Science.gov

Sample records for hemolysins

  1. Fungal hemolysins

    PubMed Central

    Nayak, Ajay P.; Green, Brett J.; Beezhold, Donald H.

    2015-01-01

    Hemolysins are a class of proteins defined by their ability to lyse red cells but have been described to exhibit pleiotropic functions. These proteins have been extensively studied in bacteria and more recently in fungi. Within the last decade, a number of studies have characterized fungal hemolysins and revealed a fascinating yet diverse group of proteins. The purpose of this review is to provide a synopsis of the known fungal hemolysins with an emphasis on those belonging to the aegerolysin protein family. New insight and perspective into fungal hemolysins in biotechnology and health are additionally presented. PMID:22769586

  2. Hemolysins of Edwardsiella tarda.

    PubMed Central

    Watson, J J; White, F H

    1979-01-01

    Isolates of Edwardsiella tarda from four sources produced nonfilterable hemolsin in trypticase soy broth. The cell-associated hemolysin was partially heat labile, destroyed by formalin and sensitive to treatment with trypsin. These characteristics, and the observation that Ca++ or Mg++ ions enhanced activity, suggest that a proteinaceous, enzymic component may be responsible for the hemolytic activity. PMID:34473

  3. POSSIBLE ROLE OF FUNGAL HEMOLYSINS IN SICK BUILDING SYNDROME

    EPA Science Inventory

    Many fungi produce proteinaceous hemolytic agents. Like bacterial hemolysins, fungal hemolysins create pores or holes in membranes. Depending on which membranes are damaged, fungal hemolysins can produce a variety of effects. Fungal hemolysins can cause histamine release from ...

  4. POSSIBLE ROLE OF FUNGAL HEMOLYSINS IN SICK BUILDING SYNDROME

    EPA Science Inventory

    Many fungi produce proteinaceous hemolytic agents. Like bacterial hemolysins, fungal hemolysins create pores or holes in membranes. Depending on which membranes are damaged, fungal hemolysins can produce a variety of effects. Fungal hemolysins can cause histamine release from ...

  5. Bacteriocin (Hemolysin) of Streptococcus zymogenes

    PubMed Central

    Basinger, Scott F.; Jackson, Robert W.

    1968-01-01

    The sensitivity of Streptococcus faecalis (ATTC 8043) to S. zymogenes X-14 bacteriocin depends greatly on its physiological age. Sensitivity decreases from the mid-log phase on and is completely lost in the stationary phase. The sensitivity of erythrocytes to the hemolytic capacity of the bacteriocin showed considerable species variation. The order of increasing sensitivity was goose < sheep < dog < horse < human < rabbit. However, when red cell stromata were used as inhibitors of hemolysis in a standard system employing rabbit erythrocytes the order of increasing effectiveness was sheep < rabbit < human < horse < goose. When rabbit cells were used in varying concentrations with a constant hemolysin concentration, there was a lag of about 30 min, which for a given hemolysin preparation was constant for all red cell concentrations. Furthermore, the rate of hemolysis increased with increasing red cell concentration. If red cells are held constant and lysin varied, the time to reach half-maximal lysis varies directly with lysin but is not strictly proportional. Bacterial membranes were one to three orders of magnitude more effective than red cell stromata as inhibitors. The order of increasing effectiveness seems to be Escherichia coli < Bacillus megaterium < S. faecalis < Micrococcus lysodeikticus. In addition to membranes, a d-alanine containing glycerol teichoic acid, trypsin in high concentration, and deoxyribonuclease also inhibited hemolysis. Ribonuclease, d-alanine, l-alanine, dl-alanyl-dl-alanine, N-acetyl-d-alanine, N-acetyl-l-alanine did not inhibit hemolysis. PMID:4972910

  6. Purification and sensitivity of Clostridium chauvoei hemolysin to various erythrocytes.

    PubMed

    Mudenda Hang'ombe, Bernard; Kohda, Tomoko; Mukamoto, Masafumi; Kozaki, Shunji

    2006-07-01

    Using ammonium sulphate fractionation, the Clostridium chauvoei hemolysin was purified by cation exchange chromatography and sephacryl S-100 gel filtration. The molecular mass of the hemolysin, determined by SDS-PAGE was found to be approximately 27kDa. The activity of the hemolysin was determined in erythrocytes of various animals, with sensitivities observed in the order of cow, sheep, chicken, rabbit, rat, mouse, dog and horse. Temperature affected the sensitivity of erythrocytes to C. chauvoei hemolysin. These results may reflect distinct characteristics of the hemolytic activity of C. chauvoei hemolysin and that the hemolysin may be pore-forming.

  7. CHARACTERIZATION OF THE HEMOLYSIN, FROM STACHYBOTRYS CHARTARUM

    EPA Science Inventory

    Stachybotrys chartarum is a toxigenic fungus that has been associated with human health concerns, including pulmonary hemorrhage and hemosiderosis. This fungus produces a hemolysin, stachylysin, which in its apparent monomeric form has a molecular mass of 11,920
    Da as determ...

  8. CHARACTERIZATION OF THE HEMOLYSIN, FROM STACHYBOTRYS CHARTARUM

    EPA Science Inventory

    Stachybotrys chartarum is a toxigenic fungus that has been associated with human health concerns, including pulmonary hemorrhage and hemosiderosis. This fungus produces a hemolysin, stachylysin, which in its apparent monomeric form has a molecular mass of 11,920
    Da as determ...

  9. Extracellular hemolysins of aerobic sporogenic bacilli.

    PubMed

    Bernheimer, A W; Grushoff, P

    1967-05-01

    Forty-five strains, representing 18 species of the genus Bacillus, were surveyed for production of hemolysin against rabbit erythrocytes. Broth cultures of B. cereus, B. alvei, and B. laterosporus contained lysins that closely resembled streptolysin O. B. subtilis and a single strain of B. cereus may produce lysins having characteristics different from those of streptolysin O.

  10. Cross-Neutralization of Leptospiral Hemolysins from Different Serotypes

    PubMed Central

    Alexander, A. D.; Wood, G.; Yancey, F.; Byrne, R. J.; Yager, R. H.

    1971-01-01

    Cross-neutralization studies on leptospiral hemolysins from strains of two antigenically different serotypes, pomona and canicola, were conducted in sheep. A third strain of serotype hardjo that does not produce hemolysin and is antigenically distinct was included for control purposes. Concentrated hemolysins, prepared from supernatant fluids of canicola or pomona cultures, produced hemolytic anemia in sheep after intravenous injection. Sheep previously infected with hemolysin-producing strains were refractory to effects of homologous or heterologous hemolysins. On the other hand, infection with hardjo did not confer immunity to the action of hemolysins. Hemolysin-neutralizing antibodies were demonstrable in sheep previously infected with pomona or canicola only after challenge with homologous or heterologous hemolysins. Cross-neutralization between two hemolysins were demonstrable in vitro. Hemolysin-neutralizing antibody titers did not correlate with agglutinin titers. Concentrated supernatant fluid of the hardjo culture provoked toxic reactions predominantly in sheep previously infected with pomona or canicola. The causes of these untoward reactions were not determined. PMID:5154879

  11. Roles of thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) in Vibrio parahaemolyticus.

    PubMed

    Raghunath, Pendru

    2014-01-01

    Vibrio parahaemolyticus is the leading cause of seafood borne bacterial gastroenteritis in the world, often associated with the consumption of raw or undercooked seafood. However, not all strains of V. parahaemolyticus are pathogenic. The thermostable direct hemolysin (TDH) or TDH-related hemolysin (TRH) encoded by tdh and trh genes, respectively, are considered major virulence factors in V. parahaemolyticus. However, about 10% of clinical strains do not contain tdh and/or trh. Environmental isolates of V. parahaemolyticus lacking tdh and/or trh are also highly cytotoxic to human gastrointestinal cells. Even in the absence of these hemolysins, V. parahaemolyticus remains pathogenic indicating other virulence factors exist. This mini review aims at discussing the possible roles of tdh and trh genes in clinical and environmental isolates of V. parahaemolyticus.

  12. Roles of thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) in Vibrio parahaemolyticus

    PubMed Central

    Raghunath, Pendru

    2015-01-01

    Vibrio parahaemolyticus is the leading cause of seafood borne bacterial gastroenteritis in the world, often associated with the consumption of raw or undercooked seafood. However, not all strains of V. parahaemolyticus are pathogenic. The thermostable direct hemolysin (TDH) or TDH-related hemolysin (TRH) encoded by tdh and trh genes, respectively, are considered major virulence factors in V. parahaemolyticus. However, about 10% of clinical strains do not contain tdh and/or trh. Environmental isolates of V. parahaemolyticus lacking tdh and/or trh are also highly cytotoxic to human gastrointestinal cells. Even in the absence of these hemolysins, V. parahaemolyticus remains pathogenic indicating other virulence factors exist. This mini review aims at discussing the possible roles of tdh and trh genes in clinical and environmental isolates of V. parahaemolyticus. PMID:25657643

  13. PURIFICATION AND PROPERTIES OF STAPHYLOCOCCAL BETA-HEMOLYSIN I.

    PubMed Central

    Haque, Riaz-Ul; Baldwin, Jack N.

    1964-01-01

    Haque, Riaz-ul (Ohio State University, Columbus), and Jack N. Baldwin. Purification and properties of staphylococcal beta-hemolysin. I. Production of beta-hemolysin. J. Bacteriol. 88:1304–1309. 1964.—Highest activity of β-hemolysin was observed when buffered saline (pH 7.0) containing 0.001 m magnesium sulfate was used as a diluent, and the tubes were incubated at 37 C for 80 min and then refrigerated for 30 min. Either Heart Infusion semisolid agar or a dialysate of Heart Infusion containing 0.3% agar was suitable for the production of large quantities of β-hemolysin. The concentration of β-hemolysin in semisolid and broth cultures was greatest after incubation for 24 hr. Continued incubation resulted in a loss of active hemolysin in broth cultures but not in semisolid agar cultures. Incubation in atmospheres containing 20% carbon dioxide greatly enhanced the production of β-hemolysin. The presence of fermentable sugars inhibited the production of β-hemolysin. Highest yields of β-hemolysin were obtained when the initial pH of the medium was 5.5 to 5.8. PMID:14234785

  14. Cell Vacuolation Caused by Vibrio cholerae Hemolysin

    PubMed Central

    Figueroa-Arredondo, Paula; Heuser, John E.; Akopyants, Natalia S.; Morisaki, J. Hiroshi; Giono-Cerezo, Silvia; Enríquez-Rincón, Fernando; Berg, Douglas E.

    2001-01-01

    Non-O1 strains of Vibrio cholerae implicated in gastroenteritis and diarrhea generally lack virulence determinants such as cholera toxin that are characteristic of epidemic strains; the factors that contribute to their virulence are not understood. Here we report that at least one-third of diarrhea-associated nonepidemic V. cholerae strains from Mexico cause vacuolation of cultured Vero cells. Detailed analyses indicated that this vacuolation was related to that caused by aerolysin, a pore-forming toxin of Aeromonas; it involved primarily the endoplasmic reticulum at early times (∼1 to 4 h after exposure), and resulted in formation of large, acidic, endosome-like multivesicular vacuoles (probably autophagosomes) only at late times (∼16 h). In contrast to vacuolation caused by Helicobacter pylori VacA protein, that induced by V. cholerae was exacerbated by agents that block vacuolar proton pumping but not by endosome-targeted weak bases. It caused centripetal redistribution of endosomes, reflecting cytoplasmic alkalinization. The gene for V. cholerae vacuolating activity was cloned and was found to correspond to hlyA, the structural gene for hemolysin. HlyA protein is a pore-forming toxin that causes ion leakage and, ultimately, eukaryotic cell lysis. Thus, a distinct form of cell vacuolation precedes cytolysis at low doses of hemolysin. We propose that this vacuolation, in itself, contributes to the virulence of V. cholerae strains, perhaps by perturbing intracellular membrane trafficking or ion exchange in target cells and thereby affecting local intestinal inflammatory or other defense responses. PMID:11179335

  15. Nucleotide sequence of an Escherichia coli chromosomal hemolysin.

    PubMed Central

    Felmlee, T; Pellett, S; Welch, R A

    1985-01-01

    We determined the DNA sequence of an 8,211-base-pair region encompassing the chromosomal hemolysin, molecularly cloned from an O4 serotype strain of Escherichia coli. All four hemolysin cistrons (transcriptional order, C, A, B, and D) were encoded on the same DNA strand, and their predicted molecular masses were, respectively, 19.7, 109.8, 79.9, and 54.6 kilodaltons. The identification of pSF4000-encoded polypeptides in E. coli minicells corroborated the assignment of the predicted polypeptides for hlyC, hlyA, and hlyD. However, based on the minicell results, two polypeptides appeared to be encoded on the hlyB region, one similar in size to the predicted molecular mass of 79.9 kilodaltons, and the other a smaller 46-kilodalton polypeptide. The four hemolysin gene displayed similar codon usage, which is atypical for E. coli. This reflects the low guanine-plus-cytosine content (40.2%) of the hemolysin DNA sequence and suggests the non-E. coli origin of the hemolysin determinant. In vitro-derived deletions of the hemolysin recombinant plasmid pSF4000 indicated that a region between 433 and 301 base pairs upstream of the putative start of hlyC is necessary for hemolysin synthesis. Based on the DNA sequence, a stem-loop transcription terminator-like structure (a 16-base-pair stem followed by seven uridylates) in the mRNA was predicted distal to the C-terminal end of hlyA. A model for the general transcriptional organization of the E. coli hemolysin determinant is presented. Images PMID:3891743

  16. Cloning of a hemolysin gene from Leptospira interrogans serovar hardjo.

    PubMed Central

    del Real, G; Segers, R P; van der Zeijst, B A; Gaastra, W

    1989-01-01

    A DNA fragment encoding both hemolysin and sphingomyelinase C activity was cloned from the pathogenic bacterium Leptospira interrogans serovar hardjo. Initial clones were obtained by screening a genomic library in EMBL3 for hemolytic activity. Both hemolytic and sphingomyelinase C activities were coded for by a 3.9-kilobase BamHI fragment. The hemolysin was expressed from its own promoter in Escherichia coli K-12. Similar DNA sequences were also present in the serovars tarassovi and ballum. Images PMID:2744864

  17. Effects of Escherichia coli hemolysin on endothelial cell function.

    PubMed Central

    Suttorp, N; Flöer, B; Schnittler, H; Seeger, W; Bhakdi, S

    1990-01-01

    Escherichia coli hemolysin is considered an important virulence factor in extraintestinal E. coli infections. The present study demonstrates that cultured pulmonary artery endothelial cells are susceptible to attack by low concentrations of E. coli hemolysin (greater than or equal to 0.05 hemolytic units/ml; greater than or equal to 5 ng/ml). Sublytic amounts of hemolysin increased the permeability of endothelial cell monolayers in a time- and dose-dependent manner. The hydraulic conductivity increased approximately 30-fold and the reflection coefficient for large molecules dropped from 0.71 to less than 0.05, indicating a toxin-induced loss of endothelial barrier function. The alterations of endothelial monolayer permeability were accompanied by cell retraction and interendothelial gap formation. In addition, E. coli hemolysin stimulated prostacyclin synthesis in endothelial cells. This effect was strictly dependent on the presence of extracellular Ca2+ but not of Mg2+. An enhanced passive influx of 45Ca2+ and 3H-sucrose but not of tritiated inulin and dextran was noted in toxin-treated cells, indicating that small transmembrane pores comparable to those detected in rabbit erythrocytes had been generated in endothelial cell membranes. These pores may act as nonphysiologic Ca2+ gates, thereby initiating different Ca2+-dependent cellular processes. We conclude that endothelial cells are highly susceptible to E. coli hemolysin and that two major endothelial cell functions are altered by very low concentrations of hemolysin. Images PMID:2121650

  18. Nucleotide sequence of the hemolysin I gene from Actinobacillus pleuropneumoniae.

    PubMed Central

    Frey, J; Meier, R; Gygi, D; Nicolet, J

    1991-01-01

    The DNA sequence of the gene encoding the structural protein of hemolysin I (HlyI) of Actinobacillus pleuropneumoniae serotype 1 strain 4074 was analyzed. The nucleotide sequence shows a 3,072-bp reading frame encoding a protein of 1,023 amino acids with a calculated molecular size of 110.1 kDa. This corresponds to the HlyI protein, which has an apparent molecular size on sodium dodecyl sulfate gels of 105 kDa. The structure of the protein derived from the DNA sequence shows three hydrophobic regions in the N-terminal part of the protein, 13 glycine-rich domains in the second half of the protein, and a hydrophilic C-terminal area, all of which are typical of the cytotoxins of the RTX (repeats in the structural toxin) toxin family. The derived amino acid sequence of HlyI shows 42% homology with the hemolysin of A. pleuropneumoniae serotype 5, 41% homology with the leukotoxin of Pasteurella haemolytica, and 56% homology with the Escherichia coli alpha-hemolysin. The 13 glycine-rich repeats and three hydrophobic areas of the HlyI sequence show more similarity to the E. coli alpha-hemolysin than to either the A. pleuropneumoniae serotype 5 hemolysin or the leukotoxin (while the last two are more similar to each other). Two types of RTX hemolysins therefore seem to be present in A. pleuropneumoniae, one (HlyI) resembling the alpha-hemolysin and a second more closely related to the leukotoxin. Ca(2+)-binding experiments using HlyI and recombinant A. pleuropneumoniae prohemolysin (HlyIA) that was produced in E. coli shows that HlyI binds 45Ca2+, probably because of the 13 glycine-rich repeated domains. Activation of the prohemolysin is not required for Ca2+ binding. Images PMID:1879928

  19. High-molecular-weight hemolysin of Clostridium tetani.

    PubMed Central

    Mitsui, K; Mitsui, N; Kobashi, K; Hase, J

    1982-01-01

    Clostridium tetani excretes hemolysins of two size classes, a high-molecular-weight hemolysin (HMH), which was eluted near void volume of a Sepharose 6B column, and conventional tetanolysin (molecular weight, approximately 50,000). The total hemolysin activity in the culture supernatant increased sharply with growth of bacteria and remained at a high level during autolysis. The content of HMH, however, decreased from 41% at 4 h of culture to 0.4% at the early stage of autolysis. The cell bodies also exhibited hemolytic activity, 70% of which could be solubilized and separated into HMH and the 50,000 Mr tetanolysin as extracellular hemolysins. The activity ratio of HMH to the total solubilized hemolysins was 0.45, on the average, at 6 h of culture but was 0.23 at the middle of logarithmic growth. Partially purified HMH from both sources appeared as broken pieces of cytoplasmic membranes under an electron microscope. The ratio of proteins to phospholipids in HMH was found to 3.26, a value similar to that in cell membrane. The total cell hemolytic activity decreased by 90 or 75% upon addition of chloramphenicol or anti-tetanolysin serum, respectively, into a 6-h-old culture of bacteria. It is suggested that HMH is a complex of tetanolysin with a membrane fragment and releases the conventional tetanolysin during bacterial culture. Images PMID:7040245

  20. Detection of Clostridium septicum hemolysin gene by polymerase chain reaction.

    PubMed

    Takeuchi, S; Hashizume, N; Kinoshita, T; Kaidoh, T; Tamura, Y

    1997-09-01

    A polymerase chain reaction (PCR) was developed for the detection of the hemolysin (alpha toxin) gene of Clostridium septicum. The PCR primers were designed from the sequence of the hemolysin gene and synthesized. A DNA fragment of 270 bp was amplified from 10 strains of C. septicum, but was not from strains of C. chauvoei, C. perfringens, C. novyi, or C. haemolyticum. When the PCR product was digested with Sau3AI, two DNA fragments of the expected 148 bp and 122 bp were recognized. The lowest detectable threshold of PCR for the hemolysin gene was 3.8 x 10(3) cells/ml. The PCR technique may be useful for rapid detection or identification of C. septicum associated with malignant edema.

  1. Synergistic hemolysins of coagulase-negative staphylococci (CoNS).

    PubMed

    Różalska, Małgorzata; Derczyńska, Anna; Maszewska, Agnieszka

    2015-01-01

    A total of 104 coagulase negative staphylococci, belonging to S. capitis, S. hominis, S. haemolyticus and S. warneri, originating from the collection of the Department of Pharmaceutical Microbiology (ZMF), Medical University of Lodz, Poland, were tested for their synergistic hemolytic activity. 83% of strains produced δ-hemolysin, however, the percentage of positive strains of S. haemolyticus, S. warneri, S. capitis and S. hominis was different - 98%, 78%, 75% and 68%, respectively. Highly pure hemolysins were obtained from culture supernatants by protein precipitation with ammonium sulphate (0-70% of saturation) and extraction by using a mixture of organic solvents. The purity and molecular mass of hemolysins was determined by TRIS/Tricine PAGE. All CoNS hemolysins were small peptides with a molar mass of about 3.5 kDa; they possessed cytotoxic activity against the line of human foreskin fibroblasts ATCC Hs27 and lysed red cells from different mammalian species, however, the highest activity was observed when guinea pig, dog and human red blood cells were used. The cytotoxic effect on fibroblasts occurred within 30 minutes. The S. cohnii ssp. urealyticus strain was used as a control. The antimicrobial activity was examined using hemolysins of S. capitis, S. hominis, S. cohnii ssp. cohnii and S. cohnii ssp. urealyticus. Hemolysins of the two S. cohnii subspecies did not demonstrate antimicrobial activity. Cytolysins of S. capitis and S. hominis had a very narrow spectrum of action; out of 37 examined strains, the growth of only Micrococcus luteus, Corynebacterium diphtheriae and Pasteurella multocida was inhibited.

  2. Production and properties of heat-stable extracellular hemolysin from Pseudomonas aeruginosa.

    PubMed Central

    Johnson, M K; Boese-Marrazzo, D

    1980-01-01

    Of 12 strains of Pseudomonas aeruginosa, 10 were found to produce heat-stable extracellular hemolysin in highly aerated peptone broth supplemented with glycerol, fructose, or mannitol. Glucose supported good hemolysin production only in medium that was highly buffered. The yield of both cells and hemolysin was lower with organic acids as supplement. Growth-limiting phosphate concentrations produced maximum hemolysin levels. Purified hemolysin preparations contained two hemolytic glycolipids. The kinetics of hemolysis at various levels of purified lysin and the effects of variation in lysin and erythrocyte concentration are described. Images Fig. 3 PMID:6776058

  3. The alpha-hemolysin of Streptococcus gordonii is hydrogen peroxide.

    PubMed Central

    Barnard, J P; Stinson, M W

    1996-01-01

    The alpha-hemolysin of viridans group streptococci, which causes greening of intact erythrocytes, is a potential virulence factor as well as an important criterion for the laboratory identification of these bacteria; however, it has never been purified and characterized. The alpha-hemolysin of Streptococcus gordonii CH1 caused characteristic shifts in the A403, A430, A578, and A630 of sheep hemoglobin. A spectrophotometric assay was developed and used to monitor purification of alpha-hemolysin during extraction in organic solvents and separation by reverse-phase high-performance liquid chromatography (HPLC). The alpha-hemolysin was identical to hydrogen peroxide with respect to its effects on erythrocyte hemoglobin, oxygen-dependent synthesis by streptococci, insensitivity to proteases, inactivation by catalase, differential solubility, failure to adsorb to ion-exchange chromatography resins, and retention time on a reverse-phase HPLC column. The amount of hydrogen peroxide present in HPLC-fractionated spent culture medium was sufficient to account for all alpha-hemolytic activity observed. PMID:8751938

  4. CHARACTERIZATION OF THE HEMOLYSIN, STACHYLYSIN, FROM STACHYBOTRYS CHARTARUM

    EPA Science Inventory

    Stachybotrys chartarum is a toxigenic fungus that has been associated with human health concerns, including pulmonary hemorrhage/hemosiderosis. This fungus produces a hemolysin, stachylysin, which in its monomeric form, has a molecular wieght of 11,920 daltons as determined by m...

  5. HEMOLYSIN, CHRYSOLYSIN FROM PENICILLIUM CHRYSOGENUM PROMOTES INFLAMMATORY RESPONSE

    EPA Science Inventory

    Some strains of Penicillium chrysogenum produce a proteinaceous hemolysin, chrysolysin, when incubated on sheep's blood agar at 37 �C but not at 23 �C. Chrysolysin is an aggregating protein composed of approximately 2 kDa monomers, contains one cysteine amino acid, and has an is...

  6. CHARACTERIZATION OF THE HEMOLYSIN, STACHYLYSIN, FROM STACHYBOTRYS CHARTARUM

    EPA Science Inventory

    Stachybotrys chartarum is a toxigenic fungus that has been associated with human health concerns, including pulmonary hemorrhage/hemosiderosis. This fungus produces a hemolysin, stachylysin, which in its monomeric form, has a molecular wieght of 11,920 daltons as determined by m...

  7. Water transport by the bacterial channel alpha-hemolysin

    NASA Technical Reports Server (NTRS)

    Paula, S.; Akeson, M.; Deamer, D.

    1999-01-01

    This study is an investigation of the ability of the bacterial channel alpha-hemolysin to facilitate water permeation across biological membranes. alpha-Hemolysin channels were incorporated into rabbit erythrocyte ghosts at varying concentrations, and water permeation was induced by mixing the ghosts with hypertonic sucrose solutions. The resulting volume decrease of the ghosts was followed by time-resolved optical absorption at pH 5, 6, and 7. The average single-channel permeability coefficient of alpha-hemolysin for water ranged between 1.3x10-12 cm/s and 1.5x10-12 cm/s, depending on pH. The slightly increased single-channel permeability coefficient at lower pH-values was attributed to an increase in the effective pore size. The activation energy of water transport through the channel was low (Ea=5.4 kcal/mol), suggesting that the properties of water inside the alpha-hemolysin channel resemble those of bulk water. This conclusion was supported by calculations based on macroscopic hydrodynamic laws of laminar water flow. Using the known three-dimensional structure of the channel, the calculations accurately predicted the rate of water flow through the channel. The latter finding also indicated that water permeation data can provide a good estimate of the pore size for large channels.

  8. Virulence of Bordetella bronchiseptica: role of adenylate cyclase-hemolysin.

    PubMed Central

    Gueirard, P; Guiso, N

    1993-01-01

    Bordetella bronchiseptica is a pathogen of laboratory, domestic, and wild animals and sometimes of humans. In the present study some characteristics of the virulence of B. bronchiseptica isolates of different origin were studied. All isolates had similar phenotypes, similar bacteriological characters, and synthesized adenylate cyclase-hemolysin, filamentous hemagglutinin and pertactin but not pertussis toxin. These isolates, however, differed in their ability to express dermonecrotic toxin and to cause a lethal infection, but no correlation was found with the human or animal origin of the isolates. The fact that the most virulent isolate did not express dermonecrotic toxin suggests that this toxin does not play an important role in the virulence of the bacteria in the murine model. After infection with virulent B. bronchiseptica a very early synthesis and a persistence of anti-adenylate cyclase-hemolysin and anti-filamentous hemagglutinin antibodies were observed in the sera of infected mice, suggesting a persistence of the bacteria or of its antigens. B. bronchiseptica adenylate cyclase-hemolysin was purified and was shown to be a major protective antigen against B. bronchiseptica infection. Furthermore, we showed that its immunological and protective properties were different from that of B. pertussis adenylate cyclase-hemolysin, confirming that Bordetella species are immunologically different. Images PMID:8406794

  9. Water transport by the bacterial channel alpha-hemolysin

    NASA Technical Reports Server (NTRS)

    Paula, S.; Akeson, M.; Deamer, D.

    1999-01-01

    This study is an investigation of the ability of the bacterial channel alpha-hemolysin to facilitate water permeation across biological membranes. alpha-Hemolysin channels were incorporated into rabbit erythrocyte ghosts at varying concentrations, and water permeation was induced by mixing the ghosts with hypertonic sucrose solutions. The resulting volume decrease of the ghosts was followed by time-resolved optical absorption at pH 5, 6, and 7. The average single-channel permeability coefficient of alpha-hemolysin for water ranged between 1.3x10-12 cm/s and 1.5x10-12 cm/s, depending on pH. The slightly increased single-channel permeability coefficient at lower pH-values was attributed to an increase in the effective pore size. The activation energy of water transport through the channel was low (Ea=5.4 kcal/mol), suggesting that the properties of water inside the alpha-hemolysin channel resemble those of bulk water. This conclusion was supported by calculations based on macroscopic hydrodynamic laws of laminar water flow. Using the known three-dimensional structure of the channel, the calculations accurately predicted the rate of water flow through the channel. The latter finding also indicated that water permeation data can provide a good estimate of the pore size for large channels.

  10. Cloning of the cytotoxin-hemolysin gene of Vibrio vulnificus.

    PubMed Central

    Wright, A C; Morris, J G; Maneval, D R; Richardson, K; Kaper, J B

    1985-01-01

    Genes encoding the cytotoxin-hemolysin of Vibrio vulnificus were cloned in Escherichia coli by using the lytic cloning vector, lambda 1059. Subcloning in plasmid pBR325 resulted in the isolation of a 3.2-kilobase DNA fragment containing the cytotoxin gene. By using this fragment as a DNA probe, homologous gene sequences were detected in all 54 V. vulnificus strains studied; homologous sequences were present in none of 96 isolates from 29 other bacterial species. PMID:4066036

  11. Hemolysin as a Virulence Factor for Systemic Infection with Isolates of Mycobacterium avium Complex

    PubMed Central

    Maslow, Joel N.; Dawson, David; Carlin, Elizabeth A.; Holland, Steven M.

    1999-01-01

    Isolates of the Mycobacterium avium complex were examined for hemolysin expression. Only invasive isolates of M. avium were observed to be hemolytic (P < 0.001), with activity the greatest for isolates of serovars 4 and 8. Thus, M. avium hemolysin appears to represent a virulence factor necessary for invasive disease. PMID:9889239

  12. Properties of Bacillus cereus hemolysin II: a heptameric transmembrane pore.

    PubMed

    Miles, George; Bayley, Hagan; Cheley, Stephen

    2002-07-01

    The gene encoding hemolysin II (HlyII) was amplified from Bacillus cereus genomic DNA and a truncated mutant, HlyII(DeltaCT), was constructed lacking the 94 amino acid extension at the C terminus. The proteins were produced in an E. coli cell-free in vitro transcription and translation system, and were shown to assemble into SDS-stable oligomers on rabbit erythrocyte membranes and liposomes. The hemolytic activity of HlyII was measured with rabbit erythrocytes yielding an HC(50) value of 1.64 ng mL(-1), which is over 15 times more potent than staphylococcal alpha-hemolysin. HlyII(DeltaCT) was about eight times less potent than HlyII in this assay. Limited proteolysis of the oligomers formed by HlyII and HlyII(DeltaCT) on red cell membranes showed that the C-terminal extension is sensitive to digestion, while HlyII(DeltaCT) is protease resistant and migrates with an electrophoretic mobility similar to that of digested HlyII. HlyII forms moderately anion selective, rectifying pores (I(+80)/I(-80) = 0.57, 1 M KCl, pH 7.4) in planar lipid bilayers of diphytanoylphosphatidylcholine with a unitary conductance of 637 pS (1 M KCl, 5 mM HEPES, pH 7.4) and exhibits no gating over a wide range of applied potentials (-160 to +160 mV). In addition, it was demonstrated that HlyII forms a homoheptameric pore by using gel shift electrophoresis aided by a genetically encoded oligoaspartate tag. Although they share limited primary sequence identity (30%), these data confirm that HlyII is a structural and functional homolog of staphylococcal alpha-hemolysin.

  13. Erythrocyte Lysis and Xenopus laevis Oocyte Rupture by Recombinant Plasmodium falciparum Hemolysin III

    PubMed Central

    Moonah, Shannon; Sanders, Natalie G.; Persichetti, Jason K.

    2014-01-01

    Malaria kills more than 1 million people per year worldwide, with severe malaria anemia accounting for the majority of the deaths. Malaria anemia is multifactorial in etiology, including infected erythrocyte destruction and decrease in erythrocyte production, as well as destruction or clearance of noninfected erythrocytes. We identified a panspecies Plasmodium hemolysin type III related to bacterial hemolysins. The identification of a hemolysin III homologue in Plasmodium suggests a potential role in host erythrocyte lysis. Here, we report the first characterization of Plasmodium falciparum hemolysin III, showing that the soluble recombinant P. falciparum hemolysin III is a pore-forming protein capable of lysing human erythrocytes in a dose-, time-, and temperature-dependent fashion. The recombinant P. falciparum hemolysin III-induced hemolysis was partially inhibited by glibenclamide, a known channel antagonist. Studies with polyethylene glycol molecules of different molecular weights indicated a pore size of approximately 3.2 nm. Heterologous expression of recombinant P. falciparum hemolysin III in Xenopus oocytes demonstrated early hypotonic lysis similar to that of the pore-forming aquaporin control. Live fluorescence microscopy localized transfected recombinant green fluorescent protein (GFP)-tagged P. falciparum hemolysin III to the essential digestive vacuole of the P. falciparum parasite. These transfected trophozoites also possessed a swollen digestive vacuole phenotype. Native Plasmodium hemolysin III in the digestive vacuole may contribute to lysis of the parasitophorous vacuole membrane derived from the host erythrocyte. After merozoite egress from infected erythrocytes, remnant P. falciparum hemolysin III released from digestive vacuoles could potentially contribute to lysis of uninfected erythrocytes to contribute to severe life-threatening anemia. PMID:25148832

  14. Proteolysis of truncated hemolysin A yields a stable dimerization interface.

    PubMed

    Novak, Walter R P; Bhattacharyya, Basudeb; Grilley, Daniel P; Weaver, Todd M

    2017-03-01

    Wild-type and variant forms of HpmA265 (truncated hemolysin A) from Proteus mirabilis reveal a right-handed, parallel β-helix capped and flanked by segments of antiparallel β-strands. The low-salt crystal structures form a dimeric structure via the implementation of on-edge main-chain hydrogen bonds donated by residues 243-263 of adjacent monomers. Surprisingly, in the high-salt structures of two variants, Y134A and Q125A-Y134A, a new dimeric interface is formed via main-chain hydrogen bonds donated by residues 203-215 of adjacent monomers, and a previously unobserved tetramer is formed. In addition, an eight-stranded antiparallel β-sheet is formed from the flap regions of crystallographically related monomers in the high-salt structures. This new interface is possible owing to additional proteolysis of these variants after Tyr240. The interface formed in the high-salt crystal forms of hemolysin A variants may mimic the on-edge β-strand positioning used in template-assisted hemolytic activity.

  15. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore

    NASA Astrophysics Data System (ADS)

    Song, Langzhou; Hobaugh, Michael R.; Shustak, Christopher; Cheley, Stephen; Bayley, Hagan; Gouaux, J. Eric

    1996-12-01

    The structure of the Staphylococcus aureus α-hemolysin pore has been determined to 1.9 overset{circ}{mathrm A} resolution. Contained within the mushroom-shaped homo-oligomeric heptamer is a solvent-filled channel, 100 overset{circ}{mathrm A} in length, that runs along the sevenfold axis and ranges from 14 overset{circ}{mathrm A} to 46 overset{circ}{mathrm A} in diameter. The lytic, transmembrane domain comprises the lower half of a 14-strand antiparallel β barrel, to which each protomer contributes two β strands, each 65 overset{circ}{mathrm A} long. The interior of the β barrel is primarily hydrophilic, and the exterior has a hydrophobic belt 28 overset{circ}{mathrm A} wide. The structure proves the heptameric subunit stoichiometry of the α-hemolysin oligomer, shows that a glycine-rich and solvent-exposed region of a water-soluble protein can self-assemble to form a transmembrane pore of defined structure, and provides insight into the principles of membrane interaction and transport activity of β barrel pore-forming toxins.

  16. Effects of temperature, time, and toxin concentration on lesion formation by the Escherichia coli hemolysin.

    PubMed

    Moayeri, M; Welch, R A

    1994-10-01

    We performed osmotic protection experiments to test the hypothesis that the Escherichia coli hemolysin forms a discrete-size pore in erythrocyte membranes. The effects of toxin concentration, assay time, temperature, and protectant concentrations were examined. The results we present here raise doubts about the existing model of pore formation by hemolysin. We demonstrate that osmotic protection by various sugars of different sizes is a function of hemolysin concentration and assay time. The data indicate that under various conditions, lesion sizes with a diameter ranging from < 0.6 to > 1.2 nm can be inferred. Quantification of hemolysin permitted the estimation of the number of HlyA structural protein molecules required per erythrocyte for lysis in the presence of each protectant. It appears that hemolysin induces heterogeneous erythrocyte lesions which increase in size over time. Influx experiments utilizing radioactive sugar markers indicated that time-dependent osmotic protection patterns are independent of the diffusion rates of individual protectants. We demonstrate that the rate of the putative growth in the size of hemolysin-mediated lesions is temperature dependent. The erythrocyte membrane lesions formed at 37 degrees C can be stabilized in size when shifted to 4 degrees C. On the basis of these data, new models for the nature of the hemolysin-mediated erythrocyte membrane lesions are presented.

  17. Effects of temperature, time, and toxin concentration on lesion formation by the Escherichia coli hemolysin.

    PubMed Central

    Moayeri, M; Welch, R A

    1994-01-01

    We performed osmotic protection experiments to test the hypothesis that the Escherichia coli hemolysin forms a discrete-size pore in erythrocyte membranes. The effects of toxin concentration, assay time, temperature, and protectant concentrations were examined. The results we present here raise doubts about the existing model of pore formation by hemolysin. We demonstrate that osmotic protection by various sugars of different sizes is a function of hemolysin concentration and assay time. The data indicate that under various conditions, lesion sizes with a diameter ranging from < 0.6 to > 1.2 nm can be inferred. Quantification of hemolysin permitted the estimation of the number of HlyA structural protein molecules required per erythrocyte for lysis in the presence of each protectant. It appears that hemolysin induces heterogeneous erythrocyte lesions which increase in size over time. Influx experiments utilizing radioactive sugar markers indicated that time-dependent osmotic protection patterns are independent of the diffusion rates of individual protectants. We demonstrate that the rate of the putative growth in the size of hemolysin-mediated lesions is temperature dependent. The erythrocyte membrane lesions formed at 37 degrees C can be stabilized in size when shifted to 4 degrees C. On the basis of these data, new models for the nature of the hemolysin-mediated erythrocyte membrane lesions are presented. PMID:7927666

  18. Purification of Staphylococcal β-Hemolysin and Its Action on Staphylococcal and Streptococcal Cell Walls

    PubMed Central

    Chesbro, William R.; Heydrick, Fred P.; Martineau, Roland; Perkins, Gail N.

    1965-01-01

    Chesbro, William R. (University of New Hampshire, Durham), Fred P. Heydrick, Roland Martineau, and Gail N. Perkins. Purification of staphylococcal β-hemolysin and its action on staphylococcal and streptococcal cell walls. J. Bacteriol. 89:378–389. 1965.—After growth of bovine-derived strains of Staphylococcus aureus in a completely dialyzable medium, the β-hemolysin in the culture supernatant fluids was purified by gradient-elution chromatography on cellulose phosphate. The purified hemolysin contained two components, demonstrable by immunodiffusion or electrophoresis, but was free from α-hemolysin, coagulase, Δ-hemolysin, enterotoxins A and B, glucuronidase, hyaluronidase, lipase, muramidase, Panton-Valentine leukocidin, phosphatase, and protease. The hemolysin was heat-labile and sulfhydryl-dependent, and the preparation was leukocidal for guinea pig macrophages. When rabbit red blood cell (RBC) stroma and staphylococcal or enterococcal cell walls were treated with the purified hemolysin, it liberated mucopolysaccharides from the rabbit RBC stroma, polysaccharides and mucopolysaccharides (or mucopeptides) from the staphyloccoal cell walls, and rhamnose, glucose, an unidentified monosaccharide, N-acetylglucosamine, and at least two polysaccharides from the enterococcal cell walls. The hemolytic and cell-wall degradative activities had similar thermal inactivation kinetics, pH optima, sedimentation coefficients, and chromatographic and electrophoretic mobilities; both required Mg and were inhibited by thiol-inactivating agents. Consequently, it seems likely that both activities are expressions of the same enzyme. PMID:14255704

  19. Delta Hemolysin and Phenol-Soluble Modulins, but Not Alpha Hemolysin or Panton-Valentine Leukocidin, Induce Mast Cell Activation

    PubMed Central

    Hodille, Elisabeth; Cuerq, Charlotte; Badiou, Cédric; Bienvenu, Françoise; Steghens, Jean-Paul; Cartier, Régine; Bes, Michèle; Tristan, Anne; Plesa, Adriana; Le, Vien T. M.; Diep, Binh A.; Lina, Gérard; Dumitrescu, Oana

    2016-01-01

    Mast cells are located at host interfaces, such as the skin, and contribute to the first-line defense against pathogens by releasing soluble mediators, including those that induce itching and scratching behavior. Here, we show that delta-hemolysin (Hld) and phenol soluble modulins (PSMs) PSMα1 and PSMα3, but not alpha-hemolysin (Hla) or Panton-Valentine leukocidin (PVL), induce dose-dependent tryptase, and lactate dehydrogenase (LDH) release by the HMC-1 human mast cell line. Using supernatants from isogenic strains, we verified that tryptase and LDH release was Hld- and PSMα-dependent. PSMα1 and Hld production was detected in 65 and 17% of human Staphylococcus aureus-infected skin abscess specimens, respectively, but they were produced in vitro by all clinical isolates. The results suggest that Hld and PSM-α1 produced in vivo during S. aureus skin infections induce the release of mast cell mediators responsible for itching and scratching behavior, which may enhance skin to skin transmission of S. aureus via the hands. As Hld and PSMs are upregulated by accessory gene regulator (agr), their association may contribute to the elective transmission of S. aureus strains with a functional agr system. PMID:28018862

  20. Relationship between heat-induced fibrillogenicity and hemolytic activity of thermostable direct hemolysin and a related hemolysin of Vibrio parahaemolyticus.

    PubMed

    Ohnishi, Kiyouhisa; Nakahira, Kumiko; Unzai, Satoru; Mayanagi, Kouta; Hashimoto, Hiroshi; Shiraki, Kentaro; Honda, Takeshi; Yanagihara, Itaru

    2011-05-01

    The formation of nonspecific ion channels by small oligomeric amyloid intermediates is toxic to the host's cellular membranes. Thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) are major virulence factors of Vibrio parahaemolyticus. We have previously reported the crystal structure of TDH tetramer with the central channel. We have also identified the molecular mechanism underlying the paradoxical responses to heat treatment of TDH, known as the Arrhenius effect, which is the reversible amyloidogenic property. In the present report, we describe the biophysical properties of TRH, which displays 67% amino acid similarity with TDH. Molecular modeling provided a good fit of the overall structure of TDH and TRH. Size-exclusion chromatography, ultracentrifugation, and transmission electron microscopy revealed that TRH formed tetramer in solution. These toxins showed similar hemolytic activity on red blood cells. However, TRH had less amyloid-like structure than TDH analyzed by thioflavin T-binding assay and far-UV circular dichroism spectra. These data indicated that amyloidogenicity upon heating is not essential for the membrane disruption of erythrocytes, but the maintenance of tetrameric structure is indispensable for the hemolytic activity of the TDH and TRH.

  1. Structure and Functional Characterization of Vibrio parahaemolyticus Thermostable Direct Hemolysin*

    PubMed Central

    Yanagihara, Itaru; Nakahira, Kumiko; Yamane, Tsutomu; Kaieda, Shuji; Mayanagi, Kouta; Hamada, Daizo; Fukui, Takashi; Ohnishi, Kiyouhisa; Kajiyama, Shin'ichiro; Shimizu, Toshiyuki; Sato, Mamoru; Ikegami, Takahisa; Ikeguchi, Mitsunori; Honda, Takeshi; Hashimoto, Hiroshi

    2010-01-01

    Thermostable direct hemolysin (TDH) is a major virulence factor of Vibrio parahaemolyticus that causes pandemic foodborne enterocolitis mediated by seafood. TDH exists as a tetramer in solution, and it possesses extreme hemolytic activity. Here, we present the crystal structure of the TDH tetramer at 1.5 Å resolution. The TDH tetramer forms a central pore with dimensions of 23 Å in diameter and ∼50 Å in depth. π-Cation interactions between protomers comprising the tetramer were indispensable for hemolytic activity of TDH. The N-terminal region was intrinsically disordered outside of the pore. Molecular dynamic simulations suggested that water molecules permeate freely through the central and side channel pores. Electron micrographs showed that tetrameric TDH attached to liposomes, and some of the tetramer associated with liposome via one protomer. These findings imply a novel membrane attachment mechanism by a soluble tetrameric pore-forming toxin. PMID:20335168

  2. Structure and functional characterization of Vibrio parahaemolyticus thermostable direct hemolysin.

    PubMed

    Yanagihara, Itaru; Nakahira, Kumiko; Yamane, Tsutomu; Kaieda, Shuji; Mayanagi, Kouta; Hamada, Daizo; Fukui, Takashi; Ohnishi, Kiyouhisa; Kajiyama, Shin'ichiro; Shimizu, Toshiyuki; Sato, Mamoru; Ikegami, Takahisa; Ikeguchi, Mitsunori; Honda, Takeshi; Hashimoto, Hiroshi

    2010-05-21

    Thermostable direct hemolysin (TDH) is a major virulence factor of Vibrio parahaemolyticus that causes pandemic foodborne enterocolitis mediated by seafood. TDH exists as a tetramer in solution, and it possesses extreme hemolytic activity. Here, we present the crystal structure of the TDH tetramer at 1.5 A resolution. The TDH tetramer forms a central pore with dimensions of 23 A in diameter and approximately 50 A in depth. Pi-cation interactions between protomers comprising the tetramer were indispensable for hemolytic activity of TDH. The N-terminal region was intrinsically disordered outside of the pore. Molecular dynamic simulations suggested that water molecules permeate freely through the central and side channel pores. Electron micrographs showed that tetrameric TDH attached to liposomes, and some of the tetramer associated with liposome via one protomer. These findings imply a novel membrane attachment mechanism by a soluble tetrameric pore-forming toxin.

  3. Initial Characterization of the Hemolysin Stachylysin from Stachybotrys chartarum

    PubMed Central

    Vesper, Stephen J.; Magnuson, Matthew L.; Dearborn, Dorr G.; Yike, Iwona; Haugland, Richard A.

    2001-01-01

    Stachybotrys chartarum is a toxigenic fungus that has been associated with human health concerns, including pulmonary hemorrhage and hemosiderosis. This fungus produces a hemolysin, stachylysin, which in its apparent monomeric form has a molecular mass of 11,920 Da as determined by matrix-assisted laser desorption ionization–time of flight mass spectrometry. However, it appears to form polydispersed aggregates, which confounds understanding of the actual hemolytically active form. Exhaustive dialysis or heat treatment at 60°C for 30 min inactivated stachylysin. Stachylysin is composed of about 40% nonpolar amino acids and contains two cysteine residues. Purified stachylysin required more than 6 h to begin lysing sheep erythrocytes, but by 48 h, lysis was complete. Stachylysin also formed pores in sheep erythrocyte membranes. PMID:11159985

  4. Expression of gamma-hemolysin regulated by sae in Staphylococcus aureus strain Smith 5R.

    PubMed

    Yamazaki, Kazuko; Kato, Fuminori; Kamio, Yoshiyuki; Kaneko, Jun

    2006-06-01

    Staphylococcus aureus strain Smith 5R produces a two-component pore-forming toxin and forms a rough-surfaced colony with hemolytic haloes on human red blood cell plates (R[+]). Serial subcultures of the strain in broth caused the appearance of gamma-hemolysin negative variants with a smooth colony shape (S[-]), and the S[-] valiant became predominant in culture. The R[+] strain, in which agrA is naturally disrupted by an insertion of IS1181, produced high levels of gamma-hemolysin. In the S[-] variant, expression of both hlg and lukS-F mRNAs was strongly reduced. Nucleotide sequencing of the sae locus revealed that all isolated S[-] variants had spontaneous mutations in the sae locus. Recovery of gamma-hemolysin productivity in S[-] by transformation of the wild-type sae allele strongly suggested that the expression of gamma-hemolysin is positively regulated by sae in an agr-independent manner.

  5. Occurrence of urease-positive Vibrio parahaemolyticus in Kanagawa, Japan, with specific reference to presence of thermostable direct hemolysin (TDH) and the TDH-related-hemolysin genes.

    PubMed

    Osawa, R; Okitsu, T; Morozumi, H; Yamai, S

    1996-02-01

    A total of 132 strains of V. parahaemolyticus isolated from patients and from the suspected causal food items of past food poisoning cases occurring in Kanagawa Prefecture, Japan, were examined for the ability to hydrolyze urea, with specific reference to the presence of the thermostable direct hemolysin gene (tdh) and the gene for thermostable direct hemolysin-related hemolysin (trh). Ten strains belonging to five different O-antigen serotypes were positive for urea hydrolysis (UH+), and four of these strains did not carry tdh. A total of 106 strains carried tdh, but less than 6% of them were UH+, whereas all trh-carrying strains were UH+. The evidence suggests that urea hydrolysis is not a reliable marker for identifying tdh-carrying V. parahaemolyticus strains in Japan (the Pacific Northeast) but may be a marker for trh-carrying strains.

  6. Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map.

    PubMed

    Aksimentiev, Aleksij; Schulten, Klaus

    2005-06-01

    alpha-Hemolysin of Staphylococcus aureus is a self-assembling toxin that forms a water-filled transmembrane channel upon oligomerization in a lipid membrane. Apart from being one of the best-studied toxins of bacterial origin, alpha-hemolysin is the principal component in several biotechnological applications, including systems for controlled delivery of small solutes across lipid membranes, stochastic sensors for small solutes, and an alternative to conventional technology for DNA sequencing. Through large-scale molecular dynamics simulations, we studied the permeability of the alpha-hemolysin/lipid bilayer complex for water and ions. The studied system, composed of approximately 300,000 atoms, included one copy of the protein, a patch of a DPPC lipid bilayer, and a 1 M water solution of KCl. Monitoring the fluctuations of the pore structure revealed an asymmetric, on average, cross section of the alpha-hemolysin stem. Applying external electrostatic fields produced a transmembrane ionic current; repeating simulations at several voltage biases yielded a current/voltage curve of alpha-hemolysin and a set of electrostatic potential maps. The selectivity of alpha-hemolysin to Cl(-) was found to depend on the direction and the magnitude of the applied voltage bias. The results of our simulations are in excellent quantitative agreement with available experimental data. Analyzing trajectories of all water molecule, we computed the alpha-hemolysin's osmotic permeability for water as well as its electroosmotic effect, and characterized the permeability of its seven side channels. The side channels were found to connect seven His-144 residues surrounding the stem of the protein to the bulk solution; the protonation of these residues was observed to affect the ion conductance, suggesting the seven His-144 to comprise the pH sensor that gates conductance of the alpha-hemolysin channel.

  7. Beta-hemolysin promotes skin colonization by Staphylococcus aureus.

    PubMed

    Katayama, Yuki; Baba, Tadashi; Sekine, Miwa; Fukuda, Minoru; Hiramatsu, Keiichi

    2013-03-01

    Colonization by Staphylococcus aureus is a characteristic feature of several inflammatory skin diseases and is often followed by epidermal damage and invasive infection. In this study, we investigated the mechanism of skin colonization by a virulent community-acquired methicillin-resistant S. aureus (CA-MRSA) strain, MW2, using a murine ear colonization model. MW2 does not produce a hemolytic toxin, beta-hemolysin (Hlb), due to integration of a prophage, Sa3mw, inside the toxin gene (hlb). However, we found that strain MW2 bacteria that had successfully colonized murine ears included derivatives that produced Hlb. Genome sequencing of the Hlb-producing colonies revealed that precise excision of prophage Sa3mw occurred, leading to reconstruction of the intact hlb gene in their chromosomes. To address the question of whether Hlb is involved in skin colonization, we constructed MW2-derivative strains with and without the Hlb gene and then subjected them to colonization tests. The colonization efficiency of the Hlb-producing mutant on murine ears was more than 50-fold greater than that of the mutant without hlb. Furthermore, we also showed that Hlb toxin had elevated cytotoxicity for human primary keratinocytes. Our results indicate that S. aureus Hlb plays an important role in skin colonization by damaging keratinocytes, in addition to its well-known hemolytic activity for erythrocytes.

  8. Beta-Hemolysin Promotes Skin Colonization by Staphylococcus aureus

    PubMed Central

    Katayama, Yuki; Sekine, Miwa; Fukuda, Minoru; Hiramatsu, Keiichi

    2013-01-01

    Colonization by Staphylococcus aureus is a characteristic feature of several inflammatory skin diseases and is often followed by epidermal damage and invasive infection. In this study, we investigated the mechanism of skin colonization by a virulent community-acquired methicillin-resistant S. aureus (CA-MRSA) strain, MW2, using a murine ear colonization model. MW2 does not produce a hemolytic toxin, beta-hemolysin (Hlb), due to integration of a prophage, ϕSa3mw, inside the toxin gene (hlb). However, we found that strain MW2 bacteria that had successfully colonized murine ears included derivatives that produced Hlb. Genome sequencing of the Hlb-producing colonies revealed that precise excision of prophage ϕSa3mw occurred, leading to reconstruction of the intact hlb gene in their chromosomes. To address the question of whether Hlb is involved in skin colonization, we constructed MW2-derivative strains with and without the Hlb gene and then subjected them to colonization tests. The colonization efficiency of the Hlb-producing mutant on murine ears was more than 50-fold greater than that of the mutant without hlb. Furthermore, we also showed that Hlb toxin had elevated cytotoxicity for human primary keratinocytes. Our results indicate that S. aureus Hlb plays an important role in skin colonization by damaging keratinocytes, in addition to its well-known hemolytic activity for erythrocytes. PMID:23292775

  9. Epidemiological evidence of lesser role of thermostable direct hemolysin (TDH)-related hemolysin (TRH) than TDH on Vibrio parahaemolyticus pathogenicity.

    PubMed

    Saito, Shioko; Iwade, Yoshito; Tokuoka, Eisuke; Nishio, Tomohiro; Otomo, Yoshimitsu; Araki, Emiko; Konuma, Hirotaka; Nakagawa, Hiroshi; Tanaka, Hiroyuki; Sugiyama, Kanji; Hasegawa, Akio; Sugita-Konishi, Yoshiko; Hara-Kudo, Yukiko

    2015-02-01

    Vibrio parahaemolyticus carrying the tdh gene, encoding the thermostable direct hemolysin (TDH), or the trh gene, encoding the TDH-related hemolysin (TRH), are both considered virulent strains. There are, however, disproportionally fewer reports of infections caused by seafood contaminated with trh-positive strains than by seafood contaminated with tdh-positive strains. Bivalves such as clams and oysters are the major seafood varieties associated with the infections. In this study, the prevalence of strains possessing the tdh and trh genes was investigated in Japan in 74 samples collected in 2007-2008 and in 177 samples collected in 2010 of domestic bivalves, bloody clams, hen clams, short-neck clams, and rock oysters. The tdh-positive and trh-negative, tdh-negative and trh-positive, and tdh-positive and trh-positive samples represented 5.4%, 12.2%, and 4.1% of all samples collected in 2007-2008, and 5.1%, 18.6%, and 5.6% of all samples collected in 2010, respectively. As determined by polymerase chain reaction, the prevalence of tdh negative and trh positive in all samples was two to four times higher than that of tdh positive and trh negative. In the samples collected in 2010, the tdh-negative and trh-positive V. parahaemolyticus (20 samples) was more often isolated than tdh-positive and trh-negative V. parahaemolyticus (7 samples). The most common serotype of tdh-positive isolates (22 of 24 strains) was pandemic O3:K6. The trh-positive isolates (61 strains) were various serotypes including OUT:KUT. In 330 V. parahaemolyticus outbreaks and sporadic infections in Japan, most outbreaks and sporadic infections were caused by tdh-positive and trh-negative strains (89.4%). The frequencies of infections caused by tdh-negative and trh-positive, and both tdh- and trh-positive strains were 1.2% and 3.0%, respectively. This finding suggests that the virulence of trh might be less than that of tdh, although trh-positive V. parahaemolyticus frequently contaminated bivalves.

  10. Unzipping of Double-stranded DNA in Engineered α-Hemolysin Pores.

    PubMed

    Liu, Aihua; Zhao, Qitao; Krishantha, D M Milan; Guan, Xiyun

    2011-06-12

    Biological protein α-hemolysin nanopore is under intense investigation as a potential platform for rapid and low-cost DNA sequencing. However, due to its narrow constriction, analysis of DNA in the α-hemolysin pore has long time been restricted to single strands. In this paper, we report that by introducing new surface functional groups into the α-hemolysin pore, facilitated unzipping of double-stranded DNA through the channel could be achieved. Since the mean residence time of the DNA events is dependent on the length of the duplex, and also varies with the nucleotide base composition, the modified protein pore approach offers the potential for rapid double-stranded DNA analysis, including sequencing.

  11. Unzipping of Double-stranded DNA in Engineered α-Hemolysin Pores

    PubMed Central

    Liu, Aihua; Zhao, Qitao; Krishantha, D.M. Milan; Guan, Xiyun

    2011-01-01

    Biological protein α-hemolysin nanopore is under intense investigation as a potential platform for rapid and low-cost DNA sequencing. However, due to its narrow constriction, analysis of DNA in the α-hemolysin pore has long time been restricted to single strands. In this paper, we report that by introducing new surface functional groups into the α-hemolysin pore, facilitated unzipping of double-stranded DNA through the channel could be achieved. Since the mean residence time of the DNA events is dependent on the length of the duplex, and also varies with the nucleotide base composition, the modified protein pore approach offers the potential for rapid double-stranded DNA analysis, including sequencing. PMID:21709813

  12. Evaluation of two assay kits for thermostable direct hemolysin (TDH) as an indicator of TDH-related hemolysin (TRH) produced by Vibrio parahaemolyticus.

    PubMed

    Yoh, M; Kawakami, N; Funakoshi, Y; Okada, K; Honda, T

    1995-01-01

    Reversed passive latex agglutination (RPLA) or enzyme-linked immunosorbent assay kits with beads (Bead-ELISA) are commercially available in Japan to detect the thermostable direct hemolysin (TDH) produced by Vibrio parahaemolyticus isolates. We evaluated whether these kits can be used to assay the pathogenic toxin, TDH-related hemolysin (TRH), produced by some so-called Kanagawa phenomenon-negative V. parahaemolyticus strains isolated from patients with diarrhea. Our results showed that the two kits, RPLA and Bead-ELISA, can detect TRH, although they were originally developed for detection of TDH. This may be due to the use of polyclonal anti-TDH antisera that cross react with TRH. Although the sensitivity for TDH detection by RPLA and Bead-ELISA differed tenfold, that for TRH detection was essentially equal. The minimum concentration of TRH required for detection by the two assay kits was about 10 ng/ml.

  13. Urea hydrolysis and suppressed production of thermostable direct hemolysin (TDH) by Vibrio parahaemolyticus associated with presence of TDH-related hemolysin genes.

    PubMed

    Okitsu, T; Osawa, R; Pornruangwong, S; Yamai, S

    1997-05-01

    A total of 18 strains of V. parahaemolyticus isolated from patients of past food poisoning cases occurring in Kanagawa Prefecture, Japan, were assayed for presence of the thermostable direct hemolysin (TDH) gene and the TDH-related hemolysin (TRH) genes (trh 1 and trh 2) with specific reference to their ability to hydrolyze urea and TDH production. A polymerase chain reaction assay revealed that all urea-hydrolyzing strains (9 strains) carried either trh 1 gene or trh 2 gene. The strains carrying the trh genes as well as the tdh gene produced TDH less by a factor of 4 to 16 than those carrying only the tdh gene, suggesting the expression of the tdh gene was suppressed by the presence of trh gene through a mechanism yet to be defined.

  14. The urease gene cluster of Vibrio parahaemolyticus does not influence the expression of the thermostable direct hemolysin (TDH) gene or the TDH-related hemolysin gene.

    PubMed

    Nakaguchi, Yoshitsugu; Okuda, Jun; Iida, Tetsuya; Nishibuchi, Mitsuaki

    2003-01-01

    In order to investigate why the thermostable direct hemolysin (TDH) and the TDH-related hemolysin (TRH) of Vibrio parahaemolyticus are produced at low levels from urease-positive strains, the effect of the functional urease gene cluster of V. parahaemolyticus on the expression of the tdh and trh genes was examined. Transcriptional lacZ fusions with the tdh1, tdh2, trh1 and trh2 genes representing variants of the tdh and trh genes were integrated into the chromosome of an Escherichia coli strain and a urease-negative V. parahaemolyticus strain. The plasmid-borne urease gene cluster introduced and expressed in these constructs did not affect expression of any of the fusion genes. The amount of TDH produced from a Kanagawa phenomenon-positive V. parahaemolyticus did not change by introduction of the urease gene cluster either. It was concluded therefore that the urease gene cluster is not involved in the regulation of tdh and trh expression.

  15. Identification of hemolysin BL-producing Bacillus cereus isolates by a discontinuous hemolytic pattern in blood agar.

    PubMed Central

    Beecher, D J; Wong, A C

    1994-01-01

    Bacillus cereus causes distinct exotoxin-mediated diarrheal and emetic food poisoning syndromes and a variety of nongastrointestinal infections. Evidence is accumulating that hemolysin BL is a major B. cereus virulence factor. We describe two methods for detection of hemolysin BL in crude samples and on primary culture media. In the first method, the highly unusual discontinuous hemolysis pattern that is characteristic of pure hemolysin BL was produced in sheep and calf blood agar around wells filled with crude culture supernatant from hemolysin BL-producing strains. In the second method, the pattern was formed surrounding colonies of hemolysin BL-producing strains grown on media consisting of nutrient agar, 0.15 M NaCl, 2% calf serum, and sheep or calf blood. Hemolysin BL production was detected with these methods in 41 of 62 (66%) previously identified B. cereus isolates and in 46 of 136 (34%) presumptive B. cereus isolates from soil. All nine isolates tested that were associated with diarrhea or nongastrointestinal illness were positive for hemolysin BL. The methods presented here are specific, simple, inexpensive, and applicable to the screening of large numbers of samples or isolates. Images PMID:8017944

  16. Effect of Heat (Arrhenius Effect) on Crude Hemolysin of Vibrio parahaemolyticus

    PubMed Central

    Miwatani, Toshio; Takeda, Yoshifumi; Sakurai, Jun; Yoshihara, Akiko; Taga, Sekiko

    1972-01-01

    Crude hemolysins prepared from various strains of Vibrio parahaemolyticus, which give positive Kanagawa phenomenon, were partly inactivated by heating at 60 C, but not inactivated significantly by heating at 80 to 90 C. The similar phenomenon has been reported as the Arrhenius effect in staphylococcal alpha toxin. Images PMID:4638496

  17. A molecular modeling based screening for potential inhibitors to alpha hemolysin from Staphylococcus aureus.

    PubMed

    Rashidieh, Behnam; Etemadiafshar, Sarah; Memari, Golnaz; Mirzaeichegeni, Masoumeh; Yazdi, Shahrzad; Farsimadan, Fatemeh; Alizadeh, Soodabeh

    2015-01-01

    Staphylococcus aureus, a Gram-positive bacterium is pathogenic in nature. It is known that secreted toxins remain active after antibiotic treatment. The alpha hemolysin or alpha toxin damages cell membrane and induces apoptosis and degradation of DNA. The titer of alphahemolysin increases and causes hemostasis disturbances, thrombocytopenia, and pulmonary lesions during staphylococcal infection. Therefore, it is of interest to inhibit alpha hemolysin using novel compounds. We used the structure of alpha hemolysin(PDB: 7AHL) to screen structures for 100,000 compounds from the ZINC database using molecular docking with AutoDock VINA. Nine (9) successive hits were then subjected for pharmacokinetic and toxicity properties by PROTOX (a webserver for the prediction of oral toxicities of small molecules) and FAFDrugs (a tool for prediction of ADME and Toxicity). This exercise further identified hit #1 ({[3a-(Dihydroxymethyl)-6-hydroxy-2,2-dimethyl-1,3,4-trioxatetrahydro-2H-pentalen-5- yl]methyl}amino(9H-fluoren-9-yl)acetate with binding affinity: -10.3 kcal/mol) and hit #2 (6-(Dihydroxymethyl)-2-{2-[3- (methylamino)propyl]-2-azatricyclo[9.4.0.03,8]pentadeca-1(11),3,5,7,12,14-hexaen-6-yloxy}tetrahydro-2H-pyran-3,4,5-triol with binding affinity: -9.6 kcal/mol) with acceptable toxicity and ADME properties for potential predicted hemolysin inhibition. These compounds should then be evaluated in vitro using inhibitory studies.

  18. In vitro activation of the hemolysin in Prevotella nigrescens ATCC 33563 and Prevotella intermedia ATCC 25611.

    PubMed

    Silva, Tarcília Aparecida; Noronha, Fátima Soares M; de Macêdo Farias, Luiz; Carvalho, Maria Auxiliadora R

    2004-01-01

    Hemolytic activity was evaluated in the putative periodontopathogens Prevotella intermedia and Prevotella nigrescens. Whole cells of both species present weak hemolytic activity evidenced only by solid media assays after 48 h of bacterial growth or after 5 h of interaction with erythrocytes at 37 degrees C in liquid assays. In this work we show that the use of crude extract allowed the detection of a higher hemolytic activity for P. intermedia, but surprisingly not for P. nigrescens. Incubation at 37 degrees C for 9 h, or treatment with trypsin or proteinase K, increased or exposed the hemolytic activity of P. intermedia and P. nigrescens crude extract, respectively. The activation process was inhibited by TLCK and PMSF but not by EDTA, E-64 or pepstatin A, indicating the serino-protease nature of the factor involved in activation of P. intermedia and P. nigrescens hemolysins. Both the buffer and the pH employed for cell fractionation influenced the activation of hemolysin, and the best results were obtained with Universal buffer at pH 8.0. The activated hemolysins acted optimally at pH 6.5 at 37 degrees C and the maximum hemolytic activity was detected at the early log phase of growth. The results of this study show for the first time a strong hemolytic activity for P. nigrescens and evidence of proteolytic activation of hemolysins produced by periodontopathogens.

  19. NIGERLYSINTM, HEMOLYSIN PRODUCED BY ASPERGILLUS NIGER, CAUSES LETHALITY OF PRIMARY RAT CORTICAL NEURONAL CELLS IN VITRO

    EPA Science Inventory

    Aspergillus niger produced a proteinaceous hemolysin, nigerlysinTM when incubated on sheep's blood agar at both 23° C and 37°C. Nigerlysin was purified from tryptic soy broth culture filtrate. Purified nigerlysin has a molecular weight of approximately 72 kDa, with an...

  20. The amino acid sequences and activities of synergistic hemolysins from Staphylococcus cohnii.

    PubMed

    Mak, Pawel; Maszewska, Agnieszka; Rozalska, Malgorzata

    2008-10-01

    Staphylococcus cohnii ssp. cohnii and S. cohnii ssp. urealyticus are a coagulase-negative staphylococci considered for a long time as unable to cause infections. This situation changed recently and pathogenic strains of these bacteria were isolated from hospital environments, patients and medical staff. Most of the isolated strains were resistant to many antibiotics. The present work describes isolation and characterization of several synergistic peptide hemolysins produced by these bacteria and acting as virulence factors responsible for hemolytic and cytotoxic activities. Amino acid sequences of respective hemolysins from S. cohnii ssp. cohnii (named as H1C, H2C and H3C) and S. cohnii ssp. urealyticus (H1U, H2U and H3U) were identical. Peptides H1 and H3 possessed significant amino acid homology to three synergistic hemolysins secreted by Staphylococcus lugdunensis and to putative antibacterial peptide produced by Staphylococcus saprophyticus ssp. saprophyticus. On the other hand, hemolysin H2 had a unique sequence. All isolated peptides lysed red cells from different mammalian species and exerted a cytotoxic effect on human fibroblasts.

  1. INITIAL CHARACTERIZATION OF MONOCLONAL ANTIBODIES AGAINST THE FUNGAL HEMOLYSIN STACHYLYSIN FROM STACHYBOTRYS CHARTARUM

    EPA Science Inventory

    Stachybotrys chartarum is known to produce the hemolysin stachylysin and its detection in human serum has been proposed as a biomarker for exposure to the fungus. In this study we report the initial characterization of monoclonal antibodies (mAbs) against stachylysin and the dev...

  2. X-ray Crystal Structure of the B Component of Hemolysin BL from Bacillus cereus

    SciTech Connect

    Madegowda,M.; Eswaramoorthy, S.; Burley, S.; Swaminathan, S.

    2008-01-01

    Bacillus cereus Hemolysin BL enterotoxin, a ternary complex of three proteins, is the causative agent of food poisoning and requires all three components for virulence. The X-ray structure of the binding domain of HBL suggests that it may form a pore similar to other soluble channel forming proteins. A putative pathway of pore formation is discussed.

  3. NIGERLYSINTM, HEMOLYSIN PRODUCED BY ASPERGILLUS NIGER, CAUSES LETHALITY OF PRIMARY RAT CORTICAL NEURONAL CELLS IN VITRO

    EPA Science Inventory

    Aspergillus niger produced a proteinaceous hemolysin, nigerlysinTM when incubated on sheep's blood agar at both 23° C and 37°C. Nigerlysin was purified from tryptic soy broth culture filtrate. Purified nigerlysin has a molecular weight of approximately 72 kDa, with an...

  4. INITIAL CHARACTERIZATION OF MONOCLONAL ANTIBODIES AGAINST THE FUNGAL HEMOLYSIN STACHYLYSIN FROM STACHYBOTRYS CHARTARUM

    EPA Science Inventory

    Stachybotrys chartarum is known to produce the hemolysin stachylysin and its detection in human serum has been proposed as a biomarker for exposure to the fungus. In this study we report the initial characterization of monoclonal antibodies (mAbs) against stachylysin and the dev...

  5. Sclareol protects Staphylococcus aureus-induced lung cell injury via inhibiting alpha-hemolysin expression.

    PubMed

    Ouyang, Ping; Sun, Mao; He, Xuewen; Wang, Kaiyu; Yin, Zhongqiong; Fu, Hualin; Li, Yinglun; Geng, Yi; Shu, Gang; He, Changliang; Liang, Xiaoxia; Lai, Weiming; Li, Lixia; Zou, Yuanfeng; Song, Xu; Yin, Lizi

    2016-09-23

    Staphylococcus aureus (S. aureus) is a common Gram-positive bacterium that causes serious infections in human and animals. With the continuous emergence of the methicillin-resistant S. aureus (MRSA) strains, antibiotics have limited efficacy in treating MRSA infections. Accordingly, novel agents that act on new targets are desperately needed to combat these infections. S. aureus alpha-hemolysin plays an indispensable role in its pathogenicity. In this study, we demonstrate that sclareol, a fragrant chemical compound found in clary sage, can prominently decrease alpha-hemolysin secretion in S. aureus strain USA300 at sub-inhibitory concentrations. Hemolysis assays, western-blotting and RT-PCR were used to detect the production of alpha-hemolysin in the culture supernatant. When USA300 was co-cultured with and A549 epithelial cells, sclareol could protect A549 cells at a final concentration of 8 µg/ml. The protective capability of sclareol against the USA300-mediated injury of A549 cells was further shown by cytotoxicity assays and live/dead analysis. In conclusion, sclareol was shown to inhibit the production of S. aureus alpha-hemolysin. Sclareol has potential for development as a new agent to treat S. aureus infections.

  6. Inflammatory lipid mediator generation elicited by viable hemolysin- forming Escherichia coli in lung vasculature

    PubMed Central

    1990-01-01

    Escherichia coli hemolysin, a transmembrane pore-forming exotoxin, is considered an important virulence factor for E. coli-related extraintestinal infections and sepsis. The possible significance of hemolysin liberation for induction of inflammatory lipid mediators was investigated in isolated rabbit lungs infused with viable bacteria (concentration range, 10(4)-10(7)/ml). Hemolysin-secreting E. coli (E. coli-Hly+), but not an E. coli strain that releases an inactive form of the exotoxin, induced marked lung leukotriene (LT) generation with predominance of cysteinyl LTs. Eicosanoid synthesis was not inhibited in the presence of plasma with toxin-neutralizing capacity. Pre- application of 2 x 10(8) human granulocytes, which sequestered in the lung microvasculature, caused a severalfold increase in leukotriene generation in response to E. coli-Hly+ challenge both in the absence and presence of plasma. Data are presented indicating neutrophil- endothelial cell cooperation in arachidonic acid lipoxygenase metabolism as an underlying mechanism. We conclude that liberation of hemolysin from viable E. coli induces marked lipid mediator generation in lung vasculature, which is potentiated in the presence of neutrophil sequestration and may contribute to microcirculatory disturbances during the course of severe infections. PMID:2120384

  7. Leukotriene and hydroxyeicosatetraenoic acid generation elicited by low doses of Escherichia coli hemolysin in rabbit lungs.

    PubMed Central

    Grimminger, F; Walmrath, D; Birkemeyer, R G; Bhakdi, S; Seeger, W

    1990-01-01

    Low doses of Escherichia coli hemolysin cause thromboxane-mediated hypertension and vascular leakage in blood-free perfused rabbit lungs (W. Seeger, H. Walter, N. Suttorp, M. Muhly, and S. Bhakdi, J. Clin. Invest. 84:220-227, 1989). The recirculating buffer medium and bronchoalveolar lavage fluid from lungs exposed to hemolysin (2.5 hemolytic units per ml) in the presence of cyclooxygenase inhibitor were analyzed for leukotrienes (LTs) and hydroxyeicosatetraenoic acids (HETEs) by reverse-phase and straight-phase high-pressure liquid chromatographic techniques combined with UV spectrum analysis and post-high-pressure liquid chromatography radioimmunoassay. A rapid release of large amounts of cysteinyl-LTs and leukotriene B4 (LTB4) into the intravascular space was noted (total sum, approximately 4 to 5 micrograms). Similar quantities have hitherto been elicited only by high concentrations of the artificial calcium ionophore A 23187. Moreover, a marked liberation of 5-HETE and 12-hydroxyheptadecatrienoic acid into the buffer medium occurred, whereas LTB4 represented the predominant compound in the lavage fluid. The hemolysin-induced burst of LT and HETE generation preceded the onset of vascular leakage. The outstanding capacity of E. coli hemolysin to produce the liberation of potent lipid mediators is probably relevant to the pathways of vascular injury and amplification of inflammatory events during severe infection with hemolytic E. coli strains. PMID:2115026

  8. Prophylactic strategies for acute hemolysis secondary to plasma-incompatible platelet transfusions: correlation between qualitative hemolysin test and isohemagglutinin titration

    PubMed Central

    Landim, Cinthia Silvestre; Gomes, Francisco Carlos Almeida; Zeza, Bernardete Martin; Mendrone-Júnior, Alfredo; Dinardo, Carla Luana

    2015-01-01

    Objective Brazilian legislation has recently suggested the use of the qualitative hemolysin test instead of isohemagglutinin titers as prophylaxis for acute hemolysis related to plasma-incompatible platelet transfusions. The efficacy of this test in preventing hemolytic reactions has never been evaluated while isohemagglutinin titers have been extensively studied. The main objective of this study was to evaluate the correlation between the results of these two tests. The impact of each type of prophylaxis on the platelet inventory management and the ability of the qualitative hemolysin test to prevent red cell sensitization after the transfusion of incompatible units were also studied. Methods A total of 246 donor blood samples were evaluated using both isohemagglutinin titers and the qualitative hemolysin test, and the results were statistically compared. Subsequently, 600 platelet units were tested using the hemolysin assay and the percentage of units unsuitable for transfusion was compared to historical data using isohemagglutinin titers (cut-off: 100). Moreover, ten patients who received units with minor ABO incompatibilities that were negative for hemolysis according to the qualitative hemolysin test were evaluated regarding the development of hemolysis and red cell sensitization (anti-A or anti-B). Results Isohemagglutinin titration and the results of qualitative hemolysin test did not correlate. The routine implementation of the qualitative hemolysin test significantly increased the percentage of platelet units found unsuitable for transfusions (15–65%; p-value <0.001). Furthermore the qualitative hemolysin test did not prevent red blood cell sensitization in a small exploratory analysis. Conclusion Qualitative hemolysin test results do not correlate to those of isohemagglutinin titers and its implementation as the prophylaxis of choice for hemolysis associated with plasma-incompatible platelet transfusions lacks clinical support of safety and

  9. Secretion of Alpha-Hemolysin by Escherichia coli Disrupts Tight Junctions in Ulcerative Colitis Patients.

    PubMed

    Mirsepasi-Lauridsen, Hengameh Chloé; Du, Zhengyu; Struve, Carsten; Charbon, Godefroid; Karczewski, Jurgen; Krogfelt, Karen Angeliki; Petersen, Andreas Munk; Wells, Jerry M

    2016-03-03

    The potential of Escherichia coli (E. coli) isolated from inflammatory bowel disease (IBD) patients to damage the integrity of the intestinal epithelium was investigated. E. coli strains isolated from patients with ulcerative colitis (UC) and healthy controls were tested for virulence capacity by molecular techniques and cytotoxic assays and transepithelial electric resistance (TER). E. coli isolate p19A was selected, and deletion mutants were created for alpha-hemolysin (α-hemolysin) (hly) clusters and cytotoxic necrotizing factor type 1 (cnf1). Probiotic E. coli Nissle and pathogenic E. coli LF82 were used as controls. E. coli strains from patients with active UC completely disrupted epithelial cell tight junctions shortly after inoculation. These strains belong to phylogenetic group B2 and are all α-hemolysin positive. In contrast, probiotic E. coli Nissle, pathogenic E. coli LF82, four E. coli from patients with inactive UC and three E. coli strains from healthy controls did not disrupt tight junctions. E. coli p19A WT as well as cnf1, and single loci of hly mutants from cluster I and II were all able to damage Caco-2 (Heterogeneous human epithelial colorectal adenocarcinoma) cell tight junctions. However, this phenotype was lost in a mutant with knockout (Δ) of both hly loci (P<0.001). UC-associated E. coli producing α-hemolysin can cause rapid loss of tight junction integrity in differentiated Caco-2 cell monolayers. This effect was abolished in a mutant unable to express α-hemolysin. These results suggest that high Hly expression may be a mechanism by which specific strains of E. coli pathobionts can contribute to epithelial barrier dysfunction and pathophysiology of disease in IBD.

  10. Secretion of Alpha-Hemolysin by Escherichia coli Disrupts Tight Junctions in Ulcerative Colitis Patients

    PubMed Central

    Mirsepasi-Lauridsen, Hengameh Chloé; Du, Zhengyu; Struve, Carsten; Charbon, Godefroid; Karczewski, Jurgen; Krogfelt, Karen Angeliki; Petersen, Andreas Munk; Wells, Jerry M

    2016-01-01

    Objectives: The potential of Escherichia coli (E. coli) isolated from inflammatory bowel disease (IBD) patients to damage the integrity of the intestinal epithelium was investigated. Methods: E. coli strains isolated from patients with ulcerative colitis (UC) and healthy controls were tested for virulence capacity by molecular techniques and cytotoxic assays and transepithelial electric resistance (TER). E. coli isolate p19A was selected, and deletion mutants were created for alpha-hemolysin (α-hemolysin) (hly) clusters and cytotoxic necrotizing factor type 1 (cnf1). Probiotic E. coli Nissle and pathogenic E. coli LF82 were used as controls. Results: E. coli strains from patients with active UC completely disrupted epithelial cell tight junctions shortly after inoculation. These strains belong to phylogenetic group B2 and are all α-hemolysin positive. In contrast, probiotic E. coli Nissle, pathogenic E. coli LF82, four E. coli from patients with inactive UC and three E. coli strains from healthy controls did not disrupt tight junctions. E. coli p19A WT as well as cnf1, and single loci of hly mutants from cluster I and II were all able to damage Caco-2 (Heterogeneous human epithelial colorectal adenocarcinoma) cell tight junctions. However, this phenotype was lost in a mutant with knockout (Δ) of both hly loci (P<0.001). Conclusions: UC-associated E. coli producing α-hemolysin can cause rapid loss of tight junction integrity in differentiated Caco-2 cell monolayers. This effect was abolished in a mutant unable to express α-hemolysin. These results suggest that high Hly expression may be a mechanism by which specific strains of E. coli pathobionts can contribute to epithelial barrier dysfunction and pathophysiology of disease in IBD. PMID:26938480

  11. Cloning, expression, and mapping of the Staphylococcus aureus alpha-hemolysin determinant in Escherichia coli K-12.

    PubMed Central

    Kehoe, M; Duncan, J; Foster, T; Fairweather, N; Dougan, G

    1983-01-01

    A fragment of Staphylococcus aureus DNA encoding the alpha-hemolysin determinant was cloned from strain Wood 46 by inserting Sau3A-generated genomic DNA fragments between the BamHI sites of the lambda replacement vector L47.1. Phages expressing alpha-hemolysin were detected by overlaying plaques formed from several thousand independent recombinant phage with erythrocytes and looking for zones of hemolysis. One phage expressing alpha-hemolysin was purified and named lambda w alpha 3. This was subsequently shown to contain a 10.2-kilobase pair insert of S. aureus DNA. A 7.6-kilobase pair HindIII fragment encoding the alpha-hemolysin was subcloned from lambda w alpha 3 into the plasmid vector pACYC184 to form the hybrid plasmid pDU1148. Escherichia coli K-12 cells harboring pDU1148 synthesized a low level of alpha-hemolysin which remained associated with the cells and was not secreted into culture supernatants. When the same strain was stabbed onto blood agar plates, no zones of hemolysis were detected after overnight growth at 37 degrees C but hemolysis developed if the plates were left at room temperature for 48 h. By introducing specific deletions or Tn5 insertions into plasmid pDU1148, the alpha-hemolysin gene was mapped to a region within a 3.3-kilobase pair EcoRI-HindIII fragment which was subcloned onto the vector plasmid pBR322. A specific enzyme-linked immunosorbent assay with peroxidase-labeled rabbit anti-alpha-hemolysin antibodies was used to measure the levels of alpha-hemolysin antigen expressed in E. coli K-12 cells harboring pDU1148 or a variety of pDU1148::Tn5 and pDU1148 deletion mutants. PMID:6350179

  12. Subinhibitory Concentrations of Thymol Reduce Enterotoxins A and B and α-Hemolysin Production in Staphylococcus aureus Isolates

    PubMed Central

    Xiang, Hua; Feng, Haihua; Jiang, Youshuai; Xia, Lijie; Dong, Jing; Lu, Jing; Yu, Lu; Deng, Xuming

    2010-01-01

    Background Targeting bacterial virulence factors is now gaining interest as an alternative strategy to develop new types of anti-infective agents. It has been shown that thymol, when used at low concentrations, can inhibit the TSST-1 secretion in Staphylococcus aureus. However, there are no data on the effect of thymol on the production of other exotoxins (e.g., α-hemolysin and enterotoxins) by S. aureus. Methodology/Principal Findings Secretion of α-hemolysin, SEA and SEB in both methicillin-sensitive and methicillin-resistant S. aureus isolates cultured with graded subinhibitory concentrations of thymol was detected by immunoblot analysis. Hemolysin and tumor necrosis factor (TNF) release assays were performed to elucidate the biological relevance of changes in α-hemolysin, SEA and SEB secretion induced by thymol. In addition, the influence of thymol on the transcription of hla, sea, and seb (the genes encoding α-hemolysin, SEA and SEB, respectively) was analyzed by quantitative RT-PCR. Thymol inhibited transcription of hla, sea and seb in S. aureus, resulting in a reduction of α-hemolysin, SEA and SEB secretion and, thus, a reduction in hemolytic and TNF-inducing activities. Conclusions/Significance Subinhibitory concentrations of thymol decreased the production of α-hemolysin, SEA and SEB in both MSSA and MRSA in a dose-dependent manner. These data suggest that thymol may be useful for the treatment of S. aureus infections when used in combination with β-lactams and glycopeptide antibiotics, which induce expression of α-hemolysin and enterotoxins at subinhibitory concentrations. Furthermore, the structure of thymol may potentially be used as a basic structure for development of drugs aimed against these bacterial virulence factors. PMID:20305813

  13. Soft-agar-coated filter method for early detection of viable and thermostable direct hemolysin (TDH)- or TDH-related hemolysin-producing Vibrio parahaemolyticus in seafood.

