the cell

    NASA Astrophysics Data System (ADS)

    Gething, Mary-Jane; Sambrook, Joseph

    1992-01-01

    In the cell, as in vitro, the final conformation of a protein is determined by its amino-acid sequence. But whereas some isolated proteins can be denatured and refolded in vitro in the absence of other macromolecular cellular components, folding and assembly of polypeptides in vivo involves other proteins, many of which belong to families that have been highly conserved during evolution.

  13. Biophysics of protein evolution and evolutionary protein biophysics

    PubMed Central

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  14. Mechanisms of protein evolution and their application to protein engineering.

    PubMed

    Glasner, Margaret E; Gerlt, John A; Babbitt, Patricia C

    2007-01-01

    Protein engineering holds great promise for the development of new biosensors, diagnostics, therapeutics, and agents for bioremediation. Despite some remarkable successes in experimental and computational protein design, engineered proteins rarely achieve the efficiency or specificity of natural enzymes. Current protein design methods utilize evolutionary concepts, including mutation, recombination, and selection, but the inability to fully recapitulate the success of natural evolution suggests that some evolutionary principles have not been fully exploited. One aspect of protein engineering that has received little attention is how to select the most promising proteins to serve as templates, or scaffolds, for engineering. Two evolutionary concepts that could provide a rational basis for template selection are the conservation of catalytic mechanisms and functional promiscuity. Knowledge of the catalytic motifs responsible for conserved aspects of catalysis in mechanistically diverse superfamilies could be used to identify promising templates for protein engineering. Second, protein evolution often proceeds through promiscuous intermediates, suggesting that templates which are naturally promiscuous for a target reaction could enhance protein engineering strategies. This review explores these ideas and alternative hypotheses concerning protein evolution and engineering. Future research will determine if application of these principles will lead to a protein engineering methodology governed by predictable rules for designing efficient, novel catalysts.

  15. Protein engineering methods applied to membrane protein targets.

    PubMed

    Lluis, M W; Godfroy, J I; Yin, H

    2013-02-01

    Genes encoding membrane proteins have been estimated to comprise as much as 30% of the human genome. Among these membrane, proteins are a large number of signaling receptors, transporters, ion channels and enzymes that are vital to cellular regulation, metabolism and homeostasis. While many membrane proteins are considered high-priority targets for drug design, there is a dearth of structural and biochemical information on them. This lack of information stems from the inherent insolubility and instability of transmembrane domains, which prevents easy obtainment of high-resolution crystals to specifically study structure-function relationships. In part, this lack of structures has greatly impeded our understanding in the field of membrane proteins. One method that can be used to enhance our understanding is directed evolution, a molecular biology method that mimics natural selection to engineer proteins that have specific phenotypes. It is a powerful technique that has considerable success with globular proteins, notably the engineering of protein therapeutics. With respect to transmembrane protein targets, this tool may be underutilized. Another powerful tool to investigate membrane protein structure-function relationships is computational modeling. This review will discuss these protein engineering methods and their tremendous potential in the study of membrane proteins.

  16. The Proteins API: accessing key integrated protein and genome information.

    PubMed

    Nightingale, Andrew; Antunes, Ricardo; Alpi, Emanuele; Bursteinas, Borisas; Gonzales, Leonardo; Liu, Wudong; Luo, Jie; Qi, Guoying; Turner, Edd; Martin, Maria

    2017-04-05

    The Proteins API provides searching and programmatic access to protein and associated genomics data such as curated protein sequence positional annotations from UniProtKB, as well as mapped variation and proteomics data from large scale data sources (LSS). Using the coordinates service, researchers are able to retrieve the genomic sequence coordinates for proteins in UniProtKB. This, the LSS genomics and proteomics data for UniProt proteins is programmatically only available through this service. A Swagger UI has been implemented to provide documentation, an interface for users, with little or no programming experience, to 'talk' to the services to quickly and easily formulate queries with the services and obtain dynamically generated source code for popular programming languages, such as Java, Perl, Python and Ruby. Search results are returned as standard JSON, XML or GFF data objects. The Proteins API is a scalable, reliable, fast, easy to use RESTful services that provides a broad protein information resource for users to ask questions based upon their field of expertise and allowing them to gain an integrated overview of protein annotations available to aid their knowledge gain on proteins in biological processes. The Proteins API is available at (http://www.ebi.ac.uk/proteins/api/doc).

  17. Protein subcellular localization assays using split fluorescent proteins

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  18. Commercial Protein Crystal Growth: Protein Crystallization Facility (CPCG-H)

    NASA Astrophysics Data System (ADS)

    DeLucas, Lawrence J.

    2002-12-01

    Within the human body, there are thousands of different proteins that serve a variety of different functions, such as making it possible for red blood cells to carry oxygen in our bodies. Yet proteins can also be involved in diseases. Each protein has a particular chemical structure, which means it has a unique shape. It is this three-dimensional shape that allows each protein to do its job by interacting with chemicals or binding with other proteins. If researchers can determine the shape, or shapes, of a protein, they can learn how it works. This information can then be used by the pharmaceutical industry to develop new drugs or improve the way medications work. The NASA Commercial Space Center sponsoring this experiment - the Center for Biophysical Sciences and Engineering at the University of Alabama at Birmingham - has more than 60 industry and academic partners who grow protein crystals and use the information in drug design projects.

  19. Protein – Which is Best?

    PubMed Central

    Hoffman, Jay R.; Falvo, Michael J.

