Science.gov

Sample records for hepatic damage induced

  1. Geranylgeranylacetone protects against morphine-induced hepatic and renal damage in mice.

    PubMed

    Luo, Fu-Cheng; Zhao, Lu; Deng, Juan; Liang, Min; Zeng, Xian-Si; Liu, Hua; Bai, Jie

    2013-02-01

    The acute or chronic administration of opioid drugs may induce oxidative damage and cellular apoptosis in the liver and kidney, and hence result in hepatic and renal damage. Thioredoxin-1 (Trx-1) and heat shock protein 70 (Hsp70) are emerging as important modulators of cellular functions. They have been shown to be involved in cellular protective mechanisms against a variety of toxic stressors. The present study was designed to investigate the effects of geranylgeranylacetone (GGA), a pharmacological inducer of Trx-1 and Hsp70, on morphine-induced hepatic and renal damage. Morphine induced apoptosis in the liver and kidney through the mitochondria-mediated apoptosis pathway, but not the endoplasmic reticulum-mediated pathway. The activation of caspases-9 and -3 was attenuated by pre‑treatment with GGA. In addition, the morphine-induced increase of malondialdehyde (MDA) levels was suppressed by GGA. Furthermore, GGA enhanced morphine-induced expression of Trx-1 and Hsp70 in the liver and kidney. The findings of this study suggest that GGA may be a safe and novel therapeutic agent for morphine‑induced hepatic and renal damage.

  2. The role of curcumin in streptozotocin-induced hepatic damage and the trans-differentiation of hepatic stellate cells.

    PubMed

    Mustafa, Hesham N

    2016-04-01

    Diabetic patients frequently suffer from non-alcoholic steatohepatitis. The current study aimed to investigate the role of curcumin and the response of hepatic stellate cells in streptozotocin (STZ)-induced hepatic damage. Sixty male rats were divided into three groups. The normal control injected with a citrate buffer vehicle and the diabetic control group which was injected intraperitoneally (IP) with a single-dose of streptozotocin (50mg/kg body weight) and a diabetic group was treated with an oral dose of curcumin at 80 mg/kg body weight daily for 60 days. Curcumin effectively counteracts oxidative stress-mediated hepatic damage and improves biochemical parameters. Alpha-smooth muscle actin (α-SMA) was significantly reduced, and insulin antibodies showed strong positive immunoreactivity with curcumin administration. These results optimistically demonstrate the potential use of curcumin, which is attributed to its antiradical/antioxidant activities and its potential β-cell regenerative properties. Also, it has the capability to encourage the trans-differentiation of hepatic stellate cells into insulin-producing cells for a period of time. In addition, as it is an anti-fibrotic mediator that inhibits hepatic stellate cell activation and the transition to myofibroblast-like cells, this suggests the possibility of considering curcumin's novel therapeutic effects in reducing hepatic dysfunction in diabetic patients.

  3. Antioxidant and Hepatoprotective Efficiency of Selenium Nanoparticles Against Acetaminophen-Induced Hepatic Damage.

    PubMed

    Amin, Kamal Adel; Hashem, Khalid Shaban; Alshehri, Fawziah Saleh; Awad, Said T; Hassan, Mohammed S

    2017-01-01

    Overdoses of acetaminophen (APAP), a famous and widely used drug, may have hepatotoxic effects. Nanoscience is a novel scientific discipline that provides specific tools for medical science problems including using nano trace elements in hepatic diseases. Our study aimed to assess the hepatoprotective role of selenium nanoparticles (Nano-Se) against APAP-induced hepatic injury. Twenty-four male rats were classified into three equal groups: a control group that received 0.9 % NaCl, an APAP-treated group (oral administration), and a group treated with Nano-Se (10-20 nm, intraperitoneal (i.p.) injection) and APAP (oral administration). APAP overdose induced significant elevations in liver function biomarkers, hepatic lipid peroxidation, hepatic catalase, and superoxide dismutase (SOD), decreased the reduced glutathione (GSH) content and glutathione reductase (GR) activity, and stimulated significant DNA damage in hepatocytes, compared to control rats. Nano-Se administration improved the hepatic antioxidant protection mechanism and decreased cellular sensitivity to DNA fragmentation. Nano-Se exhibits a protective effect against APAP-induced hepatotoxicity through improved liver function and oxidative stress mediated by catalase, SOD, and GSH and decreases hepatic DNA fragmentation, a hepatic biomarker of cell death. Nano-Se could be a novel hepatoprotective strategy to inhibit oxidative stress.

  4. Hepatotherapeutic effect of Aloe vera in alcohol-induced hepatic damage.

    PubMed

    Saka, W A; Akhigbe, R E; Ishola, O S; Ashamu, E A; Olayemi, O T; Adeleke, G E

    2011-07-15

    There is a lack of reliable hepatotherapeutic drugs in modern medicine in the management of alcohol/drug-induced liver damage. Aloe vera extract has been used in folklore medicine for its medicinal values. This study evaluates the hepatotherapeutic activity of aqueous extract of Aloe vera gel in rats. Sprague-Dawley rats were divided into three groups; the negative control, positive control and the extract-treated groups. The negative control received only distilled water daily. The positive control received alcohol, while the extract-treated group received aqueous extract of Aloe vera and alcohol. Hepatotoxicity was induced in the positive control and extract-treated rats with alcohol. The hepatotherapeutic effect was evaluated by performing an assay of the serum total bilirubin, alkaline phosphatase, aspartate and alanine transaminases and liver histopathology. Alanine transaminase activities were comparable in all groups. Alcohol treatment alone significantly (p < 0.05) increased total serum bilirubin, alkaline phosphatase and aspartate transaminase activities. Alcohol-induced hepatic dysfunction was abrogated by Aloe vera extract. Histopathological examination revealed that alcohol induced hepatic damage. Aloe vera treatment maintained hepatic architecture similar to that seen in the control. This study shows that aqueous extract of Aloe vera gel is hepatotherapeutic and thus lends credence to the use of the plant in folklore medicine in the management of alcohol-induced hepatic dysfunction.

  5. Hepatoprotective Activity of Vitex trifolia against Carbon Tetrachloride-induced Hepatic Damage.

    PubMed

    Manjunatha, B K; Vidya, S M

    2008-01-01

    Aqueous and ethanol extracts of leaf of Vitex trifolia was investigated for hepatoprotective activity against carbon tetrachloride induced liver damage. To assess the hepatoprotective activity of the extracts, various biochemical parameters viz., total bilirubin, total protein, alanine transaminase, aspartate transaminase and alkaline phosphatase activities were determined. Results of the serum biochemical estimations revealed significant reduction in total bilirubin and serum marker enzymes and increase in total protein in the animals treated with ethanol and aqueous extracts. However significant rise in these serum enzymes and decrease in total protein level was noticed in CCl4 treated group indicating the hepatic damage. The hepatoprotective activity is also supported by histological studies of liver tissue. Histology of the liver tissue treated with ethanol and aqueous extracts showed normal hepatic architecture with few fatty lobules. Hence the present study revealed that Vitex trifolia could afford significant protection against CCl(4) induced hepatocellular injury.

  6. Bamboo salt attenuates CCl4-induced hepatic damage in Sprague-Dawley rats

    PubMed Central

    Zhao, Xin; Song, Jia-Le; Kil, Jeung-Ha

    2013-01-01

    Bamboo salt, a Korean folk medicine, is prepared with solar salt (sea salt) and baked several times at high temperatures in a bamboo case. In this study, we compared the preventive effects of bamboo salt and purified and solar salts on hepatic damage induced by carbon tetrachloride in Sprague-Dawley rats. Compared with purified and solar salts, bamboo salts prevented hepatic damage in rats, as evidenced by significantly reduced serum levels of aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase (P < 0.05). Bamboo salt (baked 9×) triggered the greatest reduction in these enzyme levels. In addition, it also reduced the levels of the proinflammatory cytokines interleukin (IL)-6, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α. Histopathological sections of liver tissue demonstrated the protective effect of bamboo salt, whereas sections from animals treated with the other salt groups showed a greater degree of necrosis. We also performed reverse transcription-polymerase chain reaction and western blot analyses of the inflammation-related genes iNOS, COX-2, TNF-α, and IL-1β in rat liver tissues. Bamboo salt induced a significant decrease (~80%) in mRNA and protein expression levels of COX-2, iNOS, TNF-α, and IL-1β, compared with the other salts. Thus, we found that baked bamboo salt preparations could prevent CCl4-induced hepatic damage in vivo. PMID:23964314

  7. Bamboo salt attenuates CCl4-induced hepatic damage in Sprague-Dawley rats.

    PubMed

    Zhao, Xin; Song, Jia-Le; Kil, Jeung-Ha; Park, Kun-Young

    2013-08-01

    Bamboo salt, a Korean folk medicine, is prepared with solar salt (sea salt) and baked several times at high temperatures in a bamboo case. In this study, we compared the preventive effects of bamboo salt and purified and solar salts on hepatic damage induced by carbon tetrachloride in Sprague-Dawley rats. Compared with purified and solar salts, bamboo salts prevented hepatic damage in rats, as evidenced by significantly reduced serum levels of aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase (P < 0.05). Bamboo salt (baked 9×) triggered the greatest reduction in these enzyme levels. In addition, it also reduced the levels of the proinflammatory cytokines interleukin (IL)-6, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α. Histopathological sections of liver tissue demonstrated the protective effect of bamboo salt, whereas sections from animals treated with the other salt groups showed a greater degree of necrosis. We also performed reverse transcription-polymerase chain reaction and western blot analyses of the inflammation-related genes iNOS, COX-2, TNF-α, and IL-1β in rat liver tissues. Bamboo salt induced a significant decrease (~80%) in mRNA and protein expression levels of COX-2, iNOS, TNF-α, and IL-1β, compared with the other salts. Thus, we found that baked bamboo salt preparations could prevent CCl4-induced hepatic damage in vivo.

  8. Taurocholic Acid Prevents Biliary Damage Induced by Hepatic Artery Ligation in Cholestatic Rats

    PubMed Central

    Glaser, Shannon; Onori, Paolo; Gaudio, Eugenio; Ueno, Yoshiyuki; Pannarale, Luigi; Franchitto, Antonio; Francis, Heather; Mancinelli, Romina; Carpino, Guido; Venter, Julie; White, Mellanie; Kopriva, Shelley; Vetuschi, Antonella; Sferra, Roberta; Alpini, Gianfranco

    2010-01-01

    Background Ischemic injury by hepatic artery ligation (HAL) during obstructive cholestasis induced by bile duct ligation (BDL) results in bile duct damage, which can be prevented by administration of VEGF-A. The potential regulation of VEGF and VEGF receptor expression and secretion by bile acids in BDL with HAL is unknown. Aims We evaluated whether taurocholic acid (TC) can prevent HAL-induced cholangiocyte damage via the alteration of VEGFR-2 and/or VEGF-A expression. Methods Utilizing BDL, BDL+TC, BDL+HAL, BDL+HAL+TC, and BDL+HAL+wortmannin+TC treated rats, we evaluated cholangiocyte apoptosis, proliferation, and secretion as well VEGF-A and VEGFR-2 expression by immunohistochemistry. In vitro, we evaluated the effects of TC on cholangiocyte secretion of VEGF-A and the dependence of TC-induced proliferation on the activity of VEGFR-2. Results In BDL rats with HAL, chronic feeding of TC prevented HAL-induced loss of bile ducts and HAL-induced decreased cholangiocyte secretion. TC also prevented HAL-inhibited VEGF-A and VEGFR-2 expression in liver sections and HAL-induced circulating VEGF-A levels, which were blocked by wortmannin administration. In vitro, TC stimulated increased VEGF-A secretion by cholangiocytes, which was blocked by wortmannin and stimulated cholangiocyte proliferation that was blocked by VEGFR-2 kinase inhibitor. Conclusion TC prevented HAL-induced biliary damage by upregulation of VEGF-A expression. PMID:20303838

  9. Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells.

    PubMed

    Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N; Guo, Lei; Mei, Nan

    2015-09-30

    Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition.

  10. Protective effect of N-acetylcysteine against radiation induced DNA damage and hepatic toxicity in rats.

    PubMed

    Mansour, Heba H; Hafez, Hafez F; Fahmy, Nadia M; Hanafi, Nemat

    2008-02-01

    The present study was designed to evaluate the radioprotective effect of N- acetylcysteine (NAC) on gamma-radiation induced toxicity in hepatic tissue in rat. The cellular changes were estimated using malondialdehyde (MDA, an index of lipid peroxidation), superoxide dismutase (SOD), glutathione peroxidase (GSHPx), reduced glutathione (GSH), and total nitrate/nitrite (NO(x)) as markers of hepatic oxidative stress in rats following gamma-irradiation. The DNA damage was determined by agarose gel electrophoresis. To achieve the ultimate goal of this study, 40 adult rats were randomly divided into 4 groups of 10 animals each. Group I was injected intraperitoneally with saline solution for 7 consecutive days and served as control group. Group II was irradiated with a single dose of 6Gy gamma-radiation. Group III was daily injected with NAC (1g/kg, i.p.) for 7 consecutive days. Group IV received a daily i.p. injection of NAC (1g/kg, i.p.) for 7 consecutive days and 1h after the last dose, rats were irradiated with a single dose (6Gy) gamma-radiation. The animals were sacrificed after 24h. DNA damage was observed in tissue after total body irradiation with a single dose of 6Gy. Malondialdehyde and total nitrate/nitrite were increased significantly whereas the levels of GSH and antioxidant enzymes were significantly decreased in gamma-irradiated group. Pretreatment with NAC showed a significant decrease in the levels of MDA, NO(x) and DNA damage. The antioxidant enzymes increased significantly along with the levels of GSH. Moreover, histopathological examination of liver tissues confirmed the biochemical data. Thus, our results show that pretreatment with N-acetylcysteine offers protection against gamma-radiation induced cellular damage.

  11. Agmatine protects rat liver from nicotine-induced hepatic damage via antioxidative, antiapoptotic, and antifibrotic pathways.

    PubMed

    El-Sherbeeny, Nagla A; Nader, Manar A; Attia, Ghalia M; Ateyya, Hayam

    2016-12-01

    Tobacco smoking with its various forms is a global problem with proved hazardous effects to human health. The present work was planned to study the defending role of agmatine (AGM) on hepatic oxidative stress and damage induced by nicotine in rats. Thirty-two rats divided into four groups were employed: control group, nicotine-only group, AGM group, and AGM-nicotine group. Measurements of serum hepatic biochemical markers, lipid profile, and vascular cell adhesion molecule-1 were done. In addition, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) activity, and nitrate/nitrite (NOx) levels were estimated in the liver homogenates. Immunohistochemistry for Bax and transforming growth factor beta (TGF-β1) and histopathology of the liver were also included. Data of the study demonstrated that nicotine administration exhibited marked liver deterioration, an increase in liver enzymes, changes in lipid profile, and an elevation in MDA with a decline in levels of SOD, GSH, and NOx (nitrate/nitrite). Also, levels of proapoptotic Bax and profibrotic TGF-β1 showed marked elevation in the liver. AGM treatment to rats in nicotine-only group ameliorated all the previous changes. These findings indicate that AGM could successfully overcome the nicotine-evoked hepatic oxidative stress and tissue injury, apoptosis, and fibrosis.

  12. Hepatoprotective and antioxidant activities of Vernonia amygdalina on acetaminophen-induced hepatic damage in mice.

    PubMed

    Iwalokun, B A; Efedede, B U; Alabi-Sofunde, J A; Oduala, T; Magbagbeola, O A; Akinwande, A I

    2006-01-01

    Vernonia amygdalina Del. (Family Compositae) is used in Nigerian folk medicine as a tonic and remedy against constipation, fever, high blood pressure, and many infectious diseases. We have evaluated the hepatoprotective and antioxidant effects of an aqueous extract of V. amygdalina leaves against acetaminophen-induced hepatotoxicity and oxidative stress in mice in vivo. Activities of liver marker enzymes in serum (glutamate-oxaloacetate transaminase, glutamate-pyruvate transaminase, lactate dehydrogenase, and alkaline phosphatase) and bilirubin levels were determined colorimetrically, while catalase activity, lipid peroxidation products, thiobarbituric acid-reactive substances (TBARS), iron, and total protein concentrations were measured in liver homogenate. Acetaminophen challenge (300 mg/kg, i.p) for 7 days caused significant (P < .01) increases in the levels of bilirubin, liver enzymes, TBARS, and iron, while catalase activity and total protein level were reduced significantly (P < .01). Preadministration of V. amygdalina resulted in a dose-dependent (50-100 mg/kg) reversal of acetaminophen-induced alterations of all the liver function parameters by 51.9-84.9%. Suppression of acetaminophen-induced lipid peroxidation and oxidative stress by the extract was also dose-dependent (50-100 mg/kg). The results of this study suggest that V. amygdalina elicits hepatoprotectivity through antioxidant activity on acetaminophen-induced hepatic damage in mice.

  13. Erythropoietin inhibits liver gelatinases during galactosamine-induced hepatic damage in rats.

    PubMed

    Madro, Agnieszka; Kurzepa, Jacek; Czechowska, Grazyna; Słomka, Maria; Celiński, Krzysztof; Szymonik-Lesiuk, Stanisława

    2009-01-01

    Matrix metalloproteinase (MMP)-2 and -9 (gelatinases) participate in extracellular protein remodeling. Moreover, they are involved in the development of hepatic fibrosis. The goal of this study was to evaluate liver gelatinase activities after erythropoietin (Epo) treatment (1U/dose, sc) in experimentally damaged livers of rats treated with D-galactosamine (Gal, 800 mg/kg/dose, ip). Sixty rats were divided into six equal groups: I - received 5 doses of Epo and a single dose of Gal [the experiment duration (ED): 10 days]; II - received 5 doses of Epo and 3 doses of Gal (ED: 14 days); III - received only 5 doses of Epo (ED: 9 days); IV - received 3 doses of Gal (ED: 5 days);V - received a single dose of Gal (ED: 1 day); VI - control group (ED: 9 days). The animals were sacrificed and the livers were collected 48 h after the last drug administration. The activity of gelatinases was measured using gelatin zymography. No fluctuations in gelatinase activities were observed after the administration of a single dose of Gal in comparison to the control group. However, a significant increase in gelatinase activities was observed after treatment with three doses of Gal. Five doses of Epo administrated before Gal treatment prevented elevated gelatinase activities: MMP-9 activity was comparable to control, and MMP-2 activity was decreased (group II). The gelatinase activities was lower in group I and II in comparison to the control group. These results revealed that Epo decreases MMP-2 and MMP-9 activity, suggesting that it is a hepatoprotective agent against hepatic damage induced by galactosamine injection.

  14. Therapeutic effect of green tea extract on alcohol induced hepatic mitochondrial DNA damage in albino wistar rats.

    PubMed

    Reddyvari, Hymavathi; Govatati, Suresh; Matha, Sumanth Kumar; Korla, Swapna Vahini; Malempati, Sravanthi; Pasupuleti, Sreenivasa Rao; Bhanoori, Manjula; Nallanchakravarthula, Varadacharyulu

    2017-05-01

    The present study principally sought to investigate the effect of green tea extract (GTE) supplementation on hepatic mitochondrial DNA (mtDNA) damage in alcohol receiving rats. MtDNA was isolated from hepatic tissues of albino wistar rats after alcohol treatment with and without GTE supplementation. Entire displacement loop (D-loop) of mtDNA was screened by PCR-Sanger's sequencing method. In addition, mtDNA deletions and antioxidant activity were measured in hepatic tissue of all rats. Results showed increased frequency of D-loop mutations in alcoholic rats (ALC). DNA mfold analysis predicted higher free energy for 15507C and 16116C alleles compared to their corresponding wild alleles which represents less stable secondary structures with negative impact on overall mtDNA function. Interestingly, D-loop mutations observed in ALC rats were successfully restored on GTE supplementation. MtDNA deletions were observed in ALC rats, but intact native mtDNA was found in ALC + GTE group suggesting alcohol induced oxidative damage of mtDNA and ameliorative effect of GTE. Furthermore, markedly decreased activities of glutathione peroxidise, superoxide dismutase, catalase and glutathione content were identified in ALC rats; however, GTE supplementation significantly (P < 0.05) restored these levels close to normal. In conclusion, green tea could be used as an effective nutraceutical against alcohol induced mitochondrial DNA damage.

  15. Hepatoprotective effect of Caesalpinia gilliesii and Cajanus cajan proteins against acetoaminophen overdose-induced hepatic damage.

    PubMed

    Rizk, Maha Z; Aly, Hanan F; Abo-Elmatty, Dina M; Desoky, M M; Ibrahim, N; Younis, Eman A

    2016-05-01

    This study aims to evaluate two proteins derived from the seeds of the plants Cajanus cajan (Leguminosae) and Caesalpinia gilliesii (Leguminosae) for their abilities to ameliorate the toxic effects of chronic doses of acetoaminphen (APAP) through the determination of certain biochemical parameters including liver marker enzymes: alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and total bilirubin. Also, total protein content and hepatic marker enzyme, lactate dehydrogenase were studied. Moreover, liver antioxidants, glutathione (GSH), nitric oxide, and lipid peroxides were determined in this study. Hepatic adenosine triphosphatase (ATPase), adenylate energy charge (ATP, adenosine diphosphate, adenosine monophosphate, and inorganic phosphate), and phosphate potential, serum interleukin-6, tumor necrosis factor-α, and myeloperoxidase were also examined in the present study. On the other hand, histopathological examination of intoxicated and liver treated with both proteins was taken into consideration. The present results show disturbances in all biochemical parameters and hepatic toxicity signs including mild vascular congestion, moderate inflammatory changes with moderate congested sinusoids, moderate nuclear changes (pyknosis), moderate centrilobular necrosis, fatty changes, nuclear pyknosis vascular congestion, and change in fatty centrilobular necrosis liver. Improvement in all biochemical parameters studied was noticed as a result of treatment intoxicated liver with C. gilliesii and C. cajan proteins either paracetamol with or post paracetamol treatment. These results were documented by the amelioration signs in rat's hepatic architecture. Thus, both plant protein extracts can upregulate and counteract the inflammatory process, minimize damage of the liver, delay disease progression, and reduce its complications. © The Author(s) 2014.

  16. Schisandra Chinensis Baillon regulates the gene expression of phase II antioxidant/detoxifying enzymes in hepatic damage induced rats

    PubMed Central

    Jang, Han I; Do, Gyeong-Min; Lee, Hye Min; Ok, Hyang Mok; Shin, Jae-Ho

    2014-01-01

    BACKGROUND/OBJECTIVES This study investigated the antioxidant activities and hepatoprotective effects of Schisandra chinensis Baillon extract (SCE) against tert-butyl hydroperoxide (t-BHP)-induced oxidative hepatic damage in rats. MATERIALS/METHODS Sprague-Dawley (SD) rats were pretreated with SCE (300, 600, and 1,200 mg/kg BW) or saline once daily for 14 consecutive days. On day 14, each animal, except those belonging to the normal control group, were injected with t-BHP (0.8 mmol/kg BW/i.p.), and all of the rats were sacrificed 16 h after t-BHP injection. RESULTS Although no significant differences in AST and ALT levels were observed among the TC and SCE groups, the high-dose SCE group showed a decreasing tendency compared to the TC group. However, erythrocyte SOD activity showed a significant increase in the low-dose SCE group compared with the TC group. On the other hand, no significant differences in hepatic total glutathione (GSH) level, glutathione reductase (GR), and glutathione peroxidase (GSH-Px) activities were observed among the TC and SCE groups. Hepatic histopathological evaluation revealed that pretreatment with SCE resulted in reduced t-BHP-induced incidence of lesions, such as neutrophil infiltration, swelling of liver cells, and necrosis. In particular, treatment with a high dose of SCE resulted in induction of phase II antioxidant/detoxifying enzyme expression, such as glutathione S-transferase (GST) and glutamate-cysteine ligase catalytic subunit (GCLC). CONCLUSIONS Based on these results, we conclude that SCE exerts protective effects against t-BHP induced oxidative hepatic damage through the reduction of neutrophil infiltration, swelling of liver cells, and necrosis. In addition, SCE regulates the gene expression of phase II antioxidant/detoxifying enzymes independent of hepatic antioxidant enzyme activity. PMID:24944771

  17. Protective effect of apricot (Prunus armeniaca L.) on hepatic steatosis and damage induced by carbon tetrachloride in Wistar rats.

    PubMed

    Ozturk, Feral; Gul, Mehmet; Ates, Burhan; Ozturk, I Cetin; Cetin, Asli; Vardi, Nigar; Otlu, Ali; Yilmaz, Ismet

    2009-12-01

    The present study was planned to investigate the protective effect of 10 % and 20 % apricot-containing feed on carbon tetrachloride (CCl4)-induced hepatic steatosis and damage. Adult male Wistar rats (n 42) were divided into six groups of seven each, as follows: control group; CCl4 group; CCl4+10 % apricot group; CCl4+20 % apricot group; 10 % apricot group; 20 % apricot group. All apricot groups were fed with 10 % or 20 % apricot-containing feed for 5 months. CCl4 injections were applied to the CCl4 groups at the dose of 1 mg/kg for 3 d at the end of 5 months. In the CCl4 group, vacuolated hepatocytes and hepatic necrosis were seen, especially in the centrilobular area. Hepatocytes showed an oedematous cytoplasmic matrix, large lipid globules and degenerated organelles. The area of liver injury was found significantly decreased with apricot feeding. Malondialdehyde and total glutathione levels and catalase, superoxide dismutase and glutathione peroxidase activities were significantly changed in the CCl4 group and indicated increased oxidative stress. Apricot feeding decreased this oxidative stress and ameliorated histological damage. We concluded that apricot feeding had beneficial effects on CCl4-induced liver steatosis and damage probably due to its antioxidant nutrient (beta-carotene and vitamin) contents and high radical-scavenging capacity. Dietary intake of apricot can reduce the risk of liver steatosis and damage caused by free radicals.

  18. Investigation of Antioxidant and Hepatoprotective Activity of Standardized Curcuma xanthorrhiza Rhizome in Carbon Tetrachloride-Induced Hepatic Damaged Rats

    PubMed Central

    Devaraj, Sutha; Ismail, Sabariah; Ramanathan, Surash

    2014-01-01

    Curcuma xanthorrhiza (CX) has been used for centuries in traditional system of medicine to treat several diseases such as hepatitis, liver complaints, and diabetes. It has been consumed as food supplement and “jamu” as a remedy for hepatitis. Hence, CX was further explored for its potential as a functional food for liver related diseases. As such, initiative was taken to evaluate the antioxidant and hepatoprotective potential of CX rhizome. Antioxidant activity of the standardized CX fractions was determined using in vitro assays. Hepatoprotective assay was conducted against carbon tetrachloride- (CCl4-) induced hepatic damage in rats at doses of 125, 250, and 500 mg/kg of hexane fraction. Highest antioxidant activity was found in hexane fraction. In the case of hepatoprotective activity, CX hexane fraction showed significant improvement in terms of a biochemical liver function, antioxidative liver enzymes, and lipid peroxidation activity. Good recovery was observed in the treated hepatic tissues histologically. Hence, the results concluded that CX hexane fraction possessed prominent hepatoprotective activities which might be due to its in vitro antioxidant activity. These findings also support the use of CX as a functional food for hepatitis remedy in traditional medicinal system. PMID:25133223

  19. Differential effects of eugenol against hepatic inflammation and overall damage induced by ischemia/re-perfusion injury.

    PubMed

    Abd El Motteleb, Dalia M; Selim, Sally A; Mohamed, Ahmed M

    2014-01-01

    Liver injuries, liver tumor resection, and liver transplantation are known to be responsible for ischemia/reperfusion (I/R) injury that, in turn, gives rise to liver damage. This study was undertaken to investigate the possible protective effect of eugenol against the damage induced by I/R in rat livers as well as to explore possible mechanisms of action. Male rats were divided into four groups: sham-operated, I/R only, and two groups that received 10 or 100 mg eugenol/kg/day (Eug10 and Eug100, respectively) for 15 days by gavage and were then subjected to I/R, i.e. an ischemia induced for 45 min followed by re-perfusion for 6 h. The rats were euthanized and liver tissues and blood collected for examination. The results showed that I/R induced massive hepatic structural and functional damage. Eug10-treated rats had improvement in both liver function and structure, and inhibition of I/R-induced increases in serum myeloperoxidase (MPO), tumor necrosis factor (TNF)-α, as well as hepatic nuclear factor-κB (NF-κB) p65 and caspase-3 expression. Eug10 treatment also inhibited the degree of loss in reduced glutathione (GSH) and of rise in malondialdehyde (MDA) levels in liver tissues induced by I/R. In contrast, augmentation of liver damage induced by I/R was noted in Eug100-treated rats, with these hosts displaying significant increases in oxidant, inflammatory, and apoptotic markers relative to levels seen in I/R-only rats. The results of the present study provide the first evidence that a low dose of eugenol may protect the liver against I/R injury in part by decreasing levels of lipid peroxidation, down-regulating inflammatory mediators, and inhibiting apoptosis, and that a larger dose amplifies the liver injury via oxidant and inflammatory effects.

  20. Antioxidant and hepatoprotective potential of Lawsonia inermis L. leaves against 2-acetylaminofluorene induced hepatic damage in male Wistar rats.

    PubMed

    Kumar, Manish; Kaur, Paramjeet; Chandel, Madhu; Singh, Amrit Pal; Jain, Arpana; Kaur, Satwinderjeet

    2017-01-18

    Lawsonia inermis (Lythraceae) is an ethnomedicinal plant, traditionally known for curing several ailments such as skin diseases, bacterial infections, jaundice, renal lithiases and inflammation etc. The present work deals with assessment of in vitro antioxidant and in vivo hepatoprotective potential of butanolic fraction (But-LI) of Lawsonia inermis L. leaves. Antioxidant activity was evaluated using deoxyribose degradation, lipid peroxidation inhibition and ferric reducing antioxidant power (FRAP) assay. In vivo protective potential of But-LI was assessed at 3 doses [100, 200 & 400 mg/kg body weight (bw)] against 2-acetylaminofluorene (2-AAF) induced hepatic damage in male Wistar rats. But-LI effectively scavenged hydroxyl radicals in deoxyribose degradation assay (IC50 149.12 μg/ml). Fraction also inhibited lipid peroxidation and demonstrated appreciable reducing potential in FRAP assay. Treatment of animals with 2-AAF resulted in increased hepatic parameters such as SGOT (2.22 fold), SGPT (1.72 fold), ALP (5.68 fold) and lipid peroxidation (2.94 fold). Different concentration of But-LI demonstrated pronounced protective effects via decreasing levels of SGOT, SGPT, ALP and lipid peroxidation altered by 2-AAF treatment. But-LI administration also restored the normal liver architecture as evident from histopathological studies. The present experimental findings revealed that phytoconstituents of Lawsonia inermis L. possess potential to effectively protect rats from the 2-AAF induced hepatic damage in vivo possibly by inhibition of reactive oxygen species and lipid peroxidation.

  1. Protective Role of Ficus carica Stem Extract against Hepatic Oxidative Damage Induced by Methanol in Male Wistar Rats

    PubMed Central

    Saoudi, Mongi; El Feki, Abdelfattah

    2012-01-01

    The present study was aimed to investigate the antioxidant activity of Ficus carica stem extract (FE) in methanol-induced hepatotoxicity in male Wistar rats. The rats were divided into two batches: 16 control rats (C) drinking tap water and 16 treated rats drinking Ficus carica stem extract for six weeks. Then, each group was divided into two subgroups, and one of them was intraperitoneally injected (i.p.) daily methanol at a dose of 2.37 g/kg body weight i.p. for 30 days, for four weeks. The results showed that FE was found to contain large amounts of polyphenols and carotenoids. The treatment with methanol exhibited a significant increase of serum hepatic biochemical parameters (ALT, AST, ALP, and LDH) and hepatic lipid peroxidation. Hepatic antioxidant enzymes, namely, SOD, CAT, and GSH-Px, were significantly decreased in methanol-treated animals. FE treatment prior to methanol intoxication has significant role in protecting animals from methanol-induced hepatic oxidative damage. PMID:22203864

  2. Effect of betaine on the hepatic damage from orotic acid-induced fatty liver development in rats.

    PubMed

    Cha, Jae-Young; Kim, Hyeong-Soo; Moon, Hyung-In; Cho, Young-Su

    2011-12-13

    Betaine prevents hepatic damage caused by ethanol and carbone tetrachloride (CCl4) in rats. Present study was to investigate the effect of betaine on the hepatic microsomal triglyceride transfer protein (MTP) mRNA expression in orotic acid (OA)-induced fatty liver in rats. OA feeding was attributed to the significant increase in the hepatic levels of triglyceride and the serum levels of ALT and AST and resulted in typical histology of fatty liver contained numerous largely fat droplets. While concomitant supplementation of betaine to OA diet was slightly reduced the hepatic triglyceride concentrations and was significantly decreased ALT activity. Hepatic MTP mRNA expression by OA treatment increased by 14% despite triglyceride accumulation in the liver in OA treatment rats relative to rats fed a normal diet without OA supplemented, but MTP expression by simultaneous supplementation of OA and betaine was slightly decreased by 7.9% as compared to the OA-feeding rats. A significant elevation of TBARS contents in the liver homogenate, microsome, and mitochondrial fractions of the OA-feeding rats compared with the normal rats, however, these increases were significantly or slightly decreased by simultaneous addition of OA and betaine. The increases of hepatic OA and betaine levels in OA feeding rats was also found when compared to the normal rats, but these increases were significantly lowered in the concomitant supplementation OA and betaine. The content of Fe was significantly increased in the OA feeding rats, but this elevation showed significantly recovered as low as the normal level by concomitant with OA and betaine. Zinc content was also significantly decreased in the OA feeding rats compared with the normal rats, but this reduction was more significantly elevated by concomitant with OA and betaine. Hepatic glutathione content in the OA feeding rats was similar to that of the normal rats, but this content was slightly reduced without statistically significant

  3. Protective effect of Tinospora cordifolia, Phyllanthus emblica and their combination against antitubercular drugs induced hepatic damage: an experimental study.

    PubMed

    Panchabhai, T S; Ambarkhane, S V; Joshi, A S; Samant, B D; Rege, N N

    2008-05-01

    This study investigated the hepatoprotective effect of two Indian medicinal plants Tinospora cordifolia (Tc), Phyllanthus emblica (Pe), and their combination, in a rat model of isoniazid, rifampicin and pyrazinamide induced hepatic damage. Hepatic damage was assessed using a composite score assigned to histopathological findings of degeneration, necrosis and fibrosis. The antituberculosis treatment (ATT), when given for 90 days, induced significant degeneration and necrosis (score: 7.5; p < 0.01 vs vehicle) associated with morphological changes. However, no change was found in the serum bilirubin and liver enzymes. Co-administration of silymarin (positive control, 50 mg/kg) with ATT protected against necrosis (score: 1.5; p < 0.001 vs ATT). Tc (100 mg/kg) showed a reduction in liver damage (score: 6.5), which was not statistically significant. On the other hand, Pe (300 mg/kg) prevented the necrotic changes to a significant extent (grade 1.0; p < 0.05; score [corrected] 5.5). Combination of Tc and Pe in their therapeutic doses (1:3) significantly prevented the necrosis (score: 3.5; p < 0.001 vs ATT). Similar effects were seen even when the doses were halved and were comparable to the silymarin group. Thus, this study proves the synergistic protective effects exerted by the combination of Tc and Pe when co-administered with ATT.

  4. Evaluation of hepatoprotective potential of HESA-A (a marine compound) pretreatment against thioacetamide-induced hepatic damage in rabbits.

    PubMed

    Ahmadi, A; Naderi, G; Asgary, S

    2005-01-01

    HESA-A, a marine compound, has been shown to exhibit antihepatic cancer, antitumor and anti-Parkinson effects. The hepatoprotective potential of HESA-A pretreatment at doses of 125 mg and 250 mg per day orally for a period of 40 days was evaluated against thioacetamide-induced liver damage in rabbits. Biochemical parameters such as serum glutamate oxaloacetate transaminase and lactate dehydrogenase in serum were estimated to assess liver function and lipid peroxidation products (malondialdehyde [MDA]) and the antierythrocyte lysis effect of plasma for measurement of antioxidant potential capacity. Data on the hepatic biochemical parameters revealed the hepatoprotective potential of HESA-A pretreatment against thioacetamide-induced hepatotoxicity in rabbits. There was an increase in total antioxidant and antierythrocyte lysis and a decrease in MDA in plasma after HESA-A treatment. These results strongly suggest that HESA-A has a protective action against preoperative damage to biomembranes.

  5. Hepatoprotective potential of Decalepis hamiltonii (Wight and Arn) against carbon tetrachloride-induced hepatic damage in rats.

    PubMed

    Harish, R; Shivanandappa, T

    2010-10-01

    Hepatoprotective activity of the roots of Decalepis hamiltonii (Wight and Arn) was studied using carbon tetrachloride (CCl(4)) induced liver injury model in albino rats. The hepatotoxicity produced by acute CCl(4) administration was found to be inhibited by pretreating the rats with crude methanolic extract of the roots of D. hamiltonii (Dh) prior to CCl(4) induction. Hepatotoxic inhibition was measured with the decreased levels of hepatic serum marker enzymes (glutamate-pyruvate transaminase (GPT), glutamate oxaloacetate transaminase (GOT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) and lipid peroxide formation. Imbalance level of glutathione (GSH) and antioxidant enzymes such as catalase, glutathione peroxidase, and glutathione reductase were normalized in rats pretreated with Dh extract followed by CCl(4) administration. Pathological changes of hepatic lesions caused by CCl(4) were also improved by pretreatment with the Dh root extract. The results of this study indicate that roots of D. hamiltonii could afford a significant protective action in the alleviation of CCl(4)-induced hepatic damage in rats.

  6. Quercetin Attenuates Chronic Ethanol-Induced Hepatic Mitochondrial Damage through Enhanced Mitophagy.

    PubMed

    Yu, Xiao; Xu, Yanyan; Zhang, Shanshan; Sun, Jian; Liu, Peiyi; Xiao, Lin; Tang, Yuhan; Liu, Liegang; Yao, Ping

    2016-01-05

    Emerging evidence suggested mitophagy activation mitigates ethanol-induced liver injury. However, the effect of ethanol on mitophagy is inconsistent. Importantly, the understanding of mitophagy status after chronic ethanol consumption is limited. This study evaluated the effect of quercetin, a naturally-occurring flavonoid, on chronic ethanol-induced mitochondrial damage focused on mitophagy. An ethanol regime to mice for 15 weeks (accounting for 30% of total calories) led to significant mitochondrial damage as evidenced by changes of the mitochondrial ultrastructure, loss of mitochondrial membrane potential and remodeling of membrane lipid composition, which was greatly attenuated by quercetin (100 mg/kg.bw). Moreover, quercetin blocked chronic ethanol-induced mitophagy suppression as denoted by mitophagosomes-lysosome fusion and mitophagy-related regulator elements, including LC3II, Parkin, p62 and voltage-dependent anion channel 1 (VDAC1), paralleling with increased FoxO3a nuclear translocation. AMP-activated protein kinase (AMPK) and extracellular signal regulated kinase 2 (ERK2), instead of AKT and Sirtuin 1, were involved in quercetin-mediated mitophagy activation. Quercetin alleviated ethanol-elicited mitochondrial damage through enhancing mitophagy, highlighting a promising preventive strategy for alcoholic liver disease.

  7. Quercetin Attenuates Chronic Ethanol-Induced Hepatic Mitochondrial Damage through Enhanced Mitophagy

    PubMed Central

    Yu, Xiao; Xu, Yanyan; Zhang, Shanshan; Sun, Jian; Liu, Peiyi; Xiao, Lin; Tang, Yuhan; Liu, Liegang; Yao, Ping

    2016-01-01

    Emerging evidence suggested mitophagy activation mitigates ethanol-induced liver injury. However, the effect of ethanol on mitophagy is inconsistent. Importantly, the understanding of mitophagy status after chronic ethanol consumption is limited. This study evaluated the effect of quercetin, a naturally-occurring flavonoid, on chronic ethanol-induced mitochondrial damage focused on mitophagy. An ethanol regime to mice for 15 weeks (accounting for 30% of total calories) led to significant mitochondrial damage as evidenced by changes of the mitochondrial ultrastructure, loss of mitochondrial membrane potential and remodeling of membrane lipid composition, which was greatly attenuated by quercetin (100 mg/kg.bw). Moreover, quercetin blocked chronic ethanol-induced mitophagy suppression as denoted by mitophagosomes-lysosome fusion and mitophagy-related regulator elements, including LC3II, Parkin, p62 and voltage-dependent anion channel 1 (VDAC1), paralleling with increased FoxO3a nuclear translocation. AMP-activated protein kinase (AMPK) and extracellular signal regulated kinase 2 (ERK2), instead of AKT and Sirtuin 1, were involved in quercetin-mediated mitophagy activation. Quercetin alleviated ethanol-elicited mitochondrial damage through enhancing mitophagy, highlighting a promising preventive strategy for alcoholic liver disease. PMID:26742072

  8. Toxin-induced hepatic injury.

    PubMed

    Lopez, Annette M; Hendrickson, Robert G

    2014-02-01

    Toxins such as pharmaceuticals, herbals, foods, and supplements may lead to hepatic damage. This damage may range from nonspecific symptoms in the setting of liver test abnormalities to acute hepatic failure. The majority of severe cases of toxin-induced hepatic injury are caused by acetaminophen and ethanol. The most important step in the patient evaluation is to gather an extensive history that includes toxin exposure and exclude common causes of liver dysfunction. Patients whose hepatic dysfunction progresses to acute liver failure may benefit from transfer to a transplant service for further management. Currently, the mainstay in management for most exposures is discontinuing the offending agent. This manuscript will review the incidence, pathophysiology, diagnosis and management of the different forms of toxin-induced hepatic injury and exam in-depth the most common hepatic toxins.

  9. Hepatoprotective Potential of Chestnut Bee Pollen on Carbon Tetrachloride-Induced Hepatic Damages in Rats

    PubMed Central

    Yıldız, Oktay; Can, Zehra; Saral, Özlem; Yuluğ, Esin; Öztürk, Ferhat; Aliyazıcıoğlu, Rezzan; Canpolat, Sinan; Kolaylı, Sevgi

    2013-01-01

    Bee pollen has been used as an apitherapy agent for several centuries to treat burns, wounds, gastrointestinal disorders, and various other diseases. The aim of our study was to investigate the hepatoprotective effects of chestnut bee pollen against carbon tetrachloride (CCI4)-induced liver damage. Total phenolic content, flavonoid, ferric reducing/antioxidant power, and DPPH radical activity measurements were used as antioxidant capacity determinants of the pollen. The study was conducted in rats as seven groups. Two different concentrations of chestnut bee pollens (200 and 400 mg/kg/day) were given orally and one group was administered with silibinin (50 mg/kg/day, i.p.) for seven days to the rats following the CCI4 treatment. The protective effect of the bee pollen was monitored by aspartate transaminase (AST) and alanine transaminase (AST) activities, histopathological imaging, and antioxidant parameters from the blood and liver samples of the rats. The results were compared with the silibinin-treated and untreated groups. We detected that CCI4 treatment induced liver damage and both the bee pollen and silibinin-treated groups reversed the damage; however, silibinin caused significant weight loss and mortality due, severe diarrhea in the rats. The chestnut pollen had showed 28.87 mg GAE/g DW of total phenolic substance, 8.07 mg QUE/g DW of total flavonoid, 92.71 mg Cyn-3-glu/kg DW of total anthocyanins, and 9 mg β-carotene/100 g DW of total carotenoid and substantial amount of antioxidant power according to FRAP and DPPH activity. The results demonstrated that the chestnut bee pollen protects the hepatocytes from the oxidative stress and promotes the healing of the liver damage induced by CCI4 toxicity. Our findings suggest that chestnut bee pollen can be used as a safe alternative to the silibinin in the treatment of liver injuries. PMID:24250716

  10. Hepatoprotective potential of chestnut bee pollen on carbon tetrachloride-induced hepatic damages in rats.

    PubMed

    Yıldız, Oktay; Can, Zehra; Saral, Ozlem; Yuluğ, Esin; Oztürk, Ferhat; Aliyazıcıoğlu, Rezzan; Canpolat, Sinan; Kolaylı, Sevgi

    2013-01-01

    Bee pollen has been used as an apitherapy agent for several centuries to treat burns, wounds, gastrointestinal disorders, and various other diseases. The aim of our study was to investigate the hepatoprotective effects of chestnut bee pollen against carbon tetrachloride (CCI4)-induced liver damage. Total phenolic content, flavonoid, ferric reducing/antioxidant power, and DPPH radical activity measurements were used as antioxidant capacity determinants of the pollen. The study was conducted in rats as seven groups. Two different concentrations of chestnut bee pollens (200 and 400 mg/kg/day) were given orally and one group was administered with silibinin (50 mg/kg/day, i.p.) for seven days to the rats following the CCI4 treatment. The protective effect of the bee pollen was monitored by aspartate transaminase (AST) and alanine transaminase (AST) activities, histopathological imaging, and antioxidant parameters from the blood and liver samples of the rats. The results were compared with the silibinin-treated and untreated groups. We detected that CCI4 treatment induced liver damage and both the bee pollen and silibinin-treated groups reversed the damage; however, silibinin caused significant weight loss and mortality due, severe diarrhea in the rats. The chestnut pollen had showed 28.87 mg GAE/g DW of total phenolic substance, 8.07 mg QUE/g DW of total flavonoid, 92.71 mg Cyn-3-glu/kg DW of total anthocyanins, and 9 mg β -carotene/100 g DW of total carotenoid and substantial amount of antioxidant power according to FRAP and DPPH activity. The results demonstrated that the chestnut bee pollen protects the hepatocytes from the oxidative stress and promotes the healing of the liver damage induced by CCI4 toxicity. Our findings suggest that chestnut bee pollen can be used as a safe alternative to the silibinin in the treatment of liver injuries.

  11. Cyproterone acetate induces a wide spectrum of acute liver damage including corticosteroid-responsive hepatitis: report of 22 cases.

    PubMed

    Bessone, Fernando; Lucena, M I; Roma, Marcelo G; Stephens, Camilla; Medina-Cáliz, Inmaculada; Frider, Bernardo; Tsariktsian, Guillermo; Hernández, Nelia; Bruguera, Miquel; Gualano, Gisela; Fassio, Eduardo; Montero, Joaquín; Reggiardo, María V; Ferretti, Sebastián; Colombato, Luis; Tanno, Federico; Ferrer, Jaime; Zeno, Lelio; Tanno, Hugo; Andrade, Raúl J

    2016-02-01

    Cyproterone acetate (CPA), an anti-androgenic drug for prostate cancer, has been associated with drug-induced liver injury (DILI). We aim to expand the knowledge on the spectrum of phenotypes and outcomes of CPA-induced DILI. Twenty-two males (70 ± 8 years; range 54-83) developing liver damage as a result of CPA therapy (dose: 150 ± 50 mg/day; range 50-200) were included. Severity index and causality by RUCAM were assessed. From 1993 to 2013, 22 patients were retrieved. Latency was 163 ± 97 days. Most patients were symptomatic, showing hepatocellular injury (91%) and jaundice. Liver tests at onset were: ALT 18 ± 13 × ULN, ALP 0.7 ± 0.7 × ULN and total serum bilirubin 14 ± 10 mg/dl. International normalized ratio values higher than 1.5 were observed in 14 (66%) patients. Severity was mild in 1 case (4%), moderate in 7 (32%), severe in 11 (50%) and fatal in 3 (14%). Five patients developed ascitis, and four encephalopathy. One patient had a liver injury that resembled autoimmune hepatitis. Eleven (50%) were hospitalized. Nineteen patients recovered after CPA withdrawal, although three required steroid therapy (two of them had high ANA titres). Liver biopsy was performed in seven patients (two hepatocellular collapse, one submassive necrosis, two cholestatic hepatitis, one cirrhosis with iron overload and one autoimmune hepatitis). RUCAM category was 'highly probable' in 19 (86%), 'probable' in 1 (4%), and 'possible' in 2 (9%). CPA-induced liver injury is severe and can be fatal, and may occasionally resemble autoimmune DILI. The benefit/risk ratio of this drug should be thoroughly assessed in each patient. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Hepatoprotection by freshwater clam extract against CCl4-induced hepatic damage in rats.

    PubMed

    Hsu, Chin-Lin; Hsu, Chien-Chen; Yen, Gow-Chin

    2010-01-01

    Freshwater clam is traditionally used as a food and has been mentioned in ancient books to have a hepatoprotective effect. The hepatoprotective effect of freshwater clam extract was evaluated in the model of chronic hepatic fibrosis induced by carbon tetrachloride (CCl4). Male Sprague-Dawley rats were orally treated with freshwater clam extract (0.3, 0.6 and 1.5 g/kg of bw) or silymarin (0.2 g/kg of bw) along with the administration of CCl4 (0.5 ml/rat, 20% CCl4 in olive oil) for eight consecutive weeks. Blood samples were collected for assaying serum biochemical parameters. The livers were excised for evaluating peroxidation products and antioxidant substances, as well as the activities of antioxidant enzymes. Pathological histology was also performed. The data showed that supplementation of freshwater clam extract (0.6 g/kg bw) significantly reduced the serum levels of alanine aminotransferase and aspartate aminotransferase in rats treated with CCl4, and also decreased the thiobarbituric acid reactive substances, hydroxyproline and excessive inflammation in the livers of CCl4-treated rats. Histopathological analysis of the liver showed that freshwater clam extract (0.6 g/kg bw) markedly reduced the injury score of the fibrosis induced by CCl4 in rats. The data suggest that oral administration with freshwater clam extract might provide a novel and alternative approach for treating chronic liver failure.

  13. Antioxidant and hepatoprotective effect of Garcinia indica fruit rind in ethanol-induced hepatic damage in rodents

    PubMed Central

    Ashar, Hardik; Srinath, Sudhamani

    2012-01-01

    The protective effects of aqueous extracts of the fruit rind of Garcinia indica (GIE) on ethanol-induced hepatotoxicity and the probable mechanisms involved in this protection were investigated in rats. Liver damage was induced in rats by administering ethanol (5 g/kg, 20% w/v p.o.) once daily for 21 days. GIE at 400 mg/kg and 800 mg/kg and the reference drug silymarin (200 mg/kg) were administered orally for 28 days to ethanol treated rats, this treatment beginning 7 days prior to the commencement of ethanol administration. Levels of marker enzymes (aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP)), triglyceride (sTG), albumin (Alb) and total protein (TP) were evaluated in serum. Antioxidant parameters (reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR)), hepatic triglycerides (hTG) and the lipid peroxidation marker malondialdehyde (MDA) were determined in liver. GIE and silymarin elicited significant hepatoprotective activity by attenuating the ethanol–elevated levels of AST, ALT, ALP, sTG, hTG and MDA and restored the ethanol-depleted levels of GSH, SOD, CAT, GPx, GR, Alb and TP. GIE 800 mg/kg demonstrated greater hepatoprotection than GIE 400 mg/kg. The present findings indicate that hepatoprotective effects of GIE in ethanol-induced oxidative damage may be due to an augmentation of the endogenous antioxidants and inhibition of lipid peroxidation in liver. PMID:23554565

  14. Lophirones B and C Attenuate Acetaminophen-Induced Liver Damage in Mice: Studies on Hepatic, Oxidative Stress and Inflammatory Biomarkers.

    PubMed

    Ajiboye, Taofeek O

    2016-10-01

    Lophirones B and C are chalcone dimers with proven chemopreventive activity. This study evaluates the hepatoprotective effect lophirones B and C in acetaminophen-induced hepatic damage in mice using biomarkers of hepatocellular indices, oxidative stress, proinflammatory factors and lipid peroxidation. Oral administrations of lophirones B and C significantly (p < 0.05) attenuated acetaminophen-mediated alterations in serum alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, albumin and total bilirubin. Similarly, acetaminophen-mediated decrease in activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose 6- phosphate dehydrogenase were significantly attenuated in the liver of mice. Increased levels of conjugated dienes, lipid hydroperoxides, malondialdehyde, protein carbonyl and fragmented DNA were significantly lowered by lophirones B and C. Levels of tumour necrosis factor-α, interleukin-6 and 8 were significantly lowered in serum of acetaminophen treated mice by the chalcone dimers. Overall, results of this study show that lophirones B and C halted acetaminophen-mediated hepatotoxicity.

  15. Ameliorative efficacy of tetrahydrocurcumin against arsenic induced oxidative damage, dyslipidemia and hepatic mitochondrial toxicity in rats.

    PubMed

    Muthumani, M; Miltonprabu, S

    2015-06-25

    Arsenic (As) is a well-known human carcinogen and a potent hepatotoxin. Environmental exposure to arsenic imposes a serious health hazard to humans and other animals worldwide. Tetrahydrocurcumin (THC), one of the major metabolites of curcumin, exhibits many of the same physiological and pharmacological activities as curcumin and in some systems may exert greater antioxidant activity than the curcumin. It has been reported that THC has antioxidant efficacy attributable to the presence of identical β-diketone of 3rd and 5th substitution in heptane moiety. In the present study, rats were orally treated with arsenic alone (5 mg kg(-1) bw/day) with THC (80 mg kg(-1) bw/day) for 28 days. Hepatotoxicity was measured by the increased activities of serum hepatospecific enzymes, namely aspartate transaminase, alanine transaminase, alkaline phosphatase and bilirubin along with increased elevation of lipid peroxidative markers, thiobarbituric acid reactive substances. And also elevated levels of serum cholesterol, triglycerides, free fatty acids and phospholipids were observed in arsenic intoxicated rats. These effects of arsenic were coupled with enhanced mitochondrial swelling, inhibition of cytochrome c oxidase, Ca(2+)ATPase and a decrease in mitochondrial calcium content. The toxic effect of arsenic was also indicated by significantly decreased activities of enzymatic antioxidants such as superoxide dismutase, catalase, and glutathione peroxidase along with non-enzymatic antioxidant such as reduced glutathione. Administration of THC exhibited significant reversal of arsenic induced toxicity in hepatic tissue. All these changes were supported by the reduction of arsenic concentration and histopathological observations of the liver. These results suggest that THC has a protective effect over arsenic induced toxicity in rat. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Liver fluke-induced hepatic oxysterols stimulate DNA damage and apoptosis in cultured human cholangiocytes.

    PubMed

    Jusakul, Apinya; Loilome, Watcharin; Namwat, Nisana; Haigh, W Geoffrey; Kuver, Rahul; Dechakhamphu, Somkid; Sukontawarin, Pradit; Pinlaor, Somchai; Lee, Sum P; Yongvanit, Puangrat

    2012-03-01

    Oxysterols are cholesterol oxidation products that are generated by enzymatic reactions through cytochrome P450 family enzymes or by non-enzymatic reactions involving reactive oxygen and nitrogen species. Oxysterols have been identified in bile in the setting of chronic inflammation, suggesting that biliary epithelial cells are chronically exposed to these compounds in certain clinical settings. We hypothesized that biliary oxysterols resulting from liver fluke infection participate in cholangiocarcinogenesis. Using gas chromatography/mass spectrometry, we identified oxysterols in livers from hamsters infected with Opisthorchis viverrini that develop cholangiocarcinoma. Five oxysterols were found: 7-keto-cholesta-3,5-diene (7KD), 3-keto-cholest-4-ene (3K4), 3-keto-cholest-7-ene (3K7), 3-keto-cholesta-4,6-diene (3KD), and cholestan-3β,5α,6β-triol (Triol). Triol and 3K4 were found at significantly higher levels in the livers of hamsters with O. viverrini-induced cholangiocarcinoma. We therefore investigated the effects of Triol and 3K4 on induction of cholangiocarcinogenesis using an in vitro human cholangiocyte culture model. Triol- and 3K4-treated cells underwent apoptosis. Western blot analysis showed significantly increased levels of Bax and decreased levels of Bcl-2 in these cells. Increased cytochrome c release from mitochondria was found following treatment with Triol and 3K4. Triol and 3K4 also induced formation of the DNA adducts 1,N(6)-etheno-2'-deoxyadenosine, 3,N(4)-etheno-2'-deoxycytidine and 8-oxo-7,8-dihydro-2'-deoxyguanosine in cholangiocytes. The data suggest that Triol and 3K4 cause DNA damage via oxidative stress. Chronic liver fluke infection increases production of the oxysterols Triol and 3K4 in the setting of chronic inflammation in the biliary system. These oxysterols induce apoptosis and DNA damage in cholangiocytes. Insufficient and impaired DNA repair of such mutated cells may enhance clonal expansion and further drive the change in

  17. Nelumbo nucifera leaves protect hydrogen peroxide-induced hepatic damage via antioxidant enzymes and HO-1/Nrf2 activation.

    PubMed

    Je, Jae-Young; Lee, Da-Bin

    2015-06-01

    Naturally occurring phenolic compounds are widely found in plants. Here, the phenolic composition and hepatoprotective effect of the butanolic extract (BE) from Nelumbo nucifera leaves against H2O2-induced hepatic damage in cultured hepatocytes were investigated. BE showed high total phenol and flavonoid contents, and major phenolic compounds are quercetin, catechin, ferulic acid, rutin, and protocatechuic acid by HPLC analysis. BE effectively scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) cation radicals (IC50 values of 5.21 μg mL(-1) for DPPH and 6.22 μg mL(-1) for ABTS(+)) and showed strong reducing power. Pretreatment of BE prior to 650 μM H2O2 exposure markedly increased cell viability and suppressed H2O2-induced intracellular reactive oxygen species generation and AAPH-induced cell membrane lipid peroxidation. In addition, BE up-regulated intracellular glutathione levels under normal and oxidative stress conditions. Notably, the hepatoprotective effect of BE was directly correlated with the increased expression of superoxide dismutase-1 (SOD-1) by 0.62-fold, catalase (CAT) by 0.42-fold, and heme oxygenase-1 (HO-1) by 2.4-fold. Pretreatment of BE also increased the nuclear accumulation of Nrf2 by 8.1-fold indicating that increased SOD-1, CAT, and HO-1 expressions are Nrf2-mediated.

  18. Hepatocellular necrosis, fibrosis and microsomal activity determine the hepatic pharmacokinetics of basic drugs in right-heart-failure-induced liver damage.

    PubMed

    Li, Peng; Robertson, Thomas A; Zhang, Qian; Fletcher, Linda M; Crawford, Darrell H G; Weiss, Michael; Roberts, Michael S

    2012-06-01

    To explore how liver damage arising from cardio-hepatic syndromes in RHF affect the hepatic pharmacokinetics of basic drugs. The hepatic pharmacokinetics of five selected basic drugs with different physicochemical properties were studied in IPRL from control rats and rats with RHF. Hepatic pharmacokinetic modelling was performed with a two-phase physiologically-based organ pharmacokinetic model with the vascular space and dispersion evaluated with the MID technique. The liver damage arising from RHF was assessed by changes in liver biochemistry and histopathology. The expression of various CYP isoforms was evaluated by real-time RT-PCR analysis. Four of the five basic drugs had a significantly lower E in RHF rat livers compared to the control rat livers. Hepatic pharmacokinetic analysis showed that both the CL int and PS were significantly decreased in the RHF rat livers. Stepwise regression analysis showed that the alterations in the pharmacokinetic parameters (E, CL int and PS) can be correlated to the observed histopathological changes (NI, CYP concentration and FI) as well as to the lipophilicity of the basic drugs (logP app). Serious hepatocellular necrosis and fibrosis induced by RHF affects both hepatic microsomal activity and hepatocyte wall permeability, leading to significant impairment in the hepatic pharmacokinetics of basic drugs.

  19. Green tea polyphenol epigallocatechin-3-gallate inhibits oxidative damage and preventive effects on carbon tetrachloride-induced hepatic fibrosis.

    PubMed

    Zhen, Mao-Chuan; Wang, Qian; Huang, Xiao-Hui; Cao, Liang-Qi; Chen, Xi-Ling; Sun, Kai; Liu, Yun-Jian; Li, Wen; Zhang, Long-Juan

    2007-12-01

    The aim of the study was to examine the effects of epigallocatechin-3-gallate (EGCG) on hepatic fibrogenesis and on cultured hepatic stellate cells (HSCs). The rat model of carbon tetrachloride (CCl(4))-induced hepatic fibrosis was used to assess the effect of daily intraperitoneal injections of EGCG on the indexes of fibrosis. Histological and hepatic hydroxyproline examination revealed that EGCG significantly arrested progression of hepatic fibrosis. EGCG caused significant amelioration of liver injury (reduced activities of serum alanine aminotransferase and aspartate aminotransferase). The development of CCl(4)-induced hepatic fibrosis altered the redox state with a decreased hepatic glutathione and increased the formation of lipid peroxidative products, which were partially normalized by treatment with EGCG, respectively. Moreover, EGCG markedly attenuated HSC activation as well as matrix metalloproteinase (MMP)-2 activity. In cultured stellate cell, the expression of MMP-2 mRNA and protein were substantially reduced by EGCG treatment. Concanavalin A-induced activation of secreted MMP-2 was inhibited by EGCG through the influence of membrane type 1-MMP activity. These results demonstrate that administration of EGCG may be useful in the treatment and prevention of hepatic fibrosis.

  20. Propolis prevents aluminium-induced genetic and hepatic damages in rat liver.

    PubMed

    Türkez, Hasan; Yousef, Mokhtar I; Geyikoglu, Fatime

    2010-10-01

    Aluminium is present in several manufactured foods and medicines and is also used in water purification. Therefore, the present experiment was undertaken to determine the effectiveness of propolis in modulating the aluminium chloride (AlCl(3)) induced genotoxicity and hepatotoxicity in liver of rats. Animals were assigned to 1 of 4 groups: control; 34 mg AlCl(3)/kg bw; 50mg propolis/kg bw; AlCl(3) (34 mg/kg bw) plus propolis (50mg/kg bw), respectively. Rats were orally administered their respective doses daily for 30 days. At the end of the experiment, rats were anesthetized and hepatocytes (HEP) were isolated for counting the number of micronucleated hepatocytes (MNHEPs). In addition, the levels of serum enzymes and histological alterations in liver were investigated. AlCl(3) caused a significant increase in MNHEPs, alkaline phosphatase, transaminases (AST and ALT) and lactate dehydrogenase (LDH). Furthermore, severe pathological damages such as: sinusoidal dilatation, congestion of central vein, lipid accumulation and lymphocyte infiltration were established in liver. On the contrary, treatment with propolis alone did not cause any adverse effect on above parameters. Moreover, simultaneous treatments with propolis significantly modulated the toxic effects of AlCl(3). It can be concluded that propolis has beneficial influences and could be able to antagonize AlCl(3) toxicity. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. Hepatoprotective and antioxidant effects of single clove garlic against CCl4-induced hepatic damage in rabbits.

    PubMed

    Naji, Khalid Mohammed; Al-Shaibani, Elham Shukri; Alhadi, Fatima A; Al-Soudi, Safa'a Abdulrzaq; D'souza, Myrene R

    2017-08-17

    The increase in demand and consumption of single clove garlic or 'Solo garlic' (Allium sativum) has resulted in an increase in research on its therapeutic properties. The present study aims to evaluate the antioxidant activities, oxidant-scavenging efficiency and preventive effects of SCG (single clove garlic) and MCG (multi clove garlic) on CCl4-induced acute hepatotoxicity in male rabbits. For this purpose, rabbits were orally administered with 3 ml of CCl4 /kg of body weight, followed by 0.8 g of MCG or SCG/kg twice a week for three successive weeks. Oxidative hepatotoxicity was then assessed. SCG extracts exhibited higher antioxidant capacity than the MCG extract. Scavenging ability of SCG showed significant (p < 0.05) elevation against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radicals in comparison to MCG. In addition, total phenolic content of SCG was significantly elevated (p < 0.001), thereby suggesting that the composition of garlic storage constituents varies with the number of cloves present. CCl4-induced hepatotoxicity demonstrated histological changes including severe damage in the structure of liver tissues which correlated well to oxidative stress levels. Simultaneously, administration of SCG resulted in a significant reduction of serum alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin (TB) levels in addition to improvement in some histological parameters. Low levels of lipid peroxidation (malondialdehyde, MDA) (p < 0.001), along with a huge reduction in peroxidase (POx) (p < 0.001) revealed protection against oxidative toxicity in the liver homogenate. Higher levels of catalase (CAT) (p < 0.001) and superoxide dismutase (SOD) (p < 0.05) when compared to the MCG test (TM) group indicates that removal of H2O2 is based on CAT activity in SCG test (TS) group rather than the POx activity demonstrated in the former group. The present study indicates that SCG possesses

  2. Hesperidin upregulates heme oxygenase-1 to attenuate hydrogen peroxide-induced cell damage in hepatic L02 cells.

    PubMed

    Chen, Ming-Cang; Ye, Yi-Yi; Ji, Guang; Liu, Jian-Wen

    2010-03-24

    Hesperidin, a naturally occurring flavonoid presents in fruits and vegetables, has been reported to exert a wide range of pharmacological effects that include antioxidant, anti-inflammatory, antihypercholesterolemic, and anticarcinogenic actions. However, the cytoprotection and mechanism of hesperidin to neutralize oxidative stress in human hepatic L02 cells remain unclear. In this work, we assessed the capability of hesperidin to attenuate hydrogen peroxide (H(2)O(2))-induced cell damage by augmenting the cellular antioxidant defense. Real-time quantitative polymerase chain reaction, Western blot, and enzyme activity assay demonstrated that hesperidin upregulated heme oxygenase-1 (HO-1) expression to protect hepatocytes against oxidative stress. In addition, hesperidin also promoted nuclear translocation of nuclear factor erythroid 2-related factor (Nrf2). What's more, hesperidin exhibited activation of extracellular signal-regulated protein kinase 1/2 (ERK1/2). Besides, ERK1/2 inhibitor significantly inhibited hesperidin-mediated HO-1 upregulation and Nrf2 nuclear translocation. Taken together, the above findings suggested that hesperidin augmented cellular antioxidant defense capacity through the induction of HO-1 via ERK/Nrf2 signaling. Therefore, hesperidin has potential as a therapeutic agent in the treatment of oxidative stress-related hepatocyte injury and liver dysfunctions.

  3. Hepatic protection by noni fruit juice against CCl(4)-induced chronic liver damage in female SD rats.

    PubMed

    Wang, Mian-Ying; Anderson, Gary; Nowicki, Diane; Jensen, Jarakae

    2008-09-01

    Morinda citrifolia L. (noni) has been used throughout the Pacific, Southeast Asia, Central America, and the Caribbean for a variety of health conditions, including heart and liver ailments. In this study, we examined the hepatoprotective effects of TAHITIAN NONI Juice (TNJ) against CCl(4)-induced chronic liver damage in female Sprague Dawley (SD) rats. Twelve female SD rats were divided into control, placebo and TNJ (6 mL/rat/day) groups. On day 15, animals in the placebo and TNJ groups received 0.25 mL/kg CCl(4) in corn oil once a week for 12 successive weeks. All animals were sacrificed at week 16. Blood and liver were collected for liver function, lipid panel tests, and histological observation. Histopathological examination revealed that liver sections from the TNJ + CCl(4) appeared similar to controls, whereas typical hepatic steatosis was observed in the placebo + CCl(4) group. Serum alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine transaminase (ALT), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) levels were increased in the placebo group compared with the TNJ group. In contrast, high-density lipoprotein (HDL) was increased in the TNJ group and decreased in the placebo group. Thus, TNJ juice appears to protect the liver from chronic exogenous CCl(4) exposures. Such protective mechanisms are supportive evidence for the utility of noni in traditional medicine for liver ailments.

  4. Efficacy of curcumin to reduce hepatic damage induced by alcohol and thermally treated oil in rats.

    PubMed

    El-Deen, Nasr A M N; Eid, Mohamed

    2010-01-01

    The authors investigated the effect of curcumin on markers of oxidative stress and liver damage in rats that chronically ingested alcohol and heated oil. Nine groups of ten Wistar male rats received combinations of curcumin 100 mg/kg body weight daily, ethanol 5 mg/kg, 15% dietary sunflower oil and 15% heated sunflower oil for 12 weeks. Serum and liver tissue were collected. Groups 4-6, which had received compounds causing oxidative stress, showed increased serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total bilirubin, cholesterol, triglycerides, low density lipoprotein, very low density lipoprotein and reduced high density lipoprotein, protein and albumin, compared with the controls. Reductions were observed in glutathione peroxidase and reductase gene expression, superoxide dismutase activity, glutathione peroxidase activity, glutathione reductase activity, reduced glutathione concentration and catalase enzyme activity. Groups 7, 8 and 9 which received curcumin with heated oil, ethanol or both, showed lower elevations in serum and oxidative damage markers compared with the corresponding non-curcumin treated groups. It can be concluded that curcumin reduces markers of liver damage in rats treated with heated sunflower oil or ethanol.

  5. Effect of sesame oil against acetaminophen-induced acute oxidative hepatic damage in rats.

    PubMed

    Chandrasekaran, Victor Raj Mohan; Wan, Chang-Hsin; Liu, Li-Lian; Hsu, Dur-Zong; Liu, Ming-Yie

    2008-08-01

    Acetaminophen (APAP) overdose causes acute liver injury or even death in both humans and experimental animals. We investigated the effect of sesame oil on APAP-induced acute liver injury. Male Wistar rats were given APAP (1,000 mg/kg; orally) to induce acute liver injury. Acetaminophen significantly increased aspartate transaminase, alanine transaminase, lipid peroxidation, and superoxide anion and hydroxyl radical generation levels; it also induced glutathione depletion. Sesame oil (8 mL/kg; orally) did not alter the gastric absorption of APAP, but it inhibited all the parameters altered by APAP and protected the rats against APAP-induced acute liver injury. We hypothesize that sesame oil maintained the intracellular glutathione levels, reduced reactive oxygen species levels, and inhibited lipid peroxidation in rats with APAP-induced acute liver injury.

  6. Mitochondrial Damage-Associated Molecular Patterns (MTDs) Are Released during Hepatic Ischemia Reperfusion and Induce Inflammatory Responses.

    PubMed

    Hu, Qianni; Wood, Caroline Ruth; Cimen, Sanem; Venkatachalam, Ananda Baskaran; Alwayn, Ian Patrick Joseph

    2015-01-01

    Ischemia / reperfusion injury (IRI) during the course of liver transplantation enhances the immunogenicity of allografts and thus impacts overall graft outcome. This sterile inflammatory insult is known to activate innate immunity and propagate organ damage through the recognition of damage-associate molecular pattern (DAMP) molecules. The purpose of the present study was to investigate the role of mitochondrial DAMPs (MTDs) in the pathogenesis of hepatic IRI. Using in vitro models we observed that levels of MTDs were significantly higher in both transplantation-associated and warm IR, and that co-culture of MTDs with human and rat hepatocytes significantly increased cell death. MTDs were also released in an in vivo rat model of hepatic IRI and associated with increased secretion of inflammatory cytokines (TNF-α, IL-6, and IL-10) and increased liver injury compared to the sham group. Our results suggest that hepatic IR results in a significant increase of MTDs both in vitro and in vivo suggesting that MTDs may serve as a novel marker in hepatic IRI. Co-culture of MTDs with hepatocytes showed a decrease in cell viability in a concentration dependent manner, which indicates that MTDs is a toxic mediator participating in the pathogenesis of liver IR injury.

  7. Carbon tetrachloride-induced hepatic and renal damages in rat: inhibitory effects of cacao polyphenol.

    PubMed

    Suzuki, Koichiro; Nakagawa, Kiyotaka; Yamamoto, Takayuki; Miyazawa, Taiki; Kimura, Fumiko; Kamei, Masanori; Miyazawa, Teruo

    2015-01-01

    Here, we investigated the protective effect of cacao polyphenol extract (CPE) on carbon tetrachloride (CCl4)-induced hepato-renal oxidative stress in rats. Rats were administered CPE for 7 days and then received intraperitoneal injection of CCl4. Two hours after injection, we found that CCl4 treatment significantly increased biochemical injury markers, lipid peroxides (phosphatidylcholine hydroperoxide (PCOOH) and malondialdehyde (MDA)) and decreased glutathione peroxidase activity in kidney rather than liver, suggesting that kidney is more vulnerable to oxidative stress under the present experimental conditions. CPE supplementation significantly reduced these changes, indicating that this compound has antioxidant properties against CCl4-induced oxidative stress. An inhibitory effect of CPE on CCl4-induced CYP2E1 mRNA degradation may provide an explanation for CPE antioxidant property. Together, these results provide quantitative evidence of the in vivo antioxidant properties of CPE, especially in terms of PCOOH and MDA levels in the kidneys of CCl4-treated rats.

  8. Grapefruit juice intake does not enhance but rather protects against aflatoxin B1-induced liver DNA damage through a reduction in hepatic CYP3A activity.

    PubMed

    Miyata, Masaaki; Takano, Hiroki; Guo, Lian Q; Nagata, Kiyoshi; Yamazoe, Yasushi

    2004-02-01

    Influence of grapefruit juice intake on aflatoxin B1 (AFB1)-induced liver DNA damage was examined using a Comet assay in F344 rats given 5 mg/kg AFB1 by gavage. Rats allowed free access to grapefruit juice for 5 days prior to AFB1 administration resulted in clearly reduced DNA damage in liver, to 65% of the level in rats that did not receive grapefruit juice. Furthermore, rats treated with grapefruit juice extract (100 mg/kg per os) for 5 days prior to AFB1 treatment also reduced the DNA damage to 74% of the level in rats that did not receive grapefruit juice. No significant differences in the portal blood and liver concentrations of AFB1 were observed between grapefruit juice intake rats and the controls. In an Ames assay with AFB1 using Salmonella typhimurium TA98, lower numbers of revertant colonies were detected with hepatic microsomes prepared from rats administered grapefruit juice, compared with those from control rats. Microsomal testosterone 6beta-hydroxylation was also lower with rats given grapefruit juice than with control rats. Immunoblot analyses showed a significant decrease in hepatic CYP3A content, but not CYP1A and CYP2C content, in microsomes of grapefruit juice-treated rats than in non-treated rats. No significant difference in hepatic glutathione S-transferase (GST) activity and glutathione content was observed in the two groups. GSTA5 protein was not detected in hepatic cytosol of the two groups. In microsomal systems, grapefruit juice extract inhibited AFB1-induced mutagenesis in the presence of a microsomal activation system from livers of humans as well as rats. These results suggest that grapefruit juice intake suppresses AFB1-induced liver DNA damage through inactivation of the metabolic activation potency for AFB1 in rat liver.

  9. Effects of silymarin nanoemulsion against carbon tetrachloride-induced hepatic damage.

    PubMed

    Parveen, Rabea; Baboota, Sanjula; Ali, Javed; Ahuja, Alka; Vasudev, Suruchi S; Ahmad, Sayeed

    2011-05-01

    Silymarin is a complex mixture of four flavonolignan isomers (silybin, isosilybin, silydianin and silychristin) obtained from 'milk thistle' (Silybum marianum). This plant compound is used almost exclusively for hepatoprotection. Because of its low and poor oral bioavailability, silymarin was formulated as a nanoemulsion to increase its solubility (and so its oral bioavailability) as well as therapeutic activity. The present study assessed the hepatoprotective activity on Wistar rats by determining biochemical parameters and histopathological properties of the nanoemulsion formulation of silymarin against carbon tetrachloride (CCl(4))-induced hepatotoxicity. Hepatoprotective activity was evaluated by the activity of serum alkaline phosphatase, alanine transaminase and aspartate transaminase; antioxidative defence markers (concentration of reduced glutathione); oxidative stress parameter (thiobarbituric acid reactive substances) and liver histopathology. The nanoemulsion-treated group showed significant decreases in glutamate oxaloacetate transaminase, pyruvate transaminase, alkaline phosphotase, total bilirubin and tissue lipid peroxides and increased total protein, albumin, globulin and tissue glutathione as compared to toxicant. The results indicate an excellent potential of the nanoemulsion formulation for the reversal of CCl(4)-induced liver toxicity in rats as compared to standard silymarin.

  10. Hepatoprotective and antioxidant activity of Karisalai Karpam, a polyherbal Siddha formulation against acetaminophen-induced hepatic damage in rats

    PubMed Central

    Sen, Saikat; Chakraborty, Raja; Thangavel, Ganesh; Logaiyan, Sivakumar

    2015-01-01

    Background: The usage of Siddha medicine in Tamil Nadu and several parts of Southern India has considerably increased over the past two decades and it is steadily crossing the various geographies owing to its inexpensiveness compared to conventional medicines and has fairly high acceptance rates because of its herbal origin and therefore its nontoxic nature. Aim: This study aims to investigate the anti-hepatotoxic and antioxidant potential of the Karisalai Karpam formulation. Materials and Methods: Karisalai Karpam tablet at 50, 100, and 200 mg/kg/day, p.o. doses were administered orally to rats for three consecutive days. Single dose of acetaminophen (3 g/kg, p.o.) was administered on the 3rd day. Animals were sacrificed 48 h after the administration of acetaminophen, and their serum bilirubin, different hepatic enzymes and in vivo antioxidant activity were estimated. Statistical Analysis: Data were evaluated using analysis of variance, followed by Tukey tests. A level of P < 0.05 was considered statistically significant. Results: Pretreatment with Karisalai Karpam tablet showed dose-dependent hepatoprotective activity. Karisalai Karpam tablet (200 mg/kg) reduces serum glutamic oxaloacetate transaminase, serum glutamic pyruvic transaminase, alkaline phosphatase and total bilirubin, direct bilirubin by 67.8%, 72.3%, 47.6%, 61.3% and 62.9% respectively compared to disease control group. A significant increase (P < 0.001) in antioxidant enzyme level was observed in Karisalai Karpam treated animals. At higher doses, Karisalai Karpam prevented the depletion of glutathione in liver tissue. Conclusion: Results confirmed that Karisalai Karpam tablet could protect the liver against acetaminophen-induced oxidative damage possibly by increasing the antioxidant defence mechanism in rats. PMID:26283804

  11. Halothane induced hepatitis: case report.

    PubMed

    Otedo, A E O

    2004-10-01

    Halothane as a cause of hepatitis is rare and may be overlooked when evaluating a patient with sudden onset jaundice. A 34-year-old lady, a nurse, presented to the liver clinic with sudden onset non-pruritic jaundice. Viral and collagen serological tests were all normal, malaria and sickling tests were negative, but transaminases were elevated. She reported inadvertent exposure to halothane in surgical theatre where she works. She improved on conservative management, then had a re-exposure to halothane after three weeks and developed a similar clinical picture, which improved on conservative management. In an area endemic of malaria, hepatitis and haemolysing conditions like sickle cell anaemia, the diagnosis of halothane hepatitis requires high index of suspicion. The mechanism of halothane-induced hepatic damage in this patient is very likely idiosyncratic. This is because of the modest dose at first exposure and more severe clinical picture at re-exposure.