    PubMed

    Hayashi, Sachiko; Okura, Masatoshi; Osawa, Ro

    2006-07-01

    A novel method for detecting viable and thermostable direct hemolysin (TDH)-producing or TDH-related hemolysin (TRH)-producing Vibrio parahaemolyticus in seafood was developed. The method involved (i) enrichment culture, selective for viable, motile cells penetrating a soft-agar-coated filter paper, and (ii) a multiplex PCR assay targeting both the TDH gene (tdh) and TRH gene (trh) following DNase pretreatment on the test culture to eradicate any incidental DNAs that might have been released from dead cells of tdh- or trh-positive (tdh+ trh+) strains and penetrated the agar-coated filter. A set of preliminary laboratory tests performed on 190 ml of enrichment culture that had been inoculated simultaneously with ca. 100 viable cells of a strain of tdh+ trh+ V. parahaemolyticus and dense populations of a viable strain of tdh- and trh-negative V. parahaemolyticus or Vibrio alginolyticus indicated that the method detected the presence of viable tdh+ trh+ strains. Another set of preliminary tests on 190 ml of enrichment culture that had been initially inoculated with a large number of dead cells of the tdh+ trh+ strain together with dense populations of the tdh- and trh-negative strains confirmed that the method did not yield any false-positive results. Subsequent quasi-field tests using various seafood samples (ca. 20 g), each of which was experimentally contaminated with either or both hemolysin-producing strains at an initial density of ca. 5 to 10 viable cells per gram, demonstrated that contamination could be detected within 2 working days.

  14. Silkworm apolipophorin protein inhibits hemolysin gene expression of Staphylococcus aureus via binding to cell surface lipoteichoic acids.

    PubMed

    Omae, Yosuke; Hanada, Yuichi; Sekimizu, Kazuhisa; Kaito, Chikara

    2013-08-30

    We previously reported that a silkworm hemolymph protein, apolipophorin (ApoLp), binds to the cell surface of Staphylococcus aureus and inhibits expression of the saePQRS operon encoding a two-component system, SaeRS, and hemolysin genes. In this study, we investigated the inhibitory mechanism of ApoLp on S. aureus hemolysin gene expression. ApoLp bound to lipoteichoic acids (LTA), an S. aureus cell surface component. The addition of purified LTA to liquid medium abolished the inhibitory effect of ApoLp against S. aureus hemolysin production. In an S. aureus knockdown mutant of ltaS encoding LTA synthetase, the inhibitory effects of ApoLp on saeQ expression and hemolysin production were attenuated. Furthermore, the addition of anti-LTA monoclonal antibody to liquid medium decreased the expression of S. aureus saeQ and hemolysin genes. In S. aureus strains expressing SaeS mutant proteins with a shortened extracellular domain, ApoLp did not decrease saeQ expression. These findings suggest that ApoLp binds to LTA on the S. aureus cell surface and inhibits S. aureus hemolysin gene expression via a two-component regulatory system, SaeRS.

  15. ADAM10 Mediates Vascular Injury Induced by Staphylococcus aureus α-Hemolysin

    PubMed Central

    Powers, Michael E.; Kim, Hwan Keun; Wang, Yang

    2012-01-01

    Staphylococcus aureus is a leading cause of bacteremia and sepsis. The interaction of S. aureus with the endothelium is central to bloodstream infection pathophysiology yet remains ill-understood. We show herein that staphylococcal α-hemolysin, a pore-forming cytotoxin, is required for full virulence in a murine sepsis model. The α-hemolysin binding to its receptor A-disintegrin and metalloprotease 10 (ADAM10) upregulates the receptor’s metalloprotease activity on endothelial cells, causing vascular endothelial–cadherin cleavage and concomitant loss of endothelial barrier function. These cellular injuries and sepsis severity can be mitigated by ADAM10 inhibition. This study therefore provides mechanistic insight into toxin-mediated endothelial injury and suggests new therapeutic approaches for staphylococcal sepsis. PMID:22474035

  16. Interaction of the Hemolysin of (Chironex fleckeri) Tentacle Extracts with Lipid Monolayers,

    DTIC Science & Technology

    cephalin > sphingomyelin > gangliosides . Penetration of the hemolytic fraction into lipid monolayers became greater as the protein concentration in...surface pressure of ganglioside monolayers, and the total film pressure was low, which was interpreted as being due to binding of the hemolysin to the...monolayer. Hemolytic activity was shown to be inhibited by gangliosides in vitro. These findings suggested that lytic activity might be associated with an interaction between gangliosides and hemolytic protein. (Author)

  17. Inhibitory effect of totarol on exotoxin proteins hemolysin and enterotoxins secreted by Staphylococcus aureus.

    PubMed

    Shi, Ce; Zhao, Xingchen; Li, Wenli; Meng, Rizeng; Liu, Zonghui; Liu, Mingyuan; Guo, Na; Yu, Lu

    2015-10-01

    Staphylococcus aureus (S. aureus) causes a wide variety of infections, which are of major concern worldwide. S. aureus produces multiple virulence factors, resulting in food infection and poisoning. These virulence factors include hyaluronidases, proteases, coagulases, lipases, deoxyribonucleases and enterotoxins. Among the extracellular proteins produced by S. aureus that contribute to pathogenicity, the exotoxins α-hemolysin, staphylococcal enterotoxin A (SEA) and staphylococcal enterotoxin B (SEB) are thought to be of major significance. Totarol, a plant extract, has been revealed to inhibit the proliferation of several pathogens effectively. However, there are no reports on the effects of totarol on the production of α-hemolysin, SEA or SEB secreted by S. aureus. The aim of this study was to evaluate the effects of totarol on these three exotoxins. Hemolysis assay, western blotting and real-time reverse transcriptase-PCR assay were performed to identify the influence of graded subinhibitory concentrations of totarol on the production of α-hemolysin and the two major enterotoxins, SEA and SEB, by S. aureus in a dose-dependent manner. Moreover, an enzyme linked immunosorbent assay showed that the TNF-α production of RAW264.7 cells stimulated by S. aureus supernatants was inhibited by subinhibitory concentrations of totarol. Form the data, we propose that totarol could potentially be used as a promising natural compound in the food and pharmaceutical industries.

  18. Transport of multidrug resistance substrates by the Streptococcus agalactiae hemolysin transporter.

    PubMed

    Gottschalk, Birgit; Bröker, Gerd; Kuhn, Melanie; Aymanns, Simone; Gleich-Theurer, Ute; Spellerberg, Barbara

    2006-08-01

    Streptococcus agalactiae (group B streptococcus [GBS]) causes neonatal sepsis, pneumonia, and meningitis, as well as infections of the bovine udder. The S. agalactiae hemolysin is regarded as an important virulence factor, and hemolysin expression is dependent on the cyl gene cluster. cylA and cylB encode the ATP binding and transmembrane domains of a typical ATP binding cassette (ABC) transporter. The deduced proteins contain the signature sequence of a multidrug resistance (MDR) transporter, and mutation of the genes results in a nonhemolytic and nonpigmented phenotype. To further elucidate the function of the putative transporter, nonpolar deletion mutants of cylA were constructed. These mutants are nonhemolytic and can be complemented by the transporter genes. Wild-type strain and nonhemolytic cylA and cylK deletion mutants were exposed to known substrates of MDR transporters. Mutation of cylA significantly impaired growth in the presence of daunorubicin, doxorubicin, and rhodamine 6G and resulted in a decreased export of doxorubicin from the cells. The mutation of cylK, a gene of unknown function located downstream from cylA, caused a loss of hemolysis but had no effect on the transport of MDR substrates. Furthermore, the hemolytic activity of the wild-type strain was inhibited by reserpine in a dose-dependent manner. We conclude that CylAB closely resembles an ABC-type MDR transporter and propose that the GBS hemolysin molecule represents a natural substrate of the transporter.

  19. Burkholderia cepacia Produces a Hemolysin That Is Capable of Inducing Apoptosis and Degranulation of Mammalian Phagocytes

    PubMed Central

    Hutchison, Michael L.; Poxton, Ian R.; Govan, John R. W.

    1998-01-01

    Burkholderia cepacia is an opportunistic pathogen that has become a major threat to individuals with cystic fibrosis (CF). In approximately 20% of patients, pulmonary colonization with B. cepacia leads to cepacia syndrome, a fatal fulminating pneumonia sometimes associated with septicemia. It has been reported that culture filtrates of clinically derived strains of B. cepacia are hemolytic. In this study, we have characterized a factor which contributes to this hemolytic activity and is secreted from B. cepacia J2315, a representative of the virulent and highly transmissible strain belonging to the recently described genomovar III grouping. Biochemical data from the described purification method for this hemolysin allows us to hypothesize that the toxin is a lipopeptide. As demonstrated for other lipopeptide toxins, the hemolysin from B. cepacia was surface active and lowered the surface tension of high-pressure liquid chromatography-grade water from 72.96 to 29.8 mN m−1. Similar to reports for other pore-forming cytotoxins, low concentrations of the hemolysin were able to induce nucleosomal degradation consistent with apoptosis in human neutrophils and the mouse-derived macrophage-type cell line J774.2. Exposure of human neutrophils to higher concentrations of toxin resulted in increased activities of the neutrophil degranulation markers cathepsin G and elastase. Based on the results obtained in this study, we suggest a role that allows B. cepacia to thwart the immune response and a model of the events that may contribute to the severe inflammatory response in the lungs of CF patients. PMID:9573086

  20. Humoral antibody response and protective immunity in swine following immunization with the 104-kilodalton hemolysin of Actinobacillus pleuropneumoniae.

    PubMed Central

    Devenish, J; Rosendal, S; Bossé, J T

    1990-01-01

    Five cesarean-derived, colostrum-deprived pigs were given three adjuvant-supplemented subcutaneous and one intravenous injection of the purified 104-kDa hemolysin from serotype 1 Actinobacillus pleuropneumoniae CM-5. Six control animals received phosphate-buffered saline only. Five of six control pigs died within 24 h after challenge. The sixth control pig was moribund and euthanized after 48 h. All six pigs had pleuropneumonia, and A. pleuropneumoniae was isolated from all six lungs. None of the vaccinated pigs died as a result of challenge. After being euthanized, two pigs in this group had no lung lesions but three had chronic pleuropneumonia involving 10, 20, and 40% of the lung tissue. A. pleuropneumoniae was isolated from lung lesions of these three animals but not from the two pigs without lesions. The prechallenge hemolysin-neutralizing antibody titers in the vaccinated pigs were 1:10,900, 1:10,600, 1:4,800, 1:3,900, and 1:3,000, in order of increasing lung involvement. None of the control pigs had neutralizing antibodies. Enzyme-linked immunosorbent assay (ELISA) antibodies to capsule, lipopolysaccharide, and hemolysin were not detected in serum samples collected from the control pigs. In the vaccinated group, prechallenge sera did not contain ELISA antibodies to capsule or lipopolysaccharide. ELISA antibodies to the hemolysin were detected only in the prechallenge and postchallenge serum samples. These results indicate that pigs immunized with the 104-kDa hemolysin of serotype 1 A. pleuropneumoniae are protected against challenge with virulent bacteria. The association between neutralizing antibodies and protection indicates indirectly that the hemolysin is an important virulence factor. Images PMID:2254012

  1. Modulation of EGF receptor autophosphorylation by alpha-hemolysin of Staphylococcus aureus via protein tyrosine phosphatase.

    PubMed

    Vandana, Sharma; Navneet, Sangha; Surinder, Kaur; Krishnasastry, M V

    2003-01-30

    In the presence of assembled alpha-hemolysin (alpha-HL) of Staphylococcus aureus, the epidermal growth factor receptor (EGFr) is rapidly dephosphorylated. Several obvious possibilities that otherwise would have contributed to the dephosphorylation were ruled out. Instead, an elevation in the activity of a protein tyrosine phosphatase appears to be responsible for the observed loss of phosphorylation signal of EGFr. For this dephosphorylation, the assembly of alpha-HL is necessary while lytic pore formation is not required. In summary, the EGFr is unable to retain its phosphorylation signal in the presence of alpha-HL and the process is irreversible.

  2. [Cloning and expression of a hemolysin gene of Aeromonas hydrophila and the immunogenicity of the toxoid].

    PubMed

    Zhang, Cuijuan; Yu, Zhouliang; Tian, Liying; Zhao, Baohua

    2009-02-01

    According to the GenBank sequences (GenBank Accession No. AF539467), one pair of primers was designed to amplify hly gene of Aeromonas hydrophila by PCR. After sequencing, homology analysis indicated that a DNA fragment of 1485 bp was amplified from isolated DNA from Aeromonas hydrophila, and it shared more than 99% homology in nucleotide sequence compared with other reference strains in GenBank. The gene was cloned in pET-28a vector to construct a recombinant plasmid pET-28a-hly, which was transformed into Escherichia coli BL21 (DE3), and the recombinant strain BL21(DE3)(pET-28a-hly) was obtained. The hemolysin was highly expressed when the recombinant strain BL21 (DE3) (pET-28a-hly) was induced by IPTG. The expressed protein was 56 kD as estimated by 15% SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The immunogenicity of the expressed Hly protein was confirmed by Western blotting. Mice were immunized with inactivated whole bacteria vaccine and the genetic engineering vaccines showing promise that all these vaccines have a high protective ability. The results showed that the recombinant strain BL21 (DE3)(pET-28a-hly) could be candidate of hemolysin toxoid vaccine to provide protective immunity against diseases caused by Aeromonas hydrophila.

  3. Morin hydrate attenuates Staphylococcus aureus virulence by inhibiting the self-assembly of α-hemolysin.

    PubMed

    Wang, J; Zhou, X; Liu, S; Li, G; Shi, L; Dong, J; Li, W; Deng, X; Niu, X

    2015-03-01

    To investigate the mechanism by which morin hydrate inhibits the haemolytic activity of α-hemolysin (Hla), a channel-forming toxin that is important for the pathogenesis of disease in experimental animals, and its therapeutic effect against Staphylococcus aureus pneumonia in a mouse model. The results from the in vitro (haemolysis, western blot and cytotoxicity assays) and in vivo (mouse model of intranasal lung infection) experiments indicated that morin hydrate, a natural compound with little anti-Staph. aureus activity, could effectively antagonize the cytolytic activity of Hla, alleviate human lung cell injury, and protect against mortality of Staph. aureus pneumonia in a mouse model of infection. Molecular dynamics simulations, free energy calculations and mutagenesis assays were further employed to determine the catalytic mechanism of inhibition, which indicated that a direct binding of morin to the 'Stem' domain of Hla (residues I107 and T109) and the concomitant change in conformation led to the inhibition of the self-assembly of the heptameric transmembrane pore, thus inhibiting the biological activity of Hla for cell lysis. Morin inhibited Staph. aureus virulence via inhibiting the haemolytic activity of α-hemolysin. These findings suggested that morin is a promising candidate for the development of anti-virulence therapeutic agents for the treatment of Staph. aureus infections. © 2015 The Society for Applied Microbiology.

  4. Ionic current blockades from DNA and RNA molecules in the alpha-hemolysin nanopore.

    PubMed

    Butler, Tom Z; Gundlach, Jens H; Troll, Mark

    2007-11-01

    We characterize the substate structure of current blockades produced when single-stranded polynucleotide molecules were electrophoretically driven into the alpha-hemolysin protein pore. We frequently observe substates where the ionic current is reduced by approximately 50%. Most of these substates can be associated with a molecular configuration where a polymer occupies only the vestibule region of the pore, though a few appear related to a polymer occupying only the transmembrane beta-barrel region of the pore. The duration of the vestibule configuration depends on polymer composition and on which end of the polymer, 3' or 5', subsequently threads into the narrowest constriction and initiates translocation. Below approximately 140 mV a polymer is more likely to escape from the vestibule against the applied voltage gradient, while at higher voltages a polymer is more likely to follow the voltage gradient by threading through the narrowest constriction and translocating through the pore. Increasing the applied voltage also increases the duration of the vestibule configuration. A semiquantitative model of these trends suggests that escape has stronger voltage dependence than threading, and that threading is sensitive to polymer orientation while escape is not. These results emphasize the utility of alpha-hemolysin as a model system to study biologically relevant physical and chemical processes at the single-molecule level.

  5. Purification and characterization of hemolysin from periodontopathogenic bacterium Eikenella corrodens strain 1073.

    PubMed

    Jasin Mansur, Fariha; Takahara, Sari; Yamamoto, Mihoko; Shimatani, Masafumi; Minnatul Karim, Mohammad; Noiri, Yuichiro; Ebisu, Shigeyuki; Azakami, Hiroyuki

    2017-06-01

    Eikenella corrodens 1073 was found to show hemolytic activity when grown on sheep blood agar. A high and dose-dependent hemolytic activity was detected in the cell envelope fraction, which was further purified by ion-exchange and gel-filtration chromatography. Consequently, a 65-kDa protein with hemolytic activity was obtained, suggesting that this protein might be a hemolysin. Its N-terminal amino acid sequence was nearly identical to that of X-prolyl aminopeptidase from E. corrodens ATCC 23834. To confirm that X-prolyl aminopeptidase functions as a hemolytic factor, we expressed the hlyA gene, encoding X-prolyl aminopeptidase, in Escherichia coli. After induction with isopropyl β-D-1-thiogalactopyranoside, a protein of about 65 kDa was purified on a Ni column, and its hemolytic activity was confirmed. Meanwhile, a strain with a disrupted hlyA gene, which was constructed by homologous recombination, did not show any hemolytic activity. These results suggested that X-prolyl aminopeptidase might function as a hemolysin in E. corrodens.

  6. ADAM10 Cell Surface Expression but Not Activity Is Critical for Staphylococcus aureus α-Hemolysin-Mediated Activation of the NLRP3 Inflammasome in Human Monocytes.

    PubMed

    Ezekwe, Ejiofor A D; Weng, Chengyu; Duncan, Joseph A

    2016-03-30

    The Staphylococcus aureus toxin, α-hemolysin, is an important and well-studied virulence factor in staphylococcal infection. It is a soluble monomeric protein that, once secreted by the bacterium, forms a heptameric pore in the membrane of a broad range of host cell types. Hemolysin was recently discovered to bind and activate a disintegrin and metalloprotease 10 (ADAM10). In epithelial and endothelial cells, ADAM10 activation is required for the toxin's activity against these cells. In host monocytic cells, α-hemolysin activates the nucleotide-binding domain and leucine-rich repeat containing gene family, pyrin domain containing 3 (NLRP3) inflammasome leading to production of pro-inflammatory cytokines and cell death. We now show that ADAM10 is critical for α-hemolysin-mediated activation of the NLRP3 inflammasome in human monocytes as siRNA knockdown or chemical blockade of ADAM10-α-hemolysin interaction leads to diminished inflammasome activation and cell death by reducing the available ADAM10 on the cell surface. Unlike epithelial cell and endothelial cell damage, which requires α-hemolysin induced ADAM10 activation, ADAM10 protease activity was not required for NLRP3 inflammasome activation. This work confirms the importance of ADAM10 in immune activation by α-hemolysin, but indicates that host cell signal induction by the toxin is different between host cell types.

  7. ADAM10 Cell Surface Expression but Not Activity Is Critical for Staphylococcus aureus α-Hemolysin-Mediated Activation of the NLRP3 Inflammasome in Human Monocytes

    PubMed Central

    Ezekwe, Ejiofor A.D.; Weng, Chengyu; Duncan, Joseph A.

    2016-01-01

    The Staphylococcus aureus toxin, α-hemolysin, is an important and well-studied virulence factor in staphylococcal infection. It is a soluble monomeric protein that, once secreted by the bacterium, forms a heptameric pore in the membrane of a broad range of host cell types. Hemolysin was recently discovered to bind and activate a disintegrin and metalloprotease 10 (ADAM10). In epithelial and endothelial cells, ADAM10 activation is required for the toxin’s activity against these cells. In host monocytic cells, α-hemolysin activates the nucleotide-binding domain and leucine-rich repeat containing gene family, pyrin domain containing 3 (NLRP3) inflammasome leading to production of pro-inflammatory cytokines and cell death. We now show that ADAM10 is critical for α-hemolysin-mediated activation of the NLRP3 inflammasome in human monocytes as siRNA knockdown or chemical blockade of ADAM10-α-hemolysin interaction leads to diminished inflammasome activation and cell death by reducing the available ADAM10 on the cell surface. Unlike epithelial cell and endothelial cell damage, which requires α-hemolysin induced ADAM10 activation, ADAM10 protease activity was not required for NLRP3 inflammasome activation. This work confirms the importance of ADAM10 in immune activation by α-hemolysin, but indicates that host cell signal induction by the toxin is different between host cell types. PMID:27043625

  8. Demonstration and characterization of simultaneous production of a thermostable direct hemolysin (TDH/I) and a TDH-related hemolysin (TRHx) by a clinically isolated Vibrio parahaemolyticus strain, TH3766.

    PubMed

    Xu, M; Iida, T; Yamamoto, K; Takarada, Y; Miwatani, T; Honda, T

    1994-01-01

    Simultaneous production of a thermostable direct hemolysin (TDH)-like toxin (TDHx) and a TDH-related hemolysin (TRH)-like toxin (TRHx) by a clinical isolate (strain TH3766) of Kanagawa phenomenon-positive Vibrio parahaemolyticus was demonstrated and characterized. The two hemolysins were differentially purified by column chromatography on hydroxyapatite and immunoaffinity columns. The molecular weight of the two hemolysins were estimated to be 23,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE). The purified TDHx was indistinguishable from the previously reported TDH/I (from strain TH012) but was different from the authentic TDH of a Kanagawa phenomenon-positive strain (T4750) physicochemically. The mobility of TRHx in nondenaturing PAGE differed from all the known TDHs and TRHs. The genes (tdhX and trhX) coding for TDHx and TRHx were cloned and sequenced. Homologies of nucleotide sequences of the coding regions between tdhX and tdhA (a gene for the authentic TDH) and between trhX and trh (a gene for the authentic TRH) were 98.1 and 99.1%, respectively, and homology between tdhX and trhX was 68.1%. At the amino acid level, TdhX was completely identical to TDH/I, although two base differences were found in the nucleotide sequences between tdhX and tdh/I. Two amino acid differences were observed between TrhX and Trh. Thus, these findings suggest that the TH3766 strain produces two types of hemolysins simultaneously. This is the first evidence that a strain of V. parahaemolyticus produces two types of toxins of the TDH-TRH family at the same time.

  9. Staphylococcus aureus hijacks a skin commensal to intensify its virulence: immunization targeting β-hemolysin and CAMP factor.

    PubMed

    Lo, Chih-Wei; Lai, Yiu-Kay; Liu, Yu-Tsueng; Gallo, Richard L; Huang, Chun-Ming

    2011-02-01

    The need for a new anti-Staphylococcus aureus therapy that can effectively cripple bacterial infection, neutralize secretory virulence factors, and lower the risk of creating bacterial resistance is undisputed. Here, we propose what is, to our knowledge, a previously unreported infectious mechanism by which S. aureus may commandeer Propionibacterium acnes, a key member of the human skin microbiome, to spread its invasion and highlight two secretory virulence factors (S. aureus β-hemolysin and P. acnes CAMP (Christie, Atkins, Munch-Peterson) factor) as potential molecular targets for immunotherapy against S. aureus infection. Our data demonstrate that the hemolysis and cytolysis by S. aureus were noticeably augmented when S. aureus was grown with P. acnes. The augmentation was significantly abrogated when the P. acnes CAMP factor was neutralized or β-hemolysin of S. aureus was mutated. In addition, the hemolysis and cytolysis of recombinant β-hemolysin were markedly enhanced by recombinant CAMP factor. Furthermore, P. acnes exacerbated S. aureus-induced skin lesions in vivo. The combination of CAMP factor neutralization and β-hemolysin immunization cooperatively suppressed the skin lesions caused by coinfection of P. acnes and S. aureus. These observations suggest a previously unreported immunotherapy targeting the interaction of S. aureus with a skin commensal.

  10. Spontaneous deletions and flanking regions of the chromosomally inherited hemolysin determinant of an Escherichia coli O6 strain.

    PubMed Central

    Hacker, J; Knapp, S; Goebel, W

    1983-01-01

    The hemolytic Escherichia coli strain 536 (O6) propagates spontaneous hemolysin-negative mutants at relatively high rates (10(-3) to 10(-4)). One type of mutant (type I) lacks both secreted (external) and periplasmic (internal) hemolysin activity (Hlyex-/Hlyin-) and in addition shows no mannose-resistant hemagglutination (Mrh-), whereas the other type (type II) is Hlyex-/Hlyin+ and Mrh+. The genetic determinants for hemolysin production (hly) and for mannose-resistant hemagglutination (mrh) of this strain are located on the chromosome. Hybridization experiments with DNA probes specific for various parts of the hly determinant reveal that mutants of type I have lost the total hly determinant, whereas those of type II lack only part of the hlyB that is essential for transport of hemolysin across the outer membrane. Using a probe that contains the end sequence of the plasmid pHly152-encoded hly determinant (adjacent to hlyB), we determined that a related sequence flanks also the hlyB-distal end of the chromosomal hly determinant of E. coli 536. In addition several other similar or even identical sequences are found in the vicinity of the hlyC- and the hlyB-distal ends of both the chromosomal and the plasmid hly determinants. Images PMID:6343344

  11. Hemolysin-producing Listeria monocytogenes affects the immune response to T-cell-dependent and T-cell-independent antigens.

    PubMed Central

    Hage-Chahine, C M; Del Giudice, G; Lambert, P H; Pechere, J C

    1992-01-01

    A murine experimental infection with a hemolysin-producing (Hly+) strain of Listeria monocytogenes and a non-hemolysin-producing (Hly-) mutant was used as an in vivo model to evaluate the role of hemolysin production in the immune response. No antilisterial antibodies were detectable following sublethal infection with Hly+ bacteria, but consistent antilisterial immunoglobulin G (IgG) and IgM antibody production was observed following sublethal infection with the Hly- mutant. Hly+ but not Hly- L. monocytogenes induced transient inhibition of antibody response to Hly- bacteria and to unrelated T-cell-dependent (tetanus toxoid) and T-cell-independent (pneumococcal polysaccharide 3) antigens. Transient inhibition of the activation of an antigen-specific T-cell clone was also observed following Hly+ infection of antigen-presenting cells but not following Hly- infection. These results suggest that hemolysin production by L. monocytogenes is an important factor in modulating the immune response to T-cell-dependent and T-cell-independent antigens in infected individuals. Images PMID:1548067

  12. Nucleotide sequence of the leukotoxin gene from Actinobacillus actinomycetemcomitans: homology to the alpha-hemolysin/leukotoxin gene family.

    PubMed Central

    Kraig, E; Dailey, T; Kolodrubetz, D

    1990-01-01

    The leukotoxin produced by Actinobacillus actinomycetemcomitans has been implicated in the etiology of localized juvenile periodontitis. To initiate a genetic analysis into the role of this protein in disease, we have cloned its gene, lktA. We now present the complete nucleotide sequence of the lktA gene from A. actinomycetemcomitans. When the deduced amino acid sequence of the leukotoxin protein was compared with those of other proteins, it was found to be homologous to the leukotoxin from Pasteurella haemolytica and to the alpha-hemolysins from Escherichia coli and Actinobacillus pleuropneumoniae. Each alignment showed at least 42% identity. As in the other organisms, the lktA gene of A. actinomycetemcomitans was linked to another gene, lktC, which is thought to be involved in the activation of the leukotoxin. The predicted LktC protein was related to the leukotoxin/hemolysin C proteins from the other bacteria, since they shared a minimum of 49% amino acid identity. Surprisingly, although actinobacillus species are more closely related to pasteurellae than to members of the family Enterobacteriaciae, LktA and LktC from A. actinomycetemcomitans shared significantly greater sequence identity with the E. coli alpha-hemolysin proteins than with the P. haemolytica leukotoxin proteins. Despite the overall homology to the other leukotoxin/hemolysin proteins, the LktA protein from A. actinomycetemcomitans has several unique properties. Most strikingly, it is a very basic protein with a calculated pI of 9.7; the other toxins have estimated pIs around 6.2. The unusual features of the A. actinomycetemcomitans protein are discussed in light of the different species and target-cell specificities of the hemolysins and the leukotoxins. Images PMID:2318535

  13. Impact of brief exposure to antifungal agents on the post-antifungal effect and hemolysin activity of oral Candida albicans

    PubMed Central

    ELLEPOLA, Arjuna Nishantha; KHAJAH, Rana; JAYATILAKE, Sumedha; SAMARANAYAKE, Lakshman; SHARMA, Prem; KHAN, Zia

    2015-01-01

    Post-antifungal effect (PAFE) of Candida and its production of hemolysin are determinants of candidal pathogenicity. Candida albicans is the foremost aetiological agent of oral candidosis, which can be treated with polyene, azole, and echinocandin antifungals. However, once administered, the intraoral concentrations of these drugs tend to be subtherapeutic and transient due to the diluent effect of saliva and cleansing effect of the oral musculature. Hence, intra-orally, Candida may undergo a brief exposure to antifungal drugs. Objective Therefore, the PAFE and hemolysin production of oral C. albicans isolates following brief exposure to sublethal concentrations of the foregoing antifungals were evaluated. Material and Methods A total of 50 C. albicans oral isolates obtained from smokers, diabetics, asthmatics using steroid inhalers, partial denture wearers and healthy individuals were exposed to sublethal concentrations of nystatin, amphotericin B, caspofungin, ketoconazole and fluconazole for 60 min. Thereafter, the drugs were removed and the PAFE and hemolysin production were determined by previously described turbidometric and plate assays, respectively. Results Nystatin, amphotericin B, caspofungin and ketoconazole induced mean PAFE (hours) of 2.2, 2.18, 2.2 and 0.62, respectively. Fluconazole failed to produce a PAFE. Hemolysin production of these isolates was suppressed with a percentage reduction of 12.27, 13.47, 13.33, 8.53 and 4.93 following exposure to nystatin, amphotericin B, caspofungin, ketoconazole and fluconazole, respectively. Conclusions Brief exposure to sublethal concentrations of antifungal drugs appears to exert an antifungal effect by interfering with the growth as well as hemolysin production of C. albicans. PMID:26398514

  14. Common origin of plasmid encoded alpha-hemolysin genes in Escherichia coli

    PubMed Central

    2010-01-01

    Background Alpha (α)-hemolysin is a pore forming cytolysin and serves as a virulence factor in intestinal and extraintestinal pathogenic strains of E. coli. It was suggested that the genes encoding α-hemolysin (hlyCABD) which can be found on the chromosome and plasmid, were acquired through horizontal gene transfer. Plasmid-encoded α-hly is associated with certain enterotoxigenic (ETEC), shigatoxigenic (STEC) and enteropathogenic E. coli (EPEC) strains. In uropathogenic E. coli (UPEC), the α-hly genes are located on chromosomal pathogenicity islands. Previous work suggested that plasmid and chromosomally encoded α-hly may have evolved independently. This was explored in our study. Results We have investigated 11 α-hly plasmids from animal and human ETEC, STEC and EPEC strains. The size of α-hly plasmids ranges from 48-157 kb and eight plasmids are conjugative. The regulatory gene (hlyR) located upstream of the hlyCABD gene operon and an IS911 element located downstream of hlyD are conserved. Chromosomally-encoded α-hly operons lack the hlyR and IS911 elements. The DNA sequence of hlyC and hlyA divided the plasmid- and chromosomally-encoded α-hemolysins into two clusters. The plasmid-encoded α-hly genes could be further divided into three groups based on the insertion of IS1 and IS2 in the regulatory region upstream of the α-hly operon. Transcription of the hlyA gene was higher than the housekeeping icdA gene in all strains (rq 4.8 to 143.2). Nucleotide sequence analysis of a chromosomally located α-hly determinant in Enterobacter cloacae strain indicates that it originates from an E. coli α-hly plasmid. Conclusion Our data indicate that plasmids encoding α-hly in E. coli descended from a common ancestor independent of the plasmid size and the origin of the strains. Conjugative plasmids could contribute to the spread of the α-hly determinant to Enterobacter cloacae. The presence of IS-elements flanking the plasmid-encoded α-hly indicate that they

  15. High-resolution /sup 1/H NMR study of the solution structure of delta-hemolysin

    SciTech Connect

    Tappin, M.J.; Pastore, A.; Norton, R.S.; Freer, J.H.; Campbell, I.D.

    1988-03-08

    The 26-residue toxin from Staphylococcus aureus delta-hemolysin, is thought to act by traversing the plasma membrane. The structure of this peptide, in methanol solution, has been investigated by using high-resolution NMR in combination with molecular dynamics calculations. The /sup 1/H NMR spectrum has been completely assigned, and it is shown that residues 2-20 form a relatively stable helix while the residues at the C-terminal end appear to be more flexible. The structures were calculated only from nuclear Overhauser effect data and standard bond lengths. It is shown that the results are consistent with /sup 3/J/sub NH-..cap alpha..CH/ coupling constants and amide hydrogen exchange rates.

  16. Isorhamnetin Attenuates Staphylococcus aureus-Induced Lung Cell Injury by Inhibiting Alpha-Hemolysin Expression.

    PubMed

    Jiang, Lanxiang; Li, Hongen; Wang, Laiying; Song, Zexin; Shi, Lei; Li, Wenhua; Deng, Xuming; Wang, Jianfeng

    2016-03-01

    Staphylococcus aureus, like other gram-positive pathogens, has evolved a large repertoire of virulence factors as a powerful weapon to subvert the host immune system, among which alpha-hemolysin (Hla), a secreted pore-forming cytotoxin, plays a preeminent role. We observed a concentration-dependent reduction in Hla production by S. aureus in the presence of sub-inhibitory concentrations of isorhamnetin, a flavonoid from the fruits of Hippophae rhamnoides L., which has little antibacterial activity. We further evaluate the effect of isorhamnetin on the transcription of the Hla-encoding gene hla and RNAIII, an effector molecule in the agr system. Isorhamnetin significantly down-regulated RNAIII expression and subsequently inhibited hla transcription. In a co-culture of S. aureus and lung cells, topical isorhamnetin treatment protected against S. aureus-induced cell injury. Isorhamnetin may represent a leading compound for the development of anti-virulence drugs against S. aureus infections.

  17. Size-dependent forced PEG partitioning into channels: VDAC, OmpC, and α-hemolysin

    PubMed Central

    Aksoyoglu, M. Alphan; Podgornik, Rudolf; Bezrukov, Sergey M.; Gurnev, Philip A.; Muthukumar, Murugappan; Parsegian, V. Adrian

    2016-01-01

    Nonideal polymer mixtures of PEGs of different molecular weights partition differently into nanosize protein channels. Here, we assess the validity of the recently proposed theoretical approach of forced partitioning for three structurally different β-barrel channels: voltage-dependent anion channel from outer mitochondrial membrane VDAC, bacterial porin OmpC (outer membrane protein C), and bacterial channel-forming toxin α-hemolysin. Our interpretation is based on the idea that relatively less-penetrating polymers push the more easily penetrating ones into nanosize channels in excess of their bath concentration. Comparison of the theory with experiments is excellent for VDAC. Polymer partitioning data for the other two channels are consistent with theory if additional assumptions regarding the energy penalty of pore penetration are included. The obtained results demonstrate that the general concept of “polymers pushing polymers” is helpful in understanding and quantification of concrete examples of size-dependent forced partitioning of polymers into protein nanopores. PMID:27466408

  18. Controlling the translocation of single-stranded DNA through alpha-hemolysin ion channels using viscosity.

    PubMed

    Kawano, Ryuji; Schibel, Anna E P; Cauley, Christopher; White, Henry S

    2009-01-20

    Translocation of single-stranded DNA through alpha-hemolysin (alpha-HL) channels is investigated in glycerol/water mixtures containing 1 M KCl. Experiments using glass nanopore membranes as the lipid bilayer support demonstrate that the translocation velocities of poly(deoxyadenylic acid), poly(deoxycytidylic acid), and poly(deoxythymidylic acid) 50-mers are decreased by a factor of approximately 20 in a 63/37 (vol %) glycerol/water mixture, relative to aqueous solutions. The ion conductance of alpha-HL and the entry rate of the polynucleotides into the protein channel also decrease with increasing viscosity. Precise control of translocation parameters by adjusting viscosity provides a potential means to improve sequencing methods based on ion channel recordings.

  19. Colony immunoblot assay for the detection of hemolysin BL enterotoxin producing Bacillus cereus.

    PubMed

    Moravek, Maximilian; Wegscheider, Monika; Schulz, Anja; Dietrich, Richard; Bürk, Christine; Märtlbauer, Erwin

    2004-09-01

    Bacillus cereus strains involved in food poisoning cases of the diarrheal type may produce two different enterotoxin complexes. To facilitate the identification of hemolysin BL-enterotoxin complex (HBL) and/or the nonhemolytic enterotoxin (NHE) producing colonies a colony immunoblot procedure was developed, which allows a fast and easy identification of the respective colonies from blood agar plates. The enterotoxins were transferred from the blood agar medium to a nitrocellulose membrane and the immobilized toxins were probed with monoclonal antibodies. The antibodies 2A3 and 1A8 allowed the specific detection of the B component of HBL and the nheA component of NHE. The assay enabled the reliable identification of HBL expressing colonies and differentiation from NHE producing but HBL negative colonies.

  20. Size-dependent forced PEG partitioning into channels: VDAC, OmpC, and α-hemolysin.

    PubMed

    Aksoyoglu, M Alphan; Podgornik, Rudolf; Bezrukov, Sergey M; Gurnev, Philip A; Muthukumar, Murugappan; Parsegian, V Adrian

    2016-08-09

    Nonideal polymer mixtures of PEGs of different molecular weights partition differently into nanosize protein channels. Here, we assess the validity of the recently proposed theoretical approach of forced partitioning for three structurally different β-barrel channels: voltage-dependent anion channel from outer mitochondrial membrane VDAC, bacterial porin OmpC (outer membrane protein C), and bacterial channel-forming toxin α-hemolysin. Our interpretation is based on the idea that relatively less-penetrating polymers push the more easily penetrating ones into nanosize channels in excess of their bath concentration. Comparison of the theory with experiments is excellent for VDAC. Polymer partitioning data for the other two channels are consistent with theory if additional assumptions regarding the energy penalty of pore penetration are included. The obtained results demonstrate that the general concept of "polymers pushing polymers" is helpful in understanding and quantification of concrete examples of size-dependent forced partitioning of polymers into protein nanopores.

  1. Multi-isotype antibody responses against the multimeric Salmonella Typhi recombinant hemolysin E antigen.

    PubMed

    Ong, Eugene Boon Beng; Ignatius, Joshua; Anthony, Amy Amilda; Aziah, Ismail; Ismail, Asma; Lim, Theam Soon

    2015-01-01

    The detection and measurement of different antibody isotypes in the serum provide valuable indicators of the different stages of typhoid infection. Here, the ability of S. Typhi recombinant hemolysin E (HlyE) to detect multi-isotype antibody responses in sera of patients with typhoid and paratyphoid A was investigated using an indirect antibody immunoassay. Nanogram amounts of HlyE were found to be sufficient for detection of IgG and IgA isotypes and, in a study of individuals' sera (n = 100), the immunoassay was able to distinguish between typhoid and non-typhoid sera. The overall sensitivity, specificity and efficiency of the ELISA were 70% (39/56), 100% (44/44) and 83% respectively.

  2. Itraconazole-resistant Candida auris with phospholipase, proteinase and hemolysin activity from a case of vulvovaginitis.

    PubMed

    Kumar, Dharmendra; Banerjee, Tuhina; Pratap, Chandra Bhan; Tilak, Ragini

    2015-04-15

    Since the emergence of pathogenic non-albicans Candida species, a number of new isolates have been added to the list. One such unusual species is Candida auris (C. auris), recently isolated and studied in few reports. In this study, a case of vulvovaginitis caused by Candida auris incidentally identified by molecular methods using internal transcribed spacer polymerase chain reaction (ITS PCR) is described. Antifungal susceptibility testing revealed the isolate to be resistant to itraconazole (MIC ≥ 2 µg/ml) and expressed important virulence factors including phospholipase, proteinase and hemolysin activity. The patient was successfully treated with oral fluconazole and did not have any invasive fungemia. Very few cases of this emerging pathogen have been reported. However, its isolation from clinical specimens reveals the significance of non-albicans candida species over C. albicans and the diversity of Candida spp causing infections.

  3. Structure and Function of Thermostable Direct Hemolysin (TDH) from Vibrio Parahaemolyticus

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hiroshi; Yamane, Tsutomu; Ikeguchi, Mitsunori; Nakahira, Kumiko; Yanagihara, Itaru

    Thermostable direct hemolysin (TDH) is a major virulence factor of Vibrio parahaemolyticus that causes pandemic food-borne enterocolitis mediated by seafood. TDH exists as a tetramer in solution, and it possesses extreme hemolytic activity. Here, we present the crystal structure of the TDH tetramer at 1.5 Å resolution. The TDH tetramer forms a central pore with dimensions of 23 Å in diameter and ∼50 Å in depth. π-cation interactions between protomers comprising the tetramer were indispensable for hemolytic activity of TDH. The N-terminal region was intrinsically disordered outside the pore. Molecular dynamics (MD) simulations suggested that water molecules permeate freely through the central and side channel pores. These findings imply a novel membrane attachment mechanism by a soluble tetrameric pore-forming toxin.

  4. Electroosmosis through α-Hemolysin That Depends on Alkali Cation Type.

    PubMed

    Piguet, Fabien; Discala, Francoise; Breton, Marie-France; Pelta, Juan; Bacri, Laurent; Oukhaled, Abdelghani

    2014-12-18

    We demonstrate experimentally the existence of an electroosmotic flow (EOF) through the wild-type nanopore of α-hemolysin in a large range of applied voltages and salt concentrations for two different salts, LiCl and KCl. EOF controls the entry frequency and residence time of small neutral molecules (β-cyclodextrins, βCD) in the nanopore. The strength of EOF depends on the applied voltage, on the salt concentration, and, interestingly, on the nature of the cations in solution. In particular, EOF is stronger in the presence of LiCl than KCl. We interpret our results with a simple theoretical model that takes into account the pore selectivity and the solvation of ions. A stronger EOF in the presence of LiCl is found to originate essentially in a stronger anionic selectivity of the pore. Our work provides a new and easy way to control EOF in protein nanopores, without resorting to chemical modifications of the pore.

  5. Structure of Functional Staphylococcus aureus α-Hemolysin Channels in Tethered Bilayer Lipid Membranes.

    NASA Astrophysics Data System (ADS)

    Heinrich, Frank; Valincius, Gintaras; McGillivray, Duncan J.; Robertson, Joseph W. F.; Ignatjev, Ilja; Kasianowicz, John J.; Loesche, Mathias

    2008-03-01

    We demonstrate the functional reconstitution of the Staphylococcus aureus α-hemolysin channel in membranes tethered to gold. Electrical impedance spectroscopy measurements show that the pores have essentially the same properties as those formed in free-standing bilayer lipid membranes. Neutron reflectometry (NR) provides high-resolution structural information on the interaction between the channel and the disordered membrane, and validates predictions based on the channel x-ray crystal structure. NR also shows that the proximity of the solid interface does not affect the molecular architecture of the protein-membrane complex. The results suggest that this technique could be used to elucidate molecular details about the association of other proteins with membranes. It also may provide structural information on domain organization and stimuli-responsive reorganization for transmembrane proteins in membrane mimics.

  6. Proteus virulence: involvement of the pore forming alpha-hemolysin (a short review).

    PubMed

    Tóth, V; Emódy, L

    2000-01-01

    The genus Proteus belongs to the tribe of Proteae in the family of Enterobacteriaceae, and consists of five species: P. mirabilis, P. vulgaris, P. morganii, P. penneri and P. myxofaciens. They are distinguished from the rest of Enterobacteriaceae by their ability to deaminate phenylalanine and tryptophane. They hydrolyze urea and gelatin and fail to ferment lactose, mannose, dulcitol and malonate; and do not form lysine and arginine decarboxylase or beta-galactosidase [1]. Colonies produce distinct "burned chocolate" odor and frequently show the characteristics of swarming motility on solid media. P. mirabilis, P. vulgaris and P. morganii are widely recognized human pathogens. They have been isolated from urinary tract infections, wounds, ear, and nosocomial bacteremic infections, often in immuncompromised patients [2-6]. P. myxofaciens has no clinical interest to this time. P. penneri as species nova was nominated by the recommendation of Hickman and co-workers [7]. Formerly it was recognized as P. vulgaris biogroup 1 or indole negative P. vulgaris [8, 9]. Although it has been less commonly isolated from clinical samples than the other three human pathogenic Proteus species, it has nevertheless been connected with infections of the urinary tract, wounds and has been isolated from the feces of both healthy and diarrheic individuals [10-12]. Potential virulence factors responsible for virulence of Proteae are: IgA protease, urease, type3 fimbriae associated with MR/K haemagglutinins of at least two antigenic types, endotoxin, swarming motility and HlyA and/or HpmA type hemolysins [for review see ref. 13]. In the followings we give a survey of accumulated concepts about the position and characteristics of HlyA type alpha-hemolysins both in general and with emphasis on virulence functions in the tribe of Proteae.

  7. Orientation discrimination of single-stranded DNA inside the α-hemolysin membrane channel

    NASA Astrophysics Data System (ADS)

    Mathé, Jérôme; Aksimentiev, Aleksei; Nelson, David R.; Schulten, Klaus; Meller, Amit

    2005-08-01

    We characterize the voltage-driven motion and the free motion of single-stranded DNA (ssDNA) molecules captured inside the ≈1.5-nm α-hemolysin pore, and show that the DNA-channel interactions depend strongly on the orientation of the ssDNA molecules with respect to the pore. Remarkably, the voltage-free diffusion of the 3‧-threaded DNA (in the trans to cis direction) is two times slower than the corresponding 5‧-threaded DNA having the same poly(dA) sequence. Moreover, the ion currents flowing through the blocked pore with either a 3‧-threaded DNA or 5‧ DNA differ by ≈30%. All-atom molecular dynamics simulations of our system reveal a microscopic mechanism for the asymmetric behavior. In a confining pore, the ssDNA straightens and its bases tilt toward the 5‧ end, assuming an asymmetric conformation. As a result, the bases of a 5‧-threaded DNA experience larger effective friction and forced reorientation that favors co-passing of ions. Our results imply that the translocation process through a narrow pore is more complicated than previously believed and involves base tilting and stretching of ssDNA molecules inside the confining pore. Author contributions: K.S. and A.M. designed research; J.M., A.A., D.R.N., K.S., and A.M. performed research; J.M., A.A., and A.M. analyzed data; J.M., A.A., D.R.N., K.S., and A.M. wrote the paper; A.A. and K.S. performed molecular dynamics simulations; and D.R.N. performed calculations.This paper was submitted directly (Track II) to the PNAS office.Abbreviations: α-HL, α-hemolysin MD, molecular dynamics; ssDNA, single-stranded DNA.

  8. [Analysis of thermostable direct hemolysin-producing Vibrio parahaemolyticus by pulsed-field gel electrophoresis].

    PubMed

    Kubota, T

    1999-10-01

    We investigated the source of thermostable direct hemolysin-producing Vibrio parahaemolticus infection (positive strains) that causes Vibrio parahaemolticus food poisoning. We investigated the coincidence rate of serotypes isolated from samples of sea water used to store clams in 1998 in Shizuoka Prefecture, and those isolated from patients who developed symptoms of food poisoning in the same year. Furthermore, using isolated types 03:K6 and 04:K68, We treated the chromosomal DNA with a restriction endonuclease Sfi I and compared the digestion patterns by pulsed-field gel electrophoresis (PFGE). (1) Of 225 samples of sea water used to store clams, the thermostable direct hemolysin gene was detected in 23 samples by the PCR method. Among these 23 samples, 10 positive strains were detected in five samples. The serotypes of these productive strains were 03:K6 (four isolates), 03:K37 (two isolates), 04:K8 (one isolate), 04:K9 (two isolates) and 04:K68 (one isolate). (2) The five serotypes isolated from the sea water samples were consistent with those of 17 of 17 cases (100%) of which serotypes could be confirmed by this institute and 94 of 100 strains (94%) isolated in a large scale outbreak of food poisoning that occurred in the same year. (3) Using types 03:K6 and 04:K68 isolated from sea water samples and patients, chromosomal DNA were compared among the isolates by PFGE. As a result, of 28 isolates examined, 26 isolates showed a similar electrophoretic migration pattern between the sources and serotypes. The etiologic strains for Vibrio parahaemolyticus food poisoning appear to have been derived from the environment. Regarding the findings that types 03:K6 and 04:K68 showed a similar electrophoretic migration pattern, these types can be considered to belong to the same PFGE type.

  9. Hybrid MD-Nernst Planck Model of Alpha-hemolysin Conductance Properties

    NASA Technical Reports Server (NTRS)

    Cozmuta, Ioana; O'Keefer, James T.; Bose, Deepak; Stolc, Viktor

    2006-01-01

    Motivated by experiments in which an applied electric field translocates polynucleotides through an alpha-hemolysin protein channel causing ionic current transient blockade, a hybrid simulation model is proposed to predict the conductance properties of the open channel. Time scales corresponding to ion permeation processes are reached using the Poisson-Nemst-Planck (PNP) electro-diffusion model in which both solvent and local ion concentrations are represented as a continuum. The diffusion coefficients of the ions (K(+) and Cl(-)) input in the PNP model are, however, calculated from all-atom molecular dynamics (MD). In the MD simulations, a reduced representation of the channel is used. The channel is solvated in a 1 M KCI solution, and an external electric field is applied. The pore specific diffusion coefficients for both ionic species are reduced 5-7 times in comparison to bulk values. Significant statistical variations (17-45%) of the pore-ions diffusivities are observed. Within the statistics, the ionic diffusivities remain invariable for a range of external applied voltages between 30 and 240mV. In the 2D-PNP calculations, the pore stem is approximated by a smooth cylinder of radius approx. 9A with two constriction blocks where the radius is reduced to approx. 6A. The electrostatic potential includes the contribution from the atomistic charges. The MD-PNP model shows that the atomic charges are responsible for the rectifying behaviour and for the slight anion selectivity of the a-hemolysin pore. Independent of the hierarchy between the anion and cation diffusivities, the anionic contribution to the total ionic current will dominate. The predictions of the MD-PNP model are in good agreement with experimental data and give confidence in the present approach of bridging time scales by combining a microscopic and macroscopic model.

  10. Hybrid MD-Nernst Planck Model of Alpha-hemolysin Conductance Properties

    NASA Technical Reports Server (NTRS)

    Cozmuta, Ioana; O'Keefer, James T.; Bose, Deepak; Stolc, Viktor

    2006-01-01

    Motivated by experiments in which an applied electric field translocates polynucleotides through an alpha-hemolysin protein channel causing ionic current transient blockade, a hybrid simulation model is proposed to predict the conductance properties of the open channel. Time scales corresponding to ion permeation processes are reached using the Poisson-Nemst-Planck (PNP) electro-diffusion model in which both solvent and local ion concentrations are represented as a continuum. The diffusion coefficients of the ions (K(+) and Cl(-)) input in the PNP model are, however, calculated from all-atom molecular dynamics (MD). In the MD simulations, a reduced representation of the channel is used. The channel is solvated in a 1 M KCI solution, and an external electric field is applied. The pore specific diffusion coefficients for both ionic species are reduced 5-7 times in comparison to bulk values. Significant statistical variations (17-45%) of the pore-ions diffusivities are observed. Within the statistics, the ionic diffusivities remain invariable for a range of external applied voltages between 30 and 240mV. In the 2D-PNP calculations, the pore stem is approximated by a smooth cylinder of radius approx. 9A with two constriction blocks where the radius is reduced to approx. 6A. The electrostatic potential includes the contribution from the atomistic charges. The MD-PNP model shows that the atomic charges are responsible for the rectifying behaviour and for the slight anion selectivity of the a-hemolysin pore. Independent of the hierarchy between the anion and cation diffusivities, the anionic contribution to the total ionic current will dominate. The predictions of the MD-PNP model are in good agreement with experimental data and give confidence in the present approach of bridging time scales by combining a microscopic and macroscopic model.

  11. Identification and partial characterization of a novel hemolysin from Leptospira interrogans serovar lai.

    PubMed

    Lee, S H; Kim, K A; Park, Y G; Seong, I W; Kim, M J; Lee, Y J

    2000-08-22

    It has been suggested that leptospiral hemolysins are important in the virulence and pathogenesis of leptospirosis. We have isolated an Escherichia coli clone carrying the 7.8kb DNA insert from a genomic library of Leptospira interrogans serovar lai by plaque hybridization using a sequence derived from the sphingomyelinase C gene (sphA) of L. borgpetersenii. The clone showed a clear beta-hemolytic zone on sheep blood agar and high hemolytic activities on both human and sheep erythrocytes in liquid assays. The clone carried at least two genes responsible for the hemolytic activities, encoded by two open reading frames of 1662 and 816 nucleotides, which are named sphH and hap-1 (hemolysis associated protein-1), respectively. The SphH showed 75% homology to the SphA at the amino acid level, and the Hap-1 showed no significant homology in major databases. Interestingly, however, E. coli cells harboring sphH did not show sphingomyelinase or phospholipase activities. Moreover, SphH-mediated hemolysis was osmotically protected by polyethylene glycol 5000, suggesting that the hemolysis is likely to be caused by pore formation on the membrane. The SphH was successfully expressed in E. coli as a histidine (His)-SphH fusion protein. Both sphH and hap-1 were highly conserved among the Leptospira species, except for the absence of sphH in non-pathogenic L. biflexa serovar patoc. We concluded that the SphH is a novel hemolysin of a pathogenic Leptospira species, which may be a putative pore-forming protein.

  12. Molecular detection of HpmA and HlyA hemolysin of uropathogenic Proteus mirabilis.

    PubMed

    Cestari, Silvia Emanoele; Ludovico, Marilucia Santos; Martins, Fernando Henrique; da Rocha, Sérgio Paulo Dejato; Elias, Waldir Pereira; Pelayo, Jacinta Sanchez

    2013-12-01

    Urinary tract infection (UTI) is one of the bacterial infections frequently documented in humans. Proteus mirabilis is associated with UTI mainly in individuals with urinary tract abnormality or related with vesicular catheterism and it can be difficult to treat because of the formation of stones in the bladder and kidneys. These stones are formed due to the presence of urease synthesized by the bacteria. Another important factor is that P. mirabilis produces hemolysin HpmA, used by the bacteria to damage the kidney tissues. Proteus spp. samples can also express HlyA hemolysin, similar to that found in Escherichia coli. A total of 211 uropathogenic P. mirabilis isolates were analyzed to detect the presence of the hpmA and hpmB genes by the techniques of polymerase chain reaction (PCR) and dot blot and hlyA by PCR. The hpmA and hpmB genes were expressed by the RT-PCR technique and two P. mirabilis isolates were sequenced for the hpmA and hpmB genes. The presence of the hpmA and hpmB genes was confirmed by PCR in 205 (97.15 %) of the 211 isolates. The dot blot confirmed the presence of the hpmA and hpmB genes in the isolates that did not amplify in the PCR. None of the isolates studied presented the hlyA gene. The hpmA and hpmB genes that were sequenced presented 98 % identity with the same genes of the HI4320 P. mirabilis sample. This study showed that the PCR technique has good sensitivity for detecting the hpmA and hpmB genes of P. mirabilis.

  13. Cell-free synthesis of functional thermostable direct hemolysins of Vibrio parahaemolyticus.

    PubMed

    Bechlars, Silke; Wüstenhagen, Doreen A; Drägert, Katja; Dieckmann, Ralf; Strauch, Eckhard; Kubick, Stefan

    2013-12-15

    Vibrio parahaemolyticus is a recognized enteropathogen causing diarrhea in humans and is one of the major causes of seafoodborne gastroenteritis. An important virulence factor is thermostable direct hemolysin (TDH), a pore-forming toxin, which is able to lyse eukaryotic cells. The active toxin is a tetramer of four identical protein subunits, which is secreted by the pathogen after cleavage of a signal peptide. To establish diagnostic detection systems for TDH we expressed the hemolysin with and without the signal peptide in a prokaryotic cell-free system to obtain pure toxin. In order to purify and to facilitate the isolation from cell lysates we synthesized TDH variants with different tags. Important regulatory sequences for cell-free protein synthesis as well as sequences for N-terminal Strep-tag and C-terminal 6xHis-tag were added by a two-step PCR. For the expression in the cell-free system these linear tdh templates were subjected directly to prokaryotic cell extracts. Protein yields were in the range of 500-600 μg/ml for the preproteins and approx. 300-400 μg/ml for the mature proteins. The identities of expressed proteins were further confirmed by SDS-PAGE, immunological and MALDI-TOF mass spectrometric analyses. The functionality of newly synthesized toxin variants was tested by performing qualitative and semiquantitative hemolysis assays. Cell-free produced mature TDH and its variants were active while the preprotein and its derivatives lacked hemolytic activity. A C-terminal 6xHis-tag showed less influence on functionality compared to the N-terminal Strep-tag.

  14. Production of hemolysin BL by Bacillus cereus group isolates of dairy origin is associated with whole-genome phylogenetic clade.

    PubMed

    Kovac, Jasna; Miller, Rachel A; Carroll, Laura M; Kent, David J; Jian, Jiahui; Beno, Sarah M; Wiedmann, Martin

    2016-08-09

    Bacillus cereus group isolates that produce diarrheal or emetic toxins are frequently isolated from raw milk and, in spore form, can survive pasteurization. Several species within the B. cereus group are closely related and cannot be reliably differentiated by established taxonomical criteria. While B. cereus is traditionally recognized as the principal causative agent of foodborne disease in this group, there is a need to better understand the distribution and expression of different toxin and virulence genes among B. cereus group food isolates to facilitate reliable characterization that allows for assessment of the likelihood of a given isolate to cause a foodborne disease. We performed whole genome sequencing of 22 B. cereus group dairy isolates, which represented considerable genetic diversity not covered by other isolates characterized to date. Maximum likelihood analysis of these genomes along with 47 reference genomes representing eight validly published species revealed nine phylogenetic clades. Three of these clades were represented by a single species (B. toyonensis -clade V, B. weihenstephanensis - clade VI, B. cytotoxicus - VII), one by two dairy-associated isolates (clade II; representing a putative new species), one by two species (B. mycoides, B. pseudomycoides - clade I) and four by three species (B. cereus, B. thuringiensis, B. anthracis - clades III-a, b, c and IV). Homologues of genes encoding a principal diarrheal enterotoxin (hemolysin BL) were distributed across all, except the B. cytotoxicus clade. Using a lateral flow immunoassay, hemolysin BL was detected in 13 out of 18 isolates that carried hblACD genes. Isolates from clade III-c (which included B. cereus and B. thuringiensis) consistently did not carry hblACD and did not produce hemolysin BL. Isolates from clade IV (B. cereus, B. thuringiensis) consistently carried hblACD and produced hemolysin BL. Compared to others, clade IV was significantly (p = 0.0001) more likely to produce

  15. Hemolysin and K antigens in relation to serotype and hemagglutination type of Escherichia coli isolated from extraintestinal infections.

    PubMed Central

    Evans, D J; Evans, D G; Höhne, C; Noble, M A; Haldane, E V; Lior, H; Young, L S

    1981-01-01

    Escherichia coli isolated from cases of bacteremia and from a variety of urinary tract infections were characterized according to serotype (O:H antigenicity), K type (possession of K1, K2, K3, K12, or K13), hemagglutination (HA) type, and production of beta-hemolysin. Results obtained with the bacteremia and urinary tract infection isolates were similar except for more hemolytic isolated from urine than from blood (42 versus 29%) and more K1+ isolates from blood than from urine (50 versus 29%). A close correlation was found between Ha type VI (production of fimbriae which mediate mannose-resistant HA of human and African green monkey erythrocytes) and the production of hemolysin or K1 capsular antigen or both. Most (95 of 98, or 95%) of the HA type VI+ blood isolates and most (146 of 164, or 89%) of the HA type VI+ urine isolates produced hemolysin or K1 or both, in contrast to 22 and 26%, respectively, of those belonging to HA types other than HA type VI. Also, 76% of all hemolytic and 70% of all K1+ isolates belonged to HA type VI. Remarkably few of the HA type VI+ isolates (13%) and even fewer of the HA type VI- isolates (3%) produced both K1 and hemolysin; these belonged mainly to serotypes O16:H6, O18:H7 and O2:H4. Other major serogroups were usually K1+/hemolysin- (O1, O7) or K1-/hemolysin+ (O2, O4, O6). At least 74% (262 of 351) and possibly as many as 83% (293 of 351) of those isolates which produced mannose-resistant HA of human erythrocytes were classified as HA type VI+; 31 isolates produced mannose-resistant HA with all erythrocytes tested. Taking serogroup and serotype into consideration, we conclude that the E. coli fimbrial hemagglutinin(s) responsible for the HA type VI phenotype will prove to be the same as the virulence-associated mannose-resistant adhesins of uropathogenic E. coli which other investigators have characterized as unique fimbrial antigens detectable by mannose-resistant HA of human erythrocytes. PMID:7007421

  16. Antibody-Forming Cells and Serum Hemolysin Responses of Pastel and Sapphire Mink Inoculated with Aleutian Disease Virus

    PubMed Central

    Lodmell, Donald L.; Bergman, R. Kaye; Hadlow, William J.

    1973-01-01

    The effect of Aleutian disease virus (ADV) on serum hemolysin titers and antibody-forming cells in lymph nodes and spleens of sapphire and pastel mink inoculated with goat erythrocytes (G-RBC) was investigated. ADV injected 1 day after primary antigenic stimulation with G-RBC did not depress the immune responses of either color phase for a period of 26 days. However, when G-RBC were injected 47 days after ADV, both the number of antibody-forming cells and hemolysin titers were more markedly depressed in sapphire than in pastel mink. The results are discussed in relation to the greater susceptibility of sapphire mink and the variable susceptibility of pastel mink to the Pullman isolate of ADV. PMID:4584051

  17. Cytotoxic activities of Leptospira interrogans hemolysin SphH as a pore-forming protein on mammalian cells.

    PubMed

    Lee, Seoung Hoon; Kim, Sangduk; Park, Seung Chul; Kim, Min Ja

    2002-01-01

    Leptospirosis is a spirochetal zoonosis that causes an acute febrile systemic illness in humans. Leptospira sp. hemolysins have been shown to be virulence factors for the pathogenesis of leptospirosis. Previously, we cloned a hemolysin SphH of Leptospira interrogans serovar lai, a homologue of L. borgpetersenii sphingomyelinase (SphA), from a genomic library (S. H. Lee, K. A. Kim, Y. K. Kim, I. W. Seong, M. J. Kim, and Y. J. Lee, Gene 254:19-28, 2000). Escherichia coli lysate harboring the sphH showed high hemolytic activities on sheep erythrocytes. However, it neither showed sphingomyelinase nor phospholipase activities, in contrast to SphA which was known to have sphingomyelinase activity. Interestingly, the SphH-mediated hemolysis on erythrocytes was osmotically protected by PEG 5000, suggesting that the SphH might have caused pore formation on the erythrocyte membrane. In the present study, we have prepared the Leptospira hemolysin SphH and investigated its hemolytic and cytotoxic activities on mammalian cells. SphH was shown to be a pore-forming protein on several mammalian cells: When treated with the SphH, the sheep erythrocyte membranes formed pores, which were morphologically confirmed by transmission electron microscopy. Furthermore, the SphH-mediated cytotoxicities on mammalian cells were demonstrated by the release of LDH and by inverted microscopic examinations. Finally, the immune serum against the full-length hemolysin could effectively neutralize the SphH-mediated hemolytic and cytotoxic activities. In conclusion, these results suggest that the virulence of Leptospira SphH was due to the pore formation on mammalian cell membranes.

  18. Regulation of Hemolysin Expression and Virulence of Staphylococcus aureus by a Serine/Threonine Kinase and Phosphatase

    PubMed Central

    Burnside, Kellie; Lembo, Annalisa; de los Reyes, Melissa; Iliuk, Anton; BinhTran, Nguyen-Thao; Connelly, James E.; Lin, Wan-Jung; Schmidt, Byron Z.; Richardson, Anthony R.; Fang, Ferric C.; Tao, Weiguo Andy; Rajagopal, Lakshmi

    2010-01-01

    Exotoxins, including the hemolysins known as the alpha (α) and beta (β) toxins, play an important role in the pathogenesis of Staphylococcus aureus infections. A random transposon library was screened for S. aureus mutants exhibiting altered hemolysin expression compared to wild type. Transposon insertions in 72 genes resulting in increased or decreased hemolysin expression were identified. Mutations inactivating a putative cyclic di-GMP synthetase and a serine/threonine phosphatase (Stp1) were found to reduce hemolysin expression, and mutations in genes encoding a two component regulator PhoR, LysR family transcriptional regulator, purine biosynthetic enzymes and a serine/threonine kinase (Stk1) increased expression. Transcription of the hla gene encoding α toxin was decreased in a Δstp1 mutant strain and increased in a Δstk1 strain. Microarray analysis of a Δstk1 mutant revealed increased transcription of additional exotoxins. A Δstp1 strain is severely attenuated for virulence in mice and elicits less inflammation and IL-6 production than the Δstk1 strain. In vivo phosphopeptide enrichment and mass spectrometric analysis revealed that threonine phosphorylated peptides corresponding to Stk1, DNA binding histone like protein (HU), serine-aspartate rich fibrinogen/bone sialoprotein binding protein (SdrE) and a hypothetical protein (NWMN_1123) were present in the wild type and not in the Δstk1 mutant. Collectively, these studies suggest that Stk1 mediated phosphorylation of HU, SrdE and NWMN_1123 affects S. aureus gene expression and virulence. PMID:20552019

  19. Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh.

    PubMed

    Bej, A K; Patterson, D P; Brasher, C W; Vickery, M C; Jones, D D; Kaysner, C A

    1999-06-01

    Vibrio parahaemolyticus is an important human pathogen which can cause gastroenteritis when consumed in raw or partially-cooked seafood. A multiplex PCR amplification-based detection of total and virulent strains of V. parahaemolyticus was developed by targeting thermolabile hemolysin encoded by tl, thermostable direct hemolysin encoded by tdh, and thermostable direct hemolysin-related trh genes. Following optimization using oligonucleotide primers targeting tl, tdh and trh genes, the multiplex PCR was applied to V. parahaemolyticus from 27 clinical, 43 seafood, 15 environmental, 7 strains obtained from various laboratories and 19 from oyster plants. All 111 V. parahaemolyticus isolates showed PCR amplification of the tl gene; however, only 60 isolates showed amplification of tdh, and 43 isolates showed amplification of the trh gene. Also, 18 strains showed amplification of the tdh gene, but these strains did not show amplification of the trh gene. However, one strain exhibited amplification for the trh but not the tdh gene, suggesting both genes need to be targeted in a PCR amplification reaction to detect all hemolysin-producing strains of this pathogen. The multiplex PCR approach was successfully used to detect various strains of V parahaemolyticus in seeded oyster tissue homogenate. Sensitivity of detection for all three target gene segments was at least between 10(1)-10(2) cfu per 10 g of alkaline peptone water enriched seeded oyster tissue homogenate. This high level of sensitivity of detection of this pathogen within 8 h of pre-enrichment is well within the action level (10(4) cfu per 1 g of shell stock) suggested by the National Seafood Sanitation Program guideline. Compared to conventional microbiological culture methods, this multiplex PCR approach is rapid and reliable for accomplishing a comprehensive detection of V. parahaemolyticus in shellfish.

  20. Hyperexpression of α-hemolysin explains enhanced virulence of sequence type 93 community-associated methicillin-resistant Staphylococcus aureus

    PubMed Central

    2014-01-01

    Background The community-associated methicillin-resistant S. aureus (CA-MRSA) ST93 clone is becoming dominant in Australia and is clinically highly virulent. In addition, sepsis and skin infection models demonstrate that ST93 CA-MRSA is the most virulent global clone of S. aureus tested to date. While the determinants of virulence have been studied in other clones of CA-MRSA, the basis for hypervirulence in ST93 CA-MRSA has not been defined. Results Here, using a geographically and temporally dispersed collection of ST93 isolates we demonstrate that the ST93 population hyperexpresses key CA-MRSA exotoxins, in particular α-hemolysin, in comparison to other global clones. Gene deletion and complementation studies, and virulence comparisons in a murine skin infection model, showed unequivocally that increased expression of α-hemolysin is the key staphylococcal virulence determinant for this clone. Genome sequencing and comparative genomics of strains with divergent exotoxin profiles demonstrated that, like other S. aureus clones, the quorum sensing agr system is the master regulator of toxin expression and virulence in ST93 CA-MRSA. However, we also identified a previously uncharacterized AraC/XylS family regulator (AryK) that potentiates toxin expression and virulence in S. aureus. Conclusions These data demonstrate that hyperexpression of α-hemolysin mediates enhanced virulence in ST93 CA-MRSA, and additional control of exotoxin production, in particular α-hemolysin, mediated by regulatory systems other than agr have the potential to fine-tune virulence in CA-MRSA. PMID:24512075

  1. Association between alpha-hemolysin production and HeLa cell-detaching activity in fecal isolates of Escherichia coli.

    PubMed Central

    Marques, L R; Abe, C M; Griffin, P M; Gomes, T A

    1995-01-01

    Escherichia coli isolates that cause detachment of cell monolayers during in vitro adherence assays (cell-detaching E. coli [CDEC]) were recently reported as a potential new group of enteropathogenic bacteria. In the present study, 269 E. coli isolates from feces of children 1 to 5 years of age were identified as CDEC in a detaching assay developed with HeLa cells. The great majority of these isolates were hemolytic within 3 h of growth on blood agar plates and hybridized with a DNA probe for alpha-hemolysin (93.7%), while most of the non-detaching isolates were hemolytic within 24 h (3.6%) or nonhemolytic (94.8%). E. coli isolates that produced alpha-hemolysin were found in 60 (30%) of 200 children with diarrhea and 47 (24%) of 200 age-matched controls. No statistical significance was found for the differences in alpha-hemolysin production among the matched pairs (P = 0.2). These data suggest that CDEC isolates are not associated with diarrhea in the population studied. PMID:8567910

  2. Single-molecule study of thymidine glycol and i-motif through the alpha-hemolysin ion channel

    NASA Astrophysics Data System (ADS)

    He, Lidong

    Nanopore-based devices have emerged as a single-molecule detection and analysis tool for a wide range of applications. Through electrophoretically driving DNA molecules across a nanosized pore, a lot of information can be received, including unfolding kinetics and DNA-protein interactions. This single-molecule method has the potential to sequence kilobase length DNA polymers without amplification or labeling, approaching "the third generation" genome sequencing for around $1000 within 24 hours. alpha-Hemolysin biological nanopores have the advantages of excellent stability, low-noise level, and precise site-directed mutagenesis for engineering this protein nanopore. The first work presented in this thesis established the current signal of the thymidine glycol lesion in DNA oligomers through an immobilization experiment. The thymidine glycol enantiomers were differentiated from each other by different current blockage levels. Also, the effect of bulky hydrophobic adducts to the current blockage was investigated. Secondly, the alpha-hemolysin nanopore was used to study the human telomere i-motif and RET oncogene i-motif at a single-molecule level. In Chapter 3, it was demonstrated that the alpha-hemolysin nanopore can differentiate an i-motif form and single-strand DNA form at different pH values based on the same sequence. In addition, it shows potential to differentiate the folding topologies generated from the same DNA sequence.

  3. Catalase, superoxide dismutase, and hemolysin activities and heat susceptibility of Listeria monocytogenes after growth in media containing sodium chloride.

    PubMed Central

    Dallmier, A W; Martin, S E

    1990-01-01

    The activities of catalase, superoxide dismutase, and a thiol-activated hemolysin produced by four strains of Listeria monocytogenes propagated in media containing various concentrations of sodium chloride were examined. L. monocytogenes 7644 showed an increase in catalase, superoxide dismutase, and thiol-activated hemolysin activities when grown in a medium containing 2.5% (wt/vol) NaCl followed by a decrease in activities when propagated in media containing salt concentrations higher than 2.5%. L. monocytogenes LCDC 81-861 demonstrated enhanced catalase activity when grown in media containing NaCl ranging from 1.5 to 4.6% and increased superoxide dismutase activity when propagated in media containing 1.5 to 3.5% NaCl. L. monocytogenes LCDC 81-861 did not exhibit any detectable hemolysin activity under the conditions tested. After growth in various NaCl-containing media, both strains were subjected to sublethal heat injury for 30 min at 55 degrees C. L. monocytogenes LCDC 81-861 showed increased sensitivity to the heat treatment when grown in media containing 4.6 and 6.5% NaCl, whereas L. monocytogenes 7644 did not exhibit enhanced heat lability. PMID:2125816

  4. Alpha Hemolysin Induces an Increase of Erythrocytes Calcium: A FLIM 2-Photon Phasor Analysis Approach

    PubMed Central

    Sanchez, Susana; Bakás, Laura; Gratton, Enrico; Herlax, Vanesa

    2011-01-01

    α-hemolysin (HlyA) from Escherichia coli is considered as the prototype of a family of toxins called RTX (repeat in toxin), a group of proteins that share genetic and structural features. HlyA is an important virulence factor in E. coli extraintestinal infections, such as meningitis, septicemia and urinary infections. High concentrations of the toxin cause the lysis of several cells such as erythrocytes, granulocytes, monocytes, endothelial and renal epithelial cells of different species. At low concentrations it induces the production of cytokines and apoptosis. Since many of the subcytolytic effects in other cells have been reported to be triggered by the increase of intracellular calcium, we followed the calcium concentration inside the erythrocytes while incubating with sublytic concentrations of HlyA. Calcium concentration was monitored using the calcium indicator Green 1, 2-photon excitation, and fluorescence lifetime imaging microscopy (FLIM). Data were analyzed using the phasor representation. In this report, we present evidence that, at sublytic concentrations, HlyA induces an increase of calcium concentration in rabbit erythrocytes in the first 10 s. Results are discussed in relation to the difficulties of measuring calcium concentrations in erythrocytes where hemoglobin is present, the contribution of the background and the heterogeneity of the response observed in individual cells. PMID:21698153

  5. Interaction of the noncovalent molecular adapter, beta-cyclodextrin, with the staphylococcal alpha-hemolysin pore.

    PubMed Central

    Gu, L Q; Bayley, H

    2000-01-01

    Cyclodextrins act as noncovalent molecular adapters when lodged in the lumen of the alpha-hemolysin (alphaHL) pore. The adapters act as binding sites for channel blockers, thereby offering a basis for the detection of a variety of organic molecules with alphaHL as a biosensor element. To further such studies, it is important to find conditions under which the dwell time of cyclodextrins in the lumen of the pore is extended. Here, we use single-channel recording to explore the pH- and voltage-dependence of the interaction of beta-cyclodextrin (betaCD) with alphaHL. betaCD can access its binding site only from the trans entrance of pores inserted from the cis side of a bilayer. Analysis of the binding kinetics shows that there is a single binding site for betaCD, with an apparent equilibrium dissociation constant that varies by >100-fold under the conditions explored. The dissociation rate constant for the neutral betaCD molecule varies with pH and voltage, a result that is incompatible with two states of the alphaHL pore, one of high and the other of low affinity. Rather, the data suggest that the actual equilibrium dissociation constant for the alphaHL. betaCD complex varies continuously with the transmembrane potential. PMID:11023901

  6. Imperatorin inhibits the expression of alpha-hemolysin in Staphylococcus aureus strain BAA-1717 (USA300).

    PubMed

    Ouyang, Ping; Chen, Junjie; Sun, Mao; Yin, Zhongqiong; Lin, Juchun; Fu, Hualin; Shu, Gang; He, Changliang; Lv, Cheng; Deng, Xuming; Wang, Kaiyu; Geng, Yi; Yin, Lizi

    2016-07-01

    Both community-associated and hospital-acquired infections with methicillin-resistant Staphylococcus aureus (MRSA) have been increasingly reported around the world in the past 20 years. In 2006, the Centers for Disease Control and Prevention reported that 64 % of MRSA isolates were of the USA300 clonal type in infected patients in USA. The aim of our study was to estimate the in vitro effect of imperatorin on MRSA strain BAA-1717 (USA300). The effects of imperatorin on alpha-hemolysin (Hla) production, when strain BAA-1717 was co-cultured with sub-inhibitory concentrations of imperatorin, were analysed using susceptibility testing, hemolysis assays, western blotting and real-time PCR. Live/Dead analysis and cytotoxicity assays were employed to examine the protective effect of imperatorin against the strain BAA-1717-mediated injury of human alveolar epithelial cells (A549). The results showed that imperatorin has no anti-S. aureus activity at the tested concentrations in vitro. However, imperatorin can observably inhibit the production of Hla in culture supernatants and reduce the transcriptional levels of hla (the gene encoding Hla) and arg (the accessory gene regulator). Imperatorin prevented Hla-mediated A549 epithelial cell injury in a co-culture system. In conclusion, our results suggested that imperatorin has the potential to be developed as a new anti-virulence drug candidate for managing S. aureus infection.

  7. Exploring transmembrane transport through alpha-hemolysin with grid-steered molecular dynamics.

    PubMed

    Wells, David B; Abramkina, Volha; Aksimentiev, Aleksei

    2007-09-28

    The transport of biomolecules across cell boundaries is central to cellular function. While structures of many membrane channels are known, the permeation mechanism is known only for a select few. Molecular dynamics (MD) is a computational method that can provide an accurate description of permeation events at the atomic level, which is required for understanding the transport mechanism. However, due to the relatively short time scales accessible to this method, it is of limited utility. Here, we present a method for all-atom simulation of electric field-driven transport of large solutes through membrane channels, which in tens of nanoseconds can provide a realistic account of a permeation event that would require a millisecond simulation using conventional MD. In this method, the average distribution of the electrostatic potential in a membrane channel under a transmembrane bias of interest is determined first from an all-atom MD simulation. This electrostatic potential, defined on a grid, is subsequently applied to a charged solute to steer its permeation through the membrane channel. We apply this method to investigate permeation of DNA strands, DNA hairpins, and alpha-helical peptides through alpha-hemolysin. To test the accuracy of the method, we computed the relative permeation rates of DNA strands having different sequences and global orientations. The results of the G-SMD simulations were found to be in good agreement in experiment.

