Science.gov

Sample records for hemolytic complement activity

  1. Direct evidence of complement activation in HELLP syndrome: A link to atypical hemolytic uremic syndrome.

    PubMed

    Vaught, Arthur J; Gavriilaki, Eleni; Hueppchen, Nancy; Blakemore, Karin; Yuan, Xuan; Seifert, Sara M; York, Sarah; Brodsky, Robert A

    2016-05-01

    HELLP syndrome (hemolysis, elevated liver enzymes, and low platelets) is a severe variant of pre-eclampsia whose pathogenesis remains unclear. Recent evidence and clinical similarities suggest a link to atypical hemolytic uremic syndrome, a disease of excessive activation of the alternative complement pathway effectively treated with a complement inhibitor, eculizumab. Therefore, we used a functional complement assay, the modified Ham test, to analyze sera of women with classic or atypical HELLP syndrome, pre-eclampsia with severe features, normal pregnancies, and healthy nonpregnant women. Sera were also evaluated using levels of the terminal product of complement activation (C5b-9). We tested the in vitro ability of eculizumab to inhibit complement activation in HELLP serum. Increased complement activation was observed in participants with classic or atypical HELLP compared with those with normal pregnancies and nonpregnant controls. Mixing HELLP serum with eculizumab-containing serum resulted in a significant decrease in cell killing compared with HELLP serum alone. We found that HELLP syndrome is associated with increased complement activation as assessed with the modified Ham test. This assay may aid in the diagnosis of HELLP syndrome and could confirm that its pathophysiology is related to that of atypical hemolytic uremic syndrome.

  2. Role of Complement in Autoimmune Hemolytic Anemia.

    PubMed

    Berentsen, Sigbjørn

    2015-09-01

    The classification of autoimmune hemolytic anemias and the complement system are reviewed. In autoimmune hemolytic anemia of the warm antibody type, complement-mediated cell lysis is clinically relevant in a proportion of the patients but is hardly essential for hemolysis in most patients. Cold antibody-mediated autoimmune hemolytic anemias (primary cold agglutinin disease, secondary cold agglutinin syndrome and paroxysmal cold hemoglobinuria) are entirely complement-mediated disorders. In cold agglutinin disease, efficient therapies have been developed in order to target the pathogenic B-cell clone, but complement modulation remains promising in some clinical situations. No established therapy exists for secondary cold agglutinin syndrome and paroxysmal cold hemoglobinuria, and the possibility of therapeutic complement inhibition is interesting. Currently, complement modulation is not clinically documented in any autoimmune hemolytic anemia. The most relevant candidate drugs and possible target levels of action are discussed.

  3. Role of Complement in Autoimmune Hemolytic Anemia

    PubMed Central

    Berentsen, Sigbjørn

    2015-01-01

    Summary The classification of autoimmune hemolytic anemias and the complement system are reviewed. In autoimmune hemolytic anemia of the warm antibody type, complement-mediated cell lysis is clinically relevant in a proportion of the patients but is hardly essential for hemolysis in most patients. Cold antibody-mediated autoimmune hemolytic anemias (primary cold agglutinin disease, secondary cold agglutinin syndrome and paroxysmal cold hemoglobinuria) are entirely complement-mediated disorders. In cold agglutinin disease, efficient therapies have been developed in order to target the pathogenic B-cell clone, but complement modulation remains promising in some clinical situations. No established therapy exists for secondary cold agglutinin syndrome and paroxysmal cold hemoglobinuria, and the possibility of therapeutic complement inhibition is interesting. Currently, complement modulation is not clinically documented in any autoimmune hemolytic anemia. The most relevant candidate drugs and possible target levels of action are discussed. PMID:26696798

  4. Shiga Toxin Promotes Podocyte Injury in Experimental Hemolytic Uremic Syndrome via Activation of the Alternative Pathway of Complement

    PubMed Central

    Locatelli, Monica; Buelli, Simona; Pezzotta, Anna; Corna, Daniela; Perico, Luca; Tomasoni, Susanna; Rottoli, Daniela; Rizzo, Paola; Conti, Debora; Thurman, Joshua M.; Remuzzi, Giuseppe; Zoja, Carlamaria

    2014-01-01

    Shiga toxin (Stx)–producing Escherichia coli is the offending agent of postdiarrhea-associated hemolytic uremic syndrome (HUS), a disorder of glomerular ischemic damage and widespread microvascular thrombosis. We previously documented that Stx induces glomerular complement activation, generating C3a responsible for microvascular thrombosis in experimental HUS. Here, we show that the presence of C3 deposits on podocytes is associated with podocyte damage and loss in HUS mice generated by the coinjection of Stx2 and LPS. Because podocyte adhesion to the glomerular basement membrane is mediated by integrins, the relevance of integrin-linked kinase (ILK) signals in podocyte dysfunction was evaluated. Podocyte expression of ILK increased after the injection of Stx2/LPS and preceded the upregulation of Snail and downregulation of nephrin and α-actinin-4. Factor B deficiency or pretreatment with an inhibitory antibody to factor B protected mice against Stx2/LPS-induced podocyte dysregulation. Similarly, pretreatment with a C3a receptor antagonist limited podocyte loss and changes in ILK, Snail, and α-actinin-4 expression. In cultured podocytes, treatment with C3a reduced α-actinin-4 expression and promoted ILK-dependent nuclear expression of Snail and cell motility. These results suggest that Stx-induced activation of the alternative pathway of complement and generation of C3a promotes ILK signaling, leading to podocyte dysfunction and loss in Stx-HUS. PMID:24578132

  5. Therapeutic complement inhibition in complement-mediated hemolytic anemias: Past, present and future.

    PubMed

    Risitano, Antonio M; Marotta, Serena

    2016-06-01

    The introduction in the clinic of anti-complement agents represented a major achievement which gave to physicians a novel etiologic treatment for different human diseases. Indeed, the first anti-complement agent eculizumab has changed the treatment paradigm of paroxysmal nocturnal hemoglobinuria (PNH), dramatically impacting its severe clinical course. In addition, eculizumab is the first agent approved for atypical Hemolytic Uremic Syndrome (aHUS), a life-threatening inherited thrombotic microangiopathy. Nevertheless, such remarkable milestone in medicine has brought to the fore additional challenges for the scientific community. Indeed, the list of complement-mediated anemias is not limited to PNH and aHUS, and other human diseases can be considered for anti-complement treatment. They include other thrombotic microangiopathies, as well as some antibody-mediated hemolytic anemias. Furthermore, more than ten years of experience with eculizumab led to a better understanding of the individual steps of the complement cascade involved in the pathophysiology of different human diseases. Based on this, new unmet clinical needs are emerging; a number of different strategies are currently under development to improve current anti-complement treatment, trying to address these specific clinical needs. They include: (i) alternative anti-C5 agents, which may improve the heaviness of eculizumab treatment; (ii) broad-spectrum anti-C3 agents, which may improve the efficacy of anti-C5 treatment by intercepting the complement cascade upstream (i.e., preventing C3-mediated extravascular hemolysis in PNH); (iii) targeted inhibitors of selective complement activating pathways, which may prevent early pathogenic events of specific human diseases (e.g., anti-classical pathway for antibody-mediated anemias, or anti-alternative pathway for PNH and aHUS). Here we briefly summarize the status of art of current and future complement inhibition for different complement-mediated anemias

  6. Complements Spurned: Our Experience with Atypical Hemolytic Uremic Syndrome

    PubMed Central

    Nagar, Vidya S.; Chaterjee, Rudrarpan; Sood, Ankita; Sajjan, Basavaraj; Kaushik, Aniruddha; Vyahalkar, Sameer V.

    2017-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a rare disorder resulting from a dysregulated activation of the alternative pathway of the complement system. It results in significant morbidity and mortality if not diagnosed and treated promptly. It lends itself to myriad renal and extrarenal manifestations, all potentially disabling. Eculizumab, a monoclonal antibody to complement C5 is now the widely accepted norm for treatment. However, in resource-limited settings, plasma exchange if instituted early may be as beneficial. We report a case of aHUS treated with extended plasma exchange with excellent results. Critical care monitoring is essential for the management of the disease in view of a tendency to develop multiple complications. Long-term immunosuppression may be successful in maintaining remission. PMID:28250608

  7. PASylated Coversin, a C5-Specific Complement Inhibitor with Extended Pharmacokinetics, Shows Enhanced Anti-Hemolytic Activity in Vitro.

    PubMed

    Kuhn, Nadine; Schmidt, Christoph Q; Schlapschy, Martin; Skerra, Arne

    2016-10-19

    The Ornithodoros moubata Complement Inhibitor (OmCI) binds complement component 5 (C5) with high affinity and, thus, selectively prevents proteolytic activation of the terminal lytic complement pathway. A recombinant version of OmCI (also known as Coversin and rEV576) has proven efficacious in several animal models of complement-mediated diseases and successfully completed a phase Ia clinical trial. Coversin is a small 17 kDa lipocalin protein which has a very short plasma half-life if not bound to C5; therefore, the drug requires frequent dosing. We have improved the pharmacokinetics of Coversin by N-terminal translational conjugation with a 600 residue polypeptide composed of Pro, Ala, and Ser (PAS) residues. To this end, PAS-Coversin as well as the unmodified Coversin were functionally expressed in the cytoplasm of E. coli and purified to homogeneity. Both versions showed identical affinity to human C5, as determined by surface plasmon resonance measurements, and revealed similar complement inhibitory activity, as measured in ELISAs with human serum. In line with the PEG-like biophysical properties, PASylation dramatically prolonged the plasma half-life of uncomplexed Coversin by a factor ≥50 in mice. In a clinically relevant in vitro model of the complement-mediated disease paroxysmal nocturnal hemoglobinuria (PNH) both versions of Coversin effectively reduced erythrocyte lysis. Unexpectedly, while the IC50 values were comparable, PAS-Coversin reached a substantially lower plateau of residual lysis at saturating inhibitor concentrations. Taken together, our data demonstrate two clinically relevant improvements of PASylated Coversin: markedly increased plasma half-life and considerably reduced background hemolysis of erythrocytes with PNH-induced phenotype.

  8. Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome

    PubMed Central

    Miller, Elizabeth C.; Liszewski, M. Kathryn; Strain, Lisa; Blouin, Jacques; Brown, Alison L.; Moghal, Nadeem; Kaplan, Bernard S.; Weiss, Robert A.; Lhotta, Karl; Kapur, Gaurav; Mattoo, Tej; Nivet, Hubert; Wong, William; Gie, Sophie; de Ligny, Bruno Hurault; Fischbach, Michel; Gupta, Ritu; Hauhart, Richard; Meunier, Vincent; Loirat, Chantal; Dragon-Durey, Marie-Agnès; Fridman, Wolf H.; Janssen, Bert J. C.

    2008-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a disease of complement dysregulation. In approximately 50% of patients, mutations have been described in the genes encoding the complement regulators factor H, MCP, and factor I or the activator factor B. We report here mutations in the central component of the complement cascade, C3, in association with aHUS. We describe 9 novel C3 mutations in 14 aHUS patients with a persistently low serum C3 level. We have demonstrated that 5 of these mutations are gain-of-function and 2 are inactivating. This establishes C3 as a susceptibility factor for aHUS. PMID:18796626

  9. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome

    PubMed Central

    de Jorge, Elena Goicoechea; Harris, Claire L.; Esparza-Gordillo, Jorge; Carreras, Luis; Arranz, Elena Aller; Garrido, Cynthia Abarrategui; López-Trascasa, Margarita; Sánchez-Corral, Pilar; Morgan, B. Paul; de Córdoba, Santiago Rodríguez

    2007-01-01

    Hemolytic uremic syndrome (HUS) is an important cause of acute renal failure in children. Mutations in one or more genes encoding complement-regulatory proteins have been reported in approximately one-third of nondiarrheal, atypical HUS (aHUS) patients, suggesting a defect in the protection of cell surfaces against complement activation in susceptible individuals. Here, we identified a subgroup of aHUS patients showing persistent activation of the complement alternative pathway and found within this subgroup two families with mutations in the gene encoding factor B (BF), a zymogen that carries the catalytic site of the complement alternative pathway convertase (C3bBb). Functional analyses demonstrated that F286L and K323E aHUS-associated BF mutations are gain-of-function mutations that result in enhanced formation of the C3bBb convertase or increased resistance to inactivation by complement regulators. These data expand our understanding of the genetic factors conferring predisposition to aHUS, demonstrate the critical role of the alternative complement pathway in the pathogenesis of aHUS, and provide support for the use of complement-inhibition therapies to prevent or reduce tissue damage caused by dysregulated complement activation. PMID:17182750

  10. Complement deposition in autoimmune hemolytic anemia is a footprint for difficult-to-detect IgM autoantibodies.

    PubMed

    Meulenbroek, Elisabeth M; de Haas, Masja; Brouwer, Conny; Folman, Claudia; Zeerleder, Sacha S; Wouters, Diana

    2015-11-01

    In autoimmune hemolytic anemia autoantibodies against erythrocytes lead to increased clearance of the erythrocytes, which in turn results in a potentially fatal hemolytic anemia. Depending on whether IgG or IgM antibodies are involved, response to therapy is different. Proper identification of the isotype of the anti-erythrocyte autoantibodies is, therefore, crucial. However, detection of IgM autoantibodies can be challenging. We, therefore, set out to improve the detection of anti-erythrocyte IgM. Direct detection using a flow cytometry-based approach did not yield satisfactory improvements. Next, we analyzed whether the presence of complement C3 on a patient's erythrocytes could be used for indirect detection of anti-erythrocyte IgM. To this end, we fractionated patients' sera by size exclusion chromatography and tested which fractions yielded complement deposition on erythrocytes. Strikingly, we found that all patients with C3 on their erythrocytes according to standard diagnostic tests had an IgM anti-erythrocyte component that could activate complement, even if no such autoantibody had been detected with any other test. This also included all tested patients with only IgG and C3 on their erythrocytes, who would previously have been classified as having an IgG-only mediated autoimmune hemolytic anemia. Depleting patients' sera of either IgG or IgM and testing the remaining complement activation confirmed this result. In conclusion, complement activation in autoimmune hemolytic anemia is mostly IgM-mediated and the presence of covalent C3 on patients' erythrocytes can be taken as a footprint of the presence of anti-erythrocyte IgM. Based on this finding, we propose a diagnostic workflow that will aid in choosing the optimal treatment strategy.

  11. Alternative Pathway of Complement in Children with Diarrhea-Associated Hemolytic Uremic Syndrome

    PubMed Central

    Thurman, Joshua M.; Marians, Russell; Emlen, Woodruff; Wood, Susan; Smith, Christopher; Akana, Hillary; Holers, V. Michael; Lesser, Martin; Kline, Myriam; Hoffman, Cathy; Christen, Erica

    2009-01-01

    Background and objectives: Diarrhea-associated hemolytic uremic syndrome (D+HUS) is a common cause of acute kidney injury in children. Mutations in alternative pathway (AP) complement regulatory proteins have been identified in severe cases of thrombotic microangiopathy, but the role of the AP in D+HUS has not been studied. Therefore, we determined whether plasma levels of markers of activation of the AP are increased in D+HUS and are biomarkers of the severity of renal injury that predict the need for dialysis. Design, setting, participants, & measurements: Patients were randomly selected from among participants in the HUS-SYNSORB Pk trial. Plasma samples were collected on days 1, 4, 7, and 10 after enrollment and day 28 after discharge from the hospital. Levels of two complement pathway products, Bb and SC5b-9, were determined by ELISA. Results: Seventeen children (6 boys and 11 girls; age, 5.4 ± 3.5 yr) were studied. Eight (47%) required dialysis support, and two had serious extrarenal events. On the day of enrollment, plasma levels of Bb and SC5b-9 were significantly increased in all patients compared with healthy controls (P < 0.01). The elevated concentrations normalized by day 28 after discharge. Circulating levels of complement pathway fragments did not correlate with severity of renal injury or occurrence of complications. Conclusions: Patients with acute-onset D+HUS manifest activation of the AP of complement that is temporally related to the onset of disease and that resolves within 1 mo. Therapies to inhibit the AP of complement may be useful in attenuating the severity of renal injury and extrarenal complications. PMID:19820137

  12. Quiescent complement in nonhuman primates during E coli Shiga toxin-induced hemolytic uremic syndrome and thrombotic microangiopathy

    PubMed Central

    Lee, Benjamin C.; Mayer, Chad L.; Leibowitz, Caitlin S.

    2013-01-01

    Enterohemorrhagic Escherichia coli (EHEC) produce ribosome-inactivating Shiga toxins (Stx1, Stx2) responsible for development of hemolytic uremic syndrome (HUS) and acute kidney injury (AKI). Some patients show complement activation during EHEC infection, raising the possibility of therapeutic targeting of complement for relief. Our juvenile nonhuman primate (Papio baboons) models of endotoxin-free Stx challenge exhibit full spectrum HUS, including thrombocytopenia, hemolytic anemia, and AKI with glomerular thrombotic microangiopathy. There were no significant increases in soluble terminal complement complex (C5b-9) levels after challenge with lethal Stx1 (n = 6) or Stx2 (n = 5) in plasma samples from T0 to euthanasia at 49.5 to 128 hours post-challenge. d-dimer and cell injury markers (HMGB1, histones) confirmed coagulopathy and cell injury. Thus, complement activation is not required for the development of thrombotic microangiopathy and HUS induced by EHEC Shiga toxins in these preclinical models, and benefits or risks of complement inhibition should be studied further for this infection. PMID:23733336

  13. Shiga toxin-induced complement-mediated hemolysis and release of complement-coated red blood cell-derived microvesicles in hemolytic uremic syndrome.

    PubMed

    Arvidsson, Ida; Ståhl, Anne-Lie; Hedström, Minola Manea; Kristoffersson, Ann-Charlotte; Rylander, Christian; Westman, Julia S; Storry, Jill R; Olsson, Martin L; Karpman, Diana

    2015-03-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) cause hemolytic uremic syndrome (HUS). This study investigated whether Stx2 induces hemolysis and whether complement is involved in the hemolytic process. RBCs and/or RBC-derived microvesicles from patients with STEC-HUS (n = 25) were investigated for the presence of C3 and C9 by flow cytometry. Patients exhibited increased C3 deposition on RBCs compared with controls (p < 0.001), as well as high levels of C3- and C9-bearing RBC-derived microvesicles during the acute phase, which decreased after recovery. Stx2 bound to P1 (k) and P2 (k) phenotype RBCs, expressing high levels of the P(k) Ag (globotriaosylceramide), the known Stx receptor. Stx2 induced the release of hemoglobin and lactate dehydrogenase in whole blood, indicating hemolysis. Stx2-induced hemolysis was not demonstrated in the absence of plasma and was inhibited by heat inactivation, as well as by the terminal complement pathway Ab eculizumab, the purinergic P2 receptor antagonist suramin, and EDTA. In the presence of whole blood or plasma/serum, Stx2 induced the release of RBC-derived microvesicles coated with C5b-9, a process that was inhibited by EDTA, in the absence of factor B, and by purinergic P2 receptor antagonists. Thus, complement-coated RBC-derived microvesicles are elevated in HUS patients and induced in vitro by incubation of RBCs with Stx2, which also induced hemolysis. The role of complement in Stx2-mediated hemolysis was demonstrated by its occurrence only in the presence of plasma and its abrogation by heat inactivation, EDTA, and eculizumab. Complement activation on RBCs could play a role in the hemolytic process occurring during STEC-HUS. Copyright © 2015 by The American Association of Immunologists, Inc.

  14. Red blood cell destruction in autoimmune hemolytic anemia: role of complement and potential new targets for therapy.

    PubMed

    Berentsen, Sigbjørn; Sundic, Tatjana

    2015-01-01

    Autoimmune hemolytic anemia (AIHA) is a collective term for several diseases characterized by autoantibody-initiated destruction of red blood cells (RBCs). Exact subclassification is essential. We provide a review of the respective types of AIHA with emphasis on mechanisms of RBC destruction, focusing in particular on complement involvement. Complement activation plays a definitive but limited role in warm-antibody AIHA (w-AIHA), whereas primary cold agglutinin disease (CAD), secondary cold agglutinin syndrome (CAS), and paroxysmal cold hemoglobinuria (PCH) are entirely complement-dependent disorders. The details of complement involvement differ among these subtypes. The theoretical background for therapeutic complement inhibition in selected patients is very strong in CAD, CAS, and PCH but more limited in w-AIHA. The optimal target complement component for inhibition is assumed to be important and highly dependent on the type of AIHA. Complement modulation is currently not an evidence-based therapy modality in any AIHA, but a number of experimental and preclinical studies are in progress and a few clinical observations have been reported. Clinical studies of new complement inhibitors are probably not far ahead.

  15. Red Blood Cell Destruction in Autoimmune Hemolytic Anemia: Role of Complement and Potential New Targets for Therapy

    PubMed Central

    Berentsen, Sigbjørn

    2015-01-01

    Autoimmune hemolytic anemia (AIHA) is a collective term for several diseases characterized by autoantibody-initiated destruction of red blood cells (RBCs). Exact subclassification is essential. We provide a review of the respective types of AIHA with emphasis on mechanisms of RBC destruction, focusing in particular on complement involvement. Complement activation plays a definitive but limited role in warm-antibody AIHA (w-AIHA), whereas primary cold agglutinin disease (CAD), secondary cold agglutinin syndrome (CAS), and paroxysmal cold hemoglobinuria (PCH) are entirely complement-dependent disorders. The details of complement involvement differ among these subtypes. The theoretical background for therapeutic complement inhibition in selected patients is very strong in CAD, CAS, and PCH but more limited in w-AIHA. The optimal target complement component for inhibition is assumed to be important and highly dependent on the type of AIHA. Complement modulation is currently not an evidence-based therapy modality in any AIHA, but a number of experimental and preclinical studies are in progress and a few clinical observations have been reported. Clinical studies of new complement inhibitors are probably not far ahead. PMID:25705656

  16. Mount St. Helens' volcanic ash: hemolytic activity.

    PubMed

    Vallyathan, V; Mentnech, M S; Stettler, L E; Dollberg, D D; Green, F H

    1983-04-01

    Volcanic ash samples from four Mount St. Helens' volcanic eruptions were subjected to mineralogical, analytical, and hemolytic studies in order to evaluate their potential for cytotoxicity and fibrogenicity. Plagioclase minerals constituted the major component of the ash with free crystalline silica concentrations ranging from 1.5 to 7.2%. The in vitro hemolytic activity of the volcanic ash was compared to similar concentrations of cytotoxic and inert minerals. The ash was markedly hemolytic, exhibiting an activity similar to chrysotile asbestos, a known fibrogenic agent. The hemolysis of the different ash samples varied with particle size but not with crystalline silica concentration. The results of these studies taken in conjunction with the results of our animal studies indicate a fibrogenic potential of volcanic ash in heavily exposed humans.

  17. Complement Factor B Mutations in Atypical Hemolytic Uremic Syndrome—Disease-Relevant or Benign?

    PubMed Central

    Marinozzi, Maria Chiara; Vergoz, Laura; Rybkine, Tania; Ngo, Stephanie; Bettoni, Serena; Pashov, Anastas; Cayla, Mathieu; Tabarin, Fanny; Jablonski, Mathieu; Hue, Christophe; Smith, Richard J.; Noris, Marina; Halbwachs-Mecarelli, Lise; Donadelli, Roberta; Fremeaux-Bacchi, Veronique

    2014-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a genetic ultrarare renal disease associated with overactivation of the alternative pathway of complement. Four gain-of-function mutations that form a hyperactive or deregulated C3 convertase have been identified in Factor B (FB) ligand binding sites. Here, we studied the functional consequences of 10 FB genetic changes recently identified from different aHUS cohorts. Using several tests for alternative C3 and C5 convertase formation and regulation, we identified two gain-of-function and potentially disease-relevant mutations that formed either an overactive convertase (M433I) or a convertase resistant to decay by FH (K298Q). One mutation (R178Q) produced a partially cleaved protein with no ligand binding or functional activity. Seven genetic changes led to near-normal or only slightly reduced ligand binding and functional activity compared with the most common polymorphism at position 7, R7. Notably, none of the algorithms used to predict the disease relevance of FB mutations agreed completely with the experimental data, suggesting that in silico approaches should be undertaken with caution. These data, combined with previously published results, suggest that 9 of 15 FB genetic changes identified in patients with aHUS are unrelated to disease pathogenesis. This study highlights that functional assessment of identified nucleotide changes in FB is mandatory to confirm disease association. PMID:24652797

  18. Physicochemical signatures of nanoparticle-dependent complement activation

    NASA Astrophysics Data System (ADS)

    Thomas, Dennis G.; Chikkagoudar, Satish; Heredia-Langner, Alejandro; Tardiff, Mark F.; Xu, Zhixiang; Hourcade, Dennis E.; Pham, Christine T. N.; Lanza, Gregory M.; Weinberger, Kilian Q.; Baker, Nathan A.

    2014-01-01

    Nanoparticles are potentially powerful therapeutic tools that have the capacity to target drug payloads and imaging agents. However, some nanoparticles can activate complement, a branch of the innate immune system, and cause adverse side-effects. Recently, we employed an in vitro hemolysis assay to measure the serum complement activity of perfluorocarbon nanoparticles that differed by size, surface charge, and surface chemistry, quantifying the nanoparticle-dependent complement activity using a metric called Residual Hemolytic Activity (RHA). In the present work, we have used a decision tree learning algorithm to derive the rules for estimating nanoparticle-dependent complement response based on the data generated from the hemolytic assay studies. Our results indicate that physicochemical properties of nanoparticles, namely, size, polydispersity index, zeta potential, and mole percentage of the active surface ligand of a nanoparticle, can serve as good descriptors for prediction of nanoparticle-dependent complement activation in the decision tree modeling framework.

  19. Small-molecule factor D inhibitors selectively block the alternative pathway of complement in paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome.

    PubMed

    Yuan, Xuan; Gavriilaki, Eleni; Thanassi, Jane A; Yang, Guangwei; Baines, Andrea C; Podos, Steven D; Huang, Yongqing; Huang, Mingjun; Brodsky, Robert A

    2017-03-01

    Paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome are diseases of excess activation of the alternative pathway of complement that are treated with eculizumab, a humanized monoclonal antibody against the terminal complement component C5. Eculizumab must be administered intravenously, and moreover some patients with paroxysmal nocturnal hemoglobinuria on eculizumab have symptomatic extravascular hemolysis, indicating an unmet need for additional therapeutic approaches. We report the activity of two novel small-molecule inhibitors of the alternative pathway component Factor D using in vitro correlates of both paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. Both compounds bind human Factor D with high affinity and effectively inhibit its proteolytic activity against purified Factor B in complex with C3b. When tested using the traditional Ham test with cells from paroxysmal nocturnal hemoglobinuria patients, the Factor D inhibitors significantly reduced complement-mediated hemolysis at concentrations as low as 0.01 μM. Additionally the compound ACH-4471 significantly decreased C3 fragment deposition on paroxysmal nocturnal hemoglobinuria erythrocytes, indicating a reduced potential relative to eculizumab for extravascular hemolysis. Using the recently described modified Ham test with serum from patients with atypical hemolytic uremic syndrome, the compounds reduced the alternative pathway-mediated killing of PIGA-null reagent cells, thus establishing their potential utility for this disease of alternative pathway of complement dysregulation and validating the modified Ham test as a system for pre-clinical drug development for atypical hemolytic uremic syndrome. Finally, ACH-4471 blocked alternative pathway activity when administered orally to cynomolgus monkeys. In conclusion, the small-molecule Factor D inhibitors show potential as oral therapeutics for human diseases driven by the alternative pathway of complement

  20. [Levels of total hemolytic complement, C3, C4 and antibodies against the myocardium in rheumatic fever].

    PubMed

    Martinez, R D

    1978-01-01

    The levels of the hemolytic complement (UH 50%), C3, C4 and the antibodies against myocardium and against the antigenic fractions of myocardium precipitated with ammonium sulphate were studied in 8 patients with active rehumatic fever (ARF), 28 with inactive rheumatic fever (IRF) and 26 people without cardiopaties (NI). The UH 50% was low in 2 out of 36 patients with rheumatic fever (RF). C3 was normal and C4 low in 12.5% of the ARF patients. C3 had subnormal values in 25% and C4 in 33% of IRF patients, this last value had a stadistic significant decrease with respect to the values of C4 in normal people. The 36 patients with RF had antibodies against the myocardium and also against the heart antigenic fractions precipitated with 10% ammonium sulphate. 11.5% of the normal group had anti-myocardial antibodies and none had antibodies against the fractions. The levels of anti-streptolysin-O and C-reactive protein were higher in the ARF group than in the patients with IRF or the normal people. The participation of the hemolytic complement, the anti-myocardium antibodies, the anti-streptococcus antibodies and the cytophilic activity in the etiopathogeny of rheumatic fever is discussed.

  1. Complement activation by Coccidioides immitis: in vitro and clinical studies.

    PubMed Central

    Galgiani, J N; Yam, P; Petz, L D; Williams, P L; Stevens, D A

    1980-01-01

    Mycelial- or spherule-phase derivatives of Coccidioides immitis caused a decrease in vitro of total hemolytic complement in serum from a nonsensitized person. Activation involved both classic and alternative pathways as shown by deprssion of hemolytic C4 and by generation of products of activation of components C3, C4, and factor B. In addition, functional complement activity or immunoreactive levels of complement components or both were measured in 23 patients with self-limited or disseminated coccidioidomycosis. Low total hemolytic complement was found in nine, usually during the early phase of primary illness, and was transient. Hemolytic C4 was low, and the effect of inulin to decrease complement levels was blunted, suggested both classic and alternative pathways may be deficient. However, associated depression of immunoreactive levels of components assayed (C3, C4, C5, factor B, and properdin) was not consistently found. This disparity raises the possibility of enhanced in vitro inactivation analogous to activation by immune complexes. Images Fig. 2 PMID:6901703

  2. Physicochemical signatures of nanoparticle-dependent complement activation

    SciTech Connect

    Thomas, Dennis G.; Chikkagoudar, Satish; Heredia-Langner, Alejandro; Tardiff, Mark F.; Xu, Zhixiang; Hourcade, Dennis; Pham, Christine; Lanza, Gregory M.; Weinberger, Kilian Q.; Baker, Nathan A.

    2014-03-21

    Nanoparticles are potentially powerful therapeutic tools that have the capacity to target drug payloads and imaging agents. However, some nanoparticles can activate complement, a branch of the innate immune system, and cause adverse side-effects. Recently, we developed an in vitro hemolytic assay protocol for measuring the nanoparticle-dependent complement activity of serum samples and applied this protocol to several nanoparticle formulations that differed in size, surface charge, and surface chemistry; quantifying the nanoparticle-dependent complement activity using a metric called Residual Hemolytic Activity (RHA). In the present work, we have used a decision tree learning algorithm to derive the rules for estimating nanoparticle-dependent complement response based on the data generated from the hemolytic assay studies. Our results indicate that physicochemical properties of nanoparticles, namely, size, polydispersity index, zeta potential, and mole percentage of the active surface ligand of a nanoparticle, can serve as good descriptors for prediction of nanoparticle-dependent complement activation in the decision tree modeling framework. The robustness and predictability of the model can be improved by training the model with additional data points that are uniformly distributed in the RHA/physicochemical descriptor space and by incorporating instability effects on nanoparticle physicochemical properties into the model.

  3. [Analysis of variants in complement genes in Han Chinese children with atypical hemolytic uremic syndrome].

    PubMed

    Yi, C L; Zhao, F; Qiu, H Z; Wang, L M; Huang, J; Nie, X J; Yu, Z H

    2017-08-02

    Objective: To investigate the prevalence and characteristics of pathogenic variants in complement genes in Han Chinese children with atypical hemolytic uremic syndrome (aHUS). Method: Eleven Han Chinese children with aHUS, including 9 boys and 2 girls aged between 1 year and 4 months and 13 years, were investigated in Department of Pediatrics, Fuzhou General Hospital, from November 1998 to February 2014. Analysis of variants of all the exons of 10 complement genes (CFH, MCP, CFI, C3, CFB, CFHR1, CFHR2, CFHR3, CFHR4 and CFHR5), including 25 bases from 3' end and 25 bases from 5' end, was performed in the 11 cases by targeted sequence capture and next generation sequencing. Significant variants detected by next generation sequencing were confirmed by Sanger sequencing. To understand pathogenicity of variants found in the captured genes, we investigated genetic conservation by multiple protein sequence alignment among different species, and analyzed whether the variants were located in protein domains or not, and investigated functional significance by functional computational prediction methods. Result: Twenty-seven percent of Han Chinese children with aHUS carried pathogenic variants in the 10 complement genes. Pathogenic variant CFB 221G>A (R74H) was detected in Patient 3 and Patient 9, which was not found in parents of Patient 3' , and was found in healthy father of patient 9. Pathogenic variant CFHR5 242C>T (P81L) was found in Patient 2, and was found in healthy father of patient 2. However, no pathogenic variants in genes CFH, MCP, CFI, C3, CFHR1, CFHR2, CFHR3 and CFHR4 were identified. Conclusion: Pathogenic variants in the 10 complement genes were identified in 3/11 of Han Chinese children with aHUS in our study and CFB was the most frequently mutated gene.

  4. Activation of complement during apheresis.

    PubMed Central

    Hetland, G; Mollnes, T E; Garred, P

    1991-01-01

    C3 activation products and the terminal complement complex (TCC) were examined in plasma during plasmapheresis of patients with Guillain-Barré Syndrome (GBS) (n = 4), Waldenström's syndrome (n = 4), and hypercholesterolaemia (n = 1), or during cytapheresis of platelet (n = 10) and granulocyte (n = 2) donors. Blood specimens were taken before, during and after the procedures. There was a significant activation of complement after apheresis in the GBS patients and one of the patients with Waldenström's syndrome, but not in the other patients. There were no significant differences in complement activation products before compared with after cytapheresis in the healthy donors. This demonstrates the biocompatibility with respect to complement activation of the materials used. The observed complement activation in some of the patients during plasma exchange is probably caused by activation products in the replacement plasma. PMID:1904328

  5. Minor Role of Plasminogen in Complement Activation on Cell Surfaces

    PubMed Central

    Hyvärinen, Satu; Jokiranta, T. Sakari

    2015-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a rare, but severe thrombotic microangiopathy. In roughly two thirds of the patients, mutations in complement genes lead to uncontrolled activation of the complement system against self cells. Recently, aHUS patients were described with deficiency of the fibrinolytic protein plasminogen. This zymogen and its protease form plasmin have both been shown to interact with complement proteins in the fluid phase. In this work we studied the potential of plasminogen to restrict complement propagation. In hemolytic assays, plasminogen inhibited complement activation, but only when it had been exogenously activated to plasmin and when it was used at disproportionately high concentrations compared to serum. Addition of only the zymogen plasminogen into serum did not hinder complement-mediated lysis of erythrocytes. Plasminogen could not restrict deposition of complement activation products on endothelial cells either, as was shown with flow cytometry. With platelets, a very weak inhibitory effect on deposition of C3 fragments was observed, but it was considered too weak to be significant for disease pathogenesis. Thus it was concluded that plasminogen is not an important regulator of complement on self cells. Instead, addition of plasminogen was shown to clearly hinder platelet aggregation in serum. This was attributed to plasmin causing disintegration of formed platelet aggregates. We propose that reduced proteolytic activity of plasmin on structures of growing thrombi, rather than on complement activation fragments, explains the association of plasminogen deficiency with aHUS. This adds to the emerging view that factors unrelated to the complement system can also be central to aHUS pathogenesis and suggests that future research on the mechanism of the disease should expand beyond complement dysregulation. PMID:26637181

  6. Natural hemolytic activity of snake serum. II. Heterogeneity of putative natural antibody and levels of hemolytic activity.

    PubMed

    Kawaguchi, S; Muramatsu, S; Mitsuhashi, S

    1978-07-01

    The erythrocytes of various vertebrates, such as mice, rabbits, sheep, chickens, bullfrogs, and toads are lysed by normal snake sera. However, snake erythrocytes were not lysed by serum from different snake species. Putative natural antibody seems with different specificities to comprise heterogeneous antibodies. Thus, absorption of snake serum with mouse erythrocytes, for example, abrogated hemolytic activity for mice but not for rabbit or sheep erythrocytes. We observed no significant intraspecies individual differences in serum hemolytic titer, but interspecies differences were obvious. Immunization of snakes with sheep erythrocytes caused no further elevation of hemolytic activity, though high titer antibody was produced in response to certain bacterial antigens. Even the sera of newly-hatched snakes showed hemolytic activity at modestly high levels. No seasonal change in hemolytic activity was observed.

  7. Complement Activation Alters Platelet Function

    DTIC Science & Technology

    2013-10-01

    mice and mice transfused with Syk inhibitor-treated platelets . Platelet lodging was remarkably decreased in lungs of mice transfused with Syk...AD_________________ Award Number: W81XWH-12-1-0523 TITLE: Complement Activation Alters Platelet ...30September2012–29September2013 4. TITLE AND SUBTITLE Complement Activation Alters Platelet Function 5a. CONTRACT NUMBER W81XWH-12-1-0523 5b. GRANT NUMBER

  8. Hemolytic Activities of the Candida Species in Liquid Medium

    PubMed Central

    Malcok, Hilal Kuzucu; Aktas, Esin; Ayyildiz, Ahmet; Yigit, Nimet; Yazgi, Halil

    2009-01-01

    Objective The aim of this study was to evaluate the in vitro hemolytic activities of 107 Candida strains isolated from different clinical samples in liquid medium, and to examine the impact of glucose on this activity. Materials and Methods A total of 107 Candida isolates representing seven species (C. albicans, n=28; C. glabrata, n=23; C. tropicalis, n=17; C. parapsilosis, n=16; C. kefyr, n=14; C. krusei, n=5; C. guilliermondii, n=4) were included in the study. The hemolytic activities of the strains were tested on two different Sabouraud dextrose liquid media (SDB) containing 7% defibrinated human blood, one of which is supplemented with 3% glucose and the other without glucose. Cultures were evaluated at the end of a 48-hour incubation. The hemolysis in the media was detected spectrophotometrically by measuring the amount of released hemoglobin and compared with a standard hemolysate which was prepared prior to testing. The degree of hemolysis (percentage value) by an individual strain was calculated according to the following formula below: (Absorbance of supernatant media at 540 nm / Absorbance of standard hemolysate at 540 nm X 100). Results In the liquid medium without glucose, strains generally produced hemolysis at low levels. The degree of hemolysis produced by all species increased noticeably in the liquid medium with glucose. Strains of C. albicans and C.kefyr had demonstrated significant hemolytic activity, whereas others had lower activity. C. parapsilosis exerted very little hemolytic activity in the medium with glucose and showed no activity in the medium without glucose. Conclusion The hemolytic activities of most Candida species was found to be higher in the human blood-enriched SDB medium containing 3% additive glucose than in the one free from additives. This result indicates that increased blood glucose concentration may contribute to increased hemolytic activity in Candida species, and it suggests a parallel with possible pathogenesis of

  9. Structural insights on complement activation.

    PubMed

    Alcorlo, Martín; López-Perrote, Andrés; Delgado, Sandra; Yébenes, Hugo; Subías, Marta; Rodríguez-Gallego, César; Rodríguez de Córdoba, Santiago; Llorca, Oscar

    2015-10-01

    The proteolytic cleavage of C3 to generate C3b is the central and most important step in the activation of complement, a major component of innate immunity. The comparison of the crystal structures of C3 and C3b illustrates large conformational changes during the transition from C3 to C3b. Exposure of a reactive thio-ester group allows C3b to bind covalently to surfaces such as pathogens or apoptotic cellular debris. The displacement of the thio-ester-containing domain (TED) exposes hidden surfaces that mediate the interaction with complement factor B to assemble the C3-convertase of the alternative pathway (AP). In addition, the displacement of the TED and its interaction with the macroglobulin 1 (MG1) domain generates an extended surface in C3b where the complement regulators factor H (FH), decay accelerating factor (DAF), membrane cofactor protein (MCP) and complement receptor 1 (CR1) can bind, mediating accelerated decay of the AP C3-convertase and proteolytic inactivation of C3b. In the last few years, evidence has accumulated revealing that the structure of C3b in solution is significantly more flexible than anticipated. We review our current knowledge on C3b structural flexibility to propose a general model where the TED can display a collection of conformations around the MG ring, as well as a few specialized positions where the TED is held in one of several fixed locations. Importantly, this conformational heterogeneity in C3b impacts complement regulation by affecting the interaction with regulators.

  10. Methods for Quantitative Detection of Antibody-induced Complement Activation on Red Blood Cells

    PubMed Central

    Meulenbroek, Elisabeth M.; Wouters, Diana; Zeerleder, Sacha

    2014-01-01

    Antibodies against red blood cells (RBCs) can lead to complement activation resulting in an accelerated clearance via complement receptors in the liver (extravascular hemolysis) or leading to intravascular lysis of RBCs. Alloantibodies (e.g. ABO) or autoantibodies to RBC antigens (as seen in autoimmune hemolytic anemia, AIHA) leading to complement activation are potentially harmful and can be - especially when leading to intravascular lysis - fatal1. Currently, complement activation due to (auto)-antibodies on RBCs is assessed in vitro by using the Coombs test reflecting complement deposition on RBC or by a nonquantitative hemolytic assay reflecting RBC lysis1-4. However, to assess the efficacy of complement inhibitors, it is mandatory to have quantitative techniques. Here we describe two such techniques. First, an assay to detect C3 and C4 deposition on red blood cells that is induced by antibodies in patient serum is presented. For this, FACS analysis is used with fluorescently labeled anti-C3 or anti-C4 antibodies. Next, a quantitative hemolytic assay is described. In this assay, complement-mediated hemolysis induced by patient serum is measured making use of spectrophotometric detection of the released hemoglobin. Both of these assays are very reproducible and quantitative, facilitating studies of antibody-induced complement activation. PMID:24514151

  11. Legionella pneumophila lipopolysaccharide activates the classical complement pathway.

    PubMed Central

    Mintz, C S; Schultz, D R; Arnold, P I; Johnson, W

    1992-01-01

    Legionella pneumophila is a gram-negative bacterium capable of entering and growing in alveolar macrophages and monocytes. Complement and complement receptors are important in the uptake of L. pneumophila by human mononuclear phagocytes. The surface molecules of L. pneumophila that activate the complement system are unknown. To identify these factors, we investigated the effects of L. pneumophila lipopolysaccharide (LPS) on the classical and alternative complement pathways of normal human serum by functional hemolytic assays. Although incubation of LPS in normal human serum at 37 degrees C resulted in the activation of both pathways, complement activation proceeded primarily through the classical pathway. Activation of the classical pathway by LPS was dependent on natural antibodies of the immunoglobulin M class that were present in various quantities in sera from different normal individuals but were absent in an immunoglobulin-deficient serum obtained from an agammaglobulinemic patient. Additional studies using sheep erythrocytes coated with LPS suggested that the antibodies recognized antigenic sites in the carbohydrate portion of LPS. The ability of LPS to interact with the complement system suggests a role for LPS in the uptake of L. pneumophila by mononuclear phagocytes. PMID:1612744

  12. A universal method for measuring functional activity of complement in humans, laboratory, domestic, and agricultural animals, amphibians, and birds.

    PubMed

    Kuleshina, O N; Kozlov, L V; Cheremnykh, E G

    2014-06-01

    A new universal method for measuring activity of the serum complement system in humans, laboratory, domestic, agricultural animals, birds and amphibians is based on automated evaluation of the mortality of ciliate Tetrahymena pyriformis under the effect of the complement system. In contrast to the hemolytic method, measured activity of the complement shows no erroneously high results caused by reactive lysis in febrile patients. The method can be used for studies of the complement system in humans and animals without species-specific adaptation.

  13. An extremely rare splice site mutation in the gene encoding complement factor I in a patient with atypical hemolytic uremic syndrome.

    PubMed

    Ipe, Tina S; Lim, Jooeun; Reyes, Meredith Anne; Ero, Mike; Leveque, Christopher; Lewis, Bradley; Kain, Jamey

    2017-04-28

    Atypical hemolytic uremic syndrome (aHUS) is a rare disease characterized by thrombocytopenia, microangiopathic hemolytic anemia, and acute kidney failure. The disease is difficult to diagnose due to its similarity with other hematologic disorders, such as thrombotic thrombocytopenic purpura (TTP). However, genetic mutations are found in 50-70% of patients with aHUS and can be useful in its diagnosis. A 40-year-old male presented to our hospital with acute kidney injury, evidenced by high creatinine levels (8.3 mg/dL) and kidney biopsy results. The patient was preliminarily diagnosed with TTP and therapeutic plasma exchange (TPE) was initiated. After four treatments, TPE was discontinued due to lack of ADAMTS13 activity and inhibitor assay results that were not consistent with TTP, improved hematologic laboratory results, and aHUS genetic testing results. Next-generation sequencing showed a rare mutation at a splice site in the gene encoding complement factor I (CFI). Implication of this mutation in aHUS has not been previously described. Treatment with eculizumab reduced creatinine levels below 4.0 mg/dL, and the patient remained on maintenance dosage of eculizumab (1200 mg/14 days) to prevent aHUS recurrence. An extremely rare, heterozygous mutation in the gene encoding CFI likely affecting splicing was associated for the first time with aHUS. Sequencing was critical for rapid diagnosis and subsequent timely treatment with eculizumab, which resulted in improved renal function. © 2017 Wiley Periodicals, Inc.

  14. Complement activation in diseases presenting with thrombotic microangiopathy.

    PubMed

    Meri, Seppo

    2013-09-01

    The complement system contains a great deal of biological "energy". This is demonstrated by the atypical hemolytic uremic syndrome (aHUS), which is a thrombotic microangiopathy (TMA) characterized by endothelial and blood cell damage and thrombotic vascular occlusions. Kidneys and often also other organs (brain, lungs and gastrointestinal tract) are affected. A principal pathophysiological feature in aHUS is a complement attack against endothelial cells and blood cells. This leads to platelet activation and aggregation, hemolysis, prothrombotic and inflammatory changes. The attacks can be triggered by infections, pregnancy, drugs or trauma. Complement-mediated aHUS is distinct from bacterial shiga-toxin (produced e.g. by E. coli O:157 or O:104 serotypes) induced "typical" HUS, thrombotic thrombocytopenic purpura (TTP) associated with ADAMTS13 (an adamalysin enzyme) dysfunction and from a recently described disease related to mutations in intracellular diacylglycerol kinase ε (DGKE). Mutations in proteins that regulate complement (factor H, factor I, MCP/CD46, thrombomodulin) or promote (C3, factor B) amplification of its alternative pathway or anti-factor H antibodies predispose to aHUS. The fundamental defect in aHUS is an excessive complement attack against cellular surfaces. This can be due to 1) an inability to regulate complement on self cell surfaces, 2) hyperactive C3 convertases or 3) complement activation and coagulation promoting changes on cell surfaces. The most common genetic cause is in factor H, where aHUS mutations disrupt its ability to recognize protective polyanions on surfaces where C3b has become attached. Most TMAs are thus characterized by misdirected complement activation affecting endothelial cell and platelet integrity. Copyright © 2013 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  15. Role of sph2 Gene Regulation in Hemolytic and Sphingomyelinase Activities Produced by Leptospira interrogans

    PubMed Central

    Narayanavari, Suneel A.; Lourdault, Kristel; Sritharan, Manjula; Haake, David A.; Matsunaga, James

    2015-01-01

    . Complementation of the mutation with the sph2 gene partially restored production of hemolytic and sphingomyelinase activities. These results indicate that the sph2 gene product contributes to the hemolytic and sphingomyelinase activities secreted by L. interrogans and most likely dominates those functions under the culture condition tested. PMID:26274394

  16. Cigarette smoke can activate the alternative pathway of complement in vitro by modifying the third component of complement.

    PubMed Central

    Kew, R R; Ghebrehiwet, B; Janoff, A

    1985-01-01

    Cigarette smoking is associated with significant increases in the number of pulmonary mononuclear phagocytes and neutrophils. A potent chemoattractant for these cells is C5a, a peptide generated during complement (C) activation. We, therefore, investigated the possibility that cigarette smoke could activate the complement system in vitro. Our results show that factor(s) (mol wt less than 1,000) present in an aqueous solution of whole, unfiltered cigarette smoke can deplete the hemolytic capacity of whole human serum in a dose-dependent manner. The particle-free, filtered gas phase of cigarette smoke is inactive. The smoke factor(s) do not activate serum C1, but do deplete serum C4 activity. Treatment of purified human C3 with whole smoke solution modifies the molecule such that its subsequent addition to serum (containing Mg/EGTA to block the classical pathway) results in consumption of hemolytic complement by activation of the alternative pathway. Smoke-modified C3 shows increased anodal migration in agarose electrophoresis, but this is not due to proteolytic cleavage of the molecule as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In contrast to methylamine-treated C3, C3 treated with smoke is only partially susceptible to the action of the complement regulatory proteins Factors H and I. In addition, smoke-modified C3 has diminished binding to Factor H as compared with methylamine-treated C3. Finally, smoke-modified C3 incorporates [14C]methylamine which suggests that the thiolester bond may be intact. These data indicate that aqueous whole cigarette smoke solution can modify C3 and activate the alternative pathway of complement, perhaps by a previously unrecognized mechanism. Should this occur in vivo, complement activation might partly account for the extensive pulmonary leukocyte recruitment observed in smokers. Images PMID:3156879

  17. Streptolysin S of Streptococcus anginosus exhibits broad-range hemolytic activity.

    PubMed

    Asam, Daniela; Mauerer, Stefanie; Spellerberg, Barbara

    2015-04-01

    Streptococcus anginosus is a commensal of mucous membranes and an emerging human pathogen. Some strains, including the type strain, display a prominent β-hemolytic phenotype. A gene cluster (sag), encoding a variant of streptolysin S (SLS) has recently been identified as the genetic background for β-hemolysin production in S. anginosus. In this study, we further characterized the hemolytic and cytolytic activity of the S. anginosus hemolysin in comparison with other streptococcal hemolysins. The results indicate that SLS of S. anginosus is a broad-range hemolysin able to lyse erythrocytes of different species, including horse, bovine, rabbit and even chicken. The hemolytic activity is temperature dependent, and a down-regulation of the hemolysin expression is induced in the presence of high glucose levels. Survival assays indicate that in contrast to other streptococcal species, S. anginosus does not require SLS for survival in the presence of human granulocytes. Cross-complementation studies using the sagB and sagD genes of Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis demonstrated functional similarities to the S. anginosus SLS. Nevertheless, distinct differences to other streptolysin S variants were noted and provide further insights into the molecular mechanisms of SLS pathogen host interactions.

  18. Association among Complement Factor H Autoantibodies, Deletions of CFHR, and the Risk of Atypical Hemolytic Uremic Syndrome.

    PubMed

    Jiang, Hong; Fan, Meng-Nan; Yang, Min; Lu, Chao; Zhang, Ming; Liu, Xiao-Hong; Ma, Le

    2016-12-05

    To evaluate the association among complement factor H-related (CFHRs) gene deficiency, complement factor H (CFH) autoantibodies, and atypical hemolytic uremic syndrome (aHUS) susceptibility. EMBASE, PubMed, and the ISI Web of Science databases were searched for all eligible studies on the relationship among CFHRs deficiency, anti-FH autoantibodies, and aHUS risk. Eight case-control studies with 927 cases and 1182 controls were included in this study. CFHR1 deficiency was significantly associated with an increased risk of aHUS (odds ratio (OR) = 3.61, 95% confidence interval (95% CI), 1.96, 6.63, p < 0.001), while no association was demonstrated in individuals with only CFHR1/R3 deficiency (OR = 1.32, 95% CI, 0.50, 3.50, p = 0.56). Moreover, a more significant correlation was observed in people with both FH-anti autoantibodies and CFHR1 deficiency (OR = 11.75, 95% CI, 4.53, 30.44, p < 0.001) in contrast to those with only CFHR1 deficiency. In addition, the results were essentially consistent among subgroups stratified by study quality, ethnicity, and gene detection methods. The present meta-analysis indicated that CFHR1 deletion was significantly associated with the risk of aHUS, particularly when combined with anti-FH autoantibodies, indicating that potential interactions among CFHR1 deficiency and anti-FH autoantibodies might impact the risk of aHUS.

  19. Complement Activation and Inhibition in Wound Healing

    PubMed Central

    Cazander, Gwendolyn; Jukema, Gerrolt N.; Nibbering, Peter H.

    2012-01-01

    Complement activation is needed to restore tissue injury; however, inappropriate activation of complement, as seen in chronic wounds can cause cell death and enhance inflammation, thus contributing to further injury and impaired wound healing. Therefore, attenuation of complement activation by specific inhibitors is considered as an innovative wound care strategy. Currently, the effects of several complement inhibitors, for example, the C3 inhibitor compstatin and several C1 and C5 inhibitors, are under investigation in patients with complement-mediated diseases. Although (pre)clinical research into the effects of these complement inhibitors on wound healing is limited, available data indicate that reduction of complement activation can improve wound healing. Moreover, medicine may take advantage of safe and effective agents that are produced by various microorganisms, symbionts, for example, medicinal maggots, and plants to attenuate complement activation. To conclude, for the development of new wound care strategies, (pre)clinical studies into the roles of complement and the effects of application of complement inhibitors in wound healing are required. PMID:23346185

  20. Complement activation in chromosome 13 dementias. Similarities with Alzheimer's disease.

    PubMed

    Rostagno, Agueda; Revesz, Tamas; Lashley, Tammaryn; Tomidokoro, Yasushi; Magnotti, Laura; Braendgaard, Hans; Plant, Gordon; Bojsen-Møller, Marie; Holton, Janice; Frangione, Blas; Ghiso, Jorge

    2002-12-20

    Chromosome 13 dementias, familial British dementia (FBD) and familial Danish dementia (FDD), are associated with neurodegeneration and cerebrovascular amyloidosis, with striking neuropathological similarities to Alzheimer's disease (AD). Despite the structural differences among the amyloid subunits (ABri in FBD, ADan in FDD, and Abeta in AD), these disorders are all characterized by the presence of neurofibrillary tangles and parenchymal and vascular amyloid deposits co-localizing with markers of glial activation, suggestive of local inflammation. Proteins of the complement system and their pro-inflammatory activation products are among the inflammation markers associated with AD lesions. Immunohistochemistry of FBD and FDD brain sections demonstrated the presence of complement activation components of the classical and alternative pathways as well as the neo-epitope of the membrane attack complex. Hemolytic experiments and enzyme-linked immunosorbent assays specific for the activation products iC3b, C4d, Bb, and C5b-9 indicated that ABri and ADan are able to fully activate the complement cascade at levels comparable to those generated by Abeta1-42. ABri and ADan specifically bound C1q with high affinity and formed stable complexes in physiological conditions. Activation proceeds approximately 70-75% through the classical pathway while only approximately 25-30% seems to occur through the alternative pathway. The data suggest that the chronic inflammatory response generated by the amyloid peptides in vivo might be a contributing factor for the pathogenesis of FBD and FDD and, in more general terms, to other neurodegenerative conditions.

  1. Peptide Inhibitor of Complement C1 (PIC1) Rapidly Inhibits Complement Activation after Intravascular Injection in Rats

    PubMed Central

    Sharp, Julia A.; Hair, Pamela S.; Pallera, Haree K.; Kumar, Parvathi S.; Mauriello, Clifford T.; Nyalwidhe, Julius O.; Phelps, Cody A.; Park, Dalnam; Thielens, Nicole M.; Pascal, Stephen M.; Chen, Waldon; Duffy, Diane M.; Lattanzio, Frank A.; Cunnion, Kenji M.; Krishna, Neel K.

    2015-01-01

    The complement system has been increasingly recognized to play a pivotal role in a variety of inflammatory and autoimmune diseases. Consequently, therapeutic modulators of the classical, lectin and alternative pathways of the complement system are currently in pre-clinical and clinical development. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement and is referred to as Peptide Inhibitor of Complement C1 (PIC1). In this study, we determined that the lead PIC1 variant demonstrates a salt-dependent binding to C1q, the initiator molecule of the classical pathway. Additionally, this peptide bound to the lectin pathway initiator molecule MBL as well as the ficolins H, M and L, suggesting a common mechanism of PIC1 inhibitory activity occurs via binding to the collagen-like tails of these collectin molecules. We further analyzed the effect of arginine and glutamic acid residue substitution on the complement inhibitory activity of our lead derivative in a hemolytic assay and found that the original sequence demonstrated superior inhibitory activity. To improve upon the solubility of the lead derivative, a pegylated, water soluble variant was developed, structurally characterized and demonstrated to inhibit complement activation in mouse plasma, as well as rat, non-human primate and human serum in vitro. After intravenous injection in rats, the pegylated derivative inhibited complement activation in the blood by 90% after 30 seconds, demonstrating extremely rapid function. Additionally, no adverse toxicological effects were observed in limited testing. Together these results show that PIC1 rapidly inhibits classical complement activation in vitro and in vivo and is functional for a variety of animal species, suggesting its utility in animal models of classical complement-mediated diseases. PMID:26196285

  2. Synthesis and hemolytic activity of some hederagenin diglycosides.

    PubMed

    Chwalek, Martin; Plé, Karen; Voutquenne-Nazabadioko, Laurence

    2004-08-01

    Glycosylation of hederagenin with the trichloroacetimidate derivatives of six commercial disaccharides (D-cellobiose, D-lactose, D-maltose, D-melibiose, D-gentiobiose, D-isomaltose) was performed giving the protected saponins in high yields. Deprotection then gave the saponins which were transformed into the corresponding methyl esters. The hemolytic activity of these synthetic hederagenin diglycosides was measured in order to establish structure-activity relationships based on the type and sequence of the attached sugar for the free carboxylic acid and methyl ester saponins.

  3. Inhibitory effect of FUT-175 on complement activation and its application for glomerulonephritis with hypocomplementemia.

    PubMed

    Fujita, Y; Inoue, I; Inagi, R; Miyata, T; Shinzato, T; Sugiyama, S; Miyama, A; Maeda, K

    1993-04-01

    FUT-175 (6-amidino-2-naphthyl p-guanidinobenzoate dimethane-sulphonate), a potent serine protease inhibitor, has been reported to inhibit complement activity in vitro, and especially the classical complement pathway effectively. In the present study, we examined the inhibitory effect of FUT-175 on the classical complement pathway components by hemolytic assay using purified human complement components. As a result, 50% inhibition of the C1 protease activity for classical C3 convertase formation and for C2 was obtained with 3.0 x 10(-8) M and 7.0 x 10(-8) M of FUT-175, respectively. FUT-175 did not inhibit the C2 protease activity at all. We then administered FUT-175 to 5 glomerulonephritic patients with hypocomplementemia and proteinuria in order to assess the clinical effectiveness of this drug. When FUT-175 was administered intravenously and continuously at a rate of 0.1 to 0.2 mg/kg/hr for 2 weeks, the urinary protein excretion decreased significantly from 2.9 +/- 0.8 to 1.4 +/- 0.5 g/day (P < 0.025). In these patients, some of the serum complement markers (serum C3, C4 level and the hemolytic activity via the classical complement pathway (CH50)) were increased after FUT-175 administration. The above findings suggests that FUT-175 can exert beneficial effects on glomerulonephritis with hypocomplementemia by inhibiting complement activation.

  4. Exploration of the correlation between the structure, hemolytic activity, and cytotoxicity of steroid saponins.

    PubMed

    Wang, Yibing; Zhang, Yichun; Zhu, Ziyan; Zhu, Shilei; Li, Yingxia; Li, Ming; Yu, Biao

    2007-04-01

    The hemolytic activity of a collection of 63 steroid saponins was determined. The correlations between these structures and their hemolytic and cytotoxic activities are discussed. It has been demonstrated that the hemolytic activity of steroid saponins is highly dependent on their structures, that is, the sugar length, the sugar linkage, the substitutes on the sugar, as well as the aglycone. It has also been disclosed that the hemolytic activity and cytotoxicity of steroid saponins are not correlated. These results suggest that steroid saponins execute hemolysis and cytotoxic activity in different mechanisms, and encourage to develop steroid saponins into potent antitumor agents devoid of the detrimental effect of hemolysis.

  5. Complement System Part I – Molecular Mechanisms of Activation and Regulation

    PubMed Central

    Merle, Nicolas S.; Church, Sarah Elizabeth; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.

    2015-01-01

    Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here, we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical, and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins, and the membrane-attack-complex. We will also discuss the importance of structure–function relationships using the example of atypical hemolytic uremic syndrome. Lastly, we will discuss the development and benefits of therapies using complement inhibitors. PMID:26082779

  6. Properties of the Hemolytic Activities of Escherichia coli

    PubMed Central

    Short, Everett C.; Kurtz, Harold J.

    1971-01-01

    Some properties of the cell-free and cell-associated hemolysins of Escherichia coli were studied. Several strains of E. coli that were isolated from intestines of pigs with edema disease produce large quantities of cell-free hemolysin when grown in the presence of an extract of meat. The component of meat that stimulates production of cell-free hemolysin is not extracted by lipid solvents and is not dialyzable. The cell-free hemolysin is an acidic substance that occurs in two forms. It is inactivated by trypsin but not by lecithinase, lysozyme, ribonuclease, or deoxyribonuclease, shows optimum activity between pH 7 and 8, and requires calcium ion for activity. It does not appear to be an enzyme. The kinetics of the lytic reaction are most consistent with the hypothesis that one molecule of cell-free hemolysin is sufficient to lyse one erythrocyte and that it is inactivated in the lytic reaction. The cell-free hemolysin does not sufficiently damage the cell during the prelytic period to cause lysis after the hemolysin-calcium-erythrocyte complex has been disrupted. The cell-associated hemolysin was not separated from the cell by autolysis, freezing, sonic treatment, or treatment with trypsin or lysozyme. It appears to be closely associated with the metabolic status of the cell. Organisms that are highly hemolytic under usual conditions of assay immediately lose most of their hemolytic capability in the presence of sodium cyanide, streptomycin, nalidixic acid, and rifampin. PMID:16558036

  7. Complement activation in pemphigus vulgaris blister fluid*

    PubMed Central

    Jordon, R. E.; Day, N. K.; Luckasen, J. R.; Good, R. A.

    1973-01-01

    Total haemolytic complement was reduced in blister fluids of four pemphigus vulgaris patients when compared to serum complement levels and other serum and blister fluid proteins. Complement levels in most control blister fluids, on the other hand, more closely approached their corresponding serum levels. Haemolytic C1, C4, C2, C3 and C5, measured in two pemphigus sera and blister fluids, were not measurable in one blister fluid and were extremely low in the second patient. C3 proactivator (C3PA) was absent from both of these blister fluids. Three of the blister fluids exhibited anti-complementary activity when tested with normal human serum. By adding one blister fluid to normal human serum, inhibition of haemolytic C1, C2, C3 and C5 with conversion of C3 and C3PA occurred. Activation of complement locally in pemphigus blister fluids would suggest a pathogenetic role for complement in this disease. PMID:4765721

  8. Properdin in Complement Activation and Tissue Injury

    PubMed Central

    Lesher, AM; B, Nilsson; Song, W-C

    2013-01-01

    The plasma protein properdin is the only known positive regulator of complement activation. Although regarded as an initiator of the alternative pathway of complement activation at the time of its discovery more than a half century ago, the role and mechanism of action of properdin in the complement cascade has undergone significant conceptual evolution since then. Despite the long history of research on properdin, however, new insight and unexpected findings on the role of properdin in complement activation, pathogen infection and host tissue injury are still being revealed by ongoing investigations. In this article, we provide a brief review on recent studies that shed new light on properdin biology, focusing on the following three topics: 1) its role as a pattern recognition molecule to direct and trigger complement activation, 2) its context-dependent requirement in complement activation on foreign and host cell surfaces, and 3) its involvement in alternative pathway complement-mediated immune disorders and considerations of properdin as a potential therapeutic target in human diseases. PMID:23816404

  9. Hemolytic activity of venom from crown-of-thorns starfish Acanthaster planci spines

    PubMed Central

    2013-01-01

    Background The crown-of-thorns starfish Acanthaster planci is a venomous species from Taiwan whose venom provokes strong hemolytic activity. To understand the hemolytic properties of A. planci venom, samples were collected from A. planci spines in the Penghu Islands, dialyzed with distilled water, and lyophilized into A. planci spine venom (ASV) powder. Results Both crude venom and ASV cause 50% hemolysis at a concentration of 20 μg/mL. The highest hemolytic activity of ASV was measured at pH 7.0-7.4; ASV-dependent hemolysis was sharply reduced when the pH was lower than 3 or greater than 8. There was almost no hemolytic activity when the Cu2+ concentration was increased to 10 mM. Furthermore, incubation at 100°C for 30 to 60 minutes sharply decreased the hemolytic activity of ASV. After treatment with the protease α-chymotrypsin, the glycoside hydrolase cellulase, and the membrane component cholesterin, the hemolytic activity of ASV was significantly inhibited. Conclusions The results of this study provide fundamental information about A. planci spine venom. The hemolytic activity was affected by pH, temperature, metal ions, EDTA, cholesterin, proteases, and glycoside hydrolases. ASV hemolysis was inhibited by Cu2+, cholesterin, α-chymotrypsin, and cellulose, factors that might prevent the hemolytic activity of venom and provide the medical treatment for sting. PMID:24063308

  10. Activation of immune complement by fly ash particles from coal combustion. [Dogs

    SciTech Connect

    Hill, J.O.; Rothenberg, S.J.; Kanapilly, G.M.; Hanson, R.L.; Scott, B.R.

    1982-06-01

    The interaction of immune complement with fly ash particles from coal combustion was studied in vitro. Fly ash from different coal combustors was incubated for 1 hr with pooled normal dog serum at 37/sup 0/C. The serum supernatants were assayed for complement by a 505 hemolytic (CH/sub 50/) endpoint method. Ash produced by burning one type of coal activated complement with up to 70% of the complement activated at 10 mg ash/ml serum. This activation was concentration dependent and a linear dose-response curve was obtained. Heat treatment and surface area measurements, as well as immunofluorescence studies, suggest that the active component(s) is volatile or heat labile, found on the surface of the particles, and removed by saline or water extraction.

  11. Complement activation by a B cell superantigen.

    PubMed

    Kozlowski, L M; Soulika, A M; Silverman, G J; Lambris, J D; Levinson, A I

    1996-08-01

    Staphylococcal protein A (SpA), acting as a B cell superantigen, binds to the Fab region of human VH3+ Igs. Using SpA abrogated of its IgG Fc binding activity (Mod SpA) as a model B cell superantigen, we determined whether such an interaction causes complement activation. Addition of Mod SpA to human serum led to complement consumption and the generation of C3a. To determine whether this complement activation 1) was due to an interaction between VH3+ Igs and the Fab binding site of SpA and 2) proceeded via the classical complement pathway, we tested a panel of monoclonal IgM proteins for the ability to hind C1q following interaction with SpA. C1q binding was restricted to SpA-reactive, VH3+ IgM proteins. To formally determine whether the binding of SpA to the reactive VH3+ IgM proteins led to complement activation, we reconstituted the serum from a hypogammaglobulinemic patient with monoclonal IgM proteins and measured complement consumption and C3a generation following the addition of Mod SpA. We observed complement consumption and C3a production only in Mod SpA-treated serum reconstituted with a VH3+, SpA-binding, IgM protein. Taken together, these results provide compelling evidence that the interaction of the Fab binding site of SpA and VH3+ Igs can lead to complement activation via the classical pathway. This novel interaction may have significant implications for the in vivo properties of a B cell superantigen.

  12. Successful simultaneous liver-kidney transplant in an adult with atypical hemolytic uremic syndrome associated with a mutation in complement factor H.

    PubMed

    Wilson, Colin; Torpey, Nick; Jaques, Bryon; Strain, Lisa; Talbot, David; Manas, Derek; Goodship, Tim

    2011-07-01

    Atypical hemolytic uremic syndrome was diagnosed in a 62-year-old man. Sequencing of the CFH gene, which encodes complement factor H, revealed a heterozygous adenine to guanine mutation at nucleotide 3550 of the complementary DNA, leading to a predicted substitution of alanine for threonine at amino acid position 1184 in the protein (c.3550A>G, p.Thr1184Ala). Three years later, he received a simultaneous liver-kidney transplant with plasmapheresis and intratransplant plasma infusion. The postoperative course was complicated by an anastomotic biliary stricture that was treated successfully using endoscopic stenting. One year later, he has excellent function of both transplants, emphasizing that simultaneous liver-kidney transplant is a valuable treatment option in the management of adult patients with atypical hemolytic uremic syndrome. Copyright © 2011 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  13. Complement activation in chronic liver disease.

    PubMed Central

    Munoz, L E; De Villiers, D; Markham, D; Whaley, K; Thomas, H C

    1982-01-01

    Patients with HBsAg positive chronic active liver disease (CALD) and primary biliary cirrhosis (PBC) exhibit increased C3d concentrations and changes in the serum concentrations of the complement components consistent with activation of the classical and alternative pathways. In these patients the concentrations of the regulatory proteins, C3b inactivator (C3bINA) and beta IH globulin, are normal. Patients with HBsAg negative CALD and alcohol induced liver disease (ALD) exhibit no evidence of an increased level of complement system activation. In these patients diminished serum concentrations of complement components appear to be related to diminished hepatic synthetic function. C4 synthesis may be specifically reduced in autoimmune chronic active liver disease. PMID:7083631

  14. Inherited complement regulatory protein deficiency predisposes to human disease in acute injury and chronic inflammatory statesthe examples of vascular damage in atypical hemolytic uremic syndrome and debris accumulation in age-related macular degeneration.

    PubMed

    Richards, Anna; Kavanagh, David; Atkinson, John P

    2007-01-01

    In this chapter, we examine the role of complement regulatory activity in atypical hemolytic uremic syndrome (aHUS) and age-related macular degeneration (AMD). These diseases are representative of two distinct types of complement-mediated injury, one being acute and self-limited, the other reflecting accumulation of chronic damage. Neither condition was previously thought to have a pathologic relationship to the immune system. However, alterations in complement regulatory protein genes have now been identified as major predisposing factors for the development of both diseases. In aHUS, heterozygous mutations leading to haploinsufficiency and function-altering polymorphisms in complement regulators have been identified, while in AMD, polymorphic haplotypes in complement genes are associated with development of disease. The basic premise is that a loss of function in a plasma or membrane inhibitor of the alternative complement pathway allows for excessive activation of complement on the endothelium of the kidney in aHUS and on retinal debris in AMD. These associations have much to teach us about the host's innate immune response to acute injury and to chronic debris deposition. We all experience cellular injury and, if we live long enough, will deposit debris in blood vessel walls (atherosclerosis leading to heart attacks and strokes), the brain (amyloid proteins leading to Alzheimer's disease), and retina (lipofuscin pigments leading to AMD). These are three common causes of morbidity and mortality in the developed world. The clinical, genetic, and immunopathologic understandings derived from the two examples of aHUS and AMD may illustrate what to anticipate in related conditions. They highlight how a powerful recognition and effector system, the alternative complement pathway, reacts to altered self. A response to acute injury or chronic debris accumulation must be appropriately balanced. In either case, too much activation or too little regulation promotes

  15. Cholesterol-dependent hemolytic activity of Passiflora quadrangularis leaves.

    PubMed

    Yuldasheva, L N; Carvalho, E B; Catanho, M-T J A; Krasilnikov, O V

    2005-07-01

    Plants used in traditional medicine are rich sources of hemolysins and cytolysins, which are potential bactericidal and anticancer drugs. The present study demonstrates for the first time the presence of a hemolysin in the leaves of Passiflora quadrangularis L. This hemolysin is heat stable, resistant to trypsin treatment, has the capacity to froth, and acts very rapidly. The hemolysin activity is dose-dependent, with a slope greater than 1 in a double-logarithmic plot. Polyethylene glycols of high molecular weight were able to reduce the rate of hemolysis, while liposomes containing cholesterol completely inhibited it. In contrast, liposomes containing phosphatidylcholine were ineffective. The Passiflora hemolysin markedly increased the conductance of planar lipid bilayers containing cholesterol but was ineffective in cholesterol-free bilayers. Successive extraction of the crude hemolysin with n-hexane, chloroform, ethyl acetate, and n-butanol resulted in a 10-fold purification, with the hemolytic activity being recovered in the n-butanol fraction. The data suggest that membrane cholesterol is the primary target for this hemolysin and that several hemolysin molecules form a large transmembrane water pore. The properties of the Passiflora hemolysin, such as its frothing ability, positive color reaction with vanillin, selective extraction with n-butanol, HPLC profile, cholesterol-dependent membrane susceptibility, formation of a stable complex with cholesterol, and rapid erythrocyte lysis kinetics indicate that it is probably a saponin.

  16. A steryl glycoside fraction with hemolytic activity from tubers of Momordica cochinchinensis.

    PubMed

    Ng, T B; Li, W W; Yeung, H W

    1986-10-01

    A hemolytic fraction has been obtained from fresh tubers of Momordica cochinchinensis. The fraction was strongly adsorbed on DEAE-Sepharose CL6B. It did not stain with Coomassie brilliant blue in SDS-polyacrylamide gel electrophoresis and it gave no immunoprecipitin arcs in immunoelectrophoresis. The hemolytic activity of the fraction was resistant to heat and proteolytic enzymes. The behavior of the fraction in thin-layer chromatography and its positive reaction in Liebermann-Burchard test indicated that the hemolytic activity of the fraction can be attributed to a steryl glycoside(s).

  17. Scanning electron microscopy in the investigation of the in vitro hemolytic activity of Trichomonas vaginalis.

    PubMed

    Rosset, Iveli; Tasca, Tiana; Tessele, Paola M; De Carli, Geraldo A

    2002-04-01

    The in vitro hemolytic activity of Trichomonas vaginalis has been previously demonstrated, but the mechanisms involved remain to be elucidated. In this work we used scanning electron microscopy to investigate the contact dependency of the hemolytic phenomenon caused by the parasites. The erythrocytes adhered to the parasites' surface and were phagocytosed. These observations suggest that the contact between T. vaginalis and erythrocytes may be an important mechanism in the injury caused to the erythrocytes. The hemolytic activity of T. vaginalis may be an efficient means of obtaining nutrients for the parasite and allow the investigation of the mechanism used by T. vaginalis to damage cellular membranes.

  18. Hemolytic and antimicrobial activities differ among saponin-rich extracts from guar, quillaja, yucca, and soybean.

    PubMed

    Hassan, Sherif M; Byrd, James A; Cartwright, Aubry L; Bailey, Chris A

    2010-10-01

    Hemolytic and antibacterial activities of eight serial concentrations ranged from 5-666 microg/mL of saponin-rich extracts from guar meal (GM), quillaja, yucca, and soybean were tested in 96-well plates and read by enzyme-linked immunosorbent assay plate-well as 650 nm. Hemolytic assay used a 1% suspension of chicken red blood cells with water and phosphate buffered saline as positive and negative controls, respectively. Antibacterial activity against Staphylococcus aureus, Salmonella typhimurium, and Escherichia coli were evaluated using ampicillin and bacteria without saponin-rich extract as positive and negative controls, respectively. The 100% MeOH GM and commercial quillaja saponin-rich extracts were significantly the highest in both hemolytic and antibacterial activities against all bacteria at the same concentration tested. Soybean saponin-rich extract had no antibacterial activity against any of the bacteria at the concentrations tested while yucca saponin-rich extract had no antibacterial activity against the gram-negative bacteria at the concentrations tested. GM and quillaja saponin-rich extracts were hemolytic, while yucca and soybean saponin-rich extracts were not hemolytic at the concentrations tested. No saponin-rich extract source had antibacterial activity against S. typhimurium or E. coli at the concentrations tested. Both GM and quillaja saponin-rich extracts exhibited antibacterial activity against S. aureus. Saponin-rich extracts from different plant sources have different hemolytic and antibacterial activities.