  12. Bile composition, plasma lipids and oxidative hepatic damage induced by calcium supplementation; effects of goat or cow milk consumption.

    PubMed

    Díaz-Castro, Javier; Alférez, María J M; López-Aliaga, Inmaculada; Nestares, Teresa; Sánchez-Alcover, Ana; Campos, Margarita S

    2013-05-01

    Calcium-fortified foods, especially milk and dairy products are recommended to be consumed daily for groups in risk of nutritional deficiency, including children, young adults, menopausal women, pregnant women and the elderly, however Ca-supplementation promotes gallstone formation because Ca is a nucleating factor. The objective of the current study was to assess the influence of cow or goat milk-based diets, either normal or Ca-supplemented, on bile composition, biochemical parameters and hepatic antioxidant status. Weanling male rats were randomly divided into six groups, fed standard, goat or cow milk-based diets, either with normal Ca content (5.0 g/kg), or Ca-supplemented (10.0 g/kg), for 2 weeks. Bile cholesterol concentration and output was higher in rats fed goat milk in comparison with those fed with standard and cow-milk-based diet. Ca-supplementation increased lithogenic index with the standard and cow-milk based diets, this change was not observed with the goat milk diet. Activities of plasma transaminases were also lower in the animals fed Ca-supplemented goat milk, in comparison with the other diets assayed. In general, Ca-supplement in the diet led to an increase in the hepatic oxidative damage, with an increase in the activities of all the antioxidant enzymes studied in the standard and cow milk diet, but not with goat milk. The habitual consumption of goat milk has positive effects on the plasma lipid profile, biliary composition and hepatic antioxidant defence. In addition, under our experimental conditions, Ca-supplementation of this type of milk does not increase the lithogenic index, or hepatic oxidative damage.

  13. 17β-Estradiol protects against acetaminophen-overdose-induced acute oxidative hepatic damage and increases the survival rate in mice.

    PubMed

    Chandrasekaran, Victor Raj Mohan; Periasamy, Srinivasan; Liu, Li-Lian; Liu, Ming-Yie

    2011-01-01

    Acetaminophen overdose causes acute liver injury or even death in both humans and experimental animals. We investigated the effect of 17β-estradiol against acetaminophen-induced acute liver injury and mortality in mice. Male mice were given acetaminophen (p-acetamidophenol; 300 mg/kg; orally) to induce acute liver injury. Acetaminophen significantly increased the levels of aspartate transaminase, alanine transaminase, myeloperoxidase, lipid peroxidation, and glutathione reductase, but it decreased superoxide dismutase, catalase, and glutathione. In addition, acetaminophen-induced mortality began 4h post-treatment, and all mice died within 9h. 17β-Estradiol (200 μg/kg; i.p.) protected against acetaminophen-induced oxidative hepatic damage by inhibiting neutrophil infiltration and stimulating the antioxidant defense system. However, 17β-estradiol did not affect acetaminophen-induced glutathione depletion or increased glutathione reductase activity. We conclude that 17β-estradiol specifically attenuates acute hepatic damage and decreases mortality in acetaminophen-overdosed male mice.

  14. Ischemia reperfusion of the hepatic artery induces the functional damage of large bile ducts by changes in the expression of angiogenic factors

    PubMed Central

    Mancinelli, Romina; Glaser, Shannon; Francis, Heather; Carpino, Guido; Franchitto, Antonio; Vetuschi, Antonella; Sferra, Roberta; Pannarale, Luigi; Venter, Julie; Meng, Fanyin; Alpini, Gianfranco; Gaudio, Eugenio

    2015-01-01

    Liver transplantation and cholangiocarcinoma induce biliary dysfunction following ischemia reperfusion (IR). The function of the intrahepatic biliary tree is regulated by both autocrine and paracrine factors. The aim of the study was to demonstrate that IR-induced damage of cholangiocytes is associated with altered expression of biliary angiogenic factors. Normal and bile duct ligation rats underwent 24-h sham or hepatic reperfusion after 30 min of transient occlusion of the hepatic artery (HAIR) or portal vein (PVIR) before collecting liver blocks and cholangiocyte RNA or protein. We evaluated liver histology, biliary apoptosis, proliferation and expression of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2 in liver sections and isolated small and large cholangiocytes. Normal rat intrahepatic cholangiocyte cultures (NRICC) were maintained under standard conditions in normoxic or under a hypoxic atmosphere for 4 h and then transferred to normal conditions for selected times. Subsequently, we measured changes in biliary proliferation and apoptosis and the expression of VEGF-A/C and VEGFR-2/3. In vivo, HAIR (but not PVIR) induced damage of large bile ducts and decreased proliferation and secretin-stimulated cAMP levels. HAIR-induced damage of large bile ducts was associated with increased expression of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2. In vitro, under hypoxic conditions, there was increased apoptosis and reduced proliferation of NRICC concomitant with enhanced expression of VEGF-A/C and VEGFR-2/3. The functional damage of large bile ducts by HAIR and hypoxia is associated with increased expression of angiogenic factors in small cholangiocytes, presumably due to a compensatory mechanism in response to biliary damage. PMID:26451003

  15. Ischemia reperfusion of the hepatic artery induces the functional damage of large bile ducts by changes in the expression of angiogenic factors.

    PubMed

    Mancinelli, Romina; Glaser, Shannon; Francis, Heather; Carpino, Guido; Franchitto, Antonio; Vetuschi, Antonella; Sferra, Roberta; Pannarale, Luigi; Venter, Julie; Meng, Fanyin; Alpini, Gianfranco; Onori, Paolo; Gaudio, Eugenio

    2015-12-01

    Liver transplantation and cholangiocarcinoma induce biliary dysfunction following ischemia reperfusion (IR). The function of the intrahepatic biliary tree is regulated by both autocrine and paracrine factors. The aim of the study was to demonstrate that IR-induced damage of cholangiocytes is associated with altered expression of biliary angiogenic factors. Normal and bile duct ligation rats underwent 24-h sham or hepatic reperfusion after 30 min of transient occlusion of the hepatic artery (HAIR) or portal vein (PVIR) before collecting liver blocks and cholangiocyte RNA or protein. We evaluated liver histology, biliary apoptosis, proliferation and expression of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2 in liver sections and isolated small and large cholangiocytes. Normal rat intrahepatic cholangiocyte cultures (NRICC) were maintained under standard conditions in normoxic or under a hypoxic atmosphere for 4 h and then transferred to normal conditions for selected times. Subsequently, we measured changes in biliary proliferation and apoptosis and the expression of VEGF-A/C and VEGFR-2/3. In vivo, HAIR (but not PVIR) induced damage of large bile ducts and decreased proliferation and secretin-stimulated cAMP levels. HAIR-induced damage of large bile ducts was associated with increased expression of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2. In vitro, under hypoxic conditions, there was increased apoptosis and reduced proliferation of NRICC concomitant with enhanced expression of VEGF-A/C and VEGFR-2/3. The functional damage of large bile ducts by HAIR and hypoxia is associated with increased expression of angiogenic factors in small cholangiocytes, presumably due to a compensatory mechanism in response to biliary damage.

  16. Nanoscale hepatoprotective herbal decoction attenuates hepatic stellate cell activity and chloroform-induced liver damage in mice.

    PubMed

    Huang, Sherry; Chang, Shu-Jen; Yang, Miffy; Chen, Justin Jin-Ching; Chang, Walter H

    2011-01-01

    San-Huang-Xie-Xin-Tang (SHXXT) decoction, a traditional Chinese medicine containing Rhei rhizome, Coptidis rhizome, and Scutellariae radix, is widely used in hepatoprotective therapy. However, preparation of the decoction requires addition of boiling water that causes loss of numerous effective components. To improve the bioavailability of the decoction, nanoscale SHXXT was developed. Chloroform-induced liver injury and hepatic stellate cell activity in mice were used to demonstrate the hepatoprotective characteristics of nanoscale SHXXT decoction. Liver/body weight ratio and serum aspartate and alanine aminotranferase levels were recovered by the nanoscale SHXXT. TIMP-1 gene expression was inhibited and MMP-2 gene expression was accelerated in activated hepatic stellate cells. Nanoscale SHXXT decoction prepared in room temperature water could have preserved hepatoprotective ability. The results of this study indicate that nanoscale SHXXT could be extracted easily. The simple preparation of this herbal decoction is more convenient and energy-efficient.

  17. 17β estradiol induced ROS generation, DNA damage and enzymatic responses in the hepatic tissue of Japanese sea bass.

    PubMed

    Thilagam, Harikrishnan; Gopalakrishnan, Singaram; Qu, Hai-Dong; Bo, Jun; Wang, Ke-Jian

    2010-10-01

    The importance of endocrine disrupting chemicals and their effects on fish has been documented in recent years. However, little is known about whether the estrogenic compound 17β estradiol (E2) causes oxidative stress in the hepatic tissue of fish. Therefore, this work tested the hypothesis that E2 might cause oxidative stress in the Japanese sea bass Lateolabrax japonicus liver. To test this hypothesis, its effects on reactive oxygen species (ROS) production, DNA damage, antioxidants and biotransformation enzyme were investigated in two different size groups (fingerling and juvenile groups) following 30 days exposure. Results showed that there was a good relationship between the E2 exposure concentration, plasma E2 level and ROS generation. In addition ROS production correlated negatively with 7-ethoxyresorufin-O-deethylase activity and positively with DNA damage and lipid peroxidation (LPO). Antioxidant enzymes such as superoxide dismutase and catalase did not show any significant relation with ROS, LPO and DNA damage. In contrast, glutathione mediated enzymes showed a good relationship with the above parameters suggesting that the glutathione system in fish might be responsible for protection against the impact of E2 and also indicating a possible adaptive response during exposure periods. In addition, it was observed that fingerling was more susceptible to E2 exposure than juvenile fish. The present study provided strong evidence that the ROS level increased significantly in the liver of E2 exposed fish, and that ROS might serve as a biomarker to indicate estrogen contamination.

  18. Antioxidative Role of Hatikana (Leea macrophylla Roxb.) Partially Improves the Hepatic Damage Induced by CCl4 in Wistar Albino Rats.

    PubMed

    Akhter, Samina; Rahman, Md Atiar; Aklima, Jannatul; Hasan, Md Rakibul; Chowdhury, J M Kamirul Hasan

    2015-01-01

    This research investigated the protective role of Leea macrophylla extract on CCl4-induced acute liver injury in rats. Different fractions of Leea macrophylla (Roxb.) crude extract were subjected to analysis for antioxidative effects. Rats were randomly divided into four groups as normal control, hepatic control, and reference control (silymarin) group and treatment group. Evaluations were made for the effects of the fractions on serum enzymes and biochemical parameters of CCl4-induced albino rat. Histopathological screening was also performed to evaluate the changes of liver tissue before and after treatment. Different fractions of Leea macrophylla showed very potent 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effect, FeCl3 reducing effect, superoxide scavenging effect, and iron chelating effect. Carbon tetrachloride induction increased the level of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) and other biochemical parameters such as lipid profiles, total protein, and CK-MB. In contrast, treatment of Leea macrophylla reduced the serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) activities as well as biochemical parameters activities. L. macrophylla partially restored the lipid profiles, total protein, and CK-MB. Histopathology showed the treated liver towards restoration. Results evidenced that L. macrophylla can be prospective source of hepatic management in liver injury.

  19. Antioxidative Role of Hatikana (Leea macrophylla Roxb.) Partially Improves the Hepatic Damage Induced by CCl4 in Wistar Albino Rats

    PubMed Central

    Akhter, Samina; Rahman, Md. Atiar; Aklima, Jannatul; Hasan, Md. Rakibul; Hasan Chowdhury, J. M. Kamirul

    2015-01-01

    This research investigated the protective role of Leea macrophylla extract on CCl4-induced acute liver injury in rats. Different fractions of Leea macrophylla (Roxb.) crude extract were subjected to analysis for antioxidative effects. Rats were randomly divided into four groups as normal control, hepatic control, and reference control (silymarin) group and treatment group. Evaluations were made for the effects of the fractions on serum enzymes and biochemical parameters of CCl4-induced albino rat. Histopathological screening was also performed to evaluate the changes of liver tissue before and after treatment. Different fractions of Leea macrophylla showed very potent 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effect, FeCl3 reducing effect, superoxide scavenging effect, and iron chelating effect. Carbon tetrachloride induction increased the level of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) and other biochemical parameters such as lipid profiles, total protein, and CK-MB. In contrast, treatment of Leea macrophylla reduced the serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) activities as well as biochemical parameters activities. L. macrophylla partially restored the lipid profiles, total protein, and CK-MB. Histopathology showed the treated liver towards restoration. Results evidenced that L. macrophylla can be prospective source of hepatic management in liver injury. PMID:26221590

  20. Correlations of Gut Microbial Community Shift with Hepatic Damage and Growth Inhibition of Carassius auratus Induced by Pentachlorophenol Exposure.

    PubMed

    Kan, Haifeng; Zhao, Fuzheng; Zhang, Xu-Xiang; Ren, Hongqiang; Gao, Shixiang

    2015-10-06

    Goldfish (Carassius auratus) were exposed to 0-100 μg/L pentachlorophenol (PCP) for 28 days to investigate the correlations of fish gut microbial community shift with the induced toxicological effects. PCP exposure caused accumulation of PCP in the fish intestinal tract in a time- and dose-dependent manner, while hepatic PCP reached the maximal level after a 21 day exposure. Under the relatively higher PCP stress, the fish body weight and liver weight were reduced and hepatic CAT and SOD activities were inhibited, demonstrating negative correlations with the PCP levels in liver and gut content (R < -0.5 and P < 0.05 each). Pyrosequencing of the 16S rRNA gene indicated that PCP exposure increased the abundance of Bacteroidetes in the fish gut. Within the Bacteroidetes phylum, the Bacteroides genus had the highest abundance, which was significantly correlated with PCP exposure dosage and duration (R > 0.5 and P < 0.05 each). Bioinformatic analysis revealed that Bacteroides showed quantitatively negative correlations with Chryseobacterium, Microbacterium, Arthrobacter, and Legionella in the fish gut, and the Bacteroidetes abundance, Bacteroides abundance, and Firmicutes/Bacteroidetes ratio played crucial roles in the reduction of body weight and liver weight under PCP stress. The results may extend our knowledge regarding the roles of gut microbiota in ecotoxicology.

  1. Tetrachloro-p-benzoquinone induces hepatic oxidative damage and inflammatory response, but not apoptosis in mouse: The prevention of curcumin

    SciTech Connect

    Xu, Demei; Hu, Lihua; Su, Chuanyang; Xia, Xiaomin; Zhang, Pu; Fu, Juanli; Wang, Wenchao; Xu, Duo; Du, Hong; Hu, Qiuling; Song, Erqun; Song, Yang

    2014-10-15

    This study investigated the protective effects of curcumin on tetrachloro-p-benzoquinone (TCBQ)-induced hepatotoxicity in mice. TCBQ-treatment causes significant liver injury (the elevation of serum AST and ALT activities, histopathological changes in liver section including centrilobular necrosis and inflammatory cells), oxidative stress (the elevation of TBAR level and the inhibition of SOD and catalase activities) and inflammation (up-regulation of iNOS, COX-2, IL-1β, IL-6, TNF-α and NF-κB). However, these changes were alleviated upon pretreatment with curcumin. Interestingly, TCBQ has no effect on caspase family genes or B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X (Bax) protein expressions, which implied that TCBQ-induced hepatotoxicity is independent of apoptosis. Moreover, curcumin was shown to induce phase II detoxifying/antioxidant enzymes HO-1 and NQO1 through the activation of nuclear factor erythroid-derived 2-like 2 (Nrf2). In summary, the protective mechanisms of curcumin against TCBQ-induced hepatoxicity may be related to the attenuation of oxidative stress, along with the inhibition of inflammatory response via the activation of Nrf2 signaling. - Highlights: • TCBQ-intoxication significantly increased AST and ALT activities. • TCBQ-intoxication induced oxidative stress in mice liver. • TCBQ-intoxication induced inflammatory response in mice liver. • TCBQ-intoxication induced hepatotoxicity is independent of apoptosis. • Curcumin relieved TCBQ-induced liver damage remarkably.

  2. Hepatoprotective effects of Lycium chinense Miller fruit and its constituent betaine in CCl4-induced hepatic damage in rats.

    PubMed

    Ahn, Meejung; Park, Jong Sang; Chae, Sungwook; Kim, Seungjoon; Moon, Changjong; Hyun, Jin Won; Shin, Taekyun

    2014-07-01

    The hepatoprotective activities of Lycium chinense Miller (LC) fruit extract and its component betaine were investigated under carbon tetrachloride (CCl4)-induced hepatotoxicity in rats. The treatment of LC fruit extract significantly suppressed the increase of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the sera of CCl4 injured rats, and restored the decreased levels of anti-oxidant enzymes such as total antioxidant capacity (TAC), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and suppressed the expression of inflammatory mediators including inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-1 and -2. To visualize the potential activity of betaine, a component of LC fruit, betaine was substituted for LC extract in CCl4 injured rats. The biochemical profile in CCl4 injured rats co-treated with betaine matched those of LC fruit treated CCl4 injured rats. The ameliorative effects of LC extract, as well as betaine, were also confirmed by histopathological examination. Collectively, the present findings imply that LC fruit, via its component betaine, mitigate CCl4-induced hepatic injury by increasing antioxidative activity and decreasing inflammatory mediators including iNOS and COX-1/COX-2.

  3. Supplementation of coconut oil from different sources to the diet induces cellular damage and rapid changes in fatty acid composition of chick liver and hepatic mitochondria.

    PubMed

    Gil-Villarino, A; Torres, M I; Zafra, M F; García-Peregrín, E

    1997-07-01

    Supplementation of 20% coconut oil from two commercial sources pharmaceutical ("Pharmacy") and cooking ("Pastry") use, to the chick diet for 14 days produced a clear damage to the hepatic mitochondria, accompanied by an accumulation of glycogen and lipid droplets in the hepatocyte cytoplasm. These effects may be accounted for the high proportion of fat supplemented to the diets (20%). Pharmacy coconut oil induced a high percentage of cellular death when administered for 14 days. Fatty acid profiles in liver and hepatic mitochondria rapidly changed (24 hr) after both coconut oils supplementation to the diet. The accumulation of shorter chain fatty acids (12:0 and 14:0) was always higher after Pharmacy than after Pastry diet feeding. This fact may contribute, at least in part, to the cellular damage mentioned above especially after Pharmacy diet feeding. Mitochondrial ratios of saturated/unsaturated and saturated/polyunsaturated fatty acids rapidly changed in parallel to these ratios in both diets. Most of the mitochondrial parameters measured tend to recuperate the control values when diets were supplied for 5-14 days. Nevertheless, the maintenance of the mentioned ratios after 14-days Pharmacy diet feeding at significantly higher levels than those observed in control, seems to suggest the lack of the homeostatic mechanism in these membranes and could be also related with the high percentage of cellular death observed after this dietary manipulation.

  4. [Amoxicillin-induced hepatitis].

    PubMed

    Oxlund, Jakob; Ferguson, Alan Hamilton

    2011-06-27

    Amoxicillin with and without clavulanic acid is a widely used antibiotic in adults and children alike. The drug is used prophylactically as well as therapeutically. In Denmark, it has not been described that amoxicillin alone can lead to hepatitis. In literature often referenced by Danish physicians (medicin.dk and Lægemiddelkataloget), hepatotoxicity is not listed as a side effect. However, in the present case, a 61 year-old male who suffered a tick bite and was treated prophylactically with amoxicillin without clavulanic acid presented with pharmacologically induced hepatitis 20 days after treatment.

  5. Hepatoprotective Activity of Methanolic Extract of Bauhinia purpurea Leaves against Paracetamol-Induced Hepatic Damage in Rats

    PubMed Central

    Yahya, F.; Mamat, S. S.; Kamarolzaman, M. F. F.; Seyedan, A. A.; Jakius, K. F.; Mahmood, N. D.; Shahril, M. S.; Suhaili, Z.; Mohtarrudin, N.; Susanti, D.; Somchit, M. N.; Teh, L. K.; Salleh, M. Z.; Zakaria, Z. A.

    2013-01-01

    In an attempt to further establish the pharmacological properties of Bauhinia purpurea (Fabaceae), hepatoprotective potential of methanol extract of B. purpurea leaves (MEBP) was investigated using the paracetamol- (PCM-) induced liver toxicity in rats. Five groups of rats (n = 6) were used and administered orally once daily with 10% DMSO (negative control), 200 mg/kg silymarin (positive control), or MEBP (50, 250, and 500 mg/kg) for 7 days, followed by the hepatotoxicity induction using paracetamol (PCM). The blood samples and livers were collected and subjected to biochemical and microscopical analysis. The extract was also subjected to antioxidant study using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay with the total phenolic content (TPC) also determined. From the histological observation, lymphocyte infiltration and marked necrosis were observed in PCM-treated groups (negative control), whereas maintenance of the normal hepatic structural was observed in group pretreated with silymarin and MEBP. Hepatotoxic rats pretreated with silymarin or MEBP exhibited significant decrease (P < 0.05) in ALT and AST enzyme level. Moreover, the extract also exhibited antioxidant activity and contained high TPC. In conclusion, MEBP exerts potential hepatoprotective activity that could be partly attributed to its antioxidant activity and high phenolic content and thus warrants further investigation. PMID:23853662

  6. The involvement of Nrf2 in the protective effects of diallyl disulfide on carbon tetrachloride-induced hepatic oxidative damage and inflammatory response in rats.

    PubMed

    Lee, In-Chul; Kim, Sung-Hwan; Baek, Hyung-Seon; Moon, Changjong; Kang, Seong-Soo; Kim, Sung-Ho; Kim, Yun-Bae; Shin, In-Sik; Kim, Jong-Choon

    2014-01-01

    This study investigated the potential effect of diallyl disulfide (DADS) against carbon tetrachloride (CCl4)-induced oxidative hepatic damage and inflammatory response in rat liver. DADS at doses of 50 and 100 mg/kg/day was administered orally once daily for 5 days, prior to CCl4 administration. Pretreatment with DADS attenuated CCl4-induced elevated serum transaminase activities and histopathological alterations in liver. It prevented the hepatocellular apoptotic changes with induction of Bcl-2-associated X (Bax), cytochrome c, and caspase-3 caused by CCl4. An increase in the nuclear translocation of nuclear factor-kappaB (NF-κB) and phosphorylation of I kappaB alpha (IκBα) was observed in the livers of CCl4-treated rats that coincided with induction of inflammatory mediators or cytokines. In contrast, DADS inhibited NF-κB translocation and IκBα phosphorylation, and that subsequently decreased inflammatory mediators. Furthermore, DADS prevented CCl4-induced depletion of cytosolic nuclear factor E2-related factor 2 (Nrf2) and suppression of nuclear translocation of Nrf2, which, in turn, up-regulated phase II/antioxidant enzyme activities. Taken together, these results demonstrate that DADS increases the expression of phase II/antioxidant enzymes and simultaneously decreases the expression of inflammatory mediators in CCl4-induced liver injury. These findings indicate that DADS induces antioxidant defense mechanism by activating Nrf2 pathway and reduces inflammatory response by inhibiting NF-κB activation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Previous physical exercise alters the hepatic profile of oxidative-inflammatory status and limits the secondary brain damage induced by severe traumatic brain injury in rats.

    PubMed

    de Castro, Mauro Robson Torres; Ferreira, Ana Paula de Oliveira; Busanello, Guilherme Lago; da Silva, Luís Roberto Hart; da Silveira Junior, Mauro Eduardo Porto; Fiorin, Fernando da Silva; Arrifano, Gabriela; Crespo-López, Maria Elena; Barcelos, Rômulo Pillon; Cuevas, María J; Bresciani, Guilherme; González-Gallego, Javier; Fighera, Michele Rechia; Royes, Luiz Fernando Freire

    2017-09-01

    An early inflammatory response and oxidative stress are implicated in the signal transduction that alters both hepatic redox status and mitochondrial function after traumatic brain injury (TBI). Peripheral oxidative/inflammatory responses contribute to neuronal dysfunction after TBI Exercise training alters the profile of oxidative-inflammatory status in liver and protects against acute hyperglycaemia and a cerebral inflammatory response after TBI. Approaches such as exercise training, which attenuates neuronal damage after TBI, may have therapeutic potential through modulation of responses by metabolic organs. The vulnerability of the body to oxidative/inflammatory in TBI is significantly enhanced in sedentary compared to physically active counterparts. Although systemic responses have been described after traumatic brain injury (TBI), little is known regarding potential interactions between brain and peripheral organs after neuronal injury. Accordingly, we aimed to investigate whether a peripheral oxidative/inflammatory response contributes to neuronal dysfunction after TBI, as well as the prophylactic role of exercise training. Animals were submitted to fluid percussion injury after 6 weeks of swimming training. Previous exercise training increased mRNA expression of X receptor alpha and ATP-binding cassette transporter, and decreased inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α and interleukin (IL)-6 expression per se in liver. Interestingly, exercise training protected against hepatic inflammation (COX-2, iNOS, TNF-α and IL-6), oxidative stress (decreases in non-protein sulfhydryl and glutathione, as well as increases in 2',7'-dichlorofluorescein diacetate oxidation and protein carbonyl), which altered hepatic redox status (increases in myeloperoxidase and superoxide dismutase activity, as well as inhibition of catalase activity) mitochondrial function (decreases in methyl-tetrazolium and Δψ, as well as

  8. Antioxidants of Phyllanthus emblica L. Bark Extract Provide Hepatoprotection against Ethanol-Induced Hepatic Damage: A Comparison with Silymarin

    PubMed Central

    Chaphalkar, Renuka; Apte, Kishori G.; Talekar, Yogesh

    2017-01-01

    Phyllanthus emblica L. (amla) has been used in Ayurveda as a potent rasayan for treatment of hepatic disorders. Most of the pharmacological studies, however, are largely focused on PE fruit, while the rest of the parts of PE, particularly, bark, remain underinvestigated. Therefore, we aimed to investigate the protective effect of the hydroalcoholic extract of Phyllanthus emblica bark (PEE) in ethanol-induced hepatotoxicity model in rats. Total phenolic, flavonoid, and tannin content and in vitro antioxidant activities were determined by using H2O2 scavenging and ABTS decolorization assays. Our results showed that PEE was rich in total phenols (99.523 ± 1.91 mg GAE/g), total flavonoids (389.33 ± 1.25 mg quercetin hydrate/g), and total tannins (310 ± 0.21 mg catechin/g), which clearly support its strong antioxidant potential. HPTLC-based quantitative analysis revealed the presence of the potent antioxidants gallic acid (25.05 mg/g) and ellagic acid (13.31 mg/g). Moreover, one-month PEE treatment (500 and 1000 mg/kg, p.o.) followed by 30-day 70% ethanol (10 mL/kg) administration showed hepatoprotection as evidenced by significant restoration of ALT (p < 0.01), AST (p < 0.001), ALP (p < 0.05), and TP (p < 0.001) and further confirmed by liver histopathology. PEE-mediated hepatoprotection could be due to its free radical scavenging and antioxidant activity that may be ascribed to its antioxidant components, namely, ellagic acid and gallic acid. Thus, the results of the present study support the therapeutic claims made in Ayurveda about Phyllanthus emblica. PMID:28168009

  9. Antioxidants of Phyllanthus emblica L. Bark Extract Provide Hepatoprotection against Ethanol-Induced Hepatic Damage: A Comparison with Silymarin.

    PubMed

    Chaphalkar, Renuka; Apte, Kishori G; Talekar, Yogesh; Ojha, Shreesh Kumar; Nandave, Mukesh

    2017-01-01

    Phyllanthus emblica L. (amla) has been used in Ayurveda as a potent rasayan for treatment of hepatic disorders. Most of the pharmacological studies, however, are largely focused on PE fruit, while the rest of the parts of PE, particularly, bark, remain underinvestigated. Therefore, we aimed to investigate the protective effect of the hydroalcoholic extract of Phyllanthus emblica bark (PEE) in ethanol-induced hepatotoxicity model in rats. Total phenolic, flavonoid, and tannin content and in vitro antioxidant activities were determined by using H2O2 scavenging and ABTS decolorization assays. Our results showed that PEE was rich in total phenols (99.523 ± 1.91 mg GAE/g), total flavonoids (389.33 ± 1.25 mg quercetin hydrate/g), and total tannins (310 ± 0.21 mg catechin/g), which clearly support its strong antioxidant potential. HPTLC-based quantitative analysis revealed the presence of the potent antioxidants gallic acid (25.05 mg/g) and ellagic acid (13.31 mg/g). Moreover, one-month PEE treatment (500 and 1000 mg/kg, p.o.) followed by 30-day 70% ethanol (10 mL/kg) administration showed hepatoprotection as evidenced by significant restoration of ALT (p < 0.01), AST (p < 0.001), ALP (p < 0.05), and TP (p < 0.001) and further confirmed by liver histopathology. PEE-mediated hepatoprotection could be due to its free radical scavenging and antioxidant activity that may be ascribed to its antioxidant components, namely, ellagic acid and gallic acid. Thus, the results of the present study support the therapeutic claims made in Ayurveda about Phyllanthus emblica.

  10. Phytochemical analysis and hepatoprotective properties of Tinospora cordifolia against carbon tetrachloride-induced hepatic damage in rats.

    PubMed

    Kavitha, B T; Shruthi, S D; Rai, S Padmalatha; Ramachandra, Y L

    2011-06-01

    The present study was conducted to evaluate the hepatoprotective activity of different extracts of Tinospora cordifolia against carbon tetrachloride (CCl4) induced liver damage in rats. The pet ether, ethanol and aqueous extracts of various parts of the plant such as leaf, stem and root were tested at the dose of 200mg/kg body weight orally using Wistar albino rats and Silymarin was given as reference standard. Ethanolic extract of all the parts showed significant hepatoprotective effect by reduction in serum enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and total bilirubin (TBL) in the selected model which is followed by aqueous and pet ether extracts. The chemical constituents reported from the plant belong to different classes such as alkaloids, flavanoids, glycosides, steroids, terpenoids, phenolics and saponins. The overall experimental results suggests that the biologically active phytoconstituents such as flavonoids, alkaloids present in the ethanolic extract of plant Tinospora cordifolia, may be responsible for the significant hepatoprotective activity. Therefore, results justify the use of Tinospora cordifolia as a hepatoprotective agent.

  11. Iron-Mediated Lysosomal Membrane Permeabilization in Ethanol-Induced Hepatic Oxidative Damage and Apoptosis: Protective Effects of Quercetin.

    PubMed

    Li, Yanyan; Chen, Man; Xu, Yanyan; Yu, Xiao; Xiong, Ting; Du, Min; Sun, Jian; Liu, Liegang; Tang, Yuhan; Yao, Ping

    2016-01-01

    Iron, in its free ferrous states, can catalyze Fenton reaction to produce OH∙, which is recognized as a crucial role in the pathogenesis of alcoholic liver diseases (ALD). As a result of continuous decomposition of iron-containing compounds, lysosomes contain a pool of redox-active iron. To investigate the important role of intralysosomal iron in alcoholic liver injury and the potential protection of quercetin, male C57BL/6J mice fed by Lieber De Carli diets containing ethanol (30% of total calories) were cotreated by quercetin or deferoxamine (DFO) for 15 weeks and ethanol-incubated mice primary hepatocytes were pretreated with FeCl3, DFO, and bafilomycin A1 at their optimal concentrations and exposure times. Chronic ethanol consumption caused an evident increase in lysosomal redox-active iron accompanying sustained oxidative damage. Iron-mediated ROS could trigger lysosomal membrane permeabilization (LMP) and subsequent mitochondria apoptosis. The hepatotoxicity was attenuated by reducing lysosomal iron while being exacerbated by escalating lysosomal iron. Quercetin substantially alleviated the alcoholic liver oxidative damage and apoptosis by decreasing lysosome iron and ameliorating iron-mediated LMP, which provided a new prospective of the use of quercetin against ALD.

  12. Iron-Mediated Lysosomal Membrane Permeabilization in Ethanol-Induced Hepatic Oxidative Damage and Apoptosis: Protective Effects of Quercetin

    PubMed Central

    Li, Yanyan; Chen, Man; Xu, Yanyan; Yu, Xiao; Xiong, Ting; Du, Min; Sun, Jian; Liu, Liegang; Tang, Yuhan; Yao, Ping

    2016-01-01

    Iron, in its free ferrous states, can catalyze Fenton reaction to produce OH∙, which is recognized as a crucial role in the pathogenesis of alcoholic liver diseases (ALD). As a result of continuous decomposition of iron-containing compounds, lysosomes contain a pool of redox-active iron. To investigate the important role of intralysosomal iron in alcoholic liver injury and the potential protection of quercetin, male C57BL/6J mice fed by Lieber De Carli diets containing ethanol (30% of total calories) were cotreated by quercetin or deferoxamine (DFO) for 15 weeks and ethanol-incubated mice primary hepatocytes were pretreated with FeCl3, DFO, and bafilomycin A1 at their optimal concentrations and exposure times. Chronic ethanol consumption caused an evident increase in lysosomal redox-active iron accompanying sustained oxidative damage. Iron-mediated ROS could trigger lysosomal membrane permeabilization (LMP) and subsequent mitochondria apoptosis. The hepatotoxicity was attenuated by reducing lysosomal iron while being exacerbated by escalating lysosomal iron. Quercetin substantially alleviated the alcoholic liver oxidative damage and apoptosis by decreasing lysosome iron and ameliorating iron-mediated LMP, which provided a new prospective of the use of quercetin against ALD. PMID:27057276

  13. Noninvasive Monitoring of Hepatic Damage from Hepatitis C Virus Infection

    PubMed Central

    Alavez-Ramírez, J.; Fuentes-Allen, J. L.; López-Estrada, J.

    2011-01-01

    The mathematical model for the dynamics of the hepatitis C proposed in Avendaño et al. (2002), with four populations (healthy and unhealthy hepatocytes, the viral load of the hepatitis C virus, and T killer cells), is revised. Showing that the reduced model obtained by considering only the first three of these populations, known as basic model, has two possible equilibrium states: the uninfected one where viruses are not present in the individual, and the endemic one where viruses and infected cells are present. A threshold parameter (the basic reproductive virus number) is introduced, and in terms of it, the global stability of both two possible equilibrium states is established. Other central result consists in showing, by model numerical simulations, the feasibility of monitoring liver damage caused by HCV, avoiding unnecessary biopsies and the undesirable related inconveniences/imponderables to the patient; another result gives a mathematical modelling basis to recently developed techniques for the disease assessment based essentially on viral load measurements. PMID:21331263

  14. Zinc treatment prevents type 1 diabetes-induced hepatic oxidative damage, endoplasmic reticulum stress, and cell death, and even prevents possible steatohepatitis in the OVE26 mouse model: Important role of metallothionein.

    PubMed

    Liang, Tingting; Zhang, Quan; Sun, Weixia; Xin, Ying; Zhang, Zhiguo; Tan, Yi; Zhou, Shanshan; Zhang, Chi; Cai, Lu; Lu, Xuemian; Cheng, Mingliang

    2015-03-04

    Whether zinc is able to improve diabetes-induced liver injury remains unknown. Transgenic type 1 diabetic (OVE26) mice develop hyperglycemia at 3 weeks old; therefore therapeutic effect of zinc on diabetes-induced liver injury was investigated in OVE26 mice. Three-month old OVE26 and age-matched wild-type mice were treated by gavage with saline or zinc at 5mg/kg body-weight every other day for 3 months. Hepatic injury was examined by serum alanine aminotransferase (ALT) level with liver histopathological and biochemical changes. OVE26 mice at 6 months old showed significant increases in serum ALT level and hepatic oxidative damage, endoplasmic reticulum stress and associated cell death, mild inflammation, and fibrosis. However, all these hepatic morphological and functional changes were significantly prevented in 3-month zinc-treated OVE26 mice. Mechanistically, zinc treatment significantly increased hepatic metallothionein, a protein with known antioxidant activity, in both wild-type and OVE26 mice. These results suggest that there were significantly functional, structural and biochemical abnormalities in the liver of OVE26 diabetic mice at 6 months old; however, all these changes could be prevented with zinc treatment, which was associated with the upregulation of hepatic metallothionein expression.

  15. TOP1 and 2, polysaccharides from Taraxacum officinale, attenuate CCl(4)-induced hepatic damage through the modulation of NF-kappaB and its regulatory mediators.

    PubMed

    Park, Chung Mu; Youn, Hyun Joo; Chang, Hee Kyung; Song, Young Sun

    2010-05-01

    In this work, we estimate the inhibitory effect of two polysaccharides from Taraxacum officinale (TOP) on CCl(4)-induced oxidative stress and inflammation in Sprague-Dawley rats. TOP1 and 2 (304, 92 mg/kg bw) were administered for 7 days via a stomach sonde, and hepatitis was induced by a single dose of CCl(4) (50% CCl(4)/olive oil; 0.5 mL/kg bw) administration. CCl(4) significantly elevated serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities. Histopathological observation further revealed that CCl(4)-induced moderate levels of inflammatory cell infiltration, centrilobular fatty change, apoptosis, and necrosis. However, TOPs pretreatment markedly decreased AST and ALT activities as well as hepatic lesions. TOPs also increased free radical scavenging activity, as exhibited by a lowered TBARS concentration. TOPs pretreatment also reversed other hepatitis-associated symptoms, including GSH depletion, inhibited anti-oxidative enzyme activities, up-regulation of NF-kappaB and increased expression of its regulatory inflammatory mediators, such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-alpha, and interleukin (IL)-1beta. These results suggest that TOPs have a hepatoprotective effect by modulating inflammatory responses and ameliorating oxidative stress.

  16. Hepatitis

    MedlinePlus

    ... CPR: A Real Lifesaver Kids Talk About: Coaches Hepatitis KidsHealth > For Kids > Hepatitis Print A A A ... have liver damage because of it. What Is Hepatitis? Hepatitis is an inflammation (say: in-fluh-MAY- ...

  17. Black cohosh-induced hepatitis.

    PubMed

    Nisbet, Bruce C; O'Connor, Robert E

    2007-11-01

    Herbal products are widely used by American consumers. Herbal remedies are not regulated by the Food and Drug Administration, but they are not immune from serious medication side-effects. We report the case of a 50-year-old woman who presented with fatigue and right upper quadrant pain. The patient had begun the popular postmenopausal herbal remedy black cohosh two weeks prior to presentation. Laboratory results revealed acute hepatitis. After other causes of liver failure were ruled out, the patient was diagnosed with black cohosh-induced hepatitis. She recovered uneventfully following withdrawal of the herb. There are five prior reports of hepatitis or hepatic failure likely caused by the herbal remedy black cohosh in the English literature. This case illustrates the importance of a broad differential diagnosis for abdominal pain and highlights the importance of a complete medication list, including herbs.

  18. Aloe-induced Toxic Hepatitis

    PubMed Central

    Yang, Ha Na; Kim, Young Mook; Kim, Byoung Ho; Sohn, Kyoung Min; Choi, Myung Jin; Choi, Young Hee

    2010-01-01

    Aloe has been widely used in phytomedicine. Phytomedicine describes aloe as a herb which has anti-inflammatory, anti-proliferative, anti-aging effects. In recent years several cases of aloe-induced hepatotoxicity were reported. But its pharmacokinetics and toxicity are poorly described in the literature. Here we report three cases with aloe-induced toxic hepatitis. A 57-yr-old woman, a 62-yr-old woman and a 55-yr-old woman were admitted to the hospital for acute hepatitis. They had taken aloe preparation for months. Their clinical manifestation, laboratory findings and histologic findings met diagnostic criteria (RUCAM scale) of toxic hepatitis. Upon discontinuation of the oral aloe preparations, liver enzymes returned to normal level. Aloe should be considered as a causative agent in hepatotoxicity. PMID:20191055

  19. Reduced ATM kinase activity and an attenuated p53 response to DNA damage in carcinogen-induced preneoplastic hepatic lesions in the rat.

    PubMed

    Silins, I; Finnberg, N; Ståhl, A; Högberg, J; Stenius, U

    2001-12-01

    In previous studies we have demonstrated that the p53 response to DNA damage in preneoplastic liver lesions, referred to as enzyme-altered foci (EAF), is attenuated. In the present investigation comparative quantitative RT-PCR revealed no major difference in the p53 mRNA levels in EAF and non-EAF tissue. When CoCl(2) was employed to induce hypoxia-inducible factor (HIF-1alpha), both non-EAF and EAF hepatocytes readily accumulated p53, whereas EAF hepatocytes did not accumulate p53 upon treatment with diethylnitrosamine (DEN). The p53 response was also induced in EAF hepatocytes by the inhibitor of nuclear export, leptomycin B. An inhibitor of DNA-dependent protein kinase (DNA-PK) and ataxia telangiectasia mutated (ATM), wortmannin, blocked the DEN-induced p53 response in non-EAF hepatocytes. Assay of kinase activity in immunoprecipitated material from EAF and non-EAF tissue revealed attenuated ATM activity in EAF. Immunohistological and western blot analysis of the level of ATM protein was in agreement with the activity measurements and no phosphorylation of Ser15 in p53 was detected in EAF tissue 24 h after a challenging dose of DEN. Taken together with previously published data, these data indicate selective attenuation of the DNA damage pathway in EAF hepatocytes. Down-regulation of DNA damage-induced and ATM-mediated phosphorylation of p53 may confer a growth advantage on EAF hepatocytes.

  20. DNA Damage Induced Neuronal Death

    DTIC Science & Technology

    1999-10-01

    Experiments are proposed to examine the molecular mechanism by which mustard chemical warfare agents induce neuronal cell death . DNA damage is the...proposed underlying mechanism of mustard-induced neuronal cell death . We propose a novel research strategy to test this hypothesis by using mice with...perturbed DNA repair to explore the relationship between mustard-induced DNA damage and neuronal cell death . Initial in vitro studies (Years 1, 2 & 3

  1. Treatment with oligonol, a low-molecular polyphenol derived from lychee fruit, attenuates diabetes-induced hepatic damage through regulation of oxidative stress and lipid metabolism.

    PubMed

    Noh, Jeong Sook; Park, Chan Hum; Yokozawa, Takako

    2011-10-01

    We have identified the effects of oligonol, a low-molecular polyphenol derived from lychee fruit, on oxidative stress and lipid metabolism in a type 2 diabetic model. Oligonol was orally administered at 10 or 20 mg per kg body weight per d for 8 weeks to db/db mice, and its effects were compared with those of the vehicle in db/db and m/m mice. Serum and hepatic biochemical factors, and protein and mRNA expression related to lipid metabolism were measured. In the oligonol-administered group, there were significant reductions of reactive oxygen species (ROS), lipid peroxidation, and the TAG and total cholesterol concentrations in both the serum and liver. Additionally, oligonol attenuated oxidative stress through the inhibition of advanced glycation endproduct formation and its receptor expression. Furthermore, augmented expressions of NF-κBp65 and inducible NO synthase were down-regulated to the levels of m/m mice in the group treated with oligonol at 20 mg/kg. Regarding lipid metabolism, lower hepatic lipid resulted from the down-regulation of sterol regulatory element-binding protein-1 and its target gene of lipogenic enzymes in the liver of db/db mice. The present results suggest that oligonol has protective effects against ROS-related inflammation and excess lipid deposition in the type 2 diabetic liver.

  2. Male susceptibility to hepatic damage in acute uremia in rats.

    PubMed

    Golab, Fereshteh; Kadkhodaee, Mehri; Xu, Jie; Soleimani, Manoocher

    2011-07-01

    To evaluate the role of gender in hepatic oxidative stress response and production of inflammatory cytokines in acute uremia after bilateral nephrectomy. Published studies indicate that the severity of tissue damage in kidney, brain, or heart injury may differ according to gender. We recently demonstrated that acute renal failure after kidney injury or bilateral nephrectomy activates oxidative stress and causes damage to the liver. Male and female rats were subjected to bilateral nephrectomy and euthanized four hours later. Serum and liver tissues were collected and analyzed. To ascertain the role of testosterone and estrogen in hepatic oxidative stress, castration was carried out 15 days before bilateral nephrectomy. In some groups, animals were administrated 17-β-estradiol or vehicle for 2 weeks before bilateral nephrectomy. Hepatic oxidative stress was significantly pronounced in male rats as determined by increase in malondialdehyde (MDA) levels and decrease in total glutathione (GSH) contents. An increase in proinflammatory cytokine concentration was seen in male rats, whereas the antiinflammatory cytokine level was more elevated in females. Castration reduced hepatic oxidative stress and proinflammatory cytokine concentration, whereas exogenous estradiol after castration did not have an additional effect on these parameters. There is a gender difference with regard to the severity of hepatic oxidative stress and inflammatory response in acute uremia after bilateral nephrectomy, with female rats displaying significant protection relative to male rats. We suggest that sex hormones could play an important role in the severity of remote tissue damage in acute kidney failure. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Risperidone-induced cholestatic hepatitis.

    PubMed

    Krebs, S; Dormann, H; Muth-Selbach, U; Hahn, E G; Brune, K; Schneider, H T

    2001-01-01

    Risperidone, a widely used atypical and potent neuroleptic drug, is assumed to induce fewer hepatic side-effects than phenothiazine anti-psychotics. Recently, we observed a case of risperidone-induced cholestatic hepatotoxicity. A 37-year-old male developed a rapid increase in liver enzymes and cholestatic parameters after starting treatment with risperidone for paranoid psychosis. Work-up for other potential aetiologies was negative. The results of a percutaneous liver biopsy were consistent with drug-induced liver injury and cholestasis. Over the course of one month after the discontinuance of all anti-psychotic agents, the liver function test results returned to near-normal values. This observation supports the need to monitor cholestatic parameters in addition to liver function enzymes during initiation and the first weeks of risperidone intake.

  4. Hepatitis C virus and neurological damage

    PubMed Central

    Mathew, Shilu; Faheem, Muhammed; Ibrahim, Sara M; Iqbal, Waqas; Rauff, Bisma; Fatima, Kaneez; Qadri, Ishtiaq

    2016-01-01

    Chronic hepatitis C virus (HCV) infection exhibits a wide range of extrahepatic complications, affecting various organs in the human body. Numerous HCV patients suffer neurological manifestations, ranging from cognitive impairment to peripheral neuropathy. Overexpression of the host immune response leads to the production of immune complexes, cryoglobulins, as well as autoantibodies, which is a major pathogenic mechanism responsible for nervous system dysfunction. Alternatively circulating inflammatory cytokines and chemokines and HCV replication in neurons is another factor that severely affects the nervous system. Furthermore, HCV infection causes both sensory and motor peripheral neuropathy in the mixed cryoglobulinemia as well as known as an important risk aspect for stroke. These extrahepatic manifestations are the reason behind underlying hepatic encephalopathy and chronic liver disease. The brain is an apt location for HCV replication, where the HCV virus may directly wield neurotoxicity. Other mechanisms that takes place by chronic HCV infection due the pathogenesis of neuropsychiatric disorders includes derangement of metabolic pathways of infected cells, autoimmune disorders, systemic or cerebral inflammation and alterations in neurotransmitter circuits. HCV and its pathogenic role is suggested by enhancement of psychiatric and neurological symptoms in patients attaining a sustained virologic response followed by treatment with interferon; however, further studies are required to fully assess the impact of HCV infection and its specific antiviral targets associated with neuropsychiatric disorders. PMID:27134702

  5. The Paradoxical Effects of Different Hepatitis C Viral Loads on Host DNA Damage and Repair Abilities

    PubMed Central

    Li, Chia-Yang; Chiang, Chi-Shiun; Yu, Guann-Yi; Sakamoto, Naoya; Tu, Wen-Yu; Hsieh, Meng-Hsuan; Huang, Jee-Fu; Chuang, Wan-Long; Dai, Chia-Yen

    2017-01-01

    Hepatitis C virus (HCV)-induced hepatic stress is associated with increased oxidative DNA damage and has been implicated in hepatic inflammation. However, HCV infection and replication are uneven and vary among individual hepatocytes. To investigate the effect of the viral load on host DNA damage, we used an Enhanced Yellow Fluorescent Protein gene (EYFP)-tagged HCV virus to distinguish between HCV intracellular high viral load (HVL) cells and low viral load (LVL) cells. The cell sorting efficiency was confirmed by the high expression of the HCV polyprotein. We found DNA damage γ-H2AX foci in the HVL population. Comet assays demonstrated that HVL was related to the extent of the DNA strand breaks. Surprisingly, the DNA qPCR arrays and western blotting showed that the damage-related genes GPX2, MRE11, phospho-ATM, and OGG1 were significantly up-regulated in LVL cells but inversely down-regulated or consistently expressed in HVL cells. The colony survival assay to examine the repair abilities of these cells in response to irradiation showed that the LVL cells were more resistant to irradiation and had an increased ability to repair radiation-induced damage. This study found that intracellular viral loads drove cellular DNA damage levels but suppressed damage-related gene expression. However, the increase in damage-related gene expression in the LVL cells may be affected by ROS from the HVL cells. These findings provide new insights into the distinct DNA damage and repair responses resulting from different viral loads in HCV-infected cells. PMID:28052067

  6. The Paradoxical Effects of Different Hepatitis C Viral Loads on Host DNA Damage and Repair Abilities.

    PubMed

    Wang, Shu-Chi; Lai, Kuan-Ru; Li, Chia-Yang; Chiang, Chi-Shiun; Yu, Guann-Yi; Sakamoto, Naoya; Tu, Wen-Yu; Hsieh, Meng-Hsuan; Huang, Jee-Fu; Chuang, Wan-Long; Dai, Chia-Yen; Yu, Ming-Lung

    2017-01-01

    Hepatitis C virus (HCV)-induced hepatic stress is associated with increased oxidative DNA damage and has been implicated in hepatic inflammation. However, HCV infection and replication are uneven and vary among individual hepatocytes. To investigate the effect of the viral load on host DNA damage, we used an Enhanced Yellow Fluorescent Protein gene (EYFP)-tagged HCV virus to distinguish between HCV intracellular high viral load (HVL) cells and low viral load (LVL) cells. The cell sorting efficiency was confirmed by the high expression of the HCV polyprotein. We found DNA damage γ-H2AX foci in the HVL population. Comet assays demonstrated that HVL was related to the extent of the DNA strand breaks. Surprisingly, the DNA qPCR arrays and western blotting showed that the damage-related genes GPX2, MRE11, phospho-ATM, and OGG1 were significantly up-regulated in LVL cells but inversely down-regulated or consistently expressed in HVL cells. The colony survival assay to examine the repair abilities of these cells in response to irradiation showed that the LVL cells were more resistant to irradiation and had an increased ability to repair radiation-induced damage. This study found that intracellular viral loads drove cellular DNA damage levels but suppressed damage-related gene expression. However, the increase in damage-related gene expression in the LVL cells may be affected by ROS from the HVL cells. These findings provide new insights into the distinct DNA damage and repair responses resulting from different viral loads in HCV-infected cells.

  7. Chromium-induced toxic hepatitis.

    PubMed

    Lança, Sara; Alves, Amanda; Vieira, Ana Isabel; Barata, José; de Freitas, João; de Carvalho, Alvaro

    2002-12-01

    A clinical case of acute hepatitis in a patient undergoing an alternative medicine weight-reduction regimen is reported. Chromium polynicotinate had been ingested in combination with vegetable extracts over a 5-month period. Liver biopsy was compatible with toxic hepatitis and greatly elevated hepatic chromium levels were found (>10x normal). The clinical picture regressed following suspension of the medication.

  8. Mean platelet volume is an important predictor of hepatitis C but not hepatitis B liver damage.

    PubMed

    Eminler, Ahmet Tarik; Uslan, Mustafa Ihsan; Ayyildiz, Talat; Irak, Kader; Kiyici, Murat; Gurel, Selim; Dolar, Enver; Gulten, Macit; Nak, Selim Giray

    2015-09-01

    made according to fibrosis score, 101 patients were found to have early fibrosis (75.9%) and 32 have advanced fibrosis (24.1%). There was a statistically significant difference between the activity and fibrosis groups of the hepatitis C patients (P = 0.04 and P = 0.02, respectively). MPV values are more reliable in hepatitis C patients than hepatitis B for predicting the advanced damage in liver histology. This finding might be useful for the detection of early fibrosis and also starting early treatment, which is important in hepatitis C.

  9. Mean platelet volume is an important predictor of hepatitis C but not hepatitis B liver damage

    PubMed Central

    Eminler, Ahmet Tarik; Uslan, Mustafa Ihsan; Ayyildiz, Talat; Irak, Kader; Kiyici, Murat; Gurel, Selim; Dolar, Enver; Gulten, Macit; Nak, Selim Giray

    2015-01-01

    activity group (18.1%). In the evaluation made according to fibrosis score, 101 patients were found to have early fibrosis (75.9%) and 32 have advanced fibrosis (24.1%). There was a statistically significant difference between the activity and fibrosis groups of the hepatitis C patients (P = 0.04 and P = 0.02, respectively). Conclusion: MPV values are more reliable in hepatitis C patients than hepatitis B for predicting the advanced damage in liver histology. This finding might be useful for the detection of early fibrosis and also starting early treatment, which is important in hepatitis C. PMID:26759574

  10. A Dog Model for Acetaminophen-Induced Fulminant Hepatic Failure

    PubMed Central

    FRANCAVILLA, A.; MAKOWKA, L.; POLIMENO, L.; BARONE, M.; DEMETRIS, J.; PRELICH, J.; Van THIEL, D. H.; STARZL, T. E.

    2010-01-01

    The development of a large animal model of fulminant hepatic failure produced with acetaminophen that should be useful in the development and evaluation of potential medical therapies for the important clinical problem of fulminant hepatic failure is described. Acetaminophen in dimethyl sulfoxide (600 mg/ml) given as three subcutaneous injections, with the first dose (750 mg/kg body wt) being given at noon, the second dose (200 mg/kg body wt) being given 9 h later, and the third dose (200 mg/kg body wt) being given 24 h after the initial dose consistently produces fulminant hepatic failure in dogs. The dimethyl sulfoxide vehicle, injected intramuscularly, does not influence either animal survival or hepatic function in control-treated dogs. No deaths occur within the first 36 h. By 72 h after initial drug administration, the mortality is 90%. Histopathological and biochemical investigations demonstrate a high degree of hepatocellular necrosis in nonsurviving animals without appreciable damage to the kidneys, lungs, or heart. The drug schedule and preparation outlined avoids the administration of large volumes of vehicle and results in prolonged high levels of acetaminophen in the blood sufficient to induce severe hepatic injury. Ranitidine (120 mg/kg body wt i.m.) given 30 min before each acetaminophen dose significantly reduces the mortality and hepatic necrosis produced using this model. This model satisfies all criteria established by Miller et al. for the production of a suitable large animal model of fulminant acute hepatic failure. PMID:2910762

  11. Acute tinnitus and permanent audiovestibular damage after hepatitis B vaccination.

    PubMed

    DeJonckere, P H; de Surgères, G G

    2001-01-01

    Yeast-derived recombinant DNA hepatitis B vaccine usage has been widely accepted since the early 1990s, especially for high-risk patients. Severe adverse effects have been reported infrequently. Certain neurological complications raise concern for hepatitis B vaccine: central nervous system demyelination, acute myelitis, acute cerebellar ataxia, and various peripheral mononeuropathies. Case reports on tinnitus, hearing loss, and vestibular damage are extremely scarce. The case presented here concerns a professionally active nurse, born in 1953, with a medical history of progressive renal failure and hemodialysis. Eleven hours after a second injection of the hepatitis B vaccine Engerix B, an acute left-sided tinnitus occurred and, a few hours later, severe left hearing loss and intense vertigo. Tinnitus and the sensation of vertigo regressed fairly quickly, but the hearing loss and the vestibular paresis were permanent. Increased interpeak intervals on auditory brain responses and lack of recruitment suggested that the lesion probably is located at the level of cranial nerve VIII. From a medicolegal point of view, this audiovestibular damage had to be considered an accident at work and not as an occupational disease.

  12. Acute hepatitis induced by greater celandine (Chelidonium majus).

    PubMed

    Benninger, J; Schneider, H T; Schuppan, D; Kirchner, T; Hahn, E G

    1999-11-01

    The hepatotoxic potential of conventional drugs is well known, but herbal medicines are often assumed to be harmless. In the last 2 years, we have observed 10 cases of acute hepatitis induced by preparations of greater celandine (Chelidonium majus), which are frequently prescribed to treat gastric and biliary disorders. The course of hepatitis was mild to severe. Marked cholestasis was observed in 5 patients, but liver failure did not occur. Other possible causes of liver disease (viral, autoimmune, hereditary, alcohol, and secondary biliary) were excluded by laboratory tests and imaging procedures, and liver biopsy specimens were consistent with drug-induced damage. After discontinuation of greater celandine, rapid recovery was observed in all patients and liver enzyme levels returned to normal in 2-6 months. Unintentional rechallenge led to a second flare of hepatic inflammation in 1 patient. Greater celandine has to be added to the list of herbs capable of inducing acute (cholestatic) hepatitis. A significant proportion of unexplained cases of hepatitis may be caused by greater celandine.

  13. Stellate Cells Orchestrate Concanavalin A-Induced Acute Liver Damage.

    PubMed

    Rani, Richa; Tandon, Ashish; Wang, Jiang; Kumar, Sudhir; Gandhi, Chandrashekhar R

    2017-09-01

    Concanavalin A (ConA) causes immune cell-mediated liver damage, but the contribution of resident nonparenchymal cells (NPCs) is also evident. Hepatic stellate cells (HSCs) induce hepatic inflammation and immunological reactions; we therefore investigated their role in ConA-induced liver injury. ConA was administered i.v. to control or HSC-depleted mice; hepatic histopathology and cytokines/chemokines were determined after 6 hours. In vitro, effects of ConA-conditioned HSC medium on hepatocytes were determined. ConA induced inflammation, sinusoidal congestion, and extensive midzonal hepatocyte death in control mice, which were strongly minimized in HSC-depleted mice. CD4 and natural killer T cells and neutrophils were markedly reduced in ConA-treated HSC-depleted mice compared with control mice. The increase in cytokines/chemokines of hepatic injury was much higher in ConA-treated control mice than in HSC-depleted mice. ConA-treated HSCs showed increased expression of interferon-β, tumor necrosis factor-α, and CXCL1, induced oxidative stress in hepatocytes, and caused hepatocyte apoptosis. ConA induced nuclear translocation of interferon-regulatory factor-1 (IRF1) in hepatocytes in vivo, and ConA/HSC induced a similar effect in cultured hepatocytes. IRF1-knockout mice were resistant to ConA-induced liver damage, and anti-interferon β antibody mitigated ConA/HSC-induced injury. In HSC-NPC co-culture, ConA-induced expression of inflammatory cytokines/chemokines was significantly augmented compared with NPCs alone. HSCs play an essential role in ConA-induced liver injury directly via the interferon-β/IRF1 axis, and by modulating properties of NPCs. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Workers of the printing industry and hepatic damage.

    PubMed

    Sancini, A; Caciari, T; Chighine, A; Gioffrè, P A; Andreozzi, G; Sacchi, L; Giubilati, R; Tomei, G; Suppi, A; Sacco, C; Tomei, F; Rosati, M V

    2014-01-01

    Typesetting industry is still the primary instrument of communication, despite the development of new technological systems. This study focuses on the analysis of the hepatic effects induced by the use of some organic solvents employed in the printing industry. We studied a group of 194 workers: 93 exposed and 101 not exposed. The level of the exposure to chemical pollutants were assessed through the environmental monitoring of blood concentrations and the analysis of airborne substances. The health survey was performed through the collection of the medical history and the use of hepatic tests, which were evaluated by calculating Mean, Standard Deviation, Student's t-test and X² test with Yates Correction, to investigate statistically significant differences in some hepatic parameters: AST, ALT, ALP, GGT, fractional and total bilirubin. The environmental data sometimes exceeded the TLV-TWA. The clinical evaluation of the hepatic parameters showed statistically significant differences as to the hematic concentrations of AST, ALT, GGT. The results we obtained support the hypothesis of a risk among the printing industrial workers attributable to the hepatotoxic solvents. This risk seems to be related to the use of a mixture of solvents, although at low doses, and the analysis of the results obtained confirms the validity of the investigation for the health screening protocol adopted in order to identify subjects and/or population at risk of hepatotoxicity.

  15. Hydralazine-induced cholestatic hepatitis.

    PubMed

    Hassan, Ahad; Hammad, Raza; Cucco, Robert; Niranjan, Selva

    2009-01-01

    , mixed hepatocellular injury, acute hepatitis, cholestatic jaundice, or centrilobular necrosis. The Hydralazine-induced cholestatic liver injury seems to be fully reversible. Complete clinical and biochemical recovery occurs after discontinuation of the drug. Also, the differential diagnosis of any patient with hepatocellular injury should include medications. This will prevent unnecessary diagnostic tests.

  16. Ferret hepatitis E virus infection induces acute hepatitis and persistent infection in ferrets.

    PubMed

    Li, Tian-Cheng; Yang, Tingting; Yoshizaki, Sayaka; Ami, Yasushi; Suzaki, Yuriko; Ishii, Koji; Kishida, Noriko; Shirakura, Masayuki; Asanuma, Hideki; Takeda, Naokazu; Wakita, Takaji

    2016-02-01

    Ferret hepatitis E virus (HEV), a novel hepatitis E virus, has been identified in ferrets. However, the pathogenicity of ferret HEV remains unclear. In the present study, we compared the HEV RNA-positivity rates and alanine aminotransferase (ALT) levels of 63 ferrets between before and after import from the US to Japan. We found that the ferret HEV-RNA positivity rates were increased from 12.7% (8/63) to 60.3% (38/63), and ALT elevation was observed in 65.8% (25/38) of the ferret HEV RNA-positive ferrets, indicating that ferret HEV infection is responsible for liver damage. From long term-monitoring of ferret HEV infection we determined that this infection in ferrets exhibits three patterns: sub-clinical infection, acute hepatitis, and persistent infection. The ALT elevation was also observed in ferret HEV-infected ferrets in a primary infection experiment. These results indicate that the ferret HEV infection induced acute hepatitis and persistent infection in ferrets, suggesting that the ferrets are a candidate animal model for immunological as well as pathological studies of hepatitis E. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. In vitro differentiated hepatic oval-like cells enhance hepatic regeneration in CCl4 -induced hepatic injury.

    PubMed

    Awan, Sana Javaid; Baig, Maria Tayyab; Yaqub, Faiza; Tayyeb, Asima; Ali, Gibran

    2017-01-01

    Hepatic oval cells are likely to be activated during advanced stage of liver fibrosis to reconstruct damaged hepatic tissue. However, their scarcity, difficulties in isolation, and in vitro expansion hampered their transplantation in fibrotic liver. This study was aimed to investigate the repair potential of in vitro differentiated hepatic oval-like cells in CCl4 -induced liver fibrosis. BMSCs and oval cells were isolated and characterized from C57BL/6 GFP(+) mice. BMSCs were differentiated into oval cells by preconditioning with HGF, EGF, SCF, and LIF and analyzed for the oval cells-specific genes. Efficiency of oval cells to reduce hepatocyte injury was studied by determining cell viability, release of LDH, and biochemical tests in a co-culture system. Further, in vivo repair potential of differentiated oval cells was determined in CCl4 -induced fibrotic model by gene expression analysis, biochemical tests, mason trichrome, and Sirius red staining. Differentiated oval cells expressed hepatic oval cells-specific markers AFP, ALB, CK8, CK18, CK19. These differentiated cells when co-cultured with injured hepatocytes showed significant hepato-protection as measured by reduction in apoptosis, LDH release, and improvement in liver functions. Transplantation of differentiated oval cells like cells in fibrotic livers exhibited enhanced homing, reduced liver fibrosis, and improved liver functions by augmenting hepatic microenvironment by improved liver functions. This preconditioning strategy to differentiate BMSCs into oval cell leads to improved survival and homing of transplanted cells. In addition, reduction in fibrosis and functional improvement in mice with CCl4 -induced liver fibrosis was achieved.

  18. Antihistamine-Induced Hepatitis: 2 Cases Involving Loratidine

    PubMed Central

    Arshad, Hafiz; Khan, Arsalan; Assad, Usama; Kittaneh, Muaiad

    2016-01-01

    Antihistamine-induced hepatitis is rare. We present 2 cases of antihistamine-induced hepatitis with autoimmune features, caused by loratidine. One case was confirmed by rechallenge. Identifying and discontinuing the offending agent are essential for treatment. PMID:27293922

  19. Effect of polishing induced subsurface damages on laser induced damage in fused silica optics

    NASA Astrophysics Data System (ADS)

    He, Xiang; Zhao, Heng; Huang, Ying; Cai, Chao; Hu, JiangChuan; Ma, Ping

    2016-10-01

    Conventional used ceria polishing would induce both of Ce contaminants and subsurface damages, which mainly restricts the laser induced damage resistance of fused silica optics. To control the near surface defects, nanometer sized colloidal silica are used to polish fused silica optics after the normal ceria polishing process. Then the contaminant elements and subsurface damages of the polished samples were analyzed by secondary ion mass spectrometry and Nomarski microscopy. It reveals that ceria polishing would introduce lots of subsurface damages whereas colloidal silica polishing induces much fewer subsurface damages especially no fracture induced severe subsurface damages. The laser damage tests reveal that subsequent colloidal silica polishing of the ceria pre-polished samples could gradually eliminate the ceria polishing induced subsurface damages and lower the laser induced damage density accordingly with the increased polishing time. But unlike the damage density, only the severe subsurface damages are totally eliminated could the damage threshold be substantially improved. These results incline to indicate that the subsurface damages have great influence on the laser induced damage density and the fracture related severe subsurface damages will greatly restrict the damage threshold in polished optics.

  20. Hepatic FGF21 mediates sex differences in high-fat high-fructose diet-induced fatty liver.

    PubMed

    Chukijrungroat, Natsasi; Khamphaya, Tanaporn; Weerachayaphorn, Jittima; Songserm, Thaweesak; Saengsirisuwan, Vitoon

    2017-08-01

    The role of gender in the progression of fatty liver due to chronic high-fat high-fructose diet (HFFD) has not been studied. The present investigation assessed whether HFFD induced hepatic perturbations differently between the sexes and examined the potential mechanisms. Male, female, and ovariectomized (OVX) Sprague-Dawley rats were fed either a control diet or HFFD for 12 wk. Indexes of liver damage and hepatic steatosis were analyzed biochemically and histologically together with monitoring changes in hepatic gene and protein expression. HFFD induced a higher degree of hepatic steatosis in females, with significant increases in proteins involved in hepatic lipogenesis, whereas HFFD significantly induced liver injury, inflammation, and oxidative stress only in males. Interestingly, a significant increase in hepatic fibroblast growth factor 21 (FGF21) protein expression was observed in HFFD-fed males but not in HFFD-fed females. Ovarian hormone deprivation by itself led to a significant reduction in FGF21 with hepatic steatosis, and HFFD further aggravated hepatic fat accumulation in OVX rats. Importantly, estrogen replacement restored hepatic FGF21 levels and reduced hepatic steatosis in HFFD-fed OVX rats. Collectively, our results indicate that male rats are more susceptible to HFFD-induced hepatic inflammation and that the mechanism underlying this sex dimorphism is mediated through hepatic FGF21 expression. Our findings reveal sex differences in the development of HFFD-induced fatty liver and indicate the protective role of estrogen against HFFD-induced hepatic steatosis. Copyright © 2017 the American Physiological Society.

  1. Hepatoprotective role of neutrosecR on hepatic damage induced by combination of zidovudine and combined anti-tuberculous agents in rats.

    PubMed

    Awodele, Olufunsho; Agbaje, Esther O; Adesina, Enitan A; Akintonwa, Alade

    2011-07-20

    Advent of the HIV/AIDS pandemic has led to a dramatic increase in the number of TB cases worldwide. Availability of highly active antiretroviral therapy (HAART) has significantly improved the outcome of HIV/AIDS, in terms of prevention of opportunistic infections (OIs) as well as mortality however; liver toxicity is one of the most relevant adverse effects of antiretroviral therapy (ART). In view of the inevitable use of zidovudine (a common ART) and antituberculous fixed-dose combination therapy (FDCs) in the management of HIV-TB co-infection and the resultant hepatotoxicity, this study was aimed to investigate the hepatoprotective role of neutrosec (a combination of aminoacid and vitamins) on the hepatotoxicity induced by co-administration of zidovudine and combined fixed dose antituberculous agents. Twenty four rats were randomly allotted to four groups, consisting of the control, zidovudine plus fixed dose combined anti TB agents treated group, zidovudine plus fixed dose combined anti TB agents plus neutrosec treated group and neutrosec alone treated group. Therapeutic doses of zidovudine (8.5 mg/kg/day), fixed dose combined anti TB agents (25 mg/kg/day) and neutrosec (0.4 ml/kg/day) were administered to the animals via oral gavage, daily over 60 days. After 60 days, rats were sacrificed for internal macroscopic and histological examination of the liver. The liver enzyme parameters (AST, ALP, Total bilirubin, Total protein, Albumin) were determined using fully automated clinical chemistry analyzer (Hitachi 912, Boehringer Mannheim, Germany). Antioxidant enzymes activity and lipid peroxidation were determined according to standard procedures. The AST results showed a significant (p ≤ 0.05) decreased in the zidovudine plus anti-TB plus neutrosec treated group (125.50 ± 22.71) compared with zidovudine plus anti-TB treated group (399. 10 ± 0.45). It further showed non-significant decreased (p ≥ 0.05) in the ALP levels between the zidovudine plus anti TB

  2. Cholesterol overloading leads to hepatic L02 cell damage through activation of the unfolded protein response.

    PubMed

    Li, Qi; Liu, Zhiguo; Guo, Jianli; Chen, Jiangyuan; Yang, Pu; Tian, Jun; Sun, Jun; Zong, Yiqiang; Qu, Shen

    2009-10-01

    Reported data indicate that cholesterol loading in the liver can cause hepatic injury. To explore the possible mechanisms of cell damage resulting from cholesterol overloading in hepatocytes, cell apoptosis, the unfolded protein response (UPR) and the correlation between them were assessed in the cholesterol-overloaded normal human hepatic cell line L02. L02 cells were incubated with 200 microg/ ml of low density lipoprotein (LDL) for 24 h with or without 20 microg/ml 58035, an inhibitor of acyl-CoA:cholesterol acyltransferase (ACAT). In the LDL+58035 group, the intracellular cholesterol level was dramatically increased, which was measured by an enzymatic combined high performance liquid chromatography assay. Expression of immunoglobulin-binding protein, X-box binding protein 1, activating transcription factor 6, activating transcription factor 4, CCAAT/enhancer-binding protein homologous protein-10, markers of endoplasmic reticulum stress (ERS)/ UPR, were up-regulated as determined using reverse transcription-polymerase chain reaction (RT-PCR) or Western blot analysis. The rate of cell apoptic death increased 21.3+/-2.4%. Meanwhile, the active caspase-3 protein expression was increased 8.4-fold compared to the active caspase-3 protein expression in the controls. Furthermore, 4-phenylbutyric acid, an inhibitor of UPR, partly reduced cell apoptosis and activation of caspase-3. This study suggests that cholesterol overloading in hepatic L02 cells induces ERS and activates the UPR which, in part, leads to the apoptotic damage of cells.

  3. Melatonin reduces mortality and oxidatively mediated hepatic and renal damage due to diquat treatment.

    PubMed

    Xu, Jingming; Sun, Shichun; Wei, Wei; Fu, Jianmin; Qi, Wenbo; Manchester, Lucien C; Tan, Dun-Xian; Reiter, Russel J

    2007-03-01

    The bipyridyl herbicide, diquat, is a potent prooxidant that generates superoxide anions through redox cycling in vivo. Exposure to elevated levels of this compound causes acute hepatic and renal toxicity as well as death in rodents. In the present study, we investigated whether melatonin, a free radical scavenger and antioxidant, could protect against diquat-induced hepatic and renal damage and whether the indole would improve survival of Kunming mice given a lethal dose of diquat. When mice were intraperitoneally (i.p.) given a single dose of diquat (50 mg/kg body weight), liver and kidney injuries were observed at 6 hr as indicated by elevated serum levels of both alanine aminotransferase (ALT) activity and blood urea nitrogen (BUN). In addition, lipid peroxidation levels in both liver and kidney showed significant increases as shown by elevated concentrations of F(2)-isoprostanes. The administration of melatonin (20 mg/kg) 30 min before the diquat injection resulted in a significant reduction in serum levels of ALT and BUN as well as hepatic and renal F(2)-isoprostanes levels. For the survival study, 75 mg/kg diquat was administered i.p. into mice to induce acute death. Without melatonin treatment, 10 of 23 (43.5%) mice died within 24 hr after diquat injection. Pretreatment with melatonin (20 mg/kg) 30 min prior to the injection of diquat and thereafter at 4-hr intervals until the end of the observation period (24 hr), reduced the death rate to two of 22 (9.1%) mice. Chi-squared test revealed a significant difference with P < or = 0.05. In conclusion, melatonin, a broad spectrum antioxidant, reduces hepatic and renal damage and lowers the death rate in diquat-treated mice.

  4. ARGINASE BLOCKADE PROTECTS AGAINST HEPATIC DAMAGE IN WARM ISCHEMIA-REPERFUSION

    PubMed Central

    Jeyabalan, Geetha; Klune, John R.; Nakao, Atsunori; Martik, Nicole; Wu, Guoyao; Tsung, Allan; Geller, David A.

    2008-01-01

    Background Liver ischemia reperfusion (I/R) injury is associated with profound arginine depletion due to arginase release from injured hepatocytes. Nitric oxide (NO), shown to have protective effects in I/R, is produced by nitric oxide synthase (NOS) from the substrate arginine. The purpose of this study was to determine if nor-NOHA, a novel arginase inhibitor, would be able to increase circulating arginine levels and decrease hepatic damage following warm I/R. Methods C57BL/6 mice underwent partial liver warm I/R and were treated intraperitoneally with either nor-NOHA (100mg/kg) or saline. Serum and tissue samples were collected to measure liver enzyme levels, amino acids, and inflammatory mediators. The agent nor-NOHA (100 mg/kg) was administered 15 minutes before ischemia and immediately after reperfusion. Serum amino acid analysis was performed using HPLC. Results Arginase activity after hepatic I/R peaked at 3-6 h after reperfusion and resulted in a 10-fold drop in circulating arginine levels. Treatment with nor-NOHA inhibited arginase activity and reversed the arginine depletion after I/R while simultaneously increasing serum nitric oxide. In addition, circulating citrulline, a product of NOS activity, was increased in nor-NOHA-treated animals compared to controls. Inhibition of arginase also resulted in protection from hepatic I/R-induced damage in association with markedly lower hepatic TNF, IL-6, and inducible NOS mRNA levels compared to controls. Conclusion Arginase blockade represents a potentially novel strategy to combat liver injury under conditions of arginine deficiency. This protection may be mediated through the arginine-NO pathway. PMID:18456004

  5. Albendazole-induced granulomatous hepatitis: a case report

    PubMed Central

    2013-01-01

    Introduction Drug-related hepatotoxicity is a common medical problem with implications for health systems. It constitutes a cause of acute liver failure and, in many cases, is responsible for the rejection of new pharmacological agents during efficacy and safety studies. Risk factors, as well as pathogenesis of drug-induced liver injury, are poorly understood. The diagnosis of drug-induced liver injury is challenging; it is difficult to define the cause of drug hepatotoxicity due to the heterogeneity of the clinical presentation and the absence of established criteria for accurate and reproducible identification of drug-associated liver toxicity. Case presentation We report the case of a 25-year-old Hispanic woman admitted to our Clinical Hepatology Unit with symptoms of acute hepatitis of unknown etiology. She was diagnosed with albendazole-induced granulomatous hepatitis after ruling out other possible causes, based on laboratory studies, liver biopsy, medical history, detailed drug history, and spontaneous improvement of her liver biochemical profile after medication withdrawal. This diagnosis was supported by the Council for International Organizations of Medical Sciences-Roussel Uclaf Causality Assessment Method, which showed a likely correlation between hepatocellular damage and drug toxicity as the etiology. Conclusions Our patient’s suspected diagnosis was albendazole-induced granulomatous hepatitis with confirmatory histologic pattern. This case deserves particular attention due to the wide use of albendazole in our country (Colombia) and the prevalent medical issue of drug-related hepatotoxicity. PMID:23889970

  6. Effects of anti-ulcer agents on ethanol-induced gastric mucosal lesions in D-galactosamine-induced hepatitis rats.

    PubMed

    Taniguchi, Hiroyuki; Yomota, Eiji; Nogi, Koji; Onoda, Yuichi

    2002-01-01

    Patients with hepatic injury have an increased incidence of gastric ulcers and erosions. In this study, the effect of D-galactosamine(GalN)-induced hepatitis on ethanol-induced gastric mucosal lesions and the protective effect of anti-ulcer agents in rats were examined. Subcutaneous injection of GalN (1 g/kg) remarkably increased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities suggesting induction of hepatic injury. Gastric mucosal lesions induced by ethanol were significantly aggravated in GalN-induced hepatitis rats. Orally administered ecabet (CAS 86408-72-2; 20-200 mg/kg) dose dependently inhibited ethanol-induced gastric mucosal lesions in GalN-induced hepatitis rats. Sucralfate (CAS 54182-58-0) tended to inhibit the gastric mucosal lesions at a dose of 200 mg/kg but teprenone (CAS 6809-52-5), cimetidine (CAS 51481-61-9) and rebamipide (CAS 90098-04-7) had little effect. All anti-ulcer agents had no effect on the serum ALT and AST activities increased by GalN pretreatment. These results indicate that the gastric mucosa of GalN-induced hepatitis rats is more susceptible to injury induced by luminal irritants such as ethanol. Ecabet potently inhibited gastric mucosal lesions suggesting its clinical utility for the gastric mucosal damage in patients with hepatic injury.

  7. Leukocyte involvement in renal reperfusion-induced liver damage.

    PubMed

    Khastar, Hossein; Kadkhodaee, Mehri; Sadeghipour, Hamid Reza; Seifi, Behjat; Hadjati, Jamshid; Delavari, Fatemeh; Soleimani, Manoocher

    2011-01-01

    Renal ischemia-reperfusion (IR) induces organ damage in remote organs. The aim of this study was to assess the role of leukocytes in the induction of liver damage after renal IR injury. Inbred mice were subjected to either sham operation or bilateral renal IR injury (60 min ischemia followed by 3 h reperfusion). Mice were then anesthetized for collection of leukocytes by heart puncture. Isolated leukocytes were transferred to two other groups: intact recipient mice that received leukocytes from IR mice and intact recipient mice that received leukocytes from sham-operated control mice. After 24 h, recipient mice were anesthetized and samples were collected. Alanine aminotransferase, aspartate aminotransferase, and hepatic malondialdehyde increased significantly, and hepatic glutathione decreased significantly in intact recipient mice that received leukocytes from IR mice in comparison with intact recipient mice that received leukocytes from sham-operated control mice. Loss of normal liver architecture, cytoplasmic vacuolization, and focal infiltration of leukocytes were seen. These results suggest that leukocytes are one of the possible factors that contribute to liver damage after renal IR injury and this damage is partly due to the induction of oxidative stress.