  8. Directionality of substrate translocation of the hemolysin A Type I secretion system

    PubMed Central

    Lenders, Michael H. H.; Weidtkamp-Peters, Stefanie; Kleinschrodt, Diana; Jaeger, Karl-Erich; Smits, Sander H. J.; Schmitt, Lutz

    2015-01-01

    Type 1 secretion systems (T1SS) of Gram-negative bacteria are responsible for the secretion of various proteases, lipases, S-layer proteins or toxins into the extracellular space. The paradigm of these systems is the hemolysin A (HlyA) T1SS of Escherichia coli. This multiple membrane protein complex is able to secrete the toxin HlyA in one step across both E. coli membranes. Common to all secreted T1SS substrates is a C-terminal secretion sequence being necessary as well as sufficient for secretion. However, it is not known whether transport occurs directionally, i.e. the N- or the C-terminus of T1SS substrates is secreted first. We have addressed this question by constructing HlyA fusions with the rapidly folding eGFP resulting in a stalled T1SS. Differential labeling and subsequent fluorescence microscopic detection of C- and N-terminal parts of the fusions allowed us to demonstrate vectorial transport of HlyA through the T1SS with the C-terminus appearing first outside the bacterial cells. PMID:26212107

  9. Auto-Assembling Detoxified Staphylococcus aureus Alpha-Hemolysin Mimicking the Wild-Type Cytolytic Toxin

    PubMed Central

    Fiaschi, Luigi; Di Palo, Benedetta; Scarselli, Maria; Pozzi, Clarissa; Tomaszewski, Kelly; Galletti, Bruno; Nardi-Dei, Vincenzo; Arcidiacono, Letizia; Mishra, Ravi P. N.; Mori, Elena; Pallaoro, Michele; Falugi, Fabiana; Torre, Antonina; Fontana, Maria Rita; Soriani, Marco; Bubeck Wardenburg, Juliane; Grandi, Guido; Rappuoli, Rino

    2016-01-01

    Staphylococcus aureus alpha-hemolysin (Hla) assembles into heptameric pores on the host cell membrane, causing lysis, apoptosis, and junction disruption. Herein, we present the design of a newly engineered S. aureus alpha-toxin, HlaPSGS, which lacks the predicted membrane-spanning stem domain. This protein is able to form heptamers in aqueous solution in the absence of lipophilic substrata, and its structure, obtained by transmission electron microscopy and single-particle reconstruction analysis, resembles the cap of the wild-type cytolytic Hla pore. HlaPSGS was found to be impaired in binding to host cells and to its receptor ADAM10 and to lack hemolytic and cytotoxic activity. Immunological studies using human sera as well as sera from mice convalescent from S. aureus infection suggested that the heptameric conformation of HlaPSGS mimics epitopes exposed by the cytolytic Hla pore during infection. Finally, immunization with this newly engineered Hla generated high protective immunity against staphylococcal infection in mice. Overall, this study provides unprecedented data on the natural immune response against Hla and suggests that the heptameric HlaPSGS is a highly valuable vaccine candidate against S. aureus. PMID:27030589

  10. Fluctuating bottleneck model studies on kinetics of DNA escape from α-hemolysin nanopores.

    PubMed

    Bian, Yukun; Wang, Zilin; Chen, Anpu; Zhao, Nanrong

    2015-11-14

    We have proposed a fluctuation bottleneck (FB) model to investigate the non-exponential kinetics of DNA escape from nanometer-scale pores. The basic idea is that the escape rate is proportional to the fluctuating cross-sectional area of DNA escape channel, the radius r of which undergoes a subdiffusion dynamics subjected to fractional Gaussian noise with power-law memory kernel. Such a FB model facilitates us to obtain the analytical result of the averaged survival probability as a function of time, which can be directly compared to experimental results. Particularly, we have applied our theory to address the escape kinetics of DNA through α-hemolysin nanopores. We find that our theoretical framework can reproduce the experimental results very well in the whole time range with quite reasonable estimation for the intrinsic parameters of the kinetics processes. We believe that FB model has caught some key features regarding the long time kinetics of DNA escape through a nanopore and it might provide a sound starting point to study much wider problems involving anomalous dynamics in confined fluctuating channels.

  11. α-Hemolysin pore formation into a supported phospholipid bilayer using cell-free expression.

    PubMed

    Chalmeau, Jerome; Monina, Nadezda; Shin, Jonghyeon; Vieu, Christophe; Noireaux, Vincent

    2011-01-01

    Cell-free protein synthesis is becoming a serious alternative to cell-based protein expression. Cell-free systems can deliver large amounts of cytoplasmic recombinant proteins after a few hours of incubation. Recent studies have shown that membrane proteins can be also expressed in cell-free reactions and directly inserted into phospholipid membranes. In this work, we present a quantitative method to study in real time the concurrent cell-free expression and insertion of membrane proteins into phospholipid bilayers. The pore-forming protein α-hemolysin, fused to the reporter protein eGFP, was used as a model of membrane protein. Cell-free expression of the toxin in solution and inside large synthetic phospholipid vesicles was measured by fluorometry and fluorescence microscopy respectively. A quartz crystal microbalance with dissipation was used to characterize the interaction of the protein with a supported phospholipid bilayer. The cell-free reaction was directly incubated onto the bilayer inside the microbalance chamber while the frequency and the dissipation signals were monitored. The presence of pores in the phospholipid bilayer was confirmed by atomic force microscopy. A model is presented which describes the kinetics of adsorption of the expressed protein on the phospholipid bilayer. The combination of cell-free expression, fluorescence microscopy and quartz crystal microbalance-dissipation is a new quantitative approach to study the interaction of membrane proteins with phospholipid bilayers. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Membrane-Pore Forming Characteristics of the Bordetella pertussis CyaA-Hemolysin Domain.

    PubMed

    Kurehong, Chattip; Kanchanawarin, Chalermpol; Powthongchin, Busaba; Katzenmeier, Gerd; Angsuthanasombat, Chanan

    2015-04-30

    Previously, the 126-kDa Bordetella pertussis CyaA pore-forming/hemolysin (CyaA-Hly) domain was shown to retain its hemolytic activity causing lysis of susceptible erythrocytes. Here, we have succeeded in producing, at large quantity and high purity, the His-tagged CyaA-Hly domain over-expressed in Escherichia coli as a soluble hemolytically-active form. Quantitative assays of hemolysis against sheep erythrocytes revealed that the purified CyaA-Hly domain could function cooperatively by forming an oligomeric pore in the target cell membrane with a Hill coefficient of ~3. When the CyaA-Hly toxin was incorporated into planar lipid bilayers (PLBs) under symmetrical conditions at 1.0 M KCl, 10 mM HEPES buffer (pH 7.4), it produced a clearly resolved single channel with a maximum conductance of ~35 pS. PLB results also revealed that the CyaA-Hly induced channel was unidirectional and opened more frequently at higher negative membrane potentials. Altogether, our results first provide more insights into pore-forming characteristics of the CyaA-Hly domain as being the major pore-forming determinant of which the ability to induce such ion channels in receptor-free membranes could account for its cooperative hemolytic action on the target erythrocytes.

  13. Translocation of single stranded DNA through the α-hemolysin protein nanopore in acidic solutions

    PubMed Central

    de Zoysa, Ranulu Samanthi S.; Krishantha, D.M. Milan; Zhao, Qitao; Gupta, Jyoti; Guan, Xiyun

    2012-01-01

    The effect of acidic pH on the translocation of single-stranded DNA through the α-hemolysin pore is investigated. Two significantly different types of events, i.e., deep blockades and shallow blockades, are observed at low pH. The residence times of the shallow blockades are not significantly different from those of the DNA translocation events obtained at or near physiological pH, while the deep blockades have much larger residence times and blockage amplitudes. With a decrease in the pH of the electrolyte solution, the percentage of the deep blockades in the total events increases. Furthermore, the mean residence time of these long-lived events is dependent on the length of DNA, and also varies with the nucleotide base, suggesting that they are appropriate for use in DNA analysis. In addition to be used as an effective approach to affect DNA translocation in the nanopore, manipulation of the pH of the electrolyte solution provides a potential means to greatly enhance the sensitivity of nanopore stochastic sensing. PMID:21997574

  14. Driven diffusion against electrostatic or effective energy barrier across α-hemolysin

    SciTech Connect

    Ansalone, Patrizio; Chinappi, Mauro; Rondoni, Lamberto; Cecconi, Fabio

    2015-10-21

    We analyze the translocation of a charged particle across an α-Hemolysin (αHL) pore in the framework of a driven diffusion over an extended energy barrier generated by the electrical charges of the αHL. A one-dimensional electrostatic potential is extracted from the full 3D solution of the Poisson’s equation. We characterize the particle transport under the action of a constant forcing by studying the statistics of the translocation time. We derive an analytical expression of translocation time average that compares well with the results from Brownian dynamic simulations of driven particles over the electrostatic potential. Moreover, we show that the translocation time distributions can be perfectly described by a simple theory which replaces the true barrier by an equivalent structureless square barrier. Remarkably, our approach maintains its accuracy also for low-applied voltage regimes where the usual inverse-Gaussian approximation fails. Finally, we discuss how the comparison between the simulated time distributions and their theoretical prediction results to be greatly simplified when using the notion of the empirical Laplace transform technique.

  15. Pore formation of thermostable direct hemolysin secreted from Vibrio parahaemolyticus in lipid bilayers.

    PubMed

    Takahashi, Akira; Yamamoto, Chiyo; Kodama, Toshio; Yamashita, Kanami; Harada, Nagakatsu; Nakano, Masayuki; Honda, Takeshi; Nakaya, Yutaka

    2006-01-01

    Vibrio parahaemolyticus secretes thermostable direct hemolysin (TDH), a major virulence factor. Earlier studies report that TDH is a pore-forming toxin. However, the characteristics of pores formed by TDH in the lipid bilayer, which is permeable to small ions, remain to be elucidated. Ion channel-like activities were observed in lipid bilayers containing TDH. Three types of conductance were identified. All the channels displayed relatively low ion selectivity, and similar ion permeability. The Cl- channel inhibitors, DIDS, glybenclamide, and NPPB, did not affect the channel activity of pores formed by TDH. R7, a mutant toxin of TDH, also forms pores with channel-like activity in lipid bilayers. The ion permeability of these channels is similar to that of TDH. R7 binds cultured cells and liposomes to a lower extent, compared to TDH. R7 does not display significant hemolytic activity and cell cytotoxicity, possibly owing to the difficulty of insertion into lipid membranes. Once R7 is assembled within lipid membranes, it may assume the same structure as TDH. The authors propose that the single glycine at position 62, substituted with serine in the R7 mutant toxin, plays an important role in TDH insertion into the lipid bilayer.

  16. Potential antitumor therapeutic application of Grimontia hollisae thermostable direct hemolysin mutants.

    PubMed

    Huang, Sheng-Cih; Wang, Yu-Kuo; Huang, Wan-Ting; Kuo, Tsam-Ming; Yip, Bak-Sau; Li, Tien-Hsiung Thomas; Wu, Tung-Kung

    2015-04-01

    We report on the preparation of a new type of immunotoxin by conjugation of an epidermal growth factor receptor (EGFR)-binding peptide and an R46E mutation of thermostable direct hemolysin from Grimontia hollisae, (Gh-TDH(R) (46E) /EB). The hybrid immunotoxin was purified to homogeneity and showed a single band with slight slower mobility than that of Gh-TDH(R) (46E) . Cytotoxicity assay of Gh-TDH(R) (46E) /EB on EGFR highly, moderately, low, and non-expressed cells, A431, MDA-MB-231, HeLa, and HEK293 cells, respectively, showed apparent cytotoxicity on A431 and MDA-MB-231 cells but not on HeLa or HEK293 cells. In contrast, no cytotoxicity was observed for these cells treated with either Gh-TDH(R) (46E) or EB alone, indicating enhanced cytotoxic efficacy of Gh-TDH(R) (46E) by the EGFR binding moiety. Further antitumor activity assay of Gh-TDH(R) (46E) /EB in a xenograft model of athymic nude mice showed obvious shrinkage of tumor size and degeneration, necrosis, and lesions of tumor tissues compared to the normal tissues. Therefore, the combination of Gh-TDH(R) (46E) with target affinity agents opens new possibilities for pharmacological treatment of cancers and potentiates the anticancer drug's effect.

  17. In vivo quantification of the secretion rates of the hemolysin A Type I secretion system

    PubMed Central

    Lenders, Michael H. H.; Beer, Tobias; Smits, Sander H. J.; Schmitt, Lutz

    2016-01-01

    Type 1 secretion systems (T1SS) of Gram-negative bacteria secrete a broad range of substrates into the extracellular space. Common to all substrates is a C-terminal secretion sequence and nonapeptide repeats in the C-terminal part that bind Ca2+ in the extracellular space, to trigger protein folding. Like all T1SS, the hemolysin A (HlyA) T1SS of Escherichia coli consists of an ABC transporter, a membrane fusion protein and an outer membrane protein allowing the one step translocation of the substrate across both membranes. Here, we analyzed the secretion rate of the HlyA T1SS. Our results demonstrate that the rate is independent of substrate-size and operates at a speed of approximately 16 amino acids per transporter per second. We also demonstrate that the rate is independent of the extracellular Ca2+ concentration raising the question of the driving force of substrate secretion by T1SS in general. PMID:27616645

  18. Driven diffusion against electrostatic or effective energy barrier across α-hemolysin

    NASA Astrophysics Data System (ADS)

    Ansalone, Patrizio; Chinappi, Mauro; Rondoni, Lamberto; Cecconi, Fabio

    2015-10-01

    We analyze the translocation of a charged particle across an α-Hemolysin (αHL) pore in the framework of a driven diffusion over an extended energy barrier generated by the electrical charges of the αHL. A one-dimensional electrostatic potential is extracted from the full 3D solution of the Poisson's equation. We characterize the particle transport under the action of a constant forcing by studying the statistics of the translocation time. We derive an analytical expression of translocation time average that compares well with the results from Brownian dynamic simulations of driven particles over the electrostatic potential. Moreover, we show that the translocation time distributions can be perfectly described by a simple theory which replaces the true barrier by an equivalent structureless square barrier. Remarkably, our approach maintains its accuracy also for low-applied voltage regimes where the usual inverse-Gaussian approximation fails. Finally, we discuss how the comparison between the simulated time distributions and their theoretical prediction results to be greatly simplified when using the notion of the empirical Laplace transform technique.

  19. Lectin, hemolysin and protease inhibitors in seed fractions with ovicidal activity against Haemonchus contortus.

    PubMed

    Salles, Hévila Oliveira; Braga, Ana Carolina Linhares; Nascimento, Maria Thayana dos Santos Canuto do; Sousa, Ana Márjory Paiva; Lima, Adriano Rodrigues; Vieira, Luiz da Silva; Cavalcante, Antônio Cézar Rocha; Egito, Antonio Silvio do; Andrade, Lúcia Betânia da Silva

    2014-01-01

    Bioactive molecules of plant species are promising alternatives for the chemical control of gastrointestinal nematodes in ruminants. Extracts of native and exotic seed species from Brazil's semi-arid region were tested in vitro in an egg hatch assay and the bioactivity of their proteins was investigated. Each seed species was subjected to three extractions with three types of solvents. All the seeds showed ovicidal activity, which varied according to the solvents. Higher ovicidal activity was found in the molecule fractions of low molecular weight (<12 kDa) for Albizia lebbeck, Ipomoea asarifolia, Jatropha curcas, Libidibia ferrea, Moringa oleifera and Ricinus communis (P<0.05, Bonferroni test). The two fractions of Crotalaria spectabilis showed the same ovicidal activity (P>0.05, Bonferroni test). Hemagglutinating activity was detected in the fractions of C. spectabilis and M. oleifera fractions, hemolysin activity in the A. lebbeck and M. oleifera fractions, serine protease inhibitory activity in the A. lebbeck, I. asarifolia, J. curcas, M. oleifera and R. communis fractions, cysteine protease inhibitor activity in the M. oleifera fraction, and no protein activity in the L. ferrea fraction. The results of this work reveal new plant species with a potential for use in controlling nematode parasites in goats, thus opening a new field of research involving plant protein molecules with ovicidal properties.

  20. Isolation of botulinolysin, a thiol-activated hemolysin, from serotype D Clostridium botulinum: A species-specific gene duplication in Clostridia.

    PubMed

    Suzuki, Tomonori; Nagano, Thomas; Niwa, Koichi; Mutoh, Shingo; Uchino, Masataka; Tomizawa, Motohiro; Sagane, Yoshimasa; Watanabe, Toshihiro

    2016-12-01

    Botulinolysin (BLY) is a toxin produced by Clostridium botulinum that belongs to a group of thiol-activated hemolysins. In this study, a protein exhibiting hemolytic activity was purified from the culture supernatant of C. botulinum serotype D strain 4947. The purified protein displayed a single band by sodium dodecyl sulfate polyacrylamide gel electrophoresis with a molecular mass of 55kDa, and its N-terminal and internal amino acid sequences exhibited high similarity to a group of thiol-activated hemolysins produced by gram-positive bacteria. Thus, the purified protein was identified as the BLY. Using the nucleotide sequences of previously cloned genes for hemolysins, two types of genes encoding BLY-like proteins were cloned unexpectedly. Molecular modeling analysis indicated that the products of both genes displayed very similar structures, despite the low sequence similarity. In silico screening revealed a specific duplication of the hemolysin gene restricted to serotypes C and D of C. botulinum and their related species among thiol-activated hemolysin-producing bacteria. Our findings provide important insights into the genetic characteristics of pathogenic bacteria.

  1. Cloning of a Phosphate-Regulated Hemolysin Gene (Phospholipase C) from Pseudomonas aeruginosa

    PubMed Central

    Vasil, Michael L.; Berka, Randy M.; Gray, Gregory L.; Nakai, Hiroshi

    1982-01-01

    Phospholipase C (heat-labile hemolysin) of Pseudomonas aeruginosa is a phosphate (Pi)-regulated extracellular protein which may be a significant virulence factor of this organism. The gene for this hemolytic enzyme was cloned on a 4.1-megadalton (Mdal) fragment from a BamHI digest of P. aeruginosa PAO1 genomic DNA and was inserted into the BamHI sites of the multicopy Escherichia coli(pBR322) and P. aeruginosa(pMW79) vectors. The E. coli and P. aeruginosa recombinant plasmids were designated pGV26 and pVB81, respectively. A restriction map of the 4.1-Mdal fragment from pGV26 was constructed, using double and single digestions with BamHI and EcoRI and several different restriction enzymes. Based on information from this map, a 2.4-Mdal BamHI/BglII fragment containing the gene for phospholipase C was subcloned to pBR322. The hybrid plasmids pGV26 and pVB81 direct the synthesis of enzymatically active phospholipase C, which is also hemolytic. The plasmid-directed synthesis of phospholipase C in E. coli or P. aeruginosa is not repressible by Pi as is the chromosomally directed synthesis in P. aeruginosa. Data are presented which suggest that the synthesis of phospholipase C from pGV26 and pVB81 is directed from the tetracycline resistance gene promoter. The level of enzyme activity produced by E. coli(pGV26) is slightly higher than the levels produced by P. aeruginosa(pMW79) under repressed conditions. In contrast, the levels produced by P. aeruginosa(pVB81) are at least 600-fold higher than the levels produced by P. aeruginosa(pMW79) under repressed conditions and approximately 20-fold higher than those produced by P. aeruginosa(pMW79) under derepressed conditions. The majority (85%) of the enzyme produced by E. coli(pGV26) remained cell associated, whereas >95% of the enzyme produced by P. aeruginosa(pVB81) was extracellular. Analysis of extracellular proteins from cultures of P. aeruginosa(pMW79) and P. aeruginosa(pVB81) by high-performance liquid chromotography and

  2. Acylation of Escherichia coli Hemolysin: A Unique Protein Lipidation Mechanism Underlying Toxin Function

    PubMed Central

    Stanley, Peter; Koronakis, Vassilis; Hughes, Colin

    1998-01-01

    The pore-forming hemolysin (HlyA) of Escherichia coli represents a unique class of bacterial toxins that require a posttranslational modification for activity. The inactive protoxin pro-HlyA is activated intracellularly by amide linkage of fatty acids to two internal lysine residues 126 amino acids apart, directed by the cosynthesized HlyC protein with acyl carrier protein as the fatty acid donor. This action distinguishes HlyC from all bacterial acyltransferases such as the lipid A, lux-specific, and nodulation acyltransferases, and from eukaryotic transferases such as N-myristoyl transferases, prenyltransferases, and thioester palmitoyltransferases. Most lipids directly attached to proteins may be classed as N-terminal amide-linked and internal ester-linked acyl groups and C-terminal ether-linked isoprenoid groups. The acylation of HlyA and related toxins does not equate to these but does appear related to a small number of eukaryotic proteins that include inflammatory cytokines and mitogenic and cholinergic receptors. While the location and structure of lipid moieties on proteins vary, there are common effects on membrane affinity and/or protein-protein interactions. Despite being acylated at two residues, HlyA does not possess a “double-anchor” motif and does not have an electrostatic switch, although its dependence on calcium binding for activity suggests that the calcium-myristoyl switch may have relevance. The acyl chains on HlyA may provide anchorage points onto the surface of the host cell lipid bilayer. These could then enhance protein-protein interactions either between HlyA and components of a host signal transduction pathway to influence cytokine production or between HlyA monomers to bring about oligomerization during pore formation. PMID:9618444

  3. Sequential unfolding of the hemolysin two-partner secretion domain from Proteus mirabilis

    PubMed Central

    Wimmer, Megan R; Woods, Christopher N; Adamczak, Kyle J; Glasgow, Evan M; Novak, Walter RP; Grilley, Daniel P; Weaver, Todd M

    2015-01-01

    Protein secretion is a major contributor to Gram-negative bacterial virulence. Type Vb or two-partner secretion (TPS) pathways utilize a membrane bound β-barrel B component (TpsB) to translocate large and predominantly virulent exoproteins (TpsA) through a nucleotide independent mechanism. We focused our studies on a truncated TpsA member termed hemolysin A (HpmA265), a structurally and functionally characterized TPS domain from Proteus mirabilis. Contrary to the expectation that the TPS domain of HpmA265 would denature in a single cooperative transition, we found that the unfolding follows a sequential model with three distinct transitions linking four states. The solvent inaccessible core of HpmA265 can be divided into two different regions. The C-proximal region contains nonpolar residues and forms a prototypical hydrophobic core as found in globular proteins. The N-proximal region of the solvent inaccessible core, however, contains polar residues. To understand the contributions of the hydrophobic and polar interiors to overall TPS domain stability, we conducted unfolding studies on HpmA265 and site-specific mutants of HpmA265. By correlating the effect of individual site-specific mutations with the sequential unfolding results we were able to divide the HpmA265 TPS domain into polar core, nonpolar core, and C-terminal subdomains. Moreover, the unfolding studies provide quantitative evidence that the folding free energy for the polar core subdomain is more favorable than for the nonpolar core and C-terminal subdomains. This study implicates the hydrogen bonds shared among these conserved internal residues as a primary means for stabilizing the N-proximal polar core subdomain. PMID:26350294

  4. Sequential unfolding of the hemolysin two-partner secretion domain from Proteus mirabilis.

    PubMed

    Wimmer, Megan R; Woods, Christopher N; Adamczak, Kyle J; Glasgow, Evan M; Novak, Walter R P; Grilley, Daniel P; Weaver, Todd M

    2015-11-01

    Protein secretion is a major contributor to Gram-negative bacterial virulence. Type Vb or two-partner secretion (TPS) pathways utilize a membrane bound β-barrel B component (TpsB) to translocate large and predominantly virulent exoproteins (TpsA) through a nucleotide independent mechanism. We focused our studies on a truncated TpsA member termed hemolysin A (HpmA265), a structurally and functionally characterized TPS domain from Proteus mirabilis. Contrary to the expectation that the TPS domain of HpmA265 would denature in a single cooperative transition, we found that the unfolding follows a sequential model with three distinct transitions linking four states. The solvent inaccessible core of HpmA265 can be divided into two different regions. The C-proximal region contains nonpolar residues and forms a prototypical hydrophobic core as found in globular proteins. The N-proximal region of the solvent inaccessible core, however, contains polar residues. To understand the contributions of the hydrophobic and polar interiors to overall TPS domain stability, we conducted unfolding studies on HpmA265 and site-specific mutants of HpmA265. By correlating the effect of individual site-specific mutations with the sequential unfolding results we were able to divide the HpmA265 TPS domain into polar core, nonpolar core, and C-terminal subdomains. Moreover, the unfolding studies provide quantitative evidence that the folding free energy for the polar core subdomain is more favorable than for the nonpolar core and C-terminal subdomains. This study implicates the hydrogen bonds shared among these conserved internal residues as a primary means for stabilizing the N-proximal polar core subdomain. © 2015 The Protein Society.

  5. Python erythrocytes are resistant to α-hemolysin from Escherichia coli.

    PubMed

    Larsen, Casper K; Skals, Marianne; Wang, Tobias; Cheema, Muhammad U; Leipziger, Jens; Praetorius, Helle A

    2011-12-01

    α-Hemolysin (HlyA) from Escherichia coli lyses mammalian erythrocytes by creating nonselective cation pores in the membrane. Pore insertion triggers ATP release and subsequent P2X receptor and pannexin channel activation. Blockage of either P2X receptors or pannexin channels reduces HlyA-induced hemolysis. We found that erythrocytes from Python regius and Python molurus are remarkably resistant to HlyA-induced hemolysis compared to human and Trachemys scripta erythrocytes. HlyA concentrations that induced maximal hemolysis of human erythrocytes did not affect python erythrocytes, but increasing the HlyA concentration 40-fold did induce hemolysis. Python erythrocytes were more resistant to osmotic stress than human erythrocytes, but osmotic stress tolerance per se did not confer HlyA resistance. Erythrocytes from T. scripta, which showed higher osmotic resistance than python erythrocytes, were as susceptible to HlyA as human erythrocytes. Therefore, we tested whether python erythrocytes lack the purinergic signalling known to amplify HlyA-induced hemolysis in human erythrocytes. P. regius erythrocytes increased intracellular Ca²⁺ concentration and reduced cell volume when exposed to 3 mM ATP, indicating the presence of a P2X₇-like receptor. In addition, scavenging extracellular ATP or blocking P2 receptors or pannexin channels reduced the HlyA-induced hemolysis. We tested whether the low HlyA sensitivity resulted from low affinity of HlyA to the python erythrocyte membrane. We found comparable incorporation of HlyA into human and python erythrocyte membranes. Taken together, the remarkable HlyA resistance of python erythrocytes was not explained by increased osmotic resistance, lack of purinergic hemolysis amplification, or differences in HlyA affinity.

  6. Chalcone Attenuates Staphylococcus aureus Virulence by Targeting Sortase A and Alpha-Hemolysin.

    PubMed

    Zhang, Bing; Teng, Zihao; Li, Xianhe; Lu, Gejin; Deng, Xuming; Niu, Xiaodi; Wang, Jianfeng

    2017-01-01

    Staphylococcus aureus (S.aureus) resistance, considered a dilemma for the clinical treatment of this bacterial infection, is becoming increasingly intractable. Novel anti-virulence strategies will undoubtedly provide a path forward in combating these resistant bacterial infections. Sortase A (SrtA), an enzyme responsible for anchoring virulence-related surface proteins, and alpha-hemolysin (Hla), a pore-forming cytotoxin, have aroused great scientific interest, as they have been regarded as targets for promising agents against S. aureus infection. In this study, we discovered that chalcone, a natural small compound with little anti-S. aureus activity, could significantly inhibit SrtA activity with an IC50 of 53.15 μM and Hla hemolysis activity with an IC50 of 17.63 μM using a fluorescence resonance energy transfer (FRET) assay and a hemolysis assay, respectively. In addition, chalcone was proven to reduce protein A (SpA) display in intact bacteria, binding to fibronectin, formation of biofilm and S. aureus invasion. Chalcone could down-regulate the transcriptional levels of the hla gene and the agrA gene, thus leading to a reduction in the expression of Hla and significant protection against Hla-mediated A549 cell injury; more importantly, chalcone could also reduce mortality in infected mice. Additionally, molecular dynamics simulations and mutagenesis assays were used to identify the mechanism of chalcone against SrtA, which implied that the inhibitory activity lies in the bond between chalcone and SrtA residues Val168, Ile182, and Arg197. Taken together, the in vivo and in vitro experiments suggest that chalcone is a potential novel therapeutic compound for S. aureus infection via targeting SrtA and Hla.

  7. Chalcone Attenuates Staphylococcus aureus Virulence by Targeting Sortase A and Alpha-Hemolysin

    PubMed Central

    Zhang, Bing; Teng, Zihao; Li, Xianhe; Lu, Gejin; Deng, Xuming; Niu, Xiaodi; Wang, Jianfeng

    2017-01-01

    Staphylococcus aureus (S.aureus) resistance, considered a dilemma for the clinical treatment of this bacterial infection, is becoming increasingly intractable. Novel anti-virulence strategies will undoubtedly provide a path forward in combating these resistant bacterial infections. Sortase A (SrtA), an enzyme responsible for anchoring virulence-related surface proteins, and alpha-hemolysin (Hla), a pore-forming cytotoxin, have aroused great scientific interest, as they have been regarded as targets for promising agents against S. aureus infection. In this study, we discovered that chalcone, a natural small compound with little anti-S. aureus activity, could significantly inhibit SrtA activity with an IC50 of 53.15 μM and Hla hemolysis activity with an IC50 of 17.63 μM using a fluorescence resonance energy transfer (FRET) assay and a hemolysis assay, respectively. In addition, chalcone was proven to reduce protein A (SpA) display in intact bacteria, binding to fibronectin, formation of biofilm and S. aureus invasion. Chalcone could down-regulate the transcriptional levels of the hla gene and the agrA gene, thus leading to a reduction in the expression of Hla and significant protection against Hla-mediated A549 cell injury; more importantly, chalcone could also reduce mortality in infected mice. Additionally, molecular dynamics simulations and mutagenesis assays were used to identify the mechanism of chalcone against SrtA, which implied that the inhibitory activity lies in the bond between chalcone and SrtA residues Val168, Ile182, and Arg197. Taken together, the in vivo and in vitro experiments suggest that chalcone is a potential novel therapeutic compound for S. aureus infection via targeting SrtA and Hla. PMID:28932220

  8. Pleiotropic effects of a mutation in rfaC on Escherichia coli hemolysin.

    PubMed Central

    Bauer, M E; Welch, R A

    1997-01-01

    Several genes involved in the lipopolysaccharide (LPS) biosynthetic pathway have been shown to affect the expression or activity of Escherichia coli hemolysin (Hly), a secreted cytotoxin that is the prototype of the RTX family of toxins. To further study this relationship, E. coli K-12 strains harboring mutations in the LPS biosynthetic genes rfaS, rfaQ, rfaJ, rfaP, and rfaC were transformed with a recombinant plasmid harboring the hlyCABD operon and examined for their effects on extracellular expression and hemolytic activity. A mutation in rfaC that affected both extracellular expression and activity of Hly was studied in greater detail. This mutation led to a growth-phase-dependent decrease up to 16-fold in the steady-state level of extracellular HlyA, although transcription and secretion of HlyA were decreased no more than 2-fold. Specific hemolytic activity in toxin produced from the rfaC mutant strain was significantly reduced, in a growth-phase-dependent manner. With the rfaC gene supplied in trans, both the decreased expression and activity of Hly were restored to wild-type levels. Hly from the rfaC mutant strain exhibited much slower kinetics of hemolysis, a more rapid rate of decay of activity, and greater formation of apparently inactive HlyA-containing aggregates in culture supernatants than was exhibited in the wild-type strain. A model is proposed for a physical interaction between LPS and Hly in which LPS with intact inner core participates in forming or maintaining an active conformation of Hly and helps to protect it from aggregation or degradation. PMID:9169754

  9. The Nucleotide Capture Region of Alpha Hemolysin: Insights into Nanopore Design for DNA Sequencing from Molecular Dynamics Simulations

    PubMed Central

    Manara, Richard M. A.; Tomasio, Susana; Khalid, Syma

    2015-01-01

    Nanopore technology for DNA sequencing is constantly being refined and improved. In strand sequencing a single strand of DNA is fed through a nanopore and subsequent fluctuations in the current are measured. A major hurdle is that the DNA is translocated through the pore at a rate that is too fast for the current measurement systems. An alternative approach is “exonuclease sequencing”, in which an exonuclease is attached to the nanopore that is able to process the strand, cleaving off one base at a time. The bases then flow through the nanopore and the current is measured. This method has the advantage of potentially solving the translocation rate problem, as the speed is controlled by the exonuclease. Here we consider the practical details of exonuclease attachment to the protein alpha hemolysin. We employ molecular dynamics simulations to determine the ideal (a) distance from alpha-hemolysin, and (b) the orientation of the monophosphate nucleotides upon release from the exonuclease such that they will enter the protein. Our results indicate an almost linear decrease in the probability of entry into the protein with increasing distance of nucleotide release. The nucleotide orientation is less significant for entry into the protein.

  10. The Nucleotide Capture Region of Alpha Hemolysin: Insights into Nanopore Design for DNA Sequencing from Molecular Dynamics Simulations.

    PubMed

    Manara, Richard M A; Tomasio, Susana; Khalid, Syma

    2015-01-27

    Nanopore technology for DNA sequencing is constantly being refined and improved. In strand sequencing a single strand of DNA is fed through a nanopore and subsequent fluctuations in the current are measured. A major hurdle is that the DNA is translocated through the pore at a rate that is too fast for the current measurement systems. An alternative approach is "exonuclease sequencing", in which an exonuclease is attached to the nanopore that is able to process the strand, cleaving off one base at a time. The bases then flow through the nanopore and the current is measured. This method has the advantage of potentially solving the translocation rate problem, as the speed is controlled by the exonuclease. Here we consider the practical details of exonuclease attachment to the protein alpha hemolysin. We employ molecular dynamics simulations to determine the ideal (a) distance from alpha-hemolysin, and (b) the orientation of the monophosphate nucleotides upon release from the exonuclease such that they will enter the protein. Our results indicate an almost linear decrease in the probability of entry into the protein with increasing distance of nucleotide release. The nucleotide orientation is less significant for entry into the protein.

  11. [The mutual transmission of Staphylococcus aureus between humans and cattle and the environmental adaptation of hemolysin and fibrinolysin formation].

    PubMed

    Hummel, R; Witte, W; Kemmer, G

    1978-01-01

    In an ecological investigation in 20 dairy herds of cattle we compared the characteristics of strains isolated from nasal swabs of milkers, from the udder of cows and from cases of mastitis in cows. In 7 herds we found definite strains in the nasal flora of the milkers and in the udder-flora of the cows which only differ in the formation of hemolysin and of fibrinolysin. In the other checked characteristics strains from man and strains from cattle show identical patterns. In 5 herds these strains correspond to the host-specific variety hominis, in 2 herds to the hostspecific--variety bovis. These results refer to an environmental adaptation of the phenotypically detectable formation of hemolysins and fibrinolysin. From the ecological point of view an exchange of strains between man and cattle is likely. The origin of strains which can not be alloted to one ot the known host-specific varieties can be explained by an environmental adaptation. Besides the facts that strains of the host-specific variety bovis occur only very rarely in man and that strains of the host-specific variety hominis occur occasionally in cattle the clinical significance of the reported results has to be clarified by further investigations.

  12. The Staphylococcal Toxins γ-Hemolysin AB and CB Differentially Target Phagocytes by Employing Specific Chemokine Receptors

    PubMed Central

    Spaan, András N.; Vrieling, Manouk; Wallet, Pierre; Badiou, Cédric; Reyes-Robles, Tamara; Ohneck, Elizabeth A.; Benito, Yvonne; de Haas, Carla J.C.; Day, Christopher J.; Jennings, Michael P.; Lina, Gérard; Vandenesch, François; van Kessel, Kok P.M.; Torres, Victor J.; van Strijp, Jos A.G.; Henry, Thomas

    2014-01-01

    Evasion of the host phagocyte response by Staphylococcus aureus is crucial to successful infection with the pathogen. γ-Hemolysin AB and CB (HlgAB, HlgCB) are bicomponent pore-forming toxins present in almost all human S. aureus isolates. Cellular tropism and contribution of the toxins to S. aureus pathophysiology are poorly understood. Here, we identify the chemokine receptors CXCR1, CXCR2 and CCR2 as targets for HlgAB, and the complement receptors C5aR and C5L2 as targets for HlgCB. The receptor expression patterns allow the toxins to efficiently and differentially target phagocytic cells. Murine neutrophils are resistant to HlgAB and HlgCB. CCR2 is the sole murine receptor orthologue compatible with γ-Hemolysin. In a murine peritonitis model, HlgAB contributes to S. aureus bacteremia in a CCR2-dependent manner. HlgAB-mediated targeting of CCR2+ cells highlights the involvement of inflammatory macrophages during S. aureus infection. Functional quantification identifies HlgAB and HlgCB as major secreted staphylococcal leukocidins. PMID:25384670

  13. Rapid and specific detection of the thermostable direct hemolysin gene in Vibrio parahaemolyticus by loop-mediated isothermal amplification.

    PubMed

    Nemoto, Jiro; Sugawara, Chiyo; Akahane, Kenji; Hashimoto, Keiji; Kojima, Tadashi; Ikedo, Masanari; Konuma, Hirotaka; Hara-Kudo, Yukiko

    2009-04-01

    Several investigators have reported that thermostable direct hemolysin (TDH) and TDH-related hemolysin are important virulence factors of Vibrio parahaemolyticus, but it has been difficult to detect these factors rapidly in seafood and other environmental samples. A novel nucleic acid amplification method, termed the loop-mediated isothermal amplification (LAMP), which amplifies DNA with high specificity and rapidity under isothermal conditions, was applied. In this study, we designed tdh gene-specific LAMP primers for detection of TDH-producing V. parahaemolyticus. The specificity of this assay was evaluated with 32 strains of TDH-producing V. parahaemolyticus, one strain of TDH-producing Grimontia hollisae, 10 strains of TDH-nonproducing V. parahaemolyticus, and 94 strains of TDH-nonproducing bacteria, and the sensitivity was high enough to detect one cell per test. Moreover, to investigate the detection of TDH-producing V. parahaemolyticus in oysters, the LAMP assay was performed with enrichment culture in alkaline peptone water of oyster samples inoculated with TDH-producing V. parahaemolyticus and TDH-nonproducing V. parahaemolyticus and V. alginolyticus after enrichment in alkaline peptone water. These results suggest that the LAMP assay targeting tdh gene has high sensitivity and specificity and is useful to detect TDH-producing V. parahaemolyticus in oyster after enrichment.

  14. Free-energy calculations reveal the subtle differences in the interactions of DNA bases with α-hemolysin.

    PubMed

    Manara, Richard M A; Guy, Andrew T; Wallace, E Jayne; Khalid, Syma

    2015-02-10

    Next generation DNA sequencing methods that utilize protein nanopores have the potential to revolutionize this area of biotechnology. While the technique is underpinned by simple physics, the wild-type protein pores do not have all of the desired properties for efficient and accurate DNA sequencing. Much of the research efforts have focused on protein nanopores, such as α-hemolysin from Staphylococcus aureus. However, the speed of DNA translocation has historically been an issue, hampered in part by incomplete knowledge of the energetics of translocation. Here we have utilized atomistic molecular dynamics simulations of nucleotide fragments in order to calculate the potential of mean force (PMF) through α-hemolysin. Our results reveal specific regions within the pore that play a key role in the interaction with DNA. In particular, charged residues such as D127 and K131 provide stabilizing interactions with the anionic DNA and therefore are likely to reduce the speed of translocation. These regions provide rational targets for pore optimization. Furthermore, we show that the energetic contributions to the protein-DNA interactions are a complex combination of electrostatics and short-range interactions, often mediated by water molecules.

  15. Analysis of the specificity of Panton-Valentine leucocidin and gamma-hemolysin F component binding.

    PubMed

    Meyer, Florent; Girardot, Raymonde; Piémont, Yves; Prévost, Gilles; Colin, Didier A

    2009-01-01

    In this study, the binding of F components of the staphylococcal bicomponent leukotoxins Panton-Valentine leucocidin (LukF-PV) and gamma-hemolysin (HlgB) on polymorphonuclear neutrophils (PMNs), monocytes, and lymphocytes was determined using labeled mutants and flow cytometry. Leukotoxin activity was evaluated by measuring Ca(2+) entry or pore formation using spectrofluorometry or flow cytometry. Although HlgB had no affinity for cells in the absence of an S component, LukF-PV had high affinity for PMNs (dissociation constant [K(d)], 6.2 +/- 1.9 nM; n = 8), monocytes (K(d), 2.8 +/- 0.8 nM; n = 7), and lymphocytes (K(d), 1.2 +/- 0.2 nM; n = 7). Specific binding of HlgB was observed only after addition of LukS-PV on PMNs (K(d), 1.1 +/- 0.2 nM; n = 4) and monocytes (K(d), 0.84 +/- 0.31 nM; n = 4) or after addition of HlgC on PMNs, monocytes, and lymphocytes. Addition of LukS-PV or HlgC induced a second specific binding of LukF-PV on PMNs. HlgB and LukD competed only with LukF-PV molecules bound after addition of LukS-PV. LukF-PV and LukD competed with HlgB in the presence of LukS-PV on PMNs and monocytes. Use of antibodies and comparisons between binding and activity time courses showed that the LukF-PV molecules that bound to target cells before addition of LukS-PV were the only LukF-PV molecules responsible for Ca(2+) entry and pore formation. In contrast, the active HlgB molecules were the HlgB molecules bound after addition of LukS-PV. In conclusion, LukF-PV must be linked to LukS-PV and to a binding site of the membrane to have toxin activity.

  16. Analysis of the Specificity of Panton-Valentine Leucocidin and Gamma-Hemolysin F Component Binding▿

    PubMed Central

    Meyer, Florent; Girardot, Raymonde; Piémont, Yves; Prévost, Gilles; Colin, Didier A.

    2009-01-01

    In this study, the binding of F components of the staphylococcal bicomponent leukotoxins Panton-Valentine leucocidin (LukF-PV) and gamma-hemolysin (HlgB) on polymorphonuclear neutrophils (PMNs), monocytes, and lymphocytes was determined using labeled mutants and flow cytometry. Leukotoxin activity was evaluated by measuring Ca2+ entry or pore formation using spectrofluorometry or flow cytometry. Although HlgB had no affinity for cells in the absence of an S component, LukF-PV had high affinity for PMNs (dissociation constant [Kd], 6.2 ± 1.9 nM; n = 8), monocytes (Kd, 2.8 ± 0.8 nM; n = 7), and lymphocytes (Kd, 1.2 ± 0.2 nM; n = 7). Specific binding of HlgB was observed only after addition of LukS-PV on PMNs (Kd, 1.1 ± 0.2 nM; n = 4) and monocytes (Kd, 0.84 ± 0.31 nM; n = 4) or after addition of HlgC on PMNs, monocytes, and lymphocytes. Addition of LukS-PV or HlgC induced a second specific binding of LukF-PV on PMNs. HlgB and LukD competed only with LukF-PV molecules bound after addition of LukS-PV. LukF-PV and LukD competed with HlgB in the presence of LukS-PV on PMNs and monocytes. Use of antibodies and comparisons between binding and activity time courses showed that the LukF-PV molecules that bound to target cells before addition of LukS-PV were the only LukF-PV molecules responsible for Ca2+ entry and pore formation. In contrast, the active HlgB molecules were the HlgB molecules bound after addition of LukS-PV. In conclusion, LukF-PV must be linked to LukS-PV and to a binding site of the membrane to have toxin activity. PMID:18838523

  17. Hemolysin coregulated protein 1 as a molecular gluing unit for the assembly of nanoparticle hybrid structures

    PubMed Central

    Pham, Tuan Anh; Schreiber, Andreas; Sturm (née Rosseeva), Elena V

    2016-01-01

    Summary Hybrid nanoparticle (NP) structures containing organic building units such as polymers, peptides, DNA and proteins have great potential in biosensor and electronic applications. The nearly free modification of the polymer chain, the variation of the protein and DNA sequence and the implementation of functional moieties provide a great platform to create inorganic structures of different morphology, resulting in different optical and magnetic properties. Nevertheless, the design and modification of a protein structure with functional groups or sequences for the assembly of biohybrid materials is not trivial. This is mainly due to the sensitivity of its secondary, tertiary and quaternary structure to the changes in the interaction (e.g., hydrophobic, hydrophilic, electrostatic, chemical groups) between the protein subunits and the inorganic material. Here, we use hemolysin coregulated protein 1 (Hcp1) from Pseudomonas aeruginosa as a building and gluing unit for the formation of biohybrid structures by implementing cysteine anchoring points at defined positions on the protein rim (Hcp1_cys3). We successfully apply the Hcp1_cys3 gluing unit for the assembly of often linear, hybrid structures of plasmonic gold (Au NP), magnetite (Fe3O4 NP), and cobalt ferrite nanoparticles (CoFe2O4 NP). Furthermore, the assembly of Au NPs into linear structures using Hcp1_cys3 is investigated by UV–vis spectroscopy, TEM and cryo-TEM. One key parameter for the formation of Au NP assembly is the specific ionic strength in the mixture. The resulting network-like structure of Au NPs is characterized by Raman spectroscopy, showing surface-enhanced Raman scattering (SERS) by a factor of 8·104 and a stable secondary structure of the Hcp1_cys3 unit. In order to prove the catalytic performance of the gold hybrid structures, they are used as a catalyst in the reduction reaction of 4-nitrophenol showing similar catalytic activity as the pure Au NPs. To further extend the functionality

  18. Quadruple or quintuple conversion of hlb, sak, sea (or sep), scn, and chp genes by bacteriophages in non-beta-hemolysin-producing bovine isolates of Staphylococcus aureus.

    PubMed

    Kumagai, Rina; Nakatani, Kazue; Ikeya, Nanami; Kito, Yukiko; Kaidoh, Toshio; Takeuchi, Shotaro

    2007-05-16

    In 13 of 43 non-beta-hemolysin-producing bovine isolates of Staphylococcus aureus, two truncated beta-hemolysin (hlb) genes were demonstrated by PCR and sequencing, and one truncated hlb gene was located beside the integrase (int) gene of phage origin. The staphylokinase (sak) gene was detected in all 13 isolates in which the truncated hlb genes were detected by PCR. Enterotoxin A (sea) and enterotoxin P (sep) genes were also detected in 5 and 2 of the 13 isolates, respectively. Moreover, the scn and chp genes encoding staphylococcal complement inhibitor (SCIN) and chemotaxis inhibitory protein of S. aureus (CHIPS) were detected in 13 and 4 of the 13 isolates, respectively. The bacteriophage induced by mitomycin C treatment was able to lysogenize one beta-hemolysin-producing isolate of S. aureus, and the sak and scn genes were detected from the lysogenized isolate. These results suggest quadruple or quintuple conversion of hlb, sak, sea (or sep), scn, and chp genes by bacteriophages among non-beta-hemolysin-producing bovine isolates of S. aureus.

  19. Evaluation of IgY capture ELISA for sensitive detection of alpha hemolysin of Staphylococcus aureus without staphylococcal protein A interference.

    PubMed

    Reddy, Prakash Kudumala; Shekar, Aravind; Kingston, Joseph Jeyabalaji; Sripathy, Murali Harishchandra; Batra, Harshvardhan

    2013-05-31

    Staphylococcal protein A (Spa) secreted by all Staphylococcus aureus strains is the major hindrance in development of specific immunoassays for detecting S. aureus antigens, because of its characteristic feature of binding to Fc region of most mammalian immunoglobulins and also to Fab region of certain classes of mammalian immunoglobulins. Immunoglobulin Y (IgY) is the avian equivalent of mammalian IgG which does not have any affinity to Spa. In the present study we report that using chicken egg yolk IgY over mammalian IgG as capture antibody prevents both soluble and surface bound protein A from causing false positives quantified by chicken anti-protein A antibodies. This was demonstrated by development of sandwich ELISA for detection of alpha hemolysin toxin from culture supernatants of S. aureus strains with anti alpha hemolysin IgY as capture and rabbit anti alpha hemolysin IgG as revealing antibody. This indirect sandwich ELISA was evaluated onto a large number of S. aureus isolates recovered from clinical sources for alpha hemolysin secretion. Results of sandwich ELISA were compared with PCR and Western blot analysis. The immunoassay is highly specific and has high sensitivity of detecting less than 1 ng/ml. This procedure is highly effective in eliminating Spa interference and can be extended to detection of other important superantigen toxins of S. aureus.

  20. Evaluation of an immunochromatographic assay for direct identification of thermostable direct hemolysin-producing Vibrio parahaemolyticus colonies on selective agar plates.

    PubMed

    Kawatsu, Kentaro; Sakata, Junko; Yonekita, Taro; Kumeda, Yuko

    2015-12-01

    We evaluated the utility of an immunochromatographic assay (NH IC TDH) in identifying thermostable direct hemolysin (TDH)-producing Vibrio parahaemolyticus colonies on selective agar plates. The sensitivity of the NH IC TDH assay was 100% (189 samples) and its specificity was 100% (41 samples) compared with the presence of tdh. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Inactivation of the major hemolysin gene influences expression of the nonribosomal peptide synthetase gene swrA in the insect pathogen Serratia sp. strain SCBI.

    PubMed

    Petersen, Lauren M; LaCourse, Kaitlyn; Schöner, Tim A; Bode, Helge; Tisa, Louis S

    2017-08-07

    Hemolysins are important virulence factors for many bacterial pathogens, including Serratia marcescens The role of the major hemolysin gene in the insect pathogen Serratia sp. SCBI was investigated using both forward and reverse genetics approaches. Introduction of the major hemolysin gene into Escherichia coli resulted in a gain of both virulence and hemolytic activity. Inactivation of this hemolysin in Serratia sp. SCBI resulted in loss of hemolysis, but did not attenuate insecticidal activity. Unexpectedly, inactivation of the hemolysin gene in Serratia sp. SCBI resulted in significantly increased motility as well as increased antimicrobial activity. qRT-PCR analysis of mutants with a disrupted hemolysin gene showed a dramatic increase in mRNA levels of a nonribosomal peptide synthetase gene, swrA, which produces the surfactant serrawettin W2. Mutation of the swrA gene in Serratia sp. SCBI resulted in highly variable antibiotic activity, motility, virulence and hemolysis phenotypes that were dependent on the site of disruption within this 17.75 KB gene. When introduced into E. coli, swrA increases rates of motility and confers antimicrobial activity. While it is unclear how inactivation of the major hemolysin gene influences expression of swrA, these results suggest swrA plays an important role in motility and antimicrobial activity in Serratia sp. SCBI.IMPORTANCE The opportunistic gram-negative bacteria of the genus Serratia are found widespread in the environment and can cause human illness. Comparative genomics analysis between S. marcescens and a new Serratia species from South Africa, termed SCBI, shows that these two organisms are closely related, but differed in pathogenesis. S. marcescens kills Caenorhabditis nematodes, while Serratia sp. SCBI is not harmful and forms a beneficial association with them. This distinction presented the opportunity to investigate potential differences in the regulation of common virulence mechanisms between these two

  2. Synergistic and Additive Effects of Chromosomal and Plasmid-Encoded Hemolysins Contribute to Hemolysis and Virulence in Photobacterium damselae subsp. damselae

    PubMed Central

    Rivas, Amable J.; Balado, Miguel; Lemos, Manuel L.

    2013-01-01

    Photobacterium damselae subsp. damselae causes infections and fatal disease in marine animals and in humans. Highly hemolytic strains produce damselysin (Dly) and plasmid-encoded HlyA (HlyApl). These hemolysins are encoded by plasmid pPHDD1 and contribute to hemolysis and virulence for fish and mice. In this study, we report that all the hemolytic strains produce a hitherto uncharacterized chromosome-encoded HlyA (HlyAch). Hemolysis was completely abolished in a single hlyAch mutant of a plasmidless strain and in a dly hlyApl hlyAch triple mutant. We found that Dly, HlyApl, and HlyAch are needed for full hemolytic values in strains harboring pPHDD1, and these values are the result of the additive effects between HlyApl and HlyAch, on the one hand, and of the synergistic effect of Dly with HlyApl and HlyAch, on the other hand. Interestingly, Dly-producing strains produced synergistic effects with strains lacking Dly production but secreting HlyA, constituting a case of the CAMP (Christie, Atkins, and Munch-Petersen) reaction. Environmental factors such as iron starvation and salt concentration were found to regulate the expression of the three hemolysins. We found that the contributions, in terms of the individual and combined effects, of the three hemolysins to hemolysis and virulence varied depending on the animal species tested. While Dly and HlyApl were found to be main contributors in the virulence for mice, we observed that the contribution of hemolysins to virulence for fish was mainly based on the synergistic effects between Dly and either of the two HlyA hemolysins rather than on their individual effects. PMID:23798530

  3. [Distribution of thermostable direct hemolysin (TDH)- and TDH-related hemolysin (TRH)-producing Vibrio parahaemolyticus in coastal Shimane Prefecture and TDH and TRH V parahaemolyticus contamination of retail shellfish].

    PubMed

    Fukushima, Hiroshi

    2007-03-01

    We studied distribution of thermostable direct hemolysin (TDH)- and TDH-related hemolysin (TRH)-producing Vibrio parahaemolyticus in coastal sea water, sediment, and shellfish and related retail shellfish contamination in Shimane Prefecture, Japan, between 2002 and 2004. V. parahaemolyticus was isolated from > 80% of sea water, sediment, and shellfish. The detection of TDH gene (tdh) and TRH gene (trh)-positive V parahaemolyticus in sea water was 11%, in sediment 16%, and in shellfish 26%. The number of genes and gene-related in seawater was 23 MPN/L, in sediment 29 MPN/100 g, and in shellfish 460 MPN/10 g. TDH- and TRH-producing V. parahaemolyticus detected in seawater was 5%, in sediment 11% and in shellfish 14%. The continuous distribution of TDH-producing O2:K28, O4:K88, O4:K37, and O4:KUT organisms on the western coast and TRH2-producing O5:k30, O5:K43, O10:K19, O10:KUT, O11:K40, O11:KUT, and OUT:KUT organisms on the Oki Island coast suggested the settlement of these organisms in these coastal environments. From 7 (12%) of 59 retail short-necked clam samples, we isolated TDH-producing O 1:KUT, O3:K6 (2 strains from 2 samples imported from Korea), O4:K12, OUT:K8, and TRH2-producing OUT:K40 and OUT:K51 organisms. These findings suggested that TDH- and TRH-producing V. parahaemolyticus are widely distributed along the coast of this prefecture and are transported by contaminated retail shellfish from other areas.

  4. Analysis of the thermostable direct hemolysin (tdh) gene and the tdh-related hemolysin (trh) genes in urease-positive strains of Vibrio parahaemolyticus isolated on the West Coast of the United States.

    PubMed

    Okuda, J; Ishibashi, M; Abbott, S L; Janda, J M; Nishibuchi, M

    1997-08-01

    Urease-positive (Ure+) and urease-negative (Ure-) strains of Vibrio parahaemolyticus isolated from patients on the West Coast of the United States between 1979 and 1995 were analyzed for the thermostable direct hemolysin (tdh) gene and the tdh-related hemolysin (trh) genes (trh1 and trh2). The DNA colony hybridization method with the polynucleotide probes was used to determine the distribution of the genes. Of 60 Ure+ strains, 59 strains (98%) had the trh (either trh1 or trh2) gene and 54 strains (90%) carried the tdh gene. The absence of the trh gene or a related sequence in an exceptional Ure+ strain was confirmed by Southern blot analyses. The stronger correlation with the trh gene than with the tdh gene was mostly attributable to strains possessing only the trh2 gene. Of 25 Ure- strains, 20 strains (80%) had the tdh gene but none had the trh gene. These results indicate a very strong correlation between the Ure+ phenotype and the trh gene and are consistent with those reported for strains isolated in Asia. The Ure+ strains carrying the trh genes were not restricted to a unique group of the strains. The O4:K12 strains carrying the trh1 gene have predominantly been isolated since 1979. However, strains of various non-O4:K12 serovars carrying either the trh1 or the trh2 gene became predominant after 1992. In addition, analysis by the arbitrarily primed PCR method revealed two subgroups within the selected Ure+ O4:K12 strains. Hybridization tests with oligonucleotide probes demonstrated that the trh1 sequences of the West Coast strains differ to some extent from those of Asian strains. Nevertheless, a PCR method previously established to detect both the trh1 and the trh2 genes in Asian strains could detect 98% of those genes in the West Coast strains.

  5. Grafting synthetic transmembrane units to the engineered low-toxicity α-hemolysin to restore its hemolytic activity.

    PubMed

    Ui, Mihoko; Harima, Kousuke; Takei, Toshiaki; Tsumoto, Kouhei; Tabata, Kazuhito V; Noji, Hiroyuki; Endo, Sumire; Akiyama, Kimio; Muraoka, Takahiro; Kinbara, Kazushi

    2014-12-01

    The chemical modification of proteins to provide desirable functions and/or structures broadens their possibilities for use in various applications. Usually, proteins can acquire new functions and characteristics, in addition to their original ones, via the introduction of synthetic functional moieties. Here, we adopted a more radical approach to protein modification, i.e., the replacement of a functional domain of proteins with alternative chemical compounds to build "cyborg proteins." As a proof of concept model, we chose staphylococcal α-hemolysin (Hla), which is a well-studied, pore-forming toxin. The hemolytic activity of Hla mutants was dramatically decreased by truncation of the stem domain, which forms a β-barrel pore in the membrane. However, the impaired hemolytic activity was significantly restored by attaching a pyrenyl-maleimide unit to the cysteine residue that was introduced in the remaining stem domain. In contrast, negatively charged fluorescein-maleimide completely abolished the remaining activity of the mutants.

  6. H-NS Is a Negative Regulator of the Two Hemolysin/Cytotoxin Gene Clusters in Vibrio anguillarum

    PubMed Central

    Mou, Xiangyu; Spinard, Edward J.; Driscoll, Maureen V.; Zhao, Wenjing

    2013-01-01

    Hemolysins produced by Vibrio anguillarum have been implicated in the development of hemorrhagic septicemia during vibriosis, a fatal fish disease. Previously, two hemolysin gene clusters responsible for the hemolysis and cytotoxicity of V. anguillarum were identified: the vah1-plp gene cluster and the rtxACHBDE gene cluster. In this study, we identified the hns gene, which encodes the H-NS protein and acts as a negative regulator of both gene clusters. The V. anguillarum H-NS protein shares strong homology with other bacterial H-NS proteins. An hns mutant exhibited increased hemolytic activity and cytotoxicity compared to the wild-type strain. Complementation of the hns mutation restored hemolytic activity and cytotoxicity levels to nearly wild-type levels. Furthermore, expression of rtxA, rtxH, rtxB, vah1, and plp increased in the hns mutant and decreased in the hns-complemented mutant strain compared to expression in the wild-type strain. Additionally, experiments using DNase I showed that purified recombinant H-NS protected multiple sites in the promoter regions of both gene clusters. The hns mutant also exhibited significantly attenuated virulence against rainbow trout. Complementation of the hns mutation restored virulence to wild-type levels, suggesting that H-NS regulates many genes that affect fitness and virulence. Previously, we showed that HlyU is a positive regulator of expression for both gene clusters. In this study, we demonstrate that upregulation by hlyU is hns dependent, suggesting that H-NS acts to repress or silence both gene clusters and HlyU acts to relieve that repression or silencing. PMID:23836825

  7. H-NS is a negative regulator of the two hemolysin/cytotoxin gene clusters in Vibrio anguillarum.

    PubMed

    Mou, Xiangyu; Spinard, Edward J; Driscoll, Maureen V; Zhao, Wenjing; Nelson, David R

    2013-10-01

    Hemolysins produced by Vibrio anguillarum have been implicated in the development of hemorrhagic septicemia during vibriosis, a fatal fish disease. Previously, two hemolysin gene clusters responsible for the hemolysis and cytotoxicity of V. anguillarum were identified: the vah1-plp gene cluster and the rtxACHBDE gene cluster. In this study, we identified the hns gene, which encodes the H-NS protein and acts as a negative regulator of both gene clusters. The V. anguillarum H-NS protein shares strong homology with other bacterial H-NS proteins. An hns mutant exhibited increased hemolytic activity and cytotoxicity compared to the wild-type strain. Complementation of the hns mutation restored hemolytic activity and cytotoxicity levels to nearly wild-type levels. Furthermore, expression of rtxA, rtxH, rtxB, vah1, and plp increased in the hns mutant and decreased in the hns-complemented mutant strain compared to expression in the wild-type strain. Additionally, experiments using DNase I showed that purified recombinant H-NS protected multiple sites in the promoter regions of both gene clusters. The hns mutant also exhibited significantly attenuated virulence against rainbow trout. Complementation of the hns mutation restored virulence to wild-type levels, suggesting that H-NS regulates many genes that affect fitness and virulence. Previously, we showed that HlyU is a positive regulator of expression for both gene clusters. In this study, we demonstrate that upregulation by hlyU is hns dependent, suggesting that H-NS acts to repress or silence both gene clusters and HlyU acts to relieve that repression or silencing.

  8. Expression of Bacteroides fragilis hemolysins in vivo and role of HlyBA in an intra-abdominal infection model.

    PubMed

    Lobo, Leandro A; Jenkins, Audrey L; Jeffrey Smith, C; Rocha, Edson R

    2013-04-01

    Bacteroides fragilis is the most frequent opportunistic pathogen isolated from anaerobic infections. However, there is a paucity of information regarding the genetic and molecular aspects of gene expression of its virulence factors during extra-intestinal infections. A potential virulence factor that has received little attention is the ability of B. fragilis to produce hemolysins. In this study, an implanted perforated table tennis "ping-pong" ball was used as an intra-abdominal artificial abscess model in the rat. This procedure provided sufficient infected exudate for gene expression studies in vivo. Real-time reverse transcription polymerase chain reaction (RT-PCR) was used to quantify the relative expression of hlyA, hlyB, hlyC, hlyD, hlyE, hlyF, hlyG, and hlyIII mRNAs. The hlyA mRNA was induced approximately sixfold after 4 days postinfection compared with the mRNA levels in the inoculum culture prior to infection. The hlyB mRNA increased approximately sixfold after 4 days and 12-fold after 8 days postinfection. Expression of hlyC mRNA increased sixfold after 1 day, 45-fold after 4 days, and 16-fold after 8 days postinfection, respectively. The hlyD and hlyE mRNAs were induced approximately 40-fold and 30-fold, respectively, after 4-days postinfection. The hlyF expression increased approximately threefold after 4-days postinfection. hlyG was induced approximately fivefold after 4 and 8 days postinfection. The hlyIII mRNA levels had a steady increase of approximately four-, eight-, and 12-fold following 1, 4, and 8 days postinfection, respectively. These findings suggest that B. fragilis hemolysins are induced and differentially regulated in vivo. Both parent and hlyBA mutant strains reached levels of approximately 3-8 × 10(9) cfu/mL after 1 day postinfection. However, the hlyBA mutant strain lost 2 logs in viable cell counts compared with the parent strain after 8 days postinfection. This is the first study showing HlyBA is a virulence factor which plays a

  9. Protective efficacy of recombinant hemolysin co-regulated protein (Hcp) of Aeromonas hydrophila in common carp (Cyprinus carpio).

    PubMed

    Wang, Nannan; Wu, Yafeng; Pang, Maoda; Liu, Jin; Lu, Chengping; Liu, Yongjie

    2015-10-01

    Motile aeromonad septicemia (MAS) caused by Aeromonas hydrophila is one of the common bacterial causes of fish mortalities. Prophylactic vaccination against this and other diseases is essential for continued growth of aquaculture. The type VI secretion system (T6SS) plays a crucial role in the virulence of A. hydrophila. The hemolysin co-regulated protein (Hcp) is an integral component of the T6SS apparatus and is considered a hallmark of T6SS function. Here, the T6SS effector Hcp was expressed and characterized, and its immunogenicity and protective efficacy were evaluated in common carp (Cyprinus carpio). Hcp secretion was found to be strongly induced by low temperature in A. hydrophila. Immunoblot analysis demonstrated that Hcp is conserved among A. hydrophila strains of different origins. The vaccination with recombinant Hcp resulted in an increased survival (46.67%) in common carp during a 10-day challenge time compared to non-vaccinated fish (7.14%). The vaccinated fish also showed the significantly increased levels of IgM antibody in serum and cytokines such as inerleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in kidney, spleen and gills. The recombinant Hcp shows promise as a vaccine candidate against A. hydrophila.

  10. Detection of Benzo[a]pyrene-Guanine Adducts in Single-Stranded DNA using the α-Hemolysin Nanopore

    PubMed Central

    Perera, Rukshan T.; Fleming, Aaron M.; Johnson, Robert P.; Burrows, Cynthia J.; White, Henry S.

    2017-01-01

    The carcinogenic precursor benzo[a]pyrene (BP), a polycyclic aromatic hydrocarbon, is released into the environment through the incomplete combustion of hydrocarbons. Metabolism of BP in the human body yields a potent alkylating agent (benzo[a]pyrene diol epoxide, BPDE) that reacts with guanine (G) in DNA to form an adduct implicated in cancer initiation. We report that the α-hemolysin (αHL) nanopore platform can be used to detect a BPDE adduct to G in synthetic oligodeoxynucleotides. Translocation of a 41-mer poly-2′-deoxycytidine strand with a centrally located BPDE adduct to G through αHL in 1 M KCl produces a unique multi-level current signature allowing the adduct to be detected. This readily distinguishable current modulation was observed when the BPDE-adducted DNA strand translocated from either the 5′ or 3′ directions. This study suggests that BPDE adducts and other large aromatic biomarkers can be detected with αHL, presenting opportunities for the monitoring, quantification, and sequencing of mutagenic compounds from cellular DNA samples. PMID:25629967

  11. Detection of benzo[a]pyrene-guanine adducts in single-stranded DNA using the α-hemolysin nanopore.

    PubMed

    Perera, Rukshan T; Fleming, Aaron M; Johnson, Robert P; Burrows, Cynthia J; White, Henry S

    2015-02-20

    The carcinogenic precursor benzo[a]pyrene (BP), a polycyclic aromatic hydrocarbon, is released into the environment through the incomplete combustion of hydrocarbons. Metabolism of BP in the human body yields a potent alkylating agent (benzo[a]pyrene diol epoxide, BPDE) that reacts with guanine (G) in DNA to form an adduct implicated in cancer initiation. We report that the α-hemolysin (αHL) nanopore platform can be used to detect a BPDE adduct to G in synthetic oligodeoxynucleotides. Translocation of a 41-mer poly-2'-deoxycytidine strand with a centrally located BPDE adduct to G through αHL in 1 M KCl produces a unique multi-level current signature allowing the adduct to be detected. This readily distinguishable current modulation was observed when the BPDE-adducted DNA strand translocated from either the 5' or 3' directions. This study suggests that BPDE adducts and other large aromatic biomarkers can be detected with αHL, presenting opportunities for the monitoring, quantification, and sequencing of mutagenic compounds from cellular DNA samples.

  12. Curcumin protects mice from Staphylococcus aureus pneumonia by interfering with the self-assembly process of α-hemolysin

    PubMed Central

    Wang, Jianfeng; Zhou, Xuan; Li, Wenhua; Deng, Xuming; Deng, Yanhong; Niu, Xiaodi

    2016-01-01

    α-hemolysin (Hla) is a self-assembling extracellular protein secreted as a soluble monomer by most Staphylococcus aureus strains and is an essential virulence factor for the pathogenesis of various S. aureus infections. Here, we show that curcumin (CUR), a natural compound with weak anti-S. aureus activity, can inhibit the hemolysis induced by Hla. Molecular dynamics simulations, free energy calculations, and mutagenesis assays were further employed for the Hla-CUR complex to determine the mechanism of such inhibition. The analysis of this combined approach indicated that the direct binding CUR to Hla blocks the conformational transition of Hla from the monomer to the oligomer, leading to an inhibition of Hla hemolytic activity. We also found that the addition of CUR significantly attenuated Hla-mediated injury of human alveolar cell (A549) co-cultured with S. aureus. The in vivo data further demonstrated that treatment with CUR protects mice from pneumonia caused by S. aureus, including methicillin-resistant strains (MRSA). These findings suggest that CUR inhibits the pore-forming activity of Hla through a novel mechanism, which would pave the way for the development of new and more effective antibacterial agents to combat S. aureus pneumonia. PMID:27345357

  13. The Forgotten Virulence Factor: The 'non-conventional' Hemolysin TlyA And Its Role in Helicobacter pylori Infection.

    PubMed

    Javadi, Mohammad Bagher; Katzenmeier, Gerd

    2016-12-01

    Helicobacter pylori is a human-specific Gram-negative pathogenic bacterium which colonizes the gastric mucosal layer in the stomach causing diseases such as peptic ulcer, adenocarcinoma, and gastric lymphoma. It is estimated that approximately half of the world's population is infected with H. pylori making it the most intensively characterized microbial pathogen up to now. Hemolysis has been suggested to significantly contribute to colonization of the stomach and disease progression by H. pylori. In a number of earlier studies, TlyA was characterized as a putative pore-forming cytolysin. Although a few observations in the literature suggest a role for TlyA as significant virulence factor of H. pylori, the molecular and structural characterization of this protein is much curtailed at present. Given the intensive characterization of numerous H. pylori virulence factors over the past decade, surprisingly little information exists for the TlyA toxin and its significance for pathogenesis. This review provides a brief overview on microbial hemolysis and its role for pathogenesis and discusses recent research efforts aimed at an improved understanding of the role of the 'non-conventional' hemolysin and its associated RNA methyltransferase TlyA from H. pylori.

  14. Staphylococcus aureus Hemolysins, bi-component Leukocidins, and Cytolytic Peptides: A Redundant Arsenal of Membrane-Damaging Virulence Factors?

    PubMed Central

    Vandenesch, François; Lina, G.; Henry, Thomas

    2012-01-01

    One key aspect of the virulence of Staphylococcus aureus lies in its ability to target the host cell membrane with a large number of membrane-damaging toxins and peptides. In this review, we describe the hemolysins, the bi-component leukocidins (which include the Panton Valentine leukocidin, LukAB/GH, and LukED), and the cytolytic peptides (phenol soluble modulins). While at first glance, all of these factors might appear redundant, it is now clear that some of these factors play specific roles in certain S. aureus life stages and diseases or target specific cell types or species. In this review, we present an update of the literature on toxin receptors and their cell type and species specificities. Furthermore, we review epidemiological studies and animal models illustrating the role of these membrane-damaging factors in various diseases. Finally, we emphasize the interplay of these factors with the host immune system and highlight all their non-lytic functions. PMID:22919604

  15. Site-directed mutations of thermostable direct hemolysin from Grimontia hollisae alter its arrhenius effect and biophysical properties.

    PubMed

    Wang, Yu-Kuo; Huang, Sheng-Cih; Wu, Yi-Fang; Chen, Yu-Ching; Lin, Yen-Ling; Nayak, Manoswini; Lin, Yan Ren; Chen, Wen-Hung; Chiu, Yi-Rong; Li, Thomas Tien-Hsiung; Yeh, Bo-Sou; Wu, Tung-Kung

    2011-03-31

    Recombinant thermostable direct hemolysin from Grimontia hollisae (Gh-rTDH) exhibits paradoxical Arrhenius effect, where the hemolytic activity is inactivated by heating at 60 °C but is reactivated by additional heating above 80 °C. This study investigated individual or collective mutational effect of Tyr53, Thr59, and Ser63 positions of Gh-rTDH on hemolytic activity, Arrhenius effect, and biophysical properties. In contrast to the Gh-rTDH wild-type (Gh-rTDH(WT)) protein, a 2-fold decrease of hemolytic activity and alteration of Arrhenius effect could be detected from the Gh-rTDH(Y53H/T59I) and Gh-rTDH(T59I/S63T) double-mutants and the Gh-rTDH(Y53H/T59I/S63T) triple-mutant. Differential scanning calorimetry results showed that the Arrhenius effect-loss and -retaining mutants consistently exhibited higher and lower endothermic transition temperatures, respectively, than that of the Gh-rTDH(WT). Circular dichroism measurements of Gh-rTDH(WT) and Gh-rTDH(mut) showed a conspicuous change from a β-sheet to α-helix structure around the endothermic transition temperature. Consistent with the observation is the conformational change of the proteins from native globular form into fibrillar form, as determined by Congo red experiments and transmission electron microscopy.

  16. Site-Directed Mutations of Thermostable Direct Hemolysin from Grimontia hollisae Alter Its Arrhenius Effect and Biophysical Properties

    PubMed Central

    Wang, Yu-Kuo; Huang, Sheng-Cih; Wu, Yi-Fang; Chen, Yu-Ching; Lin, Yen-Ling; Nayak, Manoswini; Lin, Yan Ren; Chen, Wen-Hung; Chiu, Yi-Rong; Li, Thomas Tien-Hsiung; Yeh, Bo-Sou; Wu, Tung-Kung

    2011-01-01

    Recombinant thermostable direct hemolysin from Grimontia hollisae (Gh-rTDH) exhibits paradoxical Arrhenius effect, where the hemolytic activity is inactivated by heating at 60 oC but is reactivated by additional heating above 80 oC. This study investigated individual or collective mutational effect of Tyr53, Thr59, and Ser63 positions of Gh-rTDH on hemolytic activity, Arrhenius effect, and biophysical properties. In contrast to the Gh-rTDH wild-type (Gh-rTDHWT) protein, a 2-fold decrease of hemolytic activity and alteration of Arrhenius effect could be detected from the Gh-rTDHY53H/T59I and Gh-rTDHT59I/S63T double-mutants and the Gh-rTDHY53H/T59I/S63T triple-mutant. Differential scanning calorimetry results showed that the Arrhenius effect-loss and -retaining mutants consistently exhibited higher and lower endothermic transition temperatures, respectively, than that of the Gh-rTDHWT. Circular dichroism measurements of Gh-rTDHWT and Gh-rTDHmut showed a conspicuous change from a β-sheet to α-helix structure around the endothermic transition temperature. Consistent with the observation is the conformational change of the proteins from native globular form into fibrillar form, as determined by Congo red experiments and transmission electron microscopy. PMID:21494434

  17. Cytotoxic activity and probable apoptotic effect of Sph2, a sphigomyelinase hemolysin from Leptospira interrogans strain Lai.

    PubMed

    Zhang, Yi-Xuan; Geng, Yan; Yang, Jun-Wei; Guo, Xiao-Kui; Zhao, Guo-Ping

    2008-02-29

    Our previous work confirmed that Sph2/LA1029 was a sphigomyelinase-like hemolyisn of Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai. Characteristics of both hemolytic and cytotoxic activities of Sph2 were reported in this paper. Sph2 was a heat-labile neutral hemolysin and had similar hemolytic behavior as the typical sphingomyelinase C of Staphylococcus aureus upon sheep erythrocytes. The cytotoxic activity of Sph2 was shown in mammalian cells such as BALB/C mouse lymphocytes and macrophages, as well as human L-02 liver cells. Transmission electron microscopic observation showed that the Sph2 treated BALB/C mouse lymphocytes were swollen and ruptured with membrane breakage. They also demonstrated condensed chromatin as a high-density area. Cytoskeleton changes were observed via fluorescence confocal microscope in Sph2 treated BALB/C mouse lymphocytes and macrophages, where both cytokine IL-1beta and IL-6 were induced. In addition, typical apoptotic morphological features were observed in Sph2 treated L-02 cells via transmission electron microscope and the percentage of apoptotic cells did increase after the Sph2 treatment detected by flow cytometry. Therefore, Sph2 was likely an apoptosis-inducing factor of human L-02 liver cells.

  18. Detection of benzo[a]pyrene-guanine adducts in single-stranded DNA using the α-hemolysin nanopore

    NASA Astrophysics Data System (ADS)

    Perera, Rukshan T.; Fleming, Aaron M.; Johnson, Robert P.; Burrows, Cynthia J.; White, Henry S.

    2015-02-01

    The carcinogenic precursor benzo[a]pyrene (BP), a polycyclic aromatic hydrocarbon, is released into the environment through the incomplete combustion of hydrocarbons. Metabolism of BP in the human body yields a potent alkylating agent (benzo[a]pyrene diol epoxide, BPDE) that reacts with guanine (G) in DNA to form an adduct implicated in cancer initiation. We report that the α-hemolysin (αHL) nanopore platform can be used to detect a BPDE adduct to G in synthetic oligodeoxynucleotides. Translocation of a 41-mer poly-2‧-deoxycytidine strand with a centrally located BPDE adduct to G through αHL in 1 M KCl produces a unique multi-level current signature allowing the adduct to be detected. This readily distinguishable current modulation was observed when the BPDE-adducted DNA strand translocated from either the 5‧ or 3‧ directions. This study suggests that BPDE adducts and other large aromatic biomarkers can be detected with αHL, presenting opportunities for the monitoring, quantification, and sequencing of mutagenic compounds from cellular DNA samples.

  19. Disulphide bond restrains the C-terminal region of thermostable direct hemolysin during folding to promote oligomerization.

    PubMed

    Kundu, Nidhi; Tichkule, Swapnil; Pandit, Shashi Bhushan; Chattopadhyay, Kausik

    2017-01-15

    Pore-forming toxins (PFTs) are typically produced as water-soluble monomers, which upon interacting with target cells assemble into transmembrane oligomeric pores. Vibrio parahaemolyticus thermostable direct hemolysin (TDH) is an atypical PFT that exists as a tetramer in solution, prior to membrane binding. The TDH structure highlights a core β-sandwich domain similar to those found in the eukaryotic actinoporin family of PFTs. However, the TDH structure harbors an extended C-terminal region (CTR) that is not documented in the actinoporins. This CTR remains tethered to the β-sandwich domain through an intra-molecular disulphide bond. Part of the CTR is positioned at the inter-protomer interface in the TDH tetramer. Here we show that the truncation, as well as mutation, of the CTR compromise tetrameric assembly, and the membrane-damaging activity of TDH. Our study also reveals that intra-protomer disulphide bond formation during the folding/assembly process of TDH restrains the CTR to mediate its participation in the formation of inter-protomer contact, thus facilitating TDH oligomerization. However, once tetramerization is achieved, disruption of the disulphide bond does not affect oligomeric assembly. Our study provides critical insights regarding the regulation of the oligomerization mechanism of TDH, which has not been previously documented in the PFT family.

  20. Kinetics of T3-DNA Ligase-Catalyzed Phosphodiester Bond Formation Measured Using the α-Hemolysin Nanopore.

    PubMed

    Tan, Cherie S; Riedl, Jan; Fleming, Aaron M; Burrows, Cynthia J; White, Henry S

    2016-12-27

    The latch region of the wild-type α-hemolysin (α-HL) protein channel can be used to distinguish single base modifications in double-stranded DNA (dsDNA) via ion channel measurements upon electrophoretic capture of dsDNA in the vestibule of α-HL. Herein, we investigated the use of the latch region to detect a nick in the phosphodiester DNA backbone. The presence of a nick in the phosphodiester backbone of one strand of the duplex results in a significant increase in both the blockade current and noise level relative to the intact duplex. Differentiation between the nicked and intact duplexes based on blockade current or noise, with near baseline resolution, allows real-time monitoring of the rate of T3-DNA ligase-catalyzed phosphodiester bond formation. Under low ionic strength conditions containing divalent cations and a molecular crowding agent (75 mg mL(-1) PEG), the rate of enzyme-catalyzed reaction in the bulk solution was continuously monitored by electrophoretically capturing reaction substrate or product dsDNA in the α-HL protein channel vestibule. Enzyme kinetic results obtained from the nanopore experiments match those from gel electrophoresis under the same reaction conditions, indicating the α-HL nanopore measurement provides a viable approach for monitoring enzymatic DNA repair activity.

  1. Soft Wall Ion Channel in Continuum Representation with Application to Modeling Ion Currents in α-Hemolysin

    PubMed Central

    Simakov, Nikolay A.

    2010-01-01

    A soft repulsion (SR) model of short range interactions between mobile ions and protein atoms is introduced in the framework of continuum representation of the protein and solvent. The Poisson-Nernst-Plank (PNP) theory of ion transport through biological channels is modified to incorporate this soft wall protein model. Two sets of SR parameters are introduced: the first is parameterized for all essential amino acid residues using all atom molecular dynamic simulations; the second is a truncated Lennard – Jones potential. We have further designed an energy based algorithm for the determination of the ion accessible volume, which is appropriate for a particular system discretization. The effects of these models of short-range interaction were tested by computing current-voltage characteristics of the α-hemolysin channel. The introduced SR potentials significantly improve prediction of channel selectivity. In addition, we studied the effect of choice of some space-dependent diffusion coefficient distributions on the predicted current-voltage properties. We conclude that the diffusion coefficient distributions largely affect total currents and have little effect on rectifications, selectivity or reversal potential. The PNP-SR algorithm is implemented in a new efficient parallel Poisson, Poisson-Boltzman and PNP equation solver, also incorporated in a graphical molecular modeling package HARLEM. PMID:21028776

  2. The Arcanobacterium (Actinomyces) pyogenes hemolysin, pyolysin, is a novel member of the thiol-activated cytolysin family.