    2004-01-01

    Protein intake that exceeds the recommended daily allowance is widely accepted for both endurance and power athletes. However, considering the variety of proteins that are available much less is known concerning the benefits of consuming one protein versus another. The purpose of this paper is to identify and analyze key factors in order to make responsible recommendations to both the general and athletic populations. Evaluation of a protein is fundamental in determining its appropriateness in the human diet. Proteins that are of inferior content and digestibility are important to recognize and restrict or limit in the diet. Similarly, such knowledge will provide an ability to identify proteins that provide the greatest benefit and should be consumed. The various techniques utilized to rate protein will be discussed. Traditionally, sources of dietary protein are seen as either being of animal or vegetable origin. Animal sources provide a complete source of protein (i.e. containing all essential amino acids), whereas vegetable sources generally lack one or more of the essential amino acids. Animal sources of dietary protein, despite providing a complete protein and numerous vitamins and minerals, have some health professionals concerned about the amount of saturated fat common in these foods compared to vegetable sources. The advent of processing techniques has shifted some of this attention and ignited the sports supplement marketplace with derivative products such as whey, casein and soy. Individually, these products vary in quality and applicability to certain populations. The benefits that these particular proteins possess are discussed. In addition, the impact that elevated protein consumption has on health and safety issues (i.e. bone health, renal function) are also reviewed. Key Points Higher protein needs are seen in athletic populations. Animal proteins is an important source of protein, however potential health concerns do exist from a diet of protein

  20. Experiments of salt concentration effects on translocation dynamics of polyelectrolytes passing through alpha-hemolysin pore

    NASA Astrophysics Data System (ADS)

    Jeon, Byoung-Jin; Muthukumar, Murugappan

    2015-03-01

    We use polarization-resolved Raman spectroscopy to study the Raman susceptibility (χ (ω ,T,x)) of the x-T phase diagram of NaFe1-xCoxAs. Above the structural TS(x) and the superconducting Tc(x) transition, χ (ω ,T,x) is dominated by a low-frequency quasielastic peak in B2g symmetry displaying critical behavior across the entire phase diagram. Below Tc(x), sharp ingap modes emerge for x >=0.0165 in A1g (~65 cm-1) and B2g (~25 and ~55 cm-1) symmetry. The critical charge fluctuations are interpreted in terms of plasma waves of quadrupole excitations which below Tc(x) undergo a metamorphosis into the ingap modes. The A1g mode is a particle-hole (p-h) charge exciton consistent with a non-conventional s +- superconducting groundstate. The minor B2g mode is a Bardasis-Schrieffer Cooper pair exciton of d-wave symmetry which exists only in a narrow doping window of density wave and superconductivity coexistence. The major B2g mode is a bound state of d +- p-h plasma oscillations. We use polarization-resolved Raman spectroscopy to study the Raman susceptibility (χ (ω ,T,x)) of the x-T phase diagram of NaFe1-xCoxAs. Above the structural TS(x) and the superconducting Tc(x) transition, χ (ω ,T,x) is dominated by a low-frequency quasielastic peak in B2g symmetry displaying critical behavior across the entire phase diagram. Below Tc(x), sharp ingap modes emerge for x >=0.0165 in A1g (~65 cm-1) and B2g (~25 and ~55 cm-1) symmetry. The critical charge fluctuations are interpreted in terms of plasma waves of quadrupole excitations which below Tc(x) undergo a metamorphosis into the ingap modes. The A1g mode is a particle-hole (p-h) charge exciton consistent with a non-conventional s +- superconducting groundstate. The minor B2g mode is a Bardasis-Schrieffer Cooper pair exciton of d-wave symmetry which exists only in a narrow doping window of density wave and superconductivity coexistence. The major B2g mode is a bound state of d +- p-h plasma oscillations. VKT and GB acknowledge support from NSF DMR-1104884 and from U.S. DOE, BES, Award DE-SC0005463. CZ, SVC and PD acknowledge support from U.S. DOE, BES, Contract DE-FG02-05ER46202.

  1. [Levels of thermostable direct hemolysin production by Vibrio parahaemolyticus strains carrying both tdh and trh genes].

    PubMed

    Suzuki, N; Hashimoto, S; Ishibashi, M; Kim, Y B; Okuda, J; Nishibuchi, M

    1997-12-01

    One hundred and twenty-five strains of Vibrio parahaemolyticus carrying both the tdh and trh genes were selected from the strains isolated from the travelers with diarrhea by an hybridization test using polynucleotide probes. The levels of TDH produced by these strains and the association between the TDH levels and related characteristics in these strains were analyzed. The TDH level varied greatly from strain to strain, but none of the levels was as high as that of the typical Kanagawa phenomenon-positive strains. The strains were classified into "TDH producer" (18 strains), "Low-level TDH producer" (85 strains), and "No TDH producer" (22 strains) based on the results of a modified Elek test and the hemolysis assay on Wagatsuma agar. The highest TDH level achieved by the "TDH producer" was twofold lower than that of the Kanagawa phenomenon-positive strains as assayed by the RPLA method. All strains possessed the toxR gene. The trh1 and trh2 genes were detected in, respectively, 105 and 20 strains, and no correlation existed between the type of the trh gene and the levels of TDH produced. Considerable restriction fragment length polymorphism was observed with the tdh gene-bearing HindIII DNA fragment in different strains, but it was not related with the TDH level.

  2. Complete Genome Sequence of Hemolysin-Containing Carnobacterium sp. Strain CP1 Isolated from the Antarctic

    PubMed Central

    Zhu, Sidong; Wang, Xing; Zhang, Di; Jing, Xiaohuan; Zhang, Ning

    2016-01-01

    Carnobacterium sp. strain CP1 was isolated from Antarctic sandy soil and predicted to be a novel species belonging to the genus Carnobacterium. Herein, we report the complete genome sequence, which consists of a circular 2,605,518-bp chromosome and an 8,883-bp plasmid with G+C contents of 38.13% and 31.63%, respectively. PMID:27445381

  3. PolyA Single Strand DNA Translocation Through an Alpha-Hemolysin Pore Stem

    NASA Technical Reports Server (NTRS)

    OKeeffe, James; Cozmuta, Ioana; Stolc, Viktor

    2003-01-01

    A new model for the polymer-pore interaction energy is introduced, based on an atomic-scale description of coulombic polymer-pore interaction. The enhanced drift velocity, experimentally observed for short polymers, is successfully accounted for, using this interaction energy model. For R/R(sub 0)>4 (R(sub 0)=7 angstroms) the translocation velocity approaches the free space drift velocity v(sub 0). This motivates the need to appropriately derivatize artificial nanopores, where R>R(sub 0).