  19. Hemolytic activity reevaluation of putative nonpathogenic Listeria monocytogenes strains.

    PubMed

    Lachica, R V

    1996-11-01

    Identification of 12 strains originally characterized as nonpathogenic Listeria monocytogenes was reassured following the evaluation of their hemolytic capability with a newly developed horse blood agar plate. Seven of the strains were observed consistently to be hemolytic and confirmed as L. monocytogenes with the use of two commercial systems: the Gene-Trak L. monocytogenes-specific colorimetric DNA hybridization assay and the API Listeria system. Except for one strain that formed typical smooth colonies, these hemolytic strains formed rough colonies on a selective medium, lithium chloride-ceftazidime agar. The rest of the strains were nonhemolytic and did not hybridize with the DNA probe; they were identified as Listeria innocua on the basis of their API Listeria system biochemical profile. All but one of these nonhemolytic strains formed smooth colonies on lithium chloride-ceftazidime agar.

  20. Microplate technique to determine hemolytic activity for routine typing of Listeria strains.

    PubMed Central

    Dominguez Rodriguez, L; Vazquez Boland, J A; Fernandez Garayzabal, J F; Echalecu Tranchant, P; Gomez-Lucia, E; Rodriguez Ferri, E F; Suarez Fernandez, G

    1986-01-01

    Because the hemolysis produced by Listeria monocytogenes and Listeria seeligeri on blood agar is frequently difficult to interpret, we developed a microplate technique for the routine determination of hemolytic activity with erythrocyte suspensions. This microtechnique is a simple and reliable test for distinguishing clearly between hemolytic and nonhemolytic strains and could be used instead of the CAMP (Christie-Atkins-Munch-Petersen) test with Staphylococcus aureus in the routine typing of Listeria strains. Furthermore, our results suggest that the quantitation of the hemolytic activity of the Listeria strains, along with the D-xylose, L-rhamnose, and alpha-methyl-D-mannoside acidification tests, allows the differentiation of L. monocytogenes, L. seeligeri, and Listeria ivanovii. We also observed that the treatment of erythrocytes with crude exosubstances of rhodococcus equi, Pseudomonas fluorescens, Acinetobacter calcoaceticus, and S. aureus enhanced the hemolytic activity of all Listeria strains with this characteristic. PMID:3088037

  1. Incomplete inhibition by eculizumab: mechanistic evidence for residual C5 activity during strong complement activation.

    PubMed

    Harder, Markus J; Kuhn, Nadine; Schrezenmeier, Hubert; Höchsmann, Britta; von Zabern, Inge; Weinstock, Christof; Simmet, Thomas; Ricklin, Daniel; Lambris, John D; Skerra, Arne; Anliker, Markus; Schmidt, Christoph Q

    2017-02-23

    Eculizumab inhibits the terminal, lytic pathway of complement by blocking the activation of the complement protein C5 and shows remarkable clinical benefits in certain complement-mediated diseases. However, several reports suggest that activation of C5 is not always completely suppressed in patients even under excess of eculizumab over C5, indicating that residual C5 activity may derogate the drug's therapeutic benefit under certain conditions. By using eculizumab and the tick-derived C5 inhibitor coversin, we determined conditions ex vivo in which C5 inhibition is incomplete. The degree of such residual lytic activity depended on the strength of the complement activator and the resulting surface density of the complement activation product C3b, which autoamplifies via the alternative pathway (AP) amplification loop. We show that at high C3b densities required for binding and activation of C5, both inhibitors reduce but do not abolish this interaction. The decrease of C5 binding to C3b clusters in the presence of C5 inhibitors correlated with the levels of residual hemolysis. However, by employing different C5 inhibitors simultaneously, residual hemolytic activity could be abolished. The importance of AP-produced C3b clusters for C5 activation in the presence of eculizumab was corroborated by the finding that residual hemolysis after forceful activation of the classical pathway could be reduced by blocking the AP. By providing insights into C5 activation and inhibition, our study delivers the rationale for the clinically observed phenomenon of residual terminal pathway activity under eculizumab treatment with important implications for anti-C5 therapy in general.

  2. Detection of complement activation by counterimmunoelectrophoresis (CIE).

    PubMed

    Arroyave, C M; Tan, E M

    1976-01-01

    Counterimmunoelectrophoresis (CIE) was used as a method of detecting activation of the third component of the complement system (C3). Highly purified C3, normal human serum (NHS), EDTA-treated plasma and serum activated with aggregated human immunoglobulin (agg-IgG) or inulin were used as sources of C3 and/or C3 split products. Activation of the alternative pathway of complement was assayed in the presence of EGTA (10 mM) and MgCl2 (0.3 mM), conditions which block activation of the classical pathway. When purified native C3, fresh NHS and fresh EDTA-plasma were tested in CIE against either antisera to whole C3 or to C3 split products, only one precipitin line was found, which was identified as native C3. However, when serum activated with agg-IgG or inulin were tested against the same reagents, two precipitin lines were seen. The first, with more cathodal mobility was identical to that of native C3. The second line had a more anodal mobility, was distinctly separated from the first and contained C3c and C3d as shown immunochemically with specific antisera. Native C3 and split products of C3 were identified by this CIE method in patients showing evidence of activated complement by having subnormal total complement (CH50) levels. When C3 split products were identified, the C3c-C3d precipitin line could always be distinguished from native C3 by its different electrophoretic mobility, even when C3 concentrations in serum varied from 0.25 mg/ml to 1.5 mg/ml. The sensitivity of CIE was compared to that of CH50 by asssaying at different time intervals after agg-IgG was added to fresh NHS. C3c-C3d split products were detected by CIE before any fall in CH50 and at all times when a significant decrease in CH50 was present. This study shows that the CIE technique is a highly sensitive, specific and rapid method for detecting activation of the complement system via classical or alternative pathways in human disease.

  3. Atypical Hemolytic Uremic Syndrome

    PubMed Central

    Kavanagh, David; Goodship, Tim H.; Richards, Anna

    2013-01-01

    Summary Hemolytic uremic syndrome (HUS) is a triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. The atypical form of HUS is a disease characterized by complement overactivation. Inherited defects in complement genes and acquired autoantibodies against complement regulatory proteins have been described. Incomplete penetrance of mutations in all predisposing genes is reported, suggesting that a precipitating event or trigger is required to unmask the complement regulatory deficiency. The underlying genetic defect predicts the prognosis both in native kidneys and after renal transplantation. The successful trials of the complement inhibitor eculizumab in the treatment of atypical HUS will revolutionize disease management. PMID:24161037

  4. Effects of penicillinase on bactericidal and complement activities in normal human serum.

    PubMed Central

    Biggs, W H; Wunderlich, A C; Corbeil, L C; Davis, C E; Curd, J G

    1983-01-01

    During routine addition of penicillinase (beta-lactamase) to patients sera, we found that the capacity of some of these sera to kill serum-sensitive gram-negative organisms was significantly decreased. Further controlled studies showed that penicillinase decreased both the bactericidal activity of normal human sera and the total hemolytic activity (CH50) of complement in these sera. The decreased bactericidal activity correlated significantly (r = 0.57, P less than 0.05) with the reduction of CH50 in eight normal sera. These effects of penicillinase were time and temperature dependent. Measurement of individual complement component activities showed that penicillinase decreased the activity of C2, C4, and C3-C9, suggesting that the penicillinase preparation activated the classical pathway. These results cast doubts on the validity of bactericidal determinations when sera are pretreated with penicillinase. PMID:6603195

  5. Melectin MAPs: the influence of dendrimerization on antimicrobial and hemolytic activity.

    PubMed

    Niederhafner, Petr; Bednárová, Lucie; Buděšínský, Miloš; Safařík, Martin; Ehala, Sille; Ježek, Jan; Borovičková, Lenka; Fučík, Vladimír; Ceřovský, Václav; Slaninová, Jiřina

    2010-11-01

    The recently described antimicrobial peptide melectin (MEP, GFLSILKKVLPKVMAHMK-NH2) exhibits high antimicrobial activity against Gram-positive and Gram-negative bacteria. Here we describe the synthesis and biological activities of 23 new analogues of MEP. We studied the influence of dimerization and tetramerization (MAP-constructs of MEP) on the antimicrobial and hemolytic activities, as well as the role of Met in positions 14 and 17 of the peptide chain. Oxidation of the Met to Met(O) and Met(O2) decreases antimicrobial activity of all tested bacteria if the peptide is in the monomeric form, however, only to Staphylococcus aureus if in the form of dimer or tetramer. Dimerization and tetramerization increase the undesirable hemolytic activity of the peptides. Interestingly, substitution of Leu for Val in position 6 leads to the decrease of hemolytic activity. Introduction of the isosteric amino acid Nle into positions 14 or 17 or both leads to slight increase of hemolytic activity under preservation of high antimicrobial activities. Unfortunately, dimerization again leads to an increase of hemolytic activity.

  6. Complement

    MedlinePlus

    ... fungal infections and some parasitic infections such as malaria . Normal Results Total blood complement level: 41 to ... Glomerulonephritis Hepatitis Hereditary angioedema Kidney transplant Lupus nephritis Malaria Protein in diet Rheumatoid arthritis Septicemia Shock Systemic ...

  7. Complement factor H, FHR-3 and FHR-1 variants associate in an extended haplotype conferring increased risk of atypical hemolytic uremic syndrome.

    PubMed

    Bernabéu-Herrero, Maria E; Jiménez-Alcázar, Miguel; Anter, Jaouad; Pinto, Sheila; Sánchez Chinchilla, Daniel; Garrido, Sofía; López-Trascasa, Margarita; Rodríguez de Córdoba, Santiago; Sánchez-Corral, Pilar

    2015-10-01

    Atypical hemolytic uremic syndrome (aHUS) is a severe thrombotic microangiopathy affecting the renal microvasculature and is associated with complement dysregulation caused by mutations or autoantibodies. Disease penetrance and severity is modulated by inheritance of "risk" polymorphisms in the complement genes MCP, CFH and CFHR1. We describe the prevalence of mutations, the frequency of risk polymorphisms and the occurrence of anti-FH autoantibodies in a Spanish aHUS cohort (n=367). We also report the identification of a polymorphism in CFHR3 (c.721C>T; rs379370) that is associated with increased risk of aHUS (OR=1.78; CI 1.22-2.59; p=0.002), and is most frequently included in an extended risk haplotype spanning the CFH-CFHR3-CFHR1 genes. This extended haplotype integrates polymorphisms in the promoter region of CFH and CFHR3, and is associated with poorer evolution of renal function and decreased FH levels. The CFH-CFHR3-CFHR1 aHUS-risk haplotype seems to be the same as was previously associated with protection against meningococcal infections, suggesting that the genetic variability in this region is limited to a few extended haplotypes, each with opposite effects in various human diseases. These results suggest that the combination of quantitative and qualitative variations in the complement proteins encoded by CFH, CFHR3 and CFHR1 genes is key for the association of these haplotypes with disease.

  8. Deficiencies and excessive human complement system activation in disorders of multifarious etiology.

    PubMed

    Tichaczek-Goska, Dorota

    2012-01-01

    Complement is an integral part of the immune system protecting the host organism against invasion and proliferation of various microorganisms. It is also involved in the removal of the body's own damaged and altered cells. Activation of the complement system is a very precise process and it is strictly controlled by regulatory proteins present in both plasma and at host cells' surfaces. C3 protein plays a major role in the complement activation and generation of immune responses. Deficiencies of the C3 and other complement components, so-called early and late complement proteins, contribute to the emergence of recurrent bacterial, viral and fungal infections. The low level of mannose-binding lectin is also important. This protein plays a protective role in the early stages of infection and in the control of inflammation. Its deficit is one of the most common reasons for human immunodeficiency, observed in microbial infections as well as in autoimmune diseases such as rheumatoid arthritis. On the other hand, the excessive activation of complement proteins is often discovered to be the reason for many diseases. These include e.g. autoimmune diseases, Alzheimer's syndrome, schizophrenia, atypical hemolytic-uremic syndrome, angioedema, macular degeneration, and Crohn's disease.

  9. Novel hemagglutinating, hemolytic and cytotoxic activities of the intermediate subunit of Entamoeba histolytica lectin

    PubMed Central

    Kato, Kentaro; Yahata, Kazuhide; Gopal Dhoubhadel, Bhim; Fujii, Yoshito; Tachibana, Hiroshi

    2015-01-01

    Galactose and N-acetyl-D-galactosamine (Gal/GalNAc) inhibitable lectin of Entamoeba histolytica, a common protozoan parasite, has roles in pathogenicity and induction of protective immunity in mouse models of amoebiasis. The lectin consists of heavy (Hgl), light (Lgl), and intermediate (Igl) subunits. Hgl has lectin activity and Lgl does not, but little is known about the activity of Igl. In this study, we assessed various regions of Igl for hemagglutinating activity using recombinant proteins expressed in Escherichia coli. We identified a weak hemagglutinating activity of the protein. Furthermore, we found novel hemolytic and cytotoxic activities of the lectin, which resided in the carboxy-terminal region of the protein. Antibodies against Igl inhibited the hemolytic activity of Entamoeba histolytica trophozoites. This is the first report showing hemagglutinating, hemolytic and cytotoxic activities of an amoebic molecule, Igl. PMID:26354528

  10. Novel hemagglutinating, hemolytic and cytotoxic activities of the intermediate subunit of Entamoeba histolytica lectin.

    PubMed

    Kato, Kentaro; Yahata, Kazuhide; Gopal Dhoubhadel, Bhim; Fujii, Yoshito; Tachibana, Hiroshi

    2015-09-10

    Galactose and N-acetyl-D-galactosamine (Gal/GalNAc) inhibitable lectin of Entamoeba histolytica, a common protozoan parasite, has roles in pathogenicity and induction of protective immunity in mouse models of amoebiasis. The lectin consists of heavy (Hgl), light (Lgl), and intermediate (Igl) subunits. Hgl has lectin activity and Lgl does not, but little is known about the activity of Igl. In this study, we assessed various regions of Igl for hemagglutinating activity using recombinant proteins expressed in Escherichia coli. We identified a weak hemagglutinating activity of the protein. Furthermore, we found novel hemolytic and cytotoxic activities of the lectin, which resided in the carboxy-terminal region of the protein. Antibodies against Igl inhibited the hemolytic activity of Entamoeba histolytica trophozoites. This is the first report showing hemagglutinating, hemolytic and cytotoxic activities of an amoebic molecule, Igl.

  11. Characterization of serum complement activity of saltwater (Crocodylus porosus) and freshwater (Crocodylus johnstoni) crocodiles.

    PubMed

    Merchant, Mark; Britton, Adam

    2006-04-01

    We employed a spectroscopic assay, based on the hemolysis of sheep red blood cells (SRBCs), to assess the innate immune function of saltwater and freshwater crocodiles in vitro. Incubation of serum from freshwater and saltwater crocodiles with SRBCs resulted in concentration-dependent increases in SRBC hemolysis. The hemolytic activity occurred rapidly, with detectable activity within 2 min and maximum activity at 20 min. These activities, in both crocodilian species, were heat sensitive, unaffected by 20 mM methylamine, and completely inhibited by low concentrations of EDTA, suggesting that the alternative serum complement cascade is responsible for the observed effects. The hemolytic activities of the sera were inhibited by other chelators of divalent metal ions, such as phosphate and citrate. The inhibition of SRBC hemolysis by EDTA could be completely restored by the addition of 10 mM Ca2+ or Mg2+, but not Ba2+, Cu2+ or Fe2+, indicating specificity for these metal ions. The serum complement activities of both crocodilians were temperature-dependent, with peak activities occurring at 25-30 degrees C and reduced activities below 25 degrees C and above 35 degrees C.

  12. Lipid selectivity in novel antimicrobial peptides: Implication on antimicrobial and hemolytic activity.

    PubMed

    Maturana, P; Martinez, M; Noguera, M E; Santos, N C; Disalvo, E A; Semorile, L; Maffia, P C; Hollmann, A

    2017-05-01

    Antimicrobial peptides (AMPs) are small cationic molecules that display antimicrobial activity against a wide range of bacteria, fungi and viruses. For an AMP to be considered as a therapeutic option, it must have not only potent antibacterial properties but also low hemolytic and cytotoxic activities [1]. Even though many studies have been conducted in order to correlate the antimicrobial activity with affinity toward model lipid membranes, the use of these membranes to explain cytotoxic effects (especially hemolysis) has been less explored. In this context, we studied lipid selectivity in two related novel AMPs, peptide 6 (P6) and peptide 6.2 (P6.2). Each peptide was designed from a previously reported AMP, and specific amino acid replacements were performed in an attempt to shift their hydrophobic moment or net charge. P6 showed no antimicrobial activity and high hemolytic activity, and P6.2 exhibited good antibacterial and low hemolytic activity. Using both peptides as a model we correlated the affinity toward membranes of different lipid composition and the antimicrobial and hemolytic activities. Our results from surface pressure and zeta potential assays showed that P6.2 exhibited a higher affinity and faster binding kinetic toward PG-containing membranes, while P6 showed this behavior for pure PC membranes. The final position and structure of P6.2 into the membrane showed an alpha-helix conversion, resulting in a parallel alignment with the Trps inserted into the membrane. On the other hand, the inability of P6 to adopt an amphipathic structure, plus its lower affinity toward PG-containing membranes seem to explain its poor antimicrobial activity. Regarding erythrocyte interactions, P6 showed the highest affinity toward erythrocyte membranes, resulting in an increased hemolytic activity. Overall, our data led us to conclude that affinity toward negatively charged lipids instead of zwitterionic ones seems to be a key factor that drives from hemolytic to

  13. Why does the hemolytic activity of silica predict its pro-inflammatory activity?

    PubMed

    Pavan, Cristina; Rabolli, Virginie; Tomatis, Maura; Fubini, Bice; Lison, Dominique

    2014-12-19

    The hemolytic activity of inhaled particles such as silica has been widely investigated in the past and represents a usual toxicological endpoint to characterize particle reactivity despite the fact that red blood cells (RBCs) are not involved in the pathogenesis of pulmonary inflammation or fibrosis caused by some inhaled particles. The inflammatory process induced by silica starts with the activation of the inflammasome, which leads to the release of mature IL-1β. One of the upstream mechanisms causing activation of the inflammasome is the labilization of the phagolysosomal membrane after particle phagocytosis. Considering RBC lysis as a model of membrane damage, we evaluated the relationship between hemolytic activity and inflammasome-dependent release of IL-1β for a panel of selected silica particles, in search of the toxicological significance of the hemolytic activity of an inhaled particle. Well-characterized silica particles, including four quartz samples and a vitreous silica, with different surface properties and hemolytic potential were tested for their capacity to induce inflammasome-dependent release of IL-1β in LPS-primed primary murine peritoneal macrophages by ELISA and Western blot analysis. The mechanisms of IL-1β maturation and release were clarified by using ASC-deficient cells and inhibitors of phagocytosis and cathepsin B. The silica samples induced dose-dependent hemolysis and IL-1β release of different amplitudes. A significant correlation between IL-1β release and hemolytic activity was evidenced (r = 0.827) by linear regression analysis. IL-1β release was completely abolished in ASC-deficient cells and reduced by inhibitors, confirming the involvement of the inflammasome and the requirement of phagocytosis and cathepsin B for activation. The same physico-chemical properties of silica particles which are relevant for the lysis of the RBC membrane also appear implicated in the labilization of the phagolysosome, leading to

  14. Complement inhibitors to treat IgM-mediated autoimmune hemolysis

    PubMed Central

    Wouters, Diana; Zeerleder, Sacha

    2015-01-01

    Complement activation in autoimmune hemolytic anemia may exacerbate extravascular hemolysis and may occasionally result in intravascular hemolysis. IgM autoantibodies as characteristically found in cold autoantibody autoimmune hemolytic anemia, in cold agglutinin disease but also in a considerable percentage of patients with warm autoantibodies are very likely to activate complement in vivo. Therapy of IgM-mediated autoimmune hemolytic anemia mainly aims to decrease autoantibody production. However, most of these treatments require time to become effective and will not stop immediate ongoing complement-mediated hemolysis nor prevent hemolysis of transfused red blood cells. Therefore pharmacological inhibition of the complement system might be a suitable approach to halt or at least attenuate ongoing hemolysis and improve the recovery of red blood cell transfusion in autoimmune hemolytic anemia. In recent years, several complement inhibitors have become available in the clinic, some of them with proven efficacy in autoimmune hemolytic anemia. In the present review, we give a short introduction on the pathogenesis of autoimmune hemolytic anemia, followed by an overview on the complement system with a special focus on its regulation. Finally, we will discuss complement inhibitors with regard to their potential efficacy to halt or attenuate hemolysis in complement-mediated autoimmune hemolytic anemia. PMID:26521297

  15. Distribution and characterization of hemolytic activity by an oral anaerobe from the Streptococcus milleri group.

    PubMed

    Yamaguchi, T; Koreeda, H

    2004-04-01

    Some oral anaerobes from the Streptococcus milleri strain group were found to secrete human specific hemolytic toxin, which was detected when bacteria were cultured in Todd-Hewitt broth and Brain Heart Infusion broth. The toxin elicited by the Streptococcus intermedius strain was partially fractionated by ammonium sulfate precipitation. Preincubation with glutathione or cysteine showed significant inhibiting effects; however, no effects were seen with dithiothreitol or beta-mercaptoethanol, and cholesterol was a weak inhibitor. Five kinds of protease inhibitor had no effect on the hemolytic activity, and rabbit preimmune and immune sera against the bacterial cells showed weak inhibition at a similar level. Digestion with trypsin, chymotrypsin, proteinase-K, subtilisin and pronase-P brought about a rise in activity, followed by a decrease during long-term incubation. Other enzymes tested showed no effects. Further, the presence of the intermedilysin gene in the portion with hemolytic activity was not identified by polymerase chain reaction.

  16. Recognition of Malondialdehyde-modified Proteins by the C Terminus of Complement Factor H Is Mediated via the Polyanion Binding Site and Impaired by Mutations Found in Atypical Hemolytic Uremic Syndrome*

    PubMed Central

    Hyvärinen, Satu; Uchida, Koji; Varjosalo, Markku; Jokela, Reija; Jokiranta, T. Sakari

    2014-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a severe thrombotic microangiopathy characterized by uncontrolled complement activation against endothelial and blood cells. Mutations in the C-terminal target recognition domains 19–20 of complement regulator factor H (FH) are strongly associated with aHUS, but the mechanisms triggering disease onset have remained unresolved. Here we report that several aHUS-related mutations alter the binding of FH19–20 to proteins where lysines have reacted with malondialdehyde (MDA). Although FH19–20 did not interact with MDA-modified hexylamine, lysine-containing peptides, or a proteolytically degraded protein, it bound to MDA-modified polylysine. This suggests that FH19–20 recognizes only clustered MDA adducts. Binding of MDA-modified BSA to FH19–20 was ionic by nature, depended on positive residues of FH19–20, and competed with the polyanions heparin and DNA. This could not be explained with the mainly neutral adducts known to form in MDA modification. When positive charges of lysines were eliminated by acetic anhydride instead of MDA, the acetylated BSA started to bind FH19–20. Together, these results indicate that negative charges on the modified proteins dominate the interaction with FH19–20. This is beneficial for the physiological function of FH because by binding to the negative charges of the modified target, FH could prevent excess complement activation initiated by naturally occurring antibodies recognizing MDA epitopes with multiple different structures. We propose that oxidative stress leading to formation of MDA adducts is a common feature for triggers of aHUS and that failure of FH in protecting MDA-modified surfaces from complement activation is involved in the pathogenesis of the disease. PMID:24344133

  17. Recognition of malondialdehyde-modified proteins by the C terminus of complement factor H is mediated via the polyanion binding site and impaired by mutations found in atypical hemolytic uremic syndrome.

    PubMed

    Hyvärinen, Satu; Uchida, Koji; Varjosalo, Markku; Jokela, Reija; Jokiranta, T Sakari

    2014-02-14

    Atypical hemolytic uremic syndrome (aHUS) is a severe thrombotic microangiopathy characterized by uncontrolled complement activation against endothelial and blood cells. Mutations in the C-terminal target recognition domains 19-20 of complement regulator factor H (FH) are strongly associated with aHUS, but the mechanisms triggering disease onset have remained unresolved. Here we report that several aHUS-related mutations alter the binding of FH19-20 to proteins where lysines have reacted with malondialdehyde (MDA). Although FH19-20 did not interact with MDA-modified hexylamine, lysine-containing peptides, or a proteolytically degraded protein, it bound to MDA-modified polylysine. This suggests that FH19-20 recognizes only clustered MDA adducts. Binding of MDA-modified BSA to FH19-20 was ionic by nature, depended on positive residues of FH19-20, and competed with the polyanions heparin and DNA. This could not be explained with the mainly neutral adducts known to form in MDA modification. When positive charges of lysines were eliminated by acetic anhydride instead of MDA, the acetylated BSA started to bind FH19-20. Together, these results indicate that negative charges on the modified proteins dominate the interaction with FH19-20. This is beneficial for the physiological function of FH because by binding to the negative charges of the modified target, FH could prevent excess complement activation initiated by naturally occurring antibodies recognizing MDA epitopes with multiple different structures. We propose that oxidative stress leading to formation of MDA adducts is a common feature for triggers of aHUS and that failure of FH in protecting MDA-modified surfaces from complement activation is involved in the pathogenesis of the disease.

  18. Hemolytic and urease activities in vibrios isolated from fresh and frozen oysters.

    PubMed

    Costa, Renata Albuquerque; Araújo, Rayza Lima; Vieira, Regine Helena Silva dos Fernandes

    2013-01-01

    The present study aimed to survey the Vibrio microbiota of oysters (Crassostrea rhizophorae) obtained from restaurants in Fortaleza, State of Ceará, Brazil, and to identify virulence factors. The isolated vibrios were submitted to biochemical identification and were tested for hemolytic and urease activities. The isolated strains belonged to 13 species, with predominance of Vibrio mimicus. Of the strain isolates only from fresh samples, 20.5% and 2.8% showed hemolytic and urease activities, respectively. The findings support the little-publicized claim that Vibrio species other than V. parahaemolyticus and V. vulnificus can represent a health risk to public health.

  19. Contribution of hly homologs to the hemolytic activity of Prevotella intermedia.

    PubMed

    Suzuki, Naoko; Fukamachi, Haruka; Arimoto, Takafumi; Yamamoto, Matsuo; Igarashi, Takeshi

    2012-06-01

    Prevotella intermedia is a periodontal pathogen that requires iron for its growth. Although this organism has hemolytic activity, the precise nature of its hemolytic substances and their associated hemolytic actions are yet to be fully determined. In the present study, we identified and characterized several putative hly genes in P. intermedia ATCC25611 which appear to encode hemolysins. Six hly genes (hlyA, B, C, D, E, and hlyI) of P. intermedia were identified by comparing their nucleotide sequences to those of known hly genes of Bacteroides fragilis NCTC9343. The hlyA-E, and hlyI genes were overexpressed individually in the non-hemolytic Escherichia coli strain JW5181 and examined its contribution to the hemolytic activity on sheep blood agar plates. E. coli cells expressing the hlyA and hlyI genes exhibited hemolytic activity under anaerobic conditions. On the other hand, only E. coli cells stably expressing the hlyA gene were able to lyse the red blood cells when cultured under aerobic conditions. In addition, expression of the hlyA and hlyI genes was significantly upregulated in the presence of red blood cells. Furthermore, we found that the growth of P. intermedia was similar in an iron-limited medium supplemented with either red blood cells or heme. Taken together, our results indicate that the hlyA and hlyI genes of P. intermedia encode putative hemolysins that appear to be involved in the lysis of red blood cells, and suggest that these hemolysins might play important roles in the iron-dependent growth of this organism.

  20. Complement activation in very early Alzheimer disease.

    PubMed

    Zanjani, H; Finch, C E; Kemper, C; Atkinson, J; McKeel, D; Morris, J C; Price, J L

    2005-01-01

    The activation of the classical complement (C)-system in early-stage Alzheimer disease (AD) and nondemented aging was examined with immunohistochemistry in subjects assessed by the Clinical Dementia Rating (CDR). Activation (staining for C3 and C4 fragments) was found in all brains with amyloid deposits, including all nondemented (CDR 0) cases, with either small numbers of diffuse plaques or with sufficient plaques and tangles to indicate preclinical AD. Staining for C3 and C4 increased in parallel with plaque density in very mild to severe clinical AD. A subset of very mild AD (CDR 0.5) cases also showed C1q (on plaques) and C5b-9 (on neuritic plaques and tangles), whereas these C-fragments were consistently found in severe AD (CDR 3). Mirror section (split-face) analysis showed that C1q, C3, and apoJ (clusterin) occurred on the same plaques. However, C-system regulators CD59, CR1, DAF, and MCP were not detected on plaques or tangles at any stage, indicating that C-activation related to AD is incompletely controlled.

  1. Comparison of hemolytic activity of the intermediate subunit of Entamoeba histolytica and Entamoeba dispar lectins

    PubMed Central

    Makiuchi, Takashi; Cheng, Xunjia; Tachibana, Hiroshi

    2017-01-01

    Galactose and N-acetyl-D-galactosamine-inhibitable lectin of Entamoeba histolytica has roles in pathogenicity and induction of protective immunity in rodent models of amoebiasis. Recently, the intermediate subunit of the lectin, Igl1, of E. histolytica has been shown to have hemolytic activity. However, the corresponding lectin is also expressed in a non-virulent species, Entamoeba dispar, and another subunit, Igl2, is expressed in the protozoa. Therefore, in this study, we compared the activities of Igl1 and Igl2 subunits from E. histolytica and E. dispar using various regions of recombinant Igl proteins expressed in Escherichia coli. The recombinant E. dispar Igl proteins had comparable hemolytic activities with those of E. histolytica Igl proteins. Furthermore, Igl1 gene-silenced E. histolytica trophozoites showed less hemolytic activity compared with vector-transfected trophozoites, indicating that the expression level of Igl1 protein influences the activity. These results suggest that the lower hemolytic activity in E. dispar compared with E. histolytica reflects the lower expression level of Igl1 in the E. dispar parasite. PMID:28750000

  2. [Study of functional activity of components and factors of the human complement system].

    PubMed

    Kozlov, L V

    2002-01-01

    Development suitable for clinical researches of hemolytic methods of determination of functional activity of the first components of a complement has allowed to show diagnostic value of testing activity of complement components in comparison with their contents as antigens. It has predetermined necessity for building modern ELISA tests-systems for quantitative determination of functional activity of complement components. Such methods built for the first time allow to determine activity of components C1q, C2, C3, C4 (and a ratio of isotypes C4A and C4B), C1-inhibitor, factors B and D. Addition of these tests-systems ELISA systems for quantitative determination of components, and in case of C1-inhibitor of presence IgG, IgA and IgM autoantibodies against C1-inhibitor frames opportunities of an evaluation complement status of the patient, hereditary predisposition to such diseases as a stomach ulcer, the glaucoma, a clamidiosis, bacteroidosis, allows to carry out differential diagnostics of angioedema. Inhibition of covalent linkage C4b or C3b various endogenic and exogenous effectors during formation C3- and C5-convertases allows to understand processes of a regulation of a homeostasis, and also the mechanism of action of drugs.

  3. Non-specific adsorption of complement proteins affects complement activation pathways of gold nanomaterials.

    PubMed

    Quach, Quang Huy; Kah, James Chen Yong

    2017-04-01

    The complement system is a key humoral component of innate immunity, serving as the first line of defense against intruders, including foreign synthetic nanomaterials. Although gold nanomaterials (AuNMs) are widely used in nanomedicine, their immunological response is not well understood. Using AuNMs of three shapes commonly used in biomedical applications: spherical gold nanoparticles, gold nanostars and gold nanorods, we demonstrated that AuNMs activated whole complement system, leading to the formation of SC5b-9 complex. All three complement pathways were simultaneously activated by all the AuNMs. Recognition molecules of the complement system interacted with all AuNMs in vitro, except for l-ficolin, but the correlation between these interactions and corresponding complement pathway activation was only observed in the classical and alternative pathways. We also observed the mediating role of complement activation in cellular uptake of all AuNMs by human U937 promonocytic cells, which expresses complement receptors. Taken together, our results highlighted the potential immunological challenges for clinical applications of AuNMs that were often overlooked.

  4. Can Cell Bound Complement Activation Products Predict Inherited Complement Deficiency in Systemic Lupus Erythematosus?

    PubMed Central

    Waters, Barry

    2016-01-01

    Activation of the classical pathway complement system has long been implicated in stimulating immune complex mediated tissue destruction in systemic lupus erythematosus (SLE). C3 and C4 complement levels are utilized as part of SLE diagnosis and monitoring criteria. Recently, cell bound complement activation products (CBCAPs) have shown increased sensitivity in diagnosing and monitoring lupus activity, compared to traditional markers. CBCAPs are increasingly utilized in rheumatology practice as additional serological markers in evaluating SLE patients. We report a case of a patient diagnosed with SLE that had chronically low C3 and C4, along with negative CBCAPs. We surmise that the patient has an inherited complement deficiency as the etiology of her SLE and that CBCAPs could be used to predict such deficiency. PMID:28074166

  5. Vitronectin-binding staphylococci enhance surface-associated complement activation.

    PubMed Central

    Lundberg, F; Lea, T; Ljungh, A

    1997-01-01

    Coagulase-negative staphylococci are well recognized in medical device-associated infections. Complement activation is known to occur at the biomaterial surface, resulting in unspecific inflammation around the biomaterial. The human serum protein vitronectin (Vn), a potent inhibitor of complement activation by formation of an inactive terminal complement complex, adsorbs to biomaterial surfaces in contact with blood. In this report, we discuss the possibility that surface-immobilized Vn inhibits complement activation and the effect of Vn-binding staphylococci on complement activation on surfaces precoated with Vn. The extent of complement activation was measured with a rabbit anti-human C3c antibody and a mouse anti-human C9 antibody, raised against the neoepitope of C9. Our data show that Vn immobilized on a biomaterial surface retains its ability to inhibit complement activation. The additive complement activation-inhibitory effect of Vn on a heparinized surface is very small. In the presence of Vn-binding strain, Staphylococcus hemolyticus SM131, complement activation on a surface precoated with Vn occurred as it did in the absence of Vn precoating. For S. epidermidis 3380, which does not express binding of Vn, complement activation on a Vn-precoated surface was significantly decreased. The results could be repeated on heparinized surfaces. These data suggest that Vn adsorbed to a biomaterial surface may serve to protect against surface-associated complement activation. Furthermore, Vn-binding staphylococcal cells may enhance surface-associated complement activation by blocking the inhibitory effect of preadsorbed Vn. PMID:9038294

  6. Activation of the alternative complement pathway in canine normal serum by Paracoccidioides brasiliensis

    PubMed Central

    Bianchini, A.A.C.; Petroni, T.F.; Fedatto, P.F.; Bianchini, R.R.; Venancio, E.J.; Itano, E.N.; Ono, M.A.

    2009-01-01

    The dimorphic fungus Paracoccidioides brasiliensis is the etiological agent of paracoccidioidomycosis, a human granulomatous disease. Recently the first case of natural disease in dogs was reported. The complement system is an important effector component of humoral immunity against infectious agents. Therefore, the aim of this study was to evaluate the activation of the dog alternative complement pathway by P. brasiliensis. Initially, the ability of erythrocytes of guinea pig, rabbit, sheep, chicken and swine to activate the dog alternative pathway was evaluated. The guinea pig erythrocytes showed the greatest capacity to activate dog alternative pathway. The alternative (AH50) hemolytic activity was evaluated in 27 serum samples from healthy dogs and the mean values were 87.2 AH50/ml. No significant differences were observed in relation to sex and age. The alternative pathway activation by P. brasiliensis was higher in serum samples from adult dogs when compared to puppies and aged dogs (p ≤ 0.05). This is the first report of dog alternative complement pathway activation by P. brasiliensis and suggests that it may play a protective role in canine paracoccidioidomycosis. PMID:24031350

  7. STUDIES ON THE ACTIVATION OF A PROESTERASE ASSOCIATED WITH PARTIALLY PURIFIED FIRST COMPONENT OF HUMAN COMPLEMENT

    PubMed Central

    Lepow, Irwin H.; Ratnoff, Oscar D.; Levy, Lawrence R.

    1958-01-01

    It has been found that under a wide range of physico-chemical conditions a positive correlation exists between the rate of disappearance of hemolytically active, partially purified first component of human complement and the rate of activation of an esterase hydrolyzing N-acetyl-L-tyrosine ethyl ester. Both reactions follow the kinetic equation for second order autocatalysis, with an apparent energy of activation of 31,000 calories per mol. They occur optimally at pH 7.3–7.7 and are inhibited by ionic strengths greater than 0.15, by 5 x 105 M ethylenediaminetetraacetic acid, and by a heat-labile serum inhibitor which appears unrelated to any component of complement. The activation of first component to esterase resembles closely the activation of trypsinogen to trypsin. Partially purified first component, containing plasminogen, may also be activated to esterase by addition of streptokinase. The significance of these data with respect to the postulated existence of first component as a proesterase and its possible role in complement-"fixation" is discussed. PMID:13513912

  8. C4, BF, C3 allele distribution and complement activity in healthy aged people and centenarians.

    PubMed

    Bellavia, D; Fradà, G; Di Franco, P; Feo, S; Franceschi, C; Sansoni, P; Brai, M

    1999-04-01

    The aim of this study was to examine the complement system and the distribution of some human leukocyte antigen (HLA) class III alleles (C4, BF) in healthy aged people (77 centenarians and 89 elderly subjects). We have also studied the alleles of C3, a complement component genetically unrelated to HLA, the immunochemical levels of C4 and C3 and serum functional hemolytic activity for classical (CH50) and alternative (AP50) complement pathway. The levels of C3 and C4 and the CH50 and AP50 were found to be within the normal range. The frequencies of C3, BF, and C4A alleles were similar in the cohorts that have been studied. For C4B null allele (C4BQ0) a trend toward an increase in the older cohort was observed, although the differences were not significant after statistical correction. Our data suggest that the complement system is well preserved in centenarians and elderly subjects and class III HLA antigens are equally distributed in aged cohorts and in young healthy individuals.

  9. Investigating Biofilm Production, Coagulase and Hemolytic Activity in Candida Species Isolated From Denture Stomatitis Patients

    PubMed Central

    Yigit, Nimet; Aktas, Esin; Dagistan, Saadettin; Ayyildiz, Ahmet

    2011-01-01

    Objective: Oral candidiasis, in the form of Candida-associated denture stomatitis, represents a common disease in a large percentage of denture wearers, and Candida albicans remains the most commonly isolated species. In this study, we aimed to evaluate biofilm production, coagulase and hemolytic activity of Candida species isolated from denture stomatitis patients. Materials and Methods: This study included 70 patients (31 female, 39 male). Forty-eight of the patients were found to have a positive culture. A total of 48 Candida isolates representing five species, C. albicans (n=17), C. glabrata (n=10), C. krusei (n=9), C. kefyr (n=7) and C. parapsilosis (n=5), were tested. Their coagulase activities were evaluated by a classical tube coagulase test with rabbit plasma. A blood plate assay on 3% enriched sheep blood Sabouraud-dextrose agar (SDA) was used to determine their in vitro hemolytic activities. Biofilm production was determined by a visual tube method. Results: Twenty-one Candida isolates exhibited coagulase activity, and the coagulase activities of the C. albicans (64.7%) isolates were higher than other species. C. albicans, C. glabrata, C. kefyr and C. krusei species demonstrated beta hemolysis. C. parapsilosis strains failed to demonstrate any hemolytic activities. Fifteen (88.0%) of the C. albicans strains were biofilm positive. Six (35.2%) of these strains were strongly positive, 8 (47.0%) C. albicans strains were moderately positive and 1 (5.8%) C. albicans strain was weakly positive. Sixteen (51.6%) of the non-albicans Candida strains were biofilm positive while 15 (48.3%) did not produce biofilms. Conclusion: The results of this present study indicate coagulase, hemolytic activity and biofilm production by Candida spp. isolated from patients with denture stomatitis. Investigations of these virulence factors might be helpful in gaining information about the possible virulence of oral Candida species related to denture stomatitis. PMID:25610156

  10. Protein ultrastructure and the nanoscience of complement activation.

    PubMed

    Vorup-Jensen, Thomas; Boesen, Thomas

    2011-09-16

    The complement system constitutes an important barrier to infection of the human body. Over more than four decades structural properties of the proteins of the complement system have been investigated with X-ray crystallography, electron microscopy, small-angle scattering, and atomic force microscopy. Here, we review the accumulated evidence that the nm-scaled dimensions and conformational changes of these proteins support functions of the complement system with regard to tissue distribution, molecular crowding effects, avidity binding, and conformational regulation of complement activation. In the targeting of complement activation to the surfaces of nanoparticulate material, such as engineered nanoparticles or fragments of the microbial cell wall, these processes play intimately together. This way the complement system is an excellent example where nanoscience may serve to unravel the molecular biology of the immune response.

  11. Trichomonas gallinae: a possible contact-dependent mechanism in the hemolytic activity.

    PubMed

    De Carli, Geraldo Attilio; Tasca, Tiana

    2002-07-02

    The in vitro hemolytic activity of Trichomonas gallinae was investigated. The parasite was tested against human erythrocytes of groups A, B, AB, and O, and against erythrocytes of six adult animals of different species (rabbit, rat, chicken, horse, bovine, and sheep). Results showed that T. gallinae lysed all human erythrocytes groups, as well as rabbit, rat, chicken, horse, bovine and sheep erythrocytes. No hemolysin released by the parasites could be identified. Hemolysis did not occur with trichomonad culture supernatants, with sonicated extracts of T. gallinae, or with killed organisms. The scanning electron microscopy (SEM) showed that the erythrocytes adhered to the parasite surface and were phagocytosed. These observations suggest that the contact between T. gallinae and erythrocytes may be an important mechanism in the injury caused to the erythrocytes. The hemolytic activity of T. gallinae may be an efficient means of obtaining nutrients for the parasite and allow the investigation of the mechanism used by T. gallinae to damage cellular membranes.

  12. Systemic complement activation in age-related macular degeneration.

    PubMed

    Scholl, Hendrik P N; Charbel Issa, Peter; Walier, Maja; Janzer, Stefanie; Pollok-Kopp, Beatrix; Börncke, Florian; Fritsche, Lars G; Chong, Ngaihang V; Fimmers, Rolf; Wienker, Thomas; Holz, Frank G; Weber, Bernhard H F; Oppermann, Martin

    2008-07-02

    Dysregulation of the alternative pathway (AP) of complement cascade has been implicated in the pathogenesis of age-related macular degeneration (AMD), the leading cause of blindness in the elderly. To further test the hypothesis that defective control of complement activation underlies AMD, parameters of complement activation in blood plasma were determined together with disease-associated genetic markers in AMD patients. Plasma concentrations of activation products C3d, Ba, C3a, C5a, SC5b-9, substrate proteins C3, C4, factor B and regulators factor H and factor D were quantified in patients (n = 112) and controls (n = 67). Subjects were analyzed for single nucleotide polymorphisms in factor H (CFH), factor B-C2 (BF-C2) and complement C3 (C3) genes which were previously found to be associated with AMD. All activation products, especially markers of chronic complement activation Ba and C3d (p<0.001), were significantly elevated in AMD patients compared to controls. Similar alterations were observed in factor D, but not in C3, C4 or factor H. Logistic regression analysis revealed better discriminative accuracy of a model that is based only on complement activation markers Ba, C3d and factor D compared to a model based on genetic markers of the complement system within our study population. In both the controls' and AMD patients' group, the protein markers of complement activation were correlated with CFH haplotypes.This study is the first to show systemic complement activation in AMD patients. This suggests that AMD is a systemic disease with local disease manifestation at the ageing macula. Furthermore, the data provide evidence for an association of systemic activation of the alternative complement pathway with genetic variants of CFH that were previously linked to AMD susceptibility.

  13. Soluble complement receptor 1 inhibits both complement and granulocyte activation during ex vivo hemodialysis.

    PubMed

    Himmelfarb, J; McMonagle, E; Holbrook, D; Toth, C

    1995-10-01

    Hemodialysis with cellulosic membranes results in both complement and granulocyte activation. We investigated the effects of soluble complement receptor 1 (sCR1), a potent complement inhibitor, on both complement and granulocyte activation in an ex vivo model of dialysis. Measurements were made of complement activation (radioimmunoassay for C3a desArg) as well as granulocyte activation (flow cytometric measurements of reactive oxygen species production, granulocyte CD11b/CD18 (MAC-1) expression and CD62L (L-selectin) expression). sCR1 completely abolished the generation of plasma C3a desArg during ex vivo hemodialysis. Without sCR1, C3a desArg levels rose from 968 +/- 373 ng/ml to 4961 +/- 40 ng/ml by the end of the ex vivo procedure (p < 0.001). sCR1 also completely inhibited MAC-1 upregulation and L-selectin shedding from granulocytes during ex vivo hemodialysis. With sCR1 there was still a statistically significant increase in granulocyte reactive oxygen species production (from 2.42 +/- 0.1 fluorescence channels to 6.47 +/- 0.7 fluorescence channels, p < 0.01) but a 50% inhibition when compared with experiments without sCR1 (3.15 +/- 0.5 to 11.2 +/- 1.9, p < 0.01). We conclude that sCR1 completely abolishes complement activation and changes in granulocyte cell adhesion molecules during ex vivo hemodialysis with cellulosic membranes. sCR1 partially inhibits granulocyte reactive oxygen species formation.

  14. Tritrichomonas foetus: a scanning electron microscopy study of erythrocyte adhesion associated with hemolytic activity.

    PubMed

    De Carli, Geraldo Attilio; Tasca, Tiana; Pires Borges, Fernanda

    2004-01-01

    The in vitro hemolytic activity of Tritrichomonas foetus was investigated. The parasite was tested against human erythrocytes of groups A, B, AB, and O, and against erythrocytes of nine adult animals of different species (the rabbit, rat, chicken, cat, dog, swine, horse, bovine, and sheep). The results showed that T. foetus strains (ATCC KV1, K, PAL, 5022, RJ, 90) did not present any hemolytic activity against any human erythrocyte group nor against rabbit, rat, chicken, cat, dog and swine erythrocytes. T. foetus strains, however, lysed horse, bovine, and sheep erythrocytes. No hemolysin released by the parasites could be identified. Hemolysis did not occur with trichomonad culture supernatants, with sonicated extracts of T. foetus, nor with killed organisms. Scanning electron microscopy (SEM) showed that human erythrocytes did not adhere to the trophozoites, in contrast horse erythrocytes adhered to the surface of the parasites and were phagocytosed for up to 90 min. The parasites are able to exert their cytopathic effects through: (a) physical contact established between the two cell surfaces, (b) toxins released from parasites into the interaction media, or (c) the association of both mechanisms. Further studies are necessary to clarify the importance of the hemolytic activity in the biology of T. foetus.

  15. Comparison of the hemolytic activity between C. albicans and non-albicans Candida species.

    PubMed

    Rossoni, Rodnei Dennis; Barbosa, Júnia Oliveira; Vilela, Simone Furgeri Godinho; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2013-01-01

    The ability to produce enzymes, such as hemolysins, is an important virulence factor for the genus Candida.The objective of this study was to compare the hemolytic activity between C. albicansand non-albicans Candida species. Fifty strains of Candida species, isolated from the oral cavity of patients infected with HIV were studied. The isolates included the following species: C. albicans, C. dubliniensis, C. glabrata, C. tropicalis, C. krusei, C. parapsilosis, C. dubliniensis, C. norvegensis, C. lusitaniae, and C. guilliermondii. Hemolysin production was evaluated on Sabouraud dextrose agar containing chloramphenicol, blood, and glucose. A loop-full of pure Candidaculture was spot-inoculated onto plates and incubated at 37 ºC for 24 h in a 5% CO2 atmosphere. Hemolytic activity was defined as the formation of a translucent halo around the colonies. All C. albicansstrains that were studied produced hemolysins. Among the non-albicans Candidaspecies, 86% exhibited hemolytic activity. Only C. guilliermondiiand some C. parapsilosis isolates were negative for this enzyme. In conclusion, most non-albicans Candidaspecies had a similar ability to produce hemolysins when compared to C. albicans.

  16. Activation of vertebrate complement by Helix pomatia haemolymph.

    PubMed

    Koch, C; Nielsen, H E

    1984-01-01

    Haemolymph plasma from the pulmonate snail Helix pomatia contains a constituent, not yet identified, which causes activation of vertebrate complement via the alternative complement pathway in fluid phase. The activation of vertebrate complement by snail plasma is closely analogous to the activation caused by cobra venom factor (CVF), the snake's C3b, with one notable exception; the snail factor requires vertebrate C3 for the formation of C3 convertase which cobra venom factor does not. Our results do not allow any definite conclusion on the exact mechanism but we favour the idea that the haemolymph contains a complement-like protein which functions as an opsonin in the snail, and which can interact with vertebrate alternative complement pathway components.

  17. Allelopathic potentials of alfalfa (Medicago sativa) saponins: Their relation to antifungal and hemolytic activities.

    PubMed

    Oleszek, W

    1993-06-01

    A wheat seedling bioassay was used to indicate the relationship between the chemical structure of alfalfa saponins and their allelopathic activity. None of the tested saponins significantly influenced wheat germination. Seedling growth bioassays indicated significant differences among the activities of individual glycosides. The most active were medicagenic acid, its glycosides substituted at the C-3 position with glucose, and hederagenin monoglycoside. Medicagenic acid glycosides, substituted at the C-3 position with glucuronic acid, and zahnic acid tridesmoside were less active. No significant correlation was found among the allelopathic, hemolytic, and antifungal activities of the individual glycosides.

  18. Complement activation promotes muscle inflammation during modified muscle use

    NASA Technical Reports Server (NTRS)

    Frenette, J.; Cai, B.; Tidball, J. G.

    2000-01-01

    Modified muscle use can result in muscle inflammation that is triggered by unidentified events. In the present investigation, we tested whether the activation of the complement system is a component of muscle inflammation that results from changes in muscle loading. Modified rat hindlimb muscle loading was achieved by removing weight-bearing from the hindlimbs for 10 days followed by reloading through normal ambulation. Experimental animals were injected with the recombinant, soluble complement receptor sCR1 to inhibit complement activation. Assays for complement C4 or factor B in sera showed that sCR1 produced large reductions in the capacity for activation of the complement system through both the classical and alternative pathways. Analysis of complement C4 concentration in serum in untreated animals showed that the classical pathway was activated during the first 2 hours of reloading. Analysis of factor B concentration in untreated animals showed activation of the alternative pathway at 6 hours of reloading. Administration of sCR1 significantly attenuated the invasion of neutrophils (-49%) and ED1(+) macrophages (-52%) that occurred in nontreated animals after 6 hours of reloading. The presence of sCR1 also reduced significantly the degree of edema by 22% as compared to untreated animals. Together, these data show that increased muscle loading activated the complement system which then briefly contributes to the early recruitment of inflammatory cells during modified muscle loading.

  19. Complement activation promotes muscle inflammation during modified muscle use

    NASA Technical Reports Server (NTRS)

    Frenette, J.; Cai, B.; Tidball, J. G.

    2000-01-01

    Modified muscle use can result in muscle inflammation that is triggered by unidentified events. In the present investigation, we tested whether the activation of the complement system is a component of muscle inflammation that results from changes in muscle loading. Modified rat hindlimb muscle loading was achieved by removing weight-bearing from the hindlimbs for 10 days followed by reloading through normal ambulation. Experimental animals were injected with the recombinant, soluble complement receptor sCR1 to inhibit complement activation. Assays for complement C4 or factor B in sera showed that sCR1 produced large reductions in the capacity for activation of the complement system through both the classical and alternative pathways. Analysis of complement C4 concentration in serum in untreated animals showed that the classical pathway was activated during the first 2 hours of reloading. Analysis of factor B concentration in untreated animals showed activation of the alternative pathway at 6 hours of reloading. Administration of sCR1 significantly attenuated the invasion of neutrophils (-49%) and ED1(+) macrophages (-52%) that occurred in nontreated animals after 6 hours of reloading. The presence of sCR1 also reduced significantly the degree of edema by 22% as compared to untreated animals. Together, these data show that increased muscle loading activated the complement system which then briefly contributes to the early recruitment of inflammatory cells during modified muscle loading.

  20. Complement activity and pharmacological inhibition in cardiovascular disease

    PubMed Central

    Théroux, Pierre; Martel, Catherine

    2006-01-01

    While complement is the most important component of humoral autoimmunity, and inflammation plays a key role in atherosclerosis, relatively few studies have looked at complement implications in atherosclerosis and its complications. C-reactive protein is a marker of inflammation and is also involved in atherosclerosis; it activates complement and colocalizes with activated complement proteins within the infarcting myocardium and the active atherosclerotic plaques. As new agents capable of modulating complement activity are being developed, new targets for the management of atherosclerosis are emerging that are related to autoimmunity and inflammation. The present paper reviews the putative roles of the various complement activation pathways in the development of atherosclerosis, in ST segment elevation and non-ST segment elevation acute coronary syndromes, and in coronary artery bypass graft surgery. It also provides a perspective on new therapeutic interventions being developed to modulate complement activity. These interventions include the C1 esterase inhibitor, which may be consumed in some inflammatory states resulting in the loss of one of the mechanisms inhibiting activation of the classical and lectin pathways; TP10, a recombinant protein of the soluble complement receptor type 1 (sCR1) which inhibits the C3 and C5 convertases of the common pathway by binding C3b and C4b; a truncated version of the soluble complement receptor type 1 CRI lacking the C4b binding site which selectively inhibits the alternative pathway; and pexelizumab, a monoclonal antibody selectively blocking C5 to prevent the activation of the terminal pathway that is involved in excessive inflammation and autoimmune responses. PMID:16498508

  1. Bullous pemphigoid autoantibodies directly induce blister formation without complement activation.

    PubMed

    Ujiie, Hideyuki; Sasaoka, Tetsumasa; Izumi, Kentaro; Nishie, Wataru; Shinkuma, Satoru; Natsuga, Ken; Nakamura, Hideki; Shibaki, Akihiko; Shimizu, Hiroshi

    2014-11-01

    Complement activation and subsequent recruitment of inflammatory cells at the dermal/epidermal junction are thought to be essential for blister formation in bullous pemphigoid (BP), an autoimmune blistering disease induced by autoantibodies against type XVII collagen (COL17); however, this theory does not fully explain the pathological features of BP. Recently, the involvement of complement-independent pathways has been proposed. To directly address the question of the necessity of the complement activation in blister formation, we generated C3-deficient COL17-humanized mice. First, we show that passive transfer of autoantibodies from BP patients induced blister formation in neonatal C3-deficient COL17-humanized mice without complement activation. By using newly generated human and murine mAbs against the pathogenic noncollagenous 16A domain of COL17 with high (human IgG1, murine IgG2), low (murine IgG1), or no (human IgG4) complement activation abilities, we demonstrate that the deposition of Abs, and not complements, is relevant to the induction of blister formation in neonatal and adult mice. Notably, passive transfer of BP autoantibodies reduced the amount of COL17 in lesional mice skin, as observed in cultured normal human keratinocytes treated with the same Abs. Moreover, the COL17 depletion was associated with a ubiquitin/proteasome pathway. In conclusion, the COL17 depletion induced by BP autoantibodies, and not complement activation, is essential for the blister formation under our experimental system.

  2. Role of Complement Activation in Obliterative Bronchiolitis Post Lung Transplantation

    PubMed Central

    Suzuki, Hidemi; Lasbury, Mark E.; Fan, Lin; Vittal, Ragini; Mickler, Elizabeth A.; Benson, Heather L.; Shilling, Rebecca; Wu, Qiang; Weber, Daniel J.; Wagner, Sarah R.; Lasaro, Melissa; Devore, Denise; Wang, Yi; Sandusky, George E.; Lipking, Kelsey; Pandya, Pankita; Reynolds, John; Love, Robert; Wozniak, Thomas; Gu, Hongmei; Brown, Krista M.; Wilkes, David S.

    2013-01-01

    Obliterative bronchiolitis (OB) post lung transplantation involves IL-17 regulated autoimmunity to type V collagen and alloimmunity, which could be enhanced by complement activation. However, the specific role of complement activation in lung allograft pathology, IL-17 production, and OB are unknown. The current study examines the role of complement activation in OB. Complement regulatory protein (CRP) (CD55, CD46, Crry/CD46) expression was down regulated in human and murine OB; and C3a, a marker of complement activation, was up regulated locally. IL-17 differentially suppressed Crry expression in airway epithelial cells in vitro. Neutralizing IL-17 recovered CRP expression in murine lung allografts and decreased local C3a production. Exogenous C3a enhanced IL-17 production from alloantigen or autoantigen (type V collagen) reactive lymphocytes. Systemically neutralizing C5 abrogated the development of OB, reduced acute rejection severity, lowered systemic and local levels of C3a and C5a, recovered CRP expression, and diminished systemic IL-17 and IL-6 levels. These data indicated that OB induction is in part complement dependent due to IL-17 mediated down regulation of CRPs on airway epithelium. C3a and IL-17 are part of a feed forward loop that may enhance CRP down regulation, suggesting that complement blockade could be a therapeutic strategy for OB. PMID:24043901

  3. Pathophysiology of hemolytic transfusion reactions.

    PubMed

    Davenport, Robertson D

    2005-07-01

    Hemolytic transfusion reactions (HTR) are systemic reactions provoked by immunologic red blood cell (RBC) incompatibility. Clinical and experimental observations of such reactions indicate that they proceed through phases of humoral immune reaction, activation of phagocytes, productions of cytokine mediators, and wide-ranging cellular responses. HTR have many features in common with the systemic inflammatory response syndrome (SIRS). Knowledge of the pathophysiologic mechanisms in HTR suggest that newer biological agents that target complement intermediates or proinflammatory cytokines may be effective agents in the treatment of severe HTRs.

  4. Complement Activation in Acetaminophen-Induced Liver Injury in Mice

    PubMed Central

    Singhal, Rohit; Ganey, Patricia E.

    2012-01-01

    Overdose with acetaminophen (APAP) results in acute liver failure in humans and experimental animals. Complement comprises more than 30 proteins that can participate in tissue injury and/or repair, but the role of complement activation in APAP-induced hepatotoxicity has not been evaluated. Treatment of male, C57BL6J mice with APAP (200–400 mg/kg) resulted in liver injury as evidenced by increased activity of alanine aminotransferase (ALT) in plasma and hepatocellular necrosis. Plasma concentration of the complement component C3 was significantly reduced 6 h after treatment with APAP, indicating complement activation, and C3b (detected by immunostaining) accumulated in the centrilobular areas of liver lobules. Pretreatment with cobra venom factor (CVF; 15 U/mouse) to deplete complement components abolished APAP-mediated C3b accumulation, and this was accompanied by reductions in plasma ALT activity, hepatocellular necrosis, hepatic neutrophil accumulation, and expression of inflammatory genes (interleukin-6, interleukin-10, and plasminogen activation inhibitor-1) at 24 h after APAP treatment. Loss of hepatocellular GSH was similar in APAP-treated mice pretreated with either saline or CVF, suggesting that CVF pretreatment did not affect APAP bioactivation. Mice with a genetic deficiency in C3 had reduced ALT activity 6 and 12 h after APAP administration compared with wild-type animals. These results reveal a key role for complement activation in hepatic inflammation and progression of injury during the pathogenesis of APAP-induced hepatotoxicity. PMID:22319198

  5. Atypical hemolytic uremic syndrome

    PubMed Central

    2011-01-01

    Hemolytic uremic syndrome (HUS) is defined by the triad of mechanical hemolytic anemia, thrombocytopenia and renal impairment. Atypical HUS (aHUS) defines non Shiga-toxin-HUS and even if some authors include secondary aHUS due to Streptococcus pneumoniae or other causes, aHUS designates a primary disease due to a disorder in complement alternative pathway regulation. Atypical HUS represents 5 -10% of HUS in children, but the majority of HUS in adults. The incidence of complement-aHUS is not known precisely. However, more than 1000 aHUS patients investigated for complement abnormalities have been reported. Onset is from the neonatal period to the adult age. Most patients present with hemolytic anemia, thrombocytopenia and renal failure and 20% have extra renal manifestations. Two to 10% die and one third progress to end-stage renal failure at first episode. Half of patients have relapses. Mutations in the genes encoding complement regulatory proteins factor H, membrane cofactor protein (MCP), factor I or thrombomodulin have been demonstrated in 20-30%, 5-15%, 4-10% and 3-5% of patients respectively, and mutations in the genes of C3 convertase proteins, C3 and factor B, in 2-10% and 1-4%. In addition, 6-10% of patients have anti-factor H antibodies. Diagnosis of aHUS relies on 1) No associated disease 2) No criteria for Shigatoxin-HUS (stool culture and PCR for Shiga-toxins; serology for anti-lipopolysaccharides antibodies) 3) No criteria for thrombotic thrombocytopenic purpura (serum ADAMTS 13 activity > 10%). Investigation of the complement system is required (C3, C4, factor H and factor I plasma concentration, MCP expression on leukocytes and anti-factor H antibodies; genetic screening to identify risk factors). The disease is familial in approximately 20% of pedigrees, with an autosomal recessive or dominant mode of transmission. As penetrance of the disease is 50%, genetic counseling is difficult. Plasmatherapy has been first line treatment until presently

  6. Complement activation and interleukin response in major abdominal surgery.

    PubMed

    Kvarnström, A L; Sarbinowski, R T; Bengtson, J-P; Jacobsson, L M; Bengtsson, A L

    2012-05-01

    The objective of this study was to evaluate whether major abdominal surgery leads to complement activation and interleukin response and whether the kind of anaesthesia influence complement activation and the release of inflammatory interleukins. The study design was prospective and randomised. Fifty patients undergoing open major colorectal surgery due to cancer disease or inflammatory bowel disease were studied. Twenty-five patients were given total intravenous anaesthesia (TIVA) with propofol and remifentanil, and 25 patients were given inhalational anaesthesia with sevoflurane and fentanyl. To determine complement activation (C3a and SC5b-9) and the release of pro- and anti-inflammatory interleukins (tumour necrosis factor-a (TNF-a)), interleukin-1b (IL-1b), IL-6, IL-8, IL-4 and IL-10), blood samples were drawn preoperatively, 60 minutes after start of surgery, 30 minutes after end of surgery and 24 hours postoperatively. Complement was activated and pro-inflammatory interleukins (IL-6 and IL-8) and anti-inflammatory interleukins (IL-10) were released during major colorectal surgery. There was no significant difference between TIVA and inhalational anaesthesia regarding complement activation and cytokine release. Major colorectal surgery leads to activation of the complement cascade and the release of both pro-inflammatory and anti-inflammatory cytokines. There are no significant differences between total intravenous anaesthesia (TIVA) with propofol and remifentanil and inhalational anaesthesia with sevoflurane and fentanyl regarding complement activation and the release of pro- and anti-inflammatory interleukins. © 2012 The Authors. Scandinavian Journal of Immunology © 2012 Blackwell Publishing Ltd. Scandinavian Journal of Immunology.

  7. Complement activation by antibodies to Sm in systemic lupus erythematosus.

    PubMed

    Sabharwal, U K; Fong, S; Hoch, S; Cook, R D; Vaughan, J H; Curd, J G

    1983-02-01

    An enzyme linked immunosorbent assay was developed to quantitate antibodies to Sm (anti-Sm) and to measure complement activation by anti-Sm in vitro. Anti-Sm in plasma of patients with systemic lupus erythematosus (SLE) were bound to purified Sm bound to polyvinyl chloride microtitre plates and assayed for bound IgG or IgM using enzyme linked anti-gamma or anti-mu. The activation of C4 by anti-Sm was measured by adding diluted normal human serum (complement) to the wells and quantitating the amount of C4 bound to the well surface using (Fab')2 goat anti-C4 followed by enzyme linked rabbit anti-goat IgG. The plasmas of 12 of 36 patients with SLE contained anti-Sm and all 12 activated complement (complement activating anti-Sm). Twenty-eight plasmas containing anti-Sm from 12 patients with SLE were studied. Ten of the 12 patients had anti-Sm of the IgG class whereas two had anti-Sm of both IgG and IgM classes. The amount of C4 activating anti-Sm correlated significantly with the in vivo activation of C4 measured by rocket immunoelectrophoresis for C4d and C4, suggesting that complement activation by anti-Sm is important in vivo.

  8. The Impact of Silica Nanoparticle Design on Cellular Toxicity and Hemolytic Activity

    PubMed Central

    Yu, Tian; Malugin, Alexander; Ghandehari, Hamidreza

    2011-01-01

    Understanding the toxicity of silica nanoparticles (SiO2) on the cellular level is crucial for rational design of these nanomaterials for biomedical applications. Herein, we explore the impacts of geometry, porosity and surface charge of SiO2 on cellular toxicity and hemolytic activity. Nonporous Stöber silica nanospheres (115 nm diameter), mesoporous silica nanospheres (120 nm diameter, aspect ratio 1), mesoporous silica nanorods with aspect ratio of 2, 4 and 8 (width by length 80 × 200 nm, 150 × 600 nm, 130 × 1000 nm) as well as their cationic counterparts were evaluated on macrophages, lung carcinoma cells, and human erythrocytes. It was shown that the toxicity of SiO2 is cell-type dependent and that surface charge and pore size govern cellular toxicity. Using inductively coupled plasma mass spectrometry, the cellular association of SiO2 was quantitated with the association amount increasing in the following order: mesoporous SiO2 (aspect ratio 1, 2, 4, 8) < amine-modified mesoporous SiO2 (aspect ratio 1, 2, 4, 8) < amine-modified nonporous Stöber SiO2 < nonporous Stöber SiO2. Geometry did not seem to influence the extent of SiO2 association at early or extended time points. The level of cellular association of the nanoparticles was directly linked to the extent of plasma membrane damage, suggesting a biological cause-and-effect relationship. Hemolysis assay showed that the hemolytic activity was porosity- and geometry- dependent for bare SiO2 and surface charge-dependent for amine-modified SiO2. A good correlation between hemolytic activity and cellular association was found on a similar dosage basis. These results can provide useful guidelines for the rational design of SiO2 in nanomedicine. PMID:21630682

  9. Vibrio parahaemolyticus CalR down regulates the thermostable direct hemolysin (TDH) gene transcription and thereby inhibits hemolytic activity.

    PubMed

    Zhang, Yiquan; Zhang, Ying; Gao, He; Zhang, Lingyu; Yin, Zhe; Huang, Xinxiang; Zhou, Dongsheng; Yang, Huiying; Yang, Wenhui; Wang, Li

    2017-03-04

    TDH, encoded by tdh gene, is a major virulent determinant of V. parahaemolyticus that controls various biological activities, such as hemolytic activity, cytotoxicity, and enterotoxicity. The hemolytic activity on Wagatsuma agar ascribed to TDH is called Kanagawa phenomenon (KP). All KP positive strains contain tdh1 and tdh2 genes, but tdh2 is predominantly responsible for KP. CalR is a regulatory protein that was originally identified as a repressor of swarming motility and T3SS1 gene expression in V. parahaemolyticus. In the present study, the regulation of tdh2 by CalR was investigated using a set of experiments including qRT-PCR, primer extension, LacZ fusion, hemolytic phenotype, EMSA, and DNase I footprinting assays. The results showed that His-CalR protected a single region from 224bp to 318bp upstream of tdh2 against DNase I digestion, and a transcriptional start site located at 42bp upstream of tdh2 was detected and its transcribed activity was inhibited by CalR. Moreover, the KP test results showed that the hemolytic activity of V. parahaemolyticus is also under negative control of CalR. The data demonstrated that CalR is a repressor of the tdh2 transcription and thereby inhibits the hemolytic activity of V. parahaemolyticus.

  10. Phenolic compounds in drumstick peel for the evaluation of antibacterial, hemolytic and photocatalytic activities.

    PubMed

    Surendra, T V; Roopan, Selvaraj Mohana; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Sridharan, Makuteswaran

    2016-08-01

    Most of the wastes emitted from the food processing industries are not utilized for any further purpose. The economic value of the food waste is very less when compared to the collection or reuse or discard. To increase the economic value we have to design the food waste as useful product or applicable in most of the current field. Nothing is waste in this world with this concept we have investigated the phytochemical analysis of drumstick peel (Moringa oleifera). The result supports the presence of phenols, alkaloids, flavanoids, glycosides and tannins. Since various functional groups containing molecules are present in the extract; it has been further subjected to antibacterial and hemolytic activities. To analysis the antibacterial studies we have employed human pathogenic Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterium. The result of antibacterial activity clearly shows that it possesses significant activity on both bacterial cultures. The hemolytic activity was performed on red blood cells (RBCs). From this result we observed that drumstick peel extract has been considered as non-toxic on RBCs. Malachite green was selected to perform photocatalytic activity. The results stated that the drumstick peel extract possessed good behaviour towards photocatalytic investigation. The malachite green was degraded upto 99.7% using drumstick peel extract. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Antibacterial and hemolytic activity of a new lectin purified from the seeds of Sterculia foetida L.

    PubMed

    Braga, Alana Araújo; Rodrigues e Lacerda, Rodrigo; Medeiros, Gracy Kelly Vieira de Vasconcelos; Gonçalves, Gregório Fernandes; Pessoa, Hilzeth de Luna Freire; Cardoso, Juscélio Donizete; Gadelha, Carlos Alberto de Almeida; da Silva, Bagnólia Araújo; Santi-Gadelha, Tatiane

    2015-02-01

    The aim of this study was to isolate, characterize, and verify possible antibacterial and hemolytic activity for a lectin found in the seeds of Sterculia foetida L. Purification of the lectin from S. foetida (SFL) was realized with ion exchange chromatography DEAE-Sephacel coupled to HPLC. The purity and the molecular weight was determined by SDS-PAGE. The isolated SFL was characterized as to its glycoprotein nature, and sugar specificity, as well as resistance to pH, temperature, denaturing agents, reduction, oxidation, and chelation. A microdilution method was used to determine antibacterial activity, and hemolytic activity was observed in human erythrocytes. The SFL has a molecular weight of 17 kDa, and a carbohydrate content of 53 μg/mL, specific for arabinose and xylose, and is resistant to treatment with urea, sensitive to treatment with sodium metaperiodate and β-mercaptoethanol, and in the presence of EDTA lost its hemagglutinating activity (HA). However, in the presence of divalent cations (Ca(2 +) and Mn(2 +)) the HA was increased. The SFL remained active even after incubation at 80 °C, and, within pH values of between 5 and 11. The SFL inhibited the bacterial growth of all the tested strains and caused little hemolysis in human erythrocytes when compared to the positive control Triton X-100.

  12. Warm autoimmune hemolytic anemia.

    PubMed

    Naik, Rakhi

    2015-06-01

    Warm autoimmune hemolytic anemia (AIHA) is defined as the destruction of circulating red blood cells (RBCs) in the setting of anti-RBC autoantibodies that optimally react at 37°C. The pathophysiology of disease involves phagocytosis of autoantibody-coated RBCs in the spleen and complement-mediated hemolysis. Thus far, treatment is aimed at decreasing autoantibody production with immunosuppression or reducing phagocytosis of affected cells in the spleen. The role of complement inhibitors in warm AIHA has not been explored. This article addresses the diagnosis, etiology, and treatment of warm AIHA and highlights the role of complement in disease pathology.

  13. Structural requirements for the edema-inducing and hemolytic activities of mastoparan B isolated from the hornet (Vespa basalis) venom.

    PubMed

    Ho, C L; Lin, Y L; Chen, W C; Hwang, L L; Yu, H M; Wang, K T

    1996-09-01

    Mastoparan B (MP-B) is a cationic tetradecapeptide isolated from the black-bellied hornet (Vespa basalis) venom. It has a primary structure (LKLKSIVSWAKKVL-CONH2) distinct from other vespine mastoparans. The peptide caused a dose-dependent swelling in rat hind paw and showed a potent hemolytic activity in guinea pig red blood cells. Studies on the structure activity relationship of the peptide showed that replacing lysine at position 2 (Lys2) by asparagine (Asn) in the MP-B sequence caused about 40% decrease in its edema-inducing activity at 50 micrograms/paw and 90% decrease in hemolytic activity at 30 microM of the peptide, while the same substitution at Lys4 did not cause a significant change in either activity. Replacing either Lys11 or Lys12 by leucine (Leu) caused little or no decrease in the edema-inducing and hemolytic activities. Decreases in both activities were observed when both Lys11 and Lys12 were replaced by Leu. On the other hand, replacing tryptophan at position 9 (Trp9) by tyrosine or phenylalanine in MP-B sequence almost abolished its hemolytic activity, while the edema-inducing activity was only partially inhibited. Circular dichroism spectra of the peptides measured in 20% trifluoro-ethanol revealed that substitution of Lys and Trp did not cause a significant change in the conformation of MP-B. it appears that Lys2 is crucial for both hemolytic and edema-inducing activities of MP-B, while Trp9 is of special importance to the hemolytic activity of MP-B. Lys11 and Lys12 in MP-B probably play a lesser role in both activities.

  14. Biomedical polymers differ in their capacity to activate complement.

    PubMed

    Janatova, J; Cheung, A K; Parker, C J

    1991-01-01

    Conventionally, complement activation by biomedical polymers has been evaluated by determining the C3a concentration in the fluid phase only. According to this criterion, biomaterials such as hemodialysis membranes made from cellulosic or various synthetic polymers were classified as activators or nonactivators of complement. Since certain membranes bind large quantities of C3a from the fluid phase, classification based on fluid-phase C3a concentration has in some instances been inaccurate. As follows from the comparison of complement activation by cuprophane and polyacrylonitrile membranes, the capacity of a biomedical polymer to activate complement is not determined by the number of potential covalent binding sites on its surface. Biomaterial itself may lack hydroxyl and/or amino groups, and yet it may activate C3 in human serum very efficiently. Some of the biomaterials may also bind unactivated/unfragmented C3 whether in the absence or presence of other serum proteins. In addition, binding of factor B (a promotor of C3 activation) and binding of factor H (an inhibitor of C3 activation) to certain biomaterials have been found to be independent of complement activation and unaffected by the presence or absence of C3. Thus, it is becoming apparent that the requirements for the formation and stability of the C3 convertase on artificial surfaces differ from those on biological membranes, and that the relative magnitude of binding of factor B and factor H to the surface per se cannot be used as a reliable indicator of the capacity of the biomaterial to activate complement. Further studies are necessary to elucidate the molecular mechanisms of C3 and C5 activation on the surfaces of biomedical polymers.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Investigation into the hemolytic activity of tentacle venom from jellyfish Cyanea nozakii Kishinouye

    NASA Astrophysics Data System (ADS)

    Li, Cuiping; Yu, Huahua; Li, Rongfeng; Xing, Ronge; Liu, Song; Li, Pengcheng

    2016-03-01

    Cyanea nozakii Kishinouy e ( C. nozakii), a giant cnidarian of the class Scyphomedusae, order Semaeostomeae and family Cyaneidae, is widely distributed in the East China Sea, the Yellow Sea and the Bohai Sea, and is abundant from late summer to early autumn. Venom produced by C. nozakii during mass agglomerations can contaminate seawater resulting in death of the halobios and seriously damage commercial fisheries. Swimmers and fishermen commonly suff er painful stings from this jellyfish, resulting in local edema, tingling, breathing difficulties, depressed blood pressure and even death. Such effects arise from the complex mixture of biologically active molecules that make up jellyfish venom. In the present study, the hemolytic activity of venom from tentacles of C. nozakii and factors aff ecting its activity were assayed. The HU50 ( defined as the amount of protein required to lyse 50 % of erythrocytes) of the venom against dove and chicken erythrocytes was 34 and 59 μg/mL, respectively. Carboxylmethyl chitosan and glycerol could increase hemolytic activity at concentrations greater than 0.06% and 0.2 mol/L, respectively.