    PubMed Central

    Billington, S J; Jost, B H; Cuevas, W A; Bright, K R; Songer, J G

    1997-01-01

    Arcanobacterium (Actinomyces) pyogenes, an animal pathogen, produces a hemolytic exotoxin, pyolysin (PLO). The gene encoding PLO was cloned, and sequence analysis revealed an open reading frame of 1,605 bp encoding a protein of 57.9 kDa. PLO has 30 to 40% identity with the thiol-activated cytolysins (TACYs) of a number of gram-positive bacteria. The activity of PLO was found to be very similar to those of other TACYs, except that it was not thiol activated. The highly conserved TACY undecapeptide is divergent in PLO; in particular, the cysteine residue required for thiol activation has been replaced with alanine. However, mutagenesis of the alanine residue to cysteine did not confer thiol activation on PLO, suggesting a conformational difference in the undecapeptide region of this toxin. Specific antibodies against purified, recombinant PLO completely neutralized the hemolytic activity of A. pyogenes, suggesting that this organism produces a single hemolysin. Furthermore, these antibodies could passively protect mice against lethal challenge with A. pyogenes, suggesting that like other TACYs PLO is an important virulence factor in the pathogenesis of this organism. PMID:9324258

  3. Enterohemorrhagic Escherichia coli Hemolysin Employs Outer Membrane Vesicles to Target Mitochondria and Cause Endothelial and Epithelial Apoptosis

    PubMed Central

    Kunsmann, Lisa; Greune, Lilo; Bauwens, Andreas; Zhang, Wenlan; Kuczius, Thorsten; Kim, Kwang Sik; Mellmann, Alexander; Schmidt, M. Alexander; Karch, Helge

    2013-01-01

    Enterohemorrhagic Escherichia coli (EHEC) strains cause diarrhea and hemolytic uremic syndrome resulting from toxin-mediated microvascular endothelial injury. EHEC hemolysin (EHEC-Hly), a member of the RTX (repeats-in-toxin) family, is an EHEC virulence factor of increasingly recognized importance. The toxin exists as free EHEC-Hly and as EHEC-Hly associated with outer membrane vesicles (OMVs) released by EHEC during growth. Whereas the free toxin is lytic towards human endothelium, the biological effects of the OMV-associated EHEC-Hly on microvascular endothelial and intestinal epithelial cells, which are the major targets during EHEC infection, are unknown. Using microscopic, biochemical, flow cytometry and functional analyses of human brain microvascular endothelial cells (HBMEC) and Caco-2 cells we demonstrate that OMV-associated EHEC-Hly does not lyse the target cells but triggers their apoptosis. The OMV-associated toxin is internalized by HBMEC and Caco-2 cells via dynamin-dependent endocytosis of OMVs and trafficked with OMVs into endo-lysosomal compartments. Upon endosome acidification and subsequent pH drop, EHEC-Hly is separated from OMVs, escapes from the lysosomes, most probably via its pore-forming activity, and targets mitochondria. This results in decrease of the mitochondrial transmembrane potential and translocation of cytochrome c to the cytosol, indicating EHEC-Hly-mediated permeabilization of the mitochondrial membranes. Subsequent activation of caspase-9 and caspase-3 leads to apoptotic cell death as evidenced by DNA fragmentation and chromatin condensation in the intoxicated cells. The ability of OMV-associated EHEC-Hly to trigger the mitochondrial apoptotic pathway in human microvascular endothelial and intestinal epithelial cells indicates a novel mechanism of EHEC-Hly involvement in the pathogenesis of EHEC diseases. The OMV-mediated intracellular delivery represents a newly recognized mechanism for a bacterial toxin to enter host cells in

  4. Interaction of acylated and unacylated forms of E. coli alpha-hemolysin with lipid monolayers: a PM-IRRAS study.

    PubMed

    Vázquez, Romina F; Daza Millone, María A; Pavinatto, Felippe J; Herlax, Vanesa S; Bakás, Laura S; Oliveira, Osvaldo N; Vela, María E; Maté, Sabina M

    2017-06-24

    Uropathogenic strains of Escherichia coli produce virulence factors, such as the protein toxin alpha-hemolysin (HlyA), that enable the bacteria to colonize the host and establish an infection. HlyA is synthetized as a protoxin (ProHlyA) that is transformed into the active form in the bacterial cytosol by the covalent linkage of two fatty-acyl moieties to the polypeptide chain before the secretion of HlyA into the extracellular medium. The aim of this work was to investigate the effect of the fatty acylation of HlyA on protein conformation and protein-membrane interactions. Polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) experiments were performed at the air-water interface, and lipid monolayers mimicking the outer leaflet of red-blood-cell membranes were used as model systems for the study of protein-membrane interaction. According to surface-pressure measurements, incorporation of the acylated protein into the lipid films was faster than that of the nonacylated form. PM-IRRAS measurements revealed that the adsorption of the proteins to the lipid monolayers induced disorder in the lipid acyl chains and also changed the elastic properties of the films independently of protein acylation. No significant difference was observed between HlyA and ProHlyA in the interaction with the model lipid monolayers; but when these proteins became adsorbed on a bare air-water interface, they adopted different secondary structures. The assumption of the correct protein conformation at a hydrophobic-hydrophilic interface could constitute a critical condition for biologic activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Single pyrimidine discrimination during voltage-driven translocation of osmylated oligodeoxynucleotides via the α-hemolysin nanopore

    PubMed Central

    Ding, Yun

    2016-01-01

    Summary The influence of an electric field on an isolated channel or nanopore separating two compartments filled with electrolytes produces a constant ion flux through the pore. Nucleic acids added to one compartment traverse the pore, and modulate the current in a sequence-dependent manner. While translocation is faster than detection, the α-hemolysin nanopore (α-HL) successfully senses base modifications in ssDNA immobilized within the pore. With the assistance of a processing enzyme to slow down translocation, nanopore-based DNA sequencing is now a commercially available platform. However, accurate base calling is challenging because α-HL senses a sequence, and not a single nucleotide. Osmylated DNA was recently proposed as a surrogate for nanopore-based sequencing. Osmylation is the addition of osmium tetroxide 2,2’-bipyridine (OsBp) to the C5–C6 pyrimidine double bond. The process is simple, selective for deoxythymidine (dT) over deoxycytidine (dC), unreactive towards the purines, practically 100% effective, and strikingly independent of length, sequence, and composition. Translocation of an oligodeoxynucleotide (oligo) dA10XdA9 via α-HL is relatively slow, and exhibits distinct duration as well as distinct residual current when X = dA, dT(OsBp), or dC(OsBp). The data indicate that the α-HL constriction zone/β-barrel interacts strongly with both OsBp and the base. A 23 nucleotide long oligo with four dT(OsBp) traverses 18-times slower, and the same oligo with nine (dT+dC)(OsBp) moieties traverses 84-times slower compared to dA20, suggesting an average rate of 40 or 180 μs/base, respectively. These translocation speeds are well above detection limits, may be further optimized, and clear the way for nanopore-based sequencing using osmylated DNA. PMID:26925357

  6. Enterohemorrhagic Escherichia coli hemolysin employs outer membrane vesicles to target mitochondria and cause endothelial and epithelial apoptosis.

    PubMed

    Bielaszewska, Martina; Rüter, Christian; Kunsmann, Lisa; Greune, Lilo; Bauwens, Andreas; Zhang, Wenlan; Kuczius, Thorsten; Kim, Kwang Sik; Mellmann, Alexander; Schmidt, M Alexander; Karch, Helge

    2013-01-01

    Enterohemorrhagic Escherichia coli (EHEC) strains cause diarrhea and hemolytic uremic syndrome resulting from toxin-mediated microvascular endothelial injury. EHEC hemolysin (EHEC-Hly), a member of the RTX (repeats-in-toxin) family, is an EHEC virulence factor of increasingly recognized importance. The toxin exists as free EHEC-Hly and as EHEC-Hly associated with outer membrane vesicles (OMVs) released by EHEC during growth. Whereas the free toxin is lytic towards human endothelium, the biological effects of the OMV-associated EHEC-Hly on microvascular endothelial and intestinal epithelial cells, which are the major targets during EHEC infection, are unknown. Using microscopic, biochemical, flow cytometry and functional analyses of human brain microvascular endothelial cells (HBMEC) and Caco-2 cells we demonstrate that OMV-associated EHEC-Hly does not lyse the target cells but triggers their apoptosis. The OMV-associated toxin is internalized by HBMEC and Caco-2 cells via dynamin-dependent endocytosis of OMVs and trafficked with OMVs into endo-lysosomal compartments. Upon endosome acidification and subsequent pH drop, EHEC-Hly is separated from OMVs, escapes from the lysosomes, most probably via its pore-forming activity, and targets mitochondria. This results in decrease of the mitochondrial transmembrane potential and translocation of cytochrome c to the cytosol, indicating EHEC-Hly-mediated permeabilization of the mitochondrial membranes. Subsequent activation of caspase-9 and caspase-3 leads to apoptotic cell death as evidenced by DNA fragmentation and chromatin condensation in the intoxicated cells. The ability of OMV-associated EHEC-Hly to trigger the mitochondrial apoptotic pathway in human microvascular endothelial and intestinal epithelial cells indicates a novel mechanism of EHEC-Hly involvement in the pathogenesis of EHEC diseases. The OMV-mediated intracellular delivery represents a newly recognized mechanism for a bacterial toxin to enter host cells in

  7. Vaccination with proteus toxic agglutinin, a hemolysin-independent cytotoxin in vivo, protects against Proteus mirabilis urinary tract infection.

    PubMed

    Alamuri, Praveen; Eaton, Kathryn A; Himpsl, Stephanie D; Smith, Sara N; Mobley, Harry L T

    2009-02-01

    Complicated urinary tract infections (UTI) caused by Proteus mirabilis are associated with severe pathology in the bladder and kidney. To investigate the roles of two established cytotoxins, the HpmA hemolysin, a secreted cytotoxin, and proteus toxic agglutinin (Pta), a surface-associated cytotoxin, mutant analysis was used in conjunction with a mouse model of ascending UTI. Inactivation of pta, but not inactivation of hpmA, resulted in significant decreases in the bacterial loads of the mutant in kidneys (P < 0.01) and spleens (P < 0.05) compared to the bacterial loads of the wild type; the 50% infective dose (ID(50)) of an isogenic pta mutant or hpmA pta double mutant was 100-fold higher (5 x 10(8) CFU) than the ID(50) of parent strain HI4320 (5 x 10(6) CFU). Colonization by the parent strain caused severe cystitis and interstitial nephritis as determined by histopathological examination. Mice infected with the same bacterial load of the hpmA pta double mutant showed significantly reduced pathology (P < 0.01), suggesting that the additive effect of these two cytotoxins is critical during Proteus infection. Since Pta is surface associated and important for the persistence of P. mirabilis in the host, it was selected as a vaccine candidate. Mice intranasally vaccinated with a site-directed (indicated by an asterisk) (S366A) mutant purified intact toxin (Pta*) or the passenger domain Pta-alpha*, each independently conjugated with cholera toxin (CT), had significantly lower bacterial counts in their kidneys ( P = 0.001) and spleens (P = 0.002) than mice that received CT alone. The serum immunoglobulin G levels correlated with protection (P = 0.03). This is the first report describing the in vivo cytotoxicity and antigenicity of an autotransporter in P. mirabilis and its use in vaccine development.

  8. Dysregulation of Escherichia coli α-hemolysin expression alters the course of acute and persistent urinary tract infection.

    PubMed

    Nagamatsu, Kanna; Hannan, Thomas J; Guest, Randi L; Kostakioti, Maria; Hadjifrangiskou, Maria; Binkley, Jana; Dodson, Karen; Raivio, Tracy L; Hultgren, Scott J

    2015-02-24

    Urinary tract infections (UTIs) are among the most common bacterial infections, causing considerable morbidity in females. Infection is highly recurrent despite appropriate antibiotic treatment. Uropathogenic Escherichia coli (UPEC), the most common causative agent of UTIs, invades bladder epithelial cells (BECs) and develops into clonal intracellular bacterial communities (IBCs). Upon maturation, IBCs disperse, with bacteria spreading to neighboring BECs to repeat this cycle. This process allows UPEC to gain a foothold in the face of innate defense mechanisms, including micturition, epithelial exfoliation, and the influx of polymorphonuclear leukocytes. Here, we investigated the mechanism and dynamics of urothelial exfoliation in the early acute stages of infection. We show that UPEC α-hemolysin (HlyA) induces Caspase-1/Caspase-4-dependent inflammatory cell death in human urothelial cells, and we demonstrate that the response regulator (CpxR)-sensor kinase (CpxA) two-component system (CpxRA), which regulates virulence gene expression in response to environmental signals, is critical for fine-tuning HlyA cytotoxicity. Deletion of the cpxR transcriptional response regulator derepresses hlyA expression, leading to enhanced Caspase-1/Caspase-4- and NOD-like receptor family, pyrin domain containing 3-dependent inflammatory cell death in human urothelial cells. In vivo, overexpression of HlyA during acute bladder infection induces more rapid and extensive exfoliation and reduced bladder bacterial burdens. Bladder fitness is restored fully by inhibition of Caspase-1 and Caspase-11, the murine homolog of Caspase-4. Thus, we have discovered that fine-tuning of HlyA expression by the CpxRA system is critical for enhancing UPEC fitness in the urinary bladder. These results have significant implications for our understanding of how UPEC establishes persistent colonization.

  9. [Isolation of thermostable direct hemolysin producing Vibrio parahaemolyticus from food using screening by PCR in food-borne outbreaks].

    PubMed

    Obata, Hiromi; Shimojima, Yukako; Konishi, Noriko; Monma, Chie; Yano, Kazuyoshi; Kai, Akemi; Morozumi, Satoshi; Fukuyama, Masafumi

    2006-07-01

    The producibility of thermostable direct hemolysin (TDH) is the most important pathogenic factor in Vibrio parahaemolyticus. TDH (+) V. parahaemolyticus is usually isolated from patients having V. parahaemolyticus food-borne disease. TDH (+) V. parahaemolyticus is, however, very difficult to isolate from food and environmental samples. In the 5 years from 2000 to 2004 in Tokyo, V. parahaemolyticus was isolated from food samples related to 67 of 227 V parahaemolyticus food-borne outbreaks. In these outbreaks, TDH (+) strains were also tried to isolate using PCR as the screening methods. TDH (+) V. parahaemolyticus strains were able to isolate from enrichment broth in which toxR and tdh genes become positive in PCR. TDH (+) strains of the same serotype with patients were able to be isolated from 23 food samples related to 11 outbreaks (16.4%); 3 outbreaks in 2000, 2 in 2001, 2 in 2002, 1 in 2003, and 3 in 2004. The serotypes of V. parahaemolyticus isolated from food were O3 : K6 (10 samples), O3 : K5 (6 samples), O1 : K25 (4 samples), O3 : K29 (2 samples), O4 : K 8 (1 sample), and O4 : K11 (1 sample). The isolation rate of the TDH (+) strain from enrichment broth differed with samples. In several samples TDH (+) strains were isolated easily only by examining 3 colonies, hence no TDH (+) strains were isolated in spite of the examination of 250 colonies. No correlation was seen between the number of V. parahaemolyticus and the isolation rate of TDH (+) strains in food samples. Screening using PCR is very effective method for isolating TDH (+) V. parahaemolyticus from food samples.

  10. Association of Vibrio parahaemolyticus thermostable direct hemolysin with lipid rafts is essential for cytotoxicity but not hemolytic activity.

    PubMed

    Matsuda, Shigeaki; Kodama, Toshio; Okada, Natsumi; Okayama, Kanna; Honda, Takeshi; Iida, Tetsuya

    2010-02-01

    Thermostable direct hemolysin (TDH), a major virulence factor of Vibrio parahaemolyticus, induces cytotoxicity in cultured cells. However, the mechanism of TDH's cytotoxic effect including its target molecules on the plasma membrane of eukaryotic cells remains unclear. In this study, we identified the role of lipid rafts, cholesterol- and sphingolipid-enriched microdomains, in TDH cytotoxicity. Treatment of cells with methyl-beta-cyclodextrin (MbetaCD), a raft-disrupting agent, inhibited TDH cytotoxicity. TDH was associated with detergent-resistant membranes (DRMs), and MbetaCD eliminated this association. In contrast, there was no such association between a nontoxic TDH mutant and DRMs. The disruption of lipid rafts neither affected hemolysis nor inhibited Ca(2+) influx into HeLa cells induced by TDH. These findings indicate that the cytotoxicity but not the hemolytic activity of TDH is dependent on lipid rafts. The exogenous and endogenous depletion of cellular sphingomyelin also prevented TDH cytotoxicity, but a direct interaction between TDH and sphingomyelin was not detected with either a lipid overlay assay or a liposome absorption test. Treatment with sphingomyelinase (SMase) at 100 mU/ml disrupted the association of TDH with DRMs but did not affect the localization of lipid raft marker proteins (caveolin-1 and flotillin-1) with DRMs. These results suggest that sphingomyelin is important for the association of TDH with lipid rafts but is not a molecular target of TDH. We hypothesize that TDH may target a certain group of rafts that are sensitive to SMase at a certain concentration, which does not affect other types of rafts.

  11. Detection of a functional insertion sequence responsible for deletion of the thermostable direct hemolysin gene (tdh) in Vibrio parahaemolyticus.

    PubMed

    Kamruzzaman, Muhammad; Bhoopong, Phuangthip; Vuddhakul, Varaporn; Nishibuchi, Mitsuaki

    2008-09-15

    The thermostable direct hemolysin coded by the tdh gene is a marker of virulent strains of Vibrio parahaemolyticus. The tdh genes are flanked by insertion sequences collectively named as ISVs or their remnants; but the ISVs so far examined have accumulated mutations in the transposase genes and underwent structural arrangements and their transposition activity could not be expected; the tdh gene was thus considered to have been acquired by V. parahaemolyticus through horizontal transfer in the past during evolution. We recently isolated from the same patient tdh+ strains and a tdh(-) strain (PCR examination) that were otherwise indistinguishable. The purpose of this study was to examine the hypothesis that the tdh(-) strain was derived from the tdh+ strain by a deletion of the tdh gene mediated by a functional ISV. Southern blot hybridization showed tdh+ sequences in the tdh(-) strain (PSU-1466). Nucleotide sequence analysis of the tdh and its flanking sequences revealed the tdh gene was split into two parts and they were located 3182-bp apart in PSU-1466. The two tdh sequences were flanked by one of the ISVs, named as ISVpa3, in PSU-1466. This genetic structure could be explained by an ISVpa3-mediated partial tdh deletion from a tdh+ strain followed by transposition of the duplicated ISVpa3 and the deleted tdh sequence into a neighboring location. The ISVpa3 of PSU-1466 coded for a full-length transposase and a DDE motif. We were able to demonstrate transposition activity of the ISVpa3 cloned from PSU-1466 using the replicon fusion assay with the conjugal transfer of a cointegrate from Escherichia coli to V. parahaemolyticus. Our data support ISVpa3-mediated partial tdh deletion resulted in the emergence of the tdh(-) strain.

  12. Importance of the carboxyl terminus in the folding and function of alpha-hemolysin of Staphylococcus aureus.

    PubMed

    Sangha, N; Kaur, S; Sharma, V; Krishnasastry, M V

    1999-04-02

    The physical state of two model mutants of alpha-hemolysin (alphaHL), alphaHL(1-289), a carboxyl-terminal deletion mutant (CDM), and alphaHL(1-331), a carboxyl-terminal extension mutant (CEM), were examined in detail to identify the role of the carboxyl terminus in the folding and function of native alphaHL. Denatured alphaHL can be refolded efficiently with nearly total recovery of its activity upon restoration of nondenaturing conditions. Various biophysical and biochemical studies on the three proteins have revealed the importance of an intact carboxyl terminus in the folding of alphaHL. The CDM exhibits a marked increase in susceptibility to proteases as compared with alphaHL. alphaHL and CEM exhibit similar fluorescence emission maxima, and that of the CDM is red-shifted by 9 nm, which indicates a greater solvent exposure of the tryptophan residues of the CDM. In addition, the CDM binds 8-anilino-1-naphthalene sulfonic acid (ANS) and increases its fluorescence intensity significantly unlike alphaHL and CEM, which show marginal binding. The circular dichroism studies point that the CDM possesses significant secondary structure, but its tertiary structure is greatly diminished as compared with alphaHL. These data show that the CDM has several of the features that characterize a molten globule state. Experiments with freshly translated mutants, using coupled in vitro transcription and translation, have further supported our observations that deletion at the carboxyl terminus leads to major structural perturbations in the water-soluble form of alphaHL. The studies demonstrate a critical role of the carboxyl terminus of alphaHL in attaining the native folded state.

  13. Occurrence of chromosome- or plasmid-mediated aerobactin iron transport systems and hemolysin production among clonal groups of human invasive strains of Escherichia coli K1.

    PubMed

    Valvano, M A; Silver, R P; Crosa, J H

    1986-04-01

    The incidence of the aerobactin system and the genetic location of aerobactin genes were investigated in Escherichia coli K1 neonatal isolates belonging to different clonal groups. A functional aerobactin system was found in all members of the O7 MP3, O1 MP5, O1 MP9, and O18 MP9 clonal groups examined and also in K1 strains having O6, O16, and O75 lipopolysaccharide types, which are less frequently associated with neonatal infections. In contrast, the aerobactin system was not detected in strains from the O18 MP6 clone. The combined results of plasmid and colony hybridization experiments showed that the aerobactin genes were located on the chromosome in the majority (75%) of the aerobactin-producing K1 isolates, the genetic location of the aerobactin genes was closely correlated with the outer membrane protein profile rather than the O lipopolysaccharide type, the K1 strains harboring a chromosome-mediated aerobactin system did not possess colicin V genes, and five of six K1 isolates possessing a plasmid-borne aerobactin system contained colicin V genes which were located on the same plasmids carrying the aerobactin genes. The comparison of hemolysin production with possession of the aerobactin system in virulent clones of E. coli K1 strains showed that all of the aerobactin-producing strains from the O18 MP9 and O7 MP3 clonal groups did not synthesize hemolysin, whereas 11 of 12 aerobactin-nonproducing O18 MP6 isolates were hemolytic. Of the K1 strains examined, 92.5% possessed either the aerobactin system or the ability to produce hemolysin or both.

  14. Loss of hemolysin expression in Staphylococcus aureus agr mutants correlates with selective survival during mixed infections in murine abscesses and wounds.

    PubMed

    Schwan, William R; Langhorne, Michael H; Ritchie, Heather D; Stover, C Kendall

    2003-08-18

    During the screening of a Staphylococcus aureus signature-tagged mutagenesis library, it was noted that nonhemolytic bacteria became more abundant as time passed in murine abscess and wound models, but not within organ tissues associated with systemic infections. To examine this further, a mixed population of hyperhemolytic, hemolytic, and nonhemolytic S. aureus strain RN6390 cells were inoculated into mice using abscess, wound, and systemic models of infection. After 7 days in the abscess, the hyperhemolytic group markedly declined, whereas the nonhemolytic population increased significantly. A similar phenomenon occurred in murine wounds, but not during the systemic infection. Sequencing of several of the signature-tagged mutants indicated mutations in the agrC gene or within the agrA-agrC intergenic region. Both alpha-hemolysin and delta-hemolysin activity was curtailed in these mutants, but beta-hemolysin activity was unaffected. Single strain comparisons between wild-type strain 8325-4 and strain DU1090 (hla-) as well as between strain RN6911 (agr) and wild-type strain RN6390 were performed using the same three animal models of infection. The agr mutant strain and the hla mutant strain showed no difference in bacterial counts in murine wounds compared to their respective parent strains. The same held true in murine abscesses at day 4, but strain RN6911 counts then declined at day 7. Considerable clearing of the hla mutant strain and the agr mutant strain occurred in the systemic model of infection. Mixed infections with the DU1090 and 8325-4 strains in the abscess model showed a slight advantage given to the DU1090 population, but a distinct selection for the parental 8325-4 strain in the liver. These results suggest that agr mutations cause reductions in the expression of several secreted proteins, including alpha- and delta-hemolysin, which in turn contribute to a growth advantage of this agr mutant group within a mixed population of S. aureus cells residing

  15. Slow translocation of polynucleotides and their discrimination by α-hemolysin inside a single track-etched nanopore designed by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Cabello-Aguilar, Simon; Balme, Sébastien; Chaaya, Adib Abou; Bechelany, Mikhael; Balanzat, Emmanuel; Janot, Jean-Marc; Pochat-Bohatier, Celine; Miele, Philippe; Dejardin, Philippe

    2013-09-01

    We report the formation of a hybrid biological/artificial nanopore by the direct insertion of non-modified α-hemolysin at the entrance of a high aspect ratio (length/diameter) biomimetic nanopore. In this robust hybrid system, the protein exhibits the same polynucleotide discrimination properties as in the biological membrane and the polynucleotide dwell time is strongly increased. This nanopore is very promising for DNA sequencing applications where the high DNA translocation velocity and the fragility of the support are the main bottlenecks.We report the formation of a hybrid biological/artificial nanopore by the direct insertion of non-modified α-hemolysin at the entrance of a high aspect ratio (length/diameter) biomimetic nanopore. In this robust hybrid system, the protein exhibits the same polynucleotide discrimination properties as in the biological membrane and the polynucleotide dwell time is strongly increased. This nanopore is very promising for DNA sequencing applications where the high DNA translocation velocity and the fragility of the support are the main bottlenecks. Electronic supplementary information (ESI) available: Materials, nanopore fabrication and characterization. See DOI: 10.1039/c3nr03683a

  16. Phylogenetic and in silico functional analyses of thermostable-direct hemolysin and tdh-related encoding genes in Vibrio parahaemolyticus and other Gram-negative bacteria.

    PubMed

    Bhowmik, Sushanta K; Pazhani, Gururaja P; Ramamurthy, Thandavarayan

    2014-01-01

    Emergence and spread of pandemic strains of Vibrio parahaemolyticus have drawn attention to make detailed study on their genomes. The pathogenicity of V. parahaemolyticus has been associated with thermostable-direct hemolysin (TDH) and/or TDH-related hemolysin (TRH). The present study evaluated characteristics of tdh and trh genes, considering the phylogenetic and in silico functional features of V. parahaemolyticus and other bacteria. Fifty-two tdh and trh genes submitted to the GenBank were analyzed for sequence similarity. The promoter sequences of these genes were also analyzed from transcription start point to -35 regions and correlated with amino acid substitution within the coding regions. The phylogenetic analysis revealed that tdh and trh are highly distinct and also differ within the V. parahaemolyticus strains that were isolated from different geographical regions. Promoter sequence analysis revealed nucleotide substitutions and deletions at -18 and -19 positions among the pandemic, prepandemic, and nonpandemic tdh sequences. Many amino acid substitutions were also found within the signal peptide and also in the matured protein region of several TDH proteins as compared to TDH-S protein of pandemic V. parahaemolyticus. Experimental evidences are needed to recognize the importance of substitutions and deletions in the tdh and trh genes.

  17. Phenotypic and genotypic comparisons reveal a broad distribution and heterogeneity of hemolysin BL genes among Bacillus cereus isolates.

    PubMed

    Thaenthanee, Suwicha; Wong, Amy C Lee; Panbangred, Watanalai

    2005-11-25

    The presence of hemolysin BL (HBL; components L(2), L(1), and B)-encoding genes (hblC, hblD, and hblA) from 339 Bacillus cereus strains isolated in Thailand was determined. PCR analysis showed that all three hbl genes were detected in 222 strains (65.5%). Two, one or no hbl genes were detected in 3 (0.9%), 6 (1.8%), and 108 (31.8%) strains, respectively. Among the 222 strains in which all three hbl genes were detected, 210 (61.9%) displayed discontinuous hemolysis (DH) characteristic of HBL producers, while 12 (3.5%) showed continuous hemolysis (CH) on sheep blood agar. Among strains in which none of the hbl genes was detected, 97 (28.6%) displayed CH while 11 (3.2%) did not show hemolytic activity. Three strains in which two hbl genes were detected showed CH. hblC was present in five of six strains where only one hbl gene was detected, and all of them (designated SS-00-15, TG-00-06, TG-00-14, F-00-25, and NR-01-49) showed DH. The HpaII restriction profiles of PCR fragments amplified from the hblC-A region in these five strains using hblC forward (FHC) and hblA reverse (RHA(2)) primers displayed heterogeneous patterns, which indicated sequence variation. Western blot analysis using polyclonal antibodies (Pab) raised against HBL components purified from strain F837/76 showed that three of the five strains produced all three components, whereas strain TG-00-06 did not give a signal for any component, and strain TG-00-14 produced B and L(1) but not L(2). The production of L(2) by these five strains was further analyzed using the Oxoid RPLA test. Three strains gave high titers (>64) whereas strains TG-00-06 and TG-00-14 showed lower titers of 16 and 32, respectively. The data show that HBL-encoding genes are widely distributed among B. cereus isolated in Thailand and there is a high degree of heterogeneity in both the genes and proteins. This is the first report of a B. cereus strain showing DH in which all three hbl genes and their proteins were not detected by both

  18. Comparison of O-polysaccharide and hemolysin co-regulated protein as target antigens for serodiagnosis of melioidosis

    PubMed Central

    Pumpuang, Apinya; Dunachie, Susanna J.; Phokrai, Phornpun; Jenjaroen, Kemajittra; Sintiprungrat, Kitisak; Boonsilp, Siriphan; Brett, Paul J.; Burtnick, Mary N.

    2017-01-01

    Background Melioidosis is a severe disease caused by Burkholderia pseudomallei. Clinical manifestations are diverse and acute infections require immediate treatment with effective antibiotics. While culture is the current diagnostic standard, it is time-consuming and has low sensitivity. In endemic areas, inaccessibility to biosafety level 3 facilities and a lack of good serodiagnostic tools can impede diagnosis and disease surveillance. Recent studies have suggested that O-polysaccharide (OPS) and hemolysin co-regulated protein 1 (Hcp1) are promising target antigens for serodiagnosis of melioidosis. Methodology/Principle findings We evaluated rapid ELISAs using crude antigens, purified OPS and Hcp1 to measure antibody levels in three sets of sera: (i) 419 serum samples from melioidosis patients, Thai and U.S. healthy donors, (ii) 120 serum samples from patients with other bacterial infections, and (iii) 423 serum samples from 200 melioidosis patients obtained upon admission and at 12 and 52 weeks post-recovery. We observed significantly higher antibody levels using the crude antigen prepared from wild type B. pseudomallei K96243 compared to that of an OPS-mutant. The areas under receiver operator characteristics (AUROCCs) for diagnosis were compared for individual Hcp1-ELISA or OPS-ELISA or combined Hcp1/OPS-ELISA. For Thai donors, AUROCCs were highest and comparable between the Hcp1-ELISA and the combined Hcp1/OPS-ELISA (0.95 versus 0.94). For U.S. donors, the AUROCC was highest for the combined Hcp1/OPS-ELISA (0.96). Significantly higher seropositivity was observed in diabetic patients compared to those without diabetes for both the Hcp1-ELISA (87.3% versus 69.7%) and OPS-ELISA (88.1% versus 60.6%). Although antibody levels for Hcp1 were highest upon admission, the titers declined by week 52 post-recovery. Conclusions/Significance Hcp1 and OPS are promising candidates for serodiagnosis of melioidosis in different groups of patients. The Hcp1-ELISA performed

  19. Analysis of Receptor for Vibrio cholerae El Tor Hemolysin with a Monoclonal Antibody That Recognizes Glycophorin B of Human Erythrocyte Membrane

    PubMed Central

    Zhang, Dongyan; Takahashi, Junko; Seno, Taiko; Tani, Yoshihiko; Honda, Takeshi

    1999-01-01

    El Tor hemolysin (ETH), a pore-forming toxin secreted by Vibrio cholerae O1 biotype El Tor and most Vibrio cholerae non-O1 isolates, is able to lyse erythrocytes and other mammalian cells. To study the receptor for this toxin or the related molecule(s) on erythrocyte, we first isolated a monoclonal antibody, B1, against human erythrocyte membrane, which not only blocks the binding of ETH to human erythrocyte but also inhibits the hemolytic activity of ETH. Biochemical characterization and immunoblotting revealed that this antibody recognized an epitope on the extracellular domain of glycophorin B, a sialoglycoprotein of erythrocyte membrane. Erythrocytes lacking glycophorin B but not glycophorin A were less sensitive to the toxin than were normal human erythrocytes. These results indicate that glycophorin B is a receptor for ETH or at least an associated molecule of the receptor for ETH on human erythrocytes. PMID:10496913

  20. Biofilm formation, hemolysin production and antimicrobial susceptibilities of Streptococcus agalactiae isolated from the mastitis milk of dairy cows in Shahrekord district, Iran

    PubMed Central

    Ebrahimi, Azizollah; Moatamedi, Azar; Lotfalian, Sharareh; Mirshokraei, Pejhman

    2013-01-01

    Streptococcus agalactiae is a major contagious pathogen causing bovine sub-clinical mastitis. The present investigation was carried out to determine some phenotypic characteristics of the S. agalactiae strains isolated from bovine mastitis cases in dairy cows of Shahrekord in the west-center of Iran. One hundred eighty California mastitis test (CMT) positive milk samples were bacteriologically studied. A total of 31 (17.2%) S. agalactiae isolated. Twenty eight (90.3%) of the isolates were biofilm producers. This finding may indicate the high potential of pathogenicity in isolated strains. Sixteen (51.6%) isolates were α hemolysin producers. Only 19.3%, 22.5% and 29.0% of the isolates were sensitive to streptomycin, flumequine and kanamycin, respectively. None of these three agents is recommended for treatment of mastitis cases. PMID:25568683

  1. Biofilm formation, hemolysin production and antimicrobial susceptibilities of Streptococcus agalactiae isolated from the mastitis milk of dairy cows in Shahrekord district, Iran.

    PubMed

    Ebrahimi, Azizollah; Moatamedi, Azar; Lotfalian, Sharareh; Mirshokraei, Pejhman

    2013-01-01

    Streptococcus agalactiae is a major contagious pathogen causing bovine sub-clinical mastitis. The present investigation was carried out to determine some phenotypic characteristics of the S. agalactiae strains isolated from bovine mastitis cases in dairy cows of Shahrekord in the west-center of Iran. One hundred eighty California mastitis test (CMT) positive milk samples were bacteriologically studied. A total of 31 (17.2%) S. agalactiae isolated. Twenty eight (90.3%) of the isolates were biofilm producers. This finding may indicate the high potential of pathogenicity in isolated strains. Sixteen (51.6%) isolates were α hemolysin producers. Only 19.3%, 22.5% and 29.0% of the isolates were sensitive to streptomycin, flumequine and kanamycin, respectively. None of these three agents is recommended for treatment of mastitis cases.

  2. Identification of lethal toxin with the thermostable direct hemolysin produced by Vibrio parahaemolyticus, and some physicochemical properties of the purified toxin.

    PubMed Central

    Honda, T; Taga, S; Takeda, T; Hasibuan, M A; Takeda, Y; Miwatani, T

    1976-01-01

    Lethal toxin was purified extensively from the culture filtrate of a Kanagawa phenomenon-positive strain of Vibrio parahaemolyticus. The purified toxin was a protein, and its homogeneity was demonstrated by sodium dodecyl sulfate-polyacrylamide gel disc electrophoresis and analytical ultracentrifugation. It was demonstrated that the thermostable direct hemolysin was identical to the lethal toxin and that it was the main, if not only, lethal toxin in the culture filtrate. The purified toxin had a lethal effect when injected into mice either intravenously or intraperitoneally. Its lethal effect was very rapid, a dose of 5 mug of toxin per mouse killing the animals within 1 min. The lethal activity was inhibited by a ganglioside mixture. Some physicochemical properties of the purified toxin are reported. Images PMID:1248866

  3. A critical role for hemolysin in Vibrio fluvialis-induced IL-1β secretion mediated by the NLRP3 inflammasome in macrophages

    PubMed Central

    Song, Liqiong; Huang, Yuanming; Zhao, Meng; Wang, Zhihao; Wang, Shujing; Sun, Hui; Kan, Biao; Meng, Guangxun; Liang, Weili; Ren, Zhihong

    2015-01-01

    Vibrio fluvialis causes human diarrhea, but the pathogenesis is not well-studied. We hypothesized that V. fluvialis-secreted hemolysin (VFH) may induce IL-1β secretion through the activation of the NLRP3 inflammasome and contribute to the pathogenicity of V. fluvialis. To examine this possibility, we constructed VFH mutant and complement strains and demonstrated that V. fluvialis-induced IL-1β production and cytotoxicity in human monocytic THP-1 cells and mouse macrophages is attributed to VFH. To evaluate the role of VFH in vivo, we infected adult C57BL/6 mice intraperitoneally and suckling C57/B6 mice orally with various strains. The mice treated with 108 CFU wild-type V. fluvialis or cell-free supernatant containing VFH induced significantly higher IL-1β production in peritoneal lavage fluid or in colon compared with those infected with the mutant strain, while no effect on TNF and IL-6 production was observed at day 5 or 24 h post-infection. VFH contributed to pathological changes and IL-1β release independent of colonization of V. fluvialis in the colon. VFH has no effect on the synthesis of pro-IL-1β, but rather it triggers the processing of pro-IL-1β into IL-1β. Furthermore, using deficient mouse strains, we verified that V. fluvialis-induced IL-1β is mediated through activation of Caspase-1 and the NLRP3 inflammasome ex vivo. Confocal microscopy suggests that VFH contributes to cathepsin B release. Furthermore, V. fluvialis-induced IL-1β secretion requires potassium (K+) efflux and reactive oxygen species production. Our results provide new evidence for the role of VFH in the activation of the NLRP3 inflammasome and pathogenesis in response to V. fluvialis infection. Summary Sentence: Vibrio fluvialis-secreted hemolysin induces IL-1β secretion through the activation of the NLRP3 inflammasome and contributes to the pathogenicity of V. fluvialis. PMID:26052324

  4. A critical role for hemolysin in Vibrio fluvialis-induced IL-1β secretion mediated by the NLRP3 inflammasome in macrophages.

    PubMed

    Song, Liqiong; Huang, Yuanming; Zhao, Meng; Wang, Zhihao; Wang, Shujing; Sun, Hui; Kan, Biao; Meng, Guangxun; Liang, Weili; Ren, Zhihong

    2015-01-01

    Vibrio fluvialis causes human diarrhea, but the pathogenesis is not well-studied. We hypothesized that V. fluvialis-secreted hemolysin (VFH) may induce IL-1β secretion through the activation of the NLRP3 inflammasome and contribute to the pathogenicity of V. fluvialis. To examine this possibility, we constructed VFH mutant and complement strains and demonstrated that V. fluvialis-induced IL-1β production and cytotoxicity in human monocytic THP-1 cells and mouse macrophages is attributed to VFH. To evaluate the role of VFH in vivo, we infected adult C57BL/6 mice intraperitoneally and suckling C57/B6 mice orally with various strains. The mice treated with 10(8) CFU wild-type V. fluvialis or cell-free supernatant containing VFH induced significantly higher IL-1β production in peritoneal lavage fluid or in colon compared with those infected with the mutant strain, while no effect on TNF and IL-6 production was observed at day 5 or 24 h post-infection. VFH contributed to pathological changes and IL-1β release independent of colonization of V. fluvialis in the colon. VFH has no effect on the synthesis of pro-IL-1β, but rather it triggers the processing of pro-IL-1β into IL-1β. Furthermore, using deficient mouse strains, we verified that V. fluvialis-induced IL-1β is mediated through activation of Caspase-1 and the NLRP3 inflammasome ex vivo. Confocal microscopy suggests that VFH contributes to cathepsin B release. Furthermore, V. fluvialis-induced IL-1β secretion requires potassium (K(+)) efflux and reactive oxygen species production. Our results provide new evidence for the role of VFH in the activation of the NLRP3 inflammasome and pathogenesis in response to V. fluvialis infection. Summary Sentence: Vibrio fluvialis-secreted hemolysin induces IL-1β secretion through the activation of the NLRP3 inflammasome and contributes to the pathogenicity of V. fluvialis.

  5. Functional Contributions of Positive Charges in the Pore-Lining Helix 3 of the Bordetella pertussis CyaA-Hemolysin to Hemolytic Activity and Ion-Channel Opening

    PubMed Central

    Kurehong, Chattip; Kanchanawarin, Chalermpol; Powthongchin, Busaba; Prangkio, Panchika; Katzenmeier, Gerd; Angsuthanasombat, Chanan

    2017-01-01

    The Bordetella pertussis CyaA-hemolysin (CyaA-Hly) domain was previously demonstrated to be an important determinant for hemolysis against target erythrocytes and ion-channel formation in planar lipid bilayers (PLBs). Here, net-charge variations in the pore-lining helix of thirteen related RTX cytolysins including CyaA-Hly were revealed by amino acid sequence alignments, reflecting their different degrees of hemolytic activity. To analyze possible functional effects of net-charge alterations on hemolytic activity and channel formation of CyaA-Hly, specific mutations were made at Gln574 or Glu581 in its pore-lining α3 of which both residues are highly conserved Lys in the three highly active RTX cytolysins (i.e., Escherichia coli α-hemolysin, Actinobacillus pleuropneumoniae toxin, and Aggregatibacter actinomycetemcomitans leukotoxin). All six constructed CyaA-Hly mutants that were over-expressed in E. coli as 126 kDa His-tagged soluble proteins were successfully purified via immobilized Ni2+-affinity chromatography. Both positive-charge substitutions (Q574K, Q574R, E581K, E581R) and negative-charge elimination (E581Q) appeared to increase the kinetics of toxin-induced hemolysis while the substitution with a negatively-charged side-chain (Q574E) completely abolished its hemolytic activity. When incorporated into PLBs under symmetrical conditions (1.0 M KCl, pH 7.4), all five mutant toxins with the increased hemolytic activity produced clearly-resolved single channels with higher open probability and longer lifetime than the wild-type toxin, albeit with a half decrease in their maximum conductance. Molecular dynamics simulations for 50 ns of a trimeric CyaA-Hly pore model comprising three α2-loop-α3 transmembrane hairpins revealed a significant role of the positive charge at both target positions in the structural stability and enlarged diameter of the simulated pore. Altogether, our present data have disclosed functional contributions of positively-charged side

  6. Cyclic AMP-Elevating Capacity of Adenylate Cyclase Toxin-Hemolysin Is Sufficient for Lung Infection but Not for Full Virulence of Bordetella pertussis.

    PubMed

    Skopova, Karolina; Tomalova, Barbora; Kanchev, Ivan; Rossmann, Pavel; Svedova, Martina; Adkins, Irena; Bibova, Ilona; Tomala, Jakub; Masin, Jiri; Guiso, Nicole; Osicka, Radim; Sedlacek, Radislav; Kovar, Marek; Sebo, Peter

    2017-06-01

    The adenylate cyclase toxin-hemolysin (CyaA, ACT, or AC-Hly) of Bordetella pertussis targets phagocytic cells expressing the complement receptor 3 (CR3, Mac-1, αMβ2 integrin, or CD11b/CD18). CyaA delivers into cells an N-terminal adenylyl cyclase (AC) enzyme domain that is activated by cytosolic calmodulin and catalyzes unregulated conversion of cellular ATP into cyclic AMP (cAMP), a key second messenger subverting bactericidal activities of phagocytes. In parallel, the hemolysin (Hly) moiety of CyaA forms cation-selective hemolytic pores that permeabilize target cell membranes. We constructed the first B. pertussis mutant secreting a CyaA toxin having an intact capacity to deliver the AC enzyme into CD11b-expressing (CD11b(+)) host phagocytes but impaired in formation of cell-permeabilizing pores and defective in cAMP elevation in CD11b(-) cells. The nonhemolytic AC(+) Hly(-) bacteria inhibited the antigen-presenting capacities of coincubated mouse dendritic cells in vitro and skewed their Toll-like receptor (TLR)-triggered maturation toward a tolerogenic phenotype. The AC(+) Hly(-) mutant also infected mouse lungs as efficiently as the parental AC(+) Hly(+) strain. Hence, elevation of cAMP in CD11b(-) cells and/or the pore-forming capacity of CyaA were not required for infection of mouse airways. The latter activities were, however, involved in bacterial penetration across the epithelial layer, enhanced neutrophil influx into lung parenchyma during sublethal infections, and the exacerbated lung pathology and lethality of B. pertussis infections at higher inoculation doses (>10(7) CFU/mouse). The pore-forming activity of CyaA further synergized with the cAMP-elevating activity in downregulation of major histocompatibility complex class II (MHC-II) molecules on infiltrating myeloid cells, likely contributing to immune subversion of host defenses by the whooping cough agent. Copyright © 2017 American Society for Microbiology.

  7. Substrate-triggered recruitment of the TolC channel-tunnel during type I export of hemolysin by Escherichia coli.

    PubMed

    Balakrishnan, L; Hughes, C; Koronakis, V

    2001-10-26

    A defining event in type I export of hemolysin by Escherichia coli is the substrate-triggered recruitment of the TolC channel-tunnel by an inner membrane complex. This complex comprises a traffic ATPase (HlyB) and the 478 residue adaptor protein (HlyD), which contacts TolC during recruitment. HlyD has a large periplasmic domain (amino acid residues 81-478) linked by a single transmembrane helix to a small N-terminal cytosolic domain (1-59). Export was disabled by deletion of the ca 60 amino acid residue cytosolic domain of HlyD, even though the truncated HlyD (HlyDDelta45) was, like the wild-type, able to trimerise in the cytosolic membrane, and interact with the traffic ATPase. The mutant HlyB/HlyDDelta45 inner membrane complex engaged the hemolysin substrate, but this substrate-engaged complex failed to trigger recruitment of TolC. Further analyses showed that HlyDDelta45 was specifically unable to bind the substrate. The result suggests that substrate engagement by the traffic ATPase alone is insufficient to trigger TolC recruitment, and that substrate binding to the HlyD cytosolic domain is essential. Analysis of three further N-terminal deletion variants, HlyDDelta26, HlyDDelta26-45 and HlyDDelta34-38, indicated that an extreme N-terminal amphipathic helix and a cytosolic cluster of charged residues are central to the cytosolic domain function. The cytosolic amphipathic helix was not essential for substrate engagement or TolC recruitment, but export was impaired without it. In contrast, when the charged amino acid residues were deleted, the substrate was still engaged by HlyD but engagement was unproductive, i.e. TolC recruitment was not triggered. Our results are compatible with the HlyD cytosolic domain mediating transduction of the substrate binding signal directly, presumably to the HlyD periplasmic domain, to trigger recruitment of TolC and assemble the type I export complex.

  8. Functional Contributions of Positive Charges in the Pore-Lining Helix 3 of the Bordetella pertussis CyaA-Hemolysin to Hemolytic Activity and Ion-Channel Opening.

    PubMed

    Kurehong, Chattip; Kanchanawarin, Chalermpol; Powthongchin, Busaba; Prangkio, Panchika; Katzenmeier, Gerd; Angsuthanasombat, Chanan

    2017-03-16

    The Bordetella pertussis CyaA-hemolysin (CyaA-Hly) domain was previously demonstrated to be an important determinant for hemolysis against target erythrocytes and ion-channel formation in planar lipid bilayers (PLBs). Here, net-charge variations in the pore-lining helix of thirteen related RTX cytolysins including CyaA-Hly were revealed by amino acid sequence alignments, reflecting their different degrees of hemolytic activity. To analyze possible functional effects of net-charge alterations on hemolytic activity and channel formation of CyaA-Hly, specific mutations were made at Gln(574) or Glu(581) in its pore-lining α3 of which both residues are highly conserved Lys in the three highly active RTX cytolysins (i.e., Escherichia coli α-hemolysin, Actinobacillus pleuropneumoniae toxin, and Aggregatibacter actinomycetemcomitans leukotoxin). All six constructed CyaA-Hly mutants that were over-expressed in E. coli as 126 kDa His-tagged soluble proteins were successfully purified via immobilized Ni(2+)-affinity chromatography. Both positive-charge substitutions (Q574K, Q574R, E581K, E581R) and negative-charge elimination (E581Q) appeared to increase the kinetics of toxin-induced hemolysis while the substitution with a negatively-charged side-chain (Q574E) completely abolished its hemolytic activity. When incorporated into PLBs under symmetrical conditions (1.0 M KCl, pH 7.4), all five mutant toxins with the increased hemolytic activity produced clearly-resolved single channels with higher open probability and longer lifetime than the wild-type toxin, albeit with a half decrease in their maximum conductance. Molecular dynamics simulations for 50 ns of a trimeric CyaA-Hly pore model comprising three α2-loop-α3 transmembrane hairpins revealed a significant role of the positive charge at both target positions in the structural stability and enlarged diameter of the simulated pore. Altogether, our present data have disclosed functional contributions of positively

  9. Vibrio parahaemolyticus has a homolog of the Vibrio cholerae toxRS operon that mediates environmentally induced regulation of the thermostable direct hemolysin gene.

    PubMed Central

    Lin, Z; Kumagai, K; Baba, K; Mekalanos, J J; Nishibuchi, M

    1993-01-01

    In an effort to identify the regulatory gene controlling the expression of the tdh gene, encoding the thermostable direct hemolysin of Vibrio parahaemolyticus, we examined total DNA of AQ3815 (a Kanagawa phenomenon-positive strain) for sequences homologous to that of the toxR gene of Vibrio cholerae. The extracted DNA gave a weak hybridization signal under reduced-stringency conditions with a toxR-specific DNA probe. Cloning and sequence analysis of the probe-positive sequence revealed an operon (Vp-toxRS) which was highly similar to the toxRS operon of V. cholerae (Vc-toxRS) (52 and 62% similarities in the two genes, respectively). The deduced amino acid sequences of the Vp-toxRS gene products (Vp-ToxRS) contained regions similar to the proposed transmembrane and activity domains of the Vc-toxRS gene products (Vc-ToxRS). All clinical and environmental strains of V. parahaemolyticus examined possessed the Vp-toxRS genes. In the presence of Vp-ToxS, Vp-ToxR promoted expression of the tdh2 gene, one of two tdh genes (tdh1 and tdh2) carried by Kanagawa phenomenon-positive strains. The DNA sequence located 144 bp upstream of the tdh2 coding region was shown to be important for the Vp-ToxR-stimulated expression of the tdh2 gene in an Escherichia coli background. Comparative analysis of AQ3815 and its isogenic Vp-toxR null mutant gave the following results: (i) Vp-ToxR promoted, in an AQ3815 background, expression of the tdh gene to different degrees in various culture media, with KP broth (2% peptone, 0.5% NaCl, 0.03 M KH2PO4, pH 6.2) being most effective (12-fold); (ii) the promotion of tdh gene expression in KP broth was at the level of transcription; and (iii) Vp-ToxR was essential for demonstration of enterotoxic activity of AQ3815 in the rabbit ileal loop, a model previously used to demonstrate thermostable direct hemolysin-mediated enterotoxic activity of AQ3815. These results demonstrate that Vp-ToxR and Vc-ToxR share a strikingly similar function, i.e., direct

  10. Comparative Prevalence of Immune Evasion Complex Genes Associated with β-Hemolysin Converting Bacteriophages in MRSA ST5 Isolates from Swine, Swine Facilities, Humans with Swine Contact, and Humans with No Swine Contact.

    PubMed

    Hau, Samantha J; Sun, Jisun; Davies, Peter R; Frana, Timothy S; Nicholson, Tracy L

    2015-01-01

    Livestock associated methicillin-resistant Staphylococcus aureus (LA-MRSA) draws concern from the public health community because in some countries these organisms may represent the largest reservoir of MRSA outside hospital settings. Recent studies indicate LA-MRSA strains from swine are more genetically diverse than the first reported sequence type ST398. In the US, a diverse population of LA-MRSA is found including organisms of the ST398, ST9, and ST5 lineages. Occurrence of ST5 MRSA in swine is of particular concern since ST5 is among the most prevalent lineages causing clinical infections in humans. The prominence of ST5 in clinical disease is believed to result from acquisition of bacteriophages containing virulence or host-adapted genes including the immune-evasion cluster (IEC) genes carried by β-hemolysin converting bacteriophages, whose absence in LA-MRSA ST398 is thought to contribute to reduced rates of human infection and transmission associated with this lineage. The goal of this study was to investigate the prevalence of IEC genes associated with β-hemolysin converting bacteriophages in MRSA ST5 isolates obtained from agricultural sources, including swine, swine facilities, and humans with short- or long-term swine exposure. To gain a broader perspective, the prevalence of these genes in LA-MRSA ST5 strains was compared to the prevalence in clinical MRSA ST5 strains from humans with no known exposure to swine. IEC genes were not present in any of the tested MRSA ST5 strains from agricultural sources and the β-hemolysin gene was intact in these strains, indicating the bacteriophage's absence. In contrast, the prevalence of the β-hemolysin converting bacteriophage in MRSA ST5 strains from humans with no exposure to swine was 90.4%. The absence of β-hemolysin converting bacteriophage in LA-MRSA ST5 isolates is consistent with previous reports evaluating ST398 strains and provides genetic evidence indicating LA-MRSA ST5 isolates may harbor a reduced

  11. Characterization of Post-Translational Modifications and Cytotoxic Properties of the Adenylate-Cyclase Hemolysin Produced by Various Bordetella pertussis and Bordetella parapertussis Isolates.

    PubMed

    Bouchez, Valérie; Douché, Thibaut; Dazas, Mélody; Delaplane, Sophie; Matondo, Mariette; Chamot-Rooke, Julia; Guiso, Nicole

    2017-09-26

    Bordetella pertussis and Bordetella parapertussis are the causal agents of whooping cough in humans. They produce diverse virulence factors, including adenylate cyclase-hemolysin (AC-Hly), a secreted toxin of the repeat in toxins (RTX) family with cyclase, pore-forming, and hemolytic activities. Post-translational modifications (PTMs) are essential for the biological activities of the toxin produced by B. pertussis. In this study, we compared AC-Hly toxins from various clinical isolates of B. pertussis and B. parapertussis, focusing on (i) the genomic sequences of cyaA genes, (ii) the PTMs of partially purified AC-Hly, and (iii) the cytotoxic activity of the various AC-Hly toxins. The genes encoding the AC-Hly toxins of B. pertussis and B. parapertussis displayed very limited polymorphism in each species. Most of the sequence differences between the two species were found in the C-terminal part of the protein. Both toxins harbored PTMs, mostly corresponding to palmitoylations of the lysine 860 residue and palmoylations and myristoylations of lysine 983 for B. pertussis and AC-Hly and palmitoylations of lysine 894 and myristoylations of lysine 1017 for B. parapertussis AC-Hly. Purified AC-Hly from B. pertussis was cytotoxic to macrophages, whereas that from B. parapertussis was not.

  12. Escherichia coli α-Hemolysin Triggers Shrinkage of Erythrocytes via KCa3.1 and TMEM16A Channels with Subsequent Phosphatidylserine Exposure*

    PubMed Central

    Skals, Marianne; Jensen, Uffe B.; Ousingsawat, Jiraporn; Kunzelmann, Karl; Leipziger, Jens; Praetorius, Helle A.

    2010-01-01

    α-Hemolysin from Escherichia coli (HlyA) readily lyse erythrocytes from various species. We have recently demonstrated that this pore-forming toxin provokes distinct shrinkage and crenation before it finally leads to swelling and lysis of erythrocytes. The present study documents the underlying mechanism for this severe volume reduction. We show that HlyA-induced shrinkage and crenation of human erythrocytes occur subsequent to a significant rise in [Ca2+]i. The Ca2+-activated K+ channel KCa3.1 (or Gardos channel) is essential for the initial shrinkage, because both clotrimazole and TRAM-34 prevent the shrinkage and potentiate hemolysis produced by HlyA. Notably, the recently described Ca2+-activated Cl− channel TMEM16A contributes substantially to HlyA-induced cell volume reduction. Erythrocytes isolated from TMEM16A−/− mice showed significantly attenuated crenation and increased lysis compared with controls. Additionally, we found that HlyA leads to acute exposure of phosphatidylserine in the outer leaflet of the plasma membrane. This exposure was considerably reduced by KCa3.1 antagonists. In conclusion, this study shows that HlyA triggers acute erythrocyte shrinkage, which depends on Ca2+-activated efflux of K+ via KCa3.1 and Cl− via TMEM16A, with subsequent phosphatidylserine exposure. This mechanism might potentially allow HlyA-damaged erythrocytes to be removed from the bloodstream by macrophages and thereby reduce the risk of intravascular hemolysis. PMID:20231275

  13. Temperature and Electrolyte Optimization of the α-Hemolysin Latch Sensing Zone for Detection of Base Modification in Double-Stranded DNA

    PubMed Central

    Johnson, Robert P.; Fleming, Aaron M.; Jin, Qian; Burrows, Cynthia J.; White, Henry S.

    2014-01-01

    The latch region of the wild-type protein pore α-hemolysin (α-HL) constitutes a sensing zone for individual abasic sites (and furan analogs) in double-stranded DNA (dsDNA). The presence of an abasic site or furan within a DNA duplex, electrophoretically captured in the α-HL vestibule and positioned at the latch region, can be detected based on the current blockage prior to duplex unzipping. We investigated variations in blockage current as a function of temperature (12–35°C) and KCl concentration (0.15–1.0 M) to understand the origin of the current signature and to optimize conditions for identifying the base modification. In 1 M KCl solution, substitution of a furan for a cytosine base in the latch region results in an ∼8 kJ mol−1 decrease in the activation energy for ion transport through the protein pore. This corresponds to a readily measured ∼2 pA increase in current at room temperature. Optimal resolution for detecting the presence of a furan in the latch region is achieved at lower KCl concentrations, where the noise in the measured blockage current is significantly lower. The noise associated with the blockage current also depends on the stability of the duplex (as measured from the melting temperature), where a greater noise in the measured blockage current is observed for less stable duplexes. PMID:25140427

  14. Pathogenesis of Streptococcus urinary tract infection depends on bacterial strain and β-hemolysin/cytolysin that mediates cytotoxicity, cytokine synthesis, inflammation and virulence

    PubMed Central

    Leclercq, Sophie Y.; Sullivan, Matthew J.; Ipe, Deepak S.; Smith, Joshua P.; Cripps, Allan W.; Ulett, Glen C.

    2016-01-01

    Streptococcus agalactiae can cause urinary tract infection (UTI) including cystitis and asymptomatic bacteriuria (ABU). The early host-pathogen interactions that occur during S. agalactiae UTI and subsequent mechanisms of disease pathogenesis are poorly defined. Here, we define the early interactions between human bladder urothelial cells, monocyte-derived macrophages, and mouse bladder using uropathogenic S. agalactiae (UPSA) 807 and ABU-causing S. agalactiae (ABSA) 834 strains. UPSA 807 adhered, invaded and killed bladder urothelial cells more efficiently compared to ABSA 834 via mechanisms including low-level caspase-3 activation, and cytolysis, according to lactate dehydrogenase release measures and cell viability. Severe UPSA 807-induced cytotoxicity was mediated entirely by the bacterial β-hemolysin/cytolysin (β-H/C) because an β-H/C-deficient UPSA 807 isogenic mutant, UPSA 807ΔcylE, was not cytotoxic in vitro; the mutant was also significantly attenuated for colonization in the bladder in vivo. Analysis of infection-induced cytokines, including IL-8, IL-1β, IL-6 and TNF-α in vitro and in vivo revealed that cytokine and chemokine responses were dependent on expression of β-H/C that also elicited severe bladder neutrophilia. Thus, virulence of UPSA 807 encompasses adhesion to, invasion of and killing of bladder cells, pro-inflammatory cytokine/chemokine responses that elicit neutrophil infiltration, and β-H/C-mediated subversion of innate immune-mediated bacterial clearance from the bladder. PMID:27383371

  15. Serodiagnosis of Acute Typhoid Fever in Nigerian Pediatric Cases by Detection of Serum IgA and IgG Against Hemolysin E and Lipopolysaccharide.

    PubMed

    Davies, D Huw; Jain, Aarti; Nakajima, Rie; Liang, Li; Jasinskis, Algis; Supnet, Medalyn; Felgner, Philip L; Teng, Andy; Pablo, Jozelyn; Molina, Douglas M; Obaro, Stephen K

    2016-08-03

    Inexpensive, easy-to-use, and highly sensitive diagnostic tests are currently unavailable for typhoid fever. To identify candidate serodiagnostic markers, we have probed microarrays displaying the full Salmonella enterica serovar Typhi (S. Typhi) proteome of 4,352 different proteins + lipopolysaccharides (LPSs), with sera from Nigerian pediatric typhoid and other febrile cases, Nigerian healthy controls, and healthy U.S. adults. Nigerian antibody profiles were broad (∼500 seropositive antigens) and mainly low level, with a small number of stronger "hits," whereas the profile in U.S. adults was < 1/5 as broad, consistent with endemic exposure in Nigeria. Nigerian profiles were largely unaffected by clinical diagnosis, although the response against t1477 (hemolysin E) consistently emerged as stronger in typhoid cases. The response to LPS was also a strong discriminator of healthy controls and typhoid, although LPS did not discriminate between typhoid and nontyphoidal Salmonella (NTS) disease. As a first step toward the development of a point-of-care diagnostic, t1477 and LPS were evaluated on immunostrips. Both provided good discrimination between healthy controls and typhoid/NTS disease. Such a test could provide a useful screen for salmonellosis (typhoid and NTS disease) in suspected pediatric cases that present with undefined febrile disease. © The American Society of Tropical Medicine and Hygiene.

  16. Temperature and electrolyte optimization of the α-hemolysin latch sensing zone for detection of base modification in double-stranded DNA.

    PubMed

    Johnson, Robert P; Fleming, Aaron M; Jin, Qian; Burrows, Cynthia J; White, Henry S

    2014-08-19

    The latch region of the wild-type protein pore α-hemolysin (α-HL) constitutes a sensing zone for individual abasic sites (and furan analogs) in double-stranded DNA (dsDNA). The presence of an abasic site or furan within a DNA duplex, electrophoretically captured in the α-HL vestibule and positioned at the latch region, can be detected based on the current blockage prior to duplex unzipping. We investigated variations in blockage current as a function of temperature (12-35°C) and KCl concentration (0.15-1.0 M) to understand the origin of the current signature and to optimize conditions for identifying the base modification. In 1 M KCl solution, substitution of a furan for a cytosine base in the latch region results in an ∼ 8 kJ mol(-1) decrease in the activation energy for ion transport through the protein pore. This corresponds to a readily measured ∼ 2 pA increase in current at room temperature. Optimal resolution for detecting the presence of a furan in the latch region is achieved at lower KCl concentrations, where the noise in the measured blockage current is significantly lower. The noise associated with the blockage current also depends on the stability of the duplex (as measured from the melting temperature), where a greater noise in the measured blockage current is observed for less stable duplexes.

  17. The Pore-Forming Toxin β hemolysin/cytolysin Triggers p38 MAPK-Dependent IL-10 Production in Macrophages and Inhibits Innate Immunity

    PubMed Central

    Bebien, Magali; Hensler, Mary E.; Davanture, Suzel; Hsu, Li-Chung; Karin, Michael; Park, Jin Mo; Alexopoulou, Lena; Liu, George Y.; Nizet, Victor; Lawrence, Toby

    2012-01-01

    Group B Streptococcus (GBS) is a leading cause of invasive bacterial infections in human newborns and immune-compromised adults. The pore-forming toxin (PFT) β hemolysin/cytolysin (βh/c) is a major virulence factor for GBS, which is generally attributed to its cytolytic functions. Here we show βh/c has immunomodulatory properties on macrophages at sub-lytic concentrations. βh/c-mediated activation of p38 MAPK drives expression of the anti-inflammatory and immunosuppressive cytokine IL-10, and inhibits both IL-12 and NOS2 expression in GBS-infected macrophages, which are critical factors in host defense. Isogenic mutant bacteria lacking βh/c fail to activate p38-mediated IL-10 production in macrophages and promote increased IL-12 and NOS2 expression. Furthermore, targeted deletion of p38 in macrophages increases resistance to invasive GBS infection in mice, associated with impaired IL-10 induction and increased IL-12 production in vivo. These data suggest p38 MAPK activation by βh/c contributes to evasion of host defense through induction of IL-10 expression and inhibition of macrophage activation, a new mechanism of action for a PFT and a novel anti-inflammatory role for p38 in the pathogenesis of invasive bacterial infection. Our studies suggest p38 MAPK may represent a new therapeutic target to blunt virulence and improve clinical outcome of invasive GBS infection. PMID:22829768

  18. Prevalence of Pandemic Thermostable Direct Hemolysin-Producing Vibrio parahaemolyticus O3:K6 in Seafood and the Coastal Environment in Japan

    PubMed Central

    Hara-Kudo, Yukiko; Sugiyama, Kanji; Nishibuchi, Mitsuaki; Chowdhury, Ashrafuzzaman; Yatsuyanagi, Jun; Ohtomo, Yoshimitsu; Saito, Akinobu; Nagano, Hidetoshi; Nishina, Tokuhiro; Nakagawa, Hiroshi; Konuma, Hirotaka; Miyahara, Michiko; Kumagai, Susumu

    2003-01-01

    Although thermostable direct hemolysin (TDH)-producing Vibrio parahaemolyticus has caused many infections in Asian countries, the United States, and other countries, it has been difficult to detect the same pathogen in seafoods and other environmental samples. In this study, we detected and enumerated tdh gene-positive V. parahaemolyticus in Japanese seafoods with a tdh-specific PCR method, a chromogenic agar medium, and a most-probable-number method. The tdh gene was detected in 33 of 329 seafood samples (10.0%). The number of tdh-positive V. parahaemolyticus ranged from <3 to 93/10 g. The incidence of tdh-positive V. parahaemolyticus tended to be high in samples contaminated with relatively high levels of total V. parahaemolyticus. TDH-producing strains of V. parahaemolyticus were isolated from 11 of 33 tdh-positive samples (short-necked clam, hen clam, and rock oyster). TDH-producing strains of V. parahaemolyticus were also isolated from the sediments of rivers near the coast in Japan. Representative strains of the seafood and sediment isolates were examined for the O:K serovar and by the PCR method specific to the pandemic clone and arbitrarily primed PCR and pulsed-field gel electrophoresis techniques. The results indicated that most O3:K6 tdh-positive strains belonged to the pandemic O3:K6 clone and suggested that serovariation took place in the Japanese environment. PMID:12839757

  19. A mutant cell line resistant to Vibrio parahaemolyticus thermostable direct hemolysin (TDH): its potential in identification of putative receptor for TDH.

    PubMed

    Tang, G; Iida, T; Inoue, H; Yutsudo, M; Yamamoto, K; Honda, T

    1997-05-24

    Thermostable direct hemolysin (TDH), a pore-forming toxin produced by Vibrio parahaemolyticus, is cytotoxic to Rat-1, a fibroblast cell line derived from rat embryo. Through mutagenesis of Rat-1 with nitrosoguanidine, we established a mutant cell line, MR-T1. MR-T1 was over 200 times more resistant to the cytotoxic activity of TDH than Rat-1. TDH increased membrane permeability of Rat-1 but not of MR-T1. Binding analysis showed that, while being able to bind to Rat-1. TDH failed to bind to MR-T1, indicating that MR-T1 is deficient in the putative receptor for TDH. Somatic hybrid cells between Rat-1 and MR-T1 were similarly sensitive to TDH as Rat-1. Moreover, TDH could bind to the hybrid cells as well as to Rat-1 cells. These results indicate that MR-T1 is promising for complementation cloning of a gene related to the putative receptor for TDH.

  20. Above and beyond C5a Receptor Targeting by Staphylococcal Leucotoxins: Retrograde Transport of Panton–Valentine Leucocidin and γ-Hemolysin

    PubMed Central

    Zimmermann-Meisse, Gaëlle; Prévost, Gilles; Jover, Emmanuel

    2017-01-01

    Various membrane receptors associated with the innate immune response have recently been identified as mediators of the cellular action of Staphylococcus aureus leucotoxins. Two of these, the Panton–Valentine leucotoxin LukS-PV/LukF-PV and the γ-hemolysin HlgC/HlgB, bind the C5a complement-derived peptide receptor. These leucotoxins utilize the receptor to induce intracellular Ca2+ release from internal stores, other than those activated by C5a. The two leucotoxins are internalized with the phosphorylated receptor, but it is unknown whether they divert retrograde transport of the receptor or follow another pathway. Immunolabeling and confocal microscopic techniques were used to analyze the presence of leucotoxins in endosomes, lysosomes, endoplasmic reticulum, and Golgi. The two leucotoxins apparently followed retrograde transport similar to that of the C5a peptide-activated receptor. However, HlgC/HlgB reached the Golgi network very early, whereas LukS-PV/LukF-PV followed slower kinetics. The HlgC/HlgB leucotoxin remained in neutrophils 6 h after a 10-min incubation of the cells in the presence of the toxin with no signs of apoptosis, whereas apoptosis was observed 3 h after neutrophils were incubated with LukS-PV/LukF-PV. Such retrograde transport of leucotoxins provides a novel understanding of the cellular effects initiated by sublytic concentrations of these toxins. PMID:28117704

  1. Ion selectivity of alpha-hemolysin with a beta-cyclodextrin adapter. I. Single ion potential of mean force and diffusion coefficient.

    PubMed

    Luo, Yun; Egwolf, Bernhard; Walters, D Eric; Roux, Benoît

    2010-01-21

    The alpha-hemolysin (alphaHL) is a self-assembling exotoxin that binds to the membrane of a susceptible host cell and causes its death. Experimental studies show that electrically neutral beta-cyclodextrin (betaCD) can insert into the alphaHL channel and significantly increase its anion selectivity. To understand how betaCD can affect ion selectivity, molecular dynamics simulations and potential of mean force (PMF) calculations are carried out for different alphaHL channels with and without the betaCD adapter. A multiscale approach based on the generalized solvent boundary potential is used to reduce the size of the simulated system. The PMF profiles reveal that betaCD has no anion selectivity by itself but can increase the Cl(-) selectivity of the alphaHL channel when lodged into the pore lumen. Analysis shows that betaCD causes a partial desolvation of ions and affects the orientation of nearby charged residues. The ion selectivity appears to result from increased electrostatic interaction between the ion and the channel due to a reduction in dielectric shielding by the solvent. These observations suggest a reasonable explanation of the ion selectivity and provide important information for further ion channel modification.

  2. Stochastic Assembly of Two-Component Staphylococcal γ-Hemolysin into Heteroheptameric Transmembrane Pores with Alternate Subunit Arrangements in Ratios of 3:4 and 4:3

    PubMed Central

    Sugawara-Tomita, Noriko; Tomita, Toshio; Kamio, Yoshiyuki

    2002-01-01

    Self-assembling, pore-forming toxins from Staphylococcus aureus are illustrative molecules for the study of the assembly and membrane insertion of oligomeric transmembrane proteins. On the basis of previous studies, we have shown that the two-component γ-hemolysin assembles from LukF (or Hlg1, 34 kDa) and Hlg2 (32 kDa) to form ring-shaped transmembrane pores of ca. 200 kDa. Here we show that LukF and Hlg2 assemble in a stochastic manner to form alternate complexes with subunit stoichiometries of 3:4 and 4:3. High-resolution electron microscopic images of negatively stained pore complexes clearly revealed a heptameric structure. When adjacent monomers in the pore complexes were randomly cross-linked by using glutaraldehyde, LukF-LukF, LukF-Hlg2, and Hlg2-Hlg2 dimers were detected in an approximate ratio of 1:12:1, suggesting that LukF and Hlg2 were alternately arranged in the pore complex in molar ratios of 3:4 and 4:3. The alternate arrangements of LukF and Hlg2 in molar ratios of 3:4 and 4:3 were also visualized under electron microscope with the pore complexes consisting of glutathione S-transferase fusion protein of LukF or Hlg2 and wild-type protein of Hlg2 or LukF, respectively. PMID:12169599

  3. cAMP and EPAC Are Key Players in the Regulation of the Signal Transduction Pathway Involved in the α-Hemolysin Autophagic Response

    PubMed Central

    Mestre, María Belén; Colombo, María Isabel

    2012-01-01

    Staphylococcus aureus is a microorganism that causes serious diseases in the human being. This microorganism is able to escape the phagolysosomal pathway, increasing intracellular bacterial survival and killing the eukaryotic host cell to spread the infection. One of the key features of S. aureus infection is the production of a series of virulence factors, including secreted enzymes and toxins. We have shown that the pore-forming toxin α-hemolysin (Hla) is the S. aureus–secreted factor responsible for the activation of the autophagic pathway and that this response occurs through a PI3K/Beclin1-independent form. In the present report we demonstrate that cAMP has a key role in the regulation of this autophagic response. Our results indicate that cAMP is able to inhibit the autophagy induced by Hla and that PKA, the classical cAMP effector, does not participate in this regulation. We present evidence that EPAC and Rap2b, through calpain activation, are the proteins involved in the regulation of Hla-induced autophagy. Similar results were obtained in cells infected with different S. aureus strains. Interestingly, in this report we show, for the first time to our knowledge, that both EPAC and Rap2b are recruited to the S. aureus–containing phagosome. We believe that our findings have important implications in understanding innate immune processes involved in intracellular pathogen invasion of the host cell. PMID:22654658

  4. Mutations in HlyD, Part of the Type 1 Translocator for Hemolysin Secretion, Affect the Folding of the Secreted Toxin

    PubMed Central

    Pimenta, A. L.; Racher, K.; Jamieson, L.; Blight, M. A.; Holland, I. B.

    2005-01-01

    HlyD, a member of the membrane fusion protein family, is essential for the secretion of the RTX hemolytic toxin HlyA from Escherichia coli. Random point mutations affecting HlyA secretion were obtained, distributed in most periplasmic regions of the HlyD molecule. Analysis of the secretion phenotypes of different mutants allowed the identification of regions in HlyD involved in different steps of HlyA translocation. Four mutants, V349-I, T85-I, V334-I and L165-Q, were conditionally defective, a phenotype shown to be linked to the presence of inhibitory concentrations of Ca2+ in extracellular medium. Hly mutant T85-I was defective at an early stage in secretion, while mutants V334-I and L165-Q appeared to accumulate HlyA in the cell envelope, indicating a block at an intermediate step. Mutants V349-I, V334-I, and L165-Q were only partially defective in secretion, allowing significant levels of HlyA to be transported, but in the case of V349-I and L165-Q the HlyA molecules secreted showed greatly reduced hemolytic activity. Hemolysin molecules secreted from V349-I and V334-I are defective in normal folding and can be reactivated in vitro to the same levels as HlyA secreted from the wild-type translocator. Both V349-I and V334-I mutations mapped to the C-terminal lipoyl repeat motif, involved in the switching from the helical hairpin to the extended form of HlyD during assembly of the functional transport channel. These results suggest that HlyD is an integral component of the transport pathway, whose integrity is essential for the final folding of secreted HlyA into its active form. PMID:16237030

  5. [Ca2+]i Oscillations and IL-6 Release Induced by α-Hemolysin from Escherichia coli Require P2 Receptor Activation in Renal Epithelia*

    PubMed Central

    Christensen, Mette G.; Fagerberg, Steen K.; de Bruijn, Pauline I.; Bjaelde, Randi G.; Jakobsen, Helle; Leipziger, Jens; Skals, Marianne; Praetorius, Helle A.

    2015-01-01

    Urinary tract infections are commonly caused by α-hemolysin (HlyA)-producing Escherichia coli. In erythrocytes, the cytotoxic effect of HlyA is strongly amplified by P2X receptors, which are activated by extracellular ATP released from the cytosol of the erythrocytes. In renal epithelia, HlyA causes reversible [Ca2+]i oscillations, which trigger interleukin-6 (IL-6) and IL-8 release. We speculate that this effect is caused by HlyA-induced ATP release from the epithelial cells and successive P2 receptor activation. Here, we demonstrate that HlyA-induced [Ca2+]i oscillations in renal epithelia were completely prevented by scavenging extracellular ATP. In accordance, HlyA was unable to inflict any [Ca2+]i oscillations in 132-1N1 cells, which lack P2R completely. After transfecting these cells with the hP2Y2 receptor, HlyA readily triggered [Ca2+]i oscillations, which were abolished by P2 receptor antagonists. Moreover, HlyA-induced [Ca2+]i oscillations were markedly reduced in medullary thick ascending limbs isolated from P2Y2 receptor-deficient mice compared with wild type. Interestingly, the following HlyA-induced IL-6 release was absent in P2Y2 receptor-deficient mice. This suggests that HlyA induces ATP release from renal epithelia, which via P2Y2 receptors is the main mediator of HlyA-induced [Ca2+]i oscillations and IL-6 release. This supports the notion that ATP signaling occurs early during bacterial infection and is a key player in the further inflammatory response. PMID:25911098

  6. Targeted mutations that ablate either the adenylate cyclase or hemolysin function of the bifunctional cyaA toxin of Bordetella pertussis abolish virulence.

    PubMed Central

    Gross, M K; Au, D C; Smith, A L; Storm, D R

    1992-01-01

    Bordetella pertussis, the causative agent of whooping cough, secretes several toxins implicated in this disease. One of these putative virulence factors is the adenylate cyclase (AC) toxin that elevates intracellular cAMP in eukaryotic cells to cytotoxic levels. This toxin is a bifunctional protein comprising both AC and hemolysin (HLY) enzymatic domains. The gene encoding the AC toxin (cyaA) is expressed as part of an operon that includes genes required for secretion or activation of the toxin. Because of this genetic organization, it is difficult to create B. pertussis mutants of cyaA that are ablations of a single enzyme function by conventional means, such as transposon mutagenesis. Therefore, to clarify the role of individual toxin functions in the virulence of B. pertussis, we have used site-directed or deletion mutagenesis and genetic recombination to specifically target the cyaA gene of B. pertussis to produce mutants that lack only the AC or HLY activity of this toxin. A point mutant of B. pertussis with abolished AC catalytic activity was greater than 1000 times less pathogenic to newborn mice than wild-type bacteria, directly demonstrating the importance of the AC toxin in pertussis virulence. Similarly, an in-frame deletion mutant of B. pertussis that lacks HLY is equally avirulent, supporting observations that the HLY domain plays a critical role in AC toxin entry into cells. Furthermore, the genetically inactivated AC toxin produced by the point mutant is antigenically similar to the native toxin, suggesting that this strain may be useful in the development of pertussis component vaccines. Images PMID:1594590

  7. Role of Antibodies in Protection Elicited by Active Vaccination with Genetically Inactivated Alpha Hemolysin in a Mouse Model of Staphylococcus aureus Skin and Soft Tissue Infections

    PubMed Central

    Mocca, Christopher P.; Brady, Rebecca A.

    2014-01-01

    Due to the emergence of highly virulent community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections, S. aureus has become a major threat to public health. A majority of CA-MRSA skin and soft tissue infections in the United States are caused by S. aureus USA300 strains that are known to produce high levels of alpha hemolysin (Hla). Therefore, vaccines that contain inactivated forms of this toxin are currently being developed. In this study, we sought to determine the immune mechanisms of protection for this antigen using a vaccine composed of a genetically inactivated form of Hla (HlaH35L). Using a murine model of skin and soft tissue infections (SSTI), we found that BALB/c mice were protected by vaccination with HlaH35L; however, Jh mice, which are deficient in mature B lymphocytes and lack IgM and IgG in their serum, were not protected. Passive immunization with anti-HlaH35L antibodies conferred protection against bacterial colonization. Moreover, we found a positive correlation between the total antibody concentration induced by active vaccination and reduced bacterial levels. Animals that developed detectable neutralizing antibody titers after active vaccination were significantly protected from infection. These data demonstrate that antibodies to Hla represent the major mechanism of protection afforded by active vaccination with inactivated Hla in this murine model of SSTI, and in this disease model, antibody levels correlate with protection. These results provide important information for the future development and evaluation of S. aureus vaccines. PMID:24574539

  8. Molecular characterization of enterohemorrhagic Escherichia coli hemolysin gene (EHEC-hlyA)-harboring isolates from cattle reveals a diverse origin and hybrid diarrheagenic strains.

    PubMed

    Askari Badouei, Mahdi; Morabito, Stefano; Najafifar, Arash; Mazandarani, Emad

    2016-04-01

    In the present study we investigated the occurrence of Escherichia coli strains harboring the gene encoding enterohemorrhagic E. coli hemolysin (EHEC-HlyA) in cattle and the association of this gene with various diarrheagenic E. coli (DEC) pathotypes. First, the bovine E. coli isolates were screened for EHEC-hlyA gene by PCR, and then they were characterized for the phylogenetic groups and the presence of the major virulence genes of different DEC pathotypes. In total, 25 virulence gene profiles were observed in 54 EHEC-hlyA+ isolates that reflect a considerable heterogeneity. The EHEC-hlyA+ strains were mostly associated with EHEC (72%), while only 7.4% were enteropathogenic E. coli (EPEC). We also showed the presence of estA gene of enterotoxigenic E. coli (ETEC) in 6 isolates (11.1%). Interestingly, two of the estA+ strains showed hybrid pathotypes with one carrying eae/estA (EPEC/ETEC), and the other one stx2/astA/estA (EHEC/ETEC). None of the isolates were related to enteroaggregative E. coli (EAggEC), enteroinvasive E. coli (EIEC), and necrotoxigenic E. coli (NTEC). The EHEC-plasmid encoded genes occurred in seven different combinations with EHEC-hlyA/saa/subA/espP being the most prevalent (46.3%). All stx-/eae+ strains carried O island 57 (OI-57) molecular marker(s) that may indicate these to be the progenitors of EHEC or strains losing stx. The most prevalent phylogroup was B1 (61.1%), but the most heterogeneous strains including the hybrid strains belonged to A phylogroup. Overall, our results indicate that cattle EHEC-hlyA encoding E. coli isolates consist of diverse diarrheagenic strains with the possible existence of hybrid pathotypes. Future studies are required to clarify the evolutionary aspects and clinical significance of these strains in humans and domestic animals.

  9. Development and evaluation of a rapid, simple, and sensitive immunochromatographic assay to detect thermostable direct hemolysin produced by Vibrio parahaemolyticus in enrichment cultures of stool specimens.

    PubMed

    Kawatsu, Kentaro; Ishibashi, Masanori; Tsukamoto, Teizo

    2006-05-01

    Thermostable direct hemolysin (TDH) is considered to be a major virulence factor in Vibrio parahaemolyticus, and most cases of V. parahaemolyticus diarrhea in humans are caused by tdh gene-positive strains. In the present study, we developed an immunochromatographic assay to detect TDH (TDH-ICA) and evaluated the utility of TDH-ICA for the diagnosis of V. parahaemolyticus diarrhea. TDH-ICA allowed the detection of 0.2 ng/ml of TDH within 10 min. Fecal homogenates were spiked with various numbers of tdh-positive V. parahaemolyticus organisms, and their enrichment cultures were tested with TDH-ICA. The results of detection of TDH in the enrichment cultures by TDH-ICA were in accord with the results of recovery of the spiked V. parahaemolyticus organisms from the enrichment cultures by plating onto thiosulfate-citrate-bile salts-sucrose agar. When enrichment cultures of 217 stool specimens from patients with diarrhea were tested with TDH-ICA, the TDH-ICA results showed 100% sensitivity and specificity compared to the results of isolation of V. parahaemolyticus from the stool specimens by a conventional bacterial culture test. Since TDH-ICA was able to detect TDH in a fecal enrichment culture within 10 min, TDH-ICA testing of a fecal enrichment culture could be completed rapidly and easily within approximately 16 h, including incubation time for the fecal enrichment culture. These results indicate that TDH-ICA is a rapid, simple, and sensitive TDH detection method and that TDH-ICA testing of a fecal enrichment culture is useful as an adjunct to facilitate the early diagnosis of V. parahaemolyticus diarrhea.