  4. Immunization with recombinant aerolysin and hemolysin protected channel catfish against virulent Aeromonas hydrophila

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aeromonas hydrophila is emerging as one of the major concerns in catfish aquaculture in the Southeastern United States due to recent outbreaks of motile aeromonad septicemia (MAS) caused by virulent clonal isolates. There is no effective vaccine currently available for the prevention of MAS. In this...

  5. Experimental and bioinformatic approaches for interrogating protein-protein interactions to determine protein function.

    PubMed

    Droit, Arnaud; Poirier, Guy G; Hunter, Joanna M

    2005-04-01

    An ambitious goal of proteomics is to elucidate the structure, interactions and functions of all proteins within cells and organisms. One strategy to determine protein function is to identify the protein-protein interactions. The increasing use of high-throughput and large-scale bioinformatics-based studies has generated a massive amount of data stored in a number of different databases. A challenge for bioinformatics is to explore this disparate data and to uncover biologically relevant interactions and pathways. In parallel, there is clearly a need for the development of approaches that can predict novel protein-protein interaction networks in silico. Here, we present an overview of different experimental and bioinformatic methods to elucidate protein-protein interactions.

  6. Viruses and viral proteins.

    PubMed

    Verdaguer, Nuria; Ferrero, Diego; Murthy, Mathur R N

    2014-11-01

    For more than 30 years X-ray crystallography has been by far the most powerful approach for determining the structures of viruses and viral proteins at atomic resolution. The information provided by these structures, which covers many important aspects of the viral life cycle such as cell-receptor recognition, viral entry, nucleic acid transfer and genome replication, has extensively enriched our vision of the virus world. Many of the structures available correspond to potential targets for antiviral drugs against important human pathogens. This article provides an overview of the current knowledge of different structural aspects of the above-mentioned processes.

  7. Prion protein and cancers.

    PubMed

    Yang, Xiaowen; Zhang, Yan; Zhang, Lihua; He, Tianlin; Zhang, Jie; Li, Chaoyang

    2014-06-01

    The normal cellular prion protein, PrP(C) is a highly conserved and widely expressed cell surface glycoprotein in all mammals. The expression of PrP is pivotal in the pathogenesis of prion diseases; however, the normal physiological functions of PrP(C) remain incompletely understood. Based on the studies in cell models, a plethora of functions have been attributed to PrP(C). In this paper, we reviewed the potential roles that PrP(C) plays in cell physiology and focused on its contribution to tumorigenesis.

  8. Viruses and viral proteins

    PubMed Central

    Verdaguer, Nuria; Ferrero, Diego; Murthy, Mathur R. N.

    2014-01-01

    For more than 30 years X-ray crystallography has been by far the most powerful approach for determining the structures of viruses and viral proteins at atomic resolution. The information provided by these structures, which covers many important aspects of the viral life cycle such as cell-receptor recognition, viral entry, nucleic acid transfer and genome replication, has extensively enriched our vision of the virus world. Many of the structures available correspond to potential targets for antiviral drugs against important human pathogens. This article provides an overview of the current knowledge of different structural aspects of the above-mentioned processes. PMID:25485129

  9. Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network

    PubMed Central

    2014-01-01

    Background MADS domain proteins are transcription factors that coordinate several important developmental processes in plants. These proteins interact with other MADS domain proteins to form dimers, and it has been proposed that they are able to associate as tetrameric complexes that regulate transcription of target genes. Whether the formation of functional tetramers is a widespread property of plant MADS domain proteins, or it is specific to few of these transcriptional regulators remains unclear. Results We analyzed the structure of the network of physical interactions among MADS domain proteins in Arabidopsis thaliana. We determined the abundance of subgraphs that represent the connection pattern expected for a MADS domain protein heterotetramer. These subgraphs were significantly more abundant in the MADS domain protein interaction network than in randomized analogous networks. Importantly, these subgraphs are not significantly frequent in a protein interaction network of TCP plant transcription factors, when compared to expectation by chance. In addition, we found that MADS domain proteins in tetramer-like subgraphs are more likely to be expressed jointly than proteins in other subgraphs. This effect is mainly due to proteins in the monophyletic MIKC clade, as there is no association between tetramer-like subgraphs and co-expression for proteins outside this clade. Conclusions Our results support that the tendency to form functional tetramers is widespread in the MADS domain protein-protein interaction network. Our observations also suggest that this trend is prevalent, or perhaps exclusive, for proteins in the MIKC clade. Because it is possible to retrodict several experimental results from our analyses, our work can be an important aid to make new predictions and facilitates experimental research on plant MADS domain proteins. PMID:24468197

  10. [Protein phosphatases: structure and function].

    PubMed

    Bulanova, E G; Budagian, V M

    1994-01-01

    The process of protein and enzyme systems phosphorylation is necessary for cell growth, differentiation and preparation for division and mitosis. The conformation changes of protein as a result of phosphorylation lead to increased enzyme activity and enhanced affinity to substrates. A large group of enzymes--protein kinases--is responsible for phosphorylation process in cell, which are divided into tyrosine- and serine-threonine-kinases depending on their ability to phosphorylate appropriate amino acid residues. In this review has been considered the functional importance and structure of protein phosphatases--enzymes, which are functional antagonists of protein kinases.

  11. Protein nanotechnology: what is it?

    PubMed

    Gerrard, Juliet A

    2013-01-01

    Protein nanotechnology is an emerging field that is still defining itself. It embraces the intersection of protein science, which exists naturally at the nanoscale, and the burgeoning field of nanotechnology. In this opening chapter, a select review is given of some of the exciting nanostructures that have already been created using proteins, and the sorts of applications that protein engineers are reaching towards in the nanotechnology space. This provides an introduction to the rest of the volume, which provides inspirational case studies, along with tips and tools to manipulate proteins into new forms and architectures, beyond Nature's original intentions.