  16. Micrurus snake venoms activate human complement system and generate anaphylatoxins

    PubMed Central

    2012-01-01

    Background The genus Micrurus, coral snakes (Serpentes, Elapidae), comprises more than 120 species and subspecies distributed from the south United States to the south of South America. Micrurus snake bites can cause death by muscle paralysis and further respiratory arrest within a few hours after envenomation. Clinical observations show mainly neurotoxic symptoms, although other biological activities have also been experimentally observed, including cardiotoxicity, hemolysis, edema and myotoxicity. Results In the present study we have investigated the action of venoms from seven species of snakes from the genus Micrurus on the complement system in in vitro studies. Several of the Micrurus species could consume the classical and/or the lectin pathways, but not the alternative pathway, and C3a, C4a and C5a were generated in sera treated with the venoms as result of this complement activation. Micrurus venoms were also able to directly cleave the α chain of the component C3, but not of the C4, which was inhibited by 1,10 Phenanthroline, suggesting the presence of a C3α chain specific metalloprotease in Micrurus spp venoms. Furthermore, complement activation was in part associated with the cleavage of C1-Inhibitor by protease(s) present in the venoms, which disrupts complement activation control. Conclusion Micrurus venoms can activate the complement system, generating a significant amount of anaphylatoxins, which may assist due to their vasodilatory effects, to enhance the spreading of other venom components during the envenomation process. PMID:22248157

  17. Cationic surfactants derived from lysine: effects of their structure and charge type on antimicrobial and hemolytic activities.

    PubMed

    Colomer, A; Pinazo, A; Manresa, M A; Vinardell, M P; Mitjans, M; Infante, M R; Pérez, L

    2011-02-24

    Three different sets of cationic surfactants from lysine have been synthesized. The first group consists of three monocatenary surfactants with one lysine as the cationic polar head with one cationic charge. The second consists of three monocatenary surfactants with two amino acids as cationic polar head with two positive charges. Finally, four gemini surfactants were synthesized in which the spacer chain and the number and type of cationic charges have been regulated. The micellization process, antimicrobial activity, and hemolytic activity were evaluated. The critical micelle concentration was dependent only on the hydrophobic character of the molecules. Nevertheless, the antimicrobial and hemolytic activities were related to the structure of the compounds as well as the type of cationic charges. The most active surfactants against the bacteria were those with a cationic charge on the trimethylated amino group, whereas all of these surfactants showed low hemolytic character.

  18. Alternative complement pathway: activity levels in allogeneic pregnancy.

    PubMed

    Brai, M; Tolone, G; Magro, A; Waks, H; Brai, M

    1976-12-15

    Classical and alternative complement pathway activities have been evaluated in sera of women in progressive stages of gestation and in pregnant mice belonging to outbred or inbred matings, as compared to suitable controls. While classical C pathway was found to be unmodified, the alternative one attained in pregnancy significantly higher activity levels. Results are discussed in the light of mother-conceptus relationships.

  19. Lactobacilli Interfere with Streptococcus pyogenes Hemolytic Activity and Adherence to Host Epithelial Cells

    PubMed Central

    Saroj, Sunil D.; Maudsdotter, Lisa; Tavares, Raquel; Jonsson, Ann-Beth

    2016-01-01

    Streptococcus pyogenes [Group A streptococcus (GAS)], a frequent colonizer of the respiratory tract mucosal surface, causes a variety of human diseases, ranging from pharyngitis to the life-threatening streptococcal toxic shock-like syndrome. Lactobacilli have been demonstrated to colonize the respiratory tract. In this study, we investigated the interference of lactobacilli with the virulence phenotypes of GAS. The Lactobacillus strains L. rhamnosus Kx151A1 and L. reuteri PTA-5289, but not L. salivarius LMG9477, inhibited the hemolytic activity of S. pyogenes S165. The inhibition of hemolytic activity was attributed to a decrease in the production of streptolysin S (SLS). Conditioned medium (CM) from the growth of L. rhamnosus Kx151A1 and L. reuteri PTA-5289 was sufficient to down-regulate the expression of the sag operon, encoding SLS. The Lactobacillus strains L. rhamnosus Kx151A1, L. reuteri PTA-5289, and L. salivarius LMG9477 inhibited the initial adherence of GAS to host epithelial cells. Intriguingly, competition with a combination of Lactobacillus species reduced GAS adherence to host cells most efficiently. The data suggest that an effector molecule released from certain Lactobacillus strains attenuates the production of SLS at the transcriptional level and that combinations of Lactobacillus strains may protect the pharyngeal mucosa more efficiently from the initial colonization of GAS. The effector molecules released from Lactobacillus strains affecting the virulence phenotypes of pathogens hold potential in the development of a new generation of therapeutics. PMID:27524981

  20. Quantification of Bacillus thuringiensis Vip3Aa16 Entomopathogenic Toxin Using Its Hemolytic Activity.

    PubMed

    Boukedi, Hanen; Ben Khedher, Saoussen; Ghribi, Dhouha; Dammak, Mariam; Tounsi, Slim; Abdelkefi-Mesrati, Lobna

    2017-05-01

    Vegetative insecticidal proteins produced by some Bacillus thuringiensis strains are specifically toxic to different agricultural pests such as the polyphagous Spodoptera and several other Lepidopteran insects, but one of the major problems found in the use of these biopesticides was the lack of an easy and credible method of quantification of such secreted toxins. Heterologous expression of B. thuringiensis Vip3Aa16 toxin was performed in Escherichia coli then the protein was purified by chromatography. Using blood agar as well as blood agar overlay (zymogram assay), we reported, for the first time, the capacity of Vip3Aa16 to induce hemolysis. The hemolytic activity of this protein was shown to be relatively stable after treatment at 40 °C and at a range of pH between 6.5 and 9. Moreover, a linear relationship was shown between hemolysis levels and Vip3Aa16 concentrations. The model established in the present study could quantify Vip3A toxin as a function of hemolytic activity and the assay proposed showed to be a simple and low-cost method to readily assess Vip3A toxins in liquid cultures and facilitate the use of this kind of bioinsecticides in pest management programs.

  1. Neutrophil extracellular traps can activate alternative complement pathways.

    PubMed

    Wang, H; Wang, C; Zhao, M-H; Chen, M

    2015-09-01

    The interaction between neutrophils and activation of alternative complement pathway plays a pivotal role in the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). ANCAs activate primed neutrophils to release neutrophil extracellular traps (NETs), which have recently gathered increasing attention in the development of AAV. The relationship between NETs and alternative complement pathway has not been elucidated. The current study aimed to investigate the relationship between NETs and alternative complement pathway. Detection of components of alternative complement pathway on NETs in vitro was assessed by immunostain and confocal microscopy. Complement deposition on NETs were detected after incubation with magnesium salt ethyleneglycol tetraacetic acid (Mg-EGTA)-treated human serum. After incubation of serum with supernatants enriched in ANCA-induced NETs, levels of complement components in supernatants were measured by enzyme-linked immunosorbent assay (ELISA). Complement factor B (Bb) and properdin deposited on NETs in vitro. The deposition of C3b and C5b-9 on NETs incubated with heat-inactivated normal human serum (Hi-NHS) or EGTA-treated Hi-NHS (Mg-EGTA-Hi-NHS) were significantly less than that on NETs incubated with NHS or EGTA-treated NHS (Mg-EGTA-NHS). NETs induced by ANCA could activate the alternative complement cascade in the serum. In the presence of EGTA, C3a, C5a and SC5b-9 concentration decreased from 800·42 ± 244·81 ng/ml, 7·68 ± 1·50 ng/ml, 382·15 ± 159·75 ng/ml in the supernatants enriched in ANCA induced NETs to 479·07 ± 156·2 ng/ml, 4·86 ± 1·26 ng/ml, 212·65 ± 44·40 ng/ml in the supernatants of DNase I-degraded NETs (P < 0·001, P = 0·008, P < 0·001, respectively). NETs could activate the alternative complement pathway, and might thus participate in the pathogenesis of AAV. © 2015 British Society for Immunology.

  2. Neutrophil extracellular traps can activate alternative complement pathways

    PubMed Central

    Wang, H; Wang, C; Zhao, M-H; Chen, M

    2015-01-01

    The interaction between neutrophils and activation of alternative complement pathway plays a pivotal role in the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). ANCAs activate primed neutrophils to release neutrophil extracellular traps (NETs), which have recently gathered increasing attention in the development of AAV. The relationship between NETs and alternative complement pathway has not been elucidated. The current study aimed to investigate the relationship between NETs and alternative complement pathway. Detection of components of alternative complement pathway on NETs in vitro was assessed by immunostain and confocal microscopy. Complement deposition on NETs were detected after incubation with magnesium salt ethyleneglycol tetraacetic acid (Mg-EGTA)-treated human serum. After incubation of serum with supernatants enriched in ANCA-induced NETs, levels of complement components in supernatants were measured by enzyme-linked immunosorbent assay (ELISA). Complement factor B (Bb) and properdin deposited on NETs in vitro. The deposition of C3b and C5b-9 on NETs incubated with heat-inactivated normal human serum (Hi-NHS) or EGTA-treated Hi-NHS (Mg-EGTA-Hi-NHS) were significantly less than that on NETs incubated with NHS or EGTA-treated NHS (Mg-EGTA-NHS). NETs induced by ANCA could activate the alternative complement cascade in the serum. In the presence of EGTA, C3a, C5a and SC5b-9 concentration decreased from 800·42 ± 244·81 ng/ml, 7·68 ± 1·50 ng/ml, 382·15 ± 159·75 ng/ml in the supernatants enriched in ANCA induced NETs to 479·07 ± 156·2 ng/ml, 4·86 ± 1·26 ng/ml, 212·65 ± 44·40 ng/ml in the supernatants of DNase I-degraded NETs (P < 0·001, P = 0·008, P < 0·001, respectively). NETs could activate the alternative complement pathway, and might thus participate in the pathogenesis of AAV PMID:25963026

  3. Factor I Autoantibodies in Patients with Atypical Hemolytic Uremic Syndrome: Disease-Associated or an Epiphenomenon?

    PubMed Central

    Kavanagh, David; Pappworth, Isabel Y.; Anderson, Holly; Hayes, Christine M.; Moore, Iain; Hunze, Eva-Maria; Bennaceur, Karim; Roversi, Pietro; Lea, Susan; Strain, Lisa; Ward, Roy; Plant, Nick; Nailescu, Corina; Goodship, Timothy H. J.

    2012-01-01

    Summary Background and objectives Atypical hemolytic uremic syndrome is a disease associated with mutations in the genes encoding the complement regulators factors H and I. In addition, factor H autoantibodies have been reported in ∼10% of patients with atypical hemolytic uremic syndrome. This study searched for the presence of factor I autoantibodies in atypical hemolytic uremic syndrome. Design, setting, participants, & measurements This study screened 175 atypical hemolytic uremic syndrome patients for factor I autoantibodies using ELISA with confirmatory Western blotting. Functional studies using purified immunoglobulin from one patient were subsequently undertaken. Results Factor I autoantibodies were detected in three patients. In one patient with a high titer of autoantibody, the titer was tracked over time and was found to have no association with disease activity. This study found evidence of an immune complex of antibody and factor I in this patient, but purified IgG, isolated from current serum samples, had only a minor effect on fluid phase and cell surface complement regulation. Genetic analysis of the three patients with factor I autoantibodies revealed that they had two copies of the genes encoding factor H–related proteins 1 and 3 and therefore, did not have a deletion commonly associated with factor H autoantibodies in atypical hemolytic uremic syndrome. Two patients, however, had functionally significant mutations in complement factor H. Conclusions These findings reinforce the concept of multiple concurrent risk factors being associated with atypical hemolytic uremic syndrome but question whether autoantibodies per se predispose to atypical hemolytic uremic syndrome. PMID:22223611

  4. Complement and contact activation in term neonates after fetal acidosis

    PubMed Central

    Sonntag, J.; Wagner, M.; Strauss, E.; Obladen, M.

    1998-01-01

    AIMS—To evaluate complement and contact activation after fetal acidosis.
METHODS—Fifteen term neonates with hypoxic-ischaemic encephalopathy after umbilical arterial pH < 7.10 were compared with 15 healthy neonates with umbilical arterial pH > 7.20. Determinations of the complement function and C1-inhibitor activity were performed as kinetic tests 22-28 hours after birth. C1q, C1-inhibitor, and factor B concentrations were determined by radial immunodiffusion and those of C3a, C5a, and factor XIIa by enzyme immunoabsorbent assay.
RESULTS—Median complement function (46 vs 73 %), C1q (4.3 vs 9.1 mg/dl), and factor B (5.2 vs 7.7 mg/dl) decreased after fetal acidosis. The activated split products C3a (260 vs 185 µg/l), C5a (5.0 vs 0.6 µg/l), and factor XIIa (3.2 vs 1.3 µg/l) increased in the neonates after fetal acidosis. No differences were found in the concentration and activity of C1-inhibitor.
CONCLUSIONS—Complement and contact activation occurred in the newborns with hypoxic-ischaemic encephalopathy. Activation of these systems generates mediators which can trigger inflammation and tissue injury.

 PMID:9577283

  5. Complement activation in leprosy: a retrospective study shows elevated circulating terminal complement complex in reactional leprosy.

    PubMed

    Bahia El Idrissi, N; Hakobyan, S; Ramaglia, V; Geluk, A; Morgan, B Paul; Das, P Kumar; Baas, F

    2016-06-01

    Mycobacterium leprae infection gives rise to the immunologically and histopathologically classified spectrum of leprosy. At present, several tools for the stratification of patients are based on acquired immunity markers. However, the role of innate immunity, particularly the complement system, is largely unexplored. The present retrospective study was undertaken to explore whether the systemic levels of complement activation components and regulators can stratify leprosy patients, particularly in reference to the reactional state of the disease. Serum samples from two cohorts were analysed. The cohort from Bangladesh included multi-bacillary (MB) patients with (n = 12) or without (n = 46) reaction (R) at intake and endemic controls (n = 20). The cohort from Ethiopia included pauci-bacillary (PB) (n = 7) and MB (n = 23) patients without reaction and MB (n = 15) patients with reaction. The results showed that the activation products terminal complement complex (TCC) (P ≤ 0·01), C4d (P ≤ 0·05) and iC3b (P ≤ 0·05) were specifically elevated in Bangladeshi patients with reaction at intake compared to endemic controls. In addition, levels of the regulator clusterin (P ≤ 0·001 without R; P < 0·05 with R) were also elevated in MB patients, irrespective of a reaction. Similar analysis of the Ethiopian cohort confirmed that, irrespective of a reaction, serum TCC levels were increased significantly in patients with reactions compared to patients without reactions (P ≤ 0·05). Our findings suggests that serum TCC levels may prove to be a valuable tool in diagnosing patients at risk of developing reactions. © 2016 British Society for Immunology.

  6. Oxidative stress-mediated hemolytic activity of solvent exchange-prepared fullerene (C60) nanoparticles

    NASA Astrophysics Data System (ADS)

    Trpkovic, Andreja; Todorovic-Markovic, Biljana; Kleut, Duska; Misirkic, Maja; Janjetovic, Kristina; Vucicevic, Ljubica; Pantovic, Aleksandar; Jovanovic, Svetlana; Dramicanin, Miroslav; Markovic, Zoran; Trajkovic, Vladimir

    2010-09-01

    The present study investigated the hemolytic properties of fullerene (C60) nanoparticles prepared by solvent exchange using tetrahydrofuran (nC60THF), or by mechanochemically assisted complexation with macrocyclic oligosaccharide gamma-cyclodextrin (nC60CDX) or the copolymer ethylene vinyl acetate-ethylene vinyl versatate (nC60EVA-EVV). The spectrophotometrical analysis of hemoglobin release revealed that only nC60THF, but not nC60CDX or nC60EVA-EVV, was able to cause lysis of human erythrocytes in a dose- and time-dependent manner. Atomic force microscopy revealed that nC60THF-mediated hemolysis was preceded by erythrocyte shrinkage and increase in cell surface roughness. A flow cytometric analysis confirmed a decrease in erythrocyte size and demonstrated a significant increase in reactive oxygen species production in red blood cells exposed to nC60THF. The nC60THF-triggered hemolytic activity was efficiently reduced by the antioxidants N-acetylcysteine and butylated hydroxyanisole, as well as by serum albumin, the most abundant protein in human blood plasma. These data indicate that nC60THF can cause serum albumin-preventable hemolysis through oxidative stress-mediated damage of the erythrocyte membrane.

  7. Cytotoxicity and hemolytic activity of jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) venom.

    PubMed

    Kang, Changkeun; Munawir, Al; Cha, Mijin; Sohn, Eun-Tae; Lee, Hyunkyoung; Kim, Jong-Shu; Yoon, Won Duk; Lim, Donghyun; Kim, Euikyung

    2009-07-01

    The recent bloom of a giant jellyfish Nemopilema nomurai has caused a danger to sea bathers and fishery damages in the waters of China, Korea, and Japan. The present study investigated the cytotoxic and hemolytic activities of crude venom extract of N. nomurai using a number of in vitro assays. The jellyfish venom showed a much higher cytotoxic activity in H9C2 heart myoblast than in C2C12 skeletal myoblast (LC(50)=2 microg/mL vs. 12 microg/mL, respectively), suggesting its possible in vivo selective toxicity on cardiac tissue. This result is consistent with our previous finding that cardiovascular function is a target of the venom. In order to determine the stability of N. nomurai venom, its cytotoxicity was examined under the various temperature and pH conditions. The activity was relatively well retained at low environmental temperature (or=60 degrees C). In pH stability test, the venom has abruptly lost its activity at low pH environment (pHactivity was not significantly affected even at the highest pH environment tested (pHhemolytic activity of the venom was examined using the erythrocytes of cat, dog, human, rabbit and rat. Venom concentration-dependent hemolysis could be observed from 10 microg/mL of protein equivalents or higher with variable potencies in different species, among which dog erythrocyte was the most susceptible to the venom (EC(50)=151 microg/mL). SDS-PAGE analysis of N. nomurai venom showed the molecules of 20-40 kDa and 10-15 kDa appeared to be the major protein components of the venom.

  8. Anticariogenic and Hemolytic Activity of Selected Seed Protein Extracts In vitro conditions

    PubMed Central

    Ishnava, Kalpesh B; Shah, Pankit P.

    2014-01-01

    Objective: This study aimed to assess the anticariogenic and hemolytic activity of crude plant seed protein extracts against tooth decaying bacteria. Materials and Methods: The proteins from seeds of 12 different plants were extracted and used for antimicrobial assay against six different organisms. The extraction was carried out in 10mM of sodium phosphate buffer (pH 7.0). Protein concentrations were determined as described by Bradford method. Anticariogenic activity was studied by agar well diffusion method and Minimum Inhibitory Concentration (MIC) was evaluated by the two-fold serial broth dilution method. Hemolytic activity, treatment of proteinase K and Kinetic study in Mimusops elengi crude seed protein extract. Results: The anticariogenic assay demonstrated the activity of Mimusops elengi against Staphylococcus aureus and Streptococcus pyogenes. A minor activity of Glycine wightii against Streptococcus mutans was also found. The protein content of Mimusops elengi seed protein extract was 5.84mg/ml. The MIC values for Staphylococcus aureus and Streptococcus pyogenes against Mimusops elengi seed protein extract were 364.36μg/ml and 182.19μg/ml, respectively. Kinetic study further elucidated the mode of inhibition in the presence of the Mimusops elengi plant seed protein with respect to time. The concentration of crude extract which gave 50% hemolysis compared to Triton X-100 treatment (HC50) value was 1.58 mg/ml; which is more than five times larger than that of the MIC. Treatment with proteinase K of the Mimusops elengi seed protein resulted in absence of the inhibition zone; which clearly indicates that the activity was only due to protein. Conclusion: Our results showed the prominence of Mimusops elengi plant seed protein extract as an effective herbal medication against tooth decaying bacteria. PMID:25628685

  9. Hemolytic uremic syndrome

    PubMed Central

    Canpolat, Nur

    2015-01-01

    Hemolytic uremic syndrome (HUS) is a clinical syndrome characterized by the triad of thrombotic microangiopathy, thrombocytopenia, and acute kidney injury. Hemolytic uremic syndrome represents a heterogeneous group of disorders with variable etiologies that result in differences in presentation, management and outcome. In recent years, better understanding of the HUS, especially those due to genetic mutations in the alternative complement pathway have provided an update on the terminology, classification, and treatment of the disease. This review will provide the updated classification of the disease and the current diagnostic and therapeutic approaches on the complement-mediated HUS in addition to STEC-HUS which is the most common cause of the HUS in childhood. PMID:26265890

  10. Complement activation and effect of eculizumab in scleroderma renal crisis

    PubMed Central

    Devresse, Arnaud; Aydin, Selda; Le Quintrec, Moglie; Demoulin, Nathalie; Stordeur, Patrick; Lambert, Catherine; Gastoldi, Sara; Pirson, Yves; Jadoul, Michel; Morelle, Johann

    2016-01-01

    Abstract Background: Scleroderma renal crisis (SRC) is a life-threatening complication of systemic sclerosis characterized by abrupt onset of hypertension, thrombotic microangiopathy, and kidney injury. The mechanisms of the disease remain ill-defined, but a growing body of evidence suggests that activation of the complement system may be involved. Methods: Here, we report the case of a patient presenting with severe SRC and strong evidence of complement activation, both in serum and in the kidney, in the absence of genetic defect of the complement system. Results: Immunofluorescence studies on kidney biopsy showed significant deposits of C1q and C4d in the endothelium of renal arterioles, pointing toward activation of the classical pathway. Because of the dramatic clinical and histological severity, and the lack of response to early treatment with angiotensin-converting enzyme inhibitors, calcium channel blockers and plasma exchange, the patient was treated with the specific C5 blocker eculizumab. Contrarily to conventional treatment, eculizumab efficiently blocked C5b-9 deposition ex vivo and maintained hematological remission. Unfortunately, the patient died from heart failure a few weeks later. Postmortem examination of the heart showed diffuse patchy interstitial fibrosis, the typical lesion of systemic sclerosis-related cardiomyopathy, but normal coronary arteries and myocardial microvasculature. Conclusion: SRC may lead to complement system activation through the classical pathway. Early administration of C5 inhibitor eculizumab may have therapeutic potential in patients with life-threatening SRC refractory to conventional treatment using angiotensin-converting enzyme inhibitors. PMID:27472742

  11. Cercarial glycocalyx of Schistosoma mansoni activates human complement.

    PubMed Central

    Samuelson, J C; Caulfield, J P

    1986-01-01

    Human complement activation by cercariae and schistosomula of the human parasite Schistosoma mansoni was studied in vitro. Cercariae are composed of tails which are shed after infection of the host and bodies which transform into the larvae or schistosomula after infection. After incubation in fresh normal human serum (NHS), cercarial tails bound more anti-C3 antibodies than did cercarial bodies (CB), and the tails were rapidly lysed, while the attached CB remained intact. Complement activation by cercariae was dependent on the alternative pathway but was independent of antibody, as shown by C3 deposition by hypogammaglobulinemic human sera. By transmission microscopy, the fibrillar glycocalyx on both CB and tails was stained by NHS but not by heat-inactivated serum (HI-NHS). The glycocalyx was labeled with periodate and tritiated borohydride, and parasites were incubated in NHS and HI-NHS. After solubilization, the labeled glycocalyx on organisms incubated in NHS but not HI-NHS bound anti-C3 antibodies. Of the CB incubated with eserine sulfate to prevent transformation, 78% +/- 10% were dead after culture for 24 h in NHS. In contrast, 21% +/- 12% of the CB were dead after culture in HI-NHS. Schistosomula incubated in NHS bound 37% of the amount of anti-C3 antibodies bound by cercariae but were not killed by NHS. In conclusion, the cercarial glycocalyx activated human complement, and schistosomula were less susceptible to killing than cercariae because they had less glycocalyx and activated less complement. Images PMID:3940995

  12. Comparative hemolytic activity of undiluted organic water-miscible solvents for intravenous and intra-arterial injection.

    PubMed

    Mottu, F; Stelling, M J; Rüfenacht, D A; Doelker, E

    2001-01-01

    In humans, nonaqueous solvents are administered intravascularly in two kinds of situations. They have been used in subcutaneous or intramuscular pharmaceutical formulations to dissolve water-insoluble drugs. The need for these vehicles had increased in recent years, since the drug development process has yielded many poorly water-soluble drugs. The use of water-miscible nonaqueous solvents in therefore one of the approaches for administering these products as reference solutions useful in formulation bioequivalence studies. The intravascular use of organic solvents has also gained importance owing to a new approach for the treatment of cerebral malformations using precipitating polymers dissolved in water-miscible organic solvents. At present, the solvent most commonly used for the liquid embolics to solubilize the polymers is dimethyl sulfoxide, which exhibits some local and hemodynamic toxicities. In order to find new, less toxic vehicles for pharmaceutical formulations for the intravenous and intra-arterial routes and for embolic materials, 13 water-miscible organic solvents currently used (diluted with water) for pharmaceutical applications, were evaluated in this study. Their hemolytic activity and the morphological changes induced when mixed with blood (1:99, 5:95, 10:90 solvent:blood) were estimated in vitro. From these data, the selected organic solvents could be subdivided into four groups depending on their hemolytic activity: very highly hemolytic solvents (ethyl lactate, dimethyl sulfoxide), highly hemolytic solvents (polyethylene glycol 200, acetone), moderately hemolytic solvents (tetrahydrofurfuryl alcohol, N-methyl-2-pyrrolidone, glycerol formal, ethanol, Solketal, glycofurol) and solvents with low hemolytic activity (propylene glycol, dimethyl isosorbide, diglyme).

  13. Effect of Relative Arrangement of Cationic and Lipophilic Moieties on Hemolytic and Antibacterial Activities of PEGylated Polyacrylates

    PubMed Central

    Punia, Ashish; Lee, Kevin; He, Edward; Mukherjee, Sumit; Mancuso, Andrew; Banerjee, Probal; Yang, Nan-Loh

    2015-01-01

    Synthetic amphiphilic polymers have been established as potentially efficient agents to combat widespread deadly infections involving antibiotic resistant superbugs. Incorporation of poly(ethylene glycol) (PEG) side chains into amphiphilic copolymers can reduce their hemolytic activity while maintaining high antibacterial activity. Our study found that the incorporation of PEG has substantially different effects on the hemolytic and antibacterial activities of copolymers depending on structural variations in the positions of cationic centers relative to hydrophobic groups. The PEG side chains dramatically reduced the hemolytic activities in copolymers with hydrophobic hexyl and cationic groups on the same repeating unit. However, in case of terpolymers with cationic and lipophilic groups placed on separate repeating units, the presence of PEG has significantly lower effect on hemolytic activities of these copolymers. PEGylated terpolymers displayed substantially lower activity against Staphylococcus aureus (S. aureus) than Escherichia coli (E. coli) suggesting the deterring effect of S. aureus’ peptidoglycan cell wall against the penetration of PEGylated polymers. Time-kill studies confirmed the bactericidal activity of these copolymers and a 5 log reduction in E. coli colony forming units was observed within 2 h of polymer treatment. PMID:26473831

  14. Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Palanivelu, R.; Ruban Kumar, A.

    2014-06-01

    Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) nanoparticles are widely used in several biomedical applications due to its compositional similarities to bone mineral, excellent biocompatibility and bioactivity, osteoconductivity. In this present investigation, HAP nanoparticles synthesized by precipitation technique using calcium nitrate and di-ammonium phosphate. The crystalline nature and the functional group analysis are confirmed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman) respectively. The morphological observations are ascertained from field emission electron scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). In vitro anti-proliferative and hemolytic activities are carried out on the synthesized HAP samples and the studies reveals that HAP have mild activity against erythrocytes.

  15. Complement activation of electrogenic ion transport in isolated rat colon.

    PubMed

    McCole, D F; Otti, B; Newsholme, P; Baird, A W

    1997-11-15

    The complement cascade is an important component in many immune and inflammatory reactions and may contribute to both the diarrhoea and inflammation associated with inflammatory bowel disease. Isolated rat colonic mucosae were voltage clamped in Ussing chambers. Basolateral addition of zymosan-activated whole human serum (ZAS) induced a rapid onset, transient inward short circuit current (SCC). This response was concentration dependent and was significantly attenuated by pre-heating ZAS at 60 degrees C for 30 min. Depletion of complement from normal human serum with cobra venom factor (CVF) significantly lowered SCC responses. Chloride was the primary charge carrying ion as responses to ZAS were abolished in the presence of the loop diuretic bumetanide. The complement component C3a stimulated ion transport but not to the same extent as whole serum. Exogenous C5 was without effect. The cyclooxygenase inhibitor piroxicam significantly attenuated the response to ZAS. These findings support the possibility that complement activation may contribute to the pathophysiology of secretory diarrhoea since activation of electrogenic chloride secretion converts intestinal epithelia to a state of net fluid secretion.

  16. Effects of FUT-175, a novel synthetic protease inhibitor, on the development of adjuvant arthritis in rats and some biological reactions dependent on complement activation.

    PubMed

    Ino, Y; Sato, T; Koshiyama, Y; Suzuki, K; Oda, M; Iwaki, M

    1987-01-01

    1. The effects of FUT-175 on the development of adjuvant arthritis in rats were studied and compared with those of indomethacin. FUT-175 inhibited both primary and secondary paw lesions in the adjuvant arthritic rats when it was administered orally on a daily basis from the day before through 18th day after adjuvant injection. 2. In addition, FUT-175 inhibited the increase in hemolytic complement in adjuvant arthritic rats in a dose-dependent manner. 3. Indomethacin also showed an inhibitory effect on the development of arthritic lesion, but had no effect on the increase in hemolytic complement in the adjuvant arthritis in rats. 4. Furthermore, FUT-175 inhibited the activities of various proteases in vitro, and then strongly inhibited complement-mediated hemolysis via the classical and alternative pathways, while indomethacin had no effect on them. 5. These results suggest that the anti-inflammatory activity of FUT-175 may differ from indomethacin in the mechanisms of action and, at least in part, due to the anti-complement activity.

  17. CsMAP34, a teleost MAP with dual role: A promoter of MASP-assisted complement activation and a regulator of immune cell activity

    PubMed Central

    Li, Mo-fei; Li, Jun; Sun, Li

    2016-01-01

    In teleost fish, the immune functions of mannan-binding lectin (MBL) associated protein (MAP) and MBL associated serine protease (MASP) are scarcely investigated. In the present study, we examined the biological properties both MAP (CsMAP34) and MASP (CsMASP1) molecules from tongue sole (Cynoglossus semilaevis). We found that CsMAP34 and CsMASP1 expressions occurred in nine different tissues and were upregulated by bacterial challenge. CsMAP34 protein was detected in blood, especially during bacterial infection. Recombinant CsMAP34 (rCsMAP34) bound C. semilaevis MBL (rCsBML) when the latter was activated by bacteria, while recombinant CsMASP1 (rCsMASP1) bound activated rCsBML only in the presence of rCsMAP34. rCsMAP34 stimulated the hemolytic and bactericidal activities of serum complement, whereas anti-CsMAP34 antibody blocked complement activities. Knockdown of CsMASP1 in C. semilaevis resulted in significant inhibition of complement activities. Furthermore, rCsMAP34 interacted directly with peripheral blood leukocytes (PBL) and enhanced the respiratory burst, acid phosphatase activity, chemotactic activity, and gene expression of PBL. These results indicate for the first time that a teleost MAP acts one hand as a regulator that promotes the lectin pathway of complement activation via its ability to recruit MBL to MASP, and other hand as a modulator of immune cell activity. PMID:28008939

  18. Evaluation of antimicrobial, cytotoxic, and hemolytic activities from venom of the spider Lasiodora sp.

    PubMed

    Ferreira, Felipe Roberto Borba; da Silva, Pollyanna Michelle; Soares, Tatiana; Gonçalves Machado, Larissa; de Araújo, Larissa Cardoso Corrêa; da Silva, Teresinha Gonçalves; de Mello, Gabriela Souto Vieira; Galdino da Rocha Pitta, Maira; de Melo Rego, Moacyr Jesus Barreto; Pontual, Emmanuel Viana; Zingali, Russolina Benedeta; Napoleão, Thiago Henrique; Paiva, Patrícia Maria Guedes

    2016-11-01

    This study characterized the protein/peptide profile of venom isolated from the spider Lasiodora sp. (Mygalomorphae, Theraphosidae) found in northeastern Brazil and determined its antimicrobial activity, toxicity against human cells, and hemolytic activity. Protein concentration of the Lasiodora sp. venom was 4.53 ± 0.38 mg/mL. SDS-PAGE showed proteins with molecular masses up to 75 kDa, some of which contained disulfide bridges. RP-HPLC analysis separate at least 12 peaks that were identified by mass spectrometry as peptides U1-theraphotoxin-Lp1a (lasiotoxin-1), U1-theraphotoxin-Lp1c (lasiotoxin-3), U3-theraphotoxin-Lsp1a (LTx5), and ω-theraphotoxin-Asp3a as well as the proteins phospholipase A2 (PLA2) and hyaluronidase. The crude venom exhibited bactericidal effect against Aeromonas sp., Bacillus subtilis, and Micrococcus luteus and fungicidal effect against Candida parapsilosis and Candida albicans. In addition, the venom exerted bacteriostatic effect against Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus and fungistatic effect against Candida tropicalis and Candida krusei. The minimum inhibitory (MIC), minimum bactericidal (MBC), and minimum fungicidal (MFC) concentrations ranged from 3.9 to 500 μg/mL. The Lasiodora sp. venom decreased the viability of human peripheral blood mononuclear cells (PBMCs) by 50%-90% at concentrations of 0.1, 1, 10, and 100 μg/mL, promoting apoptosis of these cells. On the other hand, the venom showed weak hemolytic activity against Mus musculus erythrocytes (EC50: 757 μg/mL). In conclusion, the Lasiodora sp. spider venom is a rich source of antimicrobial agents. Future studies will focus on identifying antimicrobial agents present in this venom and evaluating whether these agents contribute to its cytotoxic effects against PBMCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Clinical grand rounds: atypical hemolytic uremic syndrome.

    PubMed

    Hodgkins, Kavita S; Bobrowski, Amy E; Lane, Jerome C; Langman, Craig B

    2012-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a rare, lifethreatening, chronic, genetic disease of uncontrolled alternative pathway complement activation. The understanding of the pathophysiology and genetics of this disease has expanded over recent decades and promising new developments in the management of aHUS have emerged. Regardless of the cause of aHUS, with or without a demonstrated mutation or autoantibody, blockade of terminal complement activation through C5 is of high interest as a mechanism to ameliorate the disease. Eculizumab, an existing monoclonal antibody directed against C5 with high affinity, prevents the perpetuation of the downstream activation of the complement cascade and the damage caused by generation of the anaphylotoxin C5a and the membrane attack complex C5b-9, by blocking C5 cleavage. We report the successful use of eculizumab in a patient after kidney transplantation and discuss the disease aHUS.

  20. Allicin from garlic neutralizes the hemolytic activity of intra- and extra-cellular pneumolysin O in vitro.

    PubMed

    Arzanlou, M; Bohlooli, S; Jannati, E; Mirzanejad-Asl, H

    2011-03-15

    Pneumolysin (PLY) is a key virulence factor contributes to the pathogenesis of Streptococcus pneumoniae. In this study we investigated the effect of allicin and aqueous garlic extracts on hemolytic activity of PLY both in prelysed and intact cells. Additionally the antimicrobial activity of allicin was tested against the bacteria. All tested materials potently inhibited the PLY hemolytic activity. Allicin neutralizes PLY in a concentration- and time-dependent manner. Twenty five minute incubation of PLY (2 HU/mL) with 0.61 μM/mL concentration of allicin, totally inhibited hemolytic activity of PLY (IC50 = 0.28 μM/mL). The inhibitory activity of old extract of garlic was similar to pure allicin (IC50 = 50.46 μL/mL; 0.31 μM/mL; P < 0.05). In contrast fresh extract of garlic inhibits the PLY hemolytic activity at lower concentrations (IC50 = 13.96 μL/mL; 0.08 μM/mL allicin). Exposure of intact cells to allicin (1.8 μM) completely inhibited hemolytic activity of PLY inside bacterial cells. The inhibitory effect of the allicin was restored by addition of reducing agent DTT at 5 mM, proposing that allicin likely inhibits the PLY by binding to cysteinyl residue in the binding site. The MIC value of allicin was determined to be 512 μg/mL (3.15 μM/mL). These results indicate that PLY is a novel target for allicin and may provide a new line of investigation on pneumococcal diseases in the future.

  1. Critical appraisal of eculizumab for atypical hemolytic uremic syndrome.

    PubMed

    Palma, Lilian M Pereira; Langman, Craig B

    2016-01-01

    The biology of atypical hemolytic uremic syndrome has been shown to involve inability to limit activation of the alternative complement pathway, with subsequent damage to systemic endothelial beds and the vasculature, resulting in the prototypic findings of a thrombotic microangiopathy. Central to this process is the formation of the terminal membrane attack complex C5b-9. Recently, application of a monoclonal antibody that specifically binds to C5, eculizumab, became available to treat patients with atypical hemolytic uremic syndrome, replacing plasma exchange or infusion as primary therapy. This review focuses on the evidence, based on published clinical trials, case series, and case reports, on the efficacy and safety of this approach.

  2. Isolation and characterization of genetic variability in bacteria with β-hemolytic and antifungal activity isolated from the rhizosphere of Medicago truncatula plants.

    PubMed

    Hernández-Salmerón, J E; Prieto-Barajas, C M; Valencia-Cantero, E; Moreno-Hagelsieb, G; Santoyo, G

    2014-07-04

    In the present study, we analyzed the frequency of hemolytic and antifungal activities in bacterial isolates from the rhizosphere of Medicago truncatula plants. Of the 2000 bacterial colonies, 96 showed β-hemolytic activities (frequency, 4.8 x 10(-2)). Hemolytic isolates were analyzed for their genetic diversity by using random amplification of polymorphic DNA, yielding 88 haplotypes. The similarity coefficient of Nei and Li showed a polymorphic diversity ranging from 0.3 to 1. Additionally, 8 of the hemolytic isolates showed antifungal activity toward plant pathogens, Diaporthe phaseolorum, Colletotrichum acutatum, Rhizoctonia solani, and Fusarium oxysporum. The 16S ribosomal sequencing analysis showed that antagonistic bacterial isolates corresponded to Bacillus subtilis (UM15, UM33, UM42, UM49, UM52, and UM91), Bacillus pumilus (UM24), and Bacillus licheniformis (UM88). The present results revealed a higher genetic diversity among hemolytic isolates compared to that of isolates with antifungal action.

  3. Activated Complement Factors as Disease Markers for Sepsis

    PubMed Central

    Charchaflieh, Jean; Rushbrook, Julie; Worah, Samrat; Zhang, Ming

    2015-01-01

    Sepsis is a leading cause of death in the United States and worldwide. Early recognition and effective management are essential for improved outcome. However, early recognition is impeded by lack of clinically utilized biomarkers. Complement factors play important roles in the mechanisms leading to sepsis and can potentially serve as early markers of sepsis and of sepsis severity and outcome. This review provides a synopsis of recent animal and clinical studies of the role of complement factors in sepsis development, together with their potential as disease markers. In addition, new results from our laboratory are presented regarding the involvement of the complement factor, mannose-binding lectin, in septic shock patients. Future clinical studies are needed to obtain the complete profiles of complement factors/their activated products during the course of sepsis development. We anticipate that the results of these studies will lead to a multipanel set of sepsis biomarkers which, along with currently used laboratory tests, will facilitate earlier diagnosis, timely treatment, and improved outcome. PMID:26420913

  4. Characterization of Antibacterial and Hemolytic Activity of Synthetic Pandinin 2 Variants and Their Inhibition against Mycobacterium tuberculosis

    PubMed Central

    Rodríguez, Alexis; Villegas, Elba; Montoya-Rosales, Alejandra; Rivas-Santiago, Bruno; Corzo, Gerardo

    2014-01-01

    The contention and treatment of Mycobacterium tuberculosis and other bacteria that cause infectious diseases require the use of new type of antibiotics. Pandinin 2 (Pin2) is a scorpion venom antimicrobial peptide highly hemolytic that has a central proline residue. This residue forms a structural “kink” linked to its pore-forming activity towards human erythrocytes. In this work, the residue Pro14 of Pin2 was both substituted and flanked using glycine residues (P14G and P14GPG) based on the low hemolytic activities of antimicrobial peptides with structural motifs Gly and GlyProGly such as magainin 2 and ponericin G1, respectively. The two Pin2 variants showed antimicrobial activity against E. coli, S. aureus, and M. tuberculosis. However, Pin2 [GPG] was less hemolytic (30%) than that of Pin2 [G] variant. In addition, based on the primary structure of Pin2 [G] and Pin2 [GPG], two short peptide variants were designed and chemically synthesized keeping attention to their physicochemical properties such as hydrophobicity and propensity to adopt alpha-helical conformations. The aim to design these two short antimicrobial peptides was to avoid the drawback cost associated to the synthesis of peptides with large sequences. The short Pin2 variants named Pin2 [14] and Pin2 [17] showed antibiotic activity against E. coli and M. tuberculosis. Besides, Pin2 [14] presented only 25% of hemolysis toward human erythrocytes at concentrations as high as 100 µM, while the peptide Pin2 [17] did not show any hemolytic effect at the same concentration. Furthermore, these short antimicrobial peptides had better activity at molar concentrations against multidrug resistance M. tuberculosis than that of the conventional antibiotics ethambutol, isoniazid and rifampicin. Therefore, Pin2 [14] and Pin2 [17] have the potential to be used as an alternative antibiotics and anti-tuberculosis agents with reduced hemolytic effects. PMID:25019413

  5. Characterization of antibacterial and hemolytic activity of synthetic pandinin 2 variants and their inhibition against Mycobacterium tuberculosis.

    PubMed

    Rodríguez, Alexis; Villegas, Elba; Montoya-Rosales, Alejandra; Rivas-Santiago, Bruno; Corzo, Gerardo

    2014-01-01

    The contention and treatment of Mycobacterium tuberculosis and other bacteria that cause infectious diseases require the use of new type of antibiotics. Pandinin 2 (Pin2) is a scorpion venom antimicrobial peptide highly hemolytic that has a central proline residue. This residue forms a structural "kink" linked to its pore-forming activity towards human erythrocytes. In this work, the residue Pro14 of Pin2 was both substituted and flanked using glycine residues (P14G and P14GPG) based on the low hemolytic activities of antimicrobial peptides with structural motifs Gly and GlyProGly such as magainin 2 and ponericin G1, respectively. The two Pin2 variants showed antimicrobial activity against E. coli, S. aureus, and M. tuberculosis. However, Pin2 [GPG] was less hemolytic (30%) than that of Pin2 [G] variant. In addition, based on the primary structure of Pin2 [G] and Pin2 [GPG], two short peptide variants were designed and chemically synthesized keeping attention to their physicochemical properties such as hydrophobicity and propensity to adopt alpha-helical conformations. The aim to design these two short antimicrobial peptides was to avoid the drawback cost associated to the synthesis of peptides with large sequences. The short Pin2 variants named Pin2 [14] and Pin2 [17] showed antibiotic activity against E. coli and M. tuberculosis. Besides, Pin2 [14] presented only 25% of hemolysis toward human erythrocytes at concentrations as high as 100 µM, while the peptide Pin2 [17] did not show any hemolytic effect at the same concentration. Furthermore, these short antimicrobial peptides had better activity at molar concentrations against multidrug resistance M. tuberculosis than that of the conventional antibiotics ethambutol, isoniazid and rifampicin. Therefore, Pin2 [14] and Pin2 [17] have the potential to be used as an alternative antibiotics and anti-tuberculosis agents with reduced hemolytic effects.

  6. Relationships between the haemolytic activities of the human complement system and complement components.

    PubMed Central

    Takada, A; Imamura, Y; Takada, Y

    1979-01-01

    The relationships between the haemolytic activities of complement and its components were studied. The activities studied included CH50 (classical pathway), AP50 (alternative pathway), CV50 (early part of alternative pathway) and C(3--9)H50 ((the late part of both pathways). The components included C3, C4, C5, C9, B and D. There was a good correlation between CH50 and AP50. AP50 had a good correlation with B and CV50. There was no correlation between AP50 and C(3--9)H50, and none between C(3--9)H50 and C5 or C9. AP50 may primarily represent changes in the early part of the alternative pathway. C(3--9)H50 is not influenced by respective changes in the amounts of C5 or C9. Since cell lesion is now considered to be caused by a unit of C5b to C9, a change in each component of C5 to C9 may not influence haemolytic activity. PMID:436337

  7. Rock squirrel (Spermophilus variegatus) blood sera affects proteolytic and hemolytic activities of rattlesnake venoms.

    PubMed

    Biardi, James E; Coss, Richard G

    2011-02-01

    Rock squirrels (Spermophilus variegatus) from two sites in south central New Mexico, where prairie (Crotalus viridis viridis) and western diamondback (Crotalus atrox) rattlesnakes are common predators, were assayed for inhibition of rattlesnake venom digestive and hemostatic activities. At statistically significant levels rock squirrel blood sera reduced the metalloprotease and hemolytic activity of venoms from C. v. viridis and C. atrox more than venom from an allopatric snake species, the northern Pacific rattlesnake (Crotalus oreganus). In contrast, general proteolytic activity of venom from C. oreganus was inhibited more by S. variegatus serum defenses than activity of venom from sympatric snakes. For all three venoms, incubation with squirrel sera increased the level of fibrinolysis over venom-only treatments. These results suggest that rock squirrels (S. variegatus) can defend against metalloproteases and other proteases after envenomation from at least two of five rattlesnake predators they might encounter. However, there were statistically significant differences between general proteolytic activity and fibrinolytic activity of C. v. viridis and C. atrox venom, suggesting that rock squirrels might be differentially vulnerable to these two predators. The hypothesis that prey resistance influences snake venom evolution in a predator-prey arms race is given further support by the previously cryptic variation in venoms detected when assayed against prey defenses. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Complement activation in Ghanaian children with severe Plasmodium falciparum malaria

    PubMed Central

    Helegbe, Gideon K; Goka, Bamenla Q; Kurtzhals, Joergen AL; Addae, Michael M; Ollaga, Edwin; Tetteh, John KA; Dodoo, Daniel; Ofori, Michael F; Obeng-Adjei, George; Hirayama, Kenji; Awandare, Gordon A; Akanmori, Bartholomew D

    2007-01-01

    Background Severe anaemia (SA), intravascular haemolysis (IVH) and respiratory distress (RD) are severe forms of Plasmodium falciparum malaria, with RD reported to be of prognostic importance in African children with malarial anaemia. Complement factors have been implicated in the mechanism leading to excess anaemia in acute P. falciparum infection. Methods The direct Coombs test (DCT) and flow cytometry were used to investigate the mean levels of RBC-bound complement fragments (C3d and C3bαβ) and the regulatory proteins [complement receptor 1 (CD35) and decay accelerating factor (CD55)] in children with discrete clinical forms of P. falciparum malaria. The relationship between the findings and clinical parameters including coma, haemoglobin (Hb) levels and RD were investigated. Results Of the 484 samples tested, 131(27%) were positive in DCT, out of which 115/131 (87.8%) were positive for C3d alone while 16/131 (12.2%) were positive for either IgG alone or both. 67.4% of the study population were below 5 years of age and DCT positivity was more common in this age group relative to children who were 5 years or older (Odds ratio, OR = 3.8; 95%CI, 2.2–6.7, p < 0.001). DCT correlated significantly with RD (β = -304, p = 0.006), but multiple regression analysis revealed that, Hb (β = -0.341, p = 0.012) and coma (β = -0.256, p = 0.034) were stronger predictors of RD than DCT (β = 0.228, p = 0.061). DCT was also not associated with IVH, p = 0.19, while spleen size was inversely correlated with Hb (r = -402, p = 0.001). Flow cytometry showed similar mean fluorescent intensity (MFI) values of CD35, CD55 and C3bαβ levels on the surfaces of RBC in patients and asymptomatic controls (AC). However, binding of C3bαβ correlated significantly with CD35 or CD55 (p < 0.001). Conclusion These results suggest that complement activation contributed to anaemia in acute childhood P. falciparum malaria, possibly through induction of erythrophagocytosis and haemolysis. In

  9. In vitro antibacterial and hemolytic activities of crotamine, a small basic myotoxin from rattlesnake Crotalus durissus.

    PubMed

    Oguiura, Nancy; Boni-Mitake, Malvina; Affonso, Regina; Zhang, Guolong

    2011-04-01

    Crotamine, a myotoxin from the venom of South American rattlesnake, is structurally related to β-defensins, antimicrobial peptides (AMPs) found in vertebrate animals. Here, we tested the antibacterial properties of crotamine and found that it killed several strains of Escherichia coli, with the MICs ranging from 25 to 100 μg ml⁻¹. Time-kill and bacterial membrane permeabilization assays revealed that killing of bacteria by crotamine occurred within 1 h and reached the maximum by 2 h. Additionally, the anti-E. coli activity of crotamine was completely abolished with 12.5 mM NaCl. Furthermore, the three intramolecular disulfide bonds of crotamine appeared dispensable for its antibacterial activity. The reduced form of crotamine was active against E. coli as well. However, crotamine showed no or weak activity up to 200 μg ml⁻¹ against other species of Gram-negative and Gram-positive bacteria. Crotamine showed no appreciable hemolytic activity to erythrocytes. Our studies revealed that crotamine is also an AMP that kills bacteria through membrane permeabilization. However, crotamine appears to have a narrow antibacterial spectrum, distinct from many classical β-defensins, reinforcing the notion that crotamine originated from the β-defensin gene lineage, but has undergone significant functional diversification.

  10. Formation of prostanoids during intravascular complement activation in the rabbit.

    PubMed Central

    Bult, H.; Herman, A. G.; Laekeman, G. M.; Rampart, M.

    1985-01-01

    Plasma concentrations of 6-oxo-prostaglandin F1 alpha (6-oxo-PGF1 alpha) and thromboxane B2 (TXB2) were measured by radioimmunoassay in arterial blood before and after injections of the complement activator, cobra venom factor (CVF). During the control period, the concentration of 6-oxo-PGF1 alpha, which gives the sum of prostacyclin plus 6-oxo-PGF1 alpha, and TXB2 were, respectively, less than 20 pg ml-1 and 70 +/- 15 pg ml-1. Intravenous injections of CVF induced dose-dependent, reversible elevations in the plasma levels of both prostanoids. The time courses for the increases of 6-oxo-PGF1 alpha and TXB2 paralleled the arterial hypotension and thrombocytopenia, suggesting the existence of a causal relationship between these parameters. The results further support our hypothesis that complement-dependent formation of arachidonic acid metabolites contributes to some of the haemodynamic and haematological changes occurring during endotoxin shock. PMID:3884074

  11. Biological evaluation of twenty-eight ferrocenyl tetrasubstituted olefins: cancer cell growth inhibition, ROS production and hemolytic activity.

    PubMed

    de Oliveira, Alane Cabral; Hillard, Elizabeth A; Pigeon, Pascal; Rocha, Danilo Damasceno; Rodrigues, Felipe A R; Montenegro, Raquel C; Costa-Lotufo, Letícia V; Goulart, Marilia O F; Jaouen, Gérard

    2011-09-01

    The antiproliferative effects of twenty-eight tetrasubstituted olefins bearing a ferrocenyl group, including six never-reported compounds, were evaluated against SF-295 (human glioblastoma), HCT-8 (human colon cancer), MDA-MB-435 (human melanoma) and HL-60 (human promyelocytic leukemia) using the MTT test. IC(50) values were determined for twenty-three active compounds and of these, ten compounds had IC(50) values lower than 2 μM on one or more cell lines. Of all the compounds, only two produced significant amounts of ROS on HL-60 cells, and ROS production and growth inhibition could not be correlated. The ten most antiproliferative compounds were tested for their hemolytic activity on mouse erythrocytes. Five compounds showing high antiproliferative activity and low hemolytic activity were thus identified for further study.

  12. Early Intra-Articular Complement Activation in Ankle Fractures

    PubMed Central

    Salzmann, Gian M.; Niemeyer, Philipp; Guo, Renfeng

    2014-01-01

    Cytokine regulation possibly influences long term outcome following ankle fractures, but little is known about synovial fracture biochemistry. Eight patients with an ankle dislocation fracture were included in a prospective case series and matched with patients suffering from grade 2 osteochondritis dissecans (OCD) of the ankle. All fractures needed external fixation during which joint effusions were collected. Fluid analysis was done by ELISA measuring aggrecan, bFGF, IL-1β, IGF-1, and the complement components C3a, C5a, and C5b-9. The time periods between occurrence of fracture and collection of effusion were only significantly associated with synovial aggrecan and C5b-9 levels (P < 0.001). Furthermore, synovial expressions of both proteins correlated with each other (P < 0.001). Although IL-1β expression was relatively low, intra-articular levels correlated with C5a (P < 0.01) and serological C-reactive protein concentrations 2 days after surgery (P < 0.05). Joint effusions were initially dominated by neutrophils, but the portion of monocytes constantly increased reaching 50% at day 6 after fracture (P < 0.02). Whereas aggrecan and IL-1β concentrations were not different in fracture and OCD patients, bFGF, IGF-1, and all complement components were significantly higher concentrated in ankle joints with fractures (P < 0.01). Complement activation and inflammatory cell infiltration characterize the joint biology following acute ankle fractures. PMID:24967368

  13. Isolation, phylogenetic analysis and screening of marine mollusc-associated bacteria for antimicrobial, hemolytic and surface activities.

    PubMed

    Romanenko, Lyudmila A; Uchino, Masataka; Kalinovskaya, Natalia I; Mikhailov, Valery V

    2008-01-01

    This study was undertaken to survey culturable heterotrophic bacteria associated with the marine ark shell Anadara broughtoni inhabiting in the Sea of Japan, and to test isolates for their antimicrobial, hemolytic and surface activities with an emphasis on low-molecular-weight metabolites search. A total of 149 strains were isolated and identified phenotypically. A total of 27 strains were selected to be investigated phylogenetically by 165 rRNA gene sequence analysis. The most bacteria were affiliated with members of the Gammaproteobacteria and Alphaproteobacteria, and Less with Firmicutes, Actinobacteria, and Cytophaga-Flavobacterium-Bacteroides (CFB) group. The isolates capable of hemolysis were numerically abundant in the genera Pseudoalteromonas, Aeromonas and Bacillus. The six Gram-positive isolates belonging to the genera Bacillus, Paenibacillus and Saccharothrix and two Gram-negative strains related to Pseudomonas and Sphingomonas, possessed antimicrobial activity against indicator strains and to each other. Antimicrobial, hemolytic and surface activities were revealed in butanot extracts of cells or cell-free supernatant of six active strains. This points to availability of active low-molecular-weight metabolites. Substances with hemolytic and surface activities were isolated from strain Bacillus pumilus An 112 and characterized as cyclic depsipeptides with molecular masses 1021, 1035, 1049, 1063 and 1077 Da. The recovery of strains producing antimicrobial and surface-active substances suggests that microorganisms associated with the marine bivalve are potential source of bioactive metabolites.

  14. Production of the second component of complement by human monocytes: stimulation by antigen-activated lymphocytes or lymphokines

    PubMed Central

    1977-01-01

    Human peripheral blood mononuclear cells cultured in the presence of antigen produced hemolytically active second complement component earlier and in larger amounts than did control cultures of the same cells without antigen. The increased amount of C2 in culture supernates came primarily from the adherent cell population and was due to increased synthesis as demonstrated by inhibition with 10(-4) M cycloheximide. Purified adherent monocytes produced more C2 when exposed to lymphokine-rich supernates from antigen-stimulated lymphocytes than when exposed to control supernates from unstimulated lymphocyte cultures. The increased synthesis of C2, which appeared to be mediated by a lymphokine, was partially inhibited specifically by 0.025 M alpha-L(-) fucose, a sugar which has previously been shown in inhibit the response of macrophages to migration inhibitory factor. PMID:858999

  15. Biological effects of short-term, high-concentration exposure to methyl isocyanate. VI. In vitro and in vivo complement activation studies

    SciTech Connect

    Kolb, W.P.; Savary, J.R.; Troup, C.M.; Dodd, D.E.; Tamerius, J.D.

    1987-06-01

    The ability of MIC to induce complement activation in vitro and in vivo was investigated. For the in vitro studies, both human and guinea pig serum or EDTA-plasma samples were exposed to 1167 to 1260 ppm MIC vapor for 15 min at room temperature. The human serum samples exposed to MIC showed significant reduction in Factor B, C2, C4, C3, C5, and total hemolytic complement CH/sub 50/ activity levels. The C3, C5, and CH/sub 50/ functional activities in guinea pig serum were more sensitive to MIC-mediated reduction than the corresponding activity reductions observed in the human serum samples. The human and single guinea pig EDTA-plasma samples exposed to MIC vapor showed no evidence of C3 consumption but did show significant reductions in CH/sub 50/ levels. Thus, MIC vapor was able to active, and thereby reduce serum complement C3 activity in vitro by a complement-dependent process. For the in vivo studies, five pairs of guinea pigs were exposed to 644 to 702 ppm MIC vapor until one of the pair died (11-15 min). MIC exposure was then discontinued, the surviving guinea pig was sacrificed, and EDTA-plasma was obtained from both animals and analyzed for complement consumption. Clear evidence was obtained to indicate that complement activation had occurred in these animals exposed to MIC for 11 to 15 min. In addition, the complement activation profile observed in these guinea pigs was qualitatively similar to that seen in the guinea pig serum samples exposed to MIC vapor in vitro. The total protein concentration present in plasma samples obtained from guinea pigs that had died from MIC exposure was elevated significantly. The possible contribution of complement activation to the fatal reaction(s) observed in these MIC-treated animals is discussed.

  16. Grafting synthetic transmembrane units to the engineered low-toxicity α-hemolysin to restore its hemolytic activity.

    PubMed

    Ui, Mihoko; Harima, Kousuke; Takei, Toshiaki; Tsumoto, Kouhei; Tabata, Kazuhito V; Noji, Hiroyuki; Endo, Sumire; Akiyama, Kimio; Muraoka, Takahiro; Kinbara, Kazushi

    2014-12-01

    The chemical modification of proteins to provide desirable functions and/or structures broadens their possibilities for use in various applications. Usually, proteins can acquire new functions and characteristics, in addition to their original ones, via the introduction of synthetic functional moieties. Here, we adopted a more radical approach to protein modification, i.e., the replacement of a functional domain of proteins with alternative chemical compounds to build "cyborg proteins." As a proof of concept model, we chose staphylococcal α-hemolysin (Hla), which is a well-studied, pore-forming toxin. The hemolytic activity of Hla mutants was dramatically decreased by truncation of the stem domain, which forms a β-barrel pore in the membrane. However, the impaired hemolytic activity was significantly restored by attaching a pyrenyl-maleimide unit to the cysteine residue that was introduced in the remaining stem domain. In contrast, negatively charged fluorescein-maleimide completely abolished the remaining activity of the mutants.

  17. Activation of the Alternative Complement Pathway by Fungal Melanins

    PubMed Central

    Rosas, Á. L.; MacGill, R. S.; Nosanchuk, J. D.; Kozel, T. R.; Casadevall, A.

    2002-01-01

    Melanins are complex biological pigments formed by the oxidative polymerization of phenolic and/or indolic compounds. These pigments have been implicated in the pathogenesis of some microbial infections, malignancies, degenerative disorders, and autoimmune diseases. Recent studies have demonstrated that melanins have antigenic and anti-inflammatory properties. These findings led us to further explore the interaction of melanins with the immune system. Melanin particles (“ghosts”) were isolated from in vitro-melanized Cryptococcus neoformans cells and Aspergillus niger conidia and then incubated in normal human serum containing 125I-labeled complement C3. The results demonstrated deposition of C3 fragments onto the melanin ghosts as early as 1 min after incubation, with maximum deposition occurring after 12 min for C. neoformans-derived melanin ghosts and after 25 min for A. niger-derived melanin ghosts. The blocking of classical pathway activation did not affect the kinetics or total deposition of C3 onto the melanin ghosts, indicating that melanins activate complement through the alternative pathway. Immunofluorescence analysis of lungs from BALB/c mice injected intratracheally with C. neoformans-derived melanin ghosts demonstrated deposition of C3 fragments onto the ghosts. Small granulomas were also observed surrounding the ghosts. However, melanization of the C. neoformans cell wall did not alter the kinetics or total deposition of C3 fragments onto the fungal cells. The finding that melanin surfaces can activate the complement system suggests a potential mechanism for the pathogenesis of some degenerative and/or autoimmune processes that involve melanized cells as well as another potential role for melanin in the virulence of melanin-producing microorganisms. PMID:11777844

  18. Complement activation associated with polysorbate 80 in beagle dogs.

    PubMed

    Qiu, Shidong; Liu, Zhaohua; Hou, Li; Li, Yuanyuan; Wang, Jiao; Wang, Hong; Du, Wu; Wang, Wenfang; Qin, Yizhuo; Liu, Zhaoping

    2013-01-01

    Polysorbate 80 (Tween® 80) is the most extensively used surfactant in parenteral drug formulation. Its application as an adjunct for intravenous drug administration is approved by the Food and Drug Administration. However, severe hypersensitive reactions, which are typical non-immune anaphylactic reactions (pseudoallergy) characterized by the release of histamine and unvaried IgE antibodies, have been associated with Tween® 80. In order to explore the non-immune anaphylactic mechanisms of Tween® 80, we performed in vivo experiments to assess the changes in physiological and hematologic indicators after intravenous injection of Tween® 80 into dogs. Tween® 80 induced the release of histamine, and a 2-fold increase in SC5b-9, 2.5-fold increase in C4d, 1.3-fold increase in Bb, while IgE remained unchanged. It also produced changes in pulmonary pressure, systemic pressure and ECG. In in vitro experiments, Tween® 80 was incubated with dog serum in the presence of an inhibitor of complement activation (EGTA/Mg(2+)). Under these conditions, Tween® 80 increased the contents of C4d and Bb. The results of this study reveal that Tween® 80 can cause cardiopulmonary distress in dogs and activate the complement system through classical and alternative pathways as indicated in both in vivo and in vitro preparations. Moreover, they demonstrate the utility of the beagle dog as an animal model for the study of complement activation-related pseudoallergy. These findings raise concerns with regard to the indiscriminate use of Tween® 80 in clinical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Vegetable Peel Waste for the Production of ZnO Nanoparticles and its Toxicological Efficiency, Antifungal, Hemolytic, and Antibacterial Activities.

    PubMed

    Surendra, T V; Roopan, Selvaraj Mohana; Al-Dhabi, Naif Abdullah; Arasu, Mariadhas Valan; Sarkar, Gargi; Suthindhiran, K

    2016-12-01

    Zinc oxide (ZnO) nanoparticles (NPs) are important materials when making different products like sun screens, textiles, and paints. In the current study, the photocatalytic effect of prepared ZnO NPs from Moringa oleifera (M. oleifera) was evaluated on degradation of crystal violet (CV) dye, which is largely released from textile industries and is harmful to the environment. Preliminarily, ZnO NP formation was confirmed using a double beam ultraviolet visible (UV-Vis) spectrophotometer; further, the NP size was estimated using XRD analysis and the functional group analysis was determined using Fourier transform infrared (FT-IR) spectroscopy. The morphology of the synthesized NPs was found to be a hexagonal shape using SEM and TEM analysis and elemental screening was analyzed using EDX. ZnO NPs were shown sized 40-45 nm and spherical in shape. The degradation percentage of ZnO NPs was calculated as 94% at 70 min and the rate of the reaction -k = 0.0282. The synthesized ZnO NPs were determined for effectiveness on biological activities such as antifungal, hemolytic, and antibacterial activity. ZnO NPs showed good antifungal activity against Alternaria saloni and Sclerrotium rolfii strains. Further, we have determined the hemolytic and antibacterial activity of ZnO NPs and we got successive results in antibacterial and hemolytic activities.

  20. Vegetable Peel Waste for the Production of ZnO Nanoparticles and its Toxicological Efficiency, Antifungal, Hemolytic, and Antibacterial Activities

    NASA Astrophysics Data System (ADS)

    Surendra, T. V.; Roopan, Selvaraj Mohana; Al-Dhabi, Naif Abdullah; Arasu, Mariadhas Valan; Sarkar, Gargi; Suthindhiran, K.

    2016-12-01

    Zinc oxide (ZnO) nanoparticles (NPs) are important materials when making different products like sun screens, textiles, and paints. In the current study, the photocatalytic effect of prepared ZnO NPs from Moringa oleifera ( M. oleifera) was evaluated on degradation of crystal violet (CV) dye, which is largely released from textile industries and is harmful to the environment. Preliminarily, ZnO NP formation was confirmed using a double beam ultraviolet visible (UV-Vis) spectrophotometer; further, the NP size was estimated using XRD analysis and the functional group analysis was determined using Fourier transform infrared (FT-IR) spectroscopy. The morphology of the synthesized NPs was found to be a hexagonal shape using SEM and TEM analysis and elemental screening was analyzed using EDX. ZnO NPs were shown sized 40-45 nm and spherical in shape. The degradation percentage of ZnO NPs was calculated as 94% at 70 min and the rate of the reaction -k = 0.0282. The synthesized ZnO NPs were determined for effectiveness on biological activities such as antifungal, hemolytic, and antibacterial activity. ZnO NPs showed good antifungal activity against Alternaria saloni and Sclerrotium rolfii strains. Further, we have determined the hemolytic and antibacterial activity of ZnO NPs and we got successive results in antibacterial and hemolytic activities.

  1. Collagenase production and hemolytic activity related to 16S rRNA variability among Parvimonas micra oral isolates.

    PubMed

    Ota-Tsuzuki, Claudia; Alves Mayer, Marcia Pinto

    2010-02-01

    Parvimonas micra are gram positive anaerobic cocci isolated from the oral cavity and frequently related to polymicrobial infections in humans. Despite reports about phenotypic differences, the genotypic variation of P. micra and its role in virulence are still not elucidated. The aim of this study was to determine the genotypic diversity of P. micra isolates obtained from the subgingival biofilm of subjects with different periodontal conditions and to correlate these findings with phenotypic traits. Three reference strains and 35 isolates of P. micra were genotyped by 16S rRNA PCR-RFLP and phenotypic traits such as collagenase production, elastolytic and hemolytic activities were evaluated. 16S rRNA PCR-RFLP showed that P. micra could be grouped into two main clusters: C1 and C2; cluster C1 harbored three genotypes (HG1259-like, HG1467-like and ICBMO583-like) while cluster C2 harbored two genotypes (ATCC33270-like and ICBMO36). A wide variability in collagenolytic activity intensities was observed among all isolates, while elastolytic activity was detected in only two isolates. There was an association between hemolytic activity in rabbit erythrocytes and cluster C2. There was an association between hemolytic activity in rabbit erythrocytes and cluster C1. Although these data suggest a possible association between P. micra genetic diversity and their pathogenic potential, further investigations are needed to confirm this hypothesis.

  2. Activation of the Complement Classical Pathway (C1q Binding) by Mesophilic Aeromonas hydrophila Outer Membrane Protein

    PubMed Central

    Merino, Susana; Nogueras, Maria Mercedes; Aguilar, Alicia; Rubires, Xavier; Albertí, Sebastian; Benedí, Vicente Javier; Tomás, Juan M.

    1998-01-01

    The mechanism of killing of Aeromonas hydrophila serum-sensitive strains in nonimmune serum by the complement classical pathway has been studied. The bacterial cell surface component that binds C1q more efficiently was identified as a major outer membrane protein of 39 kDa, presumably the porin II described by D. Jeanteur, N. Gletsu, F. Pattus, and J. T. Buckley (Mol. Microbiol. 6:3355–3363, 1992), of these microorganisms. We have demonstrated that the purified form of porin II binds C1q and activates the classical pathway in an antibody-independent manner, with the subsequent consumption of C4 and reduction of the serum total hemolytic activity. Activation of the classical pathway has been observed in human nonimmune serum and agammaglobulinemic serum (both depleted of factor D). Binding of C1q to other components of the bacterial outer membrane, in particular to rough lipopolysaccharide, could not be demonstrated. Activation of the classical pathway by this lipopolysaccharide was also much less efficient than activation by the outer membrane protein. The strains possessing O-antigen lipopolysaccharide bind less C1q than the serum-sensitive strains, because the outer membrane protein is less accessible, and are resistant to complement-mediated killing. Finally, a similar or identical outer membrane protein (presumably porin II) that binds C1q was shown to be present in strains from the most common mesophilic Aeromonas O serogroups. PMID:9673268

  3. C1q binding and activation of the complement classical pathway by Klebsiella pneumoniae outer membrane proteins.

    PubMed Central

    Albertí, S; Marqués, G; Camprubí, S; Merino, S; Tomás, J M; Vivanco, F; Benedí, V J

    1993-01-01

    The mechanisms of killing of Klebsiella pneumoniae serum-sensitive strains in nonimmune serum by the complement classical pathway have been studied. The bacterial cell surface components that bind C1q more efficiently were identified as two major outer membrane proteins, presumably the porins of this bacterial species. These two outer membrane proteins were isolated from a representative serum-sensitive strain. We have demonstrated that in their purified form, they bind C1q and activate the classical pathway in an antibody-independent manner, with the subsequent consumption of C4 and reduction of the serum total hemolytic activity. Activation of the classical pathway has been observed in human nonimmune serum and agammaglobulinemic serum (both depleted in factor D). Binding of C1q to other components of the bacterial outer membrane, in particular the rough lipopolysaccharide, could not be demonstrated. Activation of the classical pathway by this lipopolysaccharide was also much less efficient than activation by the two outer membrane proteins. The antibody-independent binding of C1q to serum-sensitive strains was independent of the presence of capsular polysaccharide, while strains possessing lipopolysaccharide O antigen bind less C1q and are resistant to complement-mediated killing. Images PMID:8432605

  4. Red wines and flavonoids diminish Staphylococcus aureus virulence with anti-biofilm and anti-hemolytic activities.

    PubMed

    Cho, Hyun Seob; Lee, Jin-Hyung; Cho, Moo Hwan; Lee, Jintae

    2015-01-01

    The emergence of antibiotic resistant Staphylococcus aureus presents a worldwide problem that requires non-antibiotic strategies. This study investigated the anti-biofilm and anti-hemolytic activities of four red wines and two white wines against three S. aureus strains. All red wines at 0.5-2% significantly inhibited S. aureus biofilm formation and hemolysis by S. aureus, whereas the two white wines had no effect. Furthermore, at these concentrations, red wines did not affect bacterial growth. Analyses of hemolysis and active component identification in red wines revealed that the anti-biofilm compounds and anti-hemolytic compounds largely responsible were tannic acid, trans-resveratrol, and several flavonoids. In addition, red wines attenuated S. aureus virulence in vivo in the nematode Caenorhabditis elegans, which is killed by S. aureus. These findings show that red wines and their compounds warrant further attention in antivirulence strategies against persistent S. aureus infection.

  5. Hemolytic and proteolytic activities of Aeromonas hydrophila and Aeromonas veronii biovar sobria in broth and salmon extract at different temperatures.

    PubMed

    González-Rodríguez, María-Nieves; Santos, Jesús A; Otero, Andrés; García-López, Maria-Luisa

    2004-02-01

    Expression of hemolytic and proteolytic activities throughout the growth cycle was investigated with two enterotoxic aeromonad strains assigned to the species Aeromonas hydrophila and Aeromonas veronii biovar sobria. Although growth kinetic data were dependent on strain, temperature, and substrate, maximum populations attained were higher than 9 log CFU/ml in aerated tryptone soya broth plus yeast extract (TSBYE) and salmon extract within the range 4 to 28 degrees C. For both strains in TSBYE, variable amounts of hemolytic activity were first detected at any temperature when aeromonad counts were over 9 log CFU/ml. Afterwards, this activity increased up to similar levels (109 to 112 hemolytic units per ml) without a significant increase in populations. Salmon extract supported hemolysin synthesis at 28 but not 4 degrees C. Proteolytic activity of the A. hydrophila strain was only expressed in salmon extract at 28 degrees C, whereas A. veronii biovar sobria did at 28 degrees C in both substrates and at 10 degrees C in TSBYE.

  6. [Atypical hemolytic uremic syndrome].

    PubMed

    Blasco Pelicano, Miquel; Rodríguez de Córdoba, Santiago; Campistol Plana, Josep M

    2015-11-20

    The hemolytic uremic syndrome (HUS) is a clinical entity characterized by thrombocytopenia, non-immune hemolytic anemia and renal impairment. Kidney pathology shows thrombotic microangiopathy (TMA) with endothelial cell injury leading to thrombotic occlusion of arterioles and capillaries. Traditionally, HUS was classified in 2 forms: Typical HUS, most frequently occurring in children and caused by Shiga-toxin-producing bacteria, and atypical HUS (aHUS). aHUS is associated with mutations in complement genes in 50-60% of patients and has worse prognosis, with the majority of patients developing end stage renal disease. After kidney transplantation HUS may develop as a recurrence of aHUS or as de novo disease. Over the last years, many studies have demonstrated that complement dysregulation underlies the endothelial damage that triggers the development of TMA in most of these patients. Advances in our understanding of the pathogenic mechanisms of aHUS, together with the availability of novel therapeutic options, will enable better strategies for the early diagnosis and etiological treatment, which are changing the natural history of aHUS. This review summarizes the aHUS clinical entity and describes the role of complement dysregulation in the pathogenesis of aHUS. Finally, we review the differential diagnosis and the therapeutic options available to patients with aHUS. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  7. Persistent complement activation on tumor cells in breast cancer.

    PubMed Central

    Niculescu, F.; Rus, H. G.; Retegan, M.; Vlaicu, R.