  10. Structural Characterization of Humanized Nanobodies with Neutralizing Activity against the Bordetella pertussis CyaA-Hemolysin: Implications for a Potential Epitope of Toxin-Protective Antigen

    PubMed Central

    Malik, Aijaz Ahmad; Imtong, Chompounoot; Sookrung, Nitat; Katzenmeier, Gerd; Chaicumpa, Wanpen; Angsuthanasombat, Chanan

    2016-01-01

    Previously, the 126-kDa CyaA-hemolysin (CyaA-Hly) fragment cloned from Bordetella pertussis—the causative agent of whooping cough—and functionally expressed in Escherichia coli was revealed as a key determinant for CyaA-mediated hemolysis against target erythrocytes. Here, phagemid-transfected E. coli clones producing nanobodies capable of binding to CyaA-Hly were selected from a humanized-camel VH/VHH phage-display library. Subsequently verified for binding activities by indirect ELISA and Western blotting, four CyaA-Hly-specific nanobodies were obtained and designated according to the presence/absence of VHH-hallmark amino acids as VHH2, VH5, VH18 and VHH37. In vitro neutralization assay revealed that all four ~17-kDa His-tagged VH/VHH nanobodies, in particular VHH37, which were over-expressed as inclusions and successfully unfolded-refolded, were able to effectively inhibit CyaA-Hly-mediated hemolysis. Phage-mimotope searching revealed that only peptides with sequence homologous to Linker 1 connecting Blocks I and II within the CyaA-RTX subdomain were able to bind to these four CyaA-Hly-specific nanobodies. Structural analysis of VHH37 via homology modeling and intermolecular docking confirmed that this humanized nanobody directly interacts with CyaA-RTX/Linker 1 through multiple hydrogen and ionic bonds. Altogether, our present data demonstrate that CyaA-RTX/Linker 1 could serve as a potential epitope of CyaA-protective antigen that may be useful for development of peptide-based pertussis vaccines. Additionally, such toxin-specific nanobodies have a potential for test-driven development of a ready-to-use therapeutic in passive immunization for mitigation of disease severity. PMID:27043627

  11. The Deletion of Several Amino Acid Stretches of Escherichia coli Alpha-Hemolysin (HlyA) Suggests That the Channel-Forming Domain Contains Beta-Strands

    PubMed Central

    Benz, Roland; Maier, Elke; Bauer, Susanne; Ludwig, Albrecht

    2014-01-01

    Escherichia coli α-hemolysin (HlyA) is a pore-forming protein of 110 kDa belonging to the family of RTX toxins. A hydrophobic region between the amino acid residues 238 and 410 in the N-terminal half of HlyA has previously been suggested to form hydrophobic and/or amphipathic α-helices and has been shown to be important for hemolytic activity and pore formation in biological and artificial membranes. The structure of the HlyA transmembrane channel is, however, largely unknown. For further investigation of the channel structure, we deleted in HlyA different stretches of amino acids that could form amphipathic β-strands according to secondary structure predictions (residues 71–110, 158–167, 180–203, and 264–286). These deletions resulted in HlyA mutants with strongly reduced hemolytic activity. Lipid bilayer measurements demonstrated that HlyAΔ71–110 and HlyAΔ264–286 formed channels with much smaller single-channel conductance than wildtype HlyA, whereas their channel-forming activity was virtually as high as that of the wildtype toxin. HlyAΔ158–167 and HlyAΔ180–203 were unable to form defined channels in lipid bilayers. Calculations based on the single-channel data indicated that the channels generated by HlyAΔ71–110 and HlyAΔ264–286 had a smaller size (diameter about 1.4 to 1.8 nm) than wildtype HlyA channels (diameter about 2.0 to 2.6 nm), suggesting that in these mutants part of the channel-forming domain was removed. Osmotic protection experiments with erythrocytes confirmed that HlyA, HlyAΔ71–110, and HlyAΔ264–286 form defined transmembrane pores and suggested channel diameters that largely agreed with those estimated from the single-channel data. Taken together, these results suggest that the channel-forming domain of HlyA might contain β-strands, possibly in addition to α-helical structures. PMID:25463653

  12. The deletion of several amino acid stretches of Escherichia coli alpha-hemolysin (HlyA) suggests that the channel-forming domain contains beta-strands.

    PubMed

    Benz, Roland; Maier, Elke; Bauer, Susanne; Ludwig, Albrecht

    2014-01-01

    Escherichia coli α-hemolysin (HlyA) is a pore-forming protein of 110 kDa belonging to the family of RTX toxins. A hydrophobic region between the amino acid residues 238 and 410 in the N-terminal half of HlyA has previously been suggested to form hydrophobic and/or amphipathic α-helices and has been shown to be important for hemolytic activity and pore formation in biological and artificial membranes. The structure of the HlyA transmembrane channel is, however, largely unknown. For further investigation of the channel structure, we deleted in HlyA different stretches of amino acids that could form amphipathic β-strands according to secondary structure predictions (residues 71-110, 158-167, 180-203, and 264-286). These deletions resulted in HlyA mutants with strongly reduced hemolytic activity. Lipid bilayer measurements demonstrated that HlyAΔ71-110 and HlyAΔ264-286 formed channels with much smaller single-channel conductance than wildtype HlyA, whereas their channel-forming activity was virtually as high as that of the wildtype toxin. HlyAΔ158-167 and HlyAΔ180-203 were unable to form defined channels in lipid bilayers. Calculations based on the single-channel data indicated that the channels generated by HlyAΔ71-110 and HlyAΔ264-286 had a smaller size (diameter about 1.4 to 1.8 nm) than wildtype HlyA channels (diameter about 2.0 to 2.6 nm), suggesting that in these mutants part of the channel-forming domain was removed. Osmotic protection experiments with erythrocytes confirmed that HlyA, HlyAΔ71-110, and HlyAΔ264-286 form defined transmembrane pores and suggested channel diameters that largely agreed with those estimated from the single-channel data. Taken together, these results suggest that the channel-forming domain of HlyA might contain β-strands, possibly in addition to α-helical structures.

  13. What controls open-pore and residual currents in the first sensing zone of alpha-hemolysin nanopore? Combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    de Biase, Pablo M.; Ervin, Eric N.; Pal, Prithwish; Samoylova, Olga; Markosyan, Suren; Keehan, Michael G.; Barrall, Geoffrey A.; Noskov, Sergei Yu.

    2016-06-01

    The electrophoretic transport of single-stranded DNA through biological nanopores such as alpha-hemolysin (αHL) is a promising and cost-effective technology with the potential to revolutionize genomics. The rational design of pores with the controlled polymer translocation rates and high contrast between different nucleotides could improve significantly nanopore sequencing applications. Here, we apply a combination of theoretical and experimental methods in an attempt to elucidate several selective modifications in the pore which were proposed to be central for the effective discrimination between purines and pyrimidines. Our nanopore test set includes the wild type αHL and six mutants (E111N/M113X/K147N) in which the cross-section and chemical functionality of the first constriction zone of the pore are modified. Electrophysiological recordings were combined with all-atom Molecular Dynamics simulations (MD) and a recently developed Brownian Dynamics (BROMOC) protocol to investigate residual ion currents and pore-DNA interactions for two homo-polymers e.g. poly(dA)40 or poly(dC)40 blocking the pore. The calculated residual currents and contrast in the poly(dA)40/poly(dC)40 blocked pore are in qualitative agreement with the experimental recordings. We showed that a simple structural metric allows rationalization of key elements in the emergent contrast between purines and pyrimidines in the modified αHL mutants. The shape of the pore and its capacity for hydrogen bonding to a translocated polynucleotide are two essential parameters for contrast optimization. To further probe the impact of these two factors in the ssDNA sensing, we eliminated the effect of the primary constriction using serine substitutions (i.e. E111S/M113S/T145S/K147S) and increased the hydrophobic volume of the central residue in the secondary constriction (L135I). This pore modification sharply increased the contrast between Adenine (A) and Cytosine (C).The electrophoretic transport of single

  14. A standard immunoglobulin preparation produced from bovine colostra shows antibody reactivity and neutralization activity against Shiga-like toxins and EHEC-hemolysin of Escherichia coli O157:H7.

    PubMed

    Lissner, R; Schmidit, H; Karch, H

    1996-01-01

    Enterohemorrhagic Escherichia coli (EHEC) causes a variety of clinical conditions, the most important being hemorrhagic colitis and hemolytic uremic syndrome. A curative therapy of EHEC diseases is not yet feasible. This study investigates the antibody reactivity of Lactobin, a standardized immunoglobulin (Ig) preparation, obtained from the colostra of non-immunized cows. Three different batches of Lactobin exhibited equally high titers of specific antibodies against Shiga-like toxins (SLTs, verocytotoxins) and EHEC hemolysin (EHEC-Hly) produced by E. coli O157. In addition, Lactobin blocked the cytotoxic effect of SLT-I and SLT-II on Vero cell monolayers and inhibited the cytolytic effects of EHEC-Hly on human erythrocytes. Since Lactobin contains high levels of antibodies and neutralizing activity against important virulence factors of EHEC O157, this drug has potential use in the treatment of diarrhea and the prevention of EHEC-associated hemolytic uremic syndrome.

  15. Mutations in hns reduce the adherence of Shiga toxin-producing E. coli 091:H21 strain B2F1 to human colonic epithelial cells and increase the production of hemolysin.

    PubMed

    Scott, Maria E; Melton-Celsa, Angela R; O'Brien, Alison D

    2003-03-01

    Shiga toxin-producing Escherichia coli (STEC) 091:H21 strain B2F1, an isolate from a patient with the hemolytic uremic syndrome (HUS), produces elastase-activatable Shiga toxin (Stx) type 2d and adheres well to human colonic epithelial T84 cells. This adherence phenotype occurs even though B2F1 does not contain the locus of enterocyte effacement (LEE) that encodes the primary adhesin for E. coli O157:H7. To attempt to identify genes involved in binding of B2F1 to T84 cells a bank of mini-Tn5phoACm(r) transposon mutants of this strain was generated. Several of these mutants exhibited a reduced adherence phenotype, but none of the insertions in these mutants were within putative adhesin genes. Rather, insertional mutations within hns resulted in the loss of adherence. Moreover, the hns mutant also displayed an increase in the production of hemolysin and alkaline phosphatase and a loss of motility with no change in Stx2d-activatable expression levels. When B2F1 was cured of the large plasmid that encodes the hemolysin, the resulting strain adhered well to T84 cells. However, an hns mutant of the plasmid-cured B2F1 strain exhibited a reduction in adherence to T84 cells. Taken together, these results indicate that H-NS regulates the expression of several genes and some potential virulence factors in the intimin-negative B2F1 STEC strain and that the large plasmid is not required for T84 cell colonization.

  16. The thermostable direct hemolysin gene (tdh) of Vibrio hollisae is dissimilar in prevalence to and phylogenetically distant from the tdh genes of other vibrios: implications in the horizontal transfer of the tdh gene.

    PubMed

    Nishibuchi, M; Janda, J M; Ezaki, T

    1996-01-01

    Vibrio hollisae strains isolated recently from patients in various locations were examined for the presence of the thermostable direct hemolysin gene (tdh) using nucleic acid hybridization and polymerase chain reaction assays. The results were consistent with the previous finding that all strains of V. hollisae carry the tdh gene. In contrast, the tdh gene has been detected in a minority of strains for other Vibrio species (V. parahaemolyticus, V. cholerae non-O1, and V. mimicus). Detailed phylogenetic analysis showed that the tdh genes of the non-V. hollisae species were very closely related to each other and that the tdh gene of V. hollisae was distantly related to the tdh genes of the non-V. hollisae species. These results and the proposed insertion sequence-mediated tdh transfer mechanism suggest that the tdh gene may have been maintained stably in V. hollisae and that the tdh genes of the non-V. hollisae species may have been involved in recent horizontal transfer.

  17. Adaptation of the Endogenous Salmonella enterica Serovar Typhi clyA-Encoded Hemolysin for Antigen Export Enhances the Immunogenicity of Anthrax Protective Antigen Domain 4 Expressed by the Attenuated Live-Vector Vaccine Strain CVD 908-htrA

    PubMed Central

    Galen, James E.; Zhao, Licheng; Chinchilla, Magaly; Wang, Jin Yuan; Pasetti, Marcela F.; Green, Jeffrey; Levine, Myron M.

    2004-01-01

    Bacterial live-vector vaccines aim to deliver foreign antigens to the immune system and induce protective immune responses, and surface-expressed or secreted antigens are generally more immunogenic than cytoplasmic constructs. We hypothesize that an optimum expression system will use an endogenous export system to avoid the need for large amounts of heterologous DNA encoding additional proteins. Here we describe the cryptic chromosomally encoded 34-kDa cytolysin A hemolysin of Salmonella enterica serovar Typhi (ClyA) as a novel export system for the expression of heterologous antigens in the supernatant of attenuated Salmonella serovar Typhi live-vector vaccine strains. We constructed a genetic fusion of ClyA to the reporter green fluorescent protein and showed that in Salmonella serovar Typhi CVD 908-htrA, the fusion protein retains biological activity in both domains and is exported into the supernatant of an exponentially growing live vector in the absence of detectable bacterial lysis. The utility of ClyA for enhancing the immunogenicity of an otherwise problematic antigen was demonstrated by engineering ClyA fused to the domain 4 (D4) moiety of Bacillus anthracis protective antigen (PA). A total of 11 of 15 mice immunized intranasally with Salmonella serovar Typhi exporting the protein fusion manifested fourfold or greater rises in serum anti-PA immunoglobulin G, compared with only 1 of 16 mice immunized with the live vector expressing cytoplasmic D4 (P = 0.0002). In addition, the induction of PA-specific gamma interferon and interleukin 5 responses was observed in splenocytes. This technology offers exceptional versatility for enhancing the immunogenicity of bacterial live-vector vaccines. PMID:15557633

  18. Expression of superoxide dismutase, catalase and thermostable direct hemolysin by, and growth in the presence of various nitrogen and carbon sources of heat-shocked and ethanol-shocked Vibrio parahaemolyticus.

    PubMed

    Chiang, Ming-Lun; Chou, Cheng-Chun

    2008-02-10

    Vibrio parahaemolyticus 690 was subjected either to heat shock at 42 degrees C or ethanol shock in the presence of 5% ethanol. The effects of those shocks on superoxide dismutase (SOD) and catalase (CAT) activities, and thermostable direct hemolysin (TDH) production were examined. In addition, the growth behaviors of the stressed and unstressed cells of V. parahaemolyticus in the presence of various nitrogen and carbon sources were compared. Both heat shock and ethanol shock reduced the levels of SOD and CAT activities in V. parahaemolyticus. Gel activity staining assay failed to detect the expression of CAT, while one SOD enzyme with an electrophoretic mobility greater than the [Mn]SOD and [Fe]SOD of Escherichia coli was detected in the unstressed, heat-shocked and ethanol-shocked cells of V. parahaemolyticus. Heat shock for 15-60 min and ethanol shock for 45-60 min were found to enhance the synthesis of TDH. Ethanol-shocked and unstressed cells of V. parahaemolyticus grew similarly and produced similar amounts of TDH when they were grown in TSB-3% NaCl, but slower growth and less production of TDH occurred with heat-shocked cells until after 200 min of cultivation. The growth rate and maximum growth of the unstressed, heat-shocked and ethanol-shocked cells varied with the nitrogen and carbon sources used. With the same nitrogen or carbon source, the growth patterns of the ethanol-shocked and unstressed cells were similar while the heat-shocked cells exhibited an extended lag period.

  19. POSSIBLE ROLES OF FUNGAL HEMOLYSINS IN SICK BUILDING SYNDROME

    EPA Science Inventory

    The World Health Organization (WHO) definition of SBS includes such symptoms in the occupants as headache, distraction, dizziness, fatigue, watery eyes, runny or blocked or bleeding nose, dry or sore throat and skin irritation. The WHO has set a criterion for a healthy building ...

  20. POSSIBLE ROLES OF FUNGAL HEMOLYSINS IN SICK BUILDING SYNDROME

    EPA Science Inventory

    The World Health Organization (WHO) definition of SBS includes such symptoms in the occupants as headache, distraction, dizziness, fatigue, watery eyes, runny or blocked or bleeding nose, dry or sore throat and skin irritation. The WHO has set a criterion for a healthy building ...

  1. Copurification of Leptospira interrogans serovar pomona hemolysin and sphingomyelinase C.

    PubMed Central

    Bernheimer, A W; Bey, R F

    1986-01-01

    The hemolytic and sphingomyelinase C activities of supernatants of cultures of Leptospira interrogans serovar pomona tended to copurify when isoelectric fractionation was carried out. Both activities focused primarily at pH 8.1. Considered in conjunction with other circumstantial evidence, the results led to the conclusion that sphingomyelinase C is responsible for hemolysis. PMID:3019890

  2. Experiments of salt concentration effects on translocation dynamics of polyelectrolytes passing through alpha-hemolysin pore

    NASA Astrophysics Data System (ADS)

    Jeon, Byoung-Jin; Muthukumar, Murugappan

    2015-03-01

    We use polarization-resolved Raman spectroscopy to study the Raman susceptibility (χ (ω ,T,x)) of the x-T phase diagram of NaFe1-xCoxAs. Above the structural TS(x) and the superconducting Tc(x) transition, χ (ω ,T,x) is dominated by a low-frequency quasielastic peak in B2g symmetry displaying critical behavior across the entire phase diagram. Below Tc(x), sharp ingap modes emerge for x >=0.0165 in A1g (~65 cm-1) and B2g (~25 and ~55 cm-1) symmetry. The critical charge fluctuations are interpreted in terms of plasma waves of quadrupole excitations which below Tc(x) undergo a metamorphosis into the ingap modes. The A1g mode is a particle-hole (p-h) charge exciton consistent with a non-conventional s +- superconducting groundstate. The minor B2g mode is a Bardasis-Schrieffer Cooper pair exciton of d-wave symmetry which exists only in a narrow doping window of density wave and superconductivity coexistence. The major B2g mode is a bound state of d +- p-h plasma oscillations. We use polarization-resolved Raman spectroscopy to study the Raman susceptibility (χ (ω ,T,x)) of the x-T phase diagram of NaFe1-xCoxAs. Above the structural TS(x) and the superconducting Tc(x) transition, χ (ω ,T,x) is dominated by a low-frequency quasielastic peak in B2g symmetry displaying critical behavior across the entire phase diagram. Below Tc(x), sharp ingap modes emerge for x >=0.0165 in A1g (~65 cm-1) and B2g (~25 and ~55 cm-1) symmetry. The critical charge fluctuations are interpreted in terms of plasma waves of quadrupole excitations which below Tc(x) undergo a metamorphosis into the ingap modes. The A1g mode is a particle-hole (p-h) charge exciton consistent with a non-conventional s +- superconducting groundstate. The minor B2g mode is a Bardasis-Schrieffer Cooper pair exciton of d-wave symmetry which exists only in a narrow doping window of density wave and superconductivity coexistence. The major B2g mode is a bound state of d +- p-h plasma oscillations. VKT and GB acknowledge support from NSF DMR-1104884 and from U.S. DOE, BES, Award DE-SC0005463. CZ, SVC and PD acknowledge support from U.S. DOE, BES, Contract DE-FG02-05ER46202.

  3. Genomic Analysis of Immune Response against Vibrio cholerae Hemolysin in Caenorhabditis elegans

    PubMed Central

    Sahu, Surasri N.; Bozdag, Serdar; Lee, Jeong H.; LeClerc, Joseph E.; Cinar, Hediye Nese

    2012-01-01

    Vibrio cholerae cytolysin (VCC) is among the accessory V. cholerae virulence factors that may contribute to disease pathogenesis in humans. VCC, encoded by hlyA gene, belongs to the most common class of bacterial toxins, known as pore-forming toxins (PFTs). V. cholerae infects and kills Caenorhabditis elegans via cholerae toxin independent manner. VCC is required for the lethality, growth retardation and intestinal cell vacuolation during the infection. However, little is known about the host gene expression responses against VCC. To address this question we performed a microarray study in C. elegans exposed to V. cholerae strains with intact and deleted hlyA genes. Many of the VCC regulated genes identified, including C-type lectins, Prion-like (glutamine [Q]/asparagine [N]-rich)-domain containing genes, genes regulated by insulin/IGF-1-mediated signaling (IIS) pathway, were previously reported as mediators of innate immune response against other bacteria in C. elegans. Protective function of the subset of the genes up-regulated by VCC was confirmed using RNAi. By means of a machine learning algorithm called FastMEDUSA, we identified several putative VCC induced immune regulatory transcriptional factors and transcription factor binding motifs. Our results suggest that VCC is a major virulence factor, which induces a wide variety of immune response- related genes during V. cholerae infection in C. elegans. PMID:22675448

  4. Complete Genome Sequence of Hemolysin-Containing Carnobacterium sp. Strain CP1 Isolated from the Antarctic

    PubMed Central

    Zhu, Sidong; Wang, Xing; Zhang, Di; Jing, Xiaohuan; Zhang, Ning

    2016-01-01

    Carnobacterium sp. strain CP1 was isolated from Antarctic sandy soil and predicted to be a novel species belonging to the genus Carnobacterium. Herein, we report the complete genome sequence, which consists of a circular 2,605,518-bp chromosome and an 8,883-bp plasmid with G+C contents of 38.13% and 31.63%, respectively. PMID:27445381

  5. PolyA Single Strand DNA Translocation Through an Alpha-Hemolysin Pore Stem

    NASA Technical Reports Server (NTRS)

    OKeeffe, James; Cozmuta, Ioana; Stolc, Viktor

    2003-01-01

    A new model for the polymer-pore interaction energy is introduced, based on an atomic-scale description of coulombic polymer-pore interaction. The enhanced drift velocity, experimentally observed for short polymers, is successfully accounted for, using this interaction energy model. For R/R(sub 0)>4 (R(sub 0)=7 angstroms) the translocation velocity approaches the free space drift velocity v(sub 0). This motivates the need to appropriately derivatize artificial nanopores, where R>R(sub 0).

  6. All-Atom Molecular Dynamics Simulation of Protein Translocation through an α-Hemolysin Nanopore.

    PubMed

    Di Marino, Daniele; Bonome, Emma Letizia; Tramontano, Anna; Chinappi, Mauro

    2015-08-06

    Nanopore sensing is attracting the attention of a large and varied scientific community. One of the main issues in nanopore sensing is how to associate the measured current signals to specific features of the molecule under investigation. This is particularly relevant when the translocating molecule is a protein and the pore is sufficiently narrow to necessarily involve unfolding of the translocating protein. Recent experimental results characterized the cotranslocational unfolding of Thioredoxin (Trx) passing through an α-hemolisin pore, providing evidence for the existence of a multistep process. In this study we report the results of all-atom molecular dynamics simulations of the same system. Our data indicate that Trx translocation involves two main barriers. The first one is an unfolding barrier associated with a translocation intermediate where the N-terminal region of Trx is stuck at the pore entrance in a conformation that strongly resembles the native one. After the abrupt unfolding of the N-terminal region, the Trx enters the α-hemolisin vestibule. During this stage, the constriction is occupied not only by the translocating residue but also by a hairpin-like structure forming a tangle in the constriction. The second barrier is associated with the disentangling of this region.

  7. A PROGRESSIVE REACTION OCCURRING WITH A RADIOACTIVE HEMOLYSIN, SODIUM OLEATE-I131

    PubMed Central

    Ponder, Eric; Ponder, Ruth V.

    1958-01-01

    Sodium oleate reacts progressively with human red cells at pH 7. By progressive is meant a reaction which is not adequately described as reversible or irreversible; such reactions cannot be stopped once they are under way, and are probably associated with a more or less stable "internal" lysin phase at the cell surfaces. The uptake of the lysin and the effect of dilution on the uptake can be studied by converting sodium oleate into the radioactive form, sodium oleate-I131. The uptake is a parabolic function of the lysin initially present in the system, and the effect of a tenfold dilution of systems in which red cells have remained in contact with the lysin for 2 minutes is to reduce the lysin taken up at the cell surfaces twofold. The lysin rapidly forms a relatively stable layer at the cell interfaces, and this layer is little affected by the dilution of the system as a whole. PMID:13491825

  8. [Levels of thermostable direct hemolysin production by Vibrio parahaemolyticus strains carrying both tdh and trh genes].

    PubMed

    Suzuki, N; Hashimoto, S; Ishibashi, M; Kim, Y B; Okuda, J; Nishibuchi, M

    1997-12-01

    One hundred and twenty-five strains of Vibrio parahaemolyticus carrying both the tdh and trh genes were selected from the strains isolated from the travelers with diarrhea by an hybridization test using polynucleotide probes. The levels of TDH produced by these strains and the association between the TDH levels and related characteristics in these strains were analyzed. The TDH level varied greatly from strain to strain, but none of the levels was as high as that of the typical Kanagawa phenomenon-positive strains. The strains were classified into "TDH producer" (18 strains), "Low-level TDH producer" (85 strains), and "No TDH producer" (22 strains) based on the results of a modified Elek test and the hemolysis assay on Wagatsuma agar. The highest TDH level achieved by the "TDH producer" was twofold lower than that of the Kanagawa phenomenon-positive strains as assayed by the RPLA method. All strains possessed the toxR gene. The trh1 and trh2 genes were detected in, respectively, 105 and 20 strains, and no correlation existed between the type of the trh gene and the levels of TDH produced. Considerable restriction fragment length polymorphism was observed with the tdh gene-bearing HindIII DNA fragment in different strains, but it was not related with the TDH level.

  9. Immunization with recombinant aerolysin and hemolysin protected channel catfish against virulent Aeromonas hydrophila

    USDA-ARS?s Scientific Manuscript database

    Aeromonas hydrophila is emerging as one of the major concerns in catfish aquaculture in the Southeastern United States due to recent outbreaks of motile aeromonad septicemia (MAS) caused by virulent clonal isolates. There is no effective vaccine currently available for the prevention of MAS. In this...

  10. Real-time PCR detection of the thermostable direct hemolysin and thermolabile hemolysin genes in a Vibrio parahaemolyticus cultured from mussels and mussel homogenate associated with a foodborne outbreak.

    PubMed

    Davis, Carisa R; Heller, Loree C; Peak, K Kealy; Wingfield, David L; Goldstein-Hart, Cynthia L; Bodager, Dean W; Cannons, Andrew C; Amuso, Philip T; Cattanii, Jacqueline

    2004-05-01

    Molecular methods have become vital epidemiological tools in the detection and characterization of bacteria associated with a foodborne outbreak. We used both culture and real-time PCR to detect a Vibrio parahaemolyticus isolate associated with a foodborne outbreak. The outbreak occurred in July 2002 in Polk County, Florida, and originated at a Chinese buffet, with one person being hospitalized. The hospital isolated V. parahaemolyticus from the patient but destroyed the sample after diagnosis. From an onsite visit of the restaurant, food samples that possibly contributed to the outbreak were collected and sent to the Florida Department of Health, Tampa Branch Laboratory. Crab legs, crabsticks, and mussel samples were homogenized and incubated according to the Food and Drug Administration Bacteriological Analytical Manual culture protocol. Three sets of primers and a TaqMan probe were designed to target the tdh, trh, and tlh genes and used for real-time PCR. This study was successful in isolating V. parahaemolyticus from a mussel sample and detecting two of its genes (tdh and tlh) in food and pure culture by real-time PCR.

  11. The α-Hemolysin nanopore transduction detector – single-molecule binding studies and immunological screening of antibodies and aptamers

    PubMed Central

    Winters-Hilt, Stephen

    2007-01-01

    Background Nanopore detection is based on observations of the ionic current threading a single, highly stable, nanometer-scale channel. The dimensions are such that small biomolecules and biopolymers (like DNA and peptides) can translocate or be captured in the channel. The identities of translocating or captured molecules can often be discerned, one from another, based on their channel blockade "signatures". There is a self-limiting aspect to a translocation-based detection mechanism: as the channel fits tighter around the translocating molecule the dynamic range of the ionic current signal is reduced. In this study, a lengthy, highly structure, high dynamic-range, molecular capture is sought as a key component of a transduction-based nanopore detection platform. Results A specialized role, or device augmentation, involving bifunctional molecules has been explored. The bifunctional molecule has one function to enter and blockade the channel in an information-rich self-modulating manner, while the other function is for binding (usually), located on a non-channel-captured portion of the molecule. Part of the bifunctional molecule is, thus, external to the channel and is free to bind or rigidly link to a larger molecule of interest. What results is an event transduction detector: molecular events are directly transduced into discernible changes in the stationary statistics of the bifunctional molecule's channel blockade. Several results are presented of nanopore-based event-transduction detection. Conclusion It may be possible to directly track the bound versus unbound state of a huge variety of molecules using nanopore transduction detection. PMID:18047732

  12. Development of a real-time resistance measurement for Vibrio parahaemolyticus detection by the lecithin-dependent hemolysin gene.

    PubMed

    Xiang, Guiming; Pu, Xiaoyun; Jiang, Dongneng; Liu, Linlin; Liu, Chang; Liu, Xiaobo

    2013-01-01

    The marine bacterium Vibrio parahaemolyticus (V. parahaemolyticus) causes gastroenteritis in humans via the ingestion of raw or undercooked contaminated seafood, and early diagnosis and prompt treatment are important for the prevention of V. parahaemolyticus-related diseases. In this study, a real-time resistance measurement based on loop-mediated isothermal amplification (LAMP), electrochemical ion bonding (Crystal violet and Mg(2+)), real-time monitoring, and derivative analysis was developed. V. parahaemolyticus DNA was first amplified by LAMP, and the products (DNA and pyrophosphate) represented two types of negative ions that could combine with a positive dye (Crystal violet) and positive ions (Mg(2+)) to increase the resistance of the reaction liquid. This resistance was measured in real-time using a specially designed resistance electrode, thus permitting the quantitative detection of V. parahaemolyticus. The results were obtained in 1-2 hours, with a minimum bacterial density of 10 CFU.mL(-1) and high levels of accuracy (97%), sensitivity (96.08%), and specificity (97.96%) when compared to cultivation methods. Therefore, this simple and rapid method has a potential application in the detection of V. parahaemolyticus on a gene chip or in point-of-care testing.

  13. Vibrio parahaemolyticus CalR down regulates the thermostable direct hemolysin (TDH) gene transcription and thereby inhibits hemolytic activity.

    PubMed

    Zhang, Yiquan; Zhang, Ying; Gao, He; Zhang, Lingyu; Yin, Zhe; Huang, Xinxiang; Zhou, Dongsheng; Yang, Huiying; Yang, Wenhui; Wang, Li

    2017-03-04

    TDH, encoded by tdh gene, is a major virulent determinant of V. parahaemolyticus that controls various biological activities, such as hemolytic activity, cytotoxicity, and enterotoxicity. The hemolytic activity on Wagatsuma agar ascribed to TDH is called Kanagawa phenomenon (KP). All KP positive strains contain tdh1 and tdh2 genes, but tdh2 is predominantly responsible for KP. CalR is a regulatory protein that was originally identified as a repressor of swarming motility and T3SS1 gene expression in V. parahaemolyticus. In the present study, the regulation of tdh2 by CalR was investigated using a set of experiments including qRT-PCR, primer extension, LacZ fusion, hemolytic phenotype, EMSA, and DNase I footprinting assays. The results showed that His-CalR protected a single region from 224bp to 318bp upstream of tdh2 against DNase I digestion, and a transcriptional start site located at 42bp upstream of tdh2 was detected and its transcribed activity was inhibited by CalR. Moreover, the KP test results showed that the hemolytic activity of V. parahaemolyticus is also under negative control of CalR. The data demonstrated that CalR is a repressor of the tdh2 transcription and thereby inhibits the hemolytic activity of V. parahaemolyticus.

  14. The CpAL Quorum Sensing System Regulates Production of Hemolysins CPA and PFO To Build Clostridium perfringens Biofilms

    PubMed Central

    Shak, Joshua R.; Canizalez-Roman, Adrian

    2015-01-01

    Clostridium perfringens strains produce severe diseases, including myonecrosis and enteritis necroticans, in humans and animals. Diseases are mediated by the production of potent toxins that often damage the site of infection, e.g., skin epithelium during myonecrosis. In planktonic cultures, the regulation of important toxins, such as CPA, CPB, and PFO, is controlled by the C. perfringens Agr-like (CpAL) quorum sensing (QS) system. Strains also encode a functional LuxS/AI-2 system. Although C. perfringens strains form biofilm-like structures, the regulation of biofilm formation is poorly understood. Therefore, our studies investigated the role of CpAL and LuxS/AI-2 QS systems and of QS-regulated factors in controlling the formation of biofilms. We first demonstrate that biofilm production by reference strains differs depending on the culture medium. Increased biomass correlated with the presence of extracellular DNA in the supernatant, which was released by lysis of a fraction of the biofilm population and planktonic cells. Whereas ΔagrB mutant strains were not able to produce biofilms, a ΔluxS mutant produced wild-type levels. The transcript levels of CpAL-regulated cpa and pfoA genes, but not cpb, were upregulated in biofilms compared to planktonic cultures. Accordingly, Δcpa and ΔpfoA mutants, in type A (S13) or type C (CN3685) backgrounds, were unable to produce biofilms, whereas CN3685Δcpb made wild-type levels. Biofilm formation was restored in complemented Δcpa/cpa and ΔpfoA/pfoA strains. Confocal microscopy studies further detected CPA partially colocalizing with eDNA on the biofilm structure. Thus, CpAL regulates biofilm formation in C. perfringens by increasing levels of certain toxins required to build biofilms. PMID:25824838

  15. The CpAL quorum sensing system regulates production of hemolysins CPA and PFO to build Clostridium perfringens biofilms.

    PubMed

    Vidal, Jorge E; Shak, Joshua R; Canizalez-Roman, Adrian

    2015-06-01

    Clostridium perfringens strains produce severe diseases, including myonecrosis and enteritis necroticans, in humans and animals. Diseases are mediated by the production of potent toxins that often damage the site of infection, e.g., skin epithelium during myonecrosis. In planktonic cultures, the regulation of important toxins, such as CPA, CPB, and PFO, is controlled by the C. perfringens Agr-like (CpAL) quorum sensing (QS) system. Strains also encode a functional LuxS/AI-2 system. Although C. perfringens strains form biofilm-like structures, the regulation of biofilm formation is poorly understood. Therefore, our studies investigated the role of CpAL and LuxS/AI-2 QS systems and of QS-regulated factors in controlling the formation of biofilms. We first demonstrate that biofilm production by reference strains differs depending on the culture medium. Increased biomass correlated with the presence of extracellular DNA in the supernatant, which was released by lysis of a fraction of the biofilm population and planktonic cells. Whereas ΔagrB mutant strains were not able to produce biofilms, a ΔluxS mutant produced wild-type levels. The transcript levels of CpAL-regulated cpa and pfoA genes, but not cpb, were upregulated in biofilms compared to planktonic cultures. Accordingly, Δcpa and ΔpfoA mutants, in type A (S13) or type C (CN3685) backgrounds, were unable to produce biofilms, whereas CN3685Δcpb made wild-type levels. Biofilm formation was restored in complemented Δcpa/cpa and ΔpfoA/pfoA strains. Confocal microscopy studies further detected CPA partially colocalizing with eDNA on the biofilm structure. Thus, CpAL regulates biofilm formation in C. perfringens by increasing levels of certain toxins required to build biofilms.

  16. The Photobacterium damselae subsp. damselae Hemolysins Damselysin and HlyA Are Encoded within a New Virulence Plasmid ▿

    PubMed Central

    Rivas, Amable J.; Balado, Miguel; Lemos, Manuel L.; Osorio, Carlos R.

    2011-01-01

    Photobacterium damselae subsp. damselae (formerly Vibrio damsela) is a marine bacterium that causes infections and fatal disease in a wide range of marine animals and in humans. Highly hemolytic strains produce damselysin (Dly), a cytolysin encoded by the dly gene that is lethal for mice and has hemolytic activity. We found that Dly is encoded in the highly hemolytic strain RM-71 within a 153,429-bp conjugative plasmid that we dubbed pPHDD1. In addition to Dly, pPHDD1 also encodes a homologue of the pore-forming toxin HlyA. We found a direct correlation between presence of pPHDD1 and a strong hemolytic phenotype in a collection of P. damselae subsp. damselae isolates. Hemolysis was strongly reduced in a double dly hlyA mutant, demonstrating the role of the two pPHDD1-encoded genes in hemolysis. Interestingly, although single hlyA and dly mutants showed different levels of hemolysis reduction depending on the erythrocyte source, hemolysis was not abolished in any of the single mutants, suggesting that the hemolytic phenotype is the result of the additive effect of Dly and HlyA. We found that pPHDD1-encoded dly and hlyA genes are necessary for full virulence for mice and fish. Our results suggest that pPHDD1 can be considered as a driving force for the emergence of a highly hemolytic lineage of P. damselae subsp. damselae. PMID:21875966

  17. Hydra actinoporin-like toxin-1, an unusual hemolysin from the nematocyst venom of Hydra magnipapillata which belongs to an extended gene family.

    PubMed

    Glasser, Eliezra; Rachamim, Tamar; Aharonovich, Dikla; Sher, Daniel

    2014-12-01

    Cnidarians rely on their nematocysts and the venom injected through these unique weaponry systems to catch prey and protect themselves from predators. The development and physiology of the nematocysts of Hydra magnipapillata, a classic model organism, have been intensively studied, yet the composition and biochemical activity of their venom components are mostly unknown. Here, we show that hydra actinoporin-like toxins (HALTs), which have previously been associated with Hydra nematocysts, belong to a multigene family comprising six genes, which have diverged from a single common ancestor. All six genes are expressed in a population of Hydra magnipapillata. When expressed recombinantly, HALT-1 (Δ-HYTX-Hma1a), an actinoporin-like protein found in the stenoteles (the main penetrating nematocysts used in prey capture), reveals hemolytic activity, albeit about two-thirds lower than that of the anemone actinoporin equinatoxin II (EqTII, Δ-AITX-Aeq1a). HALT-1 also differs from EqTII in the size of its pores, and likely does not utilize sphingomyelin as a membrane receptor. We describe features of the HALT-1 sequence which may contribute to this difference in activity, and speculate on the role of this unusual family of pore-forming toxins in the ecology of Hydra. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells.

    PubMed

    Glomski, Ian J; Gedde, Margaret M; Tsang, Albert W; Swanson, Joel A; Portnoy, Daniel A

    2002-03-18

    Listeria monocytogenes is a facultative intracellular bacterial pathogen that escapes from a phagosome and grows in the host cell cytosol. The pore-forming cholesterol-dependent cytolysin, listeriolysin O (LLO), mediates bacterial escape from vesicles and is approximately 10-fold more active at an acidic than neutral pH. By swapping dissimilar residues from a pH-insensitive orthologue, perfringolysin O (PFO), we identified leucine 461 as unique to pathogenic Listeria and responsible for the acidic pH optimum of LLO. Conversion of leucine 461 to the threonine present in PFO increased the hemolytic activity of LLO almost 10-fold at a neutral pH. L. monocytogenes synthesizing LLO L461T, expressed from its endogenous site on the bacterial chromosome, resulted in a 100-fold virulence defect in the mouse listeriosis model. These bacteria escaped from acidic phagosomes and initially grew normally in cells and spread cell to cell, but prematurely permeabilized the host membrane and killed the cell. These data show that the acidic pH optimum of LLO results from an adaptive mutation that acts to limit cytolytic activity to acidic vesicles and prevent damage in the host cytosol, a strategy also used by host cells to compartmentalize lysosomal hydrolases.

  19. QUANTIFICATION OF SIDEROPHORE AND HEMOLYSIN FROM STACHYBOTRYS CHARTARUM STRAINS, INCLUDING A STRAIN ISOLATED FROM THE LUNG OF A CHILD WITH PULMONARY HEMORRHAGE AND HEMOSIDEROSIS

    EPA Science Inventory

    A strain of Stachybotrys chartarum was recently isolated from the lung of a pulmonary hemorrhage and hemosiderosis (PH) patient in Texas (designated the Houston strain). This is the first time that S. chartarum has been isolated from the lung of a PH patient. In this study, the ...

  20. Formation of Ring-Shaped Structures on Erythrocyte Membranes after Treatment with Botulinolysin, a Thiol-Activated Hemolysin from Clostridium botulinum

    PubMed Central

    Sekiya, Kachiko; Danbara, Hirofumi; Futaesaku, Yutaka; Haque, Abdul; Sugimoto, Nakaba; Matsuda, Morihiro

    1998-01-01

    Damage to erythrocyte membranes by botulinolysin (BLY) was studied by electron microscopy, which revealed ring-shaped structures with inner diameters and widths of approximately 32 and 6.7 nm, respectively. BLY bound to membranes at 0°C, but subsequent treatment with glutaraldehyde prevented ring formation during further incubation at 37°C. Zn2+ ions inhibited ring formation but not binding of BLY to membranes. PMID:9596778

  1. Quantification of Siderophore and Hemolysin from Stachybotrys chartarum Strains, Including a Strain Isolated from the Lung of a Child with Pulmonary Hemorrhage and Hemosiderosis

    PubMed Central

    Vesper, Stephen J.; Dearborn, Dorr G.; Elidemir, Okan; Haugland, Richard A.

    2000-01-01

    A strain of Stachybotrys chartarum was recently isolated from the lung of a pulmonary hemorrhage and hemosiderosis (PH) patient in Texas (designated the Houston strain). This is the first time that S. chartarum has been isolated from the lung of a PH patient. In this study, the Houston strain and 10 strains of S. chartarum isolated from case (n = 5) or control (n = 5) homes in Cleveland were analyzed for hemolytic activity, siderophore production, and relatedness as measured by random amplified polymorphic DNA analysis. PMID:10831457

  2. Detection of shiga-like toxin (stx1 and stx2), intimin (eaeA), and enterohemorrhagic Escherichia coli (EHEC) hemolysin (EHEC hlyA) genes in animal feces by multiplex PCR.

    PubMed

    Fagan, P K; Hornitzky, M A; Bettelheim, K A; Djordjevic, S P

    1999-02-01

    A multiplex PCR was developed for the rapid detection of genes encoding Shiga toxins 1 and 2 (stx1 and stx2), intimin (eaeA), and enterohemolysin A (hlyA) in 444 fecal samples derived from healthy and clinically affected cattle, sheep, pigs, and goats. The method involved non-solvent-based extraction of nucleic acid from an aliquot of an overnight culture of feces in EC (modified) broth. The detection limit of the assay for both fecal samples and pure cultures was between 18 and 37 genome equivalents. stx1 and hlyA were the most commonly encountered virulence factors.

  3. Mutations in the Histone-like Nucleoid Structuring Regulatory Gene (hns) Decrease the Adherence of Shiga Toxin-producing Escherichia coli 091:H21 Strain B2F1 to Human Colonic Epithelial Cells and Increase the Production of Hemolysin

    DTIC Science & Technology

    1999-10-19

    1996 Reilly, 1998). STEC of various serotypes have been isolated from and or detected in the feces and milk ofsheep and cattle (Gyles et aI., 1998...happens in humans (Karch et aI., 1986). Therefore, treatment of STEC infections with antibiotics is not recommended in the United States. Anti-motility...hybridization experiments. Following treatment ofB2Fl by the Kado and Liu method., plasmids were either transformed into host strains that had been treated with

  4. Comparative prevalence of immune evasion complex genes associated with beta-hemolysin converting bacteriophages in MRSA ST5 isolates from swine, swine facilities, humans with swine contact, and humans with no swine contact

    USDA-ARS?s Scientific Manuscript database

    Livestock associated methicillin-resistant Staphylococcus aureus (LA-MRSA) draws concern from the public health community because in some countries these organisms may represent the largest reservoir of MRSA outside hospital settings. Recent studies indicate LA-MRSA strains from swine are more genet...

  5. Cholesterol-dependent hemolytic activity of Passiflora quadrangularis leaves.

    PubMed

    Yuldasheva, L N; Carvalho, E B; Catanho, M-T J A; Krasilnikov, O V

    2005-07-01

    Plants used in traditional medicine are rich sources of hemolysins and cytolysins, which are potential bactericidal and anticancer drugs. The present study demonstrates for the first time the presence of a hemolysin in the leaves of Passiflora quadrangularis L. This hemolysin is heat stable, resistant to trypsin treatment, has the capacity to froth, and acts very rapidly. The hemolysin activity is dose-dependent, with a slope greater than 1 in a double-logarithmic plot. Polyethylene glycols of high molecular weight were able to reduce the rate of hemolysis, while liposomes containing cholesterol completely inhibited it. In contrast, liposomes containing phosphatidylcholine were ineffective. The Passiflora hemolysin markedly increased the conductance of planar lipid bilayers containing cholesterol but was ineffective in cholesterol-free bilayers. Successive extraction of the crude hemolysin with n-hexane, chloroform, ethyl acetate, and n-butanol resulted in a 10-fold purification, with the hemolytic activity being recovered in the n-butanol fraction. The data suggest that membrane cholesterol is the primary target for this hemolysin and that several hemolysin molecules form a large transmembrane water pore. The properties of the Passiflora hemolysin, such as its frothing ability, positive color reaction with vanillin, selective extraction with n-butanol, HPLC profile, cholesterol-dependent membrane susceptibility, formation of a stable complex with cholesterol, and rapid erythrocyte lysis kinetics indicate that it is probably a saponin.

  6. Properties of the Hemolytic Activities of Escherichia coli

    PubMed Central

    Short, Everett C.; Kurtz, Harold J.

    1971-01-01

    Some properties of the cell-free and cell-associated hemolysins of Escherichia coli were studied. Several strains of E. coli that were isolated from intestines of pigs with edema disease produce large quantities of cell-free hemolysin when grown in the presence of an extract of meat. The component of meat that stimulates production of cell-free hemolysin is not extracted by lipid solvents and is not dialyzable. The cell-free hemolysin is an acidic substance that occurs in two forms. It is inactivated by trypsin but not by lecithinase, lysozyme, ribonuclease, or deoxyribonuclease, shows optimum activity between pH 7 and 8, and requires calcium ion for activity. It does not appear to be an enzyme. The kinetics of the lytic reaction are most consistent with the hypothesis that one molecule of cell-free hemolysin is sufficient to lyse one erythrocyte and that it is inactivated in the lytic reaction. The cell-free hemolysin does not sufficiently damage the cell during the prelytic period to cause lysis after the hemolysin-calcium-erythrocyte complex has been disrupted. The cell-associated hemolysin was not separated from the cell by autolysis, freezing, sonic treatment, or treatment with trypsin or lysozyme. It appears to be closely associated with the metabolic status of the cell. Organisms that are highly hemolytic under usual conditions of assay immediately lose most of their hemolytic capability in the presence of sodium cyanide, streptomycin, nalidixic acid, and rifampin. PMID:16558036

  7. Close association of verotoxin (Shiga-like toxin) production with enterohemolysin production in strains of Escherichia coli.

    PubMed Central

    Beutin, L; Montenegro, M A; Orskov, I; Orskov, F; Prada, J; Zimmermann, S; Stephan, R

    1989-01-01

    Sixty-four verotoxin-producing (VT+) Escherichia coli strains were analyzed for VT1- and VT2-specific DNA sequences and for production of hemolysin. Strains of human origin were of the following serotypes: O157:H7 or H-, O111:H8 or H-, O26:H11, O114:H4, and rough:H7. Strains of serotypes O157:H7, O113:H21, O116:H21, and rough:H- were from cattle, while those of serotype O139:K12:H1 were from pigs. All 64 isolates carried either VT1 or VT2 or both genes. Sixty of the strains (93.8%) were hemolytic (Hly+). The three O139:K12:H1 strains examined produced alpha-hemolysin, as shown by their reaction with the alpha-hemolysin-specific monoclonal antibody h2A and by DNA hybridization with an alpha-hly gene probe. The remaining 57 Hly+ strains (95%) produced a different type of hemolysin (enterohemolysin), which is genetically and serologically unrelated to alpha-hemolysin. The two types of hemolysin are further distinguished by the appearance of the lysis zone on blood agar and by the time interval for the detection of hemolysis. In contrast to alpha-hemolysin, enterohemolysin can be detected only on blood plates containing washed erythrocytes. The frequent association of enterohemolysin with verotoxin production (89%) makes it useful as an epidemiological marker for rapid and simple detection of potential VT+ E. coli. Images PMID:2681256

  8. Group B Streptococcus Induces Trophoblast Death

    PubMed Central

    Kaplan, Amber; Chung, Kathy; Kocak, Hande; Bertolotto, Cristina; Uh, Andy; Hobel, Calvin J; Simmons, Charles F; Doran, Kelly; Liu, George; Equils, Ozlem

    2008-01-01

    Group B streptococcus (GBS) is one of the leading causes of neonatal infection; however the molecular mechanisms involved are not clearly known. Here we used high and low hemolytic GBS isolates and mutant GBS that lacks β-hemolysin expression and showed that GBS infection or exposure to GBS-hemolysin extract induces primary human trophoblast, placental fibroblast and JEG3 trophoblast cell line death, and that GBS-induced trophoblast death was β-hemolysin dependent. The fibroblasts and trophoblasts provide an innate immune barrier between fetal and maternal circulation in the placenta. These data suggest that GBS may disrupt this barrier to invade fetal circulation. PMID:18599257

  9. Hemolysis induced by psoralen previously photo-oxidized in ethanol or aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kyagova, Alla A.; Ismailova, Mekhriban I.; Malakhov, Mikhail V.; Potapenko, Alexander Y.

    2004-08-01

    Hemolytic effects of psoralen previously photooxidized (366 nm) in ethanol and aqueous solutions were investigated on human erythrocytes. Photooxidation of psoralen in ethanol or aqueous solutions gives a mixture of hemolysins, some of which spontaneously degrade during about 0.5 h of storage with a loss of hemolytic activity whilst others retain their activity during several days of storage. On exposure of psoralen to UVA irradiation in ethanol solutions, water-degradable hemolysins along with not degradable by water are produced. Reciprocity law of the fluence rate and time of irradiation is not fulfilled for the hemolysins production; they are more efficiently produced at high fluence rate of ultraviolet.

  10. A chemical-induced pH-mediated molecular switch

    PubMed Central

    Jayawardhana, Dilani A.; Sengupta, Mrinal K.; Krishantha, D.M. Milan; Gupta, Jyoti; Armstrong, Daniel W.; Guan, Xiyun

    2011-01-01

    The transmembrane protein α-hemolysin pore has been used to develop ultrasensitive biosensors, study biomolecular folding and unfolding, investigate covalent and non-covalent bonding interactions, and probe enzyme kinetics. Here, we report that by addition of ionic liquid tetrakis(hydroxymethyl)phosphonium chloride solution to the α-hemolysin pore, the α-hemolysin channel can be controlled open or closed by adjusting the pH of the solution. This approach can be employed to develop a novel molecular switch to regulate molecular transport, and should find potential applications as a ‘smart’ drug delivery method. PMID:21919492

  11. Chemical-induced pH-mediated molecular switch.

    PubMed

    Jayawardhana, Dilani A; Sengupta, Mrinal K; Krishantha, D M Milan; Gupta, Jyoti; Armstrong, Daniel W; Guan, Xiyun

    2011-10-15

    The transmembrane protein α-hemolysin pore has been used to develop ultrasensitive biosensors, study biomolecular folding and unfolding, investigate covalent and noncovalent bonding interactions, and probe enzyme kinetics. Here, we report that, by addition of ionic liquid tetrakis(hydroxymethyl)phosphonium chloride solution to the α-hemolysin pore, the α-hemolysin channel can be controlled open or closed by adjusting the pH of the solution. This approach can be employed to develop a novel molecular switch to regulate molecular transport and should find potential applications as a "smart" drug delivery method.

  12. FACTORS INFLUENCING IN VITRO KILLING OF BACTERIA BY HEMOCYTES OF THE EASTERN OYSTER (CRASSOSTREA VIRGINICA)

    EPA Science Inventory

    Vibrio parahaemolyticus strains altered in motility or colonial morphology (opaque versus translucent), Listeria monocytogenes mutants lacking catalase, superoxide dismutase, hemolysin, or phospholipase activities, and Vibrio vulnificus strains, possessing and lacking capsules we...

  13. Aeromonas Caviae Strain Induces Th1 Cytokine Response in Mouse Intestinal Tract

    EPA Science Inventory

    Aeromonas caviae has been associated with human gastrointestinal disease. Strains of this species typically lack virulence factors (VFs) such as enterotoxins and hemolysins that are produced by other human pathogens of the Aeromonas genus. Microarray profiling of murine small i...

  14. Quorum Sensing Inhibitors for Staphylococcus aureus from Italian Medicinal Plants

    PubMed Central

    Quave, Cassandra L.; Plano, Lisa R.W.; Bennett, Bradley C.

    2010-01-01

    Morbidity and mortality estimates due to methicillin-resistant Staphylococcus aureus (MRSA) infections continue to rise. Therapeutic options are limited by antibiotic resistance. Anti-pathogenic compounds, which inhibit quorum sensing (QS) pathways, may be a useful alternative to antibiotics. Staphylococcal QS is encoded by the agr locus and is responsible for the production of δ-hemolysin. Quantification of δ-hemolysin found in culture supernatants permits the analysis of agr activity at the translational, rather than transcriptional, level. We employed RP-HPLC techniques to investigate the anti-QS activity of 168 extracts from 104 Italian plants through quantification of δ-hemolysin. Extracts from three medicinal plants (Ballota nigra, Castanea sativa, and Sambucus ebulus) exhibited a dose-dependent response in the production of δ-hemolysin, indicating strong anti-QS activity in a pathogenic MRSA isolate. PMID:20645243

  15. FACTORS INFLUENCING IN VITRO KILLING OF BACTERIA BY HEMOCYTES OF THE EASTERN OYSTER (CRASSOSTREA VIRGINICA)

    EPA Science Inventory

    Vibrio parahaemolyticus strains altered in motility or colonial morphology (opaque versus translucent), Listeria monocytogenes mutants lacking catalase, superoxide dismutase, hemolysin, or phospholipase activities, and Vibrio vulnificus strains, possessing and lacking capsules we...

  16. Aeromonas Caviae Strain Induces Th1 Cytokine Response in Mouse Intestinal Tract

    EPA Science Inventory

    Aeromonas caviae has been associated with human gastrointestinal disease. Strains of this species typically lack virulence factors (VFs) such as enterotoxins and hemolysins that are produced by other human pathogens of the Aeromonas genus. Microarray profiling of murine small i...

  17. Ham test

    MedlinePlus

    Acid hemolysin test; Paroxysmal nocturnal hemoglobinuria - Ham test; PNH - Ham test ... BJ. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. Philadelphia, PA: Elsevier ...

  18. VIRULENCE CHARACTERISTICS OF HETEROTROPHIC BACTERIA COMMONLY ISOLATED FROM POTABLE WATER

    EPA Science Inventory

    Heterotrophic bacteria isolated from drinking water distribution systems were examined to determine if they possessed putative virulence factors such as hemolysins, proteases, or cytotoxins. Representative samples of colonies from several different distribution systems indicated ...

  19. Occurrence of the tdh and trh genes in Vibrio parahaemolyticus isolates from waters and raw shellfish collected in two French coastal areas and from seafood imported into France.

    PubMed

    Robert-Pillot, Annick; Guénolé, Alain; Lesne, Jean; Delesmont, Régis; Fournier, Jean-Michel; Quilici, Marie-Laure

    2004-03-15

    The occurrence of the hemolysin genes, tdh and trh, in Vibrio parahaemolyticus strains isolated from environmental samples collected in two French coastal areas, clinical samples, and seafood products imported into France was studied. Polymerase chain reaction (PCR) with two sets of primers was used to detect the hemolysin genes. Most of the clinical isolates (91%) and 1.5% of the isolates from seafood possessed the hemolysin genes. Three and fifteen percent, respectively, of the two groups of environmental strains carried the hemolysin genes depending on the geographic site. The tdh and trh genes play important roles in virulence. Thus, our results indicate that pathogenic V. parahaemolyticus isolates are present in French coastal areas and in seafood imported into France. Furthermore, they may also be present in French seafood products.

  20. High frequency of virulence factor genes tdh, trh, and tlh in Vibrio parahaemolyticus strains isolated from a pristine estuary.

    PubMed

    Gutierrez West, Casandra K; Klein, Savannah L; Lovell, Charles R

    2013-04-01

    Virulence factor genes encoding the thermostable direct hemolysin (tdh) and the thermostable direct hemolysin-related hemolysin (trh) are strongly correlated with virulence of the emergent human pathogen Vibrio parahaemolyticus. The gene encoding the thermolabile hemolysin (tlh) is also considered a signature molecular marker for the species. These genes are typically reported in very low percentages (1 to 2%) of nonclinical strains. V. parahaemolyticus strains were isolated from various niches within a pristine estuary (North Inlet, SC) and were screened for these genes using both newly designed PCR primers and more commonly used primers. DNA sequences of tdh and trh were recovered from 48% and 8.3%, respectively, of these North Inlet strains. The recovery of pathogenic V. parahaemolyticus strains in such high proportions from an estuarine ecosystem that is virtually free of anthropogenic influences indicates the potential for additional, perhaps environmental roles of the tdh and trh genes.

  1. Genetic relatedness among tdh+ and trh+ Vibrio parahaemolyticus cultured from Gulf of Mexico oysters (Crassostrea virginica) and surrounding water and sediment.

    PubMed

    Johnson, C N; Flowers, A R; Young, V C; Gonzalez-Escalona, N; DePaola, A; Noriea, N F; Grimes, D J

    2009-04-01

    Pathogenic Vibrio parahaemolyticus (Vp) (tdh(+)/trh(+)) represent a small percentage of environmental Vp populations, and very little is known about this subpopulation. Repetitive extragenic palindromic PCR and multilocus sequence analysis revealed heterogeneity among 41 Vp containing thermostable direct hemolysin (tdh) and tdh-related hemolysin (trh) that were isolated from Mississippi coastal environments from October 2006 to April 2007. There was no source-specific sequestering in oysters, water, or sediment.

  2. Prevalence of anti-A and anti-B hemolysis among blood group O donors in Lagos.

    PubMed

    Oyedeji, O A; Adeyemo, T A; Ogbenna, A A; Akanmu, A S

    2015-01-01

    Group O donor blood is more readily available and is frequently used as universal red cell donor in our environment. The presence of hemolysins in the donors may however lead to hemolysis in the recipients. Attempts have been made to study the prevalence of hemolysins in various populations with results from our environment showing wide variation (20-80%). To determine the prevalence and titer of anti-A and anti B hemolysins among blood donors at the Lagos University Teaching Hospital and compare results with that obtained elsewhere. Determine if the practice of transfusion of group O blood to nongroup O recipients is permissible in this environment. Test for hemolysis was done using the standard tube method. Samples positive for hemolysis were then scored and titrated with the titers read visually and photometrically at 540 nm. Three hundred and fifty blood group O donors with age range 18-58 years and median age of 28 ΁ 8.4 years were enrolled in the study. The overall prevalence of anti-A and/or anti-B hemolysins obtained was 30.3%. Prevalence of anti-A and anti-B hemolysins only was 15.4% and 5.1% respectively whereas both anti-A and anti-B hemolysins were present in 9.7% donor samples. Though anti-A hemolysins were more prevalent than anti-B hemolysins, anti-B hemolysins had higher mean visual (6:7) and spectrophotometric titers (81:101). A visual titer of 8 and above which is considered significant was seen in 18.6% of donor samples. Anti-A and anti-B hemolysins exist in significant frequencies and titers among blood group O donors in Lagos. It is recommended that the use of group O donor blood for recipients who are non-O be discouraged. Clinical studies to determine the frequency and severity of hemolysis in non-group O recipients of blood group O are required.

  3. Characterization of Staphylococci Isolated from Raw Milk

    PubMed Central

    Zemelman, Raúl; Longeri, Luis

    1965-01-01

    To evaluate the pathogenicity of staphylococci from bovine raw milk, the general characteristics of 775 strains isolated from 798 samples of milk were studied. The coagulase test was performed by use of rabbit plasma. Chromogenesis, mannitol fermentation, and gelatin liquefaction were investigated on Chapman's Medium 110, after 48 hr of incubation. Production of β-hemolysin, which has been considered indicative of pathogenic staphylococci of animal origin, was determined by streaking different strains on sheep blood-agar plates in the presence of a strain of Lancefield group B streptococci. Plates were incubated at 37 C for 24 hr, and strong hemolysis was produced in the zone of interaction of β-hemolysin and some substance liberated by streptococcus (CAMP test). Of 404 strains found to be coagulase-positive, 95.8% exhibited a deep-orange pigment, 76.5% produced β-hemolysin, 91.8% fermented mannitol, and 75% liquefield gelatin. Of 371 strains which gave a negative coagulase test, about 16% fermented mannitol and liquefied gelatin; none of these strains produced β-hemolysin. When results are grouped according to pigmentation and coagulase production, β-hemolysin seems to be developed by pathogenic strains of Staphylococcus aureus only. If suitability of these tests for investigation of pathogenicity is compared, production of β-hemolysin appears to be the most useful one, since no “false positive” results were found. The use of the CAMP test as a simple and rapid technique to determine production of β-hemolysin by pathogenic strains of animal staphylococci during routine bacteriological work is suggested. Images Fig. 1 PMID:14325873

  4. E. coli recA gene improves gene targeted homologous recombination in Mycoplasma hyorhinis.

    PubMed

    Ishag, Hassan Z A; Xiong, Qiyan; Liu, Maojun; Feng, Zhixin; Shao, Guoqing

    2017-05-01

    Mycoplasma hyorhinis is an opportunistic pathogen of pigs. Recently, it has been shown to transform cell cultures, increasing the attention of the researchers. Studies on the pathogenesis require specific genetic tool that is not yet available for the pathogen. To address this limitation, we constructed two suicide plasmids pGEMT-tetM/LR and pGEMT-recA-tetM/LR having a tetracycline resistance marker flanked by two hemolysin gene arms. The latter plasmid encodes an E. coli recA, a gene involved in DNA recombination, repair and maintenance of DNA. Using inactivation of the hemolysin gene, which results in a detectable and measurable phenotype, we found that each plasmid can disrupt the hemolysin gene of M. hyorhinis through a double cross-over homologous recombination. However, inclusion of the E. coli recA gene in the construct resulted in 9-fold increase in the frequency of hemolysin gene mutants among the screened tetracycline resistance colonies. The resultant hemolysin mutant strain lacks the ability to lyse mouse bed blood cells (RBC) when tested in vitro (p<0.001). The host-plasmid system described in this study, has applications for the genetic manipulation of this pathogen and potentially other mycoplasmas.

  5. IMMUNOLOGICAL STUDIES IN RELATION TO THE SUPRARENAL GLAND

    PubMed Central

    Perla, David; Marmorston-Gottesman, J.

    1928-01-01

    In a large series of suprarenalectomized rats, hemolysin formation, to a fixed amount of sheep cells injected intraperitoneally (1 cc. of a 10 per cent suspension), was studied 48 hours, 7, 14 and 28 days after operation. The hemolysin formation was studied in suprarenalectomized rats injected 2 weeks following the operation, with one-twentieth and ten times this amount. Hemolysin formation in rats traumatized by tearing the perisuprarenal tissue and injected 2 weeks after the operation with 1 cc. of a 10 per cent suspension of sheep cells was studied and the results compared with those in the normal control rats. The effect of the operative procedure was controlled by removing one kidney in a series of rats and determining the antibody response to sheep cells. 1. Bilateral suprarenalectomy in rats subsequently injected intraperitoneally with 1 cc. of a 10 per cent suspension of sheep cells resulted in a depression of hemolysin titer during 5 weeks following the operation, the depression being most marked during the 1st week. 2. Bilaterally suprarenalectomized rats injected intraperitoneally 2 weeks after operation with 1 cc. of undiluted sheep cells gave hemolysin titers higher than did normal rats. 3. The quantity of antigen necessary to yield the maximum titer in suprarenalectomized rats 2 weeks after operation is ten times the quantity necessary to yield the same titer in normal rats. 4. Traumatization of the perisuprarenal tissue in rats produced the same effect on the antibody-forming capacity as suprarenalectomy. PMID:19869440

  6. Incidence and toxigenicity of Aeromonas hydrophila in seafood.

    PubMed

    Tsai, G J; Chen, T H

    1996-08-01

    Three selective media, Oxoid Aeromonas agar (OA), blood ampicillin agar (BA) and starch ampicillin agar (SA) were used to evaluate the presence of Aeromonas hydrophila in 66 samples of oyster, shrimp, fish and surimi products. Oyster had the highest incidence, with 50% positive, whilst no A. hydrophila was found in the surimi. Of the three selective media, BA displayed the highest recovery rate of A. hydrophila from seafood. Forty-eight isolates from this survey were tested for their capability to produce hemolysin and cytotoxin. Hemolysin was produced by 79.2% of the isolates and cytotoxin was produced by 91.7% of the isolates in brain heart infusion broth. One of the toxin-producing isolates from oyster, strain 8-169, was further tested for growth and toxin production in oyster, shrimp and fish at various temperatures. This particular isolate grew best and had highest toxin production in oyster. Hemolysin and cytotoxin were produced earlier at 28 degrees C than at 37 degrees C, and titers of hemolysin were also higher at 28 degrees C. At 5 degrees C, it was able to grow and produce hemolysin in oyster.

  7. Streptolysin S of Streptococcus anginosus exhibits broad-range hemolytic activity.

    PubMed

    Asam, Daniela; Mauerer, Stefanie; Spellerberg, Barbara

    2015-04-01

    Streptococcus anginosus is a commensal of mucous membranes and an emerging human pathogen. Some strains, including the type strain, display a prominent β-hemolytic phenotype. A gene cluster (sag), encoding a variant of streptolysin S (SLS) has recently been identified as the genetic background for β-hemolysin production in S. anginosus. In this study, we further characterized the hemolytic and cytolytic activity of the S. anginosus hemolysin in comparison with other streptococcal hemolysins. The results indicate that SLS of S. anginosus is a broad-range hemolysin able to lyse erythrocytes of different species, including horse, bovine, rabbit and even chicken. The hemolytic activity is temperature dependent, and a down-regulation of the hemolysin expression is induced in the presence of high glucose levels. Survival assays indicate that in contrast to other streptococcal species, S. anginosus does not require SLS for survival in the presence of human granulocytes. Cross-complementation studies using the sagB and sagD genes of Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis demonstrated functional similarities to the S. anginosus SLS. Nevertheless, distinct differences to other streptolysin S variants were noted and provide further insights into the molecular mechanisms of SLS pathogen host interactions.

  8. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques

    PubMed Central

    Letchumanan, Vengadesh; Chan, Kok-Gan; Lee, Learn-Han

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environments. V. parahaemolyticus is the leading causal agent of human acute gastroenteritis following the consumption of raw, undercooked, or mishandled marine products. In rare cases, V. parahaemolyticus causes wound infection, ear infection or septicaemia in individuals with pre-existing medical conditions. V. parahaemolyticus has two hemolysins virulence factors that are thermostable direct hemolysin (tdh)-a pore-forming protein that contributes to the invasiveness of the bacterium in humans, and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. In addition, the bacterium is also encodes for adhesions and type III secretion systems (T3SS1 and T3SS2) to ensure its survival in the environment. This review aims at discussing the V. parahaemolyticus growth and characteristics, pathogenesis, prevalence and advances in molecular identification techniques. PMID:25566219

  9. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques.

    PubMed

    Letchumanan, Vengadesh; Chan, Kok-Gan; Lee, Learn-Han

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environments. V. parahaemolyticus is the leading causal agent of human acute gastroenteritis following the consumption of raw, undercooked, or mishandled marine products. In rare cases, V. parahaemolyticus causes wound infection, ear infection or septicaemia in individuals with pre-existing medical conditions. V. parahaemolyticus has two hemolysins virulence factors that are thermostable direct hemolysin (tdh)-a pore-forming protein that contributes to the invasiveness of the bacterium in humans, and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. In addition, the bacterium is also encodes for adhesions and type III secretion systems (T3SS1 and T3SS2) to ensure its survival in the environment. This review aims at discussing the V. parahaemolyticus growth and characteristics, pathogenesis, prevalence and advances in molecular identification techniques.

  10. Probing Peptide and Protein Insertion in a Biomimetic S-Layer Supported Lipid Membrane Platform

    PubMed Central

    Damiati, Samar; Schrems, Angelika; Sinner, Eva-Kathrin; Sleytr, Uwe B.; Schuster, Bernhard

    2015-01-01

    The most important aspect of synthetic lipid membrane architectures is their ability to study functional membrane-active peptides and membrane proteins in an environment close to nature. Here, we report on the generation and performance of a biomimetic platform, the S-layer supported lipid membrane (SsLM), to investigate the structural and electrical characteristics of the membrane-active peptide gramicidin and the transmembrane protein α-hemolysin in real-time using a quartz crystal microbalance with dissipation monitoring in combination with electrochemical impedance spectroscopy. A shift in membrane resistance is caused by the interaction of α-hemolysin and gramicidin with SsLMs, even if only an attachment onto, or functional channels through the lipid membrane, respectively, are formed. Moreover, the obtained results did not indicate the formation of functional α-hemolysin pores, but evidence for functional incorporation of gramicidin into this biomimetic architecture is provided. PMID:25633104

  11. [Inhibition effect of hypoxia on humoral immunity of rats].

    PubMed

    Bai, H B; Du, J Z; Jia, H W

    1997-04-01

    To study the effect of hypoxia on humoral immunity function of rat and Ochotona curzoniae (pika), the specific antibody production to novel antigen IgG and immunoresponse to sheep red blood cell (hemolysin forming) were measured. The results show that hypoxia at altitude of 5 km and 7 km for 10 d resulted respectively in 10.3% (P < 0.05) and 21.9% (P < 0.05) decrement in hemolysin formation in rats, as compared with the control group kept at 2.3 km. When the rats were secondarily immunized and kept at the same hypoxia for 10 d, the reduction in hemolysin formation was 4.2% (P < 0.05) and 4.6% (P < 0.05) for the two respective altitudes. These changes, however, were not found in pikas. When rats were immunized two days before hypoxia, 5 km hypoxia for 5 d and 8 d failed to suppress hemolysin formation. Intracerebroventricular (i.c.v.) injection of CRF (1.0 microgram/rat), decreased hemolysin formation and production of IgG by 8.6% (P < 0.05) and 14.0% (P < 0.05) respectively, but intraperitoneal (i.p.) injection of CRF (1.0 microgram/rat) had no effect. On the other hand, i.c.v. injection of CRF receptor antagonist (alpha-helical CRF (9-41), 50 micrograms/rat) prior to 7 km hypoxia caused a hypoxia-induced suppression of IgG production from 24.2% to 12.1% (P < 0.05). Adrenalectomy in rats lowered hemolysin formation by 6.6% (P < 0.05). The above results demonstrate that hypoxia suppresses humoral immunity function and alters initial antigen processing probably through an increase of CRF in the central nervous system.

  12. Antibodies against Stachybotrys chartarum extract and its antigenic components, Stachyhemolysin and Stachyrase-A: a new clinical biomarker.

    PubMed

    Vojdani, Aristo

    2005-05-01

    IgG and IgE antibodies against Stachybotrys extract have been reported in allergic patients and residents of water-damaged buildings. Detection of these antibodies in blood was partially attributed to cross-reacting proteins from other fungi. There is a need for a specific method to detect antibodies against characteristic components of S. chartarum. We measured IgG and IgE antibodies against Stachybotrys hemolysin and proteinase-Stachyrase-A by ELISA and ELISA-inhibition techniques. Of 50 reference sera with IgE greater than 500 IU ml and positive against different mold extracts used in this study, significant elevation in IgG or IgE antibodies against S. chartarum extract was present in 25 and 21 specimens. Of these specimens 20 (80%) and 10 (40%) were positive for IgG anti-Stachybotrys hemolysin and anti-Stachyrase-A, while 8 out of 21 sera (38%) and 17 out of 21 (81%) specimens were positive for IgE anti-Stachybotrys hemolysin and anti-Stachyrase-A respectively. Inhibition studies using Stachybotrys hemolysin and Stachyrase-A at a concentration of 50 microg/ml prevented binding of anti-Stachybotrys to S. chartarum extract. Detection of IgG as well as IgE antibodies against Stachybotrys hemolysin and Stachyrase-A and inhibition of anti-Stachybotrys binding to Stachybotrys antigens indicate that Stachybotrys hemolysin and Stachyrase-A are two major antigenic components of S. chartarum extract, which can be used in antibody assays. Measurement of antibodies against these characteristic components of S. chartarum may be considered for demonstration of exposure and possibly allergy to the fungus.

  13. Production of Lysozyme by Staphylococci and Its Correlation with Three Other Extracellular Substances1

    PubMed Central

    Jay, James M.

    1966-01-01

    Jay, James M. (Wayne State University, Detroit, Mich.). Production of lysozyme by staphylococci and its correlation with three other extracellular substances. J. Bacteriol. 91:1804–1810. 1966.—Lysozyme production was determined on plates containing 1 mg/ml of Lysozyme Substrate in Heart Infusion Agar with incubation at 37 C for 48 hr. Its production was compared with that of α-hemolysin and sheep hemolysin and egg-yolk precipitation, by use of both coagulase-positive and coagulase-negative strains of staphylococci. Of 126 coagulase-positive strains tested, 120 or 95.2% produced lysozyme, 117 or 92.9% produced α-hemolysin, 108 or 85.7% precipitated egg yolk, and 102 or 81% produced sheep hemolysin. Of the 49 coagulase-negative strains (which included 22 pathogens), only 4 or 8.1% produced lysozyme, 14 or 28.6% produced α-hemolysin, 13 or 26.5% produced sheep hemolysins, and 5 or 10.2% precipitated egg yolk. Only two of the six coagulase-positive strains which failed to produce lysozyme showed any consistent patterns in relation to the four characteristics determined. The four coagulase-negative strains which produced lysozyme were inconsistent for the other characteristics measured. It is suggested that lysozyme production is more a property of coagulase-positive staphylococci, and therefore a better ancillary test of pathogenicity, than either production of α-hemolysin or egg-yolk precipitation, because the incidence of lysozyme producers is higher among this group than among those producing the other substances and because fewer coagulase-negative staphylococci produced lysozyme than hemolysins or egg-yolk precipitation. Of 16 other species of bacteria and yeasts tested, all were found negative except Bacillus subtilis. Lysozyme production by staphylococci in heavily contaminated foods was not inhibited on plates containing sodium azide, whereas media containing 7.5% salt and sorbic acid were unsuitable. The possible relationship of lysozyme production to

  14. Isolation of extraintestinal pathogenic Escherichia coli from diarrheic dogs and their antimicrobial resistance profile

    PubMed Central

    de Cleber Jacob Silva Paula; Marin, José Moacir

    2008-01-01

    From January to December 2006, 92 Escherichia coli isolates from 25 diarrheic dogs were analyzed by screening for the presence of adhesin-encoding genes (pap, sfa, afa), hemolysin and aerobactin genes. Virulence gene frequencies detected in those isolates were: 12% pap, 1% sfa, 10% hemolysin and 6.5% aerobactin. Ten isolates were characterized as extraintestinal pathogenic E. coli (ExPEC) strains; all showed a multidrug resistance phenotype that may represent a reason for concern due the risk of dissemination of antimicrobial resistant genes to the microbiota of human beings. PMID:24031253

  15. Probing single nanometer-scale pores with polymeric molecular rulers

    NASA Astrophysics Data System (ADS)

    Henrickson, Sarah E.; DiMarzio, Edmund A.; Wang, Qian; Stanford, Vincent M.; Kasianowicz, John J.

    2010-04-01

    We previously demonstrated that individual molecules of single-stranded DNA can be driven electrophoretically through a single Staphylococcus aureus α-hemolysin ion channel. Polynucleotides thread through the channel as extended chains and the polymer-induced ionic current blockades exhibit stable modes during the interactions. We show here that polynucleotides can be used to probe structural features of the α-hemolysin channel itself. Specifically, both the pore length and channel aperture profile can be estimated. The results are consistent with the channel crystal structure and suggest that polymer-based "molecular rulers" may prove useful in deducing the structures of nanometer-scale pores in general.

  16. Pore-forming proteins with built-in triggers and switches

    NASA Astrophysics Data System (ADS)

    Bayley, Hagan

    1996-02-01

    Genetic engineering and targeted chemical modification are being used to produce polypeptides with pore-forming activity that can be triggered or switched on-and-off by biochemical, chemical or physical stimuli. The principal target of our studies has been the (alpha) -hemolysin ((alpha) HL) from the bacterium Staphylococcus aureus. The remodeled hemolysins include protease-activated pores, metal-regulated pores, pores that are activated by chemical alkylation and pores that are turned on with light. These polypeptides have several potential applications. For example, they might serve as components of sensors or they might be useful for mediating the controlled release of encapsulated drugs.

  17. Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the Coastal and Estuarine Waters of Louisiana, Maryland, Mississippi, and Washington (United States)

    PubMed Central

    Bowers, John C.; Griffitt, Kimberly J.; Molina, Vanessa; Clostio, Rachel W.; Pei, Shaofeng; Laws, Edward; Paranjpye, Rohinee N.; Strom, Mark S.; Chen, Arlene; Hasan, Nur A.; Huq, Anwar; Noriea, Nicholas F.; Grimes, D. Jay; Colwell, Rita R.

    2012-01-01

    Vibrio parahaemolyticus and Vibrio vulnificus, which are native to estuaries globally, are agents of seafood-borne or wound infections, both potentially fatal. Like all vibrios autochthonous to coastal regions, their abundance varies with changes in environmental parameters. Sea surface temperature (SST), sea surface height (SSH), and chlorophyll have been shown to be predictors of zooplankton and thus factors linked to vibrio populations. The contribution of salinity, conductivity, turbidity, and dissolved organic carbon to the incidence and distribution of Vibrio spp. has also been reported. Here, a multicoastal, 21-month study was conducted to determine relationships between environmental parameters and V. parahaemolyticus and V. vulnificus populations in water, oysters, and sediment in three coastal areas of the United States. Because ecologically unique sites were included in the study, it was possible to analyze individual parameters over wide ranges. Molecular methods were used to detect genes for thermolabile hemolysin (tlh), thermostable direct hemolysin (tdh), and tdh-related hemolysin (trh) as indicators of V. parahaemolyticus and the hemolysin gene vvhA for V. vulnificus. SST and suspended particulate matter were found to be strong predictors of total and potentially pathogenic V. parahaemolyticus and V. vulnificus. Other predictors included chlorophyll a, salinity, and dissolved organic carbon. For the ecologically unique sites included in the study, SST was confirmed as an effective predictor of annual variation in vibrio abundance, with other parameters explaining a portion of the variation not attributable to SST. PMID:22865080

  18. Comparative Prevalence of Virulence Factors in Escherichia coli Causing Urinary Tract Infection in Male Infants with and without Bacteremia

    PubMed Central

    Bonacorsi, Stéphane; Houdouin, Véronique; Mariani-Kurkdjian, Patricia; Mahjoub-Messai, Farah; Bingen, Edouard

    2006-01-01

    Escherichia coli isolates causing urinary tract infection in 83 male infants younger than 90 days with and without bacteremia were compared for phylogenetic groups and the presence of 10 virulence factors. Our result suggest that the absence of both hemolysin and antigen K1 may be used as a negative predictive factor for bacteremia. PMID:16517919

  19. The type II secretion system is essential for erythrocyte lysis and gut colonization by the leech digestive tract symbiont Aeromonas veronii.

    PubMed

    Maltz, Michele; Graf, Joerg

    2011-01-01

    Hemolysin and the type II secretion system (T2SS) have been shown to be important for virulence in many pathogens, but very few studies have shown their importance in beneficial microbes. Here, we investigated the importance of the type II secretion pathway in the beneficial digestive-tract association of Aeromonas veronii and the medicinal leech Hirudo verbana and revealed a critical role for the hemolysis of erythrocytes. A mutant with a miniTn5 insertion in exeM, which is involved in forming the inner membrane platform in the T2SS, was isolated by screening mutants for loss of hemolysis on blood agar plates. A hemolysis assay was used to quantify the mutant's deficiency in lysing sheep erythrocytes and revealed a 99.9% decrease compared to the parent strain. The importance of the T2SS in the colonization of the symbiotic host was assessed. Colonization assays revealed that the T2SS is critical for initial colonization of the leech gut. The defect was tied to the loss of hemolysin production by performing a colonization assay with blood containing lysed erythrocytes. This restored the colonization defect in the mutant. Complementation of the mutant using the promoter region and exeMN revealed that the T2SS is responsible for secreting hemolysin into the extracellular space and that both the T2SS and hemolysin export by the T2SS are critical for initial establishment of A. veronii in the leech gut.

  20. Effects of Space Radiation on Humoral and Cellular Immunity in Rhesus Monkeys.

    DTIC Science & Technology

    1992-12-01

    erythrocytes sensitized with hemolysin. If all complement proteins are present in sufficient quantity, the sheep red blood cells are lysed to form a...in the Macaca mulatta. Folia Primat 12:313 (1970). Eterman, K.P. and T.E.W. Feltkamp. Antibodies to gluten and reticulin in gastrointestinal diseases

  1. Aeromonas caviae strain induces Th1 cytokine response in mouse intestinal tract

    EPA Science Inventory

    Aeromonas caviae has been associated with human gastrointestinal disease. Strains of this species typically lack virulence factors (VFs) such as enterotoxins and hemolysins that are produced by other human pathogens of the Aeromonas genus,. Microarray profiling of...