  8. Hepatic Primary and Secondary Cholesterol Deposition and Damage in Niemann-Pick Disease.

    PubMed

    Bosch, Marta; Fajardo, Alba; Alcalá-Vida, Rafael; Fernández-Vidal, Andrea; Tebar, Francesc; Enrich, Carlos; Cardellach, Francesc; Pérez-Navarro, Esther; Pol, Albert

    2016-03-01

    Niemann-Pick C disease is a neurovisceral disorder caused by mutations in the NPC gene that result in systemic accumulation of intracellular cholesterol. Although neurodegeneration defines the disease's severity, in most patients it is preceded by hepatic complications such as cholestatic jaundice or hepatomegaly. To analyze the contribution of the hepatic disease in Niemann-Pick C disease progression and to evaluate the degree of primary and secondary hepatic damage, we generated a transgenic mouse with liver-selective expression of NPC1 from embryonic stages. Hepatic NPC1 re-expression did not ameliorate the onset and progression of neurodegeneration of the NPC1-null animal. However, the mice showed reduced hepatomegalia and dramatic, although not complete, reduction of hepatic cholesterol and serum bile salts, bilirubin, and transaminase levels. Therefore, hepatic primary and secondary cholesterol deposition and damage occur simultaneously during Niemann-Pick C disease progression.

  9. Muscle damage induced by electrical stimulation.

    PubMed

    Nosaka, Kazunori; Aldayel, Abdulaziz; Jubeau, Marc; Chen, Trevor C

    2011-10-01

    Electrical stimulation (ES) induces muscle damage that is characterised by histological alterations of muscle fibres and connective tissue, increases in circulating creatine kinase (CK) activity, decreases in muscle strength and development of delayed onset muscle soreness (DOMS). Muscle damage is induced not only by eccentric contractions with ES but also by isometric contractions evoked by ES. Muscle damage profile following 40 isometric contractions of the knee extensors is similar between pulsed current (75 Hz, 400 μs) and alternating current (2.5 kHz delivered at 75 Hz, 400 μs) ES for similar force output. When comparing maximal voluntary and ES-evoked (75 Hz, 200 μs) 50 isometric contractions of the elbow flexors, ES results in greater decreases in maximal voluntary contraction strength, increases in plasma CK activity and DOMS. It appears that the magnitude of muscle damage induced by ES-evoked isometric contractions is comparable to that induced by maximal voluntary eccentric contractions, although the volume of affected muscles in ES is not as large as that of eccentric exercise-induced muscle damage. It seems likely that the muscle damage in ES is associated with high mechanical stress on the activated muscle fibres due to the specificity of motor unit recruitment (i.e., non-selective, synchronous and spatially fixed manner). The magnitude of muscle damage induced by ES is significantly reduced when the second ES bout is performed 2-4 weeks later. It is possible to attenuate the magnitude of muscle damage by "pre-conditioning" muscles, so that muscle damage should not limit the use of ES in training and rehabilitation.

  10. Quantifying pulsed laser induced damage to graphene

    SciTech Connect

    Currie, Marc; Caldwell, Joshua D.; Bezares, Francisco J.; Robinson, Jeremy; Anderson, Travis; Chun, Hayden; Tadjer, Marko

    2011-11-21

    As an emerging optical material, graphene's ultrafast dynamics are often probed using pulsed lasers yet the region in which optical damage takes place is largely uncharted. Here, femtosecond laser pulses induced localized damage in single-layer graphene on sapphire. Raman spatial mapping, SEM, and AFM microscopy quantified the damage. The resulting size of the damaged area has a linear correlation with the optical fluence. These results demonstrate local modification of sp{sup 2}-carbon bonding structures with optical pulse fluences as low as 14 mJ/cm{sup 2}, an order-of-magnitude lower than measured and theoretical ablation thresholds.

  11. Blood-Induced Joint Damage

    PubMed Central

    Roosendaal, Goris; Jansen, Nathalie W.D.; Lafeber, Floris P.J.G.; Mastbergen, Simon C.

    2013-01-01

    Objective. Four days of blood exposure leads to irreversible cartilage damage in vitro. In contrast, intermittent intra-articular blood injections twice a week during 4 weeks (mimicking micro-bleeds) in a canine model resulted in transient damage only. In this study, it was evaluated whether acute joint bleeds are more harmful than micro-bleeds in a canine model of knee arthropathy. Design. Seven dogs received 4 sequential daily intra-articular blood injections twice in 2 weeks (mimicking 2 acute 4-day joint bleeds). Seven other dogs received the same blood load but in a total of 8 injections intermittently over the 4-week period with at least 1 day in between (mimicking micro-bleeds over the same timespan). Contralateral knees served as controls. Ten weeks after the last injection cartilage matrix turnover and synovial inflammation were evaluated. Results. Only after the acute joint bleeds the release of newly formed and total (resident) cartilage matrix glycosaminoglycans were increased (P = 0.04 and P = 0.01, respectively). Furthermore, in animals with the acute joint bleeds cartilage glycosaminoglycan content was decreased (P = 0.01) and not in animals with micro-bleeds. Mild synovial inflammation was observed in both groups (both P < 0.0001) but was not different between groups. Conclusions. In contrast to micro-bleeds, 2 acute joint bleeds lead to prolonged cartilage damage independent of the level of synovial inflammation. This model suggests that micro-bleeds are less devastating than acute joint bleeds with respect to joint damage, which might be of relevance to treatment of joint bleeds in clinical practice. PMID:26069675

  12. Lipopolysaccharide-induced hepatic injury is enhanced by polychlorinated biphenyls.

    PubMed Central

    Brown, A P; Schultze, A E; Holdan, W L; Buchweitz, J P; Roth, R A; Ganey, P E

    1996-01-01

    After intravenous administration of bacterial lipopolysaccharide (LPS) to rats, polymorphonuclear neutrophils (PMNs) rapidly accumulate in the liver, and midzonal hepatic necrosis is prominent by 6 hr. PMNs are required for the development of hepatic injury in rats. Certain polychlorinated biphenyls (PCBs) can activate PMNs, resulting in production of superoxide anion (O2-.) and release of cytolytic factors from granules. This raises the possibility that PCB exposure might enhance PMN-mediated tissue injury, such as LPS-induced hepatotoxicity. We treated female Sprague-Dawley rats with a minimally toxic dose of LPS in saline (2 mg/kg, intravenous) and 90 min later exposed them to Aroclor 1248 (50 mg/kg, intraperitoneal), a mixture of PCBs. The animals were killed 6 hr after LPS administration, and hepatic injury was assessed. Neither LPS nor Aroclor 1248 alone produced liver injury. Co-treatment with LPS and Aroclor 1248 resulted in pronounced liver injury as demonstrated from increased activities of alanine aminotransferase and isocitrate dehydrogenase in plasma. Histological evaluation indicated increased severity of hepatic necrosis in rats receiving both LPS and Aroclor 1248. Hepatic accumulation of PMNs, normally observed after LPS, was not altered by co-exposure to PCBs. Aroclor 1248 stimulated rat PMNs in vitro to produce O2-. and to degranulate. In addition, PMN-mediated cytotoxicity to isolated rat hepatocytes in culture was increased upon addition of Aroclor 1248. PCBs activate PMNs in vitro and increase PMN-dependent hepatocellular damage in vitro and after LPS treatment in vivo. PCBs may act in vivo as an additional inflammatory stimulus to activate PMNs to become cytotoxic, resulting in increased tissue injury. Images Figure 1. Figure 2. A Figure 2. B Figure 3. Figure 4. A Figure 4. B Figure 5. Figure 6. PMID:8793352

  13. Hepatic stellate cell-expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage

    PubMed Central

    Mogler, Carolin; Wieland, Matthias; König, Courtney; Hu, Junhao; Runge, Anja; Korn, Claudia; Besemfelder, Eva; Breitkopf-Heinlein, Katja; Komljenovic, Dorde; Dooley, Steven; Schirmacher, Peter; Longerich, Thomas; Augustin, Hellmut G

    2015-01-01

    Liver fibrosis is a reversible wound-healing response to injury reflecting the critical balance between liver repair and scar formation. Chronic damage leads to progressive substitution of liver parenchyma by scar tissue and ultimately results in liver cirrhosis. Stromal cells (hepatic stellate cells [HSC] and endothelial cells) have been proposed to control the balance between liver fibrosis and regeneration. Here, we show that endosialin, a C-type lectin, expressed in the liver exclusively by HSC and portal fibroblasts, is upregulated in liver fibrosis in mouse and man. Chronic chemically induced liver damage resulted in reduced fibrosis and enhanced hepatocyte proliferation in endosialin-deficient (ENKO) mice. Correspondingly, acute-liver-damage-induced hepatocyte proliferation (partial hepatectomy) was increased in ENKO mice. A candidate-based screen of known regulators of hepatocyte proliferation identified insulin-like growth factor 2 (IGF2) as selectively endosialin-dependent hepatocyte mitogen. Collectively, the study establishes a critical role of HSC in the reciprocal regulation of fibrogenesis vs. hepatocyte proliferation and identifies endosialin as a therapeutic target in non-neoplastic settings. PMID:25680861

  14. Triplex-induced DNA damage response.

    PubMed

    Rogers, Faye A; Tiwari, Meetu Kaushik

    2013-12-13

    Cellular DNA damage response is critical to preserving genomic integrity following exposure to genotoxic stress. A complex series of networks and signaling pathways become activated after DNA damage and trigger the appropriate cellular response, including cell cycle arrest, DNA repair, and apoptosis. The response elicited is dependent upon the type and extent of damage sustained, with the ultimate goal of preventing propagation of the damaged DNA. A major focus of our studies is to determine the cellular pathways involved in processing damage induced by altered helical structures, specifically triplexes. Our lab has demonstrated that the TFIIH factor XPD occupies a central role in triggering apoptosis in response to triplex-induced DNA strand breaks. We have shown that XPD co-localizes with γH2AX, and its presence is required for the phosphorylation of H2AX tyrosine142, which stimulates the signaling pathway to recruit pro-apoptotic factors to the damage site. Herein, we examine the cellular pathways activated in response to triplex formation and discuss our finding that suggests that XPD-dependent apoptosis plays a role in preserving genomic integrity in the presence of excessive structurally induced DNA damage.

  15. Autophagy in light-induced retinal damage.

    PubMed

    Chen, Yu; Perusek, Lindsay; Maeda, Akiko

    2016-03-01

    Vision is reliant upon converting photon signals to electrical information which is interpreted by the brain and therefore allowing us to receive information about our surroundings. However, when exposed to excessive light, photoreceptors and other types of cells in the retina can undergo light-induced cell death, termed light-induced retinal damage. In this review, we summarize our current knowledge regarding molecular events in the retina after excessive light exposure and mechanisms of light-induced retinal damage. We also introduce works which investigate potential roles of autophagy, an essential cellular mechanism required for maintaining homeostasis under stress conditions, in the illuminated retina and animal models of light-induced retinal damage.

  16. Autophagy in light-induced retinal damage

    PubMed Central

    Chen, Yu; Perusek, Lindsay; Maeda, Akiko

    2015-01-01

    Vision is reliant upon converting photon signals to electrical information which is interpreted by the brain and therefore allowing us to receive information about our surroundings. However, when exposed to excessive light, photoreceptors and other types of cells in the retina can undergo light-induced cell death, termed light-induced retinal damage. In this review, we summarize our current knowledge regarding molecular events in the retina after excessive light exposure and mechanisms of light-induced retinal damage. We also introduce works which investigate potential roles of autophagy, an essential cellular mechanism required for maintaining homeostasis under stress conditions, in the illuminated retina and animal models of light-induced retinal damage. PMID:26325327

  17. A Novel Murine Model to Deplete Hepatic Stellate Cells Uncovers Their Role In Amplifying Liver Damage

    PubMed Central

    Puche, Juan E.; Lee, Youngmin A.; Jiao, Jingjing; Aloman, Costica; Fiel, Maria I.; Muñoz, Ursula; Kraus, Thomas; Lee, Tingfang; Yee, Hal F.; Friedman, Scott L.

    2012-01-01

    We have developed a novel model for depleting mouse HSCs that has allowed us to clarify their contributions to hepatic injury and fibrosis. Transgenic mice (TG) expressing the herpes simplex virus-Thymidine kinase gene (HSV-Tk) driven by the mouse GFAP promoter were used to render proliferating HSCs susceptible to killing in response to ganciclovir (GCV). Effects of GCV were explored in primary HSCs and in vivo. Panlobular damage was provoked to maximize HSC depletion by combining carbon tetrachloride (CCl4) (centrilobular injury) with allyl alcohol (AA) (periportal injury), as well as in a bile duct ligation (BDL) model. Cell depletion in situ was quantified using dual-immunofluorescence (IF) for desmin and GFAP. In primary HSCs isolated from both untreated wild type (WT) and TG mice, GCV induced cell death in ~50% of HSCs from TG but not WT mice. In TG mice treated with CCl4+AA+GCV, there was a significant decrease in GFAP & desmin positive cells compared to WT mice (~65% reduction, p<0.01), which was accompanied by a decrease in the expression of HSC activation markers (α-SMA, β-PDGFR and collagen I). Similar results were seen following BDL. Associated with HSC depletion in both fibrosis models, there was marked attenuation of fibrosis and liver injury, as indicated by Sirius Red/Fast Green, H&E quantification and serum ALT/AST. Hepatic expression of IL-10 and IFN-γ was increased following HSC depletion. No toxicity of GCV in either WT or TG mice accounted for the differences in injury. Conclusion Activated HSCs significantly amplify the hepatic response to liver injury, further expanding this cell type's repertoire in orchestrating hepatic injury and repair. PMID:22961591

  18. p53-Mediated Cellular Response to DNA Damage in Cells with Replicative Hepatitis B Virus

    NASA Astrophysics Data System (ADS)

    Puisieux, Alain; Ji, Jingwei; Guillot, Celine; Legros, Yann; Soussi, Thierry; Isselbacher, Kurt; Ozturk, Mehmet

    1995-02-01

    Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G_1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.

  19. Daily sesame oil supplementation mitigates ketoconazole-induced oxidative stress-mediated apoptosis and hepatic injury.

    PubMed

    Periasamy, Srinivasan; Liu, Chuan-Teng; Chien, Se-Ping; Chen, Ying-Chien; Liu, Ming-Yie

    2016-11-01

    Ketoconazole (KCZ) is the most commonly used systemic antifungal drug. However, long-term treatment of KCZ induces hepatic injury. Oxidative stress is involved in KCZ-induced hepatic injury. Oxidative stress plays an important role in apoptosis-associated hepatic damage. Sesame oil is rich in potent antioxidants and antifungal constituents. It attenuates hepatic injury by inhibiting oxidative stress. Thus, sesame oil may protect against KCZ-induced oxidative stress, apoptosis and hepatic damage. The aim of the present study was to investigate the protective effect of sesame oil as a nutritional supplement on KCZ-induced hepatic injury in mice. KCZ (300 mg/kg/day) was administered by gastric intubation; 30 min later, sesame oil (0, 0.0625, 0.125, 0.25 or 0.5 ml/kg/day; p.o.) was administered to mice for 14 days. Blood and liver tissue were collected. Hepatic injury was evaluated by serum biochemistry and histology. Oxidative stress was evaluated by myeloperoxidase activity, p47-phox, reactive oxygen species generation, lipid peroxidation and glutathione level. Apoptosis was evaluated by p53, caspase-3, Bcl-2, Bax and Cyto-C expression. Osteopontin was measured to assess liver healing. Sesame oil attenuated hepatic injury; it also decreased oxidative stress and apoptosis in KCZ-treated mice. Sesame oil may be used as a nutritional supplement with existing antifungal therapies to neutralize the adverse hepatotoxic nature of antifungal drugs by attenuating hepatic apoptosis through redox system to protect and heal liver injury in KCZ-treated mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Azathioprine-induced fever in autoimmune hepatitis

    PubMed Central

    Khoury, Tawfik; Ollech, Jacob E; Chen, Shmuel; Mizrahi, Meir; Shalit, Meir

    2013-01-01

    Underdiagnosis of drug-induced fever leads to extensive investigation and prolongation of hospitalization, and may lead to multiple unnecessary invasive procedures and a wrong diagnosis. Azathioprine is a widely used immunosuppressive drug. We report a case of a 53-year-old female patient diagnosed with autoimmune hepatitis treated with azathioprine, who presented to the emergency room with a 6-wk history of fever and chills without other associated symptoms. Since the patient’s fever was of unknown origin, she was hospitalized. All treatment was stopped and an extensive workup to explore the source of fever and chills was performed. Results of chest X-ray, viral, urine, and blood cultures, autoimmune serology, transthoracic and transesophageal echocardiography, and abdominal ultrasound revealed no source of infection. A rechallenge test of azathioprine was performed and the fever and chills returned within a few hours. Azathioprine was established as the definite cause following rechallenge. Fever as an adverse drug reaction is often unrecognized. Azathioprine has been reported to cause drug-induced fever in patients with inflammatory bowel disease, rheumatoid arthritis, and sarcoidosis. To the best of our knowledge there have been no previous reports documenting azathioprine-induced fever in patients with autoimmune hepatitis. The occurrence of fever following the readministration of azathioprine suggests the diagnosis of drug-induced fever, particularly after the exclusion of other causes. A careful rechallenge is recommended to confirm the diagnosis. PMID:23840156

  1. Hepatitis B Virus Protein X Induces Degradation of Talin-1

    PubMed Central

    van de Klundert, Maarten A. A.; van den Biggelaar, Maartje; Kootstra, Neeltje A.; Zaaijer, Hans L.

    2016-01-01

    In the infected human hepatocyte, expression of the hepatitis B virus (HBV) accessory protein X (HBx) is essential to maintain viral replication in vivo. HBx critically interacts with the host damaged DNA binding protein 1 (DDB1) and the associated ubiquitin ligase machinery, suggesting that HBx functions by inducing the degradation of host proteins. To identify such host proteins, we systematically analyzed the HBx interactome. One HBx interacting protein, talin-1 (TLN1), was proteasomally degraded upon HBx expression. Further analysis showed that TLN1 levels indeed modulate HBV transcriptional activity in an HBx-dependent manner. This indicates that HBx-mediated TLN1 degradation is essential and sufficient to stimulate HBV replication. Our data show that TLN1 can act as a viral restriction factor that suppresses HBV replication, and suggest that the HBx relieves this restriction by inducing TLN1 degradation. PMID:27775586

  2. Direct hepatic differentiation of mouse embryonic stem cells induced by valproic acid and cytokines

    PubMed Central

    Dong, Xue-Jun; Zhang, Guo-Rong; Zhou, Qing-Jun; Pan, Ruo-Lang; Chen, Ye; Xiang, Li-Xin; Shao, Jian-Zhong

    2009-01-01

    AIM: To develop a protocol for direct hepatic lineage differentiation from early developmental progenitors to a population of mature hepatocytes. METHODS: Hepatic progenitor cells and then mature hepatocytes from mouse embryonic stem (ES) cells were obtained in a sequential manner, induced by valproic acid (VPA) and cytokines (hepatocyte growth factor, epidermal growth factor and insulin). Morphological changes of the differentiated cells were examined by phase-contrast microscopy and electron microscopy. Reverse transcription polymerase chain reaction and immunocytochemical analyses were used to evaluate the gene expression profiles of the VPA-induced hepatic progenitors and the hepatic progenitor-derived hepatocytes. Glycogen storage, cytochrome P450 activity, transplantation assay, differentiation of bile duct-like structures and tumorigenic analyses were performed for the functional identification of the differentiated cells. Furthermore, FACS and electron microscopy were used for the analyses of cell cycle profile and apoptosis in VPA-induced hepatic differentiated cells. RESULTS: Based on the combination of VPA and cytokines, mouse ES cells differentiated into a uniform and homogeneous cell population of hepatic progenitor cells and then matured into functional hepatocytes. The progenitor population shared several characteristics with ES cells and hepatic stem/progenitor cells, and represented a novel progenitor cell between ES and hepatic oval cells in embryonic development. The differentiated hepatocytes from progenitor cells shared typical characteristics with mature hepatocytes, including the patterns of gene expression, immunological markers, in vitro hepatocyte functions and in vivo capacity to restore acute-damaged liver function. In addition, the differentiation of hepatic progenitor cells from ES cells was accompanied by significant cell cycle arrest and selective survival of differentiating cells towards hepatic lineages. CONCLUSION: Hepatic cells

  3. Hepatitis C virus core protein induces hepatic steatosis via Sirt1-dependent pathway.

    PubMed

    Zhang, Chuanhai; Wang, Jingjing; Zhang, Hanlin; Liu, Shunai; Lee, Hyuek Jong; Jin, Wanzhu; Cheng, Jun

    2017-09-12

    Hepatic steatosis is a common feature of patients with chronic hepatitis C. Previous reports have shown that the overexpression of hepatitis C virus core-encoding sequences (hepatitis C virus genotypes 3a and 1b) significantly induces intracellular triglyceride accumulation. However, the underlying mechanism has not yet been revealed. To investigate whether Sirt1 is involved in hepatitis C virus-mediated hepatic steatosis, the overexpression of hepatitis C virus core 1b protein and Sirt1 and the knockdown of Sirt1 in HepG2 cells were performed. To confirm the results of the cellular experiment liver-specific Sirt1 KO mice with lentivirus-mediated hepatitis C virus core 1b overexpression were studied. Our results show that hepatitis C virus core 1b protein overexpression led to the accumulation of triglycerides in HepG2 cells. Notably the expression of PPARγ2 was dramatically increased at both the mRNA and protein levels by hepatitis C virus core 1b overexpression. The protein expression of Sirt1 is an upstream regulator of PPARγ2 and was also significantly increased after core 1b overexpression. In addition, the overexpression or knockdown of Sirt1 expression alone was sufficient to modulate p300-mediated PPARγ2 deacetylation. In vivo studies showed that hepatitis C virus core protein 1b-induced hepatic steatosis was attenuated in liver-specific Sirt1 KO mice by downregulation of PPARγ2 expression. Sirt1 mediates hepatitis C virus core protein 1b-induced hepatic steatosis by regulation of PPARγ2 expression. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Diethanolamine induces hepatic choline deficiency in mice.

    PubMed

    Lehman-McKeeman, Lois D; Gamsky, Elizabeth A; Hicks, Sarah M; Vassallo, Jeffrey D; Mar, Mei-Heng; Zeisel, Steven H

    2002-05-01

    The purpose of the present experiments was to test the hypothesis that diethanolamine (DEA), an alkanolamine shown to be hepatocarcinogenic in mice, induces hepatic choline deficiency and to determine whether altered choline homeostasis was causally related to the carcinogenic outcome. To examine this hypothesis, the biochemical and histopathological changes in male B6C3F1 mice made choline deficient by dietary deprivation were first determined. Phosphocholine (PCho), the intracellular storage form of choline was severely depleted, decreasing to about 20% of control values with 2 weeks of dietary choline deficiency. Other metabolites, including choline, glycerophosphocholine (GPC), and phosphatidylcholine (PC) also decreased. Hepatic concentrations of S-adenosylmethionine (SAM) decreased, whereas levels of S-adenosylhomocysteine (SAH) increased. Despite these biochemical changes, fatty liver, which is often associated with choline deficiency, was not observed in the mice. The dose response, reversibility, and strain-dependence of the effects of DEA on choline metabolites were studied. B6C3F1 mice were dosed dermally with DEA (0, 10, 20, 40, 80, and 160 mg/kg) for 4 weeks (5 days/week). Control animals received either no treatment or dermal application of 95% ethanol (1.8 ml/kg). PCho was most sensitive to DEA treatment, decreasing at dosages of 20 mg/kg and higher and reaching a maximum 50% depletion at 160 mg/kg/day. GPC, choline, and PC also decreased in a dose-dependent manner. At 80 and 160 mg/kg/day, SAM levels decreased while SAH levels increased in liver. A no-observed effect level (NOEL) for DEA-induced changes in choline homeostasis was 10 mg/kg/day. Choline metabolites, SAM and SAH returned to control levels in mice dosed at 160 mg/kg for 4 weeks and allowed a 2-week recovery period prior to necropsy. In a manner similar to dietary choline deficiency, no fatty change was observed in the liver of DEA-treated mice. In C57BL/6 mice, DEA treatment (160 mg

  5. Femtosecond Laser-Induced Damage of Dielectrics

    NASA Astrophysics Data System (ADS)

    Lenzner, M.

    Optical damage in non-metals (dielectrics) may severely affect the performance of high-power laser systems as well as the efficiency of optical systems based on nonlinear processes and has therefore been subject to extensive research for some 30 years. The current knowledge of laser-induced optical damage in these materials is reviewed. Emphasis is placed on the recent extension of available experimental data into the femtosecond range. Recent results are presented achieved with a sub-10 fs laser system which explores the limits of time resolution as well as the limit of intensities that a solid can sustain without irreversible damage. It is concluded that sub-10fs laser pulses open up the way to reversible nonperturbative nonlinear optics at intensities greater than 1014 W/cm2 (slightly below damage threshold) and to nanometer-precision laser ablation (slightly above threshold) in dielectric materials.

  6. Attrition of Hepatic Damage Inflicted by Angiotensin II with α-Tocopherol and β-Carotene in Experimental Apolipoprotein E Knock-out Mice.

    PubMed

    Gopal, Kaliappan; Gowtham, Munusamy; Sachin, Singh; Ravishankar Ram, Mani; Shankar, Esaki M; Kamarul, Tunku

    2015-12-16

    Angiotensin II is one of the key regulatory peptides implicated in the pathogenesis of liver disease. The mechanisms underlying the salubrious role of α-tocopherol and β-carotene on liver pathology have not been comprehensively assessed. Here, we investigated the mechanisms underlying the role of Angiotensin II on hepatic damage and if α-tocopherol and β-carotene supplementation attenuates hepatic damage. Hepatic damage was induced in Apoe(-/-)mice by infusion of Angiotensin II followed by oral administration with α-tocopherol and β-carotene-enriched diet for 60 days. Investigations showed fibrosis, kupffer cell hyperplasia, hepatocyte degeneration and hepatic cell apoptosis; sinusoidal dilatation along with haemorrhages; evidence of fluid accumulation; increased ROS level and increased AST and ALT activities. In addition, tPA and uPA were down-regulated due to 42-fold up-regulation of PAI-1. MMP-2, MMP-9, MMP-12, and M-CSF were down-regulated in Angiotensin II-treated animals. Notably, α-tocopherol and β-carotene treatment controlled ROS, fibrosis, hepatocyte degeneration, kupffer cell hyperplasia, hepatocyte apoptosis, sinusoidal dilatation and fluid accumulation in the liver sinusoids, and liver enzyme levels. In addition, PAI-1, tPA and uPA expressions were markedly controlled by β-carotene treatment. Thus, Angiotensin II markedly influenced hepatic damage possibly by restraining fibrinolytic system. We concluded that α-tocopherol and β-carotene treatment has salubrious role in repairing hepatic pathology.

  7. Laser-Induced Damage with Femtosecond Pulses

    NASA Astrophysics Data System (ADS)

    Kafka, Kyle R. P.

    The strong electric fields of focused femtosecond laser pulses lead to non-equilibrium dynamics in materials, which, beyond a threshold intensity, causes laser-induced damage (LID). Such a strongly non-linear and non-perturbative process renders important LID observables like fluence and intensity thresholds and damage morphology (crater) extremely difficult to predict quantitatively. However, femtosecond LID carries a high degree of precision, which has been exploited in various micro/nano-machining and surface engineering applications, such as human eye surgery and super-hydrophobic surfaces. This dissertation presents an array of experimental studies which have measured the damage behavior of various materials under femtosecond irradiation. Precision experiments were performed to produce extreme spatio-temporal confinement of the femtosecond laser-solid damage interaction on monocrystalline Cu, which made possible the first successful direct-benchmarking of LID simulation with realistic damage craters. A technique was developed to produce laser-induced periodic surface structures (LIPSS) in a single pulse (typically a multi-pulse phenomenon), and was used to perform a pump-probe study which revealed asynchronous LIPSS formation on copper. Combined with 1-D calculations, this new experimental result suggests more drastic electron heating than expected. Few-cycle pulses were used to study the LID performance and morphology of commercial ultra-broadband optics, which had not been systematically studied before. With extensive surface analysis, various morphologies were observed, including LIPSS, swelling (blisters), simple craters, and even ring-shaped structures, which varied depending on the coating design, number of pulses, and air/vacuum test environment. Mechanisms leading to these morphologies are discussed, many of which are ultrafast in nature. The applied damage behavior of multi-layer dielectric mirrors was measured and compared between long pulse (150 ps

  8. Epigallocatechin-3-O-Gallate Protects Against Hepatic Damage and Testicular Toxicity in Male Mice Exposed to Di-(2-Ethylhexyl) Phthalate.

    PubMed

    Ge, Jian; Han, Baoyu; Hu, Huajun; Liu, Jun; Liu, Yang

    2015-07-01

    The aim of this study was to examine the effects of epigallocatechin-3-O-gallate (EGCG) on hepatic damage and testicular toxicity in male mice exposed to daily oral administration of di-(2-ethylhexyl) phthalate (DEHP). A mouse model was used to assess the effects of daily intraperitoneal EGCG injection on hepatic and testicular damage. Histological and mitochondrial membrane potential results revealed that EGCG treatment significantly arrested the progression of hepatic damage. EGCG treatment resulted in significant suppression of liver injury (i.e., reduced activities of alanine aminotransferase [ALT] and aspartate aminotransferase [AST]). The development of DEHP-induced hepatic and testicular damage altered the testosterone concentration in mouse serum, which could affect the reproductive ability of male mice. Moreover, EGCG treatment markedly attenuated testes lesions, sperm deformity, and spermatogenic cell apoptosis. At the molecular level, hepatic CYP3A4 expression was substantially reduced by EGCG treatment in mice exposed to DEHP compounds, whereas testicular aromatase expression was increased significantly in testes. Thus, these results demonstrate that EGCG administration may protect against liver damage and reproductive toxicity in males exposed to DEHP.

  9. Protection by exogenous glutathione against hypoxic and cyanide-induced damage to isolated perfused rat livers.

    PubMed

    Younes, M; Strubelt, O

    1990-02-01

    In experiments with isolated perfused livers from fasted rats, addition of 2 mmol/l glutathione (GSH) to the perfusion medium protected against hepatic damage induced by cyanide or hypoxia and reoxygenation as evidenced by leakage of lactate dehydrogenase and hepatic calcium accumulation. In control experiments as well as in experiments with cyanide or hypoxia and reoxygenation, exogenous glutathione resulted in an augmentation of cellular glutathione content, indicating either direct uptake of GSH or stimulation of its intracellular synthesis. The protective effects of glutathione against hypoxic and cyanide-induced hepatotoxicity substantiate the role of oxidative stress in both types of injury.

  10. Tamarix gallica ameliorates thioacetamide-induced hepatic oxidative stress and hyperproliferative response in Wistar rats.

    PubMed

    Sehrawat, Anuradha; Sultana, Sarwat

    2006-04-01

    Tamarix gallica, a hepatic stimulant and tonic, was examined for its ability to inhibit thioacetamide (TAA)-induced hepatic oxidative stress, toxicity and early tumor promotion response in male Wistar rats. TAA (6.6 mmol/kg body wt. i.p) enhanced lipid peroxidation, hydrogen peroxide content, glutathione S-transferase and xanthine oxidase with reduction in the activities of hepatic antioxidant enzymes viz., glutathione peroxidase, superoxide dismutase and caused depletion in the level of hepatic glutathione content. A marked increase in liver damage markers was also observed. TAA treatment also enhanced tumor promotion markers, ornithine decarboxylase (ODC) activity and [3H] thymidine incorporation into hepatic DNA. Pretreatment of rats orally with Tamarix gallica extract (25 and 50 mg/kg body weight) prevented TAA-promoted oxidative stress and toxicity. Prophylaxis with Tamarix gallica significantly reduced the susceptibility of the hepatic microsomal membrane for iron-ascorbate induced lipid peroxidation, H2O2 content, glutathione S-transferase and xanthine oxidase activities. There was also reversal of the elevated levels of liver marker parameters and tumor promotion markers. Our data suggests that Tamarix gallica is a potent chemopreventive agent and may suppress TAA-mediated hepatic oxidative stress, toxicity, and tumor promotion response in rats.

  11. Aqueous garlic extract attenuates hepatitis and oxidative stress induced by galactosamine/lipoploysaccharide in rats.

    PubMed

    El-Beshbishy, Hesham A

    2008-10-01

    Injection of D-galactosamine and lipopolysaccharide (DGaIN/LPS) is useful as an experimental model of acute hepatic damage. Juvenile rats were used for investigation. The hepatoprotective activity of aqueous garlic (Allium sativum) extract (AGE) at a dose of 300 mg/kg body weight for 14 days, intraperitoneal (i.p.) prior to the induction of DGalN/LPS, was investigated against DGalN/LPS-induced hepatitis in rats. DGalN/LPS (300 mg/kg body weight/30 microg/kg body weight, i.p.), induced hepatic damage that was manifested by a significant increase in the activities of marker enzymes [alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and gamma glutamyl transferase (gamma GT)], bilirubin, lipid peroxides (LPO), tumor necrosis factor (TNF-alpha) and myeloperoxidase (MPO) activity level in serum. Also, the lipid profile in serum and liver homogenate including total cholesterol, triglycerides, free fatty acids and phospholipids were significantly deteriorated. The antioxidant enzyme activities (superoxide dismutase, SOD; reduced glutathione, GSH; catalase, CAT and glutathione peroxidase, GPX) in liver homogenate were significantly decreased in the DGalN/LPS. Pretreatment of rats with AGE reversed these altered parameters near to normal control values. Results of this study revealed that AGE could afford a significant protection in the alleviation of DGalN/LPS-induced hepatic damage.

  12. Ursodeoxycholyl Lysophosphatidylethanolamide Protects Against CD95/Fas-Induced Fulminant Hepatitis.

    PubMed

    Utaipan, Tanyarath; Otto, Ann-Christin; Gan-Schreier, Hongying; Chunglok, Warangkana; Pathil, Anita; Stremmel, Wolfgang; Chamulitrat, Walee

    2017-01-04

    Increased activation of CD95/Fas by Fas ligand in viral hepatitis and autoimmunity is involved in pathogenesis of fulminant hepatitis and liver failure. We designed a bile-acid phospholipid conjugate ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE with LPE containing oleate at the sn-1) as a hepatoprotectant that was shown to protect against fulminant hepatitis induced by endotoxin. We herein further assessed the ability of UDCA-LPE to prevent death receptor CD95/Fas-induced fulminant hepatitis. C57BL/6 mice were intravenously administered with CD95/Fas agonistic monoclonal antibody (Jo-2) with or without 1 h pretreatment with 50 mg/kg UDCA-LPE. Jo-2 administration caused massive hepatocyte damage as seen by histology, and this was associated with a significant decrease in hepatic phosphatidylcholine (PC), lysoPC, and lysophosphatidylethanolamine levels. By histology, UDCA-LPE pretreatment improved hepatocyte damage and restored the loss of these phospholipids in part by a mechanism involving an inhibition of cytosolic phospholipaseA2 expression. Accordingly, Jo-2 treatment increased hepatic expression of cleaved caspase 8, caspase 3, and poly (ADP-Ribose) polymerase-1, and on the other hand decreased that of anti-apoptotic cellular FLICE-inhibitory protein. UDCA-LPE pretreatment was able to reverse all these changes. Moreover, UDCA-LPE attenuated inflammatory response by lowering the levels of Jo-2-induced proinflammatory cytokines TNF-α, IL-6, and IL-1β in liver and serum. UDCA-LPE was also able to decrease the levels of stimulated Th1/Th17 cytokines in Jo-2-primed isolated splenocytes. Taken together, UDCA-LPE exhibited potent anti-inflammatory effects against CD95/Fas-induced fulminant hepatitis.

  13. Halothane-induced hepatitis: A forgotten issue in developing countries: Halothane-induced hepatitis.

    PubMed

    Habibollahi, Peiman; Mahboobi, Nastaran; Esmaeili, Sara; Safari, Saeid; Dabbagh, Ali; Alavian, Seyed Moayed

    2011-01-01

    Halothane was introduced as an anesthetic in the 1950s and was considered a revolutionary agent in the field of anesthesia. Soon after, halothane-induced hepatitis became a concern, leading to the development of less toxic gases that induced a lower incidence of side effects. Two types of halothane-related hepatotoxicity have been described: type 1, or mild hepatitis, is associated with elevated transaminase levels and self-limiting symptoms, and type 2, or severe hepatotoxicity, is associated with acute fatal liver failure and is fatal in most cases. Hepatotoxicity is most likely to be immune-related, based on much evidence. Free radicals that are produced by the metabolism of halothane in the liver can modify cellular proteins and introduce neo-antigens to the immune system. Sensitization to these neo-antigens induces a more severe response after multiple exposures; most cases of type 2 hepatitis occur after repeated contact. New halogenated anesthetics such as enflurane, sevoflurane, and desflurane, are not metabolized in the liver, causing few cases of sensitization. Compared with halothane, these anesthetics are expensive. As a result, replacement of halothane with new halogenated anesthetics requires a precise cost-benefit analysis, especially in developing countries that have low health care budgets.

  14. Secondhand smoke induces hepatic apoptosis and fibrosis in hamster fetus.

    PubMed

    Huang, Chien-Wei; Horng, Chi-Ting; Huang, Chih-Yang; Cho, Ta-Hsiung; Tsai, Yi-Chang; Chen, Li-Jeng; Hsu, Tsai-Ching; Tzang, Bor-Show

    2016-09-01

    Secondhand smoke (SHS) is an important health issue worldwide. Inhaling SHS during pregnancy could cause abnormalities in the internal tissues of newborns, which may then impair fetal development and even cause severe intrauterine damage and perinatal death. However, the understanding of cytopathic mechanisms of SHS by maternal passive smoking on fetus liver during pregnancy is still limited. This study analyzed the effects of high-dose SHS (SHSH) on fetus liver using a maternal passive smoking animal model. Experiments showed that hepatic matrix metalloproteinase-9 activity and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling-positive cells were significantly increased in livers from fetuses of hamsters treated with SHSH. Similarly, expressions of both extrinsic and intrinsic apoptotic molecules were significantly higher in livers from fetuses of hamsters exposed to SHSH. Additionally, significantly increased inflammatory proteins, including transforming growth factor β, inducible nitric oxide synthase, and interleukin 1β, and fibrotic signaling molecules, including phosphorylated Smad2/3, SP1, and α-smooth muscle actin, were observed in the fetus livers from hamsters treated with SHSH. This study revealed that SHSH not only increased apoptosis through intrinsic and extrinsic pathways in the livers of fetuses from hamsters exposed to SHSH but also augmented hepatic fibrosis via Smad2/3 signaling. © The Author(s) 2015.

  15. Quercetin protection against ciprofloxacin induced liver damage in rats.

    PubMed

    Taslidere, E; Dogan, Z; Elbe, H; Vardi, N; Cetin, A; Turkoz, Y

    2016-01-01

    Ciprofloxacin is a common, broad spectrum antibacterial agent; however, evidence is accumulating that ciprofloxacin may cause liver damage. Quercetin is a free radical scavenger and antioxidant. We investigated histological changes in hepatic tissue of rats caused by ciprofloxacin and the effects of quercetin on these changes using histochemical and biochemical methods. We divided 28 adult female Wistar albino rats into four equal groups: control, quercetin treated, ciprofloxacin treated, and ciprofloxacin + quercetin treated. At the end of the experiment, liver samples were processed for light microscopic examination and biochemical measurements. Sections were prepared and stained with hematoxylin and eosin, and a histopathologic damage score was calculated. The sections from the control group appeared normal. Hemorrhage, inflammatory cell infiltration and intracellular vacuolization were observed in the ciprofloxacin group. The histopathological findings were reduced in the group treated with quercetin. Significant differences were found between the control and ciprofloxacin groups, and between the ciprofloxacin and ciprofloxacin + quercetin groups. Quercetin administration reduced liver injury caused by ciprofloxacin in rats. We suggest that quercetin may be useful for preventing ciprofloxacin induced liver damage.

  16. Antioxidant and hepatoprotective effects of punicalagin and punicalin on acetaminophen-induced liver damage in rats.

    PubMed

    Lin, C C; Hsu, Y F; Lin, T C; Hsu, H Y

    2001-05-01

    Punicalagin and punicalin were isolated from the leaves of Terminalia catappa L., a Combretaceous plant distributed throughout tropical and subtropical beaches, which is used for the treatment of dermatitis and hepatitis. Our previous studies showed that both of these compounds exert antioxidative activity. In this study, the antihepatotoxic activity of punicalagin and punicalin on acetaminophen-induced toxicity in the rat liver was evaluated. After evaluating the changes of several biochemical functions in serum, the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were increased by acetaminophen administration and reduced by punicalagin and punicalin. Histological changes around the hepatic central vein and oxidative damage induced by acetaminophen were also recovered by both compounds. The data show that both punicalagin and punicalin exert antihepatotoxic activity, but treatment with larger doses enhanced liver damage. These results suggest that even if punicalagin and punicalin have antioxidant activity at small doses, treatment with larger doses will possibly induce some cell toxicities.

  17. Cryoglobulinemia in chronic liver diseases: role of hepatitis C virus and liver damage.

    PubMed

    Lunel, F; Musset, L; Cacoub, P; Frangeul, L; Cresta, P; Perrin, M; Grippon, P; Hoang, C; Valla, D; Piette, J C

    1994-05-01

    Mixed cryoglobulinemia is frequently associated with liver diseases. The respective role of hepatitis C virus (HCV) and liver damage in the pathogenesis of cryoglobulinemia is investigated in this study. The prevalence of cryoglobulinemia in 226 consecutive patients with chronic liver diseases (hepatitis C, 127; hepatitis B, 40; other diseases, 59) was studied, and the epidemiological, biological, histological, and virological features in these three groups were analyzed. Anti-HCV antibodies, HCV proteins, and HCV RNA were searched in the cryoprecipitates. The prevalence of mixed cryoglobulinemia was high (41.5%) in patients with liver diseases and higher in patients with hepatitis C (54.3%) than in patients with hepatitis B (15%) or other causes of liver disease (32%). Patients with cryoglobulinemia had cirrhosis more frequently and had a longer history of hepatitis. In patients with hepatitis C, HCV RNA sequences and HCV proteins were detected in the cryoprecipitate. Cryoglobulins became undetectable in 21 of 43 patients treated with interferon. These findings suggest that HCV is a major cause of cryoglobulinemia. Besides viral infection itself, multiple factors appear to be responsible for the production of cryoglobulins, including cirrhosis and duration of liver disease.

  18. Significance of liver biopsy for the evaluation of methotrexate-induced liver damage in patients with rheumatoid arthritis

    PubMed Central

    Osuga, Tatsuya; Ikura, Yoshihiro; Kadota, Chikara; Hirano, Seiichi; Iwai, Yasuhiro; Hayakumo, Takanobu

    2015-01-01

    It is well recognized that long-term administration of methotrexate (MTX) in patients with rheumatoid arthritis (RA) can induce liver fibrosis via a steatohepatitis-like inflammatory process. Several non-invasive tests have been investigated as alternatives to liver biopsy, which is, however, still recognized as a final diagnostic modality to detect the MTX-induced liver damage. To clarify whether there is a significant discrepancy between clinical estimations and pathologic findings of this hepatic condition, we performed a following comparative study. Four RA patients (4 women, age 67-80 yr) with MTX-induced liver damage were reviewed. The severity of hepatic damage estimated clinically was compared with histopathologic findings. Consequently, the liver biopsies showed the relatively earlier stages of and milder degrees of hepatic damages than the clinical estimations. The histopathologic findings were more reliable and useful than any other clinical examinations, to plan and modify the treatment strategies, especially in cases of liver damages with multiple etiologies besides MTX. These findings suggest that liver biopsy is an unavoidable examination to assess precisely MTX-induced liver damage. Non-invasive tests may be useful to monitor the hepatic condition of RA patients receiving MTX but do not constitute an acceptable alternative to liver biopsy. PMID:25973089

  19. γδ T cells are indispensable for interleukin-23-mediated protection against Concanavalin A-induced hepatitis in hepatitis B virus transgenic mice.

    PubMed

    Meng, Ziyu; Wang, Jingya; Yuan, Yifang; Cao, Guangchao; Fan, Shuobing; Gao, Chao; Wang, Li; Li, Zheng; Wu, Xiaoli; Wu, Zhenzhou; Zhao, Liqing; Yin, Zhinan

    2017-05-01

    Hepatitis B virus surface antigen (HBsAg) carriers are highly susceptible to liver injury triggered by environmental biochemical stimulation. Previously, we have reported an inverse correlation between γδ T cells and liver damage in patients with hepatitis B virus (HBV). However, whether γδ T cells play a role in regulating the hypersensitivity of HBsAg carriers to biochemical stimulation-induced hepatitis is unknown. In this study, using HBV transgenic (HBs-Tg) and HBs-Tg T-cell receptor-δ-deficient (TCR-δ(-/-) ) mice, we found that mice genetically deficient in γδ T cells exhibited more severe liver damage upon Concanavalin A (Con A) treatment, as indicated by substantially higher serum alanine aminotransferase levels, further elevated interferon-γ (IFN-γ) levels and more extensive necrosis. γδ T-cell deficiency resulted in elevated IFN-γ in CD4(+) T cells but not in natural killer or natural killer T cells. The depletion of CD4(+) T cells and neutralization of IFN-γ reduced liver damage in HBs-Tg and HBs-Tg-TCR-δ(-/-) mice to a similar extent. Further investigation revealed that HBs-Tg mice showed an enhanced interleukin-17 (IL-17) signature. The administration of exogenous IL-23 enhanced IL-17A production from Vγ4 γδ T cells and ameliorated liver damage in HBs-Tg mice, but not in HBs-Tg-TCR-δ(-/-) mice. In summary, our results demonstrated that γδ T cells played a protective role in restraining Con A-induced hepatitis by inhibiting IFN-γ production from CD4(+) T cells and are indispensable for IL-23-mediated protection against Con A-induced hepatitis in HBs-Tg mice. These results provided a potential therapeutic approach for treating the hypersensitivity of HBV carriers to biochemical stimulation-induced liver damage.

  20. Hepatic stellate cells express thymosin Beta 4 in chronically damaged liver.

    PubMed

    Kim, Jieun; Wang, Sihyung; Hyun, Jeongeun; Choi, Steve S; Cha, Heejae; Ock, Meesun; Jung, Youngmi

    2015-01-01

    Although the various biological roles of thymosin β4 (Tβ4) have been studied widely, the effect of Tβ4 and Tβ4-expressing cells in the liver remains unclear. Therefore, we investigated the expression and function of Tβ4 in chronically damaged livers. CCl4 was injected into male mice to induce a model of chronic liver disease. Mice were sacrificed at 6 and 10 weeks after CCl4 treatment, and the livers were collected for biochemical analysis. The activated LX-2, human hepatic stellate cell (HSC) line, were transfected with Tβ4-specific siRNA and activation markers of HSCs were examined. Compared to HepG2, higher expression of Tβ4 in RNA and protein levels was detected in the activated LX-2. In addition, Tβ4 was up-regulated in human liver with advanced liver fibrosis. The expression of Tβ4 increased during mouse HSC activation. Tβ4 was also up-regulated and Tβ4-positive cells were co-localized with α-smooth muscle actin (α-SMA) in the livers of CCl4-treated mice, whereas such cells were rarely detected in the livers of corn-oil treated mice. The suppression of Tβ4 in LX-2 cells by siRNA induced the down-regulation of HSC activation-related genes, tgf-β, α-sma, collagen, and vimentin, and up-regulation of HSC inactivation markers, ppar-γ and gfap. Immunofluorescent staining detected rare co-expressing cells with Tβ4 and α-SMA in Tβ4 siRNA-transfected cells. In addition, cytoplasmic lipid droplets were observed in Tβ4 siRNA-treated cells. These results demonstrate that activated HSCs expressed Tβ4 in chronically damaged livers, and this endogenous expression of Tβ4 influenced HSC activation, indicating that Tβ4 might contribute to liver fibrosis by regulating HSC activation.

  1. Activation of α2 adrenoceptor attenuates lipopolysaccharide-induced hepatic injury.

    PubMed

    Chen, Jing-Hui; Yu, Gao-Feng; Jin, Shang-Yi; Zhang, Wen-Hua; Lei, Dong-Xu; Zhou, Shao-Li; Song, Xing-Rong

    2015-01-01

    Sepsis induces hepatic injury but whether alpha-2 adrenoceptor (α2-AR) modulates the severity of sepsis-induced liver damage remains unclear. The present study used lipopolysaccharide (LPS) to induce hepatic injury and applied α2-AR agonist dexmedetomidine (DEX) and/or antagonist yohimbine to investigate the contribution of α2-AR in LPS-induced liver injury. Our results showed that LPS resulted in histological and functional abnormality of liver tissue (ALT and AST transaminases, lactate), higher mortality, an increase in proinflammatory cytokines (IL-1β, IL-6 & TNF-α), as well as a change in oxidative stress (MDA, SOD). Activation of α2-AR by dexmedetomidine (DEX) attenuated LPS-induced deleterious effects on the liver and block of α2-AR by yohimbine aggravated LPS-induced liver damage. Our data suggest that α2-AR plays an important role in sepsis-induced liver damage and activation of α2-AR with DEX could be a novel therapeutic avenue to protect the liver against sepsis-induced injury.

  2. Role of chemokines and their receptors in viral persistence and liver damage during chronic hepatitis C virus infection

    PubMed Central

    Larrubia, Juan R; Benito-Martínez, Selma; Calvino, Miryam; Sanz-de-Villalobos, Eduardo; Parra-Cid, Trinidad

    2008-01-01

    Chemokines produced in the liver during hepatitis C virus (HCV) infection induce migration of activated T cells from the periphery to infected parenchyma. The milieu of chemokines secreted by infected hepatocytes is predominantly associated with the T-helper/T-cytotoxic type-1 cell (Th1/Tc1) response. These chemokines consist of CCL3 (macrophage inflammatory protein-1α; MIP-1α), CCL4 (MIP-1β), CCL5 (regulated on activation normal T cell expressed and secreted; RANTES), CXCL10 (interferon-γ−inducible protein-10; IP-10), CXCL11 (interferon-inducible T-cell α chemoattractant; I-TAC), and CXCL9 (monokine induced by interferon γ; Mig) and they recruit T cells expressing either CCR5 or CXCR3 chemokine receptors. Intrahepatic and peripheral blood levels of these chemokines are increased during chronic hepatitis C. The interaction between chemokines and their receptors is essential in recruiting HCV-specific T cells to control the infection. When the adaptive immune response fails in this task, non-specific T cells without the capacity to control the infection are also recruited to the liver, and these are ultimately responsible for the persistent hepatic damage. The modulation of chemokine receptor expression and chemokine secretion could be a viral escape mechanism to avoid specific T cell migration to the liver during the early phase of infection, and to maintain liver viability during the chronic phase, by impairing non-specific T cell migration. Some chemokines and their receptors correlate with liver damage, and CXCL10 (IP-10) and CXCR3 levels have shown a clinical utility as predictors of treatment response outcome. The regulation of chemokines and their receptors could be a future potential therapeutic target to decrease liver inflammation and to increase specific T cell migration to the infected liver. PMID:19084927

  3. Mechanisms of bleomycin-induced lung damage.

    PubMed

    Hay, J; Shahzeidi, S; Laurent, G

    1991-01-01

    Bleomycins are a family of compounds produced by Streptomyces verticillis. They have potent tumour killing properties which have given them an important place in cancer chemotherapy. They cause little marrow suppression, but pulmonary toxicity is a major adverse effect. The mechanisms of cell toxicity are well described based on in vitro experiments on DNA. The bleomycin molecule has two main structural components: a bithiazole component which partially intercalates into the DNA helix, parting the strands, as well as pyrimidine and imidazole structures, which bind iron and oxygen forming an activated complex capable of releasing damaging oxidants in close proximity to the polynucleotide chains of DNA. This may lead to chain scission or structural modifications leading to release of free bases or their propenal derivatives. The mechanisms are well described based on in vitro experiments on DNA, but how they relate to intact cells in whole animals is more tenuous. Bleomycin is able to cause cell damage independent from its effect on DNA by induction lipid peroxidation. This may be particularly important in the lung and in part account for its ability to cause alveolar cell damage and subsequent pulmonary inflammation. The lung injury seen following bleomycin comprises an interstitial oedema with an influx of inflammatory and immune cells. This may lead to the development of pulmonary fibrosis, characterized by enhanced production and deposition of collagen and other matrix components. Several polypeptide mediators capable of stimulating fibroblasts replication or excessive collagen deposition have been implicated in this, but the precise role of these in bleomycin-induced fibrosis is yet to be demonstrated. Current therapy for bleomycin-induced lung damage is inadequate, with corticosteroids most often used. Given the mechanism of action described above, antioxidants and iron chelators might be beneficial. Although, studies to date are equivocal and there is

  4. Laser-Induced Damage of Calcium Fluoride

    SciTech Connect

    Espana, A.; Joly, A.G.; Hess, W.P.; Dickinson, J.T.

    2004-01-01

    As advances continue to be made in laser technology there is an increasing demand for materials that have high thresholds for laser-induced damage. Laser damage occurs when light is absorbed, creating defects in the crystal lattice. These defects can lead to the emission of atoms, ions and molecules from the sample. One specific field where laser damage is of serious concern is semiconductor lithography, which is beginning to use light at a wavelength of 157 nm. CaF2 is a candidate material for use in this new generation of lithography. In order to prevent unnecessary damage of optical components, it is necessary to understand the mechanisms for laser damage and the factors that serve to enhance it. In this research, we study various aspects of laser interactions with CaF2, including impurity absorbance and various forms of damage caused by incident laser light. Ultraviolet (UV) laser light at 266 nm with both femtosecond (fs) and nanosecond (ns) pulse widths is used to induce ion and neutral particle emission from cleaved samples of CaF2. The resulting mass spectra show significant differences suggesting that different mechanisms for desorption occur following excitation using the different pulse durations. Following irradiation by ns pulses at 266 nm, multiple single-photon absorption from defect states is likely responsible for ion emission whereas the fs case is driven by a multi-photon absorption process. This idea is further supported by the measurements made of the transmission and reflection of fs laser pulses at 266 nm, the results of which reveal a non-linear absorption process in effect at high incident intensities. In addition, the kinetic energy profiles of desorbed Ca and K contaminant atoms are different indicating that a different mechanism is responsible for their emission as well. Overall, these results show that purity plays a key role in the desorption of atoms from CaF2 when using ns pulses. On the other hand, once the irradiance reaches high

  5. [Research advances in drug-induced autoimmune hepatitis].

    PubMed

    Li, C M; Zhang, J Y; Tang, Y Y; Mao, Y M

    2016-11-20

    Drug induced autoimmune hepatitis (DIAIH) refers to the liver injury mediated by drug-induced autoimmune reaction. Since it has similar clinical features as idiopathic autoimmune hepatitis, it is often difficult to make differential diagnosis in clinical practice. A deep understanding of the development, pathogenesis, related drugs, risk factors, and clinical and histological features of DIAIH helps with the correct diagnosis and treatment of DIAIH.

  6. Inhibition of hepatic cells pyroptosis attenuates CLP-induced acute liver injury

    PubMed Central

    Chen, Yuan-Li; Xu, Guo; Liang, Xiao; Wei, Juan; Luo, Jing; Chen, Guan-Nan; Yan, Xiao-Di; Wen, Xue-Ping; Zhong, Ming; Lv, Xin

    2016-01-01

    Pyroptosis is a programmed cell death associated with caspase-1 and accompanied by the secretion of a large number of pro-inflammatory cytokines. In the acute stage of sepsis, the release of several pro-inflammatory cytokines aggravates hepatic cell death, and acute liver injury is aggravated with the progress of the disease, resulting in acute liver failure with a very high mortality rate. The present study investigated the effect of inhibiting hepatic cell pyroptosis on the septic acute liver injury. Septic acute liver injury mice model was established by cecal ligation and puncture (CLP model). The liver tissues were assessed for inflammatory infiltration by HE, serum concentrations of ALT, AST, IL-1β, and IL-18 were examined by ELISA, hepatic cell pyroptosis was determined by flow cytometry, and expressions of caspase-1 and NLRP3 were assessed by Western blot. CLP-induced acute liver injury was distinct at 24 h post-operation, with the highest hepatic cell pyroptosis rate. The pyroptosis rate and liver injury indexes were positively correlated. Western blot showed that the expressions of pyroptosis-related proteins, caspase-1, and NLRP3, were increased. Normal mouse hepatic cells were cultured in vitro and LPS+ATP introduced to establish the cell model of septic acute liver injury. The expressions of caspase-1, NLRP3, IL-1β, and IL-18 in LPS+ATP group were significantly higher than the control group by Western blot and ELISA. The inhibitors of NLRP3 (Glyburide) and caspase-1 (AC-YVAD-CMK) alone or in combination were used to pre-treat the hepatic cells, which revealed that the pyroptosis rate was decreased and the cell damage alleviated. The in vivo assay in rats showed that post inhibitor treatment, the 10-days survival was significantly improved and the liver damage reduced. Therefore, inhibiting the hepatic cell pyroptosis could alleviate CLP-induced acute liver injury, providing a novel treatment target for septic acute liver injury. PMID:28078039

  7. Protective effect of diallyl trisulfide against naphthalene-induced oxidative stress and inflammatory damage in mice.

    PubMed

    Zhang, Fang; Zhang, Yongchun; Wang, Kaiming; Liu, Guangpu; Yang, Min; Zhao, Zhongxi; Li, Shanzhong; Cai, Jianhua; Cao, Jimin

    2016-06-01

    The aim of this study was to investigate the possible protective effects of diallyl trisulfide (DATS) against naphthalene-induced oxidative and inflammatory damage in the livers and lungs of mice. Elevated serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels showed significant hepatic damage after the challenge with 100 mg/kg naphthalene. Hepatic malondialdehyde (MDA) contents and the activity of myeloperoxidase (MPO) increased significantly, accompanying a decrease in the hepatic activity of total superoxide dismutase (SOD) and glutathione (GSH) levels after the naphthalene damage. In addition, the serum levels of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 8 (IL-8) increased significantly in the groups damaged with naphthalene. The main parameters related to oxidative stress and inflammatory responses in the lungs, including the NO, MPO, and GSH contents, were determined, and the histopathological and immunohistochemical changes in the lung and liver tissues were also observed. In the DATS-treated groups, all of the oxidative and inflammatory damage in the serum, liver, and lung tissues were significantly prevented. © The Author(s) 2016.

  8. Fenugreek seed powder mitigates cadmium-induced testicular damage and hepatotoxicity in male rats.

    PubMed

    Arafa, Manar Hamed; Mohammad, Nanies Sameeh; Atteia, Hebatallah Husseini

    2014-09-01

    Cadmium is a potential environmental and industrial pollutant affecting human tissues and organs including liver and testes. The protective role of fenugreek seed powder (FSP) was investigated in male rats subjected to cadmium-induced testicular injury and hepatic dysfunction. Testicular damage and hepatotoxicity were induced by oral administration of cadmium chloride (5 mg/kg body weight, once a day) for 7 weeks. FSP was given at 5% w/w in chow diet for 8 weeks, starting 1 week before cadmium administration. FSP intake significantly increased serum testosterone level and testis weight that were reduced by cadmium. FSP also compensated deficits in hepatic and testicular antioxidant defense system, interleukin-4 and nitric oxide levels, reduced serum liver function enzyme activities and suppressed lipid peroxidation in hepatic and testicular tissues resulted from cadmium administration. Additionally, FSP attenuated the cadmium-induced elevations in hepatic and testicular tumor necrosis factor-α and transforming growth factor-beta1 levels as well as cadmium deposition and hydroxyproline content. The protective effect afforded by FSP was mainly due its antioxidant, antifibrotic and anti-inflammatory effects. In conclusion, the results of the present work indicated that FSP may represent a promising medicinal herb to protect hepatic and testicular tissues from the detrimental effects of cadmium.

  9. Multiphoton microscopy can visualize zonal damage and decreased cellular metabolic activity in hepatic ischemia-reperfusion injury in rats

    NASA Astrophysics Data System (ADS)

    Thorling, Camilla A.; Liu, Xin; Burczynski, Frank J.; Fletcher, Linda M.; Gobe, Glenda C.; Roberts, Michael S.

    2011-11-01

    Ischemia-reperfusion (I/R) injury is a common occurrence in liver surgery. In orthotopic transplantation, the donor liver is exposed to periods of ischemia and when oxygenated blood is reintroduced to the liver, oxidative stress may develop and lead to graft failure. The aim of this project was to investigate whether noninvasive multiphoton and fluorescence lifetime imaging microscopy, without external markers, were useful in detecting early liver damage caused by I/R injury. Localized hepatic ischemia was induced in rats for 1 h followed by 4 h reperfusion. Multiphoton and fluorescence lifetime imaging microscopy was conducted prior to ischemia and up to 4 h of reperfusion and compared to morphological and biochemical assessment of liver damage. Liver function was significantly impaired at 2 and 4 h of reperfusion. Multiphoton microscopy detected liver damage at 1 h of reperfusion, manifested by vacuolated cells and heterogeneous spread of damage over the liver. The damage was mainly localized in the midzonal region of the liver acinus. In addition, fluorescence lifetime imaging showed a decrease in cellular metabolic activity. Multiphoton and fluorescence lifetime imaging microscopy detected evidence of early I/R injury both structurally and functionally. This provides a simple noninvasive technique useful for following progressive liver injury without external markers.

  10. Rifampicin-Induced Concomitant Renal Injury and Hepatitis

    PubMed Central

    Chogtu, Bharti; Surendra, Vyshak Uddur; Acharya, Preetam Rajgopal; Yerrapragada, Devesh Bhaskar

    2016-01-01

    Adverse drug reactions are not unusual during Anti-Tubercular Therapy (ATT). One of the common complications of anti-tubercular treatment is drug induced hepatitis and renal insufficiency has also been reported. Renal failure and/or hepatitis encountered during treatment of tuberculosis can have varied aetiologies: drug induced, concomitant viral infection, pre-existing co-morbidities or a combination of these. Since, hepatitis and/or renal insufficiency can be life threatening a prompt diagnosis is warranted, where drugs should be kept as one of the important cause. Identifying the drug helps in treating hepatitis and/or renal insufficiency along with helping the physician to change the combination of ATT regimen. Rifampicin is one of the most important first line drugs in the treatment of tuberculosis. Hepatitis, epigastric distress, anaemia, thrombocytopenia, and interstitial nephritis are reported adverse drug reactions to rifampicin. As per literature rifampicin induced renal toxicity is usually seen on rifampicin re-exposure, or rifampicin administration on alternate days, both being present in this case. Here we are reporting a case of ATT induced renal failure with concomitant hepatitis where rifampicin was suspected to be the cause. PMID:27790502

  11. Comparison of vitamin E, L-carnitine and melatonin in ameliorating carbon tetrachloride and diabetes induced hepatic oxidative stress.

    PubMed

    Shaker, M E; Houssen, M E; Abo-Hashem, E M; Ibrahim, T M

    2009-09-01

    This study aimed to investigate whether treatments with vitamin E, L-carnitine and melatonin can protect against CCl(4) and diabetes-induced hepatic oxidative stress. Hepatic oxidative stress was performed in rats through 50% v/v carbon tetrachloride (CCl(4)) (1 ml/kg/3 days, i.p.), and through diabetes mellitus induced by streptozotocin (STZ) (40 mg/kg, i.p.). Vitamin E (100 mg/kg/day, i.p), L-carnitine (300 mg/kg/day, i.p.) and melatonin (10 mg/kg/day, i.p.) were injected for a period of 6 weeks. Thereafter, changes in serum glucose level, liver function tests, hepatic malondialdehyde (MDA) content, hepatic reduced glutathione (GSH) content, hepatic superoxide dismutase (SOD) activity, and serum total antioxidant capacity (TAC) level were evaluated. In CCl(4)-induced liver fibrosis, the efficacy order was melatonin > L-carnitine > vitamin E, while in STZ-induced diabetes, the efficacy order was vitamin E > or = melatonin > L-carnitine. In conclusion, these data indicate that low dose of melatonin is more effective than high doses of vitamin E and L-carnitine in reducing hepatic oxidative stress induced by CCl(4) and diabetes. Moreover, the potent effect of vitamin E in ameliorating diabetes can be linked not only to the antioxidant actions, but also to the superior effect in reducing diabetes-induced hyperglycaemia. Meanwhile, potency of L-carnitine was nearly the same in CCl(4) and diabetes-induced liver damage.

  12. Hepatic SATB1 induces paracrine activation of hepatic stellate cells and is upregulated by HBx

    PubMed Central

    Gong, Jin; Tu, Wei; Han, Jian; He, Jiayi; Liu, Jingmei; Han, Ping; Wang, Yunwu; Li, Mengke; Liu, Mei; Liao, Jiazhi; Tian, Dean

    2016-01-01

    Chronic hepatitis B virus (HBV) infection is a major cause of chronic liver diseases, but its involvement in hepatic fibrogenesis remains unclear. Special AT-rich binding protein 1 (SATB1) has been implicated in reprogramming chromatin organization and transcription profiles in many cancers and non-cancer-related conditions. We found that hepatic SATB1 expression was significantly up-regulated in fibrotic tissues from chronic hepatitis B virus (HBV)-infected patients and HBV transgenic (HBV-Tg) mouse model. Knockdown of SATB1 in the liver significantly alleviated CCl4-induced fibrosis in HBV-Tg mouse model. Moreover, we suggested HBV encoded x protein (HBx) induced SATB1 expression through activation of JNK and ERK pathways. Enforced expression of SATB1 in hepatocytes promoted the activation and proliferation of hepatic stellate cells (HSCs) by secretion of connective tissue growth factor (CTGF), Interleukin-6 (IL-6) and platelet derived growth factor-A (PDGF-AA). Our findings demonstrated that HBx upregulated hepatic SATB1 which exerted pro-fibrotic effects by paracrine activation of stellate cells in HBV-related fibrosis. PMID:27883059

  13. [Interferon-alpha and liver fibrosis in patients with chronic damage due to hepatitis C virus].

    PubMed

    Gonzalez-Huezo, María Sarai; Gallegos-Orozco, Juan Fernando

    2003-01-01

    The present review focuses on the published information published regarding the effects of interferon alpha therapy on liver fibrosis in patients with chronic liver damage secondary to hepatitis C infection. Data reviewed included results of the in vitro effects of interferon on hepatic cell line cultures with regards to indirect markers of fibrosis, activation of hepatic stellate cells and oxidative stress response. In the clinical arena, there is current clear evidence of a favorable histological outcome in patients with sustained viral response to interferon therapy. For this reason, the current review focuses more on the histological outcomes regarding liver fibrosis in patients who have not attained viral response to therapy (non-responders) or who already have biopsy defined cirrhosis. Data in these patients were analyzed according to the results of objective testing of fibrosis through the assessment of liver biopsy and its change during time, specially because the morbidity and mortality of this disease is directly related to the complications of liver cirrhosis and not necessarily to the persistence of the hepatitis C virus. Lastly, it is concluded that the process of liver fibrosis/cirrhosis is a dynamic one and that there is some evidence to support the usefulness of interferon alpha therapy as a means to halt or retard the progression of hepatic fibrosis. The result of current clinical trials in which interferon therapy is being used to modify the progression of fibrosis in non-responders or cirrhotic patients is eagerly awaited.

  14. Correlation of polishing-induced shallow subsurface damages with laser-induced gray haze damages in fused silica optics

    NASA Astrophysics Data System (ADS)

    He, Xiang; Zhao, Heng; Wang, Gang; Zhou, Peifan; Ma, Ping

    2016-08-01

    Laser-induced damage in fused silica optics greatly restricts the performances of laser facilities. Gray haze damage, which is always initiated on ceria polished optics, is one of the most important damage morphologies in fused silica optics. In this paper, the laser-induced gray haze damages of four fused silica samples polished with CeO2, Al2O3, ZrO2, and colloidal silica slurries are investigated. Four samples all present gray haze damages with much different damage densities. Then, the polishing-induced contaminant and subsurface damages in four samples are analyzed. The results reveal that the gray haze damages could be initiated on the samples without Ce contaminant and are inclined to show a tight correlation with the shallow subsurface damages.

  15. Histopathological, oxidative damage, biochemical, and genotoxicity alterations in hepatic rats exposed to deltamethrin: modulatory effects of garlic (Allium sativum).

    PubMed

    Ncir, Marwa; Ben Salah, Ghada; Kamoun, Hassen; Makni Ayadi, Fatma; Khabir, Abdelmajid; El Feki, Abdelfattah; Saoudi, Mongi

    2016-06-01

    Deltamethrin is a pesticide widely used as a synthetic pyrethroid. The aim of this study was undertaken to investigate the effects of deltamethrin to induce oxidative stress and changes in biochemical parameters, hepatotoxicity and genotoxicity in female rats following a short-term (30 days) oral exposure and attenuation of these effects by Allium sativum extract. Indeed, Allium sativum is known to be a good antioxidant food resource which helps destroy free radical particles. Our results showed that deltamethrin treatment caused an increase in liver enzyme activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH); and hepatic lipid peroxidation (LPO) level. However, it induced a decrease in activities of hepatic catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) (p < 0.01). Allium sativum extract normalized significantly (p < 0.01) the mentioned parameters in deltamethrin-treated rats. For genotoxic evaluation, deltamethrin treatment showed a significant increase in frequencies of micronucleus in bone-marrow cells. Micronucleus formation is an indicator of chromosomal damage which has been increasingly used to detect the genotoxic potential of environmental pests. The present study showed that Allium sativum diminished the adverse effects induced by this synthetic pyrethroid insecticide.

  16. Recurrent Acute Liver Failure Because of Acute Hepatitis Induced by Organic Solvents

    PubMed Central

    Ito, Daisuke; Tanaka, Tomohiro; Akamatsu, Nobuhisa; Ito, Kyoji; Hasegawa, Kiyoshi; Sakamoto, Yoshihiro; Nakagawa, Hayato; Fujinaga, Hidetaka; Kokudo, Norihiro

    2016-01-01

    Abstract The authors present a case of recurrent acute liver failure because of occupational exposure to organic solvents. A 35-year-old man with a 3-week history of worsening jaundice and flu-like symptoms was admitted to our hospital. Viral hepatitis serology and autoimmune factors were negative. The authors considered liver transplantation, but the patient's liver function spontaneously recovered. Liver biopsy revealed massive infiltration of neutrophils, but the cause of the acute hepatitis was not identified. Four months after discharge, the patient's liver function worsened again. The authors considered the possibility of antinuclear antibody-negative autoimmune hepatitis and initiated steroid treatment, which was effective. Four months after discharge, the patient was admitted for repeated liver injury. The authors started him on steroid pulse therapy, but this time it was not effective. Just before the first admission, he had started his own construction company where he was highly exposed to organic solvents, and thus the authors considered organic solvent-induced hepatitis. Although urine test results for organic solvents were negative, a second liver biopsy revealed severe infiltration of neutrophils, compatible with toxic hepatitis. Again, his liver function spontaneously improved. Based on the pathology and detailed clinical course, including the patient's high exposure to organic solvents since just before the first admission, and the spontaneous recovery of his liver damage in the absence of the exposure, he was diagnosed with toxic hepatitis. The authors strongly advised him to avoid organic solvents. Since then, he has been in good health without recurrence. This is the first report of recurrent acute liver failure because of exposure to organic solvents, which was eventually diagnosed through a meticulous medical history and successfully recovered by avoiding the causative agents. In acute liver failure with an undetermined etiology, clinicians

  17. Peroxiredoxin I is important for cancer-cell survival in Ras-induced hepatic tumorigenesis.

    PubMed

    Han, Bing; Shin, Hye-Jun; Bak, In Seon; Bak, Yesol; Jeong, Ye-Lin; Kwon, Taeho; Park, Young-Ho; Sun, Hu-Nan; Kim, Cheol-Hee; Yu, Dae-Yeul

    2016-10-18

    Peroxiredoxin I (Prx I), an antioxidant enzyme, has multiple functions in human cancer. However, the role of Prx I in hepatic tumorigenesis has not been characterized. Here we investigated the relevance and underlying mechanism of Prx I in hepatic tumorigenesis. Prx I increased in tumors of hepatocellular carcinoma (HCC) patients that aligned with overexpression of oncogenic H-ras. Prx I also increased in H-rasG12V transfected HCC cells and liver tumors of H-rasG12V transgenic (Tg) mice, indicating that Prx I may be involved in Ras-induced hepatic tumorigenesis. When Prx I was knocked down or deleted in HCC-H-rasG12V cells or H-rasG12V Tg mice, cell colony or tumor formation was significantly reduced that was associated with downregulation of pERK pathway as well as increased intracellular reactive oxygen species (ROS) induced DNA damage and cell death. Overexpressing Prx I markedly increased Ras downstream pERK/FoxM1/Nrf2 signaling pathway and inhibited oxidative damage in HCC cells and H-rasG12V Tg mice. In this study, we found Nrf2 was transcriptionally activated by FoxM1, and Prx I was activated by the H-rasG12V/pERK/FoxM1/Nrf2 pathway and suppressed ROS-induced hepatic cancer-cell death along with formation of a positive feedback loop with Ras/ERK/FoxM1/Nrf2 to promote hepatic tumorigenesis.

  18. Resveratrol inhibits dimethylnitrosamine-induced hepatic fibrosis in rats.

    PubMed

    Lee, Eun-Sil; Shin, Mi-Ok; Yoon, Sik; Moon, Jeon-Ok

    2010-06-01

    Resveratrol, a phytoalexin found in grapes and red wines, has been reported to exhibit a wide range of pharmacological properties. In this study, we investigated the protective effect of resveratrol on hepatic injury induced by dimethylnitrosamine (DMN) in rats. Oral administration of resveratrol (20 mg/kg daily for 4 weeks) remarkably prevented the DMN-induced loss in body and liver weight, and inhibited the elevation of serum alanine transaminase, aspartate transaminase, alkaline phosphatase and bilirubin levels. Resveratrol also increased serum albumin and hepatic glutathione levels and reduced the hepatic level of malondialdehyde due to its antioxidant effect. Furthermore, DMN-induced elevation of hydroxyproline content was reduced in the resveratrol treated rats, the result of which was consistent with the reduction in type I collagen mRNA expression and the histological analysis of liver tissue stained with Sirius red. The reduction in hepatic stellate cell activation, as assessed by alpha-smooth muscle actin staining, and the reduction in transforming growth factor-beta1 mRNA expression were associated with resveratrol treatment. In conclusion, resveratrol exhibited in vivo hepatoprotective and antifibrogenic effects against DMN-induced liver injury, suggesting that resveratrol may be useful in the prevention of the development of hepatic fibrosis.

  19. Exendin-4 attenuates brain death-induced liver damage in the rat.

    PubMed

    Carlessi, Rodrigo; Lemos, Natalia E; Dias, Ana L; Brondani, Leticia A; Oliveira, Jarbas R; Bauer, Andrea C; Leitão, Cristiane B; Crispim, Daisy

    2015-11-01

    The majority of liver grafts destined for transplantation originate from brain dead donors. However, significantly better posttransplantation outcomes are achieved when organs from living donors are used, suggesting that brain death (BD) causes irreversible damage to the liver tissue. Recently, glucagon-like peptide-1 (GLP1) analogues were shown to possess interesting hepatic protection effects in different liver disease models. We hypothesized that donor treatment with the GLP1 analogue exendin-4 (Ex-4) could alleviate BD-induced liver damage. A rat model of BD was employed in order to estimate BD-induced liver damage and Ex-4's potential protective effects. Liver damage was assessed by biochemical determination of circulating hepatic markers. Apoptosis in the hepatic tissue was assessed by immunoblot and immunohistochemistry using an antibody that only recognizes the active form of caspase-3. Gene expression changes in inflammation and stress response genes were monitored by quantitative real-time polymerase chain reaction. Here, we show that Ex-4 administration to the brain dead liver donors significantly reduces levels of circulating aspartate aminotransferase and lactate dehydrogenase. This was accompanied by a remarkable reduction in hepatocyte apoptosis. In this model, BD caused up-regulation of tumor necrosis factor and stress-related genes, confirming previous findings in clinical and animal studies. In conclusion, treatment of brain dead rats with Ex-4 reduced BD-induced liver damage. Further investigation is needed to determine the molecular basis of the observed liver protection. After testing in a randomized clinical trial, the inclusion of GLP1 analogues in organ donor management might help to improve organ quality, maximize organ donation, and possibly increase liver transplantation success rates.

  20. Toxin-Induced Autoimmune Hepatitis Caused by Raw Cashew Nuts

    PubMed Central

    Stueck, Ashley; Bansal, Meena

    2016-01-01

    A 64-year-old man with no past medical history presented with abnormally elevated liver enzymes 1 year after developing a diffuse rash thought to be related to eating large quantities of raw cashew nuts. Liver biopsy was performed, which revealed features concerning for drug- or toxin-induced autoimmune hepatitis. The patient began treatment with azathioprine and prednisone, and liver enzymes normalized. We describe a unique case of a toxin-induced autoimmune hepatitis precipitated not by a drug or dietary supplement but by a food product. PMID:27807585

  1. Hepatitis B virus X protein regulates hepatic glucose homeostasis via activation of inducible nitric oxide synthase.

    PubMed

    Shin, Hye-Jun; Park, Young-Ho; Kim, Sun-Uk; Moon, Hyung-Bae; Park, Do Sim; Han, Ying-Hao; Lee, Chul-Ho; Lee, Dong-Seok; Song, In-Sung; Lee, Dae Ho; Kim, Minhye; Kim, Nam-Soon; Kim, Dae-Ghon; Kim, Jin-Man; Kim, Sang-Keun; Kim, Yo Na; Kim, Su Sung; Choi, Cheol Soo; Kim, Young-Bum; Yu, Dae-Yeul

    2011-08-26

    Dysregulation of liver functions leads to insulin resistance causing type 2 diabetes mellitus and is often found in chronic liver diseases. However, the mechanisms of hepatic dysfunction leading to hepatic metabolic disorder are still poorly understood in chronic liver diseases. The current work investigated the role of hepatitis B virus X protein (HBx) in regulating glucose metabolism. We studied HBx-overexpressing (HBxTg) mice and HBxTg mice lacking inducible nitric oxide synthase (iNOS). Here we show that gene expressions of the key gluconeogenic enzymes were significantly increased in HepG2 cells expressing HBx (HepG2-HBx) and in non-tumor liver tissues of hepatitis B virus patients with high levels of HBx expression. In the liver of HBxTg mice, the expressions of gluconeogenic genes were also elevated, leading to hyperglycemia by increasing hepatic glucose production. However, this effect was insufficient to cause systemic insulin resistance. Importantly, the actions of HBx on hepatic glucose metabolism are thought to be mediated via iNOS signaling, as evidenced by the fact that deficiency of iNOS restored HBx-induced hyperglycemia by suppressing the gene expression of gluconeogenic enzymes. Treatment of HepG2-HBx cells with nitric oxide (NO) caused a significant increase in the expression of gluconeogenic genes, but JNK1 inhibition was completely normalized. Furthermore, hyperactivation of JNK1 in the liver of HBxTg mice was also suppressed in the absence of iNOS, indicating the critical role for JNK in the mutual regulation of HBx- and iNOS-mediated glucose metabolism. These findings establish a novel mechanism of HBx-driven hepatic metabolic disorder that is modulated by iNOS-mediated activation of JNK.