    1992-01-01

    The neoantigens of the C5b-9 complement complex, IgG, C3, C4, S-protein/vitronectin, fibronectin, and macrophages were localized on 17 samples of breast cancer and on 6 samples of benign breast tumors using polyclonal or monoclonal antibodies and the streptavidin-biotin-peroxidase technique. All the tissue samples with carcinoma in each the TNM stages presented C5b-9 deposits on the membranes of tumor cells, thin granules on cell remnants, and diffuse deposits in the necrotic areas. When chemotherapy and radiation therapy preceded surgery, C5b-9 deposits were more intense and extended. The C5b-9 deposits were absent in all the samples with benign lesions. S-protein/vitronectin was present as fibrillar deposits in the connective tissue matrix and as diffuse deposits around the tumor cells, less intense and extended than fibronectin. IgG, C3, and C4 deposits were present only in carcinoma samples. The presence of C5b-9 deposits is indicative of complement activation and its subsequent pathogenetic effects in breast cancer. Images Figure 1 PMID:1374587

  8. Expression of activated molecules on CD5(+)B lymphocytes in autoimmune hemolytic anemia.

    PubMed

    Zhu, Hongli; Xu, Wenyan; Liu, Hong; Wang, Huaquan; Fu, Rong; Wu, Yuhong; Qu, Wen; Wang, Guojin; Guan, Jing; Song, Jia; Xing, Limin; Shao, Zonghong

    2016-05-01

    To investigate the expression of activation molecules on CD5(+)B lymphocytes in peripheral blood of autoimmune hemolytic anemia (AIHA)/Evans patients. The expression of CD80, CD86, and CD69 on CD5(+)B lymphocytes was detected using flow cytometry in 30 AIHA/Evans patients, 18 normal controls (NC) and nine chronic lymphocytic leukemia (CLL) patients. CD80 on CD5(+)B lymphocytes in untreated patients was higher than that in remission patients (P < 0.05), NC (P < 0.01) and CLL patients (P < 0.01). CD80 on CD5(+)B lymphocytes was higher than that on CD5(-)B lymphocytes in untreated patients (P > 0.05), but lower than those of CD5(-)B lymphocytes in remission patients and NC (P < 0.05). CD86 on CD5(+)B lymphocytes of untreated patients was higher than that of remission patients (P < 0.05), NC (P < 0.01). CD86 on CD5(+)B lymphocytes of CLL was higher than that of NC, remission (P < 0.05), and untreated patients (P > 0.05). CD80 and CD86 on CD5(+)B lymphocytes was negatively correlated with hemoglobin (HB), C3, C4 (P < 0.05) and positively correlated with reticulocyte (Ret) (P < 0.05). CD69 on CD5(+) and CD5(-)B lymphocytes of CLL was higher than those of AIHA/Evans patients and NC (P < 0.05). The active molecules on CD5(+)B lymphocytes in peripheral blood of AIHA/Evans patients differ from those on CD5(-) and clonal CD5(+)B lymphocytes.

  9. Complement factor B activation in patients with preeclampsia.

    PubMed

    Velickovic, Ivan; Dalloul, Mudar; Wong, Karen A; Bakare, Olufunke; Schweis, Franz; Garala, Maya; Alam, Amit; Medranda, Giorgio; Lekovic, Jovana; Shuaib, Waqas; Tedjasukmana, Andreas; Little, Perry; Hanono, Daniel; Wijetilaka, Ruvini; Weedon, Jeremy; Lin, Jun; Toledano, Roulhac d'Arby; Zhang, Ming

    2015-06-01

    Preeclampsia is a leading cause of maternal and fetal morbidity and mortality. Bb, the active fragment of complement factor B (fB), has been reported to be a predictor of preeclampsia. However, conflicting results have been found by some investigators. We hypothesized that the disagreement in findings may be due to the racial/ethnic differences among various study groups, and that fB activation is significant in women of an ethnic minority with preeclampsia. We investigated the maternal and fetal levels of Bb (the activated fB fragment) in pregnant women of an ethnic minority with or without preeclampsia. We enrolled 291 pregnant women (96% of an ethnic minority, including 78% African-American). Thirteen percent of these were diagnosed with preeclampsia. Maternal venous blood was collected from all participants together with fetal umbilical cord blood samples from 154 deliveries in the 291 women. The results were analyzed using the Mann-Whitney U test and multivariate analyses. Maternal Bb levels were significantly higher in the preeclamptic group than in the nonpreeclamptic group. Levels of Bb in fetal cord blood were similar in both groups. Subgroup analyses of African-American patients' results confirmed the study hypothesis that there would be a significant increase in Bb in the maternal blood of the preeclamptic group and no increase in Bb in the fetal cord blood of this group. These results suggest that a maternal immune response through complement fB might play a role in the development of preeclampsia, particularly in African-American patients. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Management of hemolytic uremic syndrome.

    PubMed

    Loirat, Chantal; Saland, Jeffrey; Bitzan, Martin

    2012-03-01

    2011 has been a special year for hemolytic uremic syndrome (HUS): on the one hand, the dramatic epidemic of Shiga toxin producing E. coli -associated HUS in Germany brought the disease to the attention of the general population, on the other hand it has been the year when eculizumab, the first complement blocker available for clinical practice, was demonstrated as the potential new standard of care for atypical HUS. Here we review the therapeutic options presently available for the various forms of hemolytic uremic syndrome and show how recent knowledge has changed the therapeutic approach and prognosis of atypical HUS. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  11. Human L-ficolin, a Recognition Molecule of the Lectin Activation Pathway of Complement, Activates Complement by Binding to Pneumolysin, the Major Toxin of Streptococcus pneumoniae

    PubMed Central

    Ali, Youssif M.; Kenawy, Hany I.; Muhammad, Adnan; Sim, Robert B.

    2013-01-01

    The complement system is an essential component of the immune response, providing a critical line of defense against different pathogens including S. pneumoniae. Complement is activated via three distinct pathways: the classical (CP), the alternative (AP) and the lectin pathway (LP). The role of Pneumolysin (PLY), a bacterial toxin released by S. pneumoniae, in triggering complement activation has been studied in vitro. Our results demonstrate that in both human and mouse sera complement was activated via the CP, initiated by direct binding of even non-specific IgM and IgG3 to PLY. Absence of CP activity in C1q−/− mouse serum completely abolished any C3 deposition. However, C1q depleted human serum strongly opsonized PLY through abundant deposition of C3 activation products, indicating that the LP may have a vital role in activating the human complement system on PLY. We identified that human L-ficolin is the critical LP recognition molecule that drives LP activation on PLY, while all of the murine LP recognition components fail to bind and activate complement on PLY. This work elucidates the detailed interactions between PLY and complement and shows for the first time a specific role of the LP in PLY-mediated complement activation in human serum. PMID:24349316

  12. Biological effects of short-term, high-concentration exposure to methyl isocyanate. VI. In vitro and in vivo complement activation studies.

    PubMed Central

    Kolb, W P; Savary, J R; Troup, C M; Dodd, D E; Tamerius, J D

    1987-01-01

    The ability of MIC to induce complement activation in vitro and in vivo was investigated. For the in vitro studies, both human and guinea pig serum or EDTA-plasma samples were exposed to 1167 to 1260 ppm MIC vapor for 15 min at room temperature. The human serum samples exposed to MIC showed significant reductions in Factor B, C2, C4, C3, C5, and total hemolytic complement CH50 activity levels. C6 functional activity was unaffected. The C3, C5, and CH50 functional activities in guinea pig serum (the only functional tests conducted on these samples) were more sensitive to MIC-mediated reduction than the corresponding activity reductions observed in the human serum samples. The human and single guinea pig EDTA-plasma samples exposed to MIC vapor showed no evidence of C3 consumption but did show significant reductions in CH50 levels. Thus, MIC vapor was able to activate, and thereby reduce serum complement C3 activity in vitro by a complement-dependent process. However, the data suggest at least one complement component other than C3 was inactivated in EDTA-plasma by a complement-independent mechanism. For the in vivo studies, five pairs of guinea pigs were exposed to 644 to 702 ppm MIC vapor until one of the pair died (11-15 min). MIC exposure was then discontinued, the surviving guinea pig was sacrificed, and EDTA-plasma was obtained from both animals and analyzed for complement consumption.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3622434

  13. Acute kidney injury in a patient with hemolytic anemia and thrombocytopenia.

    PubMed

    Breunig, Michael; Lalama, Miguel; Rivard, Gabrielle; Kashiwagi, Deanne; Cornell, Lynn

    2016-11-01

    Atypical hemolytic uremic syndrome (HUS) is clinically difficult to distinguish from HUS and thrombotic thrombocytopenic purpura. Atypical HUS results from dysregulation of complement activation causing thrombotic microangiopathy affecting multiple organ systems. Atypical HUS is associated with high morbidity and mortality, making early recognition and appropriate therapy necessary to improve patient outcomes.

  14. Chemical analysis and hemolytic activity of the fava bean aglycon divicine.

    PubMed

    McMillan, D C; Schey, K L; Meier, G P; Jollow, D J

    1993-01-01

    Divicine is an unstable aglycon metabolite of the fava bean pyrimidine beta-glucoside vicine. Divicine has long been thought to be a mediator of an acute hemolytic crisis, known as favism, in susceptible individuals who ingest fava beans (Vicia faba). However, a recent report has questioned the chemical identity of the divicine that was used in most of the studies on divicine hemotoxicity. The present study was undertaken to examine the hemolytic potential of synthetic divicine. Divicine was synthesized and its identity and purity were confirmed by HPLC, mass spectrometry, and NMR spectroscopy. The stability and redox behavior of divicine, under physiological conditions, were examined by HPLC and cyclic voltammetry. The data indicate that divicine is readily oxidized under aerobic conditions; however, it was sufficiently stable at pH 7.4 to permit its experimental manipulation. When 51Cr-labeled rat erythrocytes were exposed in vitro to the parent glucoside, vicine (5 mM), and then readministered to rats, no decrease in erythrocyte survival was observed. In contrast, erythrocyte survival was dramatically reduced by in vitro exposure to divicine (1.5 mM). These data demonstrate that divicine is a direct-acting hemolytic agent and thus may be a mediator of the hemolytic crisis induced by fava bean ingestion.

  15. Glycoproteins, antigens, and regulation of complement activation on the surface of the protozoan parasite Trypanosoma lewisi: implications for immune evasion

    SciTech Connect

    Sturtevant, J.E.

    1985-01-01

    The surface antigens and glycoproteins of the rat parasitic protozoan, Trypanosoma lewisi were characterized. Radioiodination with /sup 125/I identified 10 out of more 40 polypeptides separated on sodium dodecyl sulfate polyacrylamide gel electrophoresis. All of these components were identified as glycoproteins by peroxidase-conjugated Conconavalin A (HR-Con A) lectin affinoblotting. This analysis detected that quantitative but not qualitative changes occurred during infection. Localization of most of the reactive determinants was indicated by immunoblotting extracts of radioiodinated T. lewisi. Changes in the antigenicity as related to survival in the host are discussed. The presence of IgG and IgM on the surface of T. lewisi isolated from intact and ..gamma..-irradiated rats (irr.) and that determinants bind Ig from uninfected rat sera (NRS) was indicated by flow cytometric analysis. Immunoblotting identified the major NRS IgG binding component as the 74 kd surface glycoprotein. Complement component C3 deposition during infection was indicated by flow cytometric analysis and immunoblotting. Incubation of intact T. lewisi with normal human sera indicated that C3, C5, and factor B deposition was Mg/sup 2 +/ dependent, Ca/sup 2 +/ independent and deposited C3 was rapidly processed to hemolytically inactive fragments. Radioiodination of intact and protease T. lewisi after cultivation identified three components which correlate with resistance to lysis. This suggests that surface moieties on intact T. lewisi modulate host complement activity by restricting C3/C5 convertase activity.

  16. In vitro C3 deposition on Cryptococcus capsule occurs via multiple complement activation pathways.

    PubMed

    Mershon-Shier, Kileen L; Vasuthasawat, Alex; Takahashi, Kazue; Morrison, Sherie L; Beenhouwer, David O

    2011-09-01

    Complement can be activated via three pathways: classical, alternative, and lectin. Cryptococcus gattii and Cryptococcus neoformans are closely related fungal pathogens possessing a polysaccharide capsule composed mainly of glucuronoxylomannan (GXM), which serves as a site for complement activation and deposition of complement components. We determined C3 deposition on Cryptococcus spp. by flow cytometry and confocal microscopy after incubation with serum from C57BL/6J mice as well as mice deficient in complement components C4, C3, factor B, and mannose binding lectin (MBL). C. gattii and C. neoformans activate complement in EGTA-treated serum indicating that they can activate the alternative pathway. However, complement activation was seen with factor B(-/-) serum suggesting activation could also take place in the absence of a functional alternative pathway. Furthermore, we uncovered a role for C4 in the alternative pathway activation by Cryptococcus spp. We also identified an unexpected and complex role for MBL in complement activation by Cryptococcus spp. No complement activation occurred in the absence of MBL-A and -C proteins although activation took place when the lectin binding activity of MBL was disrupted by calcium chelation. In addition, alternative pathway activation by C. neoformans required both MBL-A and -C, while either MBL-A or -C was sufficient for alternative pathway activation by C. gattii. Thus, complement activation by Cryptococcus spp. can take place through multiple pathways and complement activation via the alternative pathway requires the presence of C4 and MBL proteins. Published by Elsevier Ltd.

  17. Elastase and metalloproteinase activities regulate soluble complement receptor 1 release.

    PubMed

    Sadallah, S; Hess, C; Miot, S; Spertini, O; Lutz, H; Schifferli, J A

    1999-11-01

    Complement receptor 1 (CR1) is cleaved from the surface of polymorphonuclear cells (PMN) in the membrane-proximal region to yield a soluble fragment (sCR1) that contains the functional domains. The enzymes involved in this cleavage are produced by the PMN itself, since in vitro stimulation of purified PMN is followed by sCR1 release. Purified human neutrophil elastase (HNE) cleaved CR1 from erythrocytes and urinary vesicles originating from podocytes and enhanced tenfold the cleavage of CR1 from activated PMN. The largest fragment released from PMN by HNE was identical in size to CR1 shed spontaneously. The CR1 fragments cleaved from erythrocytes were functional. The shedding of sCR1 by activated PMN was inhibited by phenylmethylsulfonyl fluoride (80 +/- 10%), alpha1-antiprotease (50 +/- 5%) and elafin (60 +/- 5%). Furthermore the cleavage was blocked by the metalloprotease inhibitor 1,10-phenanthroline (70 +/- 6 %) as well as by a monoclonal antibody against human neutrophil collagenase MMP8 (40 +/- 10%). Maximal inhibition of sCR1 shedding was obtained by a combination of 1,10-phenanthroline with elafin (86 +/- 6%). These inhibitors had no effect on L-selectin shedding, indicating that the cleavage of CR1 was specific. In conclusion, elastase or elastase-like activity may be responsible for the shedding of functional sCR1 in vivo, and this activity is controlled by the local release of PMN metalloproteases and alpha1antiprotease.

  18. Substitution of a single amino acid (aspartic acid for histidine) converts the functional activity of human complement C4B to C4A.

    PubMed Central

    Carroll, M C; Fathallah, D M; Bergamaschini, L; Alicot, E M; Isenman, D E

    1990-01-01

    The C4B isotype of the fourth component of human complement (C4) displays 3- to 4-fold greater hemolytic activity than does its other isotype C4A. This correlates with differences in their covalent binding efficiencies to erythrocytes coated with antibody and complement C1. C4A binds to a greater extent when C1 is on IgG immune aggregates. The differences in covalent binding properties correlate only with amino acid changes between residues 1101 and 1106 (pro-C4 numbering)--namely, Pro-1101, Cys-1102, Leu-1105, and Asp-1106 in C4A and Leu-1101, Ser-1102, Ile-1105, and His-1106 in C4B, which are located in the C4d region of the alpha chain. To more precisely identify the residues that are important for the functional differences, C4A-C4B hybrid proteins were constructed by using recombinant DNA techniques. Comparison of these by hemolytic assay and binding to IgG aggregates showed that the single substitution of aspartic acid for histidine at position 1106 largely accounted for the change in functional activity and nature of the chemical bond formed (ester vs. amide). Surprisingly, substitution of a neutral residue, alanine, for histidine at position 1106 resulted in an increase in binding to immune aggregates without subsequent reduction in the hemolytic activity. This result strongly suggests that position 1106 is not "catalytic" as previously proposed but interacts sterically/electrostatically with potential acceptor sites and serves to "select" binding sites on potential acceptor molecules. Images PMID:2395880

  19. Cell-Free DNA and DNase Activity in Dogs with Immune-Mediated Hemolytic Anemia.

    PubMed

    Jeffery, U; Ruterbories, L; Hanel, R; LeVine, D N

    2017-09-01

    Immune-mediated hemolytic anemia (IMHA) in dogs has a high risk of thrombosis and is associated with marked neutrophilia and necrosis. Cell death and release of neutrophil extracellular traps contribute to increased serum concentrations of cell-free DNA, and in human autoimmune disease reduced DNase activity further increases cell-free DNA. Free DNA in blood has prothrombotic properties and could contribute to hypercoagulability in IMHA. Cell-free DNA is elevated and DNase activity reduced in dogs with IMHA compared to healthy dogs. Dogs presenting to two referral hospitals with IMHA (n = 28) and healthy controls (n = 20). Prospective observational study. Blood was collected and death and thrombotic events occurring in the first 14 days after hospitalization recorded. DNA was extracted from plasma with a commercial kit and quantified by PicoGreen fluorescence. DNase activity of serum was measured by radial diffusion assay. Cell-free DNA was significantly higher in cases (median: 45 ng/mL, range: 10-2334 ng/mL) than controls (26 ng/mL, range 1-151 ng/mL, P = 0.0084). DNase activity was not different between cases and controls (P = 0.36). Four cases died and there were five suspected or confirmed thrombotic events. Cell-free DNA concentration was associated with death (odds ratio for upper quartile versus lower 3 quartiles: 15; 95% confidence interval 1.62-201; P = 0.03) but not thrombosis (P = 0.57). Cell-free DNA is elevated in dogs with IMHA and likely reflects increased release rather than impaired degradation of DNA. Cell-free DNA concentration is potentially associated with death and might be a prognostic indicator, but this requires confirmation in a larger population. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  20. The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity

    PubMed Central

    Shewell, Lucy K.; Harvey, Richard M.; Higgins, Melanie A.; Day, Christopher J.; Hartley-Tassell, Lauren E.; Chen, Austen Y.; Gillen, Christine M.; James, David B. A.; Alonzo, Francis; Torres, Victor J.; Walker, Mark J.; Paton, Adrienne W.; Paton, James C.; Jennings, Michael P.

    2014-01-01

    The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a Kd of 1.88 × 10−5 M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism. PMID:25422425

  1. The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity.

    PubMed

    Shewell, Lucy K; Harvey, Richard M; Higgins, Melanie A; Day, Christopher J; Hartley-Tassell, Lauren E; Chen, Austen Y; Gillen, Christine M; James, David B A; Alonzo, Francis; Torres, Victor J; Walker, Mark J; Paton, Adrienne W; Paton, James C; Jennings, Michael P

    2014-12-09

    The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a K(d) of 1.88 × 10(-5) M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism.

  2. Variants in Complement Factor H and Complement Factor H-Related Protein Genes, CFHR3 and CFHR1, Affect Complement Activation in IgA Nephropathy

    PubMed Central

    Zhu, Li; Zhai, Ya-Ling; Wang, Feng-Mei; Hou, Ping; Lv, Ji-Cheng; Xu, Da-Min; Shi, Su-Fang; Liu, Li-Jun; Yu, Feng; Zhao, Ming-Hui; Novak, Jan; Gharavi, Ali G.

    2015-01-01

    Complement activation is common in patients with IgA nephropathy (IgAN) and associated with disease severity. Our recent genome-wide association study of IgAN identified susceptibility loci on 1q32 containing the complement regulatory protein-encoding genes CFH and CFHR1–5, with rs6677604 in CFH as the top single-nucleotide polymorphism and CFHR3–1 deletion (CFHR3–1∆) as the top signal for copy number variation. In this study, to explore the clinical effects of variation in CFH, CFHR3, and CFHR1 on IgAN susceptibility and progression, we enrolled two populations. Group 1 included 1178 subjects with IgAN and available genome-wide association study data. Group 2 included 365 subjects with IgAN and available clinical follow-up data. In group 1, rs6677604 was associated with mesangial C3 deposition by genotype–phenotype correlation analysis. In group 2, we detected a linkage between the rs6677604-A allele and CFHR3–1∆ and found that the rs6677604-A allele was associated with higher serum levels of CFH and lower levels of the complement activation split product C3a. Furthermore, CFH levels were positively associated with circulating C3 levels and negatively associated with mesangial C3 deposition. Moreover, serum levels of the pathogenic galactose-deficient glycoform of IgA1 were also associated with the degree of mesangial C3 deposition in patients with IgAN. Our findings suggest that genetic variants in CFH, CFHR3, and CFHR1 affect complement activation and thereby, predispose patients to develop IgAN. PMID:25205734

  3. Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus

    PubMed Central

    Lee, Jin-Hyung; Kim, Yong-Guy; Yong Ryu, Shi; Lee, Jintae

    2016-01-01

    Staphylococcal biofilms are problematic and play a critical role in the persistence of chronic infections because of their abilities to tolerate antimicrobial agents. Thus, the inhibitions of biofilm formation and/or toxin production are viewed as alternative means of controlling Staphylococcus aureus infections. Here, the antibiofilm activities of 560 purified phytochemicals were examined. Alizarin at 10 μg/ml was found to efficiently inhibit biofilm formation by three S. aureus strains and a Staphylococcus epidermidis strain. In addition, two other anthraquinones purpurin and quinalizarin were found to have antibiofilm activity. Binding of Ca2+ by alizarin decreased S. aureus biofilm formation and a calcium-specific chelating agent suppressed the effect of calcium. These three anthraquinones also markedly inhibited the hemolytic activity of S. aureus, and in-line with their antibiofilm activities, increased cell aggregation. A chemical structure-activity relationship study revealed that two hydroxyl units at the C-1 and C-2 positions of anthraquinone play important roles in antibiofilm and anti-hemolytic activities. Transcriptional analyses showed that alizarin repressed the α-hemolysin hla gene, biofilm-related genes (psmα, rbf, and spa), and modulated the expressions of cid/lrg genes (the holin/antiholin system). These findings suggest anthraquinones, especially alizarin, are potentially useful for controlling biofilm formation and the virulence of S. aureus. PMID:26763935

  4. In vivo Bactericidal Activity of Mouse Complement Against Esch. coli

    PubMed Central

    Medhurst, Fiona A.; Glynn, A. A.

    1970-01-01

    Live Escherichia coli of complement sensitive and resistant strains were labelled with 14C and injected i.v. into normal mice and into a co-isogenic strain deficient in C′5. The fate of the bacteria was followed by determining total and viable counts in blood samples taken at intervals over a 30 min. period and in homogenates of the liver, spleen, lungs and kidneys taken at the end of the experiment. The results show that sensitive bacteria can be killed by mouse complement within the circulation and suggest that complement may also play a part in the intracellular killing of Esch. coli in some organs. PMID:4923650

  5. A novel anti-inflammatory activity of lysozyme: modulation of serum complement activation.

    PubMed Central

    Ogundele, M O

    1998-01-01

    Lysozyme is an ubiquitous enzyme found in most biological secretions and leukocytes. This study was aimed at investigating its interaction with other inflammatory mediators on mucosa surfaces, particularly the complement system. Lysozyme has been shown in our present study, to inhibit the haemolytic activity of serum complement in a dose-dependent fashion, when tested within the levels present in normal and inflamed breast-milk samples, and other mucosal secretions. This represents a new anti-inflammatory action of lysozyme in relation to the serum complement, and the exact mode of the interaction need further studies. PMID:9883972

  6. High Antimicrobial Effectiveness with Low Hemolytic and Cytotoxic Activity for PEG/Quaternary Copolyoxetanes

    PubMed Central

    2015-01-01

    The alkyl chain length of quaternary ammonium/PEG copolyoxetanes has been varied to discern effects on solution antimicrobial efficacy, hemolytic activity and cytotoxicity. Monomers 3-((4-bromobutoxy)methyl)-3-methyloxetane (BBOx) and 3-((2-(2-methoxyethoxy)ethoxy)methyl)-3-methyloxetane (ME2Ox) were used to prepare precursor P[(BBOx)(ME2Ox)-50:50–4 kDa] copolyoxetane via cationic ring opening polymerization. The 1:1 copolymer composition and Mn (4 kDa) were confirmed by 1H NMR spectroscopy. After C–Br substitution by a series of tertiary amines, ionic liquid Cx-50 copolyoxetanes were obtained, where 50 is the mole percent of quaternary repeat units and “x” is quaternary alkyl chain length (2, 6, 8, 10, 12, 14, or 16 carbons). Modulated differential scanning calorimetry (MDSC) studies showed Tgs between −40 and −60 °C and melting endotherms for C14–50 and C16–50. Minimum inhibitory concentrations (MIC) were determined for Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. A systematic dependence of MIC on alkyl chain length was found. The most effective antimicrobials were in the C6–50 to C12–50 range. C8–50 had better overall performance with MICs of 4 μg/mL, E. coli; 2 μg/mL, S. aureus; and 24 μg/mL, P. aeruginosa. At 5 × MIC, C8–50 effected >99% kill in 1 h against S. aureus, E. coli, and P. aeruginosa challenges of 108 cfu/mL; log reductions (1 h) were 7, 3, and 5, respectively. To provide additional insight into polycation interactions with bacterial membranes, a geometric model based on the dimensions of E. coli is described that provides an estimate of the maximum number of polycations that can chemisorb. Chain dimensions were estimated for polycation C8–50 with a molecular weight of 5 kDa. Considering the approximations for polycation chemisorption (PCC), it is surprising that a calculation based on geometric considerations gives a C8–50 concentration within a factor of 2 of the MIC, 4.0 (±1.2) μg/mL for

  7. An effective treatment of atypical hemolytic uremic syndrome with plasma exchange and eculizumab: A case report.

    PubMed

    Sengul Samanci, Nilay; Ayer, Mesut; Ergen, Abdulkadir; Ozturk, Savas

    2015-06-01

    Atypical hemolytic uremic syndrome is a rare thrombotic microangiopathy caused by chronic defective regulation of the complement activation. This activation results in systemic endothelial damage leading to renal failure. Eculizumab, an anti-C5 antibody, is effective in limiting complement activation in patients with aHUS and has recently came out as a therapeutic option for aHUS. Here we present a case showing that first-line eculizumab treatment successfully prevents the induction of the terminal complement cascade and blocked the progression of thrombotic microangiopathy in aHUS.

  8. Evaluation of antioxidant, anti-hemolytic and anticancer activity of various solvent extracts of Acacia hydaspica R. Parker aerial parts.

    PubMed

    Afsar, Tayyaba; Razak, Suhail; Khan, Muhammad Rashid; Mawash, Saadia; Almajwal, Ali; Shabir, Maria; Haq, Ihsan Ul

    2016-07-29

    Acacia hydaspica R. Parker, family leguminosae, is a medicinally important plant. Different plant parts are used in various ailments in folk medicine. The current study aimed at investigating the in vitro antioxidant, anti-hemolytic and anticancer activity of A. hydaspica. Antioxidant potential was assessed using DPPH, ABTS and •OH, scavenging of H2O2, inhibition of lipid peroxidation and β-carotene bleaching inhibition assays. Anti-hemolytic activity was assessed using H2O2 induced hemolysis of RBCs. Anticancer potential was assessed using MTT assay. Spectrometric methods and HPLC-DAD analysis was performed for phytochemical screening. EC50 values based on reduction of DPPH, ABTS and •OH, scavenging of H2O2, inhibition of lipid peroxidation and β-carotene bleaching for AHB, AHE and AHM were generally lower manifesting potential antiradical capacities. The fractions also exhibited significant (P <0.001) anti-hemolytic potential. Regarding IC50 values for anticancer activity against HCC-38 and MDA-MB-361 cancer cell lines; AHB, AHE and AHM exhibited significant (P <0.001) cyto-selection indices. Plant extracts showed no cytotoxicity against normal Vero cells (IC50 > 250 μg/ml). While significant (P <0.001) cytotoxicity was elicited by these extract/fractions against cancer cell lines. AHE was the most effective and IC50 was found to be 29.9 ± 0.909 μg/ml (SI = 9.83) and 39.5 ± 0.872 μg/ml (SI = 7.44) against MDA-MB-361 and HCC-38 cancer cells respectively. Higher amounts of TPC and TFC were exhibited by AHE and AHB as compared to other fractions. Gallic acid, catechin and myricetin were identified in AHE whereas gallic acid and catechin were identified in AHB by HPLC. The presence of bioactive constituents in AHE and AHB might be responsible for antioxidant, anti-hemolytic and anticancer activities.

  9. [Ligand spectrum of hemoglobin activity of methemoglobin-reductase and hemolytic resistance of erythrocytes during chronic exposure to nitrates].

    PubMed

    Kiiza, D A; Artiukh, V P; Starodub, N F; Khmel'nitskiĭ, G A

    1992-01-01

    It is found that nitrite-ions formed as a result of biotransformation during long term feeding of calves with sodium and potassium nitrates induce changes in some biochemical parameters of blood, including HS-glutathione content in erythrocytes, acid hemolytic resistance of erythrocytes, activity of NAD-dependent methemoglobin-reductase, correlation of ligand forms of hemoglobin and its total content. It is supposed that the observed changes are of an adaptational character and, as a whole, provide for the optimization of both quantitative and qualitative composition of population of erythroid cells at the expense of erythropoiesis intensification.

  10. Complement-inactivating Proteinase(s) from Clostridium histolyticum1

    PubMed Central

    Goldlust, Marvin B.; Luzzati, Alma; Levine, Lawrence

    1968-01-01

    A proteinase fraction inhibiting the hemolytic activity of guinea pig complement was obtained from supernatant fluids of Clostridium histolyticum cultures and purified 150- to 350-fold by ammonium sulfate precipitation, Sephadex G-75 gel filtration, and diethylaminoethyl cellulose chromatography. An assay was developed based on the inactivation of hemolytic complement. Partially purified anticomplementary preparations were active against casein and were capable of “solubilizing” Escherichia coli endotoxin. Two components were found by differential heat inactivation, with complement and casein as substrates, but only one of these components was active against endotoxin. The more heat-stable activity, showing 50% inactivation at about 47 C, was characterized as to pH and ionic strength optima and sensitivity to reagents such as cysteine, β-mercaptoethanol, ethylenediaminetetraacetate, and heavy metals. PMID:5724966

  11. Common polymorphisms in C3, factor B, and factor H collaborate to determine systemic complement activity and disease risk

    PubMed Central

    Heurich, Meike; Martínez-Barricarte, Ruben; Francis, Nigel J.; Roberts, Dawn L.; Rodríguez de Córdoba, Santiago; Morgan, B. Paul; Harris, Claire L.

    2011-01-01

    Common polymorphisms in complement alternative pathway (AP) proteins C3 (C3R102G), factor B (fBR32Q), and factor H (fHV62I) are associated with age-related macular degeneration (AMD) and other pathologies. Our published work showed that fBR32Q influences C3 convertase formation, whereas fHV62I affects factor I cofactor activity. Here we show how C3R102G (C3S/F) influences AP activity. In hemolysis assays, C3102G activated AP more efficiently (EC50 C3102G: 157 nM; C3102R: 191 nM; P < 0.0001). fB binding kinetics and convertase stability were identical, but native and recombinant fH bound more strongly to C3b102R (KD C3b102R: 1.0 μM; C3b102G: 1.4 μM; P < 0.0001). Accelerated decay was unaltered, but fH cofactor activity was reduced for C3b102G, favoring AP amplification. Combining disease “risk” variants (C3102G, fB32R, and fH62V) in add-back assays yielded sixfold higher hemolytic activity compared with “protective” variants (C3102R, fB32Q, and fH62I; P < 0.0001). These data introduce the concept of a functional complotype (combination of polymorphisms) defining complement activity in an individual, thereby influencing susceptibility to AP-driven disease. PMID:21555552

  12. Trypsin action on the growth of Sendai virus in tissue culture cells. II. Restoration of the hemolytic activity if L cell-borne Sendai virus by trypsin.

    PubMed

    Homma, M

    1972-05-01

    Sendai virus grown in L cells (L Sendai) caused little hemolysis, whereas the one grown in fertile eggs (egg Sendai) induced distinct hemolysis. Enzymatic treatment with trypsin at low concentrations markedly enhanced the hemolytic activity of L Sendai but not that of egg Sendai. Both sonic treatment and freezing and thawing greatly enhanced the hemolytic activity of egg Sendai, but they gave little enhancing effect on that of L Sendai which could, however, be greatly increased by successive treatment with trypsin. Dose response and kinetic experiments on the trypsin effect have suggested that a similarity exists in the inhibitory mechanism of infectivity for L cells and hemolytic activity of L Sendai. Treatment of L cells with trypsin at later stages of infection released a highly hemolytic L Sendai from those cells. The present study, by reference to the density centrifugation studies in a previous report (4), has shown that a variation in infectivity for L cells and in the hemolytic activity of L Sendai is a type of host-controlled modification distinguishable from the density variation.

  13. Inhibitory role of acyl homoserine lactones in hemolytic activity and viability of Streptococcus pyogenes M6 S165

    PubMed Central

    Saroj, Sunil D.; Holmer, Linda; Berengueras, Júlia M.; Jonsson, Ann-Beth

    2017-01-01

    Streptococcus pyogenes an adapted human pathogen asymptomatically colonizes the nasopharynx, among other polymicrobial communities. However, information on the events leading to the colonization and expression of virulence markers subject to interspecies and host-bacteria interactions are limited. The interference of acyl homoserine lactones (AHLs) with the hemolytic activity and viability of S. pyogenes M6 S165 was examined. AHLs, with fatty acid side chains ≥12 carbon atoms, inhibited hemolytic activity by downregulating the expression of the sag operon involved in the production of streptolysin S. Inhibitory AHLs upregulated the expression of transcriptional regulator LuxR. Electrophoretic mobility shift assays revealed the interaction of LuxR with the region upstream of sagA. AHL-mediated bactericidal activity observed at higher concentrations (mM range) was an energy-dependent process, constrained by the requirement of glucose and iron. Ferrichrome transporter FtsABCD facilitated transport of AHLs across the streptococcal membrane. The study demonstrates a previously unreported role for AHLs in S. pyogenes virulence. PMID:28303956

  14. Regulator of complement activation (RCA) gene cluster in Xenopus tropicalis.

    PubMed

    Oshiumi, Hiroyuki; Suzuki, Yuzuru; Matsumoto, Misako; Seya, Tsukasa

    2009-05-01

    Genome and expressed sequence tag information of Xenopus tropicalis suggested that short-consensus repeat (SCR)-containing proteins are encoded by three genes that are mapped within a 300-kb downstream of PFKFB2, which is a marker gene for the regulator of complement activation (RCA) loci in human and chicken. Based on this observation, we cloned the three cDNAs of these proteins using 3'- or 5'-RACE technique. Since their primary structures and locations of the proximity to the PFKFB2 locus, we named them amphibian RCA protein (ARC) 1, 2, and 3. Expression in human HEK293 or CHO cells suggested that ARC1 is a soluble protein of Mr approximately 67 kDa, ARC2 is a membrane protein with Mr 44 kDa, and ARC3 a secretary protein with a putative transmembrane region. They were N-glycosylated during maturation. In human and chicken RCA clusters, the order in which genes for soluble, GPI-anchored, and membrane forms of SCR proteins are arranged is from the distant to proximity to the PFKFB2 gene. However, the amphibian ARC1, 2, and 3 resembled one another and did not reflect the same order found in human and chicken RCA genes. This may be due to self-duplication of ARCs to form a family, and it evolved after the amphibia separated from the ancestor of the amniotes, which possessed soluble, GPI-anchored, and membrane forms of SCR protein members. Taken together, frog possesses a RCA locus, but the constitution of the ARC proteins differs from that of the amniotes with a unique self-resemblance.

  15. Relationship between heat-induced fibrillogenicity and hemolytic activity of thermostable direct hemolysin and a related hemolysin of Vibrio parahaemolyticus.

    PubMed

    Ohnishi, Kiyouhisa; Nakahira, Kumiko; Unzai, Satoru; Mayanagi, Kouta; Hashimoto, Hiroshi; Shiraki, Kentaro; Honda, Takeshi; Yanagihara, Itaru

    2011-05-01

    The formation of nonspecific ion channels by small oligomeric amyloid intermediates is toxic to the host's cellular membranes. Thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) are major virulence factors of Vibrio parahaemolyticus. We have previously reported the crystal structure of TDH tetramer with the central channel. We have also identified the molecular mechanism underlying the paradoxical responses to heat treatment of TDH, known as the Arrhenius effect, which is the reversible amyloidogenic property. In the present report, we describe the biophysical properties of TRH, which displays 67% amino acid similarity with TDH. Molecular modeling provided a good fit of the overall structure of TDH and TRH. Size-exclusion chromatography, ultracentrifugation, and transmission electron microscopy revealed that TRH formed tetramer in solution. These toxins showed similar hemolytic activity on red blood cells. However, TRH had less amyloid-like structure than TDH analyzed by thioflavin T-binding assay and far-UV circular dichroism spectra. These data indicated that amyloidogenicity upon heating is not essential for the membrane disruption of erythrocytes, but the maintenance of tetrameric structure is indispensable for the hemolytic activity of the TDH and TRH.

  16. Hemolytic uremic syndrome.

    PubMed

    Webster, Kathleen; Schnitzler, Eugene

    2014-01-01

    The thrombotic microangiopathies include both hemolytic uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP). Although debate exists as to whether these are separate entities or a spectrum of disease, both result in the clinical picture of thrombocytopenia, hemolytic anemia, and varying degrees of renal and neurologic involvement. Etiology of HUS includes diarrheal infection due to Shiga toxin-producing bacteria, complement deficiency, pneumococcal infection, and cobalamin deficiency. In disease ascribed to TTP, the main etiologic factor is deficiency of an enzyme known as a disintegrin-like and metalloprotease with thrombospondin type 1 repeats, number 13 (ADAMTS-13). The clinical manifestations may vary, but neurologic involvement can be significant, with reports of hypertensive encephalopathy, seizures, thrombosis and infarct. In nondiarrheal forms of disease, recurrence may occur and clinical diagnosis is essential in order to provide a targeted therapy for the suspected etiology. Therapies include supportive care, cobalamin supplementation, as well as plasma infusion and exchange. End stage renal disease may result and transplantation is curative for some forms of the disease. More recent research focuses on targeted immunotherapy to prevent autoantibody prevention. As of yet, there is no one cure for these potentially devastating diseases, and diagnosis and treatment selection presents a challenge to the clinician. © 2014 Elsevier B.V. All rights reserved.

  17. Complement activity is associated with disease severity in multifocal motor neuropathy

    PubMed Central

    Vlam, Lotte; Cats, Elisabeth A.; Harschnitz, Oliver; Jansen, Marc D.; Piepers, Sanne; Veldink, Jan Herman; Franssen, Hessel; Stork, Abraham C.J.; Heezius, Erik; Rooijakkers, Suzan H.M.; Herpers, Bjorn L.; van Strijp, Jos A.; van den Berg, Leonard H.

    2015-01-01

    Objective: To investigate whether high innate activity of the classical and lectin pathways of complement is associated with multifocal motor neuropathy (MMN) and whether levels of innate complement activity or the potential of anti-GM1 antibodies to activate the complement system correlate with disease severity. Methods: We performed a case-control study including 79 patients with MMN and 79 matched healthy controls. Muscle weakness was documented with Medical Research Council scale sum score and axonal loss with nerve conduction studies. Activity of the classical and lectin pathways of complement was assessed by ELISA. We also determined serum mannose-binding lectin (MBL) concentrations and polymorphisms in the MBL gene (MBL2) and quantified complement-activating properties of anti-GM1 IgM antibodies by ELISA. Results: Activity of the classical and lectin pathways, MBL2 genotypes, and serum MBL concentrations did not differ between patients and controls. Complement activation by anti-GM1 IgM antibodies was exclusively mediated through the classical pathway and correlated with antibody titers (p < 0.001). Logistic regression analysis showed that both high innate activity of the classical pathway of complement and high complement-activating capacity of anti-GM1 IgM antibodies were significantly associated with more severe muscle weakness and axonal loss. Conclusion: High innate activity of the classical pathway of complement and efficient complement-activating properties of anti-GM1 IgM antibodies are determinants of disease severity in patients with MMN. These findings underline the importance of anti-GM1 antibody–mediated complement activation in the pathogenesis and clinical course of MMN. PMID:26161430

  18. Detection and characterisation of Complement protein activity in bovine milk by bactericidal sequestration assay.

    PubMed

    Maye, Susan; Stanton, Catherine; Fitzgerald, Gerald F; Kelly, Philip M

    2015-08-01

    While the Complement protein system in human milk is well characterised, there is little information on its presence and activity in bovine milk. Complement forms part of the innate immune system, hence the importance of its contribution during milk ingestion to the overall defences of the neonate. A bactericidal sequestration assay, featuring a Complement sensitive strain, Escherichia coli 0111, originally used to characterise Complement activity in human milk was successfully applied to freshly drawn bovine milk samples, thus, providing an opportunity to compare Complement activities in both human and bovine milks. Although not identical in response, the levels of Complement activity in bovine milk were found to be closely comparable with that of human milk. Differential counts of Esch. coli 0111 after 2 h incubation were 6.20 and 6.06 log CFU/ml, for raw bovine and human milks, respectively - the lower value representing a stronger Complement response. Exposing bovine milk to a range of thermal treatments e.g. 42, 45, 65, 72, 85 or 95 °C for 10 min, progressively inhibited Complement activity by increasing temperature, thus confirming the heat labile nature of this immune protein system. Low level Complement activity was found, however, in 65 and 72 °C heat treated samples and in retailed pasteurised milk which highlights the outer limit to which high temperature, short time (HTST) industrial thermal processes should be applied if retention of activity is a priority. Concentration of Complement in the fat phase was evident following cream separation, and this was also reflected in the further loss of activity recorded in low fat variants of retailed pasteurised milk. Laboratory-based churning of the cream during simulated buttermaking generated an aqueous (buttermilk) phase with higher levels of Complement activity than the fat phase, thus pointing to a likely association with the milk fat globule membrane (MFGM) layer.

  19. Plasminogen Is a Complement Inhibitor*

    PubMed Central

    Barthel, Diana; Schindler, Susann; Zipfel, Peter F.

    2012-01-01

    Plasminogen is a 92-kDa single chain glycoprotein that circulates in plasma as a zymogen and when converted to proteolytically active plasmin dissolves preformed fibrin clots and extracellular matrix components. Here, we characterize the role of plasmin(ogen) in the complement cascade. Plasminogen binds the central complement protein C3, the C3 cleavage products C3b and C3d, and C5. Plasminogen binds to C3, C3b, C3d, and C5 via lysine residues, and the interaction is ionic strength-dependent. Plasminogen and Factor H bind C3b; however, the two proteins bind to different sites and do not compete for binding. Plasminogen affects complement action in multiple ways. Plasminogen enhanced Factor I-mediated C3b degradation in the presence of the cofactor Factor H. Plasminogen when activated to plasmin inhibited complement as demonstrated by hemolytic assays using either rabbit or sheep erythrocytes. Similarly, plasmin either in the fluid phase or attached to surfaces inhibited complement that was activated via the alternative and classical pathways and cleaved C3b to fragments of 68, 40, 30, and 17 kDa. The C3b fragments generated by plasmin differ in size from those generated by the complement protease Factor I, suggesting that plasmin-mediated C3b cleavage fragments lack effector function. Plasmin also cleaved C5 to products of 65, 50, 30, and 25 kDa. Thus, plasmin(ogen) regulates both complement and coagulation, the two central cascade systems of a vertebrate organism. This complement-inhibitory activity of plasmin provides a new explanation why pathogenic microbes utilize plasmin(ogen) for immune evasion and tissue penetration. PMID:22451663

  20. Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release.

    PubMed

    Samstad, Eivind O; Niyonzima, Nathalie; Nymo, Stig; Aune, Marie H; Ryan, Liv; Bakke, Siril S; Lappegård, Knut T; Brekke, Ole-Lars; Lambris, John D; Damås, Jan K; Latz, Eicke; Mollnes, Tom E; Espevik, Terje

    2014-03-15

    Inflammation is associated with development of atherosclerosis, and cholesterol crystals (CC) have long been recognized as a hallmark of atherosclerotic lesions. CC appear early in the atheroma development and trigger inflammation by NLRP3 inflammasome activation. In this study we hypothesized whether CC employ the complement system to activate inflammasome/caspase-1, leading to release of mature IL-1β, and whether complement activation regulates CC-induced cytokine production. In this study we describe that CC activated both the classical and alternative complement pathways, and C1q was found to be crucial for the activation. CC employed C5a in the release of a number of cytokines in whole blood, including IL-1β and TNF. CC induced minimal amounts of cytokines in C5-deficient whole blood, until reconstituted with C5. Furthermore, C5a and TNF in combination acted as a potent primer for CC-induced IL-1β release by increasing IL-1β transcripts. CC-induced complement activation resulted in upregulation of complement receptor 3 (CD11b/CD18), leading to phagocytosis of CC. Also, CC mounted a complement-dependent production of reactive oxygen species and active caspase-1. We conclude that CC employ the complement system to induce cytokines and activate the inflammasome/caspase-1 by regulating several cellular responses in human monocytes. In light of this, complement inhibition might be an interesting therapeutic approach for treatment of atherosclerosis.

  1. Probable systemic lupus erythematosus with cell-bound complement activation products (CB-CAPS).

    PubMed

    Lamichhane, D; Weinstein, A

    2016-08-01

    Complement activation is a key feature of systemic lupus erythematosus (SLE). Detection of cell-bound complement activation products (CB-CAPS) occurs more frequently than serum hypocomplementemia in definite lupus. We describe a patient with normocomplementemic probable SLE who did not fulfill ACR classification criteria for lupus, but the diagnosis was supported by the presence of CB-CAPS.

  2. The bacteria binding glycoprotein salivary agglutinin (SAG/gp340) activates complement via the lectin pathway.

    PubMed

    Leito, Jelani T D; Ligtenberg, Antoon J M; van Houdt, Michel; van den Berg, Timo K; Wouters, Diana

    2011-10-01

    Salivary agglutinin (SAG), also known as gp-340 and Deleted in Malignant Brain Tumours 1, is a glycoprotein that is present in tears, lung fluid and mucosal surfaces along the gastrointestinal tract. It is encoded by the Deleted in Malignant Brain Tumours 1 gene, a member of the Scavenger Receptor Cysteine Rich group B protein superfamily. SAG aggregates bacteria thus promoting their clearance from the oral cavity and activates the complement system. Complement proteins may enter the oral cavity in case of serum leakage, which occurs after mucosal damage. The purpose of this study was to investigate the mode of complement activation. We showed a dose-dependent C4 deposition on SAG-coated microplates showing that either the classical or lectin pathway of complement was activated. Antibodies against mannose binding lectin inhibited C4 deposition and SAG induced no C4 deposition in MBL deficient sera showing SAG activated complement through the MBL pathway. Periodate treatment of SAG abolished MBL pathway activation consistent with an involvement of SAG glycans in complement activation. This provides the first evidence for a role of SAG in complement activation through the MBL pathway and suggests a potential role of SAG as a complement activating factor at the mucosal epithelia. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Electroluminescent TCC, C3dg and fB/Bb epitope assays for profiling complement cascade activation in vitro using an activated complement serum calibration standard.

    PubMed

    van Vuuren, B Jansen; Bergseth, G; Mollnes, T E; Shaw, A M

    2014-01-15

    Electroluminescent assays for epitopes on the complement components C3dg, terminal complement complex (TCC) and factor B/Bb (fB/Bb) have been developed with capture and detection antibodies to produce detection limits C3dg=91±9ng/mL, TCC=3±0.1ng/mL and fB=55.7±0.1ng/mL. The assay performance was assessed against a series of zymosan and heat aggregated IgG (HAIgG) in vitro activations of complement using a calibrated activated complement serum (ACS) as calibration standard. The ACS standard was stable within 20% accuracy over a 6-month period with freeze-thaw cycles as required. Differential activation of the complement cascade was observed for TCC showing a pseudo-first order formation half-life of 3.5h after activation with zymosan. The C3dg activation fragment indicates a 10% total activation for both activation agents. The kinetic-epitope analysis for fB indicates that the capture epitope is on the fB/Bb protein fragment which can then become covered by the formation of C3bBb or C3bBbP complexes during the time course of the cascade.

  4. Complement activation is critical for placental ischemia-induced hypertension in the rat.

    PubMed

    Lillegard, Kathryn E; Johnson, Alex C; Lojovich, Sarah J; Bauer, Ashley J; Marsh, Henry C; Gilbert, Jeffrey S; Regal, Jean F

    2013-11-01

    Preeclampsia is a major obstetric problem defined by new-onset hypertension and proteinuria associated with compromised placental perfusion. Although activation of the complement system is increased in preeclampsia compared to normal pregnancy, it remains unclear whether excess complement activation is a cause or consequence of placental ischemia. Therefore, we hypothesized that complement activation is critical for placental ischemia-induced hypertension. We employed the reduced utero-placental perfusion pressure (RUPP) model of placental ischemia in the rat to induce hypertension in the third trimester and evaluated the effect of inhibiting complement activation with a soluble recombinant form of an endogenous complement regulator, human complement receptor 1 (sCR1; CDX-1135). On day 14 of a 21-day gestation, rats received either RUPP or Sham surgery and 15 mg/kg/day sCR1 or saline intravenously on days 14-18. Circulating complement component 3 decreased and complement activation product C3a increased in RUPP vs. Sham (p<0.05), indicating complement activation had occurred. Mean arterial pressure (MAP) measured on day 19 increased in RUPP vs. Sham rats (109.8±2.8 mmHg vs. 93.6±1.6 mmHg). Treatment with sCR1 significantly reduced elevated MAP in RUPP rats (98.4±3.6 mmHg, p<0.05) and reduced C3a production. Vascular endothelial growth factor (VEGF) decreased in RUPP compared to Sham rats, and the decrease in VEGF was not affected by sCR1 treatment. Thus, these studies have identified a mechanistic link between complement activation and the pregnancy complication of hypertension apart from free plasma VEGF and have identified complement inhibition as a potential treatment strategy for placental ischemia-induced hypertension in preeclampsia.

  5. Different hydroxyapatite magnetic nanoparticles for medical imaging: Its effects on hemostatic, hemolytic activity and cellular cytotoxicity.

    PubMed

    Laranjeira, Marta S; Moço, Ana; Ferreira, Jorge; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Ferreira, Paulo J; Monteiro, Fernando J

    2016-10-01

    Magnetic nanoparticles (MNPs) should be highly biocompatible, stable and safely eliminated from the body, and can therefore be successfully used in modern medicine. Synthetic hydroxyapatite (HAP) has well established biocompatible and non-inflammatory properties, as well as a highly stable and flexible structure that allows for an easy incorporation of magnetic ions. This study characterized and compared the in vitro cytotoxicity and hemocompatibility of hydroxyapatite MNPs doped with different ions (Gd(3+/)Fe(2+)/Fe(3+)/Co(2+)). HAP doped with 10% of Gd and Fe(III) presented the highest magnetic moments. Our results showed that Gd doped HAP nanoparticles are non-cytotoxic, hemocompatible, non-hemolytic and non-thrombogenic, in contrast with Fe(III) doped HAP that can be considered thrombogenic. For these reasons we propose that, Gd doped HAP nanoparticles have the most potential for application as a MRI contrast agents. However, use of Fe (III) doped HAP as MRI contrast agents should be further investigated.

  6. The effects of soluble recombinant complement receptor 1 on complement-mediated experimental glomerulonephritis.

    PubMed

    Couser, W G; Johnson, R J; Young, B A; Yeh, C G; Toth, C A; Rudolph, A R

    1995-05-01

    Complement is a major mediator of tissue injury in several types of glomerulonephritis. However, no therapeutic agents that inhibit complement activation are available for human use. sCR1 (TP10, BRL 55736) is a recombinant, soluble human complement receptor 1 (CR1) molecule lacking transmembrane and cytoplasmic domains that inhibits C3 and C5 convertase activity by preferentially binding C4b and C3b. To test the efficacy of sCR1 on complement-mediated glomerulonephritis, rats were pretreated with sCR1 (60 mg/kg per day) before and during the induction of three models of complement-dependent glomerulonephritis (concanavalin A and antithymocyte serum models of proliferative glomerulonephritis, passive Heyman nephritis). Daily sCR1 and complement hemolytic activity levels were measured, and renal histology and urine protein excretion were examined. Mean serum sCR1 levels of 100 to 200 micrograms/mL were maintained with a reduction in complement hemolytic activity to less than 15% in most animals. In the antithymocyte serum model, sCR1-treated animals had significant reductions in mesangiolysis, glomerular platelet and macrophage infiltrates, and proteinuria at 48 h. In the concanavalin A model, sCR1 significantly reduced glomerular C3 and fibrin deposits, platelet infiltrates, and proteinuria at 48 h. In passive Heymann nephritis, proteinuria was also significantly reduced (199 +/- 8.5 versus 125 +/- 16 mg/day, P < 0.002) at 5 days. It was concluded that sCR1 significantly reduces both morphologic and functional consequences of several different types of complement-mediated glomerulonephritis and deserves evaluation as a potential therapeutic agent in complement-mediated immune glomerular disease in humans.

  7. Critical appraisal of eculizumab for atypical hemolytic uremic syndrome

    PubMed Central

    Palma, Lilian M Pereira; Langman, Craig B

    2016-01-01

    The biology of atypical hemolytic uremic syndrome has been shown to involve inability to limit activation of the alternative complement pathway, with subsequent damage to systemic endothelial beds and the vasculature, resulting in the prototypic findings of a thrombotic microangiopathy. Central to this process is the formation of the terminal membrane attack complex C5b-9. Recently, application of a monoclonal antibody that specifically binds to C5, eculizumab, became available to treat patients with atypical hemolytic uremic syndrome, replacing plasma exchange or infusion as primary therapy. This review focuses on the evidence, based on published clinical trials, case series, and case reports, on the efficacy and safety of this approach. PMID:27110144

  8. Aluminum Hydroxide Adjuvant Differentially Activates the Three Complement Pathways with Major Involvement of the Alternative Pathway

    PubMed Central

    Güven, Esin; Duus, Karen; Laursen, Inga; Højrup, Peter; Houen, Gunnar

    2013-01-01

    Al(OH)3 is the most common adjuvant in human vaccines, but its mode of action remains poorly understood. Complement involvement in the adjuvant properties of Al(OH)3 has been suggested in several reports together with a depot effect. It is here confirmed that Al(OH)3 treatment of serum depletes complement components and activates the complement system. We show that complement activation by Al(OH)3 involves the three major pathways by monitoring complement components in Al(OH)3-treated serum and in Al(OH)3-containing precipitates. Al(OH)3 activation of complement results in deposition of C3 cleavage products and membrane attack complex (MAC) and in generation of the anaphylatoxins C3a and C5a. Complement activation was time dependent and inhibited by chelation with EDTA but not EGTA+Mg2+. We thus confirm that Al(OH)3 activates the complement system and show that the alternative pathway is of major importance. PMID:24040248

  9. Activation of complement pathways after contusion-induced spinal cord injury.

    PubMed

    Anderson, Aileen J; Robert, Stephanie; Huang, Wencheng; Young, Wise; Cotman, Carl W

    2004-12-01

    Previous studies have shown that a cellular inflammatory response is initiated, and inflammatory cytokines are synthesized, following experimental spinal cord injury (SCI). In the present study, we tested the hypothesis that the complement cascade, a major component of both the innate and adaptive immune response, is also activated following experimental SCI. We investigated the pathways, cellular localization, timecourse, and degree of complement activation in rat spinal cord following acute contusion-induced SCI using the New York University (NYU) weight drop impactor. Mild and severe injuries (12.5 and 50 mm drop heights) at 1, 7, and 42 days post injury time points were evaluated. Classical (C1q and C4), alternative (Factor B) and terminal (C5b-9) complement pathways were strongly activated within 1 day of SCI. Complement protein immunoreactivity was predominantly found in cell types vulnerable to degeneration, neurons and oligodendrocytes, and was not generally observed in inflammatory or astroglial cells. Surprisingly, immunoreactivity for complement proteins was also evident 6 weeks after injury, and complement activation was observed as far as 20 mm rostral to the site of injury. Axonal staining by C1q and Factor B was also observed, suggesting a potential role for the complement cascade in demyelination or axonal degeneration. These data support the hypothesis that complement activation plays a role in SCI.

  10. The Emerging Role of Complement Lectin Pathway in Trypanosomatids: Molecular Bases in Activation, Genetic Deficiencies, Susceptibility to Infection, and Complement System-Based Therapeutics

    PubMed Central

    Evans-Osses, Ingrid; de Messias-Reason, Iara; Ramirez, Marcel I.

    2013-01-01

    The innate immune system is evolutionary and ancient and is the pivotal line of the host defense system to protect against invading pathogens and abnormal self-derived components. Cellular and molecular components are involved in recognition and effector mechanisms for a successful innate immune response. The complement lectin pathway (CLP) was discovered in 1990. These new components at the complement world are very efficient. Mannan-binding lectin (MBL) and ficolin not only recognize many molecular patterns of pathogens rapidly to activate complement but also display several strategies to evade innate immunity. Many studies have shown a relation between the deficit of complement factors and susceptibility to infection. The recently discovered CLP was shown to be important in host defense against protozoan microbes. Although the recognition of pathogen-associated molecular patterns by MBL and Ficolins reveal efficient complement activations, an increase in deficiency of complement factors and diversity of parasite strategies of immune evasion demonstrate the unsuccessful effort to control the infection. In the present paper, we will discuss basic aspects of complement activation, the structure of the lectin pathway components, genetic deficiency of complement factors, and new therapeutic opportunities to target the complement system to control infection. PMID:23533355

  11. Tissue microarray methodology identifies complement pathway activation and dysregulation in progressive multiple sclerosis.

    PubMed

    Loveless, Sam; Neal, James W; Howell, Owain W; Harding, Katharine E; Sarkies, Patrick; Evans, Rhian; Bevan, Ryan J; Hakobyan, Svetlana; Harris, Claire L; Robertson, Neil P; Morgan, Bryan Paul

    2017-07-14

    The complement pathway has potential contributions to both white (WM) and grey matter (GM) pathology in Multiple Sclerosis (MS). A quantitative assessment of complement involvement is lacking. Here we describe the use of Tissue MicroArray (TMA) methodology in conjunction with immunohistochemistry to investigate the localization of complement pathway proteins in progressive MS cortical GM and subcortical WM. Antibodies targeting complement proteins C1q, C3b, regulatory proteins C1 inhibitor (C1INH, complement receptor 1 (CR1), clusterin, factor H (FH) and the C5a anaphylatoxin receptor (C5aR) were utilised alongside standard markers of tissue pathology. All stained slides were digitised for quantitative analysis. We found that numbers of cells immunolabelled for HLA-DR, GFAP, C5aR, C1q and C3b were increased in WM lesions (WML) and GM lesions (GML) compared to normal appearing WM (NAWM) and GM (NAGM), respectively. The complement regulators C1INH, CR1, FH and clusterin were more abundant in WM lesions, while the number of C1q+ neurons were increased and the number of C1INH+, clusterin+, FH+ and CR1+ neurons decreased in GM lesions. The number of complement component positive cells (C1q, C3b) correlated with complement regulator expression in WM, but there was no statistical association between complement activation and regulator expression in the GM. We conclude that TMA methodology and quantitative analysis provides evidence of complement dysregulation in MS GML, including an association of the numerical density of C1q+ cells with tissue lesions. Our work confirms that complement activation and dysregulation occur in all cases of progressive MS and suggest that complement may provide potential biomarkers of the disease. © 2017 International Society of Neuropathology.

  12. Antibacterial and hemolytic activities of linenscin OC2, a hydrophobic substance produced by Brevibacterium linens OC2.

    PubMed

    Boucabeille, C; Mengin-Lecreulx, D; Henckes, G; Simonet, J M; van Heijenoort, J

    1997-08-15

    Linenscin OC2 is an antibacterial substance produced by the orange cheese coryneform bacterium Brevibacterium linens OC2. It inhibits the growth of Gram-positive bacteria but it is inactive against Gram-negative bacteria. The intact outer membrane of Gram-negative bacteria was shown to be an effective permeability barrier against linenscin OC2. At high dosage the effect of linenscin OC2 was bacteriolytic on Listeria innocua. Bacteriostasis was observed at low dosage and peptidoglycan biosynthesis was affected at an early step upstream of the UDP-N-acetylglucosamine. Hemolytic activity of this substance on sheep erythrocytes suggested a common mode of action on prokaryotic and eukaryotic cells. It also suggested that the cytoplasmic membrane might be the primary target of linenscin OC2.

  13. Flavonoids from the leaves of Litsea japonica and their anti-complement activity.

    PubMed

    Lee, Sun-Young; Min, Byung-Sun; Kim, Jung-Hee; Lee, Joongku; Kim, Tae-Jin; Kim, Chan-Soo; Kim, Young-Ho; Lee, Hyeong-Kyu

    2005-04-01

    Four flavonoids, epicatechin (1), afzelin (2), quercitrin (3), and tiliroside (4), were isolated from the leaves of Litsea japonica (Thunb.) Jussieu (Lauraceae). The structures of compounds were identified by comparing their chemical and spectral data with those previously reported. The flavonoids (1-4) were tested for their anti-complement activity against classical pathway of complement system. Compounds 2-4 showed inhibitory activity against complement system with IC50 values of 258, 440, and 101 microm, respectively, whereas 1 was inactive. For the evaluation of the structure-activity relationship of 5,7-dihydroxyflavones, myricitrin (5) from Juglans mandshurica also tested for it's anti-complement activity and is inactive in this assay system. Furthermore, compounds 2, 3, and 5 were hydrolyzed with naringinase to give kaempferol (2a), quercetin (3a), and myricetin (5a), and these were also tested for their activity. Of the three aglycones, 2a exhibited anti-complement activity with an IC50 value of 730 microM, while 3a and 5a were inactive. The inhibitory potencies of 2, 2a, 3, 3a, 5, and 5a against complement activity increased in inverse proportion to number of free hydroxyls on B-ring of 5,7-dihydroxyflavone. Of the compounds tested, 4 showed the most potent inhibitory activity against the complement system.

  14. Activated complement components and complement activator molecules on the surface of cell‐derived microparticles in patients with rheumatoid arthritis and healthy individuals

    PubMed Central

    Biró, Éva; Nieuwland, Rienk; Tak, Paul P; Pronk, Loes M; Schaap, Marianne C L; Sturk, Augueste; Hack, C Erik

    2007-01-01

    Objectives In vitro, microparticles can activate complement via the classical pathway. If demonstrable ex vivo, this mechanism may contribute to the pathogenesis of rheumatoid arthritis (RA). We therefore investigated the presence of activated complement components and complement activator molecules on the surface of cell‐derived microparticles of RA patients and healthy individuals. Methods Microparticles from synovial fluid (n = 8) and plasma (n = 9) of 10 RA patients and plasma of sex‐ and age‐matched healthy individuals (n = 10) were analysed by flow cytometry for bound complement components (C1q, C4, C3) and complement activator molecules (C‐reactive protein (CRP), serum amyloid P component (SAP), immunoglobulin (Ig) M, IgG). Results Microparticles with bound C1q, C4, and/or C3 were abundant in RA synovial fluid, while in RA and control plasma much lower levels were present. Microparticles with bound C1q correlated with those with bound C3 in synovial fluid (r = 0.961, p = 0.0001), and with those with bound C4 in plasma (RA: r = 0.908, p = 0.0007; control: r = 0.632, p = 0.0498), indicating classical pathway activation. In synovial fluid, microparticles with IgM and IgG correlated with those with C1q (r = 0.728, p = 0.0408; r = 0.952, p = 0.0003, respectively), and in plasma, microparticles with CRP correlated with those with C1q (RA: r = 0.903, p = 0.0021; control: r = 0.683, p = 0.0296), implicating IgG and IgM in the classical pathway activation in RA synovial fluid, and CRP in the low level classical pathway activation in plasma. Conclusions This study demonstrates the presence of bound complement components and activator molecules on microparticles ex vivo, and supports their role in low grade complement activation in plasma and increased complement activation in RA synovial fluid. PMID:17261534

  15. Complement Activation Correlates With Disease Severity and Contributes to Cytokine Responses in Plasmodium falciparum Malaria.

    PubMed

    Berg, Aase; Otterdal, Kari; Patel, Sam; Gonca, Miguel; David, Catarina; Dalen, Ingvild; Nymo, Stig; Nilsson, Margareta; Nordling, Sofia; Magnusson, Peetra U; Ueland, Thor; Prato, Mauro; Giribaldi, Giuliana; Mollnes, Tom Eirik; Aukrust, Pål; Langeland, Nina; Nilsson, Per H

    2015-12-01

    The impact of complement activation and its possible relation to cytokine responses during malaria pathology was investigated in plasma samples from patients with confirmed Plasmodium falciparum malaria and in human whole-blood specimens stimulated with malaria-relevant agents ex vivo. Complement was significantly activated in the malaria cohort, compared with healthy controls, and was positively correlated with disease severity and with certain cytokines, in particular interleukin 8 (IL-8)/CXCL8. This was confirmed in ex vivo-stimulated blood specimens, in which complement inhibition significantly reduced IL-8/CXCL8 release. P. falciparum malaria is associated with systemic complement activation and complement-dependent release of inflammatory cytokines, of which IL-8/CXCL8 is particularly prominent. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. The dinoflagellate Akashiwo sanguinea will benefit from future climate change: The interactive effects of ocean acidification, warming and high irradiance on photophysiology and hemolytic activity.

    PubMed

    Ou, Guanyong; Wang, Hong; Si, Ranran; Guan, Wanchun

    2017-09-01

    Due to global climate change, marine phytoplankton will likely experience low pH (ocean acidification), high temperatures and high irradiance in the future. Here, this work report the results of a batch culture experiment conducted to study the interactive effects of elevated CO2, increased temperature and high irradiance on the harmful dinoflagellate Akashiwo sanguinea, isolated at Dongtou Island, Eastern China Sea. The A. sanguinea cells were acclimated in high CO2 condition for about three months before testing the responses of cells to a full factorial matrix experimentation during a 7-day period. This study measured the variation in physiological parameters and hemolytic activity in 8 treatments, representing full factorial combinations of 2 levels each of exposure to CO2 (400 and 1000μatm), temperature (20 and 28°C) and irradiance (50 and 200μmol photons m(-2)s(-1)). Sustained growth of A. sanguinea occurred in all treatments, but high CO2 (HC) stimulated faster growth than low CO2 (LC). The pigments (chlorophyll a and carotenoid) decreased in all HC treatments. The quantum yield (Fv/Fm) declined slightly in all high-temperature (HT) treatments. High irradiance (HL) induced the accumulation of ultraviolet-absorbing compounds (UVabc) irrespective of temperature and CO2. The hemolytic activity in the LC treatments, however, declined when exposed to HT and HL, but HC alleviated the adverse effects of HT and HL on hemolytic activity. All HC and HL conditions and the combinations of high temperature*high light (HTHL) and high CO2*high temperature*high light (HCHTHL) positively affected the growth in comparison to the low CO2*low temperature*low light (LCLTLL) treatment. High temperature (HT), high light (HL) and a combination of HT*HL, however, negatively impacted hemolytic activity. CO2 was the main factor that affected the growth and hemolytic activity. There were no significant interactive effects of CO2*temperature*irradiance on growth, pigment, Fv/Fm or

  17. Inactivation of complement by Loxosceles reclusa spider venom.

    PubMed

    Gebel, H M; Finke, J H; Elgert, K D; Cambell, B J; Barrett, J T

    1979-07-01

    Zymosan depletion of serum complement in guinea pigs rendered them highly resistant to lesion by Loxosceles reclusa spider venom. Guinea pigs deficient in C4 of the complement system are as sensitive to the venom as normal guinea pigs. The injection of 35 micrograms of whole recluse venom intradermally into guinea pigs lowered their complement level by 35.7%. Brown recluse spider venom in concentrations as slight as 0.02 micrograms protein/ml can totally inactivate one CH50 of guinea pig complement in vitro. Bee, scorpion, and other spider venoms had no influence on the hemolytic titer of complement. Fractionation of recluse spider venom by Sephadex G-200 filtration separated the complement-inactivating property of the venom into three major regions which could be distinguished on the basis of heat stability as well as size. None was neutralized by antivenom. Polyacrylamide gel electrophoresis of venom resolved the complement inactivators into five fractions. Complement inactivated by whole venom or the Sephadex fractions could be restored to hemolytic activity by supplements of fresh serum but not by heat-inactivated serum, pure C3, pure C5, or C3 and C5 in combination.

  18. Systemic and lung physiological changes in rats after intravascular activation of complement.

    PubMed

    Younger, J G; Sasaki, N; Delgado, J; Ko, A C; Nghiem, T X; Waite, M D; Till, G O; Ward, P A

    2001-06-01

    Systemic complement activation has been noted in a variety of shock states, and there is growing evidence that, in addition to being proinflammatory effectors, products of complement activation contribute directly to generalized manifestations of shock, such as hypotension and acidosis. To study the effects of complement activation, we examined responses in rats to systemic activation of complement with cobra venom factor (CVF), including blood pressure, metabolic acidosis, changes in vascular permeability, and lung function. High doses of CVF produced circulatory collapse (mean arterial pressure = 110 +/- 16 and 35 +/- 9 mmHg in control and with CVF, respectively, P < 0.05), metabolic acidosis (HCO concentration = 27.8 +/- 1.7 and 9.6 +/- 3.4 meq/l in control and with CVF, respectively, P < 0.05), extravasation of albumin into the lung and gut, and modest arterial hypoxemia (PO2 = 486 +/- 51 and 201 +/- 36 Torr in control and during 100% O2 breathing, respectively, P < 0.05). Prior depletion of complement protected against these abnormalities. Other interventions, including neutrophil depletion and cyclooxygenase inhibition, prevented lung injury but had much less effect on systemic hemodynamics or gut permeability, suggesting that complement activation products induce injury by neutrophil- and cyclooxygenase-dependent pathways in the lung but not in the gut. These studies underscore the significant systemic abnormalities developing after systemic activation of complement.

  19. A Novel Quantitative Hemolytic Assay Coupled with Restriction Fragment Length Polymorphisms Analysis Enabled Early Diagnosis of Atypical Hemolytic Uremic Syndrome and Identified Unique Predisposing Mutations in Japan

    PubMed Central

    Yoshida, Yoko; Miyata, Toshiyuki; Matsumoto, Masanori; Shirotani-Ikejima, Hiroko; Uchida, Yumiko; Ohyama, Yoshifumi; Kokubo, Tetsuro; Fujimura, Yoshihiro

    2015-01-01

    For thrombotic microangiopathies (TMAs), the diagnosis of atypical hemolytic uremic syndrome (aHUS) is made by ruling out Shiga toxin-producing Escherichia coli (STEC)-associated HUS and ADAMTS13 activity-deficient thrombotic thrombocytopenic purpura (TTP), often using the exclusion criteria for secondary TMAs. Nowadays, assays for ADAMTS13 activity and evaluation for STEC infection can be performed within a few hours. However, a confident diagnosis of aHUS often requires comprehensive gene analysis of the alternative complement activation pathway, which usually takes at least several weeks. However, predisposing genetic abnormalities are only identified in approximately 70% of aHUS. To facilitate the diagnosis of complement-mediated aHUS, we describe a quantitative hemolytic assay using sheep red blood cells (RBCs) and human citrated plasma, spiked with or without a novel inhibitory anti-complement factor H (CFH) monoclonal antibody. Among 45 aHUS patients in Japan, 24% (11/45) had moderate-to-severe (≥50%) hemolysis, whereas the remaining 76% (34/45) patients had mild or no hemolysis (<50%). The former group is largely attributed to CFH-related abnormalities, and the latter group has C3-p.I1157T mutations (16/34), which were identified by restriction fragment length polymorphism (RFLP) analysis. Thus, a quantitative hemolytic assay coupled with RFLP analysis enabled the early diagnosis of complement-mediated aHUS in 60% (27/45) of patients in Japan within a week of presentation. We hypothesize that this novel quantitative hemolytic assay would be more useful in a Caucasian population, who may have a higher proportion of CFH mutations than Japanese patients. PMID:25951460

  20. Recombinant Complement Receptor 2 Radiolabeled with [99mTc(CO)3]+ : A Potential New Radiopharmaceutical for Imaging Activated Complement

    PubMed Central

    McDonnell, James M.; Yahya, Norhakim; Thakor, David; Razavi, Reza; Smith, Richard; Sacks, Steven; Mullen, Gregory E. D.

    2011-01-01

    We describe the design and synthesis of a new Tc-99m labeled bioconjugate for imaging activated complement, based on Short Consensus Repeats 1 and 2 of Complement Receptor 2 (CR2), the binding domain for C3d. To avoid non specific modification of CR2 and the potential for modifying lysine residues critical to the CR2/C3d contact surface, we engineered a new protein, recombinant CR2 (rCR2), to include the C-terminal sequence VFPLECHHHHHH, a hexahistidine tag (for site-specific radiolabeling with [99mTc(CO)3(OH2)3]+). The protein was characterized by N-terminal sequencing, SDS-PAGE and size exclusion chromatography. To test the function of the recombinant CR2, binding to C3d was confirmed by enzyme-linked immunosorbent assay (ELISA). The function was further confirmed by binding of rCR2 to C3d+ red blood cells (RBC) which were generated by deposition of human or rat C3d and analyzed by fluorescence microscopy and flow cytometry. The affinity of rCR2 for C3d+, in presence of 150 mM NaCl, was measured using surface plasma resonance giving rise to a KD≈500 nM. Radiolabeling of rCR2 or an inactive mutant of rCR2 (K41E CR2) or an unrelated protein of a similar size (C2A) with [99mTc(CO)3(OH2)3]+ at gave radiochemical yields >95%. Site-specifically radiolabeled rCR2 bound to C3d to C3d+ RBC. Binding of radiolabeled rCR2 to C3d was inhibited by anti-C3d and the radiolabeled inactive mutant K41E CR2 and C2A did not bind to C3d+ RBCs. We conclude that rCR2-Tc99m has excellent radiolabeling, stability and C3d binding characteristics and warrants in vivo evaluation as an activated complement imaging agent. PMID:21494666

  1. Diagnostic relevance of ADAMTS13 activity: evaluation of 28 patients with thrombotic thrombocytopenic purpura - hemolytic uremic syndrome clinical diagnosis.

    PubMed

    Vucelić, Dragica; Miković, Danijela; Rajić, Zoran; Savić, Nebojsa; Budisin, Zivko; Antonijević, Nebojsa M; Obradović, Slobodan; Jevtić, Dragana; Palla, Roberta; Valsecchio, Carla; Peyvandi, Flora

    2013-01-01

    The significance of ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin motif-13) activity for diagnosis and therapy of thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS) is still a controversial issue. The aim of this report was to analyze the value of ADAMTS13 measurements in the diagnosis of TTP and HUS. At presentation, we analyzed patients with idiopathic TTP (n = 18), secondary TTP (n = 4), diarrhea positive HUS (n = 3) and diarrhea negative HUS (n = 3) treated in Belgrade, Serbia from 2004 to 2010. ADAMTS13 activity from acute phase samples was measured using the residual collagen binding activity assay at the Haemophilia and Thrombosis Centre, Milan, Italy. There was a significant correlation between reduced ADAMTS13 activity and idiopathic TTP diagnosis (p = 0.000) as well as between lower ADAMTS13 activities and higher reticulocytes (p = 0.017) and lactate dehydrogenase levels (p = 0.027). Significant correlation was also found between higher protease activity and diagnosis of HUS (p = 0.000). There was a statistically significant correlation between higher ADAMTS13 activities and higher platelets count (p = 0.002), blood urea nitrogen (p = 0.000), and creatinine level (p = 0.000). Severe ADAMTS13 deficiency points at the diagnosis of idiopathic TTP and it is present in the secondary TTP but not in HUS.