  12. Green fluorescent protein: A perspective

    PubMed Central

    Remington, S James

    2011-01-01

    A brief personal perspective is provided for green fluorescent protein (GFP), covering the period 1994–2011. The topics discussed are primarily those in which my research group has made a contribution and include structure and function of the GFP polypeptide, the mechanism of fluorescence emission, excited state protein transfer, the design of ratiometric fluorescent protein biosensors and an overview of the fluorescent proteins derived from coral reef animals. Structure-function relationships in photoswitchable fluorescent proteins and nonfluorescent chromoproteins are also briefly covered. PMID:21714025

  13. Green fluorescent protein: a perspective.

    PubMed

    Remington, S James

    2011-09-01

    A brief personal perspective is provided for green fluorescent protein (GFP), covering the period 1994-2011. The topics discussed are primarily those in which my research group has made a contribution and include structure and function of the GFP polypeptide, the mechanism of fluorescence emission, excited state protein transfer, the design of ratiometric fluorescent protein biosensors and an overview of the fluorescent proteins derived from coral reef animals. Structure-function relationships in photoswitchable fluorescent proteins and nonfluorescent chromoproteins are also briefly covered.

  14. Imaging individual green fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Pierce, Daniel W.; Hom-Booher, Nora; Vale, Ronald D.

    1997-07-01

    Recent advances in fluorescence microscopy techniques have allowed the video-time imaging of single molecules of fluorescent dyes covalently bound to proteins in aqueous environments. However, the techniques have not been exploited fully because proteins can be difficult to label, and dye modification may cause partial or complete loss of activity. These difficulties could be circumvented by fusing proteins to green fluorescent protein (GFP) of the jellyfish Aequorea victoria. Here we report that single S65T mutant GFP molecules can be imaged using total internal reflection microscopy, and that ATP-driven movement of an individual kinesin molecule (a microtubule motor protein) fused to GFP can be readily observed.

  15. [Protein nutrition and physical activity].

    PubMed

    Navarro, M P

    1992-09-01

    The relationship between physical exercise and diet in order to optimize performance is getting growing interest. This review examines protein needs and protein intakes as well as the role of protein in the body and the metabolic changes occurring at the synthesis and catabolic levels during exercise. Protein synthesis in muscle or liver, amino acids oxidation, glucose production via gluconeogenesis from amino acids, etc., are modified, and consequently plasma and urinary nitrogen metabolites are affected. A brief comment on the advantages, disadvantages and forms of different protein supplements for sportsmen is given.

  16. Protein-protein interaction network-based detection of functionally similar proteins within species.

    PubMed

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent.

  17. Toponomics: studying protein-protein interactions and protein networks in intact tissue.

    PubMed

    Pierre, Sandra; Scholich, Klaus

    2010-04-01

    The function of a protein is determined on several levels including the genome, transcriptome, proteome, and the recently introduced toponome. The toponome describes the topology of all proteins, protein complexes and protein networks which constitute and influence the microenvironment of a given protein. It has long been known that cellular function or dysfunction of proteins strongly depends on their microenvironment and even small changes in protein arrangements can dramatically alter their activity/function. Thus, deciphering the topology of the multi-dimensional networks which control normal and disease-related pathways will give a better understanding of the mechanisms underlying disease development. While various powerful proteomic tools allow simultaneous quantification of proteins, only a limited number of techniques are available to visualize protein networks in intact cells and tissues. This review discusses a novel approach to map and decipher functional molecular networks of proteins in intact cells or tissues. Multi-epitope-ligand-cartography (MELC) is an imaging technology that identifies and quantifies protein networks at the subcellular level of morphologically-intact specimens. This immunohistochemistry-based method allows serial visualization and biomathematical analysis of up to 100 cellular components using fluorescence-labelled tags. The resulting toponome maps, simultaneously ranging from the subcellular to the supracellular scale, have the potential to provide the basis for a mathematical description of the dynamic topology of protein networks, and will complement current proteomic data to enhance the understanding of physiological and pathophysiological cell functions.

  18. THE PROTEIN PROBLEM OF CHINA.

    PubMed

    Adolph, W H

    1944-07-07

    (1) The protein intake of China is approximately 80 grams per capita per day, 5 per cent. of which is animal protein. (2) The lower digestibility of the protein in vegetarian diets causes the effective protein intake to be much less than is indicated by this figure. (3) Attempts in the laboratory to devise an adequate diet using foods from vegetarian sources only have not met with marked success. (4) The use of mixed cereals in the diet has provided protein of higher biological value; this habit may reflect the attempt on the part of the rural peoples to work out a more effective protein intake. (5) It is suggested that in China some of the cereal protein in the dietary intake be replaced by more leaf vegetable protein. (6) The question is raised as to how far it is feasible in the war economy to replace animal protein by vegetable protein. (7) In long-term plans for food relief in the Far East it is urged that an emphasis be placed on the protein factor.

  19. Intrinsic Localized Modes in Proteins

    PubMed Central

    Nicolaï, Adrien; Delarue, Patrice; Senet, Patrick

    2015-01-01

    Protein dynamics is essential for proteins to function. Here we predicted the existence of rare, large nonlinear excitations, termed intrinsic localized modes (ILMs), of the main chain of proteins based on all-atom molecular dynamics simulations of two fast-folder proteins and of a rigid α/β protein at 300 K and at 380 K in solution. These nonlinear excitations arise from the anharmonicity of the protein dynamics. The ILMs were detected by computing the Shannon entropy of the protein main-chain fluctuations. In the non-native state (significantly explored at 380 K), the probability of their excitation was increased by a factor between 9 and 28 for the fast-folder proteins and by a factor 2 for the rigid protein. This enhancement in the non-native state was due to glycine, as demonstrated by simulations in which glycine was mutated to alanine. These ILMs might play a functional role in the flexible regions of proteins and in proteins in a non-native state (i.e. misfolded or unfolded states). PMID:26658321

  20. The Papillomavirus E2 proteins

    SciTech Connect

    McBride, Alison A.