  2. Complete Genome Sequence of Ichthyobacterium seriolicida JBKA-6T, Isolated from Yellowtail (Seriola quinqueradiata) Affected by Bacterial Hemolytic Jaundice

    PubMed Central

    Nakamura, Yoji; Matsuyama, Tomomasa; Sakai, Takamitsu; Shigenobu, Yuya; Sugaya, Takuma; Yasuike, Motoshige; Fujiwara, Atushi; Kondo, Hidehiro; Hirono, Ikuo; Fukuda, Yutaka; Nakayasu, Chihaya

    2017-01-01

    ABSTRACT Ichthyobacterium seriolicida is a fish bacterial pathogen that causes hemolytic jaundice in farmed yellowtail in Japan. To understand more about the characteristics of this bacterium, we determined its complete genome sequence. Two hemolysin genes which may be important for its pathogenicity were identified in the I. seriolicida genome. PMID:28183761

  3. A Staphylococcus aureus Pore-Forming Toxin Subverts the Activity of ADAM10 to Cause Lethal Infection

    PubMed Central

    Inoshima, Ichiro; Inoshima, Naoko; Wilke, Georgia; Powers, Michael; Frank, Karen; Wang, Yang; Wardenburg, Juliane Bubeck

    2011-01-01

    Staphylococcus aureus is a major cause of human disease, responsible for half a million infections and approximately 20,000 deaths per year in the United States alone 1,2. This pathogen secretes α-hemolysin, a pore-forming cytotoxin that contributes to the pathogenesis of pneumonia 3–5. α-hemolysin injures epithelial cells by interacting with its receptor, the zinc-dependent metalloprotease ADAM10 6. We show that mice harboring a conditional disruption of the Adam10 gene in lung epithelium are resistant to lethal pneumonia. Investigation of the molecular mechanism of toxin-receptor function revealed that α-hemolysin upregulates ADAM10 metalloprotease activity in alveolar epithelial cells, resulting in cleavage of the adherens junction protein E-cadherin. Cleavage is associated with disruption of epithelial barrier function, contributing to the pathogenesis of lethal acute lung injury. A metalloprotease inhibitor of ADAM10 prevents E-cadherin cleavage; similarly, E-cadherin proteolysis and barrier disruption is attenuated in ADAM10 knockout mice. Together, these data attest to the function of ADAM10 as the cellular receptor for α-hemolysin. The observation that Hla can usurp the metalloprotease activity of its receptor reveals a novel mechanism of pore-forming cytotoxin action in which pathologic insults are not solely the result of irreversible membrane injury, and defines ADAM10 inhibition as a strategy for disease modification. PMID:21926978

  4. Simulation of Polymer Translocation through Protein Channels

    DTIC Science & Technology

    2005-09-08

    models of polymers and the Poisson - Nernst - Planck formalism for ionic current. For the illustrative example of ssDNA passing through the a-hemolysin, vivid...polymer transport, is computed by using the Poisson - Nernst - Planck (PNP) formalism [28-30]. Taking advantage of the fact that small ions relax much faster

  5. Bacteria differentially induce degradation of Bcl-xL, a survival protein, by human platelets

    PubMed Central

    Kraemer, Bjoern F.; Campbell, Robert A.; Schwertz, Hansjörg; Franks, Zechariah G.; Vieira de Abreu, Adriana; Grundler, Katharina; Kile, Benjamin T.; Dhakal, Bijaya K.; Rondina, Matthew T.; Kahr, Walter H. A.; Mulvey, Matthew A.; Blaylock, Robert C.; Zimmerman, Guy A.

    2012-01-01

    Bacteria can enter the bloodstream in response to infectious insults. Bacteremia elicits several immune and clinical complications, including thrombocytopenia. A primary cause of thrombocytopenia is shortened survival of platelets. We demonstrate that pathogenic bacteria induce apoptotic events in platelets that include calpain-mediated degradation of Bcl-xL, an essential regulator of platelet survival. Specifically, bloodstream bacterial isolates from patients with sepsis induce lateral condensation of actin, impair mitochondrial membrane potential, and degrade Bcl-xL protein in platelets. Bcl-xL protein degradation is enhanced when platelets are exposed to pathogenic Escherichia coli that produce the pore-forming toxin α-hemolysin, a response that is markedly attenuated when the gene is deleted from E coli. We also found that nonpathogenic E coli gain degrading activity when they are forced to express α-hemolysin. Like α-hemolysin, purified α-toxin readily degrades Bcl-xL protein in platelets, as do clinical Staphylococcus aureus isolates that produce α-toxin. Inhibition of calpain activity, but not the proteasome, rescues Bcl-xL protein degradation in platelets coincubated with pathogenic E coli including α-hemolysin producing strains. This is the first evidence that pathogenic bacteria can trigger activation of the platelet intrinsic apoptosis program and our results suggest a new mechanism by which bacterial pathogens might cause thrombocytopenia in patients with bloodstream infections. PMID:23086749

  6. Aeromonas caviae strain induces Th1 cytokine response in mouse intestinal tract

    EPA Science Inventory

    Aeromonas caviae has been associated with human gastrointestinal disease. Strains of this species typically lack virulence factors (VFs) such as enterotoxins and hemolysins that are produced by other human pathogens of the Aeromonas genus,. Microarray profiling of...

  7. Impairment of brain mitochondrial functions by β-hemolytic Group B Streptococcus. Effect of cardiolipin and phosphatidylcholine.

    PubMed

    Macchioni, Lara; Fettucciari, Katia; Davidescu, Magdalena; Vitale, Rita; Ponsini, Pamela; Rosati, Emanuela; Corcelli, Angela; Marconi, Pierfrancesco; Corazzi, Lanfranco

    2013-12-01

    Group B Streptococcus (GBS) causes severe infection in the central nervous system. In this study, brain mitochondrial function was investigated by simulating infection of isolated mitochondria with GBS, which resulted in loss of mitochondrial activity. The β-hemolysin expressing strains GBS-III-NEM316 and GBS-III-COH31, but not the gGBS-III-COH31 that does not express β-hemolysin, caused dissipation of preformed mitochondrial membrane potential (Δψm). This indicates that β-hemolysin is responsible for decreasing of the reducing power of mitochondria. GBS-III-COH31 interacted with mitochondria causing increase of oxygen consumption, due to uncoupling of respiration, blocking of ATP synthesis, and cytochrome c release outside mitochondria. Moreover, the mitochondrial systems contributing to the control of cellular Ca(2+) uptake were lost. In spite of these alterations, mitochondrial phospholipid content and composition did not change significantly, as evaluated by MALDI-TOF mass spectrometry. However, exogenous cardiolipin (CL) and dipalmitoylphosphatidylcholine (DPPC) attenuated the uncoupling effect of GBS-III-COH31, although with different mechanisms. CL was effective only when fused to the inner mitochondrial membrane, probably reducing the extent of GBS-induced proton leakage. DPPC, which is not able to fuse with mitochondrial membranes, exerted its effect outside mitochondria, likely by shielding mitochondria against GBS β-hemolysin attack.

  8. Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the coastal and estuarine waters of Louisiana, Maryland, Mississippi, and Washington (United States).

    PubMed

    Johnson, Crystal N; Bowers, John C; Griffitt, Kimberly J; Molina, Vanessa; Clostio, Rachel W; Pei, Shaofeng; Laws, Edward; Paranjpye, Rohinee N; Strom, Mark S; Chen, Arlene; Hasan, Nur A; Huq, Anwar; Noriea, Nicholas F; Grimes, D Jay; Colwell, Rita R

    2012-10-01

    Vibrio parahaemolyticus and Vibrio vulnificus, which are native to estuaries globally, are agents of seafood-borne or wound infections, both potentially fatal. Like all vibrios autochthonous to coastal regions, their abundance varies with changes in environmental parameters. Sea surface temperature (SST), sea surface height (SSH), and chlorophyll have been shown to be predictors of zooplankton and thus factors linked to vibrio populations. The contribution of salinity, conductivity, turbidity, and dissolved organic carbon to the incidence and distribution of Vibrio spp. has also been reported. Here, a multicoastal, 21-month study was conducted to determine relationships between environmental parameters and V. parahaemolyticus and V. vulnificus populations in water, oysters, and sediment in three coastal areas of the United States. Because ecologically unique sites were included in the study, it was possible to analyze individual parameters over wide ranges. Molecular methods were used to detect genes for thermolabile hemolysin (tlh), thermostable direct hemolysin (tdh), and tdh-related hemolysin (trh) as indicators of V. parahaemolyticus and the hemolysin gene vvhA for V. vulnificus. SST and suspended particulate matter were found to be strong predictors of total and potentially pathogenic V. parahaemolyticus and V. vulnificus. Other predictors included chlorophyll a, salinity, and dissolved organic carbon. For the ecologically unique sites included in the study, SST was confirmed as an effective predictor of annual variation in vibrio abundance, with other parameters explaining a portion of the variation not attributable to SST.

  9. Cloning, expressing, and hemolysis of tdh, trh and tlh genes of Vibrio parahaemolyticus

    NASA Astrophysics Data System (ADS)

    Zhao, Yonggang; Tang, Xiaoqian; Zhan, Wenbin

    2011-09-01

    Vibrio parahaemolyticus (VP) is one of the pathogenic vibrios endangering net-cage cultured Pseudosciaena crocea, Fennerpenaeus chinensis, and shellfish in coastal areas of China. Several types of hemolysins produced by Vp have been characterized as major virulence factors. They are thermostable direct hemolysin (TDH), TDH-related hemolysin (TRH) and thermolabile hemolysin (TLH). In this study, we cloned tdh, trh, and tlh genes from the genome DNA of VP by polymerase chain reaction (PCR). We ligated the three genes into prokaryotic expression vector pET-28a (+), and transformed the recombinant plasmids into Escherichia coli BL21 (DE3). The expression of recombinant proteins was induced by isopropyl-β-D-thiogalacto-pyranoside (IPTG). The recombinant proteins were expressed in a form of inclusion bodies and thus purified with Ni-NTA affinity chromatography. Western blotting results showed that recombinant proteins, TDH, TRH and TLH, could be recognized by rabbit anti-VP serum. The three purified proteins were renatured by gradient dialysis. The renatured proteins exhibited hemolytic activity except for TLH in the presence of phosphatidylcholine. These results not only are helpful for better understanding these genes' functions under a single factor level, but also provide evidence for VP vaccine engineering.

  10. Comparison of the hemolytic activity between C. albicans and non-albicans Candida species.

    PubMed

    Rossoni, Rodnei Dennis; Barbosa, Júnia Oliveira; Vilela, Simone Furgeri Godinho; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2013-01-01

    The ability to produce enzymes, such as hemolysins, is an important virulence factor for the genus Candida.The objective of this study was to compare the hemolytic activity between C. albicansand non-albicans Candida species. Fifty strains of Candida species, isolated from the oral cavity of patients infected with HIV were studied. The isolates included the following species: C. albicans, C. dubliniensis, C. glabrata, C. tropicalis, C. krusei, C. parapsilosis, C. dubliniensis, C. norvegensis, C. lusitaniae, and C. guilliermondii. Hemolysin production was evaluated on Sabouraud dextrose agar containing chloramphenicol, blood, and glucose. A loop-full of pure Candidaculture was spot-inoculated onto plates and incubated at 37 ºC for 24 h in a 5% CO2 atmosphere. Hemolytic activity was defined as the formation of a translucent halo around the colonies. All C. albicansstrains that were studied produced hemolysins. Among the non-albicans Candidaspecies, 86% exhibited hemolytic activity. Only C. guilliermondiiand some C. parapsilosis isolates were negative for this enzyme. In conclusion, most non-albicans Candidaspecies had a similar ability to produce hemolysins when compared to C. albicans.

  11. Prevalence and Molecular Typing of Vibrio parahaemolyticus (tdh+) isolated from seafood using PCR-based methods

    USDA-ARS?s Scientific Manuscript database

    Vibrio parahaemolyticus is a pathogen most frequently implicated in foodborne outbreaks linked to the consumption of seafood in the coastal cities of China. The pathogenicity of environmental V. parahaemolyticus is mostly correlated with the production of thermostable direct hemolysin (TDH). In orde...

  12. Structure based virtual screening of novel inhibitors against multidrug resistant superbugs.

    PubMed

    Skariyachan, Sinosh; Mahajanakatti, Arpitha Badarinath; Sharma, Narasimha; Karanth, Shraddha; Rao, Shruthi; Rajeswari, Narayanappa

    2012-01-01

    Pathogenic microorganisms are persistently expressing resistance towards present generation antibiotics and are on the verge of joining the superbug family. Recent studies revealed that, notorious pathogens such as Salmonella typhi, Shigella dysenteriae and Vibrio cholerae have acquired multiple drug resistance and the treatment became a serious concern. This necessitates an alternative therapeutic solution. Present study investigates the utility of computer aided method to study the mechanism of receptor-ligand interactions and thereby inhibition of virulence factors (shiga toxin of Shigella dysenteriae, cholera toxin of Vibrio cholerae and hemolysin-E of Salmonella typhi) by novel phytoligands. The rational designs of improved therapeutics require the crystal structure for the drug targets. The structures of the virulent toxins were identified as probable drug targets. However, out of the three virulent factors, the structure for hemolysin-E is not yet available in its native form. Thus, we tried to model the structure by homology modeling using Modeller 9v9. After extensive literature survey, we selected 50 phytoligands based on their medicinal significance and drug likenesses. The receptor-ligands interactions between selected leads and toxins were studied by molecular docking using Auto Dock 4.0. We have identified two novel sesquiterpenes, Cadinane [(1S, 4S, 4aS, 6S, 8aS)- 4- Isopropyl- 1, 6- dimethyldecahydronaphthalene] and Cedrol [(8α)-Cedran-8-ol] against Shiga (binding energy -5.56 kcal/mol) and cholera toxins (binding energy -5.33 kcal/mol) respectively which have good inhibitory properties. Similarly, a natural Xanthophyll, Violaxanthin [3S, 3'S, 5R, 5'R, 6S, 6'S)-5, 5', 6, 6'-Tetrahydro-5, 6:5', 6'-diepoxy-β, β-carotene-3, 3'-diol] was identified as novel therapeutic lead for hemolysin-E (binding energy of -5.99 kcal/mol). This data provide an insight for populating the pool of novel inhibitors against various drug targets of superbugs when all

  13. Entérite nécrotique chez le poulet de gril II. Caractères des souches de Clostridium perfringens isolées

    PubMed Central

    Bernier, G.; Filion, R.; Malo, R.; Phaneuf, J.-B.

    1974-01-01

    A Gram positive bacillus, strictly anaerobic, was isolated from the viscera of all diseased birds showing lesions of necrotic enteritis. Its morphology and biochemical reactions, the presence of alpha and thêta hemolysins and the production of a lecithinase-C in vitro, all these characteristics indicated a similarity to those belonging to the group of Clostridium perfringens. The two hemolysins were neutralized in vitro only by the antitoxin A. Broiler chickens injected I.V. with a Viande-Foie (VF) broth culture of Clostridium perfringens together with the antitoxin A survived, whereas those receiving antitoxin C died. These results seem to indicate that this organism belongs to the type A. This bacillus was sensitive to a great variety of antibiotics, except neomycin. PMID:4368193

  14. [Necrotic enteritis in broilers. II. Characteristics of the strains of Clostridium perfringens isolated].

    PubMed

    Bernier, G; Filion, R; Malo, R; Phaneuf, J B

    1974-07-01

    A Gram positive bacillus, strictly anaerobic, was isolated from the viscera of all diseased birds showing lesions of necrotic enteritis. Its morphology and biochemical reactions, the presence of alpha and thêta hemolysins and the production of a lecithinase-C in vitro, all these characteristics indicated a similarity to those belonging to the group of Clostridium perfringens. The two hemolysins were neutralized in vitro only by the antitoxin A. Broiler chickens injected I.V. with a Viande-Foie (VF) broth culture of Clostridium perfringens together with the antitoxin A survived, whereas those receiving antitoxin C died. These results seem to indicate that this organism belongs to the type A. This bacillus was sensitive to a great variety of antibiotics, except neomycin.

  15. Enterocyte Purge and Rapid Recovery Is a Resilience Reaction of the Gut Epithelium to Pore-Forming Toxin Attack.

    PubMed

    Lee, Kwang-Zin; Lestradet, Matthieu; Socha, Catherine; Schirmeier, Stefanie; Schmitz, Antonin; Spenlé, Caroline; Lefebvre, Olivier; Keime, Céline; Yamba, Wennida M; Bou Aoun, Richard; Liegeois, Samuel; Schwab, Yannick; Simon-Assmann, Patricia; Dalle, Frédéric; Ferrandon, Dominique

    2016-12-14

    Besides digesting nutrients, the gut protects the host against invasion by pathogens. Enterocytes may be subjected to damage by both microbial and host defensive responses, causing their death. Here, we report a rapid epithelial response that alleviates infection stress and protects the enterocytes from the action of microbial virulence factors. Intestinal epithelia exposed to hemolysin, a pore-forming toxin secreted by Serratia marcescens, undergo an evolutionarily conserved process of thinning followed by the recovery of their initial thickness within a few hours. In response to hemolysin attack, Drosophila melanogaster enterocytes extrude most of their apical cytoplasm, including damaged organelles such as mitochondria, yet do not lyse. We identify two secreted peptides, the expression of which requires CyclinJ, that mediate the recovery phase in which enterocytes regain their original shape and volume. Epithelial thinning and recovery constitute a fast and efficient response to intestinal infections, with pore-forming toxins acting as alarm signals.

  16. The function of PlcR in Bacillus anthracis vaccine strain A16R.

    PubMed

    Xiaolin, Jia; Dongshu, Wang; Zhiqi, Gao; Erling, Feng; Jiping, Zheng; Hengliang, Wang; Guiying, Guo; Xiankai, Liu

    2015-05-01

    Bacillus anthracis, B. thuringiensis and B. cereus are members of the B. cereus group. They share high genetic similarity. Whereas plcR (Phospholipase C regulator) usually encodes a functional pleiotropic activator protein in B. cereus and B. thuringiensis isolates, a characteristic nonsense mutation is found in all B. anthracis strains investigated, making the gene dysfunctional. To study the function of PlcR in B. anthracis, we used the B. cereus CMCC63301 genome as a template and constructed a recombinant expression plasmid pBE2A-plcR, and introduced it into the B. anthracis vaccine strain A16R, and then analyzed the activity of the hemolysin and sphingomyelinase. The results showed that transformation of B. anthracis with plasmid pBE2A-plcR carrying the native B. cereus plcR gene active the expression of sphingomyelinase gene, but did not activate expression of hemolysin genes of B. anthracis A16R.

  17. [Investigation of hydrophobicity of Proteus vulgaris strains and ability of Proteus vulgaris and Proteus penneri strains to penetrate bladder membrane HCV T-29 cells ].

    PubMed

    Bartodziejska, Beata; Błaszczyk, Aleksandra; Wykrota, Marianna; Kwil, Iwona; Babicka, Dorota; Rózalski, Antoni

    2002-01-01

    Proteus bacilli play a particularly important role in urinary tract infections (UTI). Fimbriae and adherence ability and hemolysins production (HpmA, HlyA) are one of the factors of pathogenicity of these bacteria. In this paper we describe the invasion of HCV T-29 transitional bladder urothelial cells carcinoma strains of P. penneri, as well as P. vulgaris strains belonging to different serogroups. The cytotoxic effect was observed at 8 hour of incubation of the tested cells with P. vulgaris O21 and the same effect (complete lysis) at 6 hours by P. vulgaris O4 (this strain manifests maximal activity in the production of HlyA hemolysin). P. penneri strains, produce different types of fimbriae, expressed similar bacterial invasiveness. The hydrophobic properties of 25 P. vulgaris strains were also tested and only 3 strains occur to have hydrophobic cell surface.

  18. In situ and in vitro impacts of the Deepwater Horizon oil spill on Vibrio parahaemolyticus.

    PubMed

    Stephens, Erica L; Molina, Vanessa; Cole, Krystal M; Laws, Edward; Johnson, Crystal N

    2013-10-15

    Most established virulence genes in Vibrio parahaemolyticus (Vp), e.g., thermostable direct hemolysin (tdh), tdh-related hemolysin (trh), and type three secretion system 2 (TTSS2), are on the chromosome 2 pathogenicity island, which also possesses numerous uncharacterized genes. We hypothesized the 2010 Deepwater Horizon (DH) oil spill would cause an increase in populations of Vibrio parahaemolyticus carrying environmental adaptation genes. Vp isolated pre- and post-spill were analyzed for TTSS2 genes, and impacts of DH oil on Vp were examined in vitro. There was no change in TTSS2 in situ, but tdh and V. vulnificus levels were higher post-spill. In vitro exposure of water samples to DH oil produced no changes in Vp densities. Two years post-spill, total Vp remained low; tdh and trh increased. These results indicate the effects of the DH oil spill on potentially pathogenic Vp subpopulations were complex and difficult to discern from other concurrent anthropogenic and natural events.

  19. Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection

    PubMed Central

    Abtin, Arby; Jain, Rohit; Mitchell, Andrew J.; Roediger, Ben; Brzoska, Anthony J.; Tikoo, Shweta; Cheng, Qiang; Ng, Lai Guan; Cavanagh, Lois L.; von Andrian, Ulrich H.; Hickey, Michael J.; Firth, Neville; Weninger, Wolfgang

    2014-01-01

    Transendothelial migration of neutrophils in post-capillary venules is a key event in the inflammatory response against pathogens and tissue damage. The precise regulation of this process is incompletely understood. We report that perivascular macrophages are critical for neutrophil migration into skin infected with the pathogen Staphylococcus aureus. Using multiphoton intravital microscopy we show that neutrophils extravasate from inflamed dermal venules in close proximity to perivascular macrophages, which are a major source of neutrophil chemoattractants. The virulence factor alpha-hemolysin lyses perivascular macrophages leading to decreased neutrophil transmigration. Our data illustrate a previously unrecognized role for perivascular macrophages in neutrophil recruitment to inflamed skin, and indicate that Staphylococcus aureus uses hemolysin-dependent killing of these cells as an immune evasion strategy. PMID:24270515

  20. Electric-field-driven polymer entry into asymmetric nanoscale channels.

    PubMed

    Nikoofard, Narges; Fazli, Hossein

    2012-02-01

    The electric-field-driven entry process of flexible charged polymers such as single-stranded DNA (ssDNA) into asymmetric nanoscale channels such as the α-hemolysin protein channel is studied theoretically and using molecular dynamics simulations. Dependence of the height of the free-energy barrier on the polymer length, the strength of the applied electric field, and the channel entrance geometry is investigated. It is shown that the squeezing effect of the driving field on the polymer and the lateral confinement of the polymer before its entry to the channel crucially affect the barrier height and its dependence on the system parameters. The attempt frequency of the polymer for passing the channel is also discussed. Our theoretical and simulation results support each other and describe related data sets of polymer translocation experiments through the α-hemolysin protein channel reasonably well.

  1. THE CONVERSION OF HEMOLYTIC STREPTOCOCCI TO NON-HEMOLYTIC FORMS

    PubMed Central

    Todd, E. W.

    1928-01-01

    From one strain of hemolytic streptococcus three forms were isolated, which produced three different degrees of hemolysis on the surface of blood agar in the presence of oxygen. The original form was moderately hemolytic; the glossy variant was more hemolytic than the original form; and the third form, obtained by passing the original culture through mice, was non-hemolytic. Under anaerobic conditions all three forms were hemolytic. The non-hemolytic passage culture, in the presence of an ample supply of oxygen, not only destroyed its own hemolysin, which only appeared under anaerobic conditions, but was also able to destroy the hemolysin of other cultures of hemolytic streptococci. It is possible that these observations may throw some light on experiments reported by a number of workers showing that Streptococcus hæmolyticus can be transmuted to Streptococcus viridans by animal passage. PMID:19869500

  2. Effect of Tyrosol and Farnesol on Virulence and Antibiotic Resistance of Clinical Isolates of Pseudomonas aeruginosa.

    PubMed

    Abdel-Rhman, Shaymaa Hassan; El-Mahdy, Areej Mostafa; El-Mowafy, Mohammed

    2015-01-01

    Mixed-species biofilms could create a protected environment that allows for survival to external antimicrobials and allows different bacterial-fungal interactions. Pseudomonas aeruginosa-Candida albicans coexistence is an example for such mixed-species community. Numerous reports demonstrated how P. aeruginosa or its metabolites could influence the growth, morphogenesis, and virulence of C. albicans. In this study, we investigated how the C. albicans quorum sensing compounds, tyrosol and farnesol, might affect Egyptian clinical isolates of P. aeruginosa regarding growth, antibiotic sensitivity, and virulence. We could demonstrate that tyrosol possesses an antibacterial activity against P. aeruginosa (10 µM inhibited more than 50% of growth after 16 h cultivation). Moreover, we could show for the first time that tyrosol strongly inhibits the production of the virulence factors hemolysin and protease in P. aeruginosa, whereas farnesol inhibits, to lower extent, hemolysin production in this bacterial pathogen. Cumulatively, tyrosol is expected to strongly affect P. aeruginosa in mixed microbial biofilm.

  3. Nanopore sequencing technology: nanopore preparations.

    PubMed

    Rhee, Minsoung; Burns, Mark A

    2007-04-01

    For the past decade, nanometer-scale pores have been developed as a powerful technique for sensing biological macromolecules. Various potential applications using these nanopores have been reported at the proof-of-principle stage, with the eventual aim of using them as an alternative to de novo DNA sequencing. Currently, there have been two general approaches to prepare nanopores for nucleic acid analysis: organic nanopores, such as alpha-hemolysin pores, are commonly used for DNA analysis, whereas synthetic solid-state nanopores have also been developed using various conventional and non-conventional fabrication techniques. In particular, synthetic nanopores with pore sizes smaller than the alpha-hemolysin pores have been prepared, primarily by electron-beam-assisted techniques: these are more robust and have better dimensional adjustability. This review will examine current methods of nanopore preparation, ranging from organic pore preparations to recent developments in synthetic nanopore fabrications.

  4. Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection.

    PubMed

    Abtin, Arby; Jain, Rohit; Mitchell, Andrew J; Roediger, Ben; Brzoska, Anthony J; Tikoo, Shweta; Cheng, Qiang; Ng, Lai Guan; Cavanagh, Lois L; von Andrian, Ulrich H; Hickey, Michael J; Firth, Neville; Weninger, Wolfgang

    2014-01-01

    Transendothelial migration of neutrophils in postcapillary venules is a key event in the inflammatory response against pathogens and tissue damage. The precise regulation of this process is incompletely understood. We report that perivascular macrophages are critical for neutrophil migration into skin infected with the pathogen Staphylococcus aureus. Using multiphoton intravital microscopy we showed that neutrophils extravasate from inflamed dermal venules in close proximity to perivascular macrophages, which are a major source of neutrophil chemoattractants. The virulence factor α-hemolysin produced by S. aureus lyses perivascular macrophages, which leads to decreased neutrophil transmigration. Our data illustrate a previously unrecognized role for perivascular macrophages in neutrophil recruitment to inflamed skin and indicate that S. aureus uses hemolysin-dependent killing of these cells as an immune evasion strategy.

  5. [Incidence of Kanagawa phenomenon-positive and -negative Vibrio parahaemolyticus strains isolated from traveller's diarrhea and their relation to tdh and trh genes].

    PubMed

    Suzuki, N; Ueda, Y; Furukawa, T; Takegaki, Y; Miyagi, K; Noda, K; Hirose, H; Hashimoto, S; Yano, S; Ishibashi, M; Honda, T

    1997-05-01

    A total of 1,319 strains of Vibrio parahaemolyticus isolated from traveller's diarrhea were analysed for Kanagawa phenomenon (KP) with the Wagatsuma blood agar test and the results were also compared with those of analyses of tdh and trh genes which encode thermostable direct hemolysin (tdh) and TDH-related hemolysin (trh). The majority of the strains (1,152 strains) counting 87.3% had positive KP, among which 1,049 and 103 strains were only tdh and both tdh and trh-positive ones, respectively. However, 167 strains counting 12.7%, which is quite high compared to the previous report, were found to have negative KP, among which 94 and 24 strains were only trh and both tdh and trh-positive ones, respectively.

  6. Serologic and Molecular Characterization of Vibrio parahaemolyticus Strains Isolated from Seawater and Fish Products of the Gulf of Mexico

    PubMed Central

    Cabrera-García, María Eugenia; Vázquez-Salinas, Carlos; Quiñones-Ramírez, Elsa Irma

    2004-01-01

    The thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) are the main virulence factors of Vibrio parahaemolyticus. We isolated V. parahaemolyticus from seawater, fish, and oysters obtained from the Pueblo Viejo Lagoon in Veracruz, determined the serogroups, phenotypically and genotypically characterized TDH and TRH, and investigated the presence of the toxR gene. A total of 46 V. parahaemolyticus strains were isolated, and all of them amplified the 368-bp toxR gene fragment. The trh gene was not identified in any of the strains; 4 of the 46 strains were Kanagawa phenomenon (KP) positive and amplified the 251-bp tdh gene fragment. The most frequent serogroup was serogroup O3. This is the first report of the presence of KP-positive tdh-positive environmental V. parahaemolyticus strains in Mexico. PMID:15528498

  7. Identification of two components of the Serratia marcescens metalloprotease transporter: protease SM secretion in Escherichia coli is TolC dependent.

    PubMed

    Létoffé, S; Ghigo, J M; Wandersman, C

    1993-11-01

    The Serratia marcescens metalloprotease (protease SM) belongs to a family of proteins secreted from gram-negative bacteria by a signal peptide-independent pathway which requires a specific transporter consisting of three proteins: two in the inner membrane and one in the outer membrane. The prtDSM and prtESM genes encoding the two S. marcescens inner membrane components were cloned and expressed in Escherichia coli. Their nucleotide sequence revealed high overall homology with the two analogous inner membrane components of the Erwinia chrysanthemi protease secretion apparatus and lower, but still significant, homology with the two analogous inner membrane components of the E. coli hemolysin transporter. When expressed in E. coli, these two proteins, PrtDSM and PrtESM, allowed the secretion of protease SM only in the presence of TolC protein, the outer membrane component of the hemolysin transporter.

  8. Relationships between Environmental Factors and Pathogenic Vibrios in the Northern Gulf of Mexico ▿ †

    PubMed Central

    Johnson, C. N.; Flowers, A. R.; Noriea, N. F.; Zimmerman, A. M.; Bowers, J. C.; DePaola, A.; Grimes, D. J.

    2010-01-01

    Although autochthonous vibrio densities are known to be influenced by water temperature and salinity, little is understood about other environmental factors associated with their abundance and distribution. Densities of culturable Vibrio vulnificus containing vvh (V. vulnificus hemolysin gene) and V. parahaemolyticus containing tlh (thermolabile hemolysin gene, ubiquitous in V. parahaemolyticus), tdh (thermostable direct hemolysin gene, V. parahaemolyticus pathogenicity factor), and trh (tdh-related hemolysin gene, V. parahaemolyticus pathogenicity factor) were measured in coastal waters of Mississippi and Alabama. Over a 19-month sampling period, vibrio densities in water, oysters, and sediment varied significantly with sea surface temperature (SST). On average, tdh-to-tlh ratios were significantly higher than trh-to-tlh ratios in water and oysters but not in sediment. Although tlh densities were lower than vvh densities in water and in oysters, the opposite was true in sediment. Regression analysis indicated that SST had a significant association with vvh and tlh densities in water and oysters, while salinity was significantly related to vibrio densities in the water column. Chlorophyll a levels in the water were correlated significantly with vvh in sediment and oysters and with pathogenic V. parahaemolyticus (tdh and trh) in the water column. Furthermore, turbidity was a significant predictor of V. parahaemolyticus density in all sample types (water, oyster, and sediment), and its role in predicting the risk of V. parahaemolyticus illness may be more important than previously realized. This study identified (i) culturable vibrios in winter sediment samples, (ii) niche-based differences in the abundance of vibrios, and (iii) predictive signatures resulting from correlations between environmental parameters and vibrio densities. PMID:20817802

  9. Expression and Immunogenicity of a Mutant Diphtheria Toxin Molecule, CRM197, and Its Fragments in Salmonella typhi Vaccine Strain CVD 908-htrA

    PubMed Central

    Orr, Nadav; Galen, James E.; Levine, Myron M.

    1999-01-01

    Mutant diphtheria toxin molecule CRM197 and fragments thereof were expressed in attenuated Salmonella typhi CVD 908-htrA, and the constructs were tested for their ability to induce serum antitoxin. Initially, expressed proteins were insoluble, and the constructs failed to induce neutralizing antitoxin. Soluble CRM197 was expressed at low levels by utilizing the hemolysin A secretion system from Escherichia coli. PMID:10417208

  10. Identification of the Regions of Cytotoxic Necrotizing Factor Type 1 Responsible for Receptor Binding and Enzymatic Activity

    DTIC Science & Technology

    2007-02-05

    produce two toxins , hemolysin and CNF1, as well as other virulence determinants such as lipopolysaccharide (LPS) and iron acquisition products (not shown...cytoplasmic polypeptide toxin that is composed of a reputed N-terminal binding domain and a C- terminal enzymatic domain. A putative transmembrane...domain, considered to be responsible for translocation of the toxin into eukaryotic cells, is contained within the N- terminal half of the molecule

  11. Identification and Characterization of Staphylococcus aureus Strains with an Incomplete Hemolytic Phenotype

    PubMed Central

    Zhang, Haifang; Zheng, Yi; Gao, Huasheng; Xu, Ping; Wang, Min; Li, Aiqing; Miao, Minhui; Xie, Xiaofang; Deng, Yimai; Zhou, Huiqin; Du, Hong

    2016-01-01

    Staphylococcus aureus is a common pathogen causing both hospital and community-acquired infections. Hemolysin is one of the important virulence factors for S. aureus and causes the typical β-hemolytic phenotype which is called complete hemolytic phenotype as well. Recently, S. aureus with an incomplete hemolytic phenotype (SIHP) was isolated from clinical samples. To study the microbiologic characteristics of SIHP, the special hemolytic phenotype of SIHP was verified on the sheep blood agar plates supplied by different manufacturers. Expression of hemolysin genes hla, hlb, hlgC, and hld of SIHP was detected by qRT-PCR and it was showed that expression of hlb in SIHP was obviously increased compared to the control S. aureus strains with complete hemolytic phenotype (SCHP), while the expression of hla, hlgC, and hld in SIHP was significantly decreased. In addition, the α-hemolysin encoded by gene hla was decreased obviously in SIHP compared to SCHP by western blot. All 60 SIHP strains were identified to be the methicillin resistant S. aureus (MRSA), and moreover these SIHP strains all contains mecA gene. The virulence gene tst were all present in SIHP, and the intracellular survival ability of SIHP was much greater than that of the gene tst negative S. aureus. We also found that IL-2, IL-6, and IL-17A secreted in the supernatant of SIHP infected macrophages increased significantly compared to tst negative control strains infected ones. MLST analysis showed that all of SIHP strains were classified into ST5 clone. To our knowledge, this study firstly showed that SIHP strains are a kind of methicillin resistant strains which express β-hemolysin highly and possess a potential high virulence, and it was suggested that SIHP should be paid more attention in hospital. PMID:27917374

  12. Detection of hemolytic Listeria monocytogenes by using DNA colony hybridization

    SciTech Connect

    Datta, A.R.; Wentz, B.A.; Hill, W.E.

    1987-09-01

    A fragment of about 500 base pairs of the beta-hemolysin gene from Listeria monocytogenes was used to screen different bacterial strains by DNA colony hybridization. The cells in the colonies were lysed by microwaves in the presence of sodium hydroxide. Of 52 different strains of Listeria species screened, only the DNA from beta-hemolytic (CAMP-positive) strains of L. monocytogenes hybridized with this probe.

  13. Photobacterium damselae subsp. damselae Major Virulence Factors Dly, Plasmid-Encoded HlyA, and Chromosome-Encoded HlyA Are Secreted via the Type II Secretion System

    PubMed Central

    Rivas, Amable J.; Vences, Ana; Husmann, Matthias; Lemos, Manuel L.

    2015-01-01

    Photobacterium damselae subsp. damselae is a marine bacterium that causes septicemia in marine animals and in humans. Previously, we had determined a major role of pPHDD1 plasmid-encoded Dly (damselysin) and HlyA (HlyApl) and the chromosome-encoded HlyA (HlyAch) hemolysins in virulence. However, the mechanisms by which these toxins are secreted remain unknown. In this study, we found that a mini-Tn10 transposon mutant in a plasmidless strain showing an impaired hemolytic phenotype contained an insertion in epsL, a component of a type II secretion system (T2SS). Reconstruction of the mutant by allelic exchange confirmed the specific involvement of epsL in HlyAch secretion. In addition, mutation of epsL in a pPHDD1-harboring strain caused an almost complete abolition of hemolytic activity against sheep erythrocytes, indicating that epsL plays a major role in secretion of the plasmid-encoded HlyApl and Dly. This was further demonstrated by analysis of different combinations of hemolysin gene mutants and by strain-strain complementation assays. We also found that mutation of the putative prepilin peptidase gene pilD severely affected hemolysis, which dropped at levels inferior to those of epsL mutants. Promoter expression analyses suggested that impairment of hemolysin secretion in epsL and pilD mutants might constitute a signal that affects hemolysin and T2SS gene expression at the transcriptional level. In addition, single epsL and pilD mutations caused a drastic decrease in virulence for mice, demonstrating a major role of T2SS and pilD in P. damselae subsp. damselae virulence. PMID:25583529

  14. [Effect of ethyl acetate extract of Eclipta prostrata on mice of normal and immunosupression].

    PubMed

    Liu, X; Jiang, Y; Zhao, Y; Tang, H

    2000-07-01

    The regulatory effects of ethyl acetate extract of Eclipta prostrata (EAEEP) on immune function were studied. The experimental immunosuppressive mice models were induced by injection of cyclophosphamide or hydrocartisone. The index of spleen in normal mice were decreased significantly. So was the level of hemolysin in serum, Delayed trpe hypersensitivity was also inhibited at the same condition. But EAEEP can increase all these indexes in immunosuppressive mice. EAEEP possesses obvious regulatory action on immune function in mice.

  15. Export of the Virulence Factors from Shigella Flexneri and Characterization of the mxi loci

    DTIC Science & Technology

    1992-07-20

    moved across the cytoplasmic membrane in the absence of any processing event (e.g., a·hemolysin, IpaA·O, and Yops , Table 1). Hence. protein ...which shows homology to the Yersinia pestis outer membrane protein , Yop M. While this excreted Y. pestis antigen has been characterized as...locus results in loss of Yersinia outer membrane proteins ( Yops ) Hand M in the outer membrane and their accumulation within the bacteria (Plano, et

  16. Single Molecule Detection Using a Silicon Nanopore-Nanotransistor Integrated Circuit

    DTIC Science & Technology

    2006-01-01

    current through the pore as a function of the applied electrochemical potential in a membrane transport bi-cell with each cell containing a volume of KCl...molecule in a a-hemolysin (Kasianowicz et al., TIME(ms) 2001), we find that the duration, shape and Figure 2. Characterization of Nanopore and...oxidation and CMP via e-beamdecompos~itio nand : :...... "::’ (chemical-mechanical polishing). The and sputtering insulator in the capacitor is formed by

  17. Identification and Characterization of Staphylococcus aureus Strains with an Incomplete Hemolytic Phenotype.

    PubMed

    Zhang, Haifang; Zheng, Yi; Gao, Huasheng; Xu, Ping; Wang, Min; Li, Aiqing; Miao, Minhui; Xie, Xiaofang; Deng, Yimai; Zhou, Huiqin; Du, Hong

    2016-01-01

    Staphylococcus aureus is a common pathogen causing both hospital and community-acquired infections. Hemolysin is one of the important virulence factors for S. aureus and causes the typical β-hemolytic phenotype which is called complete hemolytic phenotype as well. Recently, S. aureus with an incomplete hemolytic phenotype (SIHP) was isolated from clinical samples. To study the microbiologic characteristics of SIHP, the special hemolytic phenotype of SIHP was verified on the sheep blood agar plates supplied by different manufacturers. Expression of hemolysin genes hla, hlb, hlgC, and hld of SIHP was detected by qRT-PCR and it was showed that expression of hlb in SIHP was obviously increased compared to the control S. aureus strains with complete hemolytic phenotype (SCHP), while the expression of hla, hlgC, and hld in SIHP was significantly decreased. In addition, the α-hemolysin encoded by gene hla was decreased obviously in SIHP compared to SCHP by western blot. All 60 SIHP strains were identified to be the methicillin resistant S. aureus (MRSA), and moreover these SIHP strains all contains mecA gene. The virulence gene tst were all present in SIHP, and the intracellular survival ability of SIHP was much greater than that of the gene tst negative S. aureus. We also found that IL-2, IL-6, and IL-17A secreted in the supernatant of SIHP infected macrophages increased significantly compared to tst negative control strains infected ones. MLST analysis showed that all of SIHP strains were classified into ST5 clone. To our knowledge, this study firstly showed that SIHP strains are a kind of methicillin resistant strains which express β-hemolysin highly and possess a potential high virulence, and it was suggested that SIHP should be paid more attention in hospital.

  18. Production of "Asao toxin" by Aeromonas strains isolated from feces and drinking water.

    PubMed Central

    Notermans, S; Havelaar, A; Jansen, W; Kozaki, S; Guinée, P

    1986-01-01

    Cultures of Aeromonas species were tested for production of a toxin recently purified by Asao et al. (T. Asao, Y. Kinoshita, S. Kozaki, T. Uemura, and G. Sukaguchi, Infect. Immun. 46:122-127, 1984) and described as a hemolysin with enterotoxic and cytotoxic activity. The toxin was produced by only 63% of Aeromonas sobria strains and by 93% of Aeromonas hydrophila strains. Also, 54% of A. hydrophila strains produced another cytotoxic entity. PMID:3711306

  19. Secretion and expression of the Pasteurella haemolytica Leukotoxin.

    PubMed Central

    Highlander, S K; Engler, M J; Weinstock, G M

    1990-01-01

    The Pasteurella haemolytica leukotoxin gene cluster (lktCABD) is homologous to the Escherichia coli hemolysin locus (hlyCABD). Since the cloned leukotoxin (LktA) is not secreted from E. coli cells, a heteroplasmid complementation system was developed that permits secretion of the leukotoxin from cells expressing the hemolysin transport proteins HlyB and HlyD. We observed that the secreted leukotoxin protein had weak hemolytic activity when activated by either the HlyC or LktC proteins and that LktC expressed in E. coli could confer weak hemolytic activity upon hemolysin. Thus, it appears that the accessory proteins of the leukotoxin and hemolysin gene clusters are functionally similar, although their expression in E. coli is not equivalent. Northern (RNA) blot analysis of the P. haemolytica leukotoxin gene cluster revealed a major 3.5-kilobase transcript that includes the lktC and lktA genes. The start site for this transcript mapped to a cytosine residue 30 nucleotides upstream from the putative start of lktC; a similar initiation site was observed in E. coli, although adjacent cytosine and adenine residues were also utilized. The 3.5-kilobase transcript terminated near the rho-independent terminator structure between lktA and lktB, but transcription may continue, via antitermination or de novo transcription initiation, into the downstream lktB and lktD genes. We propose that the lack of LktB and LktD function in E. coli is a result, at least in part, of poor lktBD transcription and suggest that a P. haemolytica-specific regulator is required for optimal expression of the leukotoxin genes. Images PMID:2185213

  20. Recognizing a Single Base in an Individual DNA Strand: A Step Toward Nanopore DNA Sequencing**

    PubMed Central

    Ashkenasy, N.; Sánchez-Quesada, J.; Ghadiri, M. R.; Bayley, H.

    2007-01-01

    Functional supramolecular chemistry at the single-molecule level. Single strands of DNA can be captured inside α-hemolysin transmembrane pore protein to form single-species α-HL·DNA pseudorotaxanes. This process can be used to identify a single adenine nucleotide at a specific location on a strand of DNA by the characteristic reductions in the α-HL ion conductance. This study suggests that α-HL-mediated single-molecule DNA sequencing might be fundamentally feasible. PMID:15666419

  1. Discrimination of Biological and Chemical Threat Simulants in Residue Mixtures on Multiple Substrates

    DTIC Science & Technology

    2011-02-18

    McNesby KL, Miziolek AW (2003) Laser-induced breakdown spectroscopy of bacterial spores , molds , pollens, and protein: initial studies of discrimination...tested include Bacillus atrophaeus spores , Escherichia coli, MS-2 bacteriophage, α-hemolysin from Staphylococcus aureus, 2-chloroethyl ethyl sulfide...the presence of interferents has been explored. The simulant samples tested include Bacillus atrophaeus spores , Escherichia coli, MS-2 bacteriophage, α

  2. Coral-Associated Bacteria as a Promising Antibiofilm Agent against Methicillin-Resistant and -Susceptible Staphylococcus aureus Biofilms

    PubMed Central

    Gowrishankar, Shanmugaraj; Duncun Mosioma, Nyagwencha; Karutha Pandian, Shunmugiah

    2012-01-01

    The current study deals with the evaluation of two coral-associated bacterial (CAB) extracts to inhibit the biofilm synthesis in vitro as well as the virulence production like hemolysin and exopolysaccharide (EPS), and also to assess their ability to modify the adhesion properties, that is cell surface hydrophobicity (CSH) of methicillin-resistant (MRSA) and -susceptible Staphylococcus aureus (MSSA). Out of nine CAB screened, the ethyl acetate extract of CAB-E2 (Bacillus firmus) and CAB-E4 (Vibrio parahemolyticus) have shown excellent antibiofilm activity against S. aureus. CAB-E2 reduced the production of EPS (57–79%) and hemolysin (43–70%), which ultimately resulted in the significant inhibition of biofilms (80–87%) formed by both MRSA and MSSA. Similarly, CAB-E4 was also found to decrease the production of EPS (43–57%), hemolysin (43–57%) and biofilms (80–85%) of test pathogens. CLSM analysis also proved the antibiofilm efficacy of CAB extracts. Furthermore, the CAB extracts strongly decreased the CSH of S. aureus. Additionally, FT-IR analysis of S. aureus treated with CAB extracts evidenced the reduction in cellular components compared to their respective controls. Thus, the present study reports for the first time, B. firmus—a coral-associated bacterium, as a promising source of antibiofilm agent against the recalcitrant biofilms formed by multidrug resistant S. aureus. PMID:22988476

  3. Seasonal Abundance of Total and Pathogenic Vibrio parahaemolyticus in Alabama Oysters

    PubMed Central

    DePaola, Angelo; Nordstrom, Jessica L.; Bowers, John C.; Wells, Joy G.; Cook, David W.

    2003-01-01

    Recent Vibrio parahaemolyticus outbreaks associated with consumption of raw shellfish in the United States focused attention on the occurrence of this organism in shellfish. From March 1999 through September 2000, paired oyster samples were collected biweekly from two shellfish-growing areas in Mobile Bay, Ala. The presence and densities of V. parahaemolyticus were determined by using DNA probes targeting the thermolabile hemolysin (tlh) and thermostable direct hemolysin (tdh) genes for confirmation of total and pathogenic V. parahaemolyticus, respectively. V. parahaemolyticus was detected in all samples with densities ranging from <10 to 12,000 g−1. Higher V. parahaemolyticus densities were associated with higher water temperatures. Pathogenic strains were detected in 34 (21.8%) of 156 samples by direct plating or enrichment. Forty-six of 6,018 and 31 of 6,992 V. parahaemolyticus isolates from enrichments and direct plates, respectively, hybridized with the tdh probe. There was an apparent inverse relationship between water temperature and the prevalence of pathogenic strains. Pathogenic strains were of diverse serotypes, and 97% produced urease and possessed a tdh-related hemolysin (trh) gene. The O3:K6 serotype associated with pandemic spread and recent outbreaks in the United States was not detected. The efficient screening of numerous isolates by colony lift and DNA probe procedures may account for the higher prevalence of samples with tdh+ V. parahaemolyticus than previously reported. PMID:12620838

  4. Detection, Identification, and Prevalence of Pathogenic Vibrio parahaemolyticus in Fish and Coastal Environment in Jordan.

    PubMed

    Alaboudi, Akram R; Ababneh, Mustafa; Osaili, Tareq M; Al Shloul, Khalaf

    2016-01-01

    Vibrio parahaemolyticus is widely distributed in the marine environments and considered the leading cause of human gastroenteritis in Asian countries. A total of 150 marketed fish and 50 water and sediment samples from the Gulf of Aqaba were examined for the prevalence of pathogenic strains of V. parahaemolyticus. A total of 132 typical isolates obtained from the primary selective medium (thiosulfate-citrate bile salt sucrose agar) and showed positive biochemical properties were subjected to confirmation by polymerase chain reaction targeting the gyrB and toxR genes. These genes were confirmed at rates of 82% (108 isolates) and 72% (95 isolates), respectively. The toxR positive isolates were tested for the presence of thermolabile hemolysin (tlh), thermostable direct hemolysin (tdh), and tdh-related hemolysin (trh) virulence genes. Accordingly, the prevalence rates of pathogenic V. parahaemolyticus were 4%, 8%, and 12% in sediment, water, and fish samples, respectively. The 16S rRNA amplification and sequences were conducted for confirmation of the isolates and showing the relatedness among these isolates. The results showed that both 16S rRNA and toxR assays had same sensitivity and tested isolates had high nucleotide similarity irrespective of their sources.

  5. Pathogenicity of Vibrio parahaemolyticus in Different Food Matrices.

    PubMed

    Wang, Rundong; Sun, Lijun; Wang, Yaling; Deng, Yijia; Liu, Ying; Xu, Defeng; Liu, Huanming; Ye, Riying; Gooneratne, Ravi

    2016-02-01

    The pathogenicity and virulence factors of Vibrio parahaemolyticus in four food matrices--shrimp, freshwater fish, pork, and egg-fried rice--were compared by measuring the thermostable direct hemolysin activity and total hemolytic titer. Significantly high thermostable direct hemolysin and also hemolytic titers (P < 0.05) were produced by V. parahaemolyticus in egg-fried rice > shrimp > freshwater fish > pork. Filtrates of V. parahaemolyticus in shrimp given intraperitoneally induced marked liver and kidney damage and were highly lethal to adult mice compared with filtrates of V. parahaemolyticus in freshwater fish > egg-fried rice > pork. From in vitro and in vivo pathogenicity tests, it seems the type of food matrix has a significant impact on the virulence of V. parahaemolyticus. These results suggest that hemolysin may not necessarily be the only virulence factor for pathogenicity of V. parahaemolyticus. This is the first report that shows that virulence factors produced by V. parahaemolyticus in seafood such as shrimp are more toxic in vivo than in nonseafood.

  6. Complete genome sequence of Vibrio parahaemolyticus strain FORC_008, a foodborne pathogen from a flounder fish in South Korea.

    PubMed

    Kim, Suyeon; Chung, Han Young; Lee, Dong-Hoon; Lim, Jong Gyu; Kim, Se Keun; Ku, Hye-Jin; Kim, You-Tae; Kim, Heebal; Ryu, Sangryeol; Lee, Ju-Hoon; Choi, Sang Ho

    2016-07-01

    Vibrio parahaemolyticus is a Gram-negative, motile, nonspore-forming pathogen that causes foodborne illness associated with the consumption of contaminated seafoods. Although many cases of foodborne outbreaks caused by V. parahaemolyticus have been reported, the genomes of only five strains have been completely sequenced and analyzed using bioinformatics. In order to characterize overall virulence factors and pathogenesis of V. parahaemolyticus associated with foodborne outbreak in South Korea, a new strain FORC_008 was isolated from flounder fish and its genome was completely sequenced. The genomic analysis revealed that the genome of FORC_008 consists of two circular DNA chromosomes of 3266 132 bp (chromosome I) and 1772 036 bp (chromosome II) with a GC content of 45.36% and 45.53%, respectively. The entire genome contains 4494 predicted open reading frames, 129 tRNAs and 31 rRNA genes. While the strain FORC_008 does not have genes encoding thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH), its genome encodes many other virulence factors including hemolysins, pathogenesis-associated secretion systems and iron acquisition systems, suggesting that it may be a potential pathogen. This report provides an extended understanding on V. parahaemolyticus in genomic level and would be helpful for rapid detection, epidemiological investigation and prevention of foodborne outbreak in South Korea.

  7. Phobalysin, a Small β-Pore-Forming Toxin of Photobacterium damselae subsp. damselae

    PubMed Central

    Rivas, Amable J.; von Hoven, Gisela; Neukirch, Claudia; Meyenburg, Martina; Qin, Qianqian; Füser, Sabine; Boller, Klaus; Lemos, Manuel L.; Osorio, Carlos R.

    2015-01-01

    Photobacterium damselae subsp. damselae, an important pathogen of marine animals, may also cause septicemia or hyperaggressive necrotizing fasciitis in humans. We previously showed that hemolysin genes are critical for virulence of this organism in mice and fish. In the present study, we characterized the hlyA gene product, a putative small β-pore-forming toxin, and termed it phobalysin P (PhlyP), for “photobacterial lysin encoded on a plasmid.” PhlyP formed stable oligomers and small membrane pores, causing efflux of K+, with no significant leakage of lactate dehydrogenase but entry of vital dyes. The latter feature distinguished PhlyP from the related Vibrio cholerae cytolysin. Attack by PhlyP provoked a loss of cellular ATP, attenuated translation, and caused profound morphological changes in epithelial cells. In coculture experiments with epithelial cells, Photobacterium damselae subsp. damselae led to rapid hemolysin-dependent membrane permeabilization. Unexpectedly, hemolysins also promoted the association of P. damselae subsp. damselae with epithelial cells. The collective observations of this study suggest that membrane-damaging toxins commonly enhance bacterial adherence. PMID:26303391

  8. The Agr quorum-sensing system regulates fibronectin binding but not hemolysis in the absence of a functional electron transport chain.

    PubMed

    Pader, Vera; James, Ellen H; Painter, Kimberley L; Wigneshweraraj, Sivaramesh; Edwards, Andrew M

    2014-10-01

    Staphylococcus aureus is responsible for numerous chronic and recurrent infections, which are frequently associated with the emergence of small-colony variants (SCVs) that lack a functional electron transport chain. SCVs exhibit enhanced expression of fibronectin-binding protein (FnBP) and greatly reduced hemolysin production, although the basis for this is unclear. One hypothesis is that these phenotypes are a consequence of the reduced Agr activity of SCVs, while an alternative is that the lack of a functional electron transport chain and the resulting reduction in ATP production are responsible. Disruption of the electron transport chain of S. aureus genetically (hemB and menD) or chemically, using 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO), inhibited both growth and Agr activity and conferred an SCV phenotype. Supplementation of the culture medium with synthetic autoinducing peptide (sAIP) significantly increased Agr expression in both hemB mutant strains and S. aureus grown with HQNO and significantly reduced staphylococcal adhesion to fibronectin. However, sAIP did not promote hemolysin expression in hemB mutant strains or S. aureus grown with HQNO. Therefore, while Agr regulates fibronectin binding in SCVs, it cannot promote hemolysin production in the absence of a functional electron transport chain. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. The Agr Quorum-Sensing System Regulates Fibronectin Binding but Not Hemolysis in the Absence of a Functional Electron Transport Chain

    PubMed Central

    Pader, Vera; James, Ellen H.; Painter, Kimberley L.; Wigneshweraraj, Sivaramesh

    2014-01-01

    Staphylococcus aureus is responsible for numerous chronic and recurrent infections, which are frequently associated with the emergence of small-colony variants (SCVs) that lack a functional electron transport chain. SCVs exhibit enhanced expression of fibronectin-binding protein (FnBP) and greatly reduced hemolysin production, although the basis for this is unclear. One hypothesis is that these phenotypes are a consequence of the reduced Agr activity of SCVs, while an alternative is that the lack of a functional electron transport chain and the resulting reduction in ATP production are responsible. Disruption of the electron transport chain of S. aureus genetically (hemB and menD) or chemically, using 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO), inhibited both growth and Agr activity and conferred an SCV phenotype. Supplementation of the culture medium with synthetic autoinducing peptide (sAIP) significantly increased Agr expression in both hemB mutant strains and S. aureus grown with HQNO and significantly reduced staphylococcal adhesion to fibronectin. However, sAIP did not promote hemolysin expression in hemB mutant strains or S. aureus grown with HQNO. Therefore, while Agr regulates fibronectin binding in SCVs, it cannot promote hemolysin production in the absence of a functional electron transport chain. PMID:25092909

  10. Presence of Genes Encoding Panton-Valentine Leukocidin Is Not the Primary Determinant of Outcome in Patients with Hospital-Acquired Pneumonia Due to Staphylococcus aureus

    PubMed Central

    Sharma-Kuinkel, Batu K.; Ahn, Sun H.; Rude, Thomas H.; Zhang, Yurong; Tong, Steven Y. C.; Ruffin, Felicia; Genter, Fredric C.; Braughton, Kevin R.; DeLeo, Frank R.; Barriere, Steven L.

    2012-01-01

    The impact of Panton-Valentine leukocidin (PVL) on the outcome in Staphylococcus aureus pneumonia is controversial. We genotyped S. aureus isolates from patients with hospital-acquired pneumonia (HAP) enrolled in two registrational multinational clinical trials for the genetic elements carrying pvl and 30 other virulence genes. A total of 287 isolates (173 methicillin-resistant S. aureus [MRSA] and 114 methicillin-susceptible S. aureus [MSSA] isolates) from patients from 127 centers in 34 countries for whom clinical outcomes of cure or failure were available underwent genotyping. Of these, pvl was detected by PCR and its product confirmed in 23 isolates (8.0%) (MRSA, 18/173 isolates [10.4%]; MSSA, 5/114 isolates [4.4%]). The presence of pvl was not associated with a higher risk for clinical failure (4/23 [17.4%] versus 48/264 [18.2%]; P = 1.00) or mortality. These findings persisted after adjustment for multiple potential confounding variables. No significant associations between clinical outcome and (i) presence of any of the 30 other virulence genes tested, (ii) presence of specific bacterial clone, (iii) levels of alpha-hemolysin, or (iv) delta-hemolysin production were identified. This study suggests that neither pvl presence nor in vitro level of alpha-hemolysin production is the primary determinant of outcome among patients with HAP caused by S. aureus. PMID:22205797

  11. Isolation and characterization of Aeromonas from seafoods in Taipei.

    PubMed

    Yaun, S S; Lin, L P

    1993-05-01

    A total of 124 fresh seafoods and 158 processed seafoods collected from the retail markets and supermarkets in Taipei were tested for the contamination with motile Aeromonas spp. Of the fresh seafoods analyzed, 88% displayed the presence of Aeromonas. The isolation rates of various samples were as follows: 100%, freshwater fish; 95%, seawater fish; 78%, fish fillets; 84%, shrimp and crab of the crustacea group; 83%, bivalve shellfish and 84%, non-bivalve shellfish of the mollusca group, and 100%, seaweed. Of the 158 processed seafoods, 11% were contaminated by Aeromonas. The isolation rates were as follows: 0%, canned, dried, or frozen fresh seafood; 18%, salted seafood; 30%, fish cake; 7% vacuum-packaged fish cakes; 14%, frozen seafood dumplings; 8%, cooked seafoods. One hundred and eighty-three Aeromonas strains isolated in this survey were characterized to species level and tested for their ability to produce beta-hemolysin. Ninety-eight percent (98%) of the A. hydrophila produced beta-hemolysin on 5% blood agar, 94% of the A. sobria and 33% of the A. caviae produced beta-hemolysin. Thus it is likely that fresh seafoods are potentially significant sources of the virulent Aeromonas species and may play an important role in the epidemiology of Aeromonas-associated gastroenteritis.

  12. Suppression of delayed-type hypersensitivity and hemolysis induced by previously photooxidized psoralen: effect of fluence rate and psoralen concentration.

    PubMed

    Kyagova, A A; Zhuravel, N N; Malakhov, M V; Lysenko, E P; Adam, W; Saha-Möller, C R; Potapenko AYa

    1997-04-01

    The kinetics of the formation of biologically active psoralen photooxidation (POP) products were analyzed by the biological effects produced. Effects of the UV light fluence rate and psoralen concentration during the preirradiation were investigated to assess the yield of POP products, which were active in vivo (inducing suppression of delayed-type hypersensitivity [DTH] reaction to sheep red blood cells) and in vitro (altering the human erythrocyte membrane permeability). It was shown that the reciprocity law of the irradiation fluence rate and time was not valid in the case of POP-induced hemolysis and DTH suppression. Immunosuppressive POP products were more efficiently formed at low fluence rate (20.8 W/m2), whereas POP hemolysins were more efficiently produced at a high fluence rate (180 W/m2) of UV light. The yield of immunosuppressive POP products was enhanced in dilute psoralen solutions, while the POP hemolysins yield increased with increasing psoralen concentration. A kinetic scheme for psoralen photoproduct formation was proposed. Kinetic analysis showed that a labile intermediate was produced as the result of excitation of psoralen. This intermediate was either converted to a stable immunosuppressive POP product, or two intermediates combined to form a POP hemolysin. It is proposed that PUVA therapy conditions are more favorable for the formation of immunosuppressive rather than membrane-damaging psoralen photooxidation products.

  13. Role of sph2 Gene Regulation in Hemolytic and Sphingomyelinase Activities Produced by Leptospira interrogans

    PubMed Central

    Narayanavari, Suneel A.; Lourdault, Kristel; Sritharan, Manjula; Haake, David A.; Matsunaga, James

    2015-01-01

    Pathogenic members of the genus Leptospira are the causative agents of leptospirosis, a neglected disease of public and veterinary health concern. Leptospirosis is a systemic disease that in its severest forms leads to renal insufficiency, hepatic dysfunction, and pulmonary failure. Many strains of Leptospira produce hemolytic and sphingomyelinase activities, and a number of candidate leptospiral hemolysins have been identified based on sequence similarity to well-characterized bacterial hemolysins. Five of the putative hemolysins are sphingomyelinase paralogs. Although recombinant forms of the sphingomyelinase Sph2 and other hemolysins lyse erythrocytes, none have been demonstrated to contribute to the hemolytic activity secreted by leptospiral cells. In this study, we examined the regulation of sph2 and its relationship to hemolytic and sphingomyelinase activities produced by several L. interrogans strains cultivated under the osmotic conditions found in the mammalian host. The sph2 gene was poorly expressed when the Fiocruz L1-130 (serovar Copenhageni), 56601 (sv. Lai), and L495 (sv. Manilae) strains were cultivated in the standard culture medium EMJH. Raising EMJH osmolarity to physiological levels with sodium chloride enhanced Sph2 production in all three strains. In addition, the Pomona subtype kennewicki strain LC82-25 produced substantially greater amounts of Sph2 during standard EMJH growth than the other strains, and sph2 expression increased further by addition of salt. When 10% rat serum was present in EMJH along with the sodium chloride supplement, Sph2 production increased further in all strains. Osmotic regulation and differences in basal Sph2 production in the Manilae L495 and Pomona strains correlated with the levels of secreted hemolysin and sphingomyelinase activities. Finally, a transposon insertion in sph2 dramatically reduced hemolytic and sphingomyelinase activities during incubation of L. interrogans at physiologic osmolarity

  14. Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection.

    PubMed Central

    Mobley, H L; Belas, R; Lockatell, V; Chippendale, G; Trifillis, A L; Johnson, D E; Warren, J W

    1996-01-01

    To examine the role of flagella in pathogenesis of urinary tract infection caused by Proteus mirabilis, we constructed a nonmotile, nonswarming flagellum mutant of strain WPM111 (an hpmA hemolysin mutant of strain BA6163, chosen because of its lack of in vitro cytotoxicity in renal epithelial cell internalization studies). A nonpolar mutation was introduced into the flaD gene, which encodes the flagellar cap protein. This mutation does not affect the synthesis of flagellin but rather prevents the assembly of an intact flagellar filament. In in vitro assays, the genetically characterized nonmotile mutant was found to be internalized by cultured human renal proximal tubular epithelial cells in numbers less than 1% of those of the flagellated parent strain. Internalization of the nonmotile mutant was increased significantly (14- to 21-fold) by centrifugation onto the monolayer. To assess virulence in vivo, CBA mice were challenged transurethrally with 10(7) CFU of P. mirabilis BA6163 (wild type) (n = 16), WPM111 (hpmA mutant) (n = 46), or BB2401 (hmpA flaD mutant) (n = 46). Differences in quantitative cultures between the parent strain and the hemolysin-negative mutant were not significant. However, the hpmA flaD mutant was recovered in numbers approximately 100-fold lower than those of the hmpA mutant or the wild-type parent strain and thus was clearly attenuated. We conclude that while hemolysin does not significantly influence virulence, flagella contribute significantly to the ability of P. mirabilis to colonize the urinary tract and cause acute pyelonephritis in an experimental model of ascending urinary tract infection. PMID:8945585

  15. Risk of Vibrio transmission linked to the consumption of crustaceans in coastal towns of Côte d'Ivoire.

    PubMed

    Traoré, S G; Bonfoh, B; Krabi, R; Odermatt, P; Utzinger, J; Rose, K-N; Tanner, M; Frey, J; Quilici, M-L; Koussémon, M

    2012-06-01

    The purpose of this study was to assess the risk of Vibrio spp. transmission from crustaceans to humans in two coastal towns of Côte d'Ivoire. Bacteriologic analysis was performed on 322 crustacean samples obtained from six markets in Abidjan and one in Dabou. Suspected Vibrio colonies were identified by morphological, cultural, biochemical, and molecular tests and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. PCR assays were used to further characterize Vibrio strains. A survey on consumption of crustaceans was conducted among 120 randomly selected households in Abidjan. Overall, Vibrio spp. were isolated from 7.8% of the crustacean samples studied, at levels as high as 6.3 log CFU/g. Of the Vibrio strains identified, 40% were V. alginolyticus, 36% were V. parahaemolyticus, and 24% were nontoxigenic V. cholerae; the latter two species can cause mild to severe forms of seafood-associated gastroenteritis. Among interviewed households, 11.7% reported daily consumption of crustaceans, confirming the high probability of exposure of human population to Vibrio spp., and 7.5% reported symptoms of food poisoning after consumption of crustaceans. The absence of genes encoding major virulence factors in the studied strains, i.e., cholera toxin (ctxA and ctxB) in V. cholerae and thermostable direct hemolysin (tdh) and thermostable direct hemolysin-related hemolysin (trh) in V. parahaemolyticus, does not exclude the possibility of exposure to pathogenic strains. However, human infections are not common because most households (96.7%) boil crustaceans, usually for at least 45 min (85.9% of households) before consumption.

  16. Identification of the Staphylococcus aureus vfrAB Operon, a Novel Virulence Factor Regulatory Locus

    PubMed Central

    Daly, Seth M.; Hall, Pamela R.; Bayles, Kenneth W.

    2014-01-01

    During a screen of the Nebraska Transposon Mutant Library, we identified 71 mutations in the Staphylococcus aureus genome that altered hemolysis on blood agar medium. Although many of these mutations disrupted genes known to affect the production of alpha-hemolysin, two of them were associated with an apparent operon, designated vfrAB, that had not been characterized previously. Interestingly, a ΔvfrB mutant exhibited only minor effects on the transcription of the hla gene, encoding alpha-hemolysin, when grown in broth, as well as on RNAIII, a posttranscriptional regulatory RNA important for alpha-hemolysin translation, suggesting that VfrB may function at the posttranscriptional level. Indeed, a ΔvfrB mutant had increased aur and sspAB protease expression under these conditions. However, disruption of the known secreted proteases in the ΔvfrB mutant did not restore hemolytic activity in the ΔvfrB mutant on blood agar. Further analysis revealed that, in contrast to the minor effects of VfrB on hla transcription when strains were cultured in liquid media, the level of hla transcription was decreased 50-fold in the absence of VfrB on solid media. These results demonstrate that while VfrB represses protease expression when strains are grown in broth, hla regulation is highly responsive to factors associated with growth on solid media. Intriguingly, the ΔvfrB mutant displayed increased pathogenesis in a model of S. aureus dermonecrosis, further highlighting the complexity of VfrB-dependent virulence regulation. The results of this study describe a phenotype associated with a class of highly conserved yet uncharacterized proteins found in Gram-positive bacteria, and they shed new light on the regulation of virulence factors necessary for S. aureus pathogenesis. PMID:24549328

  17. Characterization of the groESL operon in Listeria monocytogenes: utilization of two reporter systems (gfp and hly) for evaluating in vivo expression.

    PubMed

    Gahan, C G; O'Mahony, J; Hill, C

    2001-06-01

    The ability of intracellular pathogens to sense and adapt to the hostile environment of the host is an important factor governing virulence. We have sequenced the operon encoding the major heat shock proteins GroES and GroEL in the gram-positive food-borne pathogen Listeria monocytogenes. The operon has a conserved orientation in the order groES groEL. Upstream of groES and in the opposite orientation is a gene encoding a homologue of the Bacillus subtilis protein YdiL, while downstream of groEL is a gene encoding a putative bile hydrolase. We used both reverse transcriptase-PCR (RT-PCR) and transcriptional fusions to the UV-optimized Aequorea victoria green fluorescent protein (GFP(UV)) to analyze expression of groESL under various environmental stress conditions, including heat shock, ethanol stress, and acid shock, and during infection of J774 mouse macrophage cells. Strains harboring GFP(UV) transcriptional fusions to the promoter region of groESL demonstrated a significant increase in fluorescence following heat shock that was detected by both fluorimetry and fluorescence microscopy. Using both RT-PCR and GFP technology we detected expression of groESL following internalization by J774 cells. Increased intracellular expression of dnaK was also determined using RT-PCR. We have recently described a system which utilizes L. monocytogenes hemolysin as an in vivo reporter of gene expression within the host cell phagosome (C. G. M. Gahan and C. Hill, Mol. Microbiol. 36:498-507, 2000). In this study a strain was constructed in which hemolysin expression was placed under the control of the groESL promoter. In this strain hemolysin expression during infection also confirms transcription from the groESL promoter during J774 and murine infection, albeit at lower levels than the known virulence factor plcA.

  18. Structurally Designed Attenuated Subunit Vaccines for S. aureus LukS-PV and LukF-PV Confer Protection in a Mouse Bacteremia Model

    PubMed Central

    Sarwar, Jawad; Devi, V. Sathya; Abaandou, Laura; Haudenschild, Christian; Mahmoudieh, Mahta; Boroun, Atefeh R.; Vu, Hong; Nguyen, Tam; Warfield, Kelly L.; Shulenin, Sergey; Aman, M. Javad

    2013-01-01

    Previous efforts towards S. aureus vaccine development have largely focused on cell surface antigens to induce opsonophagocytic killing aimed at providing sterile immunity, a concept successfully applied to other Gram-positive pathogens such as Streptococcus pneumoniae. However, these approaches have largely failed, possibly in part due to the remarkable diversity of the staphylococcal virulence factors such as secreted immunosuppressive and tissue destructive toxins. S. aureus produces several pore-forming toxins including the single subunit alpha hemolysin as well as bicomponent leukotoxins such as Panton-Valentine leukocidin (PVL), gamma hemolysins (Hlg), and LukED. Here we report the generation of highly attenuated mutants of PVL subunits LukS-PV and LukF-PV that were rationally designed, based on an octameric structural model of the toxin, to be deficient in oligomerization. The attenuated subunit vaccines were highly immunogenic and showed significant protection in a mouse model of S. aureus USA300 sepsis. Protection against sepsis was also demonstrated by passive transfer of rabbit immunoglobulin raised against LukS-PV. Antibodies to LukS-PV inhibited the homologous oligomerization of LukS-PV with LukF-PV as well heterologous oligomerization with HlgB. Importantly, immune sera from mice vaccinated with the LukS mutant not only inhibited the PMN lytic activity produced by the PVL-positive USA300 but also blocked PMN lysis induced by supernatants of PVL-negative strains suggesting a broad protective activity towards other bicomponent toxins. These findings strongly support the novel concept of an anti-virulence, toxin-based vaccine intended for prevention of clinical S. aureus invasive disease, rather than achieving sterile immunity. Such a multivalent vaccine may include attenuated leukotoxins, alpha hemolysin, and superantigens. PMID:23762356

  19. The role of genomic islands in Escherichia coli K1 interactions with intestinal and kidney epithelial cells.

    PubMed

    Yousuf, Farzana Abubakar; Rafiq, Sahar; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2016-04-01

    The completion of Escherichia coli K1 genome has identified several genomic islands that are present in meningitis-causing E. coli RS218 but absent in the non-pathogenic E. coli MG1655. In this study, the role of various genomic islands in E. coli K1 interactions with intestinal epithelial cells (Caco-2) and kidney epithelial cells (MA104) was determined. Using association assays, invasion assays, and intracellular survival assays, the findings revealed that the genomic island deletion mutants of RS218 related to P fimbriae, S fimbriae, F17-like fimbriae, non-fimbrial adhesins, Hek and hemagglutinin, protein secretion system (T1SS for hemolysin; T2SS; T5SS for antigen 43), Iro system and hmu system), invasins (CNF1, IbeA), toxins (α-hemolysin), K1 capsule biosynthesis, metabolism (d-serine catabolism, dihydroxyacetone, glycerol, and glyoxylate metabolism), prophage genes, showed reduced interactions with both cell types. Next, we determined the role of various genomic islands in E. coli K1 resistance to serum. When exposed to the normal human serum, the viability of the genomic island deletion mutants related to adhesins such as S fimbriae, P fimbriae, F17-like fimbriae, non-fimbrial adhesins, Hek and hemagglutinin, antigen 43 and T5SS for antigen 43, T2SS, and T1SS for hemolysin, Iro system and hmu system, prophage genes, metabolism (sugar metabolism and d-serine catabolism), K1 capsule biosynthesis, and invasins such as CNF1 was affected, suggesting their role in bacteremia. The characterization of these genomic islands should reveal mechanisms of E. coli K1 pathogenicity that could be of value as therapeutic targets.

  20. Season-Specific Occurrence of Potentially Pathogenic Vibrio spp. on the Southern Coast of South Korea.

    PubMed

    Di, Doris Y W; Lee, Anna; Jang, Jeonghwan; Han, Dukki; Hur, Hor-Gil

    2017-02-01

    Vibrio species are widely distributed in warm estuarine and coastal environments, and they can infect humans through the consumption of raw and mishandled contaminated seafood. In this study, we aimed to isolate and observe the distribution of enteropathogenic Vibrio spp. from environments of the southern coast of South Korea over a season cycle. A total of 10,983 isolates of Vibrio spp. were obtained from tidal water and mud samples over a 1-year period from five sampling sites along the southwest coast of South Korea. We found that Vibrio alginolyticus (n = 6,262) and Vibrio parahaemolyticus (n = 1,757) were ubiquitous in both tidal water and mud year round, whereas Vibrio cholerae (n = 24) and Vibrio vulnificus (n = 130) were seasonally specific to summer. While all V. cholerae isolates were nontoxigenic (non-O1 and non-O139), more than 88% of V. vulnificus isolates possessed the virulence factor elastolytic protease (encoded by vvp). Interestingly, V. parahaemolyticus, which was omnipresent in all seasons, contained the virulence factors thermostable direct hemolysin (encoded by tdh) and thermostable direct hemolysin-related hemolysin (encoded by trh) in larger amounts in June (29 trh-positive strains) and September (14 tdh-, 36 trh-, and 12 tdh- and trh-positive strains) than in December (4 trh-positive strains) and February (3 tdh-positive strains), and virulence factors were absent from isolates detected in April. To understand why virulence factors were detected only in the warm season and were absent in the cold season although the locations are static, long-term monitoring and particularly seasonal study are necessary.

  1. Two-dimensional analysis of exoproteins of methicillin-resistant Staphylococcus aureus (MRSA) for possible epidemiological applications.

    PubMed

    Nakano, Miyo; Kawano, Yasushi; Kawagish, Mika; Hasegawa, Tadao; Iinuma, Yoshitsugu; Oht, Michio

    2002-01-01

    We applied two-dimensional gel electrophoresis (2-DE) to the total exoproteins secreted from pathogenic MRSA strains and identified major protein spots by N-terminal amino acid sequence analysis. In approximately 300 to 500 spots visualized on each gel, various exoproteins and cell-associated proteins were identified and their sites on the gels confirmed for construction of a reference map. Major exotoxins such as enterotoxins SEA, SEB, and SEC,, toxic shock syndrome toxin-1 (TSST-1), and hemolysins were distributed in the region of pI 6.8 to 8.1 and MW 21 to 35 kDa. Although the differences between calculated and observed values of pI and MW were relatively small in each exoprotein, those of several proteins including alpha-hemolysin and SEB were considerably deviated from the positions of the expected values. Some exoproteins were detected as multiple spots. These included beta-hemolysin, enterotoxins SEA, SEB, and SEC3, glutamic acid-specific endopeptidase, glycerophosphoryl diester phosphodiesterase and triacylglycerol lipase. The multiple spots of these exoproteins may be generated by the action of own proteases. Certain similarities of 2-DE patterns among strains belonging to the same coagulase types were observed. On the basis of 2-DE image analysis, coagulase type II strains secreted somewhat larger amounts of SEB and SEC3 as well as TSST-1 than the strains belonging to other coagulase types. Taken together, 2-DE analysis of exoproteins is applicable to epidemiological studies for MRSA, as compared with pulsed field gel electrophoresis of restricted chromosomal DNA.

  2. Contribution of hly homologs to the hemolytic activity of Prevotella intermedia.

    PubMed

    Suzuki, Naoko; Fukamachi, Haruka; Arimoto, Takafumi; Yamamoto, Matsuo; Igarashi, Takeshi

    2012-06-01

    Prevotella intermedia is a periodontal pathogen that requires iron for its growth. Although this organism has hemolytic activity, the precise nature of its hemolytic substances and their associated hemolytic actions are yet to be fully determined. In the present study, we identified and characterized several putative hly genes in P. intermedia ATCC25611 which appear to encode hemolysins. Six hly genes (hlyA, B, C, D, E, and hlyI) of P. intermedia were identified by comparing their nucleotide sequences to those of known hly genes of Bacteroides fragilis NCTC9343. The hlyA-E, and hlyI genes were overexpressed individually in the non-hemolytic Escherichia coli strain JW5181 and examined its contribution to the hemolytic activity on sheep blood agar plates. E. coli cells expressing the hlyA and hlyI genes exhibited hemolytic activity under anaerobic conditions. On the other hand, only E. coli cells stably expressing the hlyA gene were able to lyse the red blood cells when cultured under aerobic conditions. In addition, expression of the hlyA and hlyI genes was significantly upregulated in the presence of red blood cells. Furthermore, we found that the growth of P. intermedia was similar in an iron-limited medium supplemented with either red blood cells or heme. Taken together, our results indicate that the hlyA and hlyI genes of P. intermedia encode putative hemolysins that appear to be involved in the lysis of red blood cells, and suggest that these hemolysins might play important roles in the iron-dependent growth of this organism.

  3. Isolation of enterotoxigenic strains of staphylococci from dogs.

    PubMed

    Adesiyun, A A; Usman, B

    1983-10-01

    The ability of 309 staphylococcal isolates from household dogs to produce enterotoxin, coagulase, thermonuclease and hemolysin was investigated. A total of 52 (16.8%) isolates from 45 out of 150 dogs examined were enterotoxigenic when tested for enterotoxin types A, B and C. Based on sites sampled, 33 (20.5%) out of 161 isolates from the anterior nares were enterotoxigenic while from dorsal skins 19 (12.8%) out of 148 isolates were enterotoxigenic. Staphylococcal enterotoxin C(SEC) was predominantly produced as 21 (6.8%) isolates elaborated it and also accounted for 40.4% of all enterotoxins produced by isolates. Staphylococcal enterotoxins A(SEA) and B(SEB) were produced by 10 (3.2%) and 16 (5.2%) strains, respectively. Mixed enterotoxin types AB, AC and BC were produced by 1,3 and 1 strains, respectively. With human plasma, 17.1% of coagulase-positive and 15.0% of coagulase-negative strains were enterotoxigenic. However, using canine plasma, 19.1% and 6.9% of the coagulase-positive and negative isolates, respectively, were enterotoxigenic. The incidence of enterotoxigenicity was 16.9% amongst thermonuclease-positive isolates and 16.3% for thermonuclease-negative strains. Alpha hemolysin was predominantly produced by 180 (60.2%) isolates and 19.9% of these were enterotoxigenic. Beta hemolysin was produced by 36 (11.7%) isolates with 13.9% enterotoxigenic, while 87 (28.2%) exhibited gamma hemolytic pattern amongst which 11.5% were enterotoxigenic. Based on data provided on coagulation of human and canine plasmas and hemolytic patterns, it is concluded that a large proportion of canine isolates from this environment are not of canine biotypes, but are most probably human biotypes.

  4. The sae locus of Staphylococcus aureus controls exoprotein synthesis at the transcriptional level.

    PubMed

    Giraudo, A T; Cheung, A L; Nagel, R

    1997-07-01

    Agr and sar are known regulatory loci of Staphylococcus aureus that control the production of several extracellular and cell-wall-associated proteins. A pleiotropic insertional mutation in S. aureus, designated sae, that leads to the production of drastically diminished levels of alpha- and beta-hemolysins and coagulase and slightly reduced levels of protein A has been described. The study of the expression of the genes coding for these exoproteins in the sae::Tn551 mutant (carried out in this work by Northern blot analyses) revealed that the genes for alpha- and beta-hemolysins (hla and hlb) and coagulase (coa) are not transcribed and that the gene for protein A (spa) is transcribed at a somewhat reduced level. These results indicate that the sae locus regulates these exoprotein genes at the transcriptional level. Northern blot analyses also show that the sae mutation does not affect the expression of agr or sar regulatory loci. An sae::Tn551 agr::tetM double mutant has been phenotypically characterized as producing reduced or null levels of alpha-, beta-, and delta-hemolysins, coagulase, and high levels of protein A. Northern blot analyses carried out in this work with the double mutant revealed that hla, hlb, hld, and coa genes are not transcribed, while spa is transcribed at high levels. The fact that coa is not expressed in the sae agr mutant, as in the sae parental strain, while spa is expressed at the high levels characteristic of the agr parental strain, suggests that sae and agr interact in a complex way in the control of the expression of the genes of several exoproteins.

  5. Regulation of Cytotoxicity by Quorum-Sensing Signaling in Vibrio vulnificus Is Mediated by SmcR, a Repressor of hlyU▿†

    PubMed Central

    Shao, Chung-Ping; Lo, Horng-Ren; Lin, Jen-Hsing; Hor, Lien-I

    2011-01-01

    Cytotoxicity is an important virulence determinant in the pathogenesis of Vibrio vulnificus, and two cytotoxins, RTX (encoded by rtxA1) and cytolysin/hemolysin (encoded by vvhA), have been identified in this organism. We showed that the quorum-sensing regulator LuxO controlled the cytotoxicity of this organism: a ΔluxO mutant exhibited low cytotoxicity, whereas a constitutively activated luxO mutant, luxO(D47E), remained highly cytotoxic. The cytotoxicity of the ΔluxO mutant was restored when smcR, a Vibrio harveyi luxR homologue repressed by luxO, was further deleted. SmcR then was shown to repress the expression of both rtxA1 and vvhA. A DNA library of V. vulnificus was screened in Escherichia coli for clones that upregulated vvhA in the presence of SmcR, and hlyU, which has been shown to positively regulate rtxA1 and vvhA, was identified. We demonstrated that SmcR repressed the expression of hlyU and bound to a region upstream of hlyU in V. vulnificus. The deletion of hlyU resulted in the loss of cytotoxicity and reduced cytolysin/hemolysin production in the ΔsmcR mutant. The ΔsmcR ΔhlyU mutant regained cytotoxicity and cytolysin/hemolysin activity when hns, which has been shown to repress the transcription of rtxA1 and interfere with hlyU, was further removed. Collectively, our data suggest that SmcR mediates the regulation of cytotoxicity by quorum-sensing signaling in V. vulnificus by repressing hlyU, an activator of rtxA1 and vvhA. PMID:21398530

  6. SarA, a global regulator of virulence determinants in Staphylococcus aureus, binds to a conserved motif essential for sar-dependent gene regulation.