  2. Complement is activated in progressive multiple sclerosis cortical grey matter lesions.

    PubMed

    Watkins, Lewis M; Neal, James W; Loveless, Sam; Michailidou, Iliana; Ramaglia, Valeria; Rees, Mark I; Reynolds, Richard; Robertson, Neil P; Morgan, B Paul; Howell, Owain W

    2016-06-22

    The symptoms of multiple sclerosis (MS) are caused by damage to myelin and nerve cells in the brain and spinal cord. Inflammation is tightly linked with neurodegeneration, and it is the accumulation of neurodegeneration that underlies increasing neurological disability in progressive MS. Determining pathological mechanisms at play in MS grey matter is therefore a key to our understanding of disease progression. We analysed complement expression and activation by immunocytochemistry and in situ hybridisation in frozen or formalin-fixed paraffin-embedded post-mortem tissue blocks from 22 progressive MS cases and made comparisons to inflammatory central nervous system disease and non-neurological disease controls. Expression of the transcript for C1qA was noted in neurons and the activation fragment and opsonin C3b-labelled neurons and glia in the MS cortical and deep grey matter. The density of immunostained cells positive for the classical complement pathway protein C1q and the alternative complement pathway activation fragment Bb was significantly increased in cortical grey matter lesions in comparison to control grey matter. The number of cells immunostained for the membrane attack complex was elevated in cortical lesions, indicating complement activation to completion. The numbers of classical (C1-inhibitor) and alternative (factor H) pathway regulator-positive cells were unchanged between MS and controls, whilst complement anaphylatoxin receptor-bearing microglia in the MS cortex were found closely apposed to cortical neurons. Complement immunopositive neurons displayed an altered nuclear morphology, indicative of cell stress/damage, supporting our finding of significant neurodegeneration in cortical grey matter lesions. Complement is activated in the MS cortical grey matter lesions in areas of elevated numbers of complement receptor-positive microglia and suggests that complement over-activation may contribute to the worsening pathology that underlies the

  3. Antioxidant and hemolytic activities, and effects in rat cutaneous wound healing of a novel polysaccharide from fenugreek (Trigonella foenum-graecum) seeds.

    PubMed

    Ktari, Naourez; Trabelsi, Imen; Bardaa, Sana; Triki, Mehdi; Bkhairia, Intidhar; Ben Slama-Ben Salem, Rabab; Nasri, Moncef; Ben Salah, Riadh

    2017-02-01

    The aim of this work was to evaluate the antioxidant and hemolytic activities as well as the in vivo wound healing performance of a novel polysaccharide (FWEP) extracted from fenugreek (Trigonella foenum-graecum) seeds. The antioxidant activity was evaluated in vivo and in vitro using various assays. Results showed that FWEP exhibited strong antioxidant activities but no hemolytic activity was observed towards bovine erythrocytes. The application of FWEP hydrogel on the wound site in a rat model enhanced significantly wound healing activity and accelerated the wound closure after 14days of wound induction. Histological examination also demonstrated fully re-epithelialized wound with a complete epidermal regeneration. Altogether, these evidences demonstrated that FWEP had strong wound healing potential presumably achieved through its antioxidant activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. High Fc Density Particles Result in Binary Complement Activation but Tunable Macrophage Phagocytosis

    NASA Astrophysics Data System (ADS)

    Sulchek, Todd; Pacheco, Patricia; White, David

    2014-03-01

    Macrophage phagocytosis and complement system activation represent two key components of the immune system and both can be activated through the presentation of multiple Fc domains of IgG antibodies. We have created functionalized micro- and nanoparticles with various densities of Fc domains to understand the modulation of the immune system for eventual use as a novel immunomodulation platform. Phagocytosis assays were carried out by adding functionalized particles to macrophage cells and quantitatively determined using fluorescent microscopy and flow cytometry. Complement system activation by the functionalized particles in human serum was quantified with an enzyme immunoassay. Our phagocytosis assay revealed a strong dependence on particle size and Fc density. For small particles, as the Fc density increased, the number of particles phagocytosed also increased. Large particles were phagocytosed at significantly lower levels and showed no dependency on Fc density. Complement was successfully activated at levels comparable to positive controls for small particles at high Fc densities. However at low Fc densities, there is a significant decrease in complement activation. This result suggests a binary response for complement system activation with a threshold density for successful activation. Therefore, varying the Fc density on micro/nanoparticles resulted in a tunable response in macrophage phagocytosis while a more binary response for complement activation.

  5. Preparation of Low Molecular Weight Chondroitin Sulfates, Screening of a High Anti-Complement Capacity of Low Molecular Weight Chondroitin Sulfate and Its Biological Activity Studies in Attenuating Osteoarthritis

    PubMed Central

    Li, Lian; Li, Yan; Feng, Danyang; Xu, Linghua; Yin, Fengxin; Zang, Hengchang; Liu, Chunhui; Wang, Fengshan

    2016-01-01

    Chondroitin sulfate (CS) plays important roles in the complement system. However, the CS structure is complicated due to different sources and the number and positions of sulfate groups. The objective of this study was to prepare different low molecular weight chondroitin sulfates (LMWCSs) and to investigate the biological activity in anti-complement capacity. A series of LMWCSs was prepared from different sources and characterized by ultraviolet-visible (UV) spectroscopy, high-performance liquid chromatography (HPLC), size exclusion chromatography-multiangle laser light scattering (SEC-MALLS) and nuclear magnetic resonance (NMR) spectroscopy. Hemolytic, anti-complement 3 deposition capacity and cell viability assays were carried out to investigate the biological activities in vitro. The results showed that LMWCS prepared from shark cartilage with the oxidative degradation method (LMWCS-S-O) had the best anti-complement capacity. LMWCS-S-O could inhibit the alternative pathway of the complement system and protect chondrocytes from cell death. The attenuating effect of LMWCS-S-O on Osteoarthritis (OA) was investigated by destabilization of the medial meniscus (DMM) model in vivo. Functional wind-up, histological and C5b-9 analyses were used to evaluate the treatment effect on the OA model. In vivo results showed that LMWCS-S-O could attenuate OA. LMWCS-S-O with a high content of ΔDi-2,6diS and ΔDi-6S could be used for attenuating OA through regulating the complement system. PMID:27727159

  6. Classical and lectin complement pathway activity in polyneuropathy associated with IgM monoclonal gammopathy.

    PubMed

    Stork, Abraham C J; Cats, Elisabeth A; Vlam, Lotte; Heezius, Erik; Rooijakkers, Suzan; Herpers, Bjorn; de Jong, Ben A W; Rijkers, Ger; van Strijp, Jos; Notermans, Nicolette C; van den Berg, Leonard H; van der Pol, W-Ludo

    2016-01-15

    Polyneuropathy associated with IgM monoclonal gammopathy (IgM-PNP) is a slowly progressive, sensorimotor neuropathy. It is assumed that complement activation contributes to IgM-PNP pathogenesis. We investigated whether innate differences in complement activity of the classical and mannose binding lectin (MBL) pathways are associated with IgM-PNP or its severity. We measured complement activity using ELISA and determined MBL serumc oncentrations and MBL gene polymorphisms in 83 patients and 83 healthy controls. We did not observe differences between IgM-PNP patients and healthy controls nor associations with different disease severities. Differences in innate complement activity are not likely to explain susceptibility to or severity of IgM-PNP.

  7. Extra-Renal Manifestations of Complement-Mediated Thrombotic Microangiopathies

    PubMed Central

    Hofer, Johannes; Rosales, Alejandra; Fischer, Caroline; Giner, Thomas

    2014-01-01

    Thrombotic microangiopathies (TMA) are rare but severe disorders, characterized by endothelial cell activation and thrombus formation leading to hemolytic anemia, thrombocytopenia, and organ failure. Complement over activation in combination with defects in its regulation is described in an increasing number of TMA and if primary for the disease denominated as atypical hemolytic-uremic syndrome. Although TMA predominantly affects the renal microvasculature, extra-renal manifestations are observed in 20% of patients including involvement of the central nerve system, cardiovascular system, lungs, skin, skeletal muscle, and gastrointestinal tract. Prompt diagnosis and treatment initiation are therefore crucial for the prognosis of disease acute phase and the long-term outcome. This review summarizes the available evidence on extra-renal TMA manifestations and discusses the role of acute and chronic complement activation by highlighting its complex interaction with inflammation, coagulation, and endothelial homeostasis. PMID:25250305

  8. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity

    PubMed Central

    Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin

    2015-01-01

    In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation. PMID:26712768

  9. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity.

    PubMed

    Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin

    2015-12-25

    In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation.

  10. New Insights in the Pathogenesis of Autoimmune Hemolytic Anemia

    PubMed Central

    Barcellini, Wilma

    2015-01-01

    Summary Autoimmune hemolytic anemia (AIHA) is caused by the increased destruction of red blood cells (RBCs) by anti-RBC autoantibodies with or without complement activation. RBC destruction may occur both by a direct lysis through the sequential activation of the final components of the complement cascade (membrane attack complex), or by antibody-dependent cell-mediated cytotoxicity (ADCC). The pathogenic role of autoantibodies depends on their class (the most frequent are IgG and IgM), subclass, thermal amplitude (warm and cold forms),as well as affinity and efficiency in activating complement. Several cytokines and cytotoxic mechanisms (CD8+ T and natural killer cells) are further involved in RBC destruction. Moreover, activated macrophages carrying Fc receptors may recognize and phagocyte erythrocytes opsonized by autoantibodies and complement. Direct complement-mediated lysis takes place mainly in the circulations and liver, whereas ADCC, cytotoxicity, and phagocytosis occur preferentially in the spleen and lymphoid organs. The degree of intravascular hemolysis is 10-fold greater than extravascular one. Finally, the efficacy of the erythroblastic compensatory response can greatly influence the clinical picture of AIHA. The interplay and relative burden of all these pathogenic mechanisms give reason for the great clinical heterogeneity of AIHAs, from fully compensated to rapidly evolving fatal cases. PMID:26696796

  11. Anti-complement activity of the Ixodes scapularis salivary protein Salp20

    PubMed Central

    Hourcade, Dennis E.; Akk, Antonina M.; Mitchell, Lynne M.; Zhou, Hui-fang; Hauhart, Richard; Pham, Christine T.N.

    2015-01-01

    Complement, a major component of innate immunity, presents a rapid and robust defense of the intravascular space. While regulatory proteins protect host cells from complement attack, when these measures fail, unrestrained complement activation may trigger self-tissue injury, leading to pathologic conditions. Of the three complement activation pathways, the alternative pathway (AP) in particular has been implicated in numerous disease and injury states. Consequently, the AP components represent attractive targets for therapeutic intervention. The common hard-bodied ticks from the family Ixodidae derive nourishment from the blood of their mammalian hosts. During its blood meal the tick is exposed to host immune effectors, including the complement system. In defense, the tick produces salivary proteins that can inhibit host immune functions. The Salp20 salivary protein of Ixodes scapularis inhibits the host AP pathway by binding properdin and dissociating C3bBbP, the active C3 convertase. In these studies we examined Salp20 activity in various complement-mediated pathologies. Our results indicate that Salp20 can inhibit AP-dependent pathogenesis in the mouse. Its efficacy may be part in due to synergic effects it provides with the endogenous AP regulator, factor H. While Salp20 itself would be expected to be highly immunogenic and therefore inappropriate for therapeutic use, its emergence speaks for the potential development of a non-immunogenic Salp20 mimic that replicates its anti-properdin activity. PMID:26675068

  12. Classical Complement Pathway Activation in the Kidneys of Women With Preeclampsia.

    PubMed

    Penning, Marlies; Chua, Jamie S; van Kooten, Cees; Zandbergen, Malu; Buurma, Aletta; Schutte, Joke; Bruijn, Jan Anthonie; Khankin, Eliyahu V; Bloemenkamp, Kitty; Karumanchi, S Ananth; Baelde, Hans

    2015-07-01

    A growing body of evidence suggests that complement dysregulation plays a role in the pathogenesis of preeclampsia. The kidney is one of the major organs affected in preeclampsia. Because the kidney is highly susceptible to complement activation, we hypothesized that preeclampsia is associated with renal complement activation. We performed a nationwide search for renal autopsy material in the Netherlands using a computerized database (PALGA). Renal tissue was obtained from 11 women with preeclampsia, 25 pregnant controls, and 14 nonpregnant controls with hypertension. The samples were immunostained for C4d, C1q, mannose-binding lectin, properdin, C3d, C5b-9, IgA, IgG, and IgM. Preeclampsia was significantly associated with renal C4d-a stable marker of complement activation-and the classical pathway marker C1q. In addition, the prevalence of IgM was significantly higher in the kidneys of the preeclamptic women. No other complement markers studied differed between the groups. Our findings in human samples were validated using a soluble fms-like tyrosine kinase 1 mouse model of preeclampsia. The kidneys in the soluble fms-like tyrosine kinase 1-injected mice had significantly more C4 deposits than the control mice. The association between preeclampsia and renal C4d, C1q, and IgM levels suggests that the classical complement pathway is involved in the renal injury in preeclampsia. Moreover, our finding that soluble fms-like tyrosine kinase 1-injected mice develop excess C4 deposits indicates that angiogenic dysregulation may play a role in complement activation within the kidney. We suggest that inhibiting complement activation may be beneficial for preventing the renal manifestations of preeclampsia.

  13. A novel 2-stage approach that detects complement activation in patients with antiphospholipid antibody syndrome.

    PubMed

    Rand, Jacob H; Wu, Xiao-Xuan; Wolgast, Lucia R; Lei, Victor; Conway, Edward M

    2017-08-01

    The antiphospholipid syndrome (APS) is marked by autoantibodies that recognize anionic phospholipids in a cofactor-dependent manner. A role for complement has been implicated in the pathophysiology, however, elevations of complement activation markers have not been consistently demonstrated in clinical studies. We therefore designed a proof-of-principle study to determine whether complement activation might be detectable in APS by first exposing plasmas to phospholipid vesicles. We examined complement activation markers in patients with APS, non-APS thrombosis, systemic lupus erythematosus, cancer, patients with antiphospholipid antibodies without thrombosis (APL) and healthy controls. Direct measurements of plasma C5a and sC5b-9 levels were compared to levels that were generated in normal serum by phospholipid vesicles that had been pre-incubated with the same plasmas. We then determined the effects of the C5 inhibitor, eculizumab, examined the complement pathways involved, and determined whether the effects could be reproduced with purified IgGs and β2-glycoprotein I (β2GPI). Plasma levels of C5a and sC5b-9 were higher, but not significantly increased in APS patients compared to healthy controls. In contrast, phospholipid vesicles pre-incubated with APS plasmas generated significantly higher levels than healthy controls and the other groups, except for APL patients. Complement activation was abrogated by addition of eculizumab. The results with substrate sera indicated that the alternative and classical/lectin pathways were involved. The results were reproducible with purified IgGs and β2GPI. This proof-of-principle study confirms a role for complement in APS and opens the possibility of monitoring complement activation by including phospholipid vesicles in assay systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Anopheles Midgut Epithelium Evades Human Complement Activity by Capturing Factor H from the Blood Meal

    PubMed Central

    Khattab, Ayman; Barroso, Marta; Miettinen, Tiera; Meri, Seppo

    2015-01-01

    Hematophagous vectors strictly require ingesting blood from their hosts to complete their life cycles. Exposure of the alimentary canal of these vectors to the host immune effectors necessitates efficient counteractive measures by hematophagous vectors. The Anopheles mosquito transmitting the malaria parasite is an example of hematophagous vectors that within seconds can ingest human blood double its weight. The innate immune defense mechanisms, like the complement system, in the human blood should thereby immediately react against foreign cells in the mosquito midgut. A prerequisite for complement activation is that the target cells lack complement regulators on their surfaces. In this work, we analyzed whether human complement is active in the mosquito midgut, and how the mosquito midgut cells protect themselves against complement attack. We found that complement remained active for a considerable time and was able to kill microbes within the mosquito midgut. However, the Anopheles mosquito midgut cells were not injured. These cells were found to protect themselves by capturing factor H, the main soluble inhibitor of the alternative complement pathway. Factor H inhibited complement on the midgut cells by promoting inactivation of C3b to iC3b and preventing the activity of the alternative pathway amplification C3 convertase enzyme. An interference of the FH regulatory activity by monoclonal antibodies, carried to the midgut via blood, resulted in increased mosquito mortality and reduced fecundity. By using a ligand blotting assay, a putative mosquito midgut FH receptor could be detected. Thereby, we have identified a novel mechanism whereby mosquitoes can tolerate human blood. PMID:25679788

  15. Interrelation Between Oxidative Stress and Complement Activation in Models of Age-Related Macular Degeneration.

    PubMed

    Pujol-Lereis, Luciana M; Schäfer, Nicole; Kuhn, Laura B; Rohrer, Bärbel; Pauly, Diana

    2016-01-01

    Millions of individuals older than 50-years suffer from age-related macular degeneration (AMD). Associated with this multifactorial disease are polymorphisms of complement factor genes and a main environmental risk factor-oxidative stress. Until now the linkage between these risk factors for AMD has not been fully understood. Recent studies, integrating results on oxidative stress, complement activation, epidemiology and ocular pathology suggested the following sequence in AMD-etiology: initially, chronic oxidative stress results in modification of proteins and lipids in the posterior of the eye; these tissue alterations trigger chronic inflammation, involving the complement system; and finally, invasive immune cells facilitate pathology in the retina. Here, we summarize the results for animal studies which aim to elucidate this molecular interplay of oxidative events and tissue-specific complement activation in the eye.

  16. Terminal complement activation is increased and associated with disease severity in CIDP.

    PubMed

    Quast, Isaak; Keller, Christian W; Hiepe, Falk; Tackenberg, Björn; Lünemann, Jan D

    2016-09-01

    Chronic inflammatory demyelinating polyneuropathy (CIDP) is the most common chronic autoimmune neuropathy. While both cell-mediated and humoral mechanisms contribute to its pathogenesis, the rapid clinical response to plasmapheresis implicates a circulating factor responsible for peripheral nerve injury. We report that treatment-naïve patients with CIDP show increased serum and CSF levels of the anaphylatoxin C5a and the soluble terminal complement complex (sTCC). Systemic terminal complement activation correlates with clinical disease severity as determined by the Inflammatory Neuropathy Cause and Treatment (INCAT) disability scale. These data indicate that complement activation contributes to peripheral nerve injury and suggest that complement inhibition should be explored for its potential therapeutic merit in CIDP.

  17. The design of cellulosic based membranes that do not activate complement.

    PubMed

    Johnson, R J

    1989-01-01

    Complement is a principal mediator of the acute inflammatory response that works by nonspecific recognition mechanisms to eliminate foreign substances from the body. Because of the non-selective nature of complement, extracorporeal therapies employing hydrophilic cellulosic based materials can result in significant complement activation and systemic exposure to large amounts of C5a which in turn may lead to a variety of pathological sequelae. Several approaches have been identified to produce materials with a limited potential to activate complement. Activation proceeds on a material following the covalent attachment of C3b to surface nucleophiles which leads to the formation of C3 and C5 convertase enzymes. Interference with these enzymes may be achieved at several levels. Surfaces that contain fewer nucleophilic sites bind less C3b and thus generate lower levels of convertase activity. This is exemplified by the Cellulose Triacetate membrane that is produced by exhaustive acetylation of surface hydroxyl groups. This membrane binds only a third of the amount of C3b that a cuprophan membrane will bind. An alternative means of affecting convertase activity can occur by facilitating the regulatory activity of Factors H and I. Evidence is presented here that suggests that Hemophan appears to limit activation by augmenting regulation of bound-C3b. Finally we have begun studies on a new type of modification using dicarboxylic acid anhydrides that produce materials with a very limited potential to activate complement.

  18. Effects of L-arginine immobilization on the anticoagulant activity and hemolytic property of polyethylene terephthalate films

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Yang, Yun; Wu, Feng

    2010-04-01

    Surface modification of polyethylene terephthalate (PET) films was performed with L-arginine ( L-Arg) to gain an improved anticoagulant surface. The surface chemistry changes of modified films were characterized by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The in vitro anticoagulant activities of the surface-modified PET films were evaluated by blood clotting test, hemolytic test, and the measurement of clotting time including plasma recalcification time (PRT), activated partial thromboplastin time (APTT), and prothrombin time (PT). The data of blood coagulation index (BCI) for L-arginine modified PET films (PET-Arg) was larger than that for PET at the same blood-sample contact time. The hemolysis ratio for PET-Arg was less than that for PET and within the accepted standard for biomaterials. The PRT and APTT for PET-Arg were significantly prolonged by 189 s and 25 s, respectively, compared to those for the unmodified PET. All results suggested that the currently described modification method could be a possible candidate to create antithrombogenic PET surfaces which would be useful for further medical applications.

  19. Evidence for intrathecal synthesis of alternative pathway complement activation proteins in experimental meningitis.

    PubMed Central

    Stahel, P. F.; Frei, K.; Fontana, A.; Eugster, H. P.; Ault, B. H.; Barnum, S. R.

    1997-01-01

    Complement has been shown to contribute to intrathecal inflammation in bacterial meningitis. However, the cellular source of complement in the infected central nervous system has not been determined. In this study, we analyzed protein and mRNA expression of two alternative pathway complement activation proteins, C3 and factor B, in the brains of mice with Listeria monocytogenes meningitis. Complement protein levels were found elevated in the cerebrospinal fluid of infected mice, compared with mock-infected animals. In the course of the disease, enhanced C3 and factor B mRNA expression was detected on pyramidal neurons and Purkinje cells within 6 hours, peaking at 12 hours and then gradually decreasing by 72 hours after infection. In addition, leukocytes infiltrating the subarachnoid space, within 12 to 24 hours, expressed mRNA for C3 and factor B. The cellular infiltration increased dramatically up to 72 hours. Intraperitoneal injection of tumor necrosis factor (TNF)-alpha up-regulated C3 and factor B mRNA expression on neurons in normal mice, suggesting that TNF-alpha may represent one cytokine regulating complement expression in this model of bacterial meningitis. However, additional mediators may be involved in regulation of intrathecal complement expression, as infected mice deficient of TNF/lymphotoxin-alpha genes did not demonstrate attenuated complement expression in the brain. Images Figure 1 Figure 2 Figure 3 PMID:9327721

  20. Complement-activated oligodendroglia: a new pathogenic entity identified by immunostaining with antibodies to human complement proteins C3d and C4d.

    PubMed

    Yamada, T; Akiyama, H; McGeer, P L

    1990-05-04

    Clusters of oligodendroglial fibers were identified immunohistochemically in human brain tissue with antibodies to the complement proteins C3d and C4d in several neurological disorders. These included Pick's, Huntington's, Parkinson's and Alzheimer's disease, amyotrophic lateral sclerosis, progressive supranuclear palsy and Shy-Drager syndrome. These complement-activated oligodendroglia occurred in selected areas of gray and white matter. They were rarely observed in control tissue. Immunogold electron microscopy established that the C4d antibody was attached to degenerating myelin sheaths. These data indicate attachment of classical complement pathway proteins to selective oligodendroglia in several neurological disorders.

  1. Clinical Practice Guidelines for the Management of Atypical Hemolytic Uremic Syndrome in Korea

    PubMed Central

    2016-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a rare syndrome characterized by micro-angiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. The major pathogenesis of aHUS involves dysregulation of the complement system. Eculizumab, which blocks complement C5 activation, has recently been proven as an effective agent. Delayed diagnosis and treatment of aHUS can cause death or end-stage renal disease. Therefore, a diagnosis that differentiates aHUS from other forms of thrombotic microangiopathy is very important for appropriate management. These guidelines aim to offer recommendations for the diagnosis and treatment of patients with aHUS in Korea. The guidelines have largely been adopted from the current guidelines due to the lack of evidence concerning the Korean population. PMID:27550478

  2. Healing of complement activating Ti implants compared with non-activating Ti in rat tibia.

    PubMed

    Harmankaya, N; Igawa, K; Stenlund, P; Palmquist, A; Tengvall, P

    2012-09-01

    Recent studies have revealed that ozone ultraviolet (UVO) illumination of titanium (Ti) implants improves bone-implant anchorage by altering the physico-chemical and immune activating properties of the titanium dioxide (TiO(2)) layer. In the present rat tibia model, the authors compared the early events of inflammation and bone formation around UVO-treated Ti and complement activating immunoglobin g (IgG)-coated Ti. Machined Ti and machined Ti coated with a physical vapour-deposited Ti layer were used as references. Screw-shaped test and reference implants were implanted into rat tibia and harvested after 1, 7 and 28 days. Messenger RNA expression of implant adhered cells and peri-implant tissue ~250 μm from the surface were subsequently analysed with regard to IL-1β, TNF-α, osteocalcin, cathepsin K, BMP-2 and PDGF. Separate implants were retrieved after 7 and 28 days for removal torque measurements, and histological staining and histomorphometric analysis of bone area and bone-to-implant contact. While enhanced expression of inflammatory markers, TNF-α and IL-1β, was observed on IgG-coated surfaces throughout the observation time, UVO-treated surfaces indicated a significantly lower early inflammatory response. In the early phases (1 and 7 days), the UVO-treated surfaces displayed a significantly higher expression of osteoblast markers BMP-2 and osteocalcin. In summary, complement activating Ti implants elicited a stronger inflammatory response than UVO-treated Ti, with low complement activation during the first week of healing. In spite of this, the UVO-treated Ti induced only marginally more bone growth outside the implants.

  3. Low-molecular-weight heparin inhibition in classical complement activation pathway during pregnancy.

    PubMed

    Oberkersch, Roxana; Attorresi, Alejandra I; Calabrese, Graciela C

    2010-05-01

    Low-molecular-weight heparin is used clinically for the prevention of pregnancy complications associated with prothrombotic disorders, particularly anti-phospholipid syndrome. Nevertheless, recent studies have suggested that heparin may exert direct effects on the placental trophoblast, independently of its anticoagulant activity. In addition, heparin prevents complement activation in vivo and protects mice from pregnancy complications. The inhibition of the classical complement activation pathway by heparin was analyzed by means of in vitro assays and in pregnant women receiving prophylaxis with therapeutic doses (40 mg/day) of subcutaneous low molecular weight heparin by haemolysis of antibody-sensitized sheep erythrocytes (CH(50) assay). The specific interaction between low-molecular-weight heparin and the C1q subunit of the C1 complex of the complement cascade allowed the isolation of a small subpopulation of heparin ( 8.03+/-1.20 microg %), with an anti-activated factor X activity more than four times greater than the starting material. This subpopulation could be responsible for the in vitro inhibition of the classical complement activation pathway evaluated by the total haemolysis of antibody-sensitized sheep erythrocytes. About 60 microg/ml of low molecular weight heparin was needed to achieve 50% of haemolysis. The detection of the classical complement pathway inhibition in pregnant women treated with heparin required a first activation with aggregated human IgG. We concluded that the interaction between low-molecular-weight heparin and C1q could be relevant not only in the complement-dependent, but also in the complement-independent inflammation mechanisms responsible for the prevention of pregnancy loss. Published by Elsevier Ltd.

  4. Isolation and characterization of a complement-activating lipid extracted from human atherosclerotic lesions

    PubMed Central

    1990-01-01

    The major characteristics of human atherosclerotic lesions are similar to those of a chronic inflammatory reaction, namely fibrosis, mesenchymal cell proliferation, the presence of resident macrophages, and cell necrosis. Atherosclerosis exhibits in addition the feature of lipid (mainly cholesterol) accumulation. The results of the present report demonstrate that a specific cholesterol-containing lipid particle present in human atherosclerotic lesions activates the complement system to completion. Thus, lipid could represent a stimulatory factor for the inflammatory reaction, whose underlying mechanistic basis may be, at least in part, complement activation. The complement-activating lipid was purified from saline extracts of aortic atherosclerotic lesions by sucrose density gradient centrifugation followed by molecular sieve chromatography on Sepharose 2B. It contained little protein other than albumin, was 100-500 nm in size, exhibited an unesterified to total cholesterol ratio of 0.58 and an unesterified cholesterol to phospholipid ratio of 1.2. The lipid, termed lesion lipid complement (LCA), activated the alternative pathway of complement in a dose-dependent manner. Lesion-extracted low density lipoprotein (LDL) obtained during the purification procedure failed to activate complement. Specific generation of C3a desArg and C5b-9 by LCA indicated C3/C5 convertase formation with activation proceeding to completion. Biochemical and electron microscopic evaluations revealed that much of the C5b-9 present in atherosclerotic lesions is membraneous, rather than fluid phase SC5b-9. The observations reported herein establish a link between lipid insudation and inflammation in atherosclerotic lesions via the mechanism of complement activation. PMID:2373993

  5. Effect of Complement on HIV-2 Plasma Antiviral Activity Is Intratype Specific and Potent

    PubMed Central

    Özkaya Şahin, Gülşen; Holmgren, Birgitta; Sheik-Khalil, Enas; da Silva, Zacarias; Nielsen, Jens; Nowroozalizadeh, Salma; Månsson, Fredrik; Norrgren, Hans; Aaby, Peter; Fenyö, Eva Maria

    2013-01-01

    Human immunodeficiency virus type 2 (HIV-2)-infected individuals develop immunodeficiency with a considerable delay and transmit the virus at rates lower than HIV-1-infected persons. Conceivably, comparative studies on the immune responsiveness of HIV-1- and HIV-2-infected hosts may help to explain the differences in pathogenesis and transmission between the two types of infection. Previous studies have shown that the neutralizing antibody response is more potent and broader in HIV-2 than in HIV-1 infection. In the present study, we have examined further the function of the humoral immune response and studied the effect of complement on the antiviral activity of plasma from singly HIV-1- or HIV-2-infected individuals, as well as HIV-1/HIV-2 dually infected individuals. The neutralization and antibody-dependent complement-mediated inactivation of HIV-1 and HIV-2 isolates were tested in a plaque reduction assay using U87.CD4.CCR5 cells. The results showed that the addition of complement increased intratype antiviral activities of both HIV-1 and HIV-2 plasma samples, although the complement effect was more pronounced with HIV-2 than HIV-1 plasma. Using an area-under-the-curve (AUC)-based readout, multivariate statistical analysis confirmed that the type of HIV infection was independently associated with the magnitude of the complement effect. The analyses carried out with purified IgG indicated that the complement effect was largely exerted through the classical complement pathway involving IgG in both HIV-1 and HIV-2 infections. In summary, these findings suggest that antibody binding to HIV-2 structures facilitates the efficient use of complement and thereby may be one factor contributing to a strong antiviral activity present in HIV-2 infection. PMID:23077299

  6. SALSA: A Regulator of the Early Steps of Complement Activation on Mucosal Surfaces.

    PubMed

    Reichhardt, Martin Parnov; Meri, Seppo

    2016-01-01

    Complement is present mainly in blood. However, following mechanical damage or inflammation, serous exudates enter the mucosal surfaces. Here, the complement proteins interact with other endogenous molecules to keep microbes from entering the parenteral tissues. One of the mucosal proteins known to interact with the early complement components of both the classical and the lectin pathway is the salivary scavenger and agglutinin (SALSA). SALSA is also known as deleted in malignant brain tumors 1 and gp340. It is found both attached to the epithelium and secreted into the surrounding fluids of most mucosal surfaces. SALSA has been shown to bind directly to C1q, mannose-binding lectin, and the ficolins. Through these interactions SALSA regulates activation of the complement system. In addition, SALSA interacts with surfactant proteins A and D, secretory IgA, and lactoferrin. Ulcerative colitis and Crohn's disease are examples of diseases, where complement activation in mucosal tissues may occur. This review describes the latest advances in our understanding of how the early complement components interact with the SALSA molecule. Furthermore, we discuss how these interactions may affect disease propagation on mucosal surfaces in immunological and inflammatory diseases.

  7. Systemic Administration of Induced Neural Stem Cells Regulates Complement Activation in Mouse Closed Head Injury Models

    PubMed Central

    Gao, Mou; Dong, Qin; Yao, Hui; Lu, Yingzhou; Ji, Xinchao; Zou, Mingming; Yang, Zhijun; Xu, Minhui; Xu, Ruxiang

    2017-01-01

    Complement activation plays important roles in the pathogenesis of central nervous system (CNS) diseases. Patients face neurological disorders due to the development of complement activation, which contributes to cell apoptosis, brain edema, blood-brain barrier dysfunction and inflammatory infiltration. We previously reported that induced neural stem cells (iNSCs) can promote neurological functional recovery in closed head injury (CHI) animals. Remarkably, we discovered that local iNSC grafts have the potential to modulate CNS inflammation post-CHI. In this study, we aimed to explore the role of systemically delivered iNSCs in complement activation following CNS injury. Our data showed that iNSC grafts decreased the levels of sera C3a and C5a and down-regulated the expression of C3d, C9, active Caspase-3 and Bax in the brain, kidney and lung tissues of CHI mice. Furthermore, iNSC grafts decreased the levels of C3d+/NeuN+, C5b-9+/NeuN+, C3d+/Map2+ and C5b-9+/Map2+ neurons in the injured cortices of CHI mice. Subsequently, we explored the mechanisms underlying these effects. With flow cytometry analysis, we observed a dramatic increase in complement receptor type 1-related protein y (Crry) expression in iNSCs after CHI mouse serum treatment. Moreover, both in vitro and in vivo loss-of-function studies revealed that iNSCs could modulate complement activation via Crry expression. PMID:28383046

  8. Alternative complement pathway activation increases mortality in a model of burn injury in mice.

    PubMed Central

    Gelfand, J A; Donelan, M; Hawiger, A; Burke, J F

    1982-01-01

    We have studied the role of the complement system in burn injury in an experimental model in mice. A 25% body surface area, full-thickness scald wound was produced in anesthetized animals. Massive activation of the alternative complement pathway, but not the classical pathway, was seen. This activation was associated with the generation of neutrophil aggregating activity in the plasma, neutrophil aggregates in the lungs, increased pulmonary vascular permeability, and increased lung edema formation. Decomplementation with cobra venom factor (CVF) or genetic C5 deficiency diminished these pathologic changes, and CVF pretreatment substantially reduced burn mortality in the first 24 h. Preliminary data show that human burn patients have a similar pattern of complement activation involving predominantly the alternative pathway, indicating the possible relevance of the murine model to human disease. Images PMID:7174787

  9. Atypical Hemolytic Uremic Syndrome and Chronic Ulcerative Colitis Treated with Eculizumab

    PubMed Central

    Webb, Tennille N.; Griffiths, Heidi; Miyashita, Yosuke; Bhatt, Riha; Jaffe, Ronald; Moritz, Michael; Hofer, Johannes; Swiatecka-Urban, Agnieszka

    2016-01-01

    Background Hemolytic-uremic syndrome (HUS) presents with hemolytic anemia, thrombocytopenia, and thrombotic microangiopathy of the kidney and usually results from Shiga-toxin induced activation of the alternative complement pathway. Gastroenteritis is a common feature of the Shiga-toxin producing Escherichia coli HUS, referred to as STEC-HUS. An inherited or acquired complement dysregulation may lead to HUS referred to as non-STEC or atypical (a)HUS. Although gastroenteritis is not a common presentation of aHUS, some patients develop ischemic colitis and may be misdiagnosed as acute appendicitis or acute ulcerative colitis (UC). Case Diagnosis –Treatment We present a patient with low circulating complement (C) 3 levels who developed aHUS in the course of chronic active UC. Resolution of renal and gastrointestinal manifestations in response to treatment with eculizumab, a humanized monoclonal antibody against terminal C5 protein suggests the role of alternative complement in the pathogenesis of both, aHUS and UC. Conclusion This case illustrates that dysregulation of the alternative complement pathway may manifest in other organs besides the kidney and that the circulating C3 levels do not correlate with the disease activity or the clinical response to eculizumab. PMID:27135055

  10. Complement activation by polysaccharide of lipopolysaccharide: an important virulence determinant of salmonellae.

    PubMed Central

    Liang-Takasaki, C J; Saxén, H; Mäkelä, P H; Leive, L

    1983-01-01

    Salmonellae with differences only in the O-antigenic polysaccharide of their lipopolysaccharide were previously shown to differentially activate complement via the alternative pathway, causing them to be ingested at different rates by the mouse macrophage-like cell line J774. We now show that this mechanism could explain the different virulence of these strains in vivo. Mouse peritoneal macrophages (thioglycolate induced) ingest these salmonellae at rates that are inversely proportional to the known virulence of the organisms and virtually identical to the rates observed with J774. As with J774, complement is required for this differential uptake, since serum was required and heating (56 degrees C for 30 min) or zymosan treatment of the serum destroyed activity. The known receptor for nonreducing terminal mannose-, fucose-, N-acetylglucosamine, and glucose-containing glyco-proteins did not participate, since uptake was not inhibited by high concentrations of mannan. When clearance of bacteria from the bloodstream of mice was measured, the least virulent organism was cleared very much faster than the most virulent organism, in confirmation of earlier data. When complement in the mice was destroyed by pretreatment with cobra venom factor, the clearance of the least virulent strain was greatly reduced, whereas the very slow clearance of the most virulent strain was unaffected. These data strongly support the hypothesis that when bacteria have polysaccharide in lipopolysaccharide that activates complement efficiently, the bacteria will be phagocytosed, whereas if the polysaccharide activates complement poorly, the bacteria escape ingestion and may cause disease. PMID:6347890

  11. Functional Contributions of Positive Charges in the Pore-Lining Helix 3 of the Bordetella pertussis CyaA-Hemolysin to Hemolytic Activity and Ion-Channel Opening

    PubMed Central

    Kurehong, Chattip; Kanchanawarin, Chalermpol; Powthongchin, Busaba; Prangkio, Panchika; Katzenmeier, Gerd; Angsuthanasombat, Chanan

    2017-01-01

    The Bordetella pertussis CyaA-hemolysin (CyaA-Hly) domain was previously demonstrated to be an important determinant for hemolysis against target erythrocytes and ion-channel formation in planar lipid bilayers (PLBs). Here, net-charge variations in the pore-lining helix of thirteen related RTX cytolysins including CyaA-Hly were revealed by amino acid sequence alignments, reflecting their different degrees of hemolytic activity. To analyze possible functional effects of net-charge alterations on hemolytic activity and channel formation of CyaA-Hly, specific mutations were made at Gln574 or Glu581 in its pore-lining α3 of which both residues are highly conserved Lys in the three highly active RTX cytolysins (i.e., Escherichia coli α-hemolysin, Actinobacillus pleuropneumoniae toxin, and Aggregatibacter actinomycetemcomitans leukotoxin). All six constructed CyaA-Hly mutants that were over-expressed in E. coli as 126 kDa His-tagged soluble proteins were successfully purified via immobilized Ni2+-affinity chromatography. Both positive-charge substitutions (Q574K, Q574R, E581K, E581R) and negative-charge elimination (E581Q) appeared to increase the kinetics of toxin-induced hemolysis while the substitution with a negatively-charged side-chain (Q574E) completely abolished its hemolytic activity. When incorporated into PLBs under symmetrical conditions (1.0 M KCl, pH 7.4), all five mutant toxins with the increased hemolytic activity produced clearly-resolved single channels with higher open probability and longer lifetime than the wild-type toxin, albeit with a half decrease in their maximum conductance. Molecular dynamics simulations for 50 ns of a trimeric CyaA-Hly pore model comprising three α2-loop-α3 transmembrane hairpins revealed a significant role of the positive charge at both target positions in the structural stability and enlarged diameter of the simulated pore. Altogether, our present data have disclosed functional contributions of positively-charged side

  12. Functional Contributions of Positive Charges in the Pore-Lining Helix 3 of the Bordetella pertussis CyaA-Hemolysin to Hemolytic Activity and Ion-Channel Opening.

    PubMed

    Kurehong, Chattip; Kanchanawarin, Chalermpol; Powthongchin, Busaba; Prangkio, Panchika; Katzenmeier, Gerd; Angsuthanasombat, Chanan

    2017-03-16

    The Bordetella pertussis CyaA-hemolysin (CyaA-Hly) domain was previously demonstrated to be an important determinant for hemolysis against target erythrocytes and ion-channel formation in planar lipid bilayers (PLBs). Here, net-charge variations in the pore-lining helix of thirteen related RTX cytolysins including CyaA-Hly were revealed by amino acid sequence alignments, reflecting their different degrees of hemolytic activity. To analyze possible functional effects of net-charge alterations on hemolytic activity and channel formation of CyaA-Hly, specific mutations were made at Gln(574) or Glu(581) in its pore-lining α3 of which both residues are highly conserved Lys in the three highly active RTX cytolysins (i.e., Escherichia coli α-hemolysin, Actinobacillus pleuropneumoniae toxin, and Aggregatibacter actinomycetemcomitans leukotoxin). All six constructed CyaA-Hly mutants that were over-expressed in E. coli as 126 kDa His-tagged soluble proteins were successfully purified via immobilized Ni(2+)-affinity chromatography. Both positive-charge substitutions (Q574K, Q574R, E581K, E581R) and negative-charge elimination (E581Q) appeared to increase the kinetics of toxin-induced hemolysis while the substitution with a negatively-charged side-chain (Q574E) completely abolished its hemolytic activity. When incorporated into PLBs under symmetrical conditions (1.0 M KCl, pH 7.4), all five mutant toxins with the increased hemolytic activity produced clearly-resolved single channels with higher open probability and longer lifetime than the wild-type toxin, albeit with a half decrease in their maximum conductance. Molecular dynamics simulations for 50 ns of a trimeric CyaA-Hly pore model comprising three α2-loop-α3 transmembrane hairpins revealed a significant role of the positive charge at both target positions in the structural stability and enlarged diameter of the simulated pore. Altogether, our present data have disclosed functional contributions of positively

  13. [Incomplete hemolytic uremic syndrome associated with partial factor H deficiency].

    PubMed

    Olaciregui Echenique, I; Areses Trapote, R; Ubetagoyena Arrieta, M; Sota Busselo, I; García Pardos, C; Echaniz Aizpuru, P

    2007-02-01

    Hemolytic uremic syndrome (HUS) consists of the association of hemolytic anemia, thrombocytopenia and renal failure. Most cases are related to toxins (verotoxins) produced by Escherichia coli 0157:H7 and generally have good renal prognosis. Atypical forms can occur, with a less favorable prognosis, and can be due to mutations in the gene codifying factor H, a protein that regulates activation of the alternative complement pathway, among other causes. Factor H deficiency produces continuous complement activation, causing injury to capillary endothelial cells. We report a case of incomplete (absence of thrombocytopenia and uremia), atypical HUS in which hypocomplementemia secondary to partial factor H deficiency was detected, with favorable outcome. Prior to symptom onset, the patient had a Campylobacter infection, precipitating the symptoms. Genetic analysis showed a heterozygous mutation (C846T) located in the SCR4 domain, generating an amino acid change in the factor H molecule (Pro240Leu). This mutation may have been the cause of the partial factor H deficiency and the patient's symptoms on admission.

  14. Acute and prolonged complement activation in the central nervous system during herpes simplex encephalitis.

    PubMed

    Eriksson, Charlotta E; Studahl, Marie; Bergström, Tomas

    2016-06-15

    Herpes simplex encephalitis (HSE) is characterized by a pronounced inflammatory activity in the central nervous system (CNS). Here, we investigated the acute and prolonged complement system activity in HSE patients, by using enzyme-linked immunosorbent assays (ELISAs) for numerous complement components (C). We found increased cerebrospinal fluid concentrations of C3a, C3b, C5 and C5a in HSE patients compared with healthy controls. C3a and C5a concentrations remained increased also compared with patient controls. Our results conclude that the complement system is activated in CNS during HSE in the acute phase, and interestingly also in later stages supporting previous reports of prolonged inflammation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Classroom Active Learning Complemented by an Online Discussion Forum to Teach Sustainability

    ERIC Educational Resources Information Center

    Dengler, Mary

    2008-01-01

    This paper identifies some of the pedagogical benefits of an active learning course delivery complemented by an online discussion forum to teach sustainability by evaluating the case of a geography master's course. The potential benefits and some challenges of an active learning course delivery to teach sustainability in geography and related…

  16. Classroom Active Learning Complemented by an Online Discussion Forum to Teach Sustainability

    ERIC Educational Resources Information Center

    Dengler, Mary

    2008-01-01

    This paper identifies some of the pedagogical benefits of an active learning course delivery complemented by an online discussion forum to teach sustainability by evaluating the case of a geography master's course. The potential benefits and some challenges of an active learning course delivery to teach sustainability in geography and related…

  17. Enhanced complement activation is part of the unfavourable cardiovascular risk profile in South Asians

    PubMed Central

    Siezenga, M A; Chandie Shaw, P K; van der Geest, R N; Mollnes, T E; Daha, M R; Rabelink, T J; Berger, S P

    2009-01-01

    South Asian immigrants in western societies exhibit a high burden of diabetes and subsequent vascular complications. Diabetic vascular complications are associated with vascular inflammation. We hypothesize that enhanced complement activation is involved. Therefore, levels of complement C3 and SC5b-9 – the soluble end product of complement activation – in a group of 200 South Asians were compared with an age- and sex-matched control group of native Caucasians. In addition, the association between complement levels and albuminuria, an indicator of renal damage and a cardiovascular risk marker, was assessed in the diabetic South Asian group. Compared with native Caucasians, South Asians had significantly higher levels of both serum C3 and plasma SC5b-9, even when only non-diabetic South Asians were considered. Diabetic South Asians had significantly higher C3 levels compared with non-diabetic South Asians. In diabetic South Asians, higher levels of SC5b-9 were associated with an increased prevalence of albuminuria (odds ratio 5·4, 95% confidence interval 1·8–15·8). These results suggest that enhanced complement activation is part of the unfavourable cardiovascular risk profile in South Asians. PMID:19659775

  18. Complement System Part II: Role in Immunity

    PubMed Central

    Merle, Nicolas S.; Noe, Remi; Halbwachs-Mecarelli, Lise; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.

    2015-01-01

    The complement system has been considered for a long time as a simple lytic cascade, aimed to kill bacteria infecting the host organism. Nowadays, this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation, and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing opsonization and a direct killing by C5b–9 membrane attack complex and by triggering inflammatory responses with the anaphylatoxins C3a and C5a. Opsonization plays also a major role in the mounting of an adaptive immune response, involving antigen presenting cells, T-, and B-lymphocytes. Nevertheless, it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Inadequate complement activation becomes a disease cause, as in atypical hemolytic uremic syndrome, C3 glomerulopathies, and systemic lupus erythematosus. Age-related macular degeneration and cancer will be described as examples showing that complement contributes to a large variety of conditions, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target. PMID:26074922

  19. Demonstration of alternative and classical complement pathway activity in colostrum from buffalo (Bubalus bubalis).

    PubMed

    Matheswaran, K; Dhinakar Raj, G; Nachimuthu, K

    2003-09-01

    Buffalo colostrum caused lysis of unsensitized red blood cells (RBC) from sheep, goats, rabbits and chickens. RBC from cattle and buffalo were resistant to lysis. That lysis was due to the presence of natural antibodies to these RBC was ruled out since there was no reduction in haemolytic titres even after adsorption with the respective RBC. The addition of EGTA to the diluent had no effect on the haemolytic activity. These findings indicate the presence of alternative complement pathway (ACP) activity in buffalo colostrum. The haemolytic activity of buffalo complement for unsensitized rabbit RBC was reduced to very low levels by heating at 50 degrees C for 45 min. Treatment with zymosan also inhibited the haemolytic activity, while inulin had no effect. The maximum activity of ACP occurred in the presence of 4 mmol/L Mg(2+) in the diluent. The range of ACP activities in colostrum from buffaloes varied from 4.06 to 8.48 CH50 units/ml. Using a standard system for titrating the classical complement pathway and rabbit red blood cells sensitized with goat haemolysin, the range of complement activity in buffalo colostrum was 4.81-6.77 CH50/ml.

  20. Carboxyhemoglobin elevation due to hemolytic anemia.

    PubMed

    Hampson, Neil B

    2007-07-01

    A critically ill man with drug-induced hemolytic anemia and hepatic failure was hospitalized at a private academic medical center in Seattle, Washington. Intravascular hemolysis with associated endogenous carbon monoxide (CO) production resulted in elevation of the patient's carboxyhemoglobin (COHb) level to as high as 9.7%. Serial measurements of the patient's COHb level were obtained and compared with other conventional measures of hemolytic activity. With the availability of new non-invasive measurement technology to detect COHb elevations, emergency clinicians are likely to see COHb elevation as a manifestation of hemolytic anemia.

  1. Serum tau protein as a marker of disease activity in enterohemorrhagic Escherichia coli O111-induced hemolytic uremic syndrome.

    PubMed

    Kuroda, Mondo; Shimizu, Masaki; Inoue, Natsumi; Ikeno, Iku; Nakagawa, Hiroyasu; Yokoi, Ayano; Niida, Yo; Konishi, Michio; Kaneda, Hisashi; Igarashi, Noboru; Yamahana, Junya; Taneichi, Hiromichi; Kanegane, Hirokazu; Ito, Mika; Saito, Shigeru; Furuichi, Kengo; Wada, Takashi; Nakagawa, Masaru; Yokoyama, Hitoshi; Yachie, Akihiro

    2015-01-01

    Tau protein levels in cerebrospinal fluid (CSF) and serum are elevated in patients with various central nervous system diseases. We investigated whether serum tau protein levels are useful for predicting and assessing disease activity of acute encephalopathy (AE) in enterohemorrhagic Escherichia coli (EHEC) O111-induced hemolytic uremic syndrome (HUS; EHEC encephalopathy). Serum samples were obtained from 14 patients with EHEC O111/HUS, 20 patients with non-EHEC-related AE, and 20 age- and sex-matched healthy controls. CSF samples were obtained from 2 patients with EHEC encephalopathy and 20 patients with non-EHEC-related AE. Tau protein levels and levels of several proinflammatory cytokines were quantified by enzyme-linked immunosorbent assays. Results were compared with the clinical features of EHEC encephalopathy, including magnetic resonance image (MRI) findings. Serum tau levels in patients with EHEC encephalopathy were significantly elevated compared with those in patients with EHEC O111/HUS without encephalopathy, patients with non-EHEC-related AE, and healthy controls. The ratio of CSF tau levels to serum tau levels was >1.0 in all patients with non-EHEC-related AE but <1.0 in 2 patients with EHEC encephalopathy. Serum tau protein levels increased rapidly and markedly in patients with severe EHEC 0111/HUS and encephalopathy when HUS occurred, but were not elevated in mild patients, even in the HUS phase. Furthermore, changes in serum tau protein levels in patients with EHEC encephalopathy were consistent with abnormalities on brain MRI and were positively correlated with proinflammatory cytokine levels. Our results indicate that serum tau protein might be useful to predict and assess disease activity of EHEC encephalopathy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effect of calcium on the hemolytic activity of Stichodactyla helianthus toxin sticholysin II on human erythrocytes.

    PubMed

    Celedón, Gloria; González, Gustavo; Lissi, Eduardo; Cerda, Tania; Martinez, Diana; Soto, Carmen; Pupo, Mario; Pazos, Fabiola; Lanio, Maria E; Alvarez, Carlos

    2009-11-01

    Sticholysin II (St II) is a toxin from the sea anemona Stichodactyla helianthus that produces erythrocytes lysis at low concentration and its activity depends on the presence of calcium. Calcium may act modifying toxin interaction with erythrocyte membranes or activating cellular processes which may result in a modified St II lytic action. In this study we are reporting that, in the presence of external K(+), extracellular calcium decreased St II activity on erythrocytes. On the other hand an increase of intracellular calcium promotes Sty II lytic activity. The effect of intracellular calcium was specifically studied in relation to membrane lipid translocation elicited by scramblases and how this action influence St II lytic activity on erythrocytes. We used 0.5 mmol/L calcium and 10 mmol/L A23187, as calcium ionophore, for scramblases activation and found increased St II activity associated to increase of intracellular calcium. N-ethyl maleimide (activator) and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (inhibitor) were used as scramblases modulators in the assays which produced an increase and a decrease of the calcium effect, respectively. Results reported suggest an improved St II membrane pore-forming capacity promoted by intracellular calcium associated to membrane phospholipids translocation.

  3. Hemolytic potency and phospholipase activity of some bee and wasp venoms.

    PubMed

    Watala, C; Kowalczyk, J K

    1990-01-01

    1. The action of crude venoms of four aculeate species: Apis mellifera, Vespa crabro, Vespula germanica and Vespula vulgaris on human erythrocytes was investigated in order to determine the lytic and phospholipase activity of different aculeate venoms and their ability to induce red blood cell hemolysis. 2. Bee venom was the only extract to completely lyse red blood cells at the concentration of 2-3 micrograms/ml. 3. Phospholipase activity in all of the examined vespid venoms was similar and the highest value was recorded in V. germanica. 4. Vespid venoms exhibited phospholipase B activity, which is lacking in honeybee venom. 5. In all membrane phospholipids but lecithin, lysophospholipase activity of vespid venoms was 2-6 times lower than the relevant phospholipase activity. 6. The incubation of red blood cells with purified bee venom phospholipase A2 was not accompanied by lysis and, when supplemented with purified melittin, the increase of red blood cell lysis was approximately 30%.

  4. Complement expression in retinal pigment epithelial cells is modulated by activated macrophages.

    PubMed

    Luo, Chang; Zhao, Jiawu; Madden, Angelina; Chen, Mei; Xu, Heping

    2013-07-01

    Complement activation is involved in a variety of retinal diseases. We have shown previously that a number of complement components and regulators can be produced locally in the eye, and that retinal pigment epithelial (RPE) cells are the major source of complement expression at the retina-choroidal interface. The expression of complement components by RPE cells is regulated by inflammatory cytokines. Under aging or inflammatory conditions, microglia and macrophages accumulate in the subretinal space, where they are in close contact with RPE cells. In this study, we investigated the effect of activated macrophages on complement expression by RPE cells. Mouse RPE cells were treated with the supernatants from un-activated bone marrow-derived macrophages (BM-DMs), the classically activated BM-DMs (M1) and different types of the alternatively activated BM-DMs (M2a by IL-4, M2b by immune complex and lipopolysaccharide (LPS), M2c by IL-10). The expression of inflammatory cytokines and complement genes by RPE cells were determined by real-time RT-PCR. The protein expression of CFB, C3, C1INH, and C1r was examined by Western blot. Our results show that un-stimulated RPE cells express a variety of complement-related genes, and that the expression levels of complement regulators, including C1r, factor H (CFH), DAF1, CD59, C1INH, Crry, and C4BP genes are significantly higher than those of complement component genes (C2, C4, CFB, C3, and C5). Macrophage supernatants increased inflammatory cytokine (IL-1β, IL-6, iNOS), chemokine (CCL2) and complement expression in RPE cells. The supernatants from M0, M2a and M2c macrophages mildly up-regulated (2-3.5-fold) CFB, CFH and C3 gene expression in RPE cells, whereas the supernatants from M1 and M2b macrophages massively increased (10-30-fold) CFB and C3 gene expression in RPE cells. The expression of other genes, including C1r, C2, C4, CFH, Masp1, C1INH, and C4BP in RPE cells was also increased by the supernatants of M1 and M2b

  5. Soluble human complement receptor type 1 inhibits complement-mediated host defense.

    PubMed

    Swift, A J; Collins, T S; Bugelski, P; Winkelstein, J A

    1994-09-01

    Soluble complement receptor type 1 (sCR1) is a powerful inhibitor of complement activation. Because of this ability, sCR1 may prove to be an important therapeutic agent that can be used to block the immunopathologic effects of uncontrolled complement activation in a variety of clinically significant disorders. Although several previous studies have examined the ability of sCR1 to inhibit complemented-mediated immunopathologic damage, there is no information on its ability to interfere with the host's defense against infection. In the current experiments sCR1 exerted a concentration-dependent inhibitory effect on the phagocytosis of Streptococcus pneumoniae by human polymorphonuclear leukocytes in vitro. Not only di sCR1 inhibit complement-dependent opsonization of the pneumococcus but at higher concentrations it also inhibited the ingestion of bacteria which had been previously opsonized. Furthermore, when rats were injected with sCR1, it inhibited both their serum hemolytic activity and serum opsonic activity in a dose-dependent fashion. Finally, for rats treated with sCR1, the 50% lethal dose was S. pneumoniae and Pseudomonas aeruginosa. These data demonstrate that sCR1 significantly inhibits complement-mediated host against bacterial infection.

  6. Association of Vibrio parahaemolyticus thermostable direct hemolysin with lipid rafts is essential for cytotoxicity but not hemolytic activity.

    PubMed

    Matsuda, Shigeaki; Kodama, Toshio; Okada, Natsumi; Okayama, Kanna; Honda, Takeshi; Iida, Tetsuya

    2010-02-01

    Thermostable direct hemolysin (TDH), a major virulence factor of Vibrio parahaemolyticus, induces cytotoxicity in cultured cells. However, the mechanism of TDH's cytotoxic effect including its target molecules on the plasma membrane of eukaryotic cells remains unclear. In this study, we identified the role of lipid rafts, cholesterol- and sphingolipid-enriched microdomains, in TDH cytotoxicity. Treatment of cells with methyl-beta-cyclodextrin (MbetaCD), a raft-disrupting agent, inhibited TDH cytotoxicity. TDH was associated with detergent-resistant membranes (DRMs), and MbetaCD eliminated this association. In contrast, there was no such association between a nontoxic TDH mutant and DRMs. The disruption of lipid rafts neither affected hemolysis nor inhibited Ca(2+) influx into HeLa cells induced by TDH. These findings indicate that the cytotoxicity but not the hemolytic activity of TDH is dependent on lipid rafts. The exogenous and endogenous depletion of cellular sphingomyelin also prevented TDH cytotoxicity, but a direct interaction between TDH and sphingomyelin was not detected with either a lipid overlay assay or a liposome absorption test. Treatment with sphingomyelinase (SMase) at 100 mU/ml disrupted the association of TDH with DRMs but did not affect the localization of lipid raft marker proteins (caveolin-1 and flotillin-1) with DRMs. These results suggest that sphingomyelin is important for the association of TDH with lipid rafts but is not a molecular target of TDH. We hypothesize that TDH may target a certain group of rafts that are sensitive to SMase at a certain concentration, which does not affect other types of rafts.

  7. Characterization of the complement inhibitory function of rhesus rhadinovirus complement control protein (RCP).

    PubMed

    Okroj, Marcin; Mark, Linda; Stokowska, Anna; Wong, Scott W; Rose, Nicola; Blackbourn, David J; Villoutreix, Bruno O; Spiller, O Brad; Blom, Anna M

    2009-01-02

    Rhesus rhadinovirus (RRV) is currently the closest known, fully sequenced homolog of human Kaposi sarcoma-associated herpesvirus. Both these viruses encode complement inhibitors as follows: Kaposi sarcoma-associated herpesvirus-complement control protein (KCP) and RRV-complement control protein (RCP). Previously we characterized in detail the functional properties of KCP as a complement inhibitor. Here, we performed comparative analyses for two variants of RCP protein, encoded by RRV strains H26-95 and 17577. Both RCP variants and KCP inhibited human and rhesus complement when tested in hemolytic assays measuring all steps of activation via the classical and the alternative pathway. RCP variants from both RRV strains supported C3b and C4b degradation by factor I and decay acceleration of the classical C3 convertase, similar to KCP. Additionally, the 17577 RCP variant accelerated decay of the alternative C3 convertase, which was not seen for KCP. In contrast to KCP, RCP showed no affinity to heparin and is the first described complement inhibitor in which the binding site for C3b/C4b does not interact with heparin. Molecular modeling shows a structural disruption in the region of RCP that corresponds to the KCP-heparin-binding site. This makes RRV a superior model for future in vivo investigations of complement evasion, as RCP does not play a supportive role in viral attachment as KCP does.

  8. Design, synthesis, and biological activity of diiminoisoindolines as complement component 3a antagonists.

    PubMed

    Grant, E B; Guiadeen, D; Singer, M; Argentieri, D; Hlasta, D J; Wachter, M

    2001-11-05

    The failure to fully regulate the inflammation response has been linked to diseases such as rheumatoid arthritis, septic shock syndrome, and asthma. The human complement system initiates and regulates the inflammation response through a cascade of regulatory factors. Complement Component 3a (C3a) is an essential regulatory factor and inhibiting its binding to a C3a receptor will diminish the inflammation response by disrupting the cascade. We report the design, synthesis, in vitro and in vivo activity of diiminoisoindolines as C3a antagonists.

  9. Glomerular C3c localization indicates ongoing immune deposit formation and complement activation in experimental glomerulonephritis.

    PubMed Central

    Schulze, M.; Pruchno, C. J.; Burns, M.; Baker, P. J.; Johnson, R. J.; Couser, W. G.

    1993-01-01

    In antibody-mediated glomerular disease, deposits of C3 (C3b) are common and are degraded by factor I to C3c and C3d. However, the kinetics of C3b degradation in glomerulonephritis have not been defined. To do this, we studied three models of complement-dependent glomerulonephritis with established C3 deposits (passive Heymann nephritis, cationized immunoglobulin G membranous nephropathy, and concanavalin A-anticoncanavalin A glomerulonephritis). C3b deposition was halted by administration of cobra venom factor, and the disappearance of C3c and C3d from glomeruli was measured with specific antibodies and quantitative fluorescence densitometry. Results showed that C3c deposits were reduced by over 85% within 24 hours in all three models. C3c clearance was unaffected by site or mechanism of deposit formation. C3d deposits persisted despite lack of ongoing complement activation. In passive Heymann nephritis when disease activity was monitored by urinary C5b-9 excretion, C3c was cleared in parallel with return of urine C5b-9 excretion to normal values. We conclude that glomerular deposits of C3c are cleared within 24 hours of cessation of complement activation. Positive staining for C3 utilizing antibody specific for the C3c portion documents recent complement activation usually reflecting new immune deposit formation. Images Figure 1 Figure 2 Figure 3 PMID:7678717

  10. Annexin A2 Enhances Complement Activation by Inhibiting Factor H1

    PubMed Central

    Renner, Brandon; Tong, Hua Hua; Laskowski, Jennifer; Jonscher, Karen; Goetz, Lindsey; Woolaver, Rachel; Hannan, Jonathan; Li, Yong Xing; Hourcade, Dennis; Pickering, Matthew C.; Holers, V. Michael; Thurman, Joshua M.

    2015-01-01

    Factor H is a circulating protein that regulates activation of the alternative pathway (AP) of complement. Mutations and genetic variations of factor H are associated with several AP-mediated diseases, highlighting the critical role of factor H in AP regulation. AP-mediated inflammation is typically triggered by illness or tissue injury, however, and tissue injury can trigger AP activation in individuals with fully functional factor H. This suggests that factor H function is affected by local conditions within tissues. We hypothesized that inducible proteins impair the ability of factor H to locally control the AP, thereby increasing AP activation. We used purified murine factor H to immunoprecipitate binding partners from mouse kidneys. Using immunoaffinity liquid chromatography-mass spectrometry we then identified annexin A2 as a factor H binding partner. Further experiments showed that annexin A2 reduces the binding of factor H to cell surfaces. Recombinant annexin A2 impaired complement regulation by factor H, and increased complement activation on renal cell surfaces in vitro and in vivo. In a murine model of acute pneumococcal otitis media the administration of annexin A2 increased AP-mediated bacterial opsonization and clearance. In conclusion, the local production of annexin A2 within tissues suppresses regulation of the AP by factor H. Annexin A2 can contribute to AP-mediated tissue inflammation by locally impairing factor H function, but annexin A2 can also improve complement-mediated bacterial clearance. PMID:26729803

  11. Complement activation by polyethoxylated pharmaceutical surfactants: Cremophor-EL, Tween-80 and Tween-20.

    PubMed

    Weiszhár, Zsóka; Czúcz, Judit; Révész, Csaba; Rosivall, László; Szebeni, János; Rozsnyay, Zoltán

    2012-03-12

    Immunosafety analysis of pharmaceutical surfactants is an important step in understanding the complex mechanisms by which they induce side effects in susceptible patients. This paper provides experimental evidences that polyethoxylated surfactants, Cremophor-EL and Tween-80, also known as Polysorbate-80, activate the complement system in vitro, in normal human serum and plasma. They appeared to be more efficient reactogens than their structural homolog, Tween-20. Cremophor-EL and Tween-80 promoted the generation of biologically active complement products, C3a, C5a and C5b-9. Consistently, Paclitaxel and Taxotere (Docetaxel), pharmaceuticals formulated in Cremophor-EL and Tween-80, activated the complement system in similar extent. Moreover, comparison of serum reactivity against the drug-loaded and drug-free formulations exhibited a significant linear correlation. Taken together, these results are consistent with the hypothesis that therapeutic side effects, such as acute hypersensitivity and systemic immunostimulation, caused by intravenous nanomedicines containing polyethoxylated detergents such as Cremophor-EL and Tween-80, can be attributed to complement activation-derived inflammatory mediators.

  12. Factor C acts as a lipopolysaccharide-responsive C3 convertase in horseshoe crab complement activation.

    PubMed

    Ariki, Shigeru; Takahara, Shusaku; Shibata, Toshio; Fukuoka, Takaaki; Ozaki, Aya; Endo, Yuichi; Fujita, Teizo; Koshiba, Takumi; Kawabata, Shun-ichiro

    2008-12-01

    The complement system in vertebrates plays an important role in host defense against and clearance of invading microbes, in which complement component C3 plays an essential role in the opsonization of pathogens, whereas the molecular mechanism underlying C3 activation in invertebrates remains unknown. In an effort to understand the molecular activation mechanism of invertebrate C3, we isolated and characterized an ortholog of C3 (designated TtC3) from the horseshoe crab Tachypleus tridentatus. Flow cytometric analysis using an Ab against TtC3 revealed that the horseshoe crab complement system opsonizes both Gram-negative and Gram-positive bacteria. Evaluation of the ability of various pathogen-associated molecular patterns to promote the proteolytic conversion of TtC3 to TtC3b in hemocyanin-depleted plasma indicated that LPS, but not zymosan, peptidoglycan, or laminarin, strongly induces this conversion, highlighting the selective response of the complement system to LPS stimulation. Although originally characterized as an LPS-sensitive initiator of hemolymph coagulation stored within hemocytes, we identified factor C in hemolymph plasma. An anti-factor C Ab inhibited various LPS-induced phenomena, including plasma amidase activity, the proteolytic activation of TtC3, and the deposition of TtC3b on the surface of Gram-negative bacteria. Moreover, activated factor C present on the surface of Gram-negative bacteria directly catalyzed the proteolytic conversion of the purified TtC3, thereby promoting TtC3b deposition. We conclude that factor C acts as an LPS-responsive C3 convertase on the surface of invading Gram-negative bacteria in the initial phase of horseshoe crab complement activation.

  13. Antibodies to glycolipids activate complement and promote proteinuria in passive Heymann nephritis.

    PubMed

    Susani, M; Schulze, M; Exner, M; Kerjaschki, D

    1994-04-01

    Passive Heymann nephritis is an experimental rat model of human membranous nephropathy induced by injection of antisera against crude renal cortical fractions such as Fx1A or rat tubular microvilli. This results in the formation of subepithelial immune deposits, the activation of the C5b-9 membrane attack complex of complement, and severe proteinuria. While the formation of immune deposits is attributed to in situ immune complex formation with antibodies specific for the gp330-Heymann nephritis antigenic complex (HNAC), activation of complement and proteinuria appear to be caused by at least one additional antibody species present in anti-Fx1A sera. We have separated by affinity absorption polyspecific antisera against Fx1A and rat microvilli into one IgG fraction directed specifically against microvillar proteins (anti-Fx1A-prot) and another IgG fraction specific for glycolipids (ant-Fx1A-lip) of tubular microvilli. When injected into rats, the anti-Fx1A-prot fraction induced immune deposits but failed to activate complement or produce proteinuria, similar to results obtained with affinity-purified anti-gp330 IgG. When the antibodies of the anti-Fx1A-lip fraction were injected alone they did not bind to glomeruli. By contrast, when the IgGs specific for the Fx1A-prot fraction (or for gp330-HNAC) were combined with those directed against the Fx1A-lip glycolipid preparation, immune deposits were formed, in situ complement activation was observed, and also proteinuria was induced. It is concluded that within anti-Fx1A and anti-microvillar sera there are at least two IgG fractions of relevance for the development of PHN: one directed against the gp330-HNAC complex which is responsible for the development of immune deposits, and a second specific for glycolipid antigen(s) which activate(s) the complement cascade.

  14. NETosing Neutrophils Activate Complement Both on Their Own NETs and Bacteria via Alternative and Non-alternative Pathways

    PubMed Central

    Yuen, Joshua; Pluthero, Fred G.; Douda, David N.; Riedl, Magdalena; Cherry, Ahmed; Ulanova, Marina; Kahr, Walter H. A.; Palaniyar, Nades; Licht, Christoph

    2016-01-01

    Neutrophils deposit antimicrobial proteins, such as myeloperoxidase and proteases on chromatin, which they release as neutrophil extracellular traps (NETs). Neutrophils also carry key components of the complement alternative pathway (AP) such as properdin or complement factor P (CFP), complement factor B (CFB), and C3. However, the contribution of these complement components and complement activation during NET formation in the presence and absence of bacteria is poorly understood. We studied complement activation on NETs and a Gram-negative opportunistic bacterial pathogen Pseudomonas aeruginosa (PA01, PAKwt, and PAKgfp). Here, we show that anaphylatoxin C5a, formyl-methionyl-leucyl-phenylalanine (fMLP) and phorbol myristate acetate (PMA), which activates NADPH oxidase, induce the release of CFP, CFB, and C3 from neutrophils. In response to PMA or P. aeruginosa, neutrophils secrete CFP, deposit it on NETs and bacteria, and induce the formation of terminal complement complexes (C5b–9). A blocking anti-CFP antibody inhibited AP-mediated but not non-AP-mediated complement activation on NETs and P. aeruginosa. Therefore, NET-mediated complement activation occurs via both AP- and non AP-based mechanisms, and AP-mediated complement activation during NETosis is dependent on CFP. These findings suggest that neutrophils could use their “AP tool kit” to readily activate complement on NETs and Gram-negative bacteria, such as P. aeruginosa, whereas additional components present in the serum help to fix non-AP-mediated complement both on NETs and bacteria. This unique mechanism may play important roles in host defense and help to explain specific roles of complement activation in NET-related diseases. PMID:27148258

  15. Hemolytic uremic syndrome in children.

    PubMed

    Talarico, Valentina; Aloe, Monica; Monzani, Alice; Miniero, Roberto; Bona, Gianni

    2016-12-01

    Hemolytic uremic syndrome (HUS) is a thrombotic microangiopathy defined by thrombocytopenia, non-immune microangiopathic hemolytic anemia and acute renal failure. HUS is typically classified into two primary types: 1) HUS due to infections, often associated with diarrhea (D+HUS, Shiga toxin-producing Escherichia Coli-HUS), with the rare exception of HUS due to a severe disseminated infection caused by Streptococcus; 2) HUS related to complement, such HUS is also known as "atypical HUS" and is not diarrhea associated (D-HUS, aHUS); but recent studies have shown other forms of HUS, that can occur in the course of systemic diseases or physiopathological conditions such as pregnancy, after transplantation or after drug assumption. Moreover, new studies have shown that the complement system is an important factor also in the typical HUS, in which the infection could highlight an underlying dysregulation of complement factors. Clinical signs and symptoms may overlap among the different forms of HUS. Shiga toxin-producing Escherichia Coli (STEC) infection cause a spectrum of clinical sings ranging from asymptomatic carriage to non-bloody diarrhea, hemorrhagic colitis, HUS and death. The average interval between ingestion of STEC and illness manifestation is approximately 3 days, although this can vary between 2 and 12 days. Patients with pneumococcal HUS usually have a severe clinical picture with microangiopathic hemolytic anemia, respiratory distress, neurological involvement. The atypical HUS, in contrast to STEC-HUS which tends to occur as a single event, is a chronic condition and involves a poorer prognosis. Early diagnosis and identification of underlying pathogenic mechanism allow instating specific support measures and therapies. Typical management of STEC-HUS patients relies on supportive care of electrolyte and water imbalance, anemia, hypertension and renal failure. For the aHUS the initial management is supportive and similar to the approach for STEC

  16. Antibacterial and hemolytic activity of the skin of the terrestrial salamander, Plethodon cinereus.

    PubMed

    Fredericks, L P; Dankert, J R

    2000-10-01

    As resistance increases against fungal antibiotics, antimicrobial peptides are receiving attention as possible replacements. The dermal glands of frogs secrete, among other things, antimicrobial peptides. As part of the innate immune system, stressors may affect the production of antimicrobial peptides by dermal glands. The dermal secretions of some salamanders have been examined for their toxic secretions, but little attention has been given to salamander antimicrobial peptides. This study examines the skin from the tail region for the production of antimicrobial peptides in the terrestrial salamander, Plethodon cinereus. Fractions of tail extracts were isolated using cation-exchange chromatography and reverse-phase HPLC. An HPLC fraction eluting at 15.75 min (HPLC run: 30 min, 30-80% acetonitrile/water gradient, Aquapore RP-300 C18 column) showed activity against Staphylococcus aureus but not against Escherichia coli. The antibacterial activity gradually increased over a 4-hr incubation time up to about 85% inhibition of bacterial growth. Lysis of guinea pig red blood cells also increased gradually over a 1-hr time period. J. Exp. Zool. 287:340-345, 2000. Copyright 2000 Wiley-Liss, Inc.

  17. Assessment of hemolytic activity, enzyme production and bacteriocin characterization of Bacillus subtilis LR1 isolated from the gastrointestinal tract of fish.

    PubMed

    Banerjee, Goutam; Nandi, Ankita; Ray, Arun Kumar

    2017-01-01

    In the present investigation, probiotic potential (antagonistic activity, enzyme production, hemolytic activity, biosafety, antibiotic sensitivity and bile tolerance level) of Bacillus subtilis LR1 was evaluated. Bacteriocin produced by the bacterial strain B. subtilis LR1 isolated from the gastrointestinal tract of Labeo rohita was purified and characterized. The molecular weight of the purified bacteriocin was ~50 kDa in 12 % Native PAGE and showed inhibitory activity against four fish pathogens such as Bacillus mycoides, Aeromonas salmonicida, Pseudomonas fluorescens and Aeromonas hydrophila. The purified bacteriocin was maximally active at temperature 40 °C and pH 7.0, while none of the tested surfactants affect the bacteriocin activity. Extracellular enzyme activity of the selected bacterial strain was also evaluated. Amylase activity was estimated to be highest (38.23 ± 1.15 µg of maltose liberated mg(-1) protein ml(-1) of culture filtrate) followed by cellulase and protease activity. The selected bacterium was sensitive to most of the antibiotics used in this experiment, can tolerate 0.25 % bile salt and non-hemolytic in nature. Finally, the efficiency of the proposed probiotic candidate was evaluated in in vivo condition. It was detected that the bacterial strain can effectively reduce bacterial pathogenicity in Indian major carps.

  18. Complement-fixing Activity of Fulvic Acid from Shilajit and Other Natural Sources

    PubMed Central

    Schepetkin, Igor A.; Xie, Gang; Jutila, Mark A.; Quinn, Mark T.