    2013-10-15

    The papillomavirus E2 proteins are pivotal to the viral life cycle and have well characterized functions in transcriptional regulation, initiation of DNA replication and partitioning the viral genome. The E2 proteins also function in vegetative DNA replication, post-transcriptional processes and possibly packaging. This review describes structural and functional aspects of the E2 proteins and their binding sites on the viral genome. It is intended to be a reference guide to this viral protein. - Highlights: • Overview of E2 protein functions. • Structural domains of the papillomavirus E2 proteins. • Analysis of E2 binding sites in different genera of papillomaviruses. • Compilation of E2 associated proteins. • Comparison of key mutations in distinct E2 functions.

  1. Mathematical methods for protein science

    SciTech Connect

    Hart, W.; Istrail, S.; Atkins, J.

    1997-12-31

    Understanding the structure and function of proteins is a fundamental endeavor in molecular biology. Currently, over 100,000 protein sequences have been determined by experimental methods. The three dimensional structure of the protein determines its function, but there are currently less than 4,000 structures known to atomic resolution. Accordingly, techniques to predict protein structure from sequence have an important role in aiding the understanding of the Genome and the effects of mutations in genetic disease. The authors describe current efforts at Sandia to better understand the structure of proteins through rigorous mathematical analyses of simple lattice models. The efforts have focused on two aspects of protein science: mathematical structure prediction, and inverse protein folding.

  2. Protein Repeats from First Principles.

    PubMed

    Turjanski, Pablo; Parra, R Gonzalo; Espada, Rocío; Becher, Verónica; Ferreiro, Diego U

    2016-04-05

    Some natural proteins display recurrent structural patterns. Despite being highly similar at the tertiary structure level, repeating patterns within a single repeat protein can be extremely variable at the sequence level. We use a mathematical definition of a repetition and investigate the occurrences of these in sequences of different protein families. We found that long stretches of perfect repetitions are infrequent in individual natural proteins, even for those which are known to fold into structures of recurrent structural motifs. We found that natural repeat proteins are indeed repetitive in their families, exhibiting abundant stretches of 6 amino acids or longer that are perfect repetitions in the reference family. We provide a systematic quantification for this repetitiveness. We show that this form of repetitiveness is not exclusive of repeat proteins, but also occurs in globular domains. A by-product of this work is a fast quantification of the likelihood of a protein to belong to a family.

  3. Protein Repeats from First Principles

    PubMed Central

    Turjanski, Pablo; Parra, R. Gonzalo; Espada, Rocío; Becher, Verónica; Ferreiro, Diego U.

    2016-01-01

    Some natural proteins display recurrent structural patterns. Despite being highly similar at the tertiary structure level, repeating patterns within a single repeat protein can be extremely variable at the sequence level. We use a mathematical definition of a repetition and investigate the occurrences of these in sequences of different protein families. We found that long stretches of perfect repetitions are infrequent in individual natural proteins, even for those which are known to fold into structures of recurrent structural motifs. We found that natural repeat proteins are indeed repetitive in their families, exhibiting abundant stretches of 6 amino acids or longer that are perfect repetitions in the reference family. We provide a systematic quantification for this repetitiveness. We show that this form of repetitiveness is not exclusive of repeat proteins, but also occurs in globular domains. A by-product of this work is a fast quantification of the likelihood of a protein to belong to a family. PMID:27044676

  4. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenblum, William M.; Delucas, Lawrence J.; Wilson, William W.

    1989-01-01

    Major advances have been made in several of the experimental aspects of protein crystallography, leaving protein crystallization as one of the few remaining bottlenecks. As a result, it has become important that the science of protein crystal growth is better understood and that improved methods for protein crystallization are developed. Preliminary experiments with both small molecules and proteins indicate that microgravity may beneficially affect crystal growth. For this reason, a series of protein crystal growth experiments using the Space Shuttle was initiated. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth. Various optical techniques are being utilized to monitor the crystal growth process from the incipient or nucleation stage and throughout the growth phase. The eventual goal of these studies is to develop a system which utilizes optical monitoring for dynamic control of the crystallization process.

  5. Water-transporting proteins.

    PubMed

    Zeuthen, Thomas

    2010-04-01

    Transport through lipids and aquaporins is osmotic and entirely driven by the difference in osmotic pressure. Water transport in cotransporters and uniporters is different: Water can be cotransported, energized by coupling to the substrate flux by a mechanism closely associated with protein. In the K(+)/Cl(-) and the Na(+)/K(+)/2Cl(-) cotransporters, water is entirely cotransported, while water transport in glucose uniporters and Na(+)-coupled transporters of nutrients and neurotransmitters takes place by both osmosis and cotransport. The molecular mechanism behind cotransport of water is not clear. It is associated with the substrate movements in aqueous pathways within the protein; a conventional unstirred layer mechanism can be ruled out, due to high rates of diffusion in the cytoplasm. The physiological roles of the various modes of water transport are reviewed in relation to epithelial transport. Epithelial water transport is energized by the movements of ions, but how the coupling takes place is uncertain. All epithelia can transport water uphill against an osmotic gradient, which is hard to explain by simple osmosis. Furthermore, genetic removal of aquaporins has not given support to osmosis as the exclusive mode of transport. Water cotransport can explain the coupling between ion and water transport, a major fraction of transepithelial water transport and uphill water transport. Aquaporins enhance water transport by utilizing osmotic gradients and cause the osmolarity of the transportate to approach isotonicity.

  6. Hyperquenching for protein cryocrystallography

    PubMed Central

    Warkentin, Matthew; Berejnov, Viatcheslav; Husseini, Naji S.; Thorne, Robert E.