    PubMed

    Chien, Y; Manna, A C; Projan, S J; Cheung, A L

    1999-12-24

    The expression of many virulence determinants in Staphylococcus aureus including alpha-hemolysin-, protein A-, and fibronectin-binding proteins is controlled by global regulatory loci such as sar and agr. In addition to controlling target gene expression via agr (e.g. alpha-hemolysin), the sar locus can also regulate target gene transcription via agr-independent mechanisms. In particular, we have found that SarA, the major regulatory protein encoded within sar, binds to a conserved sequence, homologous to the SarA-binding site on the agr promoter, upstream of the -35 promoter boxes of several target genes including hla (alpha-hemolysin gene), spa (protein A gene), fnb (fibronectin-binding protein genes), and sec (enterotoxin C gene). Deletion of the SarA recognition motif in the promoter regions of agr and hla in shuttle plasmids rendered the transcription of these genes undetectable in agr and hla mutants, respectively. Likewise, the transcription activity of spa (a gene normally repressed by sar), as measured by a XylE reporter fusion assay, became derepressed in a wild type strain containing a shuttle plasmid in which the SarA recognition site had been deleted from the spa promoter region. However, DNase I footprinting assays demonstrated that the SarA-binding region on the spa and hla promoter is more extensive than the predicted consensus sequence, thus raising the possibility that the consensus sequence is an activation site within a larger binding region. Because the sar and agr regulate an assortment of virulence factors in S. aureus, we propose, based on our data, a unifying hypothesis for virulence gene activation in S. aureus whereby SarA is a regulatory protein that binds to its consensus SarA recognition motif to activate (e.g. hla) or repress (e.g. spa) the transcription of sar target genes, thus accounting for both agr-dependent and agr-independent mode of regulation.

  7. Structural and Functional Analysis of the Pore-Forming Toxin NetB from Clostridium perfringens

    PubMed Central

    Yan, Xu-Xia; Porter, Corrine J.; Hardy, Simon P.; Steer, David; Smith, A. Ian; Quinsey, Noelene S.; Hughes, Victoria; Cheung, Jackie K.; Keyburn, Anthony L.; Kaldhusdal, Magne; Moore, Robert J.; Bannam, Trudi L.; Whisstock, James C.; Rood, Julian I.

    2013-01-01

    ABSTRACT Clostridium perfringens is an anaerobic bacterium that causes numerous important human and animal diseases, primarily as a result of its ability to produce many different protein toxins. In chickens, C. perfringens causes necrotic enteritis, a disease of economic importance to the worldwide poultry industry. The secreted pore-forming toxin NetB is a key virulence factor in the pathogenesis of avian necrotic enteritis and is similar to alpha-hemolysin, a β-barrel pore-forming toxin from Staphylococcus aureus. To address the molecular mechanisms underlying NetB-mediated tissue damage, we determined the crystal structure of the monomeric form of NetB to 1.8 Å. Structural comparisons with other members of the alpha-hemolysin family revealed significant differences in the conformation of the membrane binding domain. These data suggested that NetB may recognize different membrane receptors or use a different mechanism for membrane-protein interactions. Consistent with this idea, electrophysiological experiments with planar lipid bilayers revealed that NetB formed pores with much larger single-channel conductance than alpha-hemolysin. Channel conductance varied with phospholipid net charge. Furthermore, NetB differed in its ion selectivity, preferring cations over anions. Using hemolysis as a screen, we carried out a random-mutagenesis study that identified several residues that are critical for NetB-induced cell lysis. Mapping of these residues onto the crystal structure revealed that they were clustered in regions predicted to be required for oligomerization or membrane binding. Together these data provide an insight into the mechanism of NetB-mediated pore formation and will contribute to our understanding of the mode of action of this important toxin. PMID:23386432

  8. Mechanisms of inflammasome activation by Vibrio cholerae secreted toxins vary with strain biotype.

    PubMed

    Queen, Jessica; Agarwal, Shivani; Dolores, Jazel S; Stehlik, Christian; Satchell, Karla J F

    2015-06-01

    Activation of inflammasomes is an important aspect of innate immune responses to bacterial infection. Recent studies have linked Vibrio cholerae secreted toxins to inflammasome activation by using murine macrophages. To increase relevance to human infection, studies of inflammasome-dependent cytokine secretion were conducted with the human THP-1 monocytic cell line and corroborated in primary human peripheral blood mononuclear cells (PBMCs). Both El Tor and classical strains of V. cholerae activated ASC (apoptosis-associated speck-like protein-containing a CARD domain)-dependent release of interleukin-1β (IL-1β) when cultured with human THP-1 cells, but the pattern of induction was distinct, depending on the repertoire of toxins the strains produced. El Tor biotype strains induced release of IL-1β dependent on NOD-like receptor family pyrin domain-containing 3 (NLRP3) and ASC due to the secreted pore-forming toxin hemolysin. Unlike in studies with mouse macrophages, the MARTX toxin did not contribute to IL-1β release from human monocytic cells. Classical biotype strains, which do not produce either hemolysin or the MARTX toxin, activated low-level IL-1β release that was induced by cholera toxin (CT) and dependent on ASC but independent of NLRP3 and pyroptosis. El Tor strains likewise showed increased IL-1β production dependent on CT when the hemolysin gene was deleted. In contrast to studies with murine macrophages, this phenotype was dependent on a catalytically active CT A subunit capable of inducing production of cyclic AMP and not on the B subunit. These studies demonstrate that the induction of the inflammasome in human THP-1 monocytes and in PBMCs by V. cholerae varies with the biotype and is mediated by both NLRP3-dependent and -independent pathways. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Glycerol monolaurate inhibits the effects of Gram-positive select agents on eukaryotic cells.

    PubMed

    Peterson, Marnie L; Schlievert, Patrick M

    2006-02-21

    Many exotoxins of Gram-positive bacteria, such as superantigens [staphylococcal enterotoxins, toxic shock syndrome toxin-1 (TSST-1), and streptococcal pyrogenic exotoxins] and anthrax toxin are bioterrorism agents that cause diseases by immunostimulation or cytotoxicity. Glycerol monolaurate (GML), a fatty acid monoester found naturally in humans, has been reported to prevent synthesis of Gram-positive bacterial exotoxins. This study explored the ability of GML to inhibit the effects of exotoxins on mammalian cells and prevent rabbit lethality from TSS. GML (>or=10 microg/mL) inhibited superantigen (5 microg/mL) immunoproliferation, as determined by inhibition of (3)H-thymidine incorporation into DNA of human peripheral blood mononuclear cells (1 x 10(6) cells/mL) as well as phospholipase Cgamma1, suggesting inhibition of signal transduction. The compound (20 microg/mL) prevented superantigen (100 microg/mL) induced cytokine secretion by human vaginal epithelial cells (HVECs) as measured by ELISA. GML (250 microg) inhibited rabbit lethality as a result of TSST-1 administered vaginally. GML (10 microg/mL) inhibited HVEC and macrophage cytotoxicity by anthrax toxin, prevented erythrocyte lysis by purified hemolysins (staphylococcal alpha and beta) and culture fluids containing streptococcal and Bacillus anthracis hemolysins, and was nontoxic to mammalian cells (up to 100 microg/mL) and rabbits (250 microg). GML stabilized mammalian cell membranes, because erythrocyte lysis was reduced in the presence of hypotonic aqueous solutions (0-0.05 M saline) or staphylococcal alpha- and beta-hemolysins when erythrocytes were pretreated with GML. GML may be useful in the management of Gram-positive exotoxin illnesses; its action appears to be membrane stabilization with inhibition of signal transduction.

  10. Serratia marcescens internalization and replication in human bladder epithelial cells

    PubMed Central

    Hertle, Ralf; Schwarz, Heinz

    2004-01-01

    Background Serratia marcescens, a frequent agent of catheterization-associated bacteriuria, strongly adheres to human bladder epithelial cells in culture. The epithelium normally provides a barrier between lumal organisms and the interstitium; the tight adhesion of bacteria to the epithelial cells can lead to internalization and subsequent lysis. However, internalisation was not shown yet for S. marcescens strains. Methods Elektronmicroscopy and the common gentamycin protection assay was used to assess intracellular bacteria. Via site directed mutagenesis, an hemolytic negative isogenic Serratia strain was generated to point out the importance of hemolysin production. Results We identified an important bacterial factor mediating the internalization of S. marcescens, and lysis of epithelial cells, as the secreted cytolysin ShlA. Microtubule filaments and actin filaments were shown to be involved in internalization. However, cytolysis of eukaryotic cells by ShlA was an interfering factor, and therefore hemolytic-negative mutants were used in subsequent experiments. Isogenic hemolysin-negative mutant strains were still adhesive, but were no longer cytotoxic, did not disrupt the cell culture monolayer, and were no longer internalized by HEp-2 and RT112 bladder epithelial cells under the conditions used for the wild-type strain. After wild-type S. marcescens became intracellular, the infected epithelial cells were lysed by extended vacuolation induced by ShlA. In late stages of vacuolation, highly motile S. marcescens cells were observed in the vacuoles. S. marcescens was also able to replicate in cultured HEp-2 cells, and replication was not dependent on hemolysin production. Conclusion The results reported here showed that the pore-forming toxin ShlA triggers microtubule-dependent invasion and is the main factor inducing lysis of the epithelial cells to release the bacteria, and therefore plays a major role in the development of S. marcescens infections. PMID:15189566

  11. [Effectiveness of expression of tdh gene of Vibrio parahaemolyticus depends on two point mutations in promoter region].

    PubMed

    Shalu, O A; Pisanov, R V; Monakhova, E V

    2012-12-01

    A molecular-biological study of the clinical strains of Vibrio parahaemolyticus that contain genes of thermostable direct hemolysin Tdh) and Tdh-related hemolysin (Trh). Using Southern blot hybridization, it is shown that genomes of strains that carry determinants of both hemolysins (tdh(+)-trh+) represent a single copy, whereas in tdh2+RH+ strains, there are two copies (tdh1 and tdh2). All of the examined tdh+trh+ and some of the tdh+trh strains either did not express the tdh gene or did not express the tdh gene (Kanagawa negative or KP-) or expressed it weakly and not often (Kanagawa intermediate, KP+), unlike several Kanagawa positive tdh+trh- strains. To establish the reasons for KP -/+ phenotypes, tdh, tdh11, and tdh2 genes of 13 strains isolated in Russia and neighboring foreign countries were sequenced, followed by the biotransformation analysis of the obtained sequences, as well as a comparison with those of a number of strains presented in GenBank. The results revealed that the weak expression of the tdh gene depends, not only on one point mutation in the promoter region (substitution of A for G in the -35 region), as was thought previously, but also on the second substitution (G for A in the -3 position relative to the -10 sequence), which is quite sufficient when the former is absent. Therefore, the reversion of KP -/+ strains that contain one of these substitutions can take place as a result of a single reverse point mutation, and they should be considered potentially dangerous. Strains that contain both substitutions may revert with lesser probability because, in this case, both mutations are necessary.

  12. Genetic diversity of clinical and environmental Vibrio parahaemolyticus strains from the Pacific Northwest.

    PubMed

    Paranjpye, Rohinee; Hamel, Owen S; Stojanovski, Asta; Liermann, Martin

    2012-12-01

    Since 1997, cases of Vibrio parahaemolyticus-related gastroenteritis from the consumption of raw oysters harvested in Washington State have been higher than historical levels. These cases have shown little or no correlation with concentrations of potentially pathogenic V. parahaemolyticus (positive for the thermostable direct hemolysin gene, tdh) in oysters, although significant concentrations of tdh(+) V. parahaemolyticus strains were isolated from shellfish-growing areas in the Pacific Northwest (PNW). We compared clinical and environmental strains isolated from the PNW to those from other geographic regions within the United States and Asia for the presence of virulence-associated genes, including the thermostable direct hemolysin (tdh), the thermostable-related hemolysin (trh), urease (ureR), the pandemic group specific markers orf8 and toxRS, and genes encoding both type 3 secretion systems (T3SS1 and T3SS2). The majority of clinical strains from the PNW were positive for tdh, trh, and ureR genes, while a significant proportion of environmental isolates were tdh(+) but trh negative. Hierarchical clustering grouped the majority of these clinical isolates into a cluster distinct from that including the pandemic strain RIMD2210633, clinical isolates from other geographical regions, and tdh(+), trh-negative environmental isolates from the PNW. We detected T3SS2-related genes (T3SS2β) in environmental strains that were tdh and trh negative. The presence of significant concentrations of tdh(+), trh-negative environmental strains in the PNW that have not been responsible for illness and T3SS2β in tdh- and trh-negative strains emphasizes the diversity in this species and the need to identify additional virulence markers for this bacterium to improve risk assessment tools for the detection of this pathogen.

  13. Genetic characterization of clinical and environmental Vibrio parahaemolyticus from the Northeast USA reveals emerging resident and non-indigenous pathogen lineages.

    PubMed

    Xu, Feng; Ilyas, Saba; Hall, Jeffrey A; Jones, Stephen H; Cooper, Vaughn S; Whistler, Cheryl A

    2015-01-01

    Gastric infections caused by the environmentally transmitted pathogen, Vibrio parahaemolyticus, have increased over the last two decades, including in many parts of the United States (US). However, until recently, infections linked to shellfish from the cool northeastern US waters were rare. Cases have risen in the Northeast, consistent with changes in local V. parahaemolyticus populations toward greater abundance or a shift in constituent pathogens. We examined 94 clinical isolates from a period of increasing disease in the region and compared them to 200 environmental counterparts to identify resident and non-indigenous lineages and to gain insight into the emergence of pathogenic types. Genotyping and multi-locus sequence analysis (MLSA) of clinical isolates collected from 2010 to 2013 in Massachusetts, New Hampshire, and Maine revealed their polyphyletic nature. Although 80% of the clinical isolates harbored the trh hemolysin either alone or with tdh, and were urease positive, 14% harbored neither hemolysin exposing a limitation for these traits in pathogen detection. Resident sequence type (ST) 631 strains caused seven infections, and show a relatively recent history of recombination with other clinical and environmental lineages present in the region. ST34 and ST674 strains were each linked to a single infection and these strain types were also identified from the environment as isolates harboring hemolysin genes. Forty-two ST36 isolates were identified from the clinical collection, consistent with reports that this strain type caused a rise in regional infections starting in 2012. Whole-genome phylogenies that included three ST36 outbreak isolates traced to at least two local sources demonstrated that the US Atlantic coastal population of this strain type was indeed derived from the Pacific population. This study lays the foundation for understanding dynamics within natural populations associated with emergence and invasion of pathogenic strain types in the

  14. Genetic characterization of clinical and environmental Vibrio parahaemolyticus from the Northeast USA reveals emerging resident and non-indigenous pathogen lineages

    PubMed Central

    Xu, Feng; Ilyas, Saba; Hall, Jeffrey A.; Jones, Stephen H.; Cooper, Vaughn S.; Whistler, Cheryl A.

    2015-01-01

    Gastric infections caused by the environmentally transmitted pathogen, Vibrio parahaemolyticus, have increased over the last two decades, including in many parts of the United States (US). However, until recently, infections linked to shellfish from the cool northeastern US waters were rare. Cases have risen in the Northeast, consistent with changes in local V. parahaemolyticus populations toward greater abundance or a shift in constituent pathogens. We examined 94 clinical isolates from a period of increasing disease in the region and compared them to 200 environmental counterparts to identify resident and non-indigenous lineages and to gain insight into the emergence of pathogenic types. Genotyping and multi-locus sequence analysis (MLSA) of clinical isolates collected from 2010 to 2013 in Massachusetts, New Hampshire, and Maine revealed their polyphyletic nature. Although 80% of the clinical isolates harbored the trh hemolysin either alone or with tdh, and were urease positive, 14% harbored neither hemolysin exposing a limitation for these traits in pathogen detection. Resident sequence type (ST) 631 strains caused seven infections, and show a relatively recent history of recombination with other clinical and environmental lineages present in the region. ST34 and ST674 strains were each linked to a single infection and these strain types were also identified from the environment as isolates harboring hemolysin genes. Forty-two ST36 isolates were identified from the clinical collection, consistent with reports that this strain type caused a rise in regional infections starting in 2012. Whole-genome phylogenies that included three ST36 outbreak isolates traced to at least two local sources demonstrated that the US Atlantic coastal population of this strain type was indeed derived from the Pacific population. This study lays the foundation for understanding dynamics within natural populations associated with emergence and invasion of pathogenic strain types in the

  15. Investigation of whether the acute hemolysis associated with Rho(D) immune globulin intravenous (human) administration for treatment of immune thrombocytopenic purpura is consistent with the acute hemolytic transfusion reaction model

    PubMed Central

    Gaines, Ann Reed; Lee-Stroka, Hallie; Byrne, Karen; Scott, Dorothy E.; Uhl, Lynne; Lazarus, Ellen; Stroncek, David F.

    2012-01-01

    BACKGROUND Immune thrombocytopenic purpura and secondary thrombocytopenia patients treated with Rho(D) immune globulin intravenous (human; anti-D IGIV) have experienced acute hemolysis, which is inconsistent with the typical presentation of extravascular hemolysis—the presumed mechanism of action of anti-D IGIV. Although the mechanism of anti-D-IGIV–associated acute hemolysis has not been established, the onset, signs/symptoms, and complications appear consistent with the intravascular hemolysis of acute hemolytic transfusion reactions (AHTRs). In transfusion medicine, the red blood cell (RBC) antigen-antibody incompatibility(-ies) that precipitate AHTRs can be detected in vitro with compatibility testing. Under the premise that anti-D-IGIV–associated acute hemolysis results from RBC antigen-antibody–mediated complement activation, this study evaluated whether the incompatibility(-ies) could be detected in vitro with a hemolysin assay, which would support the AHTR model as the hemolytic mechanism. STUDY DESIGN AND METHODS Seven anti-D IGIV lots were tested to determine the RBC antibody identities in those lots, including four lots that had been implicated in acute hemolytic episodes. Hemolysin assays were performed that tested each of 73 RBC specimens against each lot, including the RBCs of one patient who had experienced acute hemolysis after anti-D IGIV administration. RESULTS Only two anti-D IGIV lots contained RBC antibodies beyond those expected. No hemolysis endpoint was observed in any of the hemolysin assays. CONCLUSION Although the findings did not support the AHTR model, the results are reported to contribute knowledge about the mechanism of anti-D-IGIV–associated acute hemolysis and to prompt continued investigation into cause(s), prediction, and prevention of this potentially serious adverse event. PMID:19220820

  16. [Avian Escherichia coli virulence factors associated with coli septicemia in broiler chickens].

    PubMed

    Ramirez Santoyo, R M; Moreno Sala, A; Almanza Marquez, Y

    2001-01-01

    In order to detect phenotypic characteristics associated with pathogenicity, 25 strains of Escherichia coli, isolated from clinical cases of colisepticemia in broiler chickens, were examined to determine the following properties: colicinogenicity, colicin V production, type 1 fimbriae, hemolysin expression and motility. Colicinogenicity occurred in 72% of the strains, 56% of all strains produced colicin V, 84% were positive for type 1 fimbriae and 80% were positive for motility. None of the strains had hemolytic activity; however, all of them, expressed at least one of the other characteristics studied. These results suggest that the diversity of phenotypes detected partially explain the multifactorial nature of avian colisepticemia.

  17. Bio-catalytic nanocompartments for in situ production of glucose-6-phosphate.

    PubMed

    Lomora, M; Gunkel-Grabole, G; Mantri, S; Palivan, C G

    2017-08-29

    Cells are sophisticated biocatalytic systems driving a complex network of biochemical reactions. A bioinspired strategy to create advanced functional systems is to design confined spaces for complex enzymatic reactions by using a combination of synthetic polymer assemblies and natural cell components. Here, we developed bio-catalytic nanocompartments that contain phosphoglucomutase protected by a biomimetic polymer membrane, which was permeabilized for reactants through insertion of an engineered α-hemolysin pore protein. These bio-catalytic nanocompartments serve for production of glucose-6-phosphate, and thus possess great potential for applications in an incomplete glycolysis, pentose phosphate pathway, or in plant biological reactions.

  18. Effect of solar irradiation on extracellular enzymes of Aeromonas proteolytica

    NASA Technical Reports Server (NTRS)

    Foster, B. G.

    1973-01-01

    The bacterium Aeromonas proteolytica was selected for studying the effects of solar irradiation on extracellular enzymes because it produces an endopeptidase that is capable of degrading proteins and a hemolysin that is active in lysing human erythrocytes. Possible alterations in the rate of enzyme production in response to the test conditions are currently underway and are not available for this preliminary report. Completed viability studies are indicative that little difference exists among the survival curves derived for cells exposed to various components of ultraviolet irradiation in space.

  19. Ion flux through membrane channels--an enhanced algorithm for the Poisson-Nernst-Planck model.

    PubMed

    Dyrka, Witold; Augousti, Andy T; Kotulska, Malgorzata

    2008-09-01

    A novel algorithmic scheme for numerical solution of the 3D Poisson-Nernst-Planck model is proposed. The algorithmic improvements are universal and independent of the detailed physical model. They include three major steps: an adjustable gradient-based step value, an adjustable relaxation coefficient, and an optimized segmentation of the modeled space. The enhanced algorithm significantly accelerates the speed of computation and reduces the computational demands. The theoretical model was tested on a regular artificial channel and validated on a real protein channel-alpha-hemolysin, proving its efficiency. (c) 2008 Wiley Periodicals, Inc.

  20. Recent advances in the study of the taxonomy, pathogenicity, and infectious syndromes associated with the genus Aeromonas.

    PubMed Central

    Janda, J M

    1991-01-01

    Over the past decade, the emergence of Aeromonas species as bona fide human pathogens and their probable role as etiologic agents of bacterial gastroenteritis have resulted in an explosion of scientific interest in the genus. Major accomplishments occurring in this field during that interval include a more refined taxonomy, identification of new cell-associated factors (surface layers, pili), and the molecular analysis of selected extracellular gene products that may play a critical role in pathogenesis (hemolysins, enterotoxins). This review provides an updated overview of recent systematic, clinical, and pathophysiologic advances and defines key areas of medical and scientific interest in which major questions remain unanswered. PMID:1747858

  1. The genome of Brucella melitensis.

    PubMed

    DelVecchio, Vito G; Kapatral, Vinayak; Elzer, Philip; Patra, Guy; Mujer, Cesar V

    2002-12-20

    The genome of Brucella melitensis strain 16M was sequenced and contained 3,294,931 bp distributed over two circular chromosomes. Chromosome I was composed of 2,117,144 bp and chromosome II has 1,177,787 bp. A total of 3,198 ORFs were predicted. The origins of replication of the chromosomes are similar to each other and to those of other alpha-proteobacteria. Housekeeping genes such as those that encode for DNA replication, protein synthesis, core metabolism, and cell-wall biosynthesis were found on both chromosomes. Genes encoding adhesins, invasins, and hemolysins were also identified.

  2. Driven DNA Transport into an Asymmetric Nanometer-Scale Pore

    NASA Astrophysics Data System (ADS)

    Henrickson, Sarah E.; Misakian, Martin; Robertson, Baldwin; Kasianowicz, John J.

    2000-10-01

    To understand the mechanism by which individual DNA molecules enter nanometer-scale pores, we studied the concentration and voltage dependence of polynucleotide-induced ionic-current blockades of a single α-hemolysin ion channel. We find that the blockade frequency is proportional to the polymer concentration, that it increases exponentially with the applied potential, and that DNA enters the pore more readily through the entrance that has the larger vestibule. We also measure the minimum value of the electrical potential that confines a modified polymer inside the pore against random diffusion and repulsive forces.

  3. Atypical staphylococcal mastitis in a dairy herd.

    PubMed

    Thawley, D G; Marshall, R B; Cullinane, L; Markham, J

    1977-09-01

    A herd of cattle with a history of increased prevalence of clinical and nonclinical mastitis was investigated. Bacteriologic analysis of milk samples indicated approximately 50% of the herd was producing milk containing coagulase-positive staphylococci. Of these staphylococcal isolates, 55% had characteristics consistent with those of human strains of staphylococci, based on hemolysin production and phage patterns. Human beings in contact with the herd were nasal carriers of these staphylococci, which produced a granulartype coagulase reaction in bovine plasma, rather than the usually expected clot-type reaction. In the herd, the staphylococci caused mainly nonclinical mastitis, which was largely unresponsive to antibiotic therapy.

  4. Effects of streptomycin and novobiocin on Staphylococcus aureus gene expression.

    PubMed Central

    Nordström, K; Lindberg, M

    1978-01-01

    Streptomycin and novobiocin induced production of protein A and inhibited production of alpha- and beta-hemolysins in mutants of Staphylococcus aureus strains RN450 and RN1 resistant to these antibiotics. Streptomycin, but not novobiocin, also inhibited propagation of bacteriophages of serological group B, whereas phages of group A were unaffected. Streptomycin had to be present at adsorption of the phage, and 10 mM CACL2 reversed the inhibitory effect. Lysogenization and competence induction occurred in the presence of streptomycin, suggesting that some early phage genes were expressed. PMID:627534

  5. Effect of solar irradiation on extracellular enzymes of Aeromonas proteolytica

    NASA Technical Reports Server (NTRS)

    Foster, B. G.

    1973-01-01

    The bacterium Aeromonas proteolytica was selected for studying the effects of solar irradiation on extracellular enzymes because it produces an endopeptidase that is capable of degrading proteins and a hemolysin that is active in lysing human erythrocytes. Possible alterations in the rate of enzyme production in response to the test conditions are currently underway and are not available for this preliminary report. Completed viability studies are indicative that little difference exists among the survival curves derived for cells exposed to various components of ultraviolet irradiation in space.

  6. Presence of pathogenic Vibrio parahaemolyticus in waters and seafood from the Tunisian Sea.

    PubMed

    Khouadja, Sadok; Suffredini, Elisabetta; Spagnoletti, Matteo; Croci, Luciana; Colombo, Mauro M; Amina, Bakhrouf

    2013-08-01

    The occurrence of the hemolysin genes, tdh and trh, in Vibrio parahaemolyticus strains isolated from environmental samples collected from various exported seafood products comprising of fishes and shellfish (Mytilus edulis and Crassostrea gigas) or seawater, was studied. Eight strains were confirmed as V. parahaemolyticus by toxR -based polymerase chain reaction and only one strain out of these 8 strains was positive for tdh and trh genes. Toxigenic V. parahaemolyticus isolates are present in Tunisian coastal areas and they may also be present in Tunisian exported seafood products.

  7. Evaluation of nonisotopic DNA hybridization methods for detection of the tdh gene of vibrio parahaemolyticus.

    PubMed

    McCarthy, S A; DePaola, A; Kaysner, C A; Hill, W E; Cook, D W

    2000-12-01

    Production of the thermostable direct hemolysin (TDH) by Vibrio parahaemolyticus is associated with pathogenicity of the organism and is encoded by the tdh gene. The timely resolution of seafood-associated outbreaks requires rapid and accurate detection of pathogenic V. parahaemolyticus. The specificity of alkaline phosphatase- and digoxigenin-labeled tdh gene probes was evaluated against 61 strains of V. parahaemolyticus (including isolates from recent outbreaks involving oysters from the Pacific Northwest, Texas, and New York), 85 strains of other vibrios, and 7 strains of non-vibrio species from clinical and environmental sources. The probes were specific for detection of the V. parahaemolyticus tdh gene.

  8. Synergistic hemolytic reactions between staphylococci and Micrococcus lylae.

    PubMed

    Lämmler, C; Brückler, J

    1989-06-01

    The primary culture of a clinical specimen obtained from a dog with an acute squamous eczema revealed three different bacterial species which demonstrated synergistic hemolytic activities on sheep blood agar plates. The three cultures were identified as beta-hemolytic Staphylococcus intermedius, as a coagulase-negative staphylococcal species, producing a delta-like hemolysin and as non-hemolytic Micrococcus lylae. The coagulase-negative staphylococcal species as well as M. lylae produced synergistically with beta-hemolytic S. intermedius zones of complete hemolysis. The occurrence of three different synergistically active bacterial species from one clinical specimen might be of clinical significance.

  9. Uropathogenic Escherichia coli-Associated Exotoxins.

    PubMed

    Welch, Rodney A

    2016-06-01

    Escherichia coli are a common cause of infectious disease outside of the gastrointestinal tract. Several independently evolved E. coli clades are common causes of urinary tract and bloodstream infections. There is ample epidemiological and in vitro evidence that several different protein toxins common to many, but not all, of these strains are likely to aid the colonization and immune-evasion ability of these bacteria. This review discusses our current knowledge and areas of ignorance concerning the contribution of the hemolysin; cytotoxic-necrotizing factor-1; and the autotransporters, Sat, Pic, and Vat, to extraintestinal human disease.

  10. Properties of an Arcanobacterium haemolyticum strain isolated from a donkey.

    PubMed

    Sammra, Osama; Balbutskaya, Anna; Nagib, Samy; Alber, Jörg; Lämmler, Christoph; Abdulmawjood, Amir; Timke, Markus; Kostrzewa, Markus; Prenger-Berninghoff, Ellen

    2014-01-01

    The present study was designed to characterize phenotypically and genotypically an Arcanobacterium haemolyticum strain (A. haemolyticum P646) isolated from a purulent nasal discharge of a donkey. A. haemolyticum P646 showed, compared to sheep blood, an enhanced hemolytic reaction on rabbit blood agar, a synergistic CAMP-like reaction with Streptococcus agalactiae and Rhodococcus equi as indicator strains, a reverse CAMP reaction in the zone of Staphylococcus aureus beta-hemolysin and the typical biochemical properties of this species. The species identity could be confirmed by MALDI-TOF MS analysis, by sequencing the 16S rDNA and glyceraldehyde-3-phosphate dehydrogenase encoding gene gap and by amplification of A. haemolyticum specific parts of 16S-23S rDNA intergenic spacer region and 23S rDNA. A. haemolyticum P646 and the reference strain A. haemolyticum DSM 20595 were further characterized by amplification of the putative virulence genes encoding arcanolysin, phospholipase D, hemolysin A, CAMP factor family protein, a collagen binding protein and two neuraminidases which were present for A. haemolyticum DSM 20595. A. haemolyticum P646 showed a comparable gene spectrum but was negative for the genes encoding collagen binding protein and neuraminidase H. To our knowledge, the present study is the first phenotypic and genotypic characterization of an A. haemolyticum strain isolated from a donkey.

  11. Bacillus cereus and related species.

    PubMed Central

    Drobniewski, F A

    1993-01-01

    Bacillus cereus is a gram-positive aerobic or facultatively anaerobic spore-forming rod. It is a cause of food poisoning, which is frequently associated with the consumption of rice-based dishes. The organism produces an emetic or diarrheal syndrome induced by an emetic toxin and enterotoxin, respectively. Other toxins are produced during growth, including phospholipases, proteases, and hemolysins, one of which, cereolysin, is a thiol-activated hemolysin. These toxins may contribute to the pathogenicity of B. cereus in nongastrointestinal disease. B. cereus isolated from clinical material other than feces or vomitus was commonly dismissed as a contaminant, but increasingly it is being recognized as a species with pathogenic potential. It is now recognized as an infrequent cause of serious nongastrointestinal infection, particularly in drug addicts, the immunosuppressed, neonates, and postsurgical patients, especially when prosthetic implants such as ventricular shunts are inserted. Ocular infections are the commonest types of severe infection, including endophthalmitis, panophthalmitis, and keratitis, usually with the characteristic formation of corneal ring abscesses. Even with prompt surgical and antimicrobial agent treatment, enucleation of the eye and blindness are common sequelae. Septicemia, meningitis, endocarditis, osteomyelitis, and surgical and traumatic wound infections are other manifestations of severe disease. B. cereus produces beta-lactamases, unlike Bacillus anthracis, and so is resistant to beta-lactam antibiotics; it is usually susceptible to treatment with clindamycin, vancomycin, gentamicin, chloramphenicol, and erythromycin. Simultaneous therapy via multiple routes may be required. PMID:8269390

  12. Effect of Tyrosol and Farnesol on Virulence and Antibiotic Resistance of Clinical Isolates of Pseudomonas aeruginosa

    PubMed Central

    Hassan Abdel-Rhman, Shaymaa; Mostafa El-Mahdy, Areej; El-Mowafy, Mohammed

    2015-01-01

    Mixed-species biofilms could create a protected environment that allows for survival to external antimicrobials and allows different bacterial-fungal interactions. Pseudomonas aeruginosa-Candida albicans coexistence is an example for such mixed-species community. Numerous reports demonstrated how P. aeruginosa or its metabolites could influence the growth, morphogenesis, and virulence of C. albicans. In this study, we investigated how the C. albicans quorum sensing compounds, tyrosol and farnesol, might affect Egyptian clinical isolates of P. aeruginosa regarding growth, antibiotic sensitivity, and virulence. We could demonstrate that tyrosol possesses an antibacterial activity against P. aeruginosa (10 µM inhibited more than 50% of growth after 16 h cultivation). Moreover, we could show for the first time that tyrosol strongly inhibits the production of the virulence factors hemolysin and protease in P. aeruginosa, whereas farnesol inhibits, to lower extent, hemolysin production in this bacterial pathogen. Cumulatively, tyrosol is expected to strongly affect P. aeruginosa in mixed microbial biofilm. PMID:26844228

  13. Allicin from garlic inhibits the biofilm formation and urease activity of Proteus mirabilis in vitro.

    PubMed

    Ranjbar-Omid, Mahsa; Arzanlou, Mohsen; Amani, Mojtaba; Shokri Al-Hashem, Seyyedeh Khadijeh; Amir Mozafari, Nour; Peeri Doghaheh, Hadi

    2015-05-01

    Several virulence factors contribute to the pathogenesis of Proteus mirabilis. This study determined the inhibitory effects of allicin on urease, hemolysin and biofilm of P. mirabilis ATCC 12453 and its antimicrobial activity against 20 clinical isolates of P. mirabilis. Allicin did not inhibit hemolysin, whereas it did inhibit relative urease activity in both pre-lysed (half-maximum inhibitory concentration, IC50 = 4.15 μg) and intact cells (IC50 = 21 μg) in a concentration-dependent manner. Allicin at sub-minimum inhibitory concentrations (2-32 μg mL(-1)) showed no significant effects on the growth of the bacteria (P > 0.05), but it reduced biofilm development in a concentration-dependent manner (P < 0.001). A higher concentration of allicin was needed to inhibit the established biofilms. Using the microdilution technique, the MIC90 and MBC90 values of allicin against P. mirabilis isolates were determined to be 128 and 512 μg mL(-1), respectively. The results suggest that allicin could have clinical applications in controlling P. mirabilis infections.

  14. A proteomic analysis of the iron response of Photobacterium damselae subsp. damselae reveals metabolic adaptations to iron levels changes and novel potential virulence factors.

    PubMed

    Puentes, Beatriz; Balado, Miguel; Bermúdez-Crespo, José; Osorio, Carlos R; Lemos, Manuel L

    2017-03-01

    Photobacterium damselae subsp. damselae (Pdd) is a marine bacterium that can infect numerous species of marine fish as well as other species including humans. Low iron availability is one of the signs that bacterial pathogens can detect in order to begin colonizing their host, and the reduction of iron levels is a nonspecific host defense strategy that prevents bacterial proliferation. In this work a proteomic approach was used to study the gene expression adaptations of a Pdd strain in response to iron availability. A comparative analysis of induced proteins in both high- and low-iron conditions showed profound cellular metabolic adaptations that result, for instance, in amino acid requirement. It also provided important information about the changes that occur in the energetic metabolism induced by the surrounding iron levels, allowing for the identification of novel potential virulence factors. Among others, genes involved in the synthesis and transport of a vibrioferrin-like siderophore were identified for the first time. In addition to plasmid pPHDD1-encoded Dly and HlyA hemolysins, a pPHDD1-borne operon, which may encode a transferrin receptor, was also found. This operon identification suggests that this virulence plasmid could encode so-far unknown additional virulence factors other than hemolysins. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Bacillus cereus and related species.

    PubMed

    Drobniewski, F A

    1993-10-01

    Bacillus cereus is a gram-positive aerobic or facultatively anaerobic spore-forming rod. It is a cause of food poisoning, which is frequently associated with the consumption of rice-based dishes. The organism produces an emetic or diarrheal syndrome induced by an emetic toxin and enterotoxin, respectively. Other toxins are produced during growth, including phospholipases, proteases, and hemolysins, one of which, cereolysin, is a thiol-activated hemolysin. These toxins may contribute to the pathogenicity of B. cereus in nongastrointestinal disease. B. cereus isolated from clinical material other than feces or vomitus was commonly dismissed as a contaminant, but increasingly it is being recognized as a species with pathogenic potential. It is now recognized as an infrequent cause of serious nongastrointestinal infection, particularly in drug addicts, the immunosuppressed, neonates, and postsurgical patients, especially when prosthetic implants such as ventricular shunts are inserted. Ocular infections are the commonest types of severe infection, including endophthalmitis, panophthalmitis, and keratitis, usually with the characteristic formation of corneal ring abscesses. Even with prompt surgical and antimicrobial agent treatment, enucleation of the eye and blindness are common sequelae. Septicemia, meningitis, endocarditis, osteomyelitis, and surgical and traumatic wound infections are other manifestations of severe disease. B. cereus produces beta-lactamases, unlike Bacillus anthracis, and so is resistant to beta-lactam antibiotics; it is usually susceptible to treatment with clindamycin, vancomycin, gentamicin, chloramphenicol, and erythromycin. Simultaneous therapy via multiple routes may be required.

  16. A hemolytic pigment of Group B Streptococcus allows bacterial penetration of human placenta.

    PubMed

    Whidbey, Christopher; Harrell, Maria Isabel; Burnside, Kellie; Ngo, Lisa; Becraft, Alexis K; Iyer, Lakshminarayan M; Aravind, L; Hitti, Jane; Waldorf, Kristina M Adams; Rajagopal, Lakshmi

    2013-06-03

    Microbial infection of the amniotic fluid is a significant cause of fetal injury, preterm birth, and newborn infections. Group B Streptococcus (GBS) is an important human bacterial pathogen associated with preterm birth, fetal injury, and neonatal mortality. Although GBS has been isolated from amniotic fluid of women in preterm labor, mechanisms of in utero infection remain unknown. Previous studies indicated that GBS are unable to invade human amniotic epithelial cells (hAECs), which represent the last barrier to the amniotic cavity and fetus. We show that GBS invades hAECs and strains lacking the hemolysin repressor CovR/S accelerate amniotic barrier failure and penetrate chorioamniotic membranes in a hemolysin-dependent manner. Clinical GBS isolates obtained from women in preterm labor are hyperhemolytic and some are associated with covR/S mutations. We demonstrate for the first time that hemolytic and cytolytic activity of GBS is due to the ornithine rhamnolipid pigment and not due to a pore-forming protein toxin. Our studies emphasize the importance of the hemolytic GBS pigment in ascending infection and fetal injury.

  17. PARTIAL PURIFICATION AND PROPERTIES OF TWO PHOSPHOLIPASES OF BACILLUS CEREUS

    PubMed Central

    Slein, Milton W.; Logan, Gerald F.

    1963-01-01

    Slein, Milton W. (U.S. Army Chemical Corps Biological Laboratories, Fort Detrick, Frederick, Md.) and Gerald F. Logan, Jr. Partial purification and properties of two phospholipases of Bacillus cereus. J. Bacteriol. 85:369–381. 1963.—Culture filtrates of Bacillus cereus contain a phosphatasemia factor (PF) that markedly increases blood alkaline phosphatase after intravenous injection into animals, and that releases alkaline phosphatase from epiphyseal bone slices in vitro. Fractionation of culture filtrates of B. cereus with N,N′-diethyl-aminoethyl cellulose results in the separation of two phospholipases, one that has PF activity and one that inhibits PF activity in vitro. Growth of shaken cultures favors accumulation of the inhibitor, whereas static cultures yield more PF. Lethality for mice and hemolysin activity do not appear to be associated with the phospholipase that inhibits PF. The relationship of the lethal and hemolysin factors to the phospholipase that produces phosphatasemia is not clear. The effects of heat, trypsin, lecithin, and antiserum on the phospholipases are reported. The intravenous injection of relatively large amounts of the purified PF resulted in the depletion of bone alkaline phosphatase. PMID:13989217

  18. Droplet-based lipid bilayer system integrated with microfluidic channels for solution exchange.

    PubMed

    Tsuji, Yutaro; Kawano, Ryuji; Osaki, Toshihisa; Kamiya, Koki; Miki, Norihisa; Takeuchi, Shoji

    2013-04-21

    This paper proposes a solution exchange of a droplet-based lipid bilayer system, in which the inner solution of a droplet is replaced for the purpose of efficient ion channel analyses. In our previous report, we successfully recorded the channel conductance of alpha-hemolysin in a bilayer lipid membrane using a droplet contact method that can create a spontaneous lipid bilayer at the interface of contacting droplets; this method is widely used as highly efficient method for preparing planar lipid membranes. When only pipetting droplets of the solution, this method is highly efficient for preparing lipid membranes. However, the drawback of droplet-based systems is their inability to exchange the solution within the droplets. To study the effect of inhibitors and promoters of ion channels in drug discovery, it would be beneficial to conduct a solution exchange of droplets to introduce membrane proteins and to apply or wash-out the chemicals. In this study, we propose a droplet contact method that allows for the solution exchange of droplets via microfluidic channels. We experimentally and numerically investigated the bilayer stability with respect to exchanging flow rates, and then demonstrated a binding assay of an alpha-hemolysin using one of its blockers. The solution exchange in this system was conducted in less than 20 s without rupturing the membrane. We believe that the proposed system will enhance the efficiency of ion channel analyses.

  19. Rapid detection and E-test antimicrobial susceptibility testing of Vibrio parahaemolyticus isolated from seafood and environmental sources in Malaysia.

    PubMed

    Al-Othrubi, Saleh M; Hanafiah, Alfizah; Radu, Son; Neoh, Humin; Jamal, Rahaman

    2011-04-01

    To find out the prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus in seafoods and environmental sources. The study was carried out at the Center of Excellence for Food Safety Research, University Putra Malaysia; Universiti Kebangsaan Malaysia; Medical Molecular Biology Institute; and University Kebansaan Malaysia Hospital, Malaysia between January 2006 and August 2008. One hundred and forty-four isolates from 400 samples of seafood (122 isolates) and seawater sources (22 isolates) were investigated for the presence of thermostable direct hemolysin (tdh+) and TDH-related hemolysin (trh+) genes using the standard methods. The E-test method was used to test the antimicrobial susceptibility. The study indicates low occurrence of tdh+ (0.69%) and trh+ isolates (8.3%). None of the isolates tested posses both virulence genes. High sensitivity was observed against tetracycline (98%). The mean minimum inhibitory concentration (MIC) of the isolates toward ampicillin increased from 4 ug/ml in 2004 to 24 ug/ml in 2007. The current study demonstrates a low occurrence of pathogenic Vibrio parahaemolyticus in the marine environment and seafood. Nonetheless, the potential risk of vibrio infection due to consumption of Vibrio parahaemolyticus contaminated seafood in Malaysia should not be neglected.

  20. Evaluation of Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 as probiotics by using a gastro-intestinal model with infant milk formulations as substrate.

    PubMed

    Botes, Marelize; van Reenen, Carol A; Dicks, Leon M T

    2008-12-10

    Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 produce bacteriocins with activity against a number of Gram-positive and Gram-negative bacteria. Both strains survived intestinal conditions simulated in a gastro-intestinal model (GIM) with infant milk formulations as substrate and prevented the growth of Listeria monocytogenes ScottA. The strains are inhibited by the antibiotics amoxicillin, cefadroxil, roxithromycin and doxycycline, anti-inflammatory medicaments containing meloxicam, ibuprofen and sodium diklofenak, and analgesics containing paracetamol, codeine phosphate and promethazine. Strain 423 is sensitive to vancomycin and does not contain genes encoding gelatinase, cell aggregation substance (AS), adhesion to collagen (Ace), enterococcus surface protein (Esp), Enterococcus faecalis endocarditis antigen (EfaAfs), cytolysin and non-cytolysin (beta-hemolysin III). Genes encoding AS, cytolysin and non-cytolysin (beta-hemolysin III) were amplified from the genome of strain ST4SA. Survival of strains ST4SA and 423 improved when used as combined cultures in the GIM and compared well with the survival of commercially available probiotics subjected to the same conditions.

  1. Characterization of Vibrio parahaemolyticus isolated from oysters in Korea: Resistance to various antibiotics and prevalence of virulence genes.

    PubMed

    Kang, Chang-Ho; Shin, YuJin; Jang, SeokCheol; Yu, HongSik; Kim, SuKyung; An, Sera; Park, Kunbawui; So, Jae-Seong

    2017-05-15

    Vibrio parahaemolyticus, found frequently in oysters, is the most prevalent gastroenteritis-causing pathogen in Korea and in several other Asian countries. This study monitored changes in the environmental parameters and occurrence of V. parahaemolyticus in oyster aquaculture sites. Of the 44 presumed V. parahaemolyticus isolates obtained, when tested against 16 antibiotics, 90.9, 86.4, and 75.0% of the 44 isolates exhibited resistance to vancomycin, ampicillin, and streptomycin, respectively. PCR analysis for the presence of the toxR gene confirmed 31 of the 44 isolates as being positive V. parahaemolyticus strains. The toxR positive isolates were tested for the presence of thermostable direct hemolysin (tdh) and tdh-related hemolysin (trh) virulence genes. Only 9.1% toxR positive isolate exhibit the trh gene and none of the isolates were tested positive for tdh. The occurrence of multi drug resistance strains in the environment could be an indication of excessive usage of antibiotics in agriculture and aquaculture fields. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Quantitative Analysis of the Nanopore Translocation Dynamics of Simple Structured Polynucleotides

    PubMed Central

    Schink, Severin; Renner, Stephan; Alim, Karen; Arnaut, Vera; Simmel, Friedrich C.; Gerland, Ulrich

    2012-01-01

    Nanopore translocation experiments are increasingly applied to probe the secondary structures of RNA and DNA molecules. Here, we report two vital steps toward establishing nanopore translocation as a tool for the systematic and quantitative analysis of polynucleotide folding: 1), Using α-hemolysin pores and a diverse set of different DNA hairpins, we demonstrate that backward nanopore force spectroscopy is particularly well suited for quantitative analysis. In contrast to forward translocation from the vestibule side of the pore, backward translocation times do not appear to be significantly affected by pore-DNA interactions. 2), We develop and verify experimentally a versatile mesoscopic theoretical framework for the quantitative analysis of translocation experiments with structured polynucleotides. The underlying model is based on sequence-dependent free energy landscapes constructed using the known thermodynamic parameters for polynucleotide basepairing. This approach limits the adjustable parameters to a small set of sequence-independent parameters. After parameter calibration, the theoretical model predicts the translocation dynamics of new sequences. These predictions can be leveraged to generate a baseline expectation even for more complicated structures where the assumptions underlying the one-dimensional free energy landscape may no longer be satisfied. Taken together, backward translocation through α-hemolysin pores combined with mesoscopic theoretical modeling is a promising approach for label-free single-molecule analysis of DNA and RNA folding. PMID:22225801

  3. An improved method for detection of Edwardsiella tarda by loop-mediated isothermal amplification by targeting the EsrB gene

    NASA Astrophysics Data System (ADS)

    Xie, Guosi; Zhang, Qingli; Han, Nana; Shi, Chengyin; Wang, Xiuhua; Liu, Qinghui; Huang, Jie

    2012-07-01

    Edwardsiella tarda is a major pathogen in aquatic environments that can cause heavy economic losses. An improved method for quick and accurate detection of E. tarda by loop-mediated isothermal amplification (LAMP) with two additional loop primers was developed by targeting the EsrB gene ( EsrB — LAMP). In this method, the Mg2+ concentration, reaction temperature, and reaction time were optimized to 8 mmol/L, 61°C, and 40 min, respectively. The detection limit with the EsrB gene was as low as 10 copies, which is 100 times more sensitive than that of conventional polymerase chain reaction (PCR). The EsrB-LAMP assay was shown more sensitive and rapid than previously reported LAMP assays targeting the hemolysin gene ( hemolysin -LAMP) for detection of E. tarda. The EsrB -LAMP was also highly specific to E. tarda and had no cross-reaction with 13 other strains of bacteria. The assay can be carried out in a simple heating device and the EsrB-LAMP products can be visually detected by adding fluorescent dye to the reaction mixture. Taken together, the improved EsrB-LAMP diagnostic protocol has the potential for detection of E. tarda from indoor and outdoor samples.

  4. Temperature-sensitive mutants of Actinobacillus pleuropneumoniae induce protection in mice.

    PubMed Central

    Byrd, W; Hooke, A M

    1997-01-01

    Temperature-sensitive mutants of Actinobacillus pleuropneumoniae 4074, serotype 1, were isolated after treatment with nitrosoguanidine and enrichment with penicillin and D-cycloserine. Of the four temperature-sensitive mutants evaluated in mice, one (A-1) had a tight phenotype (i.e., it ceased replication immediately after transfer to the nonpermissive temperature [37 degrees C]) and three (1-2, 4-1, and 12-1) were coasters that continued replication for up to three generations after transfer to 37 degrees C. The reversion frequencies ranged from 10(-6) to 10(-9), and cutoff temperatures ranged from 33 to 35 degrees C. No major changes were detected in the biochemical profiles; agglutination reactions; electrophoretic profiles of the lipopolysaccharides, outer membrane proteins, and hemolysin proteins; hemolytic titers; or CAMP factor reactions of the mutants and the wild-type bacteria. Groups of 3- to 5-week-old, female ICR mice were immunized intranasally with three doses of 3.5 x 10(6) CFU of the mutants over 3 weeks and subsequently challenged intranasally with 5 50% lethal doses of the parental wild-type. Protection was induced by both the tight and the coaster mutants, with the 4-1 and 12-1 coasters eliciting greater protection (67 and 82%, respectively) than that induced by the A-1 tight mutant (57%). Intranasal immunization with both phenotypes induced serum antibody responses against the surface antigens and the hemolysin protein. PMID:9169752

  5. Delivery of a viral antigen to the class I processing and presentation pathway by Listeria monocytogenes

    PubMed Central

    1994-01-01

    Listeria monocytogenes is a facultative intracellular pathogen that grows in the cytoplasm of infected host cells. We examined the capacity of L. monocytogenes to introduce influenza nucleoprotein (NP) into the class I pathway of antigen presentation both in vitro and in vivo. Recombinant L. monocytogenes secreting a fusion of listeriolysin O and NP (LLO-NP) targeted infected cells for lysis by NP-specific class I- restricted cytotoxic T cells. Antigen presentation occurred in the context of three different class I haplotypes in vitro. A hemolysin- negative L. monocytogenes strain expressing LLO-NP was able to present in a class II-restricted manner. However, it failed to target infected cells for lysis by CD8+ T cells, indicating that hemolysin-dependent bacterial escape from the vacuole is necessary for class I presentation in vitro. Immunization of mice with a recombinant L. monocytogenes strain that stably expressed and secreted LLO-NP induced NP-specific CD8+ cytotoxic T lymphocytes. These studies have implications for the use of L. monocytogenes to deliver potentially any antigen to the class I pathway in vivo. PMID:7964496

  6. Effects of Chinese herbal recipes on immunity in immunosuppressive mice.

    PubMed

    Bao, Yongzhan; Jing, Cui; Shi, Wanyu

    2012-01-01

    The Chinese herbal formula consisting of Astragalus membranaceus, Epimedium brevicornum, Paeoniae Alba Radix and Radix Ophiopogonis in proper proportions were adopted in order to investigate the immunoenhancing properties of the herbal formula. Fifty ICR mice were randomly divided into 5 groups (NS- NS+Hy-L+Hy-M+Hy-H+Hy ). The mice in hydrocortisone (Hy) groups were injected with hydrocortisone i.p. to induce the immunosuppressive condition. The mice in group NS were administered with normal saline as controls. The mice in groups NS+Hy-L+Hy-M+Hy-H+Hy were administered with normal saline, low, moderate and high dose of the herbal prescription respectively by gavage for 6 days. The level of serum hemolysin, the function of antibody function cell-AFC-and CD4⁺/CD8⁺ T cell ratio were measured at the end of experiments. The results showed that the level of serum hemolysin, the function of AFC and CD4⁺/CD8⁺ T cell ratio in L+Hy-M+Hy-H+Hy groups increased significantly compared with those in NS or NS+Hy groups. These results indicate that Chinese herbal medicine prescription can enhance humoral immunity and cellular immune function of the immunosuppressive mouse.

  7. Virulence patterns and long-range genetic mapping of extraintestinal Escherichia coli K1, K5, and K100 isolates: use of pulsed-field gel electrophoresis.

    PubMed Central

    Ott, M; Bender, L; Blum, G; Schmittroth, M; Achtman, M; Tschäpe, H; Hacker, J

    1991-01-01

    A total of 127 extraintestinal Escherichia coli strains of the capsule serotypes K1, K5, and K100 from human and animal sources were analyzed for DNA sequences specific for the genes for various adhesins (P fimbriae [pap] and P-related sequences [prs], S fimbriae [sfa]/F1C fimbriae [foc], and type I fimbriae [fim]), aerobactin (aer), and hemolysin (hly). The expression of corresponding virulence factors was also tested. Twenty-four selected strains were analyzed by long-range DNA mapping to evaluate their genetic relationships. DNA sequences for the adhesins were often found in strains not expressing them, while strains with hemolysin and aerobactin genes usually did express them. Different isolates of the same serotype often expressed different virulence patterns. The use of virulence-associated gene probes for Southern hybridization with genomic DNA fragments separated by pulsed-field gel electrophoresis revealed that a highly heterogeneous restriction fragment length and hybridization pattern existed even within strains of the same serotype. Long-range DNA mapping is therefore useful for the evaluation of genetic relatedness among individual isolates and facilitates the performance of precise molecular epidemiology. Images PMID:1677349

  8. Staphylococci outside the hospital. Staphylococcus aureus in sheep.

    PubMed

    Hájek, V; Marsálek, E

    1976-03-01

    Biochemical properties were studied in Staph. aureus strains obtained from the anterior nares of healthy sheep and from the udders of ewes suffering from purulent mastitis. Of the total number of 84 isolated staphylococcal strains 75 (89.3%) were classified as the C biotype. These undoubtedly sheep-adapted staphylococci produced pigment and beta hemolysin, they were growing on crystal violet agar as the negative type in violet colonies lacking both fibrinolysin and alpha hemolysin. All of them coagulated human plasma within one hour after inoculation. In bovine plasma 27 strains (36%) formed the coagulum within 3 hours, 16 (21.3%) within 24 hours, and the remaining 32 strains (42.7%) only within 72 hours. Mannitol was fermented after five days only by 33 cultures (44%). The staphylococci were sensitive to the applied antibiotics without exception. All these sheep-adapted staphylococci had analogous biochemical features to the earlier discussed staphylococcal strains obtained by the authors from the nasal cavities of cattle. Next two strains were denoted as deficit variants of the C biotype because of their lack of pigment. Of quite a different character were 3 strains (3.6%) of the A biotype and one strain identified as the E biotype. The former were presumably transferred to sheep from man while the latter from a dog. The remaining 3 strains could not be subdivided according to the classificatory criteria used here.

  9. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin

    PubMed Central

    Masin, Jiri; Osickova, Adriana; Sukova, Anna; Fiser, Radovan; Halada, Petr; Bumba, Ladislav; Linhartova, Irena; Osicka, Radim; Sebo, Peter

    2016-01-01

    The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA) that plays a crucial role in host respiratory tract colonization. CyaA targets CR3-expressing cells and disrupts their bactericidal functions by delivering into their cytosol an adenylate cyclase enzyme that converts intracellular ATP to cAMP. In parallel, the hydrophobic domain of CyaA forms cation-selective pores that permeabilize cell membrane. The invasive AC and pore-forming domains of CyaA are linked by a segment that is unique in the RTX cytolysin family. We used mass spectrometry and circular dichroism to show that the linker segment forms α-helical structures that penetrate into lipid bilayer. Replacement of the positively charged arginine residues, proposed to be involved in target membrane destabilization by the linker segment, reduced the capacity of the toxin to translocate the AC domain across cell membrane. Substitutions of negatively charged residues then revealed that two clusters of negative charges within the linker segment control the size and the propensity of CyaA pore formation, thereby restricting the cell-permeabilizing capacity of CyaA. The ‘AC to Hly-linking segment’ thus appears to account for the smaller size and modest cell-permeabilizing capacity of CyaA pores, as compared to typical RTX hemolysins. PMID:27581058

  10. Susceptibility Pattern of Enterococci at Tertiary Care Hospital

    PubMed Central

    Sachan, Sadhana; Rawat, Vinita; Umesh; Kumar, Mukesh; Kaur, Tripta; Chaturvedi, Preeti

    2017-01-01

    The study was aimed to characterize enterococci from various clinical specimens, to determine the antimicrobial susceptibility pattern, and to explore the association between virulence factors and antimicrobial resistance. A total of 283 clinical enterococcal isolates were speciated and subjected to antimicrobial susceptibility testing. Virulence factors (hemolysin, gelatinase, and biofilm production) were detected phenotypically. Of the 283 enterococci isolated, 12 species were identified; predominant species were Enterococcus faecalis (82.33%). High-level gentamicin (HLG) and vancomycin resistance were observed among 55.57% and 6.01% of enteroccal isolates, respectively. All vancomycin-resistant enterococci (VREs) were E. faecalis and had VanA phenotype and genotype. Hemolysin, gelatinase, and biofilm production were seen in 15.90%, 12.36%, and 13.43% of enterococcal isolates, respectively. Vancomycin and HLG resistance were observed in 0.35% and 61.86% of the enterococcal isolates producing virulence factors. Isolates resistant to HLG but susceptible to vancomycin expressed more virulent factors. Further research is required to reveal the complex interplay between drug resistance and virulence factors. PMID:28584459

  11. Salicylic acid attenuates virulence in endovascular infections by targeting global regulatory pathways in Staphylococcus aureus

    PubMed Central

    Kupferwasser, Leon Iri; Yeaman, Michael R.; Nast, Cynthia C.; Kupferwasser, Deborah; Xiong, Yan-Qiong; Palma, Marco; Cheung, Ambrose L.; Bayer, Arnold S.

    2003-01-01

    Aspirin has been previously shown to reduce the in vivo virulence of Staphylococcus aureus in experimental endocarditis, through antiplatelet and antimicrobial mechanisms. In the present study, salicylic acid, the major in vivo metabolite of aspirin, mitigated two important virulence phenotypes in both clinical and laboratory S. aureus strains: α-hemolysin secretion and fibronectin binding in vitro. In addition, salicylic acid reduced the expression of the α-hemolysin gene promoter, hla, and the fibronectin gene promoter, fnbA. Transcriptional analysis, fluorometry, and flow cytometry revealed evidence of salicylic acid–mediated activation of the stress-response gene sigB. Expression of the sigB-repressible global regulon sarA and the global regulon agr were also mitigated by salicylic acid, corresponding to the reduced expression of the hla and fnbA genes in vitro. Studies in experimental endocarditis confirmed the key roles of both sarA and sigB in mediating the antistaphylococcal effects of salicylic acid in vivo. Therefore, aspirin has the potential to be an adjuvant therapeutic agent against endovascular infections that result from S. aureus, by downmodulating key staphylococcal global regulons and structural genes in vivo, thus abrogating relevant virulence phenotypes. PMID:12865410

  12. Crataeva nurvala nanoparticles inhibit virulence factors and biofilm formation in clinical isolates of Pseudomonas aeruginosa.

    PubMed

    Ali, Syed Ghazanfar; Ansari, Mohammad Azam; Khan, Haris M; Jalal, Mohammad; Mahdi, Abbas Ali; Cameotra, Swaranjit Singh

    2017-03-01

    Green synthesized nanoparticles have gained great attention due to their non-toxic and non-hazardous nature. In the present study, bark extract of the medicinal plant in Ayurveda Crataeva nurvala (Buch-Ham) (CN) was chosen for the biosynthesis of silver nanoparticles (AgNPs). These NPs were characterized by Ultra violet visible spectroscopy, Fourier Transform Infra Red, Atomic Force Microscopy, and Transmission Electron Microscopy (TEM). The average particle size of green synthesized CN-AgNPs was 15.2 ± 1.01 nm. Gas chromatography- mass spectrometry analysis of methanolic bark extract involved in the formation of CN-AgNPs revealed lupeol as a major active component. In this study, CN-AgNPs (15 μg ml(-1) ) efficiently suppressed the production of quorum sensing mediated virulence factors viz. pyocyanin, protease, hemolysin, and biofilm formation in Pseudomonas aeruginosa. The pyocyanin production was strongly inhibited (74.64%) followed by proteolysis (47.3%) and hemolysin production (47.7%). However, the biofilm forming ability was maximally reduced up to 79.70%. Moreover, the Confocal Laser Scanning Microscopic Analysis showed that CN-AgNPs inhibit colonization of P. aeruginosa on to the surface. Furthermore, TEM analysis revealed internalization of CN-AgNPs inside the bacterial cell. It is concluded that green synthesized AgNPs have great potential to inhibit virulence factors and biofilm forming ability of drug-resistant clinical isolates of P. aeruginosa.

  13. Solonamide B inhibits quorum sensing and reduces Staphylococcus aureus mediated killing of human neutrophils.

    PubMed

    Nielsen, Anita; Månsson, Maria; Bojer, Martin S; Gram, Lone; Larsen, Thomas O; Novick, Richard P; Frees, Dorte; Frøkiær, Hanne; Ingmer, Hanne

    2014-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) continues to be a serious human pathogen, and particularly the spread of community associated (CA)-MRSA strains such as USA300 is a concern, as these strains can cause severe infections in otherwise healthy adults. Recently, we reported that a cyclodepsipeptide termed Solonamide B isolated from the marine bacterium, Photobacterium halotolerans strongly reduces expression of RNAIII, the effector molecule of the agr quorum sensing system. Here we show that Solonamide B interferes with the binding of S. aureus autoinducing peptides (AIPs) to sensor histidine kinase, AgrC, of the agr two-component system. The hypervirulence of USA300 has been linked to increased expression of central virulence factors like α-hemolysin and the phenol soluble modulins (PSMs). Importantly, in strain USA300 Solonamide B dramatically reduced the activity of α-hemolysin and the transcription of psma encoding PSMs with an 80% reduction in toxicity of supernatants towards human neutrophils and rabbit erythrocytes. To our knowledge this is the first report of a compound produced naturally by a Gram-negative marine bacterium that interferes with agr and affects both RNAIII and AgrA controlled virulence gene expression in S. aureus.

  14. Relatedness of Streptococcus suis Isolates of Various Serotypes and Clinical Backgrounds as Evaluated by Macrorestriction Analysis and Expression of Potential Virulence Traits

    PubMed Central

    Allgaier, Achim; Goethe, Ralph; Wisselink, Henk J.; Smith, Hilde E.; Valentin-Weigand, Peter

    2001-01-01

    We evaluated the genetic diversity of Streptococcus suis isolates of different serotypes by macrorestriction analysis and elucidated possible relationships between the genetic background, expression of potential virulence traits, and source of isolation. Virulence traits included expression of serotype-specific polysaccharides, muramidase-released protein (MRP), extracellular protein factor (EF), hemolysin activity, and adherence to epithelial cells. Macrorestriction analysis of streptococcal DNA digested with restriction enzymes SmaI and ApaI allowed differentiation of single isolates that could be assigned to four major clusters, named A1, A2, B1, and B2. Comparison of the genotypic and phenotypic features of the isolates with their source of isolation showed that (i) the S. suis population examined, which originated mainly from German pigs, exhibited a genetic diversity and phenotypic patterns comparable to those found for isolates from other European countries; (ii) certain phenotypic features, such as the presence of capsular antigens of serotypes 2, 1, and 9, expression of MRP and EF, and hemolysin activity (and in particular, combinations of these features), were strongly associated with the clinical background of meningitis and septicemia; and (iii) isolates from pigs with meningitis and septicemia showed a significantly higher degree of genetic homogeneity compared to that for isolates from pigs with pneumonia and healthy pigs. Since the former isolates are considered highly virulent, this supports the theory of a clonal relationship among highly virulent strains. PMID:11158088

  15. Cellular and Humoral Antibody Responses of Normal Pastel and Sapphire Mink to Goat Erythrocytes

    PubMed Central

    Lodmell, D. L.; Bergman, R. K.; Hadlow, W. J.; Munoz, J. J.

    1971-01-01

    This study was undertaken to determine whether normal sapphire and royal pastel mink differ immunologically at the cellular and humoral levels. Two days after primary intraperitoneal (ip) inoculation of goat erythrocytes (GE), essentially no 19 or 7S plaque-forming cells (PFC) per 106 cells were detected in spleen or in abdominal and peripheral lymph nodes of either color phase. On the 4th day, more 19S PFC were detected in pastel than in sapphire tissues; pastel tissues also contained 7S PFC, whereas essentially none was present in sapphires until the 6th day. After an ip booster inoculation, the number of PFC was markedly different between the two color phases. These differences were most apparent in spleen and peripheral lymph nodes. In parallel with differences observed in PFC responses between the color phases, total hemolysin and 2-mercaptoethanol-resistant hemolysin titers of pastels exceeded those of sapphires in all but one interval after the primary, and at every interval after the booster, inoculation. These data indicate that sapphire mink are not immunological cripples, nor are they immunologically hyperactive, but that differences do exist between sapphire and royal pastel mink, especially in the response to booster injections of GE. PMID:16557957

  16. Cellular and humoral antibody responses of normal pastel and sapphire mink to goat erythrocytes.

    PubMed

    Lodmell, D L; Bergman, R K; Hadlow, W J; Munoz, J J

    1971-02-01

    This study was undertaken to determine whether normal sapphire and royal pastel mink differ immunologically at the cellular and humoral levels. Two days after primary intraperitoneal (ip) inoculation of goat erythrocytes (GE), essentially no 19 or 7S plaque-forming cells (PFC) per 10(6) cells were detected in spleen or in abdominal and peripheral lymph nodes of either color phase. On the 4th day, more 19S PFC were detected in pastel than in sapphire tissues; pastel tissues also contained 7S PFC, whereas essentially none was present in sapphires until the 6th day. After an ip booster inoculation, the number of PFC was markedly different between the two color phases. These differences were most apparent in spleen and peripheral lymph nodes. In parallel with differences observed in PFC responses between the color phases, total hemolysin and 2-mercaptoethanol-resistant hemolysin titers of pastels exceeded those of sapphires in all but one interval after the primary, and at every interval after the booster, inoculation. These data indicate that sapphire mink are not immunological cripples, nor are they immunologically hyperactive, but that differences do exist between sapphire and royal pastel mink, especially in the response to booster injections of GE.

  17. Genetic diversity of Vibrio parahaemolyticus strains isolated from farmed Pacific white shrimp and ambient pond water affected by acute hepatopancreatic necrosis disease outbreak in Thailand.

    PubMed

    Chonsin, Kaknokrat; Matsuda, Shigeaki; Theethakaew, Chonchanok; Kodama, Toshio; Junjhon, Jiraphan; Suzuki, Yasuhiko; Suthienkul, Orasa; Iida, Tetsuya

    2016-01-01

    Acute hepatopancreatic necrosis disease (AHPND) is an emerging shrimp disease that causes massive die-offs in farmed shrimps. Recent outbreaks of AHPND in Asia have been causing great losses for shrimp culture and have become a serious socioeconomic problem. The causative agent of AHPND is Vibrio parahaemolyticus, which is typically known to cause food-borne gastroenteritis in humans. However, there have been few reports of the epidemiology of V. parahaemolyticus AHPND strains, and the genetic relationship among AHPND strains is unclear. Here, we report the genetic characterization of V. parahaemolyticus strains isolated from AHPND outbreaks in Thailand. We found eight isolates from AHPND-suspected shrimps and pond water that were positive for AHPND markers AP1 and AP2. PCR analysis confirmed that none of these eight AP-positive AHPND strains possesses the genes for the conventional virulence factors affecting to humans, such as thermostable direct hemolysin (TDH), TDH-related hemolysin (TRH) and type III secretion system 2. Phylogenetic analysis by multilocus sequence typing showed that the AHPND strains are genetically diverse, suggesting that AHPND strains were not derived from a single genetic lineage. Our study represents the first report of molecular epidemiology of AHPND-causing V. parahaemolyticus strains using multilocus sequence typing, and provides an insight into their evolutionary mechanisms. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. The Impact of the Staphylococcus aureus Virulome on Infection in a Developing Country: A Cohort Study.

    PubMed

    Lebughe, Marthe; Phaku, Patrick; Niemann, Silke; Mumba, Dieudonné; Peters, Georg; Muyembe-Tamfum, Jean-Jacques; Mellmann, Alexander; Strauß, Lena; Schaumburg, Frieder

    2017-01-01

    We performed a cohort study to analyze the virulome of Staphylococcus aureus from the Democratic Republic of the Congo using whole genome sequencing and to assess its impact on the course of S. aureus infections. Community-associated S. aureus from nasal colonization (n = 100) and infection (n = 86) were prospectively collected. Phenotypic susceptibility testing and WGS was done for each isolate. WGS data were used to screen for 79 different virulence factors and for genotyping purposes (spa typing, multilocus sequence typing). The majority of the 79 virulence factors were equally distributed among isolates from colonization and infection. Panton-Valentine leukocidin (PVL) and the non-truncated hemolysin β were associated with skin and soft tissue infection (SSTI) and recurrence of disease but did not influence the course of infection (i.e., mortality, surgical intervention). For the first time, we show that not only PVL but also hemolysin β could contribute to the development of SSTI in PVL-endemic areas such as Africa.

  19. The Impact of the Staphylococcus aureus Virulome on Infection in a Developing Country: A Cohort Study

    PubMed Central

    Lebughe, Marthe; Phaku, Patrick; Niemann, Silke; Mumba, Dieudonné; Peters, Georg; Muyembe-Tamfum, Jean-Jacques; Mellmann, Alexander; Strauß, Lena; Schaumburg, Frieder

    2017-01-01

    We performed a cohort study to analyze the virulome of Staphylococcus aureus from the Democratic Republic of the Congo using whole genome sequencing and to assess its impact on the course of S. aureus infections. Community-associated S. aureus from nasal colonization (n = 100) and infection (n = 86) were prospectively collected. Phenotypic susceptibility testing and WGS was done for each isolate. WGS data were used to screen for 79 different virulence factors and for genotyping purposes (spa typing, multilocus sequence typing). The majority of the 79 virulence factors were equally distributed among isolates from colonization and infection. Panton-Valentine leukocidin (PVL) and the non-truncated hemolysin β were associated with skin and soft tissue infection (SSTI) and recurrence of disease but did not influence the course of infection (i.e., mortality, surgical intervention). For the first time, we show that not only PVL but also hemolysin β could contribute to the development of SSTI in PVL-endemic areas such as Africa. PMID:28900424

  20. Frequent isolation of methicillin resistant Staphylococcus aureus (MRSA) ST398 among healthy pigs in Portugal.

    PubMed

    Conceição, Teresa; de Lencastre, Hermínia; Aires-de-Sousa, Marta

    2017-01-01

    Although livestock-associated ST398 methicillin-resistant Staphylococcus aureus (MRSA) has been widely reported in different geographic regions, MRSA carriage studies among healthy pigs in Portugal are very limited. In total, 101 swine nasal samples from two Portuguese farms were screened for MRSA. In addition five swine workers (including one veterinary and one engineer) and four household members were nasally screened. The isolates were characterized by spa typing, SCCmec typing and MLST. All isolates were tested for antimicrobial susceptibility, presence of mecA and mecC genes, and virulence determinants. MRSA prevalence in swine was 99% (100/101), 80% (4/5) in swine workers and 25% (1/4) in household members. All isolates belonged to ST398 distributed over two spa types-t011 (57%) and t108 (42%). SCCmec type V was present in most of the isolates (n = 95; 82%) while 21 isolates amplified the mecA gene only and were classified as nontypeable. The majority of the isolates were resistant to tetracycline (100%), clindamycin (97%), erythromycin (96%), chloramphenicol (84%) and gentamycin (69%). Notably, 12% showed resistance to quinupristin-dalfopristin (MICs 3-8 μg/mL). Beta-hemolysin (81%) and gamma-hemolysin (74%) were the unique virulence determinants detected. None of the isolates harboured PVL or mecC gene. This study showed a massive occurrence of ST398-MRSA in two independent swine farms, highlighting its establishment among healthy pigs in Portugal.

  1. CHARACTERISTICS OF A STRAIN OF STAPHYLOCOCCUS AUREUS GROWN IN VIVO AND IN VITRO

    PubMed Central

    Beining, Paul R.; Kennedy, E. R.

    1963-01-01

    Beining, Paul R. (The Catholic University of America, Washington, D.C.) and E. R. Kennedy. Characteristics of a strain of Staphylococcus aureus grown in vivo and in vitro. J. Bacteriol. 85:732–741. 1963.—A comparative survey was conducted on the characteristics of a strain of Staphylococcus aureus after it had been grown in vitro (VSB) and after it had been collected from the peritoneal exudate of an infected guinea pig (GSB). Both VSB and GSB strains gave the same results when studied in an extensive series of tests, including bound and soluble coagulases, bacteriophage type, antibiotic-sensitivity pattern, the usual fermentation reactions, deoxyribonucleic acid base composition, and qualitative tests for hemolysins, deoxyribonuclease, ribonuclease, staphylokinase, staphyloprotease, lipase, and phosphatase. The in vivo strain differed significantly from the in vitro strain in respiratory rate, agar gel diffusion studies, agglutinability in tube tests, virulence tests in rabbits and mice, growth on tellurite-glycine agar, susceptibility to human γ-globulin in agar, and in the quantitative production of deoxyribonuclease, α-hemolysin, leucocidin, and hyaluronidase. Images PMID:14044937

  2. Cytolysins of Actinobacillus pleuropneumoniae serotype 9.

    PubMed Central

    Smits, M A; Briaire, J; Jansen, R; Smith, H E; Kamp, E M; Gielkens, A L

    1991-01-01

    Cytolysin I (ClyI) and cytolysin II (ClyII), which are present in the culture supernatant of Actinobacillus pleuropneumoniae serotype 9, are thought to play an important role in the pathogenesis of pig pleuropneumonia. The purpose of this study was to clone and characterize the genetic determinants of these cytolysins. Cloning was accomplished by the screening of DNA libraries for the presence of cytolytic activity and for the presence of DNA sequences homologous to leukotoxin DNA of Pasteurella haemolytica. Both genetic determinants were found to be members of the RTX cytotoxin family. The ClyII determinant was characterized in more detail. It appeared that ClyII more closely resembled the leukotoxin of P. haemolytica than the alpha-hemolysin of Escherichia coli. The ClyII amino acid sequence was identical to a hemolysin gene sequence of A. pleuropneumoniae serotype 5; this finding indicates that the latter gene also codes for ClyII and not for ClyI, as has previously been suggested. The genetic organization of the ClyII determinant differed from the genetic organization of other RTX determinants. Genes responsible for secretion of ClyII were not contiguous with the toxin gene. Instead, secretion genes were present elsewhere in the genome. These secretion genes, however, belong to the ClyI operon. This indicates that the secretion genes of the ClyI operon are responsible for secretion of ClyI and ClyII. Images PMID:1937809

  3. [[Staphylococcus aureus producing toxic shock syndrome toxin 1 in the lower genital tract of the female].

    PubMed

    Puig de Centorbi, O N; Calleri de Milán, M C; Abdón de Cuadrado, A M; Ciácera de Carrizo, S C; Giménez, D F

    1987-01-01

    Staphylococcus sp was investigated in the female lower genital tract of 102 healthy women aged between 18 and 48 years in San Luis, Argentina. Three hundred and six samples were obtained from labia, introitus and vagina (posterior fornix). Samples were plated on sheep blood, mannitol salt and Baird-Parker media. Strains were identified by tube coagulase test; thermonuclease, fibrinolysin, pigment and hemolysin production; glucose and mannitol utilization and novobiocin sensitivity. Antibiotic susceptibility was assayed. Strains were examined for their ability to produce staphylococcal enterotoxins (SE) and toxic shock syndrome toxin-1 (TSST-1). Fourteen women (13.7%) had S. aureus in one or more samples: 10.7% labia, 3.9% introitus and 3.9% vaginal. All strains were sensitive to cephalotin, clindamycin, erythromycin, gentamycin and chloramphenicol; 21.0% were intermediate to methicillin; 15.7% were resistant to methicillin, 94.7% to penicillin and 21.0% to tetracycline. Three strains (15.7%) produced SEB, three (15.7%) SED, one (5.7%) SEC and three (15.7%) TSST-1. Only one strain (5.7%) produced both SEB and TSST-1. All strains produced hemolysins. Coagulase negative staphylococci were found in 40.1% of vaginal samples: S. epidermidis (32.2%) and S. saprophyticus (9.8%) were identified.

  4. Increased sensitivity in PCR detection of tdh-positive Vibrio parahaemolyticus in seafood with purified template DNA.

    PubMed

    Hara-Kudo, Y; Kasuga, Y; Kiuchi, A; Horisaka, T; Kawasumi, T; Kumagai, S

    2003-09-01

    PCR is an important method for the detection of thermostable direct hemolysin gene (tdh)-positive (pathogenic hemolysin-producing) strains of Vibrio parahaemolyticus in seafood because tdh-negative (nonpathogenic) V. parahaemolyticus strains often contaminate seafood and interfere with the direct isolation of tdh-positive V. parahaemolyticus. In this study, the use of PCR to detect the tdh gene of V. parahaemolyticus in various seafoods artificially contaminated with tdh-positive V. parahaemolyticus was examined. PCR was inhibited by substances in oysters, squid, mackerel, and yellowtail but not by cod, sea bream, scallop, short-necked clam, and shrimp. To improve detection, DNA was purified by either the silica membrane method, the glass fiber method, or the magnetic separation method, and the purified DNA was used as the PCR primer template. For all samples, the use of the silica membrane method and the glass fiber method increased detection sensitivity. The results of this study demonstrate that the use of properly purified template DNA for PCR markedly increases the effectiveness of the method in detecting pathogenic tdh-positive V. parahaemolyticus in contaminated seafood.

  5. Occurrence of toxigenic Vibrio parahaemolyticus strains in shrimp in Iran.

    PubMed

    Rahimi, Ebrahim; Ameri, Mehrdad; Doosti, Abbas; Gholampour, Ahmad Reza

    2010-09-01

    Vibrio parahaemolyticus, a common cause of foodborne gastroenteritis in people, is frequently isolated from a variety of seafood, including shrimp. The virulence of clinical V. parahaemolyticus strains is commonly associated with expression of thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH), which are encoded by the tdh and trh genes. This study was conducted to determine the prevalence rate of total and toxigenic V. parahaemolyticus in shrimp caught off the south coast of Iran. Three hundred freshly caught shrimp from four different species, Penaeus monodon, Penaeus semisulcatus, Penaeus indicus, and Penaeus merguiensis, were collected in three provinces along Persian Gulf in the south coast of Iran. Shrimp were collected at the end of each month from July 2008 to July 2009. The samples were analyzed for the presence of V. parahaemolyticus and the occurrence of toxigenic strains. Using conventional bacteriological techniques, 29 V. parahaemolyticus isolates were identified in which 28 strains were confirmed by a polymerase chain reaction assay targeting the tlh gene of V. parahaemolyticus. Using polymerase chain reaction assays targeting the tdh and trh genes, five (1.7%) and two (0.7%) isolates were tdh positive and trh positive, respectively. The tdh-positive isolates were commonly detected in summer, whereas no toxigenic strain was isolated in winter. To the best of our knowledge, the present study is the first report of the presence of toxigenic tdh- and trh-positive V. parahaemolyticus strains in the seafood in Iran.

  6. Characterization of staphylococci isolated from mastitic cows in Spain.

    PubMed Central

    Garcia, M L; Moreno, B; Bergdoll, M S

    1980-01-01

    A total of 57 gram-positive, catalase-positive cocci, considered etiological agents of clinical and subclinical bovine mastitis, were tested for glucose and mannitol fermentation, coagulase and thermonuclease production, sensitivity to lysostaphin, gelatin hydrolysis, lysozyme, phosphatase and egg yolk factor production, hemolytic properties, antibiotic sensitivity, susceptibility to human and bovine phages, and enterotoxin production. All 57 strains were identified as staphylococci. A good correlation was found between 3+ and 4+ coagulase reactions, thermonuclease production, and high sensitivity to lysostaphin. Neither mannitol fermentation nor production of other enzymes appeared to be a specific property of bovine Staphylococcus aureus strains. beta- and delta-hemolysins were more frequently found than alpha-hemolysin. Nearly 40% of the strains were penicillin resistant. Strains were lysed by phage 42E from the human phage set more frequently than by phage 42D, whereas with the bovine set, strains were more sensitive to specific bovine phages. Three strains produced enterotoxin C, and one strain produced enterotoxin D. PMID:7387155

  7. Measurement of trehalose loading of mammalian cells porated with a metal-actuated switchable pore.

    PubMed

    Acker, Jason P; Lu, Xiao-Ming; Young, Vernon; Cheley, Stephen; Bayley, Hagan; Fowler, Alex; Toner, Mehmet

    2003-06-05

    Efforts to improve the tolerance of mammalian cells to desiccation have focused on the role that sugars have in protecting cells from lethal injury. Among the key determinants of desiccation tolerance is the intracellular trehalose concentration, and thus quantifying the amount and rate of trehalose accumulation has now become very critical to the success of these desiccation approaches. We introduced trehalose into 3T3 fibroblasts, human keratinocytes, and rat hepatocytes using a genetically engineered mutant of the pore-forming alpha-hemolysin from Staphylococcus aureus. Manipulating the extracellular Zn(2+) concentration selectively opens and closes this pore ( approximately 2 nm) and enables controlled loading of cells with sugars. We quantified intracellular trehalose using gas chromatography-mass spectroscopy (GC-MS) to examine the trimethylsilyl derivative of intracellular trehalose. Using the GC-MS method, we demonstrate that the switchable characteristics of H5 alpha-hemolysin permit controlled loading of the high concentrations of trehalose (up to 0.5 M) necessary for engineering desiccation tolerance in mammalian cells. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 82: 525-532, 2003.

  8. Occurrence of Vibrio spp. in fish and shellfish collected from the Swiss market.

    PubMed

    Schärer, K; Savioz, S; Cernela, N; Saegesser, G; Stephan, R

    2011-08-01

    The genus Vibrio includes gram-negative bacteria that inhabit estuarine ecosystems. V. cholerae, V. parahaemolyticus, and V. vulnificus pose a considerable public health threat as agents of sporadic and epidemic foodborne infections associated with the consumption of raw or undercooked contaminated fish or shellfish. In this study, we analyzed 138 fish and shellfish samples collected from the Swiss market (fish fillets [n = 102], bivalves [n = 34], and squid [n = 2]). Microbiological analysis was done according to International Organization for Standardization method 21872-1/21872-2:2007, using thiosulfate citrate bile sucrose agar and chromID Vibrio agar as selective agar. Presumptive-positive colonies on thiosulfate citrate bile sucrose agar or chromID Vibrio agar were picked and were identified by the API 20E and species-specific PCR systems. V. cholerae isolates were tested further by PCR for the presence of the cholera toxin A subunit gene (ctxA). V. parahaemolyticus isolates were tested by PCR for genes encoding for thermostable direct hemolysin (tdh) and TDH-related hemolysin (trh). V. cholerae was isolated from three samples and V. parahaemolyticus from eight samples. None of these strains harbored species-specific virulence factors. Further, V. alginolyticus was isolated from 40 samples, and V. fluvialis was isolated from 1 sample. Our study provides, for the first time, data for the assessment of exposure to Vibrio spp. in raw fish and bivalves consumed in Switzerland.

  9. Serratamolide is a Hemolytic Factor Produced by Serratia marcescens

    PubMed Central

    Shanks, Robert M. Q.; Stella, Nicholas A.; Lahr, Roni M.; Wang, Shaoru; Veverka, Tara I.; Kowalski, Regis P.; Liu, Xinyu

    2012-01-01

    Serratia marcescens is a common contaminant of contact lens cases and lenses. Hemolytic factors of S. marcescens contribute to the virulence of this opportunistic bacterial pathogen. We took advantage of an observed hyper-hemolytic phenotype of crp mutants to investigate mechanisms of hemolysis. A genetic screen revealed that swrW is necessary for the hyper-hemolysis phenotype of crp mutants. The swrW gene is required for biosynthesis of the biosurfactant serratamolide, previously shown to be a broad-spectrum antibiotic and to contribute to swarming motility. Multicopy expression of swrW or mutation of the hexS transcription factor gene, a known inhibitor of swrW expression, led to an increase in hemolysis. Surfactant zones and expression from an swrW-transcriptional reporter were elevated in a crp mutant compared to the wild type. Purified serratamolide was hemolytic to sheep and murine red blood cells and cytotoxic to human airway and corneal limbal epithelial cells in vitro. The swrW gene was found in the majority of contact lens isolates tested. Genetic and biochemical analysis implicate the biosurfactant serratamolide as a hemolysin. This novel hemolysin may contribute to irritation and infections associated with contact lens use. PMID:22615766

  10. Effect of fermentation conditions on the enterotoxigenicity, cytotoxicity and pesticidal activity of Bacillus thuringiensis strains isolated in Taiwan.

    PubMed

    Pang, Jen-Chieh; Chen, Ming-Lun; Ho, Yi-Cheng; Yang, Chi-Yea; Tzeng, Ching-Chou; Kao, Suey-Sheng; Tsen, Hau-Yang

    2010-03-01

    A total of 75 Bacillus thuringiensis strains, among them 62 of Taiwan's microbiota, were screened for their enterotoxin genes, hemolysin BL activity and cytotoxicity. All the strains harbored enterotoxin genes and were cytotoxic to the cultivated Chinese hamster ovary (CHO) cells. The hemolysin BL and cytotoxicity titers of the B. thuringiensis culture in casitone yeast sucrose (CYS) broth were lower than those in brain heart infusion (BHI) broth, and when the B. thuringiensis strains were cultivated in CYS broth for 5 days, no cytotoxicity was detected. The spores and crystal toxins collected from 40 isolates showed high levels of insecticidal activity against Plutella xylostella. All strains exhibiting low cytotoxicity also had low pesticidal activity. Our study demonstrated that it is difficult to find B. thuringiensis strains that are both effective against insect targets and do not produce enterotoxins or cytotoxic effects in CHO cells. However, it is possible to avoid or reduce unwanted properties, but not the insecticidal activity, of some B. thuringiensis preparations by alteration of culture media and conditions.

  11. Identification and characterization of Photorhabdus temperata mutants altered in hemolysis and virulence.

    PubMed

    Chapman, Christine; Tisa, Louis S

    2016-08-01

    Photorhabdus temperata is a symbiont of the entomopathogenic nematode Heterorhabditis bacteriophora and an insect pathogen. This bacterium produces a wide variety of virulence factors and hemolytic activity. The goal of this study was to identify hemolysin-defective mutants and test their virulence. A genetic approach was used to identify mutants with altered hemolytic activity by screening a library of 10 000 P. temperata transposon mutants. Three classes of mutants were identified: (i) defective (no hemolytic activity), (ii) delayed (delayed initiation of hemolytic activity), and (iii) early (early initiation of hemolytic activity). The transposon insertion sites for these mutants were identified and used to investigate other physiological properties, including insect pathogenesis and motility. The hemolysin-defective mutants, P10A-C11, P10A-H12, and P79-B5, had inserts in genes involved in RNA turnover (RNase II and 5'-pentaphospho-5'-adenosine pyrophosphohydrolase) and showed reduced virulence and production of extracellular factors. These data support the role of RNA turnover in insect pathogenesis and other physiological functions.

  12. Evolution in Fast Forward: a Potential Role for Mutators in Accelerating Staphylococcus aureus Pathoadaptation

    PubMed Central

    Canfield, Gregory S.; Schwingel, Johanna M.; Foley, Matthew H.; Vore, Kelly L.; Boonanantanasarn, Kanitsak; Gill, Ann L.; Sutton, Mark D.

    2013-01-01

    Pathogen evolution and subsequent phenotypic heterogeneity during chronic infection are proposed to enhance Staphylococcus aureus survival during human infection. We tested this theory by genetically and phenotypically characterizing strains with mutations constructed in the mismatch repair (MMR) and oxidized guanine (GO) system, termed mutators, which exhibit increased spontaneous-mutation frequencies. Analysis of these mutators revealed not only strain-dependent increases in the spontaneous-mutation frequency but also shifts in mutational type and hot spots consistent with loss of GO or MMR functions. Although the GO and MMR systems are relied upon in some bacterial species to prevent reactive oxygen species-induced DNA damage, no deficit in hydrogen peroxide sensitivity was found when either of these DNA repair pathways was lost in S. aureus. To gain insight into the contribution of increased mutation supply to S. aureus pathoadaptation, we measured the rate of α-hemolysin and staphyloxanthin inactivation during serial passage. Detection of increased rates of α-hemolysin and staphyloxanthin inactivation in GO and MMR mutants suggests that these strains are capable of modifying virulence phenotypes implicated in mediating infection. Accelerated derivation of altered virulence phenotypes, combined with the absence of increased ROS sensitivity, highlights the potential of mutators to drive pathoadaptation in the host and serve as catalysts for persistent infections. PMID:23204459

  13. Isolation of Aeromonas spp. from an unchlorinated domestic water supply.

    PubMed Central

    Burke, V; Robinson, J; Gracey, M; Peterson, D; Meyer, N; Haley, V

    1984-01-01

    The recovery of Aeromonas spp. from the unchlorinated water supply for a Western Australian city of 21,000 people was monitored at several sampling points during a period of 1 year. Membrane filtration techniques were used to count colonies of Aeromonas spp., coliforms, and Escherichia coli in water sampled before entry to service reservoirs, during storage in service reservoirs, and in distribution systems. Aeromonas spp. were identified by subculture on blood agar with ampicillin, oxidase tests, and the use of Kaper medium and then were tested for production of enterotoxins and hemolysins. During the same period, two-thirds of all fecal specimens sent for microbiological examination were cultured on ampicillin-blood agar for Aeromonas spp. Recovery of Aeromonas spp. from water supplies at distribution points correlated with fecal isolations and continued during autumn and winter. Coliforms and E. coli were found most commonly in late summer to autumn. This pattern differs from the summer peak of Aeromonas isolations both from water and from patients with Aeromonas spp.-associated gastroenteritis in Perth, Western Australia, a city with a chlorinated domestic water supply. Of the Aeromonas strains from water, 61% were enterotoxigenic, and 64% produced hemolysins. PMID:6486783

  14. Candida albicans and non-C. albicans Candida species: comparison of biofilm production and metabolic activity in biofilms, and putative virulence properties of isolates from hospital environments and infections.

    PubMed

    Ferreira, A V; Prado, C G; Carvalho, R R; Dias, K S T; Dias, A L T

    2013-04-01

    Candida albicans and, more recently, non-C. albicans Candida spp. are considered the most frequent fungi in hospitals. This study analyzed Candida spp. isolates and compared the frequency of different species, that is, C. albicans and non-C. albicans Candida spp., and the origins of isolates, that is, from hospital environments or infections. Yeast virulence factors were evaluated based on biofilm production and metabolic activity. Hemolysin production and the antifungal susceptibility profiles of isolates were also evaluated. Candida spp. were highly prevalent in samples collected from hospital environments, which may provide a reservoir for continuous infections with these yeasts. There were no differences in the biofilm productivity levels and metabolic activities of the environmental and clinical isolates, although the metabolic activities of non-C. albicans Candida spp. biofilms were greater than those of the C. albicans biofilms (p < 0.05). Clinical samples had higher hemolysin production (p < 0.05) and lower susceptibility to fluconazole (p < 0.05). Non-C. albicans Candida spp. predominated in samples collected from hospital environments and infections (p < 0.05). These species had a lower susceptibility to fluconazole and amphotericin B, and their biofilms had higher metabolic activities than those produced by C. albicans, which may explain the increased incidence of fungal infections with these yeasts during recent years.

  15. Virulence modulation of Candida albicans biofilms by metal ions commonly released from orthodontic devices.

    PubMed

    Ronsani, Maiara Medeiros; Mores Rymovicz, Alinne Ulbrich; Meira, Thiago Martins; Trindade Grégio, Ana Maria; Guariza Filho, Odilon; Tanaka, Orlando Motohiro; Ribeiro Rosa, Edvaldo Antonio

    2011-12-01

    The installation of metal devices leads to an increase in the salivary concentration of metal ions and in the growth of salivary Candida spp. However, the relationship between released metal ions and Candida virulence has not been previously examined. The objective of this study was to evaluate whether metal ions affect fungal virulence. We prepared culture media containing Ni(2+), Fe(3+), Cr(3+), Co(2+) or a mixture of these metal ions at concentrations similar to those released in saliva of orthodontic patients. Biofilms of Candida albicans SC5314 were grown for 72 h and their biomasses were determined. The supernatants were analyzed for secretory aspartyl protease (SAP) and hemolysin activities. To verify changes in virulence following treatment with metals, proteolytic and hemolytic activities were converted into specific activities. The results revealed that all ions, except Co(2+), caused increases in biofilm biomass. In addition, Ni(2+) caused an increase in SAP activity and Fe(3+) reduced hemolytic activity. However, the SAP and hemolysin activities in the presence of the mixture of ions did not differ from those of control. These results indicate that metal ions released during the degradation of orthodontic appliances can modulate virulence factors in C. albicans biofilms.

  16. Continuum electrostatic calculations of the pKa of ionizable residues in an ion channel: dynamic vs. static input structure.

    PubMed

    Aguilella-Arzo, M; Aguilella, V M

    2010-04-01

    We have computed the pK(a)'s of the ionizable residues of a protein ion channel, the Staphylococcus aureus toxin alpha-hemolysin, by using two types of input structures, namely the crystal structure of the heptameric alpha-hemolysin and a set of over four hundred snapshots from a 4.38 ns Molecular Dynamics simulation of the protein inserted in a phospholipid planar bilayer. The comparison of the dynamic picture provided by the Molecular Simulation with the static one based on the X-ray crystal structure of the protein embedded in a lipid membrane allows analyzing the influence of the fluctuations in the protein structure on its ionization properties. We find that the use of the dynamic structure provides interesting information about the sensitivity of the computed pK(a) of a given residue to small changes in the local structure. The calculated pK(a) are consistent with previous indirect estimations obtained from single-channel conductance and selectivity measurements.

  17. Bacillus thuringiensis membrane-damaging toxins acting on mammalian cells.

    PubMed

    Celandroni, Francesco; Salvetti, Sara; Senesi, Sonia; Ghelardi, Emilia

    2014-12-01

    Bacillus thuringiensis is widely used as a biopesticide in forestry and agriculture, being able to produce potent species-specific insecticidal toxins and considered nonpathogenic to other animals. More recently, however, repeated observations are documenting the association of this microorganism with various infectious diseases in humans, such as food-poisoning-associated diarrheas, periodontitis, bacteremia, as well as ocular, burn, and wound infections. Similar to B. cereus, B. thuringiensis produces an array of virulence factors acting against mammalian cells, such as phosphatidylcholine- and phosphatidylinositol-specific phospholipase C (PC-PLC and PI-PLC), hemolysins, in particular hemolysin BL (HBL), and various enterotoxins. The contribution of some of these toxins to B. thuringiensis pathogenicity has been studied in animal models of infection, following intravitreous, intranasal, or intratracheal inoculation. These studies lead to the speculation that the activities of PC-PLC, PI-PLC, and HBL are responsible for most of the pathogenic properties of B. thuringiensis in nongastrointestinal infections in mammals. This review summarizes data regarding the biological activity, the genetic basis, and the structural features of these membrane-damaging toxins. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. A vesicle bioreactor as a step toward an artificial cell assembly

    NASA Astrophysics Data System (ADS)

    Noireaux, Vincent; Libchaber, Albert

    2004-12-01

    An Escherichia coli cell-free expression system is encapsulated in a phospholipid vesicle to build a cell-like bioreactor. Large unilamellar vesicles containing extracts are produced in an oil-extract emulsion. To form a bilayer the vesicles are transferred into a feeding solution that contains ribonucleotides and amino acids. Transcription-translation of plasmid genes is isolated in the vesicles. Whereas in bulk solution expression of enhanced GFP stops after 2 h, inside the vesicle permeability of the membrane to the feeding solution prolongs the expression for up to 5 h. To solve the energy and material limitations and increase the capacity of the reactor, the -hemolysin pore protein from Staphylococcus aureus is expressed inside the vesicle to create a selective permeability for nutrients. The reactor can then sustain expression for up to 4 days with a protein production of 30 µM after 4 days. Oxygen diffusion and osmotic pressure are critical parameters to maintain expression and avoid vesicle burst. -hemolysin | cell-free protein expression | membrane-anchoring polypeptide

  19. Season-Specific Occurrence of Potentially Pathogenic Vibrio spp. on the Southern Coast of South Korea

    PubMed Central

    Di, Doris Y. W.; Lee, Anna; Jang, Jeonghwan; Han, Dukki

    2016-01-01

    ABSTRACT Vibrio species are widely distributed in warm estuarine and coastal environments, and they can infect humans through the consumption of raw and mishandled contaminated seafood. In this study, we aimed to isolate and observe the distribution of enteropathogenic Vibrio spp. from environments of the southern coast of South Korea over a season cycle. A total of 10,983 isolates of Vibrio spp. were obtained from tidal water and mud samples over a 1-year period from five sampling sites along the southwest coast of South Korea. We found that Vibrio alginolyticus (n = 6,262) and Vibrio parahaemolyticus (n = 1,757) were ubiquitous in both tidal water and mud year round, whereas Vibrio cholerae (n = 24) and Vibrio vulnificus (n = 130) were seasonally specific to summer. While all V. cholerae isolates were nontoxigenic (non-O1 and non-O139), more than 88% of V. vulnificus isolates possessed the virulence factor elastolytic protease (encoded by vvp). Interestingly, V. parahaemolyticus, which was omnipresent in all seasons, contained the virulence factors thermostable direct hemolysin (encoded by tdh) and thermostable direct hemolysin-related hemolysin (encoded by trh) in larger amounts in June (29 trh-positive strains) and September (14 tdh-, 36 trh-, and 12 tdh- and trh-positive strains) than in December (4 trh-positive strains) and February (3 tdh-positive strains), and virulence factors were absent from isolates detected in April. To understand why virulence factors were detected only in the warm season and were absent in the cold season although the locations are static, long-term monitoring and particularly seasonal study are necessary. IMPORTANCE The presence of enteropathogenic Vibrio species (Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus), which cause acute diarrheal infection, septicemia, and wound infections upon ingestion through food and water, is usually associated with temperature. The World Health Organization (WHO) has estimated that

  20. Environmental determinants of Vibrio parahaemolyticus in the Chesapeake Bay.

    PubMed

    Davis, Benjamin J K; Jacobs, John M; Davis, Meghan F; Schwab, Kellogg J; DePaola, Angelo; Curriero, Frank C

    2017-08-25

    Vibrio parahaemolyticus naturally-occurs in brackish and marine waters and is one of the leading causes of seafood-borne illness. Previous work studying the ecology of V. parahaemolyticus is often limited in geographic extent and lacking a full range of environmental measures. This study used a unique, large dataset of surface water samples in the Chesapeake Bay (n=1,385) collected from 148 monitoring stations from 2007 to 2010. Water was analyzed for over 20 environmental parameters with additional meteorological and surrounding land use data. V. parahaemolyticus-specific genetic markers thermolabile hemolysin (tlh), thermostable direct hemolysin (tdh), and tdh-related hemolysin (trh) were assayed using quantitative PCR (qPCR), and interval-censored regression models with non-linear effects were estimated to account for limits of detection and quantitation. tlh was detected in 19.6% of water samples; tdh or trh markers were not detected. Results confirmed previously reported positive associations for V. parahaemolyticus abundance with temperature and turbidity and negative associations with high salinity (> 10-23‰). Furthermore, the salinity relationship was determined to be a function of both low temperature and turbidity, with an increase of either nullifying the high salinity effect. Associations with dissolved oxygen and phosphate also appeared stronger when samples were taken nearby human developments. Renewed focus on the V. parahaemolyticus ecological paradigm is warranted to protect public health.ImportanceVibrio parahaemolyticus is one of the leading causes of seafood-borne illness in the United States and across the globe. Exposure is often through consuming raw or undercooked shellfish. Given the natural presence of the bacterium in the marine environment, improved understanding of its environmental determinants is necessary for future preventative measures. This analysis of environmental Vibrio parahaemolyticus is one of only a few that utilize a

  1. 10′(Z),13′(E)-Heptadecadienylhydroquinone Inhibits Swarming and Virulence Factors and Increases Polymyxin B Susceptibility in Proteus mirabilis

    PubMed Central

    Wang, Won-Bo; Yuan, Yu-Han; Hsueh, Po-Ren; Liaw, Shwu-Jen

    2012-01-01

    In this study, we demonstrated that 10′(Z), 13′(E)-heptadecadienylhydroquinone (HQ17-2), isolated from the lacquer tree, could decrease swarming motility and hemolysin activity but increase polymyxin B (PB) susceptibilityof Proteus mirabilis which is intrinsically highly-resistant to PB. The increased PB susceptibility induced by HQ17-2 was also observed in clinical isolates and biofilm-grown cells. HQ17-2 could inhibit swarming in the wild-type and rppA mutant but not in the rcsB mutant, indicating that HQ17-2 inhibits swarming through the RcsB-dependent pathway, a two-component signaling pathway negatively regulating swarming and virulence factor expression. The inhibition of hemolysin activity by HQ17-2 is also mediated through the RcsB-dependent pathway, because HQ17-2 could not inhibit hemolysin activity in the rcsB mutant. Moreover, the finding that HQ17-2 inhibits the expression of flhDC gene in the wild-type and rcsB-complemented strain but not in the rcsB mutant supports the notion. By contrast, HQ17-2 could increase PB susceptibility in the wild-type and rcsB mutant but not in the rppA mutant, indicating that HQ17-2 increases PB susceptibility through the RppA-dependent pathway, a signaling pathway positively regulating PB resistance. In addition, HQ17-2 could inhibit the promoter activities of rppA and pmrI, a gene positively regulated by RppA and involved in PB resistance, in the wild-type but not in the rppA mutant. The inhibition of rppA and pmrI expression caused lipopolysaccharide purified from HQ17-2-treated cells to have higher affinity for PB. Altogether, this study uncovers new biological effects of HQ17-2 and provides evidence for the potential of HQ17-2 in clinical applications. PMID:23029100

  2. Rapid detection of tdh and trh mRNAs of Vibrio parahaemolyticus by the transcription-reverse transcription concerted (TRC) method.

    PubMed

    Masuda, Noriyoshi; Yasukawa, Kiyoshi; Isawa, Yuichi; Horie, Ryuichi; Saitoh, Juichi; Ishiguro, Takahiko; Nakaguchi, Yoshitsugu; Nishibuchi, Mitsuaki; Hayashi, Toshinori

    2004-01-01

    We developed a novel method named the transcription-reverse transcription concerted (TRC) method and an instrument that allowed rapid and completely homogeneous real-time monitoring of RNA isothermal sequence amplification without any post-amplification analysis in our previous study [Ishiguro et al., Anal. Biochem., 314, 77-86 (2003)]. In this study, we newly established rapid and sensitive TRC systems for the detection of the mRNAs transcribed from two major virulence genes of Vibrio parahaemolyticus: the tdh gene encoding the thermostable direct hemolysin (tdh) and the trh gene encoding the thermostable direct hemolysin-related hemolysin. Examination of the standard RNAs prepared in vitro showed that a positive result, increase in the fluorescence intensity to the cut-off value within 25 min, was obtained for as few as 100 copies of RNA. The TRC method specific to the trh mRNA detected the mRNAs transcribed from the trh1 and trh2 genes, two representative trh variants sharing 84% sequence identity. The detection time gave a linear relationship to the logarithm of starting RNA copies ranging from 10(3) to 10(7) copies, showing that quantitative analysis is possible. The detection time for 10(3) copies of the standard RNAs ranged from 11 to 15 min. Examination of the total RNAs extracted from the standard strains of V. parahaemolyticus demonstrated that the new TRC systems are sufficiently sensitive to detect as few as 100 CFUs of the strains carrying the target genes. Total RNA preparations extracted from 24 strains of V. parahaemolyticus, 52 strains belonging to 31 other species of the genus Vibrio and 11 strains belonging to 8 species of non-Vibrio genera were examined. The results of the detection of tdh- and trh-specific mRNAs by the two TRC systems and those of the respective genes by the DNA colony hybridization method agreed. We conclude that the new TRC systems are rapid, highly sensitive, easy to manipulate, and are suitable for routine examination of

  3. Structural and functional analysis of the pore-forming toxin NetB from Clostridium perfringens.

    PubMed

    Yan, Xu-Xia; Porter, Corrine J; Hardy, Simon P; Steer, David; Smith, A Ian; Quinsey, Noelene S; Hughes, Victoria; Cheung, Jackie K; Keyburn, Anthony L; Kaldhusdal, Magne; Moore, Robert J; Bannam, Trudi L; Whisstock, James C; Rood, Julian I

    2013-02-05

    Clostridium perfringens is an anaerobic bacterium that causes numerous important human and animal diseases, primarily as a result of its ability to produce many different protein toxins. In chickens, C. perfringens causes necrotic enteritis, a disease of economic importance to the worldwide poultry industry. The secreted pore-forming toxin NetB is a key virulence factor in the pathogenesis of avian necrotic enteritis and is similar to alpha-hemolysin, a β-barrel pore-forming toxin from Staphylococcus aureus. To address the molecular mechanisms underlying NetB-mediated tissue damage, we determined the crystal structure of the monomeric form of NetB to 1.8 Å. Structural comparisons with other members of the alpha-hemolysin family revealed significant differences in the conformation of the membrane binding domain. These data suggested that NetB may recognize different membrane receptors or use a different mechanism for membrane-protein interactions. Consistent with this idea, electrophysiological experiments with planar lipid bilayers revealed that NetB formed pores with much larger single-channel conductance than alpha-hemolysin. Channel conductance varied with phospholipid net charge. Furthermore, NetB differed in its ion selectivity, preferring cations over anions. Using hemolysis as a screen, we carried out a random-mutagenesis study that identified several residues that are critical for NetB-induced cell lysis. Mapping of these residues onto the crystal structure revealed that they were clustered in regions predicted to be required for oligomerization or membrane binding. Together these data provide an insight into the mechanism of NetB-mediated pore formation and will contribute to our understanding of the mode of action of this important toxin. IMPORTANCE Necrotic enteritis is an economically important disease of the worldwide poultry industry and is mediated by Clostridium perfringens strains that produce NetB, a β-pore-forming toxin. We carried out

  4. Characterization of trh2 Harbouring Vibrio parahaemolyticus Strains Isolated in Germany

    PubMed Central

    Bechlars, Silke; Jäckel, Claudia; Diescher, Susanne; Wüstenhagen, Doreen A.; Kubick, Stefan; Dieckmann, Ralf; Strauch, Eckhard

    2015-01-01

    Background Vibrio parahaemolyticus is a recognized human enteropathogen. Thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) as well as the type III secretion system 2 (T3SS2) are considered as major virulence factors. As tdh positive strains are not detected in coastal waters of Germany, we focused on the characterization of trh positive strains, which were isolated from mussels, seawater and patients in Germany. Results Ten trh harbouring V. parahaemolyticus strains from Germany were compared to twenty-one trh positive strains from other countries. The complete trh sequences revealed clustering into three different types: trh1 and trh2 genes and a pseudogene Ψtrh. All German isolates possessed alleles of the trh2 gene. MLST analysis indicated a close relationship to Norwegian isolates suggesting that these strains belong to the autochthonous microflora of Northern Europe seawaters. Strains carrying the pseudogene Ψtrh were negative for T3SS2β effector vopC. Transcription of trh and vopC genes was analyzed under different growth conditions. Trh2 gene expression was not altered by bile while trh1 genes were inducible. VopC could be induced by urea in trh2 bearing strains. Most trh1 carrying strains were hemolytic against sheep erythrocytes while all trh2 positive strains did not show any hemolytic activity. TRH variants were synthesized in a prokaryotic cell-free system and their hemolytic activity was analyzed. TRH1 was active against sheep erythrocytes while TRH2 variants were not active at all. Conclusion Our study reveals a high diversity among trh positive V. parahaemolyticus strains. The function of TRH2 hemolysins and the role of the pseudogene Ψtrh as pathogenicity factors are questionable. To assess the pathogenic potential of V. parahaemolyticus strains a differentiation of trh variants and the detection of T3SS2β components like vopC would improve the V. parahaemolyticus diagnostics and could lead to a refinement of the risk

  5. Production of virulence factors in Candida strains isolated from patients with denture stomatitis and control individuals.

    PubMed

    Pereira, Cristiane Aparecida; Domingues, Nádia; Araújo, Maria Izabel Daniel Santos Alves; Junqueira, Juliana Campos; Back-Brito, Graziella Nuernberg; Jorge, Antonio Olavo Cardoso

    2016-05-01

    The aim of this study was to evaluate the production of virulence factors in Candida isolates from the oral cavities of 50 patients with different degrees of denture stomatitis (DS, type I, II and III) and 50 individuals without signs of DS. We evaluated the enzymatic and hemolytic activities, the biofilm formation, and the cell surface hydrophobicity (CSH) in all isolates. Germ tube (GT) production was also evaluated in Candida albicans and Candida dubliniensis isolates. In C. albicans and C. dubliniensis the secretion of hemolysin and GT production was significantly different between isolates from patients with DS and individuals without DS. No significant difference was observed in the production of virulence factors by Candida glabrata isolates. Candida isolates expressed a wide range of virulence factors. However, in the majority of isolates from the type III lesions, the production of the virulence factors was higher than for the other groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Incidence of Vibrio parahaemolyticus in U.S. coastal waters and oysters.

    PubMed Central

    DePaola, A; Hopkins, L H; Peeler, J T; Wentz, B; McPhearson, R M

    1990-01-01

    Oyster and seawater samples were collected seasonally from May 1984 through April 1985 from shellfish-growing areas in Washington, California, Texas, Louisiana, Alabama, Florida, South Carolina, Virginia, and Rhode Island which had been designated as approved or prohibited by the National Shellfish Sanitation Program. Fecal coliforms counts, aerobic plate counts, and Vibrio parahaemolyticus densities were determined for the samples. Mean V. parahaemolyticus density was more than 100 times greater in oysters than in water, whereas density of fecal coliforms was approximately 10 times higher in oysters. Seasonal and geographical distributions of V. parahaemolyticus were related to water temperature, with highest densities in samples collected in the spring and the summer along the Gulf coast. The synthetic DNA probe for thermostable direct hemolysin hybridized with 2 of 50 isolates, 1 of which was positive by the Kanagawa test. PMID:2403249

  7. Incidence of Vibrio parahaemolyticus in U.S. coastal waters and oysters.

    PubMed

    DePaola, A; Hopkins, L H; Peeler, J T; Wentz, B; McPhearson, R M

    1990-08-01

    Oyster and seawater samples were collected seasonally from May 1984 through April 1985 from shellfish-growing areas in Washington, California, Texas, Louisiana, Alabama, Florida, South Carolina, Virginia, and Rhode Island which had been designated as approved or prohibited by the National Shellfish Sanitation Program. Fecal coliforms counts, aerobic plate counts, and Vibrio parahaemolyticus densities were determined for the samples. Mean V. parahaemolyticus density was more than 100 times greater in oysters than in water, whereas density of fecal coliforms was approximately 10 times higher in oysters. Seasonal and geographical distributions of V. parahaemolyticus were related to water temperature, with highest densities in samples collected in the spring and the summer along the Gulf coast. The synthetic DNA probe for thermostable direct hemolysin hybridized with 2 of 50 isolates, 1 of which was positive by the Kanagawa test.

  8. Isolation of Clostridium absonum and its cultural and biochemical properties.

    PubMed

    Hayase, M; Mitsui, N; Tamai, K; Nakamura, S; Nishida, S

    1974-01-01

    A new procedure for isolation of Clostridium absonum was devised. Sixtyseven strains of C. absonum were isolated from 135 soil samples, but no strain of C. absonum could be found from human fecal samples. The lecithinase, hemolysin, and lethal toxin in the culture filtrates of this species exhibited low avidity for C. perfringens type A antitoxin. The three activities were inseparable by the present method of purification. A reinvestigation of biochemical properties revealed that incomplete suppression of lecithinase reaction by C. perfringens type A antitoxin and no fermentation of raffinose, melibiose, and starch are useful criteria to differentiate C. absonum from C. perfringens, and that positive, although weak, gelatin liquefaction and fermentation of trehalose are useful to differentiate it from C. paraperfringens.

  9. Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes.

    PubMed

    Novak, Jakub; Cerny, Ondrej; Osickova, Adriana; Linhartova, Irena; Masin, Jiri; Bumba, Ladislav; Sebo, Peter; Osicka, Radim

    2017-09-24

    Bordetellae, pathogenic to mammals, produce an immunomodulatory adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) that enables them to overcome the innate immune defense of the host. CyaA subverts host phagocytic cells by an orchestrated action of its functional domains, where an extremely catalytically active adenylyl cyclase enzyme is delivered into phagocyte cytosol by a pore-forming repeat-in-toxin (RTX) cytolysin moiety. By targeting sentinel cells expressing the complement receptor 3, known as the CD11b/CD18 (αMβ₂) integrin, CyaA compromises the bactericidal functions of host phagocytes and supports infection of host airways by Bordetellae. Here, we review the state of knowledge on structural and functional aspects of CyaA toxin action, placing particular emphasis on signaling mechanisms by which the toxin-produced 3',5'-cyclic adenosine monophosphate (cAMP) subverts the physiology of phagocytic cells.

  10. Formation of droplet interface bilayers in a Teflon tube

    PubMed Central

    Walsh, Edmond; Feuerborn, Alexander; Cook, Peter R.

    2016-01-01

    Droplet-interface bilayers (DIBs) have applications in disciplines ranging from biology to computing. We present a method for forming them manually using a Teflon tube attached to a syringe pump; this method is simple enough it should be accessible to those without expertise in microfluidics. It exploits the properties of interfaces between three immiscible liquids, and uses fluid flow through the tube to pack together drops coated with lipid monolayers to create bilayers at points of contact. It is used to create functional nanopores in DIBs composed of phosphocholine using the protein α-hemolysin (αHL), to demonstrate osmotically-driven mass transfer of fluid across surfactant-based DIBs, and to create arrays of DIBs. The approach is scalable, and thousands of DIBs can be prepared using a robot in one hour; therefore, it is feasible to use it for high throughput applications. PMID:27681313

  11. Aeromonas caviae strain induces Th1 cytokine response in mouse intestinal tract

    SciTech Connect

    Hayes, S L; Lye, D J; McKinstry, Craig A.; Vesper, Sephen J.

    2010-01-01

    Aeromonas caviae has been associated with human gastrointestinal disease. Strains of this species typically lack virulence factors (VFs) such as enterotoxins and hemolysins that are produced by other human pathogens of the Aeromonas genus. Microarray profiling of murine small intestinal extracts, 24 hours after oral infection with an A. caviae strain, provides evidence of a Th1 type immune response. A large number of gamma-interferon (γ-IFN) induced genes are up-regulated as well as several tumor necrosis factor-alpha (TNF-α) transcripts. A. caviae has always been considered as opportunistic pathogen because it lacks obvious virulence factors. This current effort suggests that an A. caviae strain can colonize the murine intestinal tract and cause what has been described by others as a dysregulatory cytokine response. This response could explain why a number of diarrheal waterborne disease cases have been attributed to A. caviae even though it lacks obvious enteropathogenic properties.

  12. Increased advanced oxidation of protein products and enhanced total antioxidant capacity in plasma by action of toxins of Escherichia coli STEC.

    PubMed

    Aiassa, V; Baronetti, J L; Paez, P L; Barnes, A I; Albrecht, C; Pellarin, G; Eraso, A J; Albesa, I

    2011-02-01

    Shiga toxin (Stx) and hemolysin (Hly) of Escherichia coli O157:H7 produced an increase of reactive oxygen species (ROS) in normal human blood. In vitro assays showed that stimuli of ROS with these toxins oxidized proteins to carbonyls in plasma and raised the degradation of oxidized macromolecules, with the AOPP/carbonyl relationship also increasing. The oxidative stress generated by toxins during the Hemolytic Uremic Syndrome (HUS) produced oxidation of blood proteins with a rise in advanced oxidation protein products (AOPP) in children with HUS. There was a response from the antioxidant system in these patients, evaluated through the determination of the total antioxidant capacity of plasma by the Ferric Reducing Antioxidant Power (FRAP), which reduced the stimuli of ROS during in vitro incubation with Stx or Hly. The application of natural antioxidants was sufficient to reduce in vitro the oxidative stress provoked by both toxins in blood. Published by Elsevier Ltd.

  13. Nanopore detection of copper ions using a polyhistidine probe.

    PubMed

    Wang, Guihua; Wang, Liang; Han, Yujing; Zhou, Shuo; Guan, Xiyun

    2014-03-15

    We report a stochastic nanopore sensing method for the detection of Cu(2+) ions. By employing a polyhistidine molecule as a chelating agent, and based on the different signatures of the events produced by the translocation of the chelating agent through an α-hemolysin pore in the absence and presence of target analytes, trace amounts of copper ions could be detected with a detection limit of 40 nM. Importantly, although Co(2+), Ni(2+), and Zn(2+) also interacts with the polyhistidine molecule, since the event residence times and/or blockage amplitudes for these metal chelates are significantly different from those of copper chelates, these metal ions do not interfere with Cu(2+) detection. This chelating reaction approach should find useful application in the development of nanopore sensors for other metal ions.

  14. Interaction of DNA and Proteins with Single Nanopores

    NASA Astrophysics Data System (ADS)

    Kasianowicz, J. J.

    2006-03-01

    The bacterial toxins Staphylococcus aureus alpha-hemolysin and Bacillus anthracis protective antigen kill cells in part by forming ion channels in target membranes. We are using electrophysiology, molecular biology/protein biochemistry and computer modeling to study how biopolymers (e.g., single-stranded DNA and proteins) bind to and transport through these nanometer-scale pores. The results provide insight into the mechanism by which these toxins work and are the basis for several potential nanobiotechnology applications including ultra-rapid DNA sequencing, the sensitive and selective detection of a wide range of analytes and high throughput screening of therapeutic agents against several anthrax toxins. In collaboration with V.M. Stanford, M. Misakian, B. Nablo, S.E. Henrickson, NIST, EEEL, Gaithersburg, MD; T. Nguyen, R. Gussio, NCI, Ft. Detrick, MD; and K.M. Halverson, S. Bavari, R.G. Panchal, USAMRIID, Ft. Detrick, MD.

  15. Nanoscale Bio-engineering Solutions for Space Exploration: The Nanopore Sequencer

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Cozmuta, Ioana

    2004-01-01

    Characterization of biological systems at the molecular level and extraction of essential information for nano-engineering design to guide the nano-fabrication of solid-state sensors and molecular identification devices is a computational challenge. The alpha hemolysin protein ion channel is used as a model system for structural analysis of nucleic acids like DNA. Applied voltage draws a DNA strand and surrounding ionic solution through the biological nanopore. The subunits in the DNA strand block ion flow by differing amounts. Atomistic scale simulations are employed using NASA supercomputers to study DNA translocation, with the aim to enhance single DNA subunit identification. Compared to protein channels, solid-state nanopores offer a better temporal control of the translocation of DNA and the possibility to easily tune its chemistry to increase the signal resolution. Potential applications for NASA missions, besides real-time genome sequencing include astronaut health, life detection and decoding of various genomes.

  16. Filtration method for studies of the kinetics of hypo-osmotic pore closure in erythrocyte.

    PubMed

    Shurkhina, E S; Nesterenko, V M; Tsvetaeva, N V; Kolodey, S V; Nikulina, O F

    2010-11-01

    Filterability of erythrocytes through small (3 μ) pores decreases with decreasing osmolarity of suspension medium because of hypo-osmotic swelling of cells. After appearance of lytic pores, erythrocyte filterability increases for some time, while after recovery of membrane integrity it decreases again. We suggest filtration method for studies of the kinetics of hypo-osmotic lytic pores closure. The dynamics of changes in erythrocyte filterability was studied in 2 patients with paroxysmal nocturnal hemoglobinuria and 6 donors (Ht 0.01%, Na phosphate buffer 5 mM, pH 7.4, 35 mOsm, 24°C). The method can be used for studies of erythrocyte membrane characteristics in various diseases and for evaluation of the membranotropic effects of drugs, infusion media, hemolysins, ethanol, etc.

  17. Nanoscale Bio-engineering Solutions for Space Exploration: The Nanopore Sequencer

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Cozmuta, Ioana

    2004-01-01

    Characterization of biological systems at the molecular level and extraction of essential information for nano-engineering design to guide the nano-fabrication of solid-state sensors and molecular identification devices is a computational challenge. The alpha hemolysin protein ion channel is used as a model system for structural analysis of nucleic acids like DNA. Applied voltage draws a DNA strand and surrounding ionic solution through the biological nanopore. The subunits in the DNA strand block ion flow by differing amounts. Atomistic scale simulations are employed using NASA supercomputers to study DNA translocation, with the aim to enhance single DNA subunit identification. Compared to protein channels, solid-state nanopores offer a better temporal control of the translocation of DNA and the possibility to easily tune its chemistry to increase the signal resolution. Potential applications for NASA missions, besides real-time genome sequencing include astronaut health, life detection and decoding of various genomes.

  18. Detection of 3′-End RNA Uridylation with a Protein Nanopore

    PubMed Central

    Clamer, Massimiliano; Höfler, Lajos; Mikhailova, Ellina; Viero, Gabriella; Bayley, Hagan

    2014-01-01

    Post-transcriptional modifications of the 3′-ends of RNA molecules have a profound impact on their stability and processing in the cell. Uridylation, the addition of uridines to 3′-ends, has recently been found to be an important regulatory signal to stabilize the tagged molecules or to direct them towards degradation. Simple and cost-effective methods for the detection of this post-transcriptional modification are not yet available. Here, we demonstrate the selective and transient binding of 3′-uridylated ssRNAs inside the β barrel of the staphylococcal alpha-hemolysin (αHL) nanopore, and investigate the molecular basis of uridine recognition by the pore. We show the discrimination of 3′-oligouridine tails on the basis of their lengths and propose the αHL nanopore as a useful sensor for this biologically relevant RNA modification. PMID:24369707

  19. Identification of DNA lesions using a third base pair for amplification and nanopore sequencing.

    PubMed

    Riedl, Jan; Ding, Yun; Fleming, Aaron M; Burrows, Cynthia J

    2015-11-06

    Damage to the genome is implicated in the progression of cancer and stress-induced diseases. DNA lesions exist in low levels, and cannot be amplified by standard PCR because they are frequently strong blocks to polymerases. Here, we describe a method for PCR amplification of lesion-containing DNA in which the site and identity could be marked, copied and sequenced. Critical for this method is installation of either the dNaM or d5SICS nucleotides at the lesion site after processing via the base excision repair process. These marker nucleotides constitute an unnatural base pair, allowing large quantities of marked DNA to be made by PCR amplification. Sanger sequencing confirms the potential for this method to locate lesions by marking, amplifying and sequencing a lesion in the KRAS gene. Detection using the α-hemolysin nanopore is also developed to analyse the markers in individual DNA strands with the potential to identify multiple lesions per strand.

  20. Formation of droplet interface bilayers in a Teflon tube.

    PubMed

    Walsh, Edmond; Feuerborn, Alexander; Cook, Peter R

    2016-09-29

    Droplet-interface bilayers (DIBs) have applications in disciplines ranging from biology to computing. We present a method for forming them manually using a Teflon tube attached to a syringe pump; this method is simple enough it should be accessible to those without expertise in microfluidics. It exploits the properties of interfaces between three immiscible liquids, and uses fluid flow through the tube to pack together drops coated with lipid monolayers to create bilayers at points of contact. It is used to create functional nanopores in DIBs composed of phosphocholine using the protein α-hemolysin (αHL), to demonstrate osmotically-driven mass transfer of fluid across surfactant-based DIBs, and to create arrays of DIBs. The approach is scalable, and thousands of DIBs can be prepared using a robot in one hour; therefore, it is feasible to use it for high throughput applications.

  1. Magnetically immobilized nanoporous giant proteoliposomes as a platform for biosensing.

    PubMed

    Hsin, Tse-Ming; Wu, Kan; Chellappan, Gowri

    2012-01-07

    We report a biosensing method that is based on magnetically immobilized functional liposomes. The vesicles encapsulate magnetic nanoparticles (MNP) and enzymatic sensing reagents. Magnetic attraction between MNP and external magnets first immobilizes liposomes onto the surface of a coverglass. With the assistance from α-hemolysin (aHL), translocations of analytes through a lipid membrane trigger intravesicular enzymatic reactions. After 90 s incubation, the product from the sensing reactions, resorufin, was probed by laser-induced fluorescence. Detection of two analytes, glucose and ethanol, was demonstrated using two types of functional vesicles. The effects of MNP-containing vesicles and biotinylated vesicles on aHL's translocations of analytes were also compared. Unlike biotinylated lipids, MNP facilitate immobilization of liposomes without compromising the integrity of membrane and pore-forming activity of aHL. This journal is © The Royal Society of Chemistry 2012

  2. Semisynthetic Nanoreactor for Reversible Single-Molecule Covalent Chemistry

    PubMed Central

    2016-01-01

    Protein engineering has been used to remodel pores for applications in biotechnology. For example, the heptameric α-hemolysin pore (αHL) has been engineered to form a nanoreactor to study covalent chemistry at the single-molecule level. Previous work has been confined largely to the chemistry of cysteine side chains or, in one instance, to an irreversible reaction of an unnatural amino acid side chain bearing a terminal alkyne. Here, we present four different αHL pores obtained by coupling either two or three fragments by native chemical ligation (NCL). The synthetic αHL monomers were folded and incorporated into heptameric pores. The functionality of the pores was validated by hemolysis assays and by single-channel current recording. By using NCL to introduce a ketone amino acid, the nanoreactor approach was extended to an investigation of reversible covalent chemistry on an unnatural side chain at the single-molecule level. PMID:27537396

  3. Simulation of polymer translocation through protein channels

    NASA Astrophysics Data System (ADS)

    Muthukumar, M.; Kong, C. Y.

    2006-04-01

    A modeling algorithm is presented to compute simultaneously polymer conformations and ionic current, as single polymer molecules undergo translocation through protein channels. The method is based on a combination of Langevin dynamics for coarse-grained models of polymers and the Poisson-Nernst-Planck formalism for ionic current. For the illustrative example of ssDNA passing through the -hemolysin pore, vivid details of conformational fluctuations of the polymer inside the vestibule and -barrel compartments of the protein pore, and their consequent effects on the translocation time and extent of blocked ionic current are presented. In addition to yielding insights into several experimentally reported puzzles, our simulations offer experimental strategies to sequence polymers more efficiently.

  4. Discrimination of Single Base Pair Differences Among Individual DNA Molecules Using a Nanopore

    NASA Technical Reports Server (NTRS)

    Vercoutere, Wenonah; DeGuzman, Veronica

    2003-01-01

    The protein toxin alpha-hemolysin form nanometer scale channels across lipid membranes. Our lab uses a single channel in an artificial lipid bilayer in a patch clamp device to capture and examine individual DNA molecules. This nanopore detector used with a support vector machine (SVM) can analyze DNA hairpin molecules on the millisecond time scale. We distinguish duplex stem length, base pair mismatches, loop length, and single base pair differences. The residual current fluxes also reveal structural molecular dynamics elements. DNA end-fraying (terminal base pair dissociation) can be observed as near full blockades, or spikes, in current. This technique can be used to investigate other biological processes dependent on DNA end-fraying, such as the processing of HIV DNA by HIV integrase.

  5. Staphylococcus schleiferi subsp. coagulans subsp. nov., isolated from the external auditory meatus of dogs with external ear otitis.

    PubMed

    Igimi, S; Takahashi, E; Mitsuoka, T

    1990-10-01

    A new subspecies, Staphylococcus schleiferi subsp. coagulans, was isolated from the external auditory meatus of dogs suffering from external ear otitis and is described on the basis of studies of 21 strains. Phenotypic studies showed that these strains are more closely related to Staphylococcus intermedius than to other staphylococci, but DNA hybridization studies indicated that they are closely related to Staphylococcus schleiferi N850274T. On the basis of biochemical distinctiveness (positive test tube coagulase test and different carbohydrate reactions) and the etiological importance (frequent isolation from otitis specimens from dogs) of these strains, we propose to classify them as a subspecies of S. schleiferi. The strains of this new subspecies are coagulase tube test, beta-hemolysin, and heat-stable nuclease positive but clumping factor negative. A simple scheme for the differentiation of S. schleiferi subsp. coagulans from the other coagulase-positive staphylococci is presented. The type strain is GA211 (= JCM 7470).

  6. Highly efficient biocompatible single silicon nanowire electrodes with functional biological pore channels.

    PubMed

    Martinez, Julio A; Misra, Nipun; Wang, Yinmin; Stroeve, Pieter; Grigoropoulos, Costas P; Noy, Aleksandr

    2009-03-01

    Nanoscale electrodes based on one-dimensional inorganic conductors could possess significant advantages for electrochemical measurements over their macroscopic counterparts in a variety of electrochemical applications. We show that the efficiency of the electrodes constructed of individual highly doped silicon nanowires greatly exceeds the efficiency of flat Si electrodes. Modification of the surfaces of the nanowire electrodes with phospholipid bilayers produces an efficient biocompatible barrier to transport of the solution redox species to the nanoelectrode surface. Incorporating functional alpha-hemolysin protein pores in the lipid bilayer results in a partial recovery of the Faradic current due to the specific transport through the protein pore. These assemblies represent a robust and versatile platform for building a new generation of highly specific biosensors and nano/bioelectronic devices.

  7. A novel input-parasitic compensation technique for a nanopore-based CMOS DNA detection sensor

    NASA Astrophysics Data System (ADS)

    Kim, Jungsuk

    2016-12-01

    This paper presents a novel input-parasitic compensation (IPC) technique for a nanopore-based complementary metal-oxide-semiconductor (CMOS) DNA detection sensor. A resistive-feedback transimpedance amplifier is typically adopted as the headstage of a DNA detection sensor to amplify the minute ionic currents generated from a nanopore and convert them to a readable voltage range for digitization. But, parasitic capacitances arising from the headstage input and the nanopore often cause headstage saturation during nanopore sensing, thereby resulting in significant DNA data loss. To compensate for the unwanted saturation, in this work, we propose an area-efficient and automated IPC technique, customized for a low-noise DNA detection sensor, fabricated using a 0.35- μm CMOS process; we demonstrated this prototype in a benchtop test using an α-hemolysin ( α-HL) protein nanopore.

  8. Helicobacter pylori TlyA agglutinates liposomes and induces fusion and permeabilization of the liposome membranes.

    PubMed

    Lata, Kusum; Chattopadhyay, Kausik

    2014-06-10

    Helicobacter pylori TlyA is a pore-forming hemolysin with potent cytotoxic activity. To explore the potential membrane-damaging activity of H. pylori TlyA, we have studied its interaction with the synthetic liposome vesicles. In our study, H. pylori TlyA shows a prominent ability to associate with the liposome vesicles without displaying an obligatory requirement for any protein receptor on the liposome membranes. Interaction of TlyA triggers agglutination of the liposome vesicles. Such agglutinating activity of TlyA could also be observed with erythrocytes before the induction of its pore-forming hemolytic activity. In addition to its agglutinating activity against liposomes, TlyA also induces fusion and disruption of the liposome membranes. Altogether, our study highlights novel membrane-damaging properties of H. pylori TlyA that have not been documented previously with any other TlyA family protein.

  9. Identification of a Hydrophobic Cleft in the LytTR Domain of AgrA as a Locus for Small Molecule Interactions that Inhibit DNA Binding

    PubMed Central

    Leonard, Paul G.; Bezar, Ian F.; Sidote, David J.; Stock, Ann M.

    2012-01-01

    The AgrA transcription factor regulates the quorum-sensing response in Staphylococcus aureus, controlling the production of hemolysins and other virulence factors. AgrA binds to DNA via its C-terminal LytTR domain, a domain not found in humans but common in many pathogenic bacteria, making it a potential target for antimicrobial development. We have determined the crystal structure of the apo AgrA LytTR domain and screened a library of 500 fragment compounds to find inhibitors of AgrA DNA-binding activity. Using NMR, the binding site for five compounds has been mapped to a common locus at the C-terminal end of the LytTR domain, a site known to be important for DNA-binding activity. Three of these compounds inhibit AgrA DNA binding. These results provide the first evidence that LytTR domains can be targeted by small organic compounds. PMID:23181972

  10. Trichomonas gallinae: a possible contact-dependent mechanism in the hemolytic activity.

    PubMed

    De Carli, Geraldo Attilio; Tasca, Tiana

    2002-07-02

    The in vitro hemolytic activity of Trichomonas gallinae was investigated. The parasite was tested against human erythrocytes of groups A, B, AB, and O, and against erythrocytes of six adult animals of different species (rabbit, rat, chicken, horse, bovine, and sheep). Results showed that T. gallinae lysed all human erythrocytes groups, as well as rabbit, rat, chicken, horse, bovine and sheep erythrocytes. No hemolysin released by the parasites could be identified. Hemolysis did not occur with trichomonad culture supernatants, with sonicated extracts of T. gallinae, or with killed organisms. The scanning electron microscopy (SEM) showed that the erythrocytes adhered to the parasite surface and were phagocytosed. These observations suggest that the contact between T. gallinae and erythrocytes may be an important mechanism in the injury caused to the erythrocytes. The hemolytic activity of T. gallinae may be an efficient means of obtaining nutrients for the parasite and allow the investigation of the mechanism used by T. gallinae to damage cellular membranes.

  11. Activation of neutrophils by the two-component leukotoxin LukE/D from Staphylococcus aureus: proteomic analysis of the secretions.

    PubMed

    Aslam, Rizwan; Laventie, Benoît-Joseph; Marban, Céline; Prévost, Gilles; Keller, Daniel; Strub, Jean-Marc; Dorsselaer, Alain van; Haikel, Youssef; Taddei, Corinne; Metz-Boutigue, Marie-Hélène

    2013-08-02

    Staphylococcus aureus is responsible for severe bacterial infections in hospitals and healthcare facilities. It produces single and bicomponent toxins (leukotoxins and hemolysins) that hinder innate immune function. Leukotoxin subunits bind to leukocyte cell membrane thus inducing transmembrane pores and subsequently, cell lysis. Leukotoxin LukE/D is a member of the bicomponent toxin family, but to date, no study concerning its involvement in host-pathogen interactions has been reported. In the present study, we performed the proteomic analysis of the secretions recovered after activation of human neutrophils by leukotoxin LukE/D. The neutrophil secretions were purified by RP-HPLC and different fractions were analyzed by Edman sequencing, LC-MS/MS, immunoblotted for chromogranin-derived peptides and further analyzed for antimicrobial properties. Proteomic analysis revealed that neutrophil secretions constitute a large number of proteins related with immune boosting mechanisms, proteolytic degradation, inflammatory process and antioxidant reactions.

  12. Identification of tdh-positive Vibrio parahaemolyticus from an outbreak associated with raw oyster consumption in Spain.

    PubMed

    Lozano-León, Antonio; Torres, Julio; Osorio, Carlos R; Martínez-Urtaza, Jaime

    2003-09-26

    Between August and September 1999, a total of 64 cases of illness were identified in three episodes of acute gastroenteritis associated with the consumption of live oysters from a typical outdoor street market in Galicia (northwest Spain). Nine case patients were hospitalized and analysis of their stool samples revealed the presence of Vibrio parahaemolyticus. The strains isolated from two stool samples were studied for antibiotic susceptibility, biochemical characteristics and presence of virulence factors. Both isolates were Kanagawa phenomenon positive and produced thermostable direct hemolysin, which is related to pathogenicity in humans. These results show the presence of pathogenic V. parahaemolyticus in mollusks harvested in Europe and reveal the risk of illness associated with their consumption, suggesting the revision of V. parahaemolyticus risk assessment associated with consumption of raw live shellfish.

  13. Effect of confinement on DNA, solvent and counterion dynamics in a model biological nanopore

    NASA Astrophysics Data System (ADS)

    Markosyan, Suren; de Biase, Pablo M.; Czapla, Luke; Samoylova, Olga; Singh, Gurpreet; Cuervo, Javier; Tieleman, D. Peter; Noskov, Sergei Yu.

    2014-07-01

    The application of recent advances in nanopore technology to high-throughput DNA sequencing requires a more detailed understanding of solvent, ion and DNA interactions occurring within these pores. Here we present a combination of atomistic and coarse-grained modeling studies of the dynamics of short single-stranded DNA (ssDNA) homopolymers within the alpha-hemolysin pore, for the two single-stranded homopolymers poly(dA)40 and poly(dC)40. Analysis of atomistic simulations along with the per-residue decomposition of protein-DNA interactions in these simulations gives new insight into the very complex issues that have yet to be fully addressed with detailed MD simulations. We discuss a modification of the solvent properties and ion distribution around DNA within nanopore confinement and put it into the general framework of counterion condensation theory. There is a reasonable agreement in computed properties from our all-atom simulations and the resulting predictions from analytical theories with experimental data, and our equilibrium results here support the conclusions from our previous non-equilibrium Brownian dynamics studies with a recently developed BROMOC protocol that cations are the primary charge carriers through alpha-hemolysin nanopores under an applied voltage in the presence of ssDNA. Clustering analysis led to an identification of distinct conformational states of captured polymer and depth of the current blockade. Therefore, our data suggest that confined polymer may act as a flickering gate, thus contributing to excess noise phenomena. We also discuss the extent of water structuring due to nanopore confinement and the relationship between the conformational dynamics of a captured polymer and the distribution of blocked current.The application of recent advances in nanopore technology to high-throughput DNA sequencing requires a more detailed understanding of solvent, ion and DNA interactions occurring within these pores. Here we present a

  14. Clonal distribution of Streptococcus suis isolated from diseased pigs in the central region of Chile

    PubMed Central

    Morales, Bárbara; Ruiz, Álvaro; Lacouture, Sonia; Gottschalk, Marcelo

    2015-01-01

    The characteristics of 29 Chilean field strains of Streptococcus suis recovered between 2007 and 2011 from pigs with clinical signs at different farms were studied. Serotyping with use of the coagglutination test revealed that all but 1 strain belonged to serotype 6; the remaining strain was serotype 22. All the serotype-6 strains were suilysin (hemolysin)-negative; in addition, they were found to be genotypically homogeneous by enterobacterial repetitive intergenic consensus sequence-based polymerase chain reaction (ERIC-PCR) and sensitive to ampicillin, ceftiofur, penicillin, and trimethoprim/sulfamethoxazole. The results indicate that, in contrast to what is generally observed in other countries, a single clone of S. suis was isolated from diseased pigs in the central region of Chile. PMID:26424917

  15. Discrimination of Single Base Pair Differences Among Individual DNA Molecules Using a Nanopore

    NASA Technical Reports Server (NTRS)

    Vercoutere, Wenonah; DeGuzman, Veronica

    2003-01-01

    The protein toxin alpha-hemolysin form nanometer scale channels across lipid membranes. Our lab uses a single channel in an artificial lipid bilayer in a patch clamp device to capture and examine individual DNA molecules. This nanopore detector used with a support vector machine (SVM) can analyze DNA hairpin molecules on the millisecond time scale. We distinguish duplex stem length, base pair mismatches, loop length, and single base pair differences. The residual current fluxes also reveal structural molecular dynamics elements. DNA end-fraying (terminal base pair dissociation) can be observed as near full blockades, or spikes, in current. This technique can be used to investigate other biological processes dependent on DNA end-fraying, such as the processing of HIV DNA by HIV integrase.

  16. Lifesaving liver transplantation for multi-organ failure caused by Bacillus cereus food poisoning.

    PubMed

    Tschiedel, Eva; Rath, Peter-Michael; Steinmann, Jörg; Becker, Heinz; Dietrich, Rudolf; Paul, Andreas; Felderhoff-Müser, Ursula; Dohna-Schwake, Christian

    2015-02-01

    Bacillus cereus is a spore-forming, gram-positive bacterium that causes food poisoning presenting with either emesis or diarrhea. Diarrhea is caused by proteinaceous enterotoxin complexes, mainly hemolysin BL, non-hemolytic enterotoxin (NHE), and cytotoxin K. In contrast, emesis is caused by the ingestion of the depsipeptide toxin cereulide, which is produced in B. cereus contaminated food, particularly in pasta or rice. In general, the illness is mild and self-limiting. However, due to cereulide intoxication, nine severe cases with rhabdomyolysis and/or liver failure, five of them lethal, are reported in literature. Here we report the first case of life-threatening liver failure and severe rhabdomyolysis in this context that could not be survived without emergency hepatectomy and consecutive liver transplantation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Aeromonas proteolyrica bacteria in aerospace environments. [possible genetic alterations and effects on man

    NASA Technical Reports Server (NTRS)

    Foster, B. G.

    1974-01-01

    Preflight studies on Aeromonas proteolytica are reported to investigate the possibility of genetic alterations resulting in increased proteolysis in spacecraft environments. This organism may be present on human tissue and could pose medical problems if its endopeptidase and a hemolysin were to be produced in ususually high quantities or altered in such a way as to be more effective in their activities. Considered are: (1) Development of a nutrative holding medium for suspension of organisms; (2) the establishment of baseline information for the standardization of the assay for endopeptidase levels and hemolytic titers; (3) formulation of a method by which intracutaneous hemorrhage could be quantitated in guinea pig tissue; and (4) the responses of these organisms to parameters of spaceflight and experimentation.

  18. Encapsulating a Single G-Quadruplex Aptamer in a Protein Nanocavity

    PubMed Central

    Shim, Ji Wook; Gu, Li-Qun

    2009-01-01

    The α-hemolysin (αHL) protein pore has many applications in biotechnology. This article describes a single-molecule manipulation system that utilizes the nanocavity enclosed by this pore to non-covalently encapsulate a guest molecule. The guest is the thrombin-binding aptamer (TBA) that folds into the G-quadruplex in the presence of cations. Trapping the G-quadruplex in the nanocavity resulted in characteristic changes to the pore conductance that revealed important molecular processes, including spontaneous unfolding of the quartet structure and translocation of unfolded DNA in the pore. Through detection with tag-TBA, we localized the G-quadruplex near the entry of the β-barrel inside the nanocavity, where the molecule vibrates and rotates to different orientations. This guest-nanocavity supramolecular system has potential for helping to understand single-molecule folding and unfolding kinetics. PMID:18563930

  19. A novel δ-hemolysis screening method for detecting heteroresistant vancomycin-intermediate Staphylococcus aureus and vancomycin-intermediate S. aureus.

    PubMed

    Cafiso, V; Bertuccio, T; Spina, D; Purrello, S; Blandino, G; Stefani, Stefania

    2012-05-01

    We assessed a new screening method, based on δ-hemolysin production in the presence of 6 mg/liter vancomycin, to distinguish heteroresistant vancomycin-intermediate Staphylococcus aureus (hVISA) and vancomycin-intermediate S. aureus (VISA) from vancomycin-susceptible S. aureus (VSSA). On 37 clinical methicillin-resistant S. aureus (MRSA) isolates, hVISA and VISA displayed no δ-hemolysis whereas VSSA displayed strong δ-hemolysis, showing 91.6% sensitivity. These data, supported by real-time reverse transcription PCR (real-time RT-PCR) highlighting an hld downregulation, i.e., VSSA>hVISA>VISA, define this new assay as a valid screening method.

  20. [Vibrio vulnificus pollution of imported frozen Black Tiger shrimps in Japan].

    PubMed

    Hashimoto, Kouji; Horita, Rie; Tanamachi, Chiyoko; Toyoda, Naoko; Sagawa, Kimitaka

    2007-11-01

    The Ariake Sea area of Japan is endemic for Vibrio vulnificus infection. V vulnificus was isolated from slime from tidal flats, seawater, and fish Sea year-round as we reported previously. To identify new routes and factors of V vulnificus infection, we studied V. vulnificus pollution of imported frozen Black Tiger shrimps purchased from a fish market in Kurume, Fukuoka, Japan. V. vulnificus was isolated from 9 of 100 tails (9%) of Philippines products, 3 of 100 tails (3%) of Indonesia products, and 0 out of 100 tails (0%) of Madagascar products. Cytotoxin-hemolysin genes were identified in 7 V. vulnificus strains isolated from patients with V vulnificus septicemia, 9 strains from Philippine products, and 3 strains from Indonesian products. These results suggest that imported frozen Black Tiger shrimps are a new sources of V. vulnificus infection.

  1. Placement of oppositely charged aminoacids at a polypeptide termini determines the voltage-controlled braking of polymer transport through nanometer-scale pores.

    PubMed

    Asandei, Alina; Chinappi, Mauro; Lee, Jong-Kook; Ho Seo, Chang; Mereuta, Loredana; Park, Yoonkyung; Luchian, Tudor

    2015-06-01

    Protein and solid-state nanometer-scale pores are being developed for the detection, analysis, and manipulation of single molecules. In the simplest embodiment, the entry of a molecule into a nanopore causes a reduction in the latter's ionic conductance. The ionic current blockade depth and residence time have been shown to provide detailed information on the size, adsorbed charge, and other properties of molecules. Here we describe the use of the nanopore formed by Staphylococcus aureus α-hemolysin and polypeptides with oppositely charged segments at the N- and C-termini to increase both the polypeptide capture rate and mean residence time of them in the pore, regardless of the polarity of the applied electrostatic potential. The technique provides the means to improve the signal to noise of single molecule nanopore-based measurements.

  2. Molecular Bases of cyclodextrin Adapter Interactions with Engineered Protein Nanopores

    SciTech Connect

    Banerjee, A.; Mikhailova, E; Cheley, S; Gu, L; Montoya, M; Nagaoka, Y; Gouaux, E; Bayley, H

    2010-01-01

    Engineered protein pores have several potential applications in biotechnology: as sensor elements in stochastic detection and ultrarapid DNA sequencing, as nanoreactors to observe single-molecule chemistry, and in the construction of nano- and micro-devices. One important class of pores contains molecular adapters, which provide internal binding sites for small molecules. Mutants of the {alpha}-hemolysin ({alpha}HL) pore that bind the adapter {beta}-cyclodextrin ({beta}CD) {approx}10{sup 4} times more tightly than the wild type have been obtained. We now use single-channel electrical recording, protein engineering including unnatural amino acid mutagenesis, and high-resolution x-ray crystallography to provide definitive structural information on these engineered protein nanopores in unparalleled detail.

  3. An Autonomously Reciprocating Transmembrane Nanoactuator.

    PubMed

    Watson, Matthew A; Cockroft, Scott L

    2016-01-22

    Biological molecular machines operate far from equilibrium by coupling chemical potential to repeated cycles of dissipative nanomechanical motion. This principle has been exploited in supramolecular systems that exhibit true machine behavior in solution and on surfaces. However, designed membrane-spanning assemblies developed to date have been limited to simple switches or stochastic shuttles, and true machine behavior has remained elusive. Herein, we present a transmembrane nanoactuator that turns over chemical fuel to drive autonomous reciprocating (back-and-forth) nanomechanical motion. Ratcheted reciprocating motion of a DNA/PEG copolymer threaded through a single α-hemolysin pore was induced by a combination of DNA strand displacement processes and enzyme-catalyzed reactions. Ion-current recordings revealed saw-tooth patterns, indicating that the assemblies operated in autonomous, asymmetric cycles of conformational change at rates of up to one cycle per minute. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The SaeRS Two-Component System of Staphylococcus aureus

    PubMed Central

    Liu, Qian; Yeo, Won-Sik; Bae, Taeok

    2016-01-01

    In the Gram-positive pathogenic bacterium Staphylococcus aureus, the SaeRS two-component system (TCS) plays a major role in controlling the production of over 20 virulence factors including hemolysins, leukocidins, superantigens, surface proteins, and proteases. The SaeRS TCS is composed of the sensor histidine kinase SaeS, response regulator SaeR, and two auxiliary proteins SaeP and SaeQ. Since its discovery in 1994, the sae locus has been studied extensively, and its contributions to staphylococcal virulence and pathogenesis have been well documented and understood; however, the molecular mechanism by which the SaeRS TCS receives and processes cognate signals is not. In this article, therefore, we review the literature focusing on the signaling mechanism and its interaction with other global regulators. PMID:27706107

  5. Potential virulence factors of Proteus bacilli.

    PubMed Central

    Rózalski, A; Sidorczyk, Z; Kotełko, K

    1997-01-01

    The object of this review is the genus Proteus, which contains bacteria considered now to belong to the opportunistic pathogens. Widely distributed in nature (in soil, water, and sewage), Proteus species play a significant ecological role. When present in the niches of higher macroorganisms, these species are able to evoke pathological events in different regions of the human body. The invaders (Proteus mirabilis, P. vulgaris, and P. penneri) have numerous factors including fimbriae, flagella, outer membrane proteins, lipopolysaccharide, capsule antigen, urease, immunoglobulin A proteases, hemolysins, amino acid deaminases, and, finally, the most characteristic attribute of Proteus, swarming growth, enabling them to colonize and survive in higher organisms. All these features and factors are described and commented on in detail. The questions important for future investigation of these facultatively pathogenic microorganisms are also discussed. PMID:9106365

  6. Identification of Genetic Bases of Vibrio fluvialis Species-Specific Biochemical Pathways and Potential Virulence Factors by Comparative Genomic Analysis

    PubMed Central

    Lu, Xin; Liang, Weili; Wang, Yunduan; Xu, Jialiang

    2014-01-01

    Vibrio fluvialis is an important food-borne pathogen that causes diarrheal illness and sometimes extraintestinal infections in humans. In this study, we sequenced the genome of a clinical V. fluvialis strain and determined its phylogenetic relationships with other Vibrio species by comparative genomic analysis. We found that the closest relationship was between V. fluvialis and V. furnissii, followed by those with V. cholerae and V. mimicus. Moreover, based on genome comparisons and gene complementation experiments, we revealed genetic mechanisms of the biochemical tests that differentiate V. fluvialis from closely related species. Importantly, we identified a variety of genes encoding potential virulence factors, including multiple hemolysins, transcriptional regulators, and environmental survival and adaptation apparatuses, and the type VI secretion system, which is indicative of complex regulatory pathways modulating pathogenesis in this organism. The availability of V. fluvialis genome sequences may promote our understanding of pathogenic mechanisms for this emerging pathogen. PMID:24441165

  7. The cytotoxic properties of Serpulina hyodysenteriae.

    PubMed

    Binek, M; Szynkiewicz, Z; Spohr de Faundez, I; Wójcik, U; Klimuszko, D; Rzewuska, M

    1995-01-01

    Examination of colonic enterocytes inoculate with pure culture of S. hyodysenteriae by phase-contrast microscopy revealed that only few spirochaetes adhere to epithelial cells. S. hyodysenteriae was observed to be highly motile, showed corkscrew-like movement which might suggest that bacteria were trying to penetrate and damaged the host cells. The pattern of motility provide evidence of a chemotaxis. Supernatant of S.hyodysenteriae lysate were found to cause CTE in CHO, Vero and PK-15 culture. This support the hypothesis that damage is consistent with the presence of toxin. Inhibition activity of serpulinas hemolysin preparation with streptolysin S inhibitors confirms the suggestion that the mechanism by which S. hyodysenteriae toxin effects the cells seems to be similar to the action of streptococcal toxin S.

  8. Elderly infection in the community due to ST5/SCCmecII methicillin-resistant Staphylococcus aureus (the New York/Japan clone) in Japan: Panton-Valentine leukocidin-negative necrotizing pneumonia.

    PubMed

    Khokhlova, Olga; Tomita, Yusuke; Hung, Wei-Chun; Takano, Tomomi; Iwao, Yasuhisa; Higuchi, Wataru; Nishiyama, Akihito; Reva, Ivan; Yamamoto, Tatsuo

    2015-06-01

    An 89-year-old man suffered from and died of necrotizing pneumonia with rapid progression and cavity formation due to methicillin-resistant Staphylococcus aureus (MRSA). He was at no risk for hospital-acquired MRSA infection. His MRSA exhibited genotype ST5/spa2(t002)/agr2/SCCmecII/coagulaseII and was negative for Panton-Valentine leukocidin, indicating the New York/Japan clone (the predominant epidemic hospital-acquired MRSA clone in Japan). However, this strain expressed the cytolytic peptide (phenol-soluble modulin or δ-hemolysin) genes at high level, similar to USA300 (the most common community-acquired MRSA in the United States), indicating a variant of the New York/Japan clone with an important feature of community-acquired MRSA.

  9. Development of a rapid detection method to detect tdh gene in Vibrio parahaemolyticus using 2-step ultrarapid real-time polymerase chain reaction.

    PubMed

    Kang, Min-Hee; Kim, Il-Wook; Lee, Dong-Woo; Yoo, Mi-Sun; Han, Sang-Hoon; Yoon, Byoung-Su

    2011-01-01

    Thermostable direct hemolysin encoded by tdh gene has been considered an important virulence factor in pathogenic Vibrio parahaemolyticus. Two-step ultrarapid real-time polymerase chain reaction (URRT PCR) with a microchip was devised to detect V. parahaemolyticus carrying tdh gene. This novel method has a 6-μL reaction volume and extremely reduces running time since one cycle can be completed in 10 s or less. Consequently, 35 cycles of URRT PCR was successfully able to detect up to 100 fg (18 copies) of genomic DNA from pathogenic V. parahaemolyticus carrying tdh gene in 6 min. These results indicate that this method is at present the most rapid detection method for tdh gene and pathogenic V. parahaemolyticus.

  10. Genome Sequence of Elizabethkingia meningoseptica EM1, Isolated from a Patient with a Bloodstream Infection

    PubMed Central

    Soehnlen, Marty; Walker, Edward D.

    2016-01-01

    Elizabethkingia meningoseptica EM1 was isolated from a whole-blood sample from a female patient. The draft genome sequence of Em1 contains 4,038,467 bp, with a G+C content of 36.37%. A preliminary genome analysis showed that Em1 contains genes conferring resistance to β-lactams. The bacterium has hemolysin genes and a set of genes involved in heme uptake and heme utilization, showing its potential to cause bloodstream infections. A clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) system was identified. Average nucleotide identity (ANI) analysis assigned the bacterium to the species E. meningoseptica (ANI, >95%). The annotated genome sequence provides the genetic basis for revealing its role as a pathogen in humans. PMID:27789634

  11. Computational analysis of maltose binding protein translocation

    NASA Astrophysics Data System (ADS)

    Chinappi, Mauro; Cecconi, Fabio; Massimo Casciola, Carlo

    2011-05-01

    We propose a computational model for the study of maltose binding protein translocation across α-hemolysin nanopores. The phenomenological approach simplifies both the pore and the polypeptide chain; however it retains the basic structural protein-like properties of the maltose binding protein by promoting the correct formation of its native key interactions. By considering different observables characterising the channel blockade and molecule transport, we verified that MD simulations reproduce qualitatively the behaviour observed in a recent experiment. Simulations reveal that blockade events consist of a capture stage, to some extent related to the unfolding kinetics, and a single file translocation process in the channel. A threshold mechanics underlies the process activation with a critical force depending on the protein denaturation state. Finally, our results support the simple interpretation of translocation via first-passage statistics of a driven diffusion process of a single reaction coordinate.

  12. Pore-forming bacterial toxins potently induce release of nitric oxide in porcine endothelial cells

    PubMed Central

    1993-01-01

    Nitric oxide (NO) is believed to play an important role in sepsis- related hypotension. We examined the effects of two pore-forming bacterial exotoxins, Escherichia coli hemolysin and Staphylococcus aureus alpha-toxin, on NO formation in cultured porcine pulmonary artery endothelial cells. NO was quantified using a difference- spectrophotometric method based on the rapid and stoichiometric reaction of NO with oxyhemoglobin. Endothelial cyclic guanosine monophosphate levels were also monitored. Both exotoxins increased NO synthesis in endothelial cells in a time- and dose-dependent manner to an extent exceeding that observed with the ionophore A23187 or thrombin. The capacity of exotoxins to induce NO formation may be relevant in patients with severe local or systemic bacterial infections. PMID:8391061

  13. Virulence profile and clonal relationship among the Vibrio cholerae isolates from ground and surface water in a cholera endemic area during rainy season.

    PubMed

    Goel, A K; Jain, M; Kumar, P; Kamboj, D V; Singh, L

    2010-01-01

    All the V. cholerae non-O1, non-O139 isolates from ground and surface water samples collected during the rainy season (rainfall contributes significantly in the spread of cholera) contained ompW and a regulatory toxR gene, while many others possessed accessory cholera toxin (ace), hemolysin (hlyA) and outer membrane protein (ompU) genes. All the isolates lacked ctxAB, tcp, zot, rfbO1 and rfbO139 genes. The strains could be grouped into two main clusters colligating the isolates from ground water and surface water samples. The results suggest that surface water harbors various virulent V. cholerae strains that contaminate the ground water due to rain or poor hygienic practices, and result in the emergence of new toxigenic strains for cholera.

  14. Factors Affecting the Passive Hemagglutination Titration: Dilution Loops, Titration Trays, Vibration, Diluents1

    PubMed Central

    Hirata, Arthur A.; Grant, Dennis S.; Draper, Laurence R.

    1969-01-01

    Serial dilution with Takatsy loops resulted in exaggerated passive hemagglutination titers with most of the anti-bovine serum albumin sera tested. It appears that certain types of agglutinins adhere to the loop surface and are released only gradually. This adherence, or carry-over effect, was prevented by presoaking loops in gelatin or gelatin-rabbit serum-albumin solutions. Hemolysins did not adhere to loops. In general, hemagglutination reactions performed on plastic trays gave higher titers than those performed in glass test tubes. The quality of the hemagglutination pattern was dependent to a great extent on the type of plastic tray used. As much as a 100-fold difference in titers was obtained depending on the composition of the antiserum diluent. The increase in vibration, in terms of linear displacement (approximately twofold), resulted in an eightfold decrease in titers. PMID:5772394

  15. Severe fibrinonecrotic enteritis caused by Pseudomonas aeruginosa in a captive monitor lizard (Varanus niloticus).

    PubMed

    Seixas, Rui; Pissarra, Hugo; Santos, José; Bernardino, Rui; Fernandes, Teresa; Correia, Jorge; Vilela, Cristina Lobo; Oliveira, Manuela

    2014-06-01

    Pseudomonas aeruginosa is an important pathogen that has been implicated in a number of serious conditions in humans and animals. Studies regarding the efficacy of antimicrobial drugs against virulent strains of P. aeruginosa in human and animal hosts have demonstrated that common therapeutic options are sometimes ineffective. In captive animals, in particular reptiles, literature on this topic is scarce. In this study, a 6-yr-old monitor lizard, Varanus niloticus, died suddenly without previous symptoms. Postmortem examination and bacteriologic analysis of necropsy samples revealed severe fibrinonecrotic enteritis caused by P. aeruginosa. The isolate presented a typical resistance profile, showing resistance to amoxycillin-clavulanic acid, ampicillin, cephotaxime, and sulphamethoxazole-trimethoprim. Virulence characterization demonstrated that the bacterium was able to express hemolysins, DNases, gelatinases, and lipases and had biofilm-forming ability. This study highlights the importance of surveillance for antimicrobial resistance and virulence traits in captive animals, which may present a challenge to practitioners.

  16. Formation of droplet interface bilayers in a Teflon tube

    NASA Astrophysics Data System (ADS)

    Walsh, Edmond; Feuerborn, Alexander; Cook, Peter R.

    2016-09-01

    Droplet-interface bilayers (DIBs) have applications in disciplines ranging from biology to computing. We present a method for forming them manually using a Teflon tube attached to a syringe pump; this method is simple enough it should be accessible to those without expertise in microfluidics. It exploits the properties of interfaces between three immiscible liquids, and uses fluid flow through the tube to pack together drops coated with lipid monolayers to create bilayers at points of contact. It is used to create functional nanopores in DIBs composed of phosphocholine using the protein α-hemolysin (αHL), to demonstrate osmotically-driven mass transfer of fluid across surfactant-based DIBs, and to create arrays of DIBs. The approach is scalable, and thousands of DIBs can be prepared using a robot in one hour; therefore, it is feasible to use it for high throughput applications.

  17. In Brucella: Selective pressure may turn some genes on instead of default off position.

    PubMed

    Wareth, Gamal; Melzer, Falk; Neubauer, Heinrich

    2017-06-01

    Brucellosis is a major zoonosis with worldwide prevalence; more than half a million new human cases are expected every year. The genus Brucella (B) encompasses 12 accepted nomo-species and brucellae were described as Gram negative, aerobic, non-motile and non-haemolytic facultative intracellular bacteria. The Brucella genome contains flagella-specific genes and various hemolysins, but no flagella are formed and nor hemolysis is seen. Selective pressure can cause accumulation of mutations that turn those genes on instead of default off position and provoked the motile and hemolytic phenotypes. The ability of brucellae to change from a non-haemolytic to a haemolytic phenotype might influence their pathogenicity and could provide a substantial insight to explain the correlation of acute brucellosis and hemolytic anemia in humans. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. A Protein Nanopore-Based Approach for Bacteria Sensing

    NASA Astrophysics Data System (ADS)

    Apetrei, Aurelia; Ciuca, Andrei; Lee, Jong-kook; Seo, Chang Ho; Park, Yoonkyung; Luchian, Tudor

    2016-11-01

    We present herein a first proof of concept demonstrating the potential of a protein nanopore-based technique for real-time detection of selected Gram-negative bacteria ( Pseudomonas aeruginosa or Escherichia coli) at a concentration of 1.2 × 108 cfu/mL. The anionic charge on the bacterial outer membrane promotes the electrophoretically driven migration of bacteria towards a single α-hemolysin nanopore isolated in a lipid bilayer, clamped at a negative electric potential, and followed by capture at the nanopore's mouth, which we found to be described according to the classical Kramers' theory. By using a specific antimicrobial peptide as a putative molecular biorecognition element for the bacteria used herein, we suggest that the detection system can combine the natural sensitivity of the nanopore-based sensing techniques with selective biological recognition, in aqueous samples, and highlight the feasibility of the nanopore-based platform to provide portable, sensitive analysis and monitoring of bacterial pathogens.

  19. Staphylococcus aureus toxins.

    PubMed

    Otto, Michael

    2014-02-01

    Staphylococcus aureus is a dangerous pathogen that causes a variety of severe diseases. The virulence of S. aureus is defined by a large repertoire of virulence factors, among which secreted toxins play a preeminent role. Many S. aureus toxins damage biological membranes, leading to cell death. In particular, S. aureus produces potent hemolysins and leukotoxins. Among the latter, some were recently identified to lyse neutrophils after ingestion, representing an especially powerful weapon against bacterial elimination by innate host defense. Furthermore, S. aureus secretes many factors that inhibit the complement cascade or prevent recognition by host defenses. Several further toxins add to this multi-faceted program of S. aureus to evade elimination in the