    2008-01-01

    Shilajit has been used traditionally in folk medicine for treatment of a variety of disorders, including syndromes involving excessive complement activation. Extracts of Shilajit contain significant amounts of fulvic acid (FA), and it has been suggested that FA is responsible for many therapeutic properties of Shilajit. However, little is known regarding physical and chemical properties of Shilajit extracts, and nothing is known about their effects on the complement system. To address this issue, we fractionated extracts of commercial Shilajit using anion exchange and size-exclusion chromatography. One neutral (S-I) and two acidic (S-II and S-III) fractions were isolated, characterized, and compared with standardized FA samples. The most abundant fraction (S-II) was further fractionated into three sub-fractions (S-II-1 to S-II-3). The van Krevelen diagram showed that the Shilajit fractions are products of polysaccharide degradation, and all fractions, except S-II-3, contained type II arabinogalactan. All Shilajit fractions exhibited dose-dependent complement-fixing activity in vitro with high potency. Furthermore, we found a strong correlation between complement-fixing activity and carboxylic group content in the Shilajit fractions and other FA sources. These data provide a molecular basis to explain at least part of the beneficial therapeutic properties of Shilajit and other humic extracts. PMID:19107845

  19. Targeting complement activation in brain-dead donors improves renal function after transplantation.

    PubMed

    Damman, Jeffrey; Hoeger, Simone; Boneschansker, Leo; Theruvath, Ashok; Waldherr, Ruediger; Leuvenink, Henri G; Ploeg, Rutger J; Yard, Benito A; Seelen, Marc A

    2011-05-01

    Kidneys recovered from brain-dead donors have inferior outcomes after transplantation compared to kidneys from living donors. Since complement activation plays an important role in renal transplant related injury, targeting complement activation in brain-dead donors might improve renal function after transplantation. Brain death (BD) was induced in Fisher rats by inflation of an epidurally placed balloon catheter and ventilated for 6h. BD animals were treated with soluble complement receptor 1 (sCR1) 1h before or 1h after BD. Kidney transplantation was performed and 7 days after transplantation animals were sacrificed. Plasma creatinine and urea were measured at days 0, 1, 3, 5 and 7 after transplantation. Renal function was significantly better at day 1 after transplantation in recipients receiving a sCR1 pre-treated donor kidney compared to recipients of a non-treated donor graft. Also treatment with sCR1, 1h after the diagnosis of BD, resulted in a better renal function after transplantation. Gene expression of IL-6, IL-1beta and TGF-beta were significantly lower in renal allografts recovered from treated donors. This study shows that targeting complement activation, during BD in the donor, leads to an improved renal function after transplantation in the recipient.

  20. Flavonol glycosides and other phenolic compounds from Viola tianshanica and their anti-complement activities.

    PubMed

    Qin, Yan; Wen, Quan; Cao, Jie; Yin, Chengle; Chen, Daofeng; Cheng, Zhihong

    2016-07-01

    Viola tianshanica Maxim. (Violaceae) is a perennial herb distributed in Central Asia, especially in the Xinjiang Uygur Autonomous Region (XUAR) of China. Preliminary study showed that the ethanol extract of the herb exhibited the anti-complement activity against the classical pathway, but the active components responsible for this capacity remain unknown and are yet to be studied. The objective of this study was the isolation and identification of the anti-complement constituents of V. tianshanica. The ethyl acetate and n-butanol fractions from the ethanol extract of V. tianshanica were purified. The structures of the isolates were identified by spectroscopic methods, and comparing their spectral data with those reported in the literature. All the isolates (0.02-2.50 mg/mL) were evaluated for their anti-complement activity against the classical and alternative pathways. Twenty-one phenolic compounds including 15 flavonol O-glycosides (1-15), one flavone 6,8-di-C-glycoside (16), one flavone aglycone (17), and four phenolic acid derivatives (18-21) were isolated and identified. Bioassay showed that 11 compounds inhibited the classical pathway and the alternative pathway with CH50 and AP50 values of 0.113-1.210 mM and 0.120-1.579 mM, respectively. Preliminary mechanistic study using complement-depleted sera demonstrated that 1 acted on C1q, C2, C4, and C9 components, 16 on C1q, C4, and C5, and 21 on C1q, C3, C4, and C9. All isolated compounds except 1 and 10 were reported for the first time from V. tianshanica. Compound 16 is the first flavone C-glycoside isolated from the herb. Flavonol O-glycosides and phenolic acids contributed the anti-complement activity of the herb.

  1. Complement activation on poly(ethylene oxide)-like RFGD-deposited surfaces

    PubMed Central

    Szott, Luisa Mayorga; Stein, M. Jeanette; Ratner, Buddy D.; Horbett, Thomas A.

    2010-01-01

    Non-specific protein adsorption, particularly fibrinogen (Fg), is thought to be an initiating step in the foreign body response (FBR) to biomaterials by promoting phagocyte attachment. In previous studies, we therefore prepared radio frequency glow discharge (RFGD) polyethylene oxide (PEO)-like tetraglyme coatings (CH3O(CH2CH2O)4CH3) adsorbing less than 10 ng/cm2 Fg and showed that they had the expected low monocyte adhesion in vitro. However, when these were implanted in vivo, many adherent inflammatory cells and a fibrous capsule were found, suggesting the role of alternative proteins, such as activated complement proteins, in the FBR to these materials. We therefore investigated complement interactions with the tetraglyme surfaces. First, because of its well known role in complement C3 activation, we measured the hydroxyl group (-OH) content of tetraglyme, but found it to be very low. Second, we measured C3 adsorption to tetraglyme from plasma. Low amounts of C3 adsorbed on tetraglyme, though it displayed higher binding strength than the control surfaces. Finally, complement activation was determined by measuring C3a and SC5b-9 levels in serum after incubating with tetraglyme, as well as other surfaces that served as positive and negative controls, namely poly(vinyl alcohol) hydrogels, Silastic sheeting, and poly(ethylene glycol) self-assembled monolayers with different end groups. Despite displaying low hydroxyl group concentration, relatively high C3a and SC5b-9 levels were found in serum exposed to tetraglyme, similar to the values due to our positive control, PVA. Our results support the conclusion that complement activation by tetraglyme is a possible mechanism involved in the FBR to these biomaterials. PMID:21105163

  2. Complement Activation in Relation to Capillary Leakage in Children with Septic Shock and Purpura

    PubMed Central

    Hazelzet, Jan A.; de Groot, Ronald; van Mierlo, Gerard; Joosten, Koen F. M.; van der Voort, Edwin; Eerenberg, Anke; Suur, Marja H.; Hop, Wim C. J.; Hack, C. Erik

    1998-01-01

    To assess the relationship between capillary leakage and inflammatory mediators during sepsis, blood samples were taken on hospital admission, as well as 24 and 72 h later, from 52 children (median age, 3.3 years) with severe meningococcal sepsis, of whom 38 survived and 14 died. Parameters related to cytokines (interleukin 6 [IL-6] IL-8, plasma phospholipase A2, and C-reactive protein [CRP]), to neutrophil degranulation (elastase and lactoferrin), to complement activation (C3a, C3b/c, C4b/c, and C3- and C4-CRP complexes), and to complement regulation (functional and inactivated C1 inhibitor and C4BP) were determined. The degree of capillary leakage was derived from the amount of plasma infused and the severity of disease by assessing the pediatric risk of mortality (PRISM) score. Levels of IL-6, IL-8, C3b/c, C3-CRP complexes, and C4BP on admission, adjusted for the duration of skin lesions, were significantly different in survivors and nonsurvivors (C3b/c levels were on average 2.2 times higher in nonsurvivors, and C3-CRP levels were 1.9 times higher in survivors). Mortality was independently related to the levels of C3b/c and C3-CRP complexes. In agreement with this, levels of complement activation products correlated well with the PRISM score or capillary leakage. Thus, these data show that complement activation in patients with severe meningococcal sepsis is associated with a poor outcome and a more severe disease course. Further studies should reveal whether complement activation may be a target for therapeutical intervention in this disease. PMID:9784543

  3. Complement activation by candidate biomaterials of an implantable microfabricated medical device.

    PubMed

    Sokolov, Andrey; Hellerud, Bernt C; Pharo, Anne; Johannessen, Erik A; Mollnes, Tom E

    2011-08-01

    Implantable devices realized by microfabrication have introduced a new class of potential biomaterials whose properties would need to be assessed. Such devices include sensors for measuring biological substances like glucose. Thus, 14 different candidate materials intended for design of such a device were investigated with respect to their complement activation potential in human serum. The fluid-phase activation was measured by the products C4d, Bb, C3bc, and the terminal complement complex (TCC), whereas solid-phase activation was measured by deposition of TCC on the material surfaces. No fluid-phase activation was found for materials related to the capsule, carrier, or sealing. Fluid-phase activation was, however, triggered to a various extent in three of the four nanoporous membranes (cellulose, polyamide, and aluminium oxide), whereas polycarbonate was rendered inactive. Solid-phase activation discriminated more sensitively between all the materials, revealing that the capsule candidate polydimethylsiloxane and sealing candidate silicone 3140 were highly compatible, showing significantly lower TCC deposition than the negative control (p < 0.01). Three of the candidate materials were indifferent, whereas the remaining nine showed significantly higher deposition of TCC than the negative control (p < 0.01). In conclusion, complement activation, in particular when examined on the solid phase, discriminated well between the different candidate materials tested and could be used as a guide for the selection of the best-suited materials for further investigation and development of the device.

  4. Types of Hemolytic Anemia

    MedlinePlus

    ... Chinese, Filipino, Mediterranean, or African origin or descent. Hereditary Spherocytosis In this condition, a defect in the ... hemolytic anemia among people of Northern European descent. Hereditary Elliptocytosis (Ovalocytosis) Like hereditary spherocytosis, this condition also ...

  5. [Hemolytic anemias in adults].

    PubMed

    Müller, A; Zimmermann, R; Krause, S W

    2011-11-01

    The erythrocyte lifespan in haemolytic anemia is shortened while erythropoesis is increased. Important labaratory findings are increased reticulocytes, LDH, indirect bilirubin and a decreased haptoglobin level. The most important diagnostic tool for further work up of hemolytic anemia is the direct antiglobulin test (DAT, Coombs test) to differentiate autoimmune hemolytic anemia (AIHA) from other causes. Another important group are fragmentation syndroms (hemolytic uremic syndrome and thrombotic thrombocytopenic purpura). In these forms of haemolytic anemia fragmented red blood cells can be found in the blood smear together with thrombocytopenia. A severe problem in paroxysmal nocturnal hematuria is the incidence of thrombosis. The following review describes the most important forms of hemolytic anemia in the adult and the diagnostic and therapeutic strategies.

  6. Fcγ and Complement Receptors and Complement Proteins in Neutrophil Activation in Rheumatoid Arthritis: Contribution to Pathogenesis and Progression and Modulation by Natural Products

    PubMed Central

    Paoliello-Paschoalato, Adriana Balbina; Marchi, Larissa Fávaro; de Andrade, Micássio Fernandes; Kabeya, Luciana Mariko; Donadi, Eduardo Antônio; Lucisano-Valim, Yara Maria

    2015-01-01

    Rheumatoid arthritis (RA) is a highly disabling disease that affects all structures of the joint and significantly impacts on morbidity and mortality in RA patients. RA is characterized by persistent inflammation of the synovial membrane lining the joint associated with infiltration of immune cells. Eighty to 90% of the leukocytes infiltrating the synovia are neutrophils. The specific role that neutrophils play in the onset of RA is not clear, but recent studies have evidenced that they have an important participation in joint damage and disease progression through the release of proteolytic enzymes, reactive oxygen species (ROS), cytokines, and neutrophil extracellular traps, in particular during frustrated phagocytosis of immune complexes (ICs). In addition, the local and systemic activation of the complement system contributes to the pathogenesis of RA and other IC-mediated diseases. This review discusses (i) the participation of Fcγ and complement receptors in mediating the effector functions of neutrophils in RA; (ii) the contribution of the complement system and ROS-dependent and ROS-independent mechanisms to joint damage in RA; and (iii) the use of plant extracts, dietary compounds, and isolated natural compounds in the treatment of RA, focusing on modulation of the effector functions of neutrophils and the complement system activity and/or activation. PMID:26346244

  7. Monomeric C-reactive protein modulates classic complement activation on necrotic cells.

    PubMed

    Mihlan, Michael; Blom, Anna M; Kupreishvili, Koba; Lauer, Nadine; Stelzner, Kristin; Bergström, Frida; Niessen, Hans W M; Zipfel, Peter F

    2011-12-01

    The acute-phase protein C-reactive protein (CRP) recruits C1q to the surface of damaged cells and thereby initiates complement activation. However, CRP also recruits complement inhibitors, such as C4b-binding protein (C4bp) and factor H, which both block complement progression at the level of C3 and inhibits inflammation. To define how CRP modulates the classic complement pathway, we studied the interaction of CRP with the classic pathway inhibitor C4bp. Monomeric CRP (mCRP), but not pentameric CRP (pCRP), binds C4bp and enhances degradation of C4b and C3b. Both C1q, the initiator, and C4bp, the inhibitor of the classic pathway, compete for mCRP binding, and this competition adjusts the local balance of activation and inhibition. After attachment of pCRP to the surface of necrotic rat myocytes, generation of mCRP was demonstrated over a period of 18 h. Similarly, a biological role for mCRP, C1q, and C4bp in the disease setting of acute myocardial infarction was revealed. In this inflamed tissue, mCRP, pCRP, C4bp, C1q, and C4d were detected in acetone-fixed and in unfixed tissue. Protein levels were enhanced 6 h to 5 d after infarction. Thus, mCRP bound to damaged cardiomyocytes recruits C1q to activate and also C4bp to control the classic complement pathway.

  8. Characterization of the third component of complement (C3) after activation by cigarette smoke

    SciTech Connect

    Kew, R.R.; Ghebrehiwet, B.; Janoff, A.

    1987-08-01

    Activation of lung complement by tobacco smoke may be an important pathogenetic factor in the development of pulmonary emphysema in smokers. We previously showed that cigarette smoke can modify C3 and activate the alternative pathway of complement in vitro. However, the mechanism of C3 activation was not fully delineated in these earlier studies. In the present report, we show that smoke-treated C3 induces cleavage of the alternative pathway protein, Factor B, when added to serum containing Mg-EGTA. This effect of cigarette smoke is specific for C3 since smoke-treated C4, when added to Mg-EGTA-treated serum, fails to activate the alternative pathway and fails to induce Factor B cleavage. Smoke-modified C3 no longer binds significant amounts of (/sup 14/C)methylamine (as does native C3), and relatively little (/sup 14/C)methylamine is incorporated into its alpha-chain. Thus, prior internal thiolester bond cleavage appears to have occurred in C3 activated by cigarette smoke. Cigarette smoke components also induce formation of noncovalently associated, soluble C3 multimers, with a Mr ranging from 1 to 10 million. However, prior cleavage of the thiolester bond in C3 with methylamine prevents the subsequent formation of these smoke-induced aggregates. These data indicate that cigarette smoke activates the alternative pathway of complement by specifically modifying C3 and that these modifications include cleavage of the thiolester bond in C3 and formation of noncovalently linked C3 multimers.

  9. Bypass-activation of the complement system starting with C3

    PubMed Central

    Bitter-Suermann, D.; Dierich, M.; König, W.; Hadding, U.

    1972-01-01

    Antibody independent activation of the complement system starting with C3 can be achieved by means of a purified factor from cobra venom (VF), which interacts with a purified serum factor (SF). The latter is a normal constituent of guinea-pig and human serum (C3-proactivator). The interaction between VF and SF is Mg+ + dependent and leads to the formation of a complex. Immunological analysis reveals that both VF- and SF-antigens are contained in the complex. The VF—SF complex activates enzymatically isolated C3, which in the presence of the subsequent components yields all effects of the normal complement sequence. Purified C5 is not affected by the complex. Its activation is mediated by activated C3. The VF—SF system represents a model for direct activation of C3 to C9 independent of antibody, C1, C4 and C2. An analogous pathway of alternate complement activation might be used by other substances, e.g. endotoxin, guinea-pig γ1-immune aggregates and zymosan. The corresponding serum factors are under investigation. ImagesFIG. 5FIG. 6 PMID:4214761

  10. Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation.

    PubMed

    Liszewski, M Kathryn; Kolev, Martin; Le Friec, Gaelle; Leung, Marilyn; Bertram, Paula G; Fara, Antonella F; Subias, Marta; Pickering, Matthew C; Drouet, Christian; Meri, Seppo; Arstila, T Petteri; Pekkarinen, Pirkka T; Ma, Margaret; Cope, Andrew; Reinheckel, Thomas; Rodriguez de Cordoba, Santiago; Afzali, Behdad; Atkinson, John P; Kemper, Claudia

    2013-12-12

    Complement is viewed as a critical serum-operative component of innate immunity, with processing of its key component, C3, into activation fragments C3a and C3b confined to the extracellular space. We report here that C3 activation also occurred intracellularly. We found that the T cell-expressed protease cathepsin L (CTSL) processed C3 into biologically active C3a and C3b. Resting T cells contained stores of endosomal and lysosomal C3 and CTSL and substantial amounts of CTSL-generated C3a. While "tonic" intracellular C3a generation was required for homeostatic T cell survival, shuttling of this intracellular C3-activation-system to the cell surface upon T cell stimulation induced autocrine proinflammatory cytokine production. Furthermore, T cells from patients with autoimmune arthritis demonstrated hyperactive intracellular complement activation and interferon-γ production and CTSL inhibition corrected this deregulated phenotype. Importantly, intracellular C3a was observed in all examined cell populations, suggesting that intracellular complement activation might be of broad physiological significance.

  11. Metformin-induced hemolytic anemia.

    PubMed

    Kirkiz, Serap; Yarali, Nese; Arman Bilir, Ozlem; Tunc, Bahattin

    2014-01-01

    To report a rare side effect of metformin, an oral antidiabetic drug that is used for the treatment of type 2 diabetes mellitus. A 17-year-old boy was hospitalized for receiving acute lymphoblastic leukemia treatment that was composed of vincristine, L-asparaginase, daunorubicin, and prednisone. Hyperglycemia was determined without any clinical sign and metformin was started for steroid-induced insulin resistance. On the second day of metformin treatment, the patient's hemoglobin level decreased, and a direct Coombs test was positive for immunoglobulin G but negative for complement. An indirect Coombs test was negative. The glucose-6-phosphate dehydrogenase level was within the normal range. Drug-induced hemolytic anemia was suspected and metformin was discontinued. The jaundice gradually disappeared and there was no requirement for red blood cell transfusions. This case showed that physicians should be aware of the potential side effect of metformin although it is infrequent. © 2013 S. Karger AG, Basel.

  12. Assessment of phytochemicals, antioxidant, anti-lipid peroxidation and anti-hemolytic activity of extract and various fractions of Maytenus royleanus leaves

    PubMed Central

    2013-01-01

    Background Maytenus royleanus is traditionally used in gastro-intestinal disorders. The aim of this study was to evaluate the methanol extract of leaves and its derived fractions for various antioxidant assays and for its potential against lipid peroxidation and hemolytic activity. Methods Various parameters including scavenging of free-radicals (DPPH, ABTS, hydroxyl and superoxide radical), hydrogen peroxide scavenging, Fe3+ to Fe2+ reducing capacity, total antioxidant capacity, anti-lipid peroxidation and anti-hemolytic activity were investigated. Methanol extract and its derived fractions were also subjected for chemical constituents. LC-MS was also performed on the methanol extract. Results Qualitative analysis of methanol extract exhibited the presence of alkaloids, anthraquinones, cardiac glycosides, coumarins, flavonoids, saponins, phlobatannins, tannins and terpenoids. LC-MS chromatogram indicated the composition of diverse compounds including flavonoids, phenolics and phytoestrogens. Methanol extract, its ethyl acetate and n-butanol fractions constituted the highest amount of total phenolic and flavonoid contents and showed a strong correlation coefficient with the IC50 values for the scavenging of DPPH, hydrogen peroxide radicals, superoxide radicals, anti-lipid peroxidation and anti-hemolytic efficacy. Moreover, n-butanol fraction showed the highest scavenging activity for ABTS radicals and for reduction of Fe3+ to Fe2+. Conclusions Present results suggested the therapeutic potential of Maytenus royleanus leaves, in particular, methanol extract, ethyl acetate and n-butanol fraction as therapeutic agent against free-radical associated damages. The protective potential of the extract and or fraction may be attributed due to the high concentration of phenolic, flavonoid, tannins and terpenoids. PMID:23800043

  13. Bioactive Lysophospholipids Generated by Hepatic Lipase Degradation of Lipoproteins Lead to Complement Activation via the Classical Pathway

    PubMed Central

    Ma, Wanchao; Paik, David C.; Barile, Gaetano R.

    2014-01-01

    Purpose. We determined bioactivity of lysophospholipids generated by degradation of the low-density (LDL), very low-density (VLDL), and high-density (HDL) lipoproteins with hepatic lipase (HL), cholesterol esterase (CE), and lipoprotein-associated phospholipase A2 (Lp-PLA2). Methods. The LDL, VLDL, and HDL were treated with HL, CE, and Lp-PLA2 after immobilization on plates, and complement activation studies were performed with diluted human serum. Complement component 3 (C3) fixation, a marker for complement activation, was determined with a monoclonal anti-human C3d antibody. Enzymatic properties of HL and CE were assayed with triglyceride and phosphatidylcholine substrates for triglyceride hydrolase and phospholipase A activities. The ARPE-19 cells were used for viability studies. Results. The HL degradation of human lipoproteins LDL, VLDL, or HDL results in the formation of modified lipoproteins that can activate the complement pathway. Complement activation is dose- and time-dependent upon HL and occurs via the classical pathway. Enzymatic studies suggest that the phospholipase A1 activity of HL generates complement-activating lysophospholipids. C-reactive protein (CRP), known to simultaneously interact with complement C1 and complement factor H (CFH), further enhances HL-induced complement activation. The lysophospholipids, 1-Palmitoyl-sn-glycero-3-phosphocholine and 1-Oleoyl-sn-glycero-3-phosphocholine, can be directly cytotoxic to ARPE-19 cells. Conclusions. The HL degradation of lipoproteins, known to accumulate in the outer retina and in drusen, can lead to the formation of bioactive lysophospholipids that can trigger complement activation and induce RPE cellular dysfunction. Given the known risk associations for age-related macular degeneration (AMD) with HL, CRP, and CFH, this study elucidates a possible damage pathway for age-related macular degeneration (AMD) in genetically predisposed individuals, that HL activity may lead to accumulation of

  14. Bioactive lysophospholipids generated by hepatic lipase degradation of lipoproteins lead to complement activation via the classical pathway.

    PubMed

    Ma, Wanchao; Paik, David C; Barile, Gaetano R

    2014-09-09

    We determined bioactivity of lysophospholipids generated by degradation of the low-density (LDL), very low-density (VLDL), and high-density (HDL) lipoproteins with hepatic lipase (HL), cholesterol esterase (CE), and lipoprotein-associated phospholipase A2 (Lp-PLA2). The LDL, VLDL, and HDL were treated with HL, CE, and Lp-PLA2 after immobilization on plates, and complement activation studies were performed with diluted human serum. Complement component 3 (C3) fixation, a marker for complement activation, was determined with a monoclonal anti-human C3d antibody. Enzymatic properties of HL and CE were assayed with triglyceride and phosphatidylcholine substrates for triglyceride hydrolase and phospholipase A activities. The ARPE-19 cells were used for viability studies. The HL degradation of human lipoproteins LDL, VLDL, or HDL results in the formation of modified lipoproteins that can activate the complement pathway. Complement activation is dose- and time-dependent upon HL and occurs via the classical pathway. Enzymatic studies suggest that the phospholipase A1 activity of HL generates complement-activating lysophospholipids. C-reactive protein (CRP), known to simultaneously interact with complement C1 and complement factor H (CFH), further enhances HL-induced complement activation. The lysophospholipids, 1-Palmitoyl-sn-glycero-3-phosphocholine and 1-Oleoyl-sn-glycero-3-phosphocholine, can be directly cytotoxic to ARPE-19 cells. The HL degradation of lipoproteins, known to accumulate in the outer retina and in drusen, can lead to the formation of bioactive lysophospholipids that can trigger complement activation and induce RPE cellular dysfunction. Given the known risk associations for age-related macular degeneration (AMD) with HL, CRP, and CFH, this study elucidates a possible damage pathway for age-related macular degeneration (AMD) in genetically predisposed individuals, that HL activity may lead to accumulation of lysophospholipids to initiate complement

  15. Complement C1q Activates Tumor Suppressor WWOX to Induce Apoptosis in Prostate Cancer Cells

    PubMed Central

    Hong, Qunying; Sze, Chun-I; Lin, Sing-Ru; Lee, Ming-Hui; He, Ruei-Yu; Schultz, Lori; Chang, Jean-Yun; Chen, Shean-Jen; Boackle, Robert J.; Hsu, Li-Jin; Chang, Nan-Shan

    2009-01-01

    Background Tissue exudates contain low levels of serum complement proteins, and their regulatory effects on prostate cancer progression are largely unknown. We examined specific serum complement components in coordinating the activation of tumor suppressors p53 and WWOX (also named FOR or WOX1) and kinases ERK, JNK1 and STAT3 in human prostate DU145 cells. Methodology/Principal Findings DU145 cells were cultured overnight in 1% normal human serum, or in human serum depleted of an indicated complement protein. Under complement C1q- or C6-free conditions, WOX1 and ERK were mainly present in the cytoplasm without phosphorylation, whereas phosphorylated JNK1 was greatly accumulated in the nuclei. Exogenous C1q rapidly restored the WOX1 activation (with Tyr33 phosphorylation) in less than 2 hr. Without serum complement C9, p53 became activated, and hyaluronan (HA) reversed the effect. Under C6-free conditions, HA induced activation of STAT3, an enhancer of metastasis. Notably, exogenous C1q significantly induced apoptosis of WOX1-overexpressing DU145 cells, but not vehicle-expressing cells. A dominant negative and Y33R mutant of WOX1 blocked the apoptotic effect. C1q did not enhance p53-mediated apoptosis. By total internal reflection fluorescence (TIRF) microscopy, it was determined that C1q destabilized adherence of WOX1-expressing DU145 cells by partial detaching and inducing formation of clustered microvilli for focal adhesion particularly in between cells. These cells then underwent shrinkage, membrane blebbing and death. Remarkably, as determined by immunostaining, benign prostatic hyperplasia and prostate cancer were shown to have a significantly reduced expression of tissue C1q, compared to age-matched normal prostate tissues. Conclusions/Significance We conclude that complement C1q may induce apoptosis of prostate cancer cells by activating WOX1 and destabilizing cell adhesion. Downregulation of C1q enhances prostate hyperplasia and cancerous formation due to

  16. Roles of the valine clusters in domain 3 of the hemolytic lectin CEL-III in its oligomerization and hemolytic abilities.

    PubMed

    Hisamatsu, Keigo; Unno, Hideaki; Goda, Shuichiro; Hatakeyama, Tomomitsu

    2009-01-01

    The hemolytic lectin CEL-III and its site-directed mutants were expressed in Escherichia coli cells. Replacement of the valine clusters in domain 3 with alanine residues led to increased self-oligomerization in solution and higher hemolytic activity. The results suggest the involvement of these valine clusters in CEL-III oligomerization and hemolytic activity.

  17. Detection of complement activation using monoclonal antibodies against C3d.

    PubMed

    Thurman, Joshua M; Kulik, Liudmila; Orth, Heather; Wong, Maria; Renner, Brandon; Sargsyan, Siranush A; Mitchell, Lynne M; Hourcade, Dennis E; Hannan, Jonathan P; Kovacs, James M; Coughlin, Beth; Woodell, Alex S; Pickering, Matthew C; Rohrer, Bärbel; Holers, V Michael

    2013-05-01

    During complement activation the C3 protein is cleaved, and C3 activation fragments are covalently fixed to tissues. Tissue-bound C3 fragments are a durable biomarker of tissue inflammation, and these fragments have been exploited as addressable binding ligands for targeted therapeutics and diagnostic agents. We have generated cross-reactive murine monoclonal antibodies against human and mouse C3d, the final C3 degradation fragment generated during complement activation. We developed 3 monoclonal antibodies (3d8b, 3d9a, and 3d29) that preferentially bind to the iC3b, C3dg, and C3d fragments in solution, but do not bind to intact C3 or C3b. The same 3 clones also bind to tissue-bound C3 activation fragments when injected systemically. Using mouse models of renal and ocular disease, we confirmed that, following systemic injection, the antibodies accumulated at sites of C3 fragment deposition within the glomerulus, the renal tubulointerstitium, and the posterior pole of the eye. To detect antibodies bound within the eye, we used optical imaging and observed accumulation of the antibodies within retinal lesions in a model of choroidal neovascularization (CNV). Our results demonstrate that imaging methods that use these antibodies may provide a sensitive means of detecting and monitoring complement activation-associated tissue inflammation.

  18. The Carbohydrate-linked Phosphorylcholine of the Parasitic Nematode Product ES-62 Modulates Complement Activation*

    PubMed Central

    Ahmed, Umul Kulthum; Maller, N. Claire; Iqbal, Asif J.; Al-Riyami, Lamyaa; Harnett, William; Raynes, John G.

    2016-01-01

    Parasitic nematodes manufacture various carbohydrate-linked phosphorylcholine (PCh)-containing molecules, including ES-62, a protein with an N-linked glycan terminally substituted with PCh. The PCh component is biologically important because it is required for immunomodulatory effects. We showed that most ES-62 was bound to a single protein, C-reactive protein (CRP), in normal human serum, displaying a calcium-dependent, high-avidity interaction and ability to form large complexes. Unexpectedly, CRP binding to ES-62 failed to efficiently activate complement as far as the C3 convertase stage in comparison with PCh-BSA and PCh-containing Streptococcus pneumoniae cell wall polysaccharide. C1q capture assays demonstrated an ES-62-CRP-C1q interaction in serum. The three ligands all activated C1 and generated C4b to similar extents. However, a C2a active site was not generated following ES-62 binding to CRP, demonstrating that C2 cleavage was far less efficient for ES-62-containing complexes. We proposed that failure of C2 cleavage was due to the flexible nature of carbohydrate-bound PCh and that reduced proximity of the C1 complex was the reason that C2 was poorly cleaved. This was confirmed using synthetic analogues that were similar to ES-62 only in respect of having a flexible PCh. Furthermore, ES-62 was shown to deplete early complement components, such as the rate-limiting C4, following CRP interaction and thereby inhibit classical pathway activation. Thus, flexible PCh-glycan represents a novel mechanism for subversion of complement activation. These data illustrate the importance of the rate-limiting C4/C2 stage of complement activation and reveal a new addition to the repertoire of ES-62 immunomodulatory mechanisms with possible therapeutic applications. PMID:27044740

  19. The Carbohydrate-linked Phosphorylcholine of the Parasitic Nematode Product ES-62 Modulates Complement Activation.

    PubMed

    Ahmed, Umul Kulthum; Maller, N Claire; Iqbal, Asif J; Al-Riyami, Lamyaa; Harnett, William; Raynes, John G

    2016-05-27

    Parasitic nematodes manufacture various carbohydrate-linked phosphorylcholine (PCh)-containing molecules, including ES-62, a protein with an N-linked glycan terminally substituted with PCh. The PCh component is biologically important because it is required for immunomodulatory effects. We showed that most ES-62 was bound to a single protein, C-reactive protein (CRP), in normal human serum, displaying a calcium-dependent, high-avidity interaction and ability to form large complexes. Unexpectedly, CRP binding to ES-62 failed to efficiently activate complement as far as the C3 convertase stage in comparison with PCh-BSA and PCh-containing Streptococcus pneumoniae cell wall polysaccharide. C1q capture assays demonstrated an ES-62-CRP-C1q interaction in serum. The three ligands all activated C1 and generated C4b to similar extents. However, a C2a active site was not generated following ES-62 binding to CRP, demonstrating that C2 cleavage was far less efficient for ES-62-containing complexes. We proposed that failure of C2 cleavage was due to the flexible nature of carbohydrate-bound PCh and that reduced proximity of the C1 complex was the reason that C2 was poorly cleaved. This was confirmed using synthetic analogues that were similar to ES-62 only in respect of having a flexible PCh. Furthermore, ES-62 was shown to deplete early complement components, such as the rate-limiting C4, following CRP interaction and thereby inhibit classical pathway activation. Thus, flexible PCh-glycan represents a novel mechanism for subversion of complement activation. These data illustrate the importance of the rate-limiting C4/C2 stage of complement activation and reveal a new addition to the repertoire of ES-62 immunomodulatory mechanisms with possible therapeutic applications.

  20. Impaired NK Cell Activation and Chemotaxis toward Dendritic Cells Exposed to Complement-Opsonized HIV-1.

    PubMed

    Ellegård, Rada; Crisci, Elisa; Andersson, Jonas; Shankar, Esaki M; Nyström, Sofia; Hinkula, Jorma; Larsson, Marie

    2015-08-15

    Mucosa resident dendritic cells (DCs) may represent one of the first immune cells that HIV-1 encounters during sexual transmission. The virions in body fluids can be opsonized with complement factors because of HIV-mediated triggering of the complement cascade, and this appears to influence numerous aspects of the immune defense targeting the virus. One key attribute of host defense is the ability to attract immune cells to the site of infection. In this study, we investigated whether the opsonization of HIV with complement (C-HIV) or a mixture of complement and Abs (CI-HIV) affected the cytokine and chemokine responses generated by DCs, as well as their ability to attract other immune cells. We found that the expression levels of CXCL8, CXCL10, CCL3, and CCL17 were lowered after exposure to either C-HIV or CI-HIV relative to free HIV (F-HIV). DCs exposed to F-HIV induced higher cell migration, consisting mainly of NK cells, compared with opsonized virus, and the chemotaxis of NK cells was dependent on CCL3 and CXCL10. NK cell exposure to supernatants derived from HIV-exposed DCs showed that F-HIV induced phenotypic activation (e.g., increased levels of TIM3, CD69, and CD25) and effector function (e.g., production of IFNγ and killing of target cells) in NK cells, whereas C-HIV and CI-HIV did not. The impairment of NK cell recruitment by DCs exposed to complement-opsonized HIV and the lack of NK activation may contribute to the failure of innate immune responses to control HIV at the site of initial mucosa infection.

  1. Effect of functionalization of carbon nanotubes with psychosine on complement activation and protein adsorption.

    PubMed

    Rybak-Smith, Malgorzata J; Tripisciano, Carla; Borowiak-Palen, Ewa; Lamprecht, Constanze; Sim, Robert B

    2011-12-01

    Carbon nanotubes possess interesting physicochemical properties which make them potentially usable in medicine. Single-walled carbon nanotubes and multi-walled carbon nanotubes, for example, may carry and deliver anticancer drugs, such as cisplatin. Magnetic nanoparticles, like iron filled MWCNT, can be used in hyperthermia therapy. However, their hydrophobic character is a major difficulty, as preparation of stable dispersions of carbon nanotubes in biological buffers is an essential step towards biomedical applications. Recently, a novel treatment using the glycolipid, Galactosyl-beta1-sphingosine (psychosine), was employed to make stable suspensions of psychosine-functionalized carbon nanotubes in biological buffers. In this paper, the interactions of psychosine-functionalized carbon nanotubes with a part of the human immune system, complement, is presented. To investigate if human serum complement proteins can interact with psychosine-functionalized carbon nanotubes, complement consumption (depletion) assays were conducted. Moreover, direct protein binding studies, to analyze the interaction of plasma proteins with the psychosine-functionalized carbon nanotubes, using affinity chromatography and sodium dodecyl sulphate polyacrylamide gel electrophoresis techniques, were applied. The psychosine-functionalized carbon nanotubes activate human complement via the classical pathway. Interestingly, as the hydrophilic part of the glycolipid may bind to ficolins, the lectin pathway could also be involved. Binding of human plasma proteins is very selective as only very few proteins adsorb to the psychosine-functionalized carbon nanotube surface, when placed in contact with human plasma. Bovine serum albumin-coated carbon nanotubes were used as a standard to find the differences in complement activation and protein adsorption patterns, caused by various non-covalent coatings of carbon nanotubes.

  2. Significance of complement components C1q and C4 bound to circulating immune complexes in juvenile idiopathic arthritis: support for classical complement pathway activation.

    PubMed

    Gilliam, Brooke E; Reed, Melinda R; Chauhan, Anil K; Dehlendorf, Amanda B; Moore, Terry L

    2011-01-01

    Immune complexes (ICs) from sera of juvenile idiopathic arthritis (JIA) patients show increased complement opsonisation; however, a definitive role for involvement of the classical or alternative pathway is not entirely clear. To delineate the role of these pathways, we measured activated complement products bound to circulating IC (CICs) in the sera of JIA patients. Sera from 100 JIA patients and 22 healthy children were collected. C1q, C4, C3, C3d, and membrane attack complex (MAC) bound to CICs were measured by enzyme-linked immunosorbent assay. Data was compared to IgM rheumatoid factor (RF), IgG anti-cyclic citrullinated peptide (CCP) antibodies, C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) levels. Mean levels of C1q, C4, and MAC bound to CICs were significantly elevated in JIA patients compared to healthy children. C1q correlated significantly with C4 and MAC bound to CICs and C4 and MAC also demonstrated significant correlation. No significant differences were noted in complement components bound to CICs when evaluating IgM RF, anti-CCP antibody, and CRP positivity. A significant correlation was noted between MAC bound to CICs and ESR. C1q and MAC bound to CICs mean levels were significantly higher in patients with an elevated ESR compared to those with a normal ESR level. JIA patients have elevated levels of complement components bound to CICs, particularly from the classical pathway. Moreover, classical pathway components were associated with ESR, a marker of disease activity. MAC bound to CICs also correlated significantly with ESR, further supporting the notion of complement-mediated tissue injury that is triggered by IC-mediated classical pathway activation.

  3. Discriminating complement-mediated acute transfusion reaction for type O+ red blood cells transfused into a B+ recipient with the complement hemolysis using human erythrocytes (CHUHE) assay.

    PubMed

    Cunnion, Kenji M; Hair, Pamela S; Krishna, Neel K; Whitley, Pamela H; Goldberg, Corinne L; Fadeyi, Emmanuel A; Maes, Lanne Y

    2016-07-01

    A patient with B+ sickle cell disease received 3 units of red blood cells (RBCs) from two O+ donors and developed fever and hypotension after the first unit, consistent with an acute transfusion reaction (ATR). Anti-B titers in plasma from each O+ donor were markedly elevated and nondiscriminatory. In order to evaluate the potential for the transfused units to produce complement-mediated hemolysis of B+ RBCs, hemolytic complement testing was performed. Plasma from each donor was diluted in veronal buffer and incubated with B+ RBCs, and free hemoglobin was measured by spectrophotometer in the complement hemolysis using human erythrocytes (CHUHE) assay. Peptide inhibitor of complement C1 (PIC1) was used to confirm antibody-initiated complement pathway activation. A 96-fold difference (p = 0.014) in hemolysis was measured between plasma samples from the two O+ donors using the CHUHE assay. The extremely high degree of hemolysis produced by the one plasma was inhibited by PIC1 in a dose-dependent manner. These results indicate that hemolytic complement testing with the CHUHE assay can be used to assess the risk of antibody-initiated, complement-mediated hemolysis from a transfusion beyond what can be achieved with antibody titers alone. © 2016 AABB.

  4. Synergistic hemolytic reactions between staphylococci and Micrococcus lylae.

    PubMed

    Lämmler, C; Brückler, J

    1989-06-01

    The primary culture of a clinical specimen obtained from a dog with an acute squamous eczema revealed three different bacterial species which demonstrated synergistic hemolytic activities on sheep blood agar plates. The three cultures were identified as beta-hemolytic Staphylococcus intermedius, as a coagulase-negative staphylococcal species, producing a delta-like hemolysin and as non-hemolytic Micrococcus lylae. The coagulase-negative staphylococcal species as well as M. lylae produced synergistically with beta-hemolytic S. intermedius zones of complete hemolysis. The occurrence of three different synergistically active bacterial species from one clinical specimen might be of clinical significance.

  5. Different activation patterns in the plasma kallikrein-kinin and complement systems during coronary bypass surgery.

    PubMed

    Kongsgaard, U E; Smith-Erichsen, N; Geiran, O; Amundsen, E; Mollnes, T E; Garred, P

    1989-07-01

    Components of the plasma kallikrein-kinin and complement systems were determined in patients undergoing open heart surgery with cardiopulmonary bypass. Spontaneous kallikrein activity (KK), plasma prekallikrein (PKK), functional kallikrein inhibition capacity (KKI), C3 activation products (C3-act), and the terminal complement complex (TCC) were measured. A marked, transitory increase in KK and a decrease in PKK were found prior to cardiopulmonary bypass just after heparin injection. An additional decline in PKK and KKI during bypass with a return to near control levels in the postoperative period was observed. C3-act increased in all patients during bypass, reaching a peak value at wound closure. The TCC concentration also increased significantly during cardiopulmonary bypass, returned to control levels in the early postoperative period, and then increased again in the late postoperative period. It is concluded that activation of the kallikrein-kinin system started after injection of heparin, prior to cardiopulmonary bypass. Activation of both the initial and the terminal complement cascade, however, started only after onset of cardiopulmonary bypass.

  6. Potassium humate inhibits complement activation and the production of inflammatory cytokines in vitro

    SciTech Connect

    van Rensburg, C.E.J.; Naude, P.J.

    2009-08-15

    The effects of brown coal derived potassium humate on lymphocyte proliferation, cytokine production and complement activation were investigated in vitro. Potassium humate increased lymphocyte proliferation of phytohaemaglutinin A (PHA) and pokeweed mitogen (PWM) stimulated mononuclear lymphocytes (MNL) in vitro from concentrations of 20 to 80 {mu} g/ml, in a dose dependant manner. On the other hand potassium humate, at 40 {mu} g/ml, significantly inhibited the release of TNF-alpha, IL-1 beta, IL-6 and IL-10 by PHA stimulated MNL. Regarding complement activation it was found that potassium humate inhibits the activation of both the alternative and classical pathways without affecting the stability of the red blood cell membranes. These results indicate that the anti-inflammatory potential of potassium humate could be partially due to the inhibition of pro-inflammatory cytokines responsible for the initiation of these reactions as well as inhibition of complement activation. The increased lymphocyte proliferation observed, might be due to increased IL-2 production as previously been documented.

  7. Detection of complement activation using monoclonal antibodies against C3d

    PubMed Central

    Thurman, Joshua M.; Kulik, Liudmila; Orth, Heather; Wong, Maria; Renner, Brandon; Sargsyan, Siranush A.; Mitchell, Lynne M.; Hourcade, Dennis E.; Hannan, Jonathan P.; Kovacs, James M.; Coughlin, Beth; Woodell, Alex S.; Pickering, Matthew C.; Rohrer, Bärbel; Holers, V. Michael

    2013-01-01

    During complement activation the C3 protein is cleaved, and C3 activation fragments are covalently fixed to tissues. Tissue-bound C3 fragments are a durable biomarker of tissue inflammation, and these fragments have been exploited as addressable binding ligands for targeted therapeutics and diagnostic agents. We have generated cross-reactive murine monoclonal antibodies against human and mouse C3d, the final C3 degradation fragment generated during complement activation. We developed 3 monoclonal antibodies (3d8b, 3d9a, and 3d29) that preferentially bind to the iC3b, C3dg, and C3d fragments in solution, but do not bind to intact C3 or C3b. The same 3 clones also bind to tissue-bound C3 activation fragments when injected systemically. Using mouse models of renal and ocular disease, we confirmed that, following systemic injection, the antibodies accumulated at sites of C3 fragment deposition within the glomerulus, the renal tubulointerstitium, and the posterior pole of the eye. To detect antibodies bound within the eye, we used optical imaging and observed accumulation of the antibodies within retinal lesions in a model of choroidal neovascularization (CNV). Our results demonstrate that imaging methods that use these antibodies may provide a sensitive means of detecting and monitoring complement activation–associated tissue inflammation. PMID:23619360

  8. Potential induction of anti-PEG antibodies and complement activation toward PEGylated therapeutics.

    PubMed

    Verhoef, Johan J F; Carpenter, John F; Anchordoquy, Thomas J; Schellekens, Huub

    2014-12-01

    Conjugation of polyethylene glycol (PEG) to therapeutics has proven to be an effective approach to increase the serum half-life. However, the increased use of PEGylated therapeutics has resulted in unexpected immune-mediated side-effects. There are claims that these are caused by anti-PEG antibodies inducing rapid clearance. These claims are however hampered by the lack of standardized and well-validated antibody assays. PEGylation has also been associated with the activation of the complement system causing severe hypersensitivity reactions. Here, we critically review the clinical and analytical tools used. In addition, we propose an explanation of the immune-mediated side-effects of PEGylated products based on the haptogenic properties of PEG, responsible for complement activation and the induction of anti-PEG antibodies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. An Anti-C1s Monoclonal, TNT003, Inhibits Complement Activation Induced by Antibodies Against HLA

    PubMed Central

    Thomas, K A; Valenzuela, N M; Gjertson, D; Mulder, A; Fishbein, M C; Parry, G C; Panicker, S; Reed, E F

    2015-01-01

    Antibody-mediated rejection (AMR) of solid organ transplants (SOT) is characterized by damage triggered by donor-specific antibodies (DSA) binding donor Class I and II HLA (HLA-I and HLA-II) expressed on endothelial cells. While F(ab′)2 portions of DSA cause cellular activation and proliferation, Fc regions activate the classical complement cascade, resulting in complement deposition and leukocyte recruitment, both hallmark features of AMR. We characterized the ability of an anti-C1s monoclonal antibody, TNT003, to inhibit HLA antibody (HLA-Ab)-induced complement activation. Complement deposition induced by HLA-Ab was evaluated using novel cell- and bead-based assays. Human aortic endothelial cells (HAEC) were cultured with HLA-Ab and human complement; production of activated complement proteins was measured by flow cytometry. Additionally, C3d deposition was measured on single antigen beads (SAB) mixed with HLA-Ab and human complement. TNT003 inhibited HLA-Ab mediated complement deposition on HAEC in a concentration-dependent manner; C3a, C4a and C5a anaphylatoxin production was also diminished by TNT003. Finally, TNT003 blocked C3d deposition induced by Class I (HLAI-Ab)- and Class II (HLAII-Ab)-specific antibodies on SAB. These data suggest TNT003 may be useful for modulating the effects of DSA, as TNT003 inhibits complement deposition and split product formation generated by HLA-I/II-Ab in vitro. PMID:25904443

  10. Differential activity of candidate microbicides against early steps of HIV-1 infection upon complement virus opsonization

    PubMed Central

    2010-01-01

    Background HIV-1 in genital secretions may be opsonized by several molecules including complement components. Opsonized HIV-1 by complement enhances the infection of various mucosal target cells, such as dendritic cells (DC) and epithelial cells. Results We herein evaluated the effect of HIV-1 complement opsonization on microbicide candidates' activity, by using three in vitro mucosal models: CCR5-tropic HIV-1JR-CSF transcytosis through epithelial cells, HIV-1JR-CSF attachment on immature monocyte-derived dendritic cells (iMDDC), and infectivity of iMDDC by CCR5-tropic HIV-1BaL and CXCR4-tropic HIV-1NDK. A panel of 10 microbicide candidates [T20, CADA, lectines HHA & GNA, PVAS, human lactoferrin, and monoclonal antibodies IgG1B12, 12G5, 2G12 and 2F5], were investigated using cell-free unopsonized or opsonized HIV-1 by complements. Only HHA and PVAS were able to inhibit HIV trancytosis. Upon opsonization, transcytosis was affected only by HHA, HIV-1 adsorption on iMDDC by four molecules (lactoferrin, IgG1B12, IgG2G5, IgG2G12), and replication in iMDDC of HIV-1BaL by five molecules (lactoferrin, CADA, T20, IgG1B12, IgG2F5) and of HIV-1NDK by two molecules (lactoferrin, IgG12G5). Conclusion These observations demonstrate that HIV-1 opsonization by complements may modulate in vitro the efficiency of candidate microbicides to inhibit HIV-1 infection of mucosal target cells, as well as its crossing through mucosa. PMID:20546571

  11. Microbial Neuraminidase Induces a Moderate and Transient Myelin Vacuolation Independent of Complement System Activation.

    PubMed

    Granados-Durán, Pablo; López-Ávalos, María Dolores; Cifuentes, Manuel; Pérez-Martín, Margarita; Fernández-Arjona, María Del Mar; Hughes, Timothy R; Johnson, Krista; Morgan, B Paul; Fernández-Llebrez, Pedro; Grondona, Jesús M

    2017-01-01

    Some central nervous system pathogens express neuraminidase (NA) on their surfaces. In the rat brain, a single intracerebroventricular (ICV) injection of NA induces myelin vacuolation in axonal tracts. Here, we explore the nature, the time course, and the role of the complement system in this damage. The spatiotemporal analysis of myelin vacuolation was performed by optical and electron microscopy. Myelin basic protein-positive area and oligodendrocyte transcription factor (Olig2)-positive cells were quantified in the damaged bundles. Neuronal death in the affected axonal tracts was assessed by Fluoro-Jade B and anti-caspase-3 staining. To evaluate the role of the complement, membrane attack complex (MAC) deposition on damaged bundles was analyzed using anti-C5b9. Rats ICV injected with the anaphylatoxin C5a were studied for myelin damage. In addition, NA-induced vacuolation was studied in rats with different degrees of complement inhibition: normal rats treated with anti-C5-blocking antibody and C6-deficient rats. The stria medullaris, the optic chiasm, and the fimbria were the most consistently damaged axonal tracts. Vacuolation peaked 7 days after NA injection and reverted by day 15. Olig2+ cell number in the damaged tracts was unaltered, and neurodegeneration associated with myelin alterations was not detected. MAC was absent on damaged axonal tracts, as revealed by C5b9 immunostaining. Rats ICV injected with the anaphylatoxin C5a displayed no myelin injury. When the complement system was experimentally or constitutively inhibited, NA-induced myelin vacuolation was similar to that observed in normal rats. Microbial NA induces a moderate and transient myelin vacuolation that is not caused either by neuroinflammation or complement system activation.

  12. Increased expression of the C3b receptor by neutrophils and complement activation during haemodialysis.

    PubMed Central

    Lee, J; Hakim, R M; Fearon, D T

    1984-01-01

    Activation of complement and the relative number of C3b receptors expressed by neutrophils was assessed in patients undergoing haemodialysis with new and reused cellulosic membranes, and with polymethylmethacrylate (PMMA) membranes. Activation of complement was assessed by radioimmunoassay of plasma C3adesArg, and neutrophil C3b receptors were measured by fluorescent flow cytometry of cells indirectly stained with F(ab')2 anti-C3b receptor. During first use of cellulosic dialysis membranes by four patients, the mean expression of C3b receptors by neutrophils in blood taken from the afferent line of the extra-corporeal system after 10, 20, 60 and 120 min of dialysis increased to 127, 189, 255 and 296%, respectively. The mean plasma C3adesArg concentrations in the corresponding samples of blood were 225, 320, 236 and 160% of the pre-dialysis levels. During third and fifth use of the same membranes by these patients, the mean C3b receptor expression by neutrophils did not exceed 150% of the predialysis determination, and correspondingly minimal increases in plasma C3adesArg were observed. Analysis of blood taken simultaneously from the afferent and efferent lines of the first use cellulosic dialysis system indicated that the increase in C3b receptor expression by neutrophils and generation of C3adesArg occurred when blood came in contact with the dialysis membrane. Haemodialysis of four additional patients with the non-complement activating PMMA membrane caused only modest or no increases in neutrophil C3b receptors. Thus, complement activation in vivo is associated with up-regulation of neutrophilic C3b receptors, indicating that this cellular response previously described only in model, in vitro systems, is a physiological mechanism by which this cell can augment its capacity for responding to C3b opsonized material. PMID:6232024

  13. Complement activation and liver impairment in trichloroethylene-sensitized BALB/c mice.

    PubMed

    Zhang, Jiaxiang; Zha, Wansheng; Wang, Feng; Jiang, Tao; Xu, Shuhai; Yu, Junfeng; Zhou, Chengfan; Shen, Tong; Wu, Changhao; Zhu, Qixing

    2013-01-01

    Our recent studies have shown that trichloroethylene (TCE) was able to induce multisystem injuries in the form of occupational medicamentosa-like dermatitis, including skin, kidney, and liver damages. However, the role of complement activation in the immune-mediated liver injury is not known. This study examined the role of complement activation in the liver injury in a mouse model of TCE-induced sensitization. Treatment of female BALB/c mice with TCE under specific dosing protocols resulted in skin inflammation and sensitization. Skin edema and erythema occurred in TCE-sensitized groups. Trichloroethylene sensitization produced liver histopathological lesions, increased serum alanine aminotransferase, aspartate transaminase activities, and the relative liver weight. The concentrations of serum complement components C3a-desArg, C5a-desArg, and C5b-9 were significantly increased in 24-hour, 48-hour, and 72-hour sensitization-positive groups treated with TCE and peaked in the 72-hour sensitization-positive group. Depositions of C3a, C5a, and C5b-9 into the liver tissue were also revealed by immunohistochemistry. Immunofluorescence further verified high C5b-9 expression in 24-hour, 48-hour, and 72-hour sensitization-positive groups in response to TCE treatment. Reverse transcription-polymerase chain reaction detected C3 messenger RNA expression in the liver, and this was significantly increased in 24-hour and 48-hour sensitization-positive groups with a transient reduction at 72 hours. These results provide the first experimental evidence that complement activation may play a key role in the generation and progression of immune-mediated hepatic injury by exposure to TCE.

  14. Anti-complement activity of essential oils from red and black rice bran.

    PubMed

    Chung, Ill-Min; Yeo, Min-A; Kim, Sun-Jin; Moon, Hyung-In

    2011-05-01

    The volatile essential oils from red and black rice bran were obtained by hydrodistillation using a clevenger-type apparatus, and the components of that oil were analyzed by capillary gas chromatography-mass spectroscopy (GC-MS). The present study involved characterizing the chemical compositions, their amounts and the anti-complement activities of red and black rice bran. The red rice bran essential oils yield was 0.031%, and GC-MS analysis revealed that its major constituents were (E)-β-ocimene (3.12%), nonanal (11.32%), (2E, 4E)-decadienal (2.54%), myristic acid (41.32%), geranyactone (2.41%) and methyl oleate (2.46%). The black rice bran essential oils yield was 0.053%, and GC-MS analysis revealed that its major constituents were nonanal (8.31%), acrylic acid (3.21%), 2-hydroxy-6-methylbenzaldehyde (2.81%), pelargonic acid (4.21%) and myrisitc acid (28.07%). The essential oils showed inhibitory activity against complement system with 50% inhibitory concentrations (IC(50)) values of 246 ppm (red rice bran) and 193 ppm (black rice bran). Also, myristic acid, nonanal, (E)-β-ocimene and pelargonic acid were tested against complement system. Pelargonic acid was shown to moderate activity (50% inhibitory concentration = 132 μM).

  15. Solution Structures of Complement C2 and Its C4 Complexes Propose Pathway-specific Mechanisms for Control and Activation of the Complement Proconvertases*

    PubMed Central

    Mortensen, Sofia

    2016-01-01

    The lectin (LP) and classical (CP) pathways are two of the three main activation cascades of the complement system. These pathways start with recognition of different pathogen- or danger-associated molecular patterns and include identical steps of proteolytic activation of complement component C4, formation of the C3 proconvertase C4b2, followed by cleavage of complement component C2 within C4b2 resulting in the C3 convertase C4b2a. Here, we describe the solution structures of the two central complexes of the pathways, C3 proconvertase and C3 convertase, as well as the unbound zymogen C2 obtained by small angle x-ray scattering analysis. We analyzed both native and enzymatically deglycosylated C4b2 and C2 and showed that the resulting structural models were independent of the glycans. The small angle x-ray scattering-derived models suggest a different activation mode for the CP/LP C3 proconvertase as compared with that established for the alternative pathway proconvertase C3bB. This is likely due to the rather different structural and functional properties of the proteases activating the proconvertases. The solution structure of a stabilized form of the active CP/LP C3 convertase C4b2a is strikingly similar to the crystal structure of the alternative pathway C3 convertase C3bBb, which is in accordance with their identical functions in cleaving the complement proteins C3 and C5. PMID:27252379

  16. Solution Structures of Complement C2 and Its C4 Complexes Propose Pathway-specific Mechanisms for Control and Activation of the Complement Proconvertases.

    PubMed

    Mortensen, Sofia; Jensen, Jan K; Andersen, Gregers R

    2016-08-05

    The lectin (LP) and classical (CP) pathways are two of the three main activation cascades of the complement system. These pathways start with recognition of different pathogen- or danger-associated molecular patterns and include identical steps of proteolytic activation of complement component C4, formation of the C3 proconvertase C4b2, followed by cleavage of complement component C2 within C4b2 resulting in the C3 convertase C4b2a. Here, we describe the solution structures of the two central complexes of the pathways, C3 proconvertase and C3 convertase, as well as the unbound zymogen C2 obtained by small angle x-ray scattering analysis. We analyzed both native and enzymatically deglycosylated C4b2 and C2 and showed that the resulting structural models were independent of the glycans. The small angle x-ray scattering-derived models suggest a different activation mode for the CP/LP C3 proconvertase as compared with that established for the alternative pathway proconvertase C3bB. This is likely due to the rather different structural and functional properties of the proteases activating the proconvertases. The solution structure of a stabilized form of the active CP/LP C3 convertase C4b2a is strikingly similar to the crystal structure of the alternative pathway C3 convertase C3bBb, which is in accordance with their identical functions in cleaving the complement proteins C3 and C5. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. C1q complement component and -antibodies reflect SLE activity and kidney involvement.

    PubMed

    Horák, P; Hermanová, Z; Zadrazil, J; Ciferská, H; Ordeltová, M; Kusá, L; Zurek, M; Tichý, T

    2006-07-01

    The role of the complement system in the pathogenesis of systemic diseases is very ambivalent. In systemic lupus erythematosus (SLE), many abnormalities in the activation of the complement system have been reported. The most important antibodies formed against the complement system in SLE are the ones associated with the C1q component. The aim of this study was to assess separately the anti-C1q antibodies and C1q component in the serum from 65 patients with SLE, then in individuals with (n=33) and without (n=32) lupus nephritis and with active (n=36) and nonactive (n=29) form of the disease (European Consensus Lupus Activity Measurement, ECLAM>3, ECLAMcomplement component. The mean serum levels were 90.89+/-13 IU/ml for anti-C1q antibodies and 145+/-52 mg/l for C1q. The significant difference in C1q antibodies levels was found between individuals with and without lupus nephritis (117.5+/-52 IU/ml vs. 28.2+/-12.2 IU/ml, p=0.0001) and between those with active and nonactive SLE (154.6+/-115 IU/ml vs. 50.6+/-73, p=0.001). C1q complement component was statistically lower in patients with lupus nephritis (144+/-30 mg/l vs. 175+/-50 mg/ml, p=0.002) and in active patients (138+/-40 mg/l vs. 202+/-20 mg/l, p=0.001). If the two parameters are measured together, they seem to have a mirror-like pattern of serum concentration, and they are potential markers of SLE activity and of the presence of lupus nephritis.

  18. Antibodies to glycolipids activate complement and promote proteinuria in passive Heymann nephritis.

    PubMed Central

    Susani, M.; Schulze, M.; Exner, M.; Kerjaschki, D.

    1994-01-01

    Passive Heymann nephritis is an experimental rat model of human membranous nephropathy induced by injection of antisera against crude renal cortical fractions such as Fx1A or rat tubular microvilli. This results in the formation of subepithelial immune deposits, the activation of the C5b-9 membrane attack complex of complement, and severe proteinuria. While the formation of immune deposits is attributed to in situ immune complex formation with antibodies specific for the gp330-Heymann nephritis antigenic complex (HNAC), activation of complement and proteinuria appear to be caused by at least one additional antibody species present in anti-Fx1A sera. We have separated by affinity absorption polyspecific antisera against Fx1A and rat microvilli into one IgG fraction directed specifically against microvillar proteins (anti-Fx1A-prot) and another IgG fraction specific for glycolipids (ant-Fx1A-lip) of tubular microvilli. When injected into rats, the anti-Fx1A-prot fraction induced immune deposits but failed to activate complement or produce proteinuria, similar to results obtained with affinity-purified anti-gp330 IgG. When the antibodies of the anti-Fx1A-lip fraction were injected alone they did not bind to glomeruli. By contrast, when the IgGs specific for the Fx1A-prot fraction (or for gp330-HNAC) were combined with those directed against the Fx1A-lip glycolipid preparation, immune deposits were formed, in situ complement activation was observed, and also proteinuria was induced. It is concluded that within anti-Fx1A and anti-microvillar sera there are at least two IgG fractions of relevance for the development of PHN: one directed against the gp330-HNAC complex which is responsible for the development of immune deposits, and a second specific for glycolipid antigen(s) which activate(s) the complement cascade. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:8160779

  19. Molluskan Hemocyanins Activate the Classical Pathway of the Human Complement System through Natural Antibodies

    PubMed Central

    Pizarro-Bauerle, Javier; Maldonado, Ismael; Sosoniuk-Roche, Eduardo; Vallejos, Gerardo; López, Mercedes N.; Salazar-Onfray, Flavio; Aguilar-Guzmán, Lorena; Valck, Carolina; Ferreira, Arturo; Becker, María Inés

    2017-01-01

    Molluskan hemocyanins are enormous oxygen-carrier glycoproteins that show remarkable immunostimulatory properties when inoculated in mammals, such as the generation of high levels of antibodies, a strong cellular reaction, and generation of non-specific antitumor immune responses in some types of cancer, particularly for superficial bladder cancer. These proteins have the ability to bias the immune response toward a Th1 phenotype. However, despite all their current uses with beneficial clinical outcomes, a clear mechanism explaining these properties is not available. Taking into account reports of natural antibodies against the hemocyanin of the gastropod Megathura crenulata [keyhole limpet hemocyanin (KLH)] in humans as well as other vertebrate species, we report here for the first time, the presence, in sera from unimmunized healthy donors, of antibodies recognizing, in addition to KLH, two other hemocyanins from gastropods with documented immunomodulatory capacities: Fisurella latimarginata hemocyanin (FLH) and Concholepas concholepas hemocyanin (CCH). Through an ELISA screening, we found IgM and IgG antibodies reactive with these hemocyanins. When the capacity of these antibodies to bind deglycosylated hemocyanins was studied, no decreased interaction was detected. Moreover, in the case of FLH, deglycosylation increased antibody binding. We evaluated through an in vitro complement deposition assay whether these antibodies activated the classical pathway of the human complement system. The results showed that all three hemocyanins and their deglycosylated counterparts elicited this activation, mediated by C1 binding to immunoglobulins. Thus, this work contributes to the understanding on how the complement system could participate in the immunostimulatory properties of hemocyanins, through natural, complement-activating antibodies reacting with these proteins. Although a role for carbohydrates cannot be completely ruled out, in our experimental setting

  20. Pathogenesis of aortic dilatation in mucopolysaccharidosis VII mice may involve complement activation

    PubMed Central

    Baldo, Guilherme; Wu, Susan; Howe, Ruth A.; Ramamoothy, Meera; Knutsen, Russell H.; Fang, Jiali; Mecham, Robert P.; Liu, Yuli; Wu, Xiaobo; Atkinson, John P.; Ponder, Katherine P.

    2012-01-01

    Mucopolysaccharidosis VII (MPS VII) is due to mutations within the gene encoding the lysosomal enzyme β-glucuronidase, and results in the accumulation of glycosaminoglycans. MPS VII causes aortic dilatation and elastin fragmentation, which is associated with upregulation of the elastases cathepsin S (CtsS) and matrix metalloproteinase 12 (MMP12). To test the role of these enzymes, MPS VII mice were crossed with mice deficient in CtsS or MMP12, and the effect upon aortic dilatation was determined. CtsS deficiency did not protect against aortic dilatation in MPS VII mice, but also failed to prevent an upregulation of cathepsin enzyme activity. Further analysis with substrates and inhibitors specific for particular cathepsins suggests that this enzyme activity was due to CtsB, which could contribute to elastin fragmentation. Similarly, MMP12 deficiency and deficiency of both MMP12 and CtsS could not prevent aortic dilatation in MPS VII mice. Microarray and reverse-transcriptase real-time PCR were performed to look for upregulation of other elastases. This demonstrated that mRNA for complement component D was elevated in MPS VII mice, while immunostaining demonstrated high levels of complement component C3 on surfaces within the aortic media. Finally, we demonstrate that neonatal intravenous injection of a retroviral vector encoding β-glucuronidase reduced aortic dilatation. We conclude that neither CtsS nor MMP12 are necessary for elastin fragmentation in MPS VII mouse aorta, and propose that CtsB and/or complement component D may be involved. Complement may be activated by the GAGs that accumulate, and may play a role in signal transduction pathways that upregulate elastases. PMID:21944884

  1. Pathogenesis of aortic dilatation in mucopolysaccharidosis VII mice may involve complement activation.

    PubMed

    Baldo, Guilherme; Wu, Susan; Howe, Ruth A; Ramamoothy, Meera; Knutsen, Russell H; Fang, Jiali; Mecham, Robert P; Liu, Yuli; Wu, Xiaobo; Atkinson, John P; Ponder, Katherine P

    2011-12-01

    Mucopolysaccharidosis VII (MPS VII) is due to mutations within the gene encoding the lysosomal enzyme β-glucuronidase, and results in the accumulation of glycosaminoglycans. MPS VII causes aortic dilatation and elastin fragmentation, which is associated with upregulation of the elastases cathepsin S (CtsS) and matrix metalloproteinase 12 (MMP12). To test the role of these enzymes, MPS VII mice were crossed with mice deficient in CtsS or MMP12, and the effect upon aortic dilatation was determined. CtsS deficiency did not protect against aortic dilatation in MPS VII mice, but also failed to prevent an upregulation of cathepsin enzyme activity. Further analysis with substrates and inhibitors specific for particular cathepsins suggests that this enzyme activity was due to CtsB, which could contribute to elastin fragmentation. Similarly, MMP12 deficiency and deficiency of both MMP12 and CtsS could not prevent aortic dilatation in MPS VII mice. Microarray and reverse-transcriptase real-time PCR were performed to look for upregulation of other elastases. This demonstrated that mRNA for complement component D was elevated in MPS VII mice, while immunostaining demonstrated high levels of complement component C3 on surfaces within the aortic media. Finally, we demonstrate that neonatal intravenous injection of a retroviral vector encoding β-glucuronidase reduced aortic dilatation. We conclude that neither CtsS nor MMP12 are necessary for elastin fragmentation in MPS VII mouse aorta, and propose that CtsB and/or complement component D may be involved. Complement may be activated by the GAGs that accumulate, and may play a role in signal transduction pathways that upregulate elastases. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Disseminated intravascular coagulation due to IgM-mediated autoimmune hemolytic anemia.

    PubMed

    Bleakly, N Teresa; Fontaine, Magali J; Pate, Lisa L; Sutherland, Scott M; Jeng, Michael

    2011-08-01

    Disseminated intravascular coagulation (DIC) due to red cell hemolysis has been previously attributed to transfusion-related hemolytic reactions, but not to autoimmune hemolytic anemia. We report a case of DIC in a child with complement-fixing IgM-mediated cold-agglutinin autoimmune hemolysis, which resulted in arterial thrombosis and gangrene of the upper and lower extremities.

  3. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome

    PubMed Central

    Lemaire, Mathieu; Frémeaux-Bacchi, Véronique; Schaefer, Franz; Choi, Murim; Tang, Wai Ho; Le Quintrec, Moglie; Fakhouri, Fadi; Taque, Sophie; Nobili, François; Martinez, Frank; Ji, Weizhen; Overton, John D.; Mane, Shrikant M.; Nürnberg, Gudrun; Altmüller, Janine; Thiele, Holger; Morin, Denis; Deschenes, Georges; Baudouin, Véronique; Llanas, Brigitte; Collard, Laure; Majid, Mohammed A.; Simkova, Eva; Nürnberg, Peter; Rioux-Leclerc, Nathalie; Moeckel, Gilbert W.; Gubler, Marie Claire; Hwa, John; Loirat, Chantal; Lifton, Richard P.

    2013-01-01

    Pathologic thrombosis is a major cause of mortality. Hemolytic-uremic syndrome (HUS) features episodes of small vessel thrombosis resulting in microangiopathic hemolytic anemia, thrombocytopenia and renal failure1. Atypical HUS (aHUS) can result from genetic or autoimmune factors2 that lead to pathologic complement cascade activation3. By exome sequencing we identify recessive mutations in DGKE (diacylglycerol kinase epsilon) that co-segregate with aHUS in 9 unrelated kindreds, defining a distinctive Mendelian disease. Affected patients present with aHUS before age 1, have persistent hypertension, hematuria and proteinuria (sometimes nephrotic range), and develop chronic kidney disease with age. DGKE is found in endothelium, platelets, and podocytes. Arachidonic acid-containing diacylglycerols (DAG) activate protein kinase C, which promotes thrombosis. DGKE normally inactivates DAG signaling. We infer that loss of DGKE function results in a pro-thrombotic state. These findings identify a new mechanism of pathologic thrombosis and kidney failure and have immediate implications for treatment of aHUS patients. PMID:23542698

  4. A teleost complement factor Ba possesses antimicrobial activity and inhibits bacterial infection in fish.

    PubMed

    Li, Xue-Peng; Sun, Li

    2017-01-24

    Complement factor B (Bf) is a component of the complement system. Following activation of the alternative pathway of the complement system, factor B is cleaved into Ba and Bb fragments. In fish, the Bf of rainbow trout is known to act as a C3 convertase, but the function of the Ba fragment is essentially unknown. In this study, we examined the expression patterns of tongue sole Cynoglossus semilaevis Bf (named CsBf) and the biological activity of the Ba fragment of CsBf (named CsBa). CsBf possesses the conserved domains of Bf and shares 39.9%-56.4% sequence identities with other fish Bf. CsBf expression was high in liver, muscle, and heart, and low in intestine, blood, and kidney. Bacterial infection significantly induced CsBf expression in kidney, spleen, and liver in a time-dependent manner. Recombinant CsBa (rCsBa) exhibited apparent binding capacities to bacteria and tongue sole peripheral blood leukocytes, and binding of rCsBa to bacteria inhibited bacterial growth. When overexpressed in tongue sole, CsBa significantly reduced bacterial dissemination in fish tissues. Together these results indicate for the first time that a fish Ba possesses antibacterial effect as well as immune cell-binding capacity, and thus probably plays a role in host immune defense against bacterial infection.

  5. Complement-activating rheumatoid-factor-containing complexes in patients with rheumatoid vasculitis.

    PubMed

    Elson, C J; Scott, D G; Blake, D R; Bacon, P A; Holt, P D

    1983-04-01

    The role of complement and rheumatoid factor in immune complexes was examined in patients with a variety of rheumatic diseases. This was done by assessing the amount of rheumatoid factor (RF) bound from sera by F(ab)2 anti-C3 attached to a solid matrix. High levels of RF bound to C3 were detected in patients with rheumatoid arthritis complicated by vasculitis but rarely and in lower levels in patients with synovitis, ankylosing spondylitis, and systemic lupus erythematosus. The activity was bound to anti-C3 through anti-C3 antibodies because little was bound by normal F(ab)2 and was evidently complexed in the sera before in-vitro testing, since it was precipitated by 2 . 5% polyethylene glycol and sedimented with high molecular weight material on sucrose density gradient ultracentrifugation. It is considered that RF-containing complexes are present in vasculitic sera and have the potential to bind complement in vivo.

  6. Complement activation and choriocapillaris loss in early AMD: Implications for pathophysiology and therapy

    PubMed Central

    Whitmore, S.Scott; Sohn, Elliott H.; Chirco, Kathleen R.; Drack, Arlene V.; Stone, Edwin M.; Tucker, Budd A.; Mullins, Robert F.

    2015-01-01

    Age-related macular degeneration (AMD) is a common and devastating disease that can result in severe visual dysfunction. Over the last decade, great progress has been made in identifying genetic variants that contribute to AMD, many of which lie in genes involved in the complement cascade. In this review we discuss the significance of complement activation in AMD, particularly with respect to the formation of the membrane attack complex in the aging choriocapillaris. We review the clinical, histological and biochemical data that indicate that vascular loss in the choroid occurs very early in the pathogenesis of AMD, and discuss the potential impact of vascular dropout on the retinal pigment epithelium, Bruch's membrane and the photoreceptor cells. Finally, we present a hypothesis for the pathogenesis of early AMD and consider the implications of this model on the development of new therapies. PMID:25486088

  7. Complement factor I from flatfish half-smooth tongue (Cynoglossus semilaevis) exhibited anti-microbial activities.

    PubMed

    Xiang, Jinsong; Li, Xihong; Chen, Yadong; Lu, Yang; Yu, Mengjun; Chen, Xuejie; Zhang, Wenting; Zeng, Yan; Sun, Luming; Chen, Songlin; Sha, Zhenxia

    2015-11-01

    Complement factor I (Cfi) is a soluble serine protease which plays a crucial role in the modulation of complement cascades. In the presence of substrate modulating cofactors (such as complement factor H, C4bp, CR1, etc), Cfi cleaves and inactivates C3b and C4b, thereby controlling the complement-mediated processes. In this study, we sequenced and characterized Cfi gene from Cynoglossus Semilaevis (designated as CsCfi) for the first time. The full-length cDNA of CsCfi was 2230 bp in length, including a 98 bp 5'-untranslated region (UTR), a 164 bp 3'-UTR and a 1968 bp open reading frame (ORF). It encoded a polypeptide of 656 amino acids, with a molecular mass of 72.28 kDa and an isoelectric point of 7.71. A signal peptide was defined at N-terminus, resulting in a 626-residue mature protein. Multiple sequence alignment revealed that Cfi proteins were well conserved with the typical modular architecture and identical active sites throughout the vertebrates, which suggested the conserved function of Cfi. Phylogenetic analysis indicated that CsCfi and the homologous Cfi sequences from teleosts clustered into a clade, separating from another clade from the cartilaginous fish and other vertebrates. Tissue expression profile analysis by quantitative real-time PCR (qRT-PCR) showed that CsCfi mRNA constitutively expressed in all tested tissues, with the predominant expression in liver and the lowest in stomach. Temporal expression levels of CsCfi after challenging with Vibrio anguillarum showed different expression patterns in intestine, spleen, skin, blood, head kidney and liver. The recombinant CsCfi (rCsCfi) protein showed broad-spectrum antimicrobial activities against the Gram-positive bacteria Staphylococcus aureus and the Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa and Shewanella putrefaciens. The research revealed that CsCfi plays an important role in C. Semilaevis immunity.

  8. Alternative complement pathway activation during invasive coronary procedures in acute myocardial infarction and stable angina pectoris.