    2010-01-01

    When samples having volumes characteristic of protein crystals are plunge cooled in liquid nitrogen or propane, most cooling occurs in the cold gas layer above the liquid. By removing this cold gas layer, cooling rates for small samples and modest plunge velocities are increased to 1.5 × 104 K s−1, with increases of a factor of 100 over current best practice possible with 10 μm samples. Glycerol concentrations required to eliminate water crystallization in protein-free aqueous mixtures drop from ∼28% w/v to as low as 6% w/v. These results will allow many crystals to go from crystallization tray to liquid cryogen to X-ray beam without cryoprotectants. By reducing or eliminating the need for cryoprotectants in growth solutions, they may also simplify the search for crystallization conditions and for optimal screens. The results presented here resolve many puzzles, such as why plunge cooling in liquid nitrogen or propane has, until now, not yielded significantly better diffraction quality than gas-stream cooling. PMID:20461232

  7. Peptides and proteins

    SciTech Connect

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  8. An intravascular protein osmometer.

    PubMed

    Henson, J W; Brace, R A

    1983-05-01

    Our purpose was to develop an intravascular osmometer for measuring the colloid (i.e., protein) osmotic pressure (COP) of circulating blood. A semipermeable hollow fiber from a Cordis Dow artificial kidney (C-DAK 4000) was attached to polyethylene tubing on one end, filled with saline, and sealed at the other end. This was small enough to be inserted into the vasculature of research animals. Protein osmotic pressure plus hydrostatic pressure was measured by a Statham pressure transducer attached to the hollow fiber. Simultaneously, a second catheter and transducer was used to measure hydrostatic pressure, which was subtracted from the pressure measured from the fiber with an on-line computer. The system was documented by a variety of tests. The colloid osmotic pressure vs. albumin concentration curve determined with the fiber is identical to the curve determined by standard membrane osmometry. The time constant for 2- and 8-cm fibers was 2.6 +/- 0.6 and 1.5 +/- 0.5 (+/- SD) min, respectively. The reflection coefficient (+/- SD) of the fiber for NaCl is 0.042 +/- 0.019 (n = 38); COP measured at varying temperatures (absolute scale) changed linearly as expected from COP = nCRT (i.e., van't Hoff's law). Finally, hollow-fiber osmometers were inserted into femoral veins of dogs and sheep, and blood COP was continuously recorded during osmotic manipulations. In conclusion, we attempted to develop and document a simple method for continuous measurement of intravascular colloid osmotic pressure.

  9. Introduction to protein crystallization

    PubMed Central

    McPherson, Alexander; Gavira, Jose A.

    2014-01-01

    Protein crystallization was discovered by chance about 150 years ago and was developed in the late 19th century as a powerful purification tool and as a demonstration of chemical purity. The crystallization of proteins, nucleic acids and large biological complexes, such as viruses, depends on the creation of a solution that is supersaturated in the macromolecule but exhibits conditions that do not significantly perturb its natural state. Supersaturation is produced through the addition of mild precipitating agents such as neutral salts or polymers, and by the manipulation of various parameters that include temperature, ionic strength and pH. Also important in the crystallization process are factors that can affect the structural state of the macromolecule, such as metal ions, inhibitors, cofactors or other conventional small molecules. A variety of approaches have been developed that combine the spectrum of factors that effect and promote crystallization, and among the most widely used are vapor diffusion, dialysis, batch and liquid–liquid diffusion. Successes in macromolecular crystallization have multiplied rapidly in recent years owing to the advent of practical, easy-to-use screening kits and the application of laboratory robotics. A brief review will be given here of the most popular methods, some guiding principles and an overview of current technologies. PMID:24419610

  10. General introduction: recombinant protein production and purification of insoluble proteins.

    PubMed

    Ferrer-Miralles, Neus; Saccardo, Paolo; Corchero, José Luis; Xu, Zhikun; García-Fruitós, Elena

    2015-01-01

    Proteins are synthesized in heterologous systems because of the impossibility to obtain satisfactory yields from natural sources. The production of soluble and functional recombinant proteins is among the main goals in the biotechnological field. In this context, it is important to point out that under stress conditions, protein folding machinery is saturated and this promotes protein misfolding and, consequently, protein aggregation. Thus, the selection of the optimal expression organism and the most appropriate growth conditions to minimize the formation of insoluble proteins should be done according to the protein characteristics and downstream requirements. Escherichia coli is the most popular recombinant protein expression system despite the great development achieved so far by eukaryotic expression systems. Besides, other prokaryotic expression systems, such as lactic acid bacteria and psychrophilic bacteria, are gaining interest in this field. However, it is worth mentioning that prokaryotic expression system poses, in many cases, severe restrictions for a successful heterologous protein production. Thus, eukaryotic systems such as mammalian cells, insect cells, yeast, filamentous fungus, and microalgae are an interesting alternative for the production of these difficult-to-express proteins.

  11. Regulators of G protein signalling proteins in the human myometrium.

    PubMed

    Ladds, Graham; Zervou, Sevasti; Vatish, Manu; Thornton, Steven; Davey, John

    2009-05-21

    The contractile state of the human myometrium is controlled by extracellular signals that promote relaxation or contraction. Many of these signals function through G protein-coupled receptors at the cell surface, stimulating heterotrimeric G proteins and leading to changes in the activity of effector proteins responsible for bringing about the response. G proteins can interact with multiple receptors and many different effectors and are key players in the response. Regulators of G protein signalling (RGS) proteins are GTPase activating proteins for heterotrimeric G proteins and help terminate the signal. Little is known about the function of RGS proteins in human myometrium and we have therefore analysed transcript levels for RGS proteins at various stages of pregnancy (non-pregnant, preterm, term non-labouring, term labouring). RGS2 and RGS5 were the most abundantly expressed isolates in each of the patient groups. The levels of RGS4 and RGS16 (and to a lesser extent RGS2 and RGS14) increased in term labouring samples relative to the other groups. Yeast two-hybrid analysis and co-immunoprecipitation in myometrial cells revealed that both RGS2 and RGS5 interact directly with the cytoplasmic tail of the oxytocin receptor, suggesting they might help regulate signalling through this receptor.