  2. Andrographis paniculata ameliorates carbon tetrachloride (CCl(4))-dependent hepatic damage and toxicity: diminution of oxidative stress.

    PubMed

    Koh, Pei Hoon; Mokhtar, Ruzaidi Azli Mohd; Iqbal, Mohammad

    2011-01-01

    Andrographis paniculata (hempedu bumi) is a plant that possesses many medicinal values in treating several diseases and for health care maintenance. However, its hepatoprotective activity and mechanism of action have not been fully investigated. Therefore, this study aimed to evaluate the hepatoprotective effects of A. paniculata and its mechanism of action in rats. Carbon tetrachloride (CCl(4)) challenge of rats at a dose of 1.2 ml/kg body weight-induced oxidative stress in the liver. This was evidenced by augmentation in lipid peroxidation, which was accompanied by a decrease in the activities of antioxidant enzymes and depletion in the level of reduced glutathione (P < 0.05). Parrallel to these changes, CCl(4) challenge too, enhanced hepatic damage as evidenced by sharp increase in serum transaminases (e.g. alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase) (P < 0.05). Additionally, the impairment of liver function corresponded to histolopathological changes. However, most of these changes were reversed in a dose-dependent fashion by pre-treatment of animals with A. paniculata (P < 0.05). The ability of A. paniculata to scavenge the 2,2-Diphenyl-2-picrylhydrazyl radical was determined through its EC(50) value. The EC(50) value of A. paniculata was 583.60 ± 4.25 µg/ml. In addition, A. paniculata was found to contain 65.37 ± 1.20 mg/g total phenolics expressed as gallic acid equivalent. From these studies, it is concluded that A. paniculata could be used as a hepatoprotective agent and possesses the potential to treat or prevent degenerative diseases where oxidative stress is implicated.

  3. Mechanism of chronic dietary iron overload-induced liver damage in mice.

    PubMed

    Liu, Dan; He, Huan; Yin, Dong; Que, Ailing; Tang, Lei; Liao, Zhangping; Huang, Qiren; He, Ming

    2013-04-01

    Chronic iron overload may result in hepatic fibrosis and even neoplastic transformation due to a burst of reactive oxygen species (ROS). Mitochondria have been proposed to be important in the production of ROS. The purpose of this study was to investigate the role of the mitochondrial permeability transition pore (mPTP) in the burst of ROS, and to clarify the mechanism whereby ROS induced by iron overload results in hepatic damage. It has been demonstrated that when ferrocene-induced iron-overloaded mice were fed the cyclosporin A (CsA), a specific inhibitor of the mPTP, diet (10 mg/kg/day) for 50 days, liver-to-body weight ratio, serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), ROS production, mitochondrial swelling, loss of mitochondrial membrane potential (Δψ) and hepatocyte apoptosis decreased. However, the total antioxidant status, including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase activities, increased. The protective effect of CsA on the liver of iron-overloaded mice may be due to inhibition of the ROS burst and a successive antioxidant effect. To the best of our knowledge, these data provide the first support for the theory that ROS-induced ROS release (RIRR) may be involved in the burst of ROS in the liver and greatly contribute to the hepatic damage initiated by iron overload.

  4. Hydrogen Induced Damage in Pipeline Steels

    NASA Astrophysics Data System (ADS)

    Angus, Garrett R.

    The hydrogen induced cracking (HIC) resistance of several grades of plate steels was investigated using electrolytic hydrogen charging. HIC generated by electrolytic charging was also compared to the industrial standard test for HIC, the NACE standard TM0284. The electrolytic charging (EC) apparatus was designed to optimize the reproducibility of the HIC results and the robustness of the components during long charging times. A characterization study on the EC apparatus was undertaken. Alterations to applied current density and charging time were conducted on a highly susceptible plate steel, 100XF, to assess HIC damage as a function of charging conditions. Intermediate current densities of 10 to 15 mA/cm2 produced the greatest extent of cracking without significant corrosion related surface damage. The hydrogen charging time did not greatly affect the extent and depth of cracking for test times between 24 to 48 hours. Thus, for subsequent experiments, the applied current density was set to 15 mA/cm2 and the charging time was set to 24 hours. Plate steel grades X52, X60, X70, and 100XF were prestrained in tension to various levels and then electrolytically charged with hydrogen or tested with the NACE standard TM0284 test (solution A) saturated with H2S(g) to induce HIC. Prestrain was introduced to assess its impact on HIC. Hydrogen damage was quantified with the crack ratios defined in the NACE Standard TM0284. The results from the EC and NACE methods were very comparable to one, with respect to the magnitude of cracking and the trends between alloy and pre-strain conditions observed. Both methods showed that HIC substantially increased for the high strength 100XF steel compared to the lower strength alloys. This is consistent with NACE recommendations for HIC resistance steels, which suggests that alloy strength should be less than 116 ksi (800 MPa) or 248 HV (22 HRC). The HIC results were largely independent of the pre-strain levels imposed within the

  5. Tangeretin Alleviates Cisplatin-Induced Acute Hepatic Injury in Rats: Targeting MAPKs and Apoptosis.

    PubMed

    Omar, Hany A; Mohamed, Wafaa R; Arab, Hany H; Arafa, El-Shaimaa A

    2016-01-01

    Despite its broad applications, cisplatin affords considerable nephro- and hepatotoxicity through triggering inflammatory and oxidative stress cascades. The aim of the current investigation was to study the possible protective effects of tangeretin on cisplatin-induced hepatotoxicity. The impact of tangeretin on cisplatin-evoked hepatic dysfunction and histopathologic changes along with oxidative stress, inflammatory and apoptotic biomarkers were investigated compared to silymarin. Tangeretin pre-treatment significantly improved liver function tests (ALT and AST), inhibited cisplatin-induced lipid profile aberrations (total cholesterol and triglycerides) and diminished histopathologic structural damage in liver tissues. Tangeretin also attenuated cisplatin-induced hepatic inflammatory events as indicated by suppression of tumor necrosis factor-α (TNF-α) and enhancement of interleukin-10 (IL-10). Meanwhile, it lowered malondialdehyde (MDA), nitric oxide (NO) and nuclear factor erythroid 2-related factor 2 (NRF-2) levels with restoration of glutathione (GSH), and glutathione peroxidase (GPx). Regarding mitogen-activated protein kinase (MAPK) pathway, tangeretin attenuated cisplatin-induced increase in phospho-p38, phospho-c-Jun N-terminal kinase (p-JNK) and phospho-extracellular signal-regulated kinase (p-ERK1/2) in liver tissues. In addition, tangeretin downregulated Bax expression with augmentation of Bcl-2 promoting liver cell survival. Our results highlight the protective effects of tangeretin against cisplatin-induced acute hepatic injury via the concerted modulation of inflammation, oxidative stress, MAPKs and apoptotic pathways.

  6. Tangeretin Alleviates Cisplatin-Induced Acute Hepatic Injury in Rats: Targeting MAPKs and Apoptosis

    PubMed Central

    Omar, Hany A.; Mohamed, Wafaa R.; Arab, Hany H.; Arafa, El-Shaimaa A.

    2016-01-01

    Despite its broad applications, cisplatin affords considerable nephro- and hepatotoxicity through triggering inflammatory and oxidative stress cascades. The aim of the current investigation was to study the possible protective effects of tangeretin on cisplatin-induced hepatotoxicity. The impact of tangeretin on cisplatin-evoked hepatic dysfunction and histopathologic changes along with oxidative stress, inflammatory and apoptotic biomarkers were investigated compared to silymarin. Tangeretin pre-treatment significantly improved liver function tests (ALT and AST), inhibited cisplatin-induced lipid profile aberrations (total cholesterol and triglycerides) and diminished histopathologic structural damage in liver tissues. Tangeretin also attenuated cisplatin-induced hepatic inflammatory events as indicated by suppression of tumor necrosis factor-α (TNF-α) and enhancement of interleukin-10 (IL-10). Meanwhile, it lowered malondialdehyde (MDA), nitric oxide (NO) and nuclear factor erythroid 2-related factor 2 (NRF-2) levels with restoration of glutathione (GSH), and glutathione peroxidase (GPx). Regarding mitogen-activated protein kinase (MAPK) pathway, tangeretin attenuated cisplatin-induced increase in phospho-p38, phospho-c-Jun N-terminal kinase (p-JNK) and phospho-extracellular signal-regulated kinase (p-ERK1/2) in liver tissues. In addition, tangeretin downregulated Bax expression with augmentation of Bcl-2 promoting liver cell survival. Our results highlight the protective effects of tangeretin against cisplatin-induced acute hepatic injury via the concerted modulation of inflammation, oxidative stress, MAPKs and apoptotic pathways. PMID:27031695

  7. Copper deficiency potentiates ethanol induced liver damage

    SciTech Connect

    Zidenberg-Cherr, S.; Han, B.; Graham, T.W.; Keen, C.L. )

    1992-02-26

    Copper sufficient (+Cu) and deficient ({minus}Cu) rats were fed liquid diets with EtOH or dextrose at 36% of kcals for 2 mo. Consumption of either the {minus}Cu diet or EtOH resulted in lower liver CuZn superoxide dismutase (CuZnSOD) and glutathione peroxidase (GPx) activities were lowest in EtOH/{minus}Cu rats; being 20% and 50% of control values, respectively. Ethanol resulted in higher MnSOD activity in +Cu and {minus}Cu rats. Low Cu intake as well as EtOH resulted in lower mitochondrial (Mit) TBARS relative to controls. TBARS were lowest in Mit from EtOH/{minus}Cu rats. Microsomal (Micro) TBARS were lower in {minus}Cu and EtOH-fed rats than in controls. The peroxidizability index (PI) was calculated as an index of substrate availability for lipid peroxidation. Ethanol feeding resulted in lower PI's in Mit and Micro than measured in non-EtOH rats. There was a positive correlation between Micro PI's and TBARS. These results show that despite reductions in components of antioxidant defense, compensatory mechanism arise resulting in reduction in peroxidation targets and/or an increase in alternate free radical quenching factors. Histological examination demonstrated increased portal and intralobular connective tissue and cell necrosis in EtOH/{minus}Cu rats, suggesting that Cu may be a critical modulator of EtOH induced tissue damage.

  8. Targeted disruption of carcinoembryonic antigen-related cell adhesion molecule 1 promotes diet-induced hepatic steatosis and insulin resistance.

    PubMed

    Xu, Elaine; Dubois, Marie-Julie; Leung, Nelly; Charbonneau, Alexandre; Turbide, Claire; Avramoglu, Rita Kohen; DeMarte, Luisa; Elchebly, Mounib; Streichert, Thomas; Lévy, Emile; Beauchemin, Nicole; Marette, André

    2009-08-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CC1) is a cell adhesion molecule within the Ig superfamily. The Tyr-phosphorylated isoform of CC1 (CC1-L) plays an important metabolic role in the regulation of hepatic insulin clearance. In this report, we show that CC1-deficient (Cc1(-/-)) mice are prone to hepatic steatosis, as revealed by significantly elevated hepatic triglyceride and both total and esterified cholesterol levels compared with age-matched wild-type controls. Cc1(-/-) mice were also predisposed to lipid-induced hepatic steatosis and dysfunction as indicated by their greater susceptibility to store lipids and express elevated levels of enzymatic markers of liver damage after chronic feeding of a high-fat diet. Hepatic steatosis in the Cc1(-/-) mice was linked to a significant increase in the expression of key lipogenic (fatty acid synthase, acetyl CoA carboxylase) and cholesterol synthetic (3-hydroxy-3-methylglutaryl-coenzyme A reductase) enzymes under the control of sterol regulatory element binding proteins-1c and -2 transcription factors. Cc1(-/-) mice also exhibited impaired insulin clearance, glucose intolerance, liver insulin resistance, and elevated hepatic expression of the key gluconeogenic transcriptional activators peroxisome proliferator-activated receptor-gamma coactivator-1 and Forkhead box O1. Lack of CC1 also exacerbated both glucose intolerance and hepatic insulin resistance induced by high-fat feeding, but insulin clearance was not further deteriorated in the high-fat-fed Cc1(-/-) mice. In conclusion, our data indicate that CC1 is a key regulator of hepatic lipogenesis and that Cc1(-/-) mice are predisposed to liver steatosis, leading to hepatic insulin resistance and liver damage, particularly when chronically exposed to dietary fat.

  9. Paracetamol-induced Stevens Johnson syndrome and cholestatic hepatitis.

    PubMed

    Slim, Raoudha; Fathallah, Neila; Aounallah, Amina; Ksiaa, Mehdi; Sriha, Badreddine; Nouira, Rafiaa; Ben Salem, Chaker

    2015-01-01

    Stevens-Johnson syndrome (SJS) is an uncommon life-threatening skin disease, generally induced by drugs. Extracutaneous manifestations of the syndrome can occur, and may involve the conjunctiva, buccal mucosa, gastrointestinal and genitourinary tracts. Cholestatic hepatitis has been rarely described in SJS. A 29-year-old woman was admitted with generalized cutaneous eruption. A self-medication with paracetamol had been started three days earlier. Clinical signs and skin biopsy were consistent with SJS. Five days later, the patient developed jaundice. Serial liver function tests showed rising transaminases, bilirubin, alkaline phosphatase and γ-glutamyl transferase. Liver biopsy was performed and was consistent with the diagnosis of drug-induced cholestatic hepatitis. Adequate supportive care was provided to the patient. Skin lesions disappeared within two weeks. Jaundice disappeared progressively, and liver tests returned to normal. Herein, we report the first case of SJS associated with cholestatic hepatitis after ingestion of therapeutic doses of paracetamol.

  10. Curative propensity of green tea extract towards hepatic fibrosis induced by CCl(4): A histopathological study.

    PubMed

    Safer, A M; Afzal, M; Nomani, A; Sosamma, O; Mousa, S A

    2012-05-01

    Hepatic fibrosis constitutes a serious insult to the liver, with a substantial negative impact on the quality of life of such patients worldwide. It is a consequence of severe liver damage and occurs as the result of several factors. Chronic alcoholism is the most common cause. Fibrosis also results from chronic viral hepatitis and autoimmune hepatitis. Prolonged exposure to environmental toxins such as carbon tetrachloride (CCl(4)) can also lead to fibrosis. In the present study, the hepato-protective effects of green tea extract (GTE) on hepatic fibrosis in a rat liver CCl(4)-induced fibrosis model were examined histologically, 3-dimensionally and biochemically. GTE was prepared from dried green tea leaves and lyophilized. Male albino rats (n=20) weighing 200-250 g were divided into four groups: GI, control; GII, administered 50 mg/kg GTE dissolved in physiological saline daily for four weeks; GIII, administered 40% CCl(4) (1 ml/kg body weight) by subcutaneous injection daily for four weeks; and GIV, treated as GIII, followed by 50 mg/kg GTE dissolved in physiological saline daily for 4 weeks. Histology and 3-dimensional scanning electron microscopy showed hepatic fibrosis with intermingled fibers located between cells in the liver tissues of the CCl(4)-treated rats. Fibrotic lesions virtually disappeared after four weeks of treatment with GTE, returning the architecture of liver tissue back to its normal state. Also, the levels of the hepatic enzymes alanine aminotranferase and aspartate aminotransferase returned to their normal levels after treatment with GTE. The rats were found to regain their normal body weight and their fur color, which had faded due to weight loss. The autopsy results showed the animal liver returning to normal shape and color. Thus, green tea extract is a potent treatment for hepatic fibrosis caused by CCl(4) in this animal model.

  11. Fructose surges damage hepatic adenosyl-monophosphate-dependent kinase and lead to increased lipogenesis and hepatic insulin resistance.

    PubMed

    Gugliucci, Alejandro

    2016-08-01

    Fructose may be a key contributor to the biochemical alterations which promote the metabolic syndrome (MetS), non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2DM): (a) its consumption in all forms but especially in liquid form has much increased alongside with incidence of MetS conditions; (b) it is metabolized almost exclusively in the liver, where it stimulates de novo lipogenesis to drive hepatic triglyceride (TG) synthesis which (c) contributes to hepatic insulin resistance and NAFLD (Lustig et al., 2015; Weiss et al., 2013; Lim et al., 2010; Schwarzet al., 2015; Stanhope et al., 2009, 2013) [1-6]. The specifics of fructose metabolism and its main location in the liver serve to explain many of the possible mechanisms involved. It also opens questions, as the consequences of large increases in fructose flux to the liver may wreak havoc with the regulation of metabolism and would produce two opposite effects (inhibition and activation of AMP dependent kinase-AMPK) that would tend to cancel each other. We posit that (1) surges of fructose in the portal vein lead to increased unregulated flux to trioses accompanied by unavoidable methylglyoxal (MG) production, (2) the new, sudden flux exerts carbonyl stress on the three arginines on the γ subunits AMP binding site of AMPK, irreversible blocking some of the enzyme molecules to allosteric modulation, (3) this explains why, even when fructose quick phosphorylation increases AMP and should therefore activate AMPK, the effects of fructose are compatible with inactivation of AMPK, which then solves the apparent metabolic paradox. We put forward the hypothesis that fructose loads, via the increase in MG flux worsens the fructose-driven metabolic disturbances that lead to unrestricted de novo lipogenesis, fatty liver and hepatic insulin resistance. It does so via the silencing of AMPK. Our hypothesis is testable and if proven correct will shed some further light on fructose metabolism in the liver. It will

  12. The angiotensin-converting enzyme inhibitor captopril rescues mice from endotoxin-induced lethal hepatitis.

    PubMed

    Ge, Pu; Jiang, Rong; Yao, Xin; Li, Jing; Dai, Jie; Zhang, Li; Ye, Bin

    2017-02-01

    The renin-angiotensin system is classically regarded as a crucial regulator of circulatory homeostasis, but recent studies also revealed its pro-inflammatory roles. The beneficial effects of the angiotensin-converting enzyme inhibitor (ACEI) in severe inflammatory injury in the lung and heart have been previously reported, but its potential effects on lethal hepatitis were unknown. In this study, a mouse model with LPS/d-galactosamine (GalN)-induced fulminant hepatitis were used to test the protective potential of captopril, a representative ACEI. The results indicated that treatment with captopril significantly decreased the plasma level of alanine aminotransferase and aspartate aminotransferase, alleviated the histopathological damage of the liver tissue and improve the survival rate of LPS/GalN-challenged mice. These effects were accompanied by reduced mRNA levels of TNF-α and IL-6 in the liver, and decreased protein level of TNF-α and IL-6 in the plasma. In addition, the activation of caspases 3, 8 and 9, and the presence of TUNEL-positive apoptotic cells, were also suppressed by captopril treatment. The above evidence suggested that the renin-angiotensin system might be involved in the development of LPS/GalN-induced fulminant hepatitis and ACEI might have potential value in lethal hepatitis.

  13. Fenofibrate does not affect burn-induced hepatic endoplasmic reticulum stress.

    PubMed

    Hiyama, Yaeko; Marshall, Alexandra H; Kraft, Robert; Arno, Anna; Jeschke, Marc G

    2013-12-01

    Burn injury causes major metabolic derangements such as hypermetabolism, hyperlipidemia, and insulin resistance and is associated with liver damage, hepatomegaly, and hepatic endoplasmic reticulum (ER) stress. Although the physiological consequences of such derangements have been delineated, the underlying molecular mechanisms remain unknown. Previously, it was shown that fenofibrate improves patient outcome by attenuating postburn stress responses. Fenofibrate, a peroxisome proliferator-activated receptor alpha agonist, regulates liver lipid metabolism and has been used to treat hypertriglyceridemia and hypercholesterolemia for many years. The aim of the present study is to determine the effects of fenofibrate on burn-induced hepatic morphologic and metabolic changes. We randomized rats to sham, burn injury, and burn injury plus fenofibrate. Animals were sacrificed and livers were assessed at 24 or 48 h post burn. Burn injury decreased albumin and increased alanine transaminase (P = 0.1 versus sham), indicating liver injury. Fenofibrate administration did not restore albumin or decrease alanine transaminase. In addition, ER stress was significantly increased after burn injury both with and without fenofibrate (P < 0.05 versus sham). Burn injury increased fatty acid metabolism gene expression (P < 0.05 versus sham), downstream of peroxisome proliferator-activated receptor alpha. Fenofibrate treatment increased fatty acid metabolism further, which reduced postburn hepatic steatosis (burn versus sham P < 0.05, burn + fenofibrate versus sham not significant). Fenofibrate did not alleviate thermal injury-induced hepatic ER stress and dysfunction, but it reduced hepatic steatosis by modulating hepatic genes related to fat metabolism. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Sex differences in diquat-induced hepatic necrosis and DNA fragmentation in Fischer 344 rats.

    PubMed

    Gupta, S; Husser, R C; Geske, R S; Welty, S E; Smith, C V

    2000-03-01

    Redox cycling metabolism of diquat catalyzes generation of reactive oxygen species, and diquat-induced acute hepatic necrosis in male Fischer 344 (F344) rats has been studied as a model of oxidant mechanisms of cell killing in vivo. At equal doses of diquat, female F344 rats sustained less hepatic damage than did male rats, as estimated by plasma alanine aminotransferase (ALT) activities after 6 h. Biliary efflux of glutathione disulfide (GSSG) was greater in male than in female rats at each dose of diquat, but even comparable rates of GSSG excretion were associated with less hepatic injury in female rats. Hepatic activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX) were similar in the two genders, and activities of glutathione reductase (GR) and glutathione S-transferase-alpha (GST-alpha) activities were higher in the male rats. Previous studies in male rats have implicated formation of 2,4-dinitrophenylhydrazine (DNPH)-reactive "protein carbonyls" and related iron chelate-catalyzed redox reactions as mechanisms critical to diquat-induced acute cell death in vivo. However, diquat-treated female rats showed higher levels of DNPH-reactive proteins in livers and in bile than did males, both at identical doses of diquat and at doses that produced similar elevations in plasma ALT activities. In female rats, fragmentation of hepatic deoxyribonucleic acids (DNA) was increased by doses of diquat that did not increase plasma ALT activities, and increased fragmentation was observed prior to elevation of plasma ALT activities. In the present studies, hepatic necrosis was most closely associated with DNA fragmentation, although additional studies are needed to determine the mechanisms responsible for and the pathophysiological consequences of the fragmentation.

  15. Acrylonitrile-induced oxidative DNA damage in rat astrocytes.

    PubMed

    Pu, Xinzhu; Kamendulis, Lisa M; Klaunig, James E

    2006-10-01

    Chronic administration of acrylonitrile results in a dose-related increase in astrocytomas in rat brain, but the mechanism of acrylonitrile carcinogenicity is not fully understood. The potential of acrylonitrile or its metabolites to induce direct DNA damage as a mechanism for acrylonitrile carcinogenicity has been questioned, and recent studies indicate that the mechanism involves the induction of oxidative stress in rat brain. The present study examined the ability of acrylonitrile to induce DNA damage in the DI TNC1 rat astrocyte cell line using the alkaline Comet assay. Oxidized DNA damage also was evaluated using formamidopyrimidine DNA glycosylase treatment in the modified Comet assay. No increase in direct DNA damage was seen in astrocytes exposed to sublethal concentrations of acrylonitrile (0-1.0 mM) for 24 hr. However, acrylonitrile treatment resulted in a concentration-related increase in oxidative DNA damage after 24 hr. Antioxidant supplementation in the culture media (alpha-tocopherol, (-)-epigallocathechin-3 gallate, or trolox) reduced acrylonitrile-induced oxidative DNA damage. Depletion of glutathione using 0.1 mM DL-buthionine-[S,R]-sulfoximine increased acrylonitrile-induced oxidative DNA damage (22-46%), while cotreatment of acrylonitrile with 2.5 mM L-2-oxothiazolidine-4-carboxylic acid, a precursor for glutathione biosynthesis, significantly reduced acrylonitrile-induced oxidative DNA damage (7-47%). Cotreatment of acrylonitrile with 0.5 mM 1-aminobenzotriazole, a suicidal inhibitor of cytochrome P450, prevented the oxidative DNA damage produced by acrylonitrile. Cyanide (0.1-0.5 mM) increased oxidative DNA damage (44-160%) in astrocytes. These studies demonstrate that while acrylonitrile does not directly damage astrocyte DNA, it does increase oxidative DNA damage. The oxidative DNA damage following acrylonitrile exposure appears to arise mainly through the P450 metabolic pathway; moreover, glutathione depletion may contribute to the

  16. A continuum damage model of fatigue-induced damage in laminated composites

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Allen, David H.

    1988-01-01

    A model is presented which predicts the stress-strain behavior of continuous fiber reinforced laminated composites in the presence of microstructural damage. The model is based on the concept of continuum damage mechanics and uses internal state variables to characterize the various damage modes. The associated internal state variable growth laws are mathematical models of the loading history induced development of microstructural damage. The model is demonstrated by using it to predict the response of damaged AS-4/3502 graphite/epoxy laminate panels.

  17. Polydatin alleviates alcohol-induced acute liver injury in mice: Relevance of matrix metalloproteinases (MMPs) and hepatic antioxidants.

    PubMed

    Koneru, Meghana; Sahu, Bidya Dhar; Gudem, Sagarika; Kuncha, Madhusudana; Ravuri, Halley Gora; Kumar, Jerald Mahesh; Kilari, Eswar Kumar; Sistla, Ramakrishna

    2017-04-15

    Alcohol, a most commonly consumed beverage, is the foremost cause of liver injury throughout the world. Polydatin, a stilbenoid glucoside, was known to possess antioxidant and anti-inflammatory properties and is being investigated for use in various disorders. The present study was intended at investigating the hepatoprotective efficacy of polydatin against acute-alcohol induced liver injury model in mice. C57BL/6 mice were fed with five doses of 50% ethyl alcohol (10ml/kg body weight) to induce acute liver injury. Effect of polydatin against alcohol induced hepatic injury was investigated by giving 50 or 100mg/kg polydatin, orally, for 8 days. Serum markers of liver injury, morphology, histology and fibrosis of liver tissue, levels of enzymatic and non-enzymatic antioxidants and the mitochondrial respiratory enzyme activities in liver tissue were investigated. The activities and the protein expression of matrix metalloproteinases (MMP-2 and -9), the expression of NF-κB in the liver tissue were also studied. Polydatin pre-treatment significantly alleviated the alcohol induced hepatic injury by reducing the serum liver injury markers, alanine aminotransferase (ALT) and aspartate aminotransferase (AST), attenuating oxidative stress and restoring antioxidant balance in the hepatic tissue. Simultaneously, polydatin pre-treatment also prevented alcohol induced mitochondrial damage and refurbished the matrix metalloproteinases levels of the hepatic tissue. The findings of the present study suggest that polydatin may have a potential benefit in preventing alcohol-induced acute hepatic injury. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Obstructive jaundice due to radiation-induced hepatic duct stricture

    SciTech Connect

    Chandrasekhara, K.L.; Iyer, S.K.

    1984-10-01

    A case of obstructive jaundice due to radiation-induced hepatic duct stricture is reported. The patient received postoperative radiation for left adrenal carcinoma, seven years prior to this admission. The sequelae of hepatobiliary radiation and their management are discussed briefly.

  19. Glycyrrhizin ameliorates metabolic syndrome-induced liver damage in experimental rat model.

    PubMed

    Sil, Rajarshi; Ray, Doel; Chakraborti, Abhay Sankar

    2015-11-01

    Glycyrrhizin, a major constituent of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate insulin resistance, hyperglycemia, dyslipidemia, and obesity in rats with metabolic syndrome. Liver dysfunction is associated with this syndrome. The objective of this study is to investigate the effect of glycyrrhizin treatment on metabolic syndrome-induced liver damage. After induction of metabolic syndrome in rats by high fructose (60%) diet for 6 weeks, the rats were treated with glycyrrhizin (50 mg/kg body weight, single intra-peritoneal injection). After 2 weeks of treatment, rats were sacrificed to collect blood samples and liver tissues. Compared to normal, elevated activities of serum alanine transaminase, alkaline phosphatase and aspartate transaminase, increased levels of liver advanced glycation end products, reactive oxygen species, lipid peroxidation, protein carbonyl, protein kinase Cα, NADPH oxidase-2, and decreased glutathione cycle components established liver damage and oxidative stress in fructose-fed rats. Activation of nuclear factor κB, mitogen-activated protein kinase pathways as well as signals from mitochondria were found to be involved in liver cell apoptosis. Increased levels of cyclooxygenase-2, tumor necrosis factor, and interleukin-12 proteins suggested hepatic inflammation. Metabolic syndrome caused hepatic DNA damage and poly-ADP ribose polymerase cleavage. Fluorescence-activated cell sorting using annexin V/propidium iodide staining confirmed the apoptotic hepatic cell death. Histology of liver tissue also supported the experimental findings. Treatment with glycyrrhizin reduced oxidative stress, hepatic inflammation, and apoptotic cell death in fructose-fed rats. The results suggest that glycyrrhizin possesses therapeutic potential against hepatocellular damage in metabolic syndrome.

  20. Acetaminophen increases the risk of arsenic-mediated development of hepatic damage in rats by enhancing redox-signaling mechanism.

    PubMed

    Majhi, Chhaya Rani; Khan, Saleem; Leo, Marie Dennis Marcus; Prawez, Shahid; Kumar, Amit; Sankar, Palanisamy; Telang, Avinash Gopal; Sarkar, Souvendra Nath

    2014-02-01

    We evaluated whether the commonly used analgesic-antipyretic drug acetaminophen can modify the arsenic-induced hepatic oxidative stress and also whether withdrawal of acetaminophen administration during the course of long-term arsenic exposure can increase susceptibility of liver to arsenic toxicity. Acetaminophen was co-administered orally to rats for 3 days following 28 days of arsenic pre-exposure (Phase-I) and thereafter, acetaminophen was withdrawn, but arsenic exposure was continued for another 28 days (Phase-II). Arsenic increased lipid peroxidation and reactive oxygen species (ROS) generation, depleted glutathione (GSH), and decreased superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and glutathione reductase (GR) activities. Acetaminophen caused exacerbation of arsenic-mediated lipid peroxidation and ROS generation and further enhancement of serum alanine aminotransferase and aspartate aminotransferase activities. In Phase-I, acetaminophen caused further GSH depletion and reduction in SOD, catalase, GPx and GR activities, but in Phase-II, only GPx and GR activities were more affected. Arsenic did not alter basal and inducible nitric oxide synthase (iNOS)-mediated NO production, but decreased constitutive NOS (cNOS)-mediated NO release. Arsenic reduced expression of endothelial NOS (eNOS) and iNOS genes. Acetaminophen up-regulated eNOS and iNOS expression and NO production in Phase-I, but reversed these effects in Phase-II. Results reveal that acetaminophen increased the risk of arsenic-mediated hepatic oxidative damage. Withdrawal of acetaminophen administration also increased susceptibility of liver to hepatotoxicity. Both ROS and NO appeared to mediate lipid peroxidation in Phase-I, whereas only ROS appeared responsible for peroxidative damage in Phase-II.

  1. Cod liver oil in sodium nitrite induced hepatic injury: does it have a potential protective effect?

    PubMed

    Sherif, I O; Al-Gayyar, M M

    2015-01-01

    Exposure to sodium nitrites, a food additive, at high levels has been reported to produce reactive nitrogen and oxygen species that cause dysregulation of inflammatory responses and tissue injury. In this work, we examined the impact of dietary cod liver oil on sodium nitrite-induced inflammation in rats. Thirty-two adult male Sprague-Dawely rats were treated with 80 mg/kg sodium nitrite in presence/absence of 5 ml/kg cod liver oil. Liver sections were stained with hematoxylin/eosin. We measured hepatic tumor necrosis factor (TNF)-α, interleukin-1 beta (IL)-1β, C-reactive protein (CRP), transforming growth factor (TGF)-β1, and caspase-3. Cod liver oil reduced sodium nitrite-induced hepatocyte damage. In addition, cod liver oil results in reduction of hepatic TNF-α, IL-1β, CRP, TGF-β1, and caspase-3 when compared with the sodium nitrite group. Cod liver oil ameliorates sodium nitrite-induced hepatic injury via multiple mechanisms including blocking sodium nitrite-induced elevation of inflammatory cytokines, fibrosis mediators, and apoptosis markers.

  2. Protective Effect of Acacia nilotica (L.) against Acetaminophen-Induced Hepatocellular Damage in Wistar Rats

    PubMed Central

    Kannan, Narayanan; Sakthivel, Kunnathur Murugesan; Guruvayoorappan, Chandrasekaran

    2013-01-01

    The potential biological functions of A. nilotica have long been described in traditional system of medicine. However, the protective effect of A. nilotica on acetaminophen-induced hepatotoxicity is still unknown. The present study attempted to investigate the protective effect of A. nilotica against acetaminophen-induced hepatic damage in Wistar rats. The biochemical liver functional tests Alanine transaminase (ALT), Aspartate transaminase (AST), Alkaline phosphatase (ALP), total bilirubin, total protein, oxidative stress test (Lipid peroxidation), antioxidant parameter glutathione (GSH), and histopathological changes were examined. Our results show that the pretreatment with A. nilotica (250 mg/kg·bw) orally revealed attenuation of serum activities of ALT, AST, ALP, liver weight, and total bilirubin levels that were enhanced by administration of acetaminophen. Further, pretreatment with extract elevated the total protein and GSH level and decreased the level of LPO. Histopathological analysis confirmed the alleviation of liver damage and reduced lesions caused by acetaminophen. The present study undoubtedly provides a proof that hepatoprotective action of A. nilotica extract may rely on its effect on reducing the oxidative stress in acetaminophen-induced hepatic damage in rat model. PMID:23864853

  3. Heat induced damage detection in composite materials by terahertz radiation

    NASA Astrophysics Data System (ADS)

    Radzieński, Maciej; Mieloszyk, Magdalena; Rahani, Ehsan Kabiri; Kundu, Tribikram; Ostachowicz, Wiesław

    2015-03-01

    In recent years electromagnetic Terahertz (THz) radiation or T-ray has been increasingly used for nondestructive evaluation of various materials such as polymer composites and porous foam tiles in which ultrasonic waves cannot penetrate but T-ray can. Most of these investigations have been limited to mechanical damage detection like inclusions, cracks, delaminations etc. So far only a few investigations have been reported on heat induced damage detection. Unlike mechanical damage the heat induced damage does not have a clear interface between the damaged part and the surrounding intact material from which electromagnetic waves can be reflected back. Difficulties associated with the heat induced damage detection in composite materials using T-ray are discussed in detail in this paper. T-ray measurements are compared for different levels of heat exposure of composite specimens.

  4. Ataxia telangiectasia-mutated-Rad3-related DNA damage checkpoint signaling pathway triggered by hepatitis B virus infection

    PubMed Central

    Zhao, Fan; Hou, Ning-Bo; Yang, Xiao-Li; He, Xiang; Liu, Yu; Zhang, Yan-Hong; Wei, Cong-Wen; Song, Ting; Li, Li; Ma, Qing-Jun; Zhong, Hui

    2008-01-01

    AIM: To explore whether acute cellular DNA damage response is induced upon hepatitis B virus (HBV) infection and the effects of the HBV infection. METHODS: We incubated HL7702 hepatocytes with HBV-positive serum, mimicking a natural HBV infection process. We used immunoblotting to evaluate protein expression levels in HBV-infected cells or in non-infected cells; immunofluorescence to show ATR foci ands Chk1 phosphorylation foci formation; flow cytometry to analyze the cell cycle and apoptosis; ultraviolet (UV) radiation and ionizing radiation (IR)-treated cells to mimic DNA damage; and Trypan blue staining to count the viable cells. RESULTS: We found that HBV infection induced an increased steady state of ATR protein and increased phosphorylation of multiple downstream targets including Chk1, p53 and H2AX. In contrast to ATR and its target, the phosphorylated form of ATM at Ser-1981 and its downstream substrate Chk2 phosphorylation at Thr-68 did not visibly increase upon infection. However, the level of Mre11 and p21 were reduced beginning at 0.5 h after HBV-positive serum addition. Also, HBV infection led to transient cell cycle arrest in the S and the G2 phases without accompanying increased apoptosis. Research on cell survival changes upon radiation following HBV infection showed that survival of UV-treated host cells was greatly increased by HBV infection, owing to the reduced apoptosis. Meanwhile, survival of IR-treated host cells was reduced by HBV infection. CONCLUSION: HBV infection activates ATR DNA damage response to replication stress and abrogates the checkpoint signaling controlled by DNA damage response. PMID:18985806

  5. Tumor-induced CD11b(+) Gr-1(+) myeloid-derived suppressor cells exacerbate immune-mediated hepatitis in mice in a CD40-dependent manner.

    PubMed

    Kapanadze, Tamar; Medina-Echeverz, José; Gamrekelashvili, Jaba; Weiss, Jonathan M; Wiltrout, Robert H; Kapoor, Veena; Hawk, Nga; Terabe, Masaki; Berzofsky, Jay A; Manns, Michael P; Wang, Ena; Marincola, Francesco M; Korangy, Firouzeh; Greten, Tim F

    2015-04-01

    Immunosuppressive CD11b(+) Gr-1(+) myeloid-derived suppressor cells (MDSCs) accumulate in the livers of tumor-bearing (TB) mice. We studied hepatic MDSCs in two murine models of immune-mediated hepatitis. Unexpectedly, treatment of TB mice with Concanavalin A (Con A) or α-galactosylceramide resulted in increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) serum levels in comparison to tumor-free mice. Adoptive transfer of hepatic MDSCs into naïve mice exacerbated Con A induced liver damage. Hepatic CD11b(+) Gr-1(+) cells revealed a polarized proinflammatory gene signature after Con A treatment. An IFN-γ-dependent upregulation of CD40 on hepatic CD11b(+) Gr-1(+) cells along with an upregulation of CD80, CD86, and CD1d after Con A treatment was observed. Con A treatment resulted in a loss of suppressor function by tumor-induced CD11b(+) Gr-1(+) MDSCs as well as enhanced reactive oxygen species (ROS)-mediated hepatotoxicity. CD40 knockdown in hepatic MDSCs led to increased arginase activity upon Con A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40(-/-) tumor-induced myeloid cells resulted in exacerbation of hepatitis and increased ROS production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor-induced hepatic MDSCs act as proinflammatory immune effector cells capable of killing hepatocytes in a CD40-dependent manner.

  6. Mechanisms of Diabetes-Induced Liver Damage

    PubMed Central

    Mohamed, Jamaludin; Nazratun Nafizah, A. H.; Zariyantey, A. H.; Budin, S. B.

    2016-01-01

    Diabetes mellitus is a non-communicable disease that occurs in both developed and developing countries. This metabolic disease affects all systems in the body, including the liver. Hyperglycaemia, mainly caused by insulin resistance, affects the metabolism of lipids, carbohydrates and proteins and can lead to non-alcoholic fatty liver disease, which can further progress to non-alcoholic steatohepatitis, cirrhosis and, finally, hepatocellular carcinomas. The underlying mechanism of diabetes that contributes to liver damage is the combination of increased oxidative stress and an aberrant inflammatory response; this activates the transcription of pro-apoptotic genes and damages hepatocytes. Significant involvement of pro-inflammatory cytokines—including interleukin (IL)-1β, IL-6 and tumour necrosis factor-α—exacerbates the accumulation of oxidative damage products in the liver, such as malondialdehyde, fluorescent pigments and conjugated dienes. This review summarises the biochemical, histological and macromolecular changes that contribute to oxidative liver damage among diabetic individuals. PMID:27226903

  7. Histological Damage in Chronic Hepatitis C Is Not Related to the Extent of Infection in the Liver

    PubMed Central

    Rodríguez-Iñigo, Elena; Bartolomé, Javier; de Lucas, Susana; Manzarbeitia, Felix; Pardo, Margarita; Arocena, Carlos; Gosálvez, Jaime; Oliva, Horacio; Carreño, Vicente

    1999-01-01

    It has not been completely elucidated whether the liver injury induced by the hepatitis C virus (HCV) is due to direct cytopathic damage or to an immune-mediated response against HCV-infected hepatocytes. In this work, we have determined the percentage of HCV-infected hepatocytes, the histological activity index, and the viremia levels in chronically HCV-infected patients with different grades of liver injury to investigate any possible correlation between them. For that purpose, liver biopsies from 27 patients with HCV chronic hepatitis were analyzed by in situ hybridization. This technique revealed that the percentage of infected hepatocytes ranged from 0.04% to 83.6%. Regarding the viremia levels, HCV RNA concentration ranged from 1.8 × 103 to 1.4 × 106 genome copies/ml. A significant correlation (r = 0.54; P = 0.003) between the percentage of infected hepatocytes and the viremia levels was found. In contrast, no correlation was observed between the percentage of HCV-infected hepatocytes or the viremia levels and the histological activity index. In conclusion, we have shown that the HCV viremia reflects the extent of the infection in the liver and that the liver injury in chronic HCV infection is not directly related to either the number of infected hepatocytes or the serum HCV RNA concentration. PMID:10362814

  8. Hepatic Sinusoidal Obstruction Syndrome Induced by Non-transplant Chemotherapy for Non-Hodgkin Lymphoma

    PubMed Central

    Sakumura, Miho; Tajiri, Kazuto; Miwa, Shigeharu; Nagata, Kohei; Kawai, Kengo; Miyazono, Takayoshi; Arita, Kotaro; Wada, Akinori; Murakami, Jun; Sugiyama, Toshiro

    2017-01-01

    Hepatic sinusoidal obstruction syndrome (SOS), a serious complication that mainly occurs after hematopoietic-stem cell transplantation (HSCT), is caused by damage to the sinusoidal endothelial cells after the obstruction of the sinusoid. Recently, hepatic SOS was reported to occur after non-HSCT chemotherapies. This report describes a patient who experienced hepatic SOS after non-HSCT chemotherapy for non-Hodgkin lymphoma. A liver biopsy showed the slight dilatation of the hepatic sinusoid, which may be indicative of hepatic SOS. Hepatic SOS should be included in the differential diagnosis of patients with severe liver injury following the administration of chemotherapy regimens that are toxic to the vascular endothelial cells. PMID:28202860

  9. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    SciTech Connect

    Zan, Yanlu; Zhang, Yuxia; Tien, Po

    2013-06-07

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg protein purified from cell medium directly activated HSCs. -- Abstract: Chronic hepatitis B virus infection is a major cause of hepatic fibrosis, leading to liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus e antigen (HBeAg) is an accessory protein of HBV, not required for viral replication but important for natural infection in vivo. Hepatic stellate cells (HSCs) are the major producers of excessive extracellular matrix during liver fibrogenesis. Therefore, we examined the influence of HBeAg on HSCs. The rat HSC line HSC-T6 was transfected with HBeAg plasmids, and expression of α-smooth muscle actin, collagen I, transforming growth factor-β1 (TGF-β), and tissue inhibitors of metalloproteinase 1 (TIMP-1) was investigated by quantitative real-time PCR. The proliferation of HSCs was determined by MTS analysis. HBeAg transduction induced up-regulation of these fibrogenic genes and proliferation of HSCs. We found that HBeAg induced TGF-β secretion in HSCs, and the activation of HSCs was prevented by a neutralizing anti-TGF-β antibody. Depletion and addition of HBeAg protein in conditioned medium from HSC-T6 cells transduced with HBeAg indicated that HBeAg directly induced the activation and proliferation of rat primary HSCs. Taken together, HBeAg induces the activation and proliferation of HSCs, mainly mediated by TGF-β, and HBeAg protein purified from cell medium can directly activate HSCs.

  10. Ascorbic acid and beta-carotene reduce stress-induced oxidative organ damage in rats.

    PubMed

    Esrefoglu, M; Akinci, A; Taslidere, E; Elbe, H; Cetin, A; Ates, B

    2016-10-01

    Antioxidants are potential therapeutic agents for reducing stress-induced organ damage. We investigated the effects of ascorbic acid and β-carotene on oxidative stress-induced cerebral, cerebellar, cardiac and hepatic damage using microscopy and biochemistry. Male Wistar albino rats were divided into five groups: untreated control, stressed, stressed + saline, stressed + ascorbic acid and stressed + β-carotene. The rats in the stressed groups were subjected to starvation, immobilization and cold. The histopathological damage scores for the stressed and stressed + saline groups were higher than those of the control group for all organs examined. The histopathological damage scores and mean tissue malondialdehyde levels for the groups treated with antioxidants were lower than those for the stressed and stressed + saline groups. Mean tissue superoxide dismutase activities for groups that received antioxidants were higher than those for the stressed + saline group for most organs evaluated. Ascorbic acid and β-carotene can reduce stress-induced organ damage by both inhibiting lipid oxidation and supporting the cellular antioxidant defense system.

  11. Hepatitis C virus promotes hepatocellular carcinogenesis by targeting TIPE2, a new regulator of DNA damage response.

    PubMed

    Wang, Yaohui; Jiang, Yinan; Zhou, Jinxue; Song, Wuhui; Li, Jing; Wang, Mingli; Chen, Jiuge; Xu, Rui; Zhang, Jingjing; Ma, Fanni; Chen, Youhai H; Ma, Yuanfang

    2016-11-01

    Infection of hepatitis C virus (HCV) is associated with primary hepatocellular carcinoma (HCC). However, its underlying molecular mechanisms remain enigmatic. Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2), a new negative regulator of immunity, plays significant roles in modulating inflammation and tumorigenesis. We hypothesized that TIPE2 might be involved in the development of HCV-induced HCC. To test this hypothesis, the expression of TIPE2 was determined by Western blot in the tumor and pericarcinomatous tissues collected from ten HCV-positive HCC patients; the interaction between TIPE2 and HCV-encoded non-structural proteins was analyzed by immunoprecipitation and immunofluorescence assays, and tumorigenesis and its mechanisms were studied in cell models and nude mice. Our results demonstrated that the expression of TIPE2 was significantly reduced in HCC tissues compared to that in the paracarcinoma tissues. HCV-encoded non-structural protein NS5A could specifically interact with TIPE2 and induce its degradation. Downregulation of TIPE2 by shRNA in cell lines increased genomic DNA damage and promoted cell colony formation in vitro and tumorigenesis in nude mice. In contrast, overexpression of TIPE2 had an opposite effect. Downregulation of TIPE2 by NS5A is associated with genomic DNA instability and HCV-induced HCC development. Thus, TIPE2 may be a new therapeutic target for the treatment of HCV-associated HCC.

  12. Hepatic cryoablation-induced acute lung injury: histopathologic findings.

    PubMed

    Washington, K; Debelak, J P; Gobbell, C; Sztipanovits, D R; Shyr, Y; Olson, S; Chapman, W C

    2001-01-01

    We have previously shown that hepatic cryoablation (cryo), but not partial hepatectomy, induces a systemic inflammatory response, with distant organ injury and overproduction of NF-kappaB-dependent cytokines. Serum tumor necrosis factor-alpha (TNF-alpha) and macrophage inflammatory protein-2 (MIP-2) levels are markedly increased 1 h and beyond after cryo compared with partial hepatectomy where no elevation occurs. NF-kappaB activation (by electrophoretic mobility shift assay) is strikingly increased in the noncryo liver (but not in the lung) at 30 min and in both the liver and lung tissue 1 h after cryo, returning to the baseline by 2 h and beyond. The current study investigated the histopathologic changes associated with cryoablation-induced acute lung injury. Animals underwent 35% hepatic resection or a similar volume hepatic cryo and were sacrificed at 1, 2, 6, and 24 h. Pulmonary histologic features were assessed using hematoxylin and eosin and immunoperoxidase staining with a macrophage-specific antibody (anti-lysozyme, 1:200 dilution, Dako, Carpinteria, CA). The following features were graded semiquantitatively (0-3): perivascular lymphoid cuffs, airspace edema and hemorrhage, margination of neutrophils within pulmonary vasculature, and the presence of macrophages with foamy cytoplasm in the pulmonary interstitium. Hepatic resection (n = 21) resulted in slight perivascular edema at 1, 2, 6, and 24 h post-resection, but there were no other significant changes. Pulmonary findings after hepatic cryo (n = 22) included prominent perivascular lymphoid cuffs 1 and 2 h following hepatic injury that were not present at any other time point (P 0.01). Marginating PMNs and foamy macrophages were more common after cryo at all time points (P<0.05, cryo vs resection). Severe lung injury, as evidenced by airspace edema and parenchymal hemorrhage, was present in four of six (67%) animals at 24 h (P 0.03). In follow-up studies immediate resection (n = 15) of the cryo

  13. Hepatic FTO expression is increased in NASH and its silencing attenuates palmitic acid-induced lipotoxicity.

    PubMed

    Lim, Andrea; Zhou, Jin; Sinha, Rohit A; Singh, Brijesh K; Ghosh, Sujoy; Lim, Kiat-Hon; Chow, Pierce Kah-Hoe; Woon, Esther C Y; Yen, Paul M

    2016-10-21

    Non-alcoholic steatohepatitis (NASH) is one of the most common causes of liver failure worldwide. It is characterized by excess fat accumulation, inflammation, and increased lipotoxicity in hepatocytes. Currently, there are limited treatment options for NASH due to lack of understanding of its molecular etiology. In the present study, we demonstrate that the expression of fat mass and obesity associated gene (FTO) is significantly increased in the livers of NASH patients and in a rodent model of NASH. Furthermore, using human hepatic cells, we show that genetic silencing of FTO protects against palmitate-induced oxidative stress, mitochondrial dysfunction, ER stress, and apoptosis in vitro. Taken together, our results show that FTO may have a deleterious role in hepatic cells during lipotoxic conditions, and strongly suggest that up-regulation of FTO may contribute to the increased liver damage in NASH.

  14. Relationship of gonadal activity and chemotherapy-induced gonadal damage

    SciTech Connect

    Rivkees, S.A.; Crawford, J.D.

    1988-04-08

    The authors tested the hypothesis that chemotherapy-induced gonadal damage is proportional to the degree of gonadal activity during treatment. Thirty studies that evaluated gonadal function after cyclophosphamide therapy for renal disease or combination chemotherapy for Hodgkin's disease or acute lymphocytic leukemia provided data for analysis. Data were stratified according to sex, illness, chemotherapeutic regimen and dose, and pubertal stage at the time of treatment. Chemotherapy-induced damage was more likely to occur in patients who were treated when sexually mature compared with those who were treated when prepubertal. Males were significantly more frequently affected than females when treated for renal disease of Hodgkin's disease. Chemotherapy-induced damage was also more likely to occur when patients were treated with large doses of alkylating agents. These data suggest that chemotherapy-induced damage is proportional to gonadal activity. Further efforts are needed to test whether induced gonadal quiescence during chemotherapy will reduce the strikingly high incidence of gonadal failure following chemotherapy.

  15. Medicinal iron-induced hepatic cirrhosis: reversal by phlebotomy: studies on pathogenesis.

    PubMed Central

    Wheby, M. S.

    1978-01-01

    A patient with no underlying hematologic or iron metabolic disorder developed iron induced hepatic cirrhosis as a consequence of long term medicinal iron ingestion. Marked improvement in liver histology followed removal of 28 grams of iron by phlebotomy. Radioautographic studies in rats showed a periportal hepatocyte concentration of radioiron absorbed from the intestine while plasma transferrin was saturated. Based on these and other observations an hypothesis is proposed to explain liver damage in disorders of iron overload. Images Fig. 1 Fig. 2 Fig. 3 PMID:617015

  16. Intrahepatic virus-specific IL-10-producing CD8 T cells prevent liver damage during chronic hepatitis C virus infection.

    PubMed

    Abel, Michal; Sène, Damien; Pol, Stanislas; Bourlière, Marc; Poynard, Thierry; Charlotte, Frédéric; Cacoub, Patrice; Caillat-Zucman, Sophie

    2006-12-01

    CD8 T cell killing of hepatitis C virus (HCV)-infected hepatocytes is thought to contribute to liver damage during chronic HCV infection, whereas the participation of HCV-nonspecific immune cells is unclear. To visualize the spatial relationship of HCV-specific CD8 T cells with parenchymal target cells, and to examine their local functional activity in relation to hepatocellular necrosis and fibrosis, we used HLA tetramers and confocal microscopy in biopsies from 23 HLA-A2 or HLA-B7 patients with chronic HCV infection. Intrahepatic tetramer+ (HCV-specific) CD8 T cells protected from hepatic necroinflammatory disease activity, independently of age, gender, viral load, and viral genotype. Indeed, tetramer+ cells were scattered in the liver within regions of weak fibrosis (low laminin expression) and low hepatocellular apoptosis (TUNEL method), and expressed IL-10 but not IFNgamma. By contrast, tetramer-negative CD8 T cells were associated with active necroinflammatory liver disease, colocalized with strong laminin expression and hepatocellular apoptosis, and expressed more frequently IFNgamma than IL-10. Overall, liver regions harboring HCV-specific CD8 T cells tended to be healthier than areas containing only inflammatory cells of undefined specificity. In conclusion, HCV-specific IL-10-producing CD8 T cells, although not cytotoxic and unable to control viral replication, can attenuate hepatocellular necrosis, liver fibrosis, and inflammation mediated by bystander T cells, and may thus represent antigen-induced regulatory CD8 T cells. Therapeutic modulation of the intrahepatic balance between specific and bystander CD8 T cells might be beneficial in patients with chronic hepatitis C.

  17. Xanthohumol, a main prenylated chalcone from hops, reduces liver damage and modulates oxidative reaction and apoptosis in hepatitis C virus infected Tupaia belangeri.

    PubMed

    Yang, Mingbo; Li, Na; Li, Fang; Zhu, Qianqian; Liu, Xi; Han, Qunying; Wang, Yawen; Chen, Yanping; Zeng, Xiaoyan; Lv, Yi; Zhang, Pingping; Yang, Cuiling; Liu, Zhengwen

    2013-08-01

    Hepatitis C virus (HCV) infection in Tupaia belangeri (Tupaia) represents an important model of HCV infection. Xanthohumol (XN), a major prenylated chalcone from hops, has various biological activities including hepatopreventive and anti-viral activities. In this study, Tupaias infected with HCV RNA positive serum were used to evaluate the effects of XN on liver damage, oxidative reaction, apoptosis and viral protein expression in liver tissues. The Tupaias inoculated with HCV positive serum had elevated serum aminotransferase levels and inflammation, especially hepatic steatosis, and HCV core protein expression in liver tissue. In the animals inoculated with HCV positive serum, XN significantly decreased aminotransferase levels, histological activity index, hepatic steatosis score and transforming growth factor β1 expression in liver tissue compared with the animals without XN intervention. XN reduced HCV core protein expression in liver tissue compared with those without XN intervention but the difference was not significant. XN significantly decreased malondialdehyde, potentiated superoxide dismutase and glutathione peroxidase, reduced Bax expression, promoted Bcl-xL and inhibited caspase 3 activity in liver tissues compared with the animals without XN intervention. These results indicate that XN may effectively improve hepatic inflammation, steatosis and fibrosis induced by HCV in Tupaias primarily through inhibition of oxidative reaction and regulation of apoptosis and possible suppression of hepatic stellate cell activation. The anti-HCV potential of XN needs further investigation.

  18. An epoxysuccinic acid derivative(loxistatin)-induced hepatic injury in rats and hamsters

    SciTech Connect

    Fukushima, K.; Arai, M.; Kohno, Y.; Suwa, T.; Satoh, T. )

    1990-08-01

    Loxistatin is a possible therapeutic agent of muscular dystrophy. A single oral administration of loxistatin to male rats caused focal necrosis of the liver with inflammatory cell infiltration. The severity of the lesions was dose-dependent up to 200 mg/kg and also manifest by an increase in serum alanine aminotransferase and aspartate aminotransferase activities. Hepatic glutathione (GSH) levels decreased with a maximum 20% depletion within 5 hr after the oral administration of loxistatin. Pretreatment with diethyl maleate did not potentiate the loxistatin-induced hepatic injury. On the other hand, the hepatoprotective effect of cysteamine was observed when cysteamine was administered 24 hr before loxistatin dosing, but the effect was not observed when the antidote was administered concomitantly with loxistatin. Pretreatment of rats with phenobarbital or trans-stilbene oxide provided partial protection against the hepatotoxic effect of loxistatin. Pretreatment with SKF-525A resulted in increased hepatic injury, while pretreatment with piperonyl butoxide, cimetidine, or 3-methylcholanthrene had no effect on hepatic damage by loxistatin. Five hours after (14C)loxistatin administration to rats, the covalent binding of the radioactivity to proteins was greatest in the liver, followed by the kidney, then muscle and blood to a lesser extent. (14C)Loxistatin acid, the pharmacologically active form of loxistatin, irreversibly bound to rat liver microsomal proteins; more binding occurred when the NADPH-generating system was omitted and when the microsomes were boiled first. GSH did not alter the extent of irreversible binding, whereas N-ethylmaleimide decreased the binding of (14C)loxistatin acid to rat liver microsomal proteins by 75%. Unlike the rat, administration of loxistatin to hamsters caused neither hepatic injury nor hepatic GSH depletion.

  19. An inducible long noncoding RNA amplifies DNA damage signaling.

    PubMed

    Schmitt, Adam M; Garcia, Julia T; Hung, Tiffany; Flynn, Ryan A; Shen, Ying; Qu, Kun; Payumo, Alexander Y; Peres-da-Silva, Ashwin; Broz, Daniela Kenzelmann; Baum, Rachel; Guo, Shuling; Chen, James K; Attardi, Laura D; Chang, Howard Y

    2016-11-01

    Long noncoding RNAs (lncRNAs) are prevalent genes with frequently precise regulation but mostly unknown functions. Here we demonstrate that lncRNAs guide the organismal DNA damage response. DNA damage activated transcription of the DINO (Damage Induced Noncoding) lncRNA via p53. DINO was required for p53-dependent gene expression, cell cycle arrest and apoptosis in response to DNA damage, and DINO expression was sufficient to activate damage signaling and cell cycle arrest in the absence of DNA damage. DINO bound to p53 protein and promoted its stabilization, mediating a p53 auto-amplification loop. Dino knockout or promoter inactivation in mice dampened p53 signaling and ameliorated acute radiation syndrome in vivo. Thus, inducible lncRNA can create a feedback loop with its cognate transcription factor to amplify cellular signaling networks.

  20. Damage-induced nonassociated inelastic flow in rock salt

    SciTech Connect

    Chan, K.S.; Bodner, S.R.; Brodsky, N.S.; Fossum, A.F.

    1993-06-01

    The multi-mechanism deformation coupled fracture model recently developed by CHAN, et al. (1992), for describing time-dependent, pressure-sensitive inelastic flow and damage evolution in crystalline solids was evaluated against triaxial creep experiments on rock salt. Guided by experimental observations, the kinetic equation and the flow law for damage-induced inelastic flow in the model were modified to account for the development of damage and inelastic dilatation in the transient creep regime. The revised model was then utilized to obtain the creep response and damage evolution in rock salt as a function of confining pressure and stress difference. Comparison between model calculation and experiment revealed that damage-induced inelastic flow is nonassociated, dilatational, and contributes significantly to the macroscopic strain rate observed in rock salt deformed at low confining pressures. The inelastic strain rate and volumetric strain due to damage decrease with increasing confining pressures, and all are suppressed at sufficiently high confining pressures.

  1. An inducible long noncoding RNA amplifies DNA damage signaling

    PubMed Central

    Schmitt, Adam M.; Garcia, Julia T.; Hung, Tiffany; Flynn, Ryan A.; Shen, Ying; Qu, Kun; Payumo, Alexander Y.; Peres-da-Silva, Ashwin; Broz, Daniela Kenzelmann; Baum, Rachel; Guo, Shuling; Chen, James K.; Attardi, Laura D.; Chang, Howard Y.

    2016-01-01

    Long noncoding RNAs (lncRNAs) are prevalent genes with frequently exquisite regulation but mostly unknown functions. Here we demonstrate a role of lncRNAs in guiding organismal DNA damage response. DNA damage activates transcription of DINO (Damage Induced NOncoding) via p53. DINO is required for p53-dependent gene expression, cell cycle arrest, and apoptosis in response to DNA damage, and DINO expression suffice to activate damage signaling and cell cycle arrest in the absence of DNA damage. DINO binds to and promotes p53 protein stabilization, mediating a p53 auto-amplification loop. Dino knockout or promoter inactivation in mice dampens p53 signaling and ameliorates acute radiation syndrome in vivo. Thus, inducible lncRNA can create a feedback loop with its cognate transcription factor to amplify cellular signaling networks. PMID:27668660

  2. Green tea extract (Camellia sinensis) fermented by Lactobacillus fermentum attenuates alcohol-induced liver damage.

    PubMed

    Park, Jong Ho; Kim, Younghoon; Kim, Sae Hun

    2012-01-01

    Here, the impact of an extract derived from green tea (Camellia sinensis) and fermentation with Lactobacilli fermentum strain OCS19 was explored with acute alcohol-induced liver damage. The study employed the HepG2 hepatic cell line and an in vivo murine model of liver damage. L. fermentum-fermented green tea extract (FGTE) was found to possess pronounced alcohol metabolizing enzyme activity. It significantly enhanced the cell viability of HepG2 cells following of them exposure, to ethanol (p<0.05) as compared with an extract derived from Hovenia dulcis, a positive control that is known for its action as an alcohol antagonist. Our in vivo studies indicated that prior administration of FGTE to alcohol-exposed mice significantly prevented subsequent increases in blood alcohol concentration (p<0.05), in addition to the induction of serum alanine aminotransferase (ALT) and triglycerides (p<0.05). Furthermore, the activity of hepatic alcohol dehydrogenase (ADH) and its mRNA expression level both increased in the livers of mice treated with FGTE, similarly to the H. dulcis-treated group. Taken together, these results may suggest that green tea extract coupled with L. fermentum fermentation attenuates the risk of ethanol-induced liver damage.

  3. Buckwheat Honey Attenuates Carbon Tetrachloride-Induced Liver and DNA Damage in Mice

    PubMed Central

    Cheng, Ni; Wu, Liming; Zheng, Jianbin; Cao, Wei

    2015-01-01

    Buckwheat honey, which is widely consumed in China, has a characteristic dark color. The objective of this study was to investigate the protective effects of buckwheat honey on liver and DNA damage induced by carbon tetrachloride in mice. The results revealed that buckwheat honey had high total phenolic content, and rutin, hesperetin, and p-coumaric acid were the main phenolic compounds present. Buckwheat honey possesses super DPPH radical scavenging activity and strong ferric reducing antioxidant power. Administration of buckwheat honey for 10 weeks significantly inhibited serum lipoprotein oxidation and increased serum oxygen radical absorbance capacity. Moreover, buckwheat honey significantly inhibited aspartate aminotransferase and alanine aminotransferase activities, which are enhanced by carbon tetrachloride. Hepatic malondialdehyde decreased and hepatic antioxidant enzymes (superoxide dismutase and glutathione peroxidase) increased in the presence of buckwheat honey. In a comet assay, lymphocyte DNA damage induced by carbon tetrachloride was significantly inhibited by buckwheat honey. Therefore, buckwheat honey has a hepatoprotective effect and inhibits DNA damage, activities that are primarily attributable to its high antioxidant capacity. PMID:26508989

  4. Hepatoprotective activity of Moringa oleifera on antitubercular drug-induced liver damage in rats.

    PubMed

    Pari, L; Kumar, N Ashok

    2002-01-01

    Moringa oleifera Lam (Moringaceae), commonly known as "Drumstick," is used in Indian folk medicine for the treatment of various illness. We have evaluated the hepatoprotective effect of an ethanolic extract of M. oleifera leaves on liver damage induced by antitubercular drugs such as isoniazid (INH), rifampicin (RMP), and pyrazinamide (PZA) in rats. Oral administration of the extract showed a significant protective action made evident by its effect on the levels of glutamic oxaloacetic transaminase (aspartate aminotransferase), glutamic pyruvic transaminase (alanine aminotransferase), alkaline phosphatase, and bilirubin in the serum; lipids, and lipid peroxidation levels in liver. This observation was supplemented by histopathological examination of liver sections. The results of this study showed that treatment with M. oleifera extracts or silymarin (as a reference) appears to enhance the recovery from hepatic damage induced by antitubercular drugs.

  5. Comparison of imatinib, nilotinib and silymarin in the treatment of carbon tetrachloride-induced hepatic oxidative stress, injury and fibrosis

    SciTech Connect

    Shaker, Mohamed E.; Zalata, Khaled R.; Mehal, Wajahat Z.; Shiha, Gamal E.; Ibrahim, Tarek M.

    2011-04-15

    Effective and well-tolerated anti-fibrotic drugs are currently lacking. Therefore, this study was carried out to investigate the potential anti-fibrotic effects of imatinib, nilotinib and silymarin on established hepatic fibrosis in the carbon tetrachloride (CCl{sub 4}) rat model. Male Wistar rats received intraperitoneal injections of CCl{sub 4} twice weekly for 8 weeks, as well as daily intraperitoneal treatments of imatinib (10 and 20 mg/kg), nilotinib (10 and 20 mg/kg) and silymarin (100 mg/kg) during the last 4 weeks of CCl{sub 4}-intoxication. At the end of the study, hepatic damage was evaluated by analysis of liver function tests and hepatic oxidative stress parameters. Hepatic fibrosis was evaluated by histopathology and morphometry, as well as collagen and 4-hydroxyproline contents. Nilotinib (20 mg/kg) was the most effective treatment to counteract CCl{sub 4}-induced hepatic injury as indicated by liver function tests and histopathology. Nilotinib (10 mg/kg), nilotinib (20 mg/kg) and silymarin (100 mg/kg) treatments reduced the mean score of hepatic fibrosis by 31%, 68% and 47%, respectively, and hepatic collagen content by 47%, 49% and 18%, respectively in CCl{sub 4}-treated rats. Hepatic morphometric evaluation and 4-hydroxyproline content revealed that CCl{sub 4}-induced fibrosis was ameliorated significantly by nilotinib (20 mg/kg) and imatinib (20 mg/kg). Unlike nilotinib, imatinib (20 mg/kg) showed some sort of hepatic injury evidenced by elevation of serum aminotransferases and total bilirubin levels, and hepatic total nitrate/nitrite content, as well as characteristic anisonucleosis visualized with the hematoxylin-eosin staining. In conclusion, this study provides the evidence that nilotinib exerts anti-fibrotic activity and suggests that it may be valuable in the treatment of hepatic fibrosis in humans. - Graphical abstract: Display Omitted Research Highlights: > The anti-fibrotic effects of imatinib, nilotinib and silymarin were compared

  6. RIPK1 protects from TNF-α-mediated liver damage during hepatitis

    PubMed Central

    Filliol, Aveline; Piquet-Pellorce, Claire; Le Seyec, Jacques; Farooq, Muhammad; Genet, Valentine; Lucas-Clerc, Catherine; Bertin, John; Gough, Peter J; Dimanche-Boitrel, Marie-Thérèse; Vandenabeele, Peter; Bertrand, Mathieu JM; Samson, Michel

    2016-01-01

    Cell death of hepatocytes is a prominent characteristic in the pathogenesis of liver disease, while hepatolysis is a starting point of inflammation in hepatitis and loss of hepatic function. However, the precise molecular mechanisms of hepatocyte cell death, the role of the cytokines of hepatic microenvironment and the involvement of intracellular kinases, remain unclear. Tumor necrosis factor alpha (TNF-α) is a key cytokine involved in cell death or survival pathways and the role of RIPK1 has been associated to the TNF-α-dependent signaling pathway. We took advantage of two different deficient mouse lines, the RIPK1 kinase dead knock-in mice (Ripk1K45A) and the conditional knockout mice lacking RIPK1 only in liver parenchymal cells (Ripk1LPC-KO), to characterize the role of RIPK1 and TNF-α in hepatitis induced by concanavalin A (ConA). Our results show that RIPK1 is dispensable for liver homeostasis under steady-state conditions but in contrast, RIPK1 kinase activity contributes to caspase-independent cell death induction following ConA injection and RIPK1 also serves as a scaffold, protecting hepatocytes from massive apoptotic cell death in this model. In the Ripk1LPC-KO mice challenged with ConA, TNF-α triggers apoptosis, responsible for the observed severe hepatitis. Mechanism potentially involves both TNF-independent canonical NF-κB activation, as well as TNF-dependent, but canonical NF-κB-independent mechanisms. In conclusion, our results suggest that RIPK1 kinase activity is a pertinent therapeutic target to protect liver against excessive cell death in liver diseases. PMID:27831558

  7. Growth failure, tardive dyskinesia, megacolon development, and hepatic damage in neonatal rats following exposure to trimethobenzamide in utero.

    PubMed

    Goksu Erol, Azize Yasemin; Gokcimen, Alpaslan; Ozdemir, Oner

    2011-09-01

    Trimethobenzamide (TMB) has a pregnancy category C labeling. Tardive dyskinesia and gastrointestinal involvement in neonates were not described earlier. We aimed to investigate neurological, developmental, and hepatic effects of TMB. Ten 10 pregnant rats were divided into two groups. During pregnancy, Group I (control) were injected with saline; Group II with TMB (5 mg/kg/day). After delivery, two experiments were planned: experiment 1 (neuro) and Experiment 2 (hepatic). Control groups contained offsprings delivered from Group I mothers: Group I-offsp-neuro (n = 15) and Group I-offsp-hepatic (n = 15). Thirty offsprings delivered from Group II mothers formed Group II-offsp-neuro (n = 15) and Group II-offsp-hepatic (n = 15). Neuro group offsprings were followed-up to observe neurological symptoms and assessed for normal growth. Hepatic group livers were excised for histological evaluation. The body weight between neuro groups showed significant differences (p < 0.05). In Group II-offsp-neuro low body weight, poor hair growth, tardive dyskinesia and megacolon were observed. Some alterations of liver histology were noticed in Group II-offsp-hepatic (p < 0.001). In utero TMB exposure may cause growth retardation, neurological damage in the developing brain and intestine, and hepatic damage. Despite recent publications reporting safety of TMB, we suggest that obstetricians and pediatricians should make a good risk-benefit assessment before prescribing TMB.

  8. RNF111-dependent neddylation activates DNA damage-induced ubiquitination

    PubMed Central

    Ma, Teng; Chen, Yibin; Zhang, Feng; Yang, Chao-Yie; Wang, Shaomeng; Yu, Xiaochun

    2013-01-01

    Summary Ubiquitin-like proteins have been shown to be covalently conjugated to targets. However, the functions of these ubiquitin-like proteins are largely unknown. Here, we have screened most known ubiquitin-like proteins after DNA damage and found that NEDD8 is involved in the DNA damage response. Following various DNA damage stimuli, NEDD8 accumulated at DNA damage sites, and this accumulation was dependent on an E2 enzyme UBE2M and an E3 ubiquitin ligase RNF111. We further found that histone H4 was polyneddylated in response to DNA damage, and NEDD8 was conjugated to the N-terminal lysine residues of H4. Interestingly, the DNA damage-induced polyneddylation chain could be recognized by the MIU (Motif Interacting with Ubiquitin) domain of RNF168. Loss of DNA damage-induced neddylation negatively regulated DNA damage-induced foci formation of RNF168 and its downstream functional partners, such as 53BP1 and BRCA1, thus affecting the normal DNA damage repair process. PMID:23394999

  9. Epidermal growth factor protects against carbon tetrachloride-induced hepatic injury.

    PubMed

    Berlanga, J; Caballero, M E; Ramirez, D; Torres, A; Valenzuela, C; Lodos, J; Playford, R J

    1998-03-01

    1. Epidermal growth factor (EGF) is known to protect the gastrointestinal tract against various noxious agents. Its potential value in preventing/ treating hepatic injury is, however, largely unexplored. We therefore examined whether EGF could influence CCl4-induced hepatic injury. 2. Female Sprague-Dawley rats (8 per group) received saline or recombinant EGF (500 or 750 micrograms/kg, intraperitoneal) 30 min before CCl4 (20% v/v, in olive oil, intraperitoneal). Eighteen hours later, animals were killed, serum was collected for assay of biochemical markers of hepatic injury and livers were removed for histological analyses. 3. Administration of CCl4 resulted in severe hepatic necrosis and caused a 10-fold rise in plasma alanine aminotransferase levels compared with levels seen in control animals (218 +/- 15 compared with 23 +/- 9 mumol/l in controls, mean +/- SEM, P < 0.01). Serum malondialdehyde levels, used as a marker of lipid peroxidation, showed a 2-fold rise in response to CCl4 treatment (median 4.0, quartile range 3.3-5.8 units/l compared with median 2.3, quartile range 2.1-2.5 units/l in controls, P < 0.05). Administration of EGF at 500 micrograms/kg, before the CCl4, did not protect against injury, as assessed by histology or rise in plasma alanine aminotransferase levels. In contrast, animals given EGF at 750 micrograms/kg, before the CCl4, had only minimal changes in histology, with only a minor rise in alanine aminotransferase levels (37 +/- 4 compared with 23 +/- 9 mumol/l in animals not given CCl4) and had no significant rise in malondialdehyde levels. 4. EGF protects against CCl4-induced hepatic injury and may provide a novel approach to the treatment of liver damage.

  10. Mitochondrial DNA damage by bleomycin induces AML cell death.

    PubMed

    Yeung, ManTek; Hurren, Rose; Nemr, Carine; Wang, Xiaoming; Hershenfeld, Samantha; Gronda, Marcela; Liyanage, Sanduni; Wu, Yan; Augustine, Jeevan; Lee, Eric A; Spagnuolo, Paul A; Southall, Noel; Chen, Catherine; Zheng, Wei; Jeyaraju, Danny V; Minden, Mark D; Laposa, Rebecca; Schimmer, Aaron D

    2015-06-01

    Mitochondria contain multiple copies of their own 16.6 kb circular genome. To explore the impact of mitochondrial DNA (mtDNA) damage on mitochondrial (mt) function and viability of AML cells, we screened a panel of DNA damaging chemotherapeutic agents to identify drugs that could damage mtDNA. We identified bleomycin as an agent that damaged mtDNA in AML cells at concentrations that induced cell death. Bleomycin also induced mtDNA damage in primary AML samples. Consistent with the observed mtDNA damage, bleomycin reduced mt mass and basal oxygen consumption in AML cells. We also demonstrated that the observed mtDNA damage was functionally important for bleomycin-induced cell death. Finally, bleomycin delayed tumor growth in xenograft mouse models of AML and anti-leukemic concentrations of the drug induced mtDNA damage in AML cells preferentially over normal lung tissue. Taken together, mtDNA-targeted therapy may be an effective strategy to target AML cells and bleomycin could be useful in the treatment of this disease.

  11. Preventing Ultraviolet Light-Induced Damage: The Benefits of Antioxidants

    ERIC Educational Resources Information Center

    Yip, Cheng-Wai

    2007-01-01

    Extracts of fruit peels contain antioxidants that protect the bacterium "Escherichia coli" against damage induced by ultraviolet light. Antioxidants neutralise free radicals, thus preventing oxidative damage to cells and deoxyribonucleic acid. A high survival rate of UV-exposed cells was observed when grapefruit or grape peel extract was…

  12. Preventing Ultraviolet Light-Induced Damage: The Benefits of Antioxidants

    ERIC Educational Resources Information Center

    Yip, Cheng-Wai

    2007-01-01

    Extracts of fruit peels contain antioxidants that protect the bacterium "Escherichia coli" against damage induced by ultraviolet light. Antioxidants neutralise free radicals, thus preventing oxidative damage to cells and deoxyribonucleic acid. A high survival rate of UV-exposed cells was observed when grapefruit or grape peel extract was…

  13. Progression of diethylnitrosamine-induced hepatic carcinogenesis in carnitine-depleted rats

    PubMed Central

    Al-Rejaie, Salim S; Aleisa, Abdulaziz M; Al-Yahya, Abdulaziz A; Bakheet, Saleh A; Alsheikh, Abdulmalik; Fatani, Amal G; Al-Shabanah, Othman A; Sayed-Ahmed, Mohamed M

    2009-01-01

    carcinogenesis while D-carnitine-mildronate aggravated DENA-induced hepatic damage. CONCLUSION: Data from this study suggest for the first time that: (1) carnitine deficiency is a risk factor and should be viewed as a mechanism in DENA-induced hepatic carcinogenesis; (2) oxidative stress plays an important role but is not the only cause of DENA-induced hepatic carcinogenesis; and (3) long-term L-carnitine supplementation prevents the development of DENA-induced liver cancer. PMID:19294768

  14. Hepatitis

    MedlinePlus

    ... clotting problems or chronic liver disease. previous continue Hepatitis B and Hepatitis C Although hep A is a ... does — through direct contact with infected body fluids. Hepatitis B and C are even more easily passed in ...

  15. Hepatitis

    MedlinePlus

    ... A if they've been vaccinated against it. Hepatitis B Hepatitis B is a more serious infection. It may lead ... of which cause severe illness and even death. Hepatitis B virus (HBV) is transmitted from person to person ...

  16. Hepatitis

    MedlinePlus

    ... a problem with the liver itself What Is Hepatitis A? Hepatitis A virus (HAV) is contagious, usually spreading to others ... objects contaminated by feces (poop) containing HAV. The hepatitis A vaccine has helped to make the infection rare ...

  17. Studies on protective effect of DA-9601, Artemisia asiatica extract, on acetaminophen- and CCl4-induced liver damage in rats.