    PubMed

    Horváth, Zsófia; Csuka, Dorottya; Vargova, Katarina; Kovács, Andrea; Leé, Sarolta; Varga, Lilian; Préda, István; Tóth Zsámboki, Emese; Prohászka, Zoltán; Kiss, Róbert Gábor

    2016-12-01

    The effect of invasive percutaneous coronary procedures on complement activation has not been elucidated. We enrolled stable angina patients with elective percutaneous coronary intervention (SA-PCI, n=24), diagnostic coronary angiography (CA, n=52) and 23 patients with ST segment elevation myocardial infarction and primary PCI (STEMI-PCI). Complement activation products (C1rC1sC1inh, C3bBbP and SC5b-9) were measured on admission, 6 and 24h after coronary procedures. The alternative pathway product, C3bBbP significantly and reversibly increased 6h after elective PCI (baseline: 7.81AU/ml, 6h: 16.09AU/ml, 24h: 4.27AU/ml, p<0.01, n=23) and diagnostic angiography (baseline: 6.13AU/ml, 6h: 12.08AU/ml, 24h: 5.4AU/ml, p<0.01, n=52). Six hour C3bBbP values correlated with post-procedural CK, creatinine level and the applied contrast material volume (r=0.41, r=0.4, r=0.3, p<0.05, respectively). In STEMI-PCI, baseline C3bBbP level was higher, compared to SA-PCI or CA patients (11.33AU/ml vs. 7.81AU/ml or 6.13AU/ml, p<0.001). Similarly, the terminal complex (SC5b-9) level was already elevated at baseline compared to SA-PCI group (3.49AU/ml vs. 1.87AU/ml, p=0.011). Complement pathway products did not increase further after primary PCI. Elective coronary procedures induced transient alternative complement pathway activation, influenced by the applied contrast volume. In STEMI, the alternative complement pathway is promptly activated during the atherothrombotic event and PCI itself had no further detectable effect.

  9. Recombinant glycoproteins that inhibit complement activation and also bind the selectin adhesion molecules.

    PubMed

    Rittershaus, C W; Thomas, L J; Miller, D P; Picard, M D; Geoghegan-Barek, K M; Scesney, S M; Henry, L D; Sen, A C; Bertino, A M; Hannig, G; Adari, H; Mealey, R A; Gosselin, M L; Couto, M; Hayman, E G; Levin, J L; Reinhold, V N; Marsh, H C

    1999-04-16

    Soluble human complement receptor type 1 (sCR1, TP10) has been expressed in Chinese hamster ovary (CHO) DUKX-B11 cells and shown to inhibit the classical and alternative complement pathways in vitro and in vivo. A truncated version of sCR1 lacking the long homologous repeat-A domain (LHR-A) containing the C4b binding site has similarly been expressed and designated sCR1[desLHR-A]. sCR1[desLHR-A] was shown to be a selective inhibitor of the alternative complement pathway in vitro and to function in vivo. In this study, sCR1 and sCR1[desLHR-A] were expressed in CHO LEC11 cells with an active alpha(1,3)-fucosyltransferase, which makes possible the biosynthesis of the sialyl-Lewisx (sLex) tetrasaccharide (NeuNAcalpha2-3Galbeta1-4(Fucalpha1-3)GlcNAc) during post-translational glycosylation. The resulting glycoproteins, designated sCR1sLex and sCR1[desLHR-A]sLex, respectively, retained the complement regulatory activities of their DUKX B11 counterparts, which lack alpha(1-3)-fucose. Carbohydrate analysis of purified sCR1sLex and sCR1[desLHR-A]sLex indicated an average incorporation of 10 and 8 mol of sLex/mol of glycoprotein, respectively. sLex is a carbohydrate ligand for the selectin adhesion molecules. sCR1sLex was shown to specifically bind CHO cells expressing cell surface E-selectin. sCR1[desLHR-A]sLex inhibited the binding of the monocytic cell line U937 to human aortic endothelial cells, which had been activated with tumor necrosis factor-alpha to up-regulate the expression of E-selectin. sCR1sLex inhibited the binding of U937 cells to surface-adsorbed P-selectin-IgG. sCR1sLex and sCR1[desLHR-A]sLex have thus demonstrated both complement regulatory activity and the capacity to bind selectins and to inhibit selectin-mediated cell adhesion in vitro.

  10. Enhanced classical complement pathway activation and altered phagocytosis signaling molecules in human epilepsy.

    PubMed

    Wyatt, Season K; Witt, Thomas; Barbaro, Nicholas M; Cohen-Gadol, Aaron A; Brewster, Amy L

    2017-09-01

    Microglia-mediated neuroinflammation is widely associated with seizures and epilepsy. Although microglial cells are professional phagocytes, less is known about the status of this phenotype in epilepsy. Recent evidence supports that phagocytosis-associated molecules from the classical complement (C1q-C3) play novel roles in microglia-mediated synaptic pruning. Interestingly, in human and experimental epilepsy, altered mRNA levels of complement molecules were reported. Therefore, to identify a potential role for complement and microglia in the synaptodendritic pathology of epilepsy, we determined the protein levels of classical complement proteins (C1q-C3) along with other phagocytosis signaling molecules in human epilepsy. Cortical brain samples surgically resected from patients with refractory epilepsy (RE) and non-epileptic lesions (NE) were examined. Western blotting was used to determine the levels of phagocytosis signaling proteins such as the complements C1q and C3, MerTK, Trem2, and Pros1 along with cleaved-caspase 3. In addition, immunostaining was used to determine the distribution of C1q and co-localization to microglia and dendrites. We found that the RE samples had significantly increased protein levels of C1q (p=0.034) along with those of its downstream activation product iC3b (p=0.027), and decreased levels of Trem2 (p=0.045) and Pros1 (p=0.005) when compared to the NE group. Protein levels of cleaved-caspase 3 were not different between the groups (p=0.695). In parallel, we found C1q localization to microglia and dendrites in both NE and RE samples, and also observed substantial microglia-dendritic interactions in the RE tissue. These data suggest that aberrant phagocytic signaling occurs in human refractory epilepsy. It is likely that alteration of phagocytic pathways may contribute to unwanted elimination of cells/synapses and/or impaired clearance of dead cells. Future studies will investigate whether altered complement signaling contributes to

  11. The Serum Complement System: A Simplified Laboratory Exercise to Measure the Activity of an Important Component of the Immune System

    ERIC Educational Resources Information Center

    Inglis, Jordan E.; Radziwon, Kimberly A.; Maniero, Gregory D.

    2008-01-01

    The immune system is a vital physiological component that affords animals protection from disease and is composed of innate and adaptive mechanisms that rely on cellular and dissolved components. The serum complement system is a series of dissolved proteins that protect against a variety of pathogens. The activity of complement in serum can be…

  12. The Serum Complement System: A Simplified Laboratory Exercise to Measure the Activity of an Important Component of the Immune System

    ERIC Educational Resources Information Center

    Inglis, Jordan E.; Radziwon, Kimberly A.; Maniero, Gregory D.

    2008-01-01

    The immune system is a vital physiological component that affords animals protection from disease and is composed of innate and adaptive mechanisms that rely on cellular and dissolved components. The serum complement system is a series of dissolved proteins that protect against a variety of pathogens. The activity of complement in serum can be…

  13. Site-specific mutagenesis of Clostridium perfringens alpha-toxin: replacement of Asp-56, Asp-130, or Glu-152 causes loss of enzymatic and hemolytic activities.

    PubMed Central

    Nagahama, M; Nakayama, T; Michiue, K; Sakurai, J

    1997-01-01

    The current study has investigated the role of D-56, D-130, and E-152 in zinc ion binding properties, as well as the hemolytic, phospholipase C (PLC), and sphingomyelinase (SMase) activities of Clostridium perfringens alpha-toxin, based upon crystallography studies of the Bacillus cereus PLC, which had suggested these residues might be important for these functional activities. The replacement of D-56 in alpha-toxin resulted in complete loss of hemolytic, PLC, and SMase activities. The variant toxins at D-130 showed an approximately 100-fold reduction of biological activities compared to that of the wild-type toxin. The substitution of glutamine or glycine for E-152 caused complete loss of these activities, but substitution of aspartic acid for E-152 reduced but did not completely inhibit these activities. The variant toxins at D-56 and D-130, as well as the wild-type toxin, possessed approximately 2 mol of zinc atoms per mol of the protein, but E152G and E152Q contained approximately 1 mol of zinc metal per mol of the protein. On the other hand, the zinc content in E152D was calculated as about 1.4 mol in the toxin molecule. The replacement of D-56, D-130, or E-152 had no effect on binding to sheep erythrocytes and uptake of free zinc ion from the solution. The variant toxins at D-130 showed partial antigenic identity with the wild-type toxin on a double gel diffusion test. These observations suggest that D-56 in alpha-toxin is required for catalytic activity of alpha-toxin, D-130 is essential for maintenance of structure, and the carboxyl group of E-152 tightly ligands one zinc ion, which is essential for catalytic activity of the toxin. PMID:9234819

  14. Congenital Hemolytic Anemia.

    PubMed

    Haley, Kristina

    2017-03-01

    Red blood cell (RBC) destruction can be secondary to intrinsic disorders of the RBC or to extrinsic causes. In the congenital hemolytic anemias, intrinsic RBC enzyme, RBC membrane, and hemoglobin disorders result in hemolysis. The typical clinical presentation is a patient with pallor, anemia, jaundice, and often splenomegaly. The laboratory features include anemia, hyperbilirubinemia, and reticulocytosis. For some congenital hemolytic anemias, splenectomy is curative. However, in other diseases, avoidance of drugs and toxins is the best therapy. Supportive care with transfusions are also mainstays of therapy. Chronic hemolysis often results in the formation of gallstones, and cholecystectomy is often indicated.

  15. Plasma Complement Components and Activation Fragments: Associations with Age-Related Macular Degeneration Genotypes and Phenotypes

    PubMed Central

    Reynolds, Robyn; Hartnett, M. Elizabeth; Atkinson, John P.; Giclas, Patricia C.; Rosner, Bernard; Seddon, Johanna M.

    2010-01-01

    Purpose Several genes encoding complement system components and fragments are associated with age-related macular degeneration (AMD). This study was conducted to determine whether alterations in circulating levels of these markers of complement activation and regulation are also independently associated with advanced AMD and whether they are related to AMD genotypes. Methods Plasma and DNA samples were selected from individuals in our AMD registry who had progressed to or developed the advanced stages of AMD, including 58 with geographic atrophy and 62 with neovascular disease. Subjects of similar age and sex, but without AMD, and who did not progress were included as controls (n = 60). Plasma complment components (C3, CFB, CFI, CFH, and factor D) and activation fragments (Bb, C3a, C5a, iC3b, and SC5b-9) were analyzed. DNA samples were genotyped for seven single-nucleotide polymorphisms in six genes previously shown to be associated with AMD: CFB, CFH, C2, C3, and CFI and the LOC387715/ARMS2 gene region. The association between AMD and each complement biomarker was assessed by using logistic regression, controlling for age, sex, and proinflammatory risk factors: smoking and body mass index (BMI). Functional genomic analyses were performed to assess the relationship between the complement markers and genotypes. Concordance, or C, statistics were calculated to assess the effect of complement components and activation fragments in an AMD gene-environment prediction model. Results The highest quartiles of Bb and C5a were significantly associated with advanced AMD, when compared with the lowest quartiles. In multivariate models without genetic variants, the odds ratio (OR) for Bb was 3.3 (95% confidence interval [CI] = 1.3-8.6), and the OR for C5a was 3.6 (95% CI = 1.2-10.3). With adjustment for genetic variants, these ORs were substantially higher. The alternative pathway regulator CFH was inversely associated with AMD in the model without genotypes (OR = 0.3; P = 0

  16. Dynamic Structural Changes During Complement C3 Activation Analyzed by Hydrogen/Deuterium Exchange Mass Spectrometry

    PubMed Central

    Schuster, Michael C.; Ricklin, Daniel; Papp, Krisztián; Molnar, Kathleen S.; Coales, Stephen J.; Hamuro, Yoshitomo; Sfyroera, Georgia; Chen, Hui; Winters, Michael S.; Lambris, John D.

    2008-01-01

    Proteolytic cleavage of component C3 to C3b is a central step in the activation of complement. Whereas C3 is largely biologically inactive, C3b is directly involved in various complement activities. While the recently described crystal structures of C3 and C3b provide a molecular basis of complement activation, they do not reflect the dynamic changes that occur in solution. In addition, the available C3b structures diverge in some important aspects. Here we have utilized hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) to investigate relative changes in the solution-phase structures of C3 and C3b. By combining two forms of mass spectrometry we could maximize the primary sequence coverage of C3b and demonstrate the feasibility of this method for large plasma proteins. While the majority of the 82 peptides that could be followed over time showed only minor alterations in HDX, we observed clear changes in solvent accessibility for 16 peptides, primarily in the α-chain (α’NT, MG6-8, CUB, TED, C345C domains). Most of these peptides could be directly linked to the structural transitions visible in the crystal structures and revealed additional information about the probability of the structural variants of C3b. In addition, a discontinuous cluster of seven peptides in the MG3, MG6, LNK and α’NT domains showed a decreased accessibility after activation to C3b. Although no gross conformational changes are detected in the crystal structure, this area may reflect a structurally flexible region in solution that contributes to C3 activation and function. PMID:18456336

  17. [Autoimmune hemolytic anemia in children].

    PubMed

    Becheur, M; Bouslama, B; Slama, H; Toumi, N E H

    2015-01-01

    Autoimmune hemolytic anemia is a rare condition in children which differs from the adult form. It is defined by immune-mediated destruction of red blood cells caused by autoantibodies. Characteristics of the autoantibodies are responsible for the various clinical entities. Classifications of autoimmune hemolytic anemia include warm autoimmune hemolytic anemia, cold autoimmune hemolytic anemia, and paroxysmal cold hemoglobinuria. For each classification, this review discusses the epidemiology, etiology, clinical presentation, laboratory evaluation, and treatment options.

  18. A pathogenic role of complement in arterial hypertension and hypertensive end organ damage.

    PubMed

    Wenzel, Ulrich O; Bode, Marlies; Köhl, Jörg; Ehmke, Heimo

    2017-03-01

    The self-amplifying cascade of messenger and effector molecules of the complement system serves as a powerful danger-sensing system that protects the host from a hostile microbial environment, while maintaining proper tissue and organ function through effective clearance of altered or dying cells. As an important effector arm of innate immunity, it also plays important roles in the regulation of adaptive immunity. Innate and adaptive immune responses have been identified as crucial players in the pathogenesis of arterial hypertension and hypertensive end organ damage. In line with this view, complement activation may drive the pathology of hypertension and hypertensive injury through its impact on innate and adaptive immune responses. It is well known that complement activation can cause tissue inflammation and injury and complement-inhibitory drugs are effective treatments for several inflammatory diseases. In addition to these proinflammatory properties, complement cleavage fragments of C3 and C5 can exert anti-inflammatory effects that dampen the inflammatory response to injury. Recent experimental data strongly support a role for complement in arterial hypertension. The remarkably similar clinical and histopathological features of malignant nephrosclerosis and atypical hemolytic uremic syndrome, which is driven by complement activation, suggest a role for complement also in the development of malignant nephrosclerosis. Herein, we will review canonical and noncanonical pathways of complement activation as the framework to understand the multiple roles of complement in arterial hypertension and hypertensive end organ damage.

  19. Structural basis for activation of the complement system by component C4 cleavage

    PubMed Central

    Kidmose, Rune T.; Laursen, Nick S.; Dobó, József; Kjaer, Troels R.; Sirotkina, Sofia; Yatime, Laure; Sottrup-Jensen, Lars; Thiel, Steffen; Gál, Péter; Andersen, Gregers R.

    2012-01-01

    An essential aspect of innate immunity is recognition of molecular patterns on the surface of pathogens or altered self through the lectin and classical pathways, two of the three well-established activation pathways of the complement system. This recognition causes activation of the MASP-2 or the C1s serine proteases followed by cleavage of the protein C4. Here we present the crystal structures of the 203-kDa human C4 and the 245-kDa C4⋅MASP-2 substrate⋅enzyme complex. When C4 binds to MASP-2, substantial conformational changes in C4 are induced, and its scissile bond region becomes ordered and inserted into the protease catalytic site in a manner canonical to serine proteases. In MASP-2, an exosite located within the CCP domains recognizes the C4 C345C domain 60 Å from the scissile bond. Mutations in C4 and MASP-2 residues at the C345C–CCP interface inhibit the intermolecular interaction and C4 cleavage. The possible assembly of the huge in vivo enzyme–substrate complex consisting of glycan-bound mannan-binding lectin, MASP-2, and C4 is discussed. Our own and prior functional data suggest that C1s in the classical pathway of complement activated by, e.g., antigen–antibody complexes, also recognizes the C4 C345C domain through a CCP exosite. Our results provide a unified structural framework for understanding the early and essential step of C4 cleavage in the elimination of pathogens and altered self through two major pathways of complement activation. PMID:22949645

  20. Structural basis for activation of the complement system by component C4 cleavage.

    PubMed

    Kidmose, Rune T; Laursen, Nick S; Dobó, József; Kjaer, Troels R; Sirotkina, Sofia; Yatime, Laure; Sottrup-Jensen, Lars; Thiel, Steffen; Gál, Péter; Andersen, Gregers R

    2012-09-18

    An essential aspect of innate immunity is recognition of molecular patterns on the surface of pathogens or altered self through the lectin and classical pathways, two of the three well-established activation pathways of the complement system. This recognition causes activation of the MASP-2 or the C1s serine proteases followed by cleavage of the protein C4. Here we present the crystal structures of the 203-kDa human C4 and the 245-kDa C4·MASP-2 substrate·enzyme complex. When C4 binds to MASP-2, substantial conformational changes in C4 are induced, and its scissile bond region becomes ordered and inserted into the protease catalytic site in a manner canonical to serine proteases. In MASP-2, an exosite located within the CCP domains recognizes the C4 C345C domain 60 Å from the scissile bond. Mutations in C4 and MASP-2 residues at the C345C-CCP interface inhibit the intermolecular interaction and C4 cleavage. The possible assembly of the huge in vivo enzyme-substrate complex consisting of glycan-bound mannan-binding lectin, MASP-2, and C4 is discussed. Our own and prior functional data suggest that C1s in the classical pathway of complement activated by, e.g., antigen-antibody complexes, also recognizes the C4 C345C domain through a CCP exosite. Our results provide a unified structural framework for understanding the early and essential step of C4 cleavage in the elimination of pathogens and altered self through two major pathways of complement activation.

  1. Role of complement in porphyrin-induced photosensitivity

    SciTech Connect

    Lim, H.W.; Gigli, I.

    1981-01-01

    Addition of porphyrins to sera of guinea pigs in vitro, followed by irradiation with 405 nm light, resulted in dose-dependent inhibitions of hemolytic activity of complement. With guinea pig as an animal model, we also found that systemically administered porphyrins, followed by irradiation with 405 nm light, resulted in dose-dependent inhibition of CH50 in vivo. The erythrocytes from porphyrin-treated guinea pigs showed an increased susceptibility to hemolysis induced by 405 nm irradiation in vitro. Clinical changes in these animals were limited to light-exposed areas and consisted of erythema, crusting, and delayed growth of hair. Histologically, dermal edema, dilation of blood vessels, and infiltration of mononuclear and polymorphonuclear cells were observed. Guinea pigs irradiated with ultraviolet-B developed erythema, but had no alteration of their complement profiles. It is suggested that complement products may play a specific role in the pathogenesis of the cutaneous lesions of some porphyrias.

  2. THE CONVERSION OF HEMOLYTIC STREPTOCOCCI TO NON-HEMOLYTIC FORMS

    PubMed Central

    Todd, E. W.

    1928-01-01

    From one strain of hemolytic streptococcus three forms were isolated, which produced three different degrees of hemolysis on the surface of blood agar in the presence of oxygen. The original form was moderately hemolytic; the glossy variant was more hemolytic than the original form; and the third form, obtained by passing the original culture through mice, was non-hemolytic. Under anaerobic conditions all three forms were hemolytic. The non-hemolytic passage culture, in the presence of an ample supply of oxygen, not only destroyed its own hemolysin, which only appeared under anaerobic conditions, but was also able to destroy the hemolysin of other cultures of hemolytic streptococci. It is possible that these observations may throw some light on experiments reported by a number of workers showing that Streptococcus hæmolyticus can be transmuted to Streptococcus viridans by animal passage. PMID:19869500

  3. Medicago truncatula CYP716A12 Is a Multifunctional Oxidase Involved in the Biosynthesis of Hemolytic Saponins[W

    PubMed Central

    Carelli, Maria; Biazzi, Elisa; Panara, Francesco; Tava, Aldo; Scaramelli, Laura; Porceddu, Andrea; Graham, Neil; Odoardi, Miriam; Piano, Efisio; Arcioni, Sergio; May, Sean; Scotti, Carla; Calderini, Ornella

    2011-01-01

    Saponins, a group of glycosidic compounds present in several plant species, have aglycone moieties that are formed using triterpenoid or steroidal skeletons. In spite of their importance as antimicrobial compounds and their possible benefits for human health, knowledge of the genetic control of saponin biosynthesis is still poorly understood. In the Medicago genus, the hemolytic activity of saponins is related to the nature of their aglycone moieties. We have identified a cytochrome P450 gene (CYP716A12) involved in saponin synthesis in Medicago truncatula using a combined genetic and biochemical approach. Genetic loss-of-function analysis and complementation studies showed that CYP716A12 is responsible for an early step in the saponin biosynthetic pathway. Mutants in CYP716A12 were unable to produce hemolytic saponins and only synthetized soyasaponins, and were thus named lacking hemolytic activity (lha). In vitro enzymatic activity assays indicate that CYP716A12 catalyzes the oxidation of β-amyrin and erythrodiol at the C-28 position, yielding oleanolic acid. Transcriptome changes in the lha mutant showed a modulation in the main steps of triterpenic saponin biosynthetic pathway: squalene cyclization, β-amyrin oxidation, and glycosylation. The analysis of CYP716A12 expression in planta is reported together with the sapogenin content in different tissues and stages. This article provides evidence for CYP716A12 being a key gene in hemolytic saponin biosynthesis. PMID:21821776

  4. Autoimmune Hemolytic Anemia.

    PubMed

    Liebman, Howard A; Weitz, Ilene C

    2017-03-01

    Autoimmune hemolytic anemia is an acquired autoimmune disorder resulting in the production of antibodies directed against red blood cell antigens causing shortened erythrocyte survival. The disorders can present as a primary disorder (idiopathic) or secondary to other autoimmune disorders, malignancies, or infections. Treatment involves immune modulation with corticosteroids and other agents.

  5. Regulator of complement activation (RCA) locus in chicken: identification of chicken RCA gene cluster and functional RCA proteins.

    PubMed

    Oshiumi, Hiroyuki; Shida, Kyoko; Goitsuka, Ryo; Kimura, Yuko; Katoh, Jun; Ohba, Shinya; Tamaki, Yuichiroh; Hattori, Takashi; Yamada, Nozomi; Inoue, Norimitsu; Matsumoto, Misako; Mizuno, Shigeki; Seya, Tsukasa

    2005-08-01

    A 150-kb DNA fragment, which contains the gene of the chicken complement regulatory protein CREM (formerly named Cremp), was isolated from a microchromosome by screening bacterial artificial chromosome library. Within 100 kb of the cloned region, three complete genes encoding short consensus repeats (SCRs, motifs with tandemly arranged 60 aa) were identified by exon-trap method and 3'- or 5'-RACE. A chicken orthologue of the human gene 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2, which exists in close proximity to the regulator of complement activation genes in humans and mice, was located near this chicken SCR gene cluster. Moreover, additional genes encoding SCR proteins appeared to be present in this region. Three distinct transcripts were detected in RNA samples from a variety of chicken organs and cell lines. Two novel genes named complement regulatory secretory protein of chicken (CRES) and complement regulatory GPI-anchored protein of chicken (CREG) besides CREM were identified by cloning corresponding cDNA. Based on the predicted primary structures and properties of the expressed molecules, CRES is a secretory protein, whereas CREG is a GPI-anchored membrane protein. CREG and CREM were protected host cells from chicken complement-mediated cytolysis. Likewise, a membrane-bound form of CRES, which was artificially generated, also protected host cells from chicken complement. Taken together, the chicken possesses an regulator of complement activation locus similar to those of the mammals, and the gene products function as complement regulators.

  6. Complement Interactions with Blood Cells, Endothelial Cells and Microvesicles in Thrombotic and Inflammatory Conditions.

    PubMed

    Karpman, Diana; Ståhl, Anne-lie; Arvidsson, Ida; Johansson, Karl; Loos, Sebastian; Tati, Ramesh; Békássy, Zivile; Kristoffersson, Ann-Charlotte; Mossberg, Maria; Kahn, Robin

    2015-01-01

    The complement system is activated in the vasculature during thrombotic and inflammatory conditions. Activation may be associated with chronic inflammation on the endothelial surface leading to complement deposition. Complement mutations allow uninhibited complement activation to occur on platelets, neutrophils, monocytes, and aggregates thereof, as well as on red blood cells and endothelial cells. Furthermore, complement activation on the cells leads to the shedding of cell derived-microvesicles that may express complement and tissue factor thus promoting inflammation and thrombosis. Complement deposition on red blood cells triggers hemolysis and the release of red blood cell-derived microvesicles that are prothrombotic. Microvesicles are small membrane vesicles ranging from 0.1 to 1 μm, shed by cells during activation, injury and/or apoptosis that express components of the parent cell. Microvesicles are released during inflammatory and vascular conditions. The repertoire of inflammatory markers on endothelial cell-derived microvesicles shed during inflammation is large and includes complement. These circulating microvesicles may reflect the ongoing inflammatory process but may also contribute to its propagation. This overview will describe complement activation on blood and endothelial cells and the release of microvesicles from these cells during hemolytic uremic syndrome, thrombotic thrombocytopenic purpura and vasculitis, clinical conditions associated with enhanced thrombosis and inflammation.

  7. Potent complement C3a receptor agonists derived from oxazole amino acids: Structure-activity relationships.

    PubMed

    Singh, Ranee; Reed, Anthony N; Chu, Peifei; Scully, Conor C G; Yau, Mei-Kwan; Suen, Jacky Y; Durek, Thomas; Reid, Robert C; Fairlie, David P

    2015-12-01

    Potent ligands for the human complement C3a receptor (C3aR) were developed from the almost inactive tripeptide Leu-Ala-Arg corresponding to the three C-terminal residues of the endogenous peptide agonist C3a. The analogous Leu-Ser-Arg was modified by condensing the serine side chain with the leucine carbonyl with elimination of water to form leucine-oxazole-arginine. Subsequent elaboration with a variety of N-terminal amide capping groups produced agonists as potent as human C3a itself in stimulating Ca(2+) release from human macrophages. Structure-activity relationships are discussed.

  8. Smoke Exposure Causes Endoplasmic Reticulum Stress and Lipid Accumulation in Retinal Pigment Epithelium through Oxidative Stress and Complement Activation*

    PubMed Central

    Kunchithapautham, Kannan; Atkinson, Carl; Rohrer, Bärbel

    2014-01-01

    Age-related macular degeneration (AMD) is a complex disease caused by genetic and environmental factors, including genetic variants in complement components and smoking. Smoke exposure leads to oxidative stress, complement activation, endoplasmic reticulum (ER) stress, and lipid dysregulation, which have all been proposed to be associated with AMD pathogenesis. Here we examine the effects of smoke exposure on the retinal pigment epithelium (RPE). Mice were exposed to cigarette smoke or filtered air for 6 months. RPE cells grown as stable monolayers were exposed to 5% cigarette smoke extract (CSE). Effects of smoke were determined by biochemical, molecular, and histological measures. Effects of the alternative pathway (AP) of complement and complement C3a anaphylatoxin receptor signaling were analyzed using knock-out mice or specific inhibitors. ER stress markers were elevated after smoke exposure in RPE of intact mice, which was eliminated in AP-deficient mice. To examine this relationship further, RPE monolayers were exposed to CSE. Short term smoke exposure resulted in production and release of complement C3, the generation of C3a, oxidative stress, complement activation on the cell membrane, and ER stress. Long term exposure to CSE resulted in lipid accumulation, and secretion. All measures were reversed by blocking C3a complement receptor (C3aR), alternative complement pathway signaling, and antioxidant therapy. Taken together, our results provide clear evidence that smoke exposure results in oxidative stress and complement activation via the AP, resulting in ER stress-mediated lipid accumulation, and further suggesting that oxidative stress and complement act synergistically in the pathogenesis of AMD. PMID:24711457

  9. Smoke exposure causes endoplasmic reticulum stress and lipid accumulation in retinal pigment epithelium through oxidative stress and complement activation.

    PubMed

    Kunchithapautham, Kannan; Atkinson, Carl; Rohrer, Bärbel

    2014-05-23

    Age-related macular degeneration (AMD) is a complex disease caused by genetic and environmental factors, including genetic variants in complement components and smoking. Smoke exposure leads to oxidative stress, complement activation, endoplasmic reticulum (ER) stress, and lipid dysregulation, which have all been proposed to be associated with AMD pathogenesis. Here we examine the effects of smoke exposure on the retinal pigment epithelium (RPE). Mice were exposed to cigarette smoke or filtered air for 6 months. RPE cells grown as stable monolayers were exposed to 5% cigarette smoke extract (CSE). Effects of smoke were determined by biochemical, molecular, and histological measures. Effects of the alternative pathway (AP) of complement and complement C3a anaphylatoxin receptor signaling were analyzed using knock-out mice or specific inhibitors. ER stress markers were elevated after smoke exposure in RPE of intact mice, which was eliminated in AP-deficient mice. To examine this relationship further, RPE monolayers were exposed to CSE. Short term smoke exposure resulted in production and release of complement C3, the generation of C3a, oxidative stress, complement activation on the cell membrane, and ER stress. Long term exposure to CSE resulted in lipid accumulation, and secretion. All measures were reversed by blocking C3a complement receptor (C3aR), alternative complement pathway signaling, and antioxidant therapy. Taken together, our results provide clear evidence that smoke exposure results in oxidative stress and complement activation via the AP, resulting in ER stress-mediated lipid accumulation, and further suggesting that oxidative stress and complement act synergistically in the pathogenesis of AMD.

  10. Progranulin Deficiency Promotes Circuit-Specific Synaptic Pruning by Microglia via Complement Activation

    PubMed Central

    Lui, Hansen; Zhang, Jiasheng; Makinson, Stefanie R.; Cahill, Michelle K.; Kelley, Kevin W.; Huang, Hsin-Yi; Shang, Yulei; Oldham, Michael C.; Martens, Lauren Herl; Gao, Fuying; Coppola, Giovanni; Sloan, Steven A.; Hsieh, Christine L.; Kim, Charles C.; Bigio, Eileen H.; Weintraub, Sandra; Mesulam, Marek-Marsel; Rademakers, Rosa; Mackenzie, Ian R.; Seeley, William W.; Karydas, Anna; Miller, Bruce L.; Borroni, Barbara; Ghidoni, Roberta; Farese, Robert V.; Paz, Jeanne T.; Barres, Ben A.; Huang, Eric J.

    2016-01-01

    SUMMARY Microglia maintain homeostasis in the brain, but whether aberrant microglial activation can cause neurodegeneration remains controversial. Here, we use transcriptome profiling to demonstrate that deficiency in frontotemporal dementia (FTD) gene progranulin (Grn) leads to an age-dependent, progressive up-regulation of lysosomal and innate immunity genes, increased complement production, and enhanced synaptic pruning in microglia. During aging, Grn−/− mice show profound microglia infiltration and preferential elimination of inhibitory synapses in the ventral thalamus, which lead to hyperexcitability in the thalamocortical circuits and obsessive-compulsive disorder (OCD)-like grooming behaviors. Remarkably, deleting C1qa gene significantly reduces synaptic pruning by Grn−/− microglia, and mitigates neurodegeneration, behavioral phenotypes and premature mortality in Grn−/− mice. Together, our results uncover a previously unrecognized role of progranulin in suppressing aberrant microglia activation during aging. These results represent an important conceptual advance that complement activation and microglia-mediated synaptic pruning are major drivers, rather than consequences, of neurodegeneration caused by progranulin deficiency. PMID:27114033

  11. Immune competence of the Ciona intestinalis pharynx: complement system-mediated activity.

    PubMed

    Giacomelli, Stefano; Melillo, Daniela; Lambris, John D; Pinto, Maria Rosaria

    2012-10-01

    In the tunicate Ciona intestinalis, the ciliated pharynx, which connects the external environment to a highly developed and compartmentalized gastrointestinal system, represents the natural portal of entry for a vast and diverse, potentially pathogenic microbial community. To address the role of the pharynx in immune surveillance in Ciona, we asked whether C3, the key component of the complement system, was expressed in this organ and whether the encoded protein was functionally active. We found by real-time PCR that C3, constitutively expressed in the pharynx, is up-regulated by LPS injection. Using two specific anti-CiC3 and anti-CiC3a polyclonal antibodies in immunohistochemical staining of pharynx sections, we found that the gene product was localized to hemocytes of the pharyngeal bars (identified as granular amoebocytes) and in stigmata ciliated cells. Use of the same antibodies in Western blot analysis indicated that CiC3 and its activation products CiC3b and CiC3a are present in pharynx homogenates. Our observation that the amount of the bioactive fragment CiC3a increased in the pharynx of LPS-treated animals provides the first molecular and functional evidence for complement-mediated immunological activity in the tunicate pharynx. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Activation of the lectin complement pathway in post-streptococcal acute glomerulonephritis.

    PubMed

    Hisano, Satoshi; Matsushita, Misao; Fujita, Teizo; Takeshita, Morishige; Iwasaki, Hiroshi

    2007-06-01

    The aim of the present study was to elucidate the correlation between complement pathways and clinicopathological findings in post-streptococcal acute glomerulonephritis (PSAGN). Immunohistological staining was performed on renal specimens obtained from 18 patients with PSAGN and 20 controls, using antibodies against IgG, IgA, IgM, C1q, C3c, C4, fibrinogen, factor B, C4-binding protein (C4-bp), C5b-9, CD59, mannose-binding lectin (MBL) and MBL-associated serine protease-1 (MASP-1). Controls showed no deposition of any antibody. In seven patients, glomerular deposits of C3c, C4, factor B, C4-bp, C5b-9, CD59, MBL and MASP-1 were found. In the remaining 11 patients, glomerular deposits of neither C4 nor MBL/MASP-1 were found, and glomerular deposits of C3c, factor B, C5b-9 and CD59 were evident. C4-bp was detected in seven of these 11 patients. Glomerular deposits of fibrinogen were detected in five of seven patients with MBL/MASP-1 deposits and in only two of 11 patients without MBL/MASP-1 deposits. Hematuria was prolonged in three of seven patients with MBL/MASP-1 deposits through follow up, whereas urinalysis was normal in all patients without MBL/MASP-1 deposits. However, the histological indicators were not different between the two groups. To the authors' knowledge this is the first report to show that complement activation through both the alternative and lectin pathways is evident in some patients with PSAGN. Complement activation is promoted in situ in the glomerulus.

  13. Case report of atypical hemolytic uremic syndrome with retinal arterial and venous occlusion treated with eculizumab

    PubMed Central

    Greenwood, Gregory T

    2015-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a rare disease caused by chronic, uncontrolled activation of the alternative complement pathway, leading to thrombotic microangiopathy. Renal impairment and progression to end-stage renal disease are common in untreated patients with aHUS, and extrarenal manifestations are being increasingly characterized in the literature. Ocular involvement remains rare in aHUS. This report describes a patient with aHUS with bilateral central retinal artery and vein occlusion, vitreous hemorrhage, and blindness in addition to renal impairment. The patient’s hematologic and renal parameters and ocular manifestation improved following initiation of eculizumab therapy. PMID:26508891

  14. Complement requirement for virus neutralization by antibody and reduced serum complement levels associated with experimental equine herpesvirus 1 infection.

    PubMed Central

    Snyder, D B; Myrup, A C; Dutta, S K

    1981-01-01

    Pony foals, negative for detectable serum-neutralizing antibody to equine herpesvirus 1 by the standard tube-culture virus neutralization test, were experimentally infected with equine herpesvirus 1. Complement-requiring (CR) and non-complement-requiring (NCR) serum-neutralizing antibodies were evaluated in preinfection and postinfection sera by means of a complement-enhanced plaque reduction assay. Low levels of CR antibodies were found in the preinfection sera of only group II ponies. Upon infection, CR antibodies were detected by day 2 postinfection and reached peak titers between 7 and 14 days postinfection in the antisera of all ponies. NCR antibodies were detected later than CR antibodies and at levels approximately 40 to 150 times lower than the latter. CR/NCR ratios indicated that complement requirement was greatest early in the acute stages of disease and that this requirement decreased during the convalescent phase. Fractionation of 1-week and 2-week postinfection antisera of group I ponies indicated the CR antibody activity resided in both the 7S and 19S fractions. Total serum complement levels of the ponies were quantified throughout the infection with an equine anti-goat erythrocyte hemolytic system. In vivo, complement levels were depressed for all ponies during the first 2 weeks of infection. A decline in complement levels was seen as early as day 2, and they decreased to an average of 35% of preinfection levels on day 10 postinfection for all ponies. PMID:6260672

  15. Novel twin streptolysin S-like peptides encoded in the sag operon homologue of beta-hemolytic Streptococcus anginosus.

    PubMed

    Tabata, Atsushi; Nakano, Kota; Ohkura, Kazuto; Tomoyasu, Toshifumi; Kikuchi, Ken; Whiley, Robert A; Nagamune, Hideaki

    2013-03-01

    Streptococcus anginosus is a member of the anginosus group streptococci, which form part of the normal human oral flora. In contrast to the pyogenic group streptococci, our knowledge of the virulence factors of the anginosus group streptococci, including S. anginosus, is not sufficient to allow a clear understanding of the basis of their pathogenicity. Generally, hemolysins are thought to be important virulence factors in streptococcal infections. In the present study, a sag operon homologue was shown to be responsible for beta-hemolysis in S. anginosus strains by random gene knockout. Interestingly, contrary to pyogenic group streptococci, beta-hemolytic S. anginosus was shown to have two tandem sagA homologues, encoding streptolysin S (SLS)-like peptides, in the sag operon homologue. Gene deletion and complementation experiments revealed that both genes were functional, and these SLS-like peptides were essential for beta-hemolysis in beta-hemolytic S. anginosus. Furthermore, the amino acid sequence of these SLS-like peptides differed from that of the typical SLS of S. pyogenes, especially in their propeptide domain, and an amino acid residue indicated to be important for the cytolytic activity of SLS in S. pyogenes was deleted in both S. anginosus homologues. These data suggest that SLS-like peptides encoded by two sagA homologues in beta-hemolytic S. anginosus may be potential virulence factors with a different structure essential for hemolytic activity and/or the maturation process compared to the typical SLS present in pyogenic group streptococci.

  16. Novel Twin Streptolysin S-Like Peptides Encoded in the sag Operon Homologue of Beta-Hemolytic Streptococcus anginosus

    PubMed Central

    Tabata, Atsushi; Nakano, Kota; Ohkura, Kazuto; Tomoyasu, Toshifumi; Kikuchi, Ken; Whiley, Robert A.

    2013-01-01

    Streptococcus anginosus is a member of the anginosus group streptococci, which form part of the normal human oral flora. In contrast to the pyogenic group streptococci, our knowledge of the virulence factors of the anginosus group streptococci, including S. anginosus, is not sufficient to allow a clear understanding of the basis of their pathogenicity. Generally, hemolysins are thought to be important virulence factors in streptococcal infections. In the present study, a sag operon homologue was shown to be responsible for beta-hemolysis in S. anginosus strains by random gene knockout. Interestingly, contrary to pyogenic group streptococci, beta-hemolytic S. anginosus was shown to have two tandem sagA homologues, encoding streptolysin S (SLS)-like peptides, in the sag operon homologue. Gene deletion and complementation experiments revealed that both genes were functional, and these SLS-like peptides were essential for beta-hemolysis in beta-hemolytic S. anginosus. Furthermore, the amino acid sequence of these SLS-like peptides differed from that of the typical SLS of S. pyogenes, especially in their propeptide domain, and an amino acid residue indicated to be important for the cytolytic activity of SLS in S. pyogenes was deleted in both S. anginosus homologues. These data suggest that SLS-like peptides encoded by two sagA homologues in beta-hemolytic S. anginosus may be potential virulence factors with a different structure essential for hemolytic activity and/or the maturation process compared to the typical SLS present in pyogenic group streptococci. PMID:23292771

  17. Sundanese Complementation

    ERIC Educational Resources Information Center

    Kurniawan, Eri

    2013-01-01

    The focus of this thesis is the description and analysis of clausal complementation in Sundanese, an Austronesian language spoken in Indonesia. The thesis examined a range of clausal complement types in Sundanese, which consists of (i) "yen/(wi)rehna" "that" complements, (ii) "pikeun" "for" complements,…

  18. Sundanese Complementation

    ERIC Educational Resources Information Center

    Kurniawan, Eri

    2013-01-01

    The focus of this thesis is the description and analysis of clausal complementation in Sundanese, an Austronesian language spoken in Indonesia. The thesis examined a range of clausal complement types in Sundanese, which consists of (i) "yen/(wi)rehna" "that" complements, (ii) "pikeun" "for" complements,…

  19. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL

    PubMed Central

    Vaisar, Tomas; Pennathur, Subramaniam; Green, Pattie S.; Gharib, Sina A.; Hoofnagle, Andrew N.; Cheung, Marian C.; Byun, Jaeman; Vuletic, Simona; Kassim, Sean; Singh, Pragya; Chea, Helen; Knopp, Robert H.; Brunzell, John; Geary, Randolph; Chait, Alan; Zhao, Xue-Qiao; Elkon, Keith; Marcovina, Santica; Ridker, Paul; Oram, John F.; Heinecke, Jay W.

    2007-01-01

    HDL lowers the risk for atherosclerotic cardiovascular disease by promoting cholesterol efflux from macrophage foam cells. However, other antiatherosclerotic properties of HDL are poorly understood. To test the hypothesis that the lipoprotein carries proteins that might have novel cardioprotective activities, we used shotgun proteomics to investigate the composition of HDL isolated from healthy subjects and subjects with coronary artery disease (CAD). Unexpectedly, our analytical strategy identified multiple complement-regulatory proteins and a diverse array of distinct serpins with serine-type endopeptidase inhibitor activity. Many acute-phase response proteins were also detected, supporting the proposal that HDL is of central importance in inflammation. Mass spectrometry and biochemical analyses demonstrated that HDL3 from subjects with CAD was selectively enriched in apoE, raising the possibility that HDL carries a unique cargo of proteins in humans with clinically significant cardiovascular disease. Collectively, our observations suggest that HDL plays previously unsuspected roles in regulating the complement system and protecting tissue from proteolysis and that the protein cargo of HDL contributes to its antiinflammatory and antiatherogenic properties. PMID:17332893

  20. Recombinant human erythropoietin modulates erythrocyte complement receptor 1 functional activity in patients with lupus nephritis.

    PubMed

    Kiss, E; Kávai, M; Csipõ, I; Szegedi, G

    1998-06-01

    Deposition of immune complexes (IC) is an important step in the pathogenesis of lupus nephritis. Impairment of IC-clearance contributes to the accumulation of IC. It may be partly attributed to decreased complement containing immune complex (ICC) binding by erythrocytic complement receptor 1 (ECR1). Stimulating erythropoiesis with recombinant human erythropoietin (rHuEPO) may enhance the IC-clearance as increasing ECR1 expression and/or functional activity. Ten anemic patients with lupus nephritis were treated with 50 IU rHuEPO (Eprex) per kg body weight three times a week during a five week period. ICC-binding capacity of ECR1 was determined with 125I-labelled, C3ib containing BSA-anti-BSA complexes. In addition to effective correction of anemia, indicated by increased red blood cell count (RBC), hemoglobin concentration and reticulocyte ratio, rHuEPO significantly improved decreased ECR1 functional (ICC-binding) activity in patients with lupus nephritis. This improvement correlated with the increase in reticulocyte ratio. Although patients were kept on their previous therapy during Eprex administration, their clinical condition also improved. That was shown by a decrease in Westergreen ratio, serum creatinine concentration and anti-dsDNA level and also by an increase in creatinine clearance. Results suggest a beneficial immune modulatory effect of rHuEPO in lupus nephritis.

  1. Anti-complement activity in the saliva of phlebotomine sand flies and other haematophagous insects.

    PubMed

    Cavalcante, R R; Pereira, M H; Gontijo, N F

    2003-07-01

    The saliva of haematophagous insects has a series of pharmacological activities which may favour blood feeding. In the present study, an inhibitory effect on the complement system was observed in salivary extracts obtained from the phlebotomine sand flies Lutzomyia longipalpis and Lu. migonei. Saliva from Lu. longipalpis was capable of inhibiting both the classical and alternative pathways, while that from Lu. migonei acted only on the former. Other haematophagous insect species were screened for inhibition of the classical pathway. The triatomine bugs Panstrongylus megistus, Triatoma brasiliensis and Rhodnius prolixus were also able to inhibit the classical pathway whereas the mosquito Aedes aegyti and flea Ctenocephalides felis were not. The activity of Lu. longipalpis saliva on the classical pathway was partially characterized. The inhibitor is a protein of Mr 10000-30000 Da, which is very resistant to denaturation by heat. The inhibition of the complement system by phlebotomine sand flies may have a role in the transmission of Leishmania to the vertebrate hosts. The inhibitor molecule is thus a promising component of a vaccine to target salivary immunomodulators.

  2. Complement activation and kidney injury molecule-1-associated proximal tubule injury in severe preeclampsia.

    PubMed

    Burwick, Richard M; Easter, Sarah Rae; Dawood, Hassan Y; Yamamoto, Hidemi S; Fichorova, Raina N; Feinberg, Bruce B

    2014-10-01

    Kidney injury with proteinuria is a characteristic feature of preeclampsia, yet the nature of injury in specific regions of the nephron is incompletely understood. Our study aimed to use existing urinary biomarkers to describe the pattern of kidney injury and proteinuria in pregnancies affected by severe preeclampsia. We performed a case-control study of pregnant women from Brigham and Women's Hospital from 2012 to 2013. We matched cases of severe preeclampsia (n=25) 1:1 by parity and gestational age to 2 control groups with and without chronic hypertension. Urinary levels of kidney injury molecule-1 and complement components (C3a, C5a, and C5b-9) were measured by enzyme-linked immunosorbent assay, and other markers (albumin, β2 microglobulin, cystatin C, epithelial growth factor, neutrophil gelatinase-associated lipocalin, osteopontin, and uromodulin) were measured simultaneously with a multiplex electrochemiluminescence assay. Median values between groups were compared with the Wilcoxon signed-rank test and correlations with Spearman correlation coefficient. Analysis of urinary markers revealed higher excretion of albumin and kidney injury molecule-1 and lower excretion of neutrophil gelatinase-associated lipocalin and epithelial growth factor in severe preeclampsia compared with chronic hypertension and healthy controls. Among subjects with severe preeclampsia, urinary excretion of complement activation products correlated most closely with kidney injury molecule-1, a specific marker of proximal tubule injury (C5a: r=0.60; P=0.001; and C5b-9: r=0.75; P<0.0001). Taken together, we describe a pattern of kidney injury in severe preeclampsia that is characterized by glomerular impairment and complement-mediated inflammation and injury, possibly localized to the proximal tubule in association with kidney injury molecule-1.

  3. Early Components of the Complement Classical Activation Pathway in Human Systemic Autoimmune Diseases

    PubMed Central

    Lintner, Katherine E.; Wu, Yee Ling; Yang, Yan; Spencer, Charles H.; Hauptmann, Georges; Hebert, Lee A.; Atkinson, John P.; Yu, C. Yung

    2016-01-01

    The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP), has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE). Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy-number (GCN) variation and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low GCNs of total C4, and heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein deficiencies for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases and immune-mediated diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases. PMID:26913032

  4. Proteomic Profiling Analysis Reveals a Link between Experimental Autoimmune Uveitis and Complement Activation in Rats.

    PubMed

    Guo, D D; Hu, B; Tang, H Y; Sun, Y Y; Liu, B; Tian, Q M; Bi, H S

    2017-05-01

    Uveitis is an autoimmune disease that usually damages the vision function, leading to poor visual quality in patients. As an autoimmune ocular inflammatory disease, the pathogenesis of uveitis is associated with abnormal expression of some proteins and aberrant regulation of multiple signalling pathways. Nevertheless, the detailed mechanism remains unclear. In this study, we induced an experimental autoimmune uveitis (EAU) model in rats. We determined the levels of C3a and membrane attack complex C5b-9 (soluble C5b-9, sC5b-9) in both plasma and aqueous humour, identified the differentially expressed proteins in plasma by liquid chromatography-tandem mass spectrometry and employed bioinformatics algorithms to analyse differentially expressed proteins in EAU rat plasma. The results demonstrate that there were 168 differentially expressed plasma proteins in EAU rats versus control subjects. The levels of sC5b-9 and C3a were elevated in the plasmas and aqueous humours of EAU rats. Gene ontology enrichment analysis showed that the differentially expressed proteins in EAU rat plasma were mainly involved in metabolic and immune processes. Kyoto encyclopedia of genes and genomes (KEGG) pathway annotation, database for annotation, visualization and integrated discovery (DAVID) and protein-protein interaction analyses revealed that the differentially expressed proteins in EAU rat plasmas were closely associated with complement and coagulation cascades, metabolic pathways, NF-kappa B, PI3K-Akt, Toll-like receptors and autophagy. Overall, the differentially expressed proteins in EAU rat plasmas are mainly involved in the complement and coagulation cascades. The pathogenesis of uveitis closely correlates with complement activation. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  5. Functionally active complement proteins C6 and C7 detected in C6- and C7-deficient individuals.

    PubMed Central

    Würzner, R; Orren, A; Potter, P; Morgan, B P; Ponard, D; Späth, P; Brai, M; Schulze, M; Happe, L; Götze, O

    1991-01-01

    Two sensitive sandwich ELISAs based on monoclonal antibodies directed to native C6 and C7 allowed the detection and quantitation of these complement proteins in 20 out of 37 serum samples from individuals who had previously been classified as deficient in these proteins as assessed by immunochemical and/or functional assays. Furthermore, serum from four C6-deficient and one combined C6-/C7-deficient individual showed an increase in the terminal complement complex (TCC) and a decrease in native C6 and C7 after complement activation as assayed by specific ELISAs. Despite their (incomplete) deficiencies, these individuals therefore possess functionally active terminal complement proteins with respect to their ability to generate the TCC. As these individuals have no history of a susceptibility to neisserial infections, even low concentrations of functionally active C6 and C7 may provide sufficient protection against those micro-organisms whose destruction requires TCC formation. PMID:2004484

  6. Rapid activation of monocyte tissue factor by antithymocyte globulin is dependent on complement and protein disulfide isomerase

    PubMed Central

    Spath, Brigitte; Fischer, Cornelia; Stolz, Moritz; Ayuk, Francis A.; Kröger, Nicolaus; Bokemeyer, Carsten; Ruf, Wolfram

    2013-01-01

    Lymphocyte depletion with antithymocyte globulin (ATG) can be complicated by systemic coagulation activation. We found that ATG activated tissue factor procoagulant activity (TF PCA) on monocytic cells more potently than other stimuli that decrypt TF, including cell disruption, TF pathway inhibitor inhibition, and calcium ionophore treatment. Induction of TF PCA by ATG was dependent on lipid raft integrity and complement activation. We showed that ATG-mediated TF activation required complement activation until assembly of the C5b-7 membrane insertion complex, but not lytic pore formation by the membrane attack complex C5b-9. Consistently, induction of TF PCA by ATG did not require maximal phosphatidylserine membrane exposure and was not correlated with the magnitude of complement-induced lytic cell injury. Blockade of free thiols, an inhibitory monoclonal antibody to protein disulfide isomerase (PDI), and the small-molecule PDI antagonist quercetin-3-rutinoside prevented ATG-mediated TF activation, and C5 complement activation resulted in oxidation of cell surface PDI. This rapid and potent mechanism of cellular TF activation represents a novel connection between the complement system and cell surface PDI-mediated thiol-disulfide exchange. Delineation of this clinically relevant mechanism of activation of the extrinsic coagulation pathway during immunosuppressive therapy with ATG may have broader implications for vascular thrombosis associated with inflammatory disorders. PMID:23315166

  7. Complement inhibiting properties of dragon's blood from Croton draco.

    PubMed

    Tsacheva, Ivanka; Rostan, Joerg; Iossifova, Tania; Vogler, Bernhard; Odjakova, Mariela; Navas, Hernan; Kostova, Ivanka; Kojouharova, Michaela; Kraus, Wolfgang

    2004-01-01

    The latex of Croton draco, its extracts and several latex components have been investigated for their influence on both classical (CP) and alternative (AP) activation pathways of the complement system using a hemolytic assay. The best inhibition was found for the classical pathway. The latex, ethyl acetate and ethyl ether extracts exhibited extremely high inhibition on the CP (94, 90 and 77%, respectively) at a concentration of 1 mg/ml. The flavonoid myricitrin, the alkaloid taspine and the cyclopeptides P1 and P2 showed high inhibition on CP (83, 91, 78 and 63%, respectively) at a concentration of 0.9 mM.

  8. The terminal pathway of the complement system is activated in focal penetrating but not in mild diffuse traumatic brain injury.

    PubMed

    Rostami, Elham; Davidsson, Johan; Gyorgy, Andrea; Agoston, Denes V; Risling, Mårten; Bellander, Bo-Michael

    2013-12-01

    The complement system plays an important role in the inflammatory response activated by many central nervous system disorders. However, its significance in traumatic diffuse traumatic axonal injury (TAI) is not fully known. Here we analyze the complement activity in two rat models of traumatic brain injury (TBI); a focal penetration injury (pen-TBI) and a rotational acceleration injury (rot-TBI) that leads to a mild TAI. We used in situ hybridization to examine the distribution of mRNA for C1q and C3 and immunohistochemistry to examine the presence of the C3 protein and C5b-9 complex at 1-5 days after injury. We found a time-dependent complement activity in both models. However, the responses caused by the two models were different. We detected C5b-9 surrounding the cavity in pen-TBI, but C5b-9 was not found in the rot-TBI. Our findings suggest that the terminal complement pathway is progressed to the formation of the C5b-9 membrane attack complex only in the penetrating TBI but not in isolated TAI model. This indicates that the complement activation does not lead to membrane-damaging effects and a subsequent secondary axotomy in TAI by the terminal complex C5b-9. The role of complement activation in TAI is unclear, but might indicate an alternative function following rot-TBI, such as opsonizing the synapses for elimination.

  9. Complement cascade and kidney transplantation: The rediscovery of an ancient enemy

    PubMed Central

    Mella, Alberto; Messina, Maria; Lavacca, Antonio; Biancone, Luigi

    2014-01-01

    The identification of complement activity in serum and immunohistochemical samples represents a core element of nephropathology. On the basis of this observation, different experimental models and molecular studies have shown the role of this cascade in glomerular disease etiology, but the absence of inhibiting drugs have limited its importance. Since 2006, the availability of target-therapies re-defined this ancient pathway, and its blockage, as the new challenging frontier in renal disease treatment. In the graft, the complement cascade is able to initiate and propagate the damage in ischemia-reperfusion injury, C3 glomerulopathy, acute and chronic rejection, atypical hemolytic uremic syndrome and, probably, in many other conditions. The importance of complement-focused research is revealed by the evidence that eculizumab, the first complement-targeting drug, is now considered a valid option in atypical hemolytic uremic syndrome treatment but it is also under investigation in all the aforementioned conditions. In this review we evaluate the importance of complement cascade in renal transplantation diseases, focusing on available treatments, and we propose a speculative identification of areas where complement inhibition may be a promising strategy. PMID:25346889

  10. Intervention effects of five cations and their correction on hemolytic activity of tentacle extract from the jellyfish Cyanea capillata.

    PubMed

    Zhang, Hui; Wang, Qianqian; Xiao, Liang; Zhang, Liming

    2017-01-01

    Cations have generally been reported to prevent jellyfish venom-induced hemolysis through multiple mechanisms by spectrophotometry. Little attention has been paid to the potential interaction between cations and hemoglobin, potentially influencing the antagonistic effect of cations. Here, we explored the effects of five reported cations, La(3+), Mn(2+), Zn(2+), Cu(2+) and Fe(2+), on a hemolytic test system and the absorbance of hemoglobin, which was further used to measure their effects on the hemolysis of tentacle extract (TE) from the jellyfish Cyanea capillata. All the cations displayed significant dose-dependent inhibitory effects on TE-induced hemolysis with various dissociation equilibrium constant (Kd) values as follows: La(3+) 1.5 mM, Mn(2+) 93.2 mM, Zn(2+) 38.6 mM, Cu(2+) 71.9 μM and Fe(2+) 32.8 mM. The transparent non-selective pore blocker La(3+) did not affect the absorbance of hemoglobin, while Mn(2+) reduced it slightly. Other cations, including Zn(2+), Cu(2+) and Fe(2+), greatly decreased the absorbance with Kd values of 35.9, 77.5 and 17.6 mM, respectively. After correction, the inhibitory Kd values were 1.4 mM, 45.8 mM, 128.5 μM and 53.1 mM for La(3+), Zn(2+), Cu(2+) and Fe(2+), respectively. Mn(2+) did not inhibit TE-induced hemolysis. Moreover, the inhibitory extent at the maximal given dose of all cations except La(3+) was also diminished. These corrected results from spectrophotometry were further confirmed by direct erythrocyte counting under microscopy. Our results indicate that the cations, except for La(3+), can interfere with the absorbance of hemoglobin, which should be corrected when their inhibitory effects on hemolysis by jellyfish venoms are examined. The variation in the inhibitory effects of cations suggests that the hemolysis by jellyfish venom is mainly attributed to the formation of non-selective cation pore complexes over other potential mechanisms, such as phospholipases A2 (PLA2), polypeptides, protease and oxidation

  11. Intervention effects of five cations and their correction on hemolytic activity of tentacle extract from the jellyfish Cyanea capillata

    PubMed Central

    2017-01-01

    Cations have generally been reported to prevent jellyfish venom-induced hemolysis through multiple mechanisms by spectrophotometry. Little attention has been paid to the potential interaction between cations and hemoglobin, potentially influencing the antagonistic effect of cations. Here, we explored the effects of five reported cations, La3+, Mn2+, Zn2+, Cu2+ and Fe2+, on a hemolytic test system and the absorbance of hemoglobin, which was further used to measure their effects on the hemolysis of tentacle extract (TE) from the jellyfish Cyanea capillata. All the cations displayed significant dose-dependent inhibitory effects on TE-induced hemolysis with various dissociation equilibrium constant (Kd) values as follows: La3+ 1.5 mM, Mn2+ 93.2 mM, Zn2+ 38.6 mM, Cu2+ 71.9 μM and Fe2+ 32.8 mM. The transparent non-selective pore blocker La3+ did not affect the absorbance of hemoglobin, while Mn2+ reduced it slightly. Other cations, including Zn2+, Cu2+ and Fe2+, greatly decreased the absorbance with Kd values of 35.9, 77.5 and 17.6 mM, respectively. After correction, the inhibitory Kd values were 1.4 mM, 45.8 mM, 128.5 μM and 53.1 mM for La3+, Zn2+, Cu2+ and Fe2+, respectively. Mn2+ did not inhibit TE-induced hemolysis. Moreover, the inhibitory extent at the maximal given dose of all cations except La3+ was also diminished. These corrected results from spectrophotometry were further confirmed by direct erythrocyte counting under microscopy. Our results indicate that the cations, except for La3+, can interfere with the absorbance of hemoglobin, which should be corrected when their inhibitory effects on hemolysis by jellyfish venoms are examined. The variation in the inhibitory effects of cations suggests that the hemolysis by jellyfish venom is mainly attributed to the formation of non-selective cation pore complexes over other potential mechanisms, such as phospholipases A2 (PLA2), polypeptides, protease and oxidation. Blocking the pore-forming complexes may be a

  12. Alternative Pathway Dysregulation and the Conundrum of Complement Activation by IgG4 Immune Complexes in Membranous Nephropathy

    PubMed Central

    Borza, Dorin-Bogdan

    2016-01-01

    Membranous nephropathy (MN), a major cause of nephrotic syndrome, is a non-inflammatory immune kidney disease mediated by IgG antibodies that form glomerular subepithelial immune complexes. In primary MN, autoantibodies target proteins expressed on the podocyte surface, often phospholipase A2 receptor (PLA2R1). Pathology is driven by complement activation, leading to podocyte injury and proteinuria. This article overviews the mechanisms of complement activation and regulation in MN, addressing the paradox that anti-PLA2R1 and other antibodies causing primary MN are predominantly (but not exclusively) IgG4, an IgG subclass that does not fix complement. Besides immune complexes, alterations of the glomerular basement membrane (GBM) in MN may lead to impaired regulation of the alternative pathway (AP). The AP amplifies complement activation on surfaces insufficiently protected by complement regulatory proteins. Whereas podocytes are protected by cell-bound regulators, the GBM must recruit plasma factor H, which inhibits the AP on host surfaces carrying certain polyanions, such as heparan sulfate (HS) chains. Because HS chains present in the normal GBM are lost in MN, we posit that the local complement regulation by factor H may be impaired as a result. Thus, the loss of GBM HS in MN creates a micro-environment that promotes local amplification of complement activation, which in turn may be initiated via the classical or lectin pathways by subsets of IgG in immune complexes. A detailed understanding of the mechanisms of complement activation and dysregulation in MN is important for designing more effective therapies. PMID:27199983

  13. [A peptide (a magnesium salt of N-acetyl (alpha, beta)-aspartyl-glutamic acid). Demonstration of the protection against local cellular destruction induced by in situ complement activation].

    PubMed

    Chevance, L G; Etiévant, M

    1986-01-01

    A peptide of simple chemical structure has demonstrated its efficiency in preventing the large cellular destruction that locally activated complement produced on the ciliary epithelium of the respiratory tract. Previously (1980), it was demonstrated by the authors that these cellular destructions after sensitization of the epithelium was due to the local activation of the complement (alternate pathway) by immune complexes with secretory IgA. The cellular protection afforded by Naaga was demonstrated by the persistance of a normal ciliary beating when the sensitized mucosa is in contact with the antigen; by electron microscopic studies both in transmission and scanning E.M. contrasting with the complete cellular destructions of the epithelium which appear obvious. The protection appear complete when Naaga (56 mM) is present in the testing solution (or instillated before the test). By in vitro human complement studies; study of the cytolytic sequence inhibition for the classical pathway 1,5.10(-3) M of Naaga produces a 50% inhibition of 1 H50 hemolytic unit. For the alternate pathway, the same inhibition is observed with 1,75.10(-3) M of Naaga; by two-dimensions immuno-electrophoresis: a dilution of 1/2 of C3 in Naaga reduced to 1/10 of its normal value the C3b profile; the "Rockets" technique demonstrated that the same 1/2 dilution of Naaga in complement prevents the clivage of factor B and that this peptide acts by inhibition of the alternate C3 convertase formation (see illustrations). If we consider the subject of this study i.e. the upper respiratory tract mucosa and knowing the physiopathological importance of the muco ciliary complex in preventing dust, microbs and other particulate foreign materiel to penetrate the epithelium, the therapeutic importance of such a simple non toxic and unharmful chemical compound must be stressed.

  14. Human CD55 Expression Blocks Hyperacute Rejection and Restricts Complement Activation in Gal Knockout Cardiac Xenografts

    PubMed Central

    McGregor, Christopher G.A.; Ricci, Davide; Miyagi, Naoto; Stalboerger, Paul G.; Du, Zeji; Oehler, Elise A.; Tazelaar, Henry D.; Byrne, Guerard W.

    2012-01-01

    Background Transgenic expression of human complement regulatory proteins (hCRPs) reduces the frequency of hyperacute rejection (HAR) in Gal-positive cardiac xenotransplantation. In this study we examine the impact of human CD55 (hCD55) expression on a Gal knock-out (GTKO) background using pig-to-primate heterotopic cardiac xenotransplantation. Methods Cardiac xenotransplantation was performed with GTKO (Group 1; n=6) and GTKO.hCD55 (Group 2; n=5) donor pigs using similar immunosuppression. Cardiac biopsies were obtained 30 minutes after organ reperfusion. Rejection was characterized by histology and immunohistology. Intragraft gene expression, serum non-Gal antibody and antibody recovered from rejected hearts were analyzed. Results HAR of a GTKO heart was observed. Remaining grafts developed delayed xenograft rejection. Median survival was 21 and 28 days for Groups 1 and 2 respectively. Vascular antibody deposition was uniformly detected 30 minutes after organ reperfusion and at explant. A higher frequency of vascular C5b deposition was seen in GTKO organs at explant. Serum non-Gal antibody, antibody recovered from the graft and intragraft gene expression were similar between the groups. Conclusion HAR of GTKO hearts without hCD55 may occur. Expression of hCD55 appeared to restrict local complement activation, but did not improve graft survival. Chronic vascular antibody deposition with evidence of protracted endothelial cell activation was seen. These observations suggest that non-Gal antibody-induced chronic endothelial cell activation coupled to possible haemostatic incompatibilities may be the primary stimulus for DXR of GTKO hearts. To avoid possible HAR, future clinical studies should employ donors expressing hCRPs in the GTKO background. PMID:22391577

  15. Identification of C3 acceptors responsible for complement activation in Crithidia fasciculata

    SciTech Connect

    Guether, M.L.T.; Travassos, L.R.; Schenkman, S.

    1988-11-01

    Crithidia fasciculata, an insect trypanosomatid is readily lysed by normal human serum at concentrations as low as 3%. Lysis occurs in the presence of Mg+2-EGTA and is antibody independent, indicating that the alternative pathway of complement activation is involved. Analysis of (131I)C3 deposition on C. fasciculata cells using C8-deficient serum, revealed that about 4 x 10(5) C3 molecules bound to each cell. Most of the C3 was bound to cells as C3b, part of it forming high molecular weight complexes, which could be dissociated by methylamine treatment at alkaline pH. To characterize the C3 acceptors on C. fasciculata, surface-iodinated cells were incubated with C8D or heat-inactivated serum, extracted and immunoprecipitated with anti-C3 or anti-arabinogalactan antisera. Analysis of the immunoprecipitated material on SDS gels showed high-molecular weight components, which disappeared after methylamine treatment, giving rise to a component of 200 kDa molecular size. This 200-kDa component corresponded to a purified arabinogalactan complex, which was immunoprecipitated from labeled cell extracts, without incubation with C8D, using anti-arabinogalactan antibodies. These results suggest that the arabinogalactan glycoconjugate is a C3 acceptor in C. fasciculata during complement activation. Purified arabinogalactan complexes were able to inactivate C3 in vitro. Solubilization in KOH to cleave the peptide moiety rendered it unable to inactivate C3. Apparently, the aggregated state of the purified arabinogalactan component at the cell surface is important for C3 deposition and activation.

  16. Eculizumab in anti-factor h antibodies associated with atypical hemolytic uremic syndrome.

    PubMed

    Diamante Chiodini, Benedetta; Davin, Jean-Claude; Corazza, Francis; Khaldi, Karim; Dahan, Karin; Ismaili, Khalid; Adams, Brigitte

    2014-06-01

    Atypical hemolytic uremic syndrome (aHUS) is a life-threatening multisystemic condition often leading to end-stage renal failure. It results from an increased activation of the alternative pathway of the complement system due to mutations of genes coding for inhibitors of this pathway or from autoantibodies directed against them. Eculizumab is a monoclonal antibody directed against complement component C5 and inhibiting the activation of the effector limb of the complement system. Its efficacy has already been demonstrated in aHUS. The present article reports for the first time the use of eculizumab in a patient presenting with aHUS associated with circulating anti-complement Factor H autoantibodies and complicated by cardiac and neurologic symptoms. Our observation highlights the efficacy of eculizumab in this form of aHUS not only on renal symptoms but also on the extrarenal symptoms. It also suggests that eculizumab should be used very promptly after aHUS presentation to prevent life-threatening complications and to reduce the risk of chronic disabilities. To obtain a complete inhibition of the effector limb activation, the advised dosage must be respected. After this initial therapy in the autoimmune aHUS form, a long-term immunosuppressive treatment should be considered, to prevent relapses by reducing anti-complement Factor H autoantibody plasma levels. Copyright © 2014 by the American Academy of Pediatrics.

  17. Antibacterial activity of peptides derived from the C-terminal region of a hemolytic lectin, CEL-III, from the marine invertebrate Cucumaria echinata.

    PubMed

    Hatakeyama, Tomomitsu; Suenaga, Tomoko; Eto, Seiichiro; Niidome, Takuro; Aoyagi, Haruhiko

    2004-01-01

    Several synthetic peptides derived from the C-terminal domain sequence of a hemolytic lectin, CEL-III, were examined as to their action on bacteria and artificial lipid membranes. Peptide P332 (KGVIFAKASVSVKVTASLSK-NH(2)), corresponding to the sequence from residue 332, exhibited strong antibacterial activity toward Gram-positive bacteria. Replacement of each Lys in P332 by Ala markedly decreased the activity. However, when all Lys were replaced by Arg, the antibacterial activity increased, indicating the importance of positively charged residues at these positions. Replacement of Val by Leu also led to higher antibacterial activity, especially toward Gram-negative bacteria. The antibacterial activity of these peptides was correlated with their membrane-permeabilizing activity toward the bacterial inner membrane and artificial lipid vesicles, indicating that the antibacterial action is due to perturbation of bacterial cell membranes, leading to enhancement of their permeability. These results also suggest that the hydrophobic region of CEL-III, from which P332 and its analogs were derived, may play some role in the interaction with target cell membranes to trigger hemolysis.

  18. Studies on the phenylethanoid glycosides with anti-complement activity from Paulownia tomentosa var. tomentosa wood.

    PubMed

    Si, Chuan-Ling; Deng, Xiao-Juan; Liu, Zhong; Kim, Jin-Kyu; Bae, Young-Soo

    2008-01-01

    Four epimeric phenylethanoid glycosides, including a new one, R,S-beta-ethoxy-beta-(3,4-dihydroxyphenyl)-ethyl-O-alpha-L-rhamnopyranosyl(1-->3)-beta-D-(6-O-E-caffeoyl)-glucopyranoside named isoilicifolioside A (1), and three known compounds, ilicifolioside A (2), campneoside II (3), and isocampneoside II (4), were isolated from Paulownia tomentosa var. tomentosa wood. The structures of the four compounds were elucidated by the interpretation of 1D and 2D NMR and MS spectra. This is the first report of the chemical profile of this tree. Compounds 1-4 exhibited excellent anti-complement activity with IC(50) values less than 74 microM, compared with tiliroside (IC(50) = 104 microM) and rosmarinic acid (IC(50) = 182 microM) that were used as positive controls.

  19. Complement Activation and STAT4 Expression Are Associated with Early Inflammation in Diabetic Wounds.

    PubMed

    Cunnion, Kenji M; Krishna, Neel K; Pallera, Haree K; Pineros-Fernandez, Angela; Rivera, Magdielis Gregory; Hair, Pamela S; Lassiter, Brittany P; Huyck, Ryan; Clements, Mary A; Hood, Antoinette F; Rodeheaver, George T; Cottler, Patrick S; Nadler, Jerry L; Dobrian, Anca D

    2017-01-01

    Diabetic non-healing wounds are a major clinical problem. The mechanisms leading to poor wound healing in diabetes are multifactorial but unresolved inflammation may be a major contributing factor. The complement system (CS) is the most potent inflammatory cascade in humans and contributes to poor wound healing in animal models. Signal transducer and activator of transcription 4 (STAT4) is a transcription factor expressed in immune and adipose cells and contributes to upregulation of some inflammatory chemokines and cytokines. Persistent CS and STAT4 expression in diabetic wounds may thus contribute to chronic inflammation and delayed healing. The purpose of this study was to characterize CS and STAT4 in early diabetic wounds using db/db mice as a diabetic skin wound model. The CS was found to be activated early in the diabetic wounds as demonstrated by increased anaphylatoxin C5a in wound fluid and C3-fragment deposition by immunostaining. These changes were associated with a 76% increase in nucleated cells in the wounds of db/db mice vs. The novel classical CS inhibitor, Peptide Inhibitor of Complement C1 (PIC1) reduced inflammation when added directly or saturated in an acellular skin scaffold, as reflected by reduced CS components and leukocyte infiltration. A significant increase in expression of STAT4 and the downstream macrophage chemokine CCL2 and its receptor CCR2 were also found in the early wounds of db/db mice compared to non-diabetic controls. These studies provide evidence for two new promising targets to reduce unresolved inflammation and to improve healing of diabetic skin wounds.

  20. Complement Activation and STAT4 Expression Are Associated with Early Inflammation in Diabetic Wounds

    PubMed Central

    Cunnion, Kenji M.; Krishna, Neel K.; Pallera, Haree K.; Pineros-Fernandez, Angela; Rivera, Magdielis Gregory; Hair, Pamela S.; Lassiter, Brittany P.; Huyck, Ryan; Clements, Mary A.; Hood, Antoinette F.; Rodeheaver, George T.; Nadler, Jerry L.; Dobrian, Anca D.

    2017-01-01

    Diabetic non-healing wounds are a major clinical problem. The mechanisms leading to poor wound healing in diabetes are multifactorial but unresolved inflammation may be a major contributing factor. The complement system (CS) is the most potent inflammatory cascade in humans and contributes to poor wound healing in animal models. Signal transducer and activator of transcription 4 (STAT4) is a transcription factor expressed in immune and adipose cells and contributes to upregulation of some inflammatory chemokines and cytokines. Persistent CS and STAT4 expression in diabetic wounds may thus contribute to chronic inflammation and delayed healing. The purpose of this study was to characterize CS and STAT4 in early diabetic wounds using db/db mice as a diabetic skin wound model. The CS was found to be activated early in the diabetic wounds as demonstrated by increased anaphylatoxin C5a in wound fluid and C3-fragment deposition by immunostaining. These changes were associated with a 76% increase in nucleated cells in the wounds of db/db mice vs. controls. The novel classical CS inhibitor, Peptide Inhibitor of Complement C1 (PIC1) reduced inflammation when added directly or saturated in an acellular skin scaffold, as reflected by reduced CS components and leukocyte infiltration. A significant increase in expression of STAT4 and the downstream macrophage chemokine CCL2 and its receptor CCR2 were also found in the early wounds of db/db mice compared to non-diabetic controls. These studies provide evidence for two new promising targets to reduce unresolved inflammation and to improve healing of diabetic skin wounds. PMID:28107529

  1. Real-time imaging of notch activation with a luciferase complementation-based reporter.

    PubMed

    Ilagan, Ma Xenia G; Lim, Sora; Fulbright, Mary; Piwnica-Worms, David; Kopan, Raphael

    2011-07-12

    Notch signaling regulates many cellular processes during development and adult tissue renewal. Upon ligand binding, Notch receptors undergo ectodomain shedding followed by γ-secretase-mediated release of the Notch intracellular domain (NICD), which translocates to the nucleus and associates with the DNA binding protein CSL [CBF1/RBPjκ/Su(H)/Lag1] to activate gene expression. Mammalian cells contain four Notch receptors that can have both redundant and specific activities. To monitor activation of specific Notch paralogs in live cells and in real time, we developed luciferase complementation imaging (LCI) reporters for NICD-CSL association and validated them as a specific, robust, and sensitive assay system that enables structure-function and pharmacodynamic analyses. Detailed kinetic analyses of various mechanistic aspects of Notch signaling, including nuclear translocation and inhibition of the activities of γ-secretase and ADAM metalloproteases, as well as agonist- and ligand-dependent activation, were conducted in live cells. These experiments showed that Notch-LCI is an effective approach for characterizing modulators that target Notch signaling and for studying pathway dynamics in normal and disease contexts.

  2. Bothrops asper snake venom and its metalloproteinase BaP-1 activate the complement system. Role in leucocyte recruitment.