  12. Protein oxidation in aging and the removal of oxidized proteins.

    PubMed

    Höhn, Annika; König, Jeannette; Grune, Tilman

    2013-10-30

    Reactive oxygen species (ROS) are generated constantly within cells at low concentrations even under physiological conditions. During aging the levels of ROS can increase due to a limited capacity of antioxidant systems and repair mechanisms. Proteins are among the main targets for oxidants due to their high rate constants for several reactions with ROS and their abundance in biological systems. Protein damage has an important influence on cellular viability since most protein damage is non-repairable, and has deleterious consequences on protein structure and function. In addition, damaged and modified proteins can form cross-links and provide a basis for many senescence-associated alterations and may contribute to a range of human pathologies. Two proteolytic systems are responsible to ensure the maintenance of cellular functions: the proteasomal (UPS) and the lysosomal system. Those degrading systems provide a last line of antioxidative protection, removing irreversible damaged proteins and recycling amino acids for the continuous protein synthesis. But during aging, both systems are affected and their proteolytic activity declines significantly. Here we highlight the recent advantages in the understanding of protein oxidation and the fate of these damaged proteins during aging. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.

  13. Protein-protein interaction network analysis of cirrhosis liver disease

    PubMed Central

    Safaei, Akram; Rezaei Tavirani, Mostafa; Arefi Oskouei, Afsaneh; Zamanian Azodi, Mona; Mohebbi, Seyed Reza; Nikzamir, Abdol Rahim

    2016-01-01

    Aim: Evaluation of biological characteristics of 13 identified proteins of patients with cirrhotic liver disease is the main aim of this research. Background: In clinical usage, liver biopsy remains the gold standard for diagnosis of hepatic fibrosis. Evaluation and confirmation of liver fibrosis stages and severity of chronic diseases require a precise and noninvasive biomarkers. Since the early detection of cirrhosis is a clinical problem, achieving a sensitive, specific and predictive novel method based on biomarkers is an important task. Methods: Essential analysis, such as gene ontology (GO) enrichment and protein-protein interactions (PPI) was undergone EXPASy, STRING Database and DAVID Bioinformatics Resources query. Results: Based on GO analysis, most of proteins are located in the endoplasmic reticulum lumen, intracellular organelle lumen, membrane-enclosed lumen, and extracellular region. The relevant molecular functions are actin binding, metal ion binding, cation binding and ion binding. Cell adhesion, biological adhesion, cellular amino acid derivative, metabolic process and homeostatic process are the related processes. Protein-protein interaction network analysis introduced five proteins (fibroblast growth factor receptor 4, tropomyosin 4, tropomyosin 2 (beta), lectin, Lectin galactoside-binding soluble 3 binding protein and apolipoprotein A-I) as hub and bottleneck proteins. Conclusion: Our result indicates that regulation of lipid metabolism and cell survival are important biological processes involved in cirrhosis disease. More investigation of above mentioned proteins will provide a better understanding of cirrhosis disease. PMID:27099671

  14. A new protein structure representation for efficient protein function prediction.

    PubMed

    Maghawry, Huda A; Mostafa, Mostafa G M; Gharib, Tarek F

    2014-12-01

    One of the challenging problems in bioinformatics is the prediction of protein function. Protein function is the main key that can be used to classify different proteins. Protein function can be inferred experimentally with very small throughput or computationally with very high throughput. Computational methods are sequence based or structure based. Structure-based methods produce more accurate protein function prediction. In this article, we propose a new protein structure representation for efficient protein function prediction. The representation is based on three-dimensional patterns of protein residues. In the analysis, we used protein function based on enzyme activity through six mechanistically diverse enzyme superfamilies: amidohydrolase, crotonase, haloacid dehalogenase, isoprenoid synthase type I, and vicinal oxygen chelate. We applied three different classification methods, naïve Bayes, k-nearest neighbors, and random forest, to predict the enzyme superfamily of a given protein. The prediction accuracy using the proposed representation outperforms a recently introduced representation method that is based only on the distance patterns. The results show that the proposed representation achieved prediction accuracy up to 98%, with improvement of about 10% on average.

  15. Protein transduction assisted by polyethylenimine-cationized carrier proteins.

    PubMed

    Kitazoe, Midori; Murata, Hitoshi; Futami, Junichiro; Maeda, Takashi; Sakaguchi, Masakiyo; Miyazaki, Masahiro; Kosaka, Megumi; Tada, Hiroko; Seno, Masaharu; Huh, Nam-ho; Namba, Masayoshi; Nishikawa, Mitsuo; Maeda, Yoshitake; Yamada, Hidenori

    2005-06-01

    Previously, we have reported that cationized-proteins covalently modified with polyethylenimine (PEI) (direct PEI-cationization) efficiently enter cells and function in the cytosol [Futami et al. (2005) J. Biosci. Bioeng. 99, 95-103]. However, it may be more convenient if a protein could be delivered into cells just by mixing the protein with a PEI-cationized carrier protein having a specific affinity (indirect PEI-cationization). Thus, we prepared PEI-cationized avidin (PEI-avidin), streptavidin (PEI-streptavidin), and protein G (PEI-protein G), and examined whether they could deliver biotinylated proteins and antibodies into living cells. PEI-avidin (and/or PEI-streptavidin) carried biotinylated GFPs into various mammalian cells very efficiently. A GFP variant containing a nuclear localization signal was found to arrive even in the nucleus. The addition of a biotinylated RNase A derivative mixed with PEI-streptavidin to a culture medium of 3T3-SV-40 cells resulted in remarkable cell growth inhibition, suggesting that the biotinylated RNase A derivative entered cells and digested intracellular RNA molecules. Furthermore, the addition of a fluorescein-labeled anti-S100C (beta-actin binding protein) antibody mixed with PEI-protein G to human fibroblasts resulted in the appearance of a fluorescence image of actin-like filamentous structures in the cells. These results indicate that indirect PEI-cationization using non-covalent interaction is as effective as the direct PEI-cationization for the transduction of proteins into living cells and for expression of their functions in the cytosol. Thus, PEI-cationized proteins having a specific affinity for certain molecules such as PEI-streptavidin, PEI-avidin and PEI-protein G are concluded to be widely applicable protein transduction carrier molecules.

  16. Protein-protein interaction network of celiac disease

    PubMed Central

    Zamanian Azodi, Mona; Peyvandi, Hassan; Rostami-Nejad, Mohammad; Safaei, Akram; Rostami, Kamran; Vafaee, Reza; Heidari, Mohammadhossein; Hosseini, Mostafa; Zali, Mohammad Reza

    2016-01-01

    Aim: The aim of this study is to investigate the Protein-Protein Interaction Network of Celiac Disease. Background: Celiac disease (CD) is an autoimmune disease with susceptibility of individuals to gluten of wheat, rye and barley. Understanding the molecular mechanisms and involved pathway may lead to the development of drug target discovery. The protein interaction network is one of the supportive fields to discover the pathogenesis biomarkers for celiac disease. Material and methods: In the present study, we collected the articles that focused on the proteomic data in celiac disease. According to the gene expression investigations of these articles, 31 candidate proteins were selected for this study. The networks of related differentially expressed protein were explored using Cytoscape 3.3 and the PPI analysis methods such as MCODE and ClueGO. Results: According to the network analysis Ubiquitin C, Heat shock protein 90kDa alpha (cytosolic and Grp94); class A, B and 1 member, Heat shock 70kDa protein, and protein 5 (glucose-regulated protein, 78kDa), T-complex, Chaperon in containing TCP1; subunit 7 (beta) and subunit 4 (delta) and subunit 2 (beta), have been introduced as hub-bottlnecks proteins. HSP90AA1, MKKS, EZR, HSPA14, APOB and CAD have been determined as seed proteins. Conclusion: Chaperons have a bold presentation in curtail area in network therefore these key proteins beside the other hub-bottlneck proteins may be a suitable candidates biomarker panel for diagnosis, prognosis and treatment processes in celiac disease. PMID:27895852

  17. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    PubMed

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  18. Computational Prediction of Protein-Protein Interactions of Human Tyrosinase

    PubMed Central

    Wang, Su-Fang; Oh, Sangho; Si, Yue-Xiu; Wang, Zhi-Jiang; Han, Hong-Yan; Lee, Jinhyuk; Qian, Guo-Ying

    2012-01-01

    The various studies on tyrosinase have recently gained the attention of researchers due to their potential application values and the biological functions. In this study, we predicted the 3D structure of human tyrosinase and simulated the protein-protein interactions between tyrosinase and three binding partners, four and half LIM domains 2 (FHL2), cytochrome b-245 alpha polypeptide (CYBA), and RNA-binding motif protein 9 (RBM9). Our interaction simulations showed significant binding energy scores of −595.3 kcal/mol for FHL2, −859.1 kcal/mol for CYBA, and −821.3 kcal/mol for RBM9. We also investigated the residues of each protein facing toward the predicted site of interaction with tyrosinase. Our computational predictions will be useful for elucidating the protein-protein interactions of tyrosinase and studying its binding mechanisms. PMID:22577521

  19. Enhanced protein production by engineered zinc finger proteins.

    PubMed

    Reik, Andreas; Zhou, Yuanyue; Collingwood, Trevor N; Warfe, Lyndon; Bartsevich, Victor; Kong, Yanhong; Henning, Karla A; Fallentine, Barrett K; Zhang, Lei; Zhong, Xiaohong; Jouvenot, Yann; Jamieson, Andrew C; Rebar, Edward J; Case, Casey C; Korman, Alan; Li, Xiao-Yong; Black, Amelia; King, David J; Gregory, Philip D

    2007-08-01

    Increasing the yield of therapeutic proteins from mammalian production cell lines reduces costs and decreases the time to market. To this end, we engineered a zinc finger protein transcription factor (ZFP TF) that binds a DNA sequence within the promoter driving transgene expression. This ZFP TF enabled >100% increase in protein yield from CHO cells in transient, stable, and fermentor production run settings. Expression vectors engineered to carry up to 10 ZFP binding sites further enhanced ZFP-mediated increases in protein production up to approximately 500%. The multimerized ZFP binding sites function independently of the promoter, and therefore across vector platforms. CHO cell lines stably expressing ZFP TFs demonstrated growth characteristics similar to parental cell lines. ZFP TF expression and gains in protein production were stable over >30 generations in the absence of antibiotic selection. Our results demonstrate that ZFP TFs can rapidly and stably increase protein production in mammalian cells.

  20. Protein-water dynamics in antifreeze protein III activity

    NASA Astrophysics Data System (ADS)

    Xu, Yao; Bäumer, Alexander; Meister, Konrad; Bischak, Connor G.; DeVries, Arthur L.; Leitner, David M.; Havenith, Martina

    2016-03-01

    We combine Terahertz absorption spectroscopy (THz) and molecular dynamics (MD) simulations to investigate the underlying molecular mechanism for the antifreeze activity of one class of antifreeze protein, antifreeze protein type III (AFP-III) with a focus on the collective water hydrogen bond dynamics near the protein. After summarizing our previous work on AFPs, we present a new investigation of the effects of cosolutes on protein antifreeze activity by adding sodium citrate to the protein solution of AFP-III. Our results reveal that for AFP-III, unlike some other AFPs, the addition of the osmolyte sodium citrate does not affect the hydrogen bond dynamics at the protein surface significantly, as indicated by concentration dependent THz measurements. The present data, in combination with our previous THz measurements and molecular simulations, confirm that while long-range solvent perturbation is a necessary condition for the antifreeze activity of AFP-III, the local binding affinity determines the size of the hysteresis.