    PubMed

    Ryu, B K; Ahn, B O; Oh, T Y; Kim, S H; Kim, W B; Lee, E B

    1998-10-01

    The hepatoprotective effect of DA-9601, a quality-controlled extract of Artemisia asiatica, on liver damage induced by acetaminophen (APAP) and carbon tetrachloride (CCl4) was investigated by means of serum-biochemical, hepatic-biochemical, and histopathological examinations. Doses of DA-9601 (10, 30, or 100 mg/kg) were administered intragastrically to each rat on three consecutive days i.e. 48 h, 24 h and 2 h before a single administration of APAP (640 mg/kg, i.p.) or CCl4 (2 ml/kg, p.o.). Four h and 24 h after hepatotoxin treatment, the animals were sacrificed for evaluation of liver damage. Pretreatment of DA-9601 reduced the elevation of serum ALT, AST, LDH and histopathological changes such as centrilobular necrosis, vacuolar degeneration and inflammatory cell infiltration dose-dependently. DA-9601 also prevented APAP- and CCl4-induced hepatic glutathione (GSH) depletion and CCl4-induced increase of hepatic malondialdehyde (MDA), a parameter of lipid peroxidation, in a dose-dependent manner. These findings suggest that pretreatment with DA-9601 may reduce chemically induced liver injury by complex mechanisms which involve prevention of lipid peroxidation and preservation of hepatic GSH.

  18. Hepatitis C Virus-Induced Cryoglobulinemia

    PubMed Central

    Charles MD, Edgar D.; Dustin, Lynn B.

    2009-01-01

    In this review we discuss the clinical manifestations, pathogenesis, and treatment of hepatitis C virus (HCV)-related cryoglobulinemia. HCV is a major cause of liver-related morbidity and is increasingly recognized as an instigator of B cell lymphoproliferative disorders such as mixed cryoglobulinemia and non-Hodgkin lymphoma. Cryoglobulinemia is characterized by the clonal expansion of rheumatoid factor-expressing B cells in the liver, lymph nodes and peripheral blood, resulting in the presence of cryoglobulins in the circulation. Cryoglobulins are cold-insoluble immune complexes containing rheumatoid factor, polyclonal IgG, and HCV RNA that precipitate and deposit on vascular endothelium, effecting a vasculitis in organs such as the skin, kidneys, and peripheral nerves. A subset of patients develops a low-grade lymphoma comprised of B cells that are immunophenotypically similar to the expanded B cells seen in cryoglobulinemia. HCV-related B cell lymphoproliferative disorders likely comprise a spectrum of disease, ranging from asymptomatic clonal B cell expansions to pathogenic cryoglobulinemia and lymphoma. It is unclear how B cells become dysregulated during the course of chronic HCV infection, and continued patient-centered research is necessary to elucidate the pathogenesis of HCV-related B cell dysregulation. PMID:19606079

  19. Acute hepatitis induced by Greater Celandine (Chelidonium majus).

    PubMed

    Stickel, F; Pöschl, G; Seitz, H K; Waldherr, R; Hahn, E G; Schuppan, D

    2003-05-01

    We report on two cases of acute liver injury along with the intake of Greater Celandine (Chelidonium majus), a well-known herbal remedy frequently used for irritable bowel syndrome. All other possible causes of acute liver damage were excluded in both patients. In one patient, cholestatic hepatitis recurred rapidly after involuntary re-exposition. Both patients fully recovered after the withdrawal of Greater Celandine. The two cases add to the existing database about the potential hepatotoxicity of drugs containing Greater Celandine and raise the question whether the approval of this drug should be re-evaluated in the light of lacking evidence for a therapeutic benefit.

  20. Hepatitis C virus induces a prediabetic state by directly impairing hepatic glucose metabolism in mice.

    PubMed

    Lerat, Hervé; Imache, Mohamed Rabah; Polyte, Jacqueline; Gaudin, Aurore; Mercey, Marion; Donati, Flora; Baudesson, Camille; Higgs, Martin R; Picard, Alexandre; Magnan, Christophe; Foufelle, Fabienne; Pawlotsky, Jean-Michel

    2017-08-04

    Virus-related type 2 diabetes is commonly observed in individuals infected with the hepatitis C virus (HCV); however, the underlying molecular mechanisms remain unknown. Our aim was to unravel these mechanisms using FL-N/35 transgenic mice expressing the full HCV ORF. We observed that these mice displayed glucose intolerance and insulin resistance. We also found that Glut-2 membrane expression was reduced in FL-N/35 mice and that hepatocyte glucose uptake was perturbed, partly accounting for the HCV-induced glucose intolerance in these mice. Early steps of the hepatic insulin signaling pathway, from IRS2 to PDK1 phosphorylation, were constitutively impaired in FL-N/35 primary hepatocytes via deregulation of TNFα/SOCS3. Higher hepatic glucose production was observed in the HCV mice, despite higher fasting insulinemia, concomitant with decreased expression of hepatic gluconeogenic genes. Akt kinase activity was higher in HCV mice than in WT mice, but Akt-dependent phosphorylation of the forkhead transcription factor FoxO1 at serine 256, which triggers its nuclear exclusion, was lower in HCV mouse livers. These findings indicate an uncoupling of the canonical Akt/FoxO1 pathway in HCV protein-expressing hepatocytes. Thus, the expression of HCV proteins in the liver is sufficient to induce insulin resistance by impairing insulin signaling and glucose uptake. In conclusion, we observed a complete set of events leading to a prediabetic state in HCV-transgenic mice, providing a valuable mechanistic explanation for HCV-induced diabetes in humans. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Estrogen-induced hepatic toxicity and hepatic cancer: differences between two closely related hamster species.

    PubMed

    Coe, J E; Ishak, K G; Ross, M J

    1998-10-01

    Estrogen is known to affect hepatobiliary function; however, it is unusual for high serum levels of estrogen to actually result in clinically detectable hyperbilirubinemia. Women affected by cholestatic jaundice during pregnancy share this genetic susceptibility with two Cricetulus hamsters, the Armenian hamster (Cricetulus migratorius) and the Chinese hamster (Cricetulus griseus). Nevertheless, the pathophysiologic process responsible for this estrogen induced icterus may be different in women and hamsters. The present study compares various facets of estrogen-induced icterus in these two closely related hamsters. Hamsters were injected with various estrogens and the acute and chronic effects on liver were monitored by measuring changes in serum constituents and by observing changes in hepatic structure as seen grossly and by light and electron microscopy. In previous studies, hepatic tumors developed in most Armenian hamsters after chronic estrogen treatment, but in the present study, the livers of Chinese hamsters were remarkably free of neoplastic change under similar conditions. Also, when compared with the responses in the Armenian hamsters, signs of hepatic destruction and regeneration were less prevalent in estrogen-treated Chinese hamsters, and they were less susceptible to the effects of estrogen (because larger doses of estrogen were required to produce icterus and the bilirubin levels were lower and of shorter duration). In contrast to the findings in Armenian hamsters, bile canaliculi were severely affected in livers of estrogen-treated Chinese hamsters, and hepatic microvesicular steatosis, indicative of an unusual lipodystrophy caused by estrogen, was prominent. An additional lesion peculiar to the Chinese hamster was striking sinusoidal dilatation, which may be analogous to the oral contraceptive-induced sinusoidal dilatation in humans. Although these two hamster species are genetically similar, the genes activated by the estrogen receptor show

  2. Quercitrin protects skin from UVB-induced oxidative damage

    SciTech Connect

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J.; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.

  3. Photoexcited riboflavin induces oxidative damage to human serum albumin

    NASA Astrophysics Data System (ADS)

    Hirakawa, Kazutaka; Yoshioka, Takuto

    2015-08-01

    Photoexcited riboflavin induced damage of human serum albumin (HSA), a water soluble protein, resulting in the diminishment of fluorescence from the tryptophan residue. Because riboflavin hardly photosensitized singlet oxygen generation and sodium azide, a singlet oxygen quencher, did not inhibit protein damage, electron transfer-mediated oxidation of HSA was speculated. Fluorescence lifetime of riboflavin was not affected by HSA, suggesting that the excited triplet state of riboflavin is responsible for protein damage through electron transfer. In addition, the preventive effect of xanthone derivatives, triplet quenchers, on photosensitized protein damage could be evaluated using this photosensitized reaction system of riboflavin and HSA.

  4. PWR fuel features to preclude externally induced damage

    SciTech Connect

    Shallenberger, J.M.; Wilson, J.F.; Knott, R.P.

    1987-01-01

    Over the past several years there have been instances of pressurized water reactor (PWR) fuel damage attributed to factors external to the fuel. These externally induced causes include debris in the reactor coolant and baffle jetting. These causes of PWR fuel damage account for --50% of the total number of damaged rods. This paper discusses two features that significantly reduce the potential for fuel damage due to debris and baffle jetting. These two features are the debris filter bottom nozzle (DFBN) and the antivibration clip.

  5. Hepatitis C

    MedlinePlus

    Hepatitis C Overview By Mayo Clinic Staff Hepatitis C is a viral infection that causes liver inflammation, sometimes leading to serious liver damage. The hepatitis C virus (HCV) spreads through contaminated ...

  6. Protective effect of Woodfordia fruticosa flowers against acetaminophen-induced hepatic toxicity in rats.

    PubMed

    Baravalia, Yogesh; Chanda, Sumitra

    2011-08-01

    The flowers of Woodfordia fruticosa Kurz. (Lythraceae) are commonly used for the treatment of several ailments which includes rheumatism, leucorrhea, menorrhagia, asthma, liver disorder, and inflammatory conditions. To evaluate the hepatoprotective property of Woodfordia fruticosa flowers against acetaminophen-induced hepatic injury in rats. Acetaminophen (3 g/kg bw)-induced hepatotoxicity study was carried out by observing the effect of methanol extract of Woodfordia fruticosa flowers (400 and 600 mg/kg, bw) on some serum marker enzymes, albumin, blood urea nitrogen levels as well as liver total protein, nonenzymetic glutathione reduced content, and enzymatic antioxidant glutathione peroxidase, with histopathological evidence. Pretreatment of rats with methanol extract of Woodfordia fruticosa flowers effectively prevented the acetaminophen-induced hepatic damage as indicated by the serum marker enzymes aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase and other biochemical parameters (albumin and blood urea nitrogen). Parallel to these changes, the methanol extract of Woodfordia fruticosa flowers also prevented acetaminophen-induced oxidative stress in the rat liver by inhibiting depletion of liver total protein and restoring the levels of nonenzymatic antioxidant glutathione reduced. The biochemical changes were consistent with histopathological observations suggesting marked hepatoprotective effect of the methanol extract of Woodfordia fruticosa flowers. The results suggested that methanol extract of Woodfordia fruticosa flowers possesses protective effect against acetaminophen-induced hepatotoxicity.

  7. DNA damage in cells exhibiting radiation-induced genomic instability

    SciTech Connect

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesis that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.

  8. DNA damage in cells exhibiting radiation-induced genomic instability

    DOE PAGES

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less

  9. Chemoprotective effect of omega-3 fatty acids on thioacetamide induced hepatic fibrosis in male rats.

    PubMed

    Al-Attar, Atef M; Al-Rethea, Hayfa A

    2017-05-01

    The current study was designed to investigate the possible protective effect of omega-3 fatty acids from fish oil on hepatic fibrosis induced by thioacetamide (TAA) in male rats. The experimental animals were divided into four groups. The first group was received saline solution and served as control. The second group was given 250 mg/kg body weight of TAA. The third group was treated with omega-3 fatty acids and TAA. The fourth group was given saline solution and supplemented with omega-3 fatty acids. Treatment of rats with TAA for three and six weeks resulted in a significant decrease in body weight gain, while the value of liver/body weight ratio was statistically increased. Furthermore, the levels of serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma glutamyl transferase and total bilirubin were significantly increased. After three weeks of exposure to only TAA, liver sections showed an abnormal morphology characterized by noticeable fibrosis with the extracellular matrix collagen contents and damage of liver cells' structure. Liver sections from rats treated with only TAA for six weeks revealed an obvious increase in extracellular matrix collagen content and bridging fibrosis. Treating TAA-intoxicated rats with omega-3 fatty acids significantly attenuated the severe physiological and histopathological changes. Finally, the present investigation suggests that omega-3 fatty acids could act against hepatic fibrosis induced by TAA due to its antioxidant properties, thus supporting its use in hepatic fibrosis therapy.

  10. 1,25(OH)2 D3 attenuates hepatic steatosis by inducing autophagy in mice.

    PubMed

    Li, Renlong; Guo, Enshuang; Yang, Jiankun; Li, Anyi; Yang, Yan; Liu, Shenpei; Liu, Anding; Jiang, Xiaojing

    2017-03-01

    1,25(OH)2 D3 has been reported to attenuate liver steatosis; however, its exact mechanism of action remains poorly understood. This study aimed to determine whether 1,25(OH)2 D3 can attenuate hepatic steatosis by inducing autophagy. Male C57BL/6 mice fed a high-fat diet (HFD) were injected with 1,25(OH)2 D3 for 4 weeks. These mice were given 3-methyladenine (3-MA) to inhibit autophagy. HepG2 cells were preincubated with a free fatty acid (FFA) and then treated with 1,25(OH)2 D3 . Vitamin D receptor (VDR) shRNA and autophagy-related 16-like 1 (ATG16L1) siRNA were used for VDR knockdown or ATG16L1 silencing, respectively. 1,25(OH)2 D3 diminished HFD-induced liver damage and steatosis, changes accompanied by autophagy and ATG16L1 expression upregulation. Inhibition of 1,25(OH)2 D3 -induced autophagy mediated by 3-MA blocked the protective effects of 1,25(OH)2 D3 on hepatic steatosis. Additionally, 1,25(OH)2 D3 -induced autophagy appeared to play a role in anti-inflammation and lipid metabolism modulation in the liver. In HepG2 cells, 1,25(OH)2 D3 reduced lipid accumulation and increased autophagy and ATG16L1 expression; however, this effect was abrogated after VDR knockdown. The protective effects of 1,25(OH)2 D3 -mediated autophagy against lipid accumulation were abolished by 3-MA. Furthermore, siRNA-mediated ATG16L1 knockdown prevented 1,25(OH)2 D3 -induced autophagy, resulting in increased fat accumulation. The data suggest that 1,25(OH)2 D3 may ameliorate hepatic steatosis by inducing autophagy by upregulating ATG16L1. © 2017 The Obesity Society.

  11. Lactobacillus fermentum ZYL0401 Attenuates Lipopolysaccharide-Induced Hepatic TNF-α Expression and Liver Injury via an IL-10- and PGE2-EP4-Dependent Mechanism

    PubMed Central

    Lv, Longxian; Yang, Jianzhuan; Lu, Haifeng; Li, Lanjuan

    2015-01-01

    Lipopolysaccharide (LPS) has essential role in the pathogenesis of D-galactosamine-sensitized animal models and alcoholic liver diseases of humans, by stimulating release of pro-inflammatory mediators that cause hepatic damage and intestinal barrier impairment. Oral pretreatment of probiotics has been shown to attenuate LPS-induced hepatic injury, but it is unclear whether the effect is direct or due to improvement in the intestinal barrier. The present study tested the hypothesis that pretreatment with probiotics enables the liver to withstand directly LPS-induced hepatic injury and inflammation. In a mouse model of LPS-induced hepatic injury, the levels of hepatic tumor necrosis factor-alpha (TNF-α) and serum alanine aminotransferase (ALT) of mice with depleted intestinal commensal bacteria were not significantly different from that of the control models. Pre-feeding mice for 10 days with Lactobacillus fermentum ZYL0401 (LF41), significantly alleviated LPS-induced hepatic TNF-α expression and liver damage. After LF41 pretreatment, mice had dramatically more L.fermentum-specific DNA in the ileum, significantly higher levels of ileal cyclooxygenase (COX)-2 and interleukin 10 (IL-10) and hepatic prostaglandin E2 (PGE2). However, hepatic COX-1, COX-2, and IL-10 protein levels were not changed after the pretreatment. There were also higher hepatic IL-10 protein levels after LPS challenge in LF41-pretreaed mice than in the control mice. Attenuation of hepatic TNF-α was mediated via the PGE2/E prostanoid 4 (EP4) pathway, and serum ALT levels were attenuated in an IL-10-dependent manner. A COX-2 blockade abolished the increase in hepatic PGE2 and IL-10 associated with LF41. In LF41-pretreated mice, a blockade of IL-10 caused COX-2-dependent promotion of hepatic PGE2, without affecting hepatic COX-2levels. In LF41-pretreated mice, COX2 prevented enhancing TNF-α expression in both hepatic mononuclear cells and the ileum, and averted TNF-α-mediated increase in

  12. High carbohydrate diet induces nonalcoholic steato-hepatitis (NASH) in a desert gerbil.

    PubMed

    Semiane, Nesrine; Foufelle, Fabienne; Ferré, Pascal; Hainault, Isabelle; Ameddah, Souad; Mallek, Aicha; Khalkhal, Ali; Dahmani, Yasmina

    2017-01-01

    A high intake of sugars has been linked to diet-induced health problems. The aim of this study was to assess whether the long-term consumption of a high-carbohydrate diet (HCD) would cause the hepatic histopathological and metabolic abnormalities that characterize nonalcoholic steatohepatitis (NASH) in a desert gerbil, Gerbillus gerbillus. Compared to natural diet, HCD leads to several metabolic disorders including adiposity, dyslipidemia, insulin resistance, ectopic fat deposition in the liver, which were associated with higher levels of transcripts of genes involved with fat synthesis, endoplasmic reticulum (ER) stress, and fibrosis. In the same way, the experimented animals showed enhanced oxidative stress. Taken together, these results demonstrate that HCD consumption in gerbils induces metabolic disorders and damaged liver, which are key contributors to NASH development. These results suggest that this rodent represents a valuable natural model for human diet-induced metabolic disorders and nonalcoholic fatty liver disease (NAFLD).

  13. Protective Effects of Platycodon grandiflorum Aqueous Extract on Thioacetamide-induced Fulminant Hepatic Failure in Mice

    PubMed Central

    Lim, Jong-Hwan; Kim, Tae-Won; Park, Sang-Jin; Song, In-Bae; Kim, Myoung-Seok; Kwon, Hyo-Jung; Cho, Eun-Sang; Son, Hwa-Young; Lee, Sang-Wook; Suh, Joo-Won; Kim, Jong-Woo; Yun, Hyo-In

    2011-01-01

    The aim of the present study was to evaluate the protective activity of aqueous extract from Platycodon grandiflorum (BC703) on thioacetamide (TA)-induced hepatotoxicity in mice. We found that BC703 significantly decreased mortality and the change in serum transaminase following TA administration. The group treated with BC703 at doses of 1, 5, and 10 mg/kg produced significant hepatoprotective effects against TA-induced liver damage by decreasing the activities of serum enzymes, nitric oxide and lipid peroxidation in dose-dependent manners. Histopathological studies further substantiated the protective effect of BC703. These results show the hepatoprotective activity of aqueous extract from Platycodon grandiflorum on thioacetamide-induced fulminant hepatic failure. PMID:22319234

  14. Delineating liver events in trichloroethylene-induced autoimmune hepatitis.

    PubMed

    Gilbert, Kathleen M; Przybyla, Beata; Pumford, Neil R; Han, Tao; Fuscoe, James; Schnackenberg, Laura K; Holland, Ricky D; Doss, Jason C; Macmillan-Crow, Lee Ann; Blossom, Sarah J

    2009-04-01

    Exposure to the environmental pollutant trichloroethylene (TCE) has been linked to autoimmune disease development in humans. Chronic (32-week) low-level exposure to TCE has been shown to promote autoimmune hepatitis in association with CD4(+) T cell activation in autoimmune-prone MRL+/+ mice. MRL+/+ mice are usually thought of as a model of systemic lupus rather than an organ-specific disease such as autoimmune hepatitis. Consequently, the present study examined gene expression and metabolites to delineate the liver events that skewed the autoimmune response toward that organ in TCE-treated mice. Female MRL+/+ mice were treated with 0.5 mg/mL TCE in their drinking water. The results showed that TCE-induced autoimmune hepatitis could be detected in as little as 26 weeks. TCE exposure also generated a time-dependent increase in the number of antibodies specific for liver proteins. The gene expression correlated with the metabolite analysis to show that TCE upregulated the methionine/homocysteine pathway in the liver after 26 weeks of exposure. The results also showed that TCE exposure altered the expression of selective hepatic genes associated with immunity and inflammation. On the basis of these results, future mechanistic studies will focus on how alterations in genes associated with immunity and inflammation, in conjunction with protein alterations in the liver, promote liver immunogenicity in TCE-treated MRL+/+ mice.

  15. Modelling low velocity impact induced damage in composite laminates

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Soutis, Constantinos

    2017-12-01

    The paper presents recent progress on modelling low velocity impact induced damage in fibre reinforced composite laminates. It is important to understand the mechanisms of barely visible impact damage (BVID) and how it affects structural performance. To reduce labour intensive testing, the development of finite element (FE) techniques for simulating impact damage becomes essential and recent effort by the composites research community is reviewed in this work. The FE predicted damage initiation and propagation can be validated by Non Destructive Techniques (NDT) that gives confidence to the developed numerical damage models. A reliable damage simulation can assist the design process to optimise laminate configurations, reduce weight and improve performance of components and structures used in aircraft construction.

  16. Preventive activity of banana peel polyphenols on CCl4-induced experimental hepatic injury in Kunming mice

    PubMed Central

    WANG, RUI; FENG, XIA; ZHU, KAI; ZHAO, XIN; SUO, HUAYI

    2016-01-01

    The aim of the present study was to evaluate the preventive effects of banana peel polyphenols (BPPs) against hepatic injury. Mice were divide into normal, control, 100 mg/kg and 200 mg/kg banana peel polyphenol and silymarin groups. All the mice except normal mice were induced with hepatic damage using CCl4. The serum and tissue levels of mice were determined by a kit and the tissues were further examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. BPPs reduced the serum levels of aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase in a CCl4-induced mouse model of hepatic injury. Furthermore, BPPs reduced the levels of malondialdehyde and triglyceride, while increasing glutathione levels in the serum and liver tissues of mice. In addition, the effects of 200 mg/kg treatment were more evident, and these effects were comparable to those of the drug silymarin. Serum levels of the cytokines, interleukin (IL)-6, IL-12, tumor necrosis factor (TNF)-α and interferon-γ, were reduced in the mice treated with BPPs compared with injury control group mice, and these levels were comparable to those of the normal and silymarin-treated groups. Histopathological examination indicated that BPPs were able to reduce the extent of CCl4-induced liver tissue injury and protect the liver cells. Furthermore, the mRNA and protein expression levels of the inflammation-associated factors cyclooxygenase-2, nitric oxide synthase, TNF-α and IL-1β were reduced in mice treated with BPPs compared with the control group mice. Mice that received 200 mg/kg BPP exhibited reduced expression levels of these factors compared with mice that received 100 mg/kg BPP. In conclusion, the results of the present study suggested that BPPs exert a good preventive effect against hepatic injury. PMID:27168833

  17. Preventive activity of banana peel polyphenols on CCl4-induced experimental hepatic injury in Kunming mice.

    PubMed

    Wang, Rui; Feng, Xia; Zhu, Kai; Zhao, Xin; Suo, Huayi

    2016-05-01

    The aim of the present study was to evaluate the preventive effects of banana peel polyphenols (BPPs) against hepatic injury. Mice were divide into normal, control, 100 mg/kg and 200 mg/kg banana peel polyphenol and silymarin groups. All the mice except normal mice were induced with hepatic damage using CCl4. The serum and tissue levels of mice were determined by a kit and the tissues were further examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. BPPs reduced the serum levels of aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase in a CCl4-induced mouse model of hepatic injury. Furthermore, BPPs reduced the levels of malondialdehyde and triglyceride, while increasing glutathione levels in the serum and liver tissues of mice. In addition, the effects of 200 mg/kg treatment were more evident, and these effects were comparable to those of the drug silymarin. Serum levels of the cytokines, interleukin (IL)-6, IL-12, tumor necrosis factor (TNF)-α and interferon-γ, were reduced in the mice treated with BPPs compared with injury control group mice, and these levels were comparable to those of the normal and silymarin-treated groups. Histopathological examination indicated that BPPs were able to reduce the extent of CCl4-induced liver tissue injury and protect the liver cells. Furthermore, the mRNA and protein expression levels of the inflammation-associated factors cyclooxygenase-2, nitric oxide synthase, TNF-α and IL-1β were reduced in mice treated with BPPs compared with the control group mice. Mice that received 200 mg/kg BPP exhibited reduced expression levels of these factors compared with mice that received 100 mg/kg BPP. In conclusion, the results of the present study suggested that BPPs exert a good preventive effect against hepatic injury.

  18. Alcohol induced hepatic degeneration in a hepatitis C virus core protein transgenic mouse model.

    PubMed

    Noh, Dong-Hyung; Lee, Eun-Joo; Kim, Ah-Young; Lee, Eun-Mi; Min, Chang-Woo; Kang, Kyung-Ku; Lee, Myeong-Mi; Kim, Sang-Hyeob; Sung, Soo-Eun; Hwang, Meeyul; Yu, Dae-Yeul; Jeong, Kyu-Shik

    2014-03-07

    Hepatitis C virus (HCV) has become a major public health issue. It is prevalent in most countries. HCV infection frequently begins without clinical symptoms, before progressing to persistent viremia, chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC) in the majority of patients (70% to 80%). Alcohol is an independent cofactor that accelerates the development of HCC in chronic hepatitis C patients. The purpose of the current study was to evaluate ethanol-induced hepatic changes in HCV core-Tg mice and mutant core Tg mice. Wild type (NTG), core wild-Tg mice (TG-K), mutant core 116-Tg mice (TG-116) and mutant core 99-Tg mice (TG-99) were used in this investigation. All groups were given drinking water with 10% ethanol and 5% sucrose for 13 weeks. To observe liver morphological changes, we performed histopathological and immunohistochemical examinations. Histopathologically, NTG, TG-K and TG-116 mice showed moderate centrilobular necrosis, while severe centrilobular necrosis and hepatocyte dissociation were observed in TG-99 mice with increasing lymphocyte infiltration and piecemeal necrosis. In all groups, a small amount of collagen fiber was found, principally in portal areas. None of the mice were found to have myofibroblasts based on immunohistochemical staining specific for α-SMA. CYP2E1-positive cells were clearly detected in the centrilobular area in all groups. In the TG-99 mice, we also observed cells positive for CK8/18, TGF-β1 and phosphorylated (p)-Smad2/3 and p21 around the necrotic hepatocytes in the centrilobular area (p < 0.01). Based on our data, alcohol intake induced piecemeal necrosis and hepatocyte dissociation in the TG-99 mice. These phenomena involved activation of the TGF-β1/p-Smad2/3/p21 signaling pathway in hepatocytes. Data from this study will be useful for elucidating the association between alcohol intake and HCV infection.

  19. Differential expression of stress-inducible proteins in chronic hepatic iron overload

    SciTech Connect

    Brown, Kyle E. Broadhurst, Kimberly A.; Mathahs, M. Meleah; Weydert, Jamie

    2007-09-01

    Introduction:: Oxidative stress can trigger a cellular stress response characterized by induction of antioxidants, acute phase reactants (APRs) and heat shock proteins (HSPs), which are presumed to play a role in limiting tissue damage. In rodents, hepatic iron overload causes oxidative stress that results in upregulation of antioxidant defenses with minimal progressive liver injury. The aim of this study was to determine whether iron overload modulates expression of other stress-responsive proteins such as APRs and HSPs that may confer protection against iron-induced damage in rodent liver. Methods:: Male rats received repeated injections of iron dextran or dextran alone over a 6-month period. Hepatic transcript levels for a panel of APRs and HSPs were quantitated by real-time PCR and protein expression was evaluated by Western blot and immunohistochemistry. Results:: Hepatic iron concentrations were increased > 50-fold in the iron-loaded rats compared to controls. Iron loading resulted in striking increases in mRNAs for Hsp32 (heme oxygenase-1; 12-fold increase vs. controls) and metallothionein-1 and -2 (both increased {approx} 6-fold). Transcripts for {alpha}1-acid glycoprotein, the major rat APR, were increased {approx} 3-fold, while expression of other classical APRs was unaltered. Surprisingly, although mRNA levels for the HSPs were not altered by iron, the abundance of Hsp25, Hsp70 and Hsp90 proteins was uniformly reduced in the iron-loaded livers, as were levels of NAD(P)H:quinone oxidoreductase 1, an Hsp70 client protein. Conclusions:: Chronic iron administration elicits a unique pattern of stress protein expression. These alterations may modulate hepatic responses to iron overload, as well as other injury processes.

  20. High-Fat Diet Increased Renal and Hepatic Oxidative Stress Induced by Vanadium of Wistar Rat.

    PubMed

    Wang, J P; Cui, R Y; Zhang, K Y; Ding, X M; Luo, Y H; Bai, S P; Zeng, Q F; Xuan, Y; Su, Z W

    2016-04-01

    The study was conducted to assess the effect of vanadium (V) in high-fat diet on the liver and kidney of rats in a 5-week trial. Seventy-two female Wistar rats (BW = 95 ± 5 g) were randomly allotted into eight groups. Groups I, II, III, and IV obtained low-fat diet containing 0, 3, 15, and 30 mg/kg V, and V, VI, VII, and VIII groups received the respective vanadium doses with high-fat diet, respectively. There were lesions in the liver and kidney of V, VI, VII, and VIII groups, granular degeneration and vacuolar degeneration were observed in the renal tubular and glomerulus epithelial cells, and hepatocytes showed granular degeneration and vacuolar degeneration. Supplemented high-fat diet with vanadium was shown to decrease (P < 0.05) activities of superoxide dismutase, total antioxidant capacity, glutathione-S transferase, and NAD(P)H/quinone oxidoreductase 1 (NQO1) and increase malondialdehyde content in the liver and kidney. The relative expression of hepatic nuclear factor erythroid 2-related factor 2 (Nrf-2) and NQO1 mRNA was downregulated by V addition and high-fat diet, and the effect of V was more pronounced in high-fat diet (interaction, P < 0.05), with VIII group having the lowest mRNA expression of Nrf-2 and NQO1 in the liver and kidney. In conclusion, it suggested that dietary vanadium ranging from 15 to 30 mg/kg could lead to oxidative damage and vanadium accumulation in the liver and kidney, which caused renal and hepatic toxicity. The high-fat diet enhanced vanadium-induced hepatic and renal damage, and the mechanism was related to the modulation of the hepatic and renal mRNA expression of Nrf-2 and NQO1.

  1. Femtosecond laser induced damage of pulse compression gratings

    NASA Astrophysics Data System (ADS)

    Kong, Fanyu; Huang, Haopeng; Wang, Leilei; Shao, Jianda; Jin, Yunxia; Xia, Zhilin; Chen, Junming; Li, Linxin

    2017-12-01

    Laser induced damage of Au-coated gratings (ACG) and metal multilayer dielectric gratings (MMDG) for pulse compression were measured using 800 ± 35 nm femto-laser with pulse width of 30.2 fs. The -1st order diffraction efficiency of the ACG is over 90% in wavelength range from 700 to 1000 nm. The MMDG has a 148 nm bandwidth (750-897 nm) with -1st order diffraction efficiency greater than 90%. The laser damage experiment on grating samples was performed in air for single-shot damage. The single-shot damage threshold of the ACG and MMDG was determined to be 0.32 ± 0.02 J/cm2 and 0.31 ± 0.02 J/cm2, respectively. The damage morphologies of the ACG revealed that the damage was attributed to the pinholes at the base of the grating pillars and the weak adhesion between metal layer and photoresist gratings layer. The damage feature combined with near field distribution of MMDG indicated that the damage was due to the nonlinear ionization process of the valence electrons in HfO2 film. According to analysis results, the laser damage resistance of the ACG can be enhanced through avoiding the appearance of pinholes and increasing adhesion between metal layer and photoresist layer. And for the MMDG, good performance of HfO2 film, low near field enhancement and single HfO2 grating structures may increase its laser damage resistance.

  2. Laser-Induced Thermal Damage of Skin

    DTIC Science & Technology

    1977-12-01

    Negro Skin . 17 7 Transmission Spectrum of Human Epidermis , . 18 8 Radial and Axial Grid Poinkts and Increments 29 9 CO2 Laser Setup and Resulcant Burns...of -•y of Chicago. Two-thirds of the predicted del ir- reversible damage were within one ) f the histological measurements of dama e 13 ro- duced by... NEGRO 1 0 - i - .-- - - --10VI SIBLE il L li . 0.2 0.4 0.6 0.8 1.0 2.0 4.C 6.0 8.0 10.0 20.0 40.0 WAVELENGTH, Um Figure 6. Spectral reflectance of white

  3. Phospholipid and cholesterol alterations accompany structural disarray in myelin membrane of rats with hepatic encephalopathy induced by thioacetamide.

    PubMed

    Swapna, I; Kumar, K V Sathya Sai; Reddy, P Vijaya Bhaskar; Murthy, Ch R K; Reddanna, P; Senthilkumaran, B

    2006-08-01

    Fulminant hepatic failure is often associated with a wide range of neurological symptoms which are collectively referred to as hepatic encephalopathy. Fulminant hepatic failure with associated hepatic encephalopathy has a poor prognosis with the currently available sure treatment being only liver transplantation. This is largely owing to the lack of understanding of critical factors involved in the etiology of the condition. Lipid changes have been implicated in cerebral derangements characteristic of hepatic encephalopathy. About 79% of the brain lipid is concentrated in the myelin fraction where they play an important role in ion balance and conduction of nerve impulses. Hence, in the present study we aimed to investigate changes in myelin lipid composition and structure. Myelin was isolated by sucrose density gradient centrifugation from cerebral cortex of male Wistar rats (250-300 g body weight) treated with 300 mg/kg body weight thioacetamide administered twice at 24h interval to induce hepatic encephalopathy. Significant decrease was observed in the cholesterol and phospholipids content of myelin from treated rats. Sphingomyelin, phosphatidylserine and phosphatidylethanolamine content also decreased significantly following 18 h of thioacetamide administration. However, phosphatidylcholine levels remained unaltered. Transmission electron microscopic observation of myelin membrane from cerebral cortex sections showed considerable disorganization in myelin structure. Increase in malondialdehyde levels precede lipid changes leading to the speculation that oxidative damage may be the critical factor leading to decrease in the anionic phospholipids. Changes in myelin were evident only in later stages of hepatic encephalopathy indicating that myelin alteration may not play a role in early stages of hepatic encephalopathy. Nevertheless, myelin alteration may have a crucial role to play in various psycho-motor alterations during later stages of hepatic encephalopathy.

  4. Cytochrome P450 2E1 inhibition prevents hepatic carcinogenesis induced by diethylnitrosamine in alcohol-fed rats

    PubMed Central

    Ye, Qinyuan; Lian, Fuzhi; Chavez, Pollyanna R.G.; Chung, Jayong; Ling, Wenhua; Qin, Hua; Seitz, Helmut K.

    2012-01-01

    Chronic alcohol ingestion increases hepatic cytochrome P450 2E1 (CYP2E1), which is associated with hepatocarcinogenesis. We investigated whether treatment with chlormethiazole (CMZ), a CYP2E1 inhibitor, protects against alcohol-associated hepatic carcinogenesis in rats. Rats were fed either an ethanol liquid diet or a non-ethanol liquid diet, with or without CMZ for one and ten months. A single intraperitoneal injection of diethylnitrosamine (DEN, 20 mg/kg) was given to initiate hepatic carcinogenesis. CYP2E1 expression, inflammatory proteins, cell proliferation, protein-bound 4-HNE, etheno-DNA adducts, 8-hydroxy-2'-deoxyguanosine (8-OHdG), retinoid concentrations, and hepatic carcinogenesis were examined. Ethanol feeding for 1 month with DEN resulted in significantly increased hepatic CYP2E1 levels and increased nuclear accumulation of NF-κB protein and TNF-α expression, which were associated with increased cyclin D1 expression and p-GST positive altered hepatic foci. All of these changes induced by ethanol feeding were significantly inhibited by the one month CMZ treatment. At 10-months of treatment, hepatocellular adenomas were detected in ethanol-fed rats only, but neither in control rats nor in animals receiving ethanol and CMZ. The 8-OHdG formation was found to be significantly increased in ethanol fed animals and normalized with CMZ treatment. In addition, alcohol-reduced hepatic retinol and retinoic acid concentrations were restored by CMZ treatment to normal levels in the rats at 10 months of treatment. These data demonstrate that the inhibition of ethanol-induced CYP2E1 as a key pathogenic factor can counteract the tumor-promoting action of ethanol by decreasing TNF-α expression, NF-κB activation, and oxidative DNA damage as well as restoring normal hepatic levels of retinoic acid in DEN-treated rats. PMID:23543859

  5. Quercetin, a Flavonoid Antioxidant, Ameliorated Procarbazine-Induced Oxidative Damage to Murine Tissues.

    PubMed

    Olayinka, Ebenezer Tunde; Ore, Ayokanmi; Adeyemo, Oluwatobi Adewumi; Ola, Olaniyi Solomon; Olotu, Olaoluwa Oluwaseun; Echebiri, Roseline Chinonye

    2015-04-28

    Procarbazine (PCZ) (indicated in Hodgkin's disease), is an alkylating agent known to generate free radicals in vivo, while Quercetin (QCT) is a flavonoid antioxidant with proven free radical scavenging capacity. This study investigated the protective effects of QCT on PCZ-induced oxidative damage in the rat. Male Wistar rats (160-180 g) were randomized into five groups (n = 5/group): I (control), II PCZ-treated (2 mg/kg body weight (bw) for seven days); III pre-treated with QCT (20 mg/kg bw) for seven days, followed by PCZ for seven days; IV co-treated with PCZ and QCT for seven days and V administered QCT alone for seven days. PCZ caused a significant increase in plasma total bilirubin, urea, and creatinine when compared with control (P < 0.05). Similarly, plasma activities of alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and γ-glutamyl transferase (γ-GT) were significantly increased in the PCZ-treated group relative to control. Furthermore, PCZ caused a significant decrease in the activities of hepatic superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) as well as levels of ascorbic acid (AA) and glutathione (GSH). This was followed by a significant increase in hepatic malondialdehyde (MDA) content. However, QCT pre-treatment and co-treatment ameliorated the PCZ-induced changes in plasma levels of urea, creatinine, and bilirubin as well as the activities of ALP, AST, ALT, and GGT. QCT also ameliorated hepatic AA and GSH levels and the activities of SOD, CAT, and GST. This all suggests that QCT protected against PCZ-induced oxidative damage in rats.

  6. Chronic hepatitis C virus infection: Serum biomarkers in predicting liver damage

    PubMed Central

    Valva, Pamela; Ríos, Daniela A; De Matteo, Elena; Preciado, Maria V

    2016-01-01

    Currently, a major clinical challenge in the management of the increasing number of hepatitis C virus (HCV) infected patients is determining the best means for evaluating liver impairment. Prognosis and treatment of chronic hepatitis C (CHC) are partly dependent on the assessment of histological activity, namely cell necrosis and inflammation, and the degree of liver fibrosis. These parameters can be provided by liver biopsy; however, in addition to the risks related to an invasive procedure, liver biopsy has been associated with sampling error mostly due to suboptimal biopsy size. To avoid these pitfalls, several markers have been proposed as non-invasive alternatives for the diagnosis of liver damage. Distinct approaches among the currently available non-invasive methods are (1) the physical ones based on imaging techniques; and (2) the biological ones based on serum biomarkers. In this review, we discuss these approaches with special focus on currently available non-invasive serum markers. We will discuss: (1) class I serum biomarkers individually and as combined panels, particularly those that mirror the metabolism of liver extracellular matrix turnover and/or fibrogenic cell changes; (2) class II biomarkers that are indirect serum markers and are based on the evaluation of common functional alterations in the liver; and (3) biomarkers of liver cell death, since hepatocyte apoptosis plays a significant role in the pathogenesis of HCV infection. We highlight in this review the evidence behind the use of these markers and assess the diagnostic accuracy as well as advantages, limitations, and application in clinical practice of each test for predicting liver damage in CHC. PMID:26819506

  7. Fructose consumption induces hypomethylation of hepatic mitochondrial DNA in rats.

    PubMed

    Yamazaki, Mirai; Munetsuna, Eiji; Yamada, Hiroya; Ando, Yoshitaka; Mizuno, Genki; Murase, Yuri; Kondo, Kanako; Ishikawa, Hiroaki; Teradaira, Ryoji; Suzuki, Koji; Ohashi, Koji

    2016-03-15

    Fructose may play a crucial role in the pathogenesis of metabolic syndrome (MetS). However, the pathogenic mechanism of the fructose-induced MetS has not yet been investigated fully. Recently, several reports have investigated the association between mitochondrial DNA (mtDNA) and MetS. We examined the effect of fructose-rich diets on mtDNA content, transcription, and epigenetic changes. Four-week-old male Sprague-Dawley rats were offered a 20% fructose solution for 14weeks. We quantified mRNAs for hepatic mitochondrial genes and analyzed the mtDNA methylation (5-mC and 5-hmC) levels using ELISA kits. Histological analysis revealed non-alcoholic fatty liver disease (NAFLD) in fructose-fed rats. Hepatic mtDNA content and transcription were higher in fructose-fed rats than in the control group. Global hypomethylation of mtDNA was also observed in fructose-fed rats. We showed that fructose consumption stimulates hepatic mtDNA-encoded gene expression. This phenomenon might be due to epigenetic changes in mtDNA. Fructose-induced mitochondrial epigenetic changes appear to be a novel mechanism underlying the pathology of MetS and NAFLD. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Chemopreventive efficacy of Moringa oleifera pods against 7, 12-dimethylbenz[a]anthracene induced hepatic carcinogenesis in mice.

    PubMed

    Sharma, Veena; Paliwal, Ritu; Janmeda, Pracheta; Sharma, Shatruhan

    2012-01-01

    Oxidative stress is a common mechanism contributing to initiation and progression of hepatic damage in a variety of liver disorders. Hence there is a great demand for the development of agents with potent antioxidant effect. The aim of the present investigation is to evaluate the efficacy of Moringa oleifera as a hepatoprotective and an antioxidant against 7, 12-dimethylbenz[a]anthracene induced hepatocellular damage. Single oral administration of DMBA (15 mg/kg) to mice resulted in significantly (p<0.001) depleted levels of xenobiotic enzymes like, cytochrome P450 and b5. DMBA induced oxidative stress was confirmed by decreased levels of reduced glutathione (GSH) and glutathione-S-transferase (GST) in the liver tissue. The status of hepatic aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP) which is indicative of hepatocellular damage were also found to be decreased in DMBA administered mice. Pretreatment with the Moringa oleifera (200 and 400 mg/kg) orally for 14 days significantly reversed the DMBA induced alterations in the liver tissue and offered almost complete protection. The results from the present study indicate that Moringa oleifera exhibits good hepatoprotective and antioxidant potential against DMBA induced hepatocellular damage in mice that might be due to decreased free radical generation.

  9. New Treatment Strategies for Alcohol-Induced Heart Damage

    PubMed Central

    Fernández-Solà, Joaquim; Planavila Porta, Ana

    2016-01-01

    High-dose alcohol misuse induces multiple noxious cardiac effects, including myocyte hypertrophy and necrosis, interstitial fibrosis, decreased ventricular contraction and ventricle enlargement. These effects produce diastolic and systolic ventricular dysfunction leading to congestive heart failure, arrhythmias and an increased death rate. There are multiple, dose-dependent, synchronic and synergistic mechanisms of alcohol-induced cardiac damage. Ethanol alters membrane permeability and composition, interferes with receptors and intracellular transients, induces oxidative, metabolic and energy damage, decreases protein synthesis, excitation-contraction coupling and increases cell apoptosis. In addition, ethanol decreases myocyte protective and repair mechanisms and their regeneration. Although there are diverse different strategies to directly target alcohol-induced heart damage, they are partially effective, and can only be used as support medication in a multidisciplinary approach. Alcohol abstinence is the preferred goal, but control drinking is useful in alcohol-addicted subjects not able to abstain. Correction of nutrition, ionic and vitamin deficiencies and control of alcohol-related systemic organ damage are compulsory. Recently, several growth factors (myostatin, IGF-1, leptin, ghrelin, miRNA, and ROCK inhibitors) and new cardiomyokines such as FGF21 have been described to regulate cardiac plasticity and decrease cardiac damage, improving cardiac repair mechanisms, and they are promising agents in this field. New potential therapeutic targets aim to control oxidative damage, myocyte hypertrophy, interstitial fibrosis and persistent apoptosis In addition, stem-cell therapy may improve myocyte regeneration. However, these strategies are not yet approved for clinical use. PMID:27690014

  10. Promyelocytic leukaemia protein links DNA damage response and repair to hepatitis B virus-related hepatocarcinogenesis.

    PubMed

    Chung, Yih-Lin; Wu, Mei-Ling

    2013-08-01

    DNA damage response and repair pathways are important barriers to carcinogenesis. Here, we show that promyelocytic leukaemia (PML, also known as TRIM19), involved in sensing DNA damage and executing homologous recombination repair, is down-regulated in non-tumour liver cells surrounding hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). No PML mutation or deletion was found in HBV-infected liver or HCC cells. Immunohistochemical analysis of liver biopsies from patients with breast or liver cancer and HBV reactivation after chemotherapy revealed PML up-regulation and HBV exacerbation in normal liver tissue in response to DNA damage (functional PML), PML down-regulation in HCC peritumour cells associated with high HBsAg accumulation and low HBV replication activity (suppressive PML), and heterogeneous nuclear PML expression in HCC cells that lost HBV DNA and HBsAg and were non-reactive to DNA damage (dysregulated PML). Loss of PML in HBsAg-transgenic mice promoted chromosome breaks in liver cells and accelerated the accumulation of body and liver fat and the development of a liver steatosis-dysplasia-adenoma-carcinoma sequence in an inflammation-independent and male-predominant manner, compared to PML knock-out or HBsAg-transgenic mice during the same time period. These results indicate that PML deficiency facilitates genomic instability and promotes HBsAg-related hepatocarcinogenesis, which also involves androgen and lipid metabolism. These findings uncover a novel PML link between HBV-related tumourigenesis, DNA repair, and metabolism. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  11. High-throughput genotoxicity assay identifies antioxidants as inducers of DNA damage response and cell death

    PubMed Central

    Fox, Jennifer T.; Sakamuru, Srilatha; Huang, Ruili; Teneva, Nedelina; Simmons, Steven O.; Xia, Menghang; Tice, Raymond R.; Austin, Christopher P.; Myung, Kyungjae

    2012-01-01

    Human ATAD5 is a biomarker for identifying genotoxic compounds because ATAD5 protein levels increase posttranscriptionally in response to DNA damage. We screened over 4,000 compounds with a cell-based quantitative high-throughput ATAD5-luciferase assay detecting genotoxic compounds. We identified 22 antioxidants, including resveratrol, genistein, and baicalein, that are currently used or investigated for the treatment of cardiovascular disease, type 2 diabetes, osteopenia, osteoporosis, and chronic hepatitis, as well as for antiaging. Treatment of dividing cells with these compounds induced DNA damage and resulted in cell death. Despite their genotoxic effects, resveratrol, genistein, and baicalein did not cause mutagenesis, which is a major side effect of conventional anticancer drugs. Furthermore, resveratrol and genistein killed multidrug-resistant cancer cells. We therefore propose that resveratrol, genistein, and baicalein are attractive candidates for improved chemotherapeutic agents. PMID:22431602

  12. Physics associated with cavitation induced material damage

    NASA Technical Reports Server (NTRS)

    Peterson, F. B.

    1974-01-01

    The role of cavitation in mechanical failure is discussed. Some of the most common types of material damage associated with the presence of cavitation are surface material removal, delamination and structural vibration. This occurs in external flows such as on propellers, hydrofoils, and high speed non-lifting surfaces. In internal flows, pipe bends, inlets, constructions, pumps and turbines are typical. Nominally nonflowing liquids are also susceptible in, for example, strong acoustic fields and high energy particle detectors. For flowing systems, Bernoulli's equation shows how a local pressure is reduced as the fluid's velocity is increased. At sufficiently high velocities, a tension can actually develop and this has, in fact, been demonstrated experimentally. Once the pressure is reduced below the fluid vapor pressure a vapor cavity can be nucleated. Various aspects of this process are simply shown by considering the flow over a lifting surface.

  13. Hydroxyl radical Thymine adduct induced DNA damages

    NASA Astrophysics Data System (ADS)

    Schyman, Patric; Eriksson, Leif A.; Zhang, Ru bo; Laaksonen, Aatto

    2008-06-01

    DNA damages caused by a 5-hydroxy-5,6-dihydrothymine-6-yl radical (5-OHT-6yl) abstracting a C2‧ hydrogen from a neighboring sugar (inter-H abstraction) have been theoretically investigated using hybrid DFT in gas phase and in water solution. The inter-H abstraction was here shown to be comparable in energy (24 kcal mol-1) with the intra-H abstraction in which the 5-OHT-6yl abstracts a C2‧ hydrogen from its own sugar. The effect of a neutrally or a negatively charged phosphate group was also studied and the results show no significant impact on the activation energy of the hydrogen abstraction whereas base release and strand break reactions are affected.

  14. Physics associated with cavitation induced material damage

    NASA Technical Reports Server (NTRS)

    Peterson, F. B.

    1974-01-01

    The role of cavitation in mechanical failure is discussed. Some of the most common types of material damage associated with the presence of cavitation are surface material removal, delamination and structural vibration. This occurs in external flows such as on propellers, hydrofoils, and high speed non-lifting surfaces. In internal flows, pipe bends, inlets, constructions, pumps and turbines are typical. Nominally nonflowing liquids are also susceptible in, for example, strong acoustic fields and high energy particle detectors. For flowing systems, Bernoulli's equation shows how a local pressure is reduced as the fluid's velocity is increased. At sufficiently high velocities, a tension can actually develop and this has, in fact, been demonstrated experimentally. Once the pressure is reduced below the fluid vapor pressure a vapor cavity can be nucleated. Various aspects of this process are simply shown by considering the flow over a lifting surface.

  15. Pharmacogenetics of ribavirin-induced anemia in hepatitis C.

    PubMed

    Ampuero, Javier; Romero-Gómez, Manuel

    2016-09-01

    Pharmacogenetics assesses inherited genetic differences in drug metabolic pathways and its role in medicine is growing. Ribavirin (RBV) and peginterferon were the standard of care therapy in hepatitis C virus infection during 15 years, with the addition of first-generation protease inhibitors at the beginning of 2010s. New direct-acting agents are the new standard of care, but RBV remains important in some scenarios. The main adverse effect of RBV is anemia, which requires dose reduction and even stopping treatment in some patients. Pharmacogenetics has identified ITPA and SLC28/29 genes to be closely related to RBV-induced anemia. The routine evaluation of these genes could help to identify those patients at risk of developing anemia during the hepatitis C virus treatment.

  16. Hepatitis C

    MedlinePlus

    ... your doctor may want you to get the hepatitis B vaccine (and maybe the hepatitis A vaccine, too), if you don't already have these viruses. If you have hepatitis C, you are more likely to catch hepatitis A or hepatitis B, which would cause more damage to your liver. ...

  17. Potent hepatoprotective effect in CCl4-induced hepatic injury in mice of phloroacetophenone from Myrcia multiflora

    PubMed Central

    Ferreira, Eduardo Antonio; Gris, Eliana Fortes; Felipe, Karina Bettega; Correia, João Francisco Gomes; Cargnin-Ferreira, Eduardo; Wilhelm Filho, Danilo; Pedrosa, Rozangela Curi

    2010-01-01

    Background This study investigated the hepatoprotective effect and antioxidant properties of phloroacetophenone (2′,4′,6′-trihydroxyacetophenone – THA), an acetophenone derived from the plant Myrcia multiflora. Material & Method The free radical scavenging activity in vitro and induction of oxidative hepatic damage by carbon tetrachloride (CCl4) (0.5 ml/kg, i.p.) were tested in male Swiss mice (25±5 g). Results This compound exhibited in vitro antioxidant effects on FeCl2–ascorbate-induced lipid peroxidation (LPO) in mouse liver homogenate, scavenging hydroxyl and superoxide radicals, and 2,2-diphenyl-1-picrylhydrazyl. The in vivo assays showed that THA significantly (p<0.01) prevented the increases of hepatic LPO as measured by the levels of thiobarbituric acid-reactive substances, mitochondrial swelling. It also protected hepatocytes against protein carbonylation and oxidative DNA damage. Consistent with these observations, THA pre-treatment normalized the activities of antioxidant enzymes, such as catalase, glutathione peroxidase, and superoxide dismutase, and increased the levels of reduced glutathione (GSH) in CCl4-treated mice. In addition, THA treatment significantly prevented the elevation of serum enzymatic activities of alanine amino transferase, aspartate amino transferase, and lactate dehydrogenase, as well as histological alterations induced by CCl4. Silymarin (SIL) (24 mg/kg), a known hepatoprotective drug used for comparison, led to a significant decrease (p<0.01) in activities of theses enzymes in way very similar to that observed in pre-treatment with THA. Conclusion These results suggest that the protective effects are due to reduction of oxidative damage induced by CCl4 resulting from the antioxidant properties of THA. PMID:21483585

  18. Protective effect of curcumin against heavy metals-induced liver damage.

    PubMed

    García-Niño, Wylly Ramsés; Pedraza-Chaverrí, José

    2014-07-01

    Occupational or environmental exposures to heavy metals produce several adverse health effects. The common mechanism determining their toxicity and carcinogenicity is the generation of oxidative stress that leads to hepatic damage. In addition, oxidative stress induced by metal exposure leads to the activation of the nuclear factor (erythroid-derived 2)-like 2/Kelch-like ECH-associated protein 1/antioxidant response elements (Nrf2/Keap1/ARE) pathway. Since antioxidant and chelating agents are generally used for the treatment of heavy metals poisoning, this review is focused on the protective role of curcumin against liver injury induced by heavy metals. Curcumin has shown, in clinical and preclinical studies, numerous biological activities including therapeutic efficacy against various human diseases and anti-hepatotoxic effects against environmental or occupational toxins. Curcumin reduces the hepatotoxicity induced by arsenic, cadmium, chromium, copper, lead and mercury, prevents histological injury, lipid peroxidation and glutathione (GSH) depletion, maintains the liver antioxidant enzyme status and protects against mitochondrial dysfunction. The preventive effect of curcumin on the noxious effects induced by heavy metals has been attributed to its scavenging and chelating properties, and/or to the ability to induce the Nrf2/Keap1/ARE pathway. However, additional research is needed in order to propose curcumin as a potential protective agent against liver damage induced by heavy metals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Angiotensin Receptor Blockade Recovers Hepatic UCP2 Expression and Aconitase and SDH Activities and Ameliorates Hepatic Oxidative Damage in Insulin Resistant Rats

    PubMed Central

    Montez, Priscilla; Vázquez-Medina, José Pablo; Rodríguez, Rubén; Thorwald, Max A.; Viscarra, José A.; Lam, Lisa; Peti-Peterdi, Janos; Nakano, Daisuke; Nishiyama, Akira

    2012-01-01

    Metabolic syndrome (MetS) is commonly associated with elevated renin-angiotensin system, oxidative stress, and steatohepatitis with down-regulation of uncoupling proteins (UCPs). However, the mechanisms linking renin-angiotensin system, steatosis, and UCP2 to hepatic oxidative damage during insulin resistance are not described. To test the hypothesis that angiotensin receptor activation contributes to decreased hepatic UCP2 expression and aconitase activity and to increased oxidative damage after increased glucose intake in a model of MetS, lean and obese Long Evans rats (n = 10/group) were randomly assigned to the following groups: 1) untreated Long Evans Tokushima Otsuka (lean, strain control), 2) untreated Otsuka Long Evans Tokushima Fatty (OLETF) (MetS model), 3) OLETF + angiotensin receptor blocker (ARB) (10 mg olmesartan/kg·d × 6 wk), 4) OLETF + high glucose (HG) (5% in drinking water × 6 wk), and 5) OLETF + ARB + HG (ARB/HG × 6 wk). HG increased body mass (37%), plasma triglycerides (TGs) (35%), plasma glycerol (87%), plasma free fatty acids (28%), and hepatic nitrotyrosine (74%). ARB treatment in HG decreased body mass (12%), plasma TG (15%), plasma glycerol (23%), plasma free fatty acids (14%), and hepatic TG content (42%), suggesting that angiotensin receptor type 1 (AT1) activation and increased adiposity contribute to the development of obesity-related dyslipidemia. ARB in HG also decreased hepatic nitrotyrosine and increased hepatic UCP2 expression (59%) and aconitase activity (40%), as well as antioxidant enzyme activities (50-120%), suggesting that AT1 activation also contributes to protein oxidation, impaired lipid metabolism, and antioxidant metabolism in the liver. Thus, in addition to promoting obesity-related hypertension, AT1 activation may also impair lipid metabolism and antioxidant capacity, resulting in steatosis via decreased UCP2 and tricarboxylic acid cycle activity. PMID:23087176

  20. Angiotensin receptor blockade recovers hepatic UCP2 expression and aconitase and SDH activities and ameliorates hepatic oxidative damage in insulin resistant rats.

    PubMed

    Montez, Priscilla; Vázquez-Medina, José Pablo; Rodríguez, Rubén; Thorwald, Max A; Viscarra, José A; Lam, Lisa; Peti-Peterdi, Janos; Nakano, Daisuke; Nishiyama, Akira; Ortiz, Rudy M

    2012-12-01

    Metabolic syndrome (MetS) is commonly associated with elevated renin-angiotensin system, oxidative stress, and steatohepatitis with down-regulation of uncoupling proteins (UCPs). However, the mechanisms linking renin-angiotensin system, steatosis, and UCP2 to hepatic oxidative damage during insulin resistance are not described. To test the hypothesis that angiotensin receptor activation contributes to decreased hepatic UCP2 expression and aconitase activity and to increased oxidative damage after increased glucose intake in a model of MetS, lean and obese Long Evans rats (n = 10/group) were randomly assigned to the following groups: 1) untreated Long Evans Tokushima Otsuka (lean, strain control), 2) untreated Otsuka Long Evans Tokushima Fatty (OLETF) (MetS model), 3) OLETF + angiotensin receptor blocker (ARB) (10 mg olmesartan/kg·d × 6 wk), 4) OLETF + high glucose (HG) (5% in drinking water × 6 wk), and 5) OLETF + ARB + HG (ARB/HG × 6 wk). HG increased body mass (37%), plasma triglycerides (TGs) (35%), plasma glycerol (87%), plasma free fatty acids (28%), and hepatic nitrotyrosine (74%). ARB treatment in HG decreased body mass (12%), plasma TG (15%), plasma glycerol (23%), plasma free fatty acids (14%), and hepatic TG content (42%), suggesting that angiotensin receptor type 1 (AT1) activation and increased adiposity contribute to the development of obesity-related dyslipidemia. ARB in HG also decreased hepatic nitrotyrosine and increased hepatic UCP2 expression (59%) and aconitase activity (40%), as well as antioxidant enzyme activities (50-120%), suggesting that AT1 activation also contributes to protein oxidation, impaired lipid metabolism, and antioxidant metabolism in the liver. Thus, in addition to promoting obesity-related hypertension, AT1 activation may also impair lipid metabolism and antioxidant capacity, resulting in steatosis via decreased UCP2 and tricarboxylic acid cycle activity.

  1. Co-administration of C-Phycocyanin ameliorates thioacetamide-induced hepatic encephalopathy in Wistar rats.

    PubMed

    Sathyasaikumar, K V; Swapna, I; Reddy, P V B; Murthy, Ch R K; Roy, K R; Dutta Gupta, A; Senthilkumaran, B; Reddanna, P

    2007-01-15

    Fulminant hepatic failure (FHF) is a condition with a sudden onset of necrosis followed by degeneration of hepatocytes, without any previously established liver disease, generally occurring within hours or days. FHF is associated with a wide spectrum of neuropsychiatric alterations ranging from stupor to coma, culminating in death. In the present study FHF was induced in rats by the administration of thioacetamide (TAA). Oxidative stress is thought to play a prominent role in the pathophysiology of cerebral changes during FHF leading to the assumption that antioxidants might offer protection. Hence, in the present study the protective effect of C-Phycocyanin (C-PC), a natural antioxidant, was evaluated on TAA-induced tissue damage. C-Phycocyanin was administered intraperitoneally twice at 24 h interval (50 mg/kg body weight) along with the hepatotoxin TAA (300 mg/kg body weight). The animals were sacrificed 18 h after the second injection of TAA treatment and various biochemical parameters were analysed in liver, serum and brain tissues. These studies revealed significant prevention of TAA-induced liver damage by C-PC, as evidenced by a) increase in survival rate; b) the prevention of leakage of liver enzymes (AAT and AST) and ammonia into serum; c) increase in prothrombin time and d) liver histopathology. Ultrastructural studies of astrocytes of different regions of brain clearly showed a decrease in edema after C-PC treatment. TAA-induced histopathological lesions in different regions of the brain namely cerebral cortex, cerebellum and pons medulla were significantly reduced by the co-administration of C-PC with TAA. Further C-PC treatment resulted in a) decrease in the levels of tryptophan and markers of lipid peroxidation and b) elevation in the activity levels of catalase, glutathione peroxidase in different regions of brain. These studies reveal the potential of C-PC in ameliorating TAA-induced hepatic encephalopathy by improving antioxidant defenses.

  2. Selective cytoprotective effect of histamine on doxorubicin-induced hepatic and cardiac toxicity in animal models

    PubMed Central

    Lamas, DJMartinel; Nicoud, MB; Sterle, HA; Carabajal, E; Tesan, F; Perazzo, JC; Cremaschi, GA; Rivera, ES; Medina, VA

    2015-01-01

    The aim of the present work was to evaluate the potential protective effect of histamine on Doxorubicin (Dox)-induced hepatic and cardiac toxicity in different rodent species and in a triple-negative breast tumor-bearing mice model. Male Sprague Dawley rats and Balb/c mice were divided into four groups: control (received saline), histamine (5 mg/kg for rats and 1 mg/kg for mice, daily subcutaneous injection starting 24 h before treatment with Dox), Dox (2 mg/kg, intraperitoneally injected three times a week for 2 weeks) and Dox+histamine (received both treatments). Tissue toxicity was evaluated by histopathological studies and oxidative stress and biochemical parameters. The combined effect of histamine and Dox was also investigated in vitro and in vivo in human MDA-MB-231 triple-negative breast cancer model. Heart and liver of Dox-treated animals displayed severe histological damage, loss of tissue weight, increased TBARS levels and DNA damage along with an augment in serum creatine kinase-myocardial band. Pretreatment with histamine prevented Dox-induced tissue events producing a significant preservation of the integrity of both rat and mouse myocardium and liver, through the reduction of Dox-induced oxidative stress and apoptosis. Histamine treatment preserved anti-tumor activity of Dox, exhibiting differential cytotoxicity and increasing the Dox-induced inhibition of breast tumor growth. Findings provide preclinical evidence indicating that histamine could be a promising candidate as a selective cytoprotective agent for the treatment of Dox-induced cardiac and hepatic toxicity, and encourage the translation to clinical practice. PMID:27551485

  3. A Role for the Host DNA Damage Response in Hepatitis B Virus cccDNA Formation-and Beyond?

    PubMed

    Schreiner, Sabrina; Nassal, Michael

    2017-05-22

    Chronic hepatitis B virus (HBV) infection puts more than 250 million people at a greatly increased risk to develop end-stage liver disease. Like all hepadnaviruses, HBV replicates via protein-primed reverse transcription of a pregenomic (pg) RNA, yielding an unusually structured, viral polymerase-linked relaxed-circular (RC) DNA as genome in infectious particles. Upon infection, RC-DNA is converted into nuclear covalently closed circular (ccc) DNA. Associating with cellular proteins into an episomal minichromosome, cccDNA acts as template for new viral RNAs, ensuring formation of progeny virions. Hence, cccDNA represents the viral persistence reservoir that is not directly targeted by current anti-HBV therapeutics. Eliminating cccDNA will thus be at the heart of a cure for chronic hepatitis B. The low production of HBV cccDNA in most experimental models and the associated problems in reliable cccDNA quantitation have long hampered a deeper understanding of cccDNA molecular biology. Recent advancements including cccDNA-dependent cell culture systems have begun to identify select host DNA repair enzymes that HBV usurps for RC-DNA to cccDNA conversion. While this list is bound to grow, it may represent just one facet of a broader interaction with the cellular DNA damage response (DDR), a network of pathways that sense and repair aberrant DNA structures and in the process profoundly affect the cell cycle, up to inducing cell death if repair fails. Given the divergent interactions between other viruses and the DDR it will be intriguing to see how HBV copes with this multipronged host system.

  4. A Role for the Host DNA Damage Response in Hepatitis B Virus cccDNA Formation—and Beyond?

    PubMed Central

    Schreiner, Sabrina; Nassal, Michael

    2017-01-01

    Chronic hepatitis B virus (HBV) infection puts more than 250 million people at a greatly increased risk to develop end-stage liver disease. Like all hepadnaviruses, HBV replicates via protein-primed reverse transcription of a pregenomic (pg) RNA, yielding an unusually structured, viral polymerase-linked relaxed-circular (RC) DNA as genome in infectious particles. Upon infection, RC-DNA is converted into nuclear covalently closed circular (ccc) DNA. Associating with cellular proteins into an episomal minichromosome, cccDNA acts as template for new viral RNAs, ensuring formation of progeny virions. Hence, cccDNA represents the viral persistence reservoir that is not directly targeted by current anti-HBV therapeutics. Eliminating cccDNA will thus be at the heart of a cure for chronic hepatitis B. The low production of HBV cccDNA in most experimental models and the associated problems in reliable cccDNA quantitation have long hampered a deeper understanding of cccDNA molecular biology. Recent advancements including cccDNA-dependent cell culture systems have begun to identify select host DNA repair enzymes that HBV usurps for RC-DNA to cccDNA conversion. While this list is bound to grow, it may represent just one facet of a broader interaction with the cellular DNA damage response (DDR), a network of pathways that sense and repair aberrant DNA structures and in the process profoundly affect the cell cycle, up to inducing cell death if repair fails. Given the divergent interactions between other viruses and the DDR it will be intriguing to see how HBV copes with this multipronged host system. PMID:28531167

  5. Heavy ion induced permanent damage in MNOS gate insulators

    NASA Astrophysics Data System (ADS)

    Pickel, J. C.; Blandford, J. T., Jr.; Waskiewicz, A. E.; Strahan, V. H., Jr.

    1985-12-01

    Heavy-ion-induced permanent damage in MNOS gate insulators has been investigated using a Cf252 fission source. The electric field and ion LET thresholds for onset of the damage has been characterized. The results are consistent with a thermal runaway mechanism in the silicon nitride layer initiated by a single heavy ion and leading to a permanent high conductivity path through the dielectric layers.

  6. Tyrosine-dependent oxidative DNA damage induced by carcinogenic tetranitromethane.

    PubMed

    Murata, Mariko; Kurimoto, Saori; Kawanishi, Shosuke

    2006-10-01

    Tetranitromethane (TNM) is used as an oxidizer in rocket propellants and explosives and as an additive to increase the cetane number of diesel fuel. TNM was reported to induce pulmonary adenocarcinomas and squamous cell carcinomas in mice and rats. However, the mechanisms underlying carcinogenesis induced by TNM has not yet been clarified. We previously revealed that nitroTyr and nitroTyr-containing peptides caused Cu(II)-dependent DNA damage in the presence of P450 reductase, which is considered to yield nitroreduction. Since TNM is a reagent for nitration of Tyr in proteins and peptides, we have hypothesized that TNM-treated Tyr and Tyr-containing peptides induce DNA damage by the modification of Tyr. We examined DNA damage induced by TNM-treated amino acids or peptides using (32)P-5'-end-labeled DNA fragments obtained from the human p53 tumor suppressor gene and the c-Ha-ras-1 protooncogene. TNM-treated Tyr and Lys-Tyr-Lys induced DNA damage including the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine in the presence of Cu(II) and NADH. DNA damage was inhibited by catalase and bathocuproine, indicating the involvement of H(2)O(2) and Cu(I). The cytosine residue of the ACG sequence complementary to codon 273, well-known hotspots of the p53 gene, was cleaved with piperidine and Fpg treatments. On the other hand, nitroTyr and Lys-nitroTyr-Lys did not induce DNA damage in the presence of Cu(II) and NADH. Time-of-flight mass spectrometry confirmed that reactions between Lys-Tyr-Lys and TNM yielded not only Lys-nitroTyr-Lys but also Lys-nitrosoTyr-Lys. Therefore, it is speculated that the nitrosotyrosine residue can induce oxidative DNA damage in the presence of Cu(II) and NADH. It is concluded that Tyr-dependent DNA damage may play an important role in the carcinogenicity of TNM. TNM is a new type of carcinogen that induces DNA damage not by itself but via Tyr modification.

  7. Biochemical mechanism underlying hypertriglyceridemia and hepatic steatosis/hepatomegaly induced by acute schisandrin B treatment in mice.

    PubMed

    Zhang, Yi; Zhao, Jing; Zhou, Shu-Feng; Yu, Zhi-Ling; Wang, Xiao-Yan; Zhu, Pei-Li; Chu, Zhu-Sheng; Pan, Si-Yuan; Xie, Ming; Ko, Kam-Ming

    2017-01-13

    It has been demonstrated that acute oral administration of schisandrin B (Sch B), an active dibenzocyclooctadiene isolated from Schisandrae Fructus (a commonly used traditional Chinese herb), increased serum and hepatic triglyceride (TG) levels and hepatic mass in mice. The present study aimed to investigate the biochemical mechanism underlying the Sch B-induced hypertriglyceridemia, hepatic steatosis and hepatomegaly. Male ICR mice were given a single oral dose of Sch B (0.25-2 g/kg). Sch B-induced changes in serum levels of biomarkers, such as TG, total cholesterol (TC), apolipoprotein B48 (ApoB 48), very-low-density lipoprotein (VLDL), non-esterified fatty acid (NEFA) and hepatic growth factor (HGF), as well as hepatic lipids and mass, epididymal adipose tissue (EAT) and adipocyte size, and histological changes of the liver and EAT were examined over a period of 12-120 h after Sch B treatment. Serum and hepatic TG levels were increased by 1.0-4.3 fold and 40-158% at 12-72 h and 12-96 h, respectively, after Sch B administration. Sch B treatment elevated serum ApoB 48 level (up to 12%), a marker of exogenous TG, but not VLDL, as compared with the vehicle treatment. Treatment with Sch B caused a time-/dose-dependent reduction in EAT index (up to 39%) and adipocyte size (up to 67%) and elevation in serum NEFA level (up to 55%). Sch B treatment induced hepatic steatosis in a time-/dose-dependent manner, as indicated by increases in total vacuole area (up to 3.2 fold vs. the vehicle control) and lipid positive staining area (up to 17.5 × 10(3) μm(2)) in liver tissue. Hepatic index and serum HGF levels were increased by 18-60% and 42-71% at 12-120 h and 24-72 h post-Sch B dosing, respectively. In addition, ultrastructural changes, such as increase in size and disruption of cristae, in hepatic mitochondria were observed in Sch B-treated mice. Our findings suggest that exogenous sources of TG and the breakdown of fat storage in the body contribute to Sch B-induced

  8. Plasma lipid profiling of different types of hepatic fibrosis induced by carbon tetrachloride and lomustine in rats.

    PubMed

    Ishikawa, Masaki; Saito, Kosuke; Yamada, Hiroshi; Nakatsu, Noriyuki; Maekawa, Keiko; Saito, Yoshiro

    2016-04-12

    Plasma lipid profiling has emerged as a useful tool for understanding the pathophysiology of hepatic injury and disease. Hepatic fibrosis results from chronic, progressive damage to the liver and can lead, in turn, to more serious conditions such as hepatic cirrhosis and hepatocellular carcinoma. Thus, the present study aimed to investigate the plasma lipid profiles of two types of hepatic fibrosis in order to aid the understanding of the pathophysiology of hepatic fibrosis. A liquid chromatography and mass spectrometry platform was used to reveal and compare the plasma lipid profiles of two types of chemical-induced hepatic fibrosis. Rat models of centrilobular fibrosis and bile duct fibrosis were established via chronic exposure to the known fibrogenic hepatotoxins, carbon tetrachloride (CCl4) or lomustine (LS), respectively, over a 28-day period. To delineate the specific alterations in the lipid profiles as a result of the hepatic fibrosis, we also employed non-fibrogenic hepatotoxicants (2-acetamidofluorene, N-nitrosodiethylamine, and ethambutol) as well as 3-day treatment of CCl4 and LS, which did not induce fibrosis. Our assay platform identified 228 lipids in the rat plasma, and the global lipid profile clearly distinguished these models from the control via principal component analysis. In addition, the alteration of the plasma lipid profile caused by CCl4 and LS were clearly different. Furthermore, a number of lipids were identified as specific alterations caused by fibrosis induced only by CCl4 and LS, respectively. Three lysophosphatidylcholines (LPC[18:3], LPC[20:4], and LPC[22:6]), and three phosphatidylcholines (PC[18:2/20:4], PC[40:8], and PC[20:4/22:6]) are specific circulating lipids, the levels of which were altered by both CCl4 and LS treatment; however, their levels were decreased by chronic exposure to CCl4 and increased by chronic exposure to LS. These results suggest that different types of chemical-induced hepatic fibrosis demonstrate clear

  9. Inducible repair of oxidative DNA damage in Escherichia coli.

    PubMed

    Demple, B; Halbrook, J

    Hydrogen peroxide is lethal to many cell types, including the bacterium Escherichia coli. Peroxides yield transient radical species that can damage DNA and cause mutations. Such partially reduced oxygen species are occasionally released during cellular respiration and are generated by lethal and mutagenic ionizing radiation. Because cells live in an environment where the threat of oxidative DNA damage is continual, cellular mechanisms may have evolved to avoid and repair this damage. Enzymes are known which evidently perform these functions. We report here that resistance to hydrogen peroxide toxicity can be induced in E. coli, that this novel induction is specific and occurs, in part, at the level of DNA repair.

  10. Epigallocatechin-3-gallate attenuates apoptosis and autophagy in concanavalin A-induced hepatitis by inhibiting BNIP3

    PubMed Central

    Li, Sainan; Xia, Yujing; Chen, Kan; Li, Jingjing; Liu, Tong; Wang, Fan; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2016-01-01

    Background Epigallocatechin-3-gallate (EGCG) is the most effective compound in green tea, and possesses a wide range of beneficial effects, including anti-inflammatory, antioxidant, antiobesity, and anticancer effects. In this study, we investigated the protective effects of EGCG in concanavalin A (ConA)-induced hepatitis in mice and explored the possible mechanisms involved in these effects. Methods Balb/C mice were injected with ConA (25 mg/kg) to induce acute autoimmune hepatitis, and EGCG (10 or 30 mg/kg) was administered orally twice daily for 10 days before ConA injection. Serum liver enzymes, proinflammatory cytokines, and other marker proteins were determined 2, 8, and 24 hours after the ConA administration. Results BNIP3 mediated cell apoptosis and autophagy in ConA-induced hepatitis. EGCG decreased the immunoreaction and pathological damage by reducing inflammatory factors, such as TNF-α, IL-6, IFN-γ, and IL-1β. EGCG also exhibited an antiapoptotic and antiautophagic effect by inhibiting BNIP3 via the IL-6/JAKs/STAT3 pathway. Conclusion EGCG attenuated liver injury in ConA-induced hepatitis by downregulating IL-6/JAKs/STAT3/BNIP3-mediated apoptosis and autophagy. PMID:26929598

  11. Edible oils for liver protection: hepatoprotective potentiality of Moringa oleifera seed oil against chemical-induced hepatitis in rats.

    PubMed

    Al-Said, Mansour S; Mothana, Ramzi A; Al-Yahya, Mohammed A; Al-Blowi, Ali S; Al-Sohaibani, Mohammed; Ahmed, Atallah F; Rafatullah, Syed

    2012-07-01

    In the present study, in vitro antioxidant, antioxidative stress and hepatoprotective activity of Moringa oleifera Lam. seed oil (Ben oil; BO) was evaluated against carbon tetrachloride (CCl(4) ) induced lipid peroxidation and hepatic damage in rats. The oil at 0.2 and 0.4 mL/rat was administered orally for 21 consecutive days. The substantially elevated serum enzymatic (GOT, GPT, ALP, GGT) and bilirubin levels were significantly restored towards normalization by the oil. There was a significant elevation in the level of malondialdehyde (MDA), non-protein sulfhydryl (NP-SH), and total protein (TP) contents in the liver tissue. The results obtained indicated that BO possesses potent hepatoprotective action against CCl(4) -induced hepatic damage by lowering liver marker enzymes, MDA concentration, and elevating NP-SH and TP levels in liver tissue. The biochemical observations were supplemented with histopathological examination of rat liver. The results of this study showed that treatment with Ben oil or silymarin (as a reference) appears to enhance the recovery from hepatic damage induced by CCl(4) . The pentobarbital induced narcolepsy prolongation in mice was retarded by the Ben oil. Acute toxicity test in mice showed no morbidity or mortality. In vitro DPPH radical scavenging and β-carotene-linolic acid assay tests of the BO exhibited a moderate antioxidant activity in both tests used. The possible mechanism(s) of the liver protective activity of Ben oil activity may be due to free radical scavenging potential caused by the presence of antioxidant component(s) in the oil. Consequently, BO can be used as a therapeutic regime in treatment of some hepatic disorders. © 2012 Institute of Food Technologists®

  12. Modeling of Laser Induced Damage in NIF UV Optics

    SciTech Connect

    Feit, M D; Rubenchik, A M

    2001-02-21

    Controlling damage to nominally transparent optical elements such as lenses, windows and frequency conversion crystals on high power lasers is a continuing technical problem. Scientific understanding of the underlying mechanisms of laser energy absorption, material heating and vaporization and resultant mechanical damage is especially important for UV lasers with large apertures such as NIF. This LDRD project was a single year effort, in coordination with associated experimental projects, to initiate theoretical descriptions of several of the relevant processes. In understanding laser damage, we distinguish between damage initiation and the growth of existent damage upon subsequent laser irradiation. In general, the effect of damage could be ameliorated by either preventing its initiation or by mitigating its growth. The distinction comes about because initiation is generally due to extrinsic factors such as contaminants, which provide a means of local laser energy absorption. Thus, initiation tends to be local and stochastic in nature. On the other hand, the initial damaging event appears to modify the surrounding material in such a way that multiple pulse damage grows more or less regularly. More exactly, three ingredients are necessary for visible laser induced damage. These are adequate laser energy, a mechanism of laser energy absorption and mechanical weakness. For damage growth, the material surrounding a damage site is already mechanically weakened by cracks and probably chemically modified as well. The mechanical damage can also lead to electric field intensification due to interference effects, thus increasing the available laser energy density. In this project, we successfully accounted for the pulselength dependence of damage threshold in bulk DKDP crystals with the hypothesis of small absorbers with a distribution of sizes. We theoretically investigated expected scaling of damage initiation craters both to baseline detailed numerical simulations

  13. Laser Induced Damage in Optical Materials: 1979.

    DTIC Science & Technology

    1980-07-01

    an oscillator in laser fusion systems [8, 9]. Tm:YLF, pumped by an XeF laser , and emitting at 453 nm [10], is an efficient storage laser and is being...Chicklis, [4] Wilson, R., Varian Associates (private E.P. and Jenssen, H.P., XeF pumped communication). Tm:YLF an excimer excited storage laser , Technical...caused by pulsed laser -induced thermal stress were not signifi- cantly influenced by transverse heat conduction. However, the fluence levels were above

  14. Modulation of irinotecan-induced genomic DNA damage by theanine.

    PubMed

    Attia, Sabry

    2012-05-01

    The possible chemoprotective activity of theanine against irinotecan-induced genomic DNA damage towards mouse bone marrow cells was investigated. Chromosomal aberrations, DNA damage, micronuclei formation and mitotic activity were studied in the current study as markers of genomic damage. Oxidative DNA stress markers such as 8-hydroxydeoxyguanosine, lipid peroxidation, reduced and oxidized glutathione levels were assessed as a possible mechanism underlying this amelioration. Theanine was neither genotoxic nor cytotoxic in mice at doses equivalent to 30 or 60 mg/kg for 12 days. Pretreatment of mice with theanine significantly reduced irinotecan-induced genomic damage in the bone marrow cells and these effects were dose dependent. Irinotecan induced marked biochemical alterations characteristic of oxidative DNA stress, including increased 8-hydroxydeoxyguanosine, enhanced lipid peroxidation and reduction in the reduced/oxidized glutathione ratio. Prior administration of theanine ahead of irinotecan challenge ameliorated these oxidative DNA stress markers. Overall, this study provides for the first time that theanine has a protective role in the abatement of irinotecan-induced genomic damage in the bone marrow cells of mice that resides, at least in part, on its ability to modulate the cellular antioxidant levels and consequently protect bone marrow from irinotecan genotoxicity.

  15. Quercitrin protects skin from UVB-induced oxidative damage.

    PubMed

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Protective Effect of Baccharis trimera Extract on Acute Hepatic Injury in a Model of Inflammation Induced by Acetaminophen

    PubMed Central

    Pádua, Bruno da Cruz; Rossoni Júnior, Joamyr Victor; de Brito Magalhães, Cíntia Lopes; Chaves, Míriam Martins; Silva, Marcelo Eustáquio; Pedrosa, Maria Lucia; de Souza, Gustavo Henrique Bianco; Brandão, Geraldo Célio; Rodrigues, Ivanildes Vasconcelos; Lima, Wanderson Geraldo; Costa, Daniela Caldeira

    2014-01-01

    Background. Acetaminophen (APAP) is a commonly used analgesic and antipyretic. When administered in high doses, APAP is a clinical problem in the US and Europe, often resulting in severe liver injury and potentially acute liver failure. Studies have demonstrated that antioxidants and anti-inflammatory agents effectively protect against the acute hepatotoxicity induced by APAP overdose. Methods. The present study attempted to investigate the protective effect of B. trimera against APAP-induced hepatic damage in rats. The liver-function markers ALT and AST, biomarkers of oxidative stress, antioxidant parameters, and histopathological changes were examined. Results. The pretreatment with B. trimera attenuated serum activities of ALT and AST that were enhanced by administration of APAP. Furthermore, pretreatment with the extract decreases the activity of the enzyme SOD and increases the activity of catalase and the concentration of total glutathione. Histopathological analysis confirmed the alleviation of liver damage and reduced lesions caused by APAP. Conclusions. The hepatoprotective action of B. trimera extract may rely on its effect on reducing the oxidative stress caused by APAP-induced hepatic damage in a rat model. General Significance. These results make the extract of B. trimera a potential candidate drug capable of protecting the liver against damage caused by APAP overdose. PMID:25435714

  17. Aminoazo dye-protein-adduct enhances inhibitory effect on digestibility and damages to Gastro-Duodenal-Hepatic axis

    PubMed Central

    Chen, Yeh; Huang, Boa-Chan; Chang, Chun Chao; Peng, Robert Y.

    2017-01-01

    4-Dimethylaminoazobenzene (DAB, methyl yellow, or butter yellow), a human carcinogen, has been banned for use in foods since 1988. In 2014, DAB adulteration in Tofu occurred in Taiwan. We hypothesize that DAB can form [DAB•SBP]adduct adduct with soybean protein (SBP) which could damage Gastro-Duodenal-Hepatic axis. Sprague-Dawley rats gavage fed [DAB•SBP]adduct adduct revealed severely reduced body weight and damaged duodenum, liver, hepatic mitochondria, and spleen. Hepatic levels of glutathione and ATP were severely reduced. Serum GOT and GPT were substantially elevated. Analysis by the adsorption isotherm clearly revealed DAB formed very stable [DAB•SBP]adduct adduct at 1:1 molar ration (Phase A). The equilibrium constant of this colloidal adduct [DAB•SBP]adduct was KeqA = ∝, behaving as the most stable and toxic species. At higher protein concentration (Phase C) it formed conjugate [DAB×SBPgross]conjugate, with KeqC = 3.23×10−2 mg/mL, implicating a moderately strong adsorption. The in vitro pepsin digestibility test showed apparently reduced digestibility by 27% (by Ninhydrin assay) or 8% (by Bradford assay). Conclusively, this is the first report indicating that [DAB•SBP]adduct potentially is capable to damage the Gastro-Duodenal-Hepatic axis. PMID:28430776

  18. Aminoazo dye-protein-adduct enhances inhibitory effect on digestibility and damages to Gastro-Duodenal-Hepatic axis.

    PubMed

    Lin, Li-Yun; Peng, Chiung-Chi; Chen, Yeh; Huang, Boa-Chan; Chang, Chun Chao; Peng, Robert Y

    2017-01-01

    4-Dimethylaminoazobenzene (DAB, methyl yellow, or butter yellow), a human carcinogen, has been banned for use in foods since 1988. In 2014, DAB adulteration in Tofu occurred in Taiwan. We hypothesize that DAB can form [DAB•SBP]adduct adduct with soybean protein (SBP) which could damage Gastro-Duodenal-Hepatic axis. Sprague-Dawley rats gavage fed [DAB•SBP]adduct adduct revealed severely reduced body weight and damaged duodenum, liver, hepatic mitochondria, and spleen. Hepatic levels of glutathione and ATP were severely reduced. Serum GOT and GPT were substantially elevated. Analysis by the adsorption isotherm clearly revealed DAB formed very stable [DAB•SBP]adduct adduct at 1:1 molar ration (Phase A). The equilibrium constant of this colloidal adduct [DAB•SBP]adduct was KeqA = ∝, behaving as the most stable and toxic species. At higher protein concentration (Phase C) it formed conjugate [DAB×SBPgross]conjugate, with KeqC = 3.23×10-2 mg/mL, implicating a moderately strong adsorption. The in vitro pepsin digestibility test showed apparently reduced digestibility by 27% (by Ninhydrin assay) or 8% (by Bradford assay). Conclusively, this is the first report indicating that [DAB•SBP]adduct potentially is capable to damage the Gastro-Duodenal-Hepatic axis.

  19. Transesophageal Echocardiography and Radiation-induced Damages

    PubMed Central

    Cottini, Marzia; Polizzi, Vincenzo; Pino, Paolo Giuseppe; Buffa, Vitaliano; Musumeci, Francesco

    2016-01-01

    The long-term sequelae of mantle therapy include, especially lung and cardiac disease but also involve the vessels and the organs in the neck and thorax (such as thyroid, aorta, and esophagus). We presented the case of 66-year-old female admitted for congestive heart failure in radiation-induced heart disease. The patient had undergone to massive radiotherapy 42 years ago for Hodgkin's disease (type 1A). Transesophageal echocardiography was performed unsuccessfully with difficulty because of the rigidity and impedance of esophageal walls. Our case is an extraordinary report of radiotherapy's latency effect as a result of dramatic changes in the structure of mediastinum, in particular in the esophagus, causing unavailability of a transesophageal echocardiogram. PMID:27867461

  20. Blasting-induced damage in coal

    SciTech Connect

    Kabongo, K.K.

    1995-12-31

    The paper is drawn from a project intended to explore a technique of prediction, control and optimization of fracture in coal induced by blasting. It evaluates the fines generated in coal submitted to dynamic loading stresses in an impact stamp mortar. The aim is to analyze a complex phenomenon of coal response to blast-generated stresses from a series of discrete simulations of shock and gas actions in controllable processes. It is learned that despite the nucleation of primary crushing and fractures to originate from the point of impact energy in coal, a secondary crushing appears to depart from within the burden progressing towards the free boundaries. The extension of the secondary crushing zone appears to be influenced by the magnitude of the breaking stresses generated and the coal burden distance. A strong dependence of fines on the coal`s innate discontinuities (strength) and the energy input is highlighted.

  1. Turmeric extract and its active compound, curcumin, protect against chronic CCl4-induced liver damage by enhancing antioxidation.

    PubMed

    Lee, Hwa-Young; Kim, Seung-Wook; Lee, Geum-Hwa; Choi, Min-Kyung; Jung, Han-Wool; Kim, Young-Jun; Kwon, Ho-Jeong; Chae, Han-Jung

    2016-08-26

    Curcumin, a major active component of turmeric, has previously been reported to alleviate liver damage. Here, we investigated the mechanism by which turmeric and curcumin protect the liver against carbon tetrachloride (CCl4)-induced injury in rats. We hypothesized that turmeric extract and curcumin protect the liver from CCl4-induced liver injury by reducing oxidative stress, inhibiting lipid peroxidation, and increasing glutathione peroxidase activation. Chronic hepatic stress was induced by a single intraperitoneal injection of CCl4 (0.1 ml/kg body weight) into rats. Turmeric extracts and curcumin were administered once a day for 4 weeks at three dose levels (100, 200, and 300 mg/kg/day). We performed ALT and AST also measured of total lipid, triglyceride, cholesterol levels, and lipid peroxidation. We found that turmeric extract and curcumin significantly protect against liver injury by decreasing the activities of serum aspartate aminotransferase and alanine aminotransferase and by improving the hepatic glutathione content, leading to a reduced level of lipid peroxidase. Our data suggest that turmeric extract and curcumin protect the liver from chronic CCl4-induced injury in rats by suppressing hepatic oxidative stress. Therefore, turmeric extract and curcumin are potential therapeutic antioxidant agents for the treatment of hepatic disease.

  2. Protective effect of galangin in Concanavalin A-induced hepatitis in mice.

    PubMed

    Luo, Qingqiong; Zhu, Liping; Ding, Jieying; Zhuang, Xing; Xu, Lili; Chen, Fuxiang

    2015-01-01

    Galangin is an active pharmacological ingredient from propolis and Alpinia officinarum Hance, and has been reported to have anti-inflammatory and antioxidative properties. The present study aims to reveal the effect of galangin on Concanavalin A (ConA)-induced hepatitis (CIH), a well-established animal model of immune-mediated liver injury, and to clarify the related mechanism. C57BL/6 mice were pretreated with galangin followed by ConA challenge. Results indicated that galangin inhibited ConA-induced liver damage. Mice pretreated with galangin showed more reduction of liver damage when compared with control mice pretreated with vehicle solution. In galangin-pretreated mice with induced CIH, increases in serum levels of several inflammatory cytokines, including tumor necrosis factor-α, interferon-γ, and interleukin-12 were dramatically attenuated, and chemokines and adhesion molecules like interferon inducible protein-10, macrophage inflammatory protein-1α, and inter-cellular adhesion molecule-1 messenger RNA expressions in liver were decreased. Moreover, CIH mice pretreated with galangin showed less leukocyte infiltration and T-cell activation in the liver. Further, the mechanism of the anti-inflammatory effects of galangin may be attributed to its modulation of crucial inflammatory signaling pathways, including nuclear factor kappa B and interferon-gamma/signal transducer and activator of transcription 1. Collectively, these findings suggest the preventive and therapeutic potential of galangin in immune-mediated liver injury in vivo.

  3. Diphenyl diselenide prevents hepatic alterations induced by paraquat in rats.

    PubMed

    Costa, Michael D; de Freitas, Mayara L; Dalmolin, Laíza; Oliveira, Lia P; Fleck, Michelli A; Pagliarini, Paula; Acker, Carmine; Roman, Silvane S; Brandão, Ricardo

    2013-11-01

    This study aimed to investigate the beneficial effect of diphenyl diselenide (PhSe)₂ on paraquat (PQ) induced alterations in rats liver. Adult male Wistar rats received (PhSe)₂ at 10 mg kg(-1), by oral administration (p.o.), during five consecutive days. Twenty-four hours after the last (PhSe)₂ dose, rats received PQ at 15 mg kg(-1), in a single intraperitoneally injection (i.p.). Seventy-two hours after PQ exposure, animals were sacrificed by decapitation for blood and liver samples obtainment. Histological alterations induced by PQ exposure, such as inflammatory cells infiltration and edema, were prevented by (PhSe)₂ administration. Moreover, (PhSe)₂ prevented hepatic lipid peroxidation (LPO) induced by PQ and was effective in reducing the myeloperoxidase (MPO) activity in liver, which was enhanced by PQ exposure. (PhSe)₂ also was effective in protecting against the reduction in ascorbic acid and non-protein thiols (NPSH) levels induced by PQ. The inhibition of glutathione S-transferase (GST) activity, in rats exposed to PQ, was normalized by (PhSe)₂ pre-treatment, whereas the inhibition of catalase (CAT) activity was not prevented by (PhSe)₂. The serum alkaline phosphatase (ALP) inhibition, induced by PQ administration, was also prevented by (PhSe)₂ pre-treatment. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were not modified by PQ and/or (PhSe)₂ administration. Therefore, (PhSe)₂ pre-treatment was effective in protecting against the hepatic alterations induced by PQ in rats. This protective effect can involve the antioxidant and anti-inflammatory properties of (PhSe)₂. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Tamoxifen inhibits estrogen-induced hepatic injury in hamsters.

    PubMed

    Coe, J E; Ross, M J

    1988-01-01

    Estrogens have an unusual toxic effect on the liver of two hamster species, the Armenian and the Chinese hamster. The hepatotoxicity was detectable clinically by hyperbilirubinemia and confirmed histologically by the presence of hepatic degenerative-regenerative changes. Administration of tamoxifen with estrogen [either ethynyl estradiol or diethylstilbestrol (DES)] completely abrogated the hepatotoxic effects, suggesting that estrogen receptor (ER) was necessary for estrogen to damage liver. In Armenian hamsters, estrogens decreased hepatic synthesis of female protein (FP); tamoxifen also abolished this DES effect and resulted in a net increase in serum FP levels. DES administration produced higher serum bilirubin levels and lower serum FP levels in females than in males. Paradoxically, tamoxifen blocked these DES effects more effectively and efficiently in females than in males. Estrogens did not injure uteri of Armenian and Chinese hamsters and were nontoxic to livers of other hamsters species, such as Syrian and Turkish. This model provides another perspective of the acute cellular derangement that can be effected by estrogen-ER complex and may indicate a yet unknown mode of ER action.

  5. Combination of Alcohol and Fructose Exacerbates Metabolic Imbalance in Terms of Hepatic Damage, Dyslipidemia, and Insulin Resistance in Rats

    PubMed Central

    Schultze, Frank Christian; Wilting, Jörg; Mihm, Sabine; Raddatz, Dirk; Ramadori, Giuliano

    2014-01-01

    Although both alcohol and fructose are particularly steatogenic, their long-term effect in the development of a metabolic syndrome has not been studied in vivo. Consumption of fructose generally leads to obesity, whereas ethanol can induce liver damage in the absence of overweight. Here, Sprague-Dawley rats were fed ad libitum for 28 days on five diets: chow (control), liquid Lieber-DeCarli (LDC) diet, LDC +30%J of ethanol (L-Et) or fructose (L-Fr), and LDC combined with 30%J ethanol and 30%J fructose (L-EF). Body weight (BW) and liver weight (LW) were measured. Blood and liver samples were harvested and subjected to biochemical tests, histopathological examinations, and RT-PCR. Alcohol-containing diets substantially reduced the food intake and BW (≤3rd week), whereas fructose-fed animals had higher LW than controls (P<0.05). Additionally, leukocytes, plasma AST and leptin levels were the highest in the fructose-administered rats. Compared to the chow and LDC diets, the L-EF diet significantly elevated blood glucose, insulin, and total-cholesterol levels (also vs. the L-Et group). The albumin and Quick-test levels were the lowest, whereas ALT activity was the highest in the L-EF group. Moreover, the L-EF diet aggravated plasma triglyceride and reduced HDL-cholesterol levels more than 2.7-fold compared to the sum of the effects of the L-Et and L-Fr diets. The decreased hepatic insulin clearance in the L-EF group vs. control and LDC groups was reflected by a significantly decreased C-peptide:insulin ratio. All diets except the control caused hepatosteatosis, as evidenced by Nile red and H&E staining. Hepatic transcription of insulin receptor substrate-1/2 was mainly suppressed by the L-Fr and L-EF diets. The L-EF diet did not enhance the mitochondrial β-oxidation of fatty acids (Cpt1α and Ppar-α expressions) compared to the L-Et or L-Fr diet. Together, our data provide evidence for the coaction of ethanol and fructose with a high-fat-diet on dyslipidemia and

  6. Combination of alcohol and fructose exacerbates metabolic imbalance in terms of hepatic damage, dyslipidemia, and insulin resistance in rats.

    PubMed

    Alwahsh, Salamah Mohammad; Xu, Min; Schultze, Frank Christian; Wilting, Jörg; Mihm, Sabine; Raddatz, Dirk; Ramadori, Giuliano

    2014-01-01

    Although both alcohol and fructose are particularly steatogenic, their long-term effect in the development of a metabolic syndrome has not been studied in vivo. Consumption of fructose generally leads to obesity, whereas ethanol can induce liver damage in the absence of overweight. Here, Sprague-Dawley rats were fed ad libitum for 28 days on five diets: chow (control), liquid Lieber-DeCarli (LDC) diet, LDC +30%J of ethanol (L-Et) or fructose (L-Fr), and LDC combined with 30%J ethanol and 30%J fructose (L-EF). Body weight (BW) and liver weight (LW) were measured. Blood and liver samples were harvested and subjected to biochemical tests, histopathological examinations, and RT-PCR. Alcohol-containing diets substantially reduced the food intake and BW (≤3rd week), whereas fructose-fed animals had higher LW than controls (P<0.05). Additionally, leukocytes, plasma AST and leptin levels were the highest in the fructose-administered rats. Compared to the chow and LDC diets, the L-EF diet significantly elevated blood glucose, insulin, and total-cholesterol levels (also vs. the L-Et group). The albumin and Quick-test levels were the lowest, whereas ALT activity was the highest in the L-EF group. Moreover, the L-EF diet aggravated plasma triglyceride and reduced HDL-cholesterol levels more than 2.7-fold compared to the sum of the effects of the L-Et and L-Fr diets. The decreased hepatic insulin clearance in the L-EF group vs. control and LDC groups was reflected by a significantly decreased C-peptide:insulin ratio. All diets except the control caused hepatosteatosis, as evidenced by Nile red and H&E staining. Hepatic transcription of insulin receptor substrate-1/2 was mainly suppressed by the L-Fr and L-EF diets. The L-EF diet did not enhance the mitochondrial β-oxidation of fatty acids (Cpt1α and Ppar-α expressions) compared to the L-Et or L-Fr diet. Together, our data provide evidence for the coaction of ethanol and fructose with a high-fat-diet on dyslipidemia and

  7. Isorhamnetin-3-O-galactoside Protects against CCl4-Induced Hepatic Injury in Mice.

    PubMed

    Kim, Dong-Wook; Cho, Hong-Ik; Kim, Kang-Min; Kim, So-Jin; Choi, Jae Sue; Kim, Yeong Shik; Lee, Sun-Mee

    2012-07-01

    This study was performed to examine the hepatoprotective effect of isorhamnetin-3-O-galactoside, a flavonoid glycoside isolated from Artemisia capillaris Thunberg (Compositae), against carbon tetrachloride (CCl4)-induced hepatic injury. Mice were treated intraperitoneally with vehicle or isorhamnetin-3-O-galactoside (50, 100, and 200 mg/kg) 30 min before and 2 h after CCl4 (20 μl/kg) injection. Serum aminotransferase activities and hepatic level of malondialdehyde were significantly higher after CCl4 treatment, and these increases were attenuated by isorhamnetin-3-O-galactoside. CCl4 markedly increased serum tumor necrosis factor-α level, which was reduced by isorhamnetin-3-O-galactoside. The levels of inducible nitric oxide synthase (iNOS), cyclooxygenase- 2 (COX-2), and heme oxygenase-1 (HO-1) protein and their mRNA expression levels were significantly increased after CCl4 injection. The levels of HO-1 protein and mRNA expression levels were augmented by isorhamnetin-3-O-galactoside, while isorhamnetin- 3-O-galactoside attenuated the increases in iNOS and COX-2 protein and mRNA expression levels. CCl4 increased the level of phosphorylated c-Jun N-terminal kinase, extracellular signal-regulated kinase and p38, and isorhamnetin-3-O-galactoside reduced these increases. The nuclear translocation of nuclear factor kappa B (NF-κB), activating protein-1, and nuclear factor erythroid 2-related factor 2 (Nrf2) were signifi cantly increased after CCl4 administration. Isorhamnetin-3-O-galactoside attenuated the increases of NF-κB and c-Jun nuclear translocation, while it augmented the nuclear level of Nrf2. These results suggest that isorhamnetin-3-O-galactoside ameliorates CCl4-induced hepatic damage by enhancing the anti-oxidative defense system and reducing the inflammatory signaling pathways.

  8. Protective effects of Parinari curatellifolia flavonoids against acetaminophen-induced hepatic necrosis in rats

    PubMed Central

    Olaleye, Mary Tolulope; Amobonye, Ayodeji Emmannuel; Komolafe, Kayode; Akinmoladun, Afolabi Clement

    2014-01-01

    In the present study, we investigated the hepatoprotective potential of Parinari curatellifolia Planch (Chrysobalanaceae) in experimental rats in order to ascertain the validity of folkloric claims of its effectiveness in the treatment of hepatic-related disorders. Flavonoid extract of P. curatellifolia seed, PCF (10-, 20- or 30 mg/kg body weight) or silymarin (25 mg/kg), dissolved in corn oil, was administered by gavage to experimental animals once daily for 14 consecutive days before liver damage was chemically induced through the administration of acetaminophen (2 g/kg p.o.) on the 14th day. Hepatoprotection was assessed by analyzing liver homogenate and serum for markers of hepatotoxicity – alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transferase (GGT) and lactate dehydrogenase (LDH) activities as well as prothrombin time (PT). Evaluation of biochemical indices of oxidative stress – level of lipid peroxides (LPO), activities of superoxide dismutase (SOD) and catalase, along with histological assessment of hepatic tissue sections were also carried out. Results revealed that all doses of PCF significantly (P < 0.001) and dose dependently prevented acetaminophen-induced increase in serum activities of hepatic enzymes (ALT, AST, GGT, LDH) and PT. Furthermore, PCF (10- and 20 mg/kg) significantly (P < 0.001) reduced lipid peroxidation in liver tissue and restored the activities of the antioxidant enzymes SOD and catalase toward normal levels. Histopathology of the liver tissue showed that PCF mitigated the toxicant-induced hepatocellular necrosis, reduced inflammatory cell infiltration and enhanced hepatocyte regeneration. The results indicated that P. curatellifolia flavonoids demonstrated remarkable hepatoprotective activity in acute liver injury caused by acetaminophen. PMID:25313285

  9. UV and ionizing radiations induced DNA damage, differences and similarities

    NASA Astrophysics Data System (ADS)

    Ravanat, Jean-Luc; Douki, Thierry

    2016-11-01

    Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.

  10. Cannabidiol rescues acute hepatic toxicity and seizure induced by cocaine.

    PubMed

    Vilela, Luciano Rezende; Gomides, Lindisley Ferreira; David, Bruna Araújo; Antunes, Maísa Mota; Diniz, Ariane Barros; Moreira, Fabrício de Araújo; Menezes, Gustavo Batista

    2015-01-01

    Cocaine is a commonly abused illicit drug that causes significant morbidity and mortality. The most severe and common complications are seizures, ischemic strokes, myocardial infarction, and acute liver injury. Here, we demonstrated that acute cocaine intoxication promoted seizure along with acute liver damage in mice, with intense inflammatory infiltrate. Considering the protective role of the endocannabinoid system against cell toxicity, we hypothesized that treatment with an anandamide hydrolysis inhibitor, URB597, or with a phytocannabinoid, cannabidiol (CBD), protects against cocaine toxicity. URB597 (1.0 mg/kg) abolished cocaine-induced seizure, yet it did not protect against acute liver injury. Using confocal liver intravital microscopy, we observed that CBD (30 mg/kg) reduced acute liver inflammation and damage induced by cocaine and prevented associated seizure. Additionally, we showed that previous liver damage induced by another hepatotoxic drug (acetaminophen) increased seizure and lethality induced by cocaine intoxication, linking hepatotoxicity to seizure dynamics. These findings suggest that activation of cannabinoid system may have protective actions on both liver and brain induced by cocaine, minimizing inflammatory injury promoted by cocaine, supporting its further clinical application in the treatment of cocaine abuse.

  11. Cannabidiol Rescues Acute Hepatic Toxicity and Seizure Induced by Cocaine

    PubMed Central

    Vilela, Luciano Rezende; Gomides, Lindisley Ferreira; David, Bruna Araújo; Antunes, Maísa Mota; Diniz, Ariane Barros; Moreira, Fabrício de Araújo; Menezes, Gustavo Batista

    2015-01-01

    Cocaine is a commonly abused illicit drug that causes significant morbidity and mortality. The most severe and common complications are seizures, ischemic strokes, myocardial infarction, and acute liver injury. Here, we demonstrated that acute cocaine intoxication promoted seizure along with acute liver damage in mice, with intense inflammatory infiltrate. Considering the protective role of the endocannabinoid system against cell toxicity, we hypothesized that treatment with an anandamide hydrolysis inhibitor, URB597, or with a phytocannabinoid, cannabidiol (CBD), protects against cocaine toxicity. URB597 (1.0 mg/kg) abolished cocaine-induced seizure, yet it did not protect against acute liver injury. Using confocal liver intravital microscopy, we observed that CBD (30 mg/kg) reduced acute liver inflammation and damage induced by cocaine and prevented associated seizure. Additionally, we showed that previous liver damage induced by another hepatotoxic drug (acetaminophen) increased seizure and lethality induced by cocaine intoxication, linking hepatotoxicity to seizure dynamics. These findings suggest that activation of cannabinoid system may have protective actions on both liver and brain induced by cocaine, minimizing inflammatory injury promoted by cocaine, supporting its further clinical application in the treatment of cocaine abuse. PMID:25999668

  12. Hardening measures for bipolar transistors against microwave-induced damage

    NASA Astrophysics Data System (ADS)

    Chai, Chang-Chun; Ma, Zhen-Yang; Ren, Xing-Rong; Yang, Yin-Tang; Zhao, Ying-Bo; Yu, Xin-Hai

    2013-06-01

    In the present paper we study the influences of the bias voltage and the external components on the damage progress of a bipolar transistor induced by high-power microwaves. The mechanism is presented by analyzing the variation in the internal distribution of the temperature in the device. The findings show that the device becomes less vulnerable to damage with an increase in bias voltage. Both the series diode at the base and the relatively low series resistance at the emitter, Re, can obviously prolong the burnout time of the device. However, Re will aid damage to the device when the value is sufficiently high due to the fact that the highest hot spot shifts from the base-emitter junction to the base region. Moreover, the series resistance at the base Rb will weaken the capability of the device to withstand microwave damage.

  13. Brain methanethiol and ammonia concentrations in experimental hepatic coma and coma induced by injections of various combinations of these substances.

    PubMed

    Zieve, L; Doizaki, W M; Lyftogt, C

    1984-11-01

    In normal rats in a coma induced by NH+4 alone or by methanethiol alone, the brain and blood levels of ammonia or methanethiol are much higher than those observed in rats in experimental hepatic coma. When various smaller dosage combinations of NH+4, methanethiol, and octanoic acid were injected simultaneously, coma occurred at lower brain and blood concentrations of ammonia and methanethiol. Brain ammonia and methanethiol concentrations in normal rats receiving 0.75 mmol NH+4 plus 0.15 mmol octanoic acid plus 18 mumol methanethiol were comparable with those observed in 24 rats in hepatic coma after fulminant hepatic failure caused by acute massive ischemic liver necrosis. The normal rats became comatose. In these rats and in the rats in hepatic coma, the ammonia level in the brain was increased threefold and the methanethiol level in the brain was increased fivefold. Because these levels of ammonia and methanethiol were sufficient to induce coma in normal rats, they should also have been sufficient to induce coma in rats with damaged livers. Therefore, the accumulation of ammonia and methanethiol in the central nervous system after the acute massive ischemic necrosis may have been sufficient to account for the coma that ensued, without the involvement of other factors.

  14. Reversibility of Hepatic Histological Damage after Surgical Temporary Obstruction of the Common Bile Duct in a Murine Model

    PubMed Central

    Olguín, H. Juárez; Hernández, J. L. Figueroa; Guzman, D. Calderón; Medina, R. Alemón

    2011-01-01

    The reversibility of hepatic histological damage after restoring bile flow in a murine model was assessed. 25 male Balb C mice (25-35 g, age 6 weeks) were divided into 5 groups and their common bile duct (CBD) fastened to obstruct the release of gall bladder and liver contents. Group I, CBD untied at day 10, group II at day 15, and groups III and IV at days 20 and 30, respectively. Hematoxilin-eosin stained liver slices were analysed 0, 5, 10 and 20 days after restoring bile flow. Group I showed slight histological lesions (second stage), as cholangiolar bile pigment concretion, pericholangiolar and portal collagen accumulation; group II, mild lesions (third stage), as cholangiolar hamartomatous proliferation and bile duct portal fibrosis; group III showed severe lesions (fourth stage), as loss of functional parenchyma, and also the second and first stage lesions. Group IV died before 30 days. First stage corresponds to absent lesions (control group). Group I recovered totally, group II recovered only from slight lesions and group III had irreversible damage. Severity of lesions increased gradually and accumulatively, irreversible hepatic damage was achieved at 20 days and is deadly at 30 days. Our model of temporary CBD obstruction was suitable to assess reversibility of hepatic histological damage. PMID:23675215

  15. Phenylbutyric acid protects against carbon tetrachloride-induced hepatic fibrogenesis in mice

    SciTech Connect

    Wang, Jian-Qing; Chen, Xi; Zhang, Cheng; Tao, Li; Zhang, Zhi-Hui; Liu, Xiao-Qian; Xu, Yuan-Bao; Wang, Hua; Li, Jun; Xu, De-Xiang

    2013-01-15

    A recent report showed that the unfolded protein response (UPR) signaling was activated in the pathogenesis of carbon tetrachloride (CCl{sub 4})-induced hepatic fibrosis. Phenylbutyric acid (PBA) is a well-known chemical chaperone that inhibits endoplasmic reticulum (ER) stress and unfolded protein response (UPR) signaling. In the present study, we investigated the effects of PBA on CCl{sub 4}-induced hepatic fibrosis in mice. All mice were intraperitoneally (i.p.) injected with CCl{sub 4} (0.15 ml/kg BW, twice per week) for 8 weeks. In CCl{sub 4} + PBA group, mice were i.p. injected with PBA (150 mg/kg, twice per day) from the beginning of CCl{sub 4} injection to the end. As expected, PBA significantly attenuated CCl{sub 4}-induced hepatic ER stress and UPR activation. Although PBA alleviated, only to a less extent, hepatic necrosis, it obviously inhibited CCl{sub 4}-induced tumor necrosis factor alpha (TNF-α) and transforming growth factor beta (TGF-β). Moreover, PBA inhibited CCl{sub 4}-induced hepatic nuclear factor kappa B (NF-κB) p65 translocation and extracellular signal-regulated kinase (ERK) and c-Jun N-terminal Kinase (JNK) phosphorylation. Interestingly, CCl{sub 4}-induced α-smooth muscle actin (α-SMA), a marker for the initiation phase of HSC activation, was significantly attenuated in mice pretreated with PBA. Correspondingly, CCl{sub 4}-induced hepatic collagen (Col)1α1 and Col1α2, markers for the perpetuation phase of HSC activation, were inhibited in PBA-treated mice. Importantly, CCl{sub 4}-induced hepatic fibrosis, as determined using Sirius red staining, was obviously attenuated by PBA. In conclusion, PBA prevents CCl{sub 4}-induced hepatic fibrosis through inhibiting hepatic inflammatory response and HSC activation. Highlights: ► CCl{sub 4} induces hepatic ER stress, inflammation, HSC activation and hepatic fibrosis. ► PBA alleviates CCl{sub 4}-induced hepatic ER stress and UPR signaling activation. ► PBA inhibits CCl{sub 4}-induced

  16. Graptopetalum Paraguayense Ameliorates Chemical-Induced Rat Hepatic Fibrosis In Vivo and Inactivates Stellate Cells and Kupffer Cells In Vitro

    PubMed Central

    Su, Li-Jen; Chang, Chia-Chuan; Yang, Chih-Hsueh; Hsieh, Shur-Jong; Wu, Yi-Chin; Lai, Jin-Mei; Tseng, Tzu-Ling; Huang, Chi-Ying F.; Hsu, Shih-Lan

    2013-01-01

    Background Graptopetalum paraguayense (GP) is a folk herbal medicine with hepatoprotective effects that is used in Taiwan. The aim of this study was to evaluate the hepatoprotective and antifibrotic effects of GP on experimental hepatic fibrosis in both dimethylnitrosamine (DMN)- and carbon tetrachloride (CCl4)-induced liver injury rats. Methods Hepatic fibrosis-induced rats were fed with the methanolic extract of GP (MGP) by oral administration every day. Immunohistochemistry, biochemical assays, and Western blot analysis were performed. The effects of MGP on the expression of fibrotic markers and cytokines in the primary cultured hepatic stellate cells (HSCs) and Kupffer cells, respectively, were evaluated. Results Oral administration of MGP significantly alleviated DMN- or CCl4-induced liver inflammation and fibrosis. High levels of alanine transaminase, aspartate transaminase, bilirubin, prothrombin activity and mortality rates also decreased in rats treated with MGP. There were significantly decreased hydroxyproline levels in therapeutic rats compared with those of the liver-damaged rats. Collagen I and alpha smooth muscle actin (α-SMA) expression were all reduced by incubation with MGP in primary cultured rat HSCs. Furthermore, MGP induced apoptotic cell death in activated HSCs. MGP also suppressed lipopolysaccharide-stimulated rat Kupffer cell activation by decreasing nitric oxide, tumor necrosis factor-α and interleukin-6 production, and increasing interleukin-10 expression. Conclusions The results show that the administration of MGP attenuated toxin-induced hepatic damage and fibrosis in vivo and inhibited HSC and Kupffer cell activation in vitro, suggesting that MGP might be a promising complementary or alternative therapeutic agent for liver inflammation and fibrosis. PMID:23335984

  17. Changes of hepatic biochemical parameters and proteomics in broilers with cold-induced ascites

    PubMed Central

    2012-01-01

    Ascites syndrome is still a problem for chicken industry in various parts of the world. Despite the intensive investigations of this syndrome for many years, its pathogenesis remains unclear. The objective of this study was to analyze the difference in hepatic proteomics between ascites and healthy broilers by two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). Changes of biochemical parameters of liver and blood were also determined. The results indicated that red blood cell counts (RBC), hematocrit (HCT) and haemoglobin (HGB) of ascites broilers were significantly greater than healthy broilers. Hepatic malondialdehyde (MDA) level of ascites broilers was significantly increased, and the activity of total superoxide dismutase (T-SOD) was significantly decreased. Hepatic lactic acid (LD) level of ascitic broilers were significantly lower than healthy ones. Serum glucose and cholesterol level of ascites broilers were significantly increased, and serum globulin level was significantly decreased in ascites broilers. There was no significant difference in triglyceride (TG) and blood urea nitrogen (BUN) level. The activity of liver hexokinase (HK) and succinodehydrogenase (SDH) in ascites broilers was significantly decreased, and there was no significant difference in the activity of liver pyruvate kinase (PK) and Na+-K+-ATPase. The hepatic proteomics analysis showed that 18 proteins expression difference were identified between ascites and healthy broilers. These proteins were mainly involved in: 1) cytoskeleton; 2) glucose, lipids and amino acid metabolism; 3) cell secretion; 4) cell apoptosis; 5) signal transduction; 6) immune and inflammatory response; and 7) cellular redox homeostasis. Mitochondrial isoform phosphoenolpyruvate carboxykinase (M-PEPCK) mainly participates in gluconeogenesis of chicken liver. In conclusion, liver oxidative damage was significantly aggravated, but

  18. Changes of hepatic biochemical parameters and proteomics in broilers with cold-induced ascites.

    PubMed

    Wang, Yongwei; Guo, Yuming; Ning, Dong; Peng, Yunzhi; Cai, Hong; Tan, Jianzhuang; Yang, Ying; Liu, Dan

    2012-12-11

    Ascites syndrome is still a problem for chicken industry in various parts of the world. Despite the intensive investigations of this syndrome for many years, its pathogenesis remains unclear. The objective of this study was to analyze the difference in hepatic proteomics between ascites and healthy broilers by two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). Changes of biochemical parameters of liver and blood were also determined. The results indicated that red blood cell counts (RBC), hematocrit (HCT) and haemoglobin (HGB) of ascites broilers were significantly greater than healthy broilers. Hepatic malondialdehyde (MDA) level of ascites broilers was significantly increased, and the activity of total superoxide dismutase (T-SOD) was significantly decreased. Hepatic lactic acid (LD) level of ascitic broilers were significantly lower than healthy ones. Serum glucose and cholesterol level of ascites broilers were significantly increased, and serum globulin level was significantly decreased in ascites broilers. There was no significant difference in triglyceride (TG) and blood urea nitrogen (BUN) level. The activity of liver hexokinase (HK) and succinodehydrogenase (SDH) in ascites broilers was significantly decreased, and there was no significant difference in the activity of liver pyruvate kinase (PK) and Na+-K+-ATPase. The hepatic proteomics analysis showed that 18 proteins expression difference were identified between ascites and healthy broilers. These proteins were mainly involved in: 1) cytoskeleton; 2) glucose, lipids and amino acid metabolism; 3) cell secretion; 4) cell apoptosis; 5) signal transduction; 6) immune and inflammatory response; and 7) cellular redox homeostasis. Mitochondrial isoform phosphoenolpyruvate carboxykinase (M-PEPCK) mainly participates in gluconeogenesis of chicken liver. In conclusion, liver oxidative damage was significantly aggravated, but

  19. Heat Induced Damage Detection by Terahertz (THz) Radiation

    NASA Astrophysics Data System (ADS)

    Rahani, Ehsan Kabiri; Kundu, Tribikram; Wu, Ziran; Xin, Hao

    2011-06-01

    Terahertz (THz) and sub-terahertz imaging and spectroscopy are becoming increasingly popular nondestructive evaluation techniques for damage detection and characterization of materials. THz radiation is being used for inspecting ceramic foam tiles used in TPS (Thermal Protection System), thick polymer composites and polymer tiles that are not good conductors of ultrasonic waves. Capability of THz electromagnetic waves in detecting heat induced damage in porous materials is investigated in this paper. Porous pumice stone blocks are subjected to long time heat exposures to produce heat induced damage in the block. The dielectric properties extracted from THz TDS (Time Domain Spectroscopy) measurements are compared for different levels of heat exposure. Experimental results show noticeable and consistent change in dielectric properties with increasing levels of heat exposure, well before its melting point.

  20. Mitochondrial and nuclear DNA damage induced by 5-aminolevulinic acid.

    PubMed

    Onuki, Janice; Chen, Yiming; Teixeira, Priscila C; Schumacher, Robert I; Medeiros, Marisa H G; Van Houten, Bennett; Di Mascio, Paolo

    2004-12-15

    5-Aminolevulinic acid (ALA) is a heme precursor accumulated in plasma and in organs in acute intermittent porphyria (AIP), a disease associated with neuromuscular dysfunction and increased incidence of hepatocellular carcinoma (HCC). Liver biopsies of AIP patients showed odd-shaped mitochondria and autophagic vacuoles containing well-preserved mitochondria. ALA yields reactive oxygen species upon metal-catalyzed oxidation and causes in vivo and in vitro impairment of rat liver mitochondria and DNA damage. Using a quantitative polymerase chain reaction assay, we demonstrated that ALA induces a dose-dependent damage in nuclear and mitochondrial DNA in human SVNF fibroblasts and rat PC12 cells. CHO cells treated with ALA also show nuclear DNA damage and human HepG2 cells entered in apoptosis and necrosis induced by ALA and its dimerization product, DHPY. The present data provide additional information on the genotoxicity of ALA, reinforcing the hypothesis that it may be involved in the development of HCC in AIP patients.

  1. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  2. Shock-induced damage in rocks: Application to impact cratering

    NASA Astrophysics Data System (ADS)

    Ai, Huirong

    Shock-induced damage beneath impact craters is studied in this work. Two representative terrestrial rocks, San Marcos granite and Bedford limestone, are chosen as test target. Impacts into the rock targets with different combinations of projectile material, size, impact angle, and impact velocity are carried out at cm scale in the laboratory. Shock-induced damage and fracturing would cause large-scale compressional wave velocity reduction in the recovered target beneath the impact crater. The shock-induced damage is measured by mapping the compressional wave velocity reduction in the recovered target. A cm scale nondestructive tomography technique is developed for this purpose. This technique is proved to be effective in mapping the damage in San Marcos granite, and the inverted velocity profile is in very good agreement with the result from dicing method and cut open directly. Both compressional velocity and attenuation are measured in three orthogonal directions on cubes prepared from one granite target impacted by a lead bullet at 1200 m/s. Anisotropy is observed from both results, but the attenuation seems to be a more useful parameter than acoustic velocity in studying orientation of cracks. Our experiments indicate that the shock-induced damage is a function of impact conditions including projectile type and size, impact velocity, and target properties. Combined with other crater phenomena such as crater diameter, depth, ejecta, etc., shock-induced damage would be used as an important yet not well recognized constraint for impact history. The shock-induced damage is also calculated numerically to be compared with the experiments for a few representative shots. The Johnson-Holmquist strength and failure model, initially developed for ceramics, is applied to geological materials. Strength is a complicated function of pressure, strain, strain rate, and damage. The JH model, coupled with a crack softening model, is used to describe both the inelastic response of

  3. Maltol, a Food Flavoring Agent, Attenuates Acute Alcohol-Induced Oxidative Damage in Mice

    PubMed Central

    Han, Ye; Xu, Qi; Hu, Jiang-ning; Han, Xin-yue; Li, Wei; Zhao, Li-chun

    2015-01-01

    The purpose of this study was to evaluate the hepatoprotective effect of maltol, a food-flavoring agent, on alcohol-induced acute oxidative damage in mice. Maltol used in this study was isolated from red ginseng (Panax ginseng C.A Meyer) and analyzed by high performance liquid chromatography (HPLC) and mass spectrometry. For hepatoprotective activity in vivo, pretreatment with maltol (12.5, 25 and 50 mg/kg; 15 days) drastically prevented the elevated activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP) and triglyceride (TG) in serum and the levels of malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) in liver tissue (p < 0.05). Meanwhile, the levels of hepatic antioxidant, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) were elevated by maltol pretreatment, compared to the alcohol group (p < 0.05). Histopathological examination revealed that maltol pretreatment significantly inhibited alcohol-induced hepatocyte apoptosis and fatty degeneration. Interestingly, pretreatment of maltol effectively relieved alcohol-induced oxidative damage in a dose-dependent manner. Maltol appeared to possess promising anti-oxidative and anti-inflammatory capacities. It was suggested that the hepatoprotective effect exhibited by maltol on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties. PMID:25608939

  4. Mechanism investigation of dioscin against CCl4-induced acute liver damage in mice.

    PubMed

    Lu, Binan; Xu, Yousong; Xu, Lina; Cong, Xiaonan; Yin, Lianhong; Li, Hua; Peng, Jinyong

    2012-09-01

    The mechanisms of the ameliorating effects of dioscin against CCl(4) induced acute liver damage are investigated in this study. Dioscin significantly inhibited (p<0.01) the increases of serum ALT and AST activities compared with the CCl(4)-treated animals. The hepatic lipid peroxidation formation and, concentrations of TNF-α and IL-6 were also decreased. Liver histopathologic studies and a DNA laddering assay indicated that dioscin protected hepatocytes against CCl(4)-induced apoptosis and necrosis. Furthermore, dioscin decreased the protein expressions of Fas/FasL, increased Bcl-2/Bax ratio, inhibited the release of cytochrome c from mitochondrion to cytosol and attenuated CCl(4)-induced caspase-3 and -8 activities. The expressions of ICAM-1, vimentin, prohibitin, HGF, c-MET and GSTA1 were also regulated by dioscin and iNOS was also involved in the effects of this agent. These protective effects against CCl(4) induced acute liver damage might be through inhibiting lipid peroxidation, inflammatory cytokines, necrosis and apoptosis, and dioscin shows promise for development toward the treatment of acute chemically mediated liver injury.

  5. Potential role of punicalagin against oxidative stress induced testicular damage

    PubMed Central

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  6. Potential role of punicalagin against oxidative stress induced testicular damage.

    PubMed

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg-1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility.

  7. Autophagy Induced by Calcium Phosphate Precipitates Targets Damaged Endosomes*

    PubMed Central

    Chen, Xi; Khambu, Bilon; Zhang, Hao; Gao, Wentao; Li, Min; Chen, Xiaoyun; Yoshimori, Tamotsu; Yin, Xiao-Ming

    2014-01-01

    Calcium phosphate precipitates (CPPs) form complexes with DNA, which enter cells via endocytosis. Under this condition CPPs induce autophagy via the canonic autophagy machinery. Here we showed that CPP-induced autophagy was also dependent on endocytosis as the process was significantly inhibited by methyl-β-cyclodextrin and dynasore, which suppress clathrin-dependent endocytosis. Consistently, CPP treatment triggered the formation of filipin-positive intracellular vesicles whose membranes are rich in cholesterol. Unexpectedly, these vesicles were also positive for galectin 3, suggesting that they were damaged and the membrane glycans became accessible to galectins to bind. Endosome damage was caused by endocytosis of CPPs and was reversed by calcium chelators or by endocytosis inhibitors. Notably, CPP-induced LC3-positive autophagosomes were colocalized with galectin 3, ubiquitin, and p62/SQSTM1. Inhibition of galectin 3 reduced p62 puncta and autophagosome formation. Knockdown of p62 additionally inhibited the colocalization of autophagosomes with galectins. Furthermore, most of the galectin 3-positive vesicles were colocalized with Rab7 or LAMP1. Agents that affect endosome/lysosome maturation and function, such as bafilomycin A1, also significantly affected CPP-induced tubulovesicular autophagosome formation. These findings thus indicate that endocytosed CPPs caused endosome damage and recruitment of galectins, particularly at the later endosome stage, which led to the interaction of the autophagosomal membranes with the damaged endosome in the presence of p62. PMID:24619419

  8. NBQX and TCP prevent soman-induced hippocampal damage

    SciTech Connect

    Lallement, G.; Carpentier, P.; Pernot-Marino, I.; Baubichon, D.; Blanchet, G.

    1993-05-13

    In a previous investigation we demonstrated that the measurement of w3 (peripheral-type benzodiazepine) binding site densities could be of widespread applicability in the localization and quantification of soman-induced damage in the central nervous system. We thus used this marker to assess, in mouse hippocampus, the neuroprotective activity against soman-induced brain damage of NBQX and TCP which are respective antagonists of non-NMDA and NMDA glutamatergic receptors. Injection of NBQX at 20 or 40 mg/kg 5 min prior to soman totally prevented the neuronal damage. Comparatively, TCP had neuroprotective efficacy when administered at l mg/kg 5 min prior to soman followed by a reinjection 1 hour after. These results demonstrate that both NBQX and TCP afford a satisfactory neuroprotection against soman-induced brain damage. Since it is known that the neuropathology due to soman is closely seizure-related, it is likely that the neuroprotective activities of NBQX and TCP are related to the respective roles of non-NMDA and NMDA receptors in the onset and maintenance of soman-induced seizures.

  9. [Specific damage to the kidneys in patients with chronic hepatitis C associated with cryoglobulinemia].

    PubMed

    Milovanova, S Iu; Tégaĭ, S V; Russkikh, A V; Kozlovskaia, L V

    2011-01-01

    To reveal clinical and morphological characteristics of renal damage in patients with cryoglobulinemia (CGE) associated with chronic viral hepatitis C (CVH-C) for upgrading diagnosis, prognosis and optimization of the treatment methods. Two groups of CVH-C patients were studied: with CGE (group 1, n = 64) and free of CGE (group 2, n = 62) matched for gender, age and duration of the disease. Biopsy of the liver for assessment of the histological activity index and histological sclerosis index by METAVIR scale was conducted in 63 patients. Of patients with CGE-related damage to the kidneys, 48 were examined for clinical picture with morphological investigation of renal tissue in 15 of them including semiquantitative evaluation of fibrosis degree and activity. Patients with CVH-C and CGE had a wider spectrum of systemic lesions than CVH-C patients without CGE. Only CGE patients demonstrated more severe affection of the skin, joints, kidneys and the nervous system. Therefore, CGE can be considered as a marker of poor prognosis. Liver biopsy showed that CGE patients had more pronounced fibrosis (3-6 points) versus 0-2 points in 80% patients from group 2. Duration of CVH-C from probable infection to renal damage in 48 patients with CGE glomerulonephritis (GN) averaged 197.05 +/- 18.5 months. Renal biopsy diagnosed CGE mesangiocapillary GN in 13 patients and membranoproliferative GN in 2 patients. Patients with HCV infection had a more severe proliferative form of nephritis--mesangiocapillary GN. In 48 GN patients with HCV-infection and CGE, GN ran latently with moderate urinary syndrome in 29 (60.4%) patients, with nephrotic syndrome--in 9 (18.6%), with acute nephritic syndrome--in 10 (21.0%) patients. Most of the patients had arterial hypertension, 13 patients had creatinemia (3.02 +/- 0.55 mg/dl), rapidly progressive GN was diagnosed in 4 patients. Persistent CGE marks poor prognosis in CHC patients and is an indication for antiviral treatment to prevent severe organ

  10. CCl4 induced genotoxicity and DNA oxidative damages in rats: hepatoprotective effect of Sonchus arvensis.

    PubMed

    Alkreathy, Huda Mohammad; Khan, Rahmat Ali; Khan, Muhammad Rashid; Sahreen, Sumaira

    2014-11-21

    Sonchus arvesis is traditionally reported in various human ailments including hepatotoxicity in Pakistan. Presently we designed to assess the protective effects of methanolic extract of Sonchus arvesis against carbon tetrachloride induced genotoxicity and DNA oxidative damages in hepatic tissues of experimental rats. 36 male Sprague-Dawley rats were randomly divided into 6 groups to evaluate the hepatoprotective effects of Sonchus arvensis against CCl4 induced genotoxicity, DNA damages and antioxidant depletion. Rats of normal control group were given free access of food and water add labitum. Group II rats received 3 ml/kg of CCl4 (30% in olive oil v/v) via the intraperitoneal route twice a week for four weeks. Group III and IV received 1 ml of 100 mg/kg b.w. and 200 mg/kg b.w. SME via gavage after 48 h of CCl4 treatment whereas group V was given 1 ml of silymarin (100 mg/kg b.w.) after 48 h of CCl4 treatment. Group VI only received 200 mg/kg b.w. SME. Protective effects of SME were checked by measuring serum markers, activities of antioxidant enzymes, genotoxicity and DNA dmages. Results of the present study showed that treatment of SME reversed the activities of serum marker enzymes and cholesterol profile as depleted with CCl4 treatment. Activities of endogenous antioxidant enzymes of liver tissue homogenate; catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSHpx), glutathione-S-transferase (GST) and glutathione reductase (GSR) were reduced with administration of CCl4, which were returned to the control level with SME treatment. CCl4-induced hepatic cirrhosis decreased hepatic glutathione (GSH) and increased lipid peroxidative products (TBARS), were normalized by treatment with SME. Moreover, administration of CCl4 caused genotoxicity and DNA fragmentation which were significantly restored towards the normal level with SME. These results reveal that treatment of SME may be useful in the prevention of hepatic stress.

  11. [Activity of liver mitochondrial NAD+-dependent dehydrogenases of the krebs cycle in rats with acetaminophen-induced hepatitis developed under conditions of alimentary protein deficiency].

    PubMed

    Voloshchuk, O N; Kopylchuk, G P

    2016-01-01

    Activity of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and the NAD(+)/NADН ratio were studied in the liver mitochondrial fraction of rats with toxic hepatitis induced by acetaminophen under conditions of alimentary protein deprivation. Acetaminophen-induced hepatitis was characterized by a decrease of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and malate dehydrogenase activities, while the mitochondrial NAD(+)/NADН ratio remained at the control level. Modeling of acetaminophen-induced hepatitis in rats with alimentary protein caused a more pronounced decrease in the activity of NAD(+)-dependent dehydrogenases studied and a 2.2-fold increase of the mitochondrial NAD(+)/NADН ratio. This suggests that alimentary protein deprivation potentiated drug-induced liver damage.

  12. Experimental protoporphyria: effect of bile acids on liver damage induced by griseofulvin.

    PubMed

    Martinez, María Del Carmen; Ruspini, Silvina Fernanda; Afonso, Susana Graciela; Meiss, Roberto; Buzaleh, Ana Maria; Batlle, Alcira

    2015-01-01

    The effect of bile acids administration to an experimental mice model of Protoporphyria produced by griseofulvin (Gris) was investigated. The aim was to assess whether porphyrin excretion could be accelerated by bile acids treatment in an attempt to diminish liver damage induced by Gris. Liver damage markers, heme metabolism, and oxidative stress parameters were analyzed in mice treated with Gris and deoxycholic (DXA), dehydrocholic (DHA), chenodeoxycholic, or ursodeoxycholic (URSO). The administration of Gris alone increased the activities of glutathione reductase (GRed), superoxide dismutase (SOD), alkaline phosphatase (AP), gamma glutamyl transpeptidase (GGT), and glutathione-S-transferase (GST), as well as total porphyrins, glutathione (GSH), and cytochrome P450 (CYP) levels in liver. Among the bile acids studied, DXA and DHA increased PROTO IX excretion, DXA also abolished the action of Gris, reducing lipid peroxidation and hepatic GSH and CYP levels, and the activities of GGT, AP, SOD, and GST returned to control values. However, porphyrin accumulation was not prevented by URSO; instead this bile acid reduced ALA-S and the antioxidant defense enzymes system activities. In conclusion, we postulate that DXA acid would be more effective to prevent liver damage induced by Gris.

  13. Experimental Protoporphyria: Effect of Bile Acids on Liver Damage Induced by Griseofulvin

    PubMed Central

    Martinez, María del Carmen; Ruspini, Silvina Fernanda; Afonso, Susana Graciela; Meiss, Roberto; Buzaleh, Ana Maria

    2015-01-01

    The effect of bile acids administration to an experimental mice model of Protoporphyria produced by griseofulvin (Gris) was investigated. The aim was to assess whether porphyrin excretion could be accelerated by bile acids treatment in an attempt to diminish liver damage induced by Gris. Liver damage markers, heme metabolism, and oxidative stress parameters were analyzed in mice treated with Gris and deoxycholic (DXA), dehydrocholic (DHA), chenodeoxycholic, or ursodeoxycholic (URSO). The administration of Gris alone increased the activities of glutathione reductase (GRed), superoxide dismutase (SOD), alkaline phosphatase (AP), gamma glutamyl transpeptidase (GGT), and glutathione-S-transferase (GST), as well as total porphyrins, glutathione (GSH), and cytochrome P450 (CYP) levels in liver. Among the bile acids studied, DXA and DHA increased PROTO IX excretion, DXA also abolished the action of Gris, reducing lipid peroxidation and hepatic GSH and CYP levels, and the activities of GGT, AP, SOD, and GST returned to control values. However, porphyrin accumulation was not prevented by URSO; instead this bile acid reduced ALA-S and the antioxidant defense enzymes system activities. In conclusion, we postulate that DXA acid would be more effective to prevent liver damage induced by Gris. PMID:25945334

  14. Molecular Hydrogen Therapy Ameliorates Organ Damage Induced by Sepsis.

    PubMed

    Zheng, Yijun; Zhu, Duming

    2016-01-01

    Since it was proposed in 2007, molecular hydrogen therapy has been widely concerned and researched. Many animal experiments were carried out in a variety of disease fields, such as cerebral infarction, ischemia reperfusion injury, Parkinson syndrome, type 2 diabetes mellitus, metabolic syndrome, chronic kidney disease, radiation injury, chronic hepatitis, rheumatoid arthritis, stress ulcer, acute sports injuries, mitochondrial and inflammatory disease, and acute erythema skin disease and other pathological processes or diseases. Molecular hydrogen therapy is pointed out as there is protective effect for sepsis patients, too. The impact of molecular hydrogen therapy against sepsis is shown from the aspects of basic vital signs, organ functions (brain, lung, liver, kidney, small intestine, etc.), survival rate, and so forth. Molecular hydrogen therapy is able to significantly reduce the release of inflammatory factors and oxidative stress injury. Thereby it can reduce damage of various organ functions from sepsis and improve survival rate. Molecular hydrogen therapy is a prospective method against sepsis.

  15. Dimethylformamide-induced liver damage among synthetic leather workers

    SciTech Connect

    Wang, J.D.; Lai, M.Y.; Chen, J.S.; Lin, J.M.; Chiang, J.R.; Shiau, S.J.; Chang, W.S. )

    1991-05-01

    Prevalence of liver injury associated with dimethylformamide (DMF) exposure was determined. Medical examinations, liver function tests, and creatine phosphokinase (CPK) determinations were performed on 183 of 204 (76%) employees of a synthetic leather factory. Air concentrations of solvents were measured with personal samplers and gas chromatography. The concentration of DMF in air to which each worker was exposed was categorized. High exposure concentrations of DMF (i.e., 25-60 ppm) were significantly associated with elevated alanine aminotransferase (ALT) levels (ALT greater than or equal to 35 IU/l), a result that did not change even after stratification by hepatitis B carrier status. Modeling by logistic regression demonstrated that exposure to high concentrations of DMF was associated with an elevated ALT (p = .01), whereas hepatitis B surface antigen (HBsAg) was slightly but independently associated with an elevated ALT (p = .07). In those workers who had normal ALT values, there occurred still significantly higher mean ALT and aspartate aminotransferase (AST) activities, especially among those who were not HBsAg carriers. A significant association existed between elevated CPK levels and exposure to DMF. However, an analysis of the CPK isoenzyme among 143 workers did not reveal any specific damage to muscles. This outbreak of liver injury among synthetic leather workers is ascribed to DMF. It is recommended that the occupational standard for DMF and its toxicity among HBsAg carriers be evaluated further.

  16. Sulfasalazine-induced renal and hepatic injury in rats and the protective role of taurine

    PubMed Central

    Heidari, Reza; Rasti, Maryam; Shirazi Yeganeh, Babak; Niknahad, Hossein; Saeedi, Arastoo; Najibi, Asma

    2016-01-01

    Introduction: Sulfasalazine is a drug commonly administrated against inflammatory-based disorders. On the other hand, kidney and liver injury are serious adverse events accompanied by sulfasalazine administration. No specific therapeutic option is available against this complication. The current investigation was designed to evaluate the potential protective effects of taurine against sulfasalazine-induced kidney and liver injury in rats. Methods: Male Sprague-Dawley rats were administered with sulfasalazine (600 mg/kg, oral) for 14 consecutive days. Animals received different doses of taurine (250, 500 and 1000 mg/ kg, i.p.) every day. Markers of organ injury were evaluated on day 15th, 24 h after the last dose of sulfasalazine. Results: Sulfasalazine caused renal and hepatic injury as judged by an increase in serum level of creatinine (Cr), alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP). The levels of reactive oxygen species (ROS) and lipid peroxidation were raised in kidney and liver of sulfasalazine-treated animals. Moreover, tissue glutathione reservoirs were depleted after sulfasalazine administration. Histopathological changes of kidney and liver also endorsed organ injury. Taurine administration (250, 500 and 1000 mg/kg/day, i.p) alleviated sulfasalazine-induced renal and hepatic damage. Conclusion: Taurine administration could serve as a potential protective agent with therapeutic capabilities against sulfasalazine adverse effects. PMID:27340618

  17. Molecular mechanisms of hepatitis C virus-induced hepatocellular carcinoma.

    PubMed

    Vescovo, T; Refolo, G; Vitagliano, G; Fimia, G M; Piacentini, M

    2016-10-01

    Hepatitis C virus (HCV) is a major leading cause of hepatocellular carcinoma (HCC). HCV-induced hepatocarcinogenesis is a multistep process resulting from a combination of pathway alterations that are either caused directly by viral factors or immune mediated as a consequence of a chronic state of inflammation. Host genetic variation is now emerging as an additional element that contribute to increase the risk of developing HCC. The advent of direct-acting antiviral agents foresees a rapid decline of HCC rate in HCV patients. However, a full understanding of the HCV-mediated tumourigenic process is required to elucidate if pro-oncogenic signatures may persist after virus clearance, and to identify novel tools for HCC prevention and therapy. In this review, we summarize the current knowledge of the molecular mechanisms responsible for HCV-induced hepatocarcinogenesis.

  18. Hepatitis C virus and metabolic disorder interactions towards liver damage and atherosclerosis

    PubMed Central

    Vespasiani-Gentilucci, Umberto; Gallo, Paolo; De Vincentis, Antonio; Galati, Giovanni; Picardi, Antonio

    2014-01-01

    Hepatitis C virus (HCV) is one of the main causes of liver disease worldwide, and alterations of glucose metabolism have reached pandemic proportions in western countries. However, the frequent coexistence between these two conditions is more than simply coincidental, since HCV can induce insulin resistance through several mechanisms. Indeed, the virus interferes with insulin signaling both directly and indirectly, inducing the production of pro-inflammatory cytokines. Furthermore, the entire viral life cycle has strict interconnections with lipid metabolism, and HCV is responsible for a “viral” steatosis which is frequently superimposed to a “metabolic” one. Several evidences suggest that HCV-induced metabolic disorders contribute both to the evolution of liver fibrosis and, likely, to the progression of the other disorders which are typically associated with altered metabolism, in particular atherosclerosis. In the present review, we will examine in depth the links between HCV infection and insulin resistance, liver steatosis and diabetes, and analyze the impact of these interactions on the progression of liver fibrosis and atherosclerosis. Special attention will be focused on the highly debated topic of the relationship between HCV infection and cardiovascular disease. The available clinical literature on this item will be broadly reviewed and all the mechanisms possibly implied will be discussed. PMID:24659875

  19. Avermectin induced inflammation damage in king pigeon brain.

    PubMed

    Chen, Li-Jie; Sun, Bao-Hong; Qu, Jian Ping; Xu, Shiwen; Li, Shu

    2013-11-01

    To determine the effect of Avermectin (AVM) on inflammation damage in king pigeon brain, eighty two-month-old American king pigeons were randomly divided into four groups, and were fed with either commercial diet or AVM-supplemented diet containing 20 mg kg(-1)diet, 40 mg kg(-1)diet, and 60 mg kg(-1)diet AVM for 30, 60 and 90 d, respectively. Then, the expression level of inflammatory factors (iNOS, PTGEs, NF-κB), histological damage, and ultra-structural damage were examined. It showed that AVM caused higher expressions (P<0.05) of iNOS, PTGEs, NF-κB with disorganized histological and ultra-structural structures in cerebrum, cerebellum, and optic lobe. Meanwhile, inflammatory and histopathological damage were induced by AVM in king pigeon brains. In addition, the main targeted organelle in nervous system was mitochondria, which indicated that mitochondria may be relevant to the process of inflammation induced by AVM. To our best knowledge, this is the first report to study the toxic effect of AVM on inflammatory damage in king pigeon. Thus, the information presented in this study is believed to be helpful in supplementing data for further AVM toxicity study.

  20. Effect of intestinal microbiota alteration on hepatic damage in rats with acute rejection after liver transplantation.

    PubMed

    Xie, Yirui; Chen, Huazhong; Zhu, Biao; Qin, Nan; Chen, Yunbo; Li, Zhengfeng; Deng, Min; Jiang, Haiyin; Xu, Xiangfei; Yang, Jiezuan; Ruan, Bing; Li, Lanjuan

    2014-11-01

    The previous studies all focus on the effect of probiotics and antibiotics on infection after liver transplantation. Here, we focus on the effect of gut microbiota alteration caused by probiotics and antibiotics on hepatic damage after allograft liver transplantation. Brown-Norway rats received saline, probiotics, or antibiotics via daily gavage for 3 weeks. Orthotopic liver transplantation (OLT) was carried out after 1 week of gavage. Alteration of the intestinal microbiota, liver function and histopathology, serum and liver cytokines, and T cells in peripheral blood and Peyer's patch were evaluated. Distinct segregation of fecal bacterial diversity was observed in the probiotic group and antibiotic group when compared with the allograft group. As for diversity of intestinal mucosal microbiota and pathology of intestine at 2 weeks after OLT, antibiotics and probiotics had a significant effect on ileum and colon. The population of Lactobacillus and Bifidobacterium in the probiotic group was significantly greater than the antibiotic group and the allograft group. The liver injury was significantly reduced in the antibiotic group and the probiotic group compared with the allograft group. The CD4/CD8 and Treg cells in Peyer's patch were decreased in the antibiotic group. The intestinal Treg cell and serum and liver TGF-β were increased markedly while CD4/CD8 ratio was significantly decreased in the probiotic group. It suggested that probiotics mediate their beneficial effects through increase of Treg cells and TGF-β and deduction of CD4/CD8 in rats with acute rejection (AR) after OLT.

  1. Overloaded training increases exercise-induced oxidative stress and damage.

    PubMed

    Palazzetti, Stephane; Richard, Marie-Jeanne; Favier, Alain; Margaritis, Irene

    2003-08-01

    We hypothesized that overloaded training (OT) in triathlon would induce oxidative stress and damage on muscle and DNA. Nine male triathletes and 6 male sedentary subjects participated in this study. Before and after a 4-week OT, triathletes exercised for a duathlon. Blood ratio of reduced vs. oxidized glutathione (GSH/GSSG), plasma thiobarbituric acid reactive substances (TBARS), leukocyte DNA damage, creatine kinase (CK), and CK-MB mass in plasma, erythrocyte superoxide dismutase (SOD) activity, erythrocyte and plasma glutathione peroxidase (GSH-Px) activities, and plasma total antioxidant status (TAS) were measured before and after OT in pre- and postexercise situations. Triathletes were overloaded in response to OT. In rest conditions, OT induced plasma GSH-Px activity increase and plasma TAS decrease (both p < 0.05). In exercise conditions, OT resulted in higher exercise-induced variations of blood GSH/GSSG ratio, TBARS level (both p < 0.05), and CK-MB mass (p < 0.01) in plasma; and decreased TAS response (p < 0.05). OT could compromise the antioxidant defense mechanism with respect to exercise-induced response. The resulting increased exercise-induced oxidative stress and further cellular susceptibility to damage needs more study.

  2. Hepatic Deficiency of Augmenter of Liver Regeneration Exacerbates Alcohol-Induced Liver Injury and Promotes Fibrosis in Mice

    PubMed Central

    Kumar, Sudhir; Wang, Jiang; Rani, Richa; Gandhi, Chandrashekhar R.

    2016-01-01

    Why only a subpopulation (about 15%) of humans develops liver cirrhosis due to alcohol is a critical as yet unanswered question. Liver-specific depletion of augmenter of liver regeneration (ALR) protein in mice causes robust steatosis and hepatocyte apoptosis by 2 weeks; these pathologies regress subsequently with return of ALR expression even at lower than control levels, but the mice develop modest steatohepatitis by 8 weeks. We aimed to investigate whether chronic alcohol ingestion promotes excessive hepatic fibrosis in these ALR-deficient mice. Liver-specific ALR-deficient and wild type (WT) female mice (8–10 weeks old) were placed on 4% alcohol-supplemented or isocaloric diet for 4 weeks. Liver sections were examined for histopathology, and parameters of steatosis and fibrosis were quantified. The mRNA expression of alcohol dehydrogenase-1, acetaldehyde dehydrogenase-1 and cytochrome P450-2E1 increased in WT mice but decreased in ALR-deficient mice upon alcohol ingestion. While alcohol induced steatosis and mild inflammation in WT mice, ALR-deficient mice showed minimal steatosis, strong hepatocellular injury and inflammation, prominent ductular proliferation, and robust fibrosis. Compared to the WT mice, alcohol feeding of ALR-deficient mice resulted in significantly greater increase in hepatic TNFα and TGFβ, and oxidative stress; there was also hepatic iron accumulation, robust lipid peroxidation and mitochondrial DNA damage. Importantly, similar to ALR-deficient mice, lower hepatic ALR levels in human alcoholic liver cirrhosis were associated with increased iron content, reduced expression of alcohol dehydrogenase and acetaldehyde dehydrogenase, and elevated fibrogenic markers. We conclude that ALR deficiency or anomaly can play a critical role in alcohol-induced hepatic fibrosis/cirrhosis, mechanisms of which may involve dysregulation of alcohol metabolism and iron homeostasis, mitochondrial damage and oxidative injury. PMID:26808690

  3. Acute Peripheral but Not Central Administration of Olanzapine Induces Hyperglycemia Associated with Hepatic and Extra-Hepatic Insulin Resistance

    PubMed Central

    Girault, Elodie M.; Alkemade, Anneke; Foppen, Ewout; Ackermans, Mariëtte T.; Fliers, Eric; Kalsbeek, Andries

    2012-01-01

    Atypical antipsychotic drugs such as Olanzapine induce weight gain and metabolic changes associated with the development of type 2 diabetes. The mechanisms underlying the metabolic side-effects of these centrally acting drugs are still unknown to a large extent. We compared the effects of peripheral (intragastric; 3 mg/kg/h) versus central (intracerebroventricular; 30 µg/kg/h) administration of Olanzapine on glucose metabolism using the stable isotope dilution technique (Experiment 1) in combination with low and high hyperinsulinemic-euglycemic clamps (Experiments 2 and 3), in order to evaluate hepatic and extra-hepatic insulin sensitivity, in adult male Wistar rats. Blood glucose, plasma corticosterone and insulin levels were measured alongside endogenous glucose production and glucose disappearance. Livers were harvested to determine glycogen content. Under basal conditions peripheral administration of Olanzapine induced pronounced hyperglycemia without a significant increase in hepatic glucose production (Experiment 1). The clamp experiments revealed a clear insulin resistance both at hepatic (Experiment 2) and extra-hepatic levels (Experiment 3). The induction of insulin resistance in Experiments 2 and 3 was supported by decreased hepatic glycogen stores in Olanzapine-treated rats. Central administration of Olanzapine, however, did not result in any significant changes in blood glucose, plasma insulin or corticosterone concentrations nor in glucose production. In conclusion, acute intragastric administration of Olanzapine leads to hyperglycemia and insulin resistance in male rats. The metabolic side-effects of Olanzapine appear to be mediated primarily via a peripheral mechanism, and not to have a central origin. PMID:22905238

  4. Obesity Exacerbates Sepsis-Induced Oxidative Damage in Organs.

    PubMed

    Petronilho, Fabricia; Giustina, Amanda Della; Nascimento, Diego Zapelini; Zarbato, Graciela Freitas; Vieira, Andriele Aparecida; Florentino, Drielly; Danielski, Lucinéia Gainski; Goldim, Mariana Pereira; Rezin, Gislaine Tezza; Barichello, Tatiana

    2016-12-01

    Sepsis progression is linked to the imbalance between reactive oxygen species and antioxidant enzymes. Sepsis affects multiple organs, but when associated with a chronic inflammatory disease, such as obesity, it may be exacerbated. We hypothesized that obesity could aggravate the oxidative damage to peripheral organs of rats submitted to an animal model of sepsis. Male Wistar rats aged 8 weeks received hypercaloric nutrition for 2 months to induce obesity. Sepsis was induced by cecal ligation and puncture (CLP) procedure, and sham-operated rats were considered as control group. The experimental groups were divided into sham + eutrophic, sham + obese, CLP + eutrophic, and CLP + obese. Twelve and 24 h after surgery, oxidative damage to lipids and proteins and superoxide dismutase (SOD) and catalase (CAT) activities were evaluated in the liver, lung, kidney, and heart. The data indicate that obese rats subjected to sepsis present oxidative stress mainly in the lung and liver. This alteration reflected an oxidative damage to lipids and proteins and an imbalance of SOD and CAT levels, especially 24 h after sepsis. It follows that obesity due to its pro-inflammatory phenotype can aggravate sepsis-induced damage in peripheral organs.

  5. Mitochondrial DNA damage induces apoptosis in senescent cells

    PubMed Central

    Laberge, R-M; Adler, D; DeMaria, M; Mechtouf, N; Teachenor, R; Cardin, G B; Desprez, P-Y; Campisi, J; Rodier, F

    2013-01-01

    Senescence is a cellular response to damage and stress. The senescence response prevents cancer by suppressing the proliferation of cells with a compromised genome and contributes to optimal wound healing in normal tissues. Persistent senescent cells are also thought to drive aging and age-associated pathologies through their secretion of inflammatory factors that modify the tissue microenvironment and alter the function of nearby normal or transformed cells. Understanding how senescent cells alter the microenvironment would be aided by the ability to induce or eliminate senescent cells at will in vivo. Here, we combine the use of the synthetic nucleoside analog ganciclovir (GCV) with herpes simplex virus thymidine kinase (HSVtk) activity to create or eliminate senescent human cells. We show that low concentrations of GCV induce senescence through the accumulation of nuclear DNA damage while higher concentrations of GCV, similar to those used in vivo, kill non-dividing senescent cells via mitochondrial DNA (mtDNA) damage and caspase-dependent apoptosis. Using this system, we effectively eliminated xenografted normal human senescent fibroblasts or induced senescence in human breast cancer cells in vivo. Thus, cellular senescence and mtDNA damage are outcomes of synthetic nucleoside analog treatment, indicating that the GCV–HSVtk combination can be used effectively to promote the targeted formation or eradication of senescent cells. PMID:23868060

  6. Mitochondrial DNA damage induces apoptosis in senescent cells.

    PubMed

    Laberge, R-M; Adler, D; DeMaria, M; Mechtouf, N; Teachenor, R; Cardin, G B; Desprez, P-Y; Campisi, J; Rodier, F

    2013-07-18

    Senescence is a cellular response to damage and stress. The senescence response prevents cancer by suppressing the proliferation of cells with a compromised genome and contributes to optimal wound healing in normal tissues. Persistent senescent cells are also thought to drive aging and age-associated pathologies through their secretion of inflammatory factors that modify the tissue microenvironment and alter the function of nearby normal or transformed cells. Understanding how senescent cells alter the microenvironment would be aided by the ability to induce or eliminate senescent cells at will in vivo. Here, we combine the use of the synthetic nucleoside analog ganciclovir (GCV) with herpes simplex virus thymidine kinase (HSVtk) activity to create or eliminate senescent human cells. We show that low concentrations of GCV induce senescence through the accumulation of nuclear DNA damage while higher concentrations of GCV, similar to those used in vivo, kill non-dividing senescent cells via mitochondrial DNA (mtDNA) damage and caspase-dependent apoptosis. Using this system, we effectively eliminated xenografted normal human senescent fibroblasts or induced senescence in human breast cancer cells in vivo. Thus, cellular senescence and mtDNA damage are outcomes of synthetic nucleoside analog treatment, indicating that the GCV-HSVtk combination can be used effectively to promote the targeted formation or eradication of senescent cells.

  7. Zebrafish fin regeneration after cryoinjury-induced tissue damage

    PubMed Central

    Chassot, Bérénice; Pury, David

    2016-01-01

    ABSTRACT Although fin regeneration following an amputation procedure has been well characterized, little is known about the impact of prolonged tissue damage on the execution of the regenerative programme in the zebrafish appendages. To induce histolytic processes in the caudal fin, we developed a new cryolesion model that combines the detrimental effects of freezing/thawing and ischemia. In contrast to the common transection model, the damaged part of the fin was spontaneously shed within two days after cryoinjury. The remaining stump contained a distorted margin with a mixture of dead material and healthy cells that concomitantly induced two opposing processes of tissue debris degradation and cellular proliferation, respectively. Between two and seven days after cryoinjury, this reparative/proliferative phase was morphologically featured by displaced fragments of broken bones. A blastemal marker msxB was induced in the intact mesenchyme below the damaged stump margin. Live imaging of epithelial and osteoblastic transgenic reporter lines revealed that the tissue-specific regenerative programmes were initiated after the clearance of damaged material. Despite histolytic perturbation during the first week after cryoinjury, the fin regeneration resumed and was completed without further alteration in comparison to the simple amputation model. This model reveals the powerful ability of the zebrafish to restore the original appendage architecture after the extended histolysis of the stump. PMID:27215324

  8. Reduced hepatic injury in Toll-like receptor 4-deficient mice following D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure.

    PubMed

    Ben Ari, Ziv; Avlas, Orna; Pappo, Orit; Zilbermints, Veacheslav; Cheporko, Yelena; Bachmetov, Larissa; Zemel, Romy; Shainberg, Asher; Sharon, Eran; Grief, Franklin; Hochhauser, Edith

    2012-01-01

    Liver transplantation is the only therapy of proven benefit in fulminant hepatic failure (FHF). Lipopolysaccharide (LPS), D-galactosamine (GalN)-induced FHF is a well established model of liver injury in mice. Toll-Like Receptor 4 (TLR4) has been identified as a receptor for LPS. The aim of this study was to investigate the role of TLR4 in FHF induced by D-GalN/LPS administration in mice. Wild type (WT) and TLR4 deficient (TLR4ko) mice were studied in vivo in a fulminant model induced by GalN/LPS. Hepatic TLR4 expression, serum liver enzymes, hepatic and serum TNF-α and interleukin-1β levels were determined. Apoptotic cells were identified by immunohistochemistry for caspase-3. Nuclear factor-kappaβ (NF-κ β) and phosphorylated c-Jun hepatic expression were studied using Western blot analysis. All WT mice died within 24 hours after administration of GalN/LPS while all TLR4ko mice survived. Serum liver enzymes, interleukin-1β, TNF-α level, TLR4 mRNA expression, hepatic injury and hepatocyte apoptosis all significantly decreased in TLR4ko mice compared with WT mice. A significant decrease in hepatic c-Jun and IκB signaling pathway was noted in TLR4ko mice compared with WT mice. In conclusion, following induction of FHF, the inflammatory response and the liver injury in TLR4ko mice was significantly attenuated through decreased hepatic c-Jun and NF-κB expression and thus decreased TNF-α level. Down-regulation of TLR4 expression plays a pivotal role in GalN/LPS induced FHF. These findings might have important implications for the use of the anti TLR4 protein signaling as a potential target for therapeutic intervention in FHF.

  9. Computational modeling of process induced damage during plasma clean

    NASA Astrophysics Data System (ADS)

    Rauf, S.; Haggag, A.; Moosa, M.; Ventzek, P. L. G.

    2006-07-01

    When partially completed circuits come in contact with plasmas during integrated circuit fabrication, current from the plasma can potentially damage active devices on the wafer. A suite of computational models is used in this article to investigate damage to ultrathin (1.0-5.5nm) transistor gate dielectric (SiO2) during Ar /O2 based plasma cleaning in a capacitively coupled plasma reactor. This modeling infrastructure includes a two-dimensional plasma equipment model for relating process control parameters to ion and electron currents, a three-dimensional model for flux density calculation within a circular via, an electrostatic model for computing potential across the gate dielectric, and a percolation model to investigate dielectric damage characteristics. Computational results show that when the plasma current comes in contact with the gate dielectric, the gate dielectric rapidly charges up and the potential difference across the dielectric saturates at the level necessary to support the plasma induced current. The steady-state voltage across the dielectric determines the propensity of irreversible damage that can occur under this electrical stress. Gate dielectric damage was found to be most sensitively linked to dielectric thickness. As thin dielectrics (<2.0nm) are leaky, direct tunneling current flow ensures that the potential drop across the gate dielectric remains small. As a consequence, the dielectric is able to withstand the plasma current and the probability of damage is small. However, for thicker dielectrics where Fowler-Nordheim tunneling is dominant, a large voltage builds up across the gate dielectric due to the plasma induced current. The probability of thicker dielectrics getting damaged during the plasma process is therefore high. For given plasma conditions and gate dielectric thickness, current collection area (i.e., antenna size) determines the voltage buildup across the gate dielectric. Damage probability increases with the size of the

  10. Toxic hepatitis induced by a herbal medicine: Tinospora crispa.

    PubMed

    Langrand, J; Regnault, H; Cachet, X; Bouzidi, C; Villa, A F; Serfaty, L; Garnier, R; Michel, S

    2014-01-01

    Herbal remedies are becoming increasingly popular in many countries. Tinospora species (Menispermaceae) is commonly used as a herbal medicine in South Asia, but very few toxic effects have been described. We report a case of acute hepatitis associated with chronic use of high doses of Tinospora crispa. A 49-year-old male with chronic low back pain bought a herbal medicine at a market in Vietnam that was supposed to be Tinospora crispa, and started to take 10 pellets per day. He had no medical history and did not take any other drugs or toxins. Four weeks later; he developed dark urine and pale stools, associated with asthenia and right hypochondrial pain. Two months after starting treatment, he was referred to the hepatology department with jaundice. Blood tests showed aspartate aminotransferase: 1.169 IU/l, alanine aminotransferase: 2.029 IU/l, total bilirubin: 20.47 mg/dl, direct bilirubin: 13.29 mg/dl, and γ-glutamyltransferase: 243 IU/l. Viral and autoimmune hepatitis were eliminated. Upper abdominal ultrasound was normal. Histopathological findings were consistent with a toxic reaction. The herbal medicine was stopped on admission and the patient fully recovered without treatment, with normal liver function 2 months after the acute episode. Tinospora crispa was clearly identified in the pellets by microscopic analysis of the botanical characters combined with chromatographic fingerprints. The use of herbal medicines containing Tinospora crispa can induce toxic hepatitis. Recovery can be complete after discontinuation. This case highlights the risk associated with traditional herbal remedies. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Effect of Olea oleaster and Juniperus procera leaves extracts on thioacetamide induced hepatic cirrhosis in male albino mice

    PubMed Central

    Al-Attar, Atef M.; Alrobai, Ali A.; Almalki, Daklallah A.

    2015-01-01

    The effect of Olea oleaster and Juniperus procera leaves extracts and their combination on thioacetamide (TAA)-induced hepatic cirrhosis were investigated in male albino mice. One hundred sixty mice were used in this study and were randomly distributed into eight groups of 20 each. Mice of group 1 served as controls. Mice of group 2 were treated with TAA. Mice of group 3 were exposed to TAA and supplemented with O. oleaster leaves extracts. Mice of group 4 were treated with TAA and supplemented with J. procera leaves extracts. Mice of group 5 were subjected to TAA and supplemented with O. oleaster and J. procera leaves extracts. Mice of groups 6, 7 and 8 were supplemented with O. oleaster, J. procera, and O. oleaster and J. procera leaves extracts respectively. Administration of TAA for six and twelve weeks resulted in a decline in body weight gain and increased the levels of serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and total bilirubin. Histopathological evaluations of hepatic sections from mice treated with TAA showed severe alterations including increase of fibrogenesis processes with structural damage. Treatment of mice with these extracts showed a pronounced attenuation in TAA induced hepatic cirrhosis associated with physiological and histopathological alterations. Finally, this study suggests that the supplementation of these extracts may act as antioxidant agents and could be an excellent adjuvant support in the therapy of hepatic cirrhosis. PMID:27081362

  12. Contribution of endogenous and exogenous damage to the total radiation-induced damage in the bacterial spore

    SciTech Connect

    Jacobs, G.P.; Samuni, A.; Czapski, G.

    1980-01-01

    Radical scavengers such as polyethylene glycol 4000 and bovine albumin have been used to define the contribution of exogenous and endogenous damage to the total radiation-induced damage in aqueous buffered suspensions of Bacillus pumilus spores. The results indicate that this damage in the bacterial spore is predominantly endogenous.

  13. Effect of exercise training on ethanol-induced oxidative damage in aged rats.

    PubMed

    Mallikarjuna, K; Nishanth, K; Hou, Chien-Wen; Kuo, Chia-Hua; Sathyavelu Reddy, K

    2009-02-01

    It is well known that lipid peroxidation increases with age, and alcohol drinking further exacerbates this damage. The present study determined the effect of regular exercise training on alcohol-induced oxidative damage and antioxidant status in the liver of aged animals. The age-matched Wistar albino rats (3 months young, n=24; 18 months old, n=24) were evenly divided into four groups: control (C), exercise trained (Ex), ethanol drinking (Et), and exercise plus ethanol drinking (Ex+Et). With ethanol drinking, hepatic malondialdehyde (MDA) level was significantly elevated above control (P<.001), whereas glutathione (GSH) and ascorbic acid (vitamin C) contents were significantly decreased below control. These changes were found to be greater in the aged rats than those of the young rats. For both age groups, exercise training significantly reversed the increase in MDA and decreases in GSH and ascorbic acid induced by ethanol drinking. The present study showed that ethanol-induced deterioration in lipid peroxidation and reduction in antioxidant status in the liver were exacerbated with age. Here, we found that exercise training significantly reversed the adverse conditions that were caused by ethanol in aged rats.

  14. Stereoselective propranolol metabolism in two drug induced rat hepatic microsomes.

    PubMed

    Li, Xin; Zeng, Su

    2000-02-01

    AIM:To study the influence of inducers BNF and PB on the stereoselective metabolism of propranolol in rat hepatic microsomes.METHODS:Phase I metabolism of propranolol was studied by using the microsomes induced by BNF and PB and the non induced microsome as the control.The enzymatic kinetic parameters of propranolol enantiomers were calculated by regression analysis of Lineweaver-Burk plots. Propranolol concentrations were assayed by HPLC.RESULTS:A RP-HPLC method was developed to determine propranolol concentration in rat hepatic microsomes. The linearity equations for R(+)propranolol and S(-) propranolol were A = 705.7C+311.2C (R = 0.9987) and a = 697.2C+311.4C (R = 0.9970) respectively. Recoveries of each enantiomer were 98.9%, 99.5%, 101.0% at 60&mgr;mol/L, 120&mgr;mol/L, 240&mgr;mol/L respectively. At the concentration level of 120&mgr;mol/L, propranolol enantiomers were metabolized at different rates in different microsomes. The concentration ratio R(+)/S(-) of control and PB induced microsomes increased with time, whereas that of microsome induced by BNF decreased. The assayed enzyme parameters were: 1. Km. Control group: R(+)30 plus minus 8, S(-)18 plus minus 5; BNF group: R(+)34 plus minus 3, S(-)39 plus minus 7; PB group: R(+)38 plus minus 17, S(-)36 plus minus 10. 2. Vmax. Control group: R(+)1.5 plus minus 0.2, S(-)2.9 plus minus 0.3; BNF group: R(+)3.8 plus minus 0.3, S(-)3.3 plus minus 0.5; PB group: R(+)0.07 plus minus 0.03, S(-)1.94 plus minus 0.07. 3. Clint. Control group: R(+)60 plus minus 3, S(-)170 plus minus 30; BNF group: R(+)111.0 plus minus 1, S(-) 84 plus minus 5; PB group: R(+)2.0 plus minus 2, S(-)56.0 plus minus 1. The enzyme parameters compared with unpaired t tests showed that no stereoselectivity was observed in enzymatic affinity of three microsomes to enantiomers and their catalytic abilities were quite different and had stereoselectivities.Compared with the control, microsome induced by BNF enhanced enzyme activity to propranolol R

  15. Serum transaminase levels after experimental paracetamol-induced hepatic necrosis.

    PubMed Central

    Dixon, M F; Fulker, M J; Walker, B E; Kelleher, J; Losowsky, M S

    1975-01-01

    The relationship between serum transaminase levels and the extent of paracetamol-induced liver necrosis has been investigated in the rat. Three methods of histological quantitation were used to assess of necrosis--arbitrary grading, point counting, and the image-analysis computer. Highly significant correlations were obtained between the three methods and all were found to be reproducible. A close correlation was found between the extent of hepatic necrosis and the serum ASAT and ALAT 24 hours after a large dose (4 g/kg) of paracetamol. Likewise, the mean grade of necrosis correlated reasonably well with the serum enzyme levels in the recovery phase at 36 and 72 hours, although the transaminase level for a given degree of necrosis was considerably lower at 72 hours than at 24 hours. These findings suggest that serum transaminase levels gives a reliable indication of the severity of hepatic necrosis if the time of ingestion of the paracetamol is known and taken into account. Images Fig 1 Fig 2 PMID:1205274

  16. Cellular senescence determines endothelial cell damage induced by uremia.

    PubMed

    Carracedo, Julia; Buendía, Paula; Merino, Ana; Soriano, Sagrario; Esquivias, Elvira; Martín-Malo, Alejandro; Aljama, Pedro; Ramírez, Rafael

    2013-08-01

    Renal dysfunction is closely associated with endothelial damage leading to cardiovascular disease. However, the extent to which endothelial damage induced by uremia is modulated by aging is poorly known. Aging can render endothelial cells more susceptible to apoptosis through an oxidative stress-dependent pathway. We examined whether senescence-associated to oxidative stress determines the injury induced by the uremia in endothelial cells. Human umbilical vein endothelial cells (HUVEC) was incubated with human uremic serum and, in the animal model, endothelial cells were obtained from aortas of uremic and no uremic rats. Vitamin C was used to prevent oxidative stress. Senescence, assessed by telomere length and enzyme-betagalactosidase (β-gal), reactive oxygen species (ROS), mitochondrial depolarization (JC-1 probe), caspase 3, and apoptosis were determined by flow cytometry. NF-κB activity was determined by Western blot. Uremic serum increased ROS and NF-κB in young and aging HUVEC. However only in aging cells, uremic serum induced apoptosis (vs young HUVEC, p<0.01). The endothelial damage induced by uremia seems to be related with the increased oxidative stress, since in both HUVEC and in the experimental model of renal disease in rats, vitamin C prevents endothelial apoptosis. However, vitamin C did not decrease the oxidative stress associated to senescence. These results showed that as compared with young cells, senescent cells have high sensitivity to damage associated to the oxidative stress induced by the uremia. Consequently, protecting senescent endothelial cells from increased oxidative stress might be an effective therapeutic approach in the treatment of vascular disorders in chronic kidney diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Radiation-induced DNA damage and chromatin structure

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    DNA lesions induced by ionizing radiation in cells are clustered and not randomly distributed. For low linear energy transfer (LET) radiation this clustering occurs mainly on the small scales of DNA molecules and nucleosomes. For example, experimental evidence suggests that both strands of DNA on the nucleosomal surface can be damaged in single events and that this damage occurs with a 10-bp modulation because of protection by histones. For high LET radiation, clustering also occurs on a larger scale and depends on chromatin organization. A particularly significant clustering occurs when an ionizing particle traverses the 30 nm chromatin fiber with generation of heavily damaged DNA regions with an average size of about 2 kbp. On an even larger scale, high LET radiation can produce several DNA double-strand breaks in closer proximity than expected from randomness. It is suggested that this increases the probability of misrejoining of DNA ends and generation of lethal chromosome aberrations.

  18. Multiomic Analysis of the UV-Induced DNA Damage Response.

    PubMed

    Boeing, Stefan; Williamson, Laura; Encheva, Vesela; Gori, Ilaria; Saunders, Rebecca E; Instrell, Rachael; Aygün, Ozan; Rodriguez-Martinez, Marta; Weems, Juston C; Kelly, Gavin P; Conaway, Joan W; Conaway, Ronald C; Stewart, Aengus; Howell, Michael; Snijders, Ambrosius P; Svejstrup, Jesper Q

    2016-05-11

    In order to facilitate the identification of factors and pathways in the cellular response to UV-induced DNA damage, several descriptive proteomic screens and a functional genomics screen were performed in parallel. Numerous factors could be identified with high confidence when the screen results were superimposed and interpreted together, incorporating biological knowledge. A searchable database, bioLOGIC, which provides access to relevant information about a protein or process of interest, was established to host the results and facilitate data mining. Besides uncovering roles in the DNA damage response for numerous proteins and complexes, including Integrator, Cohesin, PHF3, ASC-1, SCAF4, SCAF8, and SCAF11, we uncovered a role for the poorly studied, melanoma-associated serine/threonine kinase 19 (STK19). Besides effectively uncovering relevant factors, the multiomic approach also provides a systems-wide overview of the diverse cellular processes connected to the transcription-related DNA damage response.

  19. Investigation of the laser-induced damage of dispersive coatings

    NASA Astrophysics Data System (ADS)

    Angelov, Ivan B.; von Conta, Aaron; Trushin, Sergei A.; Major, Zsuzsanna; Karsch, Stefan; Krausz, Ferenc; Pervak, Vladimir

    2011-12-01

    Different dispersive coatings were tested in terms of laser-induced damage threshold by using a Ti:Sapphire laser yielding 1 mJ, 30 fs pulses at 500 Hz repetition rate at 790 nm central wavelength. The beam was focused down to 140 μm. Single layer coatings of Au, Ag, Nb2O5, SiO2, Ta2O5 and mixtures of Ta2O5 and silica were examined as well as different dispersive coatings. We observed a direct dependence of the damage threshold on the band gap of the materials used to produce the different samples. The damage threshold values for the dispersive coatings employing the same high index material lay within a range of 30% of each other.

  20. Radiation-induced DNA damage and chromatin structure

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    DNA lesions induced by ionizing radiation in cells are clustered and not randomly distributed. For low linear energy transfer (LET) radiation this clustering occurs mainly on the small scales of DNA molecules and nucleosomes. For example, experimental evidence suggests that both strands of DNA on the nucleosomal surface can be damaged in single events and that this damage occurs with a 10-bp modulation because of protection by histones. For high LET radiation, clustering also occurs on a larger scale and depends on chromatin organization. A particularly significant clustering occurs when an ionizing particle traverses the 30 nm chromatin fiber with generation of heavily damaged DNA regions with an average size of about 2 kbp. On an even larger scale, high LET radiation can produce several DNA double-strand breaks in closer proximity than expected from randomness. It is suggested that this increases the probability of misrejoining of DNA ends and generation of lethal chromosome aberrations.

  1. Pyrroloquinoline quinone-secreting probiotic Escherichia coli Nissle 1917 ameliorates ethanol-induced oxidative damage and hyperlipidemia in rats.

    PubMed

    Singh, Ashish K; Pandey, Sumeet K; Naresh Kumar, Gattupalli

    2014-07-01

    Chronic ethanol (EtOH) consumption is associated with oxidative tissue damage, decrease in antioxidant enzyme activities, and increase in hepatic and plasma lipids. This study investigates the effect of modified probiotic Escherichia coli Nissle 1917 (EcN) secreting pyrroloquinoline quinone (PQQ) against EtOH-induced metabolic disorder in rats. Male Charles Foster rats were gavaged with EtOH (5 g/kg body weight [acute study] and 3 g/kg body weight per day for 10 weeks [chronic study]). Pretreatment of PQQ, vitamin C, and PQQ-secreting EcN prevented acute EtOH-induced oxidative damage in rats reflected by reduced lipid peroxidation in blood and liver and increased hepatic reduced glutathione. However, PQQ given externally was found to be most effective against acute EtOH toxicity. In the chronic study, rats treated with PQQ-secreting EcN showed remarkable reduction in oxidative tissue damage (liver, colon, blood, and kidney) with significant increase in antioxidant enzyme activities as compared to only EtOH-treated rats. Additionally, these rats had significantly lowered hepatic and plasma lipid levels with concomitant reduction in mRNA expression of fatty acid synthase (0.5-fold) and increase in mRNA expression of acyl coenzyme A oxidase (2.4-fold) in hepatic tissue. Antioxidant and hyperlipidemic effects of PQQ-secreting EcN are correlated with increased colonic short chain fatty acids (SCFAs; i.e., acetate, propionate, and butyrate) levels, and PQQ concentration in fecal samples (2-fold) and liver (4-fold). Extracted PQQ and vitamin C were given once a week, but they did not exhibit any ameliorative effect against chronic EtOH toxicity. Accumulated PQQ in tissues prevents hepatic and systemic oxidative damage. PQQ along with SCFAs reduced hyperlipidemia, which can be correlated with changes in mRNA expression of hepatic lipid metabolizing genes. Our study suggests that endogenous generation of PQQ by EcN could be an effective strategy in preventing alcoholic

  2. Effect of the aqueous extract of Psidium guajava on erythromycin-induced liver damage in rats.

    PubMed

    Sambo, N; Garba, S H; Timothy, H

    2009-12-01

    The effect of Psidium guajava extract on erythromycin-induced liver damage in albino rats was investigated using 30 normal rats grouped into six. Group I and II served as the normal and treatment controls that were administered with normal saline and 100 mg/kg body weight of erythromycin stearate daily for 14 days respectively. Rats in group III were administered 450 mg/kg body weight of Psidium guajava only for 7 days while rats in groups IV, V and VI were administered Psidium guajava extract for 7 days and 100mg/kg body weight of erythromycin for 14 days. Histopathological investigation of the liver tissues revealed striking oedema and mild periportal mononuclear cell infiltration of hepatic cords in the liver of rats administered 100 mg/kg of erythromycin stearate and 300/450 mg/kg of Psidium guajava extract. Pretreatment with 150 mg/kg of Psidium guajava extract showed a slight degree of protection against the induced hepatic injury caused by 100 mg/kg of erythromycin stearate. Biochemical analysis of the serum obtained revealed a significant increase in serum levels of hepatic enzymes measured in the groups administered with 100 mg/kg of erythromycin stearate and 300/450 mg/kg of Psidium guajava extract compared to the control groups and those pretreated with 150 mg/kg of Psidium guajava extract. This study has shown that the aqueous extract of psidium guajava leaf possesses hepatoprotective property at lower dose and a hepatotoxic property at higher dose but further studies with prolonged duration is recommended.

  3. Weight loss enhances hepatic antioxidant status in a NAFLD model induced by high fat diet.

    PubMed

    Mendes, Iara Karise Santos; Matsuura, Cristiane; Aguila, Marcia Barbosa; Daleprane, Julio Beltrame; Martins, Marcela Anjos; Mury, Wanda Vianna; Brunini, Tatiana Marlowe Cunha

    2017-08-23

    Nonalcoholic fatty liver disease (NAFLD) is a benign condition that can progress to more severe liver damage in a process mediated, in part, by disturbances in redox balance. Additionally, some argue that it is set to become the main cause of end-stage liver disease in the near future. Here, we investigated whether a diet-induced weight loss is able to reverse hepatic lipid accumulation and to reduce oxidative stress in liver from C57BL/6 mice fed a high-fat (HF) diet. Male C57BL/6 mice were divided into four groups: SC (standard chow, 10% energy from fat, 16 wk); HF (high fat diet, 50% energy from fat, 16 wk); SC-HF (SC 8 wk followed by HF 8 wk); and HF-SC (HF 8 wk followed by SC 8 wk). The HF diet during 8 (SC-HF) and 16 weeks (HF) downregulated mRNA levels and protein expression of Nrf2 and endogenous antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase) in the liver, caused liver steatosis, affected liver function markers, increased intra-abdominal and subcutaneous adipose tissue, and induced glucose intolerance and hypercholesterolemia compared to controls (SC). Diet-induced weight loss significantly reduced the intrahepatic lipid accumulation, improved glucose tolerance, and restored both gene and protein expression of the antioxidant enzymes. Our findings suggest that a dietary intervention aimed to induce weight loss may exert protective effects in NAFLD as it can reduce hepatic oxidative stress and intrahepatic lipid accumulation, which can hinder the progression of this condition to more severe states.

  4. Dissociation of liver inflammation and hepatocellular damage induced by carbon tetrachloride in myeloid cell-specific STAT3 knockout mice

    PubMed Central

    Horiguchi, Norio; Fouad, Lafdil; Miller, Andrew M.; Park, Ogyi; Wang, Hua; Mohanraj, Rajesh; Mukhopadhyay, Partha; Fu, Xin Yuan; Pacher, Pal; Gao, Bin

    2010-01-01

    Liver injury is associated with inflammation, which is generally believed to accelerate the progression of liver diseases; however, clinical data show that inflammation does not always correlate with hepatocelluar damage in some patients. Investigating the cellular mechanisms underlying these events using an experimental animal model, we show that inflammation may attenuate liver necrosis induced by carbon tetrachloride (CCl4) in myeloid-specific signal transducer and activator of transcription 3 (STAT3) knockout mice. As an important anti-inflammatory signal, conditional deletion of STAT3 in myeloid cells results in markedly enhanced liver inflammation after CCl4 injection. However, these effects are also accompanied by reduced liver necrosis, correlating with elevated serum IL-6 and hepatic STAT3 activation. An additional deletion of STAT3 in hepatocytes in myeloid-specific STAT3 knockout mice restored hepatic necrosis, but decreased liver inflammation. Conclusions: Inflammation-mediated STAT3 activation attenuates hepatocellular injury induced by CCl4 in myeloid-specific STAT3 knockout mice, suggesting that inflammation associated with a predominance of hepatoprotective cytokines that activate hepatic STAT3 may reduce rather than accelerate hepatocellular damage in patients with chronic liver diseases. PMID:20196117

  5. Statistical analysis of vibration-induced bone and joint damages.

    PubMed

    Schenk, T

    1995-01-01

    Vibration-induced damages to bones and joints are still occupational diseases with insufficient knowledge about causing and moderating factors and resulting damages. For a better understanding of these relationships also retrospective analyses of already acknowledged occupational diseases may be used. Already recorded detailed data for 203 in 1970 to 1979 acknowledged occupational diseases in the building industry and the building material industry of the GDR are the basis for the here described investigations. The data were gathered from the original documents of the occupational diseases and scaled in cooperation of an industrial engineer and an industrial physician. For the purposes of this investigations the data are to distinguish between data which describe the conditions of the work place (e.g. material, tools and posture), the exposure parameters (e.g. beginning of exposure and latency period) and the disease (e.g. anamnestical and radiological data). These data are treated for the use with sophisticated computerized statistical methods. The following analyses were carried out. Investigation of the connections between the several characteristics, which describe the occupational disease (health damages), including the comparison of the severity of the damages at the individual joints. Investigation of the side dependence of the damages. Investigation of the influence of the age at the beginning of the exposure and the age at the acknowledgement of the occupational disease and herewith of the exposure duration. Investigation of the effect of different occupational and exposure conditions.

  6. Mechanisms for microvascular damage induced by ultrasound-activated microbubbles

    SciTech Connect

    Chen Hong; Brayman, Andrew A.; Evan, Andrew P.; Matula, Thomas J.

    2012-10-03

    To provide insight into the mechanisms of microvascular damage induced by ultrasound-activated microbubbles, experimental studies were performed to correlate microvascular damage to the dynamics of bubble-vessel interactions. High-speed photomicrography was used to record single microbubbles interacting with microvessels in ex vivo tissue, under the exposure of short ultrasound pulses with a center frequency of 1 MHz and peak negative pressures (PNP) ranging from 0.8-4 MPa. Vascular damage associated with observed bubble-vessel interactions was either indicated directly by microbubble extravasation or examined by transmission electron microscopy (TEM) analyses. As observed previously, the high-speed images revealed that ultrasound-activated microbubbles could cause distention and invagination of adjacent vessel walls, and could form liquid jets in microvessels. Vessel distention, invagination, and liquid jets were associated with the damage of microvessels whose diameters were smaller than those of maximally expanded microbubbles. However, vessel invagination appeared to be the dominant mechanism for the damage of relative large microvessels.

  7. Reformulated meat products protect against ischemia-induced cardiac damage.

    PubMed

    Asensio-Lopez, M C; Lax, A; Sanchez-Mas, J; Avellaneda, A; Planes, J; Pascual-Figal, D A

    2016-02-01

    The protective effects of the antioxidants present in food are of great relevance for cardiovascular health. This study evaluates whether the extracts from reformulated meat products with a reduction in fat and/or sodium content exert a cardioprotective effect against ischemia-induced oxidative stress in cardiomyocytes, compared with non-meat foods. Ischemic damage caused loss of cell viability, increased reactive oxygen species and lipid peroxidation and decreased the antioxidant activity. Pretreatment for 24 h with digested or non-digested extracts from reformulated meat products led to protection against ischemia-induced oxidative damage: increased cell viability, reduced oxidative stress and restored the antioxidant activity. Similar results were obtained using extracts from tuna fish, but not with the extracts of green peas, salad or white beans. These results suggest that reformulated meat products have a beneficial impact in protecting cardiac cells against ischemia, and they may represent a source of natural antioxidants with benefits for cardiovascular health.

  8. Radiation hepatology of the rat: Association of the production of prostacyclin with radiation-induced hepatic fibrosis

    SciTech Connect

    Geraci, J.P.; Mariano, M.S.

    1996-01-01

    The hypothesis that hepatic fibrosis is preceded by inflammation and formation of prostanoids from arachidonic acid liberated from damaged cell membranes was investigated. Liver slices were prepared using a Krumdieck precision tissue slicer from sham-irradiated rats or from rats whose livers had been irradiated with 25 Gy {sup 137}Cs {gamma} rays in which injury was allowed to develop in vivo for 6 to 55 days. Unused portions of the liver were analyzed for hydroxyproline content to determine hepatic fibrosis. A unique organ culture system was used to incubate liver slices for 2 h. Secretion into the incubation medium of aspartate aminotransferase and 6-keto prostaglandin F{sub 1{alpha}} were measured to quantify damage to the hepatocyte membrane and production of prostacyclin, respectively. A threefold increase in the concentration of 6-keto prostaglandin F{sub 1{alpha}} in the medium was evident by 13 days after irradiation. This elevated concentration of 6-keto prostaglandin F{sub 1{alpha}} persisted for the remainder of the study and preceded fibrosis, as measured by liver hydroxyproline concentration, and hepatocyte membrane damage, as measured by release of aspartate aminotransferase into the incubation medium or plasma. We therefore suggest that, in the nonregenerating liver, damage and breakdown of nonparenchymal liver cell membrane is the principal source of 6-keto prostaglandin F1. These results are also compatible with the supposition that inflammation and release of arachidonic acid metabolites are one of the early biochemical events leading to hepatic fibrosis. How the release of arachidonic acid metabolites might initiate and sustain radiation-induced fibrosis is discussed. An explanation for the difference in liver fibrosis induced by chemicals and radiation is also presented. 30 refs., 5 figs.

  9. A Computational Model of Hepatic Energy Metabolism: Understanding Zonated Damage and Steatosis in NAFLD

    PubMed Central

    Ashworth, William B.; Bogle, I. David L.

    2016-01-01

    In non-alcoholic fatty liver disease (NAFLD), lipid build-up and the resulting damage is known to occur more severely in pericentral cells. Due to the complexity of studying individual regions of the sinusoid, the causes of this zone specificity and its implications on treatment are largely ignored. In this study, a computational model of liver glucose and lipid metabolism is presented which treats the sinusoid as the repeating unit of the liver rather than the single hepatocyte. This allows for inclusion of zonated enzyme expression by splitting the sinusoid into periportal to pericentral compartments. By simulating insulin resistance (IR) and high intake diets leading to the development of steatosis in the model, we identify key differences between periportal and pericentral cells accounting for higher susceptibility to pericentral steatosis. Secondly, variation between individuals is seen in both susceptibility to steatosis and in its development across the sinusoid. Around 25% of obese individuals do not show excess liver fat, whilst 16% of lean individuals develop NAFLD. Furthermore, whilst pericentral cells tend to show higher lipid levels, variation is seen in the predominant location of steatosis from pericentral to pan-sinusoidal or azonal. Sensitivity analysis was used to identify the processes which have the largest effect on both total hepatic triglyceride levels and on the sinusoidal location of steatosis. As is seen in vivo, steatosis occurs when simulating IR in the model, predominantly due to increased uptake, along with an increase in de novo lipogenesis. Additionally, concentrations of glucose intermediates including glycerol-3-phosphate increased when simulating IR due to inhibited glycogen synthesis. Several differences between zones contributed to a higher susceptibility to steatosis in pericentral cells in the model simulations. Firstly, the periportal zonation of both glycogen synthase and the oxidative phosphorylation enzymes meant that the

  10. A Computational Model of Hepatic Energy Metabolism: Understanding Zonated Damage and Steatosis in NAFLD.

    PubMed

    Ashworth, William B; Davies, Nathan A; Bogle, I David L

    2016-09-01

    In non-alcoholic fatty liver disease (NAFLD), lipid build-up and the resulting damage is known to occur more severely in pericentral cells. Due to the complexity of studying individual regions of the sinusoid, the causes of this zone specificity and its implications on treatment are largely ignored. In this study, a computational model of liver glucose and lipid metabolism is presented which treats the sinusoid as the repeating unit of the liver rather than the single hepatocyte. This allows for inclusion of zonated enzyme expression by splitting the sinusoid into periportal to pericentral compartments. By simulating insulin resistance (IR) and high intake diets leading to the development of steatosis in the model, we identify key differences between periportal and pericentral cells accounting for higher susceptibility to pericentral steatosis. Secondly, variation between individuals is seen in both susceptibility to steatosis and in its development across the sinusoid. Around 25% of obese individuals do not show excess liver fat, whilst 16% of lean individuals develop NAFLD. Furthermore, whilst pericentral cells tend to show higher lipid levels, variation is seen in the predominant location of steatosis from pericentral to pan-sinusoidal or azonal. Sensitivity analysis was used to identify the processes which have the largest effect on both total hepatic triglyceride levels and on the sinusoidal location of steatosis. As is seen in vivo, steatosis occurs when simulating IR in the model, predominantly due to increased uptake, along with an increase in de novo lipogenesis. Additionally, concentrations of glucose intermediates including glycerol-3-phosphate increased when simulating IR due to inhibited glycogen synthesis. Several differences between zones contributed to a higher susceptibility to steatosis in pericentral cells in the model simulations. Firstly, the periportal zonation of both glycogen synthase and the oxidative phosphorylation enzymes meant that the

  11. HBXIP, a binding protein of HBx, regulates maintenance of the G2/M phase checkpoint induced by DNA damage and enhances sensitivity to doxorubicin-induced cytotoxicity.

    PubMed

    Fei, Hongrong; Zhou, Yunsheng; Li, Ruotong; Yang, Mingfeng; Ma, Jian; Wang, Fengze

    2017-03-04

    To maintain the integrity of the genome, cells need to detect and repair DNA damage before they complete cell division. Hepatitis B x-interacting protein (HBXIP), a binding protein of HBx (Hepatitis B virus × protein), is aberrantly overexpressed in human cancer cells and show to promote cell proliferation and inhibit apoptosis. The present study is designed to investigate the role of HBXIP on the DNA damage response. Our results show that HBXIP acts as an important regulator of G2/M checkpoint in response to DNA damage. HBXIP knockdown increases phospho-histone H2AX expression and foci formation after treatment with ionizing radiation (IR). HBXIP regulates the ATM-Chk2 pathway following DNA damage. Depletion of HBXIP abrogates IR-induced G2/M cell cycle checkpoints, accompanying decrease the expression of phospho-Cdc25C, phospho-Cdc2 (Tyr15) and p27. We also show that downregulation of HBXIP expression sensitizes cancer cells to chemotherapy, as evidenced by an increase in apoptosis and cleavage of caspase-3 and caspase-9. Our data suggest that HBXIP can function as a mediator protein for DNA damage response signals to activate the G2/M checkpoint to maintain genome integrity and prevent cell death.

  12. Diosmetin exerts anti-oxidative, anti-inflammatory and anti-apoptotic effects to protect against endotoxin-induced acute hepatic failure in mice

    PubMed Central

    Yang, You; Gong, Xiao-Bao; Huang, Li-Gua; Wang, Zhen-Xu; Wan, Rong-Zhen; Zhang, Peng; Zhang, Qing-Yan; Chen, Zhu; Zhang, Bao-Shun

    2017-01-01

    To investigate the effects and mechanism of diosmetin on acute hepatic failure (AHF), an AHF murine model was established through administration of lipopolysaccharides/D-galactosamine (LPS/D-GalN). In vitro, diosmetin scavenged free radicals. In vivo, diosmetin decreased mortality among mice, blocked the development of histopathological changes and hepatic damage, and suppressed levels of inflammatory mediators and cytokines. In addition, diosmetin prevented the expression of phosphorylated IKK, IκBα, and NF-κB p65 in the NF-κB signaling pathway, and JNK and p38 in the MAPK signaling pathway. Diosmetin also inhibited hepatocyte apoptosis. Thus, diosmetin exerts protective effects against endotoxin-induced acute hepatic failure in mice. The underlying mechanisms are antioxidation, NF-κB signaling inhibition, inflammatory mediator/cytokine attenuation, and hepatocyte apoptosis suppression. Diosmetin is thus a potential drug candidate for use in the treatment of acute hepatic failure. PMID:28430612

  13. Hibernation reduces cellular damage caused by warm hepatic ischemia-reperfusion in ground squirrels.

    PubMed

    Otis, Jessica P; Pike, Amanda C; Torrealba, Jose R; Carey, Hannah V

    2017-05-01

    During the hibernation season, livers from 13-lined ground squirrels (Ictidomys tridecemlineatus) are resistant to damage induced by ex vivo, cold ischemia-warm reperfusion (IR) compared with livers from summer squirrels or rats. Here, we tested the hypothesis that hibernation also reduces damage to ground squirrel livers in an in vivo, warm IR model, which more closely resembles complications associated with traumatic injury or surgical interventions. We also examined whether protection is mediated by two metabolites, inosine and biliverdin, that are elevated in ground squirrel liver during interbout arousals. Active squirrels in spring and hibernators during natural arousals to euthermia (body temperature 37 °C) were subject to liver IR or sham treatments. A subset of hibernating squirrels was pre-treated with compounds that inhibit inosine synthesis/signaling or biliverdin production. This model of liver IR successfully induced hepatocellular damage as indicated by increased plasma liver enzymes (ALT, AST) and hepatocyte apoptosis index compared to sham in both seasons, with greater elevations in spring squirrels. In addition, liver congestion increased after IR to a similar degree in spring and hibernating groups. Microvesicular steatosis was not affected by IR within the same season but was greater in sham squirrels in both seasons. Plasma IL-6 increased ~twofold in hibernators pre-treated with a biliverdin synthesis inhibitor (SnPP) prior to IR, but was not altered by IR in untreated squirrels. The results show that hibernation provides protection to ground squirrel livers subject to warm IR. Further research is needed to clarify mechanisms responsible for endogenous protection of liver tissue under ischemic stress.

  14. D-penicillamine-induced granulomatous hepatitis in brown Norway rats.

    PubMed

    Metushi, Imir G; Zhu, Xu; Uetrecht, Jack

    2014-08-01

    The mechanism of idiosyncratic drug reactions (IDRs) remains poorly understood. D-penicillamine treatment is associated with a wide range of autoimmune reactions including liver injury. An animal model which utilizes brown Norway (BN) rats has been used to investigate the mechanism of D-penicillamine-induced IDRs because it mimics the autoimmune reactions that occur in humans. The purpose of this study was to investigate the type of liver injury that results from D-penicillamine treatment in BN rats. We had previously noted that D-penicillamine caused histological changes in the liver, but there was no increase in alanine transaminase (ALT), and we assumed that there was no significant injury. However, we subsequently discovered that D-penicillamine inhibits the ALT assay. In the present study, we found that treatment of BN rats with a low doses of D-penicillamine (10 or 15 mg/day) resulted in a mild increases in glutamate dehydrogenase (GLDH) and sorbitol dehydrogenase (SDH) activities; however, this was not associated with histological changes. A higher dose of D-penicillamine (20 mg/day) resulted in 63% of the rats developing a skin rash, and these rats had elevated serum GLDH and SDH levels with histopathological changes characteristic of granulomatous hepatitis. This included large clusters of leukocytes in the form of granulomas that contained neutrophils, macrophages, and CD8 T cells. These changes did not occur in the rats that did not get sick. This model may be a good model to investigate the characteristics of drug-induced granulomatous hepatitis.

  15. Laser Induced Retinal Damage Thresholds for Annular Retinal Beam Profiles

    DTIC Science & Technology

    2004-01-01

    Thompson-Gerstman granular model of laser-induced thermal damage to the retina ."°20 The study documented in this paper is a continuation of our earlier...Retinal Beam Profiles DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Laser Interaction...mrad of visual field; which correspond to outer beam diameters of roughly 70, 160, and 300 tin, respectively, on the primate retina . Annular beam

  16. Matcha, a powdered green tea, ameliorates the progression of renal and hepatic damage in type 2 diabetic OLETF rats.

    PubMed

    Yamabe, Noriko; Kang, Ki Sung; Hur, Jong Moon; Yokozawa, Takako

    2009-08-01

    Matcha, a powdered green tea produced by grinding with a stone mill, has been popularly used in the traditional tea ceremony and foods in Japan. Matcha is well known to be richer in some nutritional elements and epigallocatechin 3-O-gallate than other green teas. In our previous study, epigallocatechin 3-O-gallate exhibited protective effects against renal damage in a rat model of diabetic nephropathy. In the present study, we investigated the preventive effects of Matcha (50, 100, or 200 mg/kg/day) on the progression of hepatic and renal damage in type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. OLETF rats were orally administered Matcha for 16 weeks, and we assessed biochemical parameters in the serum, liver, and kidney and expression levels of major products of advanced glycation end products (AGEs), N(6)-(carboxylmethyl)lysine (CML) and N(6)-(carboxylethyl)lysine (CEL), receptor for AGE (RAGE), and sterol regulatory element binding proteins (SREBPs)-1 and -2. Serum total protein levels were significantly increased by Matcha administration, whereas the serum albumin and glycosylated protein levels as well as the renal glucose and triglyceride levels were only slightly or not at all affected. However, Matcha treatment significantly lowered the glucose, triglyceride, and total cholesterol levels in the serum and liver, renal AGE levels, and the serum thiobarbituric acid-reactive substances levels. In addition, Matcha supplementation resulted in decreases in the renal CML, CEL, and RAGE expressions as well as an increase in hepatic SREBP-2 expression, but not that of SREBP-1. These results suggest that Matcha protects against hepatic and renal damage through the suppression of renal AGE accumulation, by decreases in hepatic glucose, triglyceride, and total cholesterol levels, and by its antioxidant activities.

  17. Protective effects of L-carnosine on CCl4 -induced hepatic injury in rats.

    PubMed

    Alsheblak, Mehyar Mohammad; Elsherbiny, Nehal M; El-Karef, Amro; El-Shishtawy, Mamdouh M

    2016-03-01

    The present study was undertaken to investigate the possible protective effect of L-carnosine (CAR), an endogenous dipeptide of alanine and histidine, on carbon tetrachloride (CCl4)-induced hepatic injury. Liver injury was induced in male Sprague-Dawley rats by intraperitoneal (i.p.) injections of CCl4, twice weekly for six weeks. CAR was administered to rats daily, at dose of 250 mg/kg, i.p. At the end of six weeks, blood and liver tissue specimens were collected. Results show that CAR treatment attenuated the hepatic morphological changes, necroinflammation and fibrosis induced by CCl4, as indicated by hepatic histopathology scoring. In addition, CAR treatment significantly reduced the CCl4-induced elevation of liver-injury parameters in serum. CAR treatment also combatted oxidative stress; possibly by restoring hepatic nuclear factor erythroid 2-related factor 2 (Nrf-2) levels. Moreover, CAR treatment prevented the activation of hepatic stellate cells (HSCs), as indicated by reduced α-smooth muscle actin (α-SMA) expression in the liver, and decreased hepatic inflammation as demonstrated by a reduction in hepatic tumor necrosis factor-α (TNF-α) and restoration of interleukin-10 (IL-10) levels. In conclusion, CCl4-induced hepatic injury was alleviated by CAR treatment. The results suggest that these beneficial, protective effects are due, at least in part, to its anti-oxidant, anti-inflammatory and anti-fibrotic activities.

  18. Risk factors for damaged liver function after chemotherapy in hepatitis B virus carriers with non-Hodgkin lymphoma.

    PubMed

    Li, X; Fan, X W; Liu, W; Guo, L; Li, Y; Hu, X; Liang, X; Ma, X P; Yang, S E

    2015-03-30

    The goal of this study was to investigate damaged liver function after chemotherapy in hepatitis B virus (HBV) carriers with non-Hodgkin lymphoma (NHL) and to evaluate risk factors associated with a high risk of damaged liver function. Clinical histories of 134 HBV carriers with NHL who were treated with chemotherapy were obtained and analyzed for the occurrence of damaged liver function and other related high-risk factors. Analysis showed that 76 patients (56.7%) had damaged liver function after chemotherapy: 6 patients (7.9%) had I degree, 17 patients (22.4%) had II degree, 20 patients (26.3%) had III degree, and 33 patients (43.4%) had IV degree damage. After treatment, 18 patients (23.7%) continued to receive chemotherapy according to their original schedule, 39 patients (51.3%) delayed chemotherapy, 16 patients (21.1%) stopped chemotherapy, and 3 patients (3.9%) died. Analysis of a binary multivariate logistic regression model showed that administration of steroids was a high-risk factor for damaged liver function after chemotherapy in NHL patients. The incidence of damaged liver function after chemotherapy is high among HBV carriers with NHL; therefore, administration of steroid chemotherapy is a high-risk factor.

  19. Salidroside attenuates concanavalin A-induced hepatitis via modulating cytokines secretion and lymphocyte migration in mice.

    PubMed

    Hu, Baoji; Zou, Yun; Liu, Shanshan; Wang, Jun; Zhu, Jiali; Li, Jinbao; Bo, Lulong; Deng, Xiaoming

    2014-01-01

    Salidroside, isolated from the medicinal plant Rhodiola, was reported to serve as an "adaptogen." This study was designed to explore the protective effect of salidroside on concanavalin A- (Con A-) induced hepatitis in mice and investigate potential mechanisms. C57BL/6 mice were randomly divided into control group, Con A group, and salidroside group. Salidroside (50 mg/kg) was injected intravenously followed by Con A administration. The levels of ALT, AST, inflammatory cytokines and CXCL-10 were examined. The pathological damage of livers was assessed, the amounts of phosphorylated IκBα and p65 were measured, and the numbers of CD4(+) and CD8(+) T lymphocytes in the blood, spleen and infiltrated in the liver were calculated. Our results showed that salidroside pretreatment reduced the levels of ALT, AST dramatically and suppressed the secretion of proinflammatory cytokines through downregulating the activity of NF-κB partly. Salidroside altered the distribution of CD4(+) and CD8(+) T lymphocyte in the liver and spleen through regulating CXCL-10 and decreased the severity of liver injuries. In conclusion, these results confirm the efficacy of salidroside in the prevention of immune mediated hepatitis in mice.

  20. Salidroside Attenuates Concanavalin A-Induced Hepatitis via Modulating Cytokines Secretion and Lymphocyte Migration in Mice

    PubMed Central

    Zou, Yun; Liu, Shanshan; Wang, Jun; Zhu, Jiali; Li, Jinbao

    2014-01-01

    Salidroside, isolated from the medicinal plant Rhodiola, was reported to serve as an “adaptogen.” This study was designed to explore the protective effect of salidroside on concanavalin A- (Con A-) induced hepatitis in mice and investigate potential mechanisms. C57BL/6 mice were randomly divided into control group, Con A group, and salidroside group. Salidroside (50 mg/kg) was injected intravenously followed by Con A administration. The levels of ALT, AST, inflammatory cytokines and CXCL-10 were examined. The pathological damage of livers was assessed, the amounts of phosphorylated IκBα and p65 were measured, and the numbers of CD4+ and CD8+ T lymphocytes in the blood, spleen and infiltrated in the liver were calculated. Our results showed that salidroside pretreatment reduced the levels of ALT, AST dramatically and suppressed the secretion of proinflammatory cytokines through downregulating the activity of NF-κB partly. Salidroside altered the distribution of CD4+ and CD8+ T lymphocyte in the liver and spleen through regulating CXCL-10 and decreased the severity of liver injuries. In conclusion, these results confirm the efficacy of salidroside in the prevention of immune mediated hepatitis in mice. PMID:24808635

  1. Arsenic-induced hepatic mitochondrial toxicity in rats and its amelioration by dietary phosphate.

    PubMed

    Majumdar, Sangita; Karmakar, Subhra; Maiti, Anasuya; Choudhury, Monalisa; Ghosh, Aniruddha; Das, Asankur Sekhar; Mitra, Chandan

    2011-01-01

    The present study was aimed to test the hypothesis that inorganic phosphate may reduce arsenic toxicity by decreasing its intestinal transference. Co-administration of inorganic phosphate (6.56 M) and arsenic (6.07 mM) in the intestinal loops of rats, in situ, caused significant reduction of arsenic transference. Short-term arsenic exposure (3mg/kg body weight/day for 30 days) caused liver damage evidenced by activities of liver enzymes and necroinflammatory changes. These effects of arsenic were coupled with enhanced mitochondrial swelling, inhibition of cytochrome c oxidase, Ca(2+)-ATPase, a decrease in mitochondrial calcium content, changes in indices of hepatic mitochondrial oxidative stress and iNOS expression. Arsenic also increased hepatic caspase 3 activity and DNA fragmentation. All these apoptosis-related molecular changes caused by arsenic could be alleviated by supplementation with inorganic phosphate, which likely suggests a protective role of phosphate against arsenic-induced hepatotoxic changes. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Hepatic Fasting-Induced PPARα Activity Does Not Depend on Essential Fatty Acids.

    PubMed

    Polizzi, Arnaud; Fouché, Edwin; Ducheix, Simon; Lasserre, Frédéric; Marmugi, Alice P; Mselli-Lakhal, Laila; Loiseau, Nicolas; Wahli, Walter; Guillou, Hervé; Montagner, Alexandra

    2016-09-24

    The liver plays a central role in the regulation of fatty acid metabolism, which is highly sensitive to transcriptional responses to nutrients and hormones. Transcription factors involved in this process include nuclear hormone receptors. One such receptor, PPARα, which is highly expressed in the liver and activated by a variety of fatty acids, is a critical regulator of hepatic fatty acid catabolism during fasting. The present study compared the influence of dietary fatty acids and fasting on hepatic PPARα-dependent responses. Pparα(-/-) male mice and their wild-type controls were fed diets containing different fatty acids for 10 weeks prior to being subjected to fasting or normal feeding. In line with the role of PPARα in sensing dietary fatty acids, changes in chronic dietary fat consumption influenced liver damage during fasting. The changes were particularly marked in mice fed diets lacking essential fatty acids. However, fasting, rather than specific dietary fatty acids, induced acute PPARα activity in the liver. Taken together, the data imply that the potent signalling involved in triggering PPARα activity during fasting does not rely on essential fatty acid-derived ligand.

  3. The Effect of rhCygb on CCl4-Induced Hepatic Fibrogenesis in Rat

    PubMed Central

    Li, Zhen; Wei, Wei; Chen, Bohong; Cai, Gaotai; Li, Xin; Wang, Ping; Tang, Jinping; Dong, Wenqi

    2016-01-01

    This study aims to investigate whether the use of recombinant human cytoglobin (rhCygb) impact on hepatic fibrogenesis caused by CCl4. SD (n = 150) rats were randomly divided into three groups of normal, CCl4 model and rhCygb groups. After model establishment, rats in rhCygb groups were administered daily with rhCygb (2 mg/kg, s.c.). Histological lesions were staged according to metavir. Serum parameters including ALT, AST, HA, LN, Col III and Col IV were determined. The liver proteins were separated by 2-DE and identified. As a result, the stage of hepatic damage and liver fibrosis in rhCygb groups were significantly milder than that in CCl4 model groups. Meanwhile, rhCygb dramatically reversed serum levels of ALT and AST, and also markedly decreased the liver fibrosis markers levels of LN, HA, Col III and Col IV. In 2-DE, 33 proteins among three groups with the same changing tendency in normal and rhCygb treated groups compared with CCl4 model group were identified. GO analysis showed that several identified proteins involved in oxidative stress pathway. The study provides new insights and data for administration of rhCygb reversing CCl4-induced liver fibrosis suggesting that rhCygb might be used in the treatment of liver fibrosis. PMID:27006085

  4. Stochastics of diffusion induced damage in intercalation materials

    NASA Astrophysics Data System (ADS)

    Barai, Pallab; Mukherjee, Partha P.

    2016-10-01

    Fundamental understanding of the underlying diffusion-mechanics interplay in the intercalation electrode materials is critical toward improved life and performance of lithium-ion batteries for electric vehicles. Especially, diffusion induced microcrack formation in brittle, intercalation active materials, with emphasis on the grain/grain-boundary (GB) level implications, has been fundamentally investigated based on a stochastic modeling approach. Quasistatic damage evolution has been analyzed under lithium concentration gradient induced stress. Scaling of total amount of microcrack formation shows a power law variation with respect to the system size. Difference between the global and local roughness exponent indicates the existence of anomalous scaling. The deterioration of stiffness with respect to microcrack density displays two distinct regions of damage propagation; namely, diffused damage evolution and stress concentration driven localized crack propagation. Polycrystalline material microstructures with different grain sizes have been considered to study the diffusion-induced fracture in grain and GB regions. Intergranular crack paths are observed within microstructures containing softer GB region, whereas, transgranular crack paths have been observed in microstructures with relatively strong GB region. Increased tortuosity of the spanning crack has been attributed as the reason behind attaining increased fracture strength in polycrystalline materials with smaller grain sizes.

  5. Phosphoinositide 3-kinase inhibitors induce DNA damage through nucleoside depletion

    PubMed Central

    Juvekar, Ashish; Hu, Hai; Yadegarynia, Sina; Lyssiotis, Costas A.; Ullas, Soumya; Lien, Evan C.; Bellinger, Gary; Son, Jaekyoung; Hok, Rosanna C.; Seth, Pankaj; Daly, Michele B.; Kim, Baek; Scully, Ralph; Asara, John M.; Cantley, Lewis C.; Wulf, Gerburg M.

    2016-01-01

    We previously reported that combining a phosphoinositide 3-kinase (PI3K) inhibitor with a poly-ADP Rib polymerase (PARP)-inhibitor enhanced DNA damage and cell death in breast cancers that have genetic aberrations in BRCA1 and TP53. Here, we show that enhanced DNA damage induced by PI3K inhibitors in this mutational background is a consequence of impaired production of nucleotides needed for DNA synthesis and DNA repair. Inhibition of PI3K causes a reduction in all four nucleotide triphosphates, whereas inhibition of the protein kinase AKT is less effective than inhibition of PI3K in suppressing nucleotide synthesis and inducing DNA damage. Carbon flux studies reveal that PI3K inhibition disproportionately affects the nonoxidative pentose phosphate pathway that delivers Rib-5-phosphate required for base ribosylation. In vivo in a mouse model of BRCA1-linked triple-negative breast cancer (K14-Cre BRCA1f/fp53f/f), the PI3K inhibitor BKM120 led to a precipitous drop in DNA synthesis within 8 h of drug treatment, whereas DNA synthesis in normal tissues was less affected. In this mouse model, combined PI3K and PARP inhibition was superior to either agent alone to induce durable remissions of established tumors. PMID:27402769

  6. Inflammation-Induced Cell Proliferation Potentiates DNA Damage-Induced Mutations In Vivo

    PubMed Central

    Kiraly, Orsolya; Gong, Guanyu; Olipitz, Werner; Muthupalani, Sureshkumar; Engelward, Bevin P.

    2015-01-01

    Mutations are a critical driver of cancer initiation. While extensive studies have focused on exposure-induced mutations, few studies have explored the importance of tissue physiology as a modulator of mutation susceptibility in vivo. Of particular interest is inflammation, a known cancer risk factor relevant to chronic inflammatory diseases and pathogen-induced inflammation. Here, we used the fluorescent yellow direct repeat (FYDR) mice that harbor a reporter to detect misalignments during homologous recombination (HR), an important class of mutations. FYDR mice were exposed to cerulein, a potent inducer of pancreatic inflammation. We show that inflammation induces DSBs (γH2AX foci) and that several days later there is an increase in cell proliferation. While isolated bouts of inflammation did not induce HR, overlap between inflammation-induced DNA damage and inflammation-induced cell proliferation induced HR significantly. To study exogenously-induced DNA damage, animals were exposed to methylnitrosourea, a model alkylating agent that creates DNA lesions relevant to both environmental exposures and cancer chemotherapy. We found that exposure to alkylation damage induces HR, and importantly, that inflammation-induced cell proliferation and alkylation induce HR in a synergistic fashion. Taken together, these results show that, during an acute bout of inflammation, there is a kinetic barrier separating DNA damage from cell proliferation that protects against mutations, and that inflammation-induced cell proliferation greatly potentiates exposure-induced mutations. These studies demonstrate a fundamental mechanism by which inflammation can act synergistically with DNA damage to induce mutations that drive cancer and cancer recurrence. PMID:25647331

  7. Roles of CYP2e1 in 1,2-dichloroethane-induced liver damage in mice.

    PubMed

    Sun, Qi; Wang, Gaoyang; Gao, Lanyue; Shi, Lei; Qi, Ying; Lv, Xiuqiang; Jin, Yaping

    2016-11-01

    The aim of this study was to explore the roles of cytochrome P450 2E1 (CYP2E1) in 1,2-dichloroethane (1,2-DCE)-induced liver damage. Two parts were included in this study: first, effect of 1,2-DCE on microsomal expression of CYP2E1, and second, potential of an inhibitor of CYP2E1 to reduce 1,2-DCE-induced liver damage. In part one, mice were exposed to 0, 0.225, 0.45, or 0.9 g/m(3) 1,2-DCE for 10 days, 3.5 h per day through static inhalation. In part two, mice were divided into blank control, solvent control, inhibitor control, 1,2-DCE-poisoned group, and low or high intervention group. In part one, compared to the control, serum alanine aminotransferase (ALT) activities and hepatic malondialdehyde (MDA) levels in 0.9 g/m(3) 1,2-DCE group, and microsomal CYP2E1 protein expression and activity in both 0.45 and 0.9 g/m(3) 1,2-DCE groups increased significantly; conversely, hepatic nonprotein sulfhydryl (NPSH) levels in both 0.45 and 0.9 g/m(3) 1,2-DCE groups and hepatic SOD activities in 0.9 g/m(3) 1,2-DCE group decreased significantly. In part two, microsomal CYP2E1 protein expression and activity decreased significantly in both low and high intervention groups compared to 1,2-DCE-poisoned group. Along with the changes of CYP2E1, hepatic MDA levels and serum ALT activities decreased; conversely, hepatic NPSH levels and SOD activities increased significantly in high intervention group. Taken together, our results suggested that 1,2-DCE could enhance CYP2E1 protein expression and enzymatic activity, which could cause oxidative damage in liver, serving as an important mechanism underlying 1,2-DCE-induced liver damage. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1430-1438, 2016.

  8. Naltrexone attenuates endoplasmic reticulum stress induced hepatic injury in mice.

    PubMed

    Moslehi, A; Nabavizadeh, F; Nabavizadeh, Fatemeh; Dehpour, A R; Dehpou, A R; Tavanga, S M; Hassanzadeh, G; Zekri, A; Nahrevanian, H; Sohanaki, H

    2014-09-01

    Endoplasmic reticulum (ER) stress provides abnormalities in insulin action, inflammatory responses, lipoprotein B100 degradation and hepatic lipogenesis. Excess accumulation of triglyceride in hepatocytes may also lead to disorders such as non-alcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Opioid peptides are involved in triglyceride and cholesterol dysregulation, inflammation and cell death. In this study, we evaluated Naltrexone effects on ER stress induced liver injury. To do so, C57/BL6 mice received saline, DMSO and Naltrexone, as control groups. ER stress was induced by tunicamycin (TM) injection. Naltrexone was given before TM administration. Liver blood flow and biochemical serum analysis were measured. Histopathological evaluations, TNF-α measurement and Real-time RT-PCR were also performed. TM challenge provokes steatosis, cellular ballooning and lobular inflammation which significantly reduced in Naltrexone treated animals. ALT, AST and TNF-α increased in the TM group and improved in the Naltrexone plus TM group. Triglyceride and cholesterol levels decreased in TM treated mice with no increase in Naltrexone treated animals. In the Naltrexone plus TM group, gene expression of Bax/Bcl-2 ratio and caspase3 significantly lowered compared with the TM group. In this study, we found that Naltrexone had a notable alleviating role in ER stress induced steatosis and liver injury.

  9. Combined histological and hematological assessment of iron-induced organ damage in a gerbil model of iron overload

    PubMed Central

    Wang, Man; Liu, Rong-Rong; Wang, Cong-Jun; Kang, Wei; Yang, Gao-Hui; Zhong, Wu-Ning; Lai, Yong-Rong

    2015-01-01

    Background: Previous studies with gerbil models have suggested that excessive iron exposure causes cardiomyopathy and hepatic injury, but pathological analysis was not comprehensive, preventing a detailed understanding of how the metal induces this damage. Methods and results: Gerbils received single intraperitoneal injections of iron dextran (200 mg/kg) or saline and were then analyzed comprehensively for hematological and histological signs of organ damage. These tests included hematology parameters and determination of liver iron concentration, malondialdehyde levels and glutathione peroxidase activity; examination of heart and liver tissue stained with hematoxylin and eosin, Prussian-blue and Masson stain; and electron microscopy analysis of heart and liver ultrastructure. Iron-overloaded animals showed significantly different hematology parameters and significantly higher liver iron concentrations than saline-injected animals, as well as significantly higher malondialdehyde levels and significantly lower glutathione peroxidase activity. Histology analyses showed cellular damage, iron deposits, and both myocardial and liver fibrosis, while electron microscopy of heart and liver sections showed abundant iron deposition lysosomes, and disordered and swollen mitochondria. All these pathological changes increased with exposure time. Conclusions: This comprehensive assessment of iron overload in a gerbil model suggests that excessive iron deposition induces extensive cellular damage, particularly fibrosis in heart and liver. This damage may be the direct result of iron-mediated lipid peroxide damage and of iron deposition that cause compression of myocardial and liver cells, as well as vascular occlusion. PMID:25901205

  10. Protective effects of caffeic acid phenethyl ester against acute radiation-induced hepatic injury in rats.

    PubMed

    Chu, JianJun; Zhang, Xiaojun; Jin, Liugen; Chen, Junliang; Du, Bin; Pang, Qingfeng

    2015-03-01

    Caffeic acid phenyl ester (CAPE) is a potent anti-inflammatory agent and it can eliminate the free radicals. The current study was intended to evaluate the protective effect of CAPE against the acute radiation-induced liver damage in rats. Male Sprague-Dawley rats were intraperitoneally administered with CAPE (30 mg/kg) for 3 consecutive days before exposing them to a single dose of 30 Gy of β-ray irradiation to upper abdomen. We found that pretreatment with CAPE significantly decreased the serum levels of alanine aminotransferase and aspartate aminotransferase and increased the activity of superoxide dismutase and glutathione. Histological evaluation further confirmed the protection of CAPE against radiation-induced hepatotoxicity. TUNEL assay showed that CAPE pretreatment inhibited hepatocyte apoptosis. Moreover, CAPE inhibited the nuclear transport of NF-κB p65 subunit, decreased the level of tumor necrosis factor-α, nitric oxide and inducible nitric oxide synthase. Taken together, these results suggest that pretreatment with CAPE offers protection against radiation-induced hepatic injury.

  11. Ellagic and ferulic acids alleviate gamma radiation and aluminium chloride-induced oxidative damage.

    PubMed

    Salem, Ahmed M; Mohammaden, Tarek F; Ali, Mohamed A M; Mohamed, Enas A; Hassan, Hesham F

    2016-09-01

    Ionizing radiation interacts with biological systems through the generation of free radicals, which induce oxidative stress. Aluminium (Al) can negatively impact human health by direct interaction with antioxidant enzymes. Ellagic acid (EA) and Ferulic acid (FA) are plant polyphenolic compounds, have gained attention due to their multiple biological activities. To date, no studies investigating the antioxidant effect of EA/FA in a model involving both γ radiation and aluminium chloride (AlCl3) have been reported. Herein, we investigated the protective effect of EA and FA against oxidative stress induced by γ radiation and AlCl3 in rats. Rats were divided into thirteen groups: a negative control group, 3 positive control groups (γ-irradiated, AlCl3-treated and γ-irradiated+AlCl3-treated) and 9 groups (3 γ-irradiated, 3 AlCl3-treated and 3 γ-irradiated+AlCl3-treated) treated with EA and/or FA. Liver function and lipid profile were assessed. Levels of lipid peroxidation, protein oxidation and endogenous antioxidants as well as the concentrations of copper, iron and zinc were estimated in liver tissue homogenate. Furthermore, liver tissue sections were histologically examined. Oral administration of EA and/or FA resulted in 1) amelioration of AlCl3 and/or γ-radiation-induced hepatic function impairment, dyslipidemia and hepatic histological alterations; 2) reduction in liver MDA and PCC levels; 3) elevation of liver CAT, GPx and SOD activity as well as GSH level; 4) elevation in liver Cu concentrations which was accompanied by a reduction in Fe and Zn concentrations. Oral administration of EA and/or FA may be useful for ameliorating γ radiation and/or AlCl3-induced oxidative damage. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Effect of diethylcarbamazine on chronic hepatic inflammation induced by alcohol in C57BL/6 mice.

    PubMed

    Santos Rocha, Sura Wanessa; Silva, Bruna Santos; Gomes, Fabiana Oliveira dos Santos; Soares e Silva, Amanda Karolina; Raposo, Catarina; Barbosa, Karla Patrícia Sousa; Torres, Dilênia de Oliveira Cipriano; dos Santos, Ana Célia Oliveira; Peixoto, Christina Alves

    2012-08-15

    Some pharmacological studies showed that diethylcarbamazine (DEC) interferes with the arachidonic acid metabolism, acting as an anti-inflammatory drug. The chronic alcohol consumption activates the hepatic inflammatory response associated to T-cell activation and overproduction of pro-inflammatory cytokines. The present work analyzed the anti-inflammatory effect of DEC on hepatic cells of alcoholic mice. Thirty-two male C57BL/6 mice were equally divided in the following groups: (a) control group (C), which received only water, (b) DEC-treated group, which received 50 mg/kg for 12 day (DEC50), (c) the alcoholic group (EtOH), submitted to only alcohol and (d) the alcohol-DEC treated group (EtOH50), submitted to alcohol plus DEC treatment after the induction of chronic alcoholism for 5 weeks. Biochemical analyses were performed and liver fragments were processed for light microscopy, transmission electron microscopy, immunohistochemical and western blot. The level of AST increased significantly in alcoholic group whereas a significant reduction of serum AST was detected in the EtOH50 group. Histological and ultrastructural analysis of alcoholic group showed evident hepatocellular damage, which was strikingly reduced in the alcoholic DEC-treated group. Immunohistochemistry results revealed highly expression of inflammatory markers as MDA, NF-κB, TNF-α, IL-6, VCAM and ICAM by the hepatic cells of the EtOH group; however no immunoreactivity for any of these cytokines was detected after DEC treatment. Western blot analyses showed increased MCP-1 and iNOS expression in EtOH group, which was significantly inhibited by DEC treatment. According to the present results, DEC can be a potential drug for the treatment of chronic inflammation induced by chronic alcoholism.

  13. Sertraline induces endoplasmic reticulum stress in hepatic cells.

    PubMed

    Chen, Si; Xuan, Jiekun; Couch, Letha; Iyer, Advait; Wu, Yuanfeng; Li, Quan-Zhen; Guo, Lei

    2014-08-01

    Sertraline is used for the treatment of depression, and is also used for the treatment of panic, obsessive-compulsive, and post-traumatic stress disorders. Previously, we have demonstrated that sertraline caused hepatic cytotoxicity, with mitochondrial dysfunction and apoptosis being underlying mechanisms. In this study, we used microarray and other biochemical and molecular analyses to identify endoplasmic reticulum (ER) stress as a novel molecular mechanism. HepG2 cells were exposed to sertraline and subjected to whole genome gene expression microarray analysis. Pathway analysis revealed that ER stress is among the significantly affected biological changes. We confirmed the increased expression of ER stress makers by real-time PCR and Western blots. The expression of typical ER stress markers such as PERK, IRE1α, and CHOP was significantly increased. To study better ER stress-mediated drug-induced liver toxicity; we established in vitro systems for monitoring ER stress quantitatively and efficiently, using Gaussia luciferase (Gluc) and secreted alkaline phosphatase (SEAP) as ER stress reporters. These in vitro systems were validated using well-known ER stress inducers. In these two reporter assays, sertraline inhibited the secretion of Gluc and SEAP. Moreover, we demonstrated that sertraline-induced apoptosis was coupled to ER stress and that the apoptotic effect was attenuated by 4-phenylbutyrate, a potent ER stress inhibitor. In addition, we showed that the MAP4K4-JNK signaling pathway contributed to the process of sertraline-induced ER stress. In summary, we demonstrated that ER stress is a mechanism of sertraline-induced liver toxicity. Published by Elsevier Ireland Ltd.

  14. Lead Induced Hepato-renal Damage in Male Albino Rats and Effects of Activated Charcoal

    PubMed Central

    Offor, Samuel J.; Mbagwu, Herbert O. C.; Orisakwe, Orish E.

    2017-01-01

    Lead is a multi-organ toxicant implicated in various cancers, diseases of the hepatic, renal, and reproductive systems etc. In search of cheap and readily available antidote this study has investigated the role of activated charcoal in chronic lead exposure in albino rats. Eighteen mature male albino rats were used, divided into three groups of six rats per group. Group 1 (control rats) received deionised water (10 ml/kg), group 2 was given lead acetate solution 60 mg/kg and group 3 rats were given lead acetate (60 mg/kg) followed by Activated charcoal, AC (1000 mg/kg) by oral gavage daily for 28 days. Rats in group 2 showed significant increases in serum Aspartate aminotransferase, Alkaline phosphatase, Alanine aminotransferase, urea, bilirubin, total cholesterol, triglycerides, Low Density Lipoprotein, Very Low Density Lipoproteins, Total White Blood Cell Counts, Malondialdehyde, Interleukin-6, and decreases in Packed Cell Volume, hemoglobin concentration, Red blood cell count, total proteins, albumins, superoxide dismutase, glutathione peroxidase and total glutathione. Co-administration of AC significantly decreased these biomarkers with the exception of the sperm parameters. Histopathology of liver and kidney also confirmed the protective effective of AC against lead induced hepato-renal damage. AC may be beneficial in chronic lead induced liver and kidney damage. PMID:28352230

  15. Enhancement of ultrasonically induced cell damage by phthalocyanines in vitro.

    PubMed

    Milowska, Katarzyna; Gabryelak, Teresa

    2008-12-01

    In this work, erythrocytes from carp were used as a nucleated cell model to test the hypothesis that the phthalocyanines (zinc--ZnPc and chloroaluminium -AlClPc) enhance ultrasonically induced damage in vitro. In order to confirm and complete our earlier investigation, the influence of ultrasound (US) and phthalocyanines (Pcs) on unresearched cellular components, was studied. Red blood cells were exposed to 1 MHz continuous ultrasound wave (0.61 and/or 2.44 W/cm(2)) in the presence or absence of phthalocyanines (3 microM). To identify target cell damage, we studied hemolysis, membrane fluidity and morphology of erythrocytes. To demonstrate the changes in the fluidity of plasma membrane we used the spectrofluorimetric methods using two fluorescence probes: 1-[4-(trimethylamino)phenyl]-6-phenyl-1,3,5,-hexatriene (TMA-DPH) and 1,6-diphenyl-1,3,5-hexatriene (DPH). The effect of US and Pcs on nucleated erythrocytes morphology was estimated on the basis of microscopic observation. The enhancement of ultrasonically induced membrane damage by both phthalocyanines was observed in case of hemolysis, and membrane surface fluidity, in comparison to ultrasound. The authors also observed changes in the morphology of erythrocytes. The obtained results support the hypothesis that the Pcs enhance ultrasonically induced cell damage in vitro. Furthermore, the influence of ultrasound on phthalocyanines (Pcs) in medium and in cells was tested. The authors observed changes in the phthalocyanines absorption spectra in the medium and the increase in the intensity of phthalocyanines fluorescence in the cells. These data can suggest changes in the structure of phthalocyanines after ultrasound action.

  16. Prevention of downhill walking-induced muscle damage by non-damaging downhill walking

    PubMed Central

    Yamamoto, Masayoshi; Kanehisa, Hiroaki; Nosaka, Kazunori

    2017-01-01

    Purpose Mountain trekking involves level, uphill, and downhill walking (DW). Prolonged DW induces damage to leg muscles, reducing force generating ability and muscle coordination. These increase risks for more serious injuries and accidents in mountain trekking, thus a strategy to minimize muscle damage is warranted. It has been shown that low-intensity eccentric contractions confer protective effect on muscle damage induced by high-intensity eccentric contractions. This study tested the hypothesis that 5-min non-damaging DW would attenuate muscle damage induced by 40-min DW, but 5-min level walking (LW) would not. Methods Untrained young men were allocated (n = 12/group) to either a control or one of the two preconditioning groups (PRE-DW or PRE-LW). The PRE-DW and PRE-LW groups performed 5-min DW (-28%) and 5-min LW, respectively, at 5 km/h with a load of 10% body mass, 1 week before 40-min DW (-28%, 5 km/h, 10% load). The control group performed 40-min DW only. Maximal knee extension strength, plasma creatine kinase (CK) activity, and muscle soreness (0–100 mm visual analogue scale) were measured before and 24 h after 5-min DW and 5-min LW, and before and 24, 48, and 72 h after 40-min DW. Results No significant changes in any variables were evident after 5-min DW and 5-min LW. After 40-min DW, the control and PRE-LW groups showed significant (P<0.05) changes in the variables without significant differences between groups (control vs. PRE-LW; peak strength reduction: -19.2 ± 6.9% vs. -18.7 ± 11.0%, peak CK: 635.5 ± 306.0 vs. 639.6 ± 405.4 U/L, peak soreness: 81.4 ± 14.8 vs. 72.0 ± 29.2 mm). These changes were significantly (P<0.05) attenuated (47–64%) for the PRE-DW group (-9.9 ± 9.6%, 339.3 ± 148.4 U/L, 27.8 ± 16.8 mm). Conclusions The results supported the hypothesis and suggest that performing small volume of downhill walking is crucial in preparation for trekking. PMID:28288187

  17. Mechanism of site-specific DNA damage induced by ozone.

    PubMed

    Ito, Kimiko; Inoue, Sumiko; Hiraku, Yusuke; Kawanishi, Shosuke

    2005-08-01

    Ozone has been shown to induce lung tumors in mice. The reactivity of ozone with DNA in an aqueous solution was investigated by a DNA sequencing technique using 32P-labeled DNA fragments. Ozone induced cleavages in the deoxyribose-phosphate backbone of double-stranded DNA, which were reduced by hydroxyl radical scavengers, suggesting the participation of hydroxyl radicals in the cleavages. The ozone-induced DNA cleavages were enhanced with piperidine treatment, which induces cleavages at sites of base modification, but the inhibitory effect of hydroxyl radical scavengers on the piperidine-induced cleavages was limited. Main piperidine-labile sites were guanine and thymine residues. Cleavages at some guanine and thymine residues after piperidine treatment became more predominant with denatured single-stranded DNA. Exposure of calf thymus DNA to ozone resulted in a dose-dependent increase of the 8-oxo-7,8-dihydro-2'-deoxyguanosine formation, which was partially inhibited by hydroxyl radical scavengers. ESR studies using 5,5-dimethylpyrroline-N-oxide (DMPO) showed that aqueous ozone produced the hydroxyl radical adduct of DMPO. In addition, the fluorescein-dependent chemiluminescence was detected during the decomposition of ozone in a buffer solution and the enhancing effect of D2O was observed, suggesting the formation of singlet oxygen. However, no or little enhancing effect of D2O on the ozone-induced DNA damage was observed. These results suggest that DNA backbone cleavages were caused by ozone via the production of hydroxyl radicals, while DNA base modifications were mainly caused by ozone itself and the participation of hydroxyl radicals and/or singlet oxygen in base modifications is small, if any. A possible link of ozone-induced DNA damage to inflammation-associated carcinogenesis as well as air pollution-related carcinogenesis is discussed.

  18. Oxidant-induced DNA damage of target cells.

    PubMed Central

    Schraufstätter, I; Hyslop, P A; Jackson, J H; Cochrane, C G

    1988-01-01

    In this study we examined the leukocytic oxidant species that induce oxidant damage of DNA in whole cells. H2O2 added extracellularly in micromolar concentrations (10-100 microM) induced DNA strand breaks in various target cells. The sensitivity of a specific target cell was inversely correlated to its catalase content and the rate of removal of H2O2 by the target cell. Oxidant species produced by xanthine oxidase/purine or phorbol myristate acetate-stimulated monocytes induced DNA breakage of target cells in proportion to the amount of H2O2 generated. These DNA strand breaks were prevented by extracellular catalase, but not by superoxide dismutase. Cytotoxic doses of HOCl, added to target cells, did not induce DNA strand breakage, and myeloperoxidase added extracellularly in the presence of an H2O2-generating system, prevented the formation of DNA strand breaks in proportion to its H2O2 degrading capacity. The studies also indicated that H2O2 formed hydroxyl radical (.OH) intracellularly, which appeared to be the most likely free radical responsible for DNA damage: .OH was detected in cells exposed to H2O2; the DNA base, deoxyguanosine, was hydroxylated in cells exposed to H2O2; and intracellular iron was essential for induction of DNA strand breaks. PMID:2843565

  19. Acetaldehyde-induced mitochondrial dysfunction sensitizes hepatocytes to oxidative damage.

    PubMed

    Farfán Labonne, Blanca Eugenia; Gutiérrez, Mario; Gómez-Quiroz, Luis Enrique; Konigsberg Fainstein, Mina; Bucio, Leticia; Souza, Verónica; Flores, Oscar; Ortíz, Victor; Hernández, Elizabeth; Kershenobich, David; Gutiérrez-Ruíz, María Concepción

    2009-12-01

    Acetaldehyde (Ac), the main metabolite of ethanol oxidation, is a very reactive compound involved in alcohol-induced liver damage. In the present work, we studied the effect of Ac in mitochondria functionality. Mitochondria from Wistar rats were isolated and treated with Ac. Ac decreased respiratory control by 50% which was associated with a decrease in adenosine triphosphate content (28.5%). These results suggested that Ac could be inducing changes in cell redox status. We determined protein oxidation, superoxide dismutase (SOD) activity, and glutathione ratio, indicating that Ac induced an enhanced oxidation of proteins and a decrease in SOD activity (90%) and glutathione/oxidized GSH ratio (36%). The data suggested that Ac-induced oxidative stress mediated by mitochondria dysfunction can lead to cell sensitization and to a second oxidative challenge. We pretreated hepatocytes with Ac followed by treatment with antimycin A, and this experiment revealed a noticeable decrease in cell viability, determined by neutral red assay, in comparison with cells treated with Ac alone. Our data demonstrate that Ac impairs mitochondria functionality generating oxidative stress that sensitizes cells to a second damaging signal contributing to the development of alcoholic liver disease.

  20. Sunscreens promote repair of ultraviolet radiation-induced dermal damage.

    PubMed

    Kligman, L H; Akin, F J; Kligman, A M

    1983-08-01

    Chronic UV irradiation profoundly damages the dermis of human and animal skin. These alterations were thought to be irreversible. Recently, we showed that substantial repair occurred in hairless mice after stopping UV exposure. A band of new connective tissue was laid down subepidermally. The present study focussed on whether repair would occur if animals were protected by sunscreens after dermal damage was induced and irradiation was continued. Albino hairless mice were exposed to Westinghouse FS20 sunlamps thrice weekly for 30 weeks. The daily dose of UV (UVB + UVA) was 0.17 J/cm2. Sunscreens of sun protection factors (SPF) 6 and 15 were applied after 10 and 20 weeks of irradiation. Biopsies were taken at 10, 20, 30, and 45 weeks of the experiment. With both sunscreens, especially SPF-15, previously damaged dermis was repaired during continued irradiation. Repair occurred in situ and, in severely damaged skin, in the novel form of subepidermal reconstruction zones of new connective tissue with parallel collagen bundles and a network of fine elastic fibers.

  1. Proton-induced radiation damage in germanium detectors

    NASA Technical Reports Server (NTRS)

    Brueckner, J.; Koerfer, M.; Waenke, H.; Schroeder, A. N. F.; Filges, D.; Dragovitsch, P.; Englert, P. A. J.; Starr, R.; Trombka, J. I.

    1991-01-01

    High-purity germanium (HPGe) detectors will be used in future space missions for gamma-ray measurements and will be subject to interactions with energetic particles. To simulate this process, several large-volume n-type HPGe detectors were incrementally exposed to a particle fluence of up to 10 to the 8th protons/sq cm (proton energy: 1.5 GeV) at different operating temperatures (90 to 120 K) to induce radiation damage. Basic scientific and engineering data on detector performance were collected. During the incremental irradiation, the peak shape produced by the detectors showed a significant change from a Gaussian shape to a broad complex structure. After the irradiation, all detectors were thoroughly characterized by measuring many parameters. To remove the accumulated radiation damage, the detectors were stepwise-annealed at temperatures below 110 C, while kept in their specially designed cryostats. This study shows that n-type HPGe detectors can be used in charged-particle environments as high-energy resolution devices until a certain level of radiation damage is accumulated and that the damage can be removed at moderate annealing temperatures and the detector returned to operating condition.

  2. Proton-induced radiation damage in germanium detectors

    SciTech Connect

    Bruckner, J.; Korfer, M.; Wanke, H. , Mainz ); Schroeder, A.N.F. ); Figes, D.; Dragovitsch, P. ); Englert, P.A.J. ); Starr, R.; Trombka, J.I. . Goddard Space Flight Center); Taylor, I. ); Drake, D.M.; Shunk, E.R. )

    1991-04-01

    High-purity germanium (HPGe) detectors will be used in future space missions for gamma-ray measurements and will be subject to interactions with energetic particles. To simulate this process several large-volume n-type HPGe detectors were incrementally exposed to a particle fluence of up to 10{sub 8} protons cm{sup {minus}2} (proton energy: 1.5 GeV) at different operating temperatures (90 to 120 K) to induce radiation damage. Basic scientific as well as engineering data on detector performance were collected. During the incremental irradiation, the peak shape produced by the detectors showed a significant change from a Gaussian shape to a broad complex structure. After the irradiation all detectors were thoroughly characterized by measuring many parameters. To remove the accumulated radiation damage the detectors were stepwise annealed at temperatures T {le} 110{degrees}C while staying specially designed cryostats. This paper shows that n-type HPGe detectors can be used in charged particles environments as high-energy resolution devices until a certain level of radiation damage is accumulated and that the damage can be removed at moderate annealing temperatures and the detector returned to operating condition.

  3. Retinal damage induced by commercial light emitting diodes (LEDs).

    PubMed

    Jaadane, Imene; Boulenguez, Pierre; Chahory, Sabine; Carré, Samuel; Savoldelli, Michèle; Jonet, Laurent; Behar-Cohen, Francine; Martinsons, Christophe; Torriglia, Alicia

    2015-07-01

    Spectra of "white LEDs" are characterized by an intense emission in the blue region of the visible spectrum, absent in daylight spectra. This blue component and the high intensity of emission are the main sources of concern about the health risks of LEDs with respect to their toxicity to the eye and the retina. The aim of our study was to elucidate the role of blue light from LEDs in retinal damage. Commercially available white LEDs and four different blue LEDs (507, 473, 467, and 449nm) were used for exposure experiments on Wistar rats. Immunohistochemical stain, transmission electron microscopy, and Western blot were used to exam the retinas. We evaluated LED-induced retinal cell damage by studying oxidative stress, stress response pathways, and the identification of cell death pathways. LED light caused a state of suffering of the retina with oxidative damage and retinal injury. We observed a loss of photoreceptors and the activation of caspase-independent apoptosis, necroptosis, and necrosis. A wavelength dependence of the effects was observed. Phototoxicity of LEDs on the retina is characterized by a strong damage of photoreceptors and by the induction of necrosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Hepatitis

    MedlinePlus

    ... low because of routine testing of donated blood. Sexual transmission and transmission among family members through close contact ... associated with drinking contaminated water. Hepatitis Viruses ... B Blood, needles, sexual 10% of older children develop chronic infection. 90% ...

  5. Mitochondrial injury and dysfunction in hypertension-induced cardiac damage

    PubMed Central

    Eirin, Alfonso; Lerman, Amir; Lerman, Lilach O.

    2014-01-01

    Hypertension remains an important modifiable risk factor for cardiovascular disease, associated with increased morbidity and mortality. Deciphering the mechanisms involved in the pathogenesis of hypertension is critical, as its prevalence continues increasing worldwide. Mitochondria, the primary cellular energy producers, are numerous in parenchymal cells of the heart, kidney, and brain, major target organs in hypertension. These membrane-bound organelles not only maintain cellular respiration but also modulate several functions of the cell including proliferation, apoptosis, generation of reactive oxygen species, and intracellular calcium homeostasis. Therefore, mitochondrial damage and dysfunction compromise overall cell functioning. In recent years, significant advances increased our understanding of mitochondrial morphology, bioenergetics, and homeostasis, and in turn of their role in several diseases, so that mitochondrial abnormalities and dysfunction have been identified in experimental models of hypertension. In this review, we summarize current knowledge of the contribution of dysfunctional mitochondria to the pathophysiology of hypertension-induced cardiac damage, as well as available evidence of mitochondrial injury-induced damage in other organs. Finally, we discuss the capability of antihypertensive therapy to ameliorate hypertensive mitochondrial injury, and the potential position of mitochondria as therapeutic targets in patients with hypertension. PMID:25385092

  6. Exercise-Induced Muscle Damage and Running Economy in Humans

    PubMed Central

    Assumpção, Cláudio de Oliveira; Lima, Leonardo Coelho Rabello; Oliveira, Felipe Bruno Dias; Greco, Camila Coelho; Denadai, Benedito Sérgio

    2013-01-01

    Running economy (RE), defined as the energy demand for a given velocity of submaximal running, has been identified as a critical factor of overall distance running performance. Plyometric and resistance trainings, performed during a relatively short period of time (~15–30 days), have been successfully used to improve RE in trained athletes. However, these exercise types, particularly when they are unaccustomed activities for the individuals, may cause delayed onset muscle soreness, swelling, and reduced muscle strength. Some studies have demonstrated that exercise-induced muscle damage has a negative impact on endurance running performance. Specifically, the muscular damage induced by an acute bout of downhill running has been shown to reduce RE during subsequent moderate and high-intensity exercise (>65% VO2max). However, strength exercise (i.e., jumps, isoinertial and isokinetic eccentric exercises) seems to impair RE only for subsequent high-intensity exercise (~90% VO2max). Finally, a single session of resistance exercise or downhill running (i.e., repeated bout effect) attenuates changes in indirect markers of muscle damage and blunts changes in RE. PMID:23431253

  7. Viral Carcinogenesis: Factors Inducing DNA Damage and Virus Integration

    PubMed Central

    Chen, Yan; Williams, Vonetta; Filippova, Maria; Filippov, Valery; Duerksen-Hughes, Penelope

    2014-01-01

    Viruses are the causative agents of 10%–15% of human cancers worldwide. The most common outcome for virus-induced reprogramming is genomic instability, including accumulation of mutations, aberrations and DNA damage. Although each virus has its own specific mechanism for promoting carcinogenesis, the majority of DNA oncogenic viruses encode oncogenes that transform infected cells, frequently by targeting p53 and pRB. In addition, integration of viral DNA into the human genome can also play an important role in promoting tumor development for several viruses, including HBV and HPV. Because viral integration requires the breakage of both the viral and the host DNA, the integration rate is believed to be linked to the levels of DNA damage. DNA damage can be caused by both endogenous and exogenous factors, including inflammation induced by either the virus itself or by co-infections with other agents, environmental agents and other factors. Typically, cancer develops years to decades following the initial infection. A better understanding of virus-mediated carcinogenesis, the networking of pathways involved in transformation and the relevant risk factors, particularly in those cases where tumorigenesis proceeds by way of virus integration, will help to suggest prophylactic and therapeutic strategies to reduce the risk of virus-mediated cancer. PMID:25340830

  8. Radiation-induced thymine base damage in replicating chromatin

    SciTech Connect

    Warters, R.L.; Childers, T.J.

    1982-06-01

    The efficiency of radiation-induced production of 5',6'-dihydroxydihydrothymine (t/sup ..gamma../)-type damage was determined in nascent and mature chromatin DNA for the dose range of 50 to 150 krad. These large doses affected neither the total fraction of nuclear DNA in chromatin subunits nor the nucleosome subunit repeat length. The DNA in nascent chromatin, however, was found to be 3.3 times more sensitive than mature chromatin DNA to ..gamma..-ray (/sup 137/Cs)-induced t/sup ..gamma../-type damage, while thymine damage of this type was uniformly distributed in the nucleosomal DNA of mature chromatin (i.e., in the nucleosome core and spacer DNA). The half-time for the transition of nascent DNA sensitivity to mature chromatin DNA sensitivity levels was the same as the half-time at 37/sup 0/C for the maturation of nascent into mature chromatin structure. The rate at which nascent chromatin matured was unaffected by radiation doses as large as 150 krad. The most logical explanation for the greater sensitivity of nascent DNA to radiation is the decreased concentration of histone chromosomal proteins in nascent chromatin.

  9. NLRP3 Inflammasome Mediates Aldosterone-Induced Vascular Damage.

    PubMed

    Bruder-Nascimento, Thiago; Ferreira, Nathanne S; Zanotto, Camila Z; Ramalho, Fernanda; Pequeno, Isabela O; Olivon, Vania C; Neves, Karla B; Alves-Lopes, Rheure; Campos, Eduardo; Silva, Carlos Alberto A; Fazan, Rubens; Carlos, Daniela; Mestriner, Fabiola L; Prado, Douglas; Pereira, Felipe V; Braga, Tarcio; Luiz, Joao Paulo M; Cau, Stefany B; Elias, Paula C; Moreira, Ayrton C; Câmara, Niels O; Zamboni, Dario S; Alves-Filho, Jose Carlos; Tostes, Rita C

    2016-12-06

    Inflammation is a key feature of aldosterone-induced vascular damage and dysfunction, but molecular mechanisms by which aldosterone triggers inflammation remain unclear. The NLRP3 inflammasome is a pivotal immune sensor that recognizes endogenous danger signals triggering sterile inflammation. We analyzed vascular function and inflammatory profile of wild-type (WT), NLRP3 knockout (NLRP3(-/-)), caspase-1 knockout (Casp-1(-/-)), and interleukin-1 receptor knockout (IL-1R(-/-)) mice treated with vehicle or aldosterone (600 µg·kg(-1)·d(-1) for 14 days through osmotic mini-pump) while receiving 1% saline to drink. Here, we show that NLRP3 inflammasome plays a central role in aldosterone-induced vascular dysfunction. Long-term infusion of aldosterone in mice resulted in elevation of plasma interleukin-1β levels and vascular abnormalities. Mice lacking the IL-1R or the inflammasome components NLRP3 and caspase-1 were protected from aldosterone-induced vascular damage. In vitro, aldosterone stimulated NLRP3-dependent interleukin-1β secretion by bone marrow-derived macrophages by activating nuclear factor-κB signaling and reactive oxygen species generation. Moreover, chimeric mice reconstituted with NLRP3-deficient hematopoietic cells showed that NLRP3 in immune cells mediates aldosterone-induced vascular damage. In addition, aldosterone increased the expression of NLRP3, active caspase-1, and mature interleukin-1β in human peripheral blood mononuclear cells. Hypertensive patients with hyperaldosteronism or normal levels of aldosterone exhibited increased activity of NLRP3 inflammasome, suggesting that the effect of hyperaldosteronism on the inflammasome may be mediated through high blood pressure. Together, these data demonstrate that NLRP3 inflammasome, through activation of IL-1R, is critically involved in the deleterious vascular effects of aldosterone, placing NLRP3 as a potential target for therapeutic interventions in conditions with high aldosterone levels

  10. [Autoimmune hepatitis triggered by nitrofurantoin: A rare drug-induced toxicity].

    PubMed

    Sorin, B; Pineton de Chambrun, M; Haroche, J; Freund, Y; Miyara, M; Charlotte, F; Lebrun-Vignes, B; Amoura, Z; Cohen Aubart, F

    2016-02-01

    Nitrofurantoin is a commonly used drug which can have liver and pulmonary adverse effects. Among hepatic nitrofurantoin-induced adverse effects, autoimmune hepatitis is a rare complication which must not be mistaken as a toxic hepatitis. We report an 86-year-old woman who presented with acute hepatitis after a 3-month course of nitrofurantoin administration for urinary tract infections. She reported a previous hepatitis after treatment by nitrofurantoin twenty years before. Biological analysis showed polyclonal hypergammaglobulinemia, positive test for antinuclear antibodies and smooth muscle antibodies. Finally, liver histology showed lymphocytic infiltration, marked necrotic and inflammatory activity consistent with the diagnosis of autoimmune hepatitis. Nitrofurantoin was discontinued. Outcome of autoimmune hepatitis was good with corticosteroids and azathioprine but two months later, the patient died from a refractory global heart failure. Nitrofurantoin-induced autoimmune hepatitis is a severe condition which must be systematically discussed in patients taking nitrofurantoin who present with acute hepatitis. Hypergammaglobulinemia is an easily obtained blood marker, which can suggest this diagnosis. Treatment relies on nitrofurantoin eviction, corticosteroids and sometimes azathioprine. Outcome is usually favorable. Copyright © 2015 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  11. Effect of heat stress and recovery on viability, oxidative damage, and heat shock protein expression in hepatic cells of grass carp (Ctenopharyngodon idellus).

    PubMed

    Cui, Yanting; Liu, Bo; Xie, Jun; Xu, Pao; Habte-Tsion, H-Michael; Zhang, Yuanyuan

    2014-06-01

    In this study, we investigated the effects of hyperthermia and recovery on cell viability, lactate dehydrogenase (LDH) activity, superoxide dismutase (SOD) activity, malondialdehyde (MDA), total antioxidant capacity (T-AOC), and heat shock protein (HSP60, 70, and 90) mRNA expression in the hepatic cells of the grass carp, Ctenopharyngodon idellus. Triplicate groups of cultured cells were exposed to 30, 32, or 34 °C for 0.5 h and then immediately incubated at 27 °C in 5 % CO2 for 6, 12, 24, or 48 h. Hyperthermia stress greatly reduced cell viability and increased LDH release. Cell damage declined after recovery. Hyperthermia stress increased the lipid peroxide levels and reduced the antioxidant capacity (e.g., reduced SOD and T-AOC) of the cells. However, oxidative damage declined as the recovery period increased, and the levels of MDA, SOD, and T-AOC were restored. After cells were exposed to 32 °C, the expression of HSP60 after recovery for 1, 2, and 4 h (P < 0.05), the expression of HSP70 after recovery for 0.5 and 1 h (P < 0.01), and the expression of HSP90 throughout recovery were significantly higher (P < 0.01) than the prestress levels. During the recovery period, the variations in HSP gene expression reflected the transition period from a state of cellular growth to one of the cellular repairs. In conclusion, hyperthermia depresses cell viability, induces oxidative damage, and increases HSP expression, which plays an important role during hyperthermic stress in grass carp hepatic cells.

  12. Revision of laser-induced damage threshold evaluation from damage probability data

    SciTech Connect

    Bataviciute, Gintare; Grigas, Povilas; Smalakys, Linas; Melninkaitis, Andrius

    2013-04-15

    In this study, the applicability of commonly used Damage Frequency Method (DFM) is addressed in the context of Laser-Induced Damage Threshold (LIDT) testing with pulsed lasers. A simplified computer model representing the statistical interaction between laser irradiation and randomly distributed damage precursors is applied for Monte Carlo experiments. The reproducibility of LIDT predicted from DFM is examined under both idealized and realistic laser irradiation conditions by performing numerical 1-on-1 tests. A widely accepted linear fitting resulted in systematic errors when estimating LIDT and its error bars. For the same purpose, a Bayesian approach was proposed. A novel concept of parametric regression based on varying kernel and maximum likelihood fitting technique is introduced and studied. Such approach exhibited clear advantages over conventional linear fitting and led to more reproducible LIDT evaluation. Furthermore, LIDT error bars are obtained as a natural outcome of parametric fitting which exhibit realistic values. The proposed technique has been validated on two conventionally polished fused silica samples (355 nm, 5.7 ns).

  13. Revision of laser-induced damage threshold evaluation from damage probability data

    NASA Astrophysics Data System (ADS)

    BatavičiutÄ--, GintarÄ--; Grigas, Povilas; Smalakys, Linas; Melninkaitis, Andrius

    2013-04-01

    In this study, the applicability of commonly used Damage Frequency Method (DFM) is addressed in the context of Laser-Induced Damage Threshold (LIDT) testing with pulsed lasers. A simplified computer model representing the statistical interaction between laser irradiation and randomly distributed damage precursors is applied for Monte Carlo experiments. The reproducibility of LIDT predicted from DFM is examined under both idealized and realistic laser irradiation conditions by performing numerical 1-on-1 tests. A widely accepted linear fitting resulted in systematic errors when estimating LIDT and its error bars. For the same purpose, a Bayesian approach was proposed. A novel concept of parametric regression based on varying kernel and maximum likelihood fitting technique is introduced and studied. Such approach exhibited clear advantages over conventional linear fitting and led to more reproducible LIDT evaluation. Furthermore, LIDT error bars are obtained as a natural outcome of parametric fitting which exhibit realistic values. The proposed technique has been validated on two conventionally polished fused silica samples (355 nm, 5.7 ns).

  14. Muscle damage induced by black cohosh (Cimicifuga racemosa).

    PubMed

    Minciullo, P L; Saija, A; Patafi, M; Marotta, G; Ferlazzo, B; Gangemi, S

    2006-01-01

    Extracts of black cohosh (Cimicifuga racemosa) are commonly used for the treatment of symptoms associated with menopause. Adverse events with black cohosh are rare, mild and reversible. A few number of serious adverse events, including hepatic and circulatory conditions, have been also reported, but without a clear causality relationship. We report the case of a woman with severe asthenia and very high blood levels of creatine phosphokinase and lactate dehydrogenase. The patient referred to take a dietary supplement derived from black cohosh for ameliorating menopause vasomotor symptoms. To exclude a possible involvement of this product, the patient was suggested to discontinue this therapy. After suspicion the patient showed a progressive normalization of biochemical parameters and improvement of clinical symptoms. We can hypothesise a causative role for black cohosh in the muscle damage observed in this patient. Factors suggesting an association between black cohosh and the observed myopathy included the temporal relationship between use of herbal product and asthenia and the absence of other identified causative factors. Rechallenge with the suspected agent was inadvisable for ethic reasons because of the risk of a serious relapse. This is the first time that asthenia associated with high muscle enzymes serum levels by black cohosh has been reported. In our opinion, this report is of interest because of the widespread diffusion of use of black cohosh as an alternative medicine for relief from menopausal symptoms.

  15. Chlorambucil induced chromosome damage in juvenile chronic arthritis.

    PubMed Central

    Palmer, R G; Varonos, S; Doré, C J; Denman, A M; Ansell, B M

    1985-01-01

    Sister chromatid exchanges, a sensitive measure of chromosome damage, were counted in peripheral blood lymphocytes from 23 patients with juvenile chronic arthritis receiving long term, low dose chlorambucil treatment. Thirty five patients with juvenile chronic arthritis who had not been treated with cytotoxic drugs served as controls. All of the treated patients have cells with abnormal sister chromatid exchange frequencies. Damage is related to the daily dose and may, in part, be determined by the duration of treatment. Sister chromatid exchanges from nine patients who had received chlorambucil at some time in the past remained high for at least five months after stopping the drug. Long term follow up will determine whether sister chromatid exchange analysis can help predict those most at risk of drug induced malignancies. Images Fig. 1 PMID:4073932

  16. Laser pointer induced macular damage: case report and mini review.

    PubMed

    Turaka, Kiran; Bryan, J Shepard; Gordon, Alan J; Reddy, Rahul; Kwong, Henry M; Sell, Clive H

    2012-06-01

    To report laser pointer induced damage to retina and choroid and briefly review literature. A case report of a 13-year old Caucasian boy developed blurry central vision and central scotoma in right eye (OD). He was exposed for one minute to class IIIA green laser pointer of 650 nm wavelength and 5 mW power. Clinical examination showed a grayish lesion in foveal region. Ancillary testing revealed disruption of the retinal pigment epithelial (RPE) layer in foveal region and indocyanine green angiography demonstrated evidence of choroidal hypofluorescence suggestive of choroidal infarction in OD. Visual acuity improved from 20/100 to 20/60 in one day and he was treated with tapering doses of oral prednisolone (40 mg) for 3 weeks. Laser pointer with a power of >5 mW caused damage to RPE in the macula. Children should not be given laser pointers as toys especially those with label of danger instructions.

  17. Damage induced by paracetamol compared with N-acetylcysteine.

    PubMed

    Kisaoglu, Abdullah; Ozogul, Bunyami; Turan, Mehmet Ibrahim; Yilmaz, Ismayil; Demiryilmaz, Ismail; Atamanalp, Sabri Selcuk; Bakan, Ebubekir; Suleyman, Halis

    2014-09-01

    This study investigated the effect of thiamine pyrophosphate (TPP) on oxidative liver damage induced in rats with high-dose paracetamol. Rats for this experiment were divided into the following groups: healthy control, paracetamol control, thiamine + paracetamol, TPP + paracetamol, and N-acetylcysteine + paracetamol. Oxidant and antioxidant parameters and liver function test levels were compared between the groups. The results show that TPP and N-acetylcysteine with paracetamol equally prevented a rise in oxidants such as malondialdehyde and nitric oxide. They also prevented a decrease in enzymatic and nonenzymatic antioxidants such as glutathione, glutathione peroxidase, glutaredoxin, glutathione S-transferase, superoxide dismutase, and catalase in the rat liver. Thiamine pyrophosphate and N-acetylcysteine had a similar positive effect on oxidative damage caused by paracetamol hepatotoxicity. These findings show that TPP may be beneficial in paracetamol hepatotoxicity. Copyright © 2014. Published by Elsevier B.V.

  18. Dietary strategies to recover from exercise-induced muscle damage.

    PubMed

    Sousa, Mónica; Teixeira, Vítor H; Soares, José

    2014-03-01

    Exhaustive or unaccustomed intense exercise can cause exercise-induced muscle damage (EIMD) and its undesirable consequences may decrease the ability to exercise and to adhere to a training programme. This review briefly summarises the muscle damage process, focusing predominantly on oxidative stress and inflammation as contributing factors, and describes how nutrition may be positively used to recover from EIMD. The combined intake of carbohydrates and proteins and the use of antioxidants and/or anti-inflammatory nutrients within physiological ranges are interventions that may assist the recovery process. Although the works studying food instead of nutritional supplements are very scarce, their results seem to indicate that food might be a favourable option as a recovery strategy. To date, the only tested foods were milk, cherries, blueberries and pomegranate with promising results. Other potential solutions are foods rich in protein, carbohydrates, antioxidants and/or anti-inflammatory nutrients.

  19. Preventive effects of taurine on development of hepatic steatosis induced by a high-fat/cholesterol dietary habit.

    PubMed

    Chang, Yuan-Yen; Chou, Chung-Hsi; Chiu, Chih-Hsien; Yang, Kuo-Tai; Lin, Yi-Ling; Weng, Wei-Lien; Chen, Yi-Chen

    2011-01-12

    Nonalcoholic fatty liver (NAFL) is also called hepatic steatosis and has become an emergent liver disease in developed and developing nations. This study was to exam the preventive effects of taurine (Tau) on the development of hepatic steatosis via a hamster model. Although hepatic steatosis of hamsters was induced by feeding a high-fat/cholesterol diet, drinking water containing 0.35 and 0.7% Tau improved (p < 0.05) the serum lipid profile. Meanwhile, the smaller (p < 0.05) liver sizes and lower (p < 0.05) hepatic lipids in high-fat/cholesterol dietary hamsters drinking Tau may be partially due to higher (p < 0.05) fecal cholesterol, triacylglycerol, and bile acid outputs. In the regulation of lipid homeostasis, drinking a Tau solution upregulated (p < 0.05) low-density lipoprotein receptor and CYP7A1 gene expressions in high-fat/cholesterol dietary hamsters, which result in increased fecal cholesterol and bile acid outputs. Drinking a Tau solution also upregulated (p < 0.05) peroxisome proliferator-activated receptor-α (PPAR-α) and uncoupling protein 2 (UPC2) gene expressions in high-fat/cholesterol dietary hamsters, thus increasing energy expenditure. Besides, Tau also enhanced (p < 0.05) liver antioxidant capacities (GSH, TEAC, SOD, and CAT) and decreased (p < 0.05) lipid peroxidation (MDA), which alleviated liver damage in the high-fat/cholesterol dietary hamsters. Therefore, Tau shows preventive effects on the development of hepatic steatosis induced by a high-fat/cholesterol dietary habit.

  20. Protein phosphatase 4 (PP4) functions as a critical regulator in tumor necrosis factor (TNF)-α-induced hepatic insulin resistance.

    PubMed

    Zhao, Hongye; Huang, Xiuqing; Jiao, Juan; Zhang, Hangxiang; Liu, Jin; Qin, Weiwei; Meng, Xiangyu; Shen, Tao; Lin, Yajun; Chu, Jiaojiao; Li, Jian

    2015-12-15

    Protein phosphatase 4 (PP4) was shown to participate in multiple cellular processes, including DNA damage response, cell cycle and embryo development. Recent studies demonstrated a looming role of PP4 in glucose metabolism. However, whether PP4 is involved in hepatic insulin resistance remains poorly understood. The objective of this study was to estimate the role of PP4 in tumor necrosis factor (TNF)-α-induced hepatic insulin resistance. db/db mice and TNF-α-treated C57BL/6J mice were used as hepatic insulin resistance animal models. In vitro models were established in both HepG2 cells and primary hepatocytes by TNF-α treatment. We found that increased expression and activity of PP4 occurred in the livers of db/db mice and TNF-α-induced hepatic insulin resistance both in vitro and in vivo. Actually, PP4 silencing and suppression of PP4 activity ameliorated TNF-α-induced hepatic insulin resistance, whereas over-expression of PP4 caused insulin resistance. We then further investigated the prodiabetic mechanism of PP4 in TNF-α-induced insulin resistance. We found that PP4 formed a complex with IRS-1 to promote phosphorylation of IRS-1 on serine 307 via JNK activation and reduce the expression of IRS-1. Thus, PP4 is an important regulator in inflammatory related insulin resistance.

  1. Hepatic cannabinoid receptor type 1 mediates alcohol-induced regulation of bile acid enzyme genes expression via CREBH.

    PubMed

    Chanda, Dipanjan; Kim, Yong-Hoon; Li, Tiangang; Misra, Jagannath; Kim, Don-Kyu; Kim, Jung Ran; Kwon, Joseph; Jeong, Won-Il; Ahn, Sung-Hoon; Park, Tae-Sik; Koo, Seung-Hoi; Chiang, John Y L; Lee, Chul-Ho; Choi, Hueng-Sik

    2013-01-01

    Bile acids concentration in liver is tightly regulated to prevent cell damage. Previous studies have demonstrated that deregulation of bile acid homeostasis can lead to cholestatic liver disease. Recently, we have shown that ER-bound transcription factor Crebh is a downstream effector of hepatic Cb1r signaling pathway. In this study, we have investigated the effect of alcohol exposure on hepatic bile acid homeostasis and elucidated the mediatory roles of Cb1r and Crebh in this process. We found that alcohol exposure or Cb1r-agonist 2-AG treatment increases hepatic bile acid synthesis and serum ALT, AST levels in vivo alongwith significant increase in Crebh gene expression and activation. Alcohol exposure activated Cb1r, Crebh, and perturbed bile acid homeostasis. Overexpression of Crebh increased the expression of key bile acid synthesis enzyme genes via direct binding of Crebh to their promoters, whereas Cb1r knockout and Crebh-knockdown mice were protected against alcohol-induced perturbation of bile acid homeostasis. Interestingly, insulin treatment protected against Cb1r-mediated Crebh-induced disruption of bile acid homeostasis. Furthermore, Crebh expression and activation was found to be markedly increased in insulin resistance conditions and Crebh knockdown in diabetic mice model (db/db) significantly reversed alcohol-induced disruption of bile acid homeostasis. Overall, our study demonstrates a novel regulatory mechanism of hepatic bile acid metabolism by alcohol via Cb1r-mediated activation of Crebh, and suggests that targeting Crebh can be of therapeutic potential in ameliorating alcohol-induced perturbation of bile acid homeostasis.

  2. The hepatic vagus mediates fat-induced inhibition of diabetic hyperphagia.

    PubMed

    la Fleur, Susanne E; Ji, Hong; Manalo, Sotara L; Friedman, Mark I; Dallman, Mary F

    2003-09-01

    Diabetic rats both overeat high-carbohydrate diet and have altered hypothalamic neuropeptide Y (NPY) and corticotropin-releasing factor (CRF). In contrast, a high-fat diet reduces caloric intake of diabetics to normal, reflected by normal hypothalamic NPY and CRF content. How the brain senses these changes in diet is unknown. To date, no hormonal changes explain these diet-induced changes in caloric intake. We tested whether the common branch of the hepatic vagus mediates the fat signal. We presented fat in two ways. First, diabetic and vehicle-treated rats were offered a cup of lard in addition to their normal high-carbohydrate diet. Second, we switched diabetic rats from high-carbohydrate diet to high-fat diet, without choice. In streptozotocin-treated rats, both methods resulted in fat-induced inhibition of caloric intake and normalization of hypothalamic neuropeptides to nondiabetic levels. Strikingly, common branch hepatic vagotomy (unlike gastroduodenal vagotomy) entirely blocked these fat-induced changes. Although a shift in hepatic energy status did not explain the lard-induced changes in diabetic rats, the data suggested that common hepatic branch vagotomy does not interfere with hepatic energy status. Furthermore, common branch hepatic vagotomy without diabetes induced indexes of obesity. Abnormal function of the hepatic vagus, as occurs in diabetic neuropathy, may contribute to diabetic obesity.

  3. Opportunities for nutritional amelioration of radiation-induced cellular damage

    NASA Technical Reports Server (NTRS)

    Turner, Nancy D.; Braby, Leslie A.; Ford, John; Lupton, Joanne R.

    2002-01-01

    The closed environment and limited evasive capabilities inherent in space flight cause astronauts to be exposed to many potential harmful agents (chemical contaminants in the environment and cosmic radiation exposure). Current power systems used to achieve space flight are prohibitively expensive for supporting the weight requirements to fully shield astronauts from cosmic radiation. Therefore, radiation poses a major, currently unresolvable risk for astronauts, especially for long-duration space flights. The major detrimental radiation effects that are of primary concern for long-duration space flights are damage to the lens of the eye, damage to the immune system, damage to the central nervous system, and cancer. In addition to the direct damage to biological molecules in cells, radiation exposure induces oxidative damage. Many natural antioxidants, whether consumed before or after radiation exposure, are able to confer some level of radioprotection. In addition to achieving beneficial effects from long-known antioxidants such as vitamins E and C and folic acid, some protection is conferred by several recently discovered antioxidant molecules, such as flavonoids, epigallocatechin, and other polyphenols. Somewhat counterintuitive is the protection provided by diets containing elevated levels of omega-3 polyunsaturated fatty acids, considering they are thought to be prone to peroxidation. Even with the information we have at our disposal, it will be difficult to predict the types of dietary modifications that can best reduce the risk of radiation exposure to astronauts, those living on Earth, or those enduring diagnostic or therapeutic radiation exposure. Much more work must be done in humans, whether on Earth or, preferably, in space, before we are able to make concrete recommendations.

  4. Opportunities for nutritional amelioration of radiation-induced cellular damage

    NASA Technical Reports Server (NTRS)

    Turner, Nancy D.; Braby, Leslie A.; Ford, John; Lupton, Joanne R.

    2002-01-01

    The closed environment and limited evasive capabilities inherent in space flight cause astronauts to be exposed to many potential harmful agents (chemical contaminants in the environment and cosmic radiation exposure). Current power systems used to achieve space flight are prohibitively expensive for supporting the weight requirements to fully shield astronauts from cosmic radiation. Therefore, radiation poses a major, currently unresolvable risk for astronauts, especially for long-duration space flights. The major detrimental radiation effects that are of primary concern for long-duration space flights are damage to the lens of the eye, damage to the immune system, damage to the central nervous system, and cancer. In addition to the direct damage to biological molecules in cells, radiation exposure induces oxidative damage. Many natural antioxidants, whether consumed before or after radiation exposure, are able to confer some level of radioprotection. In addition to achieving beneficial effects from long-known antioxidants such as vitamins E and C and folic acid, some protection is conferred by several recently discovered antioxidant molecules, such as flavonoids, epigallocatechin, and other polyphenols. Somewhat counterintuitive is the protection provided by diets containing elevated levels of omega-3 polyunsaturated fatty acids, considering they are thought to be prone to peroxidation. Even with the information we have at our disposal, it will be difficult to predict the types of dietary modifications that can best reduce the risk of radiation exposure to astronauts, those living on Earth, or those enduring diagnostic or therapeutic radiation exposure. Much more work must be done in humans, whether on Earth or, preferably, in space, before we are able to make concrete recommendations.

  5. Opportunities for nutritional amelioration of radiation-induced cellular damage.

    PubMed

    Turner, Nancy D; Braby, Leslie A; Ford, John; Lupton, Joanne R

    2002-10-01

    The closed environment and limited evasive capabilities inherent in space flight cause astronauts to be exposed to many potential harmful agents (chemical contaminants in the environment and cosmic radiation exposure). Current power systems used to achieve space flight are prohibitively expensive for supporting the weight requirements to fully shield astronauts from cosmic radiation. Therefore, radiation poses a major, currently unresolvable risk for astronauts, especially for long-duration space flights. The major detrimental radiation effects that are of primary concern for long-duration space flights are damage to the lens of the eye, damage to the immune system, damage to the central nervous system, and cancer. In addition to the direct damage to biological molecules in cells, radiation exposure induces oxidative damage. Many natural antioxidants, whether consumed before or after radiation exposure, are able to confer some level of radioprotection. In addition to achieving beneficial effects from long-known antioxidants such as vitamins E and C and folic acid, some protection is conferred by several recently discovered antioxidant molecules, such as flavonoids, epigallocatechin, and other polyphenols. Somewhat counterintuitive is the protection provided by diets containing elevated levels of omega-3 polyunsaturated fatty acids, considering they are thought to be prone to peroxidation. Even with the information we have at our disposal, it will be difficult to predict the types of dietary modifications that can best reduce the risk of radiation exposure to astronauts, those living on Earth, or those enduring diagnostic or therapeutic radiation exposure. Much more work must be done in humans, whether on Earth or, preferably, in space, before we are able to make concrete recommendations.

  6. IL-1 Signaling in Obesity-Induced Hepatic Lipogenesis and Steatosis

    PubMed Central

    Negrin, Kimberly A.; Roth Flach, Rachel J.; DiStefano, Marina T.; Matevossian, Anouch; Friedline, Randall H.; Jung, DaeYoung; Kim, Jason K.; Czech, Michael P.

    2014-01-01

    Non-alcoholic fatty liver disease is prevalent in human obesity and type 2 diabetes, and is characterized by increases in both hepatic triglyceride accumulation (denoted as steatosis) and expression of pro-inflammatory cytokines such as IL-1β. We report here that the development of hepatic steatosis requires IL-1 signaling, which upregulates Fatty acid synthase to promote hepatic lipogenesis. Using clodronate liposomes to selectively deplete liver Kupffer cells in ob/ob mice, we observed remarkable amelioration of obesity-induced hepatic steatosis and reductions in liver weight, triglyceride content and lipogenic enzyme expressions. Similar results were obtained with diet-induced obese mice, although visceral adipose tissue macrophage depletion also occurred in response to clodronate liposomes in this model. There were no differences in the food intake, whole body metabolic parameters, serum β-hydroxybutyrate levels or lipid profiles due to clodronate-treatment, but hepatic cytokine gene expressions including IL-1β were decreased. Conversely, treatment of primary mouse hepatocytes with IL-1β significantly increased triglyceride accumulation and Fatty acid synthase expression. Furthermore, the administration of IL-1 receptor antagonist to obese mice markedly reduced obesity-induced steatosis and hepatic lipogenic gene expression. Collectively, our findings suggest that IL-1β signaling upregulates hepatic lipogenesis in obesity, and is essential for the induction of pathogenic hepatic steatosis in obese mice. PMID:25216251

  7. Lectin from Crataeva tapia Bark Improves Tissue Damages and Plasma Hyperglycemia in Alloxan-Induced Diabetic Mice

    PubMed Central

    da Rocha, Amanda Alves; Araújo, Tiago Ferreira da Silva; da Fonseca, Caíque Silveira Martins; da Mota, Diógenes Luís; de Medeiros, Paloma Lys; Paiva, Patrícia Maria Guedes; Coelho, Luana Cassandra Breitenbach Barroso; Correia, Maria Tereza dos Santos; Lima, Vera Lúcia de Menezes

    2013-01-01

    Crataeva tapia is a plant popularly used for diabetes treatment, in Brazil. Progressive decline in renal and hepatic functions has been described in patients with diabetes mellitus, and mortality rate is increased in patients with chronic liver and renal disease. This study aimed to evaluate whether Crataeva tapia bark lectin (CrataBL) improves hyperglycemia and renal and hepatic damage in diabetic mice. CrataBL was purified by ion exchange chromatography on CM-cellulose, and intraperitoneal administration of CrataBL to alloxan-induced diabetic mice at dose of 10 mg/Kg/day and 20 mg/Kg/day for 10 days significantly reduced serum glucose levels by 14.9% and 55.9%, respectively. Serum urea, creatinine, aspartate aminotransferase, and alanine aminotransferase were also significantly reduced after treatment with both doses of CrataBL. Furthermore, histological analysis of liver, kidney, and pancreas revealed an improvement in the tissue morphology upon treatment with CrataBL. The results suggest that CrataBL has a beneficial hypoglycemic activity and improves the renal and hepatic complications of diabetes. Therefore, this lectin may be a promising agent for the treatment of diabetes, and this might be the basis for its use in the folk medicine as an alternative treatment to manage diabetes-related complications such as hyperglycemia and tissue damage. PMID:24324521

  8. Selenium-containing polysaccharides from Ziyang green tea ameliorate high-fructose diet induced insulin resistance and hepatic oxidative stress in mice.

    PubMed

    Ren, Daoyuan; Hu, Yuanyuan; Luo, Yiyang; Yang, Xingbin

    2015-10-01

    The present study was designed to evaluate the effects of selenium-containing tea polysaccharides (Se-GTP) from a new variety of selenium-enriched Ziyang green tea against high fructose (HF)-induced insulin resistance and hepatic oxidative stress in mice. Healthy male Kunming mice were fed 20% high fructose water and administered 200, 400 and 800 mg per kg bw Se-GTP for 8 weeks. Mice fed HF in drinking water displayed significant insulin resistance, hepatic steatosis and oxidative stress observed by hyperglycemia and hyperinsulinemia, as well as increases in hepatic non-esterified fatty acid (NEFA) and malonaldehyde (MDA). The administration of Se-GTP at 400 and 800 mg per kg bw significantly improved insulin sensitivity, and reduced liver steatosis and oxidative stress damage, and brought back the antioxidants and hepatic lipids towards near-normal values. In the oral glucose tolerance test, the administration of Se-GTP at 400 and 800 mg per kg bw had reduced plasma glucose concentrations after 30 min of glucose loading in HF-fed mice, suggesting that Se-GTP improved glucose intolerance. Histopathological examination indicated that the impaired pancreatic/hepatic tissues were effectively restored in HF-fed mice following the Se-GTP treatment. This is the first report showing that Se-GTP can ameliorate the high fructose-induced insulin resistance and hepatic oxidative injury.

  9. Protective effects of honokiol against methylglyoxal-induced osteoblast damage.

    PubMed

    Suh, Kwang Sik; Chon, Suk; Choi, Eun Mi

    2016-01-25

    Honokiol is an active compound isolated from Magnolia officinalis that has been used without notable side effects in traditional medicine. We investigated the effects of honokiol against methylglyoxal (MG)-induced cytotoxicity in MC3T3-E1 osteoblast cells and the possible molecular mechanism(s) involved. The results showed that honokiol alleviated MG-induced cell death and the production of intracellular ROS, mitochondrial superoxide, cardiolipin peroxidation, and inflammatory cytokines. MG induction of the soluble receptor for advanced glycation end product (AGE) was reduced by pretreatment with honokiol. Furthermore, honokiol increased the levels of Nrf2 and increased the levels of glutathione and the activity of glyoxalase I. Pretreatment with honokiol prior to MG exposure reduced MG-induced mitochondrial dysfunction and alleviated MG-induced reduction of nitric oxide and PGC1α levels, suggesting that honokiol may induce mitochondrial biogenesis. It was concluded that honokiol could be useful in the attenuation of MG-induced cell damage. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Fish bone-induced hepatic abscess: medical treatment.

    PubMed

    Ng, C T; Htoo, A; Tan, S Y

    2011-03-01

    We report a case of a 59-year-old man admitted for acute myocardial infarction. He subsequently spiked a high-grade fever on the second day after percutaneous coronary intervention. Computed tomography imaging of the abdomen revealed a hepatic abscess secondary to gastrointestinal perforation by a fish bone. Medical therapy with antibiotics was preferred over surgical drainage of the hepatic abscess in view of the fact that the patient was on dual antiplatelet agents. The hepatic abscess was completely resolved with conservative antimicrobial therapy. Antimicrobial therapy appears to be a viable option in selected patients with hepatic abscess secondary to fish bone perforation, especially if they have contraindications to surgery.

  11. [Fulminant hepatitis induced by disulfiram in a patient with alcoholic cirrhosis. Survival after liver transplantation].

    PubMed

    Vanjak, D; Samuel, D; Gosset, F; Derrida, S; Moreau, R; Soupison, T; Soulier, A; Bismuth, H; Sicot, C

    1989-12-01

    Fulminant hepatitis was observed in a 44-year-old patient with cirrhosis, 38 days after the beginning of a treatment by disulfiram. Hepatitis was associated with fever and hypereosinophilia. Liver transplantation was performed with success. We reviewed 15 previously published cases of disulfiram-induced hepatitis. They occurred from 10 to 180 days after the beginning of the treatment by disulfiram, aminotransferases were increased whereas alkaline phosphatases were not markedly changed; there was either focal or widespread necrosis. Fulminant hepatitis was observed mainly in patients with alcoholic chronic liver disease or in patients who continued to ingest disulfiram while jaundice was already present. An immunoallergic mechanism is thought to be responsible for disulfiram-induced hepatitis.

  12. Role of neutrophils in acrylonitrile-induced gastric mucosal damage.

    PubMed

    Hamdy, Nadia M; Al-Abbasi, Fahad A; Alghamdi, Hassan A; Tolba, Mai F; Esmat, Ahmed; Abdel-Naim, Ashraf B

    2012-01-25

    Acrylonitrile (ACN) is a widely used intermediate in the manufacture of plastics, acrylic fibers, synthetic rubbers and resins that are used in a variety of products including food containers and medical devices. ACN is a possible human carcinogen and a documented animal carcinogen, with the stomach being an important target of its toxicity. ACN has been previously reported to require metabolic activation to reactive intermediates and finally to cyanide (CN⁻). The current study aimed at exploring the potential role of neutrophils in ACN-induced gastric damage in rats. Experimental neutropenia was attained by injecting rats with methotrexate. This significantly ameliorated gastric mucosal injury induced by ACN. This is evidenced by protection against the increase in gastric ulcer index, myeloperoxidase (MPO) activity and CN⁻ level. Also, neutropenia guarded against the decrease in prostaglandin E2 (PGE2), induction of oxidative stress and reduction of total nitrites and alleviated histopathological alterations in rat stomachs. These data indicate that neutrophil infiltration is, at least partly, involved in ACN-induced gastric damage in rats.

  13. Supplementary management of functional, hepatic damage with Liverubin (pharma-standard Silymarin). A 3-month registry.

    PubMed

    Pellegrini, L; Belcaro, G; Dugall, M; Hu, S; Gizzi, G; Corsi, M; Hosoi, M; Luzzi, R; Feragalli, B; Cotellese, R

    2015-10-08

    Mild, temporary hepatic failure (MTHF) is a common clinical problem; in case of repeated episodes MTHF may cause chronic liver impairment. This registry has evaluated MTHF in subjects using Liverubin (standardized Silymarin) for 8 weeks.

  14. Hepatoprotective Effects of Grape Seed Procyanidin B2 in Rats With Carbon Tetrachloride-induced Hepatic Fibrosis.

    PubMed

    Wang, Zhenli; Zhang, Zemin; Du, Ning; Wang, Kai; Li, Lei

    2015-01-01

    Infectious hepatitis is a serious problem affecting millions of people worldwide, particularly in China and other developing countries, and it is the major risk factor for hepatic cirrhosis. To date, the pathogenesis of hepatic cirrhosis is complex and unclear. Traditional Chinese medicine (TCM) has long been used in its treatment; however, little is known to date about the effects of grape seed procyanidin B2 (GSPB2) on liver fibrosis. Using a rat model of carbon tetrachloride (CCl4)-induced hepatic fibrosis, the study intended to investigate the hepatoprotective effects of GSPB2 and to determine the possible pathway by which GSPB2 exerts its activities. Design • Thirty-six male, Sprague-Dawley rats were used in the study. Rats in a model (CCl4 only) group and the GSPB2 group were given CCl4 to induce hepatic fibrosis. Simultaneously, animals in the GSPB2 group were treated with GSPB2 by intragastric administration for 12 wk. In addition, the rat's Kupffer cells were cultured with CCl4 and GSPB2. The study took place at the central laboratory of Qilu Hospital at Shandong University in Jinan, China. The following parameters were investigated: (1) hepatic function; (2) the liver fibrosis index-serum hyaluronic acid (HA), laminin (LN), type 3 procollagen (PC-3), collagen 4, and hepatic hydroxyproline; (3) the expression in the liver of transforming growth factor β-1 (TGF-β1); (4) inflammatory cytokines in the liver and cell culture medium-tumor necrosis factor α (TNF-α), interleukin (IL) 1-β (IL-1β), IL-6, and IL-17; (5) oxidative stress markers in the liver and cell culture medium-malondialdehyde (MDA), 8-hydroxy-2-deoxyguanosine (8-OHdG), total superoxide dismutase (T-SOD), and total antioxidant capacity (T-AOC); and (6) levels of angiotensin 2 (Ang 2) in the liver. The CCl4 induced (1) significant hepatic-function damage; (2) elevated levels of the measures of the liver fibrosis index, TGF-β1, inflammatory cytokines, MDA, and 8-OHdG; (3) a reduction in

  15. Atherogenic diet-induced hepatitis is partially dependent on murine TLR4

    USDA-ARS?s Scientific Manuscript database

    Diets high in cholesterol and cholate such as the Paigen diet have been used to study atherogenesis, lithogenesis, and proinflammatory microvascular changes induced by nutritional hypercholesterolemia. Although these diets lead to chronic hepatic inflammation and fibrosis, the early inflammatory cha...

  16. Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats

    SciTech Connect

    Chen, Haw-Wen; Huang, Chin-Shiu; Li, Chien-Chun; Lin, Ai-Hsuan; Huang, Yu-Ju; Wang, Tsu-Shing; Yao, Hsien-Tsung; Lii, Chong-Kuei

    2014-10-01

    Andrographolide, a bioactive diterpenoid, is identified in Andrographis paniculata. In this study, we investigated the pharmacokinetics and bioavailability of andrographolide in rats and studied whether andrographolide enhances antioxidant defense in a variety of tissues and protects against carbon tetrachloride-induced oxidative damage. After a single 50-mg/kg administration, the maximum plasma concentration of andrographolide was 1 μM which peaked at 30 min. The bioavailability of andrographolide was 1.19%. In a hepatoprotection study, rats were intragastrically dosed with 30 or 50 mg/kg andrographolide for 5 consecutive days. The results showed that andrographolide up-regulated glutamate cysteine ligase (GCL) catalytic and modifier subunits, superoxide dismutase (SOD)-1, heme oxygenase (HO)-1, and glutathione (GSH) S-transferase (GST) Ya/Yb protein and mRNA expression in the liver, heart, and kidneys. The activity of SOD, GST, and GSH reductase was also increased in rats dosed with andrographolide (p < 0.05). Immunoblot analysis and EMSA revealed that andrographolide increased nuclear Nrf2 contents and Nrf2 binding to DNA, respectively. After the 5-day andrographolide treatment, one group of animals was intraperitoneally injected with carbon tetrachloride (CCl{sub 4}) at day 6. Andrographolide pretreatment suppressed CCl{sub 4}-induced plasma aminotransferase activity and hepatic lipid peroxidation (p < 0.05). These results suggest that andrographolide is quickly absorbed in the intestinal tract in rats with a bioavailability of 1.19%. Andrographolide protects against chemical-induced oxidative damage by up-regulating the gene transcription and activity of antioxidant enzymes in various tissues. - Highlights: • The bioavailability of andrographolide is 1.19% in rats. • Plasma concentration reaches 1 μM after giving 50 mg/kg andrographolide. • Andrographolide up-regulates Nrf2-dependent antioxidant genes. • Andrographolide increases antioxidant defense

  17. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity

    SciTech Connect

    Milatovic, Dejan; Yu, Yingchun

    2009-10-15

    Exposure to excessive manganese (Mn) levels results in neurotoxicity to the extrapyramidal system and the development of Parkinson's disease (PD)-like movement disorder, referred to as manganism. Although the mechanisms by which Mn induces neuronal damage are not well defined, its neurotoxicity appears to be regulated by a number of factors, including oxidative injury, mitochondrial dysfunction and neuroinflammation. To investigate the mechanisms underlying Mn neurotoxicity, we studied the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates (HEP), neuroinflammation mediators and associated neuronal dysfunctions both in vitro and in vivo. Primary cortical neuronal cultures showed concentration-dependent alterations in biomarkers of oxidative damage, F{sub 2}-isoprostanes (F{sub 2}-IsoPs) and mitochondrial dysfunction (ATP), as early as 2 h following Mn exposure. Treatment of neurons with 500 {mu}M Mn also resulted in time-dependent increases in the levels of the inflammatory biomarker, prostaglandin E{sub 2} (PGE{sub 2}). In vivo analyses corroborated these findings, establishing that either a single or three (100 mg/kg, s.c.) Mn injections (days 1, 4 and 7) induced significant increases in F{sub 2}-IsoPs and PGE{sub 2} in adult mouse brain 24 h following the last injection. Quantitative morphometric analyses of Golgi-impregnated striatal sections from mice exposed to single or three Mn injections revealed progressive spine degeneration and dendritic damage of medium spiny neurons (MSNs). These findings suggest that oxidative stress, mitochondrial dysfunction and neuroinflammation are underlying mechanisms in Mn-induced neurodegeneration.

  18. Silica radical-induced DNA damage and lipid peroxidation.

    PubMed Central

    Shi, X; Mao, Y; Daniel, L N; Saffiotti, U; Dalal, N S; Vallyathan, V

    1994-01-01

    In recent years, more attention has been given to the mechanism of disease induction caused by the surface properties of minerals. In this respect, specific research needs to be focused on the biologic interactions of oxygen radicals generated by mineral particles resulting in cell injury and DNA damage leading to fibrogenesis and carcinogenesis. In this investigation, we used electron spin resonance (ESR) and spin trapping to study oxygen radical generation from aqueous suspensions of freshly fractured crystalline silica. Hydroxyl radical (.OH), superoxide radical (O2.-) and singlet oxygen (1O2) were all detected. Superoxide dismutase (SOD) partially inhibited .OH yield, whereas catalase abolished .OH generation. H2O2 enhanced .OH generation while deferoxamine inhibited it, indicating that .OH is generated via a Haber-Weiss type reaction. These spin trapping measurements provide the first evidence that aqueous suspensions of silica particles generate O2.- and 1O2. Oxygen consumption measurements indicate that freshly fractured silica uses molecular oxygen to generate O2.- and 1O2. Electrophoretic assays of in vitro DNA strand breakages showed that freshly fractured silica induced DNA strand breakage, which was inhibited by catalase and enhanced by H2O2. In an argon atmosphere, DNA damage was suppressed, showing that molecular oxygen is required for the silica-induced DNA damage. Incubation of freshly fractured silica with linoleic acid generated linoleic acid-derived free radicals and caused dose-dependent lipid peroxidation as measured by ESR spin trapping and malondialdehyde formation. SOD, catalase, and sodium benzoate inhibited lipid peroxidation by 49, 52, and 75%, respectively, again showing the role of oxygen radicals in silica-induced lipid peroxidation.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 7. PMID:7705289

  19. Torin2 Suppresses Ionizing Radiation-Induced DNA Damage Repair.

    PubMed

    Udayakumar, Durga; Pandita, Raj K; Horikoshi, Nobuo; Liu, Yan; Liu, Qingsong; Wong, Kwok-Kin; Hunt, Clayton R; Gray, Nathanael S; Minna, John D; Pandita, Tej K; Westover, Kenneth D

    2016-05-01

    Several classes of inhibitors of the mammalian target of rapamycin (mTOR) have been developed based on its central role in sensing growth factor and nutrient levels to regulate cellular metabolism. However, its ATP-binding site closely resembles other phosphatidylinositol 3-kinase-related kinase (PIKK) family members, resulting in reactivity with these targets that may also be therapeutically useful. The ATP-competitive mTOR inhibitor, Torin2, shows biochemical activity against the DNA repair-associated proteins ATM, ATR and DNA-PK, which raises the possibility that Torin2 and related compounds might radiosensitize cancerous tumors. In this study Torin2 was also found to enhance ionizing radiation-induced cell killing in conditions where ATM was dispensable, confirming the requirement for multiple PIKK targets. Moreover, Torin2 did not influence the initial appearance of γ-H2AX foci after irradiation but significantly delayed the disappearance of radiation-induced γ-H2AX foci, indicating a DNA repair defect. Torin2 increased the number of radiation-induced S-phase specific chromosome aberrations and reduced the frequency of radiation-induced CtIP and Rad51 foci formation, suggesting that Torin2 works by blocking homologous recombination (HR)-mediated DNA repair resulting in an S-phase specific DNA repair defect. Accordingly, Torin2 reduced HR-mediated repair of I-Sce1-induced DNA damage and contributed to replication fork stalling. We conclude that radiosensitization of tumor cells by Torin2 is associated with disrupting ATR- and ATM-dependent DNA damage responses. Our findings support the concept of developing combination cancer therapies that incorporate ionizing radiation therapy and Torin2 or compounds with similar properties.

  20. Gender differences in alcohol-induced neurotoxicity and brain damage.

    PubMed

    Alfonso-Loeches, Silvia; Pascual, María; Guerri, Consuelo

    2013-09-06

    Considerable evidence has demonstrated that women are more vulnerable than men to the toxic effects of alcohol, although the results as to whether gender differences exist in ethanol-induced brain damage are contradictory. We have reported that ethanol, by activating the neuroimmune system and Toll-like receptors 4 (TLR4), can cause neuroinflammation and brain injury. However, whether there are gender differences in alcohol-induced neuroinflammation and brain injury are currently controversial. Using the brains of TLR4(+/+) and TLR4(-/-) (TLR4-KO) mice, we report that chronic ethanol treatment induces inflammatory mediators (iNOS and COX-2), cytokines (IL-1β, TNF-α), gliosis processes, caspase-3 activation and neuronal loss in the cerebral cortex of both female and male mice. Conversely, the levels of these parameters tend to be higher in female than in male mice. Using an in vivo imaging technique, our results further evidence that ethanol treatment triggers higher GFAP levels and lower MAP-2 levels in female than in male mice, suggesting a greater effect of ethanol-induced astrogliosis and less MAP-2(+) neurons in female than in male mice. Our results further confirm the pivotal role of TLR4 in alcohol-induced neuroinflammation and brain damage since the elimination of TLR4 protects the brain of males and females against the deleterious effects of ethanol. In short, the present findings demonstrate that, during the same period of ethanol treatment, females are more vulnerable than males to the neurotoxic/neuroinflammatory effects of ethanol, thus supporting the view that women are more susceptible than men to the medical consequences of alcohol abuse.

  1. Suppression of intralysosomal proteolysis aggravates structural damage and functional impairment of liver lysosomes in rats with toxic hepatitis

    SciTech Connect

    Korolenko, T.A.; Gavrilova, N.I.; Kurysheva, N.G.; Malygin, A.E.; Pupyshev, A.B.

    1986-01-01

    This paper estimates the effect of lowering protein catabolism in the lysosomes on structural and functional properties of the latter during liver damage. For comparison, polyvinylpyrrolidone (PVP), which is inert relative to intralysosomal proteolysis, and which also accumulates largely in lysosomes of the kupffer cells of the liver, was used. The uptake of labeled bovine serum albuman (C 14-BSA) by the liver is shown and the rate of intralysosomal proteolysis is given 24 hours after administration of suramin an CCl/sub 4/ to rats. It is suggested that it is risky to use drugs which inhibit intralysosomal proteolysis in the treatment of patients with acute hepatitis.

  2. Glutathione peroxidase 1 deficiency attenuates concanavalin A-induced hepatic injury by modulation of T-cell activation

    PubMed Central

    Lee, D H; Son, D J; Park, M H; Yoon, D Y; Han, S B; Hong, J T

    2016-01-01

    Concanavalin A (Con A)-induced hepatitis model is well-established experimental T cell-mediated liver disease. Reactive oxygen species (ROS) is associated with T-cell activation and proliferation, but continued ROS exposure induces T-cell hyporesponsiveness. Because glutathione peroxidase 1 (Gpx1) is an antioxidant enzyme and is involved in T-cell development, we investigated the role of Gpx1 during Con A-induced liver injury in Gpx1 knockout (KO) mice. Male wild-type (WT) mice and Gpx1 KO mice were intravenously injected with Con A (10 mg/kg), and then killed after 8 h after Con A injection. Serum levels of aspartate transaminase and alanine transaminase were measured to assess hepatic injury. To identify that Gpx1 affects T cell-mediated inflammation, we pretreated Gpx1 inhibitor to Human Jurkat T cells then treated Con A. Con A-induced massive liver damage in WT mice but its damage was attenuated in Gpx1 KO mice. Con A-induced Th1 cytokines such as tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and interleukin (IL)-2 were also decreased in the liver and spleen of Gpx1 KO mice compared with WT mice. In Jurkat T cells, Con A-induced mRNA levels of IL-2, IFN-γ and TNF-α were downregulated by pretreatment of Gpx inhibitor, mercaptosuccinic acid. We also observed that Gpx1 KO mice showed increasing oxidative stress in the liver and spleen compared with WT mice. These results suggest that Gpx1 deficiency attenuates Con A-induced liver injury by induction of T-cell hyporesponsiveness through chronic ROS exposure. PMID:27124582

  3. Arabinoxylan activates lipid catabolism and alleviates liver damage in rats induced by high-fat diet.

    PubMed

    Chen, Hong; Fu, Yuanfang; Jiang, Xiujuan; Li, Dongmei; Qin, Wen; Zhang, Qing; Lin, Derong; Liu, Yaowen; Tan, Cui; Huang, Zhiqing; Liu, Yuntao; Chen, Daiwen

    2017-06-06

    Arabinoxylan was thought to have the potential to change lipid metabolism and redox homeostasis in human and animal. However, the effect of arabinoxylan on the liver damage induced by high-fat diet needs further exploiting. Six-weeks-old 30 male Sprague-Dawley Rats were assigned randomly to three groups (n = 10 per group), i.e. a control diet (CON) group, a high-fat diet (HF) group and a high-fat diet supplemented with arabinoxylan (6% AX, HF-AX) group. Results showed that final body weight and liver weight were similar in CON group and HF-AX group, but higher in the HF group. In serum, the HF-AX group showed lower triglyceride concentrations than did the HF group. In liver, higher lipoprotein lipase, hepatic lipase, total lipase, and acyl-CoA oxidase activities and lower triglyceride and cholesterol level were observed in the HF-AX group than in the HF group. For the redox homeostasis, arabinoxylan supplemented in HF increased T-SOD activity and GSH-PX activity and reduced MDA + 4-HNE level in liver and/or compared with those in the HF group. Lipid droplets and liver cell damage were observed in the HF group compared with the CON and HF-AX groups. Arabinoxylan could improve lipid metabolic disorder and alleviate liver damage in rats induced by high-fat diet via activating lipid catabolism and suppressing lipid peroxidation. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. A sexual dimorphism influences bicyclol-induced hepatic heat shock factor 1 activation and hepatoprotection.

    PubMed

    Chen, Xiaosong; Zhang, Jianjian; Han, Conghui; Dai, Huijuan; Kong, Xianming; Xu, Longmei; Xia, Qiang; Zhang, Ming; Zhang, Jianjun

    2015-07-01

    Bicyclol [4,4'-dimethoxy-5,6,5',6'-bis(methylenedioxy)-2-hydroxy-methyl-2'-methoxycarbonyl biphenyl] is a synthetic hepatoprotectant widely used in clinical practice, but resistance to this treatment is often observed. We found that the hepatoprotective effect of bicyclol was greatly compromised in female and castrated male mice. This study was to dissect the molecular basis behind the sex difference, which might underlie the clinical uncertainty. We compared bicyclol-induced hepatoprotection between male and female mice using acute liver damage models. Inducible knockout by the Cre/loxp system was used to decipher the role of heat shock transcription factor 1 (HSF1). Functional experiments, western blot, and histopathological analysis were used to determine the key causative factors which might antagonize bicyclol in female livers. HSF1 activation and heat shock protein 70 (Hsp70) expression, which were responsible for bicyclol-induced hepatoprotection, were compromised in female and castrated male livers. Compromised HSF1 activation was a result of HSF1 phosphorylation at serine 303, which was catalyzed by glycogen synthase kinase 3β (GSK3β). Testosterone was necessary for bicyclol to inhibit hepatic GSK3β activity. Administration of testosterone or GSK3β inhibitors restored bicyclol-induced protection in females. Bicyclol induces sex-specific hepatoprotection based on a sex-specific HSF1/Hsp70 response, in which testosterone and GSK3β play key roles. Because a lot of patients suffering from liver diseases have very low testosterone levels, our results give a possible explanation for the clinical variation in bicyclol-induced hepatoprotection, as well as practicable solutions to improve the effect of bicyclol.

  5. Octreotide-induced hepatitis in a child with persistent hyperinsulinemia hypoglycemia of infancy.

    PubMed

    Ben-Ari, Josef; Greenberg, Meidad; Nemet, Dan; Edelstein, Evgeny; Eliakim, Alon

    2013-01-01

    Persistent hyperinsulinemic hypoglycemia of infancy (PHHI), the most common cause of persistent hypoglycemia in the neonatal period and infancy, is a genetic disorder characterized by abnormal regulation of insulin secretion. Octreotide, a somatostatin analog, is often used as a second-line treatment when diazoxide therapy fails to control hypoglycemia. We report herein a rare development of octreotide-induced hepatitis following prolonged treatment for PHHI in an infant. Octreotide-induced hepatitis may occur mostly when high doses are given, or when dosing is increased. This warrants routine examination of liver function. When hepatitis develops, prompt cessation of octreotide therapy will probably result in subsequent resolution.

  6. Spatial and temporal transcriptomics of Schistosoma japonicum-induced hepatic granuloma formation reveals novel roles for neutrophils.

    PubMed

    Chuah, Candy; Jones, Malcolm K; Burke, Melissa L; Owen, Helen C; Anthony, Barrie J; McManus, Donald P; Ramm, Grant A; Gobert, Geoffrey N

    2013-08-01

    The severity of schistosome egg-induced hepatic granulomatous pathology depends markedly on the nature of the host immune responses. In this study, we used LMM and microarray analysis to compare gene expression profiles of histologically distinct zones within, and directly proximal to, hepatic granulomas that developed in C57BL/6 mice infected with Schistosoma japonicum. There was significant up-regulation of type-1, type-2, and type-17 immune-associated genes within the granuloma core (adjacent to eggs), followed by increased expression of type-2 and fibrotic genes at the outer zones of granulomas. Neutrophil-associated genes were also found to be expressed differentially in the core and at the peripheral zone of granulomas, present at 7 weeks p.i., demonstrating a significant role of neutrophils in S. japonicum granulomatous pathology. The release of NETs was observed microscopically in granulomas obtained from the livers of infected mice and when human neutrophils were incubated in vitro in the presence of S. japonicum eggs. These finding are the first to suggest a novel, dual role for neutrophils in the mediation of tissue damage and repair in S. japonicum egg-induced hepatic granulomatous lesions. Together, these results provide an overview of the local events occurring within the granuloma microenvironment.

  7. Betulinic acid prevents alcohol-induced liver damage by improving the antioxidant system in mice

    PubMed Central

    Xia, Wei; Wu, Jianping; Yuan, Liyun; Wu, Jing; Tu, Di; Fang, Jun

    2014-01-01

    Betulinic acid (BA), a pentacyclic lupane-type triterpene, has a wide range of bioactivities. The main objective of this work was to evaluate the hepatoprotective activity of BA and the potential mechanism underlying the ability of this compound to prevent liver damage induced by alcohol in vivo. Mice were given oral doses of BA (0.25, 0.5, and 1.0 mg/kg) daily for 14 days, and induced liver injury by feeding 50% alcohol orally at the dosage of 10 ml/kg after 1 h last administration of BA. BA pretreatment significantly reduced the serum levels of alanine transaminase, aspartate transaminase, total cholesterol, and triacylglycerides in a dose-dependent manner in the mice administered alcohol. Hepatic levels of glutathione, superoxide dismutase, glutathione peroxidase, and catalase were remarkably increased, while malondialdehyde contents and microvesicular steatosis in the liver were decreased by BA in a dose-dependent manner after alcohol-induced liver injury. These findings suggest that the mechanism underlying the hepatoprotective effects of BA might be due to increased antioxidant capacity, mainly through improvement of the tissue redox system, maintenance of the antioxidant system, and decreased lipid peroxidation in the liver. PMID:24378582

  8. Protective effect of Cichorium glandulosum seeds from ultraviolet B-induced damage in rat liver mitochondria.

    PubMed

    Huang, Bo; Chen, Yuxin; Ma, Bingxin; Zhou, Gao; Tong, Jing; He, Jingsheng; Wang, Youwei

    2014-05-01

    Cichorium glandulosum Boiss. et Huet, a common herb for treating hepatitis, is indigenous to Europe, Western Asia, and the Xinjiang Uygur Autonomous Region of China. This study aims at evaluating the protective activity of different extracts from C. glandulosum seeds against experimental oxidation- and ultraviolet B (UVB)-induced damage in rat liver mitochondria. The antioxidant property of different extracts from C. glandulosum seeds was investigated by employing various established in vitro systems, such as α,α-diphenyl-β-picrylhydrazyl, 2,2'-azinobis(3-ethylbenzthiazoline-6-sulphonic acid), and reducing power assay. The protective effects of different C. glandulosum seed extracts against UVB-induced phototoxicity in a mitochondria model were also evaluated by measuring thiobarbituric acid reactive substances, glutathione, lipid hydroperoxide, conjugated diene, and 4-hydroxynonenal. The main compounds in C. glandulosum seeds were identified by HPLC-PDA-ESI-MS/MS. The results showed that C. glandulosum seed extracts have strong antioxidant activity, in which the ethyl acetate extract (EE) and n-butanol extract (BE) showed better activity than other extracts. In a UVB-induced mitochondria model, both EE and BE have better antioxidant activity and protective effects against phototoxicity than the petroleum ether extract, chloroform extract, and water extract. The differences in antioxidant activity and photoprotective capacity among these five extracts are associated with their phenolic compound content. Therefore, research on this function of C. glandulosum seeds may broaden their applications in the food and medical industry.

  9. Hepatoprotective effect of bis(4-methylbenzoyl) diselenide against CCl(4)-induced oxidative damage in mice.

    PubMed

    Filho, Carlos Borges; Del Fabbro, Lucian; Boeira, Silvana P; Furian, Ana Flávia; Savegnago, Lucielli; Soares, Letiére Cabreira; Braga, Antonio Luiz; Jesse, Cristiano R

    2013-03-01

    From a pharmacological point of view, organoseleniums are compounds with important and interesting antioxidant and biological activities. The aim of this study was to evaluate the hepatoprotective effect of bis(4-methylbenzoyl) diselenide (BMD) against carbon tetrachloride (CCl4 )-induced oxidative damage in mice. The animals received BMD (25 mg/kg p.o., for 3 days), and after 1 day, CCl4 (1 mg/kg body weight) was administered by intraperitoneal route. One day after the CCl4 exposure, the animals were euthanized for biochemical and histological analysis. Treatment with BMD (25 mg/kg p.o.) protected against aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, gamma-glutamyl transferase and lactate dehydrogenase activity increases induced by CCl4 plasma exposure. Treatment with BMD (25 mg/kg) protected against increases in thiobarbituric reactive species and decreasing non-protein thiols and ascorbic acid levels in liver of mice. Catalase and superoxide dismutase activity inhibition in the liver caused by CCl4 were protected by treatment with BMD (25 mg/kg). Glutathione S-transferase activity was inhibited by CCl4 and remained unaltered even after treatment with BMD. Sections of liver from CCl4 -exposed mice presented an intense infiltration of inflammatory cells and loss of the cellular architecture. BMD (25 mg/kg) attenuated CCl4 -induced hepatic histological alterations. The results demonstrated the hepatoprotective effects of BMD in the mouse liver, possibly by modulating the antioxidant status. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Persistent and heritable structural damage induced in heterochromatic DNA from rat liver by N-nitrosodimethylamine

    SciTech Connect

    Ward, E.J.; Stewart, B.W.

    1987-03-24

    Analysis, by benzoylated DEAE-cellulose chromatography, has been made of structural change in eu- and heterochromatic DNA from rat liver following administration of the carcinogen N-nitrosodimethylamine. Either hepatic DNA was prelabeled with (/sup 3/H)thymidine administered 2-3 weeks before injection of the carcinogen or the labeled precursor was given during regenerative hyperplasia in rats treated earlier with N-nitrosodimethylamine. Following phenol extraction of either whole liver homogenate or nuclease-fractionated eu- and heterochromatin, carcinogen-modified DNA was examined by stepwise or caffeine gradient elution from benzoylated DEAE-cellulose. In whole DNA, nitrosamine-induced single-stranded character was maximal 4-24 h after treatment, declining rapidly thereafter; gradient elution of these DNA preparations also provided short-term evidence of structural change. Caffeine gradient chromatography suggested short-term nitrosamine-induced structural change in euchromatic DNA, while increased binding of heterochromatic DNA was evident for up to 3 months after carcinogen treatment. Preparations of newly synthesized heterochromatic DNA from animals subjected to hepatectomy up to 2 months after carcinogen treatment provided evidence of heritable structural damage. Carcinogen-induced binding of heterochromatic DNA to benzoylated DEAE-cellulose was indicative of specific structural lesions whose affinity equalled that of single-stranded DNA up to 1.0 kilobase in length. The data suggest that structural lesions in heterochromatin, which may be a consequence of incomplete repair, are preferentially degraded by endogenous nuclease(s).

  11. In vivo and in vitro 31P magnetic resonance spectroscopic studies of the hepatic response of healthy rats and rats with acute hepatic damage to fructose loading.

    PubMed

    Lu, W; Locke, S J; Brauer, M

    1994-05-01

    The hepatic response to a fructose challenge for control rats, and rats subjected to an acute sublethal dose of carbon tetrachloride (CCl4) or bromobenzene (BB), was compared using dynamic in vivo 31P MRS. Fructose loading conditions were used in which control rats showed only a modest increase in hepatic phosphomonoester (PME), and a small decrease in ATP, Pi, and intracellular pH after fructose administration. Both CCl4 and BB-treated rats showed a much greater fructose-induced accumulation of PME than did controls. Trolox C, a free radical scavenger, prevented most of this PME increase. BB-treated rats, given sufficient time to recover from the hepatotoxic insult, responded to the fructose load similarly to controls. Liver aldolase activities of control, toxicant-treated rats, and toxicant plus Trolox C-treated rats correlated inversely with PME accumulation after fructose loading (correlation coefficient: -0.834, P < 0.05). Perchloric acid extracts of rat livers studied by in vitro 31P MRS confirmed that the PME accumulation after fructose loading is mainly due to an increase in fructose 1-phosphate. These studies are consistent with the aldolase-catalyzed cleavage of fructose 1-phosphate being rate-limiting in hepatic fructose metabolism, and that the CCl4 and BB treatment modify and inactivate the aldolase enzyme.

  12. Bee Products Prevent Agrichemical-Induced Oxidative Damage in Fish

    PubMed Central

    Ferreira, Daiane; Rocha, Helio Carlos; Kreutz, Luiz Carlos; Loro, Vania Lucia; Marqueze, Alessandra; Koakoski, Gessi; Santos da Rosa, João Gabriel; Gusso, Darlan; Oliveira, Thiago Acosta; de Abreu, Murilo Sander; Barcellos, Leonardo José Gil

    2013-01-01

    In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g) were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™) and a group that was exposed to 0.88 mg L−1 of TEB alone (corresponding to 16.6% of the 96-h LC50). We show that waterborne bee products, including royal jelly (RJ), honey (H), bee pollen (BP) and propolis (P), reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) are increased. PMID:24098336

  13. Bile-Induced DNA Damage in Salmonella enterica

    PubMed Central

    Prieto, Ana I.; Ramos-Morales, Francisco; Casadesús, Josep

    2004-01-01

    In the absence of DNA adenine methylase, growth of Salmonella enterica serovar Typhimurium is inhibited by bile. Mutations in any of the mutH, mutL, and mutS genes suppress bile sensitivity in a Dam− background, indicating that an active MutHLS system renders Dam− mutants bile sensitive. However, inactivation of the MutHLS system does not cause bile sensitivity. An analogy with Escherichia coli, in which the MutHLS system sensitizes Dam− mutants to DNA-injuring agents, suggested that bile might cause DNA damage. In support of this hypothesis, we show that bile induces the SOS response in S. enterica and increases the frequency of point mutations and chromosomal rearrangements. Mutations in mutH, mutL, or mutS cause partial relief of virulence attenuation in a Dam− background (50- to 100-fold by the oral route and 10-fold intraperitoneally), suggesting that an active MutHLS system reduces the ability of Salmonella Dam− mutants to cope with DNA-damaging agents (bile and others) encountered during the infection process. The DNA-damaging ability of bile under laboratory conditions raises the possibility that the phenomenon may be relevant in vivo, since high bile concentrations are found in the gallbladder, the niche for chronic Salmonella infections. PMID:15611156

  14. Renal tissue damage induced by focused shock waves

    NASA Astrophysics Data System (ADS)

    Ioritani, N.; Kuwahara, M.; Kambe, K.; Taguchi, K.; Saitoh, T.; Shirai, S.; Orikasa, S.; Takayama, K.; Lush, P. A.

    1990-07-01

    Biological evidence of renal arterial wall damage induced by the microjet due to shock wave-cavitation bubble interaction was demonstrated in living dog kidneys. We also intended to clarify the mechanism of renal tissue damage and the effects of different conditions of shock wave exposure (peak pressure of focused area, number of shots, exposure rate) on the renal tissue damage in comparison to stone disintegration. Disruption of arterial wall was the most remarkable histological change in the focused area of the kidneys. This lesion appeared as if the wall had been punctured by a needle. Large hematoma formation in the renal parenchym, and interstitial hemorrhage seemed to be the results of the arterial lesion. This arterial disorder also led to ischemic necrosis of the tubules surrounding the hematoma. Micro-angiographic examination of extracted kidneys also proved such arterial puncture lesions and ischemic lesions. The number of shots required for model stone disintegration was not inversely proportional to peak pressure. It decreased markedly when peak pressure was above 700 bar. Similarly thenumber of shots for hematoma formation was not inversely proportional to peak pressure, however, this decreased markedly above 500 bar. These results suggested that a hematoma could be formed under a lower peak pressure than that required for stone disintegration.

  15. Photodynamic therapy induced vascular damage: an overview of experimental PDT

    NASA Astrophysics Data System (ADS)

    Wang, W.; Moriyama, L. T.; Bagnato, V. S.

    2013-02-01

    Photodynamic therapy (PDT) has been developed as one of the most important therapeutic options in the treatment of cancer and other diseases. By resorting to the photosensitizer and light, which convert oxygen into cytotoxic reactive oxygen species (ROS), PDT will induce vascular damage and direct tumor cell killing. Another consequence of PDT is the microvascular stasis, which results in hypoxia and further produces tumor regression. To improve the treatment with PDT, three promising strategies are currently attracting much interest: (1) the combination of PDT and anti-angiogenesis agents, which more effectively prevent the proliferation of endothelial cells and the formation of new blood vessels; (2) the nanoparticle-assisted delivery of photosensitizer, which makes the photosensitizer more localized in tumor sites and thus renders minimal damage to the normal tissues; (3) the application of intravascular PDT, which can avoid the loss of energy during the transmission and expose the target area directly. Here we aim to review the important findings on vascular damage by PDT on mice. The combination of PDT with other approaches as well as its effect on cancer photomedicine are also reviewed.

  16. Simulation of ion induced radiation damage in cells

    NASA Astrophysics Data System (ADS)

    Friedland, W.; Jacob, P.; Paretzke, H. G.; Ottolenghi, A.; Ballarini, F.; Dingfelder, M.

    The biophysical simulation code PARTRAC has been used in several studies of DNA damage induced by various radiation qualities including photons electrons protons alphas and ions heavier than alpha particles Ion-electron interaction cross sections are taken from isotachic protons scaled by Z eff 2 with the effective charge calculated according to the Barkas formula Recently ion type dependent angular distributions were introduced for intermediate secondary electron energies taking into account the different kinematic scaling of the constituents of the electron spectra Calculated stopping powers radial dose distributions and secondary electron spectra were found in good agreement with available experimental and theoretical results Radiation damage to DNA is determined in PARTRAC by superposition of the calculated track structures with a DNA target model taking into account direct effects from coincidences of ionisations and atoms within the DNA helix as well as indirect effects due to interactions of OH radicals produced in water surrounding the DNA For a simulation of radiation effects in human cells this target model comprises several genomic structure levels from the DNA double-helix up to chromosomes Calculated DNA damage due to irradiation of human fibroblast cells by ions of boron nitrogen and neon was compared to corresponding experimental data The calculated total yield of DSB per dose showed saturation behaviour with an RBE of about 2 whereas experimental data had a decreasing tendency with increasing LET to RBE values

  17. Bee products prevent agrichemical-induced oxidative damage in fish.

    PubMed

    Ferreira, Daiane; Rocha, Helio Carlos; Kreutz, Luiz Carlos; Loro, Vania Lucia; Marqueze, Alessandra; Koakoski, Gessi; da Rosa, João Gabriel Santos; Gusso, Darlan; Oliveira, Thiago Acosta; de Abreu, Murilo Sander; Barcellos, Leonardo José Gil

    2013-01-01

    In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g) were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™) and a group that was exposed to 0.88 mg L(-1) of TEB alone (corresponding to 16.6% of the 96-h LC50). We show that waterborne bee products, including royal jelly (RJ), honey (H), bee pollen (BP) and propolis (P), reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) are increased.

  18. Solvent effect induced solute damage in an organic inner salt.

    PubMed

    Shui, Min; Jin, Xiao; Li, Zhongguo; Yang, Junyi; Shi, Guang; Zhang, Xueru; Wang, Yuxiao; Yang, Kun; Wei, Tai-huei; Song, Yinglin

    2010-12-20

    Nonlinear absorption of