    PubMed Central

    Farsky, S H; Gonçalves, L R; Gutiérrez, J M; Correa, A P; Rucavado, A; Gasque, P; Tambourgi, D V

    2000-01-01

    The venom of the snake Bothrops asper, the most important poisonous snake in Central America, evokes an inflammatory response, the mechanisms of which are not well characterized. The objectives of this study were to investigate whether B. asper venom and its purified toxins--phospholipases and metalloproteinase--activate the complement system and the contribution of the effect on leucocyte recruitment. In vitro chemotaxis assays were performed using Boyden's chamber model to investigate the ability of serum incubated with venom and its purified toxins to induce neutrophil migration. The complement consumption by the venom was evaluated using an in vitro haemolytic assay. The importance of complement activation by the venom on neutrophil migration was investigated in vivo by injecting the venom into the peritoneal cavity of C5-deficient mice. Data obtained demonstrated that serum incubated with crude venom and its purified metalloproteinase BaP-1 are able to induce rat neutrophil chemotaxis, probably mediated by agent(s) derived from the complement system. This hypothesis was corroborated by the capacity of the venom to activate this system in vitro. The involvement of C5a in neutrophil chemotaxis induced by venom-activated serum was demonstrated by abolishing migration when neutrophils were pre-incubated with antirat C5a receptor antibody. The relevance of the complement system in in vivo leucocyte mobilization was further demonstrated by the drastic decrease of this response in C5-deficient mice. Pre-incubation of serum with the soluble human recombinant complement receptor type 1 (sCR 1) did not prevent the response induced by the venom, but abolished the migration evoked by metalloproteinase-activated serum. These data show the role of the complement system in bothropic envenomation and the participation of metalloproteinase in the effect. Also, they suggest that the venom may contain other component(s) which can cause direct activation of C5a. PMID:11200361

  3. Prevention of complement-mediated immune hemolysis by a small molecule compound.

    PubMed

    Mqadmi, Amina; Zheng, Xiaoying; Song, Jinmei; Abramowitz, Steven; Giclas, Patricia; Yazdanbakhsh, Karina

    2004-12-24

    Complement sensitization of red blood cells (RBCs) can result in transfusion reactions and hemolytic anemias. We hypothesized that manipulating the complement system using small organic molecules might prevent RBC destruction, thereby prolonging RBC survival in patients. Using a simple, rapid, large-scale hemolytic assay, we screened a 10,000 compound library, enriched in anti-inflammatory compounds at a final concentration of 25 microM, and identified a 549Da compound (C(34)H(24)N(6)O(2)) with a symmetrical structure containing two benzimidazole rings that, as compared to a known anti-complement molecule FUT-175, was more effective in reducing hemolysis by the classical pathway and had comparable anti-hemolytic activity against the alternative pathway. Furthermore, in a xenotransfusion mouse model, treatment of mice with 1.2mg/kg of the compound significantly prolonged the survival of transfused RBCs, reducing C3 deposition, but not the deposition of control IgG or IgM, for the first hour post-transfusion. These data suggest that further studies are warranted to determine if this compound has usefulness in a transfusion setting.

  4. Serum complement activation on heterologous platelets is associated with arterial thrombosis in patients with systemic lupus erythematosus and antiphospholipid antibodies

    PubMed Central

    Peerschke, EIB; Yin, W; Alpert, DR; Roubey, RAS; Salmon, JE; Ghebrehiwet, B

    2009-01-01

    Complement plays a major role in inflammation and thrombosis associated with systemic lupus erythematosus (SLE) and the antiphospholipid syndrome (APS). A cross-sectional retrospective analysis was performed to evaluate serum complement fixation on platelets and thrombotic incidence using banked sera and clinical data from patients with SLE (n = 91), SLE with antiphospholipid antibodies (aPL) or APS (n = 78) and primary aPL (n = 57) or APS (n = 96). In-situ complement fixation was measured as C1q and C4d deposition on heterologous platelets using an enzyme-linked immunosorbent assay approach. Platelet activation by patient serum in the fluid phase was assessed via serotonin release assay. Enhanced in-situ complement fixation was associated with the presence of IgG aPL and IgG anti-β2 glycoprotein 1 antibodies (P < 0.05) and increased platelet activation (P < 0.005). Moreover, enhanced complement fixation, especially C4d deposition on heterologous platelets, was positively associated with arterial thrombotic events in patients with SLE and aPL (P = 0.039). Sera from patients with aPL possess an enhanced capacity for in-situ complement fixation on platelets. This capacity may influence arterial thrombosis risk in patients with SLE. PMID:19395455

  5. A blockade of complement activation prevents rapid intestinal ischaemia-reperfusion injury by modulating mucosal mast cell degranulation in rats

    PubMed Central

    Kimura, T; Andoh, A; Fujiyama, Y; Saotome, T; Bamba, T

    1998-01-01

    We attempted to define the putative role of complement activation in association with mucosal mast cell (MMC) degranulation in the pathogenesis of rapid intestinal ischaemia-reperfusion (I/R) injury. We prepared complement activity-depleted rats by the administration of the anti-complement agent K-76COOH and the serine-protease inhibitor FUT-175. Autoperfused segments of the jejunum were exposed to 60 min of ischaemia, followed by reperfusion for various time periods, and the epithelial permeability was assessed by the 51Cr-EDTA clearance rate. The number of MMC was immunohistochemically assessed. In control rats, the maximal increase in mucosal permeability was achieved by 30–45 min of reperfusion. This increase was significantly attenuated by the administration of either K-76COONa alone or in combination with FUT-175. In contrast, the administration of carboxypeptidase inhibitor (CPI), which prevents the inactivation of complement-derived anaphylatoxins such as C5a, significantly enhanced the increase in I/R-induced mucosal permeability. These findings were confirmed morphologically by light microscopy and scanning electron microscopy. In addition, the I/R-induced mucosal injury was accompanied by a marked decrease in the number of MMC, and administration of K-76COOH significantly inhibited this change. These results indicate that complement activation and the generation of complement-derived anaphylatoxins are key events in I/R-induced mucosal injury. It is likely that intestinal I/R-induced mucosal injury may be partially mediated by MMC activation associated with the complement activation. PMID:9528887

  6. Complement inhibition reduces material-induced leukocyte activation with PEG modified polystyrene beads (Tentagel) but not polystyrene beads.

    PubMed

    Gorbet, M B; Sefton, M V

    2005-09-15

    With isolated leukocytes, inhibiting complement reduced material-induced leukocyte activation (CD11b) with polyethylene glycol modified polystyrene beads (PS-PEG), but not with polystyrene beads (PS). The PS-PEG beads (TentaGel) were complement activating as measured by SC5b-9 levels consistent with the sensitivity of these beads to leukocyte inhibition with complement inhibitors. Following contact with PS and PS-PEG beads, isolated leukocytes in plasma and in the absence in platelets were found to significantly upregulate CD11b, while TF expression and exposure of phosphatidylserine remained at background levels. Complement inhibition by means of sCR1 partially reduced CD11b upregulation on PS-PEG beads, but had no effect with PS beads. Pyridoxal-5-phosphate (P5P) was able to significantly reduce both CD11b upregulation and exposure of phosphatidylserine with PS-PEG beads, although it did not appear to inhibit SC5b-9 production. Pentamidine and NAAGA inhibited complement and were effective in reducing CD11b upregulation with both PS and PS-PEG. However, they also had an inhibitory effect on leukocyte signaling mechanisms, precluding their utility for further study in this context. Leukocyte adhesion occurred to similar extents on both PS and PS-PEG beads. While sCR1 and P5P blocked adhesion and activation (for adherent leukocytes) on PS-PEG beads, they had no effect on leukocytes adherent to PS beads. The role of complement in leukocyte activation and adhesion was found to be material-dependent. Thus, leukocyte-material compatibility may be resolved by complement inhibition in some but not all cases. For these other materials (example here was PS), other mechanisms, such as fibrinogen adsorption and direct leukocyte release, may need exploitation to minimize leukocyte activation and adhesion. (c) 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2005.

  7. Real-time imaging of Notch activation using a Luciferase Complementation-based Reporter*

    PubMed Central

    Ilagan, Ma. Xenia G.; Lim, Sora; Fulbright, Mary; Piwnica-Worms, David; Kopan, Raphael

    2012-01-01

    Notch signaling regulates many cellular processes during development and adult tissue renewal. Upon ligand binding, Notch receptors undergo ectodomain shedding followed by γ-secretase-mediated release of the Notch intracellular domain (NICD), which translocates to the nucleus and associates with the DNA-binding protein CSL (CBF1/RBPjκ/Su(H)/Lag1) to activate gene expression. Mammalian cells contain four Notch receptors that can have both redundant and specific activities. To monitor activation of specific Notch paralogs in live cells and in real time, we developed luciferase complementation imaging (LCI) reporters for NICD/CSL association and validated them as a specific, robust and sensitive assay system that enables structure-function and pharmacodynamic analyses. Detailed kinetic analyses of various mechanistic aspects of Notch signaling, including nuclear translocation, γ-secretase and ADAM inhibition, as well as agonist- and ligand-dependent activation were conducted in live cells. Notch-LCI represents a powerful approach for characterizing modulators that target Notch signaling and for studying pathway dynamics in normal and disease contexts. PMID:21775282

  8. Thrombin activatable fibrinolysis inhibitor (TAFI) - A possible link between coagulation and complement activation in the antiphospholipid syndrome (APS).

    PubMed

    Grosso, Giorgia; Vikerfors, Anna; Woodhams, Barry; Adam, Mariette; Bremme, Katarina; Holmström, Margareta; Ågren, Anna; Eelde, Anna; Bruzelius, Maria; Svenungsson, Elisabet; Antovic, Aleksandra

    2017-06-24

    Thrombosis and complement activation are pathogenic features of antiphospholipid syndrome (APS). Their molecular link is Plasma carboxypeptidase-B, also known as thrombin activatable fibrinolysis inhibitor (TAFIa), which plays a dual role: anti-fibrinolytic, by cleaving carboxyl-terminal lysine residues from partially degraded fibrin, and anti-inflammatory, by downregulating complement anaphylatoxins C3a and C5a. To investigate the levels of TAFI (proenzyme) and TAFIa (active enzyme) in relation to complement activation, fibrin clot permeability and fibrinolytic function in clinical and immunological subsets of 52 APS patients and 15 controls. TAFI (p<0.001), TAFIa (p<0.05) and complement factor C5a (p<0.001) were increased, while fibrin permeability (p<0.01) was decreased and clot lysis time (CLT) was prolonged (p<0.05) in APS patients compared to controls. Furthermore, TAFIa was increased (p<0.01) in samples from APS patients affected by arterial thrombosis compared to other APS-phenotypes. Positive associations were found between TAFI and age, fibrinogen and C5a, and between TAFIa and age, fibrinogen and thrombomodulin. TAFI and TAFIa levels were increased in patients with APS as a potential response to complement activation. Interestingly, TAFI activation was associated with arterial thrombotic APS manifestations. Thus, TAFIa may be considered a novel biomarker for arterial thrombosis in APS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Release and characterization of single side chains of white cabbage pectin and their complement-fixing activity.

    PubMed

    Westereng, Bjorge; Coenen, Gerd Jan; Michaelsen, Terje Einar; Voragen, Alphons G J; Samuelsen, Anne Berit; Schols, Henk A; Knutsen, Svein Halvor

    2009-06-01

    A mixture of single side chains from white cabbage pectin were obtained by anion exchange chromatography after applying mild chemical conditions promoting beta-elimination. These pectin fragments were characterized by their molecular weight distribution, sugar composition, 13C-NMR, and MALDI-TOF-MS analysis. These analyses revealed that the large oligosaccharides released by beta-eliminative treatment were composed of alpha-1,5 linked arabinosyl residues with 2- and 3-linked alpha-arabinosyl side chains, and, or beta-1,4 linked galactosyl side chains. Fractions were tested for complement-fixing activity in order to determine their interaction with the complement system. These results strongly indicated that there was a minimal unit size responsible for the complement-fixing activity. Neutral pectin fragments (8 kDa) obtained from beta-elimination were inactive in the complement system, although they contained a sugar composition previously shown to be highly active. Larger pectin fragments (17 kDa) retained some activity, but much lower than polymers containing rhamnogalacturonan type 1 (RGI) structures isolated from the same source. This implied that structural elements containing multiple side chains is necessary for efficient complement-fixing activity.

  10. Contribution of Chondroitin Sulfate A to the Binding of Complement Proteins to Activated Platelets

    PubMed Central

    Lasaosa, Maria; Ricklin, Daniel; Lambris, John D.; Nilsson, Bo; Nilsson Ekdahl, Kristina

    2010-01-01

    Background Exposure of chondroitin sulfate A (CS-A) on the surface of activated platelets is well established. The aim of the present study was to investigate to what extent CS-A contributes to the binding of the complement recognition molecule C1q and the complement regulators C1 inhibitor (C1INH), C4b-binding protein (C4BP), and factor H to platelets. Principal Findings Human blood serum was passed over Sepharose conjugated with CS-A, and CS-A-specific binding proteins were identified by Western blotting and mass spectrometric analysis. C1q was shown to be the main protein that specifically bound to CS-A, but C4BP and factor H were also shown to interact. Binding of C1INH was dependent of the presence of C1q and then not bound to CS-A from C1q-depleted serum. The specific interactions observed of these proteins with CS-A were subsequently confirmed by surface plasmon resonance analysis using purified proteins. Importantly, C1q, C4BP, and factor H were also shown to bind to activated platelets and this interaction was inhibited by a CS-A-specific monoclonal antibody, thereby linking the binding of C1q, C4BP, and factor H to exposure of CS-A on activated platelets. CS-A-bound C1q was also shown to amplify the binding of model immune complexes to both microtiter plate-bound CS-A and to activated platelets. Conclusions This study supports the concept that CS-A contributes to the binding of C1q, C4BP, and factor H to platelets, thereby adding CS-A to the previously reported binding sites for these proteins on the platelet surface. CS-A-bound C1q also seems to amplify the binding of immune complexes to activated platelets, suggesting a role for this molecule in immune complex diseases. PMID:20886107

  11. The paralogous salivary anti-complement proteins IRAC I and IRAC II encoded by Ixodes ricinus ticks have broad and complementary inhibitory activities against the complement of different host species.

    PubMed

    Schroeder, Hélène; Daix, Virginie; Gillet, Laurent; Renauld, Jean-Christophe; Vanderplasschen, Alain

    2007-02-01

    Several observations suggest that inhibition of the host complement alternative pathway by Ixodes tick saliva is crucial to achieve blood feeding. We recently described two paralogous anti-complement proteins called Ixodes ricinus anti-complement (IRAC) proteins I and II co-expressed in I. ricinus salivary glands. Phylogenetic analyses suggested that these sequences were diversifying by a process of positive Darwinian selection, possibly leading to molecules with different biological properties. In the present study, we tested the hypothesis that each paralogue may have different inhibitory activities against the complement of different natural host species, thereby contributing to broaden the host range of I. ricinus ticks. IRAC I and IRAC II were tested against the complement of eight I. ricinus natural host species (six mammals and two birds). The results demonstrate that IRAC I and IRAC II have broad and complementary inhibition activities against the complement of different host species. This report is the first description of paralogous anti-complement molecules encoded by a pathogen with broad and complementary inhibitory activities against the complement of different host species.

  12. Cell culture model that mimics drusen formation and triggers complement activation associated with age-related macular degeneration.

    PubMed

    Johnson, Lincoln V; Forest, David L; Banna, Christopher D; Radeke, Carolyn M; Maloney, Michelle A; Hu, Jane; Spencer, Christine N; Walker, Aimee M; Tsie, Marlene S; Bok, Dean; Radeke, Monte J; Anderson, Don H

    2011-11-08

    We introduce a human retinal pigmented epithelial (RPE) cell-culture model that mimics several key aspects of early stage age-related macular degeneration (AMD). These include accumulation of sub-RPE deposits that contain molecular constituents of human drusen, and activation of complement leading to formation of deposit-associated terminal complement complexes. Abundant sub-RPE deposits that are rich in apolipoprotein E (APOE), a prominent drusen constituent, are formed by RPE cells grown on porous supports. Exposure to human serum results in selective, deposit-associated accumulation of additional known drusen components, including vitronectin, clusterin, and serum amyloid P, thus suggesting that specific protein-protein interactions contribute to the accretion of plasma proteins during drusen formation. Serum exposure also leads to complement activation, as evidenced by the generation of C5b-9 immunoreactive terminal complement complexes in association with APOE-containing deposits. Ultrastructural analyses reveal two morphologically distinct forms of deposits: One consisting of membrane-bounded multivesicular material, and the other of nonmembrane-bounded particle conglomerates. Collectively, these results suggest that drusen formation involves the accumulation of sub-RPE material rich in APOE, a prominent biosynthetic product of the RPE, which interacts with a select group of drusen-associated plasma proteins. Activation of the complement cascade appears to be mediated via the classical pathway by the binding of C1q to ligands in APOE-rich deposits, triggering direct activation of complement by C1q, deposition of terminal complement complexes and inflammatory sequelae. This model system will facilitate the analysis of molecular and cellular aspects of AMD pathogenesis, and the testing of new therapeutic agents for its treatment.

  13. Cell culture model that mimics drusen formation and triggers complement activation associated with age-related macular degeneration

    PubMed Central

    Johnson, Lincoln V.; Forest, David L.; Banna, Christopher D.; Radeke, Carolyn M.; Maloney, Michelle A.; Hu, Jane; Spencer, Christine N.; Walker, Aimee M.; Tsie, Marlene S.; Bok, Dean; Radeke, Monte J.; Anderson, Don H.

    2011-01-01

    We introduce a human retinal pigmented epithelial (RPE) cell-culture model that mimics several key aspects of early stage age-related macular degeneration (AMD). These include accumulation of sub-RPE deposits that contain molecular constituents of human drusen, and activation of complement leading to formation of deposit-associated terminal complement complexes. Abundant sub-RPE deposits that are rich in apolipoprotein E (APOE), a prominent drusen constituent, are formed by RPE cells grown on porous supports. Exposure to human serum results in selective, deposit-associated accumulation of additional known drusen components, including vitronectin, clusterin, and serum amyloid P, thus suggesting that specific protein–protein interactions contribute to the accretion of plasma proteins during drusen formation. Serum exposure also leads to complement activation, as evidenced by the generation of C5b-9 immunoreactive terminal complement complexes in association with APOE-containing deposits. Ultrastructural analyses reveal two morphologically distinct forms of deposits: One consisting of membrane-bounded multivescicular material, and the other of nonmembrane-bounded particle conglomerates. Collectively, these results suggest that drusen formation involves the accumulation of sub-RPE material rich in APOE, a prominent biosynthetic product of the RPE, which interacts with a select group of drusen-associated plasma proteins. Activation of the complement cascade appears to be mediated via the classical pathway by the binding of C1q to ligands in APOE-rich deposits, triggering direct activation of complement by C1q, deposition of terminal complement complexes and inflammatory sequelae. This model system will facilitate the analysis of molecular and cellular aspects of AMD pathogenesis, and the testing of new therapeutic agents for its treatment. PMID:21969589

  14. Immune complement activation on polystyrene and silicon dioxide surfaces. Impact of reversible IgG adsorption.

    PubMed

    Sellborn, Anders; Andersson, Marcus; Hedlund, Julia; Andersson, Jonas; Berglin, Mattias; Elwing, Hans

    2005-03-01

    We have studied aspects of the molecular background to immune complement activation on solid surfaces. Quartz crystal microbalance with dissipation monitoring (QCM-D) sensor surfaces were modified by means of spin coating with polystyrene (PS) or sputtering of silicon dioxide (SiO2). The IC activation on modified QCM-D surfaces was investigated by incubation in serum, followed by determinations of the amounts of bound C3 fragments (C3c) at the surface. Determinations of soluble C3a and soluble C5b-9 complex (sC5b-9) were made with enzyme immunoassay (EIA) method. We found that IC activation was high on PS surfaces, independent of the method used for measurements. On the SiO2 surfaces, IC activation was generally lower, but still detectable with anti-C3c as well as sC5b-9 and C3a determinations. Pre-coating the surfaces with a layer of IgG resulted in that IC activation became very high on PS surface, while the IC response remained low on SiO2 surfaces. The lower level of IC activation on the SiO2 surfaces was explained by a low surface concentration of IgG as measured with QCM-D. This was a result of the high reversibility of the IgG protein adsorption as well as absence of sufficient conformational changes of adsorbed IgG molecules. The QCM-D method was as sensitive as the C3a and sC5b-9 determinations to reveal surface associated IC-activation on these model surfaces. Additional advantages of the QCM-D method are the broad dynamic measurement window, i.e. the high precision and the ability to perform time resolved measurements and the ease of making different surface modifications.

  15. Near-planar Solution Structures of Mannose-binding Lectin Oligomers Provide Insight on Activation of Lectin Pathway of Complement

    PubMed Central

    Miller, Ami; Phillips, Anna; Gor, Jayesh; Wallis, Russell; Perkins, Stephen J.

    2012-01-01

    The complement system is a fundamental component of innate immunity that orchestrates complex immunological and inflammatory processes. Complement comprises over 30 proteins that eliminate invading microorganisms while maintaining host cell integrity. Protein-carbohydrate interactions play critical roles in both the activation and regulation of complement. Mannose-binding lectin (MBL) activates the lectin pathway of complement via the recognition of sugar arrays on pathogenic surfaces. To determine the solution structure of MBL, synchrotron x-ray scattering and analytical ultracentrifugation experiments showed that the carbohydrate-recognition domains in the MBL dimer, trimer, and tetramer are positioned close to each other in near-planar fan-like structures. These data were subjected to constrained modeling fits. A bent structure for the MBL monomer was identified starting from two crystal structures for its carbohydrate-recognition domain and its triple helical region. The MBL monomer structure was used to identify 10–12 near-planar solution structures for each of the MBL dimers, trimers, and tetramers starting from 900 to 6,859 randomized structures for each. These near-planar fan-like solution structures joined at an N-terminal hub clarified how the carbohydrate-recognition domain of MBL binds to pathogenic surfaces. They also provided insight on how MBL presents a structural template for the binding and auto-activation of the MBL-associated serine proteases to initiate the lectin pathway of complement activation. PMID:22167201

  16. Complement activation by sulfonated poly(ethylene glycol)-acrylate copolymers through alternative pathway.

    PubMed

    Jang, Hong Seok; Ryu, Kyu Eun; Ahn, Woong Shick; Chun, Heung Jae; Dal Park, Hyung; Park, Ki Dong; Kim, Young Ha

    2006-07-01

    Previously, novel poly(ethylene glycol) (PEG) and sulfonated PEG acrylate (PEG-SO(3)A/OA) copolymers were prepared as coating and/or blending materials for biomedical applications. Surfaces modified with copolymers exhibited increased anti-coagulation properties and decreased plasma adsorption level due to increased hydrophilic properties and reorientation characteristics of PEG/PEG-SO(3)A chains in water phase. As continuation study, anti-complement effects of PEG-SO(3)/OA copolymers were investigated in vitro, and compared with those of low-density polyethylene (LDPE) and PEG/OA. C3 activation by PEG-SO(3)/OA samples was lower than that by PEG/OA samples, which was attributed to decreased surface nucleophile level of samples. PEG-SO(3)/OA samples increased inhibition of Bb production, resulting in decreased C5 activation. Owing to reduced activations of C3 and C5, PEG-SO(3)/OA samples markedly decreased SC5b-9 levels in plasma.

  17. C4B gene influences intestinal microbiota through complement activation in patients with Pediatric-Onset Inflammatory Bowel Disease.

    PubMed

    Nissilä, Eija; Korpela, Katri; Lokki, A Inkeri; Paakkanen, Riitta; Jokiranta, Sakari; de Vos, Willem; Lokki, Marja-Liisa; Kolho, Kaija-Leena; Meri, Seppo

    2017-08-23

    Complement C4 genes are linked to pediatric inflammatory bowel disease (PIBD), but the mechanisms have remained unclear. We examined the influence of C4B gene number on intestinal microbiota and in vitro serum complement activation by intestinal microbes in PIBD patients. Complement C4A and C4B gene numbers were determined by genomic RT-PCR from 64 patients with PIBD (Crohn's disease or ulcerative colitis). The severity of the disease course was determined from fecal calprotectin levels. Intestinal microbiota was assessed using the HITChip microarray. Complement reactivity in patients was analyzed by incubating their sera with Yersinia pseudotuberculosis and Akkermansia muciniphila and determining the levels of C3a and SC5b-9 using enzyme immunoassays. The microbiota diversity was wider in patients with no C4B genes than in those with 1 or 2 C4B genes, irrespective of intestinal inflammation. C4B and total C4 gene numbers correlated positively with soluble terminal complement complex (TCC, SC5b-9) levels, when patient serum samples were stimulated with bacteria. Our results suggest that the C4B gene number associates positively to inflammation in patients with PIBD. Multiple copies of the C4B gene may thus aggravate the IBD-associated dysbiosis through escalated complement reactivity towards the microbiota. (Word count 191/250) This article is protected by copyright. All rights reserved. © 2017 British Society for Immunology.

  18. The natural, peptaibolic peptide SPF-5506-A4 adopts a β-bend spiral structure, shows low hemolytic activity and targets membranes through formation of large pores.

    PubMed

    Christoffersen, Heidi F; Hansen, Sara K; Vad, Brian S; Nielsen, Erik H; Nielsen, Jakob T; Vosegaard, Thomas; Skrydstrup, Troels; Otzen, Daniel E

    2015-08-01

    The medium-length fungal peptaibol SPF-5506-A(4) has been shown to inhibit formation of the Aβ peptide involved in Alzheimer''s disease. As Aβ is a cleavage-product from the membrane-bound APP protein, we hypothesized that SPF-5506-A(4)'s activity might be linked to membrane interactions in general. Here we describe the synthesis, structure and membrane interactions of SPF-5506-A4. The challenging synthesis was carried out on solid phase and a detailed conformational analysis in solution revealed a β-bend ribbon spiral core structure with flexible termini. Investigations of its membrane activity revealed low hemolytic activity, limited inhibition of both Gram-positive and Gram-negative cell growth and a preference for an overall negatively charged membrane surface mimicking the bacterial cell surface. SPF-5506-A(4) is the first peptaibol to be shown to facilitate leakage of large (4.6 nm diameter) fluorescence-labeled dextran from vesicles while leaving the vesicles intact. We conclude that SPF-5506-A(4) follows the toroidal pore model in its mode of action. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Uncoupling complement C1s activation from C1q binding in apoptotic cell phagocytosis and immunosuppressive capacity.

    PubMed

    Colonna, Lucrezia; Parry, Graham C; Panicker, Sandip; Elkon, Keith B

    2016-02-01

    Complement activation contributes to inflammation in many diseases, yet it also supports physiologic apoptotic cells (AC) clearance and its downstream immunosuppressive effects. The roles of individual complement components in AC phagocytosis have been difficult to dissect with artificially depleted sera. Using human in vitro systems and the novel antibody complement C1s inhibitor TNT003, we uncoupled the role of the enzymatic activation of the classical pathway from the opsonizing role of C1q in mediating a) the phagocytosis of early and late AC, and b) the immunosuppressive capacity of early AC. We found that C1s inhibition had a small impact on the physiologic clearance of early AC, leaving their immunosuppressive properties entirely unaffected, while mainly inhibiting the phagocytosis of late apoptotic/secondary necrotic cells. Our data suggest that C1s inhibition may represent a valuable therapeutic strategy to control classical pathway activation without causing significant AC accumulation in diseases without defects in AC phagocytosis.

  20. Serum amyloid P component bound to gram-negative bacteria prevents lipopolysaccharide-mediated classical pathway complement activation.

    PubMed

    de Haas, C J; van Leeuwen, E M; van Bommel, T; Verhoef, J; van Kessel, K P; van Strijp, J A

    2000-04-01

    Although serum amyloid P component (SAP) is known to bind many ligands, its biological function is not yet clear. Recently, it was demonstrated that SAP binds to lipopolysaccharide (LPS). In the present study, SAP was shown to bind to gram-negative bacteria expressing short types of LPS or lipo-oligosaccharide (LOS), such as Salmonella enterica serovar Copenhagen Re and Escherichia coli J5, and also to clinical isolates of Haemophilus influenzae. It was hypothesized that SAP binds to the bacteria via the lipid A part of LPS or LOS, since the htrB mutant of the nontypeable H. influenzae strain NTHi 2019-B29-3, which expresses a nonacetylated lipid A, did not bind SAP. This was in contrast to the parental strain NTHi 2019. The binding of SAP resulted in a clear inhibition of the deposition of complement component C3 on the bacteria. SAP inhibited only the activation of the classical complement pathway; the alternative route remained unaffected. In the classical route, SAP prevented the deposition of the first complement component, Clq, probably by interfering with the binding of Clq to LPS. Since antibody-mediated Clq activation was not inhibited by SAP, SAP seems to inhibit only the LPS-induced classical complement pathway activation. The SAP-induced inhibition of C3 deposition strongly diminished the complement-mediated lysis as well as the phagocytosis of the bacteria. The binding of SAP to gram-negative bacteria, therefore, might influence the pathophysiology of an infection with such bacteria.

  1. Complement haemolytic activity (classical and alternative pathways), C3, C4 and factor B titres in healthy children.

    PubMed

    Ferriani, V P; Barbosa, J E; de Carvalho, I F

    1999-10-01

    Values of complement lytic activity of classical and alternative pathways, assessed by measuring the time required to lyse 50% of target red blood cells, and the concentration of complement components C3, C4 and factor B were estimated in the sera of 103 healthy children aged 3 to 14 y. Age-dependent variations were seen in the C3 and factor B concentrations, but not in C4, with the highest values found among 5-6-y-old children. Variations in classical and alternative lytic activity were not detected in this group of children, although the values are significantly different from our previously published data on adults, using the same kinetic assay (1). We also evaluated the relationship between the lytic activity of the classical (CPT) and alternative pathways (APT) and the levels of complement components. There were significant correlations between: APT and factor B, APT and C3, C3 and C4, C3 and factor B, and C4 and factor B concentrations. The normal ranges measured here can be used in the initial screening of Brazilian children presenting diseases involving the complement system. This study also contributes to a better understanding of the complement system ontogeny.

  2. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1

    PubMed Central

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-01-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK–HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated. PMID:27451975

  3. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1.

    PubMed

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-02-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK-HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated.

  4. MASP-1 of the complement system promotes clotting via prothrombin activation.

    PubMed

    Jenny, Lorenz; Dobó, József; Gál, Péter; Schroeder, Verena

    2015-06-01

    Mannan-binding lectin-associated serine protease-1 (MASP-1), a protein of the complement lectin pathway, resembles thrombin in terms of structural features and substrate specificity, and it has been shown to activate coagulation factors. Here we studied the effects of MASP-1 on clot formation in whole blood (WB) and platelet-poor plasma (PPP) by thrombelastography and further elucidated the underlying mechanism. Cleavage of prothrombin by MASP-1 was investigated by SDS-PAGE and N-terminal sequencing of cleavage products. Addition of MASP-1 or thrombin to WB and PPP shortened the clotting time and clot formation time significantly compared to recalcified-only samples. The combination of MASP-1 and thrombin had additive effects. In a purified system, MASP-1 was able to induce clotting only in presence of prothrombin. Analysis of MASP-1-digested prothrombin confirmed that MASP-1 cleaves prothrombin at three cleavage sites. In conclusion, we have shown that MASP-1 is able to induce and promote clot formation measured in a global setting using the technique of thrombelastography. We further confirmed that MASP-1-induced clotting is dependent on prothrombin. Finally, we have demonstrated that MASP-1 cleaves prothrombin and identified its cleavage sites, suggesting that MASP-1 gives rise to an alternative active form of thrombin by cleaving at the cleavage site R393. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Mutations in Complement Factor H Impair Alternative Pathway Regulation on Mouse Glomerular Endothelial Cells in Vitro.

    PubMed

    Loeven, Markus A; Rops, Angelique L; Lehtinen, Markus J; van Kuppevelt, Toin H; Daha, Mohamed R; Smith, Richard J; Bakker, Marinka; Berden, Jo H; Rabelink, Ton J; Jokiranta, T Sakari; van der Vlag, Johan

    2016-03-04

    Complement factor H (FH) inhibits complement activation and interacts with glomerular endothelium via its complement control protein domains 19 and 20, which also recognize heparan sulfate (HS). Abnormalities in FH are associated with the renal diseases atypical hemolytic uremic syndrome and dense deposit disease and the ocular disease age-related macular degeneration. Although FH systemically controls complement activation, clinical phenotypes selectively manifest in kidneys and eyes, suggesting the presence of tissue-specific determinants of disease development. Recent results imply the importance of tissue-specifically expressed, sulfated glycosaminoglycans (GAGs), like HS, in determining FH binding to and activity on host tissues. Therefore, we investigated which GAGs mediate human FH and recombinant human FH complement control proteins domains 19 and 20 (FH19-20) binding to mouse glomerular endothelial cells (mGEnCs) in ELISA. Furthermore, we evaluated the functional defects of FH19-20 mutants during complement activation by measuring C3b deposition on mGEnCs using flow cytometry. FH and FH19-20 bound dose-dependently to mGEnCs and TNF-α treatment increased binding of both proteins, whereas heparinase digestion and competition with heparin/HS inhibited binding. Furthermore, 2-O-, and 6-O-, but not N-desulfation of heparin, significantly increased the inhibitory effect on FH19-20 binding to mGEnCs. Compared with wild type FH19-20, atypical hemolytic uremic syndrome-associated mutants were less able to compete with FH in normal human serum during complement activation on mGEnCs, confirming their potential glomerular pathogenicity. In conclusion, our study shows that FH and FH19-20 binding to glomerular endothelial cells is differentially mediated by HS but not other GAGs. Furthermore, we describe a novel, patient serum-independent competition assay for pathogenicity screening of FH19-20 mutants. © 2016 by The American Society for Biochemistry and Molecular

  6. Mutations in Complement Factor H Impair Alternative Pathway Regulation on Mouse Glomerular Endothelial Cells in Vitro*

    PubMed Central

    Loeven, Markus A.; Rops, Angelique L.; Lehtinen, Markus J.; van Kuppevelt, Toin H.; Daha, Mohamed R.; Smith, Richard J.; Bakker, Marinka; Berden, Jo H.; Rabelink, Ton J.; Jokiranta, T. Sakari; van der Vlag, Johan

    2016-01-01

    Complement factor H (FH) inhibits complement activation and interacts with glomerular endothelium via its complement control protein domains 19 and 20, which also recognize heparan sulfate (HS). Abnormalities in FH are associated with the renal diseases atypical hemolytic uremic syndrome and dense deposit disease and the ocular disease age-related macular degeneration. Although FH systemically controls complement activation, clinical phenotypes selectively manifest in kidneys and eyes, suggesting the presence of tissue-specific determinants of disease development. Recent results imply the importance of tissue-specifically expressed, sulfated glycosaminoglycans (GAGs), like HS, in determining FH binding to and activity on host tissues. Therefore, we investigated which GAGs mediate human FH and recombinant human FH complement control proteins domains 19 and 20 (FH19–20) binding to mouse glomerular endothelial cells (mGEnCs) in ELISA. Furthermore, we evaluated the functional defects of FH19–20 mutants during complement activation by measuring C3b deposition on mGEnCs using flow cytometry. FH and FH19–20 bound dose-dependently to mGEnCs and TNF-α treatment increased binding of both proteins, whereas heparinase digestion and competition with heparin/HS inhibited binding. Furthermore, 2-O-, and 6-O-, but not N-desulfation of heparin, significantly increased the inhibitory effect on FH19–20 binding to mGEnCs. Compared with wild type FH19–20, atypical hemolytic uremic syndrome-associated mutants were less able to compete with FH in normal human serum during complement activation on mGEnCs, confirming their potential glomerular pathogenicity. In conclusion, our study shows that FH and FH19–20 binding to glomerular endothelial cells is differentially mediated by HS but not other GAGs. Furthermore, we describe a novel, patient serum-independent competition assay for pathogenicity screening of FH19–20 mutants. PMID:26728463

  7. Mechanisms of action of (meth)acrylates in hemolytic activity, in vivo toxicity and dipalmitoylphosphatidylcholine (DPPC) liposomes determined using NMR spectroscopy.

    PubMed

    Fujisawa, Seiichiro; Kadoma, Yoshinori

    2012-01-01

    We investigated the quantitative structure-activity relationships between hemolytic activity (log 1/H(50)) or in vivo mouse intraperitoneal (ip) LD(50) using reported data for α,β-unsaturated carbonyl compounds such as (meth)acrylate monomers and their (13)C-NMR β-carbon chemical shift (δ). The log 1/H(50) value for methacrylates was linearly correlated with the δC(β) value. That for (meth)acrylates was linearly correlated with log P, an index of lipophilicity. The ipLD(50) for (meth)acrylates was linearly correlated with δC(β) but not with log P. For (meth)acrylates, the δC(β) value, which is dependent on the π-electron density on the β-carbon, was linearly correlated with PM3-based theoretical parameters (chemical hardness, η; electronegativity, χ; electrophilicity, ω), whereas log P was linearly correlated with heat of formation (HF). Also, the interaction between (meth)acrylates and DPPC liposomes in cell membrane molecular models was investigated using (1)H-NMR spectroscopy and differential scanning calorimetry (DSC). The log 1/H(50) value was related to the difference in chemical shift (ΔδHa) (Ha: H (trans) attached to the β-carbon) between the free monomer and the DPPC liposome-bound monomer. Monomer-induced DSC phase transition properties were related to HF for monomers. NMR chemical shifts may represent a valuable parameter for investigating the biological mechanisms of action of (meth)acrylates.

  8. Nebulized C1-Esterase Inhibitor does not Reduce Pulmonary Complement Activation in Rats with Severe Streptococcus Pneumoniae Pneumonia.

    PubMed

    de Beer, Friso; Lagrand, Wim; Glas, Gerie J; Beurskens, Charlotte J P; van Mierlo, Gerard; Wouters, Diana; Zeerleder, Sacha; Roelofs, Joris J T H; Juffermans, Nicole P; Horn, Janneke; Schultz, Marcus J

    2016-12-01

    Complement activation plays an important role in the pathogenesis of pneumonia. We hypothesized that inhibition of the complement system in the lungs by repeated treatment with nebulized plasma-derived human C1-esterase inhibitor reduces pulmonary complement activation and subsequently attenuates lung injury and lung inflammation. This was investigated in a rat model of severe Streptococcus pneumoniae pneumonia. Rats were intra-tracheally challenged with S. pneumoniae to induce pneumonia. Nebulized C1-esterase inhibitor or saline (control animals) was repeatedly administered to rats, 30 min before induction of pneumonia and every 6 h thereafter. Rats were sacrificed 20 or 40 h after inoculation with bacteria. Brochoalveolar lavage fluid and lung tissue were obtained for measuring levels of complement activation (C4b/c), lung injury and inflammation. Induction of pneumonia was associated with pulmonary complement activation (C4b/c at 20 h 1.24 % [0.56-2.59] and at 40 h 2.08 % [0.98-5.12], compared to 0.50 % [0.07-0.59] and 0.03 % [0.03-0.03] in the healthy control animals). The functional fraction of C1-INH was detectable in BALF, but no effect was found on pulmonary complement activation (C4b/c at 20 h 0.73 % [0.16-1.93] and at 40 h 2.38 % [0.54-4.19]). Twenty hours after inoculation, nebulized C1-esterase inhibitor treatment reduced total histology score, but this effect was no longer seen at 40 h. Nebulized C1-esterase inhibitor did not affect other markers of lung injury or lung inflammation. In this negative experimental animal study, severe S. pneumoniae pneumonia in rats is associated with pulmonary complement activation. Repeated treatment with nebulized C1-esterase inhibitor, although successfully delivered to the lungs, does not affect pulmonary complement activation, lung inflammation or lung injury.

  9. Hemagglutinating/Hemolytic activities in extracts of marine invertebrates from the Brazilian coast and isolation of two lectins from the marine sponge Cliona varians and the sea cucumber Holothuria grisea.

    PubMed

    Moura, Raniere M; Melo, Arthur A; Carneiro, Rômulo F; Rodrigues, Cícera R F; Delatorre, Plínio; Nascimento, Kyria S; Saker-Sampaio, Silvana; Nagano, Celso S; Cavada, Benildo S; Sampaio, Alexandre H

    2015-01-01

    Twenty species of marine invertebrates from the Brazilian coast were screened for hemagglutinating/hemolytic activity. In at least twelve tested species, hemagglutinating activity was different for different blood types, suggesting the presence of lectins. Extracts from four species showed hemolytic activity. Two new lectins were purified from the marine sponge Cliona varians (CvL-2) and sea cucumber Holothuria grisea (HGL). CvL-2 was able to agglutinate rabbit erythrocytes and was inhibited by galactosides. The hemagglutinating activity was optimal in pH neutral and temperatures below 70 °C. CvL-2 is a trimeric protein with subunits of 175 kDa. On the other hand, HGL showed both hemagglutinating and hemolytic activity in human and rabbit erythrocytes, but hemolysis could be inhibited by osmotic protection, and agglutination was inhibited by mucin. HGL was stable in pH values ranging from 4 to 10 and temperatures up to 90 °C. In electrophoresis and gel filtration, HGL was a monomeric protein with 15 kDa. CvL-2 and HGL showed different levels of toxicity to Artemia naplii. CvL-2 showed LC50 of 850.1 μg/mL, whereas HGL showed LC50 of 9.5 µg/mL.

  10. The profile of adsorbed plasma and serum proteins on methacrylic acid copolymer beads: Effect on complement activation.

    PubMed

    Wells, Laura A; Guo, Hongbo; Emili, Andrew; Sefton, Michael V

    2017-02-01

    Polymer beads made of 45% methacrylic acid co methyl methacrylate (MAA beads) promote vascular regenerative responses in contrast to control materials without methacrylic acid (here polymethyl methacrylate beads, PMMA). In vitro and in vivo studies suggest that MAA copolymers induce differences in macrophage phenotype and polarization and inflammatory responses, presumably due to protein adsorption differences between the beads. To explore differences in protein adsorption in an unbiased manner, we used high resolution shotgun mass spectrometry to identify and compare proteins that adsorb from human plasma or serum onto MAA and PMMA beads. From plasma, MAA beads adsorbed many complement proteins, such as C1q, C4-related proteins and the complement inhibitor factor H, while PMMA adsorbed proteins, such as albumin, C3 and apolipoproteins. Because of the differences in complement protein adsorption, follow-up studies focused on using ELISA to assess complement activation. When incubated in serum, MAA beads generated significantly lower levels of soluble C5b9 and C3a/C3adesarg in comparison to PMMA beads, indicating a decrease in complement activation with MAA beads. The differences in adsorbed protein on the two materials likely alter subsequent cell-material interactions that ultimately result in different host responses and local vascularization.

  11. Bovine intra-mammary challenge with Streptococcus dysgalactiae spp. Dysgalactiae to explore the effect on the response of Complement activity.

    PubMed

    Maye, Susan; Flynn, James; Stanton, Catherine; Fitzgerald, Gerald F; Kelly, Philip M

    2017-08-01

    Recently published work as described by the authors highlighted the extent of Complement activity in bovine milk. Localised mastitis infection occurring in the mammary glands of dairy cows is readily detectable by the levels of somatic cells in milk. Thus, it is opportune to monitor Complement activity in milks in association with the animal's innate immune response to mammary infection. Preliminary screening of milk samples taken randomly showed that milk with a high somatic cell count (SCC) reduced growth of the Complement-sensitive strain E. coli O111 to a greater extent (P < 0·05) than when the marker microorganism was grown in milk heated for the purpose of inactivating Complement. A follow-up study set out to determine the effect on Complement activity when a sub-clinical mastitis infection was induced in the mammary gland of four lactating dairy cows. The effect of Str. dysgalactiae spp. dysgalactiae inoculation into selected individual udder quarters of the mammary glands of each animal was followed by monitoring of SCC levels in the milks from the segregated udder samples during subsequent milking. At 72 and 96 h post inoculation (PI), the SCCs for the challenged quarter were increased compared to normal values. At the same time, the bactericidal sequestration assay identified increased E. coli O111 inhibition that can be directly linked to greater Complement activity in those quarter milks affected by induced inflammation. Thus, it can be identified that the high SCC milks were more effective in limiting E. coli O111 growth. Milks from the unchallenged quarters in all four cows were significantly less effective at reducing growth of the assay strain (P < 0·05). An ELISA assay targeting specific activation components of the Complement pathways confirmed that greater bacterial inhibition observed during the bactericidal sequestration assay was attributable to higher Complement activity in the milk samples from the affected quarters, i.e., with higher SCC

  12. Improved purification and enzymatic properties of a mixture of Sticholysin I and II: isotoxins with hemolytic and phospholipase A(2) activities from the sea anemone Stichodactyla helianthus.

    PubMed

    del Monte-Martínez, Alberto; González-Bacerio, Jorge; Romero, Lázara; Aragón, Carlos; Martínez, Diana; de Los Á Chávez, María; Álvarez, Carlos; Lanio, María E; Guisán, José M; Díaz, Joaquín

    2014-03-01

    Sticholysin I and Sticholysin II (StI and StII) are two potent hemolysins which form pores in natural and model membranes at nanomolar concentrations. These proteins were purified from the aqueous extract of the sea anemone Stichodactyla helianthus, Ellis 1768, by gel filtration and ionic exchange chromatography. This procedure rendered StI and StII with high purity (purification factors: 36 and 50, respectively) but a low yield of hemolytic activity, HA (<3%). Additionally, these toxins exhibited very low phospholipase activity (10(-3)U/mg of protein). In this work, a mixture StI-StII was obtained (yield >95%, with an increase in specific activity: 14 times) from the animal extract using an oxidized phospholipid-based affinity chromatographic matrix binding phospholipases. Cytolysin identification in the mixture was performed by immunoblotting and N-terminal sequence analyses. Phospholipase A2 (PLA2) activity of StI-StII was relatively high (1.85U/mg) and dependent of Ca(2+). The activity resulted optimum when was measured with the mostly unsaturated soybean phosphatidylcholine (PC), when compared to the less unsaturated egg PC or completely saturated dipalmitoyl PC, in the presence of 40mM Ca(2+) at pH 8.0. This Ca(2+) concentration did not exert any effect on binding of StI-StII with soybean PC monolayers. Then, PLA2 activity seems not be required to binding to membranes. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. A Revised Mechanism for the Activation of Complement C3 to C3b

    PubMed Central

    Rodriguez, Elizabeth; Nan, Ruodan; Li, Keying; Gor, Jayesh; Perkins, Stephen J.

    2015-01-01

    The solution structure of complement C3b is crucial for the understanding of complement activation and regulation. C3b is generated by the removal of C3a from C3. Hydrolysis of the C3 thioester produces C3u, an analog of C3b. C3b cleavage results in C3c and C3d (thioester-containing domain; TED). To resolve functional questions in relation to C3b and C3u, analytical ultracentrifugation and x-ray and neutron scattering studies were used with C3, C3b, C3u, C3c, and C3d, using the wild-type allotype with Arg102. In 50 mm NaCl buffer, atomistic scattering modeling showed that both C3b and C3u adopted a compact structure, similar to the C3b crystal structure in which its TED and macroglobulin 1 (MG1) domains were connected through the Arg102–Glu1032 salt bridge. In physiological 137 mm NaCl, scattering modeling showed that C3b and C3u were both extended in structure, with the TED and MG1 domains now separated by up to 6 nm. The importance of the Arg102–Glu1032 salt bridge was determined using surface plasmon resonance to monitor the binding of wild-type C3d(E1032) and mutant C3d(A1032) to immobilized C3c. The mutant did not bind, whereas the wild-type form did. The high conformational variability of TED in C3b in physiological buffer showed that C3b is more reactive than previously thought. Because the Arg102-Glu1032 salt bridge is essential for the C3b-Factor H complex during the regulatory control of C3b, the known clinical associations of the major C3S (Arg102) and disease-linked C3F (Gly102) allotypes of C3b were experimentally explained for the first time. PMID:25488663

  14. Myeloperoxidase reduces the opsonizing activity of immunoglobulin G and complement component C3b.

    PubMed

    Coble, B I; Dahlgren, C; Hed, J; Stendahl, O

    1984-12-20

    The effect of myeloperoxidase, hydrogen peroxide (H2O2) and a halide (Cl) on the opsonizing molecules in immunoglobulin G (IgG) and complement factor C3b was assayed. At concentrations of the enzyme (1 microgram/ml) that can be found in the extracellular fluid during inflammation, the myeloperoxidase-H2O2-Cl system inhibited the opsonizing effect of IgG and C3b measured as phagocytic uptake and superoxide generation. The effect was related to the enzymatic peroxidative activity of the protein. The presence of albumin (10 mg/ml) reduced the effect of myeloperoxidase with 10-20%. Taurine, which in the presence of myeloperoxidase-H2O2-Cl forms hydrophilic chloramines, and D-penicillamine, which scavenges HOCl, neutralize the inhibitory effect of myeloperoxidase. This suggests that either hypochlorous acid or lipophilic chloramines may exert its effect by oxidizing free sulphydryl groups exposed on the opsonizing ligands. Since the myeloperoxidase-H2O2-halide system also affects chemotactic factors, leukotrienes, proteinases and membrane receptors, the system may in several ways affect the development of the inflammatory response.

  15. Activity Recognition Using Community Data to Complement Small Amounts of Labeled Instances †

    PubMed Central

    Garcia-Ceja, Enrique; Brena, Ramon F.

    2016-01-01

    Human Activity Recognition (HAR) is an important part of ambient intelligence systems since it can provide user-context information, thus allowing a greater personalization of services. One of the problems with HAR systems is that the labeling process for the training data is costly, which has hindered its practical application. A common approach is to train a general model with the aggregated data from all users. The problem is that for a new target user, this model can perform poorly because it is biased towards the majority type of users and does not take into account the particular characteristics of the target user. To overcome this limitation, a user-dependent model can be trained with data only from the target user that will be optimal for this particular user; however, this requires a considerable amount of labeled data, which is cumbersome to obtain. In this work, we propose a method to build a personalized model for a given target user that does not require large amounts of labeled data. Our method uses data already labeled by a community of users to complement the scarce labeled data of the target user. Our results showed that the personalized model outperformed the general and the user-dependent models when labeled data is scarce. PMID:27314355

  16. Oral Vaccination with Heat Inactivated Mycobacterium bovis Activates the Complement System to Protect against Tuberculosis

    PubMed Central

    Garrido, Joseba M.; Aranaz, Alicia; Sevilla, Iker; Villar, Margarita; Boadella, Mariana; Galindo, Ruth C.; Pérez de la Lastra, José M.; Moreno-Cid, Juan A.; Fernández de Mera, Isabel G.; Alberdi, Pilar; Santos, Gracia; Ballesteros, Cristina; Lyashchenko, Konstantin P.; Minguijón, Esmeralda; Romero, Beatriz; de Juan, Lucía; Domínguez, Lucas; Juste, Ramón; Gortazar, Christian

    2014-01-01

    Tuberculosis (TB) remains a pandemic affecting billions of people worldwide, thus stressing the need for new vaccines. Defining the correlates of vaccine protection is essential to achieve this goal. In this study, we used the wild boar model for mycobacterial infection and TB to characterize the protective mechanisms elicited by a new heat inactivated Mycobacterium bovis vaccine (IV). Oral vaccination with the IV resulted in significantly lower culture and lesion scores, particularly in the thorax, suggesting that the IV might provide a novel vaccine for TB control with special impact on the prevention of pulmonary disease, which is one of the limitations of current vaccines. Oral vaccination with the IV induced an adaptive antibody response and activation of the innate immune response including the complement component C3 and inflammasome. Mycobacterial DNA/RNA was not involved in inflammasome activation but increased C3 production by a still unknown mechanism. The results also suggested a protective mechanism mediated by the activation of IFN-γ producing CD8+ T cells by MHC I antigen presenting dendritic cells (DCs) in response to vaccination with the IV, without a clear role for Th1 CD4+ T cells. These results support a role for DCs in triggering the immune response to the IV through a mechanism similar to the phagocyte response to PAMPs with a central role for C3 in protection against mycobacterial infection. Higher C3 levels may allow increased opsonophagocytosis and effective bacterial clearance, while interfering with CR3-mediated opsonic and nonopsonic phagocytosis of mycobacteria, a process that could be enhanced by specific antibodies against mycobacterial proteins induced by vaccination with the IV. These results suggest that the IV acts through novel mechanisms to protect against TB in wild boar. PMID:24842853

  17. A Serine Protease Isolated from the Bristles of the Amazonic Caterpillar, Premolis semirufa, Is a Potent Complement System Activator

    PubMed Central

    Villas Boas, Isadora Maria; Pidde-Queiroz, Giselle; Magnoli, Fabio Carlos; Gonçalves-de-Andrade, Rute M.; van den Berg, Carmen W.; Tambourgi, Denise V.

    2015-01-01

    Background The caterpillar of the moth Premolis semirufa, commonly named pararama, is found in the Brazilian Amazon region. Accidental contact with the caterpillar bristles causes an intense itching sensation, followed by symptoms of an acute inflammation, which last for three to seven days after the first incident. After multiple accidents a chronic inflammatory reaction, called “Pararamose”, characterized by articular synovial membrane thickening with joint deformities common to chronic synovitis, frequently occurs. Although complement mediated inflammation may aid the host defense, inappropriate or excessive activation of the complement system and generation of anaphylatoxins can lead to inflammatory disorder and pathologies. The aim of the present study was to evaluate, in vitro, whether the Premolis semirufa’s bristles extract could interfere with the human complement system. Results The bristles extract was able to inhibit the haemolytic activity of the alternative pathway, as well as the activation of the lectin pathway, but had no effect on the classical pathway, and this inhibition seemed to be caused by activation and consumption of complement components. The extract induced the production of significant amounts of all three anaphylatoxins, C3a, C4a and C5a, promoted direct cleavage of C3, C4 and C5 and induced a significant generation of terminal complement complexes in normal human serum. By using molecular exclusion chromatography, a serine protease of 82 kDa, which activates complement, was isolated from P. semirufa bristles extract. The protease, named here as Ps82, reduced the haemolytic activity of the alternative and classical pathways and inhibited the lectin pathway. In addition, Ps82 induced the cleavage of C3, C4 and C5 and the generation of C3a and C4a in normal human serum and it was capable to cleave human purified C5 and generate C5a. The use of Phenanthroline, metalloprotease inhibitor, in the reactions did not significantly

  18. The Local Complement Activation on Vascular Bed of Patients with Systemic Sclerosis: A Hypothesis-Generating Study

    PubMed Central

    Scambi, Cinzia; Ugolini, Sara; Jokiranta, T. Sakari; De Franceschi, Lucia; Bortolami, Oscar; La Verde, Valentina; Guarini, Patrizia; Caramaschi, Paola; Ravagnani, Viviana; Martignoni, Guido; Colato, Chiara; Pedron, Serena; Benedetti, Fabio; Sorio, Marco; Poli, Fabio; Biasi, Domenico

    2015-01-01

    Objective The role of complement system in the pathogenesis of systemic sclerosis (SSc) has been debated during the last decade but an evident implication in this disease has never been found. We carried out an explorative study on SSc patients to evaluate the expression of soluble and local C5b-9 complement complex and its relation with a complement regulator, the Membrane Cofactor Protein (MCP, CD46) on skin vascular bed as target distinctive of SSc disease. We also analyzed two polymorphic variants in the complement activation gene cluster involving the MCP region. Methods C5b-9 plasma levels of SSc patients and healthy subjects were analyzed by ELISA assay. Archival skin biopsies of SSc patients and controls were subjected to immunofluorescence analysis to detect C5b-9 and MCP on vascular endothelial cells. The expression of MCP was validated by immunoblot analysis with specific antibody. Polymorphic variants in the MCP gene promoter were tested by a quantitative PCR technique-based allelic discrimination method. Results Even though circulating levels of C5b-9 did not differ between SSc and controls, C5b-9 deposition was detected in skin biopsies of SSc patients but not in healthy subjects. MCP was significantly lower in skin vessels of SSc patients than in healthy controls and was associated with the over-expression of two polymorphic variants in the MCP gene promoter, which has been related to more aggressive phenotypes in other immune-mediated diseases. Conclusions Our results firsty document the local complement activation with an abnormal expression of MCP in skin vessels of SSc patients, suggesting that a subset of SSc patients might be exposed to more severe organ complications and clinical evolution due to abnormal local complement activation. PMID:25658605

  19. Sex differences in body fluid homeostasis: Sex chromosome complement influences on bradycardic baroreflex response and sodium depletion induced neural activity.

    PubMed

    Vivas, L; Dadam, F M; Caeiro, X E

    2015-12-01

    Clinical and basic findings indicate that angiotensin II (ANG II) differentially modulates hydroelectrolyte and cardiovascular responses in male and female. But are only the activational and organizational hormonal effects to blame for such differences? Males and females not only differ in their sex (males are born with testes and females with ovaries) but also carry different sex chromosome complements and are thus influenced throughout life by different genomes. In this review, we discuss our recent studies in order to evaluate whether sex chromosome complement is in part responsible for gender differences previously observed in ANG II bradycardic-baroreflex response and sodium depletion-induced sodium appetite and neural activity. To test the hypothesis that XX or XY contributes to the dimorphic ANG II bradycardic-baroreflex response, we used the four core genotype mouse model, in which the effects of gonadal sex (testes or ovaries) and sex chromosome complement (XX or XY) are dissociated. The results indicate that ANG II bradycardic-baroreflex sexual dimorphic response may be ascribed to differences in sex chromosomes, indicating an XX-sex chromosome complement facilitatory bradycardic-baroreflex control of heart rate. Furthermore, we evaluated whether genetic differences within the sex chromosome complement may differentially modulate the known sexually dimorphic sodium appetite as well as basal or induced brain activity due to physiological stimulation of the renin-angiotensin system by furosemide and low-sodium treatment. Our studies demonstrate an organizational hormonal effect on sexually dimorphic induced sodium intake in mice, while at the brain level (subfornical organ and area postrema) we showed a sex chromosome complement effect in sodium-depleted mice, suggesting a sex chromosome gene participation in the modulation of neural pathways underlying regulatory response to renin-angiotensin stimulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Morula cells as key hemocytes of the lectin pathway of complement activation in the colonial tunicate Botryllus schlosseri.

    PubMed

    Nicola, Franchi; Loriano, Ballarin

    2017-04-01

    The complement system is deeply rooted in the evolution of humoral mechanism of innate immunity. In addition to the alternative pathway of complement activation, lectins and associated serine proteases exert important roles in the recognition of non-self and activation of the effectors. In the colonial tunicate Botryllus schlosseri, we identified, characterized and studied the expression of three orthologues of genes involved in the lectin pathway of complement activation of vertebrates, i.e., genes for a mannose-binding lectin (MBL), a ficolin and a mannose-associated serine protease 1 (MASP1). All the genes are transcribed by hemocytes, and specifically by morula cells, the same immunocytes responsible for the transcription of C3 and Bf orthologues. The transcription levels of MASP1 and ficolin orthologues are not affected by zymosan challenge, indicating a constitutive expression of complement system associated serine proteases, whereas the MBL orthologue is up-regulated after 15 min of zymosan exposure. Collectively, our data suggest the presence of a complete lectin activation pathway in Botryllus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Interaction of complement and leukocytes in severe acute pancreatitis: potential for therapeutic intervention.

    PubMed

    Hartwig, Werner; Klafs, Martina; Kirschfink, Michael; Hackert, Thilo; Schneider, Lutz; Gebhard, Martha-Maria; Büchler, Markus W; Werner, Jens

    2006-11-01

    In acute pancreatitis, local as well as systemic organ complications are mediated by the activation of various inflammatory cascades. The role of complement in this setting is unclear. The aim of the present study was to determine the level of complement activation in experimental pancreatitis, to evaluate the interaction of complement and leukocyte-endothelium activation, and to assess the effects of complement inhibition by soluble complement receptor 1 (sCR1) in this setting. Necrotizing pancreatitis was induced in Wistar rats by the combination of intravenous cerulein and retrograde infusion of glycodeoxycholic acid into the biliopancreatic duct; edematous pancreatitis was induced by intravenous cerulein only. In control animals, a sham operation (midline laparotomy) was performed. Complement activation, leukocyte sequestration, and pancreatic as well as pulmonary injury were assessed in the presence/absence of sCR1. Increased levels of C3a were found in necrotizing but not in edematous pancreatitis. When complement activation in necrotizing pancreatitis was blocked by sCR1, levels of C3a and total hemolytic activity (CH50) were decreased. Leukocyte-endothelial interaction, as assessed by intravital microscopy, and pancreatic as well as pulmonary organ injury (wet-to-dry weight ratio, MPO activity, and histology) were ameliorated by sCR1. As a result of the present study, necrotizing but not edematous pancreatitis is characterized by significant and early complement activation. Based on the interaction of complement and leukocytes, complement inhibition by sCR1 may be a valuable option in the treatment of leukocyte-associated organ injury in severe pancreatitis.

  2. Complement activation by PEGylated single-walled carbon nanotubes is independent of C1q and alternative pathway turnover

    PubMed Central

    Hamad, Islam; Hunter, A. Christy; Rutt, Kenneth J.; Liu, Zhuang; Dai, Hongjie; Moghimi, S. Moein

    2010-01-01

    We have investigated the interaction between long circulating poly(ethylene glycol)-stabilized single-walled carbon nanotubes (SWNTs) and the complement system. Aminopoly(ethylene glycol)5000–distearoylphosphatidylethanolamine (aminoPEG5000–DSPE) and methoxyPEG5000–DSPE coated as-grown HIPco SWNTs activated complement in undiluted normal human serum as reflected in significant rises in C4d and SC5b-9 levels, but not the alternative pathway split-product Bb, thus indicating activation exclusively through C4 cleavage. Studies in C2-depleted serum confirmed that PEGylated nanotube-mediated elevation of SC5b-9 was C4b2a convertase-dependent. With the aid of monoclonal antibodies against C1s and human serum depleted from C1q, nanotube-mediated complement activation in C1q-depleted serum was also shown to be independent of classical pathway. Nanotube-mediated C4d elevation in C1q-depleted serum, however, was inhibited by N-acetylglucosamine, Futhan (a broad-spectrum serine protease inhibitor capable of preventing complement activation through all three pathways) and anti-MASP-2 antibodies; this strongly suggests a role for activation of MASP-2 in subsequent C4 cleavage and assembly of C4b2a covertases. Intravenous injection of PEGylated nanotubes in some rats was associated with a significant rise in plasma thromboxane B2 levels, indicative of in vivo nanotube-mediated complement activation. The clinical implications of these observations are discussed. PMID:18602161

  3. Immune Response to Snake Envenoming and Treatment with Antivenom; Complement Activation, Cytokine Production and Mast Cell Degranulation

    PubMed Central

    Stone, Shelley F.; Isbister, Geoffrey K.; Shahmy, Seyed; Mohamed, Fahim; Abeysinghe, Chandana; Karunathilake, Harendra; Ariaratnam, Ariaranee; Jacoby-Alner, Tamara E.; Cotterell, Claire L.; Brown, Simon G. A.

    2013-01-01

    Background Snake bite is one of the most neglected public health issues in poor rural communities worldwide. In addition to the clinical effects of envenoming, treatment with antivenom frequently causes serious adverse reactions, including hypersensitivity reactions (including anaphylaxis) and pyrogenic reactions. We aimed to investigate the immune responses to Sri Lankan snake envenoming (predominantly by Russell's viper) and antivenom treatment. Methodology/Principal Findings Plasma concentrations of Interleukin (IL)-6, IL-10, tumor necrosis factor α (TNFα), soluble TNF receptor I (sTNFRI), anaphylatoxins (C3a, C4a, C5a; markers of complement activation), mast cell tryptase (MCT), and histamine were measured in 120 Sri Lankan snakebite victims, both before and after treatment with antivenom. Immune mediator concentrations were correlated with envenoming features and the severity of antivenom-induced reactions including anaphylaxis. Envenoming was associated with complement activation and increased cytokine concentrations prior to antivenom administration, which correlated with non-specific systemic symptoms of envenoming but not with coagulopathy or neurotoxicity. Typical hypersensitivity reactions to antivenom occurred in 77/120 patients (64%), satisfying criteria for a diagnosis of anaphylaxis in 57/120 (48%). Pyrogenic reactions were observed in 32/120 patients (27%). All patients had further elevations in cytokine concentrations, but not complement activation, after the administration of antivenom, whether a reaction was noted to occur or not. Patients with anaphylaxis had significantly elevated concentrations of MCT and histamine. Conclusions/Significance We have demonstrated that Sri Lankan snake envenoming is characterized by significant complement activation and release of inflammatory mediators. Antivenom treatment further enhances the release of inflammatory mediators in all patients, with anaphylactic reactions characterised by high levels of mast

  4. Lectin Pathway of Complement Activation Is Associated with Vulnerability of Atherosclerotic Plaques

    PubMed Central

    Fumagalli, Stefano; Perego, Carlo; Zangari, Rosalia; De Blasio, Daiana; Oggioni, Marco; De Nigris, Francesca; Snider, Francesco; Garred, Peter; Ferrante, Angela M. R.; De Simoni, Maria-Grazia

    2017-01-01

    Inflammatory mechanisms may be involved in atherosclerotic plaque rupture. By using a novel histology-based method to quantify plaque instability here, we assess whether lectin pathway (LP) of complement activation, a major inflammation arm, could represent an index of plaque instability. Plaques from 42 consecutive patients undergoing carotid endarterectomy were stained with hematoxylin-eosin and the lipid core, cholesterol clefts, hemorrhagic content, thickness of tunica media, and intima, including or not infiltration of cellular debris and cholesterol, were determined. The presence of ficolin-1, -2, and -3 and mannose-binding lectin (MBL), LP initiators, was assessed in the plaques by immunofluorescence and in plasma by ELISA. LP activation was assessed in plasma by functional in vitro assays. Patients presenting low stenosis (≤75%) had higher hemorrhagic content than those with high stenosis (>75%), indicating increased erosion. Increased hemorrhagic content and tunica media thickness, as well as decreased lipid core and infiltrated content were associated with vulnerable plaques and therefore used to establish a plaque vulnerability score that allowed to classify patients according to plaque vulnerability. Ficolins and MBL were found both in plaques’ necrotic core and tunica media. Patients with vulnerable plaques showed decreased plasma levels and intraplaque deposition of ficolin-2. Symptomatic patients experiencing a transient ischemic attack had lower plasma levels of ficolin-1. We show that the LP initiators are present within the plaques and their circulating levels change in atherosclerotic patients. In particular, we show that decreased ficolin-2 levels are associated with rupture-prone vulnerable plaques, indicating its potential use as marker for cardiovascular risk assessment in atherosclerotic patients. PMID:28360913

  5. Properdin binding to complement activating surfaces depends on initial C3b deposition

    PubMed Central

    Harboe, Morten; Johnson, Christina; Nymo, Stig; Ekholt, Karin; Schjalm, Camilla; Lindstad, Julie K.; Pharo, Anne; Hellerud, Bernt Christian; Nilsson Ekdahl, Kristina; Mollnes, Tom Eirik

    2017-01-01

    Two functions have been assigned to properdin; stabilization of the alternative convertase, C3bBb, is well accepted, whereas the role of properdin as pattern recognition molecule is controversial. The presence of nonphysiological aggregates in purified properdin preparations and experimental models that do not allow discrimination between the initial binding of properdin and binding secondary to C3b deposition is a critical factor contributing to this controversy. In previous work, by inhibiting C3, we showed that properdin binding to zymosan and Escherichia coli is not a primary event, but rather is solely dependent on initial C3 deposition. In the present study, we found that properdin in human serum bound dose-dependently to solid-phase myeloperoxidase. This binding was dependent on C3 activation, as demonstrated by the lack of binding in human serum with the C3-inhibitor compstatin Cp40, in C3-depleted human serum, or when purified properdin is applied in buffer. Similarly, binding of properdin to the surface of human umbilical vein endothelial cells or Neisseria meningitidis after incubation with human serum was completely C3-dependent, as detected by flow cytometry. Properdin, which lacks the structural homology shared by other complement pattern recognition molecules and has its major function in stabilizing the C3bBb convertase, was found to bind both exogenous and endogenous molecular patterns in a completely C3-dependent manner. We therefore challenge the view of properdin as a pattern recognition molecule, and argue that the experimental conditions used to test this hypothesis should be carefully considered, with emphasis on controlling initial C3 activation under physiological conditions. PMID:28069958

  6. Complement Activation by Giardia duodenalis Parasites through the Lectin Pathway Contributes to Mast Cell Responses and Parasite Control

    PubMed Central

    Li, Erqiu; Tako, Ernest A.

    2016-01-01

    Infection with Giardia duodenalis is one of the most common causes of diarrheal disease in the world. While numerous studies have identified important contributions of adaptive immune responses to parasite control, much less work has examined innate immunity and its connections to the adaptive response during this infection. We explored the role of complement in immunity to Giardia using mice deficient in mannose-binding lectin (Mbl2) or complement factor 3a receptor (C3aR). Both strains exhibited delayed clearance of parasites and a reduced ability to recruit mast cells in the intestinal submucosa. C3aR-deficient mice had normal production of antiparasite IgA, but ex vivo T cell recall responses were impaired. These data suggest that complement is a key factor in the innate recognition of Giardia and that recruitment of mast cells and activation of T cell immunity through C3a are important for parasite control. PMID:26831470

  7. Disease-causing mutations in genes of the complement system.

    PubMed

    Degn, Søren E; Jensenius, Jens C; Thiel, Steffen

    2011-06-10

    Recent studies have revealed profound developmental consequences of mutations in genes encoding proteins of the lectin pathway of complement activation, a central component of the innate immune system. Apart from impairment of immunity against microorganisms, it is known that hereditary deficiencies of this system predispose one to autoimmune conditions. Polymorphisms in complement genes are linked to, for example, atypical hemolytic uremia and age-dependent macular degeneration. The complement system comprises three convergent pathways of activation: the classical, the alternative, and the lectin pathway. The recently discovered lectin pathway is less studied, but polymorphisms in the plasma pattern-recognition molecule mannan-binding lectin (MBL) are known to impact its level, and polymorphisms in the MBL-associated serine protease-2 (MASP-2) result in defects of complement activation. Recent studies have described roles outside complement and immunity of another MBL-associated serine protease, MASP-3, in the etiology of 3MC syndrome, an autosomal-recessive disorder involving a spectrum of developmental features, including characteristic facial dysmorphism. Syndrome-causing mutations were identified in MASP1, encoding MASP-3 and two additional proteins, MASP-1 and MAp44. Furthermore, an association was discovered between 3MC syndrome and mutations in COLEC11, encoding CL-K1, another molecule of the lectin pathway. The findings were confirmed in zebrafish, indicating that MASP-3 and CL-K1 underlie an evolutionarily conserved pathway of embryonic development. Along with the discovery of a role of C1q in pruning synapses in mice, these recent advances point toward a broader role of complement in development. Here, we compare the functional immunologic consequences of "conventional" complement deficiencies with these newly described developmental roles.

  8. Disease-Causing Mutations in Genes of the Complement System

    PubMed Central

    Degn, Søren E.; Jensenius, Jens C.; Thiel, Steffen

    2011-01-01

    Recent studies have revealed profound developmental consequences of mutations in genes encoding proteins of the lectin pathway of complement activation, a central component of the innate immune system. Apart from impairment of immunity against microorganisms, it is known that hereditary deficiencies of this system predispose one to autoimmune conditions. Polymorphisms in complement genes are linked to, for example, atypical hemolytic uremia and age-dependent macular degeneration. The complement system comprises three convergent pathways of activation: the classical, the alternative, and the lectin pathway. The recently discovered lectin pathway is less studied, but polymorphisms in the plasma pattern-recognition molecule mannan-binding lectin (MBL) are known to impact its level, and polymorphisms in the MBL-associated serine protease-2 (MASP-2) result in defects of complement activation. Recent studies have described roles outside complement and immunity of another MBL-associated serine protease, MASP-3, in the etiology of 3MC syndrome, an autosomal-recessive disorder involving a spectrum of developmental features, including characteristic facial dysmorphism. Syndrome-causing mutations were identified in MASP1, encoding MASP-3 and two additional proteins, MASP-1 and MAp44. Furthermore, an association was discovered between 3MC syndrome and mutations in COLEC11, encoding CL-K1, another molecule of the lectin pathway. The findings were confirmed in zebrafish, indicating that MASP-3 and CL-K1 underlie an evolutionarily conserved pathway of embryonic development. Along with the discovery of a role of C1q in pruning synapses in mice, these recent advances point toward a broader role of complement in development. Here, we compare the functional immunologic consequences of “conventional” complement deficiencies with these newly described developmental roles. PMID:21664996

  9. Post-Babesiosis Warm Autoimmune Hemolytic Anemia.

    PubMed

    Woolley, Ann E; Montgomery, Mary W; Savage, William J; Achebe, Maureen O; Dunford, Kathleen; Villeda, Sarah; Maguire, James H; Marty, Francisco M

    2017-03-09

    Background Babesiosis, a tickborne zoonotic disease caused by intraerythrocytic protozoa of the genus babesia, is characterized by nonimmune hemolytic anemia that resolves with antimicrobial treatment and clearance of parasitemia. The development of warm-antibody autoimmune hemolytic anemia (also known as warm autoimmune hemolytic anemia [WAHA]) in patients with babesiosis has not previously been well described. Methods After the observation of sporadic cases of WAHA that occurred after treatment of patients for babesiosis, we conducted a retrospective cohort study of all the patients with babesiosis who were cared for at our center from January 2009 through June 2016. Data on covariates of interest were extracted from the medical records, including any hematologic complications that occurred within 3 months after the diagnosis and treatment of babesiosis. Results A total of 86 patients received a diagnosis of babesiosis during the 7.5-year study period; 18 of these patients were asplenic. WAHA developed in 6 patients 2 to 4 weeks after the diagnosis of babesiosis, by which time all the patients had had clinical and laboratory responses to antimicrobial treatment of babesiosis, including clearance of Babesia microti parasitemia. All 6 patients were asplenic (P<0.001) and had positive direct antiglobulin tests for IgG and complement component 3; warm autoantibodies were identified in all these patients. No alternative explanation for clinical hemolysis was found. WAHA required immunosuppressive treatment in 4 of the 6 patients. Conclusions We documented post-babesiosis WAHA in patients who did not have a history of autoimmunity; asplenic patients appeared to be particularly at risk.

  10. Active invasion of Porphyromonas gingivalis and infection-induced complement activation in ApoE-/- mice brains.

    PubMed

    Poole, Sophie; Singhrao, Sim K; Chukkapalli, Sasanka; Rivera, Mercedes; Velsko, Irina; Kesavalu, Lakshmyya; Crean, StJohn

    2015-01-01

    Periodontal disease is a polymicrobial inflammatory disease that leads to chronic systemic inflammation and direct infiltration of bacteria/bacterial components, which may contribute to the development of Alzheimer's disease. ApoE-/- mice were orally infected (n = 12) with Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Fusobacterium nucleatum as mono- and polymicrobial infections. ApoE-/- mice were sacrificed following 12 and 24 weeks of chronic infection. Bacterial genomic DNA was isolated from all brain tissues except for the F. nucleatum mono-infected group. Polymerase chain reaction was performed using universal 16 s rDNA primers and species-specific primer sets for each organism to determine whether the infecting pathogens accessed the brain. Sequencing amplification products confirmed the invasion of bacteria into the brain during infection. The innate immune responses were